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Abstract

Scientific experinients often compare several treatnient means with a control
mearn. [n particular. such multiple comparisons arise in biopharmaceutical stud-
ics in which it i1s desirable to conduct the infereuces in a specified order and fail-
ure to achieve the desired inference at any step renders subsequent comparisons
unnecessary. In clinical trials, an important dosing quantity is the minimum ef-
fective dose (MED). defined as the minimum dose such that the mean response
is clinically significantly better than the mean response of the control by a prac-
tical significant difference. In relation to MED estimation, previous authors
have either failed to account for the monotonicity of the dose-response means
or considered the case of a zero clinically significant difference. In this thesis,
an innovative approach using Kuhn-Tucker conditions to evaluate the optimal
confidence lower bound at each step in a closed step-down testing procedure is

derived and simulation results are presented.
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Dawson and Magee. 2001) Alternative hypothesis of this nature are referrved to
as ordered alternatives and are studied in the general arca of order restricted
statistical inference.

Furthermore, the focus of many scientific experiments details the comparison
of several treatment means with a control mean. When a treatment is signifi-
cantlyv better than the control. researchers wish to evaluate the difference between
the best treatment and the control. For example, suppose = (g, . ... j). a
vector of mean cffects of © treatments, where g, 1s the mean of the control and
Jlo. ..o [ are the mean responses corresponding to increasing dose of a test drug.
Then, in one-sided comparisons with the control where a significant difference
is of interest, as in dose-response studies. the desired inferences are p; > g + 0,
where 0 defines a practical significant difference.

One instance of such multiple comparisons occurs when it is desirable to give
the inferences in a specified order and failure to achieve the desired inference
at any step renders subsequent comparisons unnecessary. This situation arises
in dose-response and toxicity studies, where juo, ...y correspond to increasing
dose of a substance. In dose-response studies. it is desirable that a method not
declare a lower dose to be efficacious if it does not declare a higher dose to be

cfficacious.



The pharmaceutical industry has implemented numerous order restricted in-
ferences throughout the development of a drug. While the development process
may have multiple objectives, the establishinent of a therapeutic window, or
range of effective doses. is of considerable interest. In particular, a practical
dosing quantity used in biopharmaceutical studies is known as the mintmum ef-
fective dose (MED). which is defined as the minimum dose such that the mean
response at that dose is significantly better than the mean response of the con-
trols (Ruberg (1995a,b), Hsu and Berger (1999)). Determination of the MED
may involve hypothesis testing, regression methods. or a combination of both.

Since dose-response means increase for increasing dose, we require the as-

sumption of monotonicity of the p;:

< g <o < g (1.1)

Moreover. for the MED problem, Bauer (1997) showed that only the pairwise
contrasts between the ith response mean and the control mean strongly control
the tvpe I familywise error rate (FWE) in a stepwise testing procedure, regardless
of whether the above assumption of monotonicity is satisfied. If condition (1.1)
1s not satisfied. other procedures may lead to excessive error rates. However, as

pairwise contrasts do not exploit any prior knowledge of the shape of the dose



respouse function. thev are less powerful.

Previous research has considered likelihood ratio tests (LRTs) and multi-
ple comparison tests in a stepwise procedure. Simulation studies conducted by
various authors (e.g. Ruberg (1989), Tamhane, Hochberg and Dunnett (1996),
Dunnett and Tamhane (1998), Hsu and Berger (1999) and Liu (2001)) have
shown that those procedures which account for the monotonicity of the response
means are the most powerful. However, with the exception of Hsu and Berger
(1999). such analyses have assumed the clinically significant difference (¢) to be
zero, which is not true in general.

With respect to statistical inference, a confidence interval provides a visual
perspective superior to a point estimate or a test statistic. The problem of ob-
taining coufidence intervals under ordered restrictions has received mild recogni-
tion by researchers, primarily due to the general intractability of these tyvpes of
problems (p. 405 of Robertson, Wright and Dykstra (1988)). In a recent paper,
Hsu and Berger (1999) proposed a stepwise confidence set method, however this
method did not assume monotonicity of the response means.

As stated in Dunnett and Tambhane (1998), the problem of identifving the
MED is forinulated as a sequence of hvpothesis testing problems, beginning

with a coniparison of the largest dose versus the control dose and continuing



in a stepwise fashion. When the null hyvpothesis is rejected in favour of the
alternative hvpothesis at any step, there exists at least one treatment better than
the control. With the monotouicity assumption (1.1), we note that g, — g is the
largest difference between any treatment mean and the control mean, hence the
confidence lower bound for this difference will be bounded below by that for any
i —pq (0= 2,....k)or any resulting non-unegative linear combinations. We state
that g 1s significantly larger than g if the maximized confidence lower bound
for the difference in means is larger than the clinically significant difference 9,
and thus reject the null hypothesis. However, the likelihood ratio test cannot
be used to provide confidence intervals. In this thesis, a detailed construction
of the simultaneous confidence lower bound for g — p; is discussed, which is a
particularly useful inference method not previously considered in relation to this
problem.

The procedure outlined in this paper will be to devise a Theorem to calculate
the optimal lower bound, as noted above. Narcus and Peritz (1976) found the
optimal lower bound by calculating the lower bound over all partitions and hence
selecting the maximum. This lengthy search is simmplified by using Kuhn—"Tucker
conditions to retrieve the optimal coefficients directly for the given data set.

For a slightly different problem, Lee, Peng and Liu (2002) derived algorithins






in-depth simulation study which examines the power efficiency of the MED pro-
cedures are provided. Finally. a suimmmary of results obtained and suggestions

for future work are given in Chapter 6.
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Chapter 2

Technical Results

The experiment to be considered in this thesis is a model for ANOVA with
ordered restrictions. Denote a set of increasing dose levels by 1, 2, ... & where

1 corresponds to the zero or control dose level. A one-way model is discussed.

i which 7, experimiental units are tested at the ith dose level. i =1, .... k. Let
observations 17; be mutually independent with 13; ~ N(u;,0%), 7 =1, ..., n,
and 7 = 1...., k. Then Y; ~ N(p;.0%/n;), i = 1...., k are the sample means of

the dose groups and let §% = S2F > 0L, (Yy; —15)?/v be an unbiased estimate

of the commnion variance o2, with v = Zle n; —k > 0. Then S* is distributed
as o?x2/v. independently of Y7, ..., Y}.. The parameter space for this problem is

defined as Q = {pu € R* : iy < py < -+ < e}, with 02 as a nuisance parameter.



2.1 Tests of Simply Ordered Hypothesis

2.1.1 Maximum Likelihood Estimate Under ( rder Re-
strictions

The restricted maximum likelihood estimator of x4 subject to €2 is enoted yu* =
(p3....,ur) and is denoted the isotonic regression of Y = (Y7,....Y%) under
with weights ny, ..., ng.

As the data is assumed to be normally distributed. the 1 wximum likeli-
hood estimate (NLE) is the solution to the following constrai : ighted least

squares problem:

k
111'1112 ni(Y; — p3)? such that p € Q. (2.1)
i=1
The MLE is readily calculated using the Pool-Adjacent-Vic 5 Algorithm

(PAVA) (see Robertson. Wright and Dykstra (1988)). The process  essentially a
successive averaging of Y;'s until a sequence of non-decreasing v: is obtained.
The MLE of the ’s may then be partitioned into consecutive se es of equal—
valued p*’s such as

*

* o * * — o ® . . :
:Lll —_— ... —lLl’il < /\111+1 —_ ... _/J/lz < .. < leil_1+1 = s .. = ™ ( )

N
N
~—

with 19 = 0 and ¢, = k.



With the previous representation. the following results are valid.

Lemma 2.1.1. The vector p* is the MLE of g if and only if
l\.
Z (Y, — )y = 0 and
d on(Yi—py, < 0 forallve Q.

Lemma 2.1.2. \With % as the MLE of g, then for r =1..... [.

ip

* . L x =1, —1+1 o o -
/11,~_1+1 —_ .. = /_1[-,‘ i — fl, (25)
2

(=ip—1+1

Lemma 2.1.3. With ;* as the NMLE of /¢, if

* =)
py === Ay <o = ——— <A,

2.1.2 Likelihood Ratio Test

As is often the case in applications, a rescarcher may believe that the respounse
nieans are mounotone increasing. « priord. thus likelihood ratio tests (LRTs) for

homogeneity of normal means with simple order restrictions arc introduced. As

10



previousty noted. the interest of this paper lies with a variation of the following
hvpothesis under the monotonicity assumption gy < --- < pi. The LRT for
ordered alternatives was introduced by Bartholomew (1959a.b. 1961a.b) and

further discussed by Robertson, Wright and Dykstra (1988) as follows:

Ho:py=po ==

Hypy < pp <00 < g

The LRT rejects Hy in favour of H; for large values of the test statistic

k

> nilpr — )

1=1
So1 =

. .
D il — )+ 57
=1

~ ke T k v . . . . .
where =37 n;Y;/ > % n;. When o? is known, the test statistic is given by

k
Z iy — f1)°
i=1

2

V-
Xo1 =

o
As shown in Robertson, Wright and Dykstra (1988). as v — oc¢, the distribution
of Sy; approaches that of Y3,.
The null distributions of Sy, and X3, under H, are

S(V — J)

Pzt = /G- 1)

Py(j, k;w)P[Fj_y ~v_; >

-

~
Il
[Sv)

11



P[\g, 2 s] = > P kiw)PNJ > s] (2.5)
j=2
for anv s > 0, where NV = Zle ng.w = (ny..... ng). Py(j,k:w) is the level

probability that ;* takes j distinct values under Hy and \3—1 is a chi-squared
variable with j — 1 degrees of freedoni. For the case of equal weights, the level
probabilities and the critical values for Sy, and 2, arc tabled in Robertsou.
Wright and Dykstra (1988). We now discuss the calculation of level probabilities
11 more detail.

For the simply ordered case, i.e. with p; < -+ < ., the level probabilities

are denoted Py(I,k:w). When & = 2. the level probabilitics are Py(1.2;w) =

.S
—~
!v
Iy
2
I

B |—

If the weights are equal. the level probabilities are more read-
ilv obtained. For this case. we omit the weights from the notation and denote
the level probabilities as Py(l, &). It is demonstrated by Robertson, Wright and
Dyvkstra (1988) that the P,(/. k) ave distribution free over the collection of inde-
pendent. identically distributed continuous random variables, i.e. the probability
that the isotonic regression of Y7, ¥5. ..., Y with a simple order and equal weights
has [ level sets does not depend in the distribution of the Y7, provided they are
independent with a commnion continuous distribution. Furthermore. an expres-

ston for the probability generating function (PGF) of {P,(l. &)} is obtained and



used to derive a recurrence relationship for the equal-weights level probabilities
as follows:
Theorem 2.1.4. Robertson, Wright and Dykstra (1988).

The probabilities Ps(l, k) satisfv
1
Py(1,k) = T and Py(k k) = —

and

1 E—1
Pi(l,k) = 7Pl = Lk = 1) + = —Pu(l.k = 1)

for 1l =2,3.... k—1.

NMoreover. Hogg (1965) noted the relationship between the likelihood ratio
function and the class of linear functions of the sample mean Y;. Without loss of
generality, assume that Ele n;c; = 0 and Zle n;c? = 1 for the linear contrast
Zf:l n;c;Y; and the k populations have equal known variance o2. With the
further assumption that p; < py < -+ <y, the following result by Hogg (1965)
1s presented:

Theorem 2.1.5. Hogg (1965).

k
VX5 = ma_\:{niciﬁ/(dzZ?licf)l/Q},
i=1

subject to ¢; satisfies the order ¢; < ¢y, < --- < ¢,. The maximum is attained at

13



Since the linear contrast is normally distributed. the power function is more
casily computed for the test based on lincar contrasts than \3,. Furthermore.
a linear contrast mayv be decomposed into the sum of independent, normally
distributed variables which is particularly useful if the hypothesis that g =

<o = g is resolved into a number of nested hypothesis (Hogg. 1965).

