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Abstract 

GH transgenic Atlantic salmon transgenic grew 3 .6x faster than non-transgenic controls, 
and most aspects of their cardiorespiratory system were upregulated. For example, they 
had greater resting and post-stress catecholamine levels, higher post-stress haemoglobin 
concentrations, increased m~imum heart performance, and elevated aerobic enzyme 
activities. However, they had a higher routine metabolic rate without a change in 
maximum metabolic rate (M02111ax), resulting in a decreased metabolic scope, and 

· subsequently a lowered critical swimming speed. Overall, this study supports the theory 
of symmorphosis, in that most aspects of the transgenic's cardiorespiratory system are 
upregulated to accommodate the additional demands of higher growth and/or activity. 
However, the transgenics M02mux appears to be limited by their gill surface area, which 
was not upregulated. Further, it provides information on "their physiology that can be 
used to: I) understand their needs in an aquacultural setting; and 2) infer the possible 
ecological consequences of their escape. 
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1.0 Introduction 

1.1 Relevance of Study * 
Cultured Atlantic salmon yields have more than tripled in the last decade, owing 

in part to a greater knowledge of husbandry practices, better feeds, and better quality 

strains (ASF 2003). With time to market-weight being a major factor that determines 

profitability, faster growing fish are necessary if the industry is to thrive while providing 

an affordable product. Genetic modification has been recently used as an itmovative way 

to achieve higher growth rates. This technique creates fi sh that contain an extra copy of 

the growth hormone gene, and they can display dramatically accelerated growth rates 

(~2-1 0-fold) compared to that ol-' non- transgenic snlmon (Du el uf. 1992: Devlin 1994; 

Stokstacl 2000). Althougl1 sever::ll studi es have examined the bio logy ot' growth hormone 

(GH) transgenic salmon, information is often conflict ing clue to the use of different 

strains, controls, and species (coho. Oncorhynchus kisutch, and chinook, Oncorhynchus 

lshawytscha. salmon have also been genetically modified). 

1.2 Previous Findings 

Enhanced growth is accompanied by an increased clem::mcl fo r oxygen to supply 

the aerobic pathways that support growth and protein deposition (1-Iogendoorn 1983) and 

the rish · s basal functions. Elevated routine meta.bo I ism (l\1! 0 2) in G 1-I transgenic (o r 

growth hormone trea.tec.l) rish has been obscrn~d in pt-c\·ious studies (S tevens et ul. 1998 ; 
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Cook et al. 2000b; Herbert et al. 2001 ), but few studies have gone into any depth to 

examine the ways in which these fish obtain oxygen and transport it throughout their 

bodies. Stevens and Sutterlin (1999) found that transgenic salmon have a greater gill 

• surface area that presumably allows for enhanced oxygen uptake from the water. Further, 

GH enhanced salmon have been shown to differ in tissue enzyme activities (Biier et al. 

2002), blood characteristics (Cogswell et ol. 2002), and physical activity levels 

(Abrahams and Sutterlin 1999; Herbert et al. 200 l ). These apparent adaptations of their 

physiological and biological systems lead one to suspect that most of the steps in the 

oxygen utilization pathway have been upregulated to a certain extent. 

1.3 Application of the Theory of Symmorphosis 

A universal upregulation of the transgenic's metabolic systems would be in 

agreement with the theory of symmorphosis; a theory which states that all of an animal's 

systems have just enough structural capacity to be energetically optimal at an 

intermediate level between the highest and lowest strains they face (Weibel 2002) . 

Portner (2002) found evidence that temperature acclimation can be used as a good model 

of symmorphos is. as organisms maintain thei r capacity for oxygen delivery at an average 

level between that of the highest and lowest temperatures which they encounter. Thus, if 

this theory holds true, GH lrcmsgenic sal111on should have upregulated (although not 

necessarily equally) all aspects of thei r cardiorespiratory system to meet the higher 

metabolic demands placed on them. The findings of Stevens and Sutterlin ( l 999) and 

Stevens et al. ( 1998) suggest that this may be occurring in G H transgenic Atlantic 
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salmon, as they had a gill surface area 1.24 times that of the non-transgenic controls but 

an oxygen uptake of 1.6 times, with no explanation for the discrepancy. Clearly, other 

aspects of oxygen uptake, transport or utilization must have been enhanced to account 

* for this d ifference. 

1.4 Oxygen Demand and Swimming Performance 

This study was designed to examine the GH transgenic's capacity to obtain and 

transport oxygen, and the efficiency with which oxygen is utilized. Perhaps the most 

interesting and important variable examined was routine M02, as this parameter is a 

measure of whether GH transgenic salmon have an inherently higher metabolic rate. Past 

studies have found divergent data with respect to routine M02, and report either no 

difference (Leggatt et of. 2003) or an elevated rate of oxygen consumption (Stevens et al. 

1998; Herbert et af. 200 1; Lee e! of. 2003). The cbta collected in these studies, however, 

is not easy to compare due to diffe rences in the species used, and variabi li ty in 

experimental des ign and methodology. Studies have been clone on young tish (- l Og, 

Herbert e! af. 200 I), and adult fisb (over 2kg, Lee ef of. 2003), and have used holding 

temperature (Stevens et af. 1998) or age (Lee e! af. 2003) to size-match groups. Some 

authors have also drawn conclusions based on comparing GH transgenic fish with those 

given doses of exogenous growth hormone (Herbert et a!. 200 l ). Finally, testing has 

been done on both coho and Atlantic salmon, two species that belong to different genera 

(Oncorh1•nchus and Sofmo, respectively) and can have different life histories. Therefore, 
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past studies tended to draw conclusions based on unique protocols. with inconsistencies 

in experimental design, making comparative data interpretation ditlicult. 

GH transgenics (or GH implanted fish) have an increased level of spontaneous 

• activity as compared to controls (Abrahams and Sutterlin 1999; Herbert et a!. 2001 ), 

which could elevate oxygen consumption (Fry 1971 ), and result in an overestimation of 

routine M02. Herbert et al. (200 1) corrected for this by taking oxygen consumption 

measurements only when the fish were in a stationary position, with only minimal fin 

movements. When this was done, no signi1icant diffe rence in oxygen consumption was 

evident between GH treated and control fi sh. Measurements of metabolism are further 

complicoted by the fact that transgenic fi sh h<we an increased appetite. and eat more than 

non-transgenic individuals (Cook 1999: Cook el ol. 2000b~ Leggatt eta!. 2003). This 

results in an increase in the total amount of oxygen utilized for digestion (specific 

dynamic action, SDA). Therefore, it has also been suggested that the greater routine 

M02 reported in previous studies may just be a function of an increase in feeding and 

activity. The current study controlled for differences in activity and SDA between the 

groups by taking routine M02 measurements only on food deprived fish (fasted for 48 

hours prior to testing) while they were stationary and made no large, energetically costly, 

movements. 

Maximum performance. in terms of max imum oxygen consumption (M02max) and 

critical swimming speed (Unit). also provides a means for testing ditferences between GH 

transgenic and non-transgenic tisb. Previous studies have report that transgenic fish have 

a lower (by 11 %, Lee et al. 2003), higher (by 60%, Stevens et al. 1998), or no difference 
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(McKenzie eta!. 2003) in M02max when compared to non-transgenic controls. There is 

also cont1icting data with regards to Ucrito with studies finding that GH transgenic salmon 

can be inferior (Farrell eta!. 1997; Lee eta!. 2003) or equivalent swimmers (Stevens et 

a/. 1998) as non-transgenics~ These divergent findings could be due to the different 

experimental protocols and the different s pecies of transgenic salmon used . The current 

s tudy is able to provide further ins ight into why the transgenic salmon' s performance 

may ditfer from the controls, as in-depth enzymatic, haematological, and cardiac analyses 

were done concurrently with the swimming tests. 

1.5 Enzyme and Tissue Analyses 

One curious trait of Atlantic salmon is their tendency to exhibit a bimodal size 

distribution during their first winter of life; with one group ceasing feeding and stopping 

growth. while the other continues to feed and grow (Thorpe 1977; Thorpe et a!. 1982; 

Nathanailides and Stickland 1996). This results in fish that are either fast-growers, or 

slow-growers. This s ituation vvas artificinll y reproduced here, using the GH transgenics 

as the fast-growers and non-transgenics as the s low-growers. This allowed for the 

comparison of aerobic mitochondrial enzyme activity in ti sh that were affected only by 

endogenous physiological factors, rather than having them being manipulated by 

environmental changes. It is the function of these mitochondrial enzymes to provide the 

energy needed to fuel the fish ' s growth and metabolism, and it was hypothesised that the 

enhanced growth of GH transgenic Atlantic salmon may provide enough of a selective 

pressure to upregulate their aerobic enzyme activity. 
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Cytochrome-C oxidase (CCO) is nne o l-- these enzymes. and plays a key role in 

aerobic mitochondrial metaboli sm, as it function s as the final step in the e lectron 

transport chain. The activity of this enzyme can be used as a measure of total fish 

metabolism (Goo lish & Aclelm~n 1987), correlates well with oxygen consumption rates 

in different tissues (S imon and Robin 197 I) , and has been shown to increase in fast 

grow ing fish (Houlihan et al. 1993). Citrate synthase (CS), a key Kreb's Cycle enzyme, 

is another candidate for growth rate induced upregulation. A study by Blier et al. (2002) 

found no difference in CS in the white muscle and gills of GH transgenic coho salmon, 

and concluded that enzyme activities in these tissues weren't related to the high growth 

rates in G H transgenics. However: l) white muscle has a low aerobic capacity and may 

not be as affected by an increase in oxygen us8ge as more nc robic ti ssues: and 2) 

although the gills have a high prote in turnover that req uires a constnnt supply o t' oxygen 

for protein syntl1esis, Stevens and Devlin (2000) suggested that increased gill surface area 

may be the primary method of upregulation in the gills, not nn increase in enzyme 

activity. Therefore. it is possible that other, highly aerobic tissues (e.g. the heart and reel 

muscle) may exhibit growth-dependent alterations in cs and/or ceo activity to allow fo r 

increased energy demand. 

Enzymes can also be a useful too l to test symmorphosis as they are costly to 

produce. are needed in fairly high amounts. and their activities are c losely regulated by 

orgamsms. For exnmple. enzymes have been shown to incrense their ac tivity to 

compensate fo r the rmal gradients within ti ssues (F udge et of. 200 l ). Moreover. the 
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theory of symmorphosis would suggest that an increase 111 the activity of key aerobic 

enzymes is needed to fuel a higher growth rate . 

• 
1.6 Blood Oxygen Transport Capability 

Another parameter in the cardiorespiratory system that is a good candidate for 

growth rate dependent upregulation is the oxygen transport capacity of the blood. As the 

blood moves through the capillaries or· the gill lamellae. the amount of oxygen extracted 

from the water is largely dependent on the oxygen binding affinity of haemoglob in, the 

number of erythrocytes, and the concentration of haemoglobin. An increase in the oxygen 

carrying capacity of the GH transgenic salmon 's blood, mediated by increased 

haematocrit and/or haemoglobin concentration, could allow fo r enh anced oxygen uptake 

and transport. Therefore, haematological measuremen ts of GH transgenic and control 

fish were performed to determine whether GH transgenic Atlantic salmon exhibited any 

differences in blood oxygen transport properties. 

To date, only one study has looked for ditferences in the blood composition of 

transgenic Atlantic salmon as compared to co ntrols (see Cogswell et of. 2002). These 

authors found that transgenic salmon had smaller and more numerous erythroc ytes. and 

theorized that two !·actors may have caused these d iffe rences : l) elevated g rowth 

hormone levels lead to an increase in insu lin-l ike growth factor. resulting in a taster ce ll 

cycle, and thus smaller cells; or 2) the decrease in cel l vo lume (and subsequent increase 

in the surface area to volume ratio) is an adaptive mechanism to deal with the increased 

oxygen needs of the transgenic fish. The latter theory does have some merit, as previous 
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s tudies have linked a higher metabolic rate to a decrease in erythrocyte cell vo lume 

(Glomski et al. 1992). Other hae matological factors that may aiel the transgenics in 

acquiring and transporting more oxygen. such ;:~s a greater haematocri t and haemoglobin 

concentration. were also assess: d in this study. 

1.7 Stress Hormones 

Increases in the levels of plasma stress hormones (e.g. cortisol and 

catecholamines) can be a problem in conunercial aquaculture, because GH levels are 

depressed in stressed fish, and fish can lose energy stores clue to increased activity 

(avoidance) or through the cessation of feeding (Pickering 198 1 ). The aquacultural 

environment provides a host of potential stressors for tank-reared tish. such as handling, 

crowding. and competition fo r food. [t is important to know how stressed fish are in 

o rde r to determine ways to reduce its negative atTects. and thus achieve maximum 

growth. Repeated stress over time can have ad verse affects on growth. reproduction, and 

res istance to disease (Wendelaar Bonga 1997), all of whi ch are factors that hinder 

production and decrease profits. Therefore. knowing how fish respond to environmental 

perturbations can lead to innovations that may help reduce stress and increase 

productivity. This was the reasoning behind meas uring plasma stress hormone levels in 

G H transgenic Atlantic salmon, as stress is negative ly correlated to growth rate and 

deserves attention if one is to truly assess the growth performance of fis h. 

The stress response in fish is a funct ion of both external stimuli and how a fi sh 

perceives and reacts to these events. T he most obv ious response to exte rnal stresses is 



9 

avoidance, whereby the fish tries to escape from a particular stressor into an area where it 

is no longer affected by it. In order to do this, the fish needs to quickly mobilize energy 

reserves in the form of stored carbohydrate, lipids, and proteins. Catecholamines are 

released into the blood stream from the chromaffin cell s in response to many situations 

that require increased oxygen transport or increased energy mobilization (Wendelaar 

Bonga 1997). They initiate the catabolism of energy stores in various tissues through 

activation of cell surface receptors (Donaldson 1981 ; Pickering et of. 199 1 ). Also, they 

cause erythrocytes to be released from the spleen (N ilsson and Grove 1974; Kita and 

[tazawa 1989; Perry and Kinkead 1989). and regulate erythrocyte pH to contro l oxygen 

binding capacity (Nikinmaa eta/. 1984: Primmett eta/. 1986). Both of these 

haematological changes allow more oxygen to be transported during times of high 

demand. Cortisol is released from the interrenal tissue (co ntained in is lets around the 

posterior cardinal vein) (Pickering 1981 ), and has been shown to be beneficial in 

carbohydrate metabolism (Brown 1993). Thus, it allows for a mobilization of energy 

stores that give the fish the ability to escape quickly, or the stamina to stay and fight. 

