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Abstract 

Scientific experiments often compare several treatment means with a control 

mean. In particular, such multiple comparisons arise in biopharmaceutical stud­

ies in which it is desirable to conduct the inferences in a specified order and fail­

ure to achieve the desired inference at any step renders subsequent comparisons 

unnecessary. In clinical trials, an important dosing quantity is the minimum ef­

fective dose (MED), defined as the minimum dose such that the mean response 

is clinically significantly better than the mean response of the control by a prac­

tical significant difference. In relation to MED estimation, previous authors 

have either failed to account for the monotonicity of the dose-response means 

or considered the case of a zero clinically significant difference. In this thesis, 

an innovative approach using Kuhn-Tucker conditions to evaluate the optimal 

confidence lower bound at each step in a closed step-down testing procedure is 

derived and simulation results are presented. 
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Chapter 1 

Introduction 

In the past half-century, statisticians have recognized the improvement in effi­

ciency of many inference problems as a result of implementing the prior ordering 

of parameters or restrictions in the analysis. Problems of this type may origi­

nate from diverse areas of study: an educator may wish to determine if levels 

of distraction varying from none to excessive during an examination result in 

scores in the reverse order of magnitude; a sociologist may examine if people in 

low, middle and high socioeconomic groups possess low, middle and high knowl­

edge of certain current events; and a National Hockey League ( THL) owner may 

be interested in determining whether selecting players with a high ranking in 

the Entry Draft will lead to improved team performance. (Daniel, 1990 and 
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Dawson and Magee, 2001) Alternative hypothesis of this nature are referred to 

as ordered alternatives and are studied in the general area of order restricted 

statistical inference. 

Furthermore, the focus of many scientific experiments details the comparison 

of several treatment means with a control mean. When a treatment is signifi­

cantly better than the control, researchers wish to evaluate the difference between 

the best treatment and the control. For example, suppose p, = (p,1 , .. . , p,k), a 

vector of mean effects of k treatments, where p,1 is the mean of the control and 

p,2 , ... , P,k are the mean responses corresponding to increasing dose of a test drug. 

Then, in one-sided comparisons with the control where a significant difference 

is of interest, as in dose-response studies, the desired inferences are P,i > p,1 + o, 

where o defines a practical significant difference . 

One instance of such multiple comparisons occurs when it is desirable to give 

the inferences in a specified order and failure to achieve the desired inference 

at any step renders subsequent comparisons unnecessary. This situation arises 

in dose-response and toxicity studies, where p,2 , . . . , P,k correspond to increasing 

dose of a substance. In dose-response studies, it is desirable that a method not 

declare a lower dose to be efficacious if it does not declare a higher dose to be 

efficacious . 
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The pharmaceutical industry has implemented numerous order restricted in­

ferences throughout the development of a drug. While the development process 

may have multiple objectives, the establishment of a therapeutic window, or 

range of effective doses, is of considerable interest. In particular, a practical 

dosing quantity used in biopharmaceutical studies is known as the minimum ef­

fective dose (MED), which is defined as the minimum dose such that the mean 

response at that dose is significantly better than the mean response of the con­

trols (Ruberg (1995a,b), Hsu and Berger (1999)). Determination of the MED 

may involve hypothesis testing, regression methods, or a combination of both. 

Since dose-response means increase for increasing dose , we require the as­

sumption of monotonicity of the J.Li: 

(1.1) 

Moreover, for the MED problem, Bauer (1997) showed that only the pairwise 

contrasts between the ith response mean and the control mean strongly control 

the type I familywise error rate (FWE) in a stepwise testing procedure, regardless 

of whether the above assumption of monotonicity is satisfied. If condition (1.1) 

is not satisfied, other procedures may lead to excessive error rates. However, as 

pairwise contrasts do not exploit any prior knowledge of the shape of the dose 
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response function , they are less powerful. 

Previous research has considered likelihood ratio tests (LRTs) and multi­

ple comparison tests in a stepwise procedure. Simulation studies conducted by 

various authors (e.g. Ruberg (1989), Tamhane, Hochberg and Dunnett (1996), 

Dunnett and Tamhane (1998), Hsu and Berger (1999) and Liu (2001)) have 

shown that those procedures which account for the monotonicity of the response 

means are the most powerful. However, with the exception of Hsu and Berger 

( 1999), such analyses have assumed the clinically significant difference ( 6) to be 

zero, which is not true in general. 

With respect to statistical inference, a confidence interval provides a visual 

perspective superior to a point estimate or a test statistic. The problem of ob­

taining confidence intervals under ordered restrictions has received mild recogni­

tion by researchers, primarily due to the general intractability of these types of 

problems (p. 405 of Robertson , Wright and Dykstra (1988)) . In a recent paper, 

Hsu and Berger (1999) proposed a stepwise confidence set method, however this 

method did not assume monotonicity of the response means. 

As stated in Dunnett and Tamhane (1998), the problem of identifying the 

MED is formulated as a sequence of hypothesis testing problems, beginning 

with a comparison of the largest dose versus the control dose and continuing 
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in a stepwise fashion. When the null hypothesis is rejected in favour of the 

alternative hypothesis at any step, there exists at least one treatment better than 

the control. With the monotonicity assumption (1.1), we note that f.lk- f.ll is the 

largest difference between any treatment mean and the control mean, hence the 

confidence lower bound for this difference will be bounded below by that for any 

f.li- f.ll ( i = 2, ... , k) or any resulting non-negative linear combinations. vVe state 

that f.lk is significantly larger than J.1 1 if the maximized confidence lower bound 

for the difference in means is larger than the clinically significant difference 6, 

and thus reject the null hypothesis . However, the likelihood ratio test cannot 

be used to provide confidence intervals. In this thesis, a detailed construction 

of the simultaneous confidence lower bound for f.lk - f.1 1 is discussed, which is a 

particularly useful inference method not previously considered in relation to this 

problem. 

The procedure outlined in this paper will be to devise a Theorem to calculate 

the optimal lower bound , as noted above. Marcus and Peritz (1976) found the 

optimal lower bound by calculating the lower bound over all partitions and hence 

selecting the maximum. This lengthy search is simplified by using Kuhn- Tucker 

conditions to retrieve the optimal coefficients directly for the given data set. 

For a slightly different problem, Lee, Peng and Liu (2002) derived algorithms 
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to compute the optimal difference between treatment and control means when 

treatments are at least as good as the control and when no restriction is placed 

on the response means. 

The present thesis considers both known and innovative results to explain 

the nature of simultaneous confidence lower bounds and their applications in 

dose-response studies. Chapter 2 provides technical results useful for further 

work including definitions of the maximum likelihood estimate under ordered 

restrictions, tests of simply ordered hypothesis, Kuhn-Tucker conditions and 

derivations of a multiple contrast test statistic and simultaneous confidence lower 

bounds. Chapter 3 details the application of this problem to ordered A OVA 

by Marcus and Peritz (1976), and the derivation of an optimization theorem for 

the aforementioned difference. The optimization theorem leads to an efficient 

algorithm, for which calculations are illustrated by way of a numerical example 

at the end of the chapter. In Chapter 4, various aspects of dose-response studies 

are discussed including a definition of the MED and procedures for its identifi­

cation. A subsequent numerical example examines computational aspects of the 

various procedures, including the new procedure developed in Chapter 3. Other 

approaches available in recent literature for determining the MED are presented 

in the last section of Chapter 4. In Chapter 5, the design and results of an 
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in-depth simulation study which examines the power efficiency of the MED pro­

cedures are provided. Finally, a summary of results obtained and suggestions 

for future work are given in Chapter 6. 
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Chapter 2 

Technical Results 

The experiment to be considered in this thesis is a model for ANOVA with 

ordered restrictions. Denote a set of increasing dose levels by 1, 2, ... , k where 

1 corresponds to the zero or control dose level. A one-way model is discussed, 

in which n i experimental units are tested at the ith dose level, i = 1, ... , k. Let 

observations Yij be mutually independent with Yij '"'-' N(p,i, a 2 ), j = 1, ... , ni 

and i = 1, ... , k. Then fi '"'-' N(p,i , a 2 /ni), i = 1, ... , k are the sample means of 

the dose groups and let S 2 = I:7=1 I:7~ 1 (Yij - fi) 2 jv be an unbiased estimate 

of the common variance a 2
, with v = I:7=l ni - k > 0. Then S 2 is distributed 

as a2x~/v , independently of Yi, ... , Yk. The parameter space for this problem is 

defined as S1 = {p, E Rk : p,1 ::::; p,2 < · · · < J.-tk}, with a 2 as a nuisance parameter. 
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2.1 Tests of Simply Ordered Hypothesis 

2.1.1 Maximum Likelihood Estimate Under Order Re-

strict ions 

The restricted maximum likelihood estimator of p, subject to n is denoted p,* = 

(p,t , ... , p,j.) and is denoted the isotonic regression of Y = (Y1, ... , Yk) under n 

with weights n 1, ... , nk· 

As the data is assumed to be normally distributed, the max1mum likeli-

hood estimate (MLE) is the solution to the following constrained weighted least 

squares problem: 

such that p, E D. (2.1) 

The MLE is readily calculated using the Pool-Adjacent-Violators Algorithm 

(PAVA) (see Robertson , Wright and Dykstra (1988)). The process is essentially a 

successive averaging of "fi 's until a sequence of non- decreasing values is obtained. 

The MLE of the p,'s may then be partitioned into consecutive sequences of equal-

valued p,*'s such as 

with i 0 = 0 and it = k. 
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With the previous representation, the following results are valid. 

Lemma 2.1.1. The vector p,* is the MLE of p, if and only if 

k 

L ni(Yi- p,:)p,7 0 and 
i=1 

k 

L ni(fi - p,:)vi < 0 for all v E S1. 
i=1 

Lemma 2.1.2. With p,* as the MLE of p,, then for r = 1, ... , l, 

n .£ z z 

i=ir-1 +1 
(2.3) 

i=ir-1 +1 

Lemma 2.1. 3. With p,* as the MLE of f..L, if 

* * A * 11. · +1 = · · · = 11. · = r < 11. · +1 ==> ~'""'Zr -1 t-"'Zr ~'""'Zr 

for j = 1, ... , ir. 

2.1.2 Likelihood Ratio Test 

As is often the case in applications, a researcher may believe that the response 

means are monotone increasing, a priori, thus likelihood ratio tests (LRTs) for 

homogeneity of normal means with simple order restrictions are introduced. As 

10 



previously noted , the interest of this paper lies with a variation of the following 

hypothesis under the monotonicity assumption p,1 < 0 0 0 

:::; J.-lko The LRT for 

ordered alternatives was introduced by Bartholomew (1959a,b, 1961a,b) and 

further discussed by Robertson, Wright and Dykstra (1988) as follows: 

Ho : f.-ll = f.-l2 = 0 0 0 = J.-lk 

The LRT rejects H 0 in favour of H 1 for large values of the test statistic 

i=l 

k 
~ - 2 2 
L__, ni(li - P,) jv + S 
i=l 

~ k - k 
where p, = Li=l nili/ Li=l nio When a 2 is known, the test statistic is given by 

- 2 
X01 

i=l 

As shown in Robertson, Wright and Dykstra (1988) , as v -+ oo, the distribution 

of So1 approaches that of x51 ° 

The null distributions of S 01 and x51 under H0 are 

P[S01 2: s] 
~ . s(N- j) 
~ Ps(J, k; w)P[Fj-l ,N-j > v(j _ 1)] 

(2.4) 

11 



k 

L Ps(j, k; w)P[XJ-1 ~ s] (2.5) 
j=2 

for any s > 0, where N = 2::.::=1 ni, w = (n1 , . .. , nk), P5 (j, k; w) is the level 

probability that f..L* takes j distinct values under H 0 and x]_1 is a chi- squared 

variable with j - 1 degrees of freedom. For the case of equal weights, the level 

probabilities and the critical values for S 01 and x61 are tabled in Robertson, 

Wright and Dykstra (1988) . We now discuss the calculation of level probabilities 

in more detail. 

For the simply ordered case, i.e . with f..Ll ::; · · · < f..Lk, the level probabilities 

are denoted P 5 (l, k; w). When k = 2, the level probabilities are Ps(1 , 2; w) = 

P 5 (2, 2; w) = ~- If the weights are equal, the level probabilities are more read-

ily obtained. For this case, we omit the weights from the notation and denote 

the level probabilities as Ps(l, k). It is demonstrated by Robertson, Wright and 

Dykstra (1988) that the P5 (l, k) are distribution free over the collection of inde-

pendent, identically distributed continuous random variables, i.e. the probability 

that the isotonic regression ofY1 , Y2 , ... , Yk with a simple order and equal weights 

has l level sets does not depend in the distribution of the Yi, provided they are 

independent with a common continuous distribution. Furthermore, an expres-

sian for the probability generating function (PGF) of {P5 (l, k)} is obtained and 
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used to derive a recurrence relationship for the equal- weights level probabilities 

as follows: 

Theorem 2.1.4. Robertson, Wright and Dykstra {1988}. 

The probabilities Ps(l, k) satisfy 

and 

1 
Ps(1, k) = k and 

1 
Ps(k, k) = k! 

1 k- 1 
Ps(l, k) = kPs(l- 1, k- 1) + -k-Ps(l, k- 1) 

for l = 2, 3, ... , k - 1. 