2.2 Multiple Contrast Test Statistic

When Sp; > 54,4, One rejects Hy and concludes that treatment mean gy is
significantly larger than ;. However, there is no corresponding simultancous

confidence lower bound for gy — g when £ > 2. The following test statistic is

mtroduced:
k k
T = max 1 ”l(l)L/S(Z nc?)?, (2.6)
where C = {¢c = (¢1.co.....c1) : Zle nic; =0.0) <o <o <

Let t; ..o be the critical value of statistic T, which leads to

k k k
PN{Z N;Cifl; > Z neY; — tk_,,AaS(Z ILL'C?)I/Z,fOI' allce C} =1 —a. (2.7)
=1 =1

1=1

14



We mav rewrite the left-hand side of the above as

k k
Pﬂ{lgle%x; nic;(Y; — ui)/S(Z ni ) < tyan it € )

=1
k

k
_ A R 2y1/2
— Po{rgledé.; IhCzL/S(Z nic;) " <trpat

1=1
k,

= P> nmi(pr—0)?*/S* <8}
=1

where the last equation is the vesult of an argument similar to one in Hogg

(1965). Therefore, we write

k
T° = wiluy— p)?*/S? (2.8)
i=1
e Distribution of 72 under py, = --- =

As stated by Lee, Peng and Liu (2002), the right-hand side of the previous
equation is given by Wright (1988) for a different purpose. The statistic 77 is
asyuiptotically equivalent to Sg;. The null distribution of 7" under pu; = - - - = uy

may be written as:

. t? _
Py(T > t) = Z P(j. kW) PFy-10 2 =) (2.9)
for any ¢t > 0, where P(j, k.w) is the level probability under p, = -+ = ;. that
(™ takes j distinct values and w = (n1, no,...,ng). The critical value ¢, is

the value ¢ when one equates (2.9) to «.



2.3 Simultaneous Confidence Bounds

We define the set C which places restrictions on the “scores” represented by

C:(C].C-z,...,(_‘k)f
k
C = {c:(cl,c-z,....ck):Znici:O, i <ci,i=1,...,k—1}.
i=1

For the ordered ANOVA model, Marcus and Peritz (1976) state the following
lemma as the basis for the one-sided simultaneous confidence bound:

Lemma 2.3.1 (Marcus and Peritz (1976)).

% k k
PN{Z niCip; > Z’niCiYi - da(z nc)? Yee Cl = 1—a.
i—1 i—1 =1

where d, is the upper 100a percentile of the null distribution of the square root
of Bartholomew’s likelihood ratio statistic when o? = 1.

Lemma 2.3.1 defines simultaneous confidence bounds for certain classes of
linear functions of expectations. These bounds also hold without the restriction
of monotonicity on the parameter space. Taking these restrictions into account,
the bounds may be improved in certain cases without altering the confidence
level of 1 — a.

According to Lemma 2.3.1, the 1 — a one-sided simultaneous confidence

16



k

bound for any contrast Z ncip; with ¢; < cjpq,i=1,2.... k—11is given by
i=1
k k k
- 211/2 A
Z(Z I/L,L'Ci[li) = Z le'Ci}’i - da(Znici) / . (210)

For the general case. as considered by Marcus and Peritz (1976), the following

set 1s now defined:

(2.11)
for a given ¢* = (¢, ..., ;).
The improved confidence lower bound is denoted by
k k k
e N . PRl 2\1/2 .
S(Tex) = ileli\l(zl NicifL;) = greli\{zl n;c;Y; da('z1 nc:) e} (2.12)
= = 1=

One now has the following lemma:

Lemma 2.3.2 (Marcus and Peritz (1976)). With p monotone nonde-

creasing,
k k
P,{ g nicip; > S(7e), Ve < e, g nic; =0} = 1—a.
=1 =1
k k
The condition nicip; < E n;c;p; for all nondecreasing sequences of ; is
1=1 1=1
equivalent to
k k
.o X . S . ¢
E njc; < E njc; foralli=2,... k. (2.13)
i=j i=j

17



For the step-down confidence set test procedure, often used in dose-response
studies. we need only maximize the one-sided confidence lower bound for the

contrast gy, — pp. In a similar manner as Marcus and Peritz (1976), equation

(2.7) implies that a 1 — a simultaneous confidence lower bound for any contrast

k . o
D iy icii with ¢p < ep < -+ < ¢y is given by

k k k
I(Z niCipl;) = Z nic;Y; — tkiu,aS(Z nicf)l/z. (2.14)

i=1 =1 i=1
In particular. the 1 — o simultaneous confidence lower bound for the difference
p; — py (i.e. the difference between the ith treatment mean p; and the control

mean () is

Wi — ) = Y= Y1 — eSSyt + ng Y2

To determine the minimum effective dose (MED), we implement a step—down
procedure which maximizes the above one-sided confidence lower bound for the

contrast g, — 1. The set K is now defined as

k k
K = {Ciznic‘z‘zo- 1 < Cpcr <y Znicilh‘ﬁ M — . € QY.
i=1 i=1
Thus, the improved confidence lower bound for s — pu; is denoted by
k k k

_ — A o) — . P S L2N\1/2
Ly — 1) = maxl(ancl,ul) = maﬁ\{anclL thV’aS(anci) }.

ceC - - -
=1 =1 =1

18



In Chapter 3. an Optimization Theorem and an Iterative Algorithm are de-
rived to calculate the optimal lower bound, L(jy — 1) for a given sample. Chap-
ter 4 examines the implementation of a step-wise testing procedure for finding

the minimum effective dose (NMED) by calculating Ly — pq) for dose levels

2.4 Kuhn-Tucker Conditions

The evaluation of the improved simultaneous confidence lower bounds such as in
(2.15) 1s a maximization problem subject to equality and inequality constraints.
Let x be an n x 1 vector and H(x) be an m x 1 vector whose components
hi(x),....h,(x) are differentiable concave functions of x > 0. In addition. let
g(x) be a differentiable concave function of x > 0. The Kuhn-Tucker equivalence
theorem will determine an x° that maximizes g(x) constrained by H(x) > 0 and
x > 0. A vector x is said to be feasible if it satisfies all given constraints. The
optimal value of the problem is the maxinum of g(x) over the scts of feasible
points. Those feasible poiuts which attain the optimal value are called optimal
90

o - o
solutions. Let [W] and [570] denote the partial derivatives evaluated at a
1 J

0

particular point x° and v° respectively.

19



Theorem 2.4.1 (Equivalence Theorem). Let hy(x)... .. N, (x). g(x) be con-
cave as well as differentiable for x > 0. Let o(x.v) = ¢g(x) + v/ H(x). Then x° is
a solution that maximizes g(x) constrained by H(x) > 0 and x > 0 if and ouly

if x? and some v satisfyv the following conditions:

00 001"
— < 0 = (), ° > 0;
(4 [a;zri] =0 {8.1;] ! 0, x =0

Do 1° o617
v >0, | =2 =0, v°>0.
b [0%‘] = [3%] R

(Theorem 3 Kuhn-Tucker 1951)

Sitmple modifications are made when the constraints H(x) > 0. x > 0 are
changed to the following three cases:

Case 1. H(x) > 0.

Here, using ¢(x,v) = ¢g(x) + v H(x) defined for all x and constrained only

by v > 0, one must replace condition (1) by
9o
1* — 1 = 0.
( ) |:aJ,]

Case 2. H(x) =0,x > 0.
In this case, using ¢(x,v) = ¢g(x) + v'H(x) defined for all v and constrained

only by x > 0, one must replace condition (2) by
do 1’
o 2] -0
C)UJ'

20



Cuse 3. H(x) = 0.
Here, using o(x,v) = ¢g(x) + v H(x) defined for all x and v without con-
straints, one must replace conditions (1) and (2) by (1*) and (2*). This corre-

sponds to the familiar method of Lagrange multipliers.



Chapter 3

Optimization Theorem

3.1 Preliminary Results

3.1.1 Application to Ordered ANOVA by Marcus and

Peritz (1976)

In their 1976 article, Marcus and Peritz noted that likelihood ratio statistics
for hypothesis testing in certain restricted normal models have been available
for some vears, but no corresponding simultaneous confidence (SC) procedures
have been presented. Simultaneous confidence lower bounds were obtained and

an application to analysis of variance (ANOVA) was presented for any contrast

O
[\



&

of the form Z n;c;i;. The results presented in this section are for this general
i=1

case. however examples are stated whicl use the Marcus and Peritz method for

the specific contrast pg — f1.

In summary, to find the optimal lower bound, L(>  n;ciu;), as defined by
equation (2.12) and discussed in Section 2.3, the solution obtained by Marcus
and Peritz (1976) involved the following steps:

Firstly, let (37 ncip) = Zle nicif‘}—da(Zf:l n;c?)Y?, hence L(>" n;cip;) =
érelTaC\[l(Z niciiti)].

After amalgamating the sample means and obtaining the nondecreasing max-
imum likelihood estimators, the authors note that L(D>_ n;c;u;) is nonnegative for
all ¢, and thus consider only positive-valued [(D> " n;cip;)’s.

Furthermore, suppose that the maximum of [(D>_ n;c;p;) in 7. is obtained at
a point cg such that

i i
g njco; = g n;c; fori=1,,...,4, and no other values of i.
j=1 j=1
Using the fact that Z{;l n.L-ci:Zf:l n;c; = 0, then alternatively,
E n;Co; = E ncy fors=1,...,m, (3.1)
i€ R, iER,

where Rl:{17---11-1}:---1Rs:{Z;s—l-’_]u---:is}-,'-'-/Rm:{im—l-’_l:---;k}-
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After implementing Lagrange multipliers, the authors obtain:

1/2
oo =7+ (= X)O_ @)Y [ =Y ni(py — X)) (3.2)
5 s 1ER

and

1,2
/(Z NiCo L) = Z Ny Z n, o d? — Z Z ni(pr — X,)°
s s (ER,

(3.3)

where ny, = E ng, @& = n;! E nier and Xy = n;! E ni. Equation (3.3)
= i€ R, =
requires that

d* > Z Z (s — X,)% (3.4)

s 1ER;
To find the optimal lower bound. let P = {Ry... ., , R, } denote any partition
of {1,....k} and let P be the set of all partitions satisfving equation (3.4) for

which the right hand side of (3.2) satisfies (2.13). Then, the optimal lower bound
L> - nicip) = nla;\/(z N Coild)-

Marcus and Peritz remark that some partitions may be eliminated. For
instance, letting partition P, be a refinement of partition £, (i.e. all the sets in
partition P, are subsets of the sets in FPy). then (i) if Py satisfies equation (3.4)
then so does Py and (i) 1D nycoipei)p, < (D nicoipts) p,- Moreover. P is not

empty as it always includes P : R; = {i}(7i = 1..... k). Also. for anv P € P.

the right hand side of equation (3.2) is increasing in / (and hence the vector c



corresponding to P is always in 7.-). If i.e +1 € Ry, ¢; < ¢;4) follows directly
from (3.2): if i € Ry, and i + 1 € Ry, one has, by Lemma 2.3.2 and equation
(3.1) that ¢; < ¢f and ¢;41 > ¢, and thus ¢; < ¢;4;.

In summary, the approach of Marcus and Peritz (1976) calculates the optimal
bounds for various partitions and then finds the maxinium of these bounds. For
large values of &, it is apparent that the method becomes tedious. For example,
Section 3.2 of Davis (2002) calculates the confidence lower bound for puy — u; for
a given data set, i.e. when & = 4. The method by Marcus and Peritz necessitates

several pages of computations. thus a more efficient imethod should be found.

3.1.2 Preparatory Lemmas for Optimization Theorem

To implement a step-wise procedure for determining the minimum effective dose,
an exact method is needed to calculate the optimal lower bound L(ux — 1), As
noted in the previous section. Narcus and Peritz (1976) calculated the optimal
bound for numerous partitions and selected the maximum, however the method
is inefficient. This section demonstrates the steps required to derive a theorem
which establishes and necessary and sufficient condition for the optimal solution.