The increased GH production in GH transgenic salmon raises an important 

question: i.e. how do elevated GH levels affect plasma stress hormone leve ls? Although 

it is has been sho,vn that GI-l and cortisol lwve an inverse relationship in Atlantic salmon 

( i\tlcConnick el ul. Jl)9X). there are ~1lso d<~la that suggest a pos itive relationship exists 

betw·cen these t\\"0 hormones (Dufo ur el of. 2000: i\llcCormick 200 I). Thus. this study 

measured both the leve ls of catecholamines (epinephrine and norepinephrine) and cortisol 

to determine whether GH transgenic Atlantic salmon have an altered stress response. 
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1.8 Heart Morphometries and Performance 

Finally, the potential contribution of the heart to the GH transgenic salmon's 

increased growth rate was examined. To my knowledge, only two studies have examined 

• 
the hearts of transgenic fish as compared with non-transgenic conspecitics. One study, 

by Pitkanen e! of. (2001). measured the DNA concentration (a paramet r used to measure 

cell number) in several muscle tissues in growth enl1anced Arctic char (Salve!inus 

a/pinus). They found that the genetically modified tish had a significantly greater mass 

specjfic heart size (by 20-32%) and a higher DNA concentration (indicating more cells). 

Although cardiac performance wasn't measured in their study, it can be inferred that the 

transgenic Arctic char' s heart would have a greater pumping capacity due to its greater 

size. fn contrast, McKenzie el ol. (2003) found no difference in the size of transgenic 

ti lapia hearts as compared to their non-transgenic counterparts. The cause of the 

di screpancy between studies is not known. but species and size differences. the type and 

makeup of the transgene. and env ironmental variables may all play a role. 

Many studies have shown that the hean is extremely plastic and can adapt to meet 

additional demands placed on it (see Gamperl and Farrell 2004 for a review). Fish kept 

at low temperatures have a greater heart size to compensate fo r the increase in blood 

viscosity that occurs in cold water (Goolish 1987; Graham and Farrell 1992; Driedzic et 

al. 1996). Also, levels of GH and testosterone increase as ±ish mature, and these 

hormones have been shown to have a significant stimulating effect on heart size and 

pumping capacity (Franklin and Davie 1992; Yang et eLl. 1999). Hearts get larger during 

maturation to ensure that adequate amounts of oxygen are available to meet the demands 
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of reproduction and the stressful events that come with it (i.e. tighting conspecitics, 

digging a redd, etc.) (Franklin and Davie 1992). [nterestingly, Fleming et al. (1996) 

round that domesticated salmon' s hearts were smaller than wild salmon's despite having 

higher GH levels (Fleming ft al. 2002). This, however, is most likely caused by the 

much higher levels of physical activity that wild fish have over their tank-reared 

counterparts, physical training can increase heart size and results in an enhancement of 

cardiac tl.mction (Davison 1989; Farrell et al. 1991). Thus, it is likely that hea11 size and. 

function have also been upregulated in the GH transgenic Atlantic salmon to meet the 

increased metabolic demands associated with elevated growth rates, as well as increased 

levels of activity and SDA as compared to their non-transgenic counterparts. 

The current study ·determined whether the above statement is true by measuring 

ventricle size (Relati ve Ventricular Mass, RVM) and several indices or resting and 

maximum in situ cardiac performance [stroke vo lume (Sv). cardiac output (Q), heart rate 

(fH), and myocardial power output (P 0 )]. These measurements allowed for a 

comprehensive comparison of heart performance in GH transgenic salmon vs. controls, 

and gave a clear picture of how the hearts of salmon from both groups per1ormed under 

normal and stressful conditions. 

1.9 Overall Purpose of the Study 

Based on the need to r more data on the physio logy of GH t ransgenic salmon, the 

study outlined above was conducted to provide a detai led and accurate picture of how 

these fi sh differ from non-transgenic conspecitics. Th is is the most comprehensive 
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examination of the cardiorespiratory system of GH transgenic fish to date, and identifies 

how the cardiorespiratory system of post-smolt fish has adapted to accelerated growth, 

and/or activity, as compared w~h size-matched non-transgenic conspecifics. Further, the 

transgenic salmon act as a novel model to test the theory of symmorphosis, as they may 

demonstrate how an animal upregulates various body systems in order to cope with an 

increase in physical demand. Ultimately. thi s research will allow for a better 

understanding of the physiology of GH transgenic Atlantic salmon. and provide valuable 

information that can be used to maximize their production in an aquaculture setting. In 

addition, it is my opinion that these experiments will reveal the inherent strengths and 

weaknesses of post-smolt GH transgenic Atlantic salmon, and infer the extent to which 

they may compete/interact with natural populations if they escape into the wild. 
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2.0 Materials and Methods 

2.1 Experimental Fish 

In this document, fi sh referred to as ' transgenics' are the fi fth generation of the 

E0-1 a transgenic strain of Atlantic salmon that were created in 1989 by injecting 

fertilized eggs with a chimeric growth hormone (GH) gene construct (opAFP-GHc2) 

consisting of an ocean pout (i\lfacrozoarces americanus) antifreeze protein gene promoter 

linked to chinook salmon growth hormone eDNA (Du et a!. 1992). The EO-la 

transgenics strain contains a single copy of the transgene (Fletcher personal 

communication). This transgene and its rap id growth phenotype have exhibited stable 

Mendelian inheritance over 6 generations to date (F letcher e/ of. 2004). Control salmon 

were unmod i [·ied i nd i vicl uals h om the same Sain t John Ri ver strain as the transgenics that 

were one year o lder (ages were approximate ly 20 months and 8 months post-fe rtilization 

at the time of testing). 

All fish were reared from the smolt stage in seawater (32ppt) in a 6 m diameter by 

1.5 m deep tank at 1 0°C, with seasonally ambient photoperiod (at the Ocean Sciences 

centre St. John· s, NL). They were fed (with high energy dry extruded salmon feed. 

Corey Feed Ltd.) by automatic feeder seven times daily. This regime allowed the controls 

and transgcnics to grow at 0.30 and l.03 % da:{ 1
• respectively. over the experimental 

period (- December 2002 to Septem ber 2003). One week prior to each experiment. the 

test tish were removed ti·om the 6 111 diameter lank and placed in a 2 m diameter, by l.S 

m leep. ho lding tank, which received Lhc same water and photoperi od as the large tank. 
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This allowed for the separation of the transgenic and non-transgenic salmon, and for ease 

of capture with minimal stress on the animals. 

When performing these types of experiments one must take into account the 

inherent differences between fndividuals w ith respect to a range of biological factors . For 

example, Dickson and Kramer (1971) showed that factors suc h as sexual maturity, 

temperature, and season have a marked e1fect on a ti sh ' s metabolism. Therefo re, each 

ex periment compared size-matched contro l and transgenic l·i sh (500- 1300 g, depending 

on the particular experiment), and they were al l tested at the same temperature ( l 0°C). 

[n order to size-match the transgenic and control tis h, the transgenics were approximately 

1 year younger than the controls. The use of two different year c lasses was also clone in 

other studies (Farrell eta!. 1997; Stevens and Devlin 2000), and a lthough this resul ts in 

fis h of two eli ffe rent life histories, it is still preferable to using temperature to retard the 

transgenic's growth rates (as in Stevens et al. 1998 and Cook et al. 2000a&b). 

Temperature a lone can cause significant variance in metabo lism since many 

phys iological variables in fish change by 2- 3 fo ld with each l0°C alteration in 

temperature (Q 10 2-3). Even though the contro ls are a year older, this age difference d id 

no l appear to ::1tlcct the ir degree of sexual maturity. fVlost tish showed no signs of sexual 

c haracters (e.g. no egg sac), and those that did we re only in the early stages ot· 

deve lopment (i.e_ they we re immature). 

All salmon used fo r the experiments were tested in order to confirm whether they 

were transgenic or non-transgenic by po lymerase chain reaction (PCR) using adipose fin 

tissue (Figure 1 ). A buffer containing 10 mM Tris (pH 8.0), 50 nM KC l, 1.5 mM MgCh, 
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and 0.1 % Triton X-1 00 was used for all PCR analyses. The primers used to detect the 

transgene construct were 2653-GCT-CTT-CAA-CAT-CGC-GGT-CA and 654-ATA-

TGG-AGC-AGC-TTC-AGG-AC. Samp les were anal yzed by electrophoresis using a 2% 

* agarose ge l and sta ined with ethi d ium bromide. then visua.lizecl by exposure to UV light 

and photographed. 

2.2 Metabolic Physiology and Swimming Performance 

2.2.1 Experimental Design 

Swimming tests were done usmg an 81 litre Blazka-type swim-tunnel 

respirometer (University of Waterloo. Biotelemetry Institute. Waterloo, ON). The front of 

this respirometer contained a plast ic grid tha.t created uniform water t1ow (Taylor and 

McPhail 1985), and was covered w ith black plastic that provided the tish with a dark 

refuge (this minimi zed stress clue to extemal stimul i). The rear of Lhe tunnel was titted 

w ith a plastic grid as we ll as e lectritied (<.5V) stai nl ess steel bands to prevent the fis h 

from resting o n the grid. Aerated seawater ( 1 O"C) was supplied to the respirometer at 2 L 

m in-' by a submersible pump (Little G iant Pump Co., Oklahoma City. OK) that was 

placed in a 270 L, aerated, reservoir whose temperature was regulated by a 3/4 

horsepower heater/chiller (Memoria l University of Newfoundland Technical Services. St. 

.John' s NL). Initially, measurem ents of water oxygen content were recorded fo r 20 
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Figure 1. Identification of transgenic and control Atlantic salmon using polymerase 

chain reaction (PCR). All samples were analyzed by electrophoresis using a 2% agarose 

gel and visualized with ethidium bromide. A water control was run to ensure that no 

exogenous genetic material was present in the samples and a positive control indicated 

the position of the transgene. * Presence of a band (207bp) indicates a sample is from a 

transgenic Atlantic salmon. ·j· Banding representing the endogenous Atlantic salmon GH 

genes, GHl (l l50bp) and GH2 (798bp). 
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minutes while the tunnel was closed, and contained no fish. This procedure allowed for 

correction of the fish ' s metabolism due to bacterial respiration and photosynthesis. 

Measurements of routine M02, M02max, and Ucrit were then performed on 8 fish from 

• each group. Water temperature and oxygen content within the swim tunnel were 

continuously measured by pumping water through an external circuit using a peristaltic 

pump (Masterflex model 7523-20, Cole Palmer), and oxygen consumption at each speed 

was measured with a WTW Oxi 340 meter in conjtmction with a CellOx 325 oxygen 

electrode (WTW Instrument Co., Weilheim, Germany). 

Before the respirometry experiments. the 8 transgenics and 8 controls were fasted 

for 2 days. Their length was measured. and they were then placed in the respirometer 

approximately 12-16 hours before testing to allow them to acclimate to the tunnel, and to 

recover hom handling. All fish were initially given a 30 minute conditioning swim 

(water velocity 0-2 BL s- 1
) to accustom them to swimming in the tunnel and to changes in 

water velocity (Jain et a!. 1997). During the remainder of the acclimation period, the 

respirometer was constantly flushed with aerated seawater, and a current of 0.5 BL s- 1 

was maintained. 

2.2.2 Measurements of Critical Swimming Speed and Metabolism 

After the 12-16 hour ace! imation period. the swimming performance o f individual 

fish was tested using a standard procedure known as the Ucrit test (Hammer 1995). This 

test involves increasing water velocity in small increments until the fish is totally 

fatigued, and stops swimming. After measuring the routine metabolism of each fish at 
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0.5 BL s- 1
, water velocity in the tunnel was increased by 0.25 BL s- 1 every 20 minutes 

until the fish was no longer capable of swimming (Farrell et al. 1997). The critical 

swimming speed was then calculated using the equation: 

• 

Where: Uris the water velocity of the last completed increment, tr is the time spent at the 

last water velocity increment, ti is the time period spent at each water velocity increment 

(20 minutes), and Ui is the water velocity increment (0.25 BL s-1
) (Brett 1964). Because 

the cross-sectional area of the fish was greater than 10% of the swim-tunnel's cross-

sectional area, Ucrit values were corrected for solid blocking effects using the formula of 

Bell and Terhune (1970): 

Ur = Ur ( I + E:s) 

Where: UF is the corrected swtmmmg speed_ U 1 is the water ve locity in the tunnel 

witho ut a tish, and E:s is the fractio nal erro r due to sol id blocking. Cs was detined for each 

[·i sh by: 

Where: T is a factor dependent on the swtm chamber ' s cross sectional area (cross 

sectional area/tunnel length), A. is the shape factor for the test object (A.= 0.5 BL body 

thickness-1
), Ao is the cross sectional area of the fish (obtained by bisecting the fish at its 
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widest point and taking a digital image (us ing a Coolpix 2500 digital camera, Nikon 

USA. Melvi lle, NY) and anal yzing it us1ng the digital 1magmmg software Matrox 

Inspector 3.0 (Matrox Electri nic Systems Ltd., Dorval, Qc)), and Ar is the cross 

sectional area of the swim chamber. 

Oxygen uptake was measured at every velocity increment throughout the 

experiment. Routine M02 (mg 0 2 kg· 1 h(1) was measured when the fish was exposed to 

a 0.5 BL s-1 current and making minimal movements. Standard oxygen consumption (mg 

0 2 kg- 1 b(1) was obtained from a semi-log plot of swimming speed (BL sec-
1
) and routine 

M02 (LOG mg 0 2 kg-1 hr" 1), and u sing the derived linear regression to extrapolate back 

to 0 BL sec-1. M02111ax (mg 02 k.g- 1 ln·-1) represents the highest oxygen consumption that 

the fish was able to achieve. Absolute metabolic scope vvas calculated by subtracting 

standard M02 from M02max, and facto ri a l metabo lic sco pe was calculated by div iding 

M02max by standard M02. 