Moreover, Hogg (1965) noted the relationship between the likelihood ratio 

function and the class of linear functions of the sample mean }i. Without loss of 

generality, assume that 2.::=1 nici = 0 and 2.::=1 nicf = 1 for the linear contrast 

2.::=1 nici}i and the k populations have equal known variance a 2
. With the 

further assumption that p,1 < p,2 ~ · · · ~ Jl-k, the following result by Hogg (1965) 

is presented: 

Theorem 2.1.5. Hogg {1965}. 

k 

.[ii_ = max{nicifi/(a2 ~ nic;) 112
}, 

i=l 

subject to ci satisfies the order c1 < c2 < · · · < ck. The maximum is attained at 

13 



Since the linear contrast is normally distributed, the power function is more 

easily computed for the test based on linear contrasts than x51 . Furthermore, 

a linear contrast may be decomposed into the sum of independent, normally 

distributed variables which is particularly useful if the hypothesis that f.Ll = 

· · · = f.Lk is resolved into a number of nested hypothesis (Hogg, 1965). 

2.2 Multiple Contrast Test Statistic 

When So1 > sk,v,on one rejects Ho and concludes that treatment mean f.Lk is 

significantly larger than f.Ll· However, there is no corresponding simultaneous 

confidence lower bound for f.Lk - f.Ll when k > 2. The following test statistic is 

introduced: 

(2.6) 

Let tk,v,a. be the critical value of statistic T, which leads to 

k k k 

PJ.L{l= niCif.Li > L nici"fi- tk,v ,a.S( L nici) 112
, for all c E C} = 1- o:. (2.7) 

i=l i=l i=l 

14 



We may rewrite the left- hand side of the above as 

k k 

P~t{~Ecgc Lnici("fi - J-Li)IS(Lnici) 1
1

2 < tk,v,cof-L E 0} 
i=l i=l 

k k 

Po{ ~Ecgc L nici"fil S(L nic;) 1
1

2 
::; tk,v,a} 

i=l i=l 

k 

Po{L ni(J-L7- [1,) 2 I S 2 < t~,v,a} 
i=l 

where the last equation is the result of an argument similar to one m Hogg 

(1965). Therefore, we write 

k 

L ni(J-L7- [1,) 2 I S 2 (2.8) 
i=l 

• Distribution of T 2 under J-L 1 = · · · = /-Lk 

As stated by Lee, Peng and Liu (2002), the right-hand side of the previous 

equation is given by Wright (1988) for a different purpose. The statistic T 2 is 

asymptotically equivalent to S01 . The null distribution ofT under f-Ll = · · · = J-Lk 

may be written as: 

k t2 

Po(T > t) = L P(j, k, w)P[Fj-l,v > ~), 
j=l J 

(2.9) 

for any t > 0, where P(j, k, w) is the level probability under /-Ll = · · · = J-Lk that 

J-L* takes j distinct values and w = (n 1 , n 2 , . .. , nk)- The critical value tk,v,a is 

the value t when one equates (2 .9) to a. 
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2.3 Simultaneous Confidence Bounds 

We define the set C which places restrictions on the "scores" represented by 

k 

C { c = (c1, c2, ... , ck) : L nici = 0, ci < ci+l, i = 1, ... , k- 1}. 
i=l 

For the ordered ANOVA model, Marcus and Peritz (1976) state the following 

lemma as the basis for the one-sided simultaneous confidence bound: 

Lemma 2.3.1 (Marcus and Peritz {1976)). 

k k k 

PJ.L{L nicif.-Li > L nicifi- da(L nicT) 112
, \/c E C} 1- a, 

i=l i=l i=l 

where da is the upper 100a percentile of the null distribution of the square root 

of Bartholomew's likelihood ratio statistic when a 2 = 1. 

Lemma 2.3.1 defines simultaneous confidence bounds for certain classes of 

linear functions of expectations. These bounds also hold without the restriction 

of monotonicity on the parameter space. Taking these restrictions into account, 

the bounds may be improved in certain cases without altering the confidence 

level of 1 - a. 

According to Lemma 2.3.1, the 1 - a one-sided simultaneous confidence 
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k 

bound for any contrast L niCif.-Li with ci:::::; ci+l, i = 1, 2, ... , k- 1 is given by 
i=l 

k k k 

l(L niciJ.-Li) L nicifi- da(L nic;) 112
. (2.10) 

i=l i=l i=l 

For the general case, as considered by Marcus and Peritz (1976), the following 

set is now defined: 

k k 

T c* = { c : c E C , L ni ci f.-Li :::::; L ni c~ f.-Li, V p, : f.-Li :::::; f.-Li+ 1 , i = 1 , . . . , k - 1 } 
i=l i=l 

(2.11) 

f . * ( * *) or a g1ven c = cu ... , ck . 

The improved confidence lower bound is denoted by 

k k k 

S(Tc*) = maxl(LniCif.-Li) = maxfi:::nicifi- da(Lnic;) 112
}. 

cETc* CETc* 
i=l i=l i=l 

(2 .1 2) 

One now has the following lemma: 

Lernrna 2.3.2 {Marcus and Peritz {1976)). With p, monotone nonde-

creasing, 

k 

P ~t{L niCif.-Li > S( Tc* ), 
i=l 

k k 

k 

Vc : ci :::::; ci+l, L nici = 0} 
i=l 

1- a. 

The condition L niCif.-Li :::::; L nic~ f.-Li for all nondecreasing sequences of Mi is 
i=l i=l 

equivalent to 
k k 

L njcj < L njcj for all i = 2, ... , k . (2.13) 
i=j i=j 

17 



For the step-down confidence set test procedure, often used in dose-response 

studies, we need only maximize the one-sided confidence lower bound for the 

contrast f.-ik - f.Ll· In a similar manner as Marcus and Peritz (1976), equation 

(2. 7) implies that a 1 -a simultaneous confidence lower bound for any contrast 

k k k 

z(L niciJ.Li) L nicifi- tk,v,aS(L nic;) 112
. (2.14) 

i=l i=l i=l 

In particular, the 1 - a simultaneous confidence lower bound for the difference 

f.Li - f.Ll (i.e. the difference between the ith treatment mean f.Li and the control 

mean f.Ll) is 

To determine the minimum effective dose (MED), we implement a step-down 

procedure which maximizes the above one-sided confidence lower bound for the 

contrast f.-ik - f.Ll· The set JC is now defined as 

k k 

}( {c: L:=nici = 0, cl < C2· .. < Ck, L:=niCif.Li < f.-ik- J.-il, MEn}. 
i=l i=l 

Thus, the improved confidence lower bound for f.-ik - Ml is denoted by 

k k 

~E~{L niciYi- tk,v,aS(L nic;) 112
}. 

i=l i=l 

(2.15) 
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In Chapter 3, an Optimization Theorem and an Iterative Algorithm are de­

rived to calculate the optimal lower bound, L(p,k- p,I) for a given sample. Chap­

ter 4 examines the implementation of a step-wise testing procedure for finding 

the minimum effective dose (MED) by calculating L(p,k - p,1 ) for dose levels 

2, ... , k. 

2.4 Kuhn-Tucker Conditions 

The evaluation of the improved simultaneous confidence lower bounds such as in 

(2.15) is a maximization problem subject to equality and inequality constraints. 

Let x be an n x 1 vector and H(x) be an m x 1 vector whose components 

h 1 ( x), . . . , hm ( x) are differentiable concave functions of x > 0. In addition, let 

g(x) be a differentiable concave function of x > 0. The Kuhn-Tucker equivalence 

theorem will determine an X
0 that maximizes g(x) constrained by H(x) > 0 and 

x 2: 0. A vector x is said to be feasible if it satisfies all given constraints . The 

optimal value of the problem is the maximum of g(x) over the sets of feasible 

points . Those feasible points which attain the optimal value are called optimal 

solutions. Let [ %~ J o and [ %~ J 
0 

denote the partial derivatives evaluated at a 

particular point x 0 and v 0 respectively. 
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Theorern 2.4.1 {Equivalence Theorern). Let h1 (x), ... , hm(x), g(x) be con-

cave as well as differentiable for x > 0. Let ¢(x, v) = g(x) + v'H(x). Then X
0 is 

a solution that maximizes g(x) constrained by H(x) > 0 and x > 0 if and only 

if x 0 and some v 0 satisfy the following conditions: 

{1) [:~r ~ 0, 
[ii¢r , 8xi X = O, X

0 > 0· 
- ' 

(2) [:~r ~ 0, [:~r v' = 0, V
0 > 0. 

(Theorem 3 Kuhn-Tucker 1951) 

Simple modifications are made when the constraints H(x) > 0, x > 0 are 

changed to the following three cases: 

Case 1. H(x) > 0. 

Here, using ¢(x, v) = g(x) + v' H(x) defined for all x and constrained only 

by v ~ 0, one must replace condition (1) by 

(1*) 0. 

Case 2. H(x) = 0, x > 0. 

In this case, using ¢(x, v) = g(x) + v' H(x) defined for all v and constrained 

only by x > 0, one must replace condition (2) by 

(2*) [~]0 = 0. 
auj 

20 



Case 3. H(x) = 0. 

Here, using ¢(x, v) = g(x) + v' H(x) defined for all x and v without con­

straints, one must replace conditions (1) and (2) by (1*) and (2*). This corre­

sponds to the familiar method of Lagrange multipliers. 
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Chapter 3 

Optimization Theorem 

3.1 Preliminary Results 

3.1.1 A pplication t o Ordered ANOVA by M arcus and 

Peritz (1976) 

In their 1976 article, Marcus and Peritz noted that likelihood ratio statistics 

for hypothesis testing in certain restricted normal models have been available 

for some years , but no corresponding simultaneous confidence (SC) procedures 

have been presented. Simultaneous confidence lower bounds were obtained and 

an application to analysis of variance (ANOVA) was presented for any contrast 
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k 

of the form :2....:: niCif-Lio The results presented in this section are for this general 
i=1 

case, however examples are stated which use the Marcus and Peritz method for 

the specific contrast f-Lk - J-L1o 

In summary, to find the optimal lower bound, L(~ niCiJ-Li), as defined by 

equation (2012) and discussed in Section 203, the solution obtained by Marcus 

and Peritz (1976) involved the following steps: 

After amalgamating the sample means and obtaining the nondecreasing max-

imum likelihood estimators, the authors note that L(~ niciJ-Li) is nonnegative for 

all c*, and thus consider only positive-valued l(~ niCiJ-Li)'so 

Furthermore, suppose that the maximum of l(~ niCiJ-Li) in Tc* is obtained at 

a point c0 such that 

i 

:2....:: njCoj = :2....:: njcj for i = i1, 0 0 0 , im and no other values of i o 
j=1 j=1 

Using the fact that ~7=1 nici = ~7=1 nici = 0, then alternatively, 

:2....:: nic; for s = 1, 0 0 0, m, 
iERs 

(301) 

where R1 = {1, 0 0 °, i1}, 0 0 0, Rs = { is-1 + 1, 0 0 0, i5}, 0 0 0, Rm = { im-1 + 1, 0 0 °, k }0 
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After implementing Lagrange multipliers, the authors obtain: 

(3.2) 

and 

iERs iERs 

requires that 

(3.4) 
s iERs 

To find the optimal lower bound, let P = {R0 , ... , Rm} denote any partition 

of {1, ... , k} and let P be the set of all partitions satisfying equation (3.4) for 

which the right- hand side of (3.2) satisfies (2.13). Then, the optimal lower bound 

Marcus and Peritz remark that some partitions may be eliminated. For 

instance, letting partition P 1 be a refinement of partition P0 (i.e. all the sets in 

partition P 1 are subsets of the sets in P0 ), then (i) if P0 satisfies equation (3.4) 

empty as it always includes P : R = {i}(i = 1, ... , k). Also, for any P E P, 

the right hand side of equation (3.2) is increasing in i (and hence the vector c 
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corresponding to P is always in Tc*). If i, i + 1 E Rs, ci < ci+l follows directly 

from (3.2); if i E Rs and i + 1 E Rs+l one has, by Lemma 2.3.2 and equation 

(3.1) that ci < ct and ci+l 2':: ct+1 and thus ci ~ ci+l· 

In summary, the approach of Marcus and Peritz (1976) calculates the optimal 

bounds for various partitions and then finds the maximum of these bounds. For 

large values of k, it is apparent that the method becomes tedious. For example, 

Section 3.2 of Davis (2002) calculates the confidence lower bound for f.-L4- /-Ll for 

a given data set, i.e. when k = 4. The method by Marcus and Peritz necessitates 

several pages of computations, thus a more efficient method should be found. 

3.1.2 Preparatory Lemmas for Optimization Theorem 

To implement a step-wise procedure for determining the minimum effective dose, 

an exact method is needed to calculate the optimal lower bound L(J.Lk - p,1). As 

noted in the previous section, Marcus and Peritz (1976) calculated the optimal 

bound for numerous partitions and selected the maximum, however the method 

is inefficient. This section demonstrates the steps required to derive a theorem 

which establishes and necessary and sufficient condition for the optimal solution. 