The following lemmas rewrite the conditions outlined in the set . We note

that the statement and proof of the following lemmas are similar to those of Peng
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(2002. Chapter 7). In the latter paper. the author considered the assumption of
g < prge1 < -+ < iy, with ¢ > 2, and alternate definitions of the sets C and K.
A multiple contrast test statistic and simultaneous confidence lower bounds for

je — j1p were also derived under this more general assumption. In this paper. we

will furthermore cousider the parameter space Q = {1y < o < -+ < i}
k
Lemma 3.1.1. For p € Q2 and ¢ € C, then Znicim < pp — it and only if
i=1
k
Z nio; < 1.for j=2,.... k.
=]

Proof of Lemma 5.1.1.
(<=) Since Zle n;c; =0, cp < -+ <, then ¢ <0, ¢ > 0 and there exists
a j such that j > 1 with ¢; > 0 and ¢;_; < 0. (i.e. j divides ¢;’s into positive

and negative components). Thercfore.

k k j—1
E nic; = E nic; — E nile;| = 0.
=1 =y 1=
ok
It Z[:j n;c; < 1 then
k k j—1
E ncip < E niCi | Mg — g nileil |
i=1 i=j i=1
k
= E nic; | (pe — 1) from above
i=j
< py — Uy, as required.



(=) Given ¢ < - < ¢, >_ne; = 0. suppose that Zf.”':l nicip; < pp — iy for

all yo € Q. Let ;=1 1for i = j.o. ... kand g, =0for ¢ =1,....j — 1. Then.
k k
Z nCit, = Zni('i < pp — i =1-0=1.
i=1 i=j
which proves the result. (]

Lemma 3.1.2. Let ;¢* be the MLE of g under Q. If pf = pi, ) then ¢f = ¢f

(—1°

[e]

where ¢ is the optimal solution to (2.15).

Proof of Lemina 5.1.2.

As before. we represent the monotonicity of the MLE as follows;

*

* — . x *
/Jir—l < ’LLir‘—1+1 - = ‘lllr < ’Llil‘+1-

with 2, +1 < ¢ <7,. Suppose ¢ < ¢f_;. We shall show it leads to a contradic-

tion. Thus, define a new value b; as

bl' = (‘;) \V/l#tr_l-i—l,Lr
ir
§ / .0
HJCJ-
J=tr—1+1 . . .
b, = Z, L= e+ 1.
E HJ'
J=tp—1—1

Note that ¢

:~1+1

< b; < ¢, By parts (b) and (c) of Lemma - of Marcus and

4y

[N\
=1



Peritz (1976). the following results arve valid:

k k
g n;cY; < 5 1n;b;Y;
=1 =1
k k
i i
E nicels > 107
i=1 i=1
Thercfore.
k k k k
2: oy E: 02\1/2 2: o 2: 2y1/2
IIL'(.’L-}Z' — lLk’,,‘QS( n;c; ) / S Ilﬂ)g)i — tk’U.OS( Ilrl‘bi) / .
i=1 i=1 i=1 i=1
which is impossible, since ¢ is the optimal solution. Hence, ¢¢ = ¢7_,. L

When pf = ., we may combine the treatments as a single treatment with
a total sample size n; +n,.,.

Using Leminas 3.1.1 and 3.1.20 we may rewrite the problem of equation (2.15)
into the following problein:
Lemma 3.1.3. The optimal solution to (2.15) is equivalent to the solution to

the [ollowing problem:

k k
max Z nicips =ty oS Z n;c? (3.5)
=1 =1
k
subject to ¢ € C and E nic; < 1.
i=j



Proof of Lemma 5.1.5.

Analogous to Peng (2002), to show the equivalence of equations (2.135) and
(3.5). we must prove they have the same solution and the same value. For
convenience, let f(c) represent equation (2.15) and g(c) represent equation (3.5).

Let ¢® be the optimal solution to (3.5). Then, g(c) < ¢(c°) for any ¢ € K.

From equation (2.2), Lemma 2.1.2 and Lemma 3.1.2. we have the following:
i ir ir Lv
o\ __ 0 "~ __ 0 , o o *
E nici)i = Ci1 E nili — Cil E TLL':lr e E niC; 14; -
=i, 141 i=i._1+1 i=i,_1+1 i=i,_1+1

It follows that f(c®) = ¢(c®) > ¢g(c). From the second inequality of Lemma 2.1.1

and since ¢ € 2, let v = ¢ thus

ncl ; ,u;‘)<O:>ZnC) <chu

1=1

n'M»

as required. It follows that g(c) > f(c). O

The following lemma relates the optimal solution to the MLE.
Lemma 3.1.4. If c° is the optimal solution to (3.5) subject to Zle nc; = 0

and Z Gy < pg — oy, then

(o] o
] <y << .

& Q



Proof of Lemana 3.1.4.

We wish to show if puf < pf, = ¢ < ¢, ¢ > 1. Suppose pf < p; | and

-1

¢? > ¢? . This implies that (¢? — ¢, ) (pf, — #7) > 0. Define a new constant

such that

. 0] O
nic; 16 ) o
_\, — 1 T~ 1T J =1 + 1
n; + 14

Therefore. if ¢® is an optimal solution to (3.5) then we have

0, * . 1] * 02 , 02 .
A+ el i, — fk.,,.OS\/B + 07 ey (a)

Al i —t;\.,U’aS\/B—%ni’) + 1510 ()
where

_ 0% ] _ o2
A= E njCl i and B = g n;cs.

Gi, i+ J#L, il

We begin by comparing 5 (/05 + nippe ) of (b) and (nef g + njpicf 17, ) of

i1

(a). Expanding the formula for » and rewriting. this is equivalent to comparing
0 U * * ) 0, * } 0 *
(¢ + nigel (il + naapg ) and (e (o = g e 1) (0 A+ nisa).
Expanding these equations and canceling like terms we have

0, 0 * . ) 0, x 0 *
ninia el +clopnl) and  ngnga (el + el nl)-
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Their difference may be written as
(¢f = clp) (i — m7) > 0.

thus the first part of (b) is greater than the first part of (a).

Next, considering the second part of equations (a) and (b) we compare
nic? +nic?2, and A7 (ng 4 nign).
As before. expanding ~ and rewriting, the above is equivalent to
(g + nyey) (N + niﬂcﬁl) and  (n;c) + nchfH)Q.
As above. we expand the expressions and cancel like terms swhich evaluate to
(i) (¢ +¢22)) and  2nngacfcd,

which implies ¢?? 4+ ¢22, > 2c%¢%. ,. Hence the second part of equation (b) is
) 1+1 7 71+1 {

greater than the second part of equation (a). This implies ¢® is not the optimal
solution, which is a contradiction.

Thus ¢f < ¢f_; as required. U
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An equivalence relationship is established in the following theoremn between
the positive nature of the lower bound L(uy — py) and the rejection of Hy by
statistic 7. Its proof is very similar to that of Theorem 7.2.1 of Peng (2002) and

thus 1s omitted.
Theorem 3.1.5. When € Q, T >t if and ouly if L{py — py) > 0.

When the lower bound L(py — ) is positive, it signifies the mean gy is
significantly larger than the control mean p; and the size of the difference is
measured. We may also nmplenment the multiple contrast test in a procedure
to find the MED by rejecting the null hypothesis if Ly — ) > 9. as will be

detailed in the step-wise procedure to be introduced in the next Chapter.

3.2 Optimization Theorem for Simultaneous

Confidence Lower Bound

With the results fromn the previous section. the following Theorem establishes a

necessary and sufficient condition for an optimal solution and its proof follows.



Theorem 3.2.1. Suppose L(py — p) > 0. Then the vector c® € K is an
optimal solution to (3.5) if and ounly if there exist non-negative integers p and
q. 1 < p < q < k.osuch that @& < i < . ST

+ qu < S*E L and ¢f < -0 <

1p v,a
<= =co, =0 <y <o < cpowhere ¢f = \'_1 + 07 (s = Y0,).
=1..... p,and ¢f = J\q—kl + 0 (e — 3_:1k), 1 =¢q,....k, with
max{ Ny, (u ylp) ( gk — q)} <b< min{NlHl(u;+1—1_’1,,T1)1 Nq—lk(y:/—lk_:u';—l)}'
(3.6)
where
b b
‘Vub — Z”i- };Lb — Z yyes /j\ub ab - Zn ab)
and
1)2 = (Sztk L0 qk)/(\r_l (I_kl)' (37)

When ¢ = p+ 1. the upper bound for b in (3.6) is (Y — Y7,)/(V,)' + V(,AI) and

the lower bound remains the same.

Proof of Theorem 3.2.1.

We begin the proof by noting that Lemma 3.1.4 allows the constraints to be
k k

replaced by Z nic; = 0 and Z ne; < 1,3 =2,.... b

=1 =)

. I8 k 5 . . .
We have that g(c) = Y-, il — tewaS\/ D iy 1,7 is a concave function

of ¢i.co,.. ... (Proof: Write Z;l n;c; = ¢'Ne. From p. 48 of Liu (2001).
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koo 202 50 oo : k 2V\/2 56 coneav o
(3= nie)t? is convex. thus —(3°7 nie7)Y/* is concave. This implies g(c) is
concave also.)

Note that H,(c) = 1—21&:/ nic; > 0. ) =2....,kand H,(c) = Zf:l n;c; =0

hence we use constraints C1 and C3 from Kuhn -Tucker: v; > 0. A € R. Let

k k

k k k
Ole.v. \) = Z i — tepaS Z nicd + Z vi(1 — Z 1) — A Z'nici.
j= j=2

=1 =1 r=) 1=1
do , o :
Furthermore, let Jco denote the partial derivatives evaluated at the point
C

o

c?,v2. A% By the Kuhn—Tucker equivalence theorem. c® is the optimal solution

if and only if

t

do
(1) B0 = nipts — nclb —n; ZU;} —Xn; = 0,(i=1,....k),
: =
with b = trp.aS/ (301, mics?)!/?,
11 0(') - o : o : R
(i) 3o =1-> me 20 &= > m<1(=2..k).
J r=j r=j
OQ 0 0 : o g .
500 ) = 0 = j(1— le,-(‘r) = Oforall j=2..... k.
j o
9o
v° ZO 0/\0 :;ni(‘i:o.

Supposce ¢ is the optimal solution. By Lemma 3.1.4. then

.0 .0 o
Cf < < <

We may split the coefficients into those positive and negative valued ¢¢'s as:

.0 . 0 — — .0 — .0 0
] <<y <« == C,=0<¢ < <
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with

P k

E nic! =—1 and E nic; = 1.

=1 i=q

(Proof. We know that with ¢¢. > 09 < pp—prpoie. (peg—pn) = 10O nicfug) >

0. Suppose 0 < S°7 nic? =a < 1. thus 37 n,c? = —a.

Let d° = ¢®/a. Then > nd%u; < > nic?u; < pp — pi1. Therefore.,

1
[(Z ndyp;) = ;[(Z nclpg) > Z(Z’Ilicf//i).

sinnce @ < 1. This unplies a contradiction, since ¢f is the optimal solution, thus
d° = ° <= a =1, satisfving the result.)