A tt:er all metabolic and swimming tests vvere complete. the fi sh were sacrificed 

usmg cerebral percussion, and their mass, depth and w idth (both taken at a point 

immediately anterior to the dorsal fin), opercular length (distance hom the tip of their 

nose to the most distal end of the opercul a). and caudal peduncle depth (maximum depth 

o f the caudal peduncle) were m easured Lts ing a set of callipers. The gill arches were 

removed from the left s ide of each fi sh and placed in cold (4"C) 9: l formalin and s tored 

in a fridge until gill surface area measmements were done. Caudal fin surface area was 

obtained by taking a digital photograph n l.- the caudal lin (us ing a Conlpix 2500 digital 

camera) and analysing it using digital image anal ys is so rhvare (Matrox Inspector 3.0). 
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2.2.3 Data/Statistical Analysis 

Routine M02, standard M02, and M02max, as well as Ucrit and absolute and 

factorial scope, were compared between groups using an ANCOV A (Sigmaplot, SPSS 

• 
Inc., Chicago, [L) For analyses of oxygen consumption, and metabolic scope, the fish's 

mass was used as the covariate. For Ucrit. the fish's length was used as the covariate. To 

minimize variability due to allometric gro\-vth of morphometric characters the data was 

transformed (log 10) and regressed against the logarithm of fork length. The resultant 

slope was then used to standardize the data using the equation of [hssen eta!. ( 1981 ): 

where M1 is the transformed character, Mo is the observed chara,cter, L is the grand 

sample mean body length of females, Ln is the observed body length, and b is the 

common within-groups slope obtained from the analysis of covariance of the regression 

plot (Reist 1986). A significance leve l ofp<O.OS was used for all analyses, and all data in 

the tables. figures, and text are means± S.r:::. 

2.3 Muscle Enzyme Activity and Pr·otein Content 

2.3.1 Tissue Collection and Storage 

Fish were sacrificed with a sharp blow to the head and samples of reel, white, and 

ventricular muscle were quickly removed, placed in cryovials, and immediately frozen in 



2 1 

liquid nitrogen. However, before the ventricle was frozen, it was washed with saline and 

blotted dry in o rder to remove any remain ing red blood ce lls from the lumen. Samples 

were stored in a -80°C freezer until assays were peri·o rmed. 

* 
2.3.2 Protein Content Measurement 

The protein concentration of each tissue was measured using the Coomassie Plus 

Protein Assay Reagent protocol and reagents (Pierce USA). This procedure is based on 

the change in absorbance between 465rm1 and 595nm when Coomassie Blue G-250 

(Pierce USA) binds to proteins in an acidic solution. Tissue protein content was obtained 

by comparing the absorbance values for a ll samples to a standard curve created from 

serial di lutions of a known concentration of BSA (Pierce USA). 

2.3.3 Enzyme Assays' 

The following procedure tor dete rmining enzyme acti vi ty was adapted from 

Fudge et a!. (200 1 ). Tissue samples were homogenized in ice-cold 50 mM imidazo le 

buffer ( I :20 wt/vol) (for pH see values below). Enzyme activity was measured in the 

supernatant at 1 0°C using a spectrophotometer at wavelengths of 4 12 nm and 550 nm for 

CS and CCO, respectively. For the CCO assay, a stock CCO sol ution was made in 

phosphate buffer and excess asco rbic acid was added as a reducing agent. This solution 

was dialyzed against several changes of potassium butler to remove excess ascorbic acid. 

T he final CCO concentrat io n in the cuvette was 0.1 mM. The assay conditions were as 

i·o !lows. CCO (E.C. 1.9.3. 1 ): I 0 m!VI K21 fPO.j/Kf-bPO.j buller e~t pH 7.6 to r the heart and 
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pH 8.0 for the red and white muscle. with the reaction being initiated with 20 ~tL of 

supernatant for the heart and red muscle, and 30 ~tL for the white muscle (c= 18.5, 

reduced-oxidized). CS (E.C. 4.1.3 .7): 75 mM Tris, 0.25 mM DTNB, 0.4 mM acetyl CoA 

• 
(pH 7.0), 0.5 mM oxaloacetate, with the reaction initiated by I 0 ~tL of supernatant in all 

tissues (DTMB £=13.6) The final volume in the cuvettes was 1 ml. Activities were 

optimized for each tissue and enzyme (for pH and a ll component concentrations) prior to 

actual testing using a separate group of transgenic and control salmon fro m the same 

strain. 

2.3.4 Data/Statistical Analysis 

Enzyme activities were compared between :fish by means of a two-way ANOVA 

(fish and tissue) assuming equal variances using Sigmaplot (SPSS Inc. , Chicago, IL). A 

significance level of p<0.05 was used for all analyses. 

2.4 Gill Surface Area 

2.-U Tissue Collection and Analysis 

The concepts and measurement procedures described in Stevens and Sutterlin 

( !999) and Hughes ( 1984) were used to measure gill surface are::t. They have, however. 

been moditied to utilize digital imaging tools. These im::tging too ls a llow for ::t highly 

accurate me::tsurement of the gill surface area. ::ts a larger sample size can be obtained due 

to the ease of acquiring data as compared with prev ious methods. Thus, this larger 



sample size eliminates the assumptions of gill component size and shape that are evident 

in o lder methods (Hughes 1990). The gill samples were taken from each fish used in the 

oxygen consumption and swimming experiments in order to directly determine the 

• relationship between gi ll surface area and oxygen consumption. 

The 4 gill arches Crom the le!'t side of each f:ish were removed and preserved in 

cold (4"C) 9:1 formalin. Hughes ( 1984) noted that there is unavo idable shrinkage during 

fixation. To correct for this, the extent of shrinkage was determined by extracting five 

individual filaments of different initial sizes, placing them in water on a cavity slide and 

measuring filament length and lamellar area using the methodology described below. 

The water was then replaced with 9:1 formalin. and the slide covered and refrigerated. 

Further measurements were made after 24 hours and 72 hours to determine the degree of 

shrinkage. The sl1rinkage was found to be <1.5% for both filament length and lamellar 

spacing in both the transgenics and controls after 24 hours, and 2% after 72 hours. AU 

subsequent measurements were corrected to account for this shrinkage. 

The biometry of the preserved gill tissue was determined by tak ing advantage of 

the digital image analysis software Matrox Inspecto r 3.0. In order to calibrate the system, 

a stage micrometer was used. Images were captured with a light microscope (Wild 

Makroskop model M420, Wetzlar, Germany) link.ed to a digital camera (Pixera PVC 100, 

Los Gatos, CA), and a desktop PC using Pixera Studio (!-Cube, Rowland Heights. CA). 

The lengths of all gill fi laments. on all 4 arches from one side of the tish. were measured 

from base to tip, taking into account the fixation-associated curvature. These were then 

summed to obtain the total filament length (L). The filaments of each arch were then 
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di vided into three groups according to length: short. medium, and long (a su bjective scale 

based on the lengths o f the shortest and longest filaments) (Figure 2a). A medium sized 

filament from each of the three groups was selected, and the interlam el lar spacing was 

• 
o btained by measuring the distance covered by 10 adjacent lamellae and div iding that 

measurement by 10. This gave the average spacing between each lam ella (Figure 2b ). 

Since lamellar area is greater at the base of the filament (due to a greater width), lamellae 

were sampled from all regions of the filament to obtain an accurate area measurement. A 

small sample of lamellae (2-4) were dissected fro m the base, middle, and tip (bottom yc1, 

middle 3ru, and top 3rd) of the filament, taking care to obtain lamella that were an average 

s ize for that particular region (Figure 2c). They were then spread t1at on a glass s lide in 

o rder to obtain digital images. Their area was then measured using the Matrox Inspector 

3.0 computer program, which calcula tes the area of the digital image by counting the 

number of pixels contained witllin its perimeter. After the measurements were made on 

one side of the filament, the filament was turned over and measurements were repeated 

for the other side. Once the lamellar areas at all three positions were measured, from all 

three filament length categories, a linear equation was created in order to interpo late the 

areas of the remaining lamellae on the filament. These equations were a function of the 

length of the .tilament. the mean area of a lamella in each particular filament section, and 

the lamel lar spac ing (Figure 2d). In terpolated lame llar areas were then summed and 

multiplied by two to obtai n the bilateral surface area nf the lnmella, nnd then mul tiplied 

by two again to obtain the area of lamell ae on both sides of the tilament. Each filament's 

lamellar area was calculated individual ly using a spreadsheet program (l'vlicrosoft Excel 
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Figure 2. Method for measuring the surface area of a gill. (a) The filaments of each arch 

were divided into three groups according to length: short, medium, and long. (b) 

Interlamellar spacing was obtained by measuring the average distance covered by 10 

adjacent lamellae and dividing that measurement by 10. (c) Lamellar area was obtained 

from a subset of lamella from the base, middle, and tip regions (bottom 3rd, middle 3rd, 

and top 3 rd) of the filament. The measured lamella were taken from the middle of each 

region (dotted lines) to get an average size. (d) A linear equation was created to 

interpolate the areas of the remaining lamellae on the filament. These equations were 

created based on the length of the filament, the mean area of a lamella at each position on 

the filament (lowest numbered position being the tip and highest being the base), and the 

lamellar spacing. This was done for large ( .._), medium ( + ), and small (•) filaments 

from both the transgenic (so lid lines, open symbols) and controls (dashed lines, closed 

symbols) . Error bars represent± 1 standard error (p<0.05). 
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spreadsheet program (Microsoft Excel 2000, Microsoft Corporation, Redmond, 

Washington) and then summed to give the entire lamellar area of the arch. The arch 's 

areas were then summed, and multiplied by two, to account for both sides of the fish to 

ultimately get the fish ' s total :ill surface area. 

2.4.2 Data/Statistical Analysis 

In order to reduce the type-1 error in this experiment, it was necessary to correct 

the p-value to acconm1odate for what are known as comparisonwise and experimentwise 

errors. The comparisonwise error is the probability that the who le comparison will 

erroneously declare a significant difference when. in fact. none ex ists (Kuehl 1994). The 

experimentwise error rate is the probability that a significant difference will appear 

somewhere in the entire set of comparisons, when in fact this is not the case (Kuehl 

!994). One must take into account the experimentwise error because, in this ANCOV A 

analysis, statistical analyses were performed on each step used to determine gill surface 

area (e.g. filament length, interlamellar spacing, lamellar etc.), and therefore a source of 

type-1 error can be introduced at any step within the calculation. The adjusted p-va!ue 

( ac) can be obtained using the equation: 

ac= l- (!- al:) 1111 

Where: n is the number of tests, and a." is the set experiment-wise p -val ue of 0.05. Thus, 

in this particular experiment, the equation is: 

ac= 1- ( 1- 0.05) 111 ('= 0.0032 
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In order to standardize the gill areas for the mass of the fish, each individual was 

scaled (either up or down depending on the fish 's mass) to 1 kg and its gill morphometric 

values were adjusted accordingly. The gill areas from the controls and transgenics were 

• 
then compared using the corrected p-value (0.0032) by means of an ANCOVA. with 

body weight as the covariate. A comparison o f giJl surbce area to maximum (data not 

shown) and standard oxygen consumption (Figure 5) was made between the two groups. 

Regression analysis was performed to determine whether there was a correlation between 

gill area and oxygen uptake, making sure to compare the oxygen uptake and gill surface 

area from the same fish. All statistical analyses were performed using Sigmaplot (SPSS 

[nc., Chicago, IL). 

2.5 Haematological Parameters and Stress Hormone Measurements 

2.5.1 Blood Sampling 

Transgenic and control salmon (n=R) were anaesthetized in seawater containing 

0.1 g L- 1 of MS-222. They were then placed in a supine position on a surgical sponge, 

and anaesthesia was maintained by constantly irrigating their gills with oxygenated 

seawater containing MS-222 (0.05 g 1" 1
) maintained at 8-l0°C. A cannula (PE 50; 0.965 

mm outer diameter. 0.58 mm inner diameter) was then inserted into the dorsal aorta, to 

allow for blood sampling, according to the method of Smith and Bell ( 1964). Thereafter, 

the ti sh was placed in a black Perspex box ( 40 em long x I 0 em wide x I 0 em deep) that 

received I 0°C seawater at a rate of I L min· ' from an aerated seawater reservoir. After a 



29 

48-hour recovery period, a resting sample of blood (0 .3 ml) was taken from each fish and 

used for the various haematological procedures described below. Haematocrit was 

measured in triplicate by collecting blood in 20 ~d capillary tubes, and centrifuging them 

• in a haematocrit centrifuge for 30 seconds. Haemoglobin concentration was measured 

using the cyanomethaeglobin method (Cogswell et al. 2002); where 8 ~d of blood was 

added to 2 ml of Drabkin's reagent and its absorbance (at 540 nm) corresponds to its 

haemoglobin content (as read from a standard curve). Erythrocyte size and circularity 

were determined using the blood smear technique described by Cogswell eta!. (2002). 

Blood smears were prepared and 12 erythrocytes· blood smear· 1 were analysed for cell 

perimeter. optical surface area, and circularity (a measure of how round the cell is) . The 

measurements were made using a light microsco pe (Wild Makroskop M420) linked to a 

digital camera (Pixera PVC 1 00), and a desktop PC using Pixera Studio (I-Cube) and 

digital image analysis software (Matrox Inspector 3.0). Mean corpuscular haemoglobin 

concentration (MCHC) was determined as in Sadler eta!. (2000) using the equation: 

Haemoglobin Concentration (g dr 1
) x l 00 

Haematocrit (%) 

A further I ml of blood was drawn from the !·i sh, placed in a centrifuged tube and spun 

~·or 30 seconds at 6000 rpm. 5.50 ,LLI or· pl~tsma was then placed in <~ cryovial (containing 

20 ~d EDTA and 20 ~LI glutathione) cmd quickly li·ozen in liquid nitrogen. This plasma 

was used to measure resting catecholamine levels. while the remaining plasma was 

frozen in another cryovial to be used for the measurement of rest ing cortisol leve ls. 
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The fish was then subjected to a 45 second net stress and returned to the black 

box. Blood for haematological measurements was immediately sampled as described 

above, and a further 1 ml was taken and spun for 30 seconds at 6000 rpm. Again, 550 ~Ll 

• of plasma was obtained from the centrifuged blood. placed in a cryovial (prepared as 

above). and frozen to measu re post-stress catec ho l<.1mine leve ls. Thirty minutes later, 300 

~Ll of blood was drawn from the fi sh and centrifuged (<.1S above). and I 00 ~Ll of plasma 

was frozen in a cryovial to measure post-stress cortiso l levels. 