The following lemmas rewrite the conditions outlined in the set JC. We note 

that the statement and proof of the following lemmas are similar to those of Peng 
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(2002, Chapter 7). In the latter paper, the author considered the assumption of 

J.-Lq ::::=; f-Lq+ 1 ::::=; · · · ::::=; f.-Lk, with q 2: 2, and alternate definitions of the sets C and K. 

A multiple contrast test statistic and simultaneous confidence lower bounds for 

f.-Lk- J.-L1 were also derived under this more general assumption. In this paper, we 

will furthermore consider the parameter space n = {J.-L : f.-L1 < f.-L2 < ... < f.-Lk}-

k 

Lemma 3.1.1. For J.-L En and c E C , then L niCif.-Li < f.-Lk- f.-Ll if and only if 

k 

L nici < 1, for j = 2, .. . , k. 
i=j 

Proof of Lemma 3.1.1 . 

i=1 

a j such that j > 1 with Cj > 0 and Cj_ 1 :::; 0. (i.e. j divides c/s into positive 

and negative components). Therefore, 

k k j-1 

L nici = L nici- L nilcil = 0. 
i=1 i=1 

k 

L niCif.-Li < 
i=1 

(t, n,~) ~k- (~ n,lcd) ~' 

( i; n,~) (~k - ~1 ) from above 

< f.-Lk- f.-L1, as required. 
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all f.J, E n. Let f.J,i = 1 fori = j, .. . , k and f.J,i = 0 for i = 1, ... , j - 1. Then, 

k k 

L niCif.J,i = L nici < f.J,k- f.J,1 = 1- 0 = 1, 
i=1 i=j 

which proves the result . D 

Lemma 3 .1. 2 . Let f.J,* be the MLE of f.J, under n. If f.J,t = f.J,t+1 then cf = cf+1, 

where C 0 is the optimal solution to (2 .15) . 

Proof of Lemma 3.1. 2. 

As before, we represent the monotonicity of the MLE as follows; 

with ir-1 + 1 < i < ir . Suppose cf < cf+1. We shall show it leads to a contradic-

tion. Thus, define a new value bi as 

Vi =/= ir-1 + 1, .. . , ir 

j=ir-1 +1 

j=ir-1 +1 
n· J 

i = ir-1 + 1, · ·. , ir 

ote that cfr_
1 
+1 < bi < cfr. By parts (b) and (c) of Lemma 4 of Marcus and 
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Peritz (1976), the following results are valid: 

k k 

2::::: nicfYi < 2::::: nibiYi 
i=l i=l 

k k 

2::::: ni cf2 > 2::::: ni bi 
i=l i=l 

Therefore, 

k k k k 
2::::: nicffi - tk,v,aS(I::: nicf2

) l/
2 < 2::::: nibi1/i - tk,v,aS(I::: nib;) 112, 

i=l i=l i=l i=l 

which is impossible, since C
0 is the optimal solution. Hence, cf = cf+1 . D 

When JJ-i = JJ-i+ 1 we may combine the treatments as a single treatment with 

a total sample size ni + ni+l· 

Using Lemmas 3.1.1 and 3.1.2, we may rewrite the problem of equation (2.15) 

into the following problem: 

Lemma 3 .1. 3. The optimal solution to (2.15) is equivalent to the solution to 

the following problem: 

k 

subject to c E C and 2::::: nici :::; 1. 
i=j 

(3.5) 
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Proof of Lemma 3.1. 3. 

Analogous to Peng (2002), to show the equivalence of equations (2.15) and 

(3.5), we must prove they have the same solution and the same value. For 

convenience, let f(c) represent equation (2.15) and g(c) represent equation (3.5). 

Let C0 be the optimal solution to (3.5). Then, g( c) ::; g( c 0
) for any c E JC. 

From equation (2.2), Lemma 2.1.2 and Lemma 3.1.2, we have the following: 

ir ir ir ir 

L nicffi co L n·£ co L niAr L 0 * - 21 2 2 - 21 - nici 1-Li · 
i=ir-1 +1 i=ir-1 +1 i=ir-1 +1 i=ir-1+1 

It follows that f(c 0
) = g(c0

) 2:: g(c). From the second inequality of Lemma 2.1.1 

and since c E S1, let v = c thus 

k k k 

~ n·c·(£- 11*) < 0 ===}- ~ n·c·£ < ~ n·c·u* L......t 2 2 2 r2 _ L......t 2 2 2 _ L......t 2 2r2 

i=1 i=1 i=1 

as required. It follows that g(c) 2:: f(c). 0 

The following lemma relates the optimal solution to the MLE. 

Lemma 3.1.4. If C
0 is the optimal solution to (3.5) subject to 2:..::::=1 nici = 0 

c~ < c~ < · · · < c%. 

29 



Proof of Lemma 3.1.4. 

We wish to show if J..Lt < J..Lt+ 1 ===> cf < cf+ 1 , i > l. Suppose J..Li < fli+ 1 and 

cf > cf+1 . This implies that ( cf - cf+1 ) (J..Li+ 1 - J..Li) > 0. Define a new constant 1 

such that 

lj j # i, i + 1 

j = i, i + 1 

Therefore, if C 0 is an optimal solution to (3.5) then we have 

(a) 

(b) 

where 

A= and B= 
j#i, i+l j::j;i , i+l 

(a). Expanding the formula for 1 and rewriting, this is equivalent to comparing 

Expanding these equations and canceling like terms we have 
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Their difference may be written as 

thus the first part of (b) is greater than the first part of (a). 

Next, considering the second part of equations (a) and (b) we compare 

As before, expanding 1 and rewriting, the above is equivalent to 

As above, we expand the expressions and cancel like terms which evaluate to 

which implies cf2 + cii1 > 2cfcf+1 . Hence the second part of equation (b) is 

greater than the second part of equation (a). This implies C 0 is not the optimal 

solution, which is a contradiction. 

Thus cf :::; cf+1 as required. D 
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An equivalence relationship is established in the following theorem between 

the positive nature of the lower bound L(p,k - p,I) and the rejection of H 0 by 

statistic T. Its proof is very similar to that of Theorem 7.2.1 of Peng (2002) and 

thus is omitted. 

Theorem 3.1.5. When p, ED, T > tk,v,a if and only if L(p,k- p,1 ) > 0. 

When the lower bound L(p,k - p,I) is positive, it signifies the mean f.-Lk is 

significantly larger than the control mean p,1 and the size of the difference is 

measured. We may also implement the multiple contrast test in a procedure 

to find the MED by rejecting the null hypothesis if L(p,k - p,1 ) > o, as will be 

detailed in the step-wise procedure to be introduced in the next Chapter. 

3.2 Optimization Theorem for Simultaneous 

Confidence Lower Bound 

With the results from the previous section, the following Theorem establishes a 

necessary and sufficient condition for an optimal solution and its proof follows. 
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Theorem 3.2.1. Suppose L(p,k - p,1) > 0. Then the vector C
0 E JC is an 

optimal solution to (3.5) if and only if there exist non-negative integers p and 

q, 1 < p < q ~ k, such that p,~ < P, < p,~ , StP + s;k < S2t~ ,v,a and c~ < · · · ~ 

o o _ _ o _ o o < < o h o _ N-1 + b-1 ( * y;- ) cP < cP+1 - · · · - cq_ 1 - < cq _ · · · _ ck, w ere ci - - 1P J..ti - 1p , 

i = 1, ... ,p, and cf = Nq// + b- 1 (p,f- Yqk), i = q, ... , k, with 

(3.6) 

where 

b b 

Yab = L niJ..t7/Nab, 2 ""' ( * - )2 S ab = L ni Mi - Yab 
a a 

and 

(3.7) 

When q = p + 1, the upper bound for b in (3.6) is (Yqk - Y1p) / (NI;/ + N;;i/) and 

the lower bound remains the same. 

Proof of Theorem 3. 2.1. 

We begin the proof by noting that Lemma 3.1.4 allows the constraints to be 
k k 

replaced by L nici = 0 and L nici < 1, j = 2, ... , k. 
i=1 i=j 

We have that g( c) = 2::7=1 niCiJ..ti - tk ,v,aS )2::7=1 nic; is a concave function 

of c 1 , c2, . .. , ck. (Proof: Write 2::7=1 nic; = c'Nc. From p. 48 of Liu (2001), 
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concave also.) 

hence we use constraints C1 and C3 from Kuhn-Tucker: VJ > 0, ). E R. Let 

k k k k k 

¢(c, v, .A) = L niCiJ..l7- tk,v,aS L nic; + L VJ(1- L nrcr)- A L nici. 
i=l i=l j=2 r=j i=l 

Furthermore, let 
8
8

¢ denote the partial derivatives evaluated at the point co 

C 0
, v 0

, A0
. By the Kuhn- Tucker equivalence theorem, c 0 is the optimal solution 

O,(i=1, ... ,k), 

k k 

(ii) 8
8~ = 1- L nrC~~ 0 ~ L. nrC~< 1 (j = 2, ... , k), 

V · 
J r~ r~ 

k 

( :~) vj = 0 ~ vj(1- L nrc~) = 0 for all j = 2, ... , k, 
J r9 

0 8¢ k 

v > 0, f)).o = L,nici = 0. 
i=l 

Suppose C
0 is the optimal solution. By Lemma 3.1.4, then 

We may split the coefficients into those positive and negative valued cf's as: 

C0 < ... < C0 < C0 = ... = C0 = 0 < C0 < ... < C0 

1 - - p p+l q-l q - - k' 
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with 
p 

I.::: nicf = -1 and 
i=l 

k 

I.::: ni Ci = 1. 
i=q 

since a < 1. This implies a contradiction, since cf is the optimal solution, thus 

d0 = c0 -<==> a= 1, satisfying the result.) 

From (ii), 

k 

vf = 0 when I.::: nrc~< 1 fori= 2, ... ,p, q + 1, ... , k. 
r=i 

From (i), 

b-1 (p,:- I.::: vj- A0
) (3.8) 

j=2 

Adding the first p equations in (3.8) and using the result that .2:~= 1 nicf = -1, 

then 

-1 
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-1 
p 

smce L L nivj = 0 
i=l j=2 

Therefore, the first p coefficients satisfy the equation 

. 1 . 0 0 't = , ... , p s1nce vi = . 

b-1( * y;- ) N-1 Mi - lp - 1p i = 1, ... ,p 

and 

Next, let V = 2..:::f=P+1 vf. With 2....::::=1 nicf = 1, we sum the equations from q 

to k as follows: 

1 

b 

v 
i 

L vj for i = q, . .. , k 
j=2 
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As before, the last q coefficients may be written as 

as follows: 

i=1 

p k 

L ni( -NJ;/ + b- 1 (J.-L;- Y1p)? + L ni(Nq// + b-1 (J.-L;- Yqk)) 2 

i=1 i=q 
p 

L ni(N:;/- 2b- 1 NJ;/ (J.-L;- Y1p) + b-2(J.-L;- Y1P)
2) 

i=1 

k 

+ L ni(Nqk2 + 2b-1 N;;k1(J.-L;- Yqk) + b-2(J.-L;- Yqk) 2
) 

i=q 

However, the middle terms sum to zero, thus the equation becomes 

p k 

S 2t2 b-2 N-1 N-1 b-2 ~ ( * y;- )2 + b-2 ~ ( * y- )2 k,v,a = 1p + qk + L....t ni J.-i - 1p L....t ni J.-li - qk 0 

i=1 i=q 

It follows that 

N -1 + N-1 
-2 1p qk 

b = S2 2 S2 S2 ' tk,v,a - 1p - qk 

To show the validity of equation (3.6), we must consider two cases: q > p+ 1 

37 



and q = p + 1. For the case q > p + 1, from (3.8) we have '2:~!~ vj = '2:~= 1 vj + 

Th '\"P+2 o o o d o 0 h. h · 1· o - 11* en, L...Jj=1 vj = vP+1 + vP+2 an cP+2 = w 1c 1mp 1es vp+2 - rp+2 -

o - * * > 0 d o - '7 * bN-1 > 0 vq-1 - f.Lq-1 - f.Lq-2 - an vq - I. qk - f.Lq-1 - qk - . 

which implies 

The last equation follows since 

p+1 

Nlp(f.L;+1 + np+1f.L;+1) - L niJ.L: 

For the case q = p + 1, since 

p 

N1pf.L;+I - L niJ.L; 
i=1 

- -1 - -1 
Yqk - bNqk - Y1p - bN1P 

- - -1 -1 
Yqk- Y1p- b(N1P + Nqk) > 0, 
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then 

- - -1 -1 
b < (Yqk- YiP)/(N1P + Nqk ). 

In addition, c~ < 0 and c~ > 0 so 

and 

Hence 

Thus, equation (3.6) follows and the Theorem is proven. D 

3.3 Iterative Algorithm 

Of the k possible treatments, there are (k;1) possible choices of p and q, with 

1 :::; p < q < k. As evident from Optimization Theorem 3.2 .1, the choice of 

p < q defines the optimal solution if the condition (3 .6) holds . For given set of 

Y1 , ... , Yk, there are no more than k- 1 possible choices of (p, q) for the optimal 

solution C 0
, depending upon the confidence level 1 -a. 
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The following algorithm selects the optimal solution (Po, q0 ), (P1, qi), ... , 

(Pr, qr) from confidence level 1 - p to the desired level 1 - a where p is the 

p-value of the multiple contrast test statistic T. 