From (ii),

k
vy = 0 when E nyc) < 1lfori=2 ..., p.g+1,... k.
r=t
From (i).
i
@ = b — v — A%) (3.8)
j=2
Adding the first p equations in (3.8) and using the result that Y7 | n;c? = —1,
then
P p P P
E ni? = b E Ny — E E niey — A E n;
i=1 i=1 i=1 j=2 i=1
P p i P
-1 = bt g i — g E n,-v_f—Ao g n;
=1 =1 j=2 i=1
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p p P {
-1 = vt (Z np; — )\OZni> . since ZZ?’L[L‘JQ =0

1=1 =1 1=1 y3=2
P I
2\ — b 4 Zuiz1 Tk
- p P _
=1 T i=1 Tl

Therefore, the first p coeflicients satisfy thie equation

= b Y- ZU;’ — A% from (3.8). so
=

b it
= b1 </L? Y - Zl_pl lﬂ') 1=1,..., , P since v = ().
Ty L
1=1"" =1 "7
o) = b =Yy =N, i=1,p
and
A = Y7, + BN
Next, let 17 =>"7 b1 U With Z _;nic =1, we sum the equations from ¢

to k as follows:

k k ’ k
Z n;c; = bt <Z nip; — Z n; Z vy — Z )
=1 1=q Jj=1 1=q
p k
1 = ! <Z Ny — Znﬂ" — /\O nl) since Zv; = Z v] =0,
1=q i=q 1=2 t=q+1
_ b T
Zf:q 7 Zf:q 7
Vo= Y - bN, - Zz fori=gq,... k
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As before. the last ¢ coefficients may be written as

o~

¢ = b 'u =V = )% from (3.8), thus

<

0 = b = You) + Vl L=q, . ... k.

~

With these equations for ¢, b=t = (325 n;¢??)Y/? /t.,.0S may be expresscd

as follows:

2

Sgti,lltab——‘_ -

77,,;(N1_p2 — 21)’11\71;1 (f — Y1) + b2k — }_"1,,)2)

k
=1
P k —
= DN T = T D (N 0 (= V)
=1 i=q
>
=1

k
Z (N2 4 267 N () — Vo) 4+ 072 (1 — You)?)

However, the niiddle terms sum to zero. thus the equation becomes

P k
St b = N A NG 0TI gt = Y)Y na(pd — Vo)™
=1 i:q
It follows that
-1 ~1
b“2 _ Nlp + quk
1) 1D 2 2 0
‘Sztk,u,a - Si)p - qu
where SE, =377 ni(u} —¥1,)? and S5, = Zf:q ni(pr — Yge)?.

To show the validity of equation (3.6), we must consider two cases: ¢ > p+1
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and ¢ = p+ 1. For the case ¢ > p+ 1, from (3.8) we have Z’“L} Ve Z?:1 v+

J
l';())+1 =0+ 1'1‘)’T1 = L';;)Tl and C;Tl = 0 which implies L'z_'_l = /L;Tl — \°.

Then. Zj'if v =ty + vy, and ¢, = 0 which 1mplies o), = g5, —
Chgy — A =g, o A= A =0, — g > 0 and so on. Similarly.

) —1
Uy = Mgy — Hy—» 2 0 and vy = )qk — Hgor = Ny 2 0.

- 11 0O . . '—1 . 1o —
By (ii), vj. =2 0 and vg > 0 so vy ) = p5. — Blp — 0Ny, = 0 and v =

P
Yor — Hy— b\'_1 > 0. Therefore b < (415, —Y1,) NV, and b < (Y, = 15 1) Nk
which implies

b < min{ Ny (g, — Y1), Noe(Vge — 15_1) }

= min{ Ny (g — Yipr) N (Vo = 1)}

The last equation follows since

p+1
e * { " o AT * . * *
‘7\1p+l(/(’[)+] -3 1p+1) = ‘\17)(11,,“ + 77’p+1ﬁl,,+1) - E 1 [
=1
p
— , *x
— \lplup—}—l E n;p;
=1

- ‘\rlp(/l;ﬁ —Y7,).
For the case ¢ = p + 1. siuce
0 = Y — 0N =13, — b\

gk 1p

= YY1, — b(\/ + V—l) > 0.
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then

b < (Yo — Y1) /(Nl—p1 + A«'q—kl).

In addition. C; < 0 and cg > 0 so

Cp = —Nl_pl + 07y —Y,) <0 = bt < Ny — Y1,) !

— b > N —Y,)

and
0= N+ —Y) >0=10b > Np(Yor — p5).
Hence
b > max{Nlp(u; — Y1), N (Yo — ,u’(;)}
Thus, equation (3.6) follows and the Theorem is proven. ]

3.3 Iterative Algorithm

Of the k possible treatments, there are (kgl) possible choices of p and ¢, with
1 < p < g < k. Asevident from Optimization Theorem 3.2.1, the choice of
p < ¢ defines the optimal solution if the condition (3.6) holds. For given set of
Y1, ..., Y, there are no more than & — 1 possible choices of (p, ¢) for the optimal

solution ¢®, depending upon the confidence level 1 — .
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The following algorithm selects the optimal solution (po.qo). (p1.q1). - -
(pr.q,) from confidence level 1T — p to the desired level 1 — a where p is the

p-value of the multiple contrast test statistic 7.

(0) Set i = 0. pg =max{1l < j <k:pj <jifand gg=min{2 <j < k:pf>

it}

(i) Let 3 = max{ Ny, (1 = Y1) Nt Yook — 1)} trar, = {57, + Sor+
(A\"l_p} + ‘\'(;,i)BfH}”Q/S. If tha,. < tra then the optimal solution is ¢® with

p = pi, ¢ = ¢;. Otherwise go to (ii).

(i) If Ny, (e, — Vi) > Ny — iy ) then set p; ) = max{j : 1 < j <
Pi 1 < /1;} and ¢, = ¢;. Otherwise. set p;y ) = p; and ¢;o; = min{j : ¢; < j <

ks > ps b Set i =i+ 1 and go to step (i).

The reader is asked to refer to Appendix I for an S-Plus program written to
evaluate the steps of the [terative Algorithm, as outlined above. A justification
of this algorithin is now presented.

Proof of algorithm.
In a similar mauner as Lee, Peng and Liu (2001). at step (0). let p = py.

¢ = qo. 3o be the upper bound of b. i.e. 3y = (Y — 3_"11,)/(‘\'1;)l + A\'q*kl). In
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addition, let t4 .4, = Z". which implies that the p-value equals ag. Then,

A
e = T7 = > nilpl — p)?/S*
=1
k
= S0 = D nilpl — 1)
=1
p k
= S i = V) N (V= )7+ 3 i — T)?
i=1 i=gq

A2

N (T — 1)

= ST+ S0+ N (Y — )P 4 Nk (Y — )%

We note that f is the weighted average of Y7, and Y, and thus

Similarly, Y, — ft =

Therefore.

242
S tk,u,ao

B ;o
< I v A lp) 1p T ]\/qk‘) gk
./le =+ 2 gk

hp—lé = 31p

— N (Vor — 13,
A/le + Iqu .

A’]\'rly (1121/: - Yflp)
Nip + Nk '

ANlp*NqQk + qu*pr > (Y’ 4 )2
‘\Tlp -+ Jqu)Q (Aflp 4 ]\/*qk);z qk 1p

(Eﬂﬂ B Y—lp)g
prl + Nq—,j

q

- Sizp + ‘szk + <(

= S}, +Sh+ (NG + NG
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Thus

thvoy = 1S5, + Son + (NS + N3 /52

When 4 pap = thwa > thoa, then agp < a < a; and 3y > b(a) > J; with
l)((\) - (tz,l/‘QSQ o Sf qu)/( + qu )

Then, S%t 0, = Sf + .52

ok (Nl_p1 + Nq‘kl) 2 with tg .0 = tha, implies that

By > 51, and b satisfies (3.6) at step (0).
Next, let 3; = Ny, (p* — Y’ip)- Then p; = p — 1 and ¢; = ¢. We then have
S22 e = S 4 SE 4+ (NDP 4+ N3P
= Sizp_l + Sgk + Nlp—1(Ylp—1 - Y'lp)g + ”p(N; - _flp)Q
+ (Nl_l + N kl) le(ﬂp Ylp)Q
= ST, +Sh+ (NG + Nh6E

As before, ty 0 < thya, Implies & > a7 and 3; > b(«). These relationships also

hold for 4, = qu(qu — 3) when p; = p and ¢ = ¢ + 1. By induction, the

desired p; and ¢; are acquired such that (3.6) holds for the value of b(«) at a

given level 1 — a.



3.4 Numerical Example

To illustrate the results of the previous sections, consider the binding assay data
from Lee (1996), as displayed in Table 3.1. In this instance. A = 9 treatment

levels of antiserum dilution were used and a response of % inhibition of rosettes

was measured.

Table 3.1

Binding Inhibition Assay Data for Numerical Example 3.4 from Lee (1996)

log,, dilution | Inhibition (%) | Dose Means (1;)
3.519 -12.5 -3.5
3.114 12, 27 19.5
2778 14, 18, 25, 36 23.25
2.399 A1, 46 45
2.000 44, 15, 46 45
1.399 27, 33, 56 38.67
1.000 38, 40 39
0.699 32. 43, 50, 54 14.75
0.301 43, 47 45
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The sample means and sample sizes for each dose level are calculated as:

Y = (—3.5,19.5,23.25,45,15,38.67,39, 14.75, 45)

We also have S? = 86.477 and v = 15. For a 95% confidence level, due to unequal
sample sizes. a simulated critical value from (2.9) was obtained as #9095 = 2.926
using 1,000,000 replications. Also, 4 = 33.875 and the maximum likelihood

estimates of the sample means are:

1 = (—3.5,19.5,23.25,41.9, 41.9,41.9, 41.9, 41.75, 45)

We next use the Iterative Algorithm of Section 3.3 to evaluate the optimal
lower bound L(ug — 1) for the difference between treatment 9 and the control
treatment. Since ji = 33.875 falls between p}f = 23.25 and pj = 45 then the
initial values are pg = 3, ¢o = 4. The algorithm proceeds as follows:

- step 0: pg = 3, go =
B1 = max{61,17.6} = 61. tg154, = 4.457 £ tg g5 = 2.926 so go to the next step.

-step Ll py =2, g1 =4
By = max{46,17.6} = 46. tg 15,4, = 3.753 £ t9 05 = 2.926 so continue to the next

step.
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-step 20 py =1, ¢p =4
Jy = max{0,17.6} = 17.6. tg15.4, = 1.542 < 2.926. so (1.4) is the optimal choice
of (p.q).

Then. from equation (2.15). the optimal simultaneous lower bound is

Lty — pp) = 26.5085 with

c® = (—.5,0,0,.0316..0316..0316, .0316,.1117, .1187)

In the following Chapters. this algorithin is utilized in the calculation of the

minimum effective dose (MED) through a step-wise testing procedure.
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Chapter 4

Applications to Dose-Response

Studies

In this Chapter, various aspects of biopharmaceutical research are discusscd.
The process of modern drug development employs nuinerous statistical meth-
ods as attempts arc made to assess the pharmacologic activity of a compound.
For a toxic substance. determination of those sate doses is desirved. while for a
pharmaceutical drug, interest lies in which dosage is needed for an effect. In a
clinical research programme for a new chemical entity, an investigation of the
dose-response relationship is more or less a mandatory component (IKallén and

Larsson (1999)). As mentioned by Ruberg (1995a). classical dose respounse stud-
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window of safe and effective doses is beneficial to both the manufacturer and
regulatory body as it facilitates first choosing a higher dose for the prescription
version and later a lower dose for the over-the-counter version of the sanie drug.
Evidently, the need for more accurate measurenients of dose efficacy has led to
the determination of the MED to be a fundamental aspect of research in drug

development studies.

4.1.2 Assessment of a Dose-Response Relationship

In general, analysis of the four fundamental questions in drug developiuent.
which include the minimum effective dose determination, is facilitated by two ba-
sic approaches - Lypothesis testing which involves analysis of variance (ANOVA)
followed by multiple comparisons or contrasts, or regression modeling followed
by estimation of relevant dose parameters. These two approaches, along with

advantages and disadvantages of each. are now detailed.

