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ABSTRACT 

Phosphorylation of cyclic adenosine monophosphate (cAMP) response element binding 

protein (pCREB) is critical in early odor preference learning. However, it is not known 

how cAMP levels relate to learning. Here, I test cAMP expression during and after the 

pairing of a conditioned stimulus (CS) odor with an unconditioned stimulus (US), 

isoproterenol. I find when odor is paired with a dose of isoproterenol previously shown to 

be optimal for learning, peaks and troughs of cAMP occur at 5 minute intervals. Pairing 

the odor with a higher isoproterenol dose, that does not produce learning, produces only a 

linear increase in cAMP. The oscillations only occur when the CS and the optimal US are 

paired. These data demonstrate a role for cAMP signaling in the acquisition of odor 

preference learning, and suggest cAMP oscillatory patterns, rather than simple cAMP 

concentrations, may be required to initiate mammalian associative learning. 
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CHAPTER I INTRODUCTION 

1 Background 

Neonates need the food, protection, and comfort from their mother for growing and 

developing. Therefore, they must learn to form a bond with their mothers, to approach 

their mothers ' nipples, and to attach to their only source of food (Leon, 1992). During the 

early period of their life, the first 10-12 days after birth, rat pups have not opened their 

eyes. They depend heavily on their olfactory sense to locate and attach to their mother's 

nipples, regardless of the quality of maternal care (Sullivan et al., 2000). Olfactory and 

somatosensory stimuli are particularly important in pups developing their initial 

relationship with the environment. During the first 12 days, the pup's immature central 

nervous system (CNS) has a large potential for plasticity, both behaviorally and cellularly. 

Mothers can produce different odors, and these olfactory cues are partially dependent on 

the mother's diet (Leon, 1975). Thus, pups must have an adaptation mechanism to 

identify their mothers as odor cues change with the mother's diet. 

Rat pups can acquire recognition of maternal odors through a classical conditioning 

mechanism. They associate tactile stimulation, milk and warmth from the mother with 



maternal odors (Johanson and Hall, 1982; Johanson and Teicher, 1980; Pedersen et al., 

1982; Sullivan et al., 1986). During the first postnatal week, pups appear to demonstrate a 

heightened probability of forming this association (Woo and Leon, 1987). 

2 Behavioral paradigm 

2.1 Classical conditioning 

Classical conditioning involves learning a relationship between two stimuli: the 

unconditioned stimulus (US) and the conditioned stimulus (CS). Classical conditioning 

was best described by Pavlov, (1960). In his experiment, the famous Pavlov dog was 

trained by pairing an' auditory cue with the presentation of meat. After many of these 

pairings, the meat was withheld and the animal salivated when it heard the sound alone. 

Thus, the dog learned an association between the sound and the meat. The US, such as 

the meat, usually produces a response without learning, such as salivation. The path of 

this inborn response has already been formed at birth. The CS, such as the sound, 

produces a response usually unrelated to what will be learned. The path of the 

conditioned response has to be completed in the higher nervous centers through training. 

Training is the way to establish new nervous connections during postnatal experience 

(Pavlov, 1960). 
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Pairing the CS with the US is critical in training. Only when the CS is followed by the US 

in a proper period, can the CS evoke the learned response. If the US is rewarding, such as 

food, the learned response will be approach to the cue. If the US is noxious, such as an 

electrical shock, the learned response will usually be avoidance of the cue. Repeated 

pairing of the CS and the US causes the CS to become a signal predicting the US. Thus, 

by classical conditioning, animals learn to anticipate events surrounding a stimulus. If the 

CS is repeatedly presented without the US, the learned response will decrease. This 

process is known as extinction (Pavlov, 1960). Extinction is important for animals to 

survive because it does not help animals to keep responding to signals that are no longer 

meaningful. Extinction is also a learning process. Animals learn that the US will not 

follow the CS any more. This classical conditioning makes it possible for animals to 

identify events that always take place together, rather than those associated only by 

chance, creating a mechanism that helps animals adapt and survive. 