The extraction of catecholamines (epinephrine and norepinephrine) from the 

plasma involved their binding to alumina at a neutral to alkaline pH. and their elution at 

an acidic pH ( < 3 .0). Catecholamines were extracted by combining 200-500 ~tl of 

plasma, 28 mg of aluminum ox ide, 50 ~tl of DHBA ( 45 ~unol r '), 50 ~Ll of 0.1 M HC104 

(perchloric acid), and enough Tris/Na2EDTA·2H20 buffer (1.5 mol r' Tris, 

Na2EDTA •2H20 0.06 mo l r' , pH 8.6) to get a final vol ume of l m l. Samples were then 

shaken and centrifuged at 7000 rpm for 2 minu tes and the plasma was aspirated from the 

a lumina. T he alumina was then washed twice with 500 ~Ll of 1\tlil li -Q water (pH 7.0) (with 

5 min of shaking and cen tri t"ugati o n in betvveen ). and as pi rated to near cl ryness. Fi nail y, 

250 ~Ll of perchloric acid (pH = 1.0) was added to the tube. the rube was shaken for two 2 

minute periods (separated by 5 min. ), and the tube was centrifuged at 7000 rpm for 1 

minute. This final procedure removed the bound DHBA and catecho lamines from the 

a lumina. and 100 ~Ll of the perchloric acid so lution was then it~j ected into the HPLC for 

the quantification of DHBA epinephrine, and norepineplu·ine. The extraction procedure 
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vvas conducted in a room with controlled temperature (7± I °C), and the samples were 

kept on ice, and in the clark. during the ex traction procedure and between injections. 

Separation and measurement of the catecho lamines in perchloric acid was 

• performed using a Bioanalytical Systems reverse phase high performance liquid 

chromatography system (HPLC) (BAS) (480 se ries, model MR 9245, Bioanalytical 

System Inc. , US!\). This system consisted of a PM 80 pump, an LC epsilon 

e lectrochemical detector (model ES), and an electrochemical cell (LC44 dual glassy 

carbon working electrode with an Ag/AgCl reference electrode (3 M NaCl-gel)). A 

manual injection valve (model 7 125) equipped with a 50 ~Ll loop was used for injection of 

samples into the co lumn (2 .0 mm ID x I 0 em ODS, 3 ~Lm pore s ize, model MF 8954). 

The mobile phase was composed of 94.5 g mo l· ' MCAA (monochloroacetic acid), 372.2 

" mol' ' 
"" 

a2EDTA 21-bO (thylenecli minetetraactic acid) , 41 .05 g mo l' ' CH3CN 

(aceto ni trile, methyl cyanide), 232.3 g mo r' SOS, and 1 Ol\11 NaO H (sodium hydroxide). 

The output from the detector was collected and compare with standards using a computer 

running ChromGraph Control and ChromGraph Report vers ion 2.30 software (200 1, 

Bioanalytical System Inc.). 

Plasma co rti so l concentrat ions were measured using a Coat-a-Count® Cortisol 

radioimmunoassay (RIA) (Diagnostics Products Limited, Los Angeles, CA). The assay 

\\·o rks o n the principle or· compe tit ion between 1 2 ~ 1- labe l ed co rti sol and plasma cortiso l 

r'or antibod y s ites. The antibody is immobili zed to the wall of a polypropylene tube, and 

by s impl y decanting the supernatant. the antibody fractio n of the radiolabe lled cortisol 

can be iso lated. The tubes were counted in a gamma counter (Pac ka rd Autogama 5650, 
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Canberra Packard, Concord, ON), and calculations of cortisol concentrations were made 

using RiaSmartTM, RIA/QC Software (Packard Instruments, Concord, ON) and a cortiso l 

standard curve. The kit was stored in a refrigerator at 2-8°C prior to use, and the assay 

* was done at room temperature. 

2.5.2 Data/Statistical Analys is 

Resting nnd post-stress haematocril, haemoglobin. erythrocyte morphometries, 

and stress hormone levels were compared between groups a·nd between resting and post-

stress values by means of a two-way repeated measures ANOVA (Sigmaplot, SPSS Inc.). 

A significance level of p <O.OS was used for all analyses. 

2.6 Heart Size and Maximum Cardiac Performance 

2.6.1 Sm·gcry and Experimental Pr·otocols 

Trnnsgenic and control salmon (n=8 and 7, respectively) were anaesthetized using 

0. 1 g L- 1 MS-222. n.ncl placed ventral side up on n surgical sponge platform where their 

gi ll s were continuous ly irrigntecl with lO"C oxygenated seawater containing 0.5 g L-1 MS-

222. The fish were then injected with 0.5 m l of heparinized saline ( 100 i.u. mr 1
) (Sigma 

Chemical Co., St. Louis, MO) via the caudal ve in to prevent blood clotting. The pectoral 

nnd pelvic fins were removed, and the body cavity was then exposed through a mid 

ventral incision. Both the stomach and intestines were tied oti w ith braided umbi lical 

tape (Baxter Healthcare Corporation, Deerfield, IL) at a position inferior to the liver. to 



.,., 

.).) 

prevent blood flow to the gastrointestinal tract. The isolated part of the digestive tract 

was then removed. 

An input cannula (stainless steel: 2.0 mm outer diameter, 1.5 mm inner diameter) 

* was tied into the hepatic vei n (us ing J -0 silk sutures. American Cyanamid Company, 

Pearl River, NY) that leads into the sinus venosus. Perfltsion with oxygenated saline 

(1 0°C) (containing 10 nM adrenaline. see recipe below) was started immediately after the 

cannula was inserted, and the height of the perfusate bottle relative to the heart was set to 

ensure adequate cardiac output during surgery. Several gill arches were then cut to 

prevent excess pressure build up in the heart, and the lower jaw was removed. The 

remaining gill arches were removed, and the isthmus was cut between the 2 11
d and 3'd gill 

arches to expose the ventral aorta in cross-section. An output cannula (stainless steel; 1.5 

mm outer diameter. 1.3 mm inner diameter) was then tied into the ventral aorta with 1 

US P s ilk (American Cyanamid Company). 

To prevent loss of perfusate through the back of the heart. the ducts of Cuvier 

were tied off. To accomplish this, a 1 USP si lk suture (American Cyanamid Company) 

was passed at a sharp angle from the corner of the opercular cavity to the exposed muscle 

of the abdominal wall, and then threaded through the oesophagus and back into the oral 

cavity. This suture was tightened tmtil a fin twitch occurred (due to the crushing of the 

vagus nerve), indicating that the duct of Cuvier was tied off After tying oti both ducts of 

Cuvie r. the fish was bisected at a point immediate ly posterior to the pelvic fins and 

transferred to the temperature controlled in situ heart apparatus (F<u-re ll eta/. 1986). 
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Once placed in the in situ apparatus, the input cannula was attached to an 

adjustable constant-pressure head that was used to manipulate atrial filling pressure, and 

the output cannula was connected to tubing whose height could be adjusted to control 

• 
end-diastolic pressure. The heart was perfused with physiological saline (recipe below) 

from temperature controlled (1 0°C) water-jacketed bottles. To prevent excessive cardiac 

work while the input pressure was be ing set to a physio logical relevant resting cardiac 

output(~ 16 ml min- 1 kg- 1
) (Kiceniuk and Jones 1977), and to let the heart recover from 

surgery, output pressure was maint::~ined at 20-30 em f-hO. Subsequently, output 

pressure was raised to 50 em H20. a leve l comparable to in vivo arterial pressure 

(Kiceniuk and Jones 1977). After allowing the heart to stabilize at an output pressure of 

50 em H20 for 15 minutes, resting cardiac performance values vvere taken. Then. 

maximum cardiac output (Omax) was determined by increasing input pressure from the 

he ight required to achieve resting cardiac output to 1.5 em, and then in a stepwise fashion 

(0.5 em increments) to 6.5 em H20 (Figure 3). Power curves were then obtained for the 

in situ heart by lowering output pressure to 30 em H20, and increasing output pressure by 

10 em increments until the heart could no longer pump (or a height of 100 em was 

reCJc hed) (Figure 3). The time spent at each level of input o r output pressure was just long 

enough to allow cnrdiae performance LO s L~Lbilize. approx imate ly 30 seconds. 

Input nnd output pressures were measu red us ing Gould (P23 ID. Oxnnrcl. CA) and Grass 

(PT300, Warwick, Rl) pressure transclLLcers, respectively. and cardinc output was 

measured with a 2-N 1:1ow probe in conjunction with n T206 t1ow meter (Transonic 

Systems Inc., Ithaca, NY). Input and output pressures were corrected to account for the 
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Pout= 100 

Pout =50 Pin=l.S ... ----
1------J Q 1nax 

Pout =30 

Figure 3. Experimental protoco l for m easuring Qmax and power output of the Atlantic 

salmo n heart. T he clashed line represents the end-d iastolic pressure developed by the 

ventric le. determined by adj ust ing the he ight of the o utput pressure head. Pout was 

norma ll y set to a phys io logical ly re::lii stic va lue of 50 em E-1 2 0~ however a sub-

physio logical leve l of Pout (20-30 em fhO) was used at the start of the protocol to let the 

heart recover from surgery. The first set of steps identify the maximum cardiac output 

test (Q111aJ, where Pin was raised sequentia lly from 1.5 em to 6.0 em. while the second set 

of s teps identify the myocardial power test where output pressure was raised from 30 em 

H20 to I 00 em I-hO. while Pin remained at 6.5 em I-hO. 
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eti ect o f the cannulas' resistance between the po int of measurement and the heart (using 

the predetermined calculations in Faust (200 1 )). and the pressure transducers were 

calibrated daily against a static co lumn of water. where zero pressure (0 em H20) was 

• equal to the saline level in the experimental bath. Pressm e and flow s ignals were 

amplified and filtered using a M ode l MPlOOA-CE data acquisition system (BIOPAC 

Systems [nc. , Santa Barbara, CA), and the acquired signals were stored and analyzed 

us ing Acknowledge Software (Biopac Systems Inc.) insta lled on a 300 M H z Macintosh 

G3 co mputer. 

After each ex periment, the heart was tested to ensure that no leaks were present. 

This was done by: I) c lamping the inpu t perfusate line with a pa ir of haemostats and 

ensuring cardiac output fe ll to zero: ::mel 2) ra is ing the output tu be w hile the inp ut line 

vvas c lamped. and e nsuring no s igniti canl backtlow occ urred. No leaks were found in any 

o f the heart prepa rations. The hear ts were then dissected from the tish, and the chambers 

we re separated, blotted dry, and weighed. The co mpact myocardium of the ventricle was 

then separated from the spongy by dissectio n. and each was we ighed individually. 

2.6.2 Experimental Solutions 

Hearts were perfused with physiological marine te leost saline during the surgery 

and d uring the experimenta l peri od contai ning (i n mfvl): 181.3 NaC I. 5.0 KC I, 2 .30 CaCl 

x 2 !-1 20 . 1.99 MgSO-t x 6H20 . 2.58 TES Acid . 7.3J Sod ium TES base. and 5 .55 dextrose. 

(Gamperl et of. Unpubli shed). These chemicals were obta ined from Fisher Scientific 

(f-air Lawn. NJ), with the exce ption of the TES sal t and adrenaline. which were 
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purchased from Sigma Chemical Co. (St. Louis, MO). The TES buffer system was used 

to simulate the buffering capacity of salmon plasma, and the normal change in blood pH 

with temperature (6pKa/dT = 0.016 pH Lmits °C 1
) (Keen et al._ 1993). Adrenaline 

• ( 1 OnM) was added to the pe rfusate to ensure the long-term viability of the in situ heart 

(G raham and Farrell 1989). The so lution was continuously gassed with oxygen during 

both su rgery and while the in situ measm ements were bei ng made. The pH of the 

surgical saline was approximately 7. 76 at 1:2"C. 

2.6.3 Data/Statistical Analysis 

Cardiac function was continuously monitored throughout the experiment by 

measuring cardiac output (ml min- 1kg- 1
), input pressure (Pin) and output pressure (Pout) . 

A lthough data was continuously collected. cardiac function was only analysed at specific 

intervals during each experiment. Resting cardiac function [Pin, fH (beats min-1
), Qresr, and 

Sv] was measured prior to the Omnx test. Maximum cardiac function was quantified by 

measuring Om:~~. f11 • Sv, and P0 . Heart rate was calcu lated by measuring the number of 

systolic peaks during a 20 second interval. then mul tip lying by 3. S troke vo lume (ml kg" 1 

beaf 1
) and Po (mW g ventricle-1

) were calculated as: 

Stroke Volume (Sv) = Cardiac output (ml min-1kg- 1
) / Heart rate (beats min-1

) 

Myocardial Power Output (Po) = (Q · (Pour-Pin)· a)/Ventricular mass (g) 
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Where: Pout and Pin are output and input pressures (in em H20) respectively, and a= 0.098 

(mW sec mr 1 em f-b0- 1
) is the conversion to mil li watts. Data were analyzed between 

gro ups by means of a o ne-way AN OVA (p <0.05) (Sigmaplot, SPSS Inc. ) . 

* Heart chamber masses were compared between control and transgenic salmo n by 

means of an ANCOVA with body mass as the covariate. Relative ventricular mass 

(RVM; mass of ventricle/body mass x 100) and Ventricle:Atrium and Ventri c le:Bulbus 

mass ra tios were compared between control and transgenics salmon usmg a one-way 

ANOVA (p<O.OS) (Sigm aplot, SPSS Inc.) . 
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3.0 Results 

3.1 Morphometries 

Transgenic and control. salmon were similar in fork length, opercular length, 

caudal peduncle depth, and caudal fin surface area (Table 1 a). 

3.2 Metabolism and Swimming Per·formance 

Figure 4 shows the oxygen consumpLion rate of Lransgenic and control salmon at 

all swimming speeds. Both the routine M02 and standard l\1102 were significantly greater 

in the transgenics (p=0.03 for both), exhibiting an 21% and 25% elevation over that of 

the controls, respectively (Table 1 b). However, M02111a.~ was not significantly ditferent 

between groups (p=0.42). The higher standard M02• coupled with the unchanged 

M02mt~:x , resulted in the transgenics having a significantly lower absolute scope (by 18%) 

and factorial metabolic scope (by 29%). Ucrit was significantly greater in the control 

salmon (p=0.039), as they swam 11% faster than the transgenics. No correlation was 

found between Ucrit and red muscle enzyme activity (data not shown). 

3.3 Gill Morphometr·y 

The gills ol· Lhe Lransgcnic and conlrol lish shmved no obvious d iiTer nces in 

morphology when viewed by the naked eye or under a dissecting microscope. Table 2 

shows the mean values tor a number of gill parameters scaled to 1 kg (see pg 27), which 

allows for comparison of the transgenic and control fish's gill areas independent of body 
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Table 1. Physical characteristics, oxygen consumption, metabo lic scope, and critical 

swimming speed for transgenic and control At lan tic salmon at I one. Values represent 

means ± I standard error.* inj icates a signilicant difference (p<O.OS). (a) Morphometric 

measurements for fish used in the o.\ygen consumption and swimming experiments . (b) 

Routine, standard, and maximum oxygen consumption (mg 02 kg- 1 lu·- 1
), absolute and 

factoria l metabolic scope, and UcriL (BL sec- 1
) for transgenic and control Atlantic salmon. 

