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ABSTRACT 

Lung surfactant (LS), a secretory product of the alveolar type-II cells stabilizes the 

alveoli during normal respiration. LS reduces surface tension of the alveolar air-water 

interface during expiration preventing alveolar collapse. During acute respiratory distress 

syndrome (ARDS) and in other lung diseases, serum proteins leak into the alveolar space 

and inhibit LS surface activity. Interaction ofbovine lipid extract surfactant (BLES) (a 

clinical replacement LS) with soluble fibrinogen (Fbg) was studied employing various 

biophysical techniques in bulk bilayer and monolayer films. BLES contains all lipids and 

proteins ofLS except cholesterol and surfactant protein-A and D. From our monolayer 

studies (surface balance and adsorption studies) fibrinogen decreased the surface activity 

ofBLES. Langmuir-Blodgett films of adsorbed BLES and BLES with fibrinogen were 

studied using Langmuir-Wilhelmy surface balance and were imaged employing atomic 

force microscopy (AFM). AFM images show that fibrinogen is mainly associated with 

the fluid phase ofBLES films and aggregated the gel lipid domains. Fibrinogen was 

found to induce two sets of domains in BLES, one associated with the gel (condensed) 

lipids, while the protein aggregate was mainly present in the fluid phase. BLES bilayer 

dispersions showed a diffuse gel to liquid-crystalline phase transition between 10-35°C as 

measured by differential scanning calorimetry (DSC). Fibrinogen was found to denature 

at 50°C using DSC. DSC ofBLES: Fbg (1:0, 1:0.5, 1:1, 1:1.4; wt/wt) dispersions, 

suggested that with increasing protein, the peak of maximal heat flow (Tmax) was shifted 

from 27°C to 31 °C. Raman and Fourier Transform Infrared Spectroscopy (FTIR) of the 

BLES: Fbg bilayers dispersions suggested that fibrinogen altered the CH2, CH3, and P04-

111 



vibrational modes of the BLES phospholipids. The vibrational shifts of frequencies were 

consistent with slight increase in hydration ofthe headgroups (P04) as well as slightly 

increased ordering (condensation) of the hydrocarbon chains (CH2 and CH3) ofBLES. 

This result was in direct contrast to the disordering effects ofBLES observed with 

another serum protein, albumin. Raman spectroscopy ofBLES with Fbg performed below 

and above the T max, correlated well with changes of chain conformation obtained using 

DSC. The monolyer and bilayer studies suggested that Fbg induces two separate sets of 

lipid domains in the surfactant. Such serum protein induced alterations of surfactant lipid 

packing may alter the materials surface activity as in ARDS and other lung diseases. 
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1.1. Lung Surfactant 

Chapter-1 

INTRODUCTION 

Lung Surfactant (LS) is a complex lipid-protein mixture secreted by type II cells 

of the pulmonary wall in the terminal air-way called the 'alveolus'. The secreted material 

at the air-water interface undergoes transformations and self assembles into various 

supra-molecular membranous structures which eventually lead to formation of stable 

mono-molecular films at that interface (reviewed by Goerke, 1998 and 1974). By forming 

highly surface active films at the air-alveolar interface, surfactant reduces the work of 

breathing (Clements, 1957; Goerke 1998; Notter et.al., 1997; Perez-Gil et.al., 1998; 

Possmayer 1997; Schurch eta!., 1992; Veldhuizen et al., 2000; Veldhuizen et al., 1998). 

Because films can lower surface tension ( 'Y) to near 0 mN/m during lateral compression, 

they prevent alveolar collapse at end-expiration. LS also prevent alveolar edema, and 

some components of it at least have an important role in lung defense. Also it was 

proposed that LS is required to keep the bronchiolar thin airways open, thereby securing 

an unrestricted flow of air to and from the alveoli (Mingyao et. al, 1991 ). 

1.2. Composition of LS 

LS is composed mainly of phospholipids (85%), and small amounts of surfactant

associated proteins SP-A, SP-B, SP-C, and SP-D (Possmayer, 1997; Veldhuizen et.al., 

1998). The major mammalian surfactant phospholipids are dipalmitoyl

phosphatidylcholine (DPPC around 35-50%), unsaturated phosphatidylcholine (25-35%) 
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and the acidic phospholipids, phosphatidylglycerol (PG) around 8-15% (Veldhuizen et al, 

1998). The LS also contains other lipids such as sphingomyelin (SM), phosphatidylserine 

(PS) and cholesterol in smaller amounts (Veldh~zen et al., 1998). Significant amounts of 

di-saturated phospholipids DPPC and PG make the LS somewhat unique in composition, 

since these phospholipids are absent or lacking in any significant amounts in most 

mammalian cellular membrane systems (Goerke, 1974; Griese, 1999; Johansson et al., 

1997). The surfactant associated proteins SP-A and SP-D are water soluble, large 

molecular weight glycoproteins (>650kDa) and are functionally important in preventing 

disease processes in the lung. The hydrophobic SP-B (8.7kDa) and SP-C (4.1kDa) help in 

the high surface activity of LS lipids. The functional importance of the formation of 

stable film in the lung by LS preventing alveolar collapse (Batenberg et al., 1998; 

Possmayer, 1997; and Veldhuizen et al., 1998) is due to the combined interaction of the 

lipids and hydrophobic proteins. 

1.3. Structural and Morphological forms of LS 

LS components are synthesized in the endoplasmic reticulum, transported to the 

golgi apparatus, and packaged into lamellar bodies (LB) of the alveolar type II cells 

(recently reviewed by Veldhuizen and Haagsman, 2000). These lamellar bodies are 

secreted into the hypophase via exocytosis across the type II cell plasma membrane 

where they swell and unravel to form a cross-hatched structure called tubular myelin 

(TM). The Transmission electron micrograph (TEM) image in Figure 1 (a) shows 

lamellar bodies, which have TM forming inside the structure by lamellar expansion. 
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Surfactant components are released from TM to form a 'surface active layer' at the air

liquid interface (reviewed by Goere, 1998; Lumb, 1989). When the alveoli are 

COJ?pressed during expiration, various unsaturated phospholipids and neutral lipids are 

squeezed out from the surface active film leaving the disaturated phospholipids, 

particularly DPPC. The DPPC-enriched film is capable of reducing the surface tension to 

near 0 mN/m (Haagsmann et.al, 1991). Figure 1 (b) shows a TEM of the process of 

forming TM from LB 's in rat surfactant lavage. 

1.4. Acute Respiratory Distress Syndrome (ARDS) 

Acute respiratory distress syndrome (ARDS) is a sudden life threatening lung 

failure affecting adults and was first discovered by Ashbaugh et al (1967). They 

monitored 12 patients who were not responding to the usual modes of therapy, and were 

exhibiting symptoms similar to infant respiratory distress syndrome (previously known as 

hyaline membrane disease) which was found to be due to lack of ample secretion ofLS 

(Avery and Mead, 1959). In ARDS the patients exhibited severe dyspnoea, tachypnoea, 

cyanosis that is refractory to oxygen therapy, loss of lung compliance, and diffuse 

alveolar infiltration (Ashbaugh et al., 1967; reviewed by Greise 1999 and Lewis and 

Jobe, 1993). In all patients, ventilation was assisted or controlled by a respirator and 

measurements were made when the patient was in a relaxed or steady state. The 

minimum 'Y observed in patients was 24 mN/m whereas in normal situations it was less 

than 10 mN/m, when LS from such lungs were studied in vitro (Ashbaugh et al, 1967). 

The acute phase of ARDS is characterized by the influx of protein rich edema fluid into 
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air spaces as a consequence of increased permeability of the alveolar-capillary barrier or 

leakage ofblood vessels (Pugin eta/., 1999). There are two types of cells present in the 

alveolar epithelium of adult lungs. Flat type I cells, which make up ?O% of the surface 

area, are easily injured. However, the cubical type II cells make up the remaining 10% 

and are more resistant to injury. The functions of the type II cells include surfactant 

production, ion transport, and uptake of LS lipids (reviewed by Ware and Matthay, 

2000). Increased permeability of the epithelium can contribute to alveolar flooding. As 

well, the loss of epithelial integrity and injury to type II cells disrupts normal epithelial 

fluid transport, impairing the removal of edema fluid from the alveolar space (Sznajder, 

1999). Also, injury to type II cells reduces the production and turnover ofLS, 

contributing to surfactant abnormalities. In addition, loss of the epithelial barrier can lead 

to septic shock in patients with bacterial pneumonia (reviewed by Ware and Matthay, 

1999). 

In ARDS, inflammation gives rise to phospholipases, proteases, and other 

mediators within lung tissue. Damage to the alveolar capillary membrane allows these 

compounds, along with cellular degradation products and blood derived lipids and 

proteins, access to the alveoli where they can impair the surface-active function ofLS 

(Holm eta/., 1999). 

Another mechanism of injury is evident when neutrophils predominate in 

pulmonary edema fluid obtained from affected patients, suggesting neutrophil dependent 

lung injury (Pittet et a!., 1997). Other mechanisms included injury by cytokines, 

ventilator-induced lung injury due to high volumes and pressures of mechanical 
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Figure 1: (a) TEM of the lamellar body unfolding into tubular myelin (TM). This figure 

was a generous gift by Dr. Kaushik Nag. (b) TEM ofNormal LS rat lavage (LB and TM) 

(Panda et al., 2004- adapted from theM. Sc thesis ofVidyasankar, 2004). 
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(b) 
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ventilation, and abnormalities in the production, composition, and function ofLS (Greise, 

1999; Ware and Matthay, 2000). To resolve the cause of this disease, many suggestions 

have been made. Alveolar edema can be ~esolved by the transport of sodium and chloride 

from the distal air spaces into the lung interstitium (Matalon et al., 1996). As well, in 

clinical studies, clearance of alveolar fluid can cause improved oxygenation, a shorter 

duration of mechanical ventilation, and an increased likelihood of survival. Also the 

removal of insoluble protein is important since hyaline membranes provide a framework 

for the growth of fibrous tissue (reviewed by Griese, 1999; and Ware and Matthay, 

2000). 

Several approaches to treatment have been discussed. These include prophylaxis, 

supplementation with oxygen and positive end-expiratory pressure, mechanical 

ventilation, pharmacologic therapy through the use of corticosteroids, and nonsteroidal 

anti-inflammatory drugs, fluid and hemodynamic management, synthetic and natural 

surfactant therapy, and inhaled nitric oxide and other vasodilators (Bernard and Brigham, 

1986; Spragg and Lewis 2003; reviewed by Ware and Matthay, 2000). Although these 

may help, there is still an onset of the disease, with a 40-60% mortality rate, so more 

studies have to be carried out to understand the mechanisms of dysfunction for more 

effective modes of therapy. This study is directed towards modeling the mechanisms of 

interaction of a serum protein (Fbg) with bovine lipid extract surfactant (BLES) in vitro. 

Fbg is known to be one of the most potent inhibitors of surfactant function. As previous 

studies in our laboratory (Vidysankar et al, 2004) had shown that another serum protein 

albumin inhibits surfactant activity by disrupting the packing of mono layers and bilayers, 
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we used Fbg to compare these two proteins. The study is unique in the sense that no other 

previous study have looked at the bilayer as well as the monolayer packing perturbations 

caused by these proteins on surfactant compliment~ly, using structure as well as 

functional techniques. 

1.5. Lung Surfactant and ARDS 

fucreased alveolar protein load due to increased endothelial and epithelial 

permeability represents one ofthe key events in ARDS (Petty et al., 1979; Pison et al., 

1989; Rinaldo et al., 1982; Seeger et al., 1986). Large amounts of serum proteins and red 

blood cell components were found in the alveoli during permeability edema and 

hemorrhage (Clark et al., 1971; Fuchimukai et al., 1987; Hallman et al., 1982; Holm et 

al., 1985a, Vol38; Holm et al., 1985b, Vol 59; Holm and Notter, 1987; Ikegami et al., 

1984) resulting in the inhibition of surfactant function as seen from the 

pathophysiological changes. 

Jacobson et al (1993) found the presence of fibrinogen (Fbg) in the tracheal 

aspirates of only 5 of 30 in normal compared to 20 out of21 patients with ARDS. There 

are several studies, which show the importance of LS in lung activity, and the 

inactivation causing ARDS (reviewed by Griese, 1999). Studies have shown that 

phospholipid composition was altered (decreased PC and PG with increased PI and PE), 

surfactant associated proteins were decreased (SP-A), and alveolar LS aggregate forms 

were altered (reviewed by Lewis and Jobe, 1993). 
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1.6. Surfactant therapy 

Since its introduction to clinical medicine in 1980 by Fujiwara and coworkers, 

surfactant therapy of respiratory distress syndrome (hyaline membrane disease) has 

revolutionized the care of newborn infants in neonatal intensive care units (Fujiwara et 

al., 1980). Replacement therapy with natural surfactant extracts has been proven to be 

beneficial in both experimental and clinical studies (Avery et al., 1986; Robertson and 

Lachmann, 1988; Van Golde et al., 1988). With the discovery of hydrophobic surfactant 

proteins, SP-B and SP-C, and their role in adsorption facilities and dynamic surface 

tension lowering properties, a reasonable method for a suitable and logistical surfactant 

therapy has been achieved (Curstedt et al., 1987; Notter et al., 1987; Revak et al., 1988; 

Shiffer et al., 1988; Whitsett et al., 1986; Yu et al., 1988; Yu et al., 1986). Rapid 

adsorption facilities and surface tension lowering properties to near zero values under 

dynamic conditions are generally accepted criteria that have to be fulfilled by any 

artificial surfactant preparation. In addition, sensitivity or resistance to the inhibitory 

capacity of serum-derived proteins must be assumed to represent an additional important 

functional aspect (Enhorning, 1989). 

1.7. Bovine Lipid Extract Surfactant (BLES™) 

Bovine lipid extract surfactant (BLES™) is a clinically used surfactant preparation 

obtained from bovine lung lavage (washings) and has been used in this project. BLES is 

currently being used for the treatment of neonatal respiratory distress syndrome in human 

premature infants and is the only LS developed in Canada. BLES contains all the 
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phospholipids and proteins commonly present in a lung surfactant except that the 

hydrophilic SP-A, SP-D, and the neutral lipids (cholesterol) are removed during 

extraction. T~e neutral lipids are removed for better surface activity (Yu and Possmayer, 

1988 & 1983). Thus the phospholipids and hydrophobic SP-B and SP-C proteins 

normally present in most mammalian LS is similar in composition to BLES. BLES is 

used as a standard model of natural LS due to its consistent composition and surface 

activity, its availability in large amounts and its cost effectiveness as a Canadian product. 

