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ABSTRACT

A comparative study was initiated to investigate the role of environmental

variability on the trophic organization and structure of pelagic food chains in two

fjords, Bay d'Espoir and Fortune Bay, along the south coast of Newfoundland,

Canada. Although in close proximity, these fjords are biologically and physically

distinct. On the basis of physical oceanographic studies, Bay d'Espoir was

considered to be a relatively constant environment, while Fortune Bay had a

dynamic water column, undergoing bi-annual deep-water renewal. Fauna,

particulate organic matter (POM) and sediment were collected during summer

and winter and analyzed for their stable carbon and nitrogen isotopic

compositions.

This study entailed the elucidation of the trophic organization of the most

complex ecosystems yet analyzed using dual stable isotope tracers. Stable carbon

and nitrogen isotopes used in combination provided better resolution than either

could have given sin~ly. However, they only allowed the assignment of species to

a trophic level and did not in themselves provide information on the linkages

between and within levels.

The structure of the pelagic food webs and their principal food chains were

determined for winter and summer. The trophic organization of the food webs

was similar in both fjords within and between seasons; however, differences were

observed in the food chains. With the exception of Bay d'Espoir in August, the

top predators in both fjords occupied the fourth trophic level. The isotope data

indicated which species were at intermediate trophic levels and the trophic

position of the microzooplankton.

Three pelagic food chains were present in Bay d'Espoir during both seasons,

while Fortune Bay had three in the winter and two in summer. On the basis of

the carbon and nitrogen isotopic composition of the fauna and POM · it is

suggested these pelagic food chains are affiliated with specific water types. This

study is the first to draw attention to a relationship between the isotopic

composition of the fauna and POM deeper than the subsurface layer.



The trophic composition of the fauna differed between the two fjords ;

carnivores were dominant in Bay d'Espoir, while omnivores prevailed in Fortune

Bay. A decrease in the proportion of omnivores in Fortune Bay was found

between seasons , due to increased water column stability in the summer .

A progr essive enrichment of 13C and 15N in the fauna was found with

increasing tro phic level. Trophic level enrichments calculated for each food web

varied slightly between fjords and seasons. These values corresponded closely to

those reported in the literature and suggest similar mechanisms are involved in

the fractionation of stable isotopes in food chains, independent of geographic

location . Although minor differences were noted in the food chains, the overall

trophic organization of tbe two fjords was similar to the Bering Sea

(McConnaughey 1978) and the Scotian Shelf (Mills and Fournier 1979, Mills et al.

1984) ecosystems . This confirms the claims of Dickie (1972) and Mills (1975) that

coastal ecosystems in general are similarly structured.
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INTRODUCTION

1.1. Stable Isotopes

Traditional studies on the structure of food chains rely on the analysis of

stomach contents data to deduce trophic relationships among species. The

approach is time-consuming, tedious and subject to considerable error. In

addition, it fails to provide any evidence on differential assimilation of ingested

prey items. A new tool being applied to ecological studies to- minimize these

difficulties is stable isotope ratio mass spectrometry. This technique involves the

measurement of stable isotope ratios in plant and animal tissues to determine

feeding relationships. It has been applied to elucidate the trophic organization of

estuarine and marine ecosystems (e.g. ¥cConnaughey IQ7S, McConnaughey and

McRoy IQ7Qa,b, Hackney and Haines IQSO, Fry ei al. IQS4, Mills et al. IQS4,

Harrigan IQS6), and their components (e.g. Thayer et al. IQS3, Nichols et al. IQS5,

Paull et al. IQS5), and the diets of individual species (e.g. Fry et al. IQ7S, Haines

and Montague IQ7Q, Incze ei al. IQS2, Boutton et al. IQS3, Macko et al. IQ83,

Gleason IQS6).

Carbon and nitrogen each possess two stable isotopes that differ in their

natural abundance. In the biosphere, the light isotopes of both elements

predominate: 12C~ QS.SQ% versus 13C~ 1.11%, and 14N~ QQ.64% versus 15N

:::::: 0.36% (Nier IQ50). Stable carbon isotope ratio measurements are determined

on carbon dioxide gas (C02) by comparing the amount of 13C160160 (atomic

ma:ss 45) and 12C160160 (atomic mass 44) in a sample with that of a carbon

dioxide standard. A correction is made for 12C170160 which also has an atomic

mass of 45 (Craig IQ57). Stable nitrogen isotope analysis compares the ratio of

15N14N (atomic mass 2Q) to 14N14N (atomic mass 2S) in a sample with that of

atmospheric nitrogen (N2). Differences in the composition of the material are



reported as delta (6) values in units per mil (°/00). Delta values are calculated

using the following relationship between sample and standard isotope ratios:

6X = (Rsample/Rstandard - 1) x 1000 (1)

where X=13C or 15N and R=13C/ 12C or 15N/14N, respectively. Values greater

than zero indicate samples that are enriched in the heavy isotope [i.e. 13C, 15N)

relative to the standard; samples depleted in 13C or 15N have negative values.

Stable isotopes of an element have the same number of protons but differ in

the number of neutrons. Small variations in atomic mass result in diCCerences in

chemical and physical properties due to isotopic discrimination. Processes that

incorporate or release one isotope preferentially are known as isotope

fractionations. Fractionation is deCined as the partitioning of isotopes between

two substances with different ratios (Hoefs 1980) and occurs via either equilibrium

or kinetic isotope effects.

Equilibrium isotope effects are rare in biological systems. Fractionations are

produced by changing the isotopic distribution among different chemical

substances, phases or individual molecules. Isotope equilibrium constants may be

estimated using statistical mechanics (Bigeleisen and Mayer 1947). Stable carbon

isotopes, for example, initially undergo fractionation during equilibrium exchange

reactions between atmospheric carbon dioxide and oceanic bicarbonate. This may

be the most important equilibrium effect in the carbon cycle (Parker and Calder

1970). The exchange reaction:

occurs during the hydration stage, not at the air-sea interface (Deuser and Degens

1967), and results in depletion of 13C in atmospheric carbon dioxide (613C = -7 to

_9°/00) and an enrichment of 13C in bicarbonate (613C = 0% 0) (Craig 1953).

In biological systems , fractionations result from mechanism-dependent

kinetic effects. Different rates of reaction normally cause depletion of the heavy

isotope in the reaction products. Due to problems in characterizing the activated



species or transition states of biochemical reactions, the calculation of equilibrium

constants associated with kinetic isotope effects is difficult (Bigeleisen and Mayer

H)47, Kaplan 1975).

1.2. Kinetic Fractionations of Stable Isotopes by Plants and

Animals

1.2.1. Carbon

Terrestrial plants fix carbon dioxide during photosynthesis by one of three

pathways: (1) the Calvin cycle (C3 metabolism), (2) the Hatch-Slack cycle (C
4

metabolism) or (3) crassulacean acid metabolism (CAM). Each pathway uses

specific carboxylation enzymes which discriminate against 13C to some extent; C3
plants use ribulose-l,5-bisphosphate (RuBP) carboxylase (Park and Epstein 1960,

1961, Estep et al. 1978, Benedict et al. 1980), whereas C4 plants use

phosphoenolpyruvate (PEP) carboxylase (Whelan et al. 1973). A mixture of both

enzyme systems is used by CAM plants, with the proportion determined by

environmental conditions (O'Leary 1981).

Initial kinetic fractionations of the stable carbon isotopes, amounting to

70
/ 0 0 relative to atmospheric CO2, take place in higher plants due to differences

in the rates of CO2 molecules encountering the leaves (Park and Epstein 1960).

12C is slightly lighter and more abundant than 13C, and strikes the leaves 1.1%

more frequently than the heavier isotope (Degens 1969).

Park and Epstein (1960, 1961) concluded that the major step controlling the

isotopic composition of plants depended on the initial carboxylation reaction and

the magnitude of the fractionation associated with it. Subsequent studies (Whelan

et al. 1973, Troughton et al. 1974, Estep et al. 1978) confirmed these findings.

Depending on the enzymatic pathway followed, each plant group possesses a

range of characteristic 613C values. These values range from -24 to -340 /00for C3
plants and from -12 to -230

/ 0 0 for C4 plants (Benedict et al. 1980). Stable carbon

isotope values of CAM plants span the known values for C3 and C4 plants, from

-14 to -340
/ 0 0 (Bender et al. 1973, Lerman et al. 1974).



Marine phytoplankton , like C3 plants , catalyze the fixation of carbon

dioxide with RuBP carboxylase but have S13C values that range from -18 to

-24%0 (Fry and Sherr 1984). Variations in sea surface temperatures have been

implicated as the major factor causing changes in the isotopic composition of

phytoplankton (Sackett et al, 1965, Wong and Sackett 1978, Fontugne and

Duplessy 1981). Temperature coefficients ranging from -0.13%0 per CO (Wong

and Sackett 1978) to +1.4 %0 per Co (Christeller et al. 1976) have been

calculated in a number of laboratories (Sackett et al. 1965, Degens et al. 1968,

Libby 1972, Christeller et al . 1976, Wong and Sackett 1978). However , a strict

temperature/S13C relationship has not always been apparent (Fontugne and

Duplessy 1978, Rau et al. 1982, Gearing et al . 1984). Alternative explanations

have included different physico-chemical conditions and/or metabolic activities of

phytoplankton species (Fontugne and Duplessy 1978), variations in cell density

and growth rate (Pardue et al. 1976), the production of lipids by high latitude

phytoplankton species (Smith and Morris 1980), changes in pH, and a

temperature-associated carbon dioxide pool effect (Degens et al, 1968).

Parker (1964) was the first to note the similarity between S13C values of

marine animals and their food. This and subsequent observations (e.g. Minson et

al. 1975, DeNiro and Epstein 1978) have led to the generalization that large

isotope fractionations are not associated with the incorporation of dietary carbon

e3C) into animal tissues (DeNiro 1977, DeNiro and Epstein 1978). Although

secondary fractionation and turnover of stable isotopes in animals are poorly

understood processes (Tieszen ei al. 1983), isotopes are fractionated during

respiration before being stored in various tissues (van der Merwe 1982). 12C is

selectively released, and 13C is retained (DeNiro and Epstein 1978,

McConnaughey and McRoy 1979a,b). 12C can also be preferentially lost through

assimilation and excretion (Fry et al. 1984) with the result that organisms on

average are enriched in 13C by approximately 1%0 relative to their diet (DeNiro

and Epstein 1978). Laboratory studies of animals fed the same diet report a

relatively small S13C variation of 1-2%0 among individuals (Fry 1977, DeNiro

and Epstein 1978, Fry and Arnold 1982). Comparable intraspecific ranges have



also been shown in field studies (Fry et al. 1975, Haines and Montague 1979,

Stephenson 19S0, Stephenson and Lyon 19S2). Fry and Parker (1979) reported a

range in o13C values of 0.70%
0 for 41 specimens of vermillion snapper

(Rhomboplites aurorubens) . However, some laboratory studies have found no

13C-enrichment between animals and their diet (Teeri and Schoeller 1979, Macko

et al. 19S2b, Stephenson et al. 19S6).

The relationship between the carbon isotope ratio of a tissue and the diet

depends partially on the type of tissue and the nature of the diet . Different

tissues in the same animal (e.g. muscle, fat, bone , hair) may have slightly different

o13C values (van der Merwe 19S2) due to variation in the isotopic ratios of the

food components that contribute to the formation of the specific tissue types

(DeNiro and Epstein 1975). Isotopic differences between tissues may reflect

variation in their biochemical composition; a tissue containing a large proportion

of lipid would have a more negative o13C value than one with a lower lipid

content. Tieszen ei al. (19S3) attributed isotopic differences between various

tissues in gerbils to differences in metabolic activity which affect the isotope

turnover rate; higher turnover rates lead to tissues with more positive o13C values.

1.2.2. Nitrogen

Studies utilizing stable nitrogen isotopes are fewer than those based on

carbon. However, this tracer has proven valuable in studies of the nitrogen cycle

(Macko 19S1, Saino and Hattori 19S5, Sigleo and Macko 19S5), oceanic particle

dynamics (Wada and Hattori 1976, Mariotti et al. 19S4, Altabet and Deuser 1985,

Owens 19S5, Altabet and McCarthy 19S6, Altabet et al. 19S6), and trophic

organization (DeNiro and Epstein 19S1, Rau 19S1a,b; Minagawa and Wada 19S4,

Mullin et al. 19S4, Paull ei al. 1985).

Nitrogen enters the biosphere through fixation of molecular nitrogen by soil

bacteria in terrestrial environments or by blue-green algae (cyanophytes) in

aquatic systems. Fractionation during nitrogen fixation is small (Hoering and

Ford 1960, Delwiche and Steyn 1970, Macko et al. 19S2a); variations in o15N

values are thought to be due to kinetic isotope fractionations during



denitrification, nitrification, ammonification and nitrate assimilation (Wada and

Hattori 1976). The extent of the fractionations varies depending on the type,

mode and mechanism of the reaction (Wada 1979).

In the oceanic environment, inorganic nitrogen occur s in the form of

ammonia, molecular nitrogen, nitrate, nitrite and nitrous oxide . Wada and

Hattori (1976) found oceanic nitrate e5
15N values depended on geographic locati on

and depth within the water column. A relationship also exists betwe en e5
15N

values of marine phytoplankton and the nitrogenous compounds used for growth;

the 15N content of plankton samples is inversely correlated with ambien t nitrate

concent rat ion (Wada and Hattori 1976). The degree of fractionation in organisms

varies according to the growth rate, growth phase , light intensity, nitrogen sour ce

and speci es (Wada and Hattori 1978).

Variation in the natural abundance of 15N in suspended particulate organic

matter has been interpreted in terms of nitrogen cycle processes, depending on the

input of nitrogen to the euphotic zone (Miyake and Wada 1967, Altabet and

Deuser 1985, Saino and Hattori 1985). Wada and Hattori (1976) observed that

plankton collect ed from nitrate-poor water, in which regenerated ammonia was

the principal nitrogen source, had higher mean e5
15N values (+8.6°/ 00) than

organisms from tropical areas (+0 .5%0) where the nitrogen-fixing cyanophyte

Trichodesmium sp. dominated. Similar results have been reported by Macko et

al, (1984) for the Gulf of Mexico and by Mullin et al, (1984) for the North Pacific

Central Gyre and Southern California Bight.

The nitrogen isotopic compos ition of animals is a reflec tion of their diet and

ult imately the nitrogen source (DeNiro and Epstein 1981, Macko 1981, Minagawa

and Wada 1984). Animals incorporate dietary 15N into their tissues preferentially

(Steele and Daniel 1978, DeNiro and Epstein 1981), resulting in more positive

e515N values of the animal relative to the diet . Minagawa and Wada (1984) have

suggested that the enrichment in body e5
15N values may also be due to the type of

excretory nitrogen formed and the excretion mechanism. As with carbon, the

relationship between e5
15N values and the diet depends on both the type of tissue

analyzed and the nature of the diet.



1.3. Food Chains and Stable Isotope Tracers

A major area of ecological research is concerned with establishing a

relationship between ecosystem structure and function and uncovering the

mechanism(s) involved in regulation. Food chains are representations of

interspecific interactions in a community that trace the flow and cycling of energy

and/or material in the system. Heterotrophic species consume organisms from the

trophic level directly below them and are potential prey for those above. Food

chains seldom contain more than five trophic levels and are classified as either

grazing or detritus-based, depending on the source of organic matter (Odum

1971).

In the past, understanding of trophic organization was based primarily on

data from stomach contents analyses. Such studies provide valuable information

on species interactions but only represent a specific situation at one moment in

time. They are hampered by their inability to identify the source of organic

matter at the base of a food chain, 'invisible pathways' (Rounick and

Winterbourn 1986), and possible differential assimilation of prey items by

predators. The accuracy of the data also depends heavily on the observer's ability

to recognize the remains of ingested food.

Stable isotope tracers provide a new approach to elucidating trophic

organization. Unlike stomach contents analysis, this technique measures foods

actually assimilated by an organism over time. As a result of 12C being lost faster

than 13C, the ratio of 13C to 12C increases as carbon moves through a food chain

(McConnaughey 1978). Thus the stable carbon isotope ratio of a top level

consumer shows the greatest amount of enrichment relative to the base of the

food chain (McConnaughey 1978). DeNiro and Epstein (1978) found an

enrichment of 1 to 2%
0 per trophic level for stable carbon isotopes in laboratory

studies.

Likewise, the preferential retention of 15N in an organism's tissues results in

an enrichment in b15N values with increasing trophic level. Miyake and Wada

(1967) found a stepwise enrichment in nitrogen of 3 to 4%0 per trophic level.

Figure 1-1 illustrates the stable carbon and nitrogen isotope values encountered at



each trophic level in a hypothetical marine food chain. Note the enrichment in

both isotopes with increasing trophic position or level. A trophic level has been

defined as a position in a food chain determined by the number of energy-transfer

steps to that level (Ricklefs 1979). Workers in the isotope field usually refer to

trophic level, but the term more appropriately should be trophic continuum. In

keeping with usage in the isotope literature, however, the term trophic level is

used in the remainder of this thesis. In isotope studies trophic levels are defined

according to enrichments of 1 to 2%
0 per trophic level for carbon and 3 to 4% 0

per trophic level for nitrogen, as was discussed above.

The majority of food chain studies utilizing stable isotope tracers have dealt

primarily with delineation of the source(s) of organic matter. These studies are

based on two important assumptions (McConnaughey 1978, Fry et al. 1982):

1. Sources of organic matter must be isotopically distinguishable.

2. Animal consumers reflect the isotopic composition of their diets .

A recent, comprehensive review by Fry and Sherr (1984) has dealt with the

use of stable carbon isotopes as tracers of carbon flow in freshwater and marine

ecosystems. A brief review of food chain studies utilizing stable carbon and/or

nitrogen isotopes in marine ecosystems follows.

The study of food chains in coastal and marine ecosystems with stable

isotope tracers has provided the best evidence for the existence of 13C_ and

15N-enrichments with increasing trophic position in natural systems

(McConnaughey 1978, McConnaughey and McRoy 1979b, Rau et al. 1983, Fry

and Sherr 1984, Minagawa and Wad a 1984, Harrigan 1986). Estuarine and

coastal systems may have many sources of organic matter, whereas suspended

particulate organic matter (POM) predominates in offshore environments. The

preponderance of different types of primary producers in some coastal ecosystems

has made the interpretation of data from studies using only carbon isotopes

difficult due to overlapping values (Schwinghamer et al. 1983). As well,

variability has been found by Stephenson et al. (1984) in the carbon isotopic



Figure 1-1: A hypothetical marine food chain illustrating the enrichment of
stable carbon and nitrogen isotopes with increasing trophic level.
Arrows on the far left and right indicate the eventual contribution
of phytoplankton , zooplankton and fish to the sediment.
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composition of macrophytes, which has important implications for food web

studies of environments dominated by these plants. In nearshore environments,

the incorporation of terrestrially-derived organic matter into food chains has been

detected (Rau et al. 1981, Incze et al. 1982), although its affect dissipates quickly

seaward (Thayer et al. 1983) and with depth (Fry et al. 1984). The use of

allochthonous carbon sources has been found for an offshore benthic community

(Spies and DesMarais 1983) and for stream invertebrates (Rounick et al. 1982).

Fry and Sherr (1984) suggest the major factors influencing the values of

13C-enrichments in marine animals are diet and trophic position. Studies using

stable carbon isotopes have attempted to calculate the amount of 13C-enrichment

per trophic level. A 1 to 1.50/ 0 0 per trophic level enrichment has been .assumed

based on laboratory investigations (DeNiro and Epstein 1978), and applied to field

studies (McConnaughey 1978, McConnaughey and McRoy 1979b, Mills et al.