(0) Set i = 0, Po= max{1::; j < k: p,j < P,} and q0 = min{2::; j::; k: p,j > 

p, }. 

p =Pi, q = qi. Otherwise go to (ii) . 

Pi, J.-tj < p,;J and qi+1 = qi· Otherwise, set Pi+1 =Pi and qi+1 = min{j : qi < j < 

k, p,j > p,~J- Set i = i + 1 and go to step (i). 

The reader is asked to refer to Appendix I for an S-Plus program written to 

evaluate the steps of the Iterative Algorithm, as outlined above. A justification 

of this algorithm is now presented. 

Proof of algorithm. 

In a similar manner as Lee, Peng and Liu (2001), at step (0), let p = p0 , 

. - - -1 -1 
q = q0 , /30 be the upper bound of b, 1.e. /30 = (Yqk - Y1p)/(N1P + Nqk ). In 
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addition, let tk ,v,ao = T, which implies that the p-value equals ao. Then, 

k 

L ni(J-t:- P,) 2 I S 2 

i=l 

k 

L ni (J-t; - p,)2 
i=l 

p k 

L ni(J-t;- Ylp) 2 + Nlp(Ylp- P,) 2 + L ni(~tf- Yqk) 2 

i=l i=q 

- 2 + Nqk(Yqk- fl) 

We note that fl is the weighted average of Y1p and Yqk and thus 

Therefore, 

y-
1 

_ N1p Y1p + Nqk Yqk 
P N1p + Nqk 

- Nqk (Yqk - Y1p) 

N1p + Nqk 
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Thus 

When tk,v,ao 2 tk,v,a > tk,v,a 1 then ao ~ a < a1 and f3o 2 b( a) > fJ1 with 

f3o > fJ1, and b satisfies (3.6) at step (0). 

Next, let {31 = N 1p(p,*- Y1p)· Then p 1 = p- 1 and q1 = q. We then have 

As before, tk,v,a ~ tk,v,a 1 implies a > a 1 and {31 > b( a). These relationships also 

hold for fJ1 = Nqk (Yqk - p,~) when p1 = p and q1 = q + 1. By induction, the 

desired Pi and qi are acquired such that (3.6) holds for the value of b(a) at a 

given level 1 -a. 
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3.4 Numerical Example 

To illustrate the results of the previous sections, consider the binding assay data 

from Lee (1996), as displayed in Table 3.1. In this instance, k = 9 treatment 

levels of antiserum dilution were used and a response of% inhibition of rosettes 

was measured. 

Table 3.1 

Binding Inhibition Assay Data for Numerical Example 3.4 from Lee (1996) 

log10 dilution Inhibition (%) Dose Means (1/i) 

3.519 -12, 5 -3.5 

3.114 12, 27 19.5 

2.778 14, 18, 25, 36 23.25 

2.399 44, 46 45 

2.000 44, 45, 46 45 

1.399 27, 33, 56 38.67 

1.000 38, 40 39 

0.699 32, 43, 50, 54 44.75 

0.301 43, 47 45 
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The sample means and sample sizes for each dose level are calculated as: 

y ( -3.5, 19.5 , 23.25, 45, 45, 38.67, 39, 44.75, 45) 

n (2,2,4,2,3,3,2,4,2) 

We also have S 2 = 86.477 and v = 15. For a 95% confidence level , due to unequal 

sample sizes, a simulated critical value from (2.9) was obtained as tg,o.o5 = 2.926 

using 1,000,000 replications. Also, {l = 33.875 and the maximum likelihood 

estimates of the sample means are : 

p,* = ( -3.5, 19.5 , 23.25, 41.9, 41.9, 41.9, 41.9, 44. 75, 45) 

We next use the Iterative Algorithm of Section 3.3 to evaluate the optimal 

lower bound L(p,9 - p,I) for the difference between treatment 9 and the control 

treatment. Since {l = 33.875 falls between p,~ = 23.25 and p,: = 45 then the 

initial values are p 0 = 3, q0 = 4. The algorithm proceeds as follows: 

- step 0: Po = 3, qo = 4 

(31 = max{61, 17.6} = 61, t 9,15,a1 = 4.4571. tg,.o5 = 2.926 so go to the next step. 

- step 1: P1 = 2, ql = 4 

fJ2 = max{ 46, 17.6} = 46, tg,15,a2 = 3.753 I tg,.o5 = 2.926 so continue to the next 

step. 
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- step 2: P2 = 1, q2 = 4 

[33 = max{O, 17.6} = 17.6, t 9 ,15 ,a 3 = 1.542 < 2.926, so (1,4) is the optimal choice 

of(p,q). 

Then, from equation (2 .15), the optimal simultaneous lower bound is 

L(p,g - p,1 ) = 26.5085 with 

c 0 = ( -.5, 0, 0, .0316 , .0316 , .0316, .0316, .1117, .1187) 

In the following Chapters, this algorithm is utilized in the calculation of the 

minimum effective dose (MED) through a step-wise testing procedure. 
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Chapter 4 

Applications to Dose-Response 

Studies 

In this Chapter , various aspects of biopharmaceutical research are discussed. 

The process of modern drug development employs numerous statistical meth­

ods as attempts are made to assess the pharmacologic activity of a compound. 

For a toxic substance, determination of those safe doses is desired, while for a 

pharmaceutical drug, interest lies in which dosage is needed for an effect. In a 

clinical research programme for a new chemical entity, an investigation of the 

dose-response relationship is more or less a mandatory component (Kallen and 

Larsson (1999)). As mentioned by Ruberg (1995a), classical dose response stud-

46 



ies are used in pharmacology, toxicology and clinical research. Dose response 

relationships and studies may also be involved with pharmacokinetics, assay 

validation and concentration response for in vitro studies. 

Ruberg (1995a) notes the four fundamental questions that must be answered 

in studying the dose-response relationship of a drug as follows: 

1. Is there any evidence of a drug effect? 

2. What doses exhibit a response different from the control response? 

3. What is the nature of the dose response relationship? 

4. What is the optimal dose? 

At the beginning of the drug development process, question 1 is of concern to 

decide whether to proceed with research into this compound, whereas question 

4 is of primary focus to researchers nearing completion of an efficacy study. 

With regard to experimental design, the most common design used in dose­

response studies is the placebo-controlled, randomized, parallel-dose response 

study (Ruberg (1995a)). In this design, patients are randomly allocated to one 

of several active dose groups or placebo. The popularity of the design lies in 

the fact that the only difference between treatment groups is the dose of the 
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experimental compound, which leads to straightforward interpretation of results . 

A placebo group is important to the study as a significant trend in response with 

increasing dose in the absence of placebo is not necessarily evidence of a drug 

effect (Ruberg (1995a)). However, Ruberg also states situations which do not 

necessitate a placebo group to assess dose-response significance (Ruberg (1995a, 

p. 3)). 

An important and practical dosing quantity in drug development studies is 

now defined. 

4.1 The Minimum Effective Dose (MED) 

4.1.1 Definition of the MED 

Hsu and Berger (1999) note that in practice, dosing is determined by two quan­

tities: 

• minimum effective dose (MED) 

• maximum tolerated dose (MTD) 

The MED of a drug is the minimum dose such that the mean response at that 

dose is significantly better than the mean response of the controls. The estimated 
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MED is determined statistically from the observed dose-response relationship, 

where the response is an endpoint that measures efficacy. The estimated MTD 

on the other hand, is determined from observed adverse events in terms of both 

anticipated and unanticipated endpoints. Hsu and Berger (1999) consider the 

estimation of the MTD to be nonstatistical at present and thus limit their dis­

cussion to the MED problem. 

If the response curve is expected to be continuous, the MED should be defined 

as the minimum dose such that the mean response at that dose is clinically 

significantly better than the mean response of the ith treatment; that is 

MED = min{i: J.l.i > J.1.1 + 6} ( 4.1) 

where 6 2: 0 defines a clinically significant difference. For instance, for chronic 

peripheral arterial occlusive disease, in terms of percent improvement in walking 

distance, 6 has been defined to be 30% (Hsu and Berger (1999)). Ruberg (1995a) 

notes that a clinically important response is needed since small, statistically 

significant responses may be meaningless, while on the other hand, a statistically 

significant response is required as large clinical responses that are not clearly 

distinguishable from placebo response do not provide substantive evidence of 

drug effectiveness. 
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Generally, the situation J.-li < f.-Ll + 6 may an ise for some dose level i. This 

occurs if the control group is active, i.e. receivving a standard drug known to 

be efficacious, or if the control group is negativre, i.e. receiving a placebo, with 

6 = 0. The latter case may occur if the respons•e has an inverted U or umbrella 

shape, meaning that J.-li, i = 1, ... , k, first increa~.ses then decreases as i increases. 

Since dose-response means increase for incrreasing dose, we require the as­

sumption of monotonicity of the J.-l( 

(4.2) 

In the past two decades, the pharmaceutica.:l industry has been perceived as 

conducting studies of doses that are too high t • o assure efficacy in their clinical 

trials, and as a result, lower doses than those dleclared statistically significantly 

different from a placebo may be found that ce.re efficacious and have a wider 

safety margin. The Food and Drug Administ~ration (FDA) has reported that 

approximately 10% of drugs (new molecular entiities) that were approved in 1980-

1989 have had dosage changes (mostly decreases in dose) of greater than 33% 

(Ruberg (1995a)). As discussed by Hsu and Berrger (1999), if the M ED is found 

to be less than the MT D, then a therapeutic \Window of safe and effective doses 

is established for the range MED, MED + 1x, ... , MTD. A wide therapeutic 
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window of safe and effective doses is beneficial to both the manufacturer and 

regulatory body as it facilitates first choosing a higher dose for the prescription 

version and later a lower dose for the over-the-counter version of the same drug. 

Evidently, the need for more accurate measurements of dose efficacy has led to 

the determination of the MED to be a fundamental aspect of research in drug 

development studies. 

4.1.2 Assessment of a Dose-Response Relationship 

In general , analysis of the four fundamental questions in drug development, 

which include the minimum effective dose determination, is facilitated by two ba­

sic approaches- hypothesis testing which involves analysis of variance (ANOVA) 

followed by multiple comparisons or contrasts, or regression modeling followed 

by estimation of relevant dose parameters. These two approaches, along with 

advantages and disadvantages of each, are now detailed. 

Hypothesis Testing (ANOVA) Method 

In a regulatory environment, to find evidence of a dose-response relationship 

or determine the minimum effective dose, the approaches based on hypothesis 

testing which correspond to the confirmatory aspect in clinical trials are generally 
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used (Hamasaki, Isomura, Baba and Goto (2000); Ruberg (1995b)). As defined 

in Chapter 2, we consider a one-way ANOVA model in which a set of increasing 

dose levels are denoted 1, 2, . .. , k where 1 corresponds to the zero or control 

dose level and ni experimental units are tested at the ith dose level. We let 

the vector p, = (p,1 , p,2 , ... , P,k) denote the vector of response means, where P,i 

corresponds to the response mean for the ith dose, i = 1, . .. , k . 

The problem of identifying the MED is formatted, in a similar manner as 

Dunnett and Tamhane (1998), as a sequence of hypothesis testing problems: 

(4.3) 

where 8 denotes a clinically significant difference , for all i = 2, .. . , k in a step­

wise fashion . When the null hypothesis is rejected in favour of the alternative 

hypothesis , there exists at least one treatment better than the control. 

Stepwise procedures may be divided into two general types: step-down and 

step-up. A step-down procedure begins by testing the overall intersection hy­

pothesis and then steps down through the hierarchy of implied hypotheses. If 

any hypothesis is not rejected, then all of its implied hypotheses are retained 

without further tests; thus a hypothesis is tested if and only if all of its implying 

hypotheses are rejected . On the other hand, a step-up procedure begins by test-
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ing all minimal hypotheses and then steps up through the hierarchy of implying 

hypotheses. If any hypothesis is rejected, then all of its implying hypotheses are 

rejected without further tests; thus a hypothesis is tested if and only if all of 

its implied hypotheses are retained (Hochberg and Tamhane (1987)). Hochberg 

and Tamhane (1987) also note that step-down procedures are generally more 

powerful than the corresponding step-up procedures. Furthermore, there is a 

more solid theoretical foundation for the use of step-down procedures, as will 

now be discussed. 

In determining the MED, hypothesis testing procedures should strongly con­

trol what is known as the family-wise error rate (FWE) at level of significance a. 

The family-wise error rate is defined as the probability of making any erroneous 

significance conclusion in the given family of inferences at level a (Hochberg 

and Tamhane (1987)). Marcus, Peritz and Gabriel (1976) derived the closure 

method, which constructs step-down testing procedures and leads to closed test­

ing procedures. This method tests all possible intersections of null hypotheses, 

each at level a, rejecting a resulting hypothesis only if it and all other result­

ing hypotheses implying it are rejected. The authors also state the following 

theorem: 
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Theorem 4.1.1 (Marcus, Peritz and Gabriel {1976}}. The aforemen­

tioned closed testing procedure strongly controls the Type I FWE at level a. 