Previous studies using various extracted surfactant preparations (as noted in section 1.8.) 

have suggested somewhat contradictory views ofLS inhibition due to various extraction 

processes, contaminants, and multiple compositional LS being used. Also, BLES has 

been extensively studied by us (Nag et al2004c, 2002a, and 2002b; reviewed by 

Veldhuizen et al, 1998; Vidyasankar, 2004) and previously by the group which 

developed this product (Yu and Possmayer, 1983). 

1.8. Lung Surfactant Inhibition upon Interaction with Serum Proteins 

Seeger et al (1985) found that fibrinogen which was more potent at increasing the 

minimum surface tension of LS films than albumin. Albumin was more potent than 

immunoglobulin-M and immunoglobulin-G. Among different proteins tested, they found 

that the fibrin monomers are especially effective and more potent in inhibiting LS. This 

result, i.e. the greater effectiveness of fibrinogen compared with the other proteins 

(albumin and globulins) in raising the minimum surface tensions has also been noted 

previously by others (Abrams, 1966; Taylor and Abrams, 1966). They found that albumin 

10 



was a stronger inhibitor than the immunoglobulins, which was in contrast to findings by 

Keough et al (1987 and 1988) who observed that albumin was less potent than either of 

the globulin fractions (reviewed by Holm, 1998). 

Using a pulsating bubble surfactometer, Fuchimukai et.al. (1987) have assessed 

the ability of various agents (fibrinogen, human serum, albumin, and a 55,000-Dalton 

serum protein) to inhibit the surface activity of a surfactant preparation, TA. The 

pulsating bubble surfactometer provides a model of an alveolus wherein a small bubble 

undergoes cyclic compression and expansion in a fashion that might imitate the action in 

the lung while the pressure needed to keep the bubble open is monitored continuously 

(Enhoming, 1977). Surfactant TA is semi-synthetic and was first described by Fujiwara 

et .a!. 1980. A LS lipid: soluble protein (wt/wt) ratio ranging from 1:0.02 to as high as 

1:3.2 was employed to evaluate the inhibitory effect ofthese proteins. The strongest 

inhibiting action was exerted by fibrinogen, followed by human serum and the 55,000 Da 

serum protein while the weakest inhibitor was albumin. 

Seeger et al. (1993) have shown the differential sensitivity of various surfactant 

preparations towards inhibition by serum proteins. Serum proteins which have been used 

include fibrinogen, albumin, and hemoglobin. Calf lung surfactant extracts (CLSE), 

Alveofact, Curosurf, and Survanta (all used as clinical replacement surfactants) were the 

surfactant preparations used in their study. They concluded that this differential 

sensitivity is due to differences in phospholipid profiles, hydrophobic apoprotein contents 

(e.g., low SP-B quantities in Curosurfand Survanta, high quantities in CLSE and 

Alveofact), and the presence of contaminating materials. Curosurf and Survanta were 
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severely inhibited by low fibrinogen concentrations, and for the CLSE and Alveofact, a 

high fibrinogen-phospholipid ratio of2:1 was needed for significant inhibition. These 

authors attributed this to the SP-B levels in the surfactant preparations employed. CLSE 

and Alveofact contained higher amounts(> 1.5%, of phospholipids), whereas Curosurf 

and Survanta contained low percentages(< 0.25%) ofSP-B. This result supported their 

previous studies wherein they have shown that fibrinogen inhibition of a recombinant SP

C based phospholipid mixture was markedly counteracted by supplementation with small 

amounts ofSP-B (Seeger et al., 1991). Also, their result was in agreement with those by 

Hagwood et.al. (1987), wherein fibrinogen sensitivity of a natural surfactant (CLSE) was 

found to be substantially increased by functional inhibition of SP-B by anti-SP-B. 

Keough et al. (1987) have examined ways in which the serum proteins, 

fibrinogen, globulin, and albumin influence the properties of LS in mono layers. They 

found that all three major protein fractions from human serum interfered with the ability 

of LS to lower surface tension to near 0 mN/m values when films were compressed at the 

air-water interface. At low protein: surfactant ratios of0.023, 0.07, and 0.139 (given as 

mg proteinl!lg surfactant), the order of potency for the 'inhibitory' effect of the proteins 

on minimum surface tension (maximum surface pressure) was fibrinogen> globulins> 

albumin. They also found that there was little difference between the effects of a

globulins and the {J-plus ')'-globulins. These results extend previous findings on the 

interaction of proteins with other surfactant preparations (Rufer and Stolz, 1969; Seeger 

et al., 1985; Taylor and Abrams, 1966). 
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Holm et al. (1985a) have shown that albumin in concentrations >20 mg/ml increased the 

minimum dynamic surface tension of natural lung surfactant (LS) from 1 mN/m to 21 

mN/m at 37°C. Albumin in low concentrations (2mg/ml) had a similar detrimental effect 

on the dynamic surface activity of extracted calflung lipids (CLL). Also albumin 

inhibited the adsorption of bovine LS and Calflung lipids (CLL); instead of adsorbing 

rapidly to their equilibrium spreading pressure of 45 mN/m, both surfactant mixtures (at 

0.063 and 0.125mg phospholipids/ml) adsorbed more slowly or reached lower final 

surface pressures in the presence of albumin. An important observation was that albumin 

inhibition of surface activity was moderated or abolished by increasing the lipid 

concentrations. Similarly, LS and CLL adsorption was protected from albumin inhibition 

at sufficiently high phospholipid concentrations. They also found that this was true even 

when the molar ratio of protein to phospholipids is increased as much as five fold. Also 

the effects of serum proteins on monolayers ofDPPC, the major component ofLS have 

been studied (Colacicco and Basu, 1978; Holm et al., 1985a; Ikegami et al., 1984; 

Mutafchieva et al., 1984; Phang and Keough, 1986; Rufer and Stolz, 1969; Seeger et al., 

1985; Tabak and Notter, 1977; Taylor and Abrams, 1966). 

1.9. Suggested mechanisms of LS Inhibition by Serum Proteins 

Holm et al (1988) have suggested that the inhibitory effects of serum proteins 

may arise from their competing with the surfactant phospholipids at a clean air-aqueous 

interface during the adsorption process. However, they have not ruled out the possibility 

of some type of protein-surfactant molecular interactions occurring in the bulk phase. 
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They have proposed the above mechanism which was based on their results of 

centrifugation studies, wherein they suggested that physical interactions of serum 

proteins with the surfactant phospholipids may not ~e the only mechanism. The 

adsorption isotherms for surfactant-protein mixtures with inhibited surface activity were 

similar to the adsorption isotherm of the pure protein (Holm et al., 1985a). 

According to these authors, if a strong interaction between the inhibitory proteins 

and the surfactant mixture had occurred, the protein-surfactant complex should have 

pelleted together after minimum centrifugation at 12,500 x g ('g' the acceleration due to 

gravity) and this pelleted LS-serum protein material would have lacked surface activity 

upon re-suspension at the same concentration in normal saline. They found that, this 

however, was not the case for any of the specific CLSE mixtures they studied. fustead of 

showing an inhibition, all of the re-suspended pellets had absolutely normal adsorption 

and surface tension lowering abilities. These results were similar to the early findings of 

Shelley et al (1977) and Balis et al (1971) who used ultracentrifugation, with and without 

a sodium bromide gradient, to purify surfactant from lung washings contaminated with 

blood components. The centrifugation studies by these authors also agree with the 

previous work by Ikegami et al (1982 and 1984) showing that the abnormal surface 

activity of lung washings from premature lambs with respiratory failure (containing large 

amounts of protein) could be reversed by isolating the surfactant material by ultra 

centrifugation (27,000 x g). 

Holm et al. (1988) have shown that the soluble protein molecules at the 

hypophase can prevent the LS phospholipid molecules from rapidly forming a surface 
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film. This arises in preformed films of albumin, hemoglobin, or fibrinogen because the 

CLSE adsorption to the air-liquid interface at high phospholipid concentration was 

inhibited. Similarly reverse experiments have shown that the injection of high 

concentrations of serum proteins beneath a preformed film of CLSE phospholipids had 

no effect on the surface pressure indicating that the proteins which should come into 

random contact with the surface film do not appear to interact with the phospholipids and 

displace them from the air-liquid interface. The data presented by Holm et al (1988) do 

not completely agree with the conclusions of Seeger et al (1985). However, the 

biophysical experiments performed by Seeger et al (1985) were carried out only at one 

low surfactant phospholipid concentration (unlike Holm et al., 1988) and as well used 

only fibrin monomer. 

Fuchimukai et al (1987), using pulsating bubble surfactometer studies, have 

shown that serum proteins with the ability to act as inhibitors probably become integrated 

with LS bilayers and liposomes. This may increase the stability of LS-serum protein 

complex formed in the hypophase, hence reducing the likelihood that the complex when 

in contact with an air-liquid interface, will easily break up and become part of the surface 

film. Molecules squeezed out of the film as the film approaches the minimum area 

becomes united and incorporated into protein-stabilized bilayers or liposomes, and thus 

the chance of their returning to the previous site in the film is reduced. This sequence of 

events could explain why, with high concentration of surfactant and inhibiting protein, it 

was noted that surface tension gradually increased at maximal and decreased at minimal 

film area during the 10 minutes recorded in their study. 
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Holm et al. (1999), using a pulsating bubble apparatus, custom designed hypophase 

exchange studies, and custom designed Wilhelmy balance, demonstrated that albumin 

acted primarily. through competitive adsorption and blocking of the air-water interface. In 

studies with albumin, the results were consistent with their previous findings indicating 

that albumin and other blood proteins such as fibrinogen and hemoglobin inhibit the 

surface activity oflung surfactant primarily through competitive adsorption (Holm et al., 

1988). According to Holm et al (1999), since serum proteins cannot readily penetrate an 

existing interfacial film ofLS, their inhibitory effects are most substantial if they reach 

the surface when it is not fully occupied by surfactant molecules. This is the case when 

serum proteins adsorb simultaneously with lung surfactant into a clean surface when the 

hypophase surfactant concentration is low. Under such conditions, albumin substantially 

inhibited LS adsorption to an extent that exceeded the detrimental effects of 

lysophosphatidylcholine (LPC). It was noted previously that as the concentration of 

surfactant in the subphase increases, albumin (like other serum proteins) was less 

effective in competing for the interface, mitigating the magnitude of its inhibitory effect 

(Cockshutt et al., 1990; Fuchimukai et al., 1987; Holm et al., 1988; Holm et al., 1985a; 

Holm and Notter, 1987; Keough et al., 1989; Seeger et al., 1985). 

1.1 0. Fibrinogen (Fbg) 

Fibrinogen (also called serum Fbg, plasma Fbg, and Factor I), is the main protein 

of the blood coagulation system produced by the parenchymal cells of liver. Fbg helps 

stop bleeding by helping the formation of blood clots. During normal blood clotting, Fbg 
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is polymerized by an enzyme called thrombin into long fibrous materials (fibrin) which 

forms the clot. Thrombin also activates a substance called Factor XIII. Factor XIII helps 

weave the fibrin into a complex lattice, closing off injured blood-vessel walls. Blood 

platelets attach to fibrin, clumping together to form a blood clot and stop bleeding. The 

normal Fbg concentration in serum is about 200-400 mg/dl and has a molecular mass of 

~340kDa. 

Fbg clotting underlies pathogenesis of myocardial infarction, thromboembolism 

and thromboses of arteries and veins, since fibrin is the main substrate for thrombus 

formation. Fbg activation is also involved in the pathogenesis of inflammation, tumor 

growth and many other diseases. Increase in blood Fbg concentration has been shown to 

be a strong predictor of coronary heart disease (Lowe et at., 2000 and Danesh et at., 

1998). All these facts make Fbg an important parameter in the diagnosis of 

cardiovascular diseases. Fbg is a dimeric protein, each half of which is composed of 

disulfide-bonded polypeptide chains designated Aa, Bp, andy. "A" and "B" refer to the 

fibrinopeptides A (FpA) and B (FpB) that constitute the amino terminal16 and 14 

residues, respectively, of the Aa- and BP-chains. Figure 2 shows the model of a human 

fibrinogen with its subunits. Early electron micrographs (Hall and Slayter, 1959) showed 

Fbg to be an elongated protein which had a trinodular structure composed of two larger 

terminal globular domains and a smaller central globular domain, all connected by 

intervening linear segments. The length of the molecule is~ 460 A along its major axis 

and 60 - 90A along its minor axis (Figure 2). In this model, the outermost globules are 

referred to as D-domains, and the central globule is referred to as the E-domain. 

17 



Biochemical and physico-chemical studies have revealed much about the detailed 

structure ofFbg. The halves ofthe protein are linked in antiparallel fashion within the 

centralE-domain (Hoperich and Doolittle, 1983). That domain consists of theN-terminal 

portions of the six constituent chains and is stabilized by eleven inter-chain disulfide 

bonds. The linear segments that join an E-domain to its flanking D-domains are 

suprahelical arrangements of the Aa.-, B(3- and-y-chains, and are often referred to as 

"coiled-coil" regions. Whereas the carboxyl halves of the B{3- and-y-chains fold 

extensively and terminate as the bulk of the globular D-domains (Weisel et.al., 1985), the 

Aa.-,chains extend from the D-domains, fold back across the molecule, and appear to 

terminate juxtaposed to theE-domain, perhaps in close proximity to the FpA's (Lorand, 

1983). That segment of an Aa.-chain that projects beyond aD-domain is referred to as an 

Aa.-chain extension or protuberance. 

1.11. Current project 

Interaction of fibrinogen with LS extract in bulk bilayer phases and films was 

studied in this project. Biophysical studies of monolayer films ofBLES with and without 

fibrinogen were carried out employing techniques such as, Langmuir-Wilhelmy surface 

balance and AFM. Also, DSC, FTIR, Raman, and TEM were employed to probe the 

interaction in bulk bilayer phases of the surfactant. 
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Figure 2: Trinodular cartoon structure of Fibrinogen showing D and E globular domains, 

a- chain protuberances and fibrinopeptides A (FpA) and B (FpB). This figure is adapted 

from the reference by Hall and Slayter (1959). 
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a - chain protuberance 

a- chain protuberance 
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2.1 Materials 

Chapter-2 

MATERIALS AND METHODS 

Bovine Lipid Extract Surfactant (BLES™) was obtained as 5 ml vials of27 mg/ml 

suspension in saline from BLES™ Biochemicals Inc. (London, Ontario, Canada). DPPC 

(1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine), fibrinogen (Fraction-1; Type 1 from 

human serum; Lot. No. 072k7606) containing 90% clottable protein in dry form., 

delipidated bovine serum albumin (BSA) (protease free, fraction V, 99%, catalogue 

number- A3059-50G) in powdered form, and Trizma. HCl were obtained from Sigma 

Chemical Co (St. Louis, MO). Chloroform and methanol, HPLC grade solvents (99%) 

and sodium chloride were obtained from Fisher Scientific (Ottawa, ON, Canada). 