(a) 

Control Transgenic Trans/Con p-value 
(n=8) (n=8) Ratio 

Mass (g) 884 ± 86 828 ± 40 0.94 0.56 
Fork Length (em) 56.5 ± 3.7 56. 1 ± 2.0 0.99 0.92 
Depth (em) 10.8±0.7 106 ± 0.3 0.98 0.68 
Opercular Length (em) 8.9 ± 0.7 8.8 ± 0.4 0.98 0.61 
Peduncle Depth (em) 4.2 ± 0.4 4.2 ± 0.2 0.99 0.97 
Caudal Fin Area (cm2

) 47. 1±6.9 52.8 ± 3.5 1.12 0.24 

(b) 

Control Transgenic Trans/Con p-value 
(n=8) (n=8) Ratio 

Oxygen Consumption 
(mg 0 2 kg-1 h(1

) 

Standard 46.4±2.1 58.1 ± 4.4 1.25 0.03* 
Routine 64.5 ± 3.9 78.2 ± 4.7 1.21 0.03* 

Maximum 418.2 ± 18.6 379.5 ± 25.3 0.91 0.42 

Absolute Scope 373.0± 18.8 306.2 ± 19.2 0.82 0.03* 
Factorial Scope 9.13±0.49 6.51 ± 0.58 0.71 0.004* 

U crit (BL sec-1
) 2.2 ± 0.1 2.0 ± 0.1 0.91 0.04* 
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Figure 4. Mean standard oxygen consumption (mg 0 2 kg- 1 br-1
) of transgenic (open 

circles, y = -9.88 + 174. 92x + 9.17x2
) and control (c losed circles, y = - 18.27 + 14 7 .49x + 

2 1.95x2
) Atlantic salmon at vari ous swimming speeds in a Blazka swim tunnel. Val ues 

represent means ± I standard error ( IF~ ). 1-: it ted lines represent a li near regresston 
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Table 2. Gill morphometric parameters for transgenic and control Atlantic salmon. 

Values shown are means ± 1 standard error, and all data were compared using an 

ANCOVA w ith body mass as the covariate (except for body mass which was compared 

• using a one-way ANOV A. p<O.OS). Significance for the ANCOV A was de termined using 

the calculated comparisonwise p -value (see methods section). F ilament length and 

number are values fo r the left s ide o t· the body only. 

Control Transgen ic Trans/Con p-value 
(n=8) (n=8) Ratio 

Mean Body Mass (g) 884 ± 86 828 ± 40 0.97 0.56 

Number of Filaments 
Arch1 251 ± 19 256 ± 15 1.02 0.86 
Arch2 268 ± 20 276 ± 13 1.03 0.73 
Arch3 274±19 267 ± 13 0.97 0.77 
Arch4 260 ± 26 240 ± 12 0.92 0.51 

Length of Filaments (mm) 
Arch1 2380 ± 87 2600 ± 89 1.14 0.26 
Arch2 2669 ± 121 2911±86 1.13 0.20 
Arch3 2580 ± 159 2672 ± 45 1.10 0.35 
Arch4 2135 ± 166 2032 ± 76 0.99 0.1 0 

Total Filament Length (mm) 9765 ± 416 10216 ± 247 1.08 0.35 

Lamellar Density(# mm.1
) 26.6 ± 3.5 22.8 ± 3.2 0.86 0.25 

Number of Lamellae (Entire Fish) 306570 ± 21845 285129 ± 13175 0.93 0.41 

Area of Lamella (mm2
) (One Side) 

Large Base 0.144 ± 0.011 0. 195 ± 0.001 1.36 0.01 
Large Middle 0.113±0.013 0. 111 ± 0.002 0.98 0.94 
Large Tip 0.094 ± 0.002 0. 101 ± 0.001 1.07 0.71 
Medium Base 0.107 ± 0.002 0.136 ± 0.002 1.27 0.16 
Medium Middle 0.113±0.001 0.121 ± 0.001 1 07 0.60 
Medium Tip 0.069 ± 0.002 0.081 ± 0.001 1.17 0.64 
Small Base 0.124 ± 0.001 0.11 5±0.001 0.93 0.60 
Small Middle 0.071 ± 0.001 0.107 ± 0.001 1.51 0.01 
Small Tip 0.046 ± 0.001 0.078 ± 0.001 1.69 0.11 

Gill Area (Entire Fish) (mm2 g·1
) 143.37±1 0 134.8±6.0 0.94 0.49 

• 



43 

mass. No significant differences were found in the filament length o r total gill surface 

area w ith respect to arches l , 2, or 3. however mch 4 had significantly shorte r ti laments 

in both the transgenics (p<O.OOO l) and controls (p=0.059) (be ing 26% and 17% shorter 

* than the average filament lengths from the remaining arches, respectively). Arch 4 also 

had a significantly sm aller (p<O.OOOI) total surface area than the other arches. Lamellae 

at the base of the filaments had a greater surface area (p<O.OOl) than those at the distal 

ends, and this variation was due to the filament being wider at the base. 

Transgenic salmon had a consistently (though not significantly) greater lamellar 

area at most of the positions on the filaments (Table 2), and marginally longer average 

filament lengths on each arch (except arch 4). These differences were contrasted by the 

co ntrol s having a s lightl y higher lamellar density than the transgenic fish. These 

morpho logical differences offset each oLher. and resulted in s imi lar total mass specific 

gi ll surface areas between transgenic and control salmon ( 143 .3± 10. 1 mm2 g-1 and 

134.8±6.8 mm2 g- 1
, respectively) (p=0.49) . Further. no relationship between standard 

(Figure 5) or maximum oxygen consumption (data not shown) and gil l surface area were 

evident. 

3.4 Str·ess H01·mones 

Resting cortiso l leve ls were not s ignifica ntly d ifferent between the contro l and 

trJnsgenic salmon (Tab le 3). 8oth the transgenic and control salmon showed a s igniti.cant 

increase in post-stress co rtisol when compared to their rest ing va lues (by 351% and 5 1 1Yo. 

respective ly). However, post-stress cortiso l levels in the control salmon were 
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significantly higher (by 28%) than in the transgenics. Resting and post-stress 

norepinephrine levels were significantly higher in the transgenics than in the controls (by 

2.6x and 1.8x, respectively) (p=0.004), with both groups exhibiting a significant post

* stress response as compared to their resting values (2 .l x and 3.0x, respectively) . Both the 

transgenic and control salmon had significantly greater post-stress epinephrine responses 

as compared to their resting values (by 3.6x nnd J.7x. respectively), with the transgenics 

having a 1.67x higher post-stress plasma concentration than controls (p=0.03). Finally, 

the transgenic sa lmon had a sign ificantl y greater (by I OWYo) total resti ng and total post-

stress (by 70%) catecholamine response as compared to the controls. 

3.5 Haematological Parameters 

The control salmon' s erytlu·ocytes had a signiticantly greater perimeter (by 3%) 

and compactness (by 8%) than the transgenics ' (Table 4). These differences, however, 

may have limited bio logical signi.ticance as there vvas no ditTerence found in the 

e rythrocyte 's optical surface area (p=O.I 0). No significant differences were found for 

haematocrit when comparing l·ish types. 0 1· pre/post-s tress samples (Tab le 4). The control 

l·ish·s blood exhibited a limited haemoglobin stress response, with post-stress levels <4% 

higher than pre-stress levels . Although the transgenic salmon had a significantly greater 

post-stress haemoglobin concentration than the contro l salmon (by 12%), thi s was not a 

statistically significant increase over that of their resting value (p=0.075). No difference 

was found in MCHC, either between the transgenics and controls, or when pre/post 

values were compared. These minimal differences in blood parameters following the 45 
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Figure 5. Relationship between standard oxygen consumption (mg 0 2 k{ 1 h(1
) and total 

g ill surface area (mm2
) for transgenic (open circles. y = 0.0004 + 33.4x, R2=0.11, p=0.67) 

and control (closed circles, y = -0 .0003 + 0. 106.25x, R2=0.25 , p=O.SS) Atlantic salmon. 

Fitted lines are linear regressions. 
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• Table 3. Resting and post-stress plasma cortisol and catecholamine levels in transgenic 

and control Atlantic salmon. Resting measurements were taken 48h after cannulation and 

black box confinement. Post-stressed catecholamine levels were taken immediately after 

a 45 second net stress, whereas post-stressed cortisol levels were taken 30 minutes later. 

Values represent means ± 1 standard error. *indicates a significant difference (p<0.05) 

between transgenic and control salmon, ·;·indicates a significant difference (p<0.05) 

between resting and stressed fish. 

Trans/Con p-value 
Control Transgenic 
(n=8) (n=8) Ratio 

Cortisol (ng ml-1
) Rest 12.1 ±1.7 11 .6±2.3 0.95 0.86 

Stress 24.7 ± 2.3t 17.8± 1.3t 0.72 0.02* 

Epinephrine (nM) Rest 3.3 ± 0.6 5.8±1 .7 1.76 0.17 
Stress 12.3±2.1t 20.6 ± 2.8t 1.67 0.03* 

Norepinephrine (nM) Rest 1.7±0.3 4.3 ± 0.8 2.53 0.02* 
Stress 5.0 ± o.8t 8.9 ± 0.7t 1.78 0.004* 

Total Catecholamines Rest 4.9 ± 0.9 10.2 ± 2.1 2.08 0.04* 
(nM) Stress 17.4±2.9t 29.6 ± 3.4t 1.70 0.02* 
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Table 4. Erythrocyte morphome ics and haematological parameters for transgenic and 

control Atlantic salmon. Mo rphometries we re measured using optical techniques, with 

compactness being a function of the area and perimeter of the erythrocyte (values farther 

ti-om 1 indicate a more oblong shape) . All values represent means ± 1 standard error. 

*indicates a significant difference (p<O.OS) between transgenic and control salmon, 

.,.indicates a significant difference (p<O.OS) between resting and post-stressed samples. 

Control Transgenic Trans/Con p-value 
Morphometric Parameter (n=7) (n=8) Ratio 
Optical Surface Area (mm ) 129.7 ± 2.0 125.5 ± 2.0 0.97 0.10 
Perimeter (mm) 45.2 ± 0.4 44.0 ± 0.4 0.97 0.02* 
Compactness 1.3 ± 0.01 1.2±0.01 0.92 0.02* 

Blood Parameter 

Haematocrit Resting 29.8 ± 1.6 30.6 ± 2.0 1.02 0.79 

(%) Stress 33 .3 ± 2.9 31.5 ±1 .9 0.95 0.66 

Haemoglobin Resting 6.2 ± 0.2 6.6 ± 0.2 1.06 0.24 

(g dr1
) Stress 6.4 ± 0.2 7.3 ± 0.3 1.14 0.04* 

MCHC Resting 21.4±1.4 22.8± 1.7 1.07 0.63 

Stress 20.7 ± 1.6 23.9 ± 1.2 1.15 0.1 8 
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second net stress suggest that this type of stresso r was not severe enough to elicit any 

major haematological changes in these tish . 

• 3.6 Enzyme activity and Protein Content 

In both groups, protein content was found to be greatest in the white muscle, followed by 

the red muscle, and then the heart muscle (ranging from 147.8 to 118.1 units· g protein-1
) 

(Table 5). No difference was found in protein content of the heart or the reel muscle 

when fish groups were compared. However the transgenics' white muscle had a 

significantly greater protein content (by 4(Yc>) than the controls. cs and ceo activity 

were greatest in the heart (~0.2 and 0. l 90 units · g protein-1
, respecti vely), while white 

musc le had the lowest activity (~0 . 0 l 0 and 0.0 I ~ units · g protein-1
, respectively), and the 

red muscle vvas intermediate (~0.07 and 0. l 5 units · g protein-1
, respectively) . The 

transgenic hearts had a significantly greater CS activity, both in terms of activity per wet 

mass (data not shown), and per gram of protein (p=0.0002 and p=0.00039, respectively). 

Although, no difference in CS activity was observed in the white or red muscle, the CCO 

activity was signiticantly higher in the transgenics' red muscle. on both a per-gram wet 

mass (data not shown) and per-gram protein basis (p=0.0 18 andp=0.007, respectively). 

-
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Table 5. Protein content (mg · g et tissue- 1
) and CS and CCO enzyme activity 

(units · g prote in- 1
, at I 0°C) in heart, red_ and white muscle tissue from transgenic and 

control Atlantic salmon. Values represenL means ± l standard erro r. *indicates a 

significant difference (p<O.OS) between transgenic and control salmon. Protein content 

was highest in the white muscle> red muscle> heart (p<O. 00 1 ), and both enzyme's 

activities were highest in the heart> red muscle>white muscle (p<O.OOl). 

Control Transgenic Trans/Con p-value 
(n=8) (n=8) Ratio 

Protein 
Heart 118.1±0.3 118.4 ± 0.3 1.01 0.52 

Red 134.7 ±0.5 133.8 ± 0.3 0.99 0.16 
White 141.9 ± 0.7 147.8 ± 0.4 1.04 <0 0001 * 

CS activity 
Heart 0.117 ± 0.002 0 129 ± 0.002 1.10 <0.0001 * 

Red 0.071 ± 0 002 0.069 ± 0.001 0.97 0.34 
White 0.011 ± 0.001 0.01 0 ± 0.001 0.91 0 16 

ceo activity 
Heart 0.190 ± 0.003 0.192 ± 0.003 1.01 0.73 

Red 0.145 ± 0.002 0.152 ± 0.001 1.05 0.007* 
W hite 0.017 ± 0.000 0.019 ± 0.000 1.12 0.21 

L 
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3.7 Heart Morphometries and Performance 

The hearts of the transgen ics had a greare r RVM (by 29%) than the control 

* salmon (Tab le 6), whil e the a trium and bulbus masses showed no significant diffe rences 

between groups. The relative amount of compact myocardium was also not different 

between the groups, and there was no correlation between the amount of compact 

myocardium and body mass (data not shown) . When the mass of the atrium and bulbus, 

re lati ve to the ventricle, was compared between groups, no significant differences were 

found. However the transgenic salmon tended to have a greater ratio (suggesting a larger 

ventricle compared to the rest of the heart) in term s of both the atrium and the bulbus 

(p= O. I and 0.054. respective ly). 

Resting in situ input pressures were subambien t. and. although there was a 36% 

diffe rence in average resting input values between groups. a high degree o f variation 

made this diffe rence insignificant (Table 7) . Heart rates were signi.ticantly greater in the 

transgenic salmon than in the controls. with resting and maximum heart rates being 14% 

(or approximately 11 BPM) and 7% (or approximately 5 BPM) higher, respective ly. The 

transgenic fish were able to develop a significantly greater maximum cardiac ou tput (by 

18%. w hen scaled w ith body m ass), however, this d ifference was not evident when 

calcu lated vvi th res pect to ventricular mass. Maxim um stroke vo lumes were nol 

s i gni tic~mtly ditferent between the transgenics and contro ls. either per gram body mass 
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Table 6. Heart chamber morphometries in transgenic and control Atlantic salmon. 