Hypothesis Testing (ANOVA) Method

In a regulatory envirommnent. to find evidence of a dose-respouse relationship
or determine the minimum effective dose. the approaches based on hyvpothesis

testing whicli correspond to the confirmatory aspect in clinical trials are generally



used (Hamasaki. Isomura, Baba and Goto (2000); Ruberg (1995b)). As defined
in Chapter 2, we consider a one-wav ANOVA model in which a set of increasing
dose levels are denoted 1, 2, ..., k where 1 corresponds to the zero or control
dose level and n; experimental units are te: >d at the zth dose level. We let,
the vector pu = (uy. u2, - - ., ) denote the vector of response means, where p;
corresponds to the response mean for the ith dose, 1 = 1,... k.

The problem of identifying the MED is rmatted, in a similar manner as

Dunnett and Tamhane (1998), as a sequence f hyvpothesis testing problems:
Hgi Sy < pp+ 0 versus 'fi Dy > e+ 0, (4.3)

where § denotes a clinically significant differc ce. for all i = 2,...,k in a step-
wise fashion. When the null hypothesis is rc¢ :cted in favour of the alternative
hypothesis, there exists at least one treatm:  better than the control.
Stepwise procedures may be divided into wvo general types: step-down and
step-up. A step-down procedure begins by  sting the overall intersection hy-
pothesis and then steps down through the rarchy of implied hyvpotheses. If
any hyvpothesis is not rejected, then all of 5 implied hypotheses are retained
without further tests; thus a hypothesis is tes d if and only if all of its implying

hypotheses are rejected. On the other hand, step-up procedure begins by test-



ing all minimal hypotheses and then steps up through the hierarchy of implyving
hypotheses. If auyv hypothesis is rejected, then all of its implying hypotheses are
rejected without further tests: thus a hypothesis is tested if and only if all of
its implied hypotheses are retained (Hochberg and Tamhane (1987)). Hochberg
and Tamhane (1987) also note that step-down procedures are generally more
powerful than the corresponding step-up procedures. Furthermore, therc is a
more solid theoretical foundation for the use of step-down procedures. as will
now be discussed.

[n determining the NED. hypothesis testing procedures should strongly con-
trol what is known as the family-wise error rate (F\WWE) at level of significance a.
The family-wise error rate is defined as the probability of making any erroneous
significance conclusion in the given family of inferences at level o (Hochberg
and Tamhane (1987)). Marcus. Peritz and Gabriel (1976) derived the closure
method, which coustructs step-down testing procedures and leads to closed test-
ing procedures. This method tests all possible intersections of null hypotheses.
each at level a, rejecting a resulting hyvpothesis only if it and all other result-
ing hypotheses implying it are rejected. The authors also state the following

theorem:
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Theorem 4.1.1 (Marcus, Peritz and Gabriel (1976)). The aforemen-

tioned closed testing procedure strongly controls the Type I FIWE at level a.

o Step-down Testing Procedure

With reference to the MED problem, suppose that H,; will be rejected when
the one-sided lower bound L(p; — p1) > 6 (or the test statistic 7" > ¢, , where
tjva 1s the critical value, by Theorem 3.1.5 when 0 = 0). Under a one-way
model. the MED testing procedure has the form (modified from Liu (2001) and
Hsu and Berger (1999)):

Step 1:

It L(pp — pa) > 0.

then assert i > i + 0 and go to step 2:

else assert that there is no dose level which is significantly better than the
control dose level and stop.

Step 2:
I L{pp—y — p11) > 6.

then assert yi,—y > py + 6 and go to step 3:

else assert A/E'D = k and stop.



Step A — 1:
If Ly — 1) >0,
then assert gy >y + 0 and MED = 2:

else assert MED = 3 and stop.

To better understand how this stepwise method operates, let step A/

(1 < M < k—1) be the step at which the stepwise method stops. If 1/ > 1. then
the stepwise method declares doses k — M + 2.... k to be efficacious and will
provide lower confidence bounds for p; —p; when ¢ = k=M +2, ... k. It M <k,
then the stepwise method fails to declare doses 2.....k— A +1 to be efficacious
and will not vield a lower confidence bound for g; — oy when ¢ =2, ... k— M +1.
If M/ = k, then the stepwise method provides a lower bound for the efficacy of
every dose.

Since the sequence of hyvpotheses is hierarchical in nature, the approach of
stepping down through each hypothesis in the sequence beginning with dose
k produces a closed testing procedure. Thus, by Theorem 4.1.1, the FI\WE is
strongly controlled at nominal level a.

Another aspect of hvpothesis testing that is of statistical interest is the choice

between one-sided and two-sided tests. Ruberg (1995a) summarizes the opinions
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of most statisticians and states that the issue is relevant for all phases of drug
development. He notes that with one exception. researchers favour the use of
one-sided hypotheses for comparing experimental therapies versus placebo. As a
general rule, the authors who favour one-tailed hypotheses argue that the mo:
important ervor to control is Pr(drug approval | drug is not effective). Since a
drug could never be approved when it is less effective than placebo, such an err
will not occur in the approval process, and a one-sided alternative hypothe
should be used. Furthermore, from a statistical perspective, a one-sided test
more powertul, as it more readily detects the positive drug effect.

Interestingly, the FDA prefers two-tailed hypotheses in this setting, her >
clinical trials for new drugs are actually using a 0.025 significance level
hypothesis tests.  As Ruberg (1995a) remarks, the conservatism implies t
by switching to one-tailed hypotheses at a = 0.05, approximately 25% fe
patients could be utilized. Thus, one-tailed hypotheses should be the def:
approach to designing dose-response studies, which will reduce sample size -
quirements and expedite the drug development and approval process.

In summary. as noted by Ruberg (1995b), the ANOVA approach is compt
tionally siinple, understandable and easily communicated to scientific colleag

Furthermore. no specification of the functional form of the dose-respouse r
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tionship is required. When these procedures are used as part of the primary
analysis of dose-response data, they should be applied regardless of the signifi-
cance of the overall F-test for drug effect. however there are differing views on
this matter. Hochberg and Tamhane (1987, p. 108) summarize the opinions
and note that in 1977. Scheffé suggested that in genuine multiple comparison
problems, any inferences of interest based on the S-intervals should be pursued
regardless of the outcome of the preliminary F-test.

By contrast, Hamasaki et al. (2000) state that while tests are useful for
detecting evidence against the null hypothesis in the direction of a positive trend.
and have coucise interpretations, relatively little insight is provided into the
shape of the dose-response relationship. Ruberg (1995b) states that one of the
disadvantages of this approach is that inference 1s made only at the studied
doses, and in particular. the MED can only be declared at one of the studied
doses. In fact, the minimum effective dose found by the method of hypothesis
testing has been termmed the minimum detectable dose (NDD) (Liu, (2001)). We

next discuss regression niodeling as a method of assessing dose response.

|
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Regression Models

It is the belief of some authors that proper analvsis of a dose response study
involves estimating the dose-response curve (Kallén and Larsson (1999)). In
terms of the four fundamental questions in dose-respouse analysis, if enough dis-
tinct dose groups are studied. regression analysis can be used to answer Question
3 - “What is the nature of the dose-response relationship?” (Ruberg 1995b). It is
assumed that the dose-response relationship is y = f(r) + € where f(2) is mono-
tonic and smooth with E(e) = 0. var(e) = o2 where € is normally distributed.
Among the most popular dose-response curve is siginoidal, from which there are
a variety of equations to describe such a dose-response relationship. Of pai-
ticular interest is the four parameter logistic function given as follows (Ruberg
1995b):

A-D

With such assumptions, standard nonlinear regression techniques mav be used
to estimnate parameters. In the four-parameter logistic model. for examnple. C
is equal to the E'Dsy, which is the dose producing a 50% response. \With the
parameter estimates, it is possible to characterize whatever is desirable about

the dose-response relationship. including the MED or the minimum dose with



maximal effect. If the quantities are well defined. inverse regression may be used
to estimate the doses producing such effects (Ruberg (1995b)).

Recently, (INallén and Larsson (1999)) also assunied the drug under study
to have a monotone dose responsc curve with increasing dose (D). With the
assumption of a limit to the amount of effect obtained by the drug through
increasing the dose, the dose-response curve should start (D = 0) at some level
Ey and end asymptotically (D — o) at another level denoted Ey + Eax. The

authors also obtain the well-known sigmoid E\,, model, given by

Emax
1+ (EDso/D)b

E = FEy+

The authors note that in the description of this dose-response model, there are
four parameters that are interpretable in clinical terms. The parameter b is a
sensitivity measure for the response variable with respect to relative increases in
dose and is sometimes called the Hill parameter of the dose-response curve. If
a value for E;,, the smallest ¢l ically meaningful effect is obtained. then the
dose which produces this effect can be measured. For this estimate to be reliable,
E i, should be in the approximately log-linear part of the dose-response curve.
Furthermore. when an active cc trol exists, estimation of the clinician’s NED

involves defining Ey,;, for the new drug to be the same as the effect of the active



control which clinical experience has deemed the minimal effective dose. (Kallén
and Larsson (1999)).

Ruberg (1995bh) identifies two approaches for estimating the NMED from a
continuous function. The first. by Davidian, Carroll and Smith (1988), was de-
veloped for assay detection limits. The relevant calculations involve the following
steps: Referring to equation (4.4). let Y3, be the mean of a sample of .V subjects
given the MED and 5:2“ and si be the estimated variances of 173, and A respec-
tively, where 4 is the value of the response at the lowest available dose. After

constructing the appropriate ¢ statistic defined by

Yo, — A
f _ A ‘

[(s37)/N + s3]

-

then, with P(¢t > t.) = «, by placing 7. in the probability equation. and solving
for Y, one obtains

Vo = A+ t(s%) /N + s3]V

The calculated MED is then found to be f~Y(Yy,) = C[(A—D)/ (Y1, —D)—1]V/5.

Secondly, the scgniented parabolic model is also described, which is useful
when considering the low end of the response curve (Ruberg (1995b)). Essen-
tiallv, one assumes there is a horizontal dose-response relationship over a low

dose range. which then becomes a second-degree polynomial bevond the thresh-
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old dose, denoted Xy. The functional form may be written as:

. T z < X
flx) =
a+bx+cx? x> X,
For the model to be smooth and continuous at Xy, Xy = —b/2c. The dose X

may be interpreted as the MED, i.e. the lowest dose at which the effect of the
compound under study produces a response that is different than a zero dose.
More often. X is referred to as the threshold rather than the MED, since the
phrase “minimum effective dose” usually is thought to have a biologically or
clinically meaningful effect. Ruberg (1995b) advises that when interpreting the
model, the NED is the smallest dose greater than X that produces an expected
response greater than the clinically meaningful response.

Kallén and Larsson (1999) detail marginal models for log linear and non-
linear relationships. The former uses the analysis of variance model to reduce
the data to treatment means, from which a log-linear model is fit to the data.
In this instance, the log-linear model is an approximation of the dose-response
relationship. fitted to the estimated means for the purpose of estimating the
equivalent dose. The non-linear case also estimates the mean vector from analysis
of variance, however it fits the sigmoidal function to the estimated mean vector.

Furthermore, when there is information on individual dose-response curves, i.e.
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each patient has been given more than one dose of the drug, hierarchical mixed
models may be used to analyvze the dose-response relationship.

Hamasaki et. al (2000) also consider regression to estimate the curve of
the dose-response relationship. The authors introduce a model-based approach
using a data-adaptive distribution to estimate the dose-response curve for a
categorical response. Thev argue that this tvpe of response is encountered more
often in clinical trials than the continuous response. In addition, the descriptive
empirical cumulative function determines the shape and location of the dose-
response curve. The distribution function is not assumption-dependent, is a
parametric distributional specification, may describe data even when random
sampling is not involved and may be used directly and valuably in connection
with censored samples.