All experiments were carried out in NaCl-Trizma.HCl buffer, pH 7, unless 

otherwise stated. Glassware used in the monolayer experiments was all chromo-sulfuric 

acid washed and rinsed thoroughly in distilled water, and dried at 180°C for 2hrs prior to 

use. This was done to remove all organic lipids and surface active impurities from the 

glassware as previously discussed (Keough et al1988). Water used in this study was 

doubly distilled, with the second distillation done from dilute potassium permanganate to 

remove all organic surface active impurities (Keough et al1988; Nag et al1998). 
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2.2. Preparation of DPPC vesicles 

Required amounts ofDPPC were weighed using an electronic balance and 

carefully transferred to a small round bottomed flask. To this 500 flL of chloroform

methanol mixture (3:1 v/v) was added. The contents in the flask was vacuum evaporated 

using a rotary evaporator for15 minutes at 37°C to remove the solvents. Traces ofthe 

solvent were removed by drying under nitrogen followed by desiccating overnight. The 

required volume of double distilled water was added to the flask and vigorously vortexed 

for 5 min at 46°C. This temperature was chosen since it is above the phase transition 

temperature ofDPPC (41 °C). Under such conditions multi-lamellar vesicles are formed 

as discussed previously (Chapman and Collin, 1965; Veldhuizen et al, 1998). 

2.3. Methods 

For all the studies conducted in this project, viz. monolayer, adsorption, FTIR, 

Raman, DSC, and AFM, Fbg was dissolved in saline at a concentration of 10 mg/ml (10 

mg/ml is the maximum solubility of fibrinogen in saline). The dissolved fibrinogen was 

then mixed with BLES after appropriate dilution at (0.1:1 to 5:1, Fbg: BLES, wt/wt). 

These desired amounts ofFbg added to BLES were physiologically/pathologically 

relevant to what was observed in injured lungs for soluble proteins. Panda et al (2004) 

observed a phosphatidylcholine to protein ratio of 1:1 in injured lungs as compared to 4: 1 

in normal lungs. Also high protein concentrations (up to 5:1 to 10:1) were studied as 

models of in-vitro studies which exhibited maximum inhibitions. These high 
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concentrations used in the laboratory are to demonstrate and equate the inhibitory effects 

of proteins in vitro as done by others (Holm et al., 1999 and 1985a). 

The buffer used in the study was prepared by adding 150mM NaCl (equivalent to 

9 grams) and 5mM Trizma hydrochloride (equivalent to 0 .08 grams) to 1 liter of double 

distilled water, mixed well and the pH was adjusted to 7 using 0.1 M NaOH. 

2.3.1 Surface Balance (Monolayer) 

A modified Langmuir- Wilhelmy surface balance (Langmuir Mini Trough, 

Applied hnaging, England) with a teflon ribbon barrier was used, the design and 

construction of which has been described previously (Taneva and Keough, 1997). The 

dimensions of the Teflon trough gave a surface area of approximately 500 cm2
, which is 

used as 100% of monolayer area in the isotherms. Surface tension as a function of 

monolayer surface or pool area was used in all studies, as accurate area/molecule 

information can not be calculated for adsorbed films. The area/per molecule 

determination for adsorbed Langmuir films does not lead to systematically reproducible 

results. This is due to different amount of adsorption of different samples, giving non

equivalent surface tensions, and only a variable and apparent estimate based on the 

assumption that every lipid molecule inserted under the air-water interface reaches the 

surface to form monolayer (Panda et al, 2004). Most surfactant studies of adsorbed films 

are thus performed using surface tension- area curves (Fuchimukai et al, 1987; Holm et 

al, 1988; Keough et al, 1989). Surface tension is measured by a roughened Wilhelmy 

platinum dipping plate hanging from a force transducer (Nag et al., 1990). A motorized 
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Teflon barrier operated by a FWD-RVS (forward-reverse) switch located on the 

instrument was used to compress and expand the monolayer. 

Initially, NaCl-Trizma.HCl buffer, pH 7 was used to fill the teflon trough as the 

subphase representing an air-water interface and having a surface tension of around 

72mN/m. Bovine lipid extract surfactant dispersed in buffer containing either no Fbg 

(control) or varying weight percentages ofFbg were adsorbed using a Hamilton syringe 

just under the air-water interface of the subphase. One hour was allowed for equilibration 

of the films. Unlike the samples which are organic solvent spread, with the monolayer 

formed by evaporation of the organic solvent over the subphase, our samples which are 

adsorbed in buffer have been shown to have similar characteristics previously described 

to solvent spread films previously (Nag eta/, 1996; Panda eta/, 2004). After 

equilibration, compression and expansion of the films was initiated by movement of the 

barrier and the isotherms were obtained at an ambient room temperature of 23 ±1 °C. By 

compressing and expanding the monolayer, the transition of the surfactant from fluid to 

condensed (gel-like) phase can be initiated and monitored by the inflexion in lipid 

isotherms (Nag eta/., 1998). 

2.3.2 Adsorption Experiments 

Studies of surface tension as a function of time adsorption isotherms were carried 

out in a 6.28 ml small cylindrical teflon cup. Measurements were made at room 

temperature (23 ±1 °C) with a 6mL subphase ofNaCl-Trizma.HCl buffer, pH 7, which 

was stirred continuously to minimize diffusion resistance. Adsorption experiments were 
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initiated by injecting 400 J..LL ofBLES or BLES-Fbg dispersions to the clean surface, 

stirred, surfactant-free subphase to give a final volume of 6 mL. Adsorption to the surface 

(determined by surface tension drop) was then measured as a function of time in seconds, 

using a Wilhelmy plate as discussed in detail in a previous study (Nag et al., 1998). 

2.3.3. Atomic Force Microscopy (AFM) 

The Atomic force microscope works by scanning with a fine ceramic or 

semiconductor tip (2-20 nm to single atom in diameter) on a surface. This is similar to a 

phonograph needle scanning a gramophone record. The tip is positioned at the end of a 

cantilever beam shaped much like a diving board. As the tip is repelled by or attracted by 

the corrugation of a surface, the cantilever beam deflects. The magnitude of the 

deflection is captured by a laser that reflects at an oblique angle from the very end of the 

cantilever. A plot ofthe laser deflection versus tip position on the sample surface 

provides the resolution of the hills and valleys that constitute the topography of the 

surface. The AFM can work with the tip touching the sample (contact mode), or the tip 

can tap across the surface (tapping mode) much like the cane of a blind person (Binnig et 

al, 1986). 

A Langmuir surface balance was used to deposit preformed monolayers ofBLES

fibrinogen films on mica or glass slides to study the structures in the films using AFM. 

The substrate (teflon holder carrying a round shaped mica sheet, equivalent in diameter to 

a microscopic cover slip) was submerged into the ring well of the surface balance before 

film formation. Compression to a desired surface tension ('y = 52 mN/m, 42 mN/m or 32 
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mN/m, etc) was performed. Following a slow compression (7.3 cm2/sec) and a few 

minutes waiting time, the surface film was deposited onto the mica by raising it vertically 

at a rate of 0.22 mm/sec at the desired surface tension .. The films were compressed at the 

three different surface tensions mentioned above for all the samples. Details of such AFM 

methodology to study LS films are discussed elsewhere (Nag et al., 2004b). The 

Langmuir-Blodgett deposit on mica was mounted on the magnetic steel disk of the AFM 

scanner (Scanner J) where the samples were imaged within 1 hr of deposition by a 

Nanoscope® Scanning Probe Microscope (V eeco Instruments, Nanoscope lila). The 

image field sizes scanned were 5 J.l.m x 5 J.l.m, 10 J.l.m x 10 J.l.m, and some times 20 J.l.m x 

20 J.l.m at various regions of the sample using a piezoelectric J - scanner. The 

measurements were in contact mode using a silicon nitride tip on a cantilever having a 

force constant of0.38 N/m or0.06 N/m. The 2.5 J.l.m x 2.5 J.l.m images ofthe samples 

were flattened using the Nanoscope Ilia software and analysed to determine the height 

differences (by section analysis) between the observed domains (Nag et al., 2004b; 

Harbottle et al., 2003). Also, in order to compare the AFM image of the BLES film alone 

to that ofBLES+Fbg film with respect to shape of the domains and height differences, 

parameters such as field size, Z-scale, compression surface tensions at which the films 

were deposited were kept constant for all experiments. At least 3-5 areas of a typical 

deposit were scanned and a representative image was displayed. 
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2.3.4 Differential Scanning Calorimetry (DSC) 

In DSC the sample and inert reference are heated independently in such a way 

that their temperatures remain equal. In the absence of phase transition the differential 

heat flow between the sample and reference is zero or constant. As phase transition takes 

place, heat has to applied to or withdrawn from the sample in order to maintain the same 

temperature in sample and reference compartments. The differential heat flow is recorded 

as a function of temperature to produce a peak shaped trace known as an endotherm. The 

term 'Scanning' implies that the temperature ofboth sample and reference is varied at a 

programmed rate. It has been previously realized that the phospholipids of the cell 

membrane exist as bilayers and are crucial in maintaining the structure and function of a 

cell. In the pioneering work of Chapman and Collin ( 1965), it was demonstrated that the 

phospholipid dispersions exhibited thermotropic mesomorphism i.e a number of phase 

changes occurred during melting. Thermotropic mesomorphism indicates that these 

compounds do not pass directly from a crystalline state to an isotropic liquid, but that, at 

intermediate temperatures, they exist in a liquid-crystalline state. The transitions from gel 

to a liquid-crystalline state and from liquid-crystalline to an isotropic liquid are 

endothermic processes (Chapman and Collin, 1965). In the gel state, the hydrocarbon 

chains of the phospholipids are in fully extended, all-trans configuration. At the first 

transition (transformation to the liquid-crystalline state) the hydrocarbon chains in the 

bilayer 'melt', their mobility increases and they are no longer in the fully extended state. 

The number of gauche conformations increases and the chains display 'kinks' with 

increasing temperature. The chain'melting' requires quite an appreciable investment of 
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energy, whereas the transformation from the liquid-crystalline state to an isotropic fluid 

state, which occurs at higher temperatures (capillary melting) is accompanied by small 

changes in the enthalpy and entropy, as it involves only the breakdown of the polar 

lattice. 

DSC endotherms (heating thermo grams) over a temperature range of 10 °C-50 oc 

were obtained for BLES and DPPC using a commercially available DSC (MC-2 

Differential Scanning Calorimeter, Serial No. 025, Microcal, LLC Inc., Northhampton, 

Massachusetts) by methods discussed by others (Keough and Kariel, 1987). A sharp 

transition of 41 °C was observed for DPPC vesicles, whereas BLES showed a broad 

transition between l0°C-35°C with maximal heat flow (Tmax) occurring at 27°C. 

Endotherms ofDPPC/or BLES plus varying percent by weight ofFbg were 

obtained over a temperature range of 1 0°C-45°C. This range was chosen so as to include 

the main transition in DPPC which occurs at 41 °C (Chapman and Collin, 1965; Keough 

and Kariel, 1987) and to avoid thermal denaturation ofFbg which happens at 50°C. A 

scanning rate of 30°Cihr was used throughout the DSC experiments unless otherwise 

stated. A total of 3-scans were taken for each sample, with a 60 min break in between for 

the phospholipid to cool back to the starting temperature of 1 0°C (Keough and Kariel, 

1987). The scans obtained were later baseline normalized (to kcal/mole of phospholipids) 

using the MicroCal Origin data analysis software. Normally the second or third scan out 

of the 3-cycles was shown in the data, as previously described by others (Keough and 

Kariel, 1987). All DSC samples were studied at least 3 times (n=3) and a representative 

endotherm of one experiment is shown in the results. 
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2.3.5 Raman Spectroscopy 

The Raman spectroscopic technique is a vibrational molecular spectroscopy 

which derives from an inelastic light scattering process. With Raman spectroscopy, a 

laser photon is scattered by a sample molecule and loses (or gains) energy during the 

process. The amount of energy lost is seen as a change in energy (frequency in 

wavenumbers) of the irradiating photon. This energy change is characteristic for a 

particular bond in the molecule. It is a technique which can be used for the analysis of 

solids, liquids and solutions and can even provide information on physical characteristics 

such as crystalline phase and orientation, polymorphic forms, and intrinsic stress. 

Temperature dependence ofBLES dispersions with respect to the various bond 

stretches was studied at different temperatures. The influence ofFbg on BLES at a ratio 

of 1: 1 by weight was studied for any changes that are brought about in the position and 

shape of the bands at 28°C. 

The C-H stretching bands in the 2800 ~ 3100 cm-1 region have been chosen as one 

of the regions of interest as the CH2 symmetric stretching and asymmetric stretching 

modes in Raman at 2850 cm-1 and 2890 cm-1 respectively, are generally the strongest 

bands in the spectra of lipids. The frequencies of these bands are conformation-sensitive 

and also respond to changes of the trans/gauche ratio in acyl chains. This is also the case, 

although to a lesser extent, for the vibrational frequency changes due to the terminal CH3 

groups found at 2930 cm-1 (symmetric stretch) and 2960 cm-1 (asymmetric stretch). 
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The C-C stretching of the acyl chain backbone which exists either in all-trans or all

gauche form is the second marker used in our study. Typically, the lipid Raman peaks at 

approximately 1064 cm-1 and approximately 1128 cm-1
, respectively, have been assigned 

to the symmetric and asymmetric all-trans C-C stretching vibrations. The random C-C 

stretch (trans-gauche-trans) appears at around 1089 cm-1 (Lippert and Peticolas, 1971; 

Spiker and Levin, 1975). 

The Raman spectra were obtained using a LABRAM confocal microscope 

(Horiba Jobin Yvon Inc, Edison, NJ, USA) with a grating (1800 groves/mm), a Leica 

microscope equipped with a long-working distance objective with magnification factor of 

SOX, and a Peltier CCD detector. The spectra were obtained by using the 532 nm green 

laser (Arion laser) line for excitation. The Do filter (no attenuation) and acquisition times 

of 30 seconds were used in acquiring the spectra. Spectra were also obtained from 15 min 

to 2 hrs acquisition times without any major changes observed from the 30 sec spectra. 