1984). However, trophic level enrichment values have been shown to vary from

no enrichment between POM and zooplankton (Sackett et al. 1965, Degens et al.

1968, Deuser 1970, Tan and Strain 1983) to 0.5 - 2.20
/ 0 0 per trophic level

(Thayer et al. 1983, Gearing et al. 1984).

Rau et al. (1983) found that the amount of enrichment per trophic level in

pelagic food chains differed between coastal and open ocean sites. Food chains in

the coastal waters off southern California had an enrichment of 1.380
/ 0 0 per

trophic level compared to 0.730
/ 0 0 per trophic level in the eastern tropical Pacific

Ocean. Each food chain had 5 trophic levels. In a study of a benthic community

at a natural petroleum seepage, a difference of 1.320
/ 0 0 was found between the

petroleum carbon being utilized and the fauna (Spies and DesMarais 1983). A

study of the planktonic food chain in the northern Gulf of Mexico (Thayer et al.

1983) found trophic enrichment did not exceed ± 1.80
/ 0 0 per level.

McConnaughey (1978) and McConnaughey and McRoy (197gb) have suggested

that the food chain of the Bering Sea ecosystem consists of 5 to 6 trophic levels by

assuming an enrichment of 1.50
/ 0 0 per trophic level. Mills et al. (1984) found the

food chain from phytoplankton to benthic fishes on the Scotian Shelf also had 5 to

6 trophic levels and concluded that the trophic organization was similar to that of
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the Bering Sea. However, their study assumed a trophic level enrichment of

1°/00 instead of the 1.5%
0 used by McConnaughey (107S) and McConnaughey

and McRoy (1070b).

The largest I3C-enrichments, on the order of 7 to 0%
0 (Fry and Sherr

10S4), have been observed in benthic consumers (McConnaughey 107S,

McConnaughey and McRoy 1070b, Dunton and Scbell 10S4, Gearing et at. 10S4,

Mills et at. 10S4). This may be due to reworking of the carbon in sediments by

microbes or meiofauna (McConnaughey and McRoy 1070b), and implies that, due

to benthic-pelagic coupling, food chains of continental shelf ecosystems may have

more trophic levels than is normally assumed (Fry and Sherr 10S4).

Stable carbon and nitrogen isotopes have been used to confirm

chemosynthetic nutrition in an abyssal seep (Paull et at. lOSS), shallow-water

benthic (Spiro et at. 10S6) and hydrothermal vent communities (Rau 10Sla,b).

Hydrothermal vent studies have suggested that neither a photosynthetic pathway

nor the transfer of matter via pelagic coupling is employed . In addition to

elucidating a chemosynthetic pathway, differences in carbon isotope values

between worm and bivalve tissues suggest the presence of two unique food sources

(Rau 10Sla). Stable nitrogen isotope data indicate that animals at vents are not

dependent on a photosynthetic pathway, and low values may be associated with

nitrogen fixation (Rau 10Slb). Rau (10Slb) has speculated that nitrogen fixation

precedes the synthesis of nutritional organic nitrogen. Similar results have been

reported by Paull et at. (H)S5) for an abyssal seep community in the Gulf of

Mexico.

1.4. Rationale and Research Objectives of the Present Study

Explanations for the existence and maintenance of food chains in nature

with no more than five or six trophic levels have been attempted by a number of

authors (Elton 1027, Lindeman 1042, Pimm and Lawton 1077, DeAngelis et at.

107S, Lawton and Pimm 107S, Saunders 107S, Hastings and Conrad 1070, Pimm

10S0, 10S2, DeAngelis et at. 10S3, May 10S3, Yodzis 10S4 and Pimm lOSS, among

others) , but without a consensus. Briand (10S3b) has speculated that
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environmental variability imposes constraints on the types of viable trophic

patterns. Analysis of 40 food webs showed that fluctuating environments had a

significantly diCCerent food web structure than more constant systems. Those

from fluctuating environments were dominated by species that optimized feeding

due to the amplitude of the changes, not their degree of predictability (May 1981),

and had significantly lower connectance than webs from constant environments

(Briand 1983b). Similar results have been found by Briand (1983a) and Cohen

and Briand (1984). The authors suggest the results are a reflection of greater

constraints on the trophic structure of food webs in fluctuating environments.

Empirical studies on the trophic organization of plankton (Timonin 1971),

macrophyte (Littler and Littler 1981), seabird (Springer et al, 1984), and rocky

intertidal communities (McQuaid and Branch 1985) have found that

environmental variability affected trophic organization via either dynamic (Elton

1927, Pimm and Lawton 1977, Lawton and Pimm 1978, Saunders 1978, Pimm

1982) or energetic (Lindeman 1942, DeAngelis et al. 1978, Yodzis 1984)

constraints. Trophic organization tends to be more similar within than between

ecosystem types (e.g. estuarine, forest, intertidal, pelagic, terrestrial) and as a

result, environmental variability probably exerts a greater influence on trophic

structure than has been thought previously (Briand 1983a,b). Constant systems

should be characterized by herbivores and carnivores and a food chain with many

trophic levels (Briand 1983a,b). Fluctuating environments should experience a

greater loss of material to the sediments as a result of inefficient use by

omnivorous and opportunistic species. Given comparable communities, Pimm

(1982, 1985) suggests that food chains in variable environments should have fewer

trophic levels than those in constant systems. Although hypothesis testing in

natural ecosystems is uncommon and difficult, some evidence supports Pimm's

claim (Kitching 1981).

The present project was initiated to examine the structure of pelagic food

chains in two fjords, along the south coast of the island of Newfoundland,

differing with respect to their degree of environmental fluctuation. . Biological

(Richard 1986, Richard and Haedrich, in press) and physical oceanographic
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studies (de Young lQ83, Richard and Hay lQ84) have shown that although the

fjords are in close proximity, they are biologically and physically distinct. One

appears to be a relatively stable system; it is warm, undergoes only partial deep

water renewal and maintains a diverse community of pelagic animals. The other

system is quite dynamic; it is characterized by cold water, is subject to bi-annual

renewal of the water column and has a fauna dominated by a few highly

abundant species. Differences between the two fjords in their fish fauna and the

processes regulating the populations (in situ biological versus physical) have been

attributed to contrasting water column stabilities (Richard and Haedrich, in

press).

Based on the empirical and theoretical studies already cited, the food web in

the constant or stable ecosystem was predicted to have many trophic levels and to

be efficient in its cycling of organic matter, whereas the food web in the

fluctuating or dynamic system was predicted to have fewer trophic levels and a

lesser efficiency. This lesser efficiency would manifest itself by a greater

accumulation of organic matter in the sediments. Table 1-1 summarizes some of

the important physical and biological characteristics of the two fjords along with

predictions on the trophic organization of each.

To assess these predictions, a dual stable isotope approach employing carbon

and nitrogen tracers was used to provide integrated dietary information on

resident organisms of the fjords. This technique is especially useful on species of

small body size and on midwater organisms, which often either egest their

stomach contents or feed while in the net. The ability to resolve food chains is

increased and the source(s) of organic matter more easily identified when a

number of isotopes are used in combination instead of singly (Fry and Sherr lQ84,

Peterson et al. lQ85).



Table 1-1 . A summary or some or the important biological and physical characteristics or Bay d 'Espoir and Fortune Bay and predictions
on the trophic organization.

KNOWN: PREDICTED:

Fjord Maximum Deep-Water
Depth (m) Renewal

Water
Types

Type or
Environment

Fauna Processes
Regulating
Populations

Dominant
Feeding

Type

Food Web
Structure

Cycling or
Organic
Matter

I-'
U1

Bay d'Espoir 745 Annual 3 Summer Constant Diverse in situ Carnivores Long , Thin Efficient
(partial) 3 Winter Biological Many Trophic

Levels

Fortune Bay 398 Bi-annual 2 Summer Fluctuating Depauperate Physical Omnivores Short, Fat Ineffi cient
(dynamic) 3 Winter Few Trophic

Levels
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MATERIALS AND METHODS

2.1. Study Site Description

Bay d'Espoir and Fortune Bay, two fjords along the south coast of

Newfoundland, Canada (Figures 2-1 and 2-2), were chosen as study sites .

Although in close proximity (40 km), their physical characteristics differ

markedly.

Bay d'Espoir is a narrow fjord consisting of a deep outer basin (79g m

depth) connected to two principal arms leading inland (Figure 2-2a). It has one

outer sill separating it from Hermitage Channel, and nine inner sills (Richard and

Hay 1994, Richard 1996). The water column of the outer basin is stratified year

round and during the summer consists of three layers: a near-surface layer , an

intermediate depth cold-water layer and a deep warm-water layer (Richard and

Hay 1984). The near-surface layer is approximately 20 m deep and is dissipated

during winter mixing. The intermediate depth, cold-water layer (temperature: -1

to -O.SoC, salinity : 33.0%0) extends from about 20 to ISO m and originates from

Labrador Current Water (LCW) and winter-cooled surface water (Richard and

Hay 1994). The water below ISO m is Modified Slope Water (MSW), formed from

water at intermediate depths along the continental slope and modified by mixing

while moving through the Laurentian and Hermitage Channels. This water type

is warm (4 to 6°C), saline (34.So/00) and is considered to be a permanent feature

of the outer basin (Richard and Hay 1994). Deep-water renewal in the outer

basin occurs annually in the spring, although it may only be partial (Richard and

Hay 1994), and involves only MSW. It has been correlated with strong north

northeasterly winds along the south coast in winter (Richard 1996). On the basis

of this physical information , Bay d'Espoir is considered to be a relatively constant

or stable ecosystem compared to Fortune Bay.
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Figure 2-1: The location of Bay d'Espoir and Fortune Bay along the south
coast of Newfoundland, Canada.
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Figure 2-2: Sampling site locations in the main outer basin of (a) Bay
d'Espoir and (b) Fortune Bay.
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Fortune Bay is a large, broad fjord (Figure 2-2b) with three outer sills and

one inner sill. The outer basin has a maximum depth of 400 m. This fjord has

two sources of deep-water: Modified Slope Water (MSW), which moves from the

west via Hermitage Channel, and Labrador Current Water (LCW) from the east

following the Avalon and St. Pierre Channels. MSW is warm and saline (4 to

6°C, 34.5°/00), while LCW is cold and less saline (-1 to -0.5°C, 33.0% 0; de

Young 19S3, Richard 19S6).

Deep-water renewal occurs bi-annually (summer and winter) and is

accompanied by intense vertical mixing (Richard and Hay 19S4). In summer, this

exchange involves LCW and results in water temperatures near OOC throughout

the water column of the outer basin. During the winter months, MSW flows over

the outer sills and sinks to the bottom of the basin, raising deep-water

temperatures to between 2.0 and 2.5°C (de Young 19S3, Richard and Hay 19S4).

Stratification may occur in the deeper water, but it is weaker than that in Bay

d'Espoir (Richard 19S6). Due to the unpredictable nature of its water column

structure, Fortune Bay is considered to be a fluctuating, dynamic and highly

variable environment.

2.2. Collection of Samples

Sampling was conducted from the CSS Dawson in December 19S4 and

August 19S5 at two permanent hydrographic stations in the main outer basins of

Bay d'Espoir and Fortune Bay (Figures 2-2a and 2-2b). The sampling site in Bay

d'Espoir, station BdE 14, was located at 47°40.1'N, 56°0S.0'W, with a depth of

approximately 79S meters. The station sampled in Fortune Bay, Fo 2.7, was

located at 47°23.3'N, 55°29A'W and was 400 meters deep.

Suspended particulate organic matter (POM) was collected from the mixed

layer by filtering water pumped from the ship's seawater intake located 5 meters

below the surface. During the August cruise, Labrador Current Water (LCW)

from SO m and Modified Slope Water (MSW) from near the bottom (745 rn] of

Bay d'Espoir, and LCW from near the bottom (37S m) of Fortune Bay, was

collected in 1.7 I Niskin bottles attached to a rosette sampler. The POM was
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collected on pre-ashed (500°C, Ih), 47 mm Whatman GF IC glass fiber filters ;

once clogged, the filters were frozen. Conductance and temperature profiles Cor

each station were recorded with a CTD probe (Neil Brown Instrument Systems

Inc.) attached to the rosette.

Small zooplankton, primarily copepods, were collected with a 333Jlm mesh

ring net in vertical hauls from approximately 10 m off the bottom to the surface.

Samples and labels were placed in plastic bags and frozen.

Macroinvertebrates and fishes were caught with a 1.8 m Isaacs-Kidd

Midwater Trawl in December and with a 3 m trawl in August. The outer mesh of

the net was 3 x 3 em, with an inner liner of 7 x 7 mm mesh. Trawls consisted of

an oblique tow from 50-100 m off the bottom to the surface in stepped increments

of 100 m. Fishing began once the net reached depth, with total fishing time

lasting from 30 minutes to 1 h. Once on deck, the catch was partially sorted,

packed in plastic bags, labeled and frozen. A representative sample of fish caught

during the the summer cruise was fixed in seawater containing 5% (vIv) buffered

formalin Corstomach content analysis.

Sediment was collected with a 0.25 m2 van Veen grab. Undisturbed surficial

portions were subsampled, placed in plastic bags, labeled and frozen.

Samples remained frozen during and after transportation to the laboratory

and were only thawed prior to sorting and identification in preparation for

isotopic analysis.

All material was collected either several hours after sunset or before sunrise

to ensure sufficient numbers of animals. The only exception was at station Fo 2.7

in August, when the ship schedule dictated that fishing could only be done at

0800 hrs.
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2.3. Stable Isotope Ratio Mass Spectrometry

2.3.1. Sample Preparation

The filters on which POM was collected were thawed and examined with a

stereomicroscope for zooplankton which were removed. The filters were then

acidified 1. Once dry, the top layers of two filters were scraped and the scrapings

placed in a 30 ern length of 10 mm outer diameter (o.d.) quartz tube with an

excess of fired (900°C, Ih) cupric oxide (CuO) in alternate layers. A layer of

granular copper metal (Cu) was placed on top. Approximately 5 g of CuO and 1

g of Cu were used per sample. Prior to use, the quartz tubes were pre-combusted

in a muffle furnace for 1 h at 500°C to remove contaminants.

Frozen samples of animals were thawed, rinsed in distilled water, sorted and

identified to species level wherever possible. Taxonomic keys used included:

Dunbar (1963) for amphipods; Fraser (1957) for chaetognaths; Sars (1903), Wilson

(1972) and Harding (unpublished manuscript) for copepods; Allen (1967), Rice

(1967) and Smaldon (1979) for decapod shrimp; Einnarsson (1945) and Mauchline

(1971) for euphausiids; Leim and Scott (1966) and Fahay (1983) for fishes;

Tattersall (1951), Tattersall and Tattersall (1951) and BruneI (1960) for mysids;

Muus (1953) for pelagic polychaetes and Morton (1957) for pteropods.

Whole adult animals were used for analysis; those animals with exoskeletons

were acidified, the acid decanted off and the animals dried. Animals with soft

bodies were not acidified, but were placed immediately in the drying oven.

Larger zooplankton [i.e. euphausiids, some mysids and shrimp) and fish had

muscle tissue dissected out and dried for separate analysis. Once dry, the samples

were ground into a powder in a glass mortar with a pestle . Approximately 10 mg

of sample was weighed to ± 0.1 mg and placed in a 30 ern length of 6 mm o.d .

quartz tube with 1.5 g of CuO and 0.5 g of Cu.

Sediment samples were thawed, acidified and dried. The dried samples were

ISamples requiring acidification, such as animals with exoskeletons, POM collected on Iilters,
and sediment, were placed in an excess of 20% HCI until bubbling ceased and dried. All

samples were dried at 40°C for 48 h.
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ground into powder and a 200 mg subsample taken. This was placed in a 30 cm

length of 10 mm o.d. quartz tube with approximately 5 g of CuO and 1 g of Cu.

All sample tubes were sealed under a high vacuum and the contents

thoroughly mixed to allow intimate contact between sample and oxidant. A

modified Dumas combustion was carried out in which the tubes were heated in a

muffle furnace to 850°C for 1 h and then allowed to cool at 750°C, 650°C and

550°C for 1 h each (Macko 1981).

2.3.2. Collection and Analysis of CO 2 and N2 Gases

The vacuum line used for the collection of carbon dioxide and nitrogen gases

is-illustrated in Figure 2-3. Numbers -in parentheses in the following text refer to

labels on the diagram. Sample tubes (1) were scribed with a glass cutter and

placed in a flexible Cajon joint (2) attached to the vacuum line (DesMarais and

Hayes 1976). The line was evacuated and tested for air leaks. If no leaks were

found, the sample tube was cooled with liquid nitrogen and then broken. A hot

air gun was used to heat the sample tube, expanding the gases into the line. Prior

to collection of gases a U-trap (3) in the line was cooled with liquid nitrogen for 6

minutes. Nitrogen was collected first to avoid contamination with carbon

monoxide present, as both molecules have ions with an atomic mass of 28. A

second Dewar flask of liquid nitrogen was placed under a collection tube

containing a molecular sieve (4) and nitrogen gas was collected for six minutes,

after which the tube was closed and the liquid nitrogen removed. The collection

tube was placed in the sample inlet of the mass spectrometer and heated for five

minutes at ~150oC. The gas was then introduced into the instrument for

analysis.

Carbon dioxide was collected from the same sample by replacing the Dewar

flask of liquid nitrogen under the V-trap (3) with another flask containing a

methanol-dry ice slush. This allowed the previously frozen CO 2 to thaw and

expand into the vacuum line. A Dewar flask of liquid nitrogen was placed under

a pyrex tube (5) and the CO2 allowed to collect in it for four minutes. The tube

was then sealed and the carbon dioxide samples were analyzed later on the mass

spectrometer.
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Figure 2-3: The vacuum line used in the collection of carbon dioxide and
nitrogeO gases.
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The amounts of CO2 and N2 present in sediment samples were recorded to

calculate the percentage of carbon, nitrogen and an atomic C:N ratio . The

absolute amount of carbon dioxide gas was measured on a calibrated manometer

(6) attached to the vacuum line. Nitrogen gas was measured directly as the ion

intensity in a calibrated volume of the mass spectrometer. Atomic C:N ratios

were calculated using the formula:

C:N = (C/N) x (14/12) (3)

where C and N were the amounts (milligrams) of carbon and nitrogen in a sample

and 12 and 14 the atomic mass of carbon and nitrogen, respectively.

Samples were analyzed for their stable carbon and nitrogen isotopic

compositions using a Micromass 903E mass spectrometer with a triple collector

(V.G. Ltd., Middlewich, Cheshire, England). A minimum of six comparisons was

made between the sample and reference materials. Stable isotope compositions

are reported relative to the carbonate standard PDB (13C) or atmospheric

nitrogen (15N).

Delta (8) values for stable carbon and nitrogen isotopes were calculated

using equation 1 (page 2). Stable carbon isotope measurements were corrected for

170 using factors reported by Craig (1957). Instrument precision for carbon and

nitrogen measurements was better than ±O.05°100.

2.4. Reconstruction of the Pelagic Food Webs and Chains

Trophic level enrichments (EN) for the carbon and nitrogen isotopes were

calculated for Bay d'Espoir and Fortune Bay during winter and summer relative

to the carbon and nitrogen isotopic composition of the top predator M .

atlanlicum in Bay d'Espoir and A. malmgreni in Fortune Bay. This is

represented by the equation:

EN = (Rpredator - RpoM)/TL

where Rpredator was the 8
13C or 8

15N value of the top predator in each fjord and
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R
p OM

was the carbon or nitrogen isotopic composition of the subsurface POM.