• Step-down Testing Procedure 

With reference to the MED problem, suppose that Haj will be rejected when 

the one-sided lower bound L(J.-LJ - p,1) > 6 (or the test statistic T > tj,v,a where 

tj,v,a is the critical value, by Theorem 3.1.5 when 6 = 0). Under a one-way 

model, the MED testing procedure has the form (modified from Liu (2001) and 

Hsu and Berger (1999)): 

Step 1: 

If L(f.-Lk - p,I) > 6, 

then assert f.-Lk > p,1 + 6 and go to step 2; 

else assert that there is no dose level which is significantly better than the 

control dose level and stop. 

Step 2: 

If L(J.-Lk-1 - f.-L1) > 6, 

then assert f.-Lk- 1 > p,1 + 6 and go to step 3; 

else assert M ED= k and stop. 
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Step k- 1: 

If L(p,2 - Ml) > 6, 

then assert p,2 > p,1 + c5 and M ED = 2; 

else assert M ED= 3 and stop. 

To better understand how this stepwise method operates, let step M 

(1 < M < k -1) be the step at which the stepwise method stops. If M > 1, then 

the stepwise method declares doses k - M + 2, .. . , k to be efficacious and will 

provide lower confidence bounds for J-Li- p,1 when i = k- M + 2, . .. , k. If M < k, 

then the stepwise method fai ls to declare doses 2, ... , k- M + 1 to be efficacious 

and will not yield a lower confidence bound for P,i- p,1 when i = 2, ... , k- M + 1. 

If M = k, then the stepwise method provides a lower bound for the efficacy of 

every dose. 

Since the sequence of hypotheses is hierarchical in nature, the approach of 

stepping down through each hypothesis in the sequence beginning with dose 

k produces a closed testing procedure. Thus, by Theorem 4.1.1, the FWE is 

strongly controlled at nominal level a. 

Another aspect of hypothesis testing that is of statistical interest is the choice 

between one-sided and two-sided tests . Ruberg (1995a) summarizes the opinions 
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of most statisticians and states that the issue is relevant for all phases of drug 

development . He notes that with one exception, researchers favour the use of 

one-sided hypotheses for comparing experimental therapies versus placebo. As a 

general rule, the authors who favour one-tailed hypotheses argue that the most 

important error to control is Pr(drug approval I drug is not effective). Since a 

drug could never be approved when it is less effective than placebo, such an error 

will not occur in the approval process, and a one-sided alternative hypothesis 

should be used. Furthermore, from a statistical perspective, a one-sided test is 

more powerful, as it more readily detects the positive drug effect. 

Interestingly, the FDA prefers two-tailed hypotheses in this setting, hence 

clinical trials for new drugs are actually using a 0.025 significance level for 

hypothesis tests . As Ruberg (1995a) remarks, the conservatism implies that 

by switching to one-tailed hypotheses at a = 0.05, approximately 25% fewer 

patients could be utilized. Thus, one-tailed hypotheses should be the default 

approach to designing dose-response studies, which will reduce sample size re­

quirements and expedite the drug development and approval process. 

In summary, as noted by Ruberg (1995b), the A OVA approach is computa­

tionally simple, understandable and easily communicated to scientific colleagues. 

Furthermore, no specification of the functional form of the dose-response rela-
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tionship is required. When these procedures are used as part of the primary 

analysis of dose-response data, they should be applied regardless of the signifi­

cance of the overall F -test for drug effect, however there are differing views on 

this matter. Hochberg and Tamhane (1987, p. 108) summarize the opinions 

and note that in 1977, Scheffe suggested that in genuine multiple comparison 

problems, any inferences of interest based on the S-intervals should be pursued 

regardless of the outcome of the preliminary F-test. 

By contrast, Hamasaki et al. (2000) state that while tests are useful for 

detecting evidence against the null hypothesis in the direction of a positive trend, 

and have concise interpretations, relatively little insight is provided into the 

shape of the dose-response relationship. Ruberg (1995b) states that one of the 

disadvantages of this approach is that inference is made only at the studied 

doses, and in particular, the MED can only be declared at one of the studied 

doses. In fact, the minimum effective dose found by the method of hypothesis 

testing has been termed the minimum detectable dose (MDD) (Liu, (2001)). We 

next discuss regression modeling as a method of assessing dose response. 
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Regression Models 

It is the belief of some authors that proper analysis of a dose response study 

involves estimating the dose-response curve (Kallen and Larsson (1999)). In 

terms of the four fundamental questions in dose-response analysis, if enough dis-

tinct dose groups are studied, regression analysis can be used to answer Question 

3- "What is the nature of the dose-response relationship?" (Ruberg 1995b). It is 

assumed that the dose-response relationship is y = f(x) + E where f(x) is mono-

tonic and smooth with E(c) = 0, var(c) = CY
2 where E is normally distributed. 

Among the most popular dose-response curve is sigmoidal, from which there are 

a variety of equations to describe such a dose-response relationship. Of par-

ticular interest is the four parameter logistic function given as follows (Ruberg 

1995b): 

A-D 
f(x) = [1 + (x/C)E] +D. ( 4.4) 

With such assumptions, standard nonlinear regression techniques may be used 

to estimate parameters. In the four-parameter logistic model, for example, C 

is equal to the ED50 , which is the dose producing a 50% response. With the 

parameter estimates, it is possible to characterize whatever is desirable about 

the dose-response relationship , including the MED or the minimum dose with 
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maximal effect. If the quantities are well defined, inverse regression may be used 

to estimate the doses producing such effects (Ruberg (1995b)). 

Recently, (Kallen and Larsson (1999)) also assumed the drug under study 

to have a monotone dose response curve with increasing dose (D). With the 

assumption of a limit to the amount of effect obtained by the drug through 

increasing the dose, the dose-response curve should start (D = 0) at some level 

E 0 and end asymptotically (D --t CXJ) at another level denoted Eo + Emax· The 

authors also obtain the well-known sigmoid Emax model, given by 

Em ax 

E =Eo+ 1 + (ED
5
o/D)b. 

The authors note that in the description of this dose-response model, there are 

four parameters that are interpretable in clinical terms. The parameter b is a 

sensitivity measure for the response variable with respect to relative increases in 

dose and is sometimes called the Hill parameter of the dose-response curve. If 

a value for Emin, the smallest clinically meaningful effect is obtained, then the 

dose which produces this effect can be measured. For this estimate to be reliable, 

Emin should be in the approximately log-linear part of the dose-response curve. 

Furthermore, when an active control exists, estimation of the clinician's MED 

involves defining Emin for the new drug to be the same as the effect of the active 
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control which clinical experience has deemed the minimal effective dose . (Kallen 

and Larsson (1999)). 

Ruberg (1995b) identifies two approaches for estimating the MED from a 

continuous function. The first, by Davidian, Carroll and Smith (1988), was de-

veloped for assay detection limits. The relevant calculations involve the following 

steps: Referring to equation ( 4.4), let Y M be the mean of a sample of N subjects 

given the MED and s~ and s~ be the estimated variances of Y M and A respec-

tively, where A is the value of the response at the lowest available dose. After 

constructing the appropriate t statistic defined by 

then, with P(t > tc) = a, by placing tc in the probability equation, and solving 

for Y M one obtains 

The calculated MED is then found to be f- 1 (YM) = C[(A-D)/(YM-D)-1]1113 . 

Secondly, the segmented parabolic model is also described, which is useful 

when considering the low end of the response curve (Ruberg (1995b)). Essen-

tially, one assumes there is a horizontal dose-response relationship over a low 

dose range, which then becomes a second-degree polynomial beyond the thresh-
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old dose, denoted X 0 . The functional form may be written as: 

l ro 
j(x) = 

a+ bx + cx2 

x ::S: Xo 

x > Xo 

For the model to be smooth and continuous at X 0 , X 0 = -b/2c. The dose X 0 

may be interpreted as the MED , i.e. the lowest dose at which the effect of the 

compound under study produces a response that is different than a zero dose . 

More often , X 0 is referred to as the threshold rather than the MED, since the 

phrase "minimum effective dose" usually is thought to have a biologically or 

clinically meaningful effect. Ruberg (1995b) advises that when interpreting the 

model, the MED is the smallest dose greater than X 0 that produces an expected 

response greater than the clinically meaningful response. 

Kallen and Larsson (1999) detail marginal models for log linear and non-

linear relationships. The former uses the analysis of variance model to reduce 

the data to treatment means, from which a log-linear model is fit to the data. 

In this instance, the log-linear model is an approximation of the dose-response 

relationship, fitted to the estimated means for the purpose of estimating the 

equivalent dose. The non-linear case also estimates the mean vector from analysis 

of variance, however it fits the sigmoidal function to the estimated mean vector. 

Furthermore, when there is information on individual dose-response curves, i.e. 
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each patient has been given more than one dose of the drug, hierarchical mixed 

models may be used to analyze the dose-response relationship. 

Hamasaki et. al (2000) also consider regression to estimate the curve of 

the dose-response relationship . The authors introduce a model-based approach 

using a data-adaptive distribution to estimate the dose-response curve for a 

categorical response. They argue that this type of response is encountered more 

often in clinical trials than the continuous response. In addition, the descriptive 

empirical cumulative function determines the shape and location of the dose­

response curve. The distribution function is not assumption-dependent, is a 

parametric distributional specification, may describe data even when random 

sampling is not involved and may be used directly and valuably in connection 

with censored samples. 

In comparison with the hypothesis testing approach, regression modeling has 

many advantageous features. Appropriate models can describe the nature of 

the association , provide parameters for describing the strength of the relation­

ship, provide predicted probabilities for the response categories at any dose, help 

determine the optimal dose, provide diagnostic tools for checking model assump­

tions and help interpret the phenomenon properly and avoid misunderstandings 

(Hamasaki et al. (2000)). 
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However, model-based approaches require many assumptions, compared to 

the relatively few required for test-based procedures. Furthermore, specification 

of the functional form of the dose-response relationship is considered difficult, 

and in some cases there may be several candidate models that appear to fit the 

data equally well but have drastically different properties at the extremes of 

the dose-response curve. Regression analysis may also be complicated by fitting 

several candidate models, by estimating weights to be used in the analysis and 

by difficulty in convergence of the nonlinear model to a unique solution. For 

most models, confidence intervals for the MED are quite broad, even when the 

model fits well (Hamasaki et al, (2000) and Ruberg (1995b)). 

In light of the aforementioned disadvantages of using the regression model to 

identify the MED, and the use of the hypothesis testing approach in practice of 

modern clinical trials, the ANOVA approach using a step-down testing proce­

dure will by discussed in the remainder of this paper. The next section details 

previous methods implemented by various authors to determine the MED. Such 

procedures available in the literature use test statistics or confidence bounds in 

the previously defined step-down testing method. 
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4.2 Determination of the MED by Hypothesis 

Testing 

Previous authors have considered both likelihood ratio tests and multiple com­

parison tests in a stepwise testing procedure. However, few authors have con­

sidered tests in which the clinically significant difference, o, is nonzero. A disad­

vantage of hypothesis testing procedures is the traditional use of point-zero (i.e. 

o = 0) null hypotheses for comparing a dose group with a placebo which ignores 

the possible difference between statistical significance and clinical importance 

(Hothorn and Bretz (2000)). The relevance of this omission lies in the fact that 

in clinical trials, statisticians and clinicians may not have an identical interpre­

tation for the MED; the statistician may use it to mean the smallest dose that 

is effective from a particular study whereas the clinician may use it to mean the 

smallest dose that has a clinically meaningful effect (Kallen and Larsson ( 1999)). 

It is hoped that the inclusion of the clinically significant difference in this paper 

will provide results with more meaningful conclusions and lead to the develop­

ment of drugs with fewer revisions of recommended dose after promotion. The 

most common approaches to MED determination are now presented along with 

a brief discussion of each procedure. 

64 



{i) Dose-Response {DR) Method {Hsu and Berger {1999)) 

The DR method uses stepwise confidence intervals based on the pairwise 

t test statistic. The authors utilized a fundamentally different confidence set-

based justification by partitioning the parameter space naturally and using the 

principle that exactly one member of the partition contains the true parameter. 

The test statistic is as follows: 

}j-Y1-b 
s(nj1 + n;_-1)1/2 

(4.5) 

Hsu and Berger(1999) also note that the multiplicity adjustment is not needed 

for testing this problem as the step-down procedure is a closed testing procedure 

and the appropriate hypotheses are nested in sequence, beginning with the most 

restrictive. Thus, the critical value, ta ,v, is the upper 100a percentile of the 

Student's t distribution with v = :Z:::::7=1 ni - k degrees of freedom . 

Another closed test, denoted the MPGN method, combines ideas of the mul-

tiple tests from Marcus, Peritz and Gabriel (1976) and the ranking and selection 

methods from Naik (1975). For this case, Hsu and Berger(1999) let [2), ... , [k] 

be random indices such that Tj above may now be arranged as T[2] < · · · :::; T[k]· 

Thus, each step in the step-down procedure is replaced by T[i] > d[i]l where d[i] 

is the critical value of Dunnett's (1955) (union-intersection) test. 
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Hsu and Berger (1999) state their simulation results indicate that the DR 

method tends to infer an MED that is closer to the true MED than the MPGN 

method or the method of Dunnett (1955). However, the DR method does not 

incorporate the prior knowledge that the mean responses are monotone increas-

ing, thus may not be the ideal procedure. Two methods which utilize the mono-

tonicity of the dose-response means are Bartholomew's Likelihood ratio test and 

Williams' procedures. Note that these procedures were developed for 6 = 0. 