In comparison with the hypothesis testing approach, regression modeling has
many advantageous features. Appropriate models can describe the nature of
the association, provide parameters for describing the strength of the relation-
ship, provide predicted probabilities for the response categories at any dose, help
determine the optimal dose. provide diagnostic tools for checking model assump-
tions and help interpret the phenomenon properly and avoid misunderstandings

(Hamasaki et al. (2000)).
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However, model-based approaches require many assumptions, compared to
the relativelv few required for test-based procedures. Furthermore, specification
of the functional form of the dose-response relationship is considered difficult,
and in some cases 1ere may be several candidate models that appear to fit the
data equally well ut have drastically different properties at the extremes of
the dose-response curve. Regression analysis may also be complicated by fitting
several candidate odels. by estimating weights to be used in the analysis and
by difficulty in co -ergence of the nonlinear model to a unique solution. For
most models, cont ence intervals for the MED are quite broad, even when the
model fits well (H: hasaki et al, (2000) and Ruberg (1995b)).

In light of the ¢ >rementioned disadvantages of using the regression model to
identify the MED. and the use of the hypothesis testing approach in practice of
modern clinical t1 s, the ANOVA approach using a step-down testing proce-
dure will by discu >d in the remainder of this paper. The next section details
previous methods  plemented by various authors to determine the MED. Such
procedures availal  in the literature use test statistics or confidence bounds in

the previously de  d step-down testing method.
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4.2 Determination of the MED by Hypothesis

Testing

Previous authors have considered both likelihood ratio tests and multiple com-
parison tests in a stepwise testing procedure. However, few authors have con-
sidered tests in which the clinically significant difference, 9, is nonzero. A disad-
vantage of hypothesis testing procedures is the traditional use of point-zero (i.e.
0 = 0) null hypotheses for comparing a dose group with a placebo which ignores
the possible difference between statistical significance and clinical importance
(Hothorn and Bretz (2000)). The relevance of this omission lies in the fact that
in clinical trials, statisticians and clinicians may not have an identical interpre-
tation for the MED: the statistician may use it to mean the smallest dose that
is effective from a particular study whereas the clinician may use it to mean the
smallest dose that has a clinically meaningful effect (INallén and Larsson (1999)).
It 1s hoped that the inclusion of the clinically significant difference in this paper
will provide results with more meaningful conclusions and lead to the develop-
nient of drugs with fewer revisions of recommended dose after promotion. The

most conimon approaches to NED determination are now presented along with

a brief discussion of each procedure.
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(i) Dose-Response (DR) Method (Hsu and Berger (1999))

The DR method uses stepwise confidence intervals based on the pairwise
t test statistic. The authors utilized a fundamentally different confidence set-
based justification by partitioning the parameter space naturally and using the
principle that exactly one member of the partition contains the true parameter.

The test statistic is as follows:

Y. —Y] =3¢
T = J 4.5
J S(TLJl +n1—1)1/2 ( )

Hsu and Berger(1999) also note that the multiplicity adjustment is not needed
for testing this problem as the step-down procedure is a closed testing procedure
and the appropriate hypotheses are nested in sequence, beginning with the most
restrictive. Thus, the critical value, ¢,,. is the upper 100c percentile of the
Student’s ¢ distribution with v = Zle n; — k degrees of freedom.

Another closed test, denoted the NIPGXN method, combines ideas of the mul-
tiple tests from Marcus, Peritz and Gabriel (1976) and the ranking and selection
niethods from Naik (1975). For this case, Hsu and Berger(1999) let [2], ..., [k]
be random indices such that 7; above may now be arranged as Tjy < - -+ < Ty
Thus, each step in the step-down procedure is replaced by T}, > dp;, where df;

is the critical value of Dunnett’s (1955) (union-intersection) test.



Hsu and Berger (1999) state their simulation results indicate that the DR
method tends to infer an MED that is closer to the true MED than the MPGN
method or the method of Dunnett (1955). However, the DR method does not
incorporate the prior knowledge that the mean responses are monotone increas-
ing, thus may not be the ideal procedure. Two methods which utilize the mono-
tonicity of the dose-response means are Bartholomew’s Likelihood ratio test and
Williams™ procedures. Note that these procedures were developed for ¢ = 0.

(i1) Williams’ Procedures (Williams (1971, 1972))

Williams proposed two test statistics which take advantage of the power
of isotonic regression. Williams’ test statistics use isotonic estimates of the
Yi’s (i = 2....,k) as opposed to the original sample means. The test statistic

proposed by Williams (1971) is

pi =Y

RN

Wi =
J s(n

Furthermore, Williams (1971, 1977) defined another test statistic which im-

plements the isotonic estimates over all & doses as follows:

i = i

s(nj_l + nyt)ye’

~(2) _
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* : - . .
F = max min Yo /(s — ¢ 1= 2. ... A
Hi 2<s<i i<t<h £ il € ) '
J=s
t
- . . ‘
= max min E Yo /(s — 1), i=1.....k
Ha 1<s<ii<t<h £ il € ) '
J=s

For statistic U'jm, Williams (1971) tabulated the upper « critical values for
equal sample sizes for selected values of j. @ and v. An empirical formula to
extend these to the unequal sample size case is given in Williams (1972). For

statistic I'T'J-(2)7 if o is known. Marcus (1976) tabulated exact upper 5% and

1% quantiles for & = 2,...,5 and estimated upper 5% and 1% quantiles for
ko= 6..... 11. Williams (1977) also tabulated approximated critical values of

U’}m with different degrees of freedom. As noted by Liu (2001). the approximate
critical values given by Williams (1977) will result in a slight decrease in the

true size and power of the test, thus use of the values given by Marcus (1976) is

recommended.



(i1i) Bartholomew LRT for simple order alternative (Robertson et. al. (1988))

As explained in Section 2.1.2, the likelihood ratio test with ordered alterna-

tives 1s
k
z ni (e — ,[1)2
501 - & =t . (4-6)
> =) /v + S?

=1

where g = Zf:l n;Y;/ Zle n;. Critical values of Sy arc tabulated in Robertson.
Wright and Dykstra (1988).

In general, due to the difficulty of including a non-zero clinically significant
difference (9) value into the expressions for U'J-(z) and Sy;. these procedures will

not be employed in numerical examples or simmulation exercises.

The following procedures may be classified according to the type of contrast
used in the step-down testing procedure. We recall from Section 2.3 that the

. \ . k . .
1 — & one-sided confidence bound for any contrast > ;| n,¢;, is given by

k k k
Z(Z niCil;) = Z n;c;Y; — tk,u,aS(Z nicf)l/Q (4.7)
i=1 i=1

=1

For the next three procedures considered, it is noted that since the family of
Liypothesis under study is a closed family, a closed step-down procedure that
controls the FWE and does not require ordering of the t-statistics uses an or-

dinary a-level t-test, i.c. the critical value is the upper « critical point the
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Student’s #-distribution with v degrees of freedom (Tamhane. Hochberg and

Dunnett (1996)). Thus, the critical value is identical to the one used in the DR

Procedure (Hsu and Berger (1999)).

(iv) Linear Contrast Procedure (Rom, Costello and Connell (1994))

At the jth step of the testing procedure,

trasts 1s given by

(v) Helmert contrasts (Ruberg (1989))

The jth Helmert contrast compares the

average of all the lower dose response means.

the general form of the linear con-

[N

Jjth dose response mean with the

including the coutrol, and is given

by
.
—1 t=1.2,..., J— 1L
Cj =94 j—1 i=j:
0 =)+ 1,..., k
\

(vi) Reverse Helmert contrasts (Tamhane, Hochberg and Dunnett (1996))

The jth reverse Helmert contrast compares the average of the first j dose

69



response means with the control mean as

;

—7+1 =1
Cij = 1 =2, ... J
0 i=54+1....k

\

(vie) Multiple Contrast Testing Procedure

Thus, as Sy, incorporates the monotonicity assumption of the response means.
it is a more powerful test statistic for the problem when 0 = 0. However, due
to its complex structure, the clinically significant difference 0 cannot be imple-
mented into this procedure. and as a result. construction of a confidence interval
under the assumption of ordered restrictions which recognizes various values of
0 1s of interest.

At any step of the step-down testing procedure, when the null hypothesis is
rejected in favour of the alternative hypothesis, there exists at least one treatment
better than the control by the amount 0. Since g — gy is the largest difference
between any treatment mean and the control mean. the confidence lower bound
for s — 41 is bounded below by that for auy p; — 1 (0 = 2,...,k) or their
non-negative linear combinations. If this maximized confidence lower bound
tor pp — pp is at least d. then gy is significantly larger than g, + 0 and the

null hyvpothesis is rejected. As defined in Section 2.3. the optimal simultaneous
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confidence lower bound for p — pu; is

k

k
Lpy — 1) = réleag{;nicif} — z‘,k’,,‘aS(Z nl-c?)l/?}.

1=1

[t was also shown in Section 2.3 that the corresponding multiple contrast test
statistic, 72 is asymptotically equivalent to the LRT statistic Sp;.

For all values of 4, we now implement the optimal simultaneous lower bound,
as outlined in Chapter 3, which will incorporate the monotonicity of the dose—
response means. The Iterative Algorithm defined in Section 3.3 may be used to
calculate L(p; — 1) at the jth step of the testing procedure. As the optimal
procedure maximizes the difference between treatment groups, we expect the
procedure to have a higher power in detecting the MED compared to the methods

discussed previously.

4.3 Numerical Example

In this section, we apply some of the procedures outlined in the preceding section
to find the minimumn effective dose (MED) for a set of artificial data with k¥ =7
dose levels. including a control level. We consider each dose level to have a
common sample size of n; = 6 independent observations with mean squared

error 5% = 52.25 and degrees of freedom v = 35. The sample response neans
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and isotonic regression are given as follows:

Y = (0,—1.1.10.8.19,20)

= (—=0.5.-0.5.1,9.9,19.20)

To find the MED, we test hypothesis (4.3) beginning with & = 7 and consider
the clinicallyv significant difference, 6 = 2.5. Then, Table 4.1 displays the 95%
lower confidence limits of pj — ;. j = 7.6,5.4. 3.2, as calculated by the methods
of the previous section. The values given in parentheses indicate the actual con-
fidence lower bound found by each method. We note that as in Hsu and Berger
(1999). for compatibility. the inference given by Williams’ 117(1) procedure is

presented in terms of its associated confidence bounds.
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Table 4.1

95% Simultaneous Confidence Lower Bounds on p; — g for Example 4.3

Groups DR Williams Linear Helmert Reverse Multiple
Compared | Method Trend Helmert Contrast
7-1 2.5 2.5 2.5 2.5 2.9 2.5
(12.95) (12.40)  (13.44)  (8.43) (4.12) (12.88)
6-1 2.5 2.5 2.5 2.5 - 2.5
(11.95) (11.45) (9.92) (9.94) (1.94) (10.86)
5-1 - - 2.5 - - 2.5
(0.95)  (1.49)  (3.75)  (-0.07)  (-1.07)  (2.83)
4-1 _ _ - - - 2.5
(2.95) (1.53) (2.43) (4.24) (-2.42) (2.63)
3-1 - - - - - -
(-6.05) (-6.39) (-6.05)  (-4.60) (-6.10) (-5.79)
2-1 . - - . - .
(-8.05) (-8.05) (-8.05)  (-8.05) (-8.05) (-8.05)
MED 6 6 5 6 7 4

It is evident from Table 4.1 that the step-down testing procedure used with

the Dose-Response, Williams (1971) and Helmert Contrast procedures finds the

minimum effective dose to be dose # 6, with § = 2.5. The Reverse Helmert finds

dose # 7 to be the MED, while the Linear Contrast procedure gives the MED
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as dose # 5. However. the NMultiple Contrast procedure performs better than
all other procedures as it identifies dose # 4 to be the minimum effective dose.
It is of interest, then. to determine through siimulation studies the situations
for which the innovative Multiple Contrast Test is more powerful and to what
extent the value of ¢ affects the power of each procedure. Chapter 5 summarizes

the simulation study performed to address these relevant issues.