The trophic level occupied (TL) by M. atlanlicum or A. malmgreni was

calculated by applying trophic level enrichments of 1.00
/ 0 0 per trophic level for

carbon (DeNiro and Epstein 1978) and 3.00
/ 0 0 per trophic level (Miyake and

Wada 1967) to the calculated difference between the isotopic composition of the

predator and the POM. The calculations showed both top predators were on the

fourth trophic level; three levels above the POM.

The pelagic food webs and chains in Bay d'Espoir and Fortune Bay were

reconstructed from the stable carbon and nitrogen isotope data. A scaled trophic

level occupied by each species was determined by calculating ..::1813C and ..::1815N

values for each species (data in Appendix E through K) and evaluating them

relative to calculated trophic level enrichments. The ..::1813C and ..::1815N values for

each species was calculated using the equation:

(5)

where XAnimal is the 813C or 815N composition of a species and X p OM is the 813C

or 815N composition of the POM. For example, if the trophic level enrichments

for carbon and nitrogen were 1.00 / 00 and 3.00 / 00, respectively, a species with a

..::1813C value of 1.00 / 00 and ..::1815N value of 3.00 / 00 would be on the second

trophic level, directly above the POM. Likewise, a species with ..::1813C and ..::1815N

values of 2.00/ 00 and 6.00/ 00, respectively, would be placed on the third trophic

level and so on.

The trophic composition of each fjord by season was determined by

classifying each species into a broad trophic category (carnivore, herbivore and

omnivore) based on information from the literature. The percentage of each

feeding type was calculated for the fauna in Bay d'Espoir and Fortune Bay by
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2.5. Stomach Contents Analysis

Stomach contents analyses were done on Melanosligma atlanlicum caught

in Bay d'Espoir in August lQS5. This species was the most abundant fish taken

there. Samples initially preserved at sea in 5% (v/v) buffered formalin were

transferred to 70% ethanol in the lab. Total lengths were measured to ± 0.02

mm with dial calipers and wet weights were measured to ± 0.01 g.

The mouths of the fish were examined for prey items, as indicative of

feeding or regurgitation in the net. Individuals found with prey items in their

mouths were not used in the analysis. Following this, the stomachs were dissected

from the fish and the contents examined with a stereomicroscope and identified to

species wherever possible. The number of prey items and the presence/absence of

unidentifiable material was noted.

The percentage of various prey species ingested by each size class of fish,

and the isotopic composition of the prey species, were used to predict stable

carbon and nitrogen isotope values of the fish and to compare them to actual

measurements. The calculations were based on a relationship that assumes total

body isotope values are a function of the amount of a specific food consumed and

its isotopic composition. This is expressed as:

where Xpredator is the 0
13C or 0

15N value of the predator, %prey was the

percentage of a prey species consumed and Rprey was the 013C or 015N value of

the prey species. Trophic level enrichments (EN) of 1.0 and 2.Qo/00calculated for

M. atlanlicum in August (using equation 4) were applied to the predicted carbon

and nitrogen values, respectively, to account for trophic position.
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2.6. Statistical Analysis

All analyses were done using statistical and plotting packages available in

SPSS-x (SPSS Inc. 1983). Two-tailed t-tests (Sokal and Rohlf 1981) were done to

test for significant differences in mean carbon and nitrogen isotope values between

and within seasons and fjords. The mean stable carbon and nitrogen isotopic

compositions of the fauna were tested statistically to look for differences among

species within the fjords seasonally and between the fjords within a season.

Significant differences in the isotopic composition of a species indicate either

changes in the dietary sources of carbon and/or nitrogen, or in the proportions of

various biochemical constituents (e.g. lipids) in the tissues. The species level was

chosen to test for differences insteadof grouping the data into large taxonomic

aggregations (e.g. amphipods, copepods, fishes), as this latter classification

scheme would have meant lumping together animals with diverse feeding

strategies (herbivores, omnivores and carnivores).
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RESULTS

3.1. Faunal Composition

The species composition o.f the midwater fauna differed between fjords in

the same season and seasonally within a fjord (Table 3-1). Of the 40 species

caught, nine were found in both fjords during both seasons. Eighteen species were

common in both winter and summer in Bay d'Espoir and sevente en in Fortune

Bay. There were no shared fish or mysid species between fjords, and ostracods

were collected only in Bay d'Espoir. Thirty percent of the species were common

to both fjords in December and 33% in August.

3.2. Physical Oceanography

The water column was stratified during winter and summer in Bay d'Espoir

(Figures 3-1a,b), although stratification was weaker in December. In winter

(Figure 3-1a), three water types were present and included a mixed layer of

subsurface water and MSW, a mixed intermediate-depth layer of LCW and MSW

(referred to as LCW type), and a warm layer of MSW which extended to the

bottom of the basin. The water column also consisted of three layers in the

summer (Figure 3-1b), although each water type was more clearly defined in the

summer than the winter. The near-surface layer consisted of a shallow, warm lens

which overlaid a thicker layer of cold LCW. The water below the LCW type

consisted entirely of warm MSW.

The winter profile (Figure 3-1c) of Fortune Bay showed the presence of a

mixed subsurface layer of MSW, an intermediate-depth layer of LCW which

extended from 126 to 252 meters and a mixed bottom layer of LCW and MSW.

This latter water type will be referred to as MSW. Although the water column

was stratified at the time of sampling, the hydrography of the outer basin changes
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Table 3-1 . A species list for collections made in Bay d'Espoir and Fortune Bay
in December 1984 and August 1985. Presence is indicated by a plus
(+) symbol and absence by a minus (-) symbol.

Taxonomic Species Bay d'Espoir Fortune Bay
Group Dec. Aug. Dec. Aug.

AMPlllPODS Acanthostephia malmgreni + +
Halirages fu/vocinctus + + +
Hyperia medusarum +
Parathemisto abyssorum + + +
P. gaudichaudii + + +

CHAETOGNATHS Eukrohnia hamata + + + +
Sagitta e/egans + + + +
S. maxima + + +

COPEPODS Ca/anus hyperboreus + + + +
Centropages hamatus + +
Euchaeta norvegica + + +
Gaidius tenuispinus + +
Metridia tonga + + + +
Peeudocalanus e/ongatus +
Temora /ongicornis + +

DECAPODS Pandalus borealis + +
P. propinquis +
Pasiphaea multidentata + + + +
Sergestes arcticus + +

EUPHAUSIIDS Meganyctiphanes norvegica + + + +
Thysanoessa inermis + + + +
T. /ongicaudata + +
T. raschii + + + +



Table 3-1. Continued.
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Taxonomic Species Bay d'Espoir Fortune Bay
Group Dec. Aug . Dec. Aug.

FISHES Benthosema glaciale + +
Clupea harengus +
Cye/othone microdon +
Glyptocephalus cynoglossus +
Mallotus oillosus +
Melanostigma atlaniicum + +
Sebastes sp. +

MYSIDS Boreomysis arctica + +
B. nobilis + +
Meterythrops robusta +
Mysis mixta + +
Pseudomma iruncaium +

OSTRA CODS Ostracod spp . + +

POLYCHAETES Tomopteris helgolandica + +

PTEROPODS Clione limacina + + +

GELATINOUS Aurelia sp. +
ZOOPLANKTON Ctenophores + + + +
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unpredictably during the winter months (J. Richard , personal communication). In

summer (Figure 3-ld), the physical structure of the water column changed with

the introduction of a considerable amount of LCW. The water was uniformly

cold (-0.30° C) except in the surface-warmed layer . Thus Fortune Bay is occupied

by different water types seasonally , whereas this was not the case in Bay d'Espoir .

3.3. Stable Carbon and Nitrogen Isotopic Compositions

A total of 355 pairs of stable carbon and nitrogen isotope measur ement s

were made on the fauna , particulate organic matter and sediment. All isotope

data generated in the course of this research are given in Appendix A through D.

3.3.1. Particulate Organic Matter

The stable carbon and nitrogen isotopic compositions of particulate organic

matter (POM) are presented in Table 3-2. The stable carbon and nitrogen isotope

values of the subsurface POM could not be tested statistically for seasonal

differences within and between fjords due to the small number of measurements

made . The carbon isotopic composition of the subsurface POM in each fjord was

similar within a season (Table 3-2), although S13C values were different between

seasons in Bay d'Espoir. This was not the case in Fortune Bay.

Particulates collected in Bay d'Espoir in August from the near-surface

mixed layer , intermediate-depth layer (LCW), and bottom water (MSW) showed a

progressive shift to more positive S13C values with depth (Table 3-2). A similar

positive shift in POM S13C values between the subsurface layer and bottom water

(LCW) was also apparent in Fortune Bay in August (Table 3-2). The amount of

13C-enrichment between the subsurface layer and bottom water POM in Bay

d'Espoir was approximately double that of Fortune Bay, 0.9%
0 versus 0.5°/00

(T able 3-2).

Mean stable nitrogen isotope values of subsurface POM ranged from +4 .9 to

+ 5.0°/00 between the fjords in December and from +4 .6 to +5.0%
0 in August

(T able 3-2). Stable nitrogen isotope values in Bay d'Espoir in August increased

by 5.5%
0 from the subsurface layer (S15N= + 5.00/00) to the intermediate-depth
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Figure 3-1: Conductance and temperature profiles of the main outer basins in
Bay d'Espoir in winter (a) and summer (b) and in Fortune Bay in
winter (c) and summer (d).
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(d). Fortune Bay - August !G8G
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Table 3-2. Stable carbon and nitrogen isotope measurements of particulate organic matter and sediment collected in Bay d'Espoir and
Fortune Bay in December 1984 and August 1985. The categories for the POM refer to the depths sampled. Intermediate refers to
LeW at 80 m in Bay d'Espoir, while the bottom water was collected from MSW at 745 m in Bay d'Espoir and from LeW at 378 m
in Fortune Bay.

Organic Matter Bay d'Espoir - December Bay d'Espoir - August Fortune Bay - December Fortune Bay - August
e513e (%0) e516N (%0) e5u e (%0) e515N (%0) e513e (%0) e516N (%0) e5u e (%0) e516N (%0)

.t::>

Particulates:
.......

subsurface -25.1,-24.9 +4 .9 -24.0,-23.8 +4.6 ,+5 .1 -25.3,-24 .1 +4.7,+5.2 -24.5 +4 .6

intermediate -23.5 +10.5

bottom -23.1,-22 .9 +7.9 ,+8 .6 -24.0,-23.9 +8 .9

Sediments: -23.1,-23 .0 +7 .5,+7 .7 -21.8 +7 .6 -23.0,-23.0 +7.3,+7.4 -22.0,-21.8 +7 .5,+7 .7
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layer (LCW) (c15N= + lO.5°/ 00) and then decreased by 2.2°/00 in the bottom

water (MSW) (c15N= +8.3°/ 00; Table 3-2). In Fortune Bay the POM c15N values

increased from +4.6 to +8.9%
0 between the subsurface and bottom water

(LCW). Mean bottom water POM c15N values were similar between Bay d'Espoir

(+8.3°/00) and Fortune Bay (+8.9% 0).

3.3.2. Sediment

Sediment c13C values were more positive in Bay d'Espoir and Fortune Bay

in August than December (Table 3-2). The seasonal difference in the carbon

isotopic composition of the sediment was nearly iden_tical in magnitude for both

fjords (1.3%0_in Bay d'Espoir versus 1.1%0 in Fortune Bay) and was in the

same direction as the seasonal change in subsurface POM c13C values.

Stable nitrogen isotope values of the sediment were similar in both fjords

regardless of the season (Table 3-2). The sediments consistently had a mean c15N

value of +7.6°/00, with the exception of the December sample from Fortune Bay

(Table 3-2).

Fortune Bay sediments contained more organic carbon and nitrogen than

those in Bay d'Espoir (Table 3-3). Mean C:N ratios were consistently higher in

Bay d'Espoir (December=9.2 and August=8.3) than Fortune Bay

(Decemper=8.2 and August=7.5).

3.3.3. Fauna

3.3.3.1. Bay d'Espoir

Seasonal stable carbon and nitrogen isotope values of the fauna (whole

bodies) from Bay d'Espoir are given in Table 3-4. The majority of species had

more positive mean c13C values than the subsurface POM during both seasons.

This finding is in keeping with other food chain studies [e.g, McConnaughey 1978,

McConnaughey and McRoy 1979a,b, Mills et al. 1984) that have shown that

species are generally enriched in 13C relative to the primary producers.

Exceptions were the mysid Boreomysis aretica in December and the amphipod



Table 3-3. The mean percentage of carbon, nitrogen and C:N ratios of sediments collected in Bay d'Espoir and Fortune
Bay in December H)84 and August Ig85.

Sedimentary Organic Bay d'Espoir Fortune Bay
Matter December August December August

% carbon 2.7 3.1 s.o 3.3

% nitrogen 0.34 0.43 0.55 0.51
"'"w

C/N g.2 8.3 8.2 7.5
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Halirages fulvocinctus and the chaetognath Sagitta elegans in August. Bamstedt

(1978) found the main biochemical component of B. arctica during the winter was

lipid. High lipid levels in the body of this species may account Cor the very

negative carbon isotope value observed, as lipids are depleted in 13C (DeNiro and

Epstein 1977). All species had mean 615N values more positive than that of the

subsurCace POM during both seasons.

Copepods and ostracods generally had the most negative mean 613C values ,

relative to the rest of the Iauna, indicating their low trophic position as herbivores

or omnivores. OCfive species that could be tested Cor seasonal differences in body

613C values , only Calanus hyperboreus and Metridia longa proved to be

statistically different (p<O.05) (Table 3-5). The majority of species were enriched

in 15N in August compared to the December samples, although this was only

statistically significant (p<O.05) Cor the ostracods and T. raschii (Table 3-5).

Animals depleted in 15N between seasons were ctenophores, C. limacina, M.

atlanticum and S . maxima (Table 3-4).

None of the other species tested Cor seasonal differences in their whole body

013C and 015N values were significantly different (Table 3-5). In many cases the

carbon isotope values became more negative from winter to summer (Table 3-4).

Muscle tissue from decapods, euphausiids, fishes and mysids was also

analyzed Cor its stable carbon and nitrogen isotopic composition (Table 3-6). This

tissue was enriched in 13C and 15N relative to whole body samples (Table 3-4).

Notable exceptions were found in the nitrogen isotopic composition of S. arcticus

and B. glaciale collected in August. In all cases muscle 613C values were more

positive in winter than summer but this pattern was not evident with nitrogen;

615N values either remained the same, increased or decreased depending on the

species. Significant seasonal differences (p<O.05) occurred in the 613C values of

muscle tissue of B. glaciale, M. norvegica, P. multidentata and T. inermis (Table

3-7). Only M. norvegica exhibited a significant change in its mean nitrogen

isotope ratio between seasons (Table 3-7).



Table 3-4. The stable carbon and nitrogen isotopic composition [rnean-j-s.d.] of fauna (whole bodies)
collected in Bay d'Espoir in December lQ84 and August lQ85. Sample sizes are in parentheses.

Species December Augu st
o13C (% 0) o15N (°/00) o13C (% 0) o15N (0/00)

C. hyperborells -22.1±OA (2) +QA±O.l (2) -22.6±O.3 (3) +Q.5±O.2 (3)

C. hamatue -21.8±OA (2) +8.8±O.1 (2) ~

U1

E. norvegica -22.7±O.2 (4) +1l.8±O.8 (4) -23.5±O.Q (4) +12.3±O.8 (4)

G. tenuispinue -23.2±O.1 (3) +lO.5±O.8 (3) -23.3±O.6 (3) +1O.8±O.6 (3)

M. tonga -22.6±OA (5) +1O.O±O.8 (5) -23.Q±O.2 (3) +1O.1±O.6 (3)

Mixed copepods -21.8±O .Q (2) +Q.3±OA (2)



Table 3-4 . Continued.

Species December August
813C (% 0) 815N (% 0) 813C (% 0) 815N (%0)

P. elongatus -21.9 (I)

T. longicornis -21.4±O.6 (3) +7.7±O.8 (3)

Ostracod spp. -22.8±O.1 (2) +1O.0±O.O(2) -22.7±O.6 (2) +IO.9±O.1 (2)

"'"H. fulvocinctus -24.1 (I) +9.5 (I)
0'1

P. abyssorum -21.9 (I) +11.3 (I)

P. gaudichaudii -22.2±O.5 (5) +IO.7±O.3 (5)

M. norvegica -21.4 (I) +10.1 (I)

T. inermis -21.7±O.9 (3) +11.I±0.4 (3) -22.4±1.0 (2) +11.2±O.5 (2)

T. raschii -22.3±O.3 (3) +1O.6±O.1 (3) -21.4±O.6 (2) +IO .8±O.O (2)



Table 3-4. Continued.

Species December August
013C (% 0 ) 015N (0/00) 013C (% 0 ) 0

15N (°/00)

P. multidentata -20.7 (1) +12.1 (1)

S. arcticus -20.6 (1) +12.6 (1)

B. arctica -25.2 (1) +10.8 (1)

~

E. hamata -22.1±0.7 (5) +12.1±0.4 (5) -22.4±0.3 (3) +12.5±0.4 (3) -..J

S. e/egans -20.3±0.4 (2) +11.8±U) (3) -24.2±2.5 (2) +12.7±0.8 (2)

S. maxima -21.2 (1) +14.1 (1) -22.6 (1) +11.1(1)

T. he/go/andica -21.1±0.8 (2) +10.9±0.6 (2)

B. g/acia/e -20.6 (1) +14 .0 (1)

C. harengus -20.9 (1) +11.6 (1)



Table 3-4 . Continued.

Species

C. microdon

G. cynoglossus

M. atlanticum

C.limacina

Ctenophores

Aurelia sp.

December August
c513C (%0) c515N (%0) c513C (% 0) c5

15N (°/00)

-22.5 (1) +12.1 (1)

-23A±0.1 (2) +10 .5±0.4 (2)

-21.2±0.8 (10) +14 .3±OA (10) -21.0±0.8 (2) +13.8±0.1 (2)

~

-21.3 (1) +10.9 (1) -23.7 (1) +9.7 (1) ex>

-20.1±1.7 (3) +11 .3±0.3 (3) -20.3±0.2 (2) +1O.8±0.3 (2)

-21.9 (1) +8.3 (1)
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Table 3-6. Results of two-tailed t-tests on 0
13C and 015N whole body values

of fauna collected in winter compared to summer in Bay d'Espoir.
Sample sizes are in parentheses.

Species 013C (% 0 ) 015N (°/00)

C. hyperboreus p=O.Ol (9) p=0.49 (9)

E. hamata p=O.52 (8) p=O.22 (8)

E. norvegica p=O.l1 (8) p=0.46 (8)

G. tenuispinus p=O.65 (6) p=O.67 (6)

Ctenophores p=O.89 (5) p=O.19 (5)

M. atlanticum p=O.69 (12) p=O.l1 (12)

M. tonga p<O.OO (8) p=O.87 (8)

Ostracod spp. p=O.91 (4) p=O.Ol (4)

S. etegans p=O.16 (4) p=O.61 (5)

T. inermis p=O.50 (5) p=O.91 (5)

T. raschii p=O.10 (5) p=O.09 (5)



Table 3-6. The stable carbon and nitrogen isotopic composition (rneanj-s.d.) of fauna (muscle) collected
in Bay d'Espoir in December 1984 and August 1985. Sample sizes are in parentheses.