{ii) Williams' Procedures {Williams ( 1971, 1972)) 

Williams proposed two test statistics which take advantage of the power 

of isotonic regression. Williams' test statistics use isotonic estimates of the 

fi 's ( i = 2, ... , k) as opposed to the original sample means. The test statistic 

proposed by Williams (1971) is 

Furthermore, Williams (1971, 1977) defined another test statistic which im-

plements the isotonic estimates over all k doses as follows: 

wC2) = flj - flt 
J ( -1 + -1)1/2' s nj n 1 
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where 

t 

max min"\:""' Yj/(s- t), 
2<s<i i<t<k L....,; 

- - -- j=s 

t 

max min~ Yj/(s- t), 
l::=;s::=;i i::=;t:s;k . 

]=S 

i = 2, .. . ,k 

i = 1, ... 'k 

For statistic wp), Williams (1971) tabulated the upper a critical values for 

equal sample sizes for selected values of j, a and v. An empirical formula to 

extend these to the unequal sample size case is given in Williams (1972). For 

statistic wp), if a is known, Marcus (1976) tabulated exact upper 5% and 

1% quantiles for k = 2, ... , 5 and estimated upper 5% and 1% quantiles for 

k = 6, ... , 11. Williams (1977) also tabulated approximated critical values of 

wp) with different degrees of freedom. As noted by Liu (2001), the approximate 

critical values given by Williams (1977) will result in a slight decrease in the 

true size and power of the test, thus use of the values given by Marcus (1976) is 

recommended. 
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{iii) Bartholomew LRT for simple order alternative {Robertson et. al. ( 1988)) 

As explained in Section 2.1.2 , the likelihood ratio test with ordered alterna-

tives is 

i=l (4.6) 
k 

"'""' - 2 2 L...t ni(Yi - fl) jv + S 
i=l 

~ k - k 
where f-1 = l..:::i=l niYi/ l..:::i=l ni· Critical values of S01 are tabulated in Robertson, 

\tVright and Dykstra (1988). 

In general, due to the difficulty of including a non-zero clinically significant 

difference ( 6) value into the expressions for wp) and S01 , these procedures will 

not be employed in numerical examples or simulation exercises. 

The following procedures may be classified according to the type of contrast 

used in the step-down testing procedure. We recall from Section 2.3 that the 

1 - a one- sided confidence bound for any contrast 2...::::~= 1 niCif-1i is given by 

k k k 
l(L niCif.1i) = L nicifi - tk,v,aS(L nic;) 112 (4.7) 

i=l i=l i=l 

For the next three procedures considered , it is noted that since the family of 

hypothesis under study is a closed family, a closed step-down procedure that 

controls the FWE and does not require ordering of the t-statistics uses an or-

dinary a-level t-test, i.e. the critical value is the upper a critical point of the 
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Student's t-distribution with v degrees of freedom (Tamhane, Hochberg and 

Dunnett (1996)). Thus, the critical value is identical to the one used in the DR 

Procedure (Hsu and Berger (1999)). 

{iv) Linear Contrast Procedure (Rom, Costello and Connell {1994-)) 

At the jth step of the testing procedure, the general form of the linear con­

trasts is given by 

-j + 1 i = 1; 

Cij = Ci-l,j + 2 i = 2, ... , j; 

0 i = j + 1, ... 'k 

(v) Helmert contrasts {Ruberg {1989}) 

The jth Helmert contrast compares the jth dose response mean with the 

average of all the lower dose response means, including the control, and is given 

by 

-1 i=1,2, ... ,j-1; 

Cij = j - 1 ~ = J; 

0 i = j + 1, ... 'k 

{vi) Reverse Helmert contrasts (Tamhane, Hochberg and Dunnett {1996}) 

The jth reverse Helmert contrast compares the average of the first j dose 
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response means with the control mean as 

-j+l i =l; 

1 i =2, ... ,j; 

0 i=j+l, ... , k 

{vii) Multiple Contrast Testing Procedure 

Thus, as S01 incorporates the monotonicity assumption of the response means, 

it is a more powerful test statistic for the problem when 6 = 0. However, due 

to its complex structure, the clinically significant difference 6 cannot be imple­

mented into this procedure, and as a result , construction of a confidence interval 

under the assumption of ordered restrictions which recognizes various values of 

6 is of interest. 

At any step of the step-down testing procedure, when the null hypothesis is 

rejected in favour of the alternative hypothesis, there exists at least one treatment 

better than the control by the amount 6. Since f..Lk - J..L1 is the largest difference 

between any treatment mean and the control mean, the confidence lower bound 

for f..Lk - J..L 1 is bounded below by that for any f..Li - J..L 1 ( i = 2, ... , k) or their 

non-negative linear combinations. If this maximized confidence lower bound 

for f..Lk - J..L 1 is at least 6, then f..Lk is significantly larger than J..L 1 + 6 and the 

null hypothesis is rejected. As defined in Section 2.3 , the optimal simultaneous 
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confidence lower bound for f.-Lk - p,1 is 

k k 

L(p,k - f.-Ll) = ~ll(L~ nicifi - tk ,v,aS(2.:: nict) 1
1
2
}. 

i=l i=l 

It was also shown in Section 2.3 that the corresponding multiple contrast test 

statistic, T 2 is asymptotically equivalent to the LRT statistic 8 01 . 

For all values of b, we now implement the optimal simultaneous lower bound, 

as outlined in Chapter 3, which will incorporate the monotonicity of the dose-

response means. The Iterative Algorithm defined in Section 3.3 may be used to 

calculate L(p,j - p,I) at the jth step of the testing procedure. As the optimal 

procedure maximizes the difference between treatment groups, we expect the 

procedure to have a higher power in detecting the MED compared to the methods 

discussed previously. 

4 .3 Numerical Example 

In this section, we apply some of the procedures outlined in the preceding section 

to find the minimum effective dose (MED) for a set of artificial data with k = 7 

dose levels, including a control level. We consider each dose level to have a 

common sample size of ni = 6 independent observations with mean squared 

error S 2 = 52.25 and degrees of freedom v = 35. The sample response means 
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and isotonic regression are given as follows: 

y (0, -1, 1, 10, 8, 19, 20) 

p.,* ( -0.5 , -0.5 , 1, 9, 9, 19, 20) 

To find the MED, we test hypothesis ( 4.3) beginning with k = 7 and consider 

the clinically significant difference, o = 2.5. Then, Table 4 .1 displays the 95% 

lower confidence limits of P.,j- p.,1 , j = 7, 6, 5, 4, 3, 2, as calculated by the methods 

of the previous section. The values given in parentheses indicate the actual con­

fidence lower bound found by each method. We note that as in Hsu and Berger 

(1999), for compatibility, the inference given by Williams' W(1) procedure is 

presented in terms of its associated confidence bounds. 
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Table 4.1 

95% Simultaneous Confidence Lower Bounds on J.-lj - J.-il for Example 4.3 

Groups DR Williams Linear Helmert Reverse Multiple 

Compared Method Trend Helmert Contrast 

7-1 2.5 2.5 2.5 2.5 2.5 2.5 
(12.95) (12.40) (13.44) (8.45) (4.12) (12.88) 

6-1 2.5 2.5 2.5 2.5 - 2.5 
(11.95) (11.45) (9.92) (9.94) (1.94) (10.86) 

5-1 - - 2.5 - - 2.5 
(0.95) (1.49) (3. 75) ( -0.07) ( -1.07) (2.83) 

4-1 - - - - - 2.5 
(2.95) (1.53) (2.43) ( 4.24) ( -2.42) (2.63) 

3-1 - - - - - -

( -6.05) ( -6.39) ( -6.05) ( -4.60) (-6.10) (-5 .79) 

2-1 - - - - - -
( -8.05) ( -8.05) (-8.05) ( -8.05) ( -8.05) ( -8.05) 

MED 6 6 5 6 7 4 

It is evident from Table 4.1 that the step-down testing procedure used with 

the Dose-Response, Williams (1971) and Helmert Contrast procedures finds the 

minimum effective dose to be dose# 6, with 8 = 2.5. The Reverse Helmert finds 

dose # 7 to be the MED, while the Linear Contrast procedure gives the MED 
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as dose # 5. However, the Multiple Contrast procedure performs better than 

all other procedures as it identifies dose # 4 to be the minimum effective dose. 

It is of interest, then, to determine through simulation studies the situations 

for which the innovative Multiple Contrast Test is more powerful and to what 

extent the value of 8 affects the power of each procedure. Chapter 5 summarizes 

the simulation study performed to address these relevant issues. 

4.4 Further Approaches to MED 

Characterization 

Notwithstanding the extensive number of procedures used to determine the min­

imum effective dose, it remains a fertile area for research. For instance, Williams' 

(1971, 1972) procedures have been modified by various authors in recent liter­

ature. Shirley (1977) and Williams (1986) extended Williams' test for identi­

fying the MED using isotonic estimators of the Kruskal-Wallis (1952) average 

ranks under the assumption of a monotone dose-response relationship. Bretz 

and Hothorn (2000) generalized Williams' test to the unbalanced case by im­

plementing two multiple contrast tests for estimating the minimal toxic dose 

(MTD), which is analogous to the MED. The authors conducted a simulation 
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study which concluded that Williams ' test is lacking in power for concave profiles 

in relation to both multiple contrasts, but performs well for convex dose-response 

shapes. Tsai (2000) proposed a test procedure similar to Williams' for testing 

dose-response which is based on the robust estimate of the average response. 

The author uses an M-estimator and a trimmed estimator in a simulation study, 

from which the robust method is found to be more resistant to outliers and more 

powerful than the Williams' procedure when the data distribution deviates from 

normality. However, the author notes that even though the data collected from 

clinical trials usually have some deviation from normality, using a higher percent­

age of trimming in the trimmed estimator may not be encouraged by regulatory 

agencies. 

Further, as noted by Ruberg (1995b), while the analysis strategies use con­

tinuous data and normal theory methodologies, the concepts presented may 

be generalized to categorical data as well as nonparametric analysis strategies. 

Chuang-Stein and Agresti (1997) provide a tutorial which reviews methods for 

detecting a monotone dose-response relationship using discrete levels of a dose 

and an ordered categorical variable. These authors also discuss the modeling 

approach for identifying the MED and other aspects of dose response studies 

including stratified data, sample size considerations and small-sample methods. 
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Moreover, while the present discussion has focused on MED determination under 

the assumption of equal variance across dose levels, a recent paper by Tao, Shi , 

Guo and Gao (2002) extended the MED identification problem to the case of 

heteroskedasticity and showed the procedure properly controlled the family-wise 

error rate. 

Secondly, the development of non-parametric procedures for characterizing 

the MED has been widely studied. In addition to the aforementioned procedures 

proposed by Shirley (1977) and Williams (1986), the Jonckheere (1954)-Terpstra 

(1952) test a well-known nonparametric test used for the ordered alternative 

problem. The Jonckheere-Terpstra test statistic sums various Mann-Whitney 

(1947) statistics computed between samples from the ith and jth populations un­

der study. Neuhauser, Liu and Hothorn (1998) modified Jonckheere-Terpstra's 

test by instead summing Mann-Whitney statistics computed between the two 

pooled groups 0 through i and i + 1 through k. The authors also introduced 

a maximum test which has as a new test statistic the maximum of the modi-

fied statistic, powerful for linear and convex shapes, and the Fligner and Wolfe 

(1982) statistic which is powerful for concave and umbrella shapes. Simulation 

studies demonstrated that this maximum test should be used for concave or 

umbrella-shaped responses since in these cases the J onckheere test as well as the 
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modified test are not very powerful. In addition, Chen (1999) proposed a multi­

ple test based on the Mann-Whitney statistics incorporated into the step-down 

testing procedure. Chen found that the power performance of this test is at least 

as competitive to that of the isotonic regression-based methods for an ordered 

dose-response relationship and is more powerful than the Chen-Wolfe (1993) mul­

tiple test procedure for an umbrella ordering. Teuhauser (2002) implemented a 

modified version of the recently-introduced Baumgartner-Wei,B-Schindler (1998) 

statistic in a closed testing procedure. A simulation study showed this method 

to be more powerful than the Mann-Whitney or Wilcoxon test for identifying 

the MED . Finally, Chen and Jan (2002) proposed a non-parametric step-down 

closed testing procedure which extended the procedure of Chen (1999) for the 

randomized block design with repeated observations. 

In the next Chapter, we revisit the parametric methods for MED identifica­

tion as outlined in Section 4.2 and conduct a simulation study to compare the 

powers of the relevant procedures. 
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Chapter 5 

Simulation Study 

As previously noted, there exist many diversified procedures in the literature 

designed to detect the minimum effective dose. Some procedures involve specific 

contrasts of the response means while others involve multiple comparisons of the 

sample means with or without the assumption of monotonicity. A simulation 

study is conducted to evaluate the performance of the procedures and make 

recommendations as to which method is more powerful for a particular dose-

response curve. 