2.2 The olfactory preference learning paradigm in neonatal rats 

Olfactory preference learning occurs when rat pups are presented with an odor together 

with either intraoral milk infusion (Brake, 1981 ; Johanson et al. , 1984; Johanson and 

Hall, 1979; Johanson and Hall, 1982; Johanson and Teicher, 1980; Sullivan and Hall, 

1988), tail pressure (Sullivan et al., 1986), high humidity (Do et al., 1988), warmth 

(Alberts and May, 1984), suckling (Amsel et al., 1976; Kenny and Blass, 1977), the odor 
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of maternal saliva (Sullivan et al., 1986), mild footshock (Camp and Rudy, 1988), heat 

(Pedersen et al., 1982), or intracranial brain stimulation (Wilson and Sullivan, 1990). 

Acquisition of a preference for an odor signal in pups can be described as a classical 

conditioning paradigm. It was reported that pairing a novel odor with a reinforcing tactile 

stimulus for rat pups from postnatal day (PND) 1 to 18 could produce olfactory 

preference learning (Sullivan and Leon, 1986). This pairing not only led to an odor 

preference, but also enhanced glucose uptake [visualized by using radioactive 2-

deoxyglucose (2-DG)] in specific areas of the glomerular layer in the olfactory bulb when 

that odor was presented again. In this paradigm, the tactile stimulus serves as the US and 

the odor serves as the CS. In 1987, they reported the same changes after one-trial 

olfactory training (Sullivan and Leon, 1987). The procedure of this simplified olfactory 

conditioning paradigm includes removing PND 6 rat pups from the nest and placing them 

individually in a holding nest for 10 minutes. The pups are then trained by CS-US 

pairings for 10 minutes: concurrently exposing the pups to an odor and stroking their 

bodies by a brush. The control groups include odor only (CS only), stroking only (US 

only), neither of these stimuli (naive), random CS-US pairing, and backward US-CS 

pairing. Odor preference memory is tested 24 hours after preference training, using either 

a Y -maze or a two-odor choice test. In the Y -maze test, the CS odor is supplied down one 

arm and the familiar odor of clean pine chips is supplied down the other. Pups are put in a 

start box and allowed to enter the arm of their choice. The two-odor choice test consists 

of a small arena in which the floor is divided in two by a narrow neutral zone. On either 
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side of the neutral zone, there is the trained odor (CS) or the familiar odor from clean pine 

chips. In every trial, pups are put on the neutral zone and allowed to explore in the area 

for 60 seconds. The amount of time spent over CS odor and over familiar odor is 

recorded. In both the Y -maze and two-odor choice test, pups receive three to five trials, 

depending on the experiment. Pups trained in the odor + stroking conditioned group 

choose the CS scented arm significantly more than control pups in the Y -maze test and 

spend significantly more time over the CS odor in two-odor choice test (Sullivan and 

Leon, 1987). Other control groups fail to show preference for the CS odor. So, newborn 

rats are notably capable of olfactory associative learning behavior. 

Sullivan et al., (1989) found an optimal level of isoproterenol W-adrenoceptor agonist) 

could replace tactile stimulation to serve as the US. They systemically injected different 

doses of isoproterenol: 1 mg/kg, 2 mg/kg and 4 mg/kg. Only the pairing of a 2 mg/kg 

dose of isoproterenol and odor produced a learned behavioral odor preference, enhanced 

uptake of C14-2-DG in the odor-specific foci within the bulb and modified single-cell 

recording of mitral/tufted cells. Both the lower dose (1 mg/kg) and the higher dose (4 

mg/kg) were ineffective in facilitating learning (Sullivan et al., 1989). The intracellular 

mechanisms by which different isoproterenol doses act in this early learning paradigm are 

not known. This thesis will address some of the potential mechanisms. 
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2.3 Advantages of the olfactory preference paradigm in neonatal rats 