Species December August
o13C (%0) o15N (°/00) o13C (% 0) o15N (%0)

P. multidentata -20.8±OA (6) +12A±O.5 (6) -19.0±O.5 (3) +12.3±O.8 (3)

S. arcticus -20.3±O.7 (3) +12.6±O.5 (3) -19.6±O.3 (3) +11.7±O.7 (3)
U1
0

Shrimp sp. -18.6±O.3 (2) +13.6±l.O (2)

M. norvegica -20.8±O .5 (5) +9 .4±O.3 (5) -19.7±O.1 (3) +1O.O±O.3 (3)

T. inermis -21.5±O .5 (3) +12.2±O.2 (3) -20A±O .1 (3) +12A±O.2 (3)

T. raschii -21.6±O.2 (3) +11.3±O.2 (3) -20.6±O.6 (3) +11.2±O.2 (3)



Table 3-6. Continued

Species

B. arctica

B. glaciale

M. atlanticum

Sebastes sp.

December August
c13C (%0) c15N (%0) c13C (°/00) c15N (°/00)

-19.3 (1) +11.7 (1) -19.2±O.3 (3) +11.5±O.4 (3)

-21.6±O.1 (4) +13.0±O.5 (4) -20.6±O.2 (3) +13.4±O.1 (3)

-20.1±1.3 (2) +14.6±O.5 (2) -19.6±O.9 (3) +13.9±O.6 (3)

V1

-18.6 (1) +14.2 (1)
f-'
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Table 3-7. Results of two-tailed t-tests on 6
13C and 615N muscle values of

fauna collected in winter compared to summer in Bay d'Espoir.
Sample sizes are in parentheses.

Species 613C (0/00) 615N (%0)

B. arctica p=O.88 (4) p=O.68 (4)

B. glaciale p<O.OO(7) p=O.27 (7)

M. norvegica p=O.Ol (8) p=O.08(8)

M. atlanticum p=O.70 (5) p=O.29 (5)

P. multidentata p<O.OO(9) p=O.78 (9)

S. arcticus p=O.20 (6) p=O.15 (6)

T. inermis p=O.02 (6) p=O.35 (6)

T. raschii p=O.06 (6) p=O.52 (6)
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3.3.3.2. Fortune Bay

All species in Fortune Bay had e5
13C and e5

15N values greater than those of

the subsurface POM during both summer and winter (Table 3-8). The copepod

fauna of the main outer basin of Fortune Bay in December was dominated by one

species , M. longa, which, of the three copepod species collected, had the most

negative e5
13C value (-23.3±0.2°/00). Neither C. hyperboreus or M. longa had

carbon values that differed significantly between seasons (Table 3-9). However,

samples of C. hyperboreus were significantly different (p<0.05) in their stable

nitrogen isotopic composition between seasons (Table 3-9), indicating a possible

change in diet.

The only species found to have significantly different (p<0.05) e5
13C values

between seasons was the carnivorous arnphipod P. gaudichaudii (Table 3-9). No

clear trend of more negative carbon isotope values in summer than winter was

apparent. Some species had the same e5
13C value in winter as summer (e.g. M.

longa), while others became slightly more negative or positive (e.g. T. raschii and

M. mixta , respectively). The copepod C. hyperboreus and the amphipods H.

fulvocinctus and P. gaudichaudii had significant differences (p<0.05) in their

stable nitrogen isotopic composition between winter and summer (Table 3-9).

Carbon and nitrogen isotope values from muscle tissues were enriched in the

heavy isotopes relative to whole body values (Tables 3-8 and 3-10). Significant

seasonal differences (p<0.05) in the stable carbon isotopic composition of muscle

tissue were found for M. norvegica and T. raschii (Table 3-11). Only M .

norvegica had a significant difference in its nitrogen composition with season.

3.3.3.3. Seasonal Comparison of the Fjords

This section compares the isotopic composition of the fauna common to Bay

d'Espoir and Fortune Bay during winter (December) and summer (August).

Differences in the isotopic composition of a species found in both fjords within a

season might indicate changes in diet or biochemical composition. Mean carbon

and nitrogen isotopic values for animals from Bay d'Espoir are in Table 3-4, and

Table 3-8 contains the Fortune Bay values. Results of the statistical analysis are

given in Table 3-12.



Table 3-8. The stable carbon and nitrogen isotopic composition (mean±s.d.) of fauna (whole bodies)
collected in Fortune Bay in December 1984 and August 1985. Sample sizes are in parentheses.

Species December August
o13C (°/ 00) o15N (°/00) o13C (% 0 ) o15N (°/00)

C. hyperboreus -21.8 (1) +10.6 (1) -21.7±0.3 (4) +9 .9±0.1 (4)

C. hamatus -23.7 (1) +9.7 (1)
U1
~

E. norvegica -23.6±0.3 (3) +12.7±1.1 (3)

M.longa -23.3±0.2 (5) +IO .9±0 .5 (5) -23.3±0.3 (5) +1O.6±0.6 (5)

T. longicornis -20.8 (I) +8.0 (1)

A. malmgreni -21.7±0 .6 (3) +13.8±0.8 (3) -21.1±0.6 (3) +14.4±0.7 (3)



Table 3-8. Continued.

Species December August
813C (% 0) 815N (%0) 813C (% 0) 8

15N (°/00)

H. [uluocinctus -2304±1.0 (6) +10.9±0.3 (6) -23.7±0.5 (3) +9.7±0.6 (4)

H. medusarum -22.9±0.1 (2) +llo4±Oo4 (2)

P. gaudichaudii -22.3±0.3 (5) +10.2±0.3 (4) -23.3±0.3 (4) +11.1±0.4 (4)

lJl

T. inermis -2204±0o4 (4) +11.3±004 (4)
lJl

T. /ongicaudata -23.0±0.9 (3) +1O.5±0.8 (3) -22.1±0.6 (2) +11.5±0.6 (2)

T. raschii -21.4±0.5 (3) +10.7±0.3 (3) -21.7±0.3 (2) +10 .6±0.1 (2)

B. nobi/is -22.3 (1) +12.6 (1)

M. mixta -22.5±0.8 (4) +11.0±004 (4) -21.8 (1) +1004 (1)

M. robusta -22.6 (1) +10 .6 (1)



Table 3-8. Continued.

Species December August
o13C (% 0) o15N (%0) o13C (% 0) o15N (°/00)

P. truncatum -22.3 (I) +12.7 (I)

E. hamata -23.4 (I) +11.g (I) -22.4 (I) +12.2 (I)

S. elegans -22.2±O.g (5) +12.g±0.4 (5) -21.8±O.3 (5) +12 .g±O.6 (5)

Ul

S. maxima -21.4 (1) +14.6 (I) '"

T. helgolandica -22.2 (I) +11.2 (I)

M. villosus -22.5± 1.4 (3) +11.7±O.2 (3)

C.limacina -21.1 (I) +10.1 (I)

Ctenophores -22.0±1.1 (5) +11.1±1.5 (5)
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Table 3-9. Results of two-tailed t-tests on 8
13C and 8

15N whole body
values of fauna collected in winter compared to summer
in Fortune Bay . Sample sizes are in parentheses.

Species 813C (%0) 815N (%0)

A malmgreni p=0.24 (6) p=0.40 (6)

C. hyperboreus p=0.76 (5) p=O.Ol (5)

H. [uluocincius p=0.73 (9) p<O.OO (9)

M.longa p=0.83 (11) p=0.36 (10)

M. mixta p=0.47 (5) p=0.29 (5)

P. gaudichaudii p<O.OO (9) p=O.02(8)

S. e/egans p=0.32 (10) p=0.91 (10)

T. longicaudata p=0.30 (5) p=0.20 (5)

T. raschii p=0.51 (5) p=0.70 (5)



Table 3-10. The stable carbon and nitr ogen isotopic composition (mean±s.d.) of fauna (muscle) collected
in Fortune Bay in December Hl84 and August Hl85. Sample sizes are in parentheses.

Species December August
c513C (0/00) c5

15N (°/00) c513C (% 0) c5
15N (0/00)

P. borealis -20.5±0.8 (6) +13 .3±1.0 (6) -18.4 (1) +12 .9 (1)

P. multidentata -20.4±0.2 (2) +13.2±0.1 (2) -20.5 (1) +13.2 (1)
U1
co

P. propinquis -21.2 (1) +12.7 (1)

M. norvegica -21.3±0.8 (10) +9.4±0.4 (10) -20.0±0.2 (3) +1O.3±0 .3 (3)

T. inermis -21.8±0.8 (12) +12.2±0.4 (12) -21.3 (1) +12.6 (1)

T. raschii -21.3±0.3 (9) +11.6±0.2 (9) -20.8±0.1 (3) +11.2±0.7 (3)



Table 3-10. Continued .

Species

B. nobilis

M. mixta

M . oillosus

C13C (% 0 )

-20.7±O.2 (3)

-21.6 (1)

-21.5±O.Q (4)

December
C15N (%0)

+13.6±O.5 (3)

+11.4 (1)

+13.1±0.4 (4)

C13C (%0)
August

c5
15N (0/00)

U1
\D
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Table 3-11. Results of two-tailed t-tests on c5
13C and c5

15N muscle values
of fauna collected in winter compared to summer in
Fortune Bay. Sample sizes are in parentheses.

Species c513C (0/00) c515N (%0)

M. norvegica p=O.03(13) p<O.OO (13)

T. inermis p=0.59 (13) p=0.31 (13)

T. raschii p=O.Ol (12) p=0.13 (12)
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The distribution of the stable carbon and nitrogen isotope values of the

fauna in each fjord are shown in Figure 3-2. Carbon and nitrogen values of the

fauna (muscle and whole body tissues) from Bay d'Espoir ranged from -25.9 to

-18.4°/00 and +7.0 to +15.2 %
0 versus -24.8 to -20.2%

0 and +8.0 to +14.6 %
0

in Fortune Bay.

None of the species of arnphipods, euphausiids, pteropods or ctenophores

common to both fjords were significantly different in their carbon and nitrogen

isotopic compositions in either the summer or winter.

In the majority of cases, species collected from Fortune Bay in December

had more negative mean whole body S13C values than their counterparts in Bay

d'Espoir. These included E. hamata, M. longa, S. elegans, T. inermis, T.

helgolandica and ctenophores. However, only M. longa and S. elegans proved to

be significantly different (p<0.05). Conversely, animals from Bay d'Espoir in

August tended to have more negative S13C values than the same species in

Fortune Bay. Significant differences (p<0.05) were only found in C. hyperboreus

and M. longa.

Copepods from Fortune Bay were usually more enriched in 15N than their

counterparts from Bay d'Espoir during winter and summer. A significant

difference (p<0.05) in the mean whole body S15N values between the fjords was

found for C. hyperboreus during both seasons and for M. longa in winter .

Statistical analysis was also done on the stable carbon and nitrogen values of

muscle tissue from the decapod P. multidentata and the euphausiids M.

norvegica, T. inermis and T. raschii. No significant differences were found in

S13C values between fjords in December (Table 3-13). In August, samples of M.

norvegica and T. inermis were significantly different (p<0.05) between the fjords.

Stable nitrogen isotope values were only significantly different between

fjords for T. raschii in December (Table 3-13). No differences were found in the

o15N values of animals in Bay d'Espoir and Fortune Bay in August.
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Table 3-12. Results or two-tailed t-tests on 6
13C and 6

15N whole body
values oCfauna collected in winter and summer in Bay
d'Espoir compared to Fortune Bay. Sample sizes are in
parentheses.

Species December August
613C (0/00) 615N (% 0) 613C (0/00) 6

15N (°/00)

C. hyperboreus p=0.25(7) p=O.Ol (7) p=O .Ol (7) p=O .Ol (7)

E. norvegica p=0.85 (7) p=0.58 (7)

M.longa p=O.02(10) p=O .05(10) p=O.02(g) p=0.26 (8)

T. longicornis p=OAg (4) p=0.78 (4)

H. ful vocinetus p=0.53 (4) p=0.82 (5)

P. gaudi chaudii p=0.75 (10) p=0.06 (g)

T. inerm is p=0.26 (7) p=0.50 (7)

T. raschii p=0.06 (6) p=0.73 (6) p=0.57 (4) p=0.18 (4)

E. hamata p=0.17 (6) p=0.64 (6) p=0.g4 (4) p=0.60 (4)

S. elegans p=O.04 (7) p=0.23 (7) p=0.06 (7) p=0.67 (7)

Ctenophores p=O.Og(8) p=0.85 (8)
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Figure 3-2: Frequency histograms of the stable carbon and nitrogen isotopic
composition of the fauna in Bay d'Espoir (a) and Fortune Bay (b).
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Table 3-13. Results of two-tailed t-tests on c5
13C and c5

15N muscle values
of fauna collected in winter and summer in Bay d'Espoir
compared to Fortune Bay. Sample sizes are in parentheses.

Species December August
c513C (%0) c515N (% 0) c513C (%0) c515N (% 0)

M. norvegica p=O.28 (15) p>l.OO (15) p=O.03(6) p=O.25 (6)

P. multidentata p=O.17 (8) p=O.07 (8) p=O.12 (4) p=0.41 (4)

T. inermis p=O.56 (15) p>l.OO (15) p=O.02 (4) p=0.43 (4)

T. raschii p=O.15 (12) p=O.04 (12) p=O.67 (6) p=O.94 (6)
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3.4. Pelagic Food Chains and Water Types

The existence of a relationship between individual food chains and specific

water types was suggested from plots (Figures 3-3a,b,c and d) of the distribution

of the carbon and nitrogen isotope values of the fauna relative to the isotopic

composition of the POM. The starting point of each line on the plots represents

the carbon and nitrogen isotopic composition of the POM from that water type.

Only subsurface water was sampled in either fjord in winter, therefore the

position of the lines representing the other water types (in winter) was based on

the isotopic compositions of the near-surface layer POM in winter and summer,

the isotopic compositions of LCW and MSW types in summer and from known

water type affiliations of various species (Richard 1986). The slope of each line,

and hence the trajectory, was determined using trophic level enrichments of

carbon and nitrogen calculated in this study. The water type affiliation of species

that only had muscle tissue analyzed for its isotopic composition was determined

by applying correction factors of -1.0 and -1.5 0
/ 0 0 to muscle 613C values in winter

and summer, respectively. This correction allowed an estimation of whole body

values, as muscle tissue is enriched in 13C relative to the whole body. Correction

factors were determined from isotopic measurements made on muscle tissue and

whole bodies of several species in winter and summer (Appendix A through D). A

correction factor was not applied to the nitrogen values because muscle tissue and

whole body measurements did not differ enough (i.e. by 3.0 0
/ 0 0 or greater) to

alter a species' calculated trophic position and water type affiliation.

The overall organization of each food web is given in Figure 3-4, while the

food chains for each fjord in the winter and summer are shown in Figure 3-5.

Suspended POM in the subsurface layer was the ultimate source of organic carbon

and nitrogen at the base of the food chains and webs identified in both fjords

during winter and summer. The pelagic food web in Bay d'Espoir appeared to be

composed of three food chains in winter and summer, while Fortune Bay had

three food chains in winter and two in summer. The absence of MSW from

Fortune Bay in the summer reduced its food web from three to two food chains.

The trophic structure of the food webs in Bay d'Espoir and Fortune Bay in
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summer and winter was similar. Only one species, T. longicornis, was found on

the second trophic level of the food webs of Bay d'Espoir and Fortune Bay in

December (Figures 3-4a, c).

3.4.1. Bay d'Espoir

3.4.1.1. December

The water column of Bay d'Espoir in December consisted of a mixed

subsurface layer of MSW, a mixed intermediate-depth layer of LCW and MSW

(referred to as LCW type) and a layer of MSW which extended from

approximately 129 m to the bottom (Figure 3-1a). The isotopic composition of

the fauna suggested the affiliation of three distinct faunal assemblages, each with

a particular water type. Additional information on known species' affiliations

with water types came from Richard (1986), for example C. limacina is associated

with LCW and both B. glaciale and M. atlanticum with MSW. In Figure 3-3a

the lower line is the food chain associated with the LCW type, the middle line

(with the subsurface POM plotted at its base) is the near-surface layer food chain,

and the upper line the position of the MSW type food chain.

The food web reconstructed for Bay d'Espoir in December, shown in Figure

3-4a, had six trophic levels and consisted of three food chains (Figure 3-5a).

Omnivorous copepods were at trophic levels 2 and 2.5, while the third level was

occupied by carnivores and omnivores. Only carnivores were found on trophic

levels 3.5 and 4. The top predators were the chaetognath S. maxima and the

fish M. atlanticum. The majority of species (17 of 26) were found on trophic

levels 3 and 3.5 and were carnivores.

The food chain of the mixed near-surface layer was the shortest with four

trophic levels, while the LCW and MSW type chains each had five levels (Figure

3-5a). The top carnivores (M. atlanticum and S. maxima) in the MSW food

chain were located on the fourth trophic level. The LCW food chain had the

most species associated with it (10 of 25), the most species (all carnivores) on a

single trophic level (3.5), and was the only chain to have a species (T.·longicornis)

on the second trophic level. The majority of fish species were in the MSW chain,
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Figure 3-3: Plots of mean stable carbon and nitrogen isotope values for
species collected in Bay d'Espoir in December 19S4 (a) and August
19S5 (b) and in Fortune Bay in December 19S4 (c) and August
19S5 (d). Species associated with each water type are identified in
Figure 3-5 on page 7g.
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(a) Bay d'Espoir - December 1984
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(b) Bay d'Espoir - August 1985
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(c) Fortune Bay - December 1984
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(d) Fortune Bay - August 1985
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Figure 3-4: The trophic organization of the pelagic food webs in Bay d'Espoir
in December 1984 (a) and August 1985 (b) and in Fortune Bay in
December 1984 (c) and August 1985 (d).
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Figure 3-6: The trophic organization of the pelagic food chains in Bay
d'Espoir in December 1984 (a) and August 1985 (b) and in
Fortune Bay in December 1984 (c) and August 1985 (d).
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while the decapods were associated with the near-surface layer food chain. Two

species, E. hamata and T. inermis were found at intermediate points between

food chains and are not included in Figure 3-5a.

3.4.1.2. August

During the summer, the water types became more discrete in Bay d'Espoir

(Figure 3-1b). The lower line on Figure 3-3b indicated the position of the near

surface layer, as it had subsurface POM at its base. Species associated with this

water type included a jellyfish, Aurelia sp., ctenophores and the euphausiids M.

norvegica and T. rasehii, The upper line on the plot represents LCW, as the

POM collected at 80 m was in the middle of this water type (Figure 3-3b).

Species commonly found in this cold water type and found on the line included C.

limacina and E. hamata (Richard 1986). The MSW is shown as the middle line

(Figure 3-3b) and had three species (C. hyperboreus, B. glaciale and M.

atlanticum) associated with it. The particulates collected from the bottom water

(MSW type) are at the base on the line. Three species were located between the

LCW and MSW type lines, Ostracod spp., S. maxima and T. inermis, and were

not included in any of the food chains.

The food web in summer (Figure 3-4b) was longer than that in the winter

(Figure 4-4a) by half a trophic level, although most species maintained the same

trophic position between seasons. The most notable exceptions were the

chaetognaths E. hamata, S. elegans and S. maxima, which all occupied a lower

trophic position in summer (trophic level 3) than winter (trophic levels 3.5, 3.5

and 4, respectively). The top carnivores were found on trophic levels 4 and 4.5

and included an unidentified species of shrimp, and the fishes B. glaciale, M.

atlanticum and Sebasles sp.. The majority of the fauna were on trophic levels

2.5, 3 and 3.5, and accounted for 19 of the 23 species.

In summer the pelagic food web of Bay d'Espoir appeared to consist of three

food chains (Figure 3-5b). The overall structure of the food web changed slightly

between seasons, due to differences in the food chains. Very few species were

affiliated with the MSW food chain; the copepod C. hyperboreus and top

carnivores B. glaciale and M. atlanticum. The trophic status of B. glaciale
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increased from being at trophic level 3.5 in December to 4 in August. Th e food

chain of the mixed near-surface layer, which had been the shortest , increased to

six trophic levels. Instead of the winter structure, short and fat, it became long

and thin in the summer. Conversely, the LCW type food chain had

approximately the same number of species in winter as summer (8 versus 10) but

fewer trophic levels (4 versus 5). No species were found on the second t rophic

level in August. Fish were found in all three food chains in summer, wher eas the

decapods were associa ted with the mixed near-surface layer .