The short time period was chosen to avoid drying effects. The Raman spectra of BLES 

with and without fibrinogen at different temperatures were obtained by placing the 

sample chamber (small glass cuvette covered by a brass jacket) on a heating-cooling 

stage which, in turn, was placed on the microscope stage of the Raman confocal 

miCroscope. 

2.3.6. Fourier Transform Infrared Spectroscopy 

Infrared Spectroscopy is an absorption technique in which the intensity of 

absorption is measured. The position of absorption bands depend on the energy 
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difference between resonance states of specific vibrational modes of the molecule. These 

energy differences are in tum affected by intra- and intermolecular conformations and 

interactions, leading to changes in the absorption maxima. The frequency shift of the 

incident light occurs due to the molecular vibrations of the C-H, C-C etc. bonds of the 

phospholipids of the sample (Dluhy and Mendelsohn, 1988). All the JR. spectra were 

obtained in absorbance mode for our studies. 

FTIR experiments were carried out with a Bruker Tensor 27 Infrared 

Spectrometer (Bruker, Billerica, Massachusetts). This instrument is equipped with a 

MIRacle Attenuated Total Reflection (ATR) accessory allowing rapid and easy Fourier 

transform analysis ofliquid and solid samples. 

Previous experiments in our laboratory ofBLES dispersions with different 

concentrations ofBSA (bovine serum albumin) were performed in this instrument by 

allowing an infrared beam to reflect from the sample laid on the surface of a zinc crystal 

(Vidyasankar, 2004). This method ofhandling our sample (BLES) i.e. placing it on the 

zinc crystal and analyzing, resulted in extremely weak signals for the supposedly intense 

lipid C-H vibrations of the fatty chains. Because the infrared beam in ATR was reflected 

off the sample surface laid on the zinc crystal from below, signals were obtained only 

from the groups (particularly the polar head groups in BLES) which were exposed to the 

evemescent field ofiR beam. This resulted in weak signals for all the lipids present in 

multilamellar vesicles which normally yield the strongest signals in a surfactant due to 

the presence of numerous C-H bonds in the two fatty chains, and the method was not 

utilized in our study. In this work, a demountable FTIR liquid cell (Pike Technologies, 
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Madison, WD has been used to rectify the problem (which occurred only with our 

sample-BLES). Initially, the two disc-shaped window materials (made up ofCaF2) were 

sealed in place using the aluminum needle plate and Teflon alignment posts as guides. 

This sealed assembly is placed in a demountable liquid cell holder which can eventually 

be placed in any commercial Broker IR instrument. BLES dispersion is then injected in

between the window materials through an inlet port located in the cell. The sample 

volume between the windows is controlled by using appropriate pathlength spacers. A 

pathlength spacer of0.05mm thickness, capable of holding a maximum volume of200 

J.!L was used. BLES dispersion (sandwiched between windows materials) interacts 

uniformly with the IR beam as the holder is placed in its path and the beam passes 

directly through the sample. Spectra (intensity Vs wavelength) were obtained at 28°C for 

BLES, BLES + fibrinogen, and BLES + BSA dispersions. The data was then treated to 

subtract the unwanted large water peak (appearing at 1640 cm-1
) in the spectra. The 

absorbance values of the background solvent were subtracted from those of the 

corresponding numbers of the sample-containing-solvent to obtain a solvent subtracted 

spectrum. 

2.3. 7 Transmission Electron Microscopy 

Transmission electron micrographs were obtained for BLES/Fbg dispersions by 

methods discussed elsewhere (Nag et al, 1999a). Samples were fixed in 4% 

glutaraldehyde and water, stained with 1% Os04, pelleted by centrifugation and left 

overnight. The sample was then dehydrated with acetone, and embedded in an epoxy 
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TAAB 812 resin. This was followed by ultrathin (lOOnm) sectioning of the resin block 

using a Reichert 0 mU2 ultra microtone to 90 nm thicknesses. It was then counterstained 

with uranyl acetate and lead citrate, and examined with a Zeiss.EM109 transmission 

electron microscope, and photographs of the images were ultimately obtained. Details of 

such methods applied to LS were discussed previously (Nag eta/., 1999a). 
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Chapter-3 

RESULTS 

3.1 Adsorption Isotherms 

Adsorption experiments were carried out in which BLES (6.75mg/ml) or 

BLES+Fbg dispersions (in which the concentration ofBLES was similar to that in BLES 

alone) were injected beneath the clean air-buffer interface. The adsorption of materials to 

the surface was measured as a function of time (in seconds), monitored by a change in 

surface tension('}'). Fbg at various percentages by weight was added to BLES dispersions 

(6.75 mg/ml) and studied. BLES: Fbg mixtures (1:0, 1:0.5, 1:1, 1:10, and 0:1) were 

incubated at 37°C for one hour before the experiment. Figure 3 shows the adsorption 

curves for BLES alone and BLES with Fbg. These experiments were repeated three 

times, and each curve is an average ofthree independent experiments, with the standard 

deviations noted by the error bars. After 120 seconds, BLES alone adsorbed rapidly to a 

minimum 'Y of 30 mN/m (near the equilibrium 'Y of 25 mN/m), whereas in mixtures with 

Fbg, a decrease in the magnitude of the drop in '}'in the same time period was observed. 

Pure Fbg adsorbed to a'}'ofabout 50 mN/m and BLES: Fbg (1: 10, wt/wt) showed the 

lowest decrease in 'Y· A final equilibrium '}'of approximately 55 mN/m, significantly 

higher than the equilibrium 'Y of 30 mN/m for BLES was obtained with Fbg. This 

suggests that Fbg does not allow the BLES to adsorb rapidly to an air-water interface. 

Statistically however there was no significant difference between the adsorption data (as 

indicated by the large error bars) ofBLES: Fbg and those ofBLES alone at 360 seconds. 
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Figure 3: Adsorption isotherms (surface tension vs. time) ofBLES dispersion in buffer 

(6.75 mg/ml) and with varying amounts ofFbg in the dispersions at 23 ± °C is shown. 

The curves are an average of n=3 sets of experiments, with standard deviations, shown by 

error bars. Pure fibrinogen adsorbed to a 'Y of only 50 mN/m, whereas BLES reached 

~30mN/m after 600 seconds. 
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3.2 Monolayer (Surface balance) experiments 

Figure 4 compares multiple compression-expansion cycles of adsorbed films of 

BLES in buffer (a) with multiple cycles ofB~ES: Fbg (1:1, wt/wt) (b). Compression

expansion cycles were carried out at a speed of7.3 cm2/sec. The amount ofBLES (1.62 

mg) used to form the adsorbed monolayer was kept constant. BLES films showed a 

reduction of 'Y to a minimum of- 0 m.N/m, whereas, when Fbg was present in the BLES 

dispersion, as in (b), there was a rise in 'Y to around 27 mN/m. This suggests that in the 

BLES dispersions containing Fbg, the protein interfered with the films reaching a surface 

tension of near zero. 

The change in compressibility of the films ofBLES with increasing percent by 

weight ofFbg in BLES is shown in the bar graph [Figure 5 (a)]. Film compressibility is 

defmed as the ability of the film to be compressed at a fixed surface tension and is 

expressed as the percent change in film area compressible with a fixed drop in 'Y of 

15 mN/m. It has been calculated using intercepts of total monolayer area reduction in15 

m.N/m of 'Y as shown in Figure 5(b ), as previously performed by others using captive 

bubble surfactometry (Nag et al, 2004c and Schurch et al, 1992). The films are 

considered less compressible, the larger the area required to drop the surface tension, as 

also previously found by others using serum proteins such as CRP for BLES (Nag et al, 

2004c). The percent change in pool area increases with increasing Fbg in BLES: Fbg 

mixtures (1:0, 1:0.5, 1:1, 1:10,0:1 wt/wt). This trend was observed for cycle 2 (shown in 

blue) and cycle 5 (Green) as shown in Figure 5 (a). 
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Figure 4: Surface tension vs. Pool area isotherms for compression-expansion cycles of 

BLES in buffer (a) and BLES: Fbg (1: 1, w/w) (b) adsorbed onto a buffer subphase. 

Total monolayer area (100%) was 500 cm2 and 5- cycles were performed for each 

sample. The amount ofBLES in forming the monolayer was kept constant in the both 

the above dispersions. All experiments were performed at an ambient but monitored 

room temperature of 23 ± 1 °C. All compression-expansion experiments were repeated 3 

times for reproducibility, and only a representative plot is shown for clarity. The average 

of three sets of data is shown in Figure 5 (a). 
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Figure 5: (a) Percent change in film area at increasing weight of fibrinogen in BLES. For 

all the cycles, the number of experiments at each BLES: Fbg by weight was n=3 and the 

standard deviation is shown by error bars. (b) Surface tension V s. Pool area isotherm for 

compression-expansion cycles of pure fibrinogen adsorbed onto a buffer subphase. This 

isotherm was repeated 3 times for reproducibility, and only a representative plot is shown 

for clarity. The areas in (a) are calculated using intercepts of total area reduction in 

15 mN/m as shown in (b). 
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3.3 Atomic Force Microscopic Studies 

Langmuir-Blodgett films of the samples used in monolayer studies, prepared on a 

freshly cleaved mica surface were examined using AFM. Representative AFM images of 

BLES, Fbg, and different amounts ofFbg in BLES are shown in Figure 6 for a film 

compressed to 'Y = 52 m.N/m before deposition. The images show that the films undergo a 

transition from liquid expanded state (fluid) to liquid condensed state (gel-like) with 

compression (Nag eta!, 2004a and 2004b). The liquid condensed (LC) or gel-like 

domains (formed when films were compressed to "(=52 mN/m) ofBLES in the image 

are observed as bright greater height circular domains. This is due to a perpendicular tilt 

of the molecule compared to the plane of the film and the surrounding liquid expanded 

phase (LE). The isotropic darker background surrounding the gel domains corresponding 

to the LE phase are lower in height. These LC domains in BLES have approximately a 

height difference of 1.5 run (15 A) as determined by the section analysis of representative 

images [Figure 8 (a)]. 

Pure Fbg film images, obtained similarly unlike BLES, did not form domains 

but rather was deposited more homogeneously as a continuous film (Figure 7). The three 

dimensional view ofthe image shows that it has several sharp peaks with an average 

height of~ 1.6 nm. Addition ofFbg (at 1:1, wt/wt) in the BLES dispersion showed film 

structures resembling ribbon-like domains and LC domains [Figure 6 (c)]. 
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Figure 6: Atomic force microscopic images of deposits of films on mica taken at a 'Y of 

52 mN/m forBLES: Fbg dispersions (wt/wt)- (a) 1:0 (b) 1: 0.5 (c) 1: 1 (d) 1: 10 

2 (e) 0: 1. The adsorbed films were compressed at a speed of7.3 em /sec. All the Images 

have field sizes of2.5 p,m x 2.5 p,m. Appropriate height differences of the domains are 

indicated by the scale shown using a color bar (2.5 nm). The higher condensed domains 

in the images are about 1.5 nm higher than the surrounding darker fluid regions. 
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Figure 7: AFM height difference section analysis and three dimensional view ofFbg 

film deposited on mica taken at a 'Y of 52 mN/m. The bright regions correspond to the 

higher topography and the darker areas correspond to the lower height regions. The peaks 

in the image are about 1.6 nm higher than the surrounding fluid phase. 
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In Figure 8 (a), the BLES condensed domains were observed as clear and distinct 

structures. Section analysis of these condensed domains showed that they are ~ 1.5 nm 

above the surrounding fluid phase. In BLES: Fbg (1:1, wt/wt) [Figure 8 (b)], the BLES 

domains (formed at a 'Y= 52 mN/m) were still intact and distinct with a slight reduction in 

height from 1.5 nm (as seen in BLES alone) to 1.1 nm. Other structures seen in the image 

as continuous stream of peaks (height of the peaks = ~ 1.2 nm) surrounding the BLES gel 

domains may be fibrinogen or its aggregates. 

The condensed domains were no more isolated in films ofBLES alone 

[Figure 8 (a)] and, conversely, seem to associate into the so called ribbon-like network of 

possibly the protein. The other observation from such films is that Fbg has no direct 

effect on the condensed BLES domains and, possibly, the protein is inserted in the fluid 

phase. These effects are seen in three-dimensional view as in Figure 8 (b) which shows 

that the ribbon-aggregate network of the protein is found only in the fluid (expanded) 

phase, although some of the aggregates seem to be in contact with the condensed 

domains. 

The films of BLES [Figure 9 (a)] and BLES with Fb g (1: 1, wt/wt) [Figure 9 

(b)] deposited on mica and taken at a 'Y= 42 mN/m, showed similar features as in the 

previous images. BLES gel domain was seen as adhering to the surrounding Fbg 

aggregates even at lower surface tension (high surface pressure). 
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Figure 8: AFM height difference section analysis and three dimensional view of 

deposited films on mica taken at a 'Y of 52 mN/m- (a) BLES; the condensed domains in 

the image are 1.3nm (red cursor), 1.9 nm (green cursor) and 1.3 nm (black cursor) higher 

than the surrounding darker area; (b) BLES: Fbg (1: 1, w/w); the condensed domain in 

the image is 1.1 nm (Red cursor) higher than the surrounding darker area. The peaks 

surrounding the domains are 1.4 nm (green cursor), and 1.4 nm (black cursor) higher than 

the surrounding darker area. 

48 



nm 

0 
o-
N 

0 
o_ 

N 
I I 

0 

2. 0 IJI!I 

I 
1.00 

(a) 

IJm 

49 

Section Analysis 

I 
2.00 

I 
3.00 



0 
o-

0 o_ 
N 

nm 

I I 

0 

(b) 

I 

1. 00 

50 

Section Analysis 

I 

2.00 



Figure 9: AFM height difference section analysis and three dimensional view of 

deposited films on mica taken at a -yof 42 mN/m- (a) BLES; the condensed domains in 

the image are 0.85 nm (Green cursor), 0.8nm (Red cursor), and 0.74 nm (Black cursor) 

higher than the surrounding darker area; (b) BLES: Fbg (1 : 1, w/w); the condensed 

domain in the image is 1.2 nm (red cursor) and 1.6 nm (green cursor), and 1.1 nm (black 

cursor) higher than the surrounding fluid (or darker) areas. 
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3.4 Differential Scanning Calorimetric studies 

Differential scanning calorimetric heating endotherms of multilamellar 

dispersions ofDPPC alone and with Fbg (1: 10, wt/wt) are shown in Figure 1 ~· Figure 10 

(a) illustrates the typical sharp phase transition ofDPPC at 41 °C in all the three cycles. 