Ventricle mass was compared using the relative ventricular mass (RVM) measurement 

and also by using an ANCOVA with body mass as a covariate (Ventricle mass (g)). 

'Ventricle:Atrium' is the ratio of ventricular mass to atrial mass, and 'Ventricle:Bulbus' 

is the ratio of the ventricular mass to the bulbus ' mass. Values represent means ± 1 

standard error. *indicates a significant difference (p<0.05). 

Control Transgenic Trans/Con p-value 
{n=8} {n=8) Ratio 

Body Mass (g) 595 ± 21 577 ± 21 0.97 0.63 

Ventricle Mass (g) 0.410±0.15 0.517±0.02 1.26 <0.0001* 
RVM 0.069 ± 0.002 0.089 ± 0.002 1.29 <0.0001* 
Atrium Mass (g) 0.098 ± 0.01 0.103±0.01 1.05 0.54 
Bulbus Mass(g) 0.120 ± 0.01 0.113 ± 0.01 0.94 077 

Ventricle:Atrium Mass 4.4 ± 0.3 5.16 ± 0.3 1.17 0.10 
Ventricle:Bulbus Mass 3.64 ± 0.4 4.8 ± 0.5 1.32 0.06 

% Compact Myocardium 44.8 ± 1.0 46.5 ± 1.1 1.04 0.45 



52 

Table 7. Resting heari rate and input pressure, and maximum cardiac performance, in 

transgenic and control Atlantic salmon. Resting Pin was set to achieve a physiological 

resting cardiac output of approximately 16 ml min-' kg- 1
• Values represent means± 1 

standard error. *indicates a significant difference (p<0.05). 

Control Transgenic Trans/Con p-va /ue 
(n=8) (n=7) Ratio 

Resting 

P;n (em Water) -1 .51 ± 0.60 -0.97 ± 0.25 0.64 0.35 
Heart Rate (BPM) 73 ± 2 84 ± 3 1.14 0.007* 

Maximum 

Q (ml min-1 kg-1) 63.8±1 .9 75.5 ± 2.8 1.18 0.005* 
SV (ml kg-1

) 0.93 ± 0.03 1.03 ± 0.05 1. 11 0.16 
Heart Rate (BPM) 69 ± 1 74 ± 2 1.07 0.04* 

Q (ml min-1 g venf1
) 96.0 ± 4.4 95. 7 ± 1.9 0.99 0.95 

SV (ml g venr1
) 1.4 ± 0.09 1.3 ± 0.04 0.94 0.28 

Power (mW g venf1
) 9.69 ± 0.41 9.67 ± 0.5 0.99 0.98 
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Figure 6. The effect of increased input pressure (in em water) on maximum in situ stroke 

volume (ml · kg- 1 and ml · g ventricle-') of transgenic and control Atlantic salmon hearts. 

(a) Transgenic salmon are represented by open circles (y = 0.36 + 0.14x- 0.002x2
, 

R2=0.98) and controls are represented by closed circles (y = 0.43 + 0.1lx - 0.002x2
, 

R2=0.99). (b) Transgenic salmon are represented by open ci rcles (y = 0.45 + 0.18x -

0.003x2
, R2=0.99) and controls are represented by closed circles (y = 0.64 + 0.17x -

0.003x2
, R2 =0.99). Curves were fitted with second order regresswns. Error bars 

represent ± 1 standard error (p<0.05). 

.. 
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Figure 7. The effect of increased o utput pressure (in em water) on myocardia l p ower 

output (mW · g ventricle- 1
) of in situ transgenic (open circles, y = -1 3.2 + 0.7lx- 6 .9 lx2 

+ 1.83x3
, R2=0.95) and control (closed circles y = -1 4.2 + 0.75x - 7.2x2 + 1.83x3

, 

R2=0.98) Atlantic salmon hearts. Hearts were left at the P in at which Omax was obta ined 

while P out was being manipulated. Curves were fitted with a second order regression. 

Error bars represent ± 1 standard error (p<O.OS). 
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(Table 7 and Figure 6a) or per gram ventricle (Table 7 and Figure 6b). However, the 

transgenics tended to have lower ventricle-specific stroke volumes due to their larger 

ventricles and higher heart rates.. Maximum power output was not different between 

* 
groups (control: 9.69 mW g venf 1

, and transgenic: 9.67 mW g venf 1
) (Table 7 and Figure 

7). Further, maximum power was achieved at similar output pressures in both groups (73 

em H20), and the relationships between power output and output pressure were identical. 
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4.0 Discussion 

4.1 Overview of Study 

rt is well documented that xercise training increases heart function (Farrell eta!. 

1990; Farrell et ul. 1991 ), swimming perfo rm ance (Bainbridge 1962; Davison and 

Goldspink 1977; Mcbrlane and McDonald 1999), grow1h rate (1-foul ihan and Laurent 

1987) and fuel efficiency (Lauff and Wood 1997), and alters the stress response 

(Woodward 1983), by applying an energetic pressure to fish. Thus, the fish is fo rced to 

upregulate its body's systems in response to the added demands of exercise (see 

Gallaugher eta!. 2001). My hypotheses at the beginning of this research were: 1) that 

GI-I transgenic Atlantic salmon, under the influence of the additional GI-I gene, are being 

"metabolically trained''; and 2) this constant metabolic pressure associated with enhanced 

growth results in an upregulation of their cardiorespiratory system to cope with the 

additional stress placed on it. 

This study shows that numerous ~1 spects of' the transgenic salmon's 

cardiorespirato ry system are upreguL1ted. Fm instance, they have a 29% larger heart with 

an 18% greater capacity to pump blood (Tables 6 and 7). Their blood can carry more 

oxygen due to its s ignificantly greater post-stress haemoglobin content and smaller 

erythrocytes (Table 4). The greater activity of the aerobic enzymes CCO and CS in the 

red and heart muscle, respectively (Table 5), may increase the transgenic salmon ·s ab ility 

to generate energy through oxidative metabolism. Finally, their stress hormone levels 

have been a ltered through changes in cortisol, epinepl1rine, and norepinephrine (Table 3), 
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a modificatio n that may affect how they react to envi ro nmenta l stressors and adjust other 

hormone-mediated phys io logical functions . 

Overall, the upregulation of the GH transgenic 's cardiorespiratory system appears 

to be in agreement with the theofy of symmorphosis. However, the "pressure" of the 

transgene, and the associated metabolic upregulation, was not enough to change all 

physiological aspects of these fi sh. Gill surface area did not increase in the transgenic 

salmon, and this lack of response appears to be limiting their maximum performance. 

This may account for their lower Ucrit. unchanged M02 111a:-,, and subsequently lower 

metabolic scope (Table 1 ). Thus, even though most of the ir cardiorespiratory system was 

upregulated, a complete elevati on, as s ugges ted by symmorphosis, was not achieved. It is 

known that the addition of a transgene em have pleiotropic a ffects on an animal's 

systems (Berkowitz and Krys pin-So rensen 1994). However, l cons ider it highl y unlikely 

that the trans gene 's effect would be evident in all othe r systems tested and not in the gills; 

especially since the gills are responsible for 87% of the oxygen uptake in salmonids 

(Kirsch and N01motte 1977). Other possible reasons fo r this lack of change in gill surface 

area are discussed in detail begi1ming on page 66. 

This study builds on the work of other authors who measured metabolic function 

in GI-l transgenic fi sh, and he lps to c lear up issues about previous studies due to possible 

methodological problems. First, a major co ncern regarding previous studies was that the 

transgeni c fi sh had skeletal and muscular de formiti es (Farrell el of. 1997; Ostenfeld el of. 

1998). T his resulted in these !ish no t be ing in the same physiological cond ition or health 

as the non-transgenics, and thus compariso ns were ambiguous. T his may have been 
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associated with the presence of several copies of the transgene. However, the strength of 

the promoter, the sight of incorporation, or the makeup of the gene construct itself could 

also have lead to the physiological defects found in these lines . Second, routine M02 was 

• often m easured on groups offish, rather than on individuals (Stevens eta!. 1998; Cook et 

of. 2000a, b). This likely resulted in elevated M02 leve ls in the transgenics clue to their 

hi gher rates ofetc ti v ity and more aggress ive n<lture (Abrahams and S utterl in 1999; Devlin 

et a/. 1999). T hese two confounding r~1cto rs were e limin::tted in this study, as my 

tmnsgenic salmon were from a s table line with only one add itional copy of the GH gene 

(Fletcher et al. 200 1) and showed no signs of gross morphological defects, and all 

metabolic tests were clone on individuals whose activity level was controlled. Given the 

comprehensive nature of this study, the fact that the influence of extraneous 

environmental variables were minimized (by rearing the fish in a common tank), and that 

the effects of mo rphological anomalies and di±Ierential activity rates were removed, I 

believe thi s study provides an accurate picture of how the presence of an additional GH 

gene atlects post-smolt Atlant ic salmon physiology. Further, this study acts as a well 

contro lled mode l fo r symmorphos is, given that the only variab le changed between groups 

is the add ition of::t s ing le GH gene. 
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4.2 Metabolic Rate and Ucrit 

4.2. t Routine Metabolic Rate 

The routine M02 of my 'fontrol Atlantic salmon is s imilar to values reported for 

other salmonids (56-61 mg 02 kg- 1 h( 1
) (Hughes and Saunders 1970; Ultsch et al. 1980; 

Gallaugher et a!. 2001). However, the transgenic salmon had a significantly greater 

routine metabolic rate ( 1.2x) as compared to the controls. This magnitude of difference 

between the transgenics and controls is in agreement with Lee et a/. (2003), who found 

an elevated routine M02 of a 1.2 1 x in adult transgenic coho salmon. However, it is in 

contrast to Stevens eta!. (1998) and Cook et al. (2000b) who found a - l. 7x increase, and 

Leggatt et a /. (2003) who report that contro l coho salmon had higher routine metabol ic 

rates. The greater difference t'ound by Stevens el ul. ( 1998) and Cook eta!. (2000b) was 

li ke ly clue to their tish being smaller. as the disparity in growth rates between GH 

transgenics and non-transgenics tends to be greater when they are yo ung ( < 1 00 g) 

(Margaret Shears, personal communication). Further, they used groups of approximately 

50 fi sh in a common respirometer to obtain routine l\1102. The more active and aggressive 

transgenics (Abrahams and Sutterlin 1999; Herbert et a!. 200 1; Leggatt e/ a!. 2003) 

would likely move around the tank more, a situation that would lead to much higher 

oxygen consumption rates than true routine levels. Also when fish are brought into the 

lab hom the wild (as in Leggatt et a!. 2003) they tend to be very skittish (Bob Devlin, 

personal communication) and this can greatly af-fect their oxygen consumption rates, and 

co nsequently the valid ity of compari sons between groups. Finally, confounding factors 
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such as time of day (De Sil va el uf. 1986; Waller 1992), sex, and season ha,·e been shown 

to affect metabolic measurements (Dickson and Kramer 197 1 ), and their possible 

influence cannot be eliminated when comparing studies . 

• With a body of evidence showing that transgenic fish have an increased activity 

and greater appetite and SDA as compared with controls (Abrah::tms and Sutterlin 1999; 

Cook et a!. 1999; Herbert et a!. 200 1; Leggatt et a!. 2003 ), one must be careful when 

comparing oxygen uptake measurements. Greater spontaneous activity cannot be a factor 

in the transgenic fish 's increased routine M02 found in this study. Only minimal pectoral 

fin movements and occasional tail beats were made by the fish. with them resting on the 

bottom of the tunnel throughout most of the 20 minute routine M02 measurement. In 

addition, the salmon used in these studies were fasted for 2 clays prior to testing. a period 

twice that required for this species to complete digestion at 7"C (Sveier et a!. 1999). 

Further, Leggatt et a!. (2003) showed that 48 hours after the start of fasting transgenic 

and non-transgenic coho salmon did not have a significantly different resting oxygen 

uptake. Thus, this research demonstrates that the higher routine M02 is a genuine 

physiological trait of these post-smolt GH transgenic salmon, not clue to differences in 

spontaneous activity or SDA. 

Several physiological changes have been noted in transgenic fi sh that may support 

their inherently greate r routine M02. T hese include a :2 .2x greate r intestinal surface area 

(Stevens and Devlin 1999). a greater ::tmount of red muscle (Hil l el of. 200 1 ), and a 

greater white muscle protein content (Hill eL a!. 200 1: th is study). An elevated aerobic 

capacity is necessary to facili tate increased protein synthesis (Mathers el a!. 199:2), thus a 
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higher protein tuniover rate and greater oxygen consumption are clearly linked (Goolish 

and Adelman 1987; Waterlow and Millward 1989; Houlihan 1991 ). Since protein is 

energetically more costly to synthesize than any other body constituent (Hommes 1980) 

* and white muscle accounts for 70% of body mass and 40% of the body's protein 

synthes is (Fauconneau and Arnal 1985 : Houlihan el of. 1988). it is likely that the higher 

protein synthesis (and/or possibly a greater turnover rate) in the transgenics ' w hite 

muscle (evidenced by its higher protein content, this study) is contributing to their 

significantly increased routine M02. Transgenic salmon grow faster, and tllis may have 

contributed to their elevated routine M02, as the two have also been I inked in a variety of 

fish species (Pauly 1998; Galarowicz and Wahl 2003). This higher growth rate, and the 

greater protein synthesis rate associated with it (Couture et a!. 1998), would exacerbate 

the effect that the transgenics' more proteinacious muscle has on oxygen requirement, 

and result in an even greater increase in routine M02 over the slower growing controls. 

4.2.2 Maximum Metabolic Rate and Metabolic Scope 

The M02nwx values for the transgenic and control Allan tic sa lmon were not 

ditlerent. and agree with those for other salmonids (350-375 mg 0 2 kg' 1 hr' 1 at similar 

temperatures) (Kiceniuk and Jones 1977; Alsop and Wood 1997; Burgetz eta!. 1998). 