3.4.2. Fortune Bay

3.4.2.1. December

Three water types were present in Fortune Bay in December (Figure 3-1c); a

mixed near- surface layer of MSW, an layer of intermediate-depth LCW and a

mixed deep layer of LCW and MSW (referred to as MSW). The plot of the

December carbon and nitrogen isotope values of the fauna (Figure 3-3c) does not

show a clear relationship between species and water types . Some species appear

to be affiliated with the near-surface layer (C. hyperboreus , M. norvegica , T.

longicornis and T. raschii) and quite a few with the LCW type (e.g. A.

malmgreni , P. truncatum , S . elegans , and M . longa). The majority of species

were situa ted between the two lines; where the line representing the MSW type

should have been located .

The pelagic food web in December (Figure 3-4c) probably consisted of three

food chains (Figure 3-5c) each associated with a water type. The food web

consisted of six trophic levels; however , only one species, T. longicornis , was

found on the second trophic level. The majority of species were on levels 3 and

3.5 (16 of 23 species) . Omnivorous species were found throughout the food web.

Four top predators were at the apex of the food web, A. malmgreni , B. nobilis ,

P. borealis and P. multidentata.

The food chains in the mixed near-surface layer and the MSW had four

trophic levels, while the LCW type chain had an additional level. The MSW type

chain had the most species asociated with it and at higher levels than the other
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two chains (Figure 3-5c). The majority of the species associated with the MSW

type chain were omnivores.

3.4.2.2. August

By August the water column structure was simpler, and consisted entirely of

LCW in a surface-warmed layer and in a colder layer that extended from 25 to

380 m (Figure 3-1d). These layers are represented as the lower and upper lines,

respectively, on Figure 3-3d. Suspended near-surface layer POM is at the base of

the lower line while POM collected from the bottom water (which was solely

LCW in origin, Figure 3-ld) is at the base of the upper line.

The upper line representing the LCW type in the outer basin did not change

its position between winter and summer. Some species found in December were

also present in August, except for many of those that had been between the lower

and upper lines, in the MSW type . Many of the species were in similar positions

on this line as in December (e.g. M. longa and A. malmgreni). C. hyperboreus

and T. raschii were still affiliated with the near-surface layer, in addition to C.

limacina and M. mixta.

The pelagic food web in Fortune Bay in August had five trophic levels, one

less than in December (Figure 3-4d). None of the species sampled occupied the

second trophic level. Top level consumers in this ecosystem were A. malmgreni

and S. maxima. Three of the four apex species on trophic level 4 in December,

B. nobilis, P. borealis and P. multidentata, shifted to a lower level (3.5) in

August. Only A. malmgreni remained in the same position between seasons.

Two pelagic food chains made up the food web in Fortune Bay in summer

(Figure 3-5d) and were associated with the surface-warmed layer of LCW and the

colder LCW that extended throughout the outer basin. The food chain of the

former layer had four trophic levels compared to five in the LCW type chain.

This latter water type also had more species associated with it than the surface

layer. Many species did not switch food chains between seasons, although in

summer the decapod species, P. borealis and P. multidentata, had different

water type affiliations . In both cases, they also shifted to a lower trophic position.
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3.5. Trophic Level Enrichments and Composition

Trophic level enrichments of the stable carbon and nitrogen isotopes in each

fjord by season are given in Table 3-14, based on the top predators M.

atlanticum in Bay d'Espoir and A. malmgreni in Fortune Bay. These

enrichments were fairly consistent between fjords and seasons. Identical values

for carbon (1.00 /00 per trophic level) and nitrogen (2.90 /00 per trophic level)

enrichments were obtained from Bay d'Espoir in August and Fortune Bay in

December.

The trophic composition of the fauna of the fjords is given in Table 3-15.

The majority of species in Bay d'Espoir during winter and summer were

carnivores (:::;:60%), followed by omnivores (:::;:30%), and herbivores (:::;:10%).

Between December and August the percentage of carnivores and herbivores

increased slightly, while the proportion of omnivores decreased. Unlike Bay

d'Espoir, the trophic composition of the fauna in Fortune Bay changed between

seasons. In December, omnivores predominated in the fauna (:::;:57%),followed by

carnivores (:::;:39%)and herbivores (:::;:4%). This situation changed in the summer

when there were an equal proportion of carnivores and omnivores (:::;:47%). The

percentage of herbivores remained much the same between seasons, although it

was half of that found in Bay d'Espoir.

3.6. Stomach Contents of Melanostigma atlanticum

Stomach contents analyses were done on 34 specimens of the zoarcid M.

atlanticum caught in Bay d'Espoir in August. The percentage of prey species

found in the stomachs of fish in each size category are given in Table 3-16. A

total of seven prey categories were consumed in various proportions: ostracod spp.

and six copepod species (C. hyperboreus, C. hamatus, E. norvegica, G.

tenuispinue, M. longa and P. elongatus). The diets of fish larger than 60-69 mm

total length were made up primarily of C. hyperboreus. Fish 60-69 mm mainly

consumed C. hyperboreus, G. ienuispinus and M. longa.

Data on the feeding ecology of the fish and the isotopic composition of the

prey species were used to predict stable carbon and nitrogen isotope values and
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Table 3-14. Trophic level enrichments of stable carbon and nitrogen isotopes
in Bay d'Espoir and Fortune Bay in December 1984 and August 1985.

c513C (%0) c515N (%0)

Bay d'Espoir - December 1.3 3.1

Bay d'Espoir - August 1.0 2.9

Fortune Bay - December 1.0 2.9

Fortune Bay - August 1.1 3.3
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Table 3-16. The trophic composition of the fauna in Bay d'Espoir and
Fortune Bay in December 19S4 and August 19S5.

% % %
Carnivores Herbivores Omnivores

Bay d'Espoir - December 60.0 S.O 32.0

Bay d'Espoir - August 63.6 g.l 27.3

Fortune Bay - December as.i 4.3 56.5

Fortune Bay - August 47.4 5.2 47.4
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Table 3-16. The percentage of prey species (by number) consumed by
Me/anostigma at/anticum in Bay d'Espoir in Augus t 1985.

Prey Species Length Category (mm)
60-69 70-79 80-89 90-99 100-109 110-119

C. hyperboreus 27.3 64.5 83.3 81.8 72.5 89.3

C. hamatus 2.1 0.5

E . nor vegica 2.1

G. tenuispinus 27.3 12.9 2.1 5.2 7.1

M . /onga 27.3 4.2 4.6 4.7

Ostracod spp. 9.1 19.4 2.1 13.6 2.1 3.4

P. e/ongatus 9.1 3.2 4.2 15.0
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compare them to actual measurements (Table 3-17). Actual whole body 813C

values measured in fish collected in December and August were similar to those

predicted. Only fish in the largest size category, llo-llQ mm, were analyzed and

had a mean 8
13C value of -21.2±0.8°/00 (n=10) in December and -21.0±0.8°/00

(n=2) in August (Table 3-4), compared to the predicted value of -21.7%0.

The actual 8
15N values from December (+14.3±0.4%0) and August

(+13 .8±0.1 %0) samples deviated from the predicted value of +12.5%0. These

differences were not large enough to suggest a change in the trophic position of

these fish; such that the difference between the expected and predicted nitrogen

values were never greater than a trophic level enrichment of 2.Qo/00.
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Table 3-17. A comparison of predicted whole body 8
13C and 8

15N values
to actual measurements (mean±s.d.) of Melanostigma
atlanticum caught in Bay d'Espoir in August 1985. Sample sizes
Cor the actual measurements are in parentheses.

Length (mm) Predicted·
813C (% 0 ) 815N (% 0 )

Actual
813C (% 0 ) 815N (°/00)

110 - 119 -21.7 +12.5 -21.0±0.8 (2) +13.8±0.1 (2)

•Calculated using values of 1.0 and 2.90/00 for carbon and nitrogen, respectively,
to account Cor trophic position.
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DISCUSSION

4.1. Sources of Particulate Organic Matter

4.1.1. Subsurface POM

The stable carbon isotope values of the subsurface particulate organic

- matter were essentially the same as others-reported for phytoplankton from high

latitude ecosystems: the Bering Sea, -24.4±O.3°/00 [McConnaughey and McRoy

1979a); the Gulf of St. Lawrence, -23.8±1.2°/00 (Tan and Strain 1983); and the

Scotian Shelf, -2S.3±2.8°/00 (Mills et al. 1984). Alternative sources of organic

matter (e.g. macrophytes, terrestrial material) were not examined directly but

their contributions to the paM of the outer basins were probably minimal.

Reported 813C values for Laminaria longicruris and Zostera marina in the

coastal waters off Nova Scotia (Stephenson et al. 1984) are too positive (mean

813C= -IS.So/00 and -7.40 / 00, respectively) to be major sources of organic carbon

in the outer basin of either fjord. If macrophytes had been the principal source of

carbon; the 813C of consumers would have been more positive than actually

observed.

The stable carbon isotopic composition of terrestrial C
3

plants (813C= _23 to

-300/ 00), peat (813C= _12 to -280/ 00) and marine phytoplankton (813C= -18 to

-240 / 00) (Fry and Sherr 1984) all overlap, making it difficult to distinguish

between these sources on the basis of carbon isotope values alone. The

contribution of terrestrial material to food chains in two estuaries in Maine (Incze

et al. 1982) and the Gulf of Mexico (Thayer et al. 1983) has been shown to

decrease in a seaward direction and with depth (Fry et al. 1984). Even during

spring runoff of the Mississippi River, a terrestrial signal could not be detected

further than 30 km into the Gulf of Mexico (Thayer et al. 1983). The stations
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sampled in Bay d'Espoir and Fortune Bay were both located 45 km from the

outlets of their major rivers, the Conne River and Long Harbour River,

respectively, and the influence of terrestrial material should have been relatively

small.

The subsurface POM collected in both fjords during summer and winter

cruises had stable nitrogen values characteristic of marine phytoplankton. These

values (815N~+5.00/00) are comparable to phytoplankton (815N=+5.00/00) in

the Bering Sea and Lake Ashinoko (Minagawa and Wada 1984), Slope Water

particulates (815N=+3.8 to +5.5 % 0) in the euphotic zone of warm-core rings

(Altabet and McCarthy 1985), and suspended material of marine origin

(815N=+4.96±1.3% 0) in an English estuary (Owens 1985). Sweeney et al, (1978)

have shown that marine and terrestrially-derived suspended particulate organic

matter can be distinguished on the basis of nitrogen isotope ratios.

The 815N composition of POM has been observed to change seasonally, due

to variations in the input of nitrogen to the euphotic zone (Mariotti et al. 1984,

Altabet and Deuser 1985). Seasonal variations in the nitrogen isotopic

composition of POM are due to differences in the availability of nitrate to the

phytoplankton and subsequent fractionations associated with assimilative

processes. In winter, low 815N values in POM are observed when nitrate is not

limiting and large isotopic fractionations are associated with its uptake. Higher

815N values are common in summer when nitrate is limiting and very small

fractionations result from the incorporation of N03- by the phytoplankton.

Seasonal changes in the subsurface POM were not observed in either Bay d'Espoir

or Fortune Bay. Higher 815N values may not have been found in summer due to

'wind events' upwelling nitrate into the euphotic zone and negating any

fractionation associated with the uptake of nitrate by phytoplankton (Wada and

Hattori 1976, Altabet and Deuser 1985).

On the basis of the stable carbon and nitrogen isotope data, the POM in

Bay d'Espoir and Fortune Bay is derived from marine phytoplankton. If

terrestrial material had contributed, lower 815N values, on the order of 2.5%
0

(Sweeney et al. 1978) would have been observed. Differences in the stable carbon
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August may reflect seasonal changes in phytoplankton lipid levels (Smith and

Morris 1980) and/or species succession in the phytoplankton assemblage (Gearing

et al, 1984). Either of these scenarios is plausible in light of the stable nitrogen

isotope ratios remaining the same between seasons.

4.1.2. Water Column Profiles

The pattern of the carbon isotope profiles taken in Bay d'Espoir and

Fortune Bay in August did not follow those previously reported in other systems

(Jeffrey 1969, Calder 1969, Williams and Gordon 1970, Eadie and Jeffrey 1973,

Eadie et al, 1978, Jeffrey et al. 1983). Instead of the c513C values of the POM

becoming more negative with depth, they became more positive. These results

are similar to those reported by Bishop et al. (1977), who found the c5
13C values of

POM in the equatorial Atlantic became more negative between 32 and 50 m and

then got progressively more positive. Jeffrey et al. (1983) suggest positive c513C

values reflect the breakup of large, isotopically heavy particles and the

transformation of dissolved organic carbon into particulate organic carbon.

Microbial degradation of the POM results in isotopically light components being

removed preferentially, leaving an isotopically heavy residue (Wada 1980). The

carbon isotope profiles of the POM in Bay d'Espoir and Fortune Bay reflected

this process.

The nitrogen isotope profiles also do not follow the generally accepted

pattern of increasingly positive c515N values with depth. Wada (1980) has shown

microbial degradation of organic nitrogen leads to high c515N values in the

refractory material. Saino and Hattori (1985) have suggested that this results

from deamination reactions in the decaying POM, followed by the uptake of

15N-enriched ammonium by nitrifiers and other bacteria. In Bay d'Espoir the

increase in the c515N values between the subsurface layer and the LCW at 80 m

could be attributed to the degradation of POM within the water column (Wada

1980, Owens 1985) especially if it was entrained at the thermocline. Altabet and

McCarthy (1985), studying warm-core Gulf Stream rings, found entrained Slope
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Water particulates shifted the isotopic composition of the ring to higher 815N

values as a result of microbial degradation. The Slope Water POM had a mean

815N value of +10.1±0.7%0. Particulates sampled from LCW, in this study, had

a similar value of +10.5%0. The LCW sampled in Bay d'Espoir at 80 m had a

nitrogen isotopic composition unlike the same water sampled in Fortune Bay at

378 m (+10.5%0 versus +8.9%0, respectively). The reasons for this difference

are not clear, although it could have been due to phytoplankton accumulating

near the bottom (Pomeroy and Deibel 1986) or the resuspension of sediment.

Likewise, MSW in Bay d'Espoir may have had a 815N value of +8.3%0 due to

the same events or as a result of Slope Water POM being modified as it was

transported across the shelf and into the fjord.

4.2. Sources of Organic Matter in the Sediment

Stable carbon and nitrogen data indicate the sedimentary organic matter

(SOM) in both fjords is primarily marine in origin. The stable carbon isotopic

composition of the SOM was similar to values reported for arctic and boreal

marine sediments in the Beaufort Sea, -23.8±1.00/00 (Gearing et al, 1977);

Hermitage Channel, Newfoundland, -23.0%0 (Tan and Strain 1979); the Scotian

Shelf, -22.4±0.2°/00 (Tan and Strain 1979) and Baffin Island fjords, -23.0 to

-21.6° /00 (Ivany 1985). The winter and summer 813C values found in this study

fall within the range of values (-22.9 to -19.4%0) reported by Hunt (1966) for

marine sediments along the Atlantic coast. The winter values for sediments

collected from Bay d'Espoir and Fortune Bay, like the subsurface POM, are

characteristic of marine material. The shift to more positive values in summer

probably reflects seasonal changes in the phytoplankton in the overlying water

column. McConnaughey (1978) noted that sediment values in the Bering Sea

were 1 to 2%
0 more positive than the suspended POM in the water column.

Gearing et al. (1984) were able to show that seasonal changes in 813C values ,of

sedimentary carbon isotope values were related to those of the phytoplankton.

The nitrogen values support the interpretation of the carbon data that the

SOM is marine in origin. The stable nitrogen isotopic composition of the
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sediment (cS15N= + 7.6°100) was similar to measurements made by Macko et al.

(1984) on marine sediments (cS15N= + 6.5± O.2°100) from the GulC of Mexico.

Ivany (1985) found marine end-member values for sediments from fjords in Baffin

Island ranged from +7.4 to +9 .6°/00, while terrestrial values were lower, from

+5.3 to +5.9°/00. The consistency in the nitrogen isotopic composition of the

sediment in both fjords over the two seasons provided no evidence for any

significant input of terrestrial material. Major contributions of terrestrially

derived organic matter would have shifted the cS15N composition of the sediment

to lower values, as nitrogen from terrestrial sources typically has a cS15N value of

+2.5°100 (Sweeney et al. 1978).

Due to the wide range of C/N values terrestrial material can possess, Tan

and Strain (1979) and LaZerte (1983) have pointed out serious limitations in using

C:N ratios as indicators of sources of organic material. LaZerte (1983) has shown

that stable carbon isotope tracers are better indicators of organic carbon sources

in sediment. Nonetheless, the C:N ratios tend to confirm that the organic matter

in the sediments is primarily marine in origin. Muller (1977) found average C/N

values for marine phytoplankton range from 5.5 to 7.5, while terrestrial material

has higher ,:alues from 11.9 to 36.8 (Pocklington 1976).

The organic carbon content of .these fjord sediments was quite high (2.7 to

3.9%) in comparison to those from the mid-Atlantic shelf «O.5%) or the shelf

break (1-2%), but lower than sediments receiving material from the highly

productive waters orr Peru (>4%) (Walsh 1981). Data do not exist on the level

of primary productivity in the Newfoundland fjords, however, primary production

in Newfoundland coastal waters appears to be greater than those previously

reported for offshore sites (K. Pauley, personal communication).

The presence of greater proportions of organic carbon and nitrogen in the

sediment from Fortune Bay than in that from Bay d'Espoir (Table 3-3) may

reflect a combination of reduced microbial degradation of the POM andlor use by

the fauna. Pomeroy and Deibel (1986) suggest that suppression of bacterial

production during the spring bloom in colder waters makes more of the primary

production available to the herbivores. Since the majority of species in Fortune
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Bay were omnivores (Table 3-17) and there were only two food chains (Figure

3-5d) in the summer, compared to three in Bay d'Espoir (Figure 3-5b), an

accumulation of material in the sediments was expected. However, evidence for

the efficiency or ineCCiciency in the recycling of organic matter in each fjord is

inconclusive and requires further study.

4.3. Isotopic Composition of the Fauna

Numerous studies of high latitude ecosystems have shown that environment

and season have an important role in determining the availability of food to

predators (Kattner et al. 1981) and hence their biochemical composition (e.g. Lee

et al. 1971, Lee 197.4, Bamstedt _1978, Falk-Petersen 1981, Kattner ei ~/. 1981,

Reinhardt and van Vleet 1986). The -biochemical composition of the fauna affects

its isotopic composition, because the carbon and nitrogen values are dependent on

the amount of lipid and protein present in an organism. Among the species found

in this study that are known to synthesize lipids seasonally were B. arclica

(Bamstedt 1978), C. hyperboreus (Lee 1974), E. hamata (Bamstedt 1978), M. ~

norvegica (Bamstedt 1976) and M. longa (Lee et al. 1972). Very few species had

significant seasonal differences in their is?topic composition, so either lipid and

protein synthesis only slightly altered carbon 'and nitrogen isotope ratios or the

production of lipid was not seasonal.

There were different patterns in the isotopic composition of the same species

from the two fjords during the same season. Generally whole bodies of the fauna

were enriched in 13C in the winter and depleted during the summer. The

opposite pattern was found in Fortune Bay; from winter to summer faunal carbon

isotope values became enriched in 13C. This between fjords difference may reflect

different feeding strategies of the fauna or the availability of isotopically distinct

substrates.