With DPPC: Fbg at 1:10, wt/wt [Figure 10 (b)], the transition was slightly broadened. 

Moreover, moving from cycle 1 to cycle 3 [bottom to top in Figure 10 (b)], the main 

transition peak observed in cycle 2 and cycle 3 were split. A shift in second peak of the 

transition by ±1 °C was observed from that of pure DPPC at 41 °C. This result clearly 

shows that Fbg affects the gel-fluid phase transition ofDPPC by interacting with the 

bilayer to broaden the transition and splitting of peaks when compared to pure DPPC. 

Figure 11 shows the first scan of the heating-cooling endotherms for a pure BLES 

dispersion and dissolved pure Fbg over a temperature range of 10 °C to 70 °C. BLES 

showed a broad transition at 28 °C and the Fbg denaturation peak was observed at 50 °C. 

The three heating scans ofBLES were reproducible with all the scans showing a broad 

transition at 28 °C. This suggested that the gel to liquid-crystalline transition in BLES 

was reversible. However, the melting or denaturation peak of pure Fbg was not 

reversible as a flat line was obtained in scan 2 and 3 in DSC. 

Figure 12 shows the thermal melting behavior for BLES (a) and with various 

amounts ofFbg by weight added to the BLES dispersion. For all the DSC curves shown 

in Figure 12, three scans were obtained but only third scan is shown for clarity. The 

transitions from scan to scan (3 heating and cooling cycles) were reversible. BLES alone 

displayed a broad transition and a Tmax of27°C which shifted to higher values (34°C) 
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with increasing amounts ofFbg in BLES. With 1: 0.1 [Figure 12 (b)] and 1: 0.5 [Figure 

12 (c)] BLES: Fbg weight by weight, the phase transition was delayed only by 1 °C. On 

the other hand the Tmax was moyed from 27 °C to 34 °C with added Fbg (1: 1) [Figure 12 

(d)] and from 27 °C to 35 oc with 1: 1.4 [Figure 12 (e)]. This shift in Tmax ofBLES with 

increasing amounts ofFbg clearly shows that Fbg probably is interacting with BLES and 

allowing the lipids present in it to melt only at higher temperatures. Figure 13 clearly 

shows this shift in the T max· 
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Figure 10: DSC thermograms ofDPPC dispersion (a) and with fibrinogen at 

(1: 10, w/w) dispersion (b). Three-cycles ofheating and cooling were performed on 

these dispersions at a scan rate of 30°C/h. All the scans were normalized to kcal/mole of 

phospholipids with baseline correction (Keough and Kariel, 1997). The curves have been 

shifted upwards along the y-axis to display all three cycles in the same figure. The 

transition temperature for DPPC bilayer dispersion was seen at 41.5°C and two peaks 

were observed at 41.5°C and 42°C for dispersions with fibrinogen. 
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Figure 11: DSC thermograms (cycle 1 's) ofBLES dispersion and human fibrinogen are 

shown. Scans were performed at a scan rate of30.C/h. The transition temperature for 

BLES is seen at 28 ·c in the graph. The denaturation peaks ofFbg are noted at 50 ·c and 

53 ·c. 
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Figure 12: DSC melting profiles ofBLES: Fbg (wt/wt) dispersions- (a) 1: 0 (Tmax = 

27°C), (b) 1: 0.1 (Tmax = 28°C), (c) 1: 0.5 (Tmax = 28°C), (d) 1: 1 (Tmax = 34°C), (e) 1: 1.4 

(Tmax = 35°C). Scan rate was 30°C/hr and scans were normalized to kcaVmole ofBLES 

phospholipids with baseline correction. Three separate sets of experiments were 

performed for these BLES/Fbg mixtures with 3 individual scans per experiment, and scan 

3 of the endotherms is shown for clarity. 
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Figure 13: DSC melting profiles ofBLES: Fbg (wt/wt) dispersions- cycle 1 (Tmax = 

28°C) (a), cycle 2 (Tmax = 27°C) (b), and cycle 3 (Tmax = 27°C) (c) for 1:0 (wt/wt) and 

Cycle 1 (Tmax = 31 °C) (a1
), cycle 2 (Tmax = 33°C) (b1

), and cycle 3 (Tmax = 34°C) (c1
) for 

1:1 (wt/wt); Scan rate was 30°C/hr and scans were normalized to kcal/mole ofBLES 

phospholipids with baseline correction. Three separate sets of experiments were 

performed for these samples with 3 individual scans per experiment, and all the three 

scans are compared here. 
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3.5 Transmission Electron Microscopy 

Figure 14 shows the transmission electron micrograph (TEM) ofBLES dispersion 

(a) and BLES with Fbg (1: 1, w/w) (b). These dispersions were consistently used for all 

the DSC, Raman, FTIR, and monolayer studies and are representative of the bulk bilayer 

phase structures. With BLES alone, the dispersions appeared to be multi-lamellar and the 

vesicles appeared tightly packed. However, when Fbg was added, the vesicles had 

appearances in some cases that seemed to show more loosely packed lamellas. Further 

image analysis is required to confirm such appearances, as only 2-3 samples of this 

mixture were analyzed and only one representative image is shown. 

3.6 Fourier Transform Infrared Spectroscopic studies 

The structure of the phospholipid molecule (the backbone structure ofDPPC and 

BLES) with the major bond vibrations is shown in figure 15. The alterations in some of 

these vibrational stretches (CH2, CH3, P04-, etc) with the addition ofFbg were studied 

using Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. Figure 

16 shows the complete spectra (with the various vibrations) ofBLES taken using FTIR 

and Raman. 
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Figure 14: TEM of(a) BLES dispersion and (b) with fibrinogen (1: 1, w/w), where Fbg 

was added to the preformed BLES ML V dispersion. Samples were prepared and 

embedded according to materials and methods (Section 2.3.7), and they were positively 

stained with uranyl acetate and lead citrate. Scale bar applies to both images. 
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Figure 15: A typical Phospholipid molecule showing the various group vibrations in the 

acyl chains and in the headgroup region. A comparison of the band frequencies in the 

FTIR and Raman spectra ofBLES (having the basic phospholipid skeleton) is shown in 

Figure 16. 
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Figure 16: Complete spectra of27mg/ml BLES dispersion (a) FTIR (b) Raman. 

Corresponding peaks have been assigned in the figure. 

FTIR bands and their peak assignments for BLES dispersion [typical phospholipid bands 

have been assigned previously by others (Casal and Mantsch, 1984; Fringeli and 

Gunthard, 1981; Lee and Chapman, 1986)]. 

CH2 stretching, symmetric (vs) at 2852 cm"1 

CH2 stretching, asymmetric (vas) at 2922 cm·1 

CH3 stretching, symmetric (vs) at 2872 cm"1 

CH3 stretching, asymmetric (lias) at 2955 cm-1
. 

Symmetric phosphate stretch (v s P02") doublet 106611087 cm·1 

Asymmetric phosphate stretch (lias P02-) at 1224 cm-1 

Symmetric methyl bending mode (os CH3) at 1378 cm·1 

CH2 deformation mode of acyl chain at 1467 cm·1 

C=O stretching, esters at 1741 cm·1 
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Figure 16: Complete spectra of27mg/ml BLES dispersion (a) FTIR. (b) Raman. 

Corresponding peaks have been assigned in the figure. 

Raman bands and their peak assignments for BLES dispersion [phosphatidylcholine 

Raman bands have been assigned previously by others (Lippert and Peticolas, 1971; 

Spiker and Levin, 1975)]. Note the absence oflarge water peak at around 1600 cm-1 in 

the Raman (b) compared to FTIR. (a), which was subtracted. 

Symmetric phosphate and random (all-gauche) hydrocarbon stretch at 1091 cm-1
; 

Symmetric (Ps) and asymmetric (Pas) all-trans hydrocarbon stretch (C-C) at 1064 
and 1129 cm-1 respectively; 

Amide III (40% C-N stretch) and CH2 twisting mode at 1298 cm-1 

CHz scissoring mode of acyl chain at 1439 cm-1 

Amide I (80% C=O stretch) at 1658 cm-1 

CHz stretching, symmetric (Ps) at 2852 cm-1 

CH2 stretching, asymmetric (Pas) at 2886 cm-1 

CH3 stretching, symmetric (Ps) at 2937 cm-1
. 

70 



a 

0.25 C\1 
C\1 
Ol 
C\1 

2872 
0.20 V (C-OP) -Cl) 

(,) 
s:: 0.15 cu 
.0 
'-
0 
If) 
.0 0.10 ..-
cu '<I" - I'-

~ I'-·;;; <0 
s:: 0.05 '<I" 
Cl) -s:: -

0.00 

-0.05 
1000 1500 2000 2500 3000 

Wavenumber, em -1 

70000 C\1 
1.0 

b 
co 
C\1 

60000 

-
:I 

50000 
eli -
~ 40000 
·;;; Ol 
s:: co 

(') co 
Cl) Ol 

'<I" 1.0 - C\1 <0 
s:: 30000 

20000 

10000 
1000 1500 2000 2500 3000 

Wavenumber, cm·1 

71 



Figure 17 (a) shows how the FTIR spectra of the C-H stretching spectral region (2800-

3000cm-1
) particularly the symmetric (vs) and asymmetric (Pas) methylene/methyl 

stretching modes in BLES are influenced 'Yith various amounts by weight ofFbg in 

BLES. The symmetric methylene stretch in BLES which appears at 2850 cm-1 is 

broadened gradually with increasing weight ofFbg in BLES as shown in Figure 17 (a). 

This broadening can be seen clearly with BLES: Fbg (wt/wt) - 1: 0.5 (iii), 1: 1 (iv), and 

1: 1.4 (v). Also there seems to be no drastic shift in the wavenumber for symmetric 

methylene stretch (Ps CH2) with increasing amounts ofFbg. The same effect was 

observed even with the asymmetric methylene stretch (Pas CH2) in BLES which appears 

around 2920 cm-1
• The other prominent effect observed in this region is with the terminal 

methyl stretches. Both these modes i.e. the symmetric and asymmetric methyl stretches in 

BLES which appear at 2869 cm-1 and 2956 cm-1 respectively, was suppressed with 

increasing amounts ofFbg as shown by the decrease of intensity of these peaks in BLES. 

A similar study was also conducted using bovine serum albumin (BSA). BSA, 

like Fbg, was shown to broaden the symmetric methylene peak but did shift the peaks in 

wavenumber with increasing amounts of BSA in BLES [Figure 17 (b)]. At 1: 10 (BLES: 

BSA, wt/wt) (iv), the symmetric methyl (Ps CH3) peak intensity was found to be higher 

than the symmetric methylene peak (Ps CH2). This effect was, however, not seen with low 

amounts ofBSA. An unusual effect observed was that the asymmetric methylene (Pas 

CH2) peak appearing in BLES (i) at 2920 cm-1 was shifted to 2930 cm-1 with BLES: BSA 

(1: 10, wt/wt) dispersion (iv). Also, the asymmetric methyl (Pas CH3) peak intensity was 

found to increase to an equal extent in intensity to that of the asymmetric methylene peak 
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Figure 17: FTIR. spectra of the C-H stretching spectral region (2800- 3000cm-1
) 

showing the Symmetric (vs) and Asymmetric (Pas) methylene/methyl stretches in 

(a) dispersions ofBLES: Fbg (wt/wt)- (i) 1:0 (ii) 1: 0.25 (iii) 1: 0.5 (iv) 1: 1 and 

(v) 1: 1.4 and (b) dispersions ofBLES: BSA (wt/wt)- (i) 1:0 (ii) 1: 0.5 (iii) 1: 1 and 

(iv) 1: 10. Due to low solubility ofFbg in water, a 1: 10 (BLES: Fbg, wt/wt) mixture 

could not be prepared [as signals from lower amount of BLES ( < 6 mg/ml) is not 

significantly observed or feasible for FTIR.]. 
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(Vas CH2). Again this increase in intensity of Vas CH3 was not even close to the Vas CHz at 

lower amounts of BSA in BLES [Figure 17 (b)]. 

The phosphate ~oup vibrations have the most characteristic stretching in the 

phospholipid headgroup (polar) region of hydrated DPPC bilayers as noted by Arrondo et 

al (1984). The effect on these phosphate bond stretches ofBLES with various amounts of 

Fbg has been studied in this work [Figure 18 (a)]. The asymmetric phosphate stretching 

mode (Vas P02) appeared around 1224 cm-1 in BLES (i), and this shifted to a lower 

wavenumber of 1219 cm-1 with BLES : Fbg (1: 1.4, wt/wt) dispersion (v). The symmetric 

phosphate stretching doublet which appeared in BLES around 1087 cm-1 and 1070 cm-1 

were also moved to lower wavenumbers at 1082 cm-1 and 1051 cm-1 respectively. The 

other prominent effect observed in this polar region was a greater shift towards higher 

wavenumbers of the methyl symmetric deformation mode around 1373 cm-1 ofBLES (i) 

to 1397 cm-1 in BLES: Fbg (1: 1.4, wt/wt) (v). 

The change of phosphate vibrations ofBLES was also studied with bovine serum 

albumin (BSA) [Figure 18 (b)]. Unlike Fbg, albumin shifted the asymmetric phosphate 

stretching in BLES appearing at 1222 cm-1 (i) to 1243 cm-1 (iv) with 1: 10 (BLES: BSA, 

wt/wt). This effect was also seen with BLES : BSA (1: 1, wt/wt) as shown in (iii). Similar 

to Fbg, the symmetric phosphate stretching doublet which appeared in BLES around 

1088 cm-1 and 1064 cm-1 was shifted to lowerwavenumbers, 1080 cm-1 and 1047 cm-1 

with BLES : BSA (1: 10, wt/wt) (iv). Also, the methyl symmetric deformation mode 

around 1377 cm-1 in BLES (i) was shifted to 1399 cm-1 with BLES: BSA (1: 10, wt/wt) 

(iv). 
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Figure 18: FTIR. spectra ofthe polar (P02- stretching) region (1000 -1500cm-1
) showing 

the Symmetric (v s) and Asymmetric (vas) phosphate stretches in (a) dispersions of 

BLES: Fbg (wt/wt)- (i) 1:0 (ii) 1: 0.25 (iii) 1:0.5 (iv) 1: 1 and (v) 1: 1.4 and 

(b) dispersions ofBLES : BSA (wt/wt)- (i) 1:0 (ii) 1: 0.5 (iii) 1: 1 and (iv) 1: 10 

Vibrational modes and their peak assignments as observed in BLES dispersion [typical 

phospholipid bands have been assigned previously by others (Casal and Mantsch, 1984; 

Fringeli and Gunthard, 1981; Lee and Chapman, 1986)] 

Symmetric phosphate stretch (v s P02) doublet at 1070/1087 cm-1 

Asymetric phosphate stretch (vas POz-) at 1224 cm-1 

Symmetric methyl bending mode (os CH3) at 1373 cm-1 

CH2 deformation mode of acyl chain at 1466 cm-1 

Symmetric all-trans backbone hydrocarbon stretch (vs C-C) at~ 1124 cm-1 

Random all-gauche backbone hydrocarbon stretch at ~ 1087 cm-1
• 
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3. 7 Raman Spectroscopy of BLES with Fibrinogen 

The Raman scattering technique is a vibrational molecular spectroscopy which 

derives from an inelastic light scattering process. With Ram~ spectroscopy, a laser 

photon is scattered by a sample molecule and loses (or gains) energy during the process. 