This agrees \-vith the findings of McKenzie el ul. (2003) \\·ho fclllnd no difference in 

M02111 ax in transgenic tilapia when compared to non-transgenic controls. but contrasts Lee 

el a!. (2003) and Stevens eta!. (1998) who report an ll% lower and 60% higher M02max 

in transgenic coho and Atlantic salmon. respectively. Tl1is discrepancy between studies 
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is most li ke!) due to methodo logical differences. For instance, Lee et a!. (2003) used 

large (>2 kg) tank reared transgenic coho salmon and compared them to ocean-ranched 

coho salmon that were sampled du ring tl1eir spaw ning migration. These ocean-ranched 

• "controls" wo uld be expected to have a hi ghe r M0211wx than the tank-reared transgenics. 

given tile physiological upregulation associated with the migration. prey capture, predator 

avoidance, etc., of the prolonged ocean portion of their life cycle. Thus, environmental 

factors , rather than direct effects of the transgene, most likely lead to the lower M02max 

exhibited by their transgenics. Further, Stevens et af. (1998) used considerab ly smaller 

fi sh ( ~ 10 g), making direct comparisons to the current study difficult. For in stance, 

s mall er tish eat more per gram body mass. a differe nce that can be 2-5 fo ld between JOg 

and 650g (S ilverstein and Freeman 200 I ; Damsgarcl et a!. 1999). This greater food 

intake, and thus SDA, could have caused their fVIO~,nax to increase to accommodate the 

consis tentl y large oxygen demand associ~1 tecl with large meals. Fish h::eding at high rates 

a lso exll ibit a greater degree of energetically costly foraging activity (Beamish 1964; 

Smit 1965; Brett and Zala 1975; Jobling 1994; Krohn and Boisclai r 1994), which may 

a lso have lead to an elevated M02max· Finally, transgenic fi sh have an increased ability to 

process food (Cook 2000a). This, when coupled with the smaller salmon's larger food 

intake (Cook et a!. 1999; Cook et af. 2000a). would result in them having to allocate a 

propo rtionate ly greater amount of oxygen fo r digestion and wo uld therefore need an 

e levated M02rn ax to stil l maintain enough metabo lic capacity ro r other processes. Even 

though McKenzie et a!. (2003) used smaller tish as wel l (~ 70g), comparisons are 

co nJ:o unded by the e tTect of their ~25"C water temperature ·son digestion and activity. 
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The higher routine M02, and unchanged M02max, resulted in the transgenic 

salmon having a 29% lower scope for activity than controls. A depressed metabolic 

scope (by 19%) was also found by Lee el a!. (2003) in transgenic coho salmon, while 

* McKenzie el of. (2003) showed no di fference in scope between transgenic and non-

trunsgenic tilapia (due to concomitant increases in routine M02 and M02111aJ. The adul t 

transgenic salmon' s lower scope fo r ucti vity in thi s study (a nd in Lee el o/. 2003) resul ts 

in them having less oxygen to carry out physiological processes (e.g. activ ity, digestion, 

reproduction, etc.) . Fish must be able to mul titask (or budget) the ir oxygen between 

these demanding processes (Pauly 1998). Pauly (1998) calculated energy budgets for 17 

species of fish based on their metabolic, growth , and activ ity rates. He concluded that 

fi sh have to '"choose'' to allocate the limited oxygen they have to fue l either a higher 

growth rate or greater performance. T hus. with their highe r standard M02, the 

tmnsgenics appear to be favouring growth, at the expense of maximum performance (as 

evidenced by their lower Ucrit) . 

4.2.3 C ritical Swimming Speed 

Ucrit values fo r the transgenic and contro l Atlantic salmon (2 .0-2.2 BL sec- 1
) agree 

well w ith those of similar sized sa lmonids (2.13-2 .66 BL sec· 1
, respectively) (Gallaugher 

eL of. 2001; Dunmall and Schreer 2003). The transgenic salm on used in this study, 

however, had a 9% lower Ucrit than the contro l fish. A lower Ucrir was a lso shown by 

Farre ll eta!. (1997) and Lee et al. (2003) fo r G H transgenic coho salmon (by 37% and 

22%, respectively), and by Stevens el of. ( 1998) for GH transgenic Atlantic salmon 
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(p=0.09). All studies used size-matched (length and mass) GH transgenic and control 

salmon (approximate ly 14 em and 25 g in Stevens er a!. ( 1998). 20 em and 100 g in 

Farrell eta!. ( 1997), and 55 em and 2000 gin Lee et ol. (2003)), and in all cases control 

* fish outperformed the transgemcs (4.8 vs. 4.1 BL s- 1,3.4 vs. 2.13 BL s· 1
, and 1.6 vs. 1.25 

BL s· 1
, in each study, respectively). Based on these data, it appears that a lower 

maximum swimming speed is characteristic of GH transgenic salmonids. In contrast, 

however, McKenzie et a!. (2003) found that transgenic tilapia achieved a similar Ucrit as 

their non-transgenic counterparts. This illustrates that species differences may exist. 

The decreased swimming ability of the transgenics could be the result of several 

factors, including changes in muscle and ske letal properties, inadequate circulation, o r 

environmental effects. Transgenic sal mon have been shown to ho.ve shortened opercul a 

(Farrell e/ ul. 1997). lower condition h1ctor (Slevcns et ul. 1998). a llometric compression 

(Lee eta!. 2003), and cranial and caudal peduncle abnormalities (Ostenfeld eta!. 1998), 

which could lead to poor swimming performance (Ostenfeld et of. 1998). However, the 

transgenics in this study exhibited none of these features, eliminating morphological 

differences as a cause of their lower Ucrit· Portner (2002) states that circulation and 

venti lation are the primary limiting factors associated with oxidative metabolism. 

Therefore. a decreased performance would be expected if a fish ' s circulatory system is 

not able to adequo.tely suppl y its body w ith oxygen. However. circulatory shortfalls are 

a n unlikely cause of the transgenics· lower Ucrit· as lhey ha,·e enhanced in situ heart 

performance (Table 7). higher catechol ~tmine leve ls (Table 3). and s lightl y e levated 

haematological parameters (Table 4). Finall y. a lack ot' training from be ing held in hi gh 
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density, low volume, tanks was suggested by Lee et a!. (2003) as the cause of poorer 

swimming performance in their transgenic salmon. This conclusion makes sense, as their 

"contro l" fish were returning from the wild where they were exposed to natural 

enviro nmental conditions such a~ fast river/ocean currents, turbulence, and drastically 

different feeding and inter/intra-species interactions. There was no difference in life 

history betw·een the controls and transgenics in the present s tudy, as both groups were 

reared in the same tank from the po int of salt \Vater transfer as smolts to the ti m e of 

testing. Having eliminated these factors as possible causes fo r the transgenic salmon 's 

decreased swimming performance, the ultimate cause(s) are unknown at this point. 

However, the unchanged gill surface area may be a clue to what is limiting these fish (see 

below). 

4.3 Gill Surface Area 

Gi 11 surface area was not different be tween the transgenic and control salmon in 

this study. and their gi ll areas (134 and 143 mm2 g- 1
, respectively) agree with reported 

values on similar s ized salmonids ( 120-1 97 mm2 
{

1
) (F-[ughes 1980; Palzenberger and 

Pohla 1992; Paul y 1998) . Stevens and Dev li n (2000) also observed no diffe rence in gill 

s urface area between adult transgenic coho salmon and the ir non-transgenic counterparts. 

In contrast howeve r, Stevens and Sutterlin ( 1999) showed thc:1t GH transgenic Atlantic 

salmo n smolts had a 1.6x greater gi ll surface area as compared with non-transgenic 

controls. There are severa l possible reasons why the presence o f the GH transgene 

caused the upregulation of mass-specific gill area in younger transgenic Atlantic salmon, 
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but not in adults. For instance, smaller fish have higher mass specific-oxygen 

requirements than larger fish: due to the ~lllometric relationship between body mass and 

M02 in tishes (Rodnick et ul. 2004). and a higher SDA and greater foraging activi ty, as 

di scussed ear lie r. Also, the AtliJ1tic salmon smolts used by Stevens and Sutterlin ( 1999) 

had a 70% greater routine M02 compared to that of their controls, a value much greater 

than the 20% increase measured in my adult fish. When these two facto rs are combined, 

it suggests that the younger fish had a greater pressure on their cardiorespiratory system 

to supply their bodies with oxygen as compared to the adults. Therefore, a larger mass

specific gi ll surface area may be required for the younger fi sh, wh ereas an upregulation 

would not be needed in older fish. Finally, the young salmon used by Steven's and 

Sutterlin ( 1999) vvere ±i"eshwater pre-smolts. as opposed to the adul t. saltwater, fish used 

here (and by Stevens and Devlin (2000)). Numerous studies have demonstrated that a 

variety of changes occur in gills afte r sa ltwater transfe r: these include changes in ion Dux 

(fVlancera and McCormick I 999; Pe l is <mel McCormick 200 I; Arnesen et al. 2003), 

chloride cell pro liferation. (Perry 1998; Pelis and McCormick 200 1), and gill membrane 

thi ckening (Perry 1998). These structural alterations allow the fish to osmoregulate in 

saltwater, however. they may do so at the expense of oxygen uptake (Perry 1998). In 

light o f the above considerations, and the fac t that environmental variables (such as water 

oxygen levels. crowding, etc.) can affect gill formation during ontogeny, direct 

comparison of gill surface areas of my -fi sh with those of Stevens and Sutterl in (1999) 

may be inappropriate. 
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4.4 Enzyme Activity 

CS and CCO enzyme activities in heart, red, and white muscle measured in this 

study are consistent with activities reported by other authors on similar species (2.1-28 

• 
pmol activity min-' g wet mass·' , depending on tissue, when Q10 and temperature 

corrected) (Philip et a!. 1975 ; Pelletier et a!. 1995; Nathanalides 1996; Cordiner and 

Egginton 1997; Leonard eta!. 2001). Transgenic salmon had a higher CCO activity in 

their red muscle. and a higher CS activity in their heart muscle, as compared with control 

salmon. [n contrast, there were no changes in white muscle enzyme activity, a finding 

that agrees with Blier e/ of. (2002) who studi ed GH transgenic coho salmon. Since white 

musc le makes up approximately 7Q<y;, of a !ish's total protei n. this lack of a change in 

vvhite musc le aerobic capaci ty suggests that the increased enzyme activity in the heart 

and red muscle were not growth re lated. The tindings of this study, however, are in 

contrast to a number of studies performed on other species that have found positive 

associations between CS/CCO and growth rate in white muscle (largemouth bass, 

Goolish and Adelman 1987; saithe, Mathers et a!. 1992; cod, Pelletier et a!. 1993 and 

Pellitier eta!. 1995). Thus, it is apparent that growth rate and aerobic enzyme activities 

can be correlated, but it is not a universal phenomenon, possibly owing to differential 

growth rates, tissues, and species differe nces across studies. 

IC growth rate was no t the dri ving force behind the enzymatic upregulation 

observed in the transgenic's heart and red musc le, it is likely that higher phys ical activity 

(Abrahams and Sutterlin 1999; Herbert et of. 200 1; Leggatt e! of. 2003) was involved. 

Both the heart and red muscle are aerobic tissues, and their use would be higher with 
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even modest increases in actively level ; potentially resulting in an elevated aerobic 

capacity of their enzymes. Further, the lack of change in the transgenics ' w hite muscle is 

not surpris ing, as white muscle is only recruited at swimming speeds greater than 80% of 

• Ucrit (Jones 1982; Burgetz et a!. 1998). Although exercise training can increase w hite 

musc le enzyme activity (Farre ll eta!. 199 1 )_ it occurs at a much hi gher pl1ysical activ ity 

leve l than these ta nk-reared fish are most likely to achieve o n a dail y basis. 

Seve ral physio logical and biochemical factors may explain why both CS and 

CCO were not concurrently upregulatecl in the heart and red muscle. For instance, CCO 

is a rate-limiting enzyme in the electron transport chain (ETC), while CS is not rate 

limiting in the Kreb 's Cycle (Pellitier et al. 1993). Therefore, simultaneous increases in 

CS and CCO activity are not necessary to allow for an increase in A TP production or 

protein synthesis that accompanies higher growth/activity. This m ay explain why CS 

activity was not increased in the reel muscle. Moreover, the la rger heart size of the 

tr<.lnsgenics may ex plain why cs activ ity, but not ceo activ ity, was upregulated in the 

cardiac ti ssue. E lse and Hulbert ( 1985) determined a high level of cardiac demand was 

met by Lln increase in heart s ize and card iac mi tochondria l vo lume. Since CS is found in 

the mitochondrial matrix (vol ume dependent), a nd CCO is fou nd in the ETC of the 

mitocho ndria l membrane (membrane dependent) (Pelletier el al. t 995), a larger 

mitocho ndrial vo lume could result in a greater cs concentration, w ith no change in ceo. 

However, his to logical tests would have to be done to determine if the transgenics did 

indeed have a greate r cardiac mitochondrial volume. 
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The enzymatic modifications in the transgenics raise an important question: Are 

they caused by higher growth rate, or a resul t ol: exercise training due to their greater 

activ ity level? There is SUPIJ rt for both a higher growth rate (Gool ish and Adelman 

1987; Mathers et al. 1992; Nathanailides and Stickland 1996; Couture et al. 1998; 

Portner 2002) and a greater activity (Johnston and Moon 1980; Farrell et al. 1989; Farre ll 

el al. 1991) as causes of increased enzyme activity. However, not all tissues or enzymes 

act the same way with respect to either stimulus, and species differences exist 

(N athanailides 1996). Therefore, it is difficult to determine the exact cause for these 

enzymatic changes without further experimentation under conditions that control for 

growth and/or activity. Further, with the relatively small differences in enzyme activity 

between gro ups the biological relevance ol· thi s c1 1te red activity may be questionab le. 

However, when looked at in light of the Lheory ol· symmorpbos is. the upregulation of the 

transgenic's enzyme activity could be act ing in concert wi th the other physio logical 

changes found in these fish to cause an increase in their metabolic function. 

4.5 Haematology 

The sli ghtly smaller perimeter (by 3%) and more compact nature o f the 

transgenics' erythrocytes (Table 4) are in line with a previous study done on transgenic 

Atlantic salmon by Cogswell et al. (2002). They found that transgenic salmon had 

smaller erythrocytes (by 5°1<>) and suggested that this may be d ue to factors including 

higher growth rate and increased act ivity leve ls. Although the eli fferences shown in bo th 

studies are statistically signiJicant, it is. however. ques tionab le whether these small 



71 

changes translate into biologically relevant elevations in oxygen transport capability or 

circulatory function (especially since there was no change in optica l surface in th is 

study). 

There was no post-stress elevation in haemoglobin concentration, haematocrit, or 

MCHC in either the transgenic or control salmon. It was expected that the haematocrit 

and haemoglobin concentration wou ld increase after the stressfu l event. as higher 

catecholamine leve ls cause red blood cells to be released by the spleen (Nilsson and 

Grove 1974; Kita and Itazawa 1989; Perry and Kinkead 1989). However, it is probable 

that the re latively small increases in post-stress catecholamine levels were not enough to 

e lic it any changes in the haematological properties in these fish. 