In Bay d'Espoir, only the copepods C. hyperboreus and M. longa exhibited a

significant seasonal change in their mean body 613C values. C. hyperboreus is

known to be an omnivore while M. longa is a herbivore (Matthews and Bakke

1977). The shift to more negative carbon values in C. hyperboreus in August is
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probably due to this species feeding more heavily on phytoplankton during the

summer months when this food is abundant. In the winter months a greater

dependence on either detritus or animal prey in the diet may occur. The shift in

the body carbon values of M. longa probably reflects feeding on detrital POM

during the winter, and switching to phytoplankton when conditions allowed .

Unlike the copepods in Bay d'Espoir, the same species in Fortune Bay did

not exhibit a seasonal change in their whole body c5
13C values. Generally C.

hyperboreu8 and M. longa remained the same isotopically from winter to summer ,

in parallel with the subsurface POM . The data suggest that these species were

not switching their diets between seasons.

None of the higher trophic level species (chaetognaths, ctenophores,

euphausiids and fishes) in Bay d'Espoir and Fortune Bay had significant seasonal

changes in their whole body carbon isotopic composition (Tables 3-4 and 3-S).

Most of the fauna in Bay d'Espoir had carbon isotope values that became more

negative from December to August, while the fauna in Fortune Bay generally

became more positive. In both cases the results parallel isotopic changes in the

lower trophic levels and can be explained in a similar manner. The majority of

the species in the higher trophic levels in Bay d'Espoir were carnivores, while

omnivores dominated Fortune Bay (Table 3-15). Since many of the carnivores in

Bay d'Espoir probably depend on the copepod fauna as prey, the more negative

values observed in the winter, relative to those of summer, may be due to feeding

on the copepods. Although the carbon ratios of the carnivores were more

negative in December than August, they were actually more positive than their

prey items. Likewise, higher trophic level species in Fortune Bay were generally

more positive in the summer than winter due to a greater proportion of carnivores

being present. This would have meant most species were omnivores in the winter

when food may have been scarce, resulting in their carbon isotopic composition

being lower. In summer when prey items were more abundant, one would expect

c5
13C values to increase due to enrichments involved when feeding on prey items

from higher trophic levels. Seasonal switching of diet has been observed in M.

norvegica, (Falk-Petersen IgSI) and explains why this species' carbon isotopic
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composition shifted from negative to more positive values in both fjords from

winter to summer. Although this species is primarily a carnivore feeding on

copepods (MacDonald 1927) , it switches to an omnivorous diet in the winter

months (Falk-Petersen 19S1). The nitrogen isotope data support this finding , as

one would expect a carnivore to have a more positive nitrogen isotope ratio than

an omnivore.

Evidence for the existence of resource partitioning (Schoener 1974) of food

between similar species was found for the euphausiids T. inermis and T. raschii.

These showed no significant seasonal changes in whole body carbon values from

either fjord. However, in Bay d'Espoir, T. inermis and T. raschii exhibited a

different pattern i~ their - mean whole bod~ 813C values. From December to

'August T. inermis' carbon value became more neg-ative while that .of T. raschii

became positive. Therefore, their diets appeared to be different. Sargent and

Falk-Petersen (lgSl) and Falk-Petersen (lgS5) have shown that both species

consume phytoplankton and/or phytodetritus to varying degrees, with T. inermis

having a greater preference for phytoplankton. The carbon isotope data appear

to support the findings of these authors and suggest that T. inermis was

consuming detritus during the winter while T. raschii was omnivorous. In

summer T. inermis had a more negative 813C value than T. raschii, suggesting it

was at a trophic level closer to phytoplankton but consuming occasional animal

prey. In August, T. raschii appeared to be solely ingesting animal prey, probably

copepods. Falk-Petersen (lgS1) has shown that T. raschii, like M. norvegica,

primarily consumes copepods in the summer and switches to an omnivorous diet

in winter.

The carbon isotopic composition of the fauna measured in this study can

only be compared to two studies in the literature; McConnaughey (lg7S) and Mills

et al. (lgS4). On the basis of similar 813C values found for the POM in _these

ecosystems, one might not expect differences in faunal values.

The carbon isotopic compositions of the fauna from Bay d'Espoir and from

the Scotian Shelf resemble each other, possibly due to similarities in the 813C

values of the POM and the hydrographic regime of both regions (Houghton et al.
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1978, Smith et al. 1978). Like Bay d'Espoir, the Scotian Shelf has a water column

with three major layers; 'a subsurface layer, an intermediate-depth cold layer and

a deep layer of warm Slope Water (Houghton et al. 1978, Smith et al. 1978).

Slope Water from the Scotian Shelf undergoes mixing while being transported to

the Newfoundland coast and is transformed enroute into Modified Slope Water

(MSW). Some fauna from the Scotian Shelf have t513C values similar to those in

Bay d'Espoir and not Fortune Bay. Since the carbon isotopic composition of the

POM was similar between the two fjords, differences may reflect the advection of

species into Bay d'Espoir in summer and winter and Fortune Bay in winter with

MSW. The pteropod C. limacina from the Scotian Shelf had a value of

-23.5±O.9°/00 versus -23.7%0 from Bay d'Espoi!, but differ~d from Fortune Ba~

(-21.1°/00) in 'August. Likewise, Sagitta sp. from the Scotian Shelf

(-22.8±OAo /00) was similar to S. maxima (-22.6°/00) from Bay d'Espoir in

August. The closest value from Fortune Bay was for S. elegans (-22.2%0) in

December. Samples of P. gaudichaudii from Bay d'Espoir and Fortune Bay in

December were both close to those for the species from the Scotian Shelf;

-22.2±O.5° /00 and -22.3±O.3°/00 compared to -21.5±O.3°/00, respectively. At

this time of year both fjords had a layer of MSW present in the outer basin.

Carbon values for the euphausiid M. norvegica were almost identical between Bay

d'Espoir (-21.4%0) and the Scotian Shelf (-21.0±OA%o) in summer.

Only a few comparisons can be made between this data set and that of

McConnaughey's (1978) for the Bering Sea due to differences in the each

ecosystem's species assemblage and a paucity of pelagic species sampled in that

study. Ranges of the t513C values for fauna from Bay d'Espoir and Fortune Bay

(Figures 3-2a,b) were not unlike those presented in a frequency histogram by

McConnaughey (1978). Faunal values for the Bering Sea ranged from -26 to

_16°/00 and were more positive than species from either fjord. This appears to be

due to a large number of benthic samples measured in McConnaughey's study

that are usually more enriched in 13C than pelagic organisms (Fry and Sherr

1984). Species collected from the Bering Sea had t513C values similar to their

counterparts from Newfoundland, although some were slightly more positive. For
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example, M. uillosus from Fortune Bay was -21.5%
0 (muscle; Table 3-12)

versus -20.3°/00 (whole body) in the Bering Sea. Likewise, T. raschii had whole

body values of -21.4%
0 and -21.7%

0 from Bay d'Espoir and Fortune Bay,

respectively, in summer (Tables 3-4 and 3-8) compared to -19.7%
0 for specimens

from the Bering Sea.

4.4. Trophic Level Enrichments of Stable Carbon and Nitrogen

Isotopes

Trophic level enrichments calculated for carbon and nitrogen isotopes in the

course of this study (Table 3-14) are similar to those reported for coastal

ecosystems by other authors. Rau et al. (1983) found an enrichment of 1.38% 0

per trophic level for food chains in the coastal waters off southern California,

while Spies and DesMarais (1983) reported a value of 1.32%
0 per trophic level

for a benthic community. In a study of two Florida bays, Harrigan (1986) found

enrichments of 1.3 and 3.3%
0 per trophic level for carbon and nitrogen,

respectively. A study of food chains in different habitats by Minagawa and Wada

(1984) found the average enrichment for nitrogen was 3.4±1.1°/00 per trophic

level. These similarities in trophic level enrichments suggest that the same

mechanism is involved in the fractionation of stable isotopes in food chains from

similar ecosystems, independent of geographic location.

4.5. Pelagic Food Chains and Trophic Organization

4.6.1. The EtTects of Environmental Variability on Food Chain

Structure

Fluctuations in the physical environment affect the diversity and abundance

of species , and by so doing alter and modify the trophic organization of

ecosystems (Timonin 1971, Cushing 1981, Springer et al. 1984). The structure of

individual food chains in each fjord changed between winter and summer, with

the most obvious effect in Fortune Bay being the formation of an additional chain

associated with MSW in December. Generally, the food chains in both fjords
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during the winter were similar in their overall lengths, with species being

-clumped - together on the higher trophic levels. This might be interpreted as a

stabilization mechanism, as the greatest structural stability is thought to be

attained in an ecosystem by having high numbers of species on a single trophic

level (Cushing 1975). A similar mechanism was probably involved in stabilizing

the Fortune Bay pelagic food web/chain during the summer. Although fewer

species were present, they were split equally between carnivores and omnivores

and spread out among the individual food chains. The increased proportion of

carnivores and possible carnivorous feeding by the omnivores may have a

stabilizing influence. The variability in the trophic composition of the community

suggests a greater degree of trophic flexibility in Fortune Bay than Bay d'Espoir

but it does not appear to have had a marked effect on the trophic structure

(Matthews and Bakke 1977).

The trophic composition of the fauna differed between the two fjords, with

carnivores dominating in Bay d'Espoir and omnivores in Fortune Bay (Table

3-15). Timonin (1g71) noted that the trophic composition of plankton

communities was related to the stability of the water regime. The introduction of

a single water type (LCW) into Fortune Bay in August and the stability it

provided resulted in a greater proportion of the fauna being carnivores. Diversity

in a community's trophic composition is thought to contribute to ecosystem

stability (Parsons and de Lange Boom 1972). Differences in the trophic

composition of the two fjords reflects their different stages of ecosystem

development. Odum (1g6g) pointed out that -a more or less regular but acute

physical perturbation imposed from without can maintain an ecosystem at some

intermediate point in the developmental sequence, resulting in, so to speak, a

compromise between youth and maturity".

Environmental variability affected the trophic composition of the

communities, although the overall organization of the food webs was not different.

In retrospect, differences may not have been apparent in the food web structure

of the two fjords due to dissimilar communities. Only 30 and 33% of, the fauna

were the same between Bay d'Espoir and Fortune Bay in December ~nd August,
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respectively (see Results, page 32). Given comparable communities in the same

situations, perhaps a difference would have been observed (Pimm 1982, 1985).

One can only speculate that major differences might also exist in the energy flow

pathways and food chain efficiencies of each ecosystem, as a result of differences

in the trophic composition (Parsons and de Lange Boom 1972).

4.5.2. Pelagic Food Chains and Water Types

Few studies have been published reporting the organization of the individual

food chains of a complete food web. A common denominator in studies of marine

ecosystems has been for pelagic food chains to be associated with various depth

strata in the water column, such as the epi-, meso-, and bathypelagic zones

(Petipa et al. J970, Roger and Grandperrin 1976, Marshall 1979). The trophic

organization and interactions of food chains between and within water types has

yet to be fully considered. Intensive work in this area has come from studies of

Gulf Stream rings (The Ring Group 1981), as it has been recognized that

ecosystem processes (i.e. food chain/web development) are dependent on the

history of a water type.

A dual stable isotope approach made possible the reconstruction of the

-pelagic food webs in Bay d'Espoir and Fortune Bay, and also the identification of

individual food chains in each web. Stable isotope tracers only allow species to be

assigned to a trophic level. They do not elucidate the linkages between and

within levels. Single food chains never operate in isolation but continually

interact with each other in the formation of various levels of complexity (Arntz

1978). This study did not provide information pertaining to the various

interactions between or within the chains. To do this, a detailed study on the

feeding ecology of .all the species would have to be done. Evidence that species

are likely to feed between chains comes from the stomach contents analysis done

on M. atlanticum collected from Bay d'Espoir in August (Table 3-16). Prey

items found in M. atlanticum stomachs came from the food chains in MSW (C.

hyperboreus), as well as LeW (E. norvegica, G. tenuispinue, M. longa and

Ostracod spp.).
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The relationship outlined is speculative and requires further study, but two

pieces of research make it plausible. Fontugne and Duplessy (lQ78) have shown

that the carbon isotopic composition of plankton • is characteristic of a well

defined surface water mass and changes from one water mass to another,

recording hydrologic discontinuities". The mechanism that allowed the fauna to

be distinguished isotopically between water types was differences in the carbon

isotopic composition of surface water POM. Altabet and McCarthy's (lQ85, lQ86)

work on warm-core rings was able to show, using stable nitrogen isotopes , that

water types can be isotopically distinct. In this study, fauna within the food

chains appeared to be closely associated with a specific water type, although the

ultimate source of organic carbon and nitrogen carne from POM originally

produced in the near-surface mixed layer . Calculated .1813C and .1815N values for

the fauna using stable carbon and nitrogen isotope measurements of the POM

from LCW and MSW in Bay d'Espoir and LCW in Fortune Bay during the

summer could not be used to reconstruct the pelagic food webs of either fjord

(Appendix E through K). This finding rules out the possibility of significant

contributions of carbon and nitrogen originating from those sources.

Fauna could be affiliated with a particular water type without residing in it

by two possible mechanisms. Many midwater organisms are known to undertake

either extensive or partial vertical migrations to feed. This mechanism has been

recognized as a means of transporting near-surface organic carbon to deeper

portions of the water column via the fauna (Vinogradov lQ68). Organic matter

can also move deeper in the water column by sinking. The position of the lines

representing the near-surface layer shifted between seasons in the Bay d'Espoir

plots (Figures 3-3a,b) but not in the Fortune Bay plots (Figures 3-3c,d). This

reflects seasonal changes in the carbon isotopic composition of the near-surface

POM in the former case and the absence of a seasonal shift in the latter (Table

3-2).

In contrast to the rather straightforward picture the trophic organization of

the food webs presented, the interpretation of the pelagic food chains and their

isotopic relationship with water types was difficult and has not been shown
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previously. The best evidence for this relationship comes from the summer plots

of the stable carbon and nitrogen isotope values of the fauna from each fjord

(Figures 3-3b,d). The interpretation of the winter data in both Bay d'Espoir and

Fortune Bay was difficult and reflects the dynamic nature of the water column

and extensive mixing between water types that had occurred. Indeed, the mixing

of water types and of the POM associated with each offers an explanation for

seasonal shifts in the position of the lines in the Bay d'Espoir plots (Figures

3-3a,b) and the -clumping- of species between the upper and lower lines in the

Fortune Bay winter plot (Figure 3-3c). Many of the species associated with the

MSW type in that plot (Figure 3-3c) were not present during the summer,

suggesting their position between the two lines was not a result of feeding from

both food chains. A food chain associated with the MSW type in Fortune Bay

appears to be real, although short-lived. The results of this study raise the

possibility, not previously addressed in the literature, that stable isotope tracers

work best in delineating food chains in stable or constant ecosystems rather than

dynamic ones.

The slopes of the lines were not consistent between the-- plots (Figures

3-3a,b,c,d). Experimental studies using single species have provided evidence for a

1:3 trophic level enrichment _for carbon (DeNiro and Epstein Hl78) to nitrogen

(DeNiro and Epstein 1981). However, there is no theoretical basis or empirical

evidence to suggest that the food chain of a multi-species community should be

characterized by a slope of 3 when o13C is plotted against o15N. Indeed this study

has shown that trophic level enrichments of top predators can vary seasonally for

both carbon and nitrogen isotopes (Table 3-14). The assumption that enrichments

are of equal magnitude at each trophic level in a food chain consisting of many

species has yet to be proven.
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4.6.3. The Structure or Pelagic Food Chains In Marine Ecosystems

Pelagic food chains do not exceed rive or six trophic levels, although the

number varies according to the type of environment and the composition of the

fauna (Wyatt 1976). Petipa et al. (1970), in their study of the trophic

organization of the Black Sea, found two discrete pelagic food chains , each with

five trophic levels. Four to five steps were found between phytoplankton and

pelagic invertebrate predators by Mills et al. (1984) on the, Scotian Shelf. Arntz

(1978) noted the length of food chains leading from the primary producers to cod

(Gadu8 morhua L.) in the Baltic Sea ranged from three to six trophic levels.

Both Steele (1974) and Mills and Fournier (1979) had four trophic levels in the

pelagic -component of their mod~ls for the North Sea and th:e Scotian Shelf and

slope ecosystems, respectively. Dickie (1972) and Mills (1975) suggested that the

food webs in most coastal ecosystems with fisheries would be similarly structured.

Ryther (1969) felt differences in pelagic food chain lengths between coastal,

oceanic and upwelling systems reflected variations in the ecological efficiency of

each. Oceanic ecosystems have the longest food chains, often with no less than six

levels, whereas coastal and upwelling systems have fewer trophic levels, on the

order of 4 and 1.5 respectively.

The food webs in Bay d'Espoir and Fortune Bay were similarly organized

and closely resembled Ryther's (1969) model of an oceanic food chain:

phytoplankton --> microzooplankton --> macrozooplankton -->
megazooplankton --> piscivores

With the exception of Bay d'Espoir in August, the fourth trophic level was the

highest attained, although the food webs consistently had six steps between the

primary producers and top level consumers. The extra levels are due to the

presence ofintermediate steps . Thus the pelagic food webs in Bay d'Espoir and

Fortune Bay appear to have a mixture of coastal and oceanic ecosystem properties

in their trophic organization. Fjords are known to have similar basic properties

and processes as open ocean ecosystems (Brattegard 1979).
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The increased length of oceanic food chains has been attributed to the

presence of mesopelagic fishes, adding an additional trophic link (Matthews and

Heirndal 1979). Although this may be the case in truly oceanic ecosystems, it does

not provide a valid explanation for the increased chain length in Bay d'Espoir and

Fortune Bay. If this were true, Bay d'Espoir should have at least one more

trophic level than Fortune Bay during winter and summer. Landry (1977) has

suggested longer food chains are due to an increased number of intermediate

levels. This provides an explanation for differences <;>bserved between the number

of trophic steps in the two fjords compared to the Scotian Shelf (Mills et al. 1984)

or the Bering Sea (McConnaughey 1978, McConnaughey and McRoy 1979b). The

pelagic component of the Scotian Shelf ecosystem may indeed have six or more

steps if microzooplankton and pelagic fishes were included in the food chain.

Neither of these groups were sampled by Mills et al. (1984).

Steele (1974) and Mills and Fournier (1979) both suggest that

microzooplankton form a direct link between the primary producers and the

copepods. In a later paper, Mills (1980) proposed that an additional trophic link

might be expected between the phytoplankton and herbivorous copepods due to

the presence of microzooplankton species. Analysis of the data in this study

revealed virtually no species on the second trophic level, between the POM and

the copepods (trophic level 2.5). Improved sampling might reveal this trophic

level to. be occupied by microzooplankton, supporting the above contentions.

Numerous authors (Margalef 1967, Odum 1969, Parsons and de Lange Boom

1972, Steele 1974, Cushing 1975, Wyatt 1976, Matthews and Bakke 1977) have

noted that the structure of food chains and webs within an ecosystem is subject to

changes. Trophic reorganization often results from environmental processes

directing species succession. Even the position of a species within an ecosystem's

trophic framework changes seasonally and ontologically (Hardy }924). The

trophic organization of the pelagic food webs in Bay d'Espoir and Fortune Bay

was similar, although subtle changes were observed with some species moving

higher or lower in the webs between seasons. Variability in the community

composition is thought to allow trophic flexibility in the structuring of the food
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chains and webs (Matthews and Bakke 1977). The movement of species closer to

the base of a food web is an important ecological step, for by moving down a

species gains a size advantage over its intended prey (Wyatt 1976). The increased

length of the food web in Bay d'Espoir in August relative to December resulted

primarily from the addition of the redCish, Sebastes sp.. This species was

probably present in the fjord during the winter, but avoided the net . Videotape

recordings taken during submersible dives in the main outer basin of Bay d'Espoir

suggest that not all of the larger pelagic fauna were sampled, i.e. pollock

(Pollachius virens), raising the possibility that the pelagic food web is at least

half to one full trophic level longer.