The amount of energy lost is seen as a change in energy (frequency in wavenumbers) of 

the irradiating photon. This energy change is characteristic for a particular bond in the 

molecule. It is a technique which can be used for the analysis of solids, liquids and 

solutions and can even provide information on physical characteristics such as crystalline 

phase and orientation, polymorphic forms, and intrinsic stress. It has an added advantage 

over FTIR as water is Raman inactive in the region of interest (2800- 3100 cm-1
) and 

biological samples can be studied with ease. 

The C-H stretching bands in the 2800- 3100 cm-1 region have been chosen as one 

of the regions of interest as the CH2 symmetric stretching and asymmetric stretching 

modes in Raman at 2850 cm-1 and 2890 cm-1
, respectively, are generally the strongest 

bands in the spectra oflipids. The frequencies of these bands are conformation-sensitive 

and also respond to changes of the trans/gauche ratio in acyl chains. 

This is also the case, although to a lesser extent, for the vibrational frequency 

changes due to the terminal CH3 groups found at 2930 cm-1 (symmetric stretch) and 2960 

cm-1 (asymmetric stretch). 

The C-C stretching of the acyl chain backbone which exists either in all-trans or 

all-gauche form is the second marker used in our study. Typically, the lipid Raman peaks 

at approximately 1064 cm-1 and approximately 1128 cm-1 respectively have been 
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assigned to the hydrocarbon backbone symmetric and asymmetric all-trans C-C 

stretching vibrations. The random C-C stretch (all-gauche) appears at around 1089 cm·1 

(Lippert and Peticolas, 1971; Spiker and Levin, 1975). 

The R~an spectra ofBLES in the 2800-3100 cm·1 region at different 

temperatures are shown in Figure 19a. Raman peaks in this region have been assigned 

previously by others for saturated phosphatidylcholine (Spiker and Levin, 1975). The 

2850 cm·1 for the symmetric CH2 stretch (vs CH2); 2890 cm·1 for the asymmetric CHz 

stretch (lias CH2); approx. 2930 cm·1 for the symmetric CH3 stretch (vs CH3), and approx. 

2960 cm·1 for the asymmetric CH3 stretch (Vas CH3) and are shown in Figure 19a for 

BLES. 

A broadening of the asymmetric CH2 (vas CH2) stretch with increase in 

temperature from 25°C (iv) to 45°C (vii) and a narrowing in the peak with decrease in 

temperature from 25°C (iv) to 13.7°C (i) was observed with BLES (Figure 19a). 

Apart from this broadening, the Vas CH2 peak appearing at 2886 cm·1 at 25°C, as seen in 

(iv) is shifted to higher wavenumbers with increase in temperature to 2900 cm·1 at 40°C 

as in (vi) and to 2901 at 45°C as in (vii). The peak intensity of the Vas CHz stretch which 

was lesser than the Vs CH2 peak at 25°C, increased with a drop in temperature, and was of 

higher intensity than the Vs CH2 peak at 13.7°C (Figure 19a). The other effect observed as 

shown in Figure 19a was that the intensity of the Vs CH3 peak (appearing at 2937 cm-1
) 

which was less than the Vas CHz peak (2886 cm-1
) at 25°C increased in intensity with 

increase in the temperature and was commensurate with it at 45°C (vii). All the above 

effects observed in Raman spectra of dispersions ofBLES (Figure 19a) show that the 
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acyl chains underwent a conformational change and that an increase in the hydrocarbon 

chain fluidity (increase in gauche conformers) occurred around 25-30 °C or at the Tmax 

observed using DSC. 

A broadening of the Pas CH2 stretch with an increase in temperature from 25°C 

(iv) to 45°C (vii) and a narrowing in the peak with a drop in temperature from 25°C (iv) 

to 10°C (i) was noticed with BLES: Fbg (1 :1, wt/wt) dispersion (Figure 19b). Again, 

apart from this broadening, the Pas CH2 peak appearing at 2888 cm-1 at 25°C, as seen in 

(iv) is shifted to higher wavenumber with increase in temperature to 2895 cm-1 at 45°C as 

in (vii). The peak intensity ofthe Pas CH2 stretch which was equal to the Ps CH2peak at 

25°C (iv), started increasing with a drop in temperature, and was higher than the Ps CH2 

peak at 10°C (Figure 19b). This effect was similar to that ofBLES in Figure 19a. The 

peak intensity of the Ps CH2 stretch which was less than the Ps CH3 peak at 25°C (iv), was 

greater in intensity at 45°C (vii) (figure 19b). 
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Figure 19: Raman spectra ofthe 2800-3100 cm-1 region of(a) BLES at (i)l3.7°C, (ii) 

15°C, (iii) 20°C, (iv) 25°C, (v) 30°C, (vi) 40°C, (vii) 45°C and (b) BLES: Fbg ( 1: 1, 

wt/wt) at the same temperatures. 
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From the general distribution and intensity of the peaks in BLES and the ones with Fbg, 

it is clear that the protein did not affect the gel or the fluid phase ofBLES significantly. 

However, previous studies have shown (Cameron et al, 1981; Mendelsohn and Mantsch, 

1986) that by accurately plotting the shift of the lis CH2 peak as a function of temperature, 

small conformational changes may be observed. 

In Figure 20, using such a method of plotting, the effect ofFbg on BLES is 

clearly shown. The frequency of the P5CH2 stretching mode of the acyl chains near 2850 

cm-1 is plotted as a function of temperature for three such independent experiments, and 

the average points are plotted. The thermotropic behavior ofBLES monitored through 

temperature induced alterations in the frequency of PsCH2 stretching bands of the lipid 

acyl chains near 2850 cm-1 is shown by the open circles in figure 20. A broad phase 

transition between 10-35°C with an onset temperature of l5°C and a completion 

temperature of about 35°C is observed. The midpoint of the transition is around 27°C 

which is close to the T max obtained by DSC. When Fbg was added to BLES at 1:1 

(wt/wt), the CH2 frequency was decreased by 1 cm-1 for all the temperatures (as shown by 

triangles in Figure 20) with no change in the onset and completion temperatures. 

The Raman spectra ofBLES at various temperatures in the 1000-1200 cm-1 region are 

shown in Figure 21 (a). A continuous decrease in the intensity of the Raman bands at 

1062 cm-1 and 1128 cm-1 that are due to a vibration of the extended all-trans structure is 

observed as the temperature is increased from 1 0°C to 45°C. At the same time an 

increase in the intensity of the 1091 cm-1 band assigned to random lipid configuration 

(all-gauche) is observed. An abrupt rise in the intensity ofthe 1091 cm-1 band assigned to 
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random liquid like configuration and a corresponding decrease in the Raman bands at 

1062 cm·1 and 1128 cm·1 (as reflected in the l1091/lto62 ratio) is observed in Figure 18 

(c) at 30°C and 35°C. These changes correspond to the gel.:. liquid crystalline phase 
,· ' 

transitions taking place in BLES and that these transitions involve a change in the C-C or 

carbon skeletal backbone of the phospholipid acyl chains ofBLES from all-trans to a 

more trans-gauche conformation. Figure 21 (b) shows the effect ofFbg on BLES (1:1, 

wt/wt) Raman bands in the 1000-1200 cm·1 region at various temperatures. A similar 

effect as seen in Figure 21 (a) was observed. The lto9tllto62 ratio was similar to that of 

BLES alone [Figure 21 (c)]. 
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Figure 20: A comparison between thermotropic behaviors of vibrational shift of Raman 

frequency for (a) BLES from 1 0°C to 50°C (open circles) and (b) BLES with Fbg ( 1: 1, 

w/w) (triangles), in the same temperature range. The parameter monitored is the 

frequency ofthe CHz symmetric stretching mode (vs CH2) ofthe acyl chains near 2850 

cm·1. For samples with Fbg the lower frequencies are observed for all temperatures 

except at 50°C. Lower wavenumbers are indicative of higher number of trans bonds or 

condensations (Mendelsohn and Mantsch, 1986). 
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Figure 21: Raman spectra of the 1000-1200 cm-1 region of(a) BLES at (i)10°C, (ii) 

15°C, (iii) 25°C, (iv) 40°C, (v) 45°C and (b) BLES: Fbg ( 1: 1, wt/wt) at the same 

temperatures; (c) Changes with temperature in the ratio ofRaman peak intensities 

(11091/11062). BLES (Open circles) and BLES: Fbg (1: 1, w/w) (Triangles). The intensity 

ratios at each temperature are an average ofn=3, with standard deviation shown by error 

bars. 
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At 25°C (Figure 22-panel A), Fbg: BLES (wt/wt) at both 1:1 (b) and 10:1 (c) caused the 

lipid CH2 band at 2886 cm·1 in BLES to broaden and at the same time, the lipid terminal 

methyl band (at 2937 cm-1
) intensity was increased indicating that Fbg interacts with 

BLES lipids and changes their conformation. This effect was also observed at 40°C 

where the lipid chains are in random configuration, Figure 22 (panel B). Due to 

limitations offibrinogen solubility in water, only one set ofhigh amounts ofFbg: BLES 

mixture was attempted in the Raman study. We assume the concentration ofBLES: Fbg 

is 1: 10, however, the concentration was definitely higher than that of 1: 1.4 as used in 

most studies. This study was conducted mainly to follow up other studies done at high 

concentrations of albumin, however the solubility of albumin in water was very high as 

seen in the FTIR experiments. 

The gel conformation ofBLES (a) at 15°C (Figure 22-panel C) can be 

rationalized by the following arguments. First, the Vas CHz stretch is falling at a lower 

wavenumber (2884 cm-1
) compared to the Vas CH2 stretch ofBLES appearing at 2900 cm-

1 at 40°C when the lipids in BLES are in fluid conformation (Figure 22-panel B). 

Second, the Vs CH3 peak intensity (near 2936 cm-1) relative to the Vas CH2 peak intensity 

(near 2884 cm-1
) is lower when compared to BLES at 40°C and 25°C, suggesting that the 

acyl chains ofBLES are in gel-state or more all trans conformations. The ratio of 

intensity changes of the symmetric methyl vibration with respect to the asymmetric C-H 

band is indicative of random-fluid configuration of acyl chains as demonstrated 

previously by Larsson and Rand (1973) by conducting studies employing Raman 

spectroscopy. Interestingly, when the temperature was lowered to 15°C (Figure 22-panel 
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C), Fbg at both 1:1 (b) and 10:1 (c) by weight in BLES, caused the lipid C-H band at 

2884 cm-1 in BLES (a) to broaden and at the same time, the lipid terminal methyl band (at 

2936 cm-1
) intensity increased relative to the lias CH2 band. This shows that ~bg is 

somehow interacting with BLES and changing its conformation even when the lipids in 

BLES are in gel states or tightly packed. The symmetric methyl vibrations relative to the 

lias CHz band as a function of temperature for BLES dispersion and with fibrinogen (1 :1, 

wt/wt) in BLES is shown in Figure 23. 
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Figure 22: Raman spectra ofthe 2800-3100 cm-1 region ofBLES: Fbg (wt/wt) 

dispersions, (a) 1: 0; (b) 1:1 and (c) 1: 10 showed at 25°C (panel A); 40°C (panel B); 

15°C (panel C). 
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Figure 23: Changes with temperature in the ratio of Raman peak intensities (I2937/I2ss6). 

(a) BLES (Open circles) and (b) BLES: Fbg (1: 1, w/w) (Triangles). The intensity ratios 

at each temperature are an average ofn=3, with standard deviation shown by error bars. 

96 



1.10 

1.05 .& + 

f .& cp ® <0 co 1.00 f co 
N + - cp 
I'-
(Y') 
0') 

0.95 N 

cD 
0.90 cp 

0.85 +------.----,----.--.------.----r-----.--.-----, 

5 1 0 15 20 25 30 35 40 45 50 

Temperature (°C) 

97 



Chapter-4 

DISCUSSION 

A number of previous studies on surfactant inhibition by serum proteins, and the 

possible mechanisms involved in such inhibitions have been performed in vitro 

(Enhoming, 1977; reviewed by Griese, 1999; Holm et al., 1999; reviewed by Holm, 

1992; Holm et al., 1988; Keough et al., 1989; Panda et al., 2004;). Also, some of these 

studies have looked at the effects of changes such as ions, pH, and temperature fluxes, as 

well as serum protein on the function and inhibition of various surfactant preparations 

(reviewed by Holm, 1992). Many serum proteins have been studied such as albumin, 

Fbg, C-reactive protein (CRP), and globulin, among others, and all have been shown to 

inhibit LS function, by preventing the reduction of 'Y (mN/m) in the lipid-protein films to 

near 0 m.N/m (Amirkhanian and Taeusch, 1993; Casals et al., 1998; Fuchimukai et al., 

1987; Holm, 1992; Holm et al., 1988; Keough et al., 1989; Liu and Chang, 2002; 

McEachren and Keough, 1995; Nag et al., 2004c). These studies have shown that LS 

films could reduce 'Y only to 25-30 mN/m in the presence of serum protein, and 

adsorption to the equilibrium 'Y values of 20 mN/m was increased to 45 mN/m. However 

the concentrations of the proteins tested have been quite varied and in most cases non

physiological or non-pathological, and various different surfactant preparations have been 

used (Reviewed by Holm, 1992). 