Simulation studies have been considered by various authors in order to iden­

tify effective MED detection methods. Ruberg (1995) used simulation to study 

the behaviour of various contrast procedures together with Williams (1971) and 

78 



Dunnett's test. Tamhane, Hochberg and Dunnett (1996) and Dunnett and 

Tamhane (1998) performed a more in-depth study and the latter paper found the 

procedure based on the likelihood ratio test (LRT) to be of superior power. Hsu 

and Berger (1999) evaluated their Dose-Response (DR) method under mono­

tone and nonmonotone dose-response relationships, while Liu (2001) performed 

a study which computed the powers of the above tests for small sample sizes and 

concluded that the LRT was the most powerful test for this problem. In addition, 

Liu (2001) determined that the methods based on Helmert and Reverse Helmert 

contrasts performed much lower than other methods, and as expected, Williams' 

(1971 , 1972) procedures were more powerful than the DR method. However, all 

of the aforementioned studies assumed the clinically significant difference 6 to 

be zero, for which misunderstandings may arise between the statistician and the 

clinician as outlined in Section 4.2. Hence, the simulation study undertaken in 

this paper will compare the powers of the most common procedures to those of 

the innovative Multiple Contrast Method for numerous cases and differing values 

of the clinical difference 6. 

79 



5.1 Design of the Simulation Study 

A simulation is undertaken to study the behaviour of the step-down testing pro­

cedure based on the following methods of Section 4.2: Contrast based methods 

including those determined by linear contrasts (denoted LC), Helmert contrasts 

(HC), Reverse Helmert contrasts (RH) and by General comparison methods such 

as the Dose-Response (DR) method, Williams (1971) procedure (W(1)) and the 

newly defined Multiple Contrast (MC) method. 

For the study, the number of dose groups (including the control) was fixed at 

either k = 6, k = 5 or k = 4. For each value of k, with a = 0.05 a common sample 

size of n was assumed for each group. In a similar manner as Tamhane, Hochberg 

and Dunnett (1996), p,1 was fixed at 0, the standard error of the means, a/fo is 

set equal to 1 and the case of infinite degrees of freedom is considered. The study 

examines both linear and step functional form for the dose-response means . For 

a given type of response, the value of the largest mean, /1k, is fixed at 5 and 

we will consider values of the clinically significant difference, 6 to be 1.0, 1.5, 

2.0 and 2.5. The simulation was replicated 10, 000 times and the probabilities 

of detecting a significant difference between the particular dose level and the 

control dose from the step-down testing procedure were determined. 
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5.2 Results of the Simulation Study 

For each value of k, the probabilities of identifying the true MED from the step­

down testing procedures are tabulated in Table 5.1 (for k = 6), Table 5.2 (for 

k = 5) and Table 5.3 (for k = 4). We first evaluate the estimated family-wise 

error (FWE) rate for each procedure. We adopt the definition of Tamhane, 

Hochberg and Dunnett (1996) and Dunnett and Tamhane (1998) and estimate 

the FWE as the proportion of replications (out of N = 10, 000) corresponding 

to noneffective doses. With a linear and step dose-response curve, the estimated 

FWE rates are shown in Tables 5.1, 5.2 and 5.3. For a step dose-response 

function, the maximum value of FWE occurs when o = 0, since as o increases 

for each case, the estimated FWE decreases accordingly. Furthermore, cases for 

which the true MED = 2 do not result in a type I error, thus the estimated 

FWE=.OOOO is not tabulated . Finally, we remark that for all methods , the 

estimated FWE is less than .05±1.96-J(.05)(.95)/10, 000 = .0543 and hence the 

FWE is accurately controlled at a = 0.05 . 

With regard to power calculations, we note the existence of similar trends 

among the the three tables. For a linear response curve, the probabilities of 

detecting the MED are very low for all values of o and k. In addition, we note 
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that the Helmert and Reverse Helmert contrasts perform very well for the cases 

of one effective dose and all doses effective respectively, however perform poorly 

for other cases. For example, in Table 5.1, for case (0, 0, 0, 0, 0, 5), the Helmert 

contrast has the highest probabilities at .7406, .8637, .9379 and .9704 whereas 

the Reverse Helmert has the lowest probabilities at .0010 , .0042, .0162 and .0454, 

much lower than the other methods. Conversely, for the case (0, 5, 5, 5, 5, 5), the 

Helmert contrast probabilities are near zero, while the Reverse Helmert contrast 

probabilities are the largest at .4912, .6398, . 7752 and .8662 . Since the Helmert 

and Reverse Helmert contrasts perform poorly for those cases for which they 

were not designed, these two methods are not employed in further analysis and 

are not recommended in a general MED identification procedure for which the 

shape of the response curve is unknown. 

More specifically, an examination of the behaviour of the Multiple Contrast 

(MC) procedure is of interest. From Table 5.1, it is noted that the MC procedure 

is best in 16/24 cases and worst in only 3/24 cases . Furthermore, the maximum 

gain in probability over the DR, Williams and Linear Contrast procedures are 

.2841, .1592 and .5056 respectively, while the maximum loss in probability over 

these procedures is .0250, .1212 and .0309 respectively. Fork= 5, the MC proce­

dure is best in 13/20 cases and worst in 3/20 cases . The maximum improvements 
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in probability are .2392, .1432 and .3785 whereas the maximum losses in prob­

ability are .0535, .0467 and .0334 for the DR, Williams and Linear Contrast 

methods respectively. Finally, when k = 4, the Multiple Contrast procedure is 

best in 14/16 cases and worst in 2/16 cases. The maximum gains and maximum 

losses in probability for the DR, Williams and Linear Contrast procedures are 

.1592, .1048, .2790 and .0524, .0428, .0572 respectively. Hence, although the MC 

method does not demonstrate a uniform gain in probability of detecting the true 

MED, the improvements are substantial over the losses in probability. 

As dose-response researchers are also interested in obtaining a therapeutic 

window of effective doses, we investigate the probabilities of correctly identifying 

at least one effective dose for the three values of k considered. The results are 

displayed in Table 5.4 (k = 6), Table 5.5 (k = 5) and Table 5.6 (k = 4). As 

in the preceding tables, since the Helmert and Reverse Helmert contrasts have 

significantly lower probabilities in most instances, they are omitted from the 

analysis. Thus, for k = 6, the MC procedure is best in 15/24 cases and worst in 

3/24 cases. As before, the maximum gain in probability over the DR, Williams 

and Linear Contrast procedures are .2842, .2132 and .5168 while the maximum 

loss in probability to the procedures is .1236, .1048 and .0514 respectively. Sim­

ilarly for k = 5, the MC procedure is best in 12/20 cases and worst in only 4/20 
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cases. The maximum increases in probability are .2259, .1751 and .3793 whereas 

the maximum decreases in probability are .1330, .1088 and .0753 for the DR, 

Williams and Linear Contrast procedures respectively. For k = 4, the MC pro­

cedure is best in 7/16 cases and worst in 4/16 cases. The maximum gains and 

losses in probability over the DR, Williams and Linear Contrast methods are 

.1739, .1259, .2793 and .1391, .0887, .0484 respectively. Thus, as in the previous 

situation, the MC procedure demonstrates a significant net gain in probability 

over comparable methods. Since the MC procedure was constructed to maxi­

mize the difference between the jth treatment mean and the control mean over 

all linear combinations, with the assumption of monotonicity, it performs well 

for all types of response curves and is recommended in identifying the MED. 
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Table 5.1 

Probabilities of Identifying True MED with k = 6 dose levels 

Method 
Case 0 MED HC RH LC DR W(1) MC 

(0,1,2,3,4,5) 2.5 4 .0002 .0126 .0313 .0481 .0538 .0342 
FWE .0000 .0053 .0084 .0089 .0097 .0064 

2.0 4 .0010 .0346 .0770 .0977 .1051 .0727 
FWE .0000 .0195 .0257 .0260 .0287 .0218 

1.5 3 .0005 .0306 .0540 .0486 .0523 .0397 
FWE .0000 .0167 .0064 .0087 .0113 .0114 

1.0 3 .0044 .0650 .1141 .0968 .1024 .0832 
FWE .0003 .0389 .0205 .0221 .0276 .0290 

(0,0,0,0,0,5) 2.5 6 .7406 .0010 .0850 .5541 .5107 .5649 
2.0 6 .8637 .0042 .2167 .6842 .6425 .7223 
1.5 6 .9379 .0162 .3925 .7942 .7582 .8524 
1.0 6 .9704 .0454 .6064 .8749 .8541 .9249 
0.0 FWE .0490 .0464 .0517 .0495 .0491 .0474 

(0,0,0,0,5,5) 2.5 5 .2811 .0024 .1954 .3891 .4253 .5432 
2.0 5 .4854 .0102 .3474 .5370 .5789 .7178 
1.5 5 .6895 .0313 .5430 .6910 .7235 .8530 
1.0 5 .8368 .0734 .7042 .7928 .8195 .9196 
0.0 FWE .0459 .0506 .0484 .0502 .0514 .0501 

(0,0,0,5,5,5) 2.5 4 .0245 .0085 .2904 .3014 .3961 .5326 
2.0 4 .0915 .0240 .4584 .4502 .5535 .7127 
1.5 4 .2308 .0639 .6348 .5982 .6964 .8396 
1.0 4 .4293 .1373 .7913 .7443 .8170 .9177 
0.0 FWE .0443 .0485 .0498 .0496 .0496 .0498 

(0,0,5,5,5,5) 2.5 3 .0002 .0482 .3698 .2351 .3639 .4976 
2.0 3 .0014 .1081 .5674 .3904 .5386 .6745 
1.5 3 .0114 .2008 .7278 .5436 .6882 .8132 
1.0 3 .0576 .3308 .8471 .6942 .8110 .9022 
0.0 FWE .0192 .0511 .0511 .0511 .0511 .0511 

(0,5,5,5,5,5) 2.5 2 .0000 .4912 .0341 .2057 .4912 .3700 
2.0 2 .0000 .6398 .1077 .3406 .5416 .5358 
1.5 2 .0000 .7752 .2561 .5149 .7063 .7028 
1.0 2 .0001 .8662 .4445 .6572 .8234 .8203 
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Table 5.2 

Probabilities of Identifying True MED with k = 5 dose levels 

Method 
Case 8 MED HC RH LC DR W(1) MC 

(0 , 1.25, 2.5 , 3.75 , 5) 2.5 4 .0069 .0344 .0976 .1506 .1438 .0971 
FWE .0003 .0161 .0286 .0302 .0306 .0209 

2.0 3 .0011 .0267 .0647 .0608 .0612 .0429 
FWE .0001 .0106 .0044 .0055 .0066 .0069 

1.5 3 .0090 .0597 .1237 .1157 .1160 .0903 
FWE .0003 .0293 .0176 .0192 .0226 .0230 

1.0 2 .0027 .0640 .0448 .0463 .0519 .0528 

(0 , 0, 0,0 , 5) 2.5 5 .7176 .0028 .1981 .5460 .5012 .5567 
2.0 5 .8526 .0199 .3535 .6773 .6360 .7320 
1.5 5 .9294 .0282 .5331 .7933 .7629 .8494 
1.0 5 .9652 .0654 .7162 .8773 .8548 .9241 
0.0 FWE .0529 .0511 .0501 .0474 .0502 .0512 

(0,0,0,5,5) 2.5 4 .2043 .0098 .2885 .3759 .4241 .5381 
2.0 4 .3906 .0255 .4675 .5297 .5783 .7215 
1.5 4 .5931 .0621 .6319 .6800 .7210 .8367 
1.0 4 .7617 .2358 .7800 .7963 .8270 .9232 
0.0 FWE .0477 .0486 .0500 .0500 .0501 .0501 

(0 , 0, 5,5 , 5) 2.5 3 .0050 .0448 .4461 .2998 .3970 .5140 
2.0 3 .0267 .1011 .6137 .4459 .5570 .6851 
1.5 3 .1013 .1984 .7545 .6018 .7006 .8161 
1.0 3 .2258 .3318 .8609 .7426 .8215 .9050 
0.0 FWE .0319 .0502 .0501 .0501 .0501 .0501 

(0 , 5, 5,5 , 5) 2.5 2 .0000 .4936 .0962 .2416 .3899 .3884 
2.0 2 .0000 .6500 .2159 .3980 .5648 .5631 
1.5 2 .0003 .7637 .3704 .5421 .7047 .7030 
1.0 2 .0030 .8659 .5758 .7023 .8317 .8311 
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Table 5.3 

Probabilities of Identifying True MED with k = 4 dose levels 

Method 
Case c5 MED HC RH LC DR W(1) IVIC 

(0 Q lQ 5) 
' 3' 3 ' 

2.5 3 .0103 .0376 .1135 .1127 .1070 .0745 
FWE .0002 .0114 .0071 .0075 .0080 .0081 

2.0 3 .0319 .0079 .1975 .1927 .1831 .1403 
FWE .0009 .0252 .0177 .0187 .0205 .0209 

1.5 2 .0056 .0610 .0469 .0482 .0519 .0526 
1.0 2 .0286 .1209 .1015 .1017 .1092 .1104 

(0,0,0,5) 2.5 4 .6952 .0075 .2974 .5491 .5103 .5764 
2.0 4 .8315 .0262 .4693 .6817 .6493 .7304 
1.5 4 .9142 .0716 .6501 .7944 .7676 .8525 
1.0 4 .9610 .1417 .7905 .8763 .8579 .9223 
0.0 FWE .0483 .0501 .0465 .0465 .0474 .0474 