A comparison of the predicted to observed trophic composition and

organization of Bay d'Espoir and Fortune Bay is given in Table 4-1. A greater

amount of sedimentary organic matter was found in Fortune Bay than Bay

d'Espoir, but as there were many unknowns (e.g. the levels of primary production

in each fjord, sedimentation rates in each fjord), conclusions cannot be drawn as

to the efficiency or inefficiency of these systems in their cycling of organic matter.

Although the species and trophic composition of the fauna in the two fjords were

different during winter and summer (Tables 3-1 and 3-15), the food web structure

was remarkably similar. Briand (1983b) emphasizes that ecological networks are

more similar within than between ecosystems, regardless of geographic location

and taxonomic composition. Seasonal differences were found in the number of

food chains present in each fjord, which appeared to be related to water column

structure. The number of trophic levels in the food chains and webs did not differ

between the constant (Bay d'Espoir) and fluctuating (Fortune' Bay) environments.

Differences may exist in the degree of connectance in each fjord's food web

(Briand 1983a,b, Cohen and Briand 1984), especially as an additional food chain

was found in Bay d'Espoir in summer. The number of food chains in each

ecosystem may have important implications not only -for energy flow pathways

but also the degree of complexity and hence the resilence of each fjord to

perturbations.



Table 4-1. A comparison of the observed trophic composition and organization of Bay d'Espoir and Fortune Bay to
those predicted.

Predicted Observed

Dominant Feeding Bay d'Espoir=carnivores Bay d'Espoir=carnivores
Type Fortune Bay=omnivores Fortune Bay=omnivores

Food Web Bay d'Espoir=long, thin with many No difference between
I-'
I-'

Structure trophic levels Bay d'Espoir
0

Fortune Bay=short, fat with few and
trophic levels Fortune Bay

Amount of Bay d'Espoir=very little A higher percentage
SOM Fortune Bay=greater SOM in Fortune Bay

Cycling of Bay d'Espoir=efficient Inconclusive
Organic Matter Fortune Bay=inefficient
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CONCLUSIONS

1. A progressive enrichment of 13C and 15N in the fauna was found with
increasing trophic level. The amount of enrichment per trophic level
was found to vary slightly between seasons and fjords , although
comparable to previously reported values.

2. The overall trophic organization of the food webs and chains was
similar in both fjords within and between seasons. Generally the top
predators in each ecosystem were found on the fourth trophic level.

3. The major pelagic food chains of each food web were identified and
appeared to be closely associated with specific water types. Three
food chains could be distinguished in Bay d'Espoir during both
seasons, while Fortune Bay had three in the winter and two in
summer.

4. The trophic composition of the fauna differed between the two fjords;
carnivores were dominant in Bay d'Espoir while omnivores prevailed
in Fortune Bay. These differences may have important implications in
the ecological energetics of each ecosystem.

5. Similarities in the trophic organization of these fjords with the Scotian
Shelf and Bering Sea confirm suggestions by Dickie (1972) and Mills
(1975) that in general coastal ecosystems may be structured in the
same way.
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Appendix A. Stable carbon and nitrogen isotope values of fauna ,
particulate organic matter and sediment collected in Bay d'Espoir in December
1984. The number of specimens in a sample is given as n, whereas the tissue
types are coded as; B=brain, C=stomach contents, E=eggs, F=feces, K=scales
and skin, M=muscle, O=ovary, S=stomach, V=viscera, W=whole body and
Z=whole body with eggs.

Sampl e I.D.# Tissue 813C 815N
(% 0) (%0)

POM 001 -24.9 +4.9
POM 004 -25.1

Sediment 0054 -23.1 +7.7
Sediment 0055 -23.0 +7 .5

AMPHIPODS
P. abyssorum 0314 5 W -21.9 +11.3
P. gaudichaudii 0086 2 W -22.6 +10.9

0137 16 W -22.4 +10.5
0284 4 W -22.6 +10.9
0308 9 W -22.0 +10.8
0475 10 W -21.5 +10 .2

CHAETOGNATHS
E. hamata 0290 19 W -23.3 +12 .5

0478 19 W -21.7 +12.4
0489 8 W -21.8 +12 .0
1010 17 W -22.2 +12.0
1038 13 W -21.7 +11.6

S. elegans 0479 30 W -20.5 +12 .6
0488 35 W -20.0 +13 .2
1039 4 W +9 .7

S. maxima 0049 1 W -21.2 +14.1
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Appendix A. Continued.

Sample I.D.# Tissue 813C 815N
(%0) (%0)

COPEPODS
C. huperboreus 0405 131 W -22.2 +9 .3

0476 50 W -22.3 +9.6
0481 50 W -2Ul +9 .7
0482 50 W -22 .1 +9 .1
0483 50 W -21.9 +9.3
0493 50 W -21.9 +9 .1

C. hamatus 1004 200 W -22.1 +8 .9
1036 75 W -21.5 +8.7

E. nor vegica 0477 23 W -22.4 +12.4
0485 14 W -22 .6 +12 .6
1012 8 W -22 .8 +10.8
1031 25 W -22.9 +1l.5

G. tenui spinus 0496 50 W -23.3 +10.4
1001 50 W -23.1 +9 .8
1035 200 W -23.1 +1l.4

M . /onga 0471 100 W -22 .7 +10.1
0486 50 W -22 .1 +10.3
0498 100 W -22.4 +1l .0
1014 100 W -22.9 +9 .5
1021 100 W -23 .1 +9 .0

P. elonqatus 1032 300 W -21.9
T. lonqicornis 0472 900 W -21.2 +8.6

1005 700 W -22 .1 +7 .5
1033 300 W -20 .9 +7 .0

DECAPODS
P. mu/tidentata 0068 M -20 .9 +13.2

0071 M -20.6 +12.2
0073 M -20 .6 +12 .1
0075 M -20 .4 +11.9
0077 M -21.5 +12 .6
0073 E -23 .5 . +11.9
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Appendix A. Continued.

Sample I.D.# Tissue 8
13C 8

15N
(%0) (%0)

S. arciicus 0082 M -21.1 +12.1
0421 M -20.0 +13.1
0422 M -19 .8 +12 .7

EUPHAUSllDS
M. norvegica 0044 9 M -20.6 +9.2

0045 9 M -20 .6 +8.9
0046 9 M -21.7 +9.4
0047 11 M -20.4 +9 .7
0048 8 M -20.7 +9.7

T. inerm is 1006 5 W -22 .5 +10.9
1015 5 W -22.0 +10.8
1025 5 W -20 .7 +11.6
0283 27 M -21.0 +12.1
0303 33 M -21.9 +12.4
0311 17 M -21.5 +12.1

T. raschii 0138 8 W -22.2 +10.6
0141 14 W -22.6 +10.7
0143 13 W -22 .0 +10.6
0282 32 M -21.5 +11.2
0304 24 M -21.9 +11 .5
0305 26 M -21.5 +11.2

FISHES
B. glaciale 0384 M -21.6 +13.7

0387 M -21.5 +13.0
0390 M -21.7 +12 .5
0412 M -21.7 +12 .9
0385 0 -22 .0 +11.5
0386 S -23 .1 +11.2
0388 0 -21.9 +11.1
0389 V -22 .9 +10.3
0391 0 -22 .1 +11.1
0392 V -21.9 +10.2
0413 0 -22.1 +11.4
0414 V -22 .9 +10.5
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Appendix A . Continued.

Sample I.D.# Tissue h13C h15N
(%0) (% 0)

C. harengus 1024 W -20 .9 +11.6
G. cynoglossus 0379 W -23.3 +10.8

0411 W -23.5 +10.2
M . atlanlicum 0374 W -20.3 +14.3

0375 W -21.0 +14.3
0376 W -20.7 +14.0
0377 W -22 .1 +14.4
0378 W -22.7 +14.2
0434 W -21.7 +14.7
0435 W -20 .6 +14.2
0436 W -21.4 +14.8
0436 W -21.4 +15.2
0437 W -20.2 +13.7
0435 M -21.0 +14.9
0437 M -19 .1 +14.2

MYSIDS
B. aret ica 0083 W -25.2 +10.8

1000 M -19 .3 +11.7

MISCELLANEOUS
Ct enophores 0490 34 W -18.4 +11.1

1016 38 W -20 .1 +11.1
1040 30 W -21.7 +11.7

C. lim acina 1017 1 W -21.3 +10.9
Ostra cod spp. 0473 50 W -22 .7 +10.0

1034 150 W -22 .8 +10.0
T. helgolandica 0460 20 W -21.7 +10.5

0480 30 W -20 .5 +11 .3
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Appendix B. Stable carbon and nitrogen isotope values of the fauna ,
particulate organic matter and sediment collected in Fortune Bay in December
1984. The number of specimens in a sample is given as n, whereas the tissue
types are coded as; B=brain, C=stomach contents, E=eggs, F=feces, K=scales
and skin, M=muscle, O=ovary, Seestomach, V=viscera, W=whole body and
Z=whole body with eggs.

Sample I.D.# Tissue o13C o15N
(%0) (%0)

paM 0007 -25.3 +5.2
paM 0011 -24.1 +4.7

Sediment 0051 -23.0 +7.4
Sediment 0052 -23.0 +7 .3

AMPHIPODS
A. ma/mgreni 0101 1 W -21.1 +13.1

0344 1 W -21.9 +13.7
0358 1 W -22.2 +14.6

H. fu/vocinetus 0056 7 W -24.7 +11.4
0059 4 W -24.8 +10.7
0060 4 W -22.8 +10 .8
0100 27 W -22.5 +10.8
0114 14 W -22.8 +10.8
0196 2 W -23.0 +11.0
0058 3 Z -24.3 +10.6
0090 1 Z -23.5 +10.2
0183 3 Z -23.6 +10.2
0257 1 Z -23.5 +9.7

H. medusarum 0354 4 W -22.9 +11.6
0359 2 W -22.8 +11.1

P. gaudichaudii 0112 3 W -21.9 +10.1
0164 16 W -22.5 +9.9
0274 6 W -22.2 +10.4
0362 5 W -22.3
0365 4 W -22.6 +10 .5
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Appendix B. Continued.

Sample I.D.# Tissue 813C 8
15N

(%0) (%0)

CBAETOGNATBS
E. hamata 0199 3 W -23.4 +11.9
S. elegans 0129 40 W -22.4 +12.3

0192 29 W -22.3 +13.3
0316 104 W -22.7 +12.9
0347 120 W -23.1 +13.4
1045 53 W -20.7 +12 .8

COPEPODS
C. hyperboreus 1053 9 W -21.8 +10.6
M . longa 1042 300 W -23.1 +10.1

1046 300 W -23.4 +11.2
1049 300 W -23.6 +10.8
1050 300 W -23.3 +11.3
1051 300 W -23.0 +11.1

T. longicorn is 1043 1000 W -20.8 +8.0

EUPBAUSIIDS
M. nor vegica 0015 1 M -20 .3 +9 .6

0016 1 M -20 .6 +8 .9
0020 1 M -22 .2 +8.9
0022 1 M -21.1 +9.9
0023 1 M -22.5 +9 .5
0024 1 M -20.4 +9.4
0025 1 M -21.3 +8.9
0026 1 M -22.5 +9 .9
0033 11 M -21.0 +9.8
0033 13 M -20 .3 +9.6

T. inermis 0106 8 W -22.0 +10.8
0116 10 W -22.1 +11.7
0123 21 W -22.6 +11.5
0162 26 W -22.8 +11 .3
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Appendix B. Continued.

Sample I.D.# Tissue o13C o15N

(%0) (%0)

0132 33 M -21.5 +12.3
0144 72 M -21.3 +11.9
0194 16 M -21.9 +12.3
0208 19 M -21.1 +11.2
0236 10 M -23.1 +12.3
0249 9 M -21.1 +12.4
0264 21 M -22.0 +12.6
0319 20 M -23.3 +12.4
0328 17 M -21.2 +12.2
0350 19 M -21.6 +12.1
0361 20 M -20.9 +12.4
0368 12 M -22.0 +12.3

T. raschii 0117 14 W -21.9 +11.0
0161 24 W -21.4 +10.7
1054 16 W -20.9 +10.4
0089 72 M -21.4 +11.3
0145 105 M -21.5 +11.6
0193 17 M -21.7 +11.8
0209 21 M -21.0 +11.5
0230 13 M -21.3 +11.5
0259 15 M -21.0 +11.4
0265 21 M -21.7 +11.8
0320 21 M -21.0 +11.7
0340 17 M -21.5 +11 .5

T. longicaudata 0103 25 W -23.6 +10.8
0349 6 W -23.4 +11 .0
1055 4 W -22.0 +9.6

DECAPODS
P. borealis 0036 M -21.4 +13.1

0393 M -20.0 +13.3
0396 M -19 .8 . +11.5
0397 M -21.5 +14.1
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Appendix B. Continued.

Sample I.D.# Tissue c5
13C c5

15N
(%0) (%0)

0398 M -20.1 +13.6
0399 M -20.1 +14.1

P. propinquis 0037 M -21.2 +12.7
P. multidentata 0035 M -20.5 +13.3

0038 M -20.2 +13.1

FISH
M. villosus 0220 W -24.2 +11.5

0373 W -21.7 +11.6
0433 W -21.7 +11.9
0371 M -22.4 +13.7
0372 M -20 .3 +13.0
0381 M -21.4 +12.9
0382 M -22.0 +12.9
0383 V -22.2 +13.9

MYSIDS
B. nobilis 0029 M -20.5 +13.2

0039 M -20.8 +13.6
0042 M -20.9 +14.1

M . robusta 0095 W -22.6 +10.6
0043 Z -24.4 +11.7
0221 Z -22.1 +11.3

M.mixta 0122 W -23.6 +11.1
0190 W -22.6 +11.2
0251 W -22.0 +10.4
0345 W -21.9 +11.4
0369 M -21.6 +11.4

P. truncatum 0191 W -22.3 +12.7

MISCELLANEOUS
Ctenophores 0188 12 W -21.9 +9 .3
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Appendix B. Continued .

Sample I.D.# Tissue 8
13C 815N

(%0) (%0)

0244 5 W -22.7 +10.6
0261 8 W -22.4 +lOJ)
0333 22 W -22.8 +13.4
1048 21 W -20 .2 +11.4

T. helgolandica 1044 20 W -22.2 +11 .2
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Appendix C . Stable carbon and nitrogen isotope valu es of the fauna ,
particulate organic matter and sediment collected in Bay d'Espoir in August
1985. The number of specimens in a sample is given as n, wher eas the tissue
types are coded as; B=brain, C=stomach contents, E=eggs, F=feces, K=scales
and skin , M=muscle, O=ovary, S=stomach, V=viscera, W=whole body and
Z=whole body with eggs.

Sample I.D.# Tissue o13C o15N
(%0) (%0)

POM (5m) 0552 -23.8 +5.1
POM (5m) 0554 -24.0 +4.6
POM (80m) 0546 -23.5 +10 .5
POM (745m) 0547 -23.1 +7 .9
POM (745m) 0548 -22.9 +8.6

Sediment 0577 -21.8 +7.6

AMPHIPODS
H. fulvocinctus 0856 14 W -24.1 +9.5

CHAETOGNATHS
Chaetognath sp. 0812 27 W -20.4 +12.7
E. hamata 0752 25 W -22.3 +12 .2

0766 10 W -22.2 +12.3
0768 29 W -22.8 +12 .9

S. elegans 0765 15 W -25.9 +12.1
0767 7 W -22.4 +13.2

COPEPODS
C. hyperboreus 0780 100 W -22.4 +9 .6

0786 100 W -22.9 +9 .3
0815 100 W -22.4 +9.5

E . nor vegica 0759 25 W -23.6 +1l.5
0775 30 W -24.4 +13 .0
0777 30 W -23.8 +1l .7
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Appendix C. Continued.

Sample I.D.# Tissue c5
13C c5

15N
(%0) (%0)

0802 30 W -22.3 +12.9
G. tenuispinus 0782 600 W -24.0 +10.1

0821 600 W -23.1 +11.1
0835 300 W -22.9 +11.2

M.longa 0781 200 W -24.1 +9 .6
0823 300 W -23.8 +9.9
0836 100 W -23.7 +10.7

Mixed Copepods 0761 100 W -21.1 +9 .5
0762 200 W -22.4 +9.0

DECAPODS
P. multidentata 0527 W +12.1

0517 M -19.2 +11.6
0523 M -18.4 +13.1
0525 M -19.3 +12.2
0526 E -22.1 +11.6

S. arcticus 0519 W -20.6 +12.6
0509 M -19.4 +12 .2
0510 M -20.0 +10.9
0511 M -19.4 +12.1

EUPHAUSllDS
M. norvegica 0516 3 W -21.4 +10.1

0505 5 M -19.7 +9.7
0514 9 M -19.7 +10.2
0515 10 M -19.6 +10.2
0513 50 F -20.7 +8.5

T. inermis 0801 5 W -23.1 +11.5
0624 10 M -20.3 +12.3
0625 10 M -20 .4 +12.2
0626 10 M -20.5 +12.6

T. raschii 0800 5 W -21.7 +10.8
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Appendix C. Continued.

Sample I.D.# Tissue 813C 815N
(%0) (%0)

0806 5 W -21.8 +10.8
0807 5 W -21.0 +10.8
0631 10 M -20.1 +11.0
0663 10 M -20.4 +11.3
0778 17 M -21.3 +11.3

FISHES
B. glaciale 0600 W -20.6 +11.0

0582 M -20.7 +13.3
0589 M -20.4 +13.4
0593 M -20.6 +13.5
0581 K -18.5 +13.0
0585 S -20.6 +13.4
0585 S -20.7 +13.4
0586 C -20.0 +10.7
0587 B -21.7 +14.3

C. microdon 0731 W -22.5 +12.1
M. atlanticum 0651 W -21.5 +13.9

0652 W -20.4 +13.7
0636 M -20.1 +13.3
0650 M -20 .2 +14.2
0655 M -18.6 +14.3

Sebastes sp. 0500 M -18.6 +14.2

MYSIDS
B. arctica 0565 M -19.0 +11.8

0566 M -19.1 +11.1
0567 M -19.6 +11.6

MISCELLANEOUS
Aurelia sp. 0512 1 W -21.9 +8.3
C.limacina 0730 1 W -23.7 +9.7
Ctenophores 0784 30 W -20.1 +11.0



142

Appendix C. Continued.

Sample I.D.# Tissue c13C c15N
(%0) (% 0)

0811 60 W -20.4 +10 .6
Ostracod spp. 0820 100 W -22.3 +11.0

0848 100 W -23.1 +10 .8
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Appendix D. Stable carbon and nitrogen isotope values of the fauna ,
particulate organic matter and sediment collected in For tun e Bay in August
1985. The number of specimens in a sample is given as n, wher eas the tissue
types are coded as; B=brain, C=stomach contents, E=eggs, F=feces, K=scales
and skin, M=muscle, O=ovary, S=stomach, V=viscera, W=whole body and
Z=whole body with eggs.