4.4 Further Approaches to MED

Characterization

Notwithstanding the extensive number of procedures used to determine the min-
imum effective dose, it remains a fertile area for research. For instance, Williams’
(1971, 1972) procedures have been modified by various authors in recent liter-
ature. Shirley (1977) and Williams (1986) extended Williams’ test for identi-
fying the MED using isotonic estimators of the Kruskal-Wallis (1952) average
ranks under the assumption of a monotone dose-response relationship. Bretz
and Hothorn (2000) generalized Williams’ test to the unbalanced case by im-
plementing two multiple contrast tests for estimating the minimal toxic dose

(MTD), which is analogous to the MED. The authors conducted a simulation
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study which concluded that Williams’ test is lacking in power for concave profiles
in relation to both multiple contrasts, but performs well for convex dose-response
shapes. Tsai (2000) proposed a test procedure similar to Williams’ for testing
dose-response which is based on the robust estimate of the average response.
The author uses an A/-estimator and a trimmed estimator in a simulation study,
from which the robust method is found to be more resistant to outliers and more
powerful than the Williams’ procedure when the data distribution deviates from
normality. However, the author notes that even though the data collected from
clinical trials usually have some deviation from normality, using a higher percent-
age of trimming in the trimmed estimator may not be encouraged by regulatory
agencies.

Further. as noted by Ruberg (1995b), while the analysis strategies use con-
tinuous data and normal theory methodologies, the concepts presented may
be generalized to categorical data as well as nonparametric analvsis strategies.
Chuang-Stein and Agresti (1997) provide a tutorial which reviews methods for
detecting a monotone dose-response relationship using discrete levels of a dose
and an ordered categorical variable. These authors also discuss the modeling
approach for identifying the NED and other aspects of dose response studies

including stratified data, sample size considerations and small-sample methods.






modified test are not very powerful. In addition, Chen (1999) proposed a multi-
ple test based on the Mann-Whitney statistics incorporated into the step-down
testing procedure. Chen found that the power performance of this test is at least
as competitive to that of the isotonic regression-based methods for an ordered
dose-response relationship and is more powerful than the Chen-Wolfe (1993) mul-
tiple test procedure for an umbrella ordering. Neuhaduser (2002) implemented a
modified version of the recentlv-introduced Baumngartner-\Wei3-Schindler (1998)
statistic in a closed testing procedure. A simulation study showed this niethod
to be more powerful than the Nann-Whitneyv or Wilcoxon test for identifving
the NMED. Finally. Chen and Jan (2002) proposed a non-parametric step-down
closed testing procedure which extended the procedure of Chen (1999) for the
randomized block design with repeated observations.

In the next Chapter, we revisit the parametric methods for MED identifica-
tion as outlined in Section 4.2 and conduct a simulation study to compare the

powers of the relevant procedures.
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5.1 Design of the Simulation Study

A simulation is undertaken to study tlie behaviour of the step-down testing pro-
cedure based on the following methods of Section 4.2: Contrast based methods
including those determined by linear contrasts (denoted LC), Helmert contrasts
(HC), Reverse Helmert contrasts (RH) and by General comparison methods such
as the Dose-Response (DR) method, Williams (1971) procedure (W(1)) and the
newly defined Multiple Contrast (MC) method.

For the study, the number of dose groups (including the control) was fixed at
either £ = 6, k = 5 or k = 4. For each value of k£, with & = 0.05 a common sample
size of n was assumed for each group. In a similar manner as Tamhane, Hochberg
and Dunnett (1996), 11 was fixed at 0, the standard error of the means, o/\/n is
set equal to 1 and the case of infinite degrees of freedom is considered. The study
examines both linear and step functional formi for the dose-response means. For
a given type of response, the value of the largest mean, g, is fixed at 5 and
we will consider values of the clinically significant difference, § to be 1.0, 1.5,
2.0 and 2.5. The simulation was replicated 10, 000 times and the probabilities
of detecting a significant difference between the particular dose level and the

control dose from the step-down testing procedure were determined.
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5.2 Res 1lts of the Simulation Study

For cach valuc f k&, the probabilities of identifving the true MED from the step-
down testing  ocedures are tabulated in Table 5.1 (for & = 6). Table 5.2 (for
k= 25) and T¢ le 5.3 (for A = 4). We first evaluate the estimated family-wise
error (F\WE) rate for each procedure. We adopt the definition of Tamhane,
Hochiberg and Dunnett (1996) and Dunnett and Tamhane (1998) and estimate
the FWE as t » proportion of replications (out of N = 10,000) corresponding
to noneffec ve doses. With a linear and step dose-response curve, the estimated
FWE rates & shown in Tables 5.1, 5.2 and 5.3. For a step dose-respouse
function, the aximum value of F\WE occurs when ¢ = 0, since as ¢ increases
for cach case, the estimated F\WWE decreases accordinglv. Furthermore. cases for
which the true MED = 2 do not result in a type I error, thus the estimated

FWE=.00 ) is not tabulated. Finallv, we remark that for all methods. the

estimated F\V | is less than .05+ 1.96,/(.05)(.95)/10, 000 = .05:3 aud hence the
FWE is accur  ely controlled at a = 0.05.

With rega | to power calculations, we note the existence of similar trends
among the the three tables. For a linear response curve. the probabilities of

detecting the [ED are very low for all values of 0 and £. In addition. we note
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that the Helmert and Reverse Helmert contrasts perform very well for the cases
of one effective dose and all doses effective respectively. however perform poorly
for other cases. For example, in Table 5.1, for case (0,0,0,0,0.5), the Helmert
contrast has the highest probabilities at .7406. .8637. .9379 and .9704 whereas
the Reverse Helmert has the lowest probabilities at .0010, .0042, .0162 and .0454,
much lower than the other methods. Conversely, for the case (0,5,5,5.5,5). the
Helmert contrast probabilities are near zero, while the Reverse Helinert contrast
probabilities are the largest at .4912. .6398. .7752 and .8662. Since the Helniert
and Reverse Helmert contrasts perform poorly for those cases for which they
were not designed. these two methods are not emploved in further analyvsis and
are not recommended in a general NED identification procedure for which the
shape of the response curve is unknown.

More speeifically, an examination of the behaviour of the NMultiple Contrast
(MC) procedure is of interest. From Table 5.1, it is noted that the NMC procedure
is best in 16/24 cases and worst in only 3/24 cases. Furthermore, the maximum
gain in probability over the DR, Williams and Linear Contrast procedures are
2841, .1592 and .5056 respectively. while the maximuimn loss in probability over
these procedures is .0250, .1212 and .0309 respectively. For & = 5, the MC proce-

dure is best in 13/20 cases and worst in 3/20 cases. The maximuin improvenients



in probability are .2392, .1432 and .3785 whereas the maximum losses in prob-
abilityv are .0535. .0467 and .0334 for the DR, Williamis and Linear Contrast
methods respectively. Finally. when A = 4, the NMultiple Contrast procedure is
best in 14/16 cases and worst in 2/16 cases. The maximuin gains and maximum
losses in probability for = e DR, Williams and Linear Contrast procedures are
1592, 1048, .2790 and .0 4, .0428, .0572 respectively. Hence. although the NC
method does not demons  ate a uniform gain in probability of detecting the true
MED, the improvements e substantial over the losses in probability.

As dose-respounse rese chers are also interested in obtaining a therapeutic
window of effective doses, we investigate the probabilities of correctly identifyving
at least one effective dose for the three values of k£ considered. The results are
displaved in Table 5.4 (A = 6), Table 5.5 (k = 3) and Table 5.6 (kK = 4). As
i the preceding tables, . 1ce the Helmert and Reverse Helmert contrasts have
significantly lower prob: lities in most instances, theyv are omitted from the
analysis. Thus, for k = 1e MC procedure is best in 15/24 cases and worst in
3/24 cases. As before, th maximum gain in probability over the DR, Williains
and Linear Contrast pro dures are .2842. .2132 and .5168 while the maximum
loss in probability to the -ocedures is .1236, .1048 and .0514 respectivelyv. Sim-

ilarly for & = 5, the NMC  »>cedure is best in 12/20 cases and worst in only -1/20

83






Table 5.1

Probabilities of Identifving True MED with A = 6 dose levels

Method
Case 6 MED HC RH LC DR W(1) MC
(0.1,2.3.4,5) 2.5 4 0002 .0126 | .0313 .0481 .0538 .0342
FwW 0000  .0053 | .0084 .0089 .0097 .0064
2.0 4 0010 .0346 | .0770 .0977 1051 .0727
FWE || .0000 .0195 ] .0257 .0260 .0287 .0218
1.5 3 0005 .0306 | .0540 .0486 .0523 .0397
FWE || .0000 .0167 | .0064 .0087 .0113 .0114
1.0 3 0044 0650 | 1141  .0968 .1024 .0832
FWE |l .0003 .0389 | .0205 .0221 .0276 .0290
(0.0.0.0,0.5) 2.5 6 7406 .0010 | .0850 .5541 .5107 .5649
2.0 6 8637  .0042 | .2167 .6842 6425 .7223
1.5 6 9379 0162 | 3925  .7942 7582 .8524
1.0 6 9704 .0454 | .6064 .8749 .8541 .9249
0.0 FWE | .0490 .0464 | .0517 .0495 .0491 .0474
(0.0,0.0.5.5) 2.5 5 2811 .0024 | .1954  .3891 4253  .5432
2.0 5 4854 0102 | .3474  .5370 .5789 7178
1.5 5 6895 .0313 | .5430 .6910 .7235 .8530
1.0 5 8368 0734 | 7042 .7928 .8195  .9196
0.0 FWE }| .0459 .0506 | .0484 .0502 .0514 .0501
(0,0,0.5.5,5) 2.5 4 .0245 .0085 | .2904 .3014 .3961 .5326
2.0 4 0915  .0240 | .4584 .4502 .5535 .7127
1.5 4 2308  .0639 | .6348 .5982 6964 .8396
1.0 4 4293 1373 | L7913 .7443 8170 9177
0.0 FWE | .0443 .0485 | .0498 .0496 .0496 .0498
(0.,0.5.5.5,5) 2.5 3 0002 .0482 | .3698 .2351 .3639 .4976
2.0 3 .0014 .1081 | .5674 .3904 .5386 .6745
1.5 3 0114 .2008 | .7278 5436 .6882 .8132
1.0 3 0576  .3308 | .8471 .6942 8110 .9022
0.0 FWE || .0192 .0511 | .0511 .0511 .0511 .0511
(0,5,5.5.5.5) 2.5 2 .0000 .4912 | .0341 .2057 .4912 .3700
2.0 2 .0000 .6398 | .1077 .3406 .5416 .5358
1.5 2 0000 7752 | .2561 5149 .7063 .7028
1.0 2 .0001 .8662 | 4445 .6572 .8234 .8203







Table 5.3

Probabilities of Identitving True MED with £ = 4 dose levels

Method
Case o MED| HC RH | LC DR W(l) 2\IC
0.2.12.5) 25 3 [.0103 .0376 | .1135 .1127 .1070 .0745
FWE | .0002 .0114 | .0071 .0075 .0080 .0081
20 3 | .0319 .0079 | .1975 .1927 .1831 .1403
FWE || .0009 .0252 | .0177 .0187 .0205 .0209
1.5 2 | .0056 .0610 | .0469 .0482 .0519 .0526
1.0 2 |/.0286 .1209 |.1015 .1017 .1092 .1104
(0,0.0.5) 2.5 4 | .6952 .0075 |.2974 5491 5103 5764
2.0 4 | .8315 .0262 | 4693 .6817 .6493 .7304
1.5 1 || .9142 .0716 | .6501 .7944 7676 .8525
1.0 4 | .9610 .1417 | .7905 .8763 .8579 .9223
0.0 FWE || .0483 .0501 | .0465 .0465 .0474 .0474
(0,0.5,5) 25 3 | .1151 .0312 | 4759 .3727 4203 .5251
2.0 3 | .2358 1119 | .6419 .5322 .5904 .6914
15 3 | 4259 1995 | 7687 6758 7225 8266
1.0 3 || .6157 .3289 | .8724 .8044 .8393 .9099
0.0 FWE || .0412 0465 | .0465 .0465 .0465 .0465
(0,5.5.5) 2.5 2 |[.0001 4972 |.1834 .2903 4102 4135
2.0 2 | .0022 6418 | 3325 4425 5678 .5703
1.5 2 | .0105 .7784 | .5164 .6080 .7241 .7263
1.0 2 | .0449 .8682 | .6837 .7474 .8380 .8393