4.6 Cardiac Morphometry and Performance 

Relative ventricular mass (RVM) (0.07-0.09%) and maximum cardiac output (64-

76 ml min- 1 kg- 1
) of my control Atlantic salmon was similar to that of other salmonids 

(Fnrre ll ct ol. 1996). However, the in situ henrts of the transgenic salmon exhibited 

marked increases in maximum cardiac output (I W%) and RVM (I <YX>) as compared with 

the controls. The larger heart agrees with l) itkanen et of. (200 I), who found an increase 

in RVM (by 38%) in GH transgenic Arctic char (So!vc!inus a/pinus), but contrasts the 

study of McKenzie et of. (2003), where GH transgenic tilapia exhibited no di fference in 

heart size as compared to size matched non-transgenic conspecifi.cs. An increased heart 

s ize/performance in the transgenic salmon would be advantageous for transporting 

oxygen to growing (Graham and Farrell 1989; Franklin and Davie 1992; C lark and 
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Rodnick 1998) and hard working (Farrell eta/. 1991 ) skeletal muscle. How the increase 

in heart size influenced cardiac output is not directly obvious, as SV (i n ml kg-
1 

or ml g 

ventricle-') was not e!evatecj in the lransgenics (p=0. 16 and e=0.26, respectively). 

However, the larger RVM woul d have a ll ovved the transgenics to maintain stroke vo lume 

(negating the negative staircase effect or the limi tations on ventricular filling, Farrell et 

of. 1996) at their higher heart rates (by 7%); enabling them to achieve a significantly 

greater in situ maximum cardiac output. In light of these changes in cardiac 

size/performance, it is apparent that the adult Atlantic salmon heart is plastic, and can 

grow to accommodate the additional demands placed on it that result from alterations in 

their physiology/activity due to the transgene. This plasticity is consistent with studies 

showing heart size in salmonids is influenced by training (Farrell eta!. 1988; Farre ll et al. 

199 1 ), co ld acclimation (Goo lish 1987: Graham and Farrell 1989; Roclnick and Sidell 

1997), and maturation (Franklin and Davie 1992). 

It is unclear what factor( s) caused Lhe upregulation of the Lransgenics' heart size 

and perfo rmance, h owever several possibilities exist. Direct stimulation of heart size by 

e levated GH levels is unlikely, as Fleming et ol. ( 1996) found that domestic Atlantic 

salmon had smaller hearts than their wild counterparts even thought they possessed high 

plamsa GH levels (Fleming eta!. 2002). However, demands on the heart can be affected 

by: 1) gro\vth rate (Goolish 1987; Goolish and Adelman 1987); 2) exercise training and 

activ ity level (Davie and Farrell 1991: Farrell et al. 1991: Gallaugher et al. 2001); and 3) 

feed intake (Axelsson el of. 2000). The transgenics did have a higher growth rate (by 

3.6x) than Lhe controls, and probably had a greater activity as wel l (Abrahams and 
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Sutterlin 1999; Herbert et al. 2001; Leggatt el of. 2003). Further, since post-prandrial 

cardiac output and gut blood flow have been shown to increase (Axelsson et al. 2000), it 

is also possible that the greater food intake of the transgenics salmon (Cook et al . 

• 
2000a,b) increased cardiac output and RVM due to the demands of a greater SDA. In 

order to determine the relative contributions of these factors , further experiments 

controlling for growth, activity, and/or SDA between control and transgenic fish are 

needed. 

One surprising result related to cardiac nmction/morphology was the lack of an 

increase in % compact myocardium, even though RVM and cardiac output increased . 

Previous studies have shown: I) that increased RVM is associated with, and e levated 

cardiac demand causes, an enhancement of the compact myocardial layer (Santer and 

Greer Walker 1980; Graham and Farrell 1992); and 2) that thickening of this layer is 

required to maintain stroke vo lume (ml g ventricle-' ) as ventricular vo lume increases 

(Law of Laplace). However, there are two explanations as to why no change in the 

compact layer was observed here. First, no change in stroke volume (ml g ventricle-') 

was recorded. Second, is possible that the transgenic salmon had a decreased vascular 

resistance, which would offset the effect of the higher cardiac output on blood pressure, 

and thus decrease the amou nt of work performed bv the heart. However, no data 

currently exists to support this latte r hypothes is. 

A particularly interesting tinding was the elevated intrinsic in situ heart rate of the 

transgenic ti s h. The transgenic salmo n's g reater heart rate may be the result of several 

factors. For instance, adrenaline ( l OnM) was used during the in situ cardiac performance 
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experiments, and it is unknown whether there were any changes 111 the transgenics' 

myocardial B-adrenergic/signal transduction systems caused by the effect of the 

trans gene or the greater GH production itself. Adrenaline causes heart rate to increase 

• (Farrell el a!. 1991 ). and it is possib le that changes in adrenaline receptor density/affinity 

could have elevated the transgenic salmon ·s sensit ivity to exogenous adrenaline. 

Although such a finding has not been found in tish. rat studies have shown that B-

receptor affinity can be heightened by GH injection (Iwasaki et a!. 1982; Popova et al. 

1990). A lso, the greater food intake of the trans genies could have affected heart rate, as 

both feed-restricted cod and sturgeon fed lipid reduced diets (Genge et a!. 2004 and 

Angisola et a!. 1996, respectively) exhibit significantly lower in situ heart rates than 

control an imals. This feeding-related effect on heart rate may be due to alterations in 

membrane composition of the heart' s pacemaker cells, thus affecting their rates of 

excitabi lity/tiring. Finally, it is unclear whether the results of these in situ experiments 

translate to the in vivo s ituation. where the heart is cliTectecl by both cholinergic and 

adrenergic nervo us stimulation (Laurent et o!. I <)83). 

4. 7 Stress Hormones 

Resting cortisol levels (11.6 and 12.1 ng mr 1
) were not different between the 

transgenics and controls, and were s imilar to those reported by severa l other studies on 

sa lmonids (~ 1 0 ng ml" 1
) (see the review by Gamperl eta!. 1994; Ackerman et al. 2000). 

The lack of a significant difference between the groups is, however, in contrast to the 

work of Jhingan et a!. (2003), who found transgenic coho salmon had 40% higher resting 
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corti so l levels than non-transgenic contro ls. It is unclear why the ti ndi ngs of the current 

s ludy are incons istent with the irs, but il is most like ly due species/strain or hand ling 

di ffe rences, or the position or type of trans gene used . 

• The cortiso l stress response of these fish (-2-fold increase) was low compared to 

other s tudies, where 10-1 00 fold post-stress increases have been observed in a variety of 

fish species (see reviews by Barton and Iwana 199 1, and Gamperl et af. 1994). At 

present, [ have no explanation for this finding. However, I am certain that the values 

o btained in this sh1dy accurately reflect in vivo cortisol levels in these Atlantic salmon. 

Measurements of cortiso l in this study were run concurrentl y with samples from other 

marine species (Costa et a/. 2004). ;:mel these ti sh exhi bited co rti so l concentrati ons that 

were w ithin the range of ex pected values. The type/degree or· stressor can a lso be 

e liminated as a cause of the low stress response. as Ackerman et crf. (2000) a lso used a 45 

second net stress on rainbow and cutthroat tro ut, and found a 1 0-fo ld increase in cortisol 

levels over resting values. The contro l salmon did, however, have a signifi cantly greater 

(by 28%) post-stress cortisol response as compared with the transgenics, suggesting that 

the transgenic salmon may have a blunted stress response. The transgenics· reduced 

corti so l response may be explained by the work of Boujard and Leatherland ( 1992), who 

found that resting cortiso l and GH levels were negatively corre lated in rainbow trout. 

However. this exp lanat ion does not ti t wilh the tindings of a number of other studies. For 

instance. N ie lsen et ul. (1994) _bowed a concurrent increase in G H and corti so l in 

exerc ised rainbow trout. Furthe r, GH injection studies suggest that G H increases 

in terrenal t'unction in coho salmon, resulting in e levated plasma co rtiso l levels (Higgs et 
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al. 1977; Young 1988). Clearly more work is needed to determine why these transgenic 

Atlantic salmon had a diminished cortisol stress response, and what physiological 

consequences this may have. The latter question is particularly relevant since Shrimpton 

* 
et a!. ( 1995) showed that higher GH levels increase cytosolic corticosteroid receptor 

concentration; a response that may compensate for reduced post-stress cortisol levels. 

Resting plasma epineph rine and norepinephrine levels in the present study (3 .3-

5.8 nM) are simi lar to those of other contined sal monids (rainbow trout) (range 1.0-3.9 

nM) (Perry et al. 1987; Tang and Boutilier 1988; Fievet et al. 1990; Reid and Perry 

1991). A lthough resting epinephrine values were not significantly different between 

groups, resting norepinephrine, and total catecholamine, values were significantly greater 

in the transgenic salmon (by 2 .5-fold and 2.1-fo ld, respectively) (Table 3). Further, the 

transgenic salmon· s post-stress catecholamine levels were significantly higher than the 

contro ls, in terms of epinephrine, norepinephrine, and total catecholamine levels. As 

with cortiso I, the post -stress catecholamine response of the transgenic and control salmon 

afte r the 45-second net stress was much lower than that reported by other studies (where 

5 to 140-fo ld increases occurred) (Barton and l wan<t l 991 ~ Gam peri et a!. l 994 ). This 

lack of respo nse could be due to a numbcr of reasons (e.g. spec ies/stra in clitTerences, 

handling, stressors used, etc.). Irrespective of the absolute post-stress levels, the 

transgenics c learly have higher resti ng catecholamine levels. and exhibit a stronger 

catecholamine stress response. This may have been induced by a downregulation in the 

transgenics ability to utilize catecholamines through a decrease receptor affinity or 

number, but further testing would be needed to determine if this is the case. Their 
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e levated catecholamine levels, however, could be the result of higher growth and/or 

acti v ity. or a stimulato ry eJiect of the addit ional GH ge ne on the ch romatlin tissue itself. 

Although f am unaware of any other data re lating GI-f and catecholamine levels in 

• salmon. there is support fo r the former hypothesis in fishes. Gamperl et a!. ( 1988) 

suggested that perfo rmance training increases catecholamine levels in rainbow trout. 

The e levated resting and post-stress catecholamine levels in the transgenic salmon 

would enhance numerous physiological fm1ctions. For instance: 1) Catecholamines dilate 

the afferent branchial artery, while constricting the efferent branchial artery (Booth 1979: 

Nilsson 1986; Butler eta!. 1989; Wendelaar Bonga 1997). This results in recruitment of 

dormant lamellae, thereby increasing effective gill surface area. 2) They mcrease 

venti Ia tory r'requency (Randall and Tay lor 199 1: Perry et ol. 1991 ) . 3) Elevated 

catecho lamine levels cause the re l eC~se o l .. e 1·ythrocytes from the sp leen (Ni llson and 

Grove 1974; Kita and ltazawa J 989; Perry and Kinead 1989) and increase the affinity of 

haemoglobin for oxygen (Nikinmaa 1992a; Niklm11aa 1992b). 4) They have positive 

chronotropic and inotropic effects on the heart (Farrell 1991 ), and higher catecholamine 

leve ls support cardiac function under a number of conditions (e.g. increased activity, 

growth, and hypoxia). 5) They ma intain (o r e levate) plasma glucose levels by increasing 

glycogeno lysis and gluconeogenesis in the liver (Otto lenghi el ol. 1984; Mommsen et a!. 

1988; Perry el o!. 1988; Wright el a!. 1989). 6) Finally. they are involved in the 

mobilization of lipids. carbohydrates, and p roteins during times of growth and starvation 

(S umpte r el o!. 1991 ) . ft is a lso possib le that the increased catecholam ine leve ls 

in11ucnced growth rate s ince s tud ies h~l \ ·c fnu ncl that 8-agonists may increase growth in 
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tinfish (see Mustin and Lovell 1993 ; Mustin and Lovell 1995 vs. Moccia et al. 1998; 

Vadenburg et a!. 1998). The latter possibility suggests that the elevated GH levels also 

indirectly stimulate growth. 

The relatively low post-s ess cortisol and catecholamine levels fo und in these 

Atlantic salmon suggests that they are a low-stress lineage, and would presumably be a 

good candidate for commercial aquaculture. A low-stress strain would be beneficial to 

producers in several ways. A muted stress response can result in increased food 

conversion ratios, as unstressed l:ish do not waste excessive energy performing activities 

related to stress avoidance (Vij ayan a nd Leatherland 1988; Olvera eta!. 200 1). The fish 

would also be less susceptible to disease. as high cortisol leve ls have been show to 

suppress immune function (Wendlaar Bonga 1997). This would keep populations stTong 

due to lower mortality and morbidity. Thus, when these beneficial effects are combined, 

they would lead to increased production and profitability, the ultimate goal for the 

producer. 

4.8 Conclusions/ Implications of This Study 

Although this comprehensive study provides a wealth of information on the 

physiology of GH transgenic Atlantic salmon. it has created numerous questions that 

req uire t'urther experimentati on. Perhnps the most press ing issue is a bas ic one: [s 

increased growi:h rate or a higher activity leve l responsi ble fo r the upregulation of many 

aspects of the G H transgenic Atlantic salmon's cardiorespiratory system? Irrespective of 

the ultimate cause, we have shown that GH transgenic Atlantic salmon had a greater need 
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for oxygen at rest, and that they have alterations in heart morphology and performance, 

haematological parameters, enzyme activities, and the stress hormone response. Given 

the number of modifications in the transgenics' cardiorespiratory system, our data largely 

supports the theory of symm~rphosis. suggesting that they are compensating fo r 

metabolic changes usi ng a "whole animal'' approach. 

Perhaps the most interesting tinding is that the metabolic capacity of the adult GH 

transgenic Atlantic salmon appears to be limited by their gill surface area; a situation that 

is not evident in smaller transgenic salmon (Stevens and Sutterlin 1999). However, more 

research is needed to better understand how gills grow during ontogeny and how they 

may limit growth/performance. Finally, when their decreased metabolic scope and 

swummng performance are coupled with a potentially depressed immune system 

(Jhingan et a!. 2003) (data on coho salmon) and a weakened anti-predator response 

(Sundstrom eta!. 2003; Sundstrom et ol. 2004) it appenrs thnt the addition of the GH 

transgene does not affect the Atlall[ic salmon's ab ility to out-compete wild populations 

any more than fish currently under intensive aquaculture. 
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