In a recent study, Panda et al. (2004) examined large aggregate LS from normal, 

ventilated, and hyper-ventilated injured lungs ofrats, and had noticed a 3 fold increase in 
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the amounts of soluble (serum) protein associated with surfactant in the injured lungs 

compared with normal. The soluble proteins were approximately 280 ~Lg/lung pair in 

normal lungs versus 830 /Lg/lung pair in injured lungs, whereas the total LS phospholipid 

levels were similar in both. This means that the lipid:protein ratio of 3: 1 in normal lungs 

had decreased to 1:1 in injured lungs, showing a possibility that serum protein inhibitions 

can occur at much lower values. The LS extracted from such lungs was completely 

dysfunctional. However, most previous studies had not examined such small ratios when 

testing inhibition in the laboratory. Studies on Fbg, albumin and on other serum proteins 

have been done using extremely high concentrations of protein, such as 1 : 5 (surfactant 

lipid: protein, wt/wt) (Enhorning et al., 2000), and others with 1:10, 1:15, and 1:20 

lipid:protein ratios (Holm, 1992; Notter, 2000; Otsubo and Takei, 2002). These have 

shown LS inhibition in varying degrees. However, some studies have tested lower 

concentrations of proteins similar to the physiological concentrations (Amirkhanian and 

Taeusch, 1993; Casals et al., 1998; Liu and Chang, 2002). They have found that Fbg and 

CRP have a much greater inhibitory effect than albumin (Enhoming et al., 2000, Nag et 

al., 2004c ). Also, in one such study it was suggested that there may be specific protein

ligand interactions such as CRP with PC headgroups (McEachren and Keough, 1995; 

Nag et al., 2004c). However all these studies are difficult to compare considering the 

varying amounts of proteins used, composition of surfactant, and the fact that only a 

single type of surface tension measurement was performed (reviewed by Holm, 1992). 

As well, these studies used different types of model lipid- protein (different levels ofSP

B/C) surfactants and very different surface-activity techniques such as the capillary 
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surfactometer, which measures the upper respiratory air-flow (Enhorning et al., 2000). 

Also, such studies did not examine the effect of the proteins in the bulk-phase and were 

limited to the surface activity of mono layers. Our study attempted to determine the 

interaction ofLS with Fbg at physiological concentrations as well as higher 

concentrations, in a monolayer and bilayer system of a defined extracted bovine lung 

surfactant (BLES), and some general interactions could be noted at 1:1 (BLES: Fbg) 

levels. 

Different but complementary techniques used in this project, such as Langmuir

Blodgett dynamic compression-expansion, adsorption, and AFM to study the interaction 

ofFbg with BLES in monolayers, and DSC, Raman, FTIR and TEM with BLES in bulk

phase yielded correlated information at the molecular level of these systems. Through 

these complementary studies, we can suggest possible molecular mechanisms of the 

different ways that Fbg may interact with LS lipids. In this study, interactions were 

examined with a focus only on the lipid components ofbovine surfactant, however, the 

presence of SP-B/SP-C in BLES could have also mediated such interactions. 

4.1. Film adsorption and Isotherm studies 

Monolayer studies have been conducted to qualitatively comprehend the 

inhibition of surface activity ofBLES by Fbg, to come up with a tentative mechanism for 

inhibition of the surface activity ofBLES related to structure and phase transitions of the 

lipids at an air-water interface. Adsorption ofBLES and BLES+Fbg mixtures (Figure 3) 

to the air-buffer interface showed that both, BLES and BLES+Fbg mixtures adsorbed to 
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the interface quite similarly initially. In 120 seconds, BLES reached a surface tension of 

around 30 mN/m (which is close to the equilibrium surface tension of25 mN/m) whereas 

BLES+Fbg mixtures achieved a surface tension o~ approximately 50 mN/m. Although 

the standard deviation of the data for adsorption does not show any significant 

differences between the various BLES: Fbg mixtures used, a general inhibitory trend at 

600 seconds between BLES and the mixtures to achieve )'equilibrium could be observed. 

These mixtures did not show any further lowering of surface tension even after 120 

seconds. This clearly shows that the final adsorption ofBLES to the surface to reach 

equilibrium -yof ~ 30 mN/m is impaired in all BLES+Fbg mixtures. This could probably 

happen by Fbg occupying part of the surface by competing with the adsorption ofBLES 

molecules to the surface and thereby preventing the surface tension reduction ability of 

the adsorbed BLES to form a compact monolayer. A similar trend of adsorption 

inhibition was observed in previous studies with other serum proteins (Fuchimukai et a!., 

1987; Holm et al., 1988; Holm et al., 1987; Holm et al., 1985a; Keough et al., 1989; 

McEachren and Keough, 1995; Wang and Notter, 1998). In a number of these studies 

inhibition of adsorption was somewhat similar to the ones observed here and an 

equilibrium surface tension (-y= ~ 25 mN/m) was never reached under high serum protein 

concentration. 

Wang and Notter (1998) and Holm et al. (1988) studied CLSE obtained from 

excised lungs. CLSE varies in composition from BLES in that it contains all the neutral 

lipid components of natural LS, whereas BLES has the neutral lipids removed, however 

adsorption to -yof around 25 mN/m are similar for BLES and CLSE in 120 seconds. 
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Other studies were done with different soluble proteins, which are known to exhibit 

varied levels of inhibitory effects on LS (Fuchimukai et al., 1987). Although different 

techniques such as the pulsating bubble surfactometer, and an adsorption apparatus were 

used in those studies, there seems to be a general trend in that adsorption was inhibited in 

all those studies as also reported here. However our studies on adsorption did not show 

any significant effect due to the change of concentration of (see error bars in Figure3) 

Fbg from 1:0.5 to 1:1 (BLES: Fbg). This is possible either due to lack of sensitivity of the 

adsorption apparatus, or some mechanisms may be at play which do not discriminate 

between low and high amounts of proteins. 

Compression-expansion experiments were carried out in a Langmuir- Wilhelmy 

surface balance. The dimensions of the Teflon trough gave a surface area of 

approximately 500 cm2
, which is used as 100% of monolayer area in the isotherms. 

Surface tension as a function of pool area was used in all studies, as accurate 

area/molecule information can not be calculated for adsorbed films (Panda et al, 2004). 

Surface tension is measured by a roughened Wilhelmy platinum dipping plate hung on a 

force transducer (Nag et al., 1990). A motorized Teflon barrier operated by a FWD-RVS 

(forward-reverse) switch located on the instrument was used to compress and expand the 

monolayer. 

Initially, NaCl-Trizma.HCl buffer, pH 7 was used to fill the teflon trough as the 

subphase representing an air-water interface and having a surface tension of around 

72mN/m. Bovine lipid extract surfactant dispersed in buffer containing either no Fbg 

(control) or varying weight percentages ofFbg were adsorbed using a Hamilton syringe 
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at various points below the air-water interface on the subphase as previously done by 

others (Nag et al, 1998; Panda et al, 2004). One hour was allowed for equilibration of the 

films. After equilibration, the compression and expansion of the film~ was initiated by 

movement ofbarrier and the isotherms were obtained at an ambient temperature of 

23±1 °C. By compressing and expanding the monolayer, the transition of the surfactant 

from fluid to condensed (gel-like) phase was initiated and monitored by the isotherm in 

our studies as previously performed on porcine LS extract (Nag et al., 1998) and rat LS 

(Panda et al, 2004). 

Compression-expansion isotherms of adsorbed monolayer films ofBLES and 

BLES: Fbg (1:1, w/w) are shown in Figure 4. BLES achieved a minimum surface tension 

of around 1 rn.N/m as in typical lung surfactant, whereas with Fbg in BLES, the surface 

tension ofBLES minimized at 27 rn.N/m. This suggests that Fbg does not allow the lipids 

in LS films to reach low surface tension. Normally, when LS monolayer is compressed, 

the fluid lipids in the films are presumed to be squeezed out and the gel lipids, being able 

to pack tightly upon compression, attribute to the achieving oflower surface tension 

values, close to zero (Goerke, 1998). Fbg probably, is either directly or indirectly 

interacting with these gel lipids and altering their packing in reaching low 'Y· 

However, since the AFM images (Figures 8 and 9) did not show major disruption 

of gel domains, another mechanism is possible. It is possible that Fbg occupying space at 

the interface prevents the BLES gel lipids occupying this space in the monolayer to be 

compressed and reach low surface tension. This incompressibility of the BLES 

monolayer in the presence ofFbg (at various amounts by weight in BLES) is seen as an 
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increase of the pool area required [Figure 5 (a)] for a 15 mN/m drop of-y. Also, the 

difficulty in compressing the BLES films with an increase in the amount ofFbg in such 

films suggests that Fb~ may be occupying the space with BLES molecules for the space 

at the surface and that this competition is proportionally enhanced with increasing Fbg. 

As in the case of pure Fbg films [Figure 5 (b)], the area compressibility ofthe protein is 

seen to be minimal, and in such films -yminimizes at 30 mN/m even at maximal 

compression [Figure 5 (b)]. This suggests that if fibrinogen occupies a large area in the 

BLES films, these films would behave more like the pure protein system rather than 

those of the surfactant or BLES lipids. A related possibility is that ifFbg binds the gel 

phase lipids ofBLES in the bulk phase, the monolayer films formed from such 

aggregated material may not be able to reduce 'Y as efficiently. 

4.2. Atomic Force Microscopic studies 

Atomic force microscopy is emerging as a promising tool for investigating the 

topography or structures ofbiological samples (Baro et al, 1985). It has been previously 

used to study various model lung surfactants (Flanders and Dunn, 2002; Nag et al, 2002; 

Nag et al, 1999a; Von Nahmen et al, 1997; Panaiotov et al, 1996). Our lab is the first to 

apply AFM of surfactant to study interactions of serum proteins such as albumin 

(Vidyasankar, 2004), as well as this study of interaction ofFbg with LS. To the best of 

our knowledge, only a single study has employed AFM to image structures in 

dysfunctional LS film (Panda et al, 2004). At a surface tension of 52 mN/m and 42 

mN/m, in BLES: Fbg (1:1, wt/wt) films [Figures 8 (b) and 9 (b)], Fbg was seen to be 
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inserted in the lipids in fluid phase while also somewhat aggregating the gel domains. 

Firstly, this shows that Fbg interacts with the lipids ofBLES and allows us to interpret 

the surface balance and adsorption data structurally. In our surface balance studies, BLES 

monolayer reached a surface tension of~ 1 mN/m, whereas in the presence ofFbg at all 

the amounts studied, the surface tension did not reach such low values [Figures 4 (b) and 

5 (a)]. This was also true from our adsorption experiments (Figure 3) that BLES alone 

adsorbed to a minimum "{of30 mN/m (near the equilibrium "{of25 mN/m), whereas in 

mixtures with Fbg, a decrease in the magnitude of the drop in "{in the same time period 

was observed. Pure Fbg adsorbed to a"{ofabout 50 mN/m and BLES: Fbg (1: 10, wt/wt) 

showed the least drop in"{, with a final 'Y of approximately 55 mN/m (Figure 3). This was 

significantly higher than the equilibrium 'Y of 30 mN/m for BLES alone. The AFM 

images of the BLES: Fbg (1 :1, wt/wt) were similar to those ofFbg alone, suggesting that 

Fbg not only penetrates the fluid phase of the films, but a higher concentration abolishes 

any remnants of gel phase. It is possible that such films are mostly made ofFbg (smooth 

AFM features) alone. 

Secondly, the Fbg is seen to induce two sets of domains, one with the gel lipids 

and the other with fluid lipids in AFM. This could probably explain the broadening and 

splitting ofthe DPPC peak appearing at 41 °C [Figure 10 (a) and 10 (b)] in the presence 

ofFbg in our DSC study. Fbg interacts with a certain number ofDPPC molecules and 

these Fbg-DPPC complexes require melting at a slightly higher temperature. However, 

while the DSC ofBLES with Fbg did not show any major peaks, the main transition peak 

(Tmax) was shifted to slightly higher temperatures (Figure 12). In the case ofBLES 
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(unlike DPPC) Fbg probably has a cumulative effect on its overall transition or interacts 

with the gel and fluid lipids additively in BLES. This interaction can be seen in the AFM 

images where Fbg occupied the fluid phase but aggregated the condensed-gel domains 

[Figure 6 (c) and 8 (b)]. Such aggregates may be difficult to compress to obtain low y of 

the films. 

4.3. Differential scanning calorimetric studies 

The effect of proteins on the enthalpy change and Tmax of the transition has been 

used previously to characterize the interaction of proteins with the lipid bilayer 

(Papahadjopoulous et al., 1975). Thermotropic behavior ofDPPC vesicles reconstituted 

with the glycoprotein of stomatitis virus has been studied by Petri et al (1980). Alteration 

of the thermod~amic properties of the phospholipid bilayer by surfactant proteins, SP-B 

and SP-C have also been studied using DSC (Shiffer et al, 1993). In the present study, 

Fbg added to the preformed vesicular dispersion ofDPPC had some effect on the gel

liquid-crystalline phase transition. DPPC vesicles in the absence ofFbg underwent a 

sharp phase transition at 41 °C [Figure 10 (a)]. With the addition ofFbg at various 

amounts by weight to preformed DPPC vesicles, a slight broadening in the typical sharp 

transition occurring in DPPC and splitting of the peak into two peaks with the daughter 

peak appearing at a slightly higher temperature was observed. This effect was more 

pronounced in DPPC: Fbg (1: 10, wt/wt), and is shown in Figure 10 (b). The split in the 

transition peaks ofDPPC by Fbg may be due to its aggregation of certain fraction of 

DPPC molecules in the outer layers of multilamellar vesicles which melt at high 
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temperature. The other population ofDPPC was probably the ones not in contact with 

Fbg in the inner layers of the ML V' s, which melts at the usual phase transition of DPPC. 

This assumption is based on the fact that Fbg was added to the ML V dispersions after the 

preparation of the vesicles were complete, as appropriate to those events in the lung, 

where lamellar bodies come in contact with serum materials only in the outside bilayer. 

From this observation, one can speculate that Fbg has a slight chain ordering effect by 

aggregating a certain fraction ofDPPC molecules. Shiffer et al (1993) observed a 

broadening ofthe DPPC gel to liquid-crystalline phase transition in DSC and a shift in 

the peak transition temperature to a higher value in the presence of surfactant proteins 

SP-B and SP-C and concluded that both the proteins formed at least two different lipid 

phases. Petri et al (1980) have studied the thermotropic behavior ofDPPC vesicles 

reconstituted with a glycoprotein and explained the broadening in the gel to liquid

crystalline phase transition because of the protein altering the interaction energies 

between lipids required for melting. However, our studies show instead of broadening of 

the transition, Fbg acts as a condenser or induces two sets of domains in BLES and DPPC 

bilayers. Others have, however, seen condensation of acidic phospholipid bilayers by 

positively charged proteins using DSC (Papahadjopoulous et al., 1975). 