The early olfactory learning paradigm provides an easily assessable classical conditioning 

paradigm in neonate rats, in which an odorant CS is temporally paired with one of a 

myriad of potential US, e.g. milk, tactile stimulation etc., to produce conditioned 

responses to the odorant. Learned behaviors include behavioral activity and approach 

responses to the CS odor. During training, acquisition of the conditioned behavior can be 

quantified with a 5-point behavioral activity rating scale (Hall, 1979) to describe the 

amount of responsiveness pups display to the training stimuli. The learned approach 

responses can be assayed in Y -maze or two-odor choice tests. Early olfactory learning is 

robust; it can be readily shown in pups and is critical for their survival. Controls can be 

easily established to iqentify the role of odor exposure only, random CS-US pairings, or 

backward US-CS pairing. In summary, early olfactory associative learning has proven 

useful for identifying circuit, cellular, and molecular mechanisms of learning. 
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3 Neural connections 

3.1 Olfactory sensory pathways in the olfactory system 

3.1.1 Within the olfactory bulb circuitry 

In the rat, the olfactory bulb has a simple ring-like structure. From outside in, there is the 

glomerular layer, external plexiform layer, mitral cell layer, internal plexiform layer, 

granule cell layer, and ependymal zone. The olfactory sensory signals input to the 

glomerular layer of the olfactory bulb is from the olfactory epithelium via the olfactory 

. sensory nerve. The glomerular layer is composed of clusters of spherical round structures 

called glomeruli, formed by the terminals of the olfactory sensory axons and the dendritic 

branches of mitral, tufted and periglomerular (PG) cells. In the glomerulus, axons of 

olfactory sensory neurons form synapses with the dendrites of the PG cell, and with the 

primary dendrites of mitral and tufted cells (Buck, 1996; Scott et al. , 1993; Shipley et al., 

1995; Trombley and Shepherd, 1993). Individual olfactory sensory neurons express only 

a single type of odorant receptor (Buck, 2000; Chess et al., 1994; Malnic et al. , 1999; 

Mombaerts, 1999). Axons of olfactory sensory neurons expressing the same type of 

odorant receptor converge in a few fixed glomeruli. That is, each glomerulus receives 

inputs from olfactory neurons with a single type (or at most a small number) of odorant 

receptor(s) (Mombaerts et al. , 1996; Mori and Yoshihara, 1995; Ressler et al. , 1994; 
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Vassar et al., 1994). Each mitral/tufted cell projects a single primary dendrite to a single 

glomerulus, and thus receives inputs from axons of olfactory sensory neurons expressing 

same odorant receptor (Shepherd, 1990). Glomerular activation shows odor-specific 

- spatial patterns across the bulb surface (Nagao et al., 2000; Ressler et al., 1994; Vassar et 

al. , 1994). 

Two types of inhibitory interneurons are involved in control mechanisms inside the 

olfactory bulb: dopaminergic and GABAergic PG cells, and GABAergic granule cells. 

Dopaminergic PG cells release dopamine (DA) onto olfactory sensory axons, thus 

inhibiting excitatory neurotransmission between olfactory sensory neurons and olfactory 

bulb mitral/tufted cells and PG cells (Davila et al., 2003). PG cells also release gamma

amino butyric acid (GABA) to directly inhibit mitral/tufted cells through their 

dendrodendritic synapses (Getchell and Shepherd, 1975; Mugnaini et al., 1984; Shepherd, 

1971; Shepherd, 1972; White, 1972). GABAergic granule cells form reciprocal synapses 

with secondary dendrites of mitral/tufted cells. Excited mitral/tufted cells release 

glutamate to granule cells and then granule cells release GABA to inhibit the excitation of 

mitral/tufted cells forming a negative feedback loop (Jahr and Nicoll, 1982; Nicoll, 1971; 

Trombley and Westbrook, 1990; Yokoi et al. , 1995). Each granule cell contacts numerous 

mitral/tufted cells. This inhibitory mechanism means that excitation of mitral/tufted cells 

receiving inputs from one glomerulus may inhibit mitral/tufted cells receiving inputs from 

neighboring glomeruli (Buck, 1996; Meredith, 1986; Mori, 