Table 5.4

Probabilities of Identifving at least one Effective Dose with &£ = 6 dose levels

Method

Case o MED HC RH LC DR  W(1) MC
(0,1,2,3,4,5) 2.5 4 1180 1130 | 4330 .5438 .5250 .4202
2.0 4 2359  .2346 | .6559 .6874 6817 .6144

1.5 3 3899  .3807 | .8149 .7901 .7879 .7635

1.0 3 0624 5673 | 9257 8799 8863 .8894

(0,0,0,0.0.5) 2.5 6 7406 .0010 | .0850 .5541 .5107 .5649
2.0 6 8637  .0042 | .2167 6842 6425 .7223

1.5 6 9379 0162 | .3925 .7942 7582 8524

1.0 6 9704 .0454 | 6064 8749 8541 .9249

(0,0,0,0.5,5) 2.5 5 3885 .0163 | .6692 5536 .5881 .7915
2.0 5 5720 .0472 | 8341 .6856 .7344 9126

1.5 5 7377 1166 | L9392 7995 .8435 9714

1.0 5 8614 2309 | 9741 .8748 9092 .9881

(0,0,0,5,5,5) 2.5 4 182 (1228 | 8483  .5567 .6277 .8409
2.0 4 2358  .2362 | L9439 .6852 .7651 9455

1.5 4 3916 .3936 | .9789 .7918 .8686 .9819

1.0 4 5614  .5668 | .9845 .8754 9318 .9888

(0,0,5,5,5,5) 2.5 3 0191 .3856 | .6714 .5422 6308 .7917
2.0 3 0502 .5721 | .8369 .6774 7778 9157

1.5 3 A210 7313 | L9333 .7943 8820 .9714

1.0 3 2335 .8565 | .9725 .8728 9410 .9843

(0,5,5,5,5,5) 2.5 2 0011 .7350 | .0853 .5499 .6554 .5594
2.0 2 0048 .8646 | .2104 .6843 7970 .7272

1.5 2 0182 .9394 | .4002 .7993 .8923 .8513

1.0 2 0495 9775 | .6024 8776 .9509 .9280
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Table 5.5

Probabilities of Identifving at least one Effective Dose with & = 5 dose levels

Method
Case o MED HC RH LC DR  W(1) AIC
(0,1.25,2.5,3.75.5) 2.5 4 1448 1318 | 4713 5458 .5216 .4128
2.0 3 2643 .2503 | .6356 .6802 .6613 .5803
1.5 3 4284  .3967 | .7961 7759 .7689 .7276
1.0 2 5996 .6003 | .9083 8817 .8848 .8679
(0.0.0.0.5) 2.5 ) 71760 .0028 | L1981 5460 5012 5567
2.0 5 8526 .0199 | .3535 .6773 .6360 .7320
1.5 5 9294 .0282 | .5331 .7933 .7629 .8494
1.0 5 9652 .0654 | 7162 8773 .8548 9241
(0.0,0.5,5) 2.5 4 2935 .0525 | L7614 5424 5874 .7625
2.0 4 4673 1158 | .8867 .6746 .7271 .896G8
1.5 4 6497 2273 1 19492 7960 8434 .9614
1.0 4 7908 .3708 | 9782 8743 .9127 .9869
(0.0.5.5,5) 2.5 3 0484 2992 | L7680 5482  .6249 7741
2.0 3 A171 .4657 | 8891 .6847 7718 .9001
1.5 3 2290 .6365 | .9497 7885 .8664 .9614
1.0 3 3761 7875 | 9770 .8746 .9329 9815
(0,5.5.5.5) 2.5 2 0033 .7171 | .1941 5423 .6396 .5636
2.0 2 0105 .8541 | .3543 .6894 .7909 .7336
1.5 2 0301 .9312 | .5348 .7963 .8855 .8492
1.0 2 0760 .9708 | .7171 .8798 .9466 .9278
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Table 5.6

Probabilities of Identifving at least one Effective Dose with & = 1 dose levels

Method

Case o MED| HC RH | LC DR W(1) MC
(0,5.4.5) 25 3 [ .1835 .1682 | .4329 .5460 .4452 .1069
20 3 || .3122 2857 | .5915 .6648 .6403 .5516

1.5 2 || .4799 4758 | 7725 .7988 .7820 .7241

1.0 2 | .6466 .6422 | 8798 .8802 .8729 .8428

(0,0.0,5) 25 4 | .6952 .0075|.2974 .5491 5103 .5764
2.0 4 | .8315 .0262 | .4693 .6817 .6493 .7304

1.5 4 || .9142 0716 | .6501 .7944 .7676 .8525

1.0 4 || .9610 .1417 | .9223 8763 .8579 .9223

(0,0,5,3) 25 3 || .1737 1735 | 7158 .5427 .5872 .7131
20 3 |[.3033 .3157 | .8465 .6751 .7351 .8490

1.5 3 || 4839 4755 .9311 .7943 .8471 .9405

1.0 3 || .6475 6427 | 9692 .8802 .9213 .9729

(0,5,5.5) 25 2 ||.0087 .6974 | .2973 .5424 .6293 .5766
20 2 || .0256 .8298 | .4666 .6777 .7659 .7306

1.5 2 | .0652 .9180 | .6391 .7956 .8757 .8510

1.0 2 || .1426 9687 | .7874 .8808 .9411 .9289
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Chapter 6

Summary and Suggestions for

Future Work

In dose-response studies, methods of hypothesis testing are often used to de-
termine which dose levels. if anyv. are effective and in particular, to identify the
minimum effective dose (MED). A step-down testing procedure is often per-
formed as inferences are given in a specific order to verify if a treatment differs
significantly from a control level. Failure to achieve the desired inference at any
step eliminates the neced for further comparisons. Simultaneous confidence in-
tervals are preferred over point estimates and test statistics as they quantify the

difference between any treatment and control mean at any step of the testing
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procedure. The optimization Theorem and Algorithm developed in this thesis
have enabled efficient calculations of the optimal confidence lower bound for the
mean difference under the assumption of monotonicity. The innovative Multiple
Contrast procedure has demonstrated asymptotic equivalence to the likelithood
ratio test under ordered restrictions and, through stmulation, was found to be
more powerful that competitive procedures for various dose-response shapes.
The optimization thecorem outlined in this thesis may be applied to other
inference problems with order restrictions. In particular, other aspects of dose-
response and toxicity studies may be improved through such an optimization
procedure. As an example, recent articles by Tamhane, Dunnett, Green and
Wetherington (2001) and Hothorn and Hauschke (2000) have discussed identifi-
cation of the mmaximum safe dose (NIAXSD), which is important in both random-
1zed clinical dose-finding studies for the safety endpoint and toxicological studies.
These authors proposed multiple testing procedures for equivalence with a priori
ordered contrasts where an acceptable risk, denoted ¢ is defined in advance.
Furthermore, as the assumptions of normality and homoskedasticity are ravely
met in practice. nonparametric procedures should also be compared in any fu-
ture simulation study. As noted by various authors (e.g. Ruberg (1995a) and

Chuang-Stein and Agresti(1997)). dose-response methods for categorical vari-
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ables are also implemented in clinical trials. Thus. it is of interest to determine
if generalizations of the optimization method would result in more accurate and

efficient inference procedures in the aforementioned cases.
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Appendix I - S-Plus code for

Iterative Algorithm

# S-Plus program to compute optimal simultaneous lower bound (SCLB)
Author: Karelyn Davis
# Date: August 3, 2003

®*

# Program to compute MLE for simple order:

# S-Plus program to compute MLE for simple order case
# Author: Karelyn Davis
# Date: July 28th, 2003

pava.prg <- function(k,y,w) {

ys <- rep(0,k); ws <- rep(0,k); ysl1<-0; ws1<-0; u<-rep(0,k)
for(j in 1:k) {
if (j==1) A
ysl <- y[1]1*w[1]
wsl <- w[1]
ys[1]_ys1l; ws([1]_wsl
+
else {
a <- ysl[j-11 + y[jl*w[j]
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ysljl_a
b <- ws[j-1] + w([j]
ws[jl_b
by
+
il <= 0; 10 <-0
while(il <k) {
if (10==0) A
i01 <- 10 + 1; i1 <- 101
ymin <- (ys[i101])/(ws[101]1)
for(i in i01:k) {
avg <- (ys[i])/(ws[il)
if (avg <= ymin){
ymin <- avg

il <- i}
else {break}
}
}
else {

101 <- 10+1; i1 <- i01
ymin <- (ys[i01]-ys[i0])/(ws[101]-ws[1i0])
for(i in 101:k) {
avg <- (ys[il-ys[i0])/(ws[i]-ws[i0])
if (avg <= ymin) {
ymin <- avg
il <- i}
else {break}
}
+
for(j in 101:i1) {
ulj]_ymin
+
i0 <= i1
}
list (mle=u)
}



# Program to compute SCLB using algorithm
sclb.prg <- function(k, w, y, stdev, crit) {

¢ <- rep(0,k)
# MLE stored as u
u <- pava.prg(k, y, w)$mle
if (k==2){
cl1l_(-1/wl11); cl2]_(1/wl2])
}
else {
# Compute muhat
su <- 0; sw <= 0
for (i in 1:k) {
su <- uli]*w[i] + su
sw <- w[i] + sw
}
muhat <- su/sw
# Find initial p, q
for (i in 1:k) {
if (uli] < muhat) p<- i
}
for (i in k:1) {
if (uli] > muhat) q <- i
}
# Find optimal p, q using algorithm
d <-1
while(d > 0) {
np <- 0; ybp <- 0
for (i in 1:p) {
np <- np + wli]
ybp <- ulil*w[i] + ybp

}
ybp <- ybp/np
slp <= 0

for (i in 1:p) {
slp <- slp + wl[il*(ulil-ybp)~2

106



}

ng <- 0; ybg <= 0

for (j in q:k) {

ng <- ng + w(j]

ybg <- uljl*wlj]l + ybq

}
ybg <- ybg/nq
sqgk <= 0

for (i in q:k) {

sqk <- sqgk + w[il*(uli]l-ybg)~2
}

# Find beta

Betap <- np*(ul[p]l-ybp)
Betaq <- ngx*(ybq-ulq])
Betapg <- c(Betap, Betaq)
print (Betapq)

Beta <- max(Betapq)

# Compute Talpha

tl <- s1p + sqgk + (1/np + 1/nq)*Beta”2
talpha <- sqrt(tl)/stdev
print(talpha)
d <- talpha - crit
if (talpha < crit) {break}
elsed{
if (Betap > Betaq) {
q <= q; ml <= ulp]
for (j in 1:(p-1)) {
if (uljl < m1) {
p <- j}
by
+
else{
p <~ p; m2 <- ulq]
for (j in k:(g+1)) {
if (uijl > m2) {
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Compute B~"2

bsq <- (stdev™2 * crit”2 - slp - sqk)/(1/np + 1/nq)
b <- sqrt(bsq)
# Find optimal coefficients, c:
for (i in 1:p) A
a <= (-1/np) + (uli]l - ybp)/b
clil_a
+
for (i in q:k) A
bl <- 1/nq + (ulil-ybqg)/b
clil_b1
+
+
# Compute SCLB
sc2 <- 0; scmu <- 0
for (i in 1:k) {
sc2 <- sc2 + wl[il*(c[1])"2
scmu <- scmu + wli]*c[i]*u[il
}
# Compute Optimal Simultaneous Lower Bound
sclb <- scmu - (crit*stdev*sqrt(sc2))
list(k = k, optimalcoeff = c, optimalsclb = sc. )
+
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