The results of the DSC studies reported in this work i.e. influence ofFbg on 

BLES dispersion had a similar outcome as that noted above for DPPC vesicles. As noted 

in Figure 12, the broad gel to liquid-crystalline phase transition which appeared in BLES 

at 27°C had shifted to higher temperatures with fibrinogen. This shift was more 

pronounced at 1:1 and 1: 1.4 ofBLES: Fbg (wt/wt). This delay in the gel-liquid 
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crystalline phase transition occurring in BLES with Fbg clearly indicates that Fbg 

interacts and hence condenses the lipids in BLES. It is not possible to conclude from our 

results whether fibrinogen binds to any specific lipid or non~specifically to various lipids 

in BLES. However, since the main transition as a whole was being affected, the 

interaction with the major lipid DPPC is not being ruled out. Fbg bears a negative charge 

at pH 7 (Mihalyi, 1950) and may interact via electrostatic interactions with the positively 

charged SP-B and SP-C proteins, which may further condense the films. 

4.4. Transmission Electron Microscopy 

Experiments undertaken in this work were designed to observe the effect ofFbg 

on the multilamellar vesicles ofBLES using TEM. BLES vesicles appeared concentric 

and tightly packed. When Fbg was added to BLES (1: 1 wt/wt), the vesicles appeared 

slightly distorted with loosely packed lamellae. This may suggest that Fbg somehow 

disrupts the tight inter-bilayer compact packing ofBLES multilamellar vesicles (Figure 

14). 

There have been previous studies done on electron micrographs ofBLES, 

however only one study has looked at the effect of a serum protein (CRP) on BLES using 

this technique (Nag et al., 2004c). In that study no significant changes in the MLV's 

with serum protein was noted by these authors (Nag et al., 2004c). Thus TEM may not be 

a sensitive technique by which to judge LS/serum protein interaction, but can be used for 

general information on the status ofthe MLV dispersions used in our study. In the 

diseased and dysfunctional lung, such structures as defmed ML V and TM are diminished. 
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It appears that the serum proteins may disrupt the organization of LS bilayers in lamellar 

bodies, or even possibly the secretory form ofLB in vivo during disease (Fig. 14). This, 

in tum, may not allow such vesicles to undergo a transformation to TJYI, or the most 

surface active form, as suggested by others (Larsson et al., 2003). 

4.5. Fourier Transform Infrared Spectroscopic (FTIR) studies 

Fourier transform infrared spectroscopy is a valuable and emerging technique in 

probing the lipid-protein interaction at molecular level. This technique, apart from having 

the advantage of requiring microgram quantities of material, has the potential to measure 

the lipid acyl chain configuration and phospholipid head group interactions without the 

use of any probe molecules which could disturb the physico-chemical properties of the 

system. In the FTIR studies, the peak intensities and the wavenumber shifts of various 

bands in BLES alone and BLES + Fbg/bovine serum albumin were monitored. The 

regions of interest were mainly the asymmetric and symmetric bands in the C-H 

stretching region (2800-3000 cm-1
) and the asymmetric and symmetric phosphate bands 

appearing at 1224 cm-1 and 1087 cm-1 respectively of the headgroup region (1000-1500 

cm-1). 

Fbg at the selected amounts by weight in BLES tested (1: 0.5, 1: 1, and 1: 1.4) 

slightly broadened the symmetric (2850 cm-1
) and asymmetric (2920 cm-1

) peaks with no 

major shift in the frequency of these vibrations. The symmetric and asymmetric terminal 

methyl vibrations in BLES became more intense when the acyl chains are in a fluidized 

state. The observations reported in the results section demonstrate that the intensity 
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pattern of the vibrations were suppressed indicating that Fbg was somehow increasing the 

acyl chain order with the effect of suppressing the terminal methyl vibrations [Figure 17 

(a)]. 

The asymmetric and symmetric phosphate bands in BLES shifted to a lower 

frequency with Fbg indicating that the environment surrounding the headgroup region of 

BLES was more hydrated [Figure 18 (a)]. This was in consensus with Arrondo et al 

(1984) who observed the asymmetric phosphate band appeared at 1220 cm-1 with 

hydrated DPPC, and 1240 cm-1 with DPPC in 'dry' state. They concluded that the 

phosphate group of the headgroup of the DPPC forms more hydrogen bonds with the 

surrounding water molecules in its fully hydrated state with a wavenumber of 1220 cm-1 

being monitored. Whether Fbg further hydrates the head group region by forming more 

hydrogen bonds with water, or binds to some groups in the headgroup region ofBLES 

phospholipids and eventually enhances the H-bonding network, could not be explained 

from our FTIR data. However, that Fbg does affect the headgroup region and makes the 

lipid more polar has been suggested in other studies using Raman spectroscopy of 

dimyristoyl phosphatidylcholine (DMPC) (Lis et al, 1976). However, Fbg can interact 

with the headgroup ofBLES as evidenced by the changes in the frequencies of the 

symmetric and asymmetric phosphate bands of the head group. 

To determine if the effect ofFbg was specific to the system under study in this 

work, another serum protein, albumin (BSA) was studied using FTIR with BLES 

[Figures 17 (b) and 18 (b)]. In the C-H stretching region (2800-3 OOOcm -1 
), BSA at lower 

amounts by weight in BLES (1: 0.5 and 1: 1) did not have any appreciable influence on 
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the symmetric and asymmetric stretches ofBLES. At BLES: BSA (1: 10, wt/wt), the 

intensity of symmetric methyl vibrations was increased relative to the symmetric 

methylene peak. The asymmetric CH3 band which appears at 2956 cm-1 in BLES as a 

shoulder to the P asCH2 band (appearing at 2920 em -I) increased in intensity with 

increased BSA, and was almost equal in intensity to that of the Pa5CH2 band. Also, there 

was a large shift in the Pa5CH2 band towards higher energy [Figure 17 (b)]. This trend is 

quite different from what was observed from our BLES: Fbg spectra. 

In the phosphate stretching region, BSA (unlike Fbg) shifted the asymmetric 

phosphate stretching band to a higher frequency indicating that it was dehydrating the 

headgroup region in BLES as also described previously by Arrondo et al (1998). 

According to these authors, proteins that interact mainly with the polar moiety of 

phospholipids, tend to bind negatively-charged phospholipids, modifying the network of 

hydrogen bonds at the bilayer surface, so that the phospholipid polar headgroups 

exchange H-bonds with the protein, rather than with water leading to partial dehydration 

at the bilayer surface. 

Similarly, we found that BSA may be dehydrating the BLES bilayer surface by 

interacting with the headgroup and this interaction probably was reflected deep into the 

bilayer core where it changed the conformation of acyl chains (increase in fluidity). This 

was evident from the shift in the Pa5CH2 band towards a higher frequency and an increase 

in the intensity of symmetric and asymmetric terminal methyl vibrations (Figure 17b ). 

This FTIR study with BSA proving its lipid fluidizing nature is in agreement with the 
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previous bilayer studies conducted in our laboratory employing this protein and 

correlated with DSC results (Vidyasankar, 2004). 

4.6. Raman spectroscopic studies 

Raman spectroscopy has been one of the most powerful techniques widely used to 

study the membrane systems, as the Raman spectra can be obtained without the use of 

any probe molecules which would perturb the system under investigation. It has been 

successfully applied by others to investigate interactions of model phospholipid 

membrane systems with peptides and proteins (Carrier and Pezolet, 1984; Levin, 1984; 

Mushayak.arara and Levin, 1984; Vincent et al, 1993). Also, Raman has the added 

advantage that water, being Raman inactive in the region of interest (1000 to 3000 cm-1
), 

the spectra requires no subtraction as in FTIR.. The C-H stretching bands in the 2800-

3000 cm·1 region and the ratio of their intensities have been found to reflect the 

order/disorder properties ofthe membrane sytems (Levin, 1984). Gaber and Peticolas 

(1977) have shown that the lower the Izssollzsso ratio, the more ordered the hydrocarbon 

chains are. The !2935/Izsso ratio is sensitive to intermolecular chain interactions and tlie 

mobility of the terminal methyl groups ofhydrocarbon chains of phospholipids. Thus, the 

lower the ratio, the higher the conformational order of the lipid hydrocarbon chains and 

the lower the mobility of the terminal methyl group (Yellin and Levin, 1977). 

At 25°C (Figure 22-panel A), the peak intensity of the asymmetric CH2 stretch 

appearing at 2886 cm·1 was observed to be increasing relative to the symmetric CH2 

stretch (at 2852 cm-1
) with an increase in the amount ofFbg by weight present in BLES. 
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The hss2/I2886 ratio was decreased, indicating increased acyl chain order, which was in 

agreement with the observations of Gaber and Peticolas (1977). Presumably, Fbg directly 

or indirectly interacts with certain lipids in BLES and thereby stabilizes the acyl chain 

packing or order. This effect was observed in the gel phase (panel C) as well as the fluid 

phase (panel B) ofBLES. 

The shift of the frequency of the V5CH2 stretch ofBLES to lower energy in the 

BLES: Fbg (1:1, wt/wt) samples at all the temperatures suggested the lipids in BLES to 

be in more ordered conformation compared to BLES alone (Figure 20). Thus, more heat 

was required to melt the chains as also seen in the DSC results, where the T max of BLES 

was shifted to 34°C. This lipid chain ordering effect, monitored through the temperature 

induced alterations in the frequency of the V5CH2 stretch, has been suggested previously 

on other systems containing synthetic phospholipids undergoing thermotropic transitions 

(Cameron et al, 1981; Mendelsohn and Mantsch, 1986). 

The symmetric terminal methyl peak intensity relative to the intensity of the 

asymmetric CH2 stretch was seen to increase with increasing amounts by weight ofFbg. 

The I2937/I2886 ratio increased indicating the increase in the terminal methyl vibrations 

similar to what observed by Yellin and Levin, (1977). This effect was also observed at 

40°C (the temperature above the gel to liquid-crystalline phase transition occurring in 

BLES at 27°C) as in figure 22-panel Band at 15°C (the temperature below the gel to 

liquid-crystalline phase transition ofBLES) as in Figure 22-panel C. 

The conclusion that can be drawn from Raman experiments is that Fbg slightly 

affects (condenses) the acyl chain of phospholipids in BLES. Although a water soluble 
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protein, this interaction is observed even inside the core of the bilayer from the changes 

ofthe terminal methyl vibrations. 

Summary and Conclusions 

LS play a vital role in the normal functioning of the lungs normally. It stabilizes 

the alveoli during normal respiration by reducing the surface tension of the alveolar air

water interface during expiration preventing the alveolar collapse. During ARDS, and in 

other lung diseases, serum proteins gets flooded into the alveolar space and inhibit the 

dynamic surface tension lowering effect ofthe Lung Surfactant. Interaction of serum 

fibrinogen with the bulk bilayer phases and films ofBLES was studied in this project 

employing various biophysical techniques. Several studies have looked at effects of 

different plasma proteins (at various concentrations) on LS surface activity, however, to 

the best of our knowledge, the effect of small and large concentrations of serum 

fibrinogen (more physiological), with monolayers as well as LS bilayers have not been 

examined in detail. 

In this study, several experiments were done on BLES monolayers and bilayers, 

and some possible inter-molecular interactions of fibrinogen with LS is suggested. 

Adsorption studies showed that Fbg competed with BLES molecules for the space at the 

surface and hence prevented the surface tension reduction of such BLES mono layers. 

Compression-expansion isotherms of adsorbed films ofBLES in the presence ofFbg 

suggested that Fbg significantly altered the surface activity of such films. The difficulty 

in compressing the BLES films with an increase in the amount ofFbg in such films also 
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suggests that Fbg may be occupying the space with BLES molecules at the surface and 

that this competition is proportionally enhanced with increasing Fbg. From AFM studies, 

Fbg was seen to be inserted in the lipids in fluid phase while also som~what aggregating 

the gel domains. This showed that Fbg interacted with the lipids ofBLES and somewhat 

allowed the structural interpretation of the surface activity data. Also, it was seen that Fbg 

formed two sets of domains and interacted with the gel and fluid lipid domains ofLS. 

This explained the shift of the main transition peak (T max) of BLES towards slightly 

higher temperatures in the presence of fibrinogen as seen from our DSC studies. The 

influence ofFbg on DPPC, as noted from DSC studies has shown that the sharp gel

liquid crystalline phase transition ofDPPC which appeared as a single peak at 41 °C was 

split and some domains melted at slightly higher temperatures (Figure 1 0). 

Raman and Fourier Transform Infrared Spectroscopy (FTIR) of the bulk 

dispersions suggested that fibrinogen altered the CH2, CH3, and P04-vibrational modes of 

the BLES lipids at 1:1 (BLES: Fbg, wt/wt) ratios. This effect was very different from that 

ofBSA with BLES. The vibrational shifts of frequencies were consistent with slight 

increase in hydration of the head groups (P04) as well as increased ordering of the 

hydrocarbon chains (CH2 and CH3) ofBLES. This result was in direct contrast to the 

disordering effects ofBLES observed with another serum protein, albumin and suggest 

some specific LS lipid-Fbg interactions. 

In conclusion, this project, through various biophysical studies, revealed that 

fibrinogen interacts with lung surfactant at the molecular level as monitored by structural 

and functionality changes in the system. This may lead to the LS inefficiency in reducing 

115 



the alveolar air-water interace surface tension, thus inhibiting the prevention of alveolar 

collapse. This interaction is accomplished by fibrinogen affecting the lipid chains and the 

headgroup ofbilayers of the lung surfactant. 

Future directions 

To further probe the interaction ofFbg with LS and to come up with a definite 

molecular mechanism of how Fbg inhibits LS function, complete LS from native lungs 

needs to be studied. Wang and Notter (1998), have shown supplementation with large 

amounts of exogenous CLSE would be effective in reversing inactivation by the mixtures 

of blood proteins. Also SP-A in LS can reverse the activity of inhibitory proteins, as 

suggested by others (Casals et al, 1998; Cockshutt et al, 1990; Nag et al, 2004c). 

Similarly, for future experiments, large amounts ofBLES+SP-A can be used to determine 

ifFbg can still inhibit the surface activity of such LS. 

To find effectively how and where in the lipids ofBLES, Fbg interacts (using 

Raman and FTIR.), substitution of hydrogen by deuterium could be performed. By 

inserting small amounts ofper-deuterated DPPC into BLES, the interaction ofFbg with a 

specific C-D bond can be monitored using Raman and FTIR.. In deuterated acyl chains, 

the asymmetric and symmetric bands appear around 2195 and 2090 cm·1
, respectively 

different from the positions obtained for the -CH2 at around 2920 and 2850 cm-1
• 

Since Fbg can form clots, future study with use of thrombin in the BLES: Fbg 

mixtures may suggest other relative modes of interaction of the main blood clotting agent 

in the lung. 
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