(0,0,5,5) 2.5 3 .1151 .0512 .4759 .3727 .4203 .5251 
2.0 3 .2358 .1119 .6419 .5322 .5904 .6914 
1.5 3 .4259 .1995 .7687 .6758 .7225 .8266 
1.0 3 .6157 .3289 .8724 .8044 .8393 .9099 
0.0 FWE .0412 .0465 .0465 .0465 .0465 .0465 

(0, 5, 5, 5) 2.5 2 .0001 .4972 .1834 .2903 .4102 .4135 
2.0 2 .0022 .6418 .3325 .4425 .5678 .5703 
1.5 2 .0105 .7784 .5164 .6080 .7241 .7263 
1.0 2 .0449 .8682 .6837 .7474 .8380 .8393 
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Table 5.4 

Probabilities of Identifying at least one Effective Dose with k = 6 dose levels 

Method 
Case 6 MED HC RH LC DR W(1) MC 

(0,1,2,3,4,5) 2.5 4 .1180 .1130 .4330 .5438 .5250 .4202 
2.0 4 .2359 .2346 .6559 .6874 .6817 .6144 
1.5 3 .3899 .3807 .8149 .7901 .7879 .7635 
1.0 3 .5624 .5673 .9257 .8799 .8863 .8894 

(0,0,0,0,0,5) 2.5 6 .7406 .0010 .0850 .5541 .5107 .5649 
2.0 6 .8637 .0042 .2167 .6842 .6425 .7223 
1.5 6 .9379 .0162 .3925 .7942 .7582 .8524 
1.0 6 .9704 .0454 .6064 .8749 .8541 .9249 

(0,0,0,0,5,5) 2.5 5 .3885 .0163 .6692 .5536 .5881 .7915 
2.0 5 .5720 .0472 .8341 .6856 .7344 .9126 
1.5 5 .7377 .1166 .9392 .7995 .8435 .9714 
1.0 5 .8614 .2309 .9741 .8748 .9092 .9881 

(0,0,0,5,5,5) 2.5 4 .1182 .1228 .8483 .5567 .6277 .8409 
2.0 4 .2358 .2362 .9439 .6852 .7651 .9455 
1.5 4 .3916 .3936 .9789 .7918 .8686 .9819 
1.0 4 .5614 .5668 .9845 .8754 .9318 .9888 

(0,0,5,5,5,5) 2.5 3 .0191 .3856 .6714 .5422 .6308 .7917 
2.0 3 .0502 .5721 .8369 .6774 .7778 .9157 
1.5 3 .1210 .7313 .9333 .7943 .8820 .9714 
1.0 3 .2335 .8565 .9725 .8728 .9410 .9843 

(0,5,5,5,5,5) 2.5 2 .0011 .7350 .0853 .5499 .6554 .5594 
2.0 2 .0048 .8646 .2104 .6843 .7970 .7272 
1.5 2 .0182 .9394 .4002 .7993 .8923 .8513 
1.0 2 .0495 .9775 .6024 .8776 .9509 .9280 
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Table 5.5 

Probabilities of Identifying at least one Effective Dose with k = 5 dose levels 

Method 
Case c5 MED HC RH LC DR W(1) MC 

(0, 1.25, 2.5 , 3. 75 , 5) 2.5 4 .1448 .1318 .4713 .5458 .5216 .4128 
2.0 3 .2643 .2503 .6556 .6802 .6613 .5803 
1.5 3 .4284 .3967 .7961 .7759 .7689 .7276 
1.0 2 .5996 .6003 .9083 .8817 .8848 .8679 

(0,0,0 , 0,5) 2.5 5 .7176 .0028 .1981 .5460 .5012 .5567 
2.0 5 .8526 .0199 .3535 .6773 .6360 .7320 
1.5 5 .9294 .0282 .5331 .7933 .7629 .8494 
1.0 5 .9652 .0654 .7162 .8773 .8548 .9241 

(0,0 , 0, 5, 5) 2.5 4 .2935 .0525 .7614 .5424 .5874 .7625 
2.0 4 .4673 .1158 .8867 .6746 .7271 .8968 
1.5 4 .6497 .2273 .9492 .7960 .8434 .9614 
1.0 4 .7908 .3708 .9782 .8743 .9127 .9869 

(0,0 , 5, 5,5) 2.5 3 .0484 .2992 .7680 .5482 .6249 .7741 
2.0 3 .1171 .4657 .8891 .6847 .7718 .9001 
1.5 3 .2290 .6365 .9497 .7885 .8664 .9614 
1.0 3 .3761 .7875 .9770 .8746 .9329 .9815 

(0,5 , 5, 5,5) 2.5 2 .0033 .7171 .1941 .5423 .6396 .5636 
2.0 2 .0105 .8541 .3543 .6894 .7909 .7336 
1.5 2 .0301 .9312 .5348 .7963 .8855 .8492 
1.0 2 .0760 .9708 .7171 .8798 .9466 .9278 
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Table 5.6 

Probabilities of Identifying at least one Effective Dose with k = 4 dose levels 

Method 
Case 6 MED HC RH LC DR W(1) MC 

(0, ~' 'T, 5) 2.5 3 .1835 .1682 .4329 .5460 .4452 .4069 
2.0 3 .3122 .2857 .5915 .6648 .6403 .5516 
1.5 2 .4799 .4758 .7725 .7988 .7820 .7241 
1.0 2 .6466 .6422 .8798 .8802 .8729 .8428 

(0,0 , 0,5) 2.5 4 .6952 .0075 .2974 .5491 .5103 .5764 
2.0 4 .8315 .0262 .4693 .6817 .6493 .7304 
1.5 4 .9142 .0716 .6501 .7944 .7676 .8525 
1.0 4 .9610 .1417 .9223 .8763 .8579 .9223 

(0, 0, 5, 5) 2.5 3 .1737 .1735 .7158 .5427 .5872 .7131 
2.0 3 .3033 .3157 .8465 .6751 .7351 .8490 
1.5 3 .4839 .4755 .9311 .7943 .8471 .9405 
1.0 3 .6475 .6427 .9692 .8802 .9213 .9729 

(0, 5, 5, 5) 2.5 2 .0087 .6974 .2973 .5424 .6293 .5766 
2.0 2 .0256 .8298 .4666 .6777 .7659 .7306 
1.5 2 .0652 .9180 .6391 .7956 .8757 .8510 
1.0 2 .1426 .9687 .7874 .8808 .9411 .9289 

90 



Chapter 6 

Summary and Suggestions for 

Future Work 

In dose-response studies, methods of hypothesis testing are often used to de­

termine which dose levels, if any, are effective and in particular, to identify the 

minimum effective dose (MED). A step-down testing procedure is often per­

formed as inferences are given in a specific order to verify if a treatment differs 

significantly from a control level. Failure to achieve the desired inference at any 

step eliminates the need for further comparisons. Simultaneous confidence in­

tervals are preferred over point estimates and test statistics as they quantify the 

difference between any treatment and control mean at any step of the testing 
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procedure. The optimization Theorem and Algorithm developed in this thesis 

have enabled efficient calculations of the optimal confidence lower bound for the 

mean difference under the assumption of monotonicity. The innovative Multiple 

Contrast procedure has demonstrated asymptotic equivalence to the likelihood 

ratio test under ordered restrictions and , through simulation, was found to be 

more powerful that competitive procedures for various dose-response shapes. 

The optimization theorem outlined in this thesis may be applied to other 

inference problems with order restrictions. In particular, other aspects of dose­

response and toxicity studies may be improved through such an optimization 

procedure. As an example, recent articles by Tamhane, Dunnett, Green and 

Wetherington (2001) and Hothorn and Hauschke (2000) have discussed identifi­

cation of the maximum safe dose (MAXSD), which is important in both random­

ized clinical dose-finding studies for the safety endpoint and toxicological studies. 

These authors proposed multiple testing procedures for equivalence with a priori 

ordered contrasts where an acceptable risk, denoted 5 is defined in advance. 

Furthermore, as the assumptions of normality and homoskedasticity are rarely 

met in practice, nonparametric procedures should also be compared in any fu­

ture simulation study. As noted by various authors (e.g. Ruberg (1995a) and 

Chuang-Stein and Agresti(1997)), dose-response methods for categorical vari-
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abies are also implemented in clinical trials. Thus, it is of interest to determine 

if generalizations of the optimization method would result in more accurate and 

efficient inference procedures in the aforementioned cases. 
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Appendix I - S-Plus code for 

Iterative Algorithm 

# S-Plus program to compute optimal simultaneous lower bound (SCLB) 
# Author: Karelyn Davis 
# Date: August 3, 2003 

# Program to compute MLE for simple order: 

# S-Plus program to compute MLE for simple order case 
# Author: Karelyn Davis 
# Date: July 28th, 2003 

pava.prg <- function(k,y,w) { 

ys <- rep(O,k); ws <- rep(O,k); ys1<-0; ws1<-0; u<-rep(O,k) 
for(j in 1:k) { 
if (j==1) { 

} 

ys1 <- y[1]*w[1] 
ws1 <- w[1] 
ys[1]_ys1; ws[1]_ws1 

else { 
a<- ys[j-1] + y[j]*w[j] 
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} 

} 

ys[j]_a 
b <- ws[j-1] + w[j] 
ws [j] _b 

i1 <- 0; iO <-0 
while(i1 <k) { 
if (iO==O) { 

i01 <- iO + 1; i1 <- i01 
ymin <- (ys[i01])/(ws[i01]) 

for(i in i01:k) { 
avg <- (ys[i])/(ws[i]) 

if (avg <= ymin){ 
ymin <- avg 
i1 <- i} 

else {break} 
} 

} 

else { 
i01 <- i0+1; i1 <- i01 
ymin <- (ys[i01]-ys[i0])/(ws[i01]-ws[i0]) 

for(i in i01:k) { 
avg <- (ys[i]-ys[iO])/(ws[i]-ws[iO]) 
if (avg <= ymin) { 

ymin <- avg 
i1 <- i} 

else {break} 
} 

} 

for(j in i01:i1) { 
u[j]_ymin 

} 

iO <- i1 
} 

list(mle=u) 
} 
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# Program to compute SCLB using algorithm 

sclb.prg <- function(k, w, y, stdev, crit) { 

c <- rep(O,k) 
# MLE stored as u 
u <- pava .prg(k, y, w)$mle 
if (k==2){ 

c[i]_(-i/w[i]); c[2]_(1/w[2]) 
} 

else { 
# Compute muhat 
su <- 0; sw <- 0 
for (i in i:k) { 

} 

su <- u[i]*w[i] + su 
sw <- w [i] + sw 

muhat <- su/sw 
# Find initial p, q 
for (i in i:k) { 

if(u[i] < muhat) p<- i 
} 

for (i in k:i) { 
if (u[i] > muhat) q <- i 

} 

# Find optimal p, q using algorithm 
d <- i 
while(d > 0) { 
np <- 0; ybp <- 0 
for (i in i :p) { 
np <- np + w [i] 
ybp <- u[i]*w[i] + ybp 
} 

ybp <- ybp/np 
sip <- 0 

for (i in i :p) { 

sip <- sip + w[i]*(u[i]-ybp)~2 

106 



} 

nq <- 0; ybq <- 0 
for (j in q:k) { 
nq <- nq + w [j] 
ybq <- u[j]*w[j] + ybq 
} 

ybq <- ybq/nq 
sqk <- 0 
for (i in q:k) { 

sqk <- sqk + w[i]*(u[i]-ybq)~2 
} 

# Find beta 

Betap <- np*(u[p]-ybp) 
Betaq <- nq*(ybq-u[q]) 
Betapq <- c(Betap, Betaq) 
print (Betapq) 
Beta <- max(Betapq) 
# Compute Talpha 

t1 <- sip + sqk + (1/np + 1/nq)*Beta~2 
talpha <- sqrt(t1)/stdev 
print (talpha) 
d <- talpha - crit 
if (talpha < crit) {break} 
else{ 
if (Betap > Betaq) { 

q <- q; m1 <- u[p] 
for (j in i:(p-1)) { 

if (u[j] < m1) { 
p <- j} 

} 

} 

else{ 
p <- p; m2 <- u[q] 
for (j in k:(q+1)) { 

if ( u [j] > m2) { 
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q <- j} 
} 

} 

} 

} 

# Compute B~2 

bsq <- (stdev~2 * crit~2 - sip - sqk)/(1/np + 1/nq) 
b <- sqrt (bsq) 
# Find optimal coefficients, c: 
for (i in 1:p) { 

} 

a <- (-1/np) + (u[i] - ybp)/b 
c [i] _a 

for (i in q:k) { 

} 

} 

b1 <- 1/nq + (u[i]-ybq)/b 
c [i] _b1 

# Compute SCLB 
sc2 <- 0; scmu <- 0 
for (i in 1:k) { 

} 

sc2 <- sc2 + w[i]*(c[i])~2 

scmu <- scmu + w[i]*c[i]*u[i] 

# Compute Optimal Simultaneous Lower Bound 
sclb <- scmu - (crit*stdev*sqrt(sc2)) 
list(k = k, optimalcoeff = c, optimalsclb = sclb) 

} 
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