Sample I.D.# Tissue S13C S15N
(%0) (%0)

POM (5m) 0575 -24.5 +4 .6
POM (378m) 0569 -24.0 +8 .9
POM (378m) 0570 -23.9

Sediment 0579 -21.8 +7 .7
Sediment 0580 -22.0 +7 .5

AMPHIPODS
A. ma/mgreni 0908 1 W -20.5 +14 .0

0909 1 W -21.7 +15.2
0911 1 W -21.0 +13 .9

H. ful vocinetus 0890 15 W -24.0 +8.9
0897 2 W +10 .3
0924 21 W -23.9 +9.5
0930 2 W -23.1 +10 .0

P. gaudichaudii 0855 9 W -23.6 +10.6
0875 5 W -23.2 +11.0
0896 6 Z -23.2 +11.0
0927 6 Z -23.0 +11.6

CHAETOGNATHS
E. hamata 0928 3 W -22.4 +12 .2
S . elegans 0861 30 W -21.4 +13.4

0863 30 W -22.1 +13 .3
0873 41 W -21.6 +13 .0
0878 50 W -22.2 +11 .8



144

Appendix D. Continued.

Sample I.D.# Tissue c5
13C c515N

(% 0) (%0)

0891 100 W -21.6 +13.0
S. maxima 0894 4 W -21.4 +14.6

COPEPODS
C. hyperboreus 0860 50 W -22.1 +9.8

0889 50 W -21.5 +10.0
0921 50 W -21.6 +9 .8
0932 20 W -21.6 +9 .9

C. hamalus 0916 500 W -23.7 +9 .7
E. norvegica 0858 19 W -23.9 +11.4

0887 30 W -23.7 +13.2
0923 16 W -23.3 +13.5

M . longa 0859 300 W -23.8
0862 300 W -23.4 +10.8
0865 300 W -23.3 +11.0
0877 300 W -22.9 +10.8
0881 300 W -23.3 +10.7
0883 300 W -23.2 +9 .6

DECAPODS
P. borealis 0538 M -18.4 +12.9
P. multidenlala 0537 M -20.5 +13.2
Shrimp sp. 0539 M -18.4 +14.3

0540 M -18.8 +12 .9

EUPHAUSllDS
M. nor vegica 0534 3 M -20 .1 +10.6

0535 5 M -20.0 +10.3
0536 5 M -19.8 +10.1

T. inerm is 0937 3 M -21.3 +12 .6
T. rasch ii 0904 5 W -21.5 +10.7

0905 10 W -21.9 +10. 5
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Appendix D. Continued.

Sample I.D.# Tissue o13C o15N
(%0) (%0)

0867 26 M -20.7 +10.8
0868 15 M -20.7 +10.7
0902 15 M -20.9 +12.0

T. longicaudata 0900 14 W -21.7 +11.1
0936 11 W -22.5 +11 .9

MYSIDS
B. nobilis 0853 W -22.3 +12.6
M . mixta 0530 W -21.8 +10.4

MISCELLANEOUS
C.limacina 0884 W -21.1 +10.1
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Appendix E. Calculated ..1c513C and ..1c515N values for mean stable carbon
and nitrogen isotope values of whole body (W) and muscle (M) tissue from

fauna collected in Bay d'Espoir in December 1984. Where ..1c513C=(c513CANIMAL-

c513CpOM) and ..1c515N=(c515NANIMAL-c515NpOM)' The subsurface POM was;

c513C=_25.00/00 and c515N=+4.9°/00.

Species Tissue c513C ..1c513C 815N ..1815N

(0/00) (0/00) (0/00) (0/00)

AMPmpODS
P. abyssorum W -21.9 3.1 +11.3 6.4
P. gaudichaudii W -22.2 3.8 +10.7 5.8

CHAETOGNATHS
E. hamata W -22.1 2.9 +12.1 7.2
S. elegans W -20.3 4.7 +11.8 6.9
S. maxima W -21.2 3.8 +14.1 9.2

COPEPODS
C. hyperboreus W -22.1 2.9 +9.4 4.5
C. hamatus W -21.8 3.2 +8.8 3.9
E. norvegica W -22.7 2.3 +11.8 6.9
G. tenuispinus W -23.2 1.8 +10.5 5.6
M.longa W -22.6 2.4 +10.0 5.1
P. elongatus W -21.9 3.1
T. longicornis W -21.4 3.6 +7.7 2.8

DECAPODS
P. multidentata M -20.8 4.2 +12.4 7.5
S. areticus M -20.2 4.7 +12.6 7.7

EUPHAUSllDS
M. norvegica M -20.8 4.2 +9.4 4.5



147

Appendix E. Continued.

Species Tissue 813C .:1813C 815N .:1815N
(%0) (%0) (%0) (%0)

T. inermis W -21.7 3.3 +11.1 6.2
M -21.5 3.5 +12.2 7.3

T. raschii W -22.3 2.7 +10.6 5.7
M -21.6 3.4 +11.3 6.4

FISHES
B. g/acia/e M -21.6 3.4 +13.0 8.1
C . harengus W -20 .9 4.1 +11.6 6.7
G. cynog/ossus W -23.4 1.6 +10.5 5.6
M . atlanticum W -21.2 3.8 +14.3 9.4

M -20 .1 4.9 +14.6 9.7

MYSIDS
B. aretica W -25 .2 -0 .2 +10.8 5.9

M -19 .3 5.7 +11.7 6.8

MISCELLANEOUS
C. /imacina W -21.3 3.7 +10.9 6.0
Ctenophores W -20 .1 4.9 +11.3 6.4
Ostra cod spp. W -22.8 2.2 +10.0 5.1
T. he/go/andica W -21.1 3.9 +10.9 6.0
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Appendix F. Calculated .1813C and .1815N values for mean stable carbon
and nitrogen isotope values of whole body (W) and muscle (M) tissue from

fauna collected in Bay d'Espoir in August 1985. Where .1813C=(813CANIMAC

813CpOM) and .1815N=(815NANIMAL-815NpOM)' The subsurface POM was ;

813C= -23.9°/00 and 815N= + 5.00/00 .

Species Tissue 813C .1813C 815N .1815N

(%0) (%0) (% 0) (% 0)

AMPHIPODS
H. [uluocincius W -24.1 -0.2 +9 .5 4.5

CBAETOGNATBS
E . hamata W -22.4 1.5 +12 .5 7.5
S. e/egans W -24.2 -0.3 +12.7 7.7
S . maxima W -22.6 1.3 +11.1 6.1

COPEPODS
C. hyperboreus W -22.6 1.3 +9.5 4.5
E. norvegica W -23.5 0.4 +12 .3 7.3
G. tenuispinus W -23.3 0.6 +10 .8 5.8
M. /onga W -23.9 0.0 +10 .1 5.1
Mixed Copepods W -21.8 2.1 +9.3 4.3

DECAPODS
P. multidentata W -20.7 3.2 +12.1 7.1

M -19.0 4.9 +12 .3 7.3
S . arcticus W -20.6 3.3 +12.6 7.6

M -19.6 4.3 +11.7 6.7
Shrimp sp. M -18.6 5.3 +13 .6 8.6

M . norvegica W -21.4 2.5 +10 .1 5.1
M -19.7 4.2 +10 .0 5.0
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Appendix F. Conti nued.

Species Tissue 813C <1813C 815N <1815N
(%0) (%0) (% 0) (% 0)

T. inermis W -22.4 1.5 +1l.2 6.2
M -20.4 3.5 +12.4 7.4

T. raschii W -21.4 2.5 +10.8 5.8
M -20.6 3.3 +1l.2 6.2

FISHES
B. glaciale W -20.6 3.3 +14.0 o.o

M -20 .6 3.3 +13.4 8.4
C. microdon W -22.5 1.4 +12 .1 7.1
M. atlanticum W -21.0 2.9 +13.8 8.8

M -19 .6 4.3 +13.9 8.9
Sebastes sp. M -18.6 5.3 +14.2 9.2

MYSIDS
B . aretica M -19.2 4.7 +1l.5 6.5

MISCELLANEOUS
Aurelia sp. W -21.9 2.0 +8.3 3.3
C.limacina W -23.7 0.2 +9 .7 4.7
Ct enophores W -20.3 3.6 +10.8 5.8
Ostracod spp. W -22.7 1.2 +10.9 5.9
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Appendix G. Calculat ed .:1c513C and .:1c515N values for mean stable carbon
and nitrogen isotope va.u es of whole body (W) and muscle (M) tissue from

fauna collected in Bay d 'Espoir in August Ig8S. Where .:1c513C=( c513CANIMAC

c513CpOM) and .:1c515N=(c515NANlMAL-c515NpOM)' The intermediate-depth

POM was ; c513C= -23.So/ 00 and c515N=+10.So/ 00.

Species Tissue c513C .:1c513C c515N .:1c515N

(%0) (%0) (%0) (%0)

AMPHIPODS
H. [uluocinctus W -24.1 -0.6 +g.S -1.0

CBAETOGNATHS
E. hamata W -22.4 1.1 +12 .S 2.0
S. elegans W -24.2 -0.7 +12.7 2.2
S . maxima W -22 .6 o.c +11.1 0.6

COPEPODS
C. hyperboreus W -22 .6 o.c +g.S -1.0
E. norvegica W -23.S 0.0 +12.3 1.8
G. tenuispinus W -23 .3 0.2 +10.8 0.3
M. longa W -23 .g -0.4 +10.1 -0.4
Mixed Copepods W -21.8 1.7 +g .3 -1.2

DECAPODS
P. multidentata W -20.7 2.8 +12.1 1.6

M -io.o 4.S +12.3 1.8
S. arciicue W -20.6 2.g +12.6 2.1

M -ro.e s.s +11.7 1.2
Shrimp sp . M -18.6 4.g +13.6 3.1

M. norvegica W -21.4 2.1 +10.1 -0.4
M -io.z 3.8 +10.0 -O.S
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Appendix G . Continued.

Species Tissue 813C .:1813C 815N .:1815N
(%0) (%0) (% 0) (%0)

T. inermis W -22.4 1.1 +11.2 0.7
M -20.4 3.1 +12.4 i .s

T. raschii W -21.4 2.1 +10.8 0.3
M -20.6 2.g +11.2 0.7

FISHES
B. glaciale W -20.6 2.g +14.0 3.5

M -20.6 2.g +13.4 s.o
C. microdon W -22.5 1.0 +12.1 1.6
M. atlanticum W -21.0 2.5 +13.8 1.6

M -is.e s.s +13.g 3.4
Sebastes sp. M -18 .6 4.g +14.2 3.7

MYSIDS
B. arctica M -io.e 4.3 +11.5 1.0

MISCELLANEOUS
Aurelia sp. W -21.g 1.6 +8.3 -2.2
C.limacina W -23.7 -0.2 +g.7 -0.8
Cte nophores W -20.3 3.2 +10.8 0.3
Ostracod spp . W -22.7 0.8 +1O.g 0.4
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Appendix H. Calculated .1c13C and ..1C15N values (or mean st able carbon
and nitrogen isotope values of whole body (W) and muscle (M) tissue (rom

fauna collected in Bay d 'Espoir in August 1985. Where .1C13C=(c13CANIMAL-

c13CpOM) and .1C15N=(c15NANIMAL-c15NpOM)' The bottom water POM

was ; c13C= -23.00/ 00 and c15N= +8.3° /00.

Species Ti ssue c13C .1c13C c15N .1c15N
(%0) (%0) (%0) (%0)

AMPHIPODS
H . fulvocinctus W -24.1 -1.1 +9 .5 1.2

CHAETOGNATHS
E . hamata W -22.4 0.6 +12 .5 4.2
S. elegans W -24.2 -1.2 +12.7 4.4
S . maxima W -22.6 0.4 +11.1 2.8

COPEPODS
C. hyperboreus W -22.6 0.4 +9.5 1.2
E. norvegica W -23.5 -0.5 +12.3 4.0
G . tenuispinus W -23.3 -0.3 +10.8 2.5
M. longa W -23.9 -0 .9 +10.1 1.8
Mixed Copepods W -21.8 1.2 +9.3 1.0

DECAPODS
P. multidentata W -20.7 2.3 +12.1 3.8

M -19.0 4.0 +12.3 4.0
S . arcticus W -20.6 2.4 +12 .6 4.3

M -19.6 3.4 +11.7 3.4
Shrimp sp. M -18.6 4.4 +13.6 5.3

M. nor vegica W -21.4 1.6 +10.1 1.8
M -19.7 3.3 +10.0 1.7
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Appendix H. Continued.

Species Tissue c513C .1c513C c515N .1c515N
(%0) (% 0) (% 0) (% 0)

T. inermis W -22.4 0.6 +11.2 2.9
M -20.4 2.6 +12.4 4.1

T. raschii W -21.4 1.6 +10.8 2.5
M -20.6 2.4 +11.2 2.9

FISHES
B . glaciale W -20.6 2.4 +14.0 5.7

M -20.6 2.4 +13.4 5.1
C. microdon W -22.5 0.5 +12.1 3.8
M. atlanlicum W -21.0 2.0 +13.8 5.5

M -19.6 3.4 +13.9 5.6
Sebastes sp. M -18.6 4.4 +14.2 5.9

MYSIDS
B . aretica M -19.2 3.8 +11.5 3.2

MISCELLANEOUS
Aurelia sp. W -21.9 1.1 +8.3 0.0
C.limacina W -23.7 -0.7 +9.7 1.4
Ctenophores W -20.3 2.7 +10.8 2.5
Ostra cod spp. W -22.7 0.3 +10.9 2.6
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Appendix I. Calculated ..:1c13C and ..:1c15N values for mean stable carbon
and nitrogen isotope values of whole body (W) and muscle (M) t issue from

fauna collected in Fortune Bay in December 1984. Where ..:1C
13C= (c13CANIMAC

c13CpOM) and ..:1C15N=(c15NANlMAL-c15NpOM)' The subsurface POM was ;

c13C= -24.7° /00 and c15N= + 5.00/00.

Species Tissue c13C ..:1c13C c15N ..:1c15N
(%0) (%0) (%0) (%0)

AMPHIPODS
A. malmgreni W -21.7 3.0 +13.8 8.8
H. ful vocinetus W -23.4 1.3 +10.9 5.9
H . medusarum W -22.9 1.8 +11.4 6.4
P. gaudichaudii W -22.3 2.4 +10.2 5.2

CHAETOGNATHS
E . hamata W -23.4 1.3 +11 .9 6.9
S . elegans W -22.2 2.5 +12 .9 7.9

COPEPODS
C . hyperboreus W -21.8 2.9 +10.6 5.6
M.longa W -23.3 1.4 +10.9 5.9
T. longicorn is W -20.8 3.9 +8.0 3.0

DECAPODS
P. borealis M -20.5 4.2 +13.3 8.3
P. propinquis M -21.2 3.5 +12.7 7.7
P. multidentata M -20.4 4.3 +13.2 8.2

EUPHAUSllDS
M . norvegica M -21.3 3.4 +9.4 4.4
T. inermis W -22.4 1.3 +11.3 6.3

M -21.8 2.9 +12.2 7.2
T. longicaudata W -23.0 1.7 +10 .5 5.5
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Appendix I. Continued.

Species Tissue 813C ..1813C 815N ..1815N
(%0) (%0) (% 0) (% 0)

T. rasch ii W -21.4 3.3 +10.7 5.7
M -21.3 3.4 +11.6 6.6

FISH
M. vi/losus W -22.5 2.2 +11.7 6.7

M -21.5 3.2 +13 .1 8.1

MYSIDS
B . nobilis M -20.7 4.0 +13.6 8.6
M. robusta W -22.6 2.1 +10.6 5.6
M. mixta W -22.5 2.2 +11.0 6.0

M -21.6 3.1 +11.4 6.4
P. truncatum W -22.3 2.4 +12 .7 7.7

MISCELLANEOUS
Ctenophores W -22.0 2.7 +11.1 6.1
T. helgolandica W -22.2 2.5 +11.2 6.2
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Appendix J . Calculated .::1813C and .::1815N values for mean stable carbon
and nitrogen isotope values of whole body (W) and muscle (M) tissue from

fauna collected in Fortune Bay in August 1985. Where .::1813C=(813CANIMAC

813CpOM) and .::1815N=(815NANlMAL-815NpOM)' The subsurface POM was;

813C= -24.5°/00 and 815N= + 4.6°/00 .

Species Tissue 813C .::1813C 815N .::1815N

(%0) (%0) (%0) (%0)

AMPHIPODS
A. malmgreni W -21.1 3.4 +14.4 9.8
H. fulvocinctus W -23.7 0.8 +9.7 5.1
P. gaudichaudii W -23.3 1.2 +11.1 6.5

CHAETOGNATHS
E . hamata W -22.4 2.1 +12.2 7.6
S . elegans W -21.8 2.7 +12 .9 8.3
S. maxima W -21.4 3.1 +14 .6 10.0

COPEPODS
C. hyperboreu8 W -21.7 2.8 +9.9 5.3
C. hamatus W -23.7 0.8 +9.7 5.1
E. norvegica W -23.6 0.9 +12 .7 8.1
M .longa W -23.3 1.2 +10.6 6.0

DECAPODS
P. borealis M -18.4 6.1 +12.9 8.3
P. mu/tidentata M -20.5 4.0 +13.2 8.6

EUPHAUSIIDS
M . norvegica M -20.0 4.5 +10 .3 5.7
T. inerm is M -21.3 3.2 +12 .6 8.0
T. raschii W -21.7 2.8 +10.6 6.0
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Appendix J . Continued.

Species Tissue 613C ..1613C 615N ..1615N
(%0) (%0) (%0) (%0)

M -20 .8 3.7 +11.2 6.6
T. longicaudata W -22 .1 2.4 +11.5 6.9

MYSIDS
B . nobilis W -22.3 2.2 +12.6 8.0
M. mixta W -21.8 2.7 +10.4 5.8

MISCELLANEOUS
C.limacina W -21.1 3.4 +10.1 5.5
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Appendix K. Calculated ..1813C and ..1815N values for mean stable carbon
and nitrogen isotope values of whole body (W) and muscle (M) tissue from

fauna collected in Fortune Bay in August lQ85. Where ..1813C=(813CANIMAL-

813CpOM) and ..1815N=( 815NANIMAL-815NpOM). The bottom water POM

was ; 813C= -24.00/00 and 815N= + 8.Qo/00.

Species Tissue 813C ..1813C 815N ..1815N

(%0) (%0) (%0) (%0)

AMPHIPODS
A. ma/mgreni W -21.1 2.Q +14.4 5.5
H. [ul vocinctus W -23.7 0.3 +Q.7 0.8
P. gaudichaudii W -23.3 0.7 +11.1 2.2

CHAETOGNATHS
E . hamata W -22.4 1.6 +12.2 3.3
S. e/egans W -21.8 2.2 +12 .Q 4.0
S. maxima W -21.4 2.6 +14 .6 5.7

COPEPODS
C. hyperboreus W -21.7 2.3 +Q.Q 1.0
C. hamatus W -23.7 0.3 +Q.7 0.8
E. norvegica W -23.6 0.4 +12.7 3.8
M. /onga W -23.3 0.7 +10.6 1.7

DECAPODS
P. borealis M -18.4 5.6 +12 .Q 4.0
P. multidentata M -20.5 3.5 +13.2 4.3

EUPHAUSllDS
M. norvegica M -20.0 4.0 +10.3 1.4
T. inermis M -21.3 2.7 +12 .6 3.7
T. raschii W -21.7 2.3 +10.6 1.7
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Appendix K. Continued.

Species Tissue 813C ~813C 815N ..::1815N
(%0) (%0) (%0) (%0)

M -20.8 3.2 +11.2 2.3
T. /ongicaudata W -22.1 1.9 +11.5 2.6

MYSIDS
B. nobi/is W -22.3 1.7 +12.6 3.7
M.mixta W -21.8 2.2 +10.4 1.5

MISCELLANEOUS
C. /imacina W -21.1 2.9 +10.1 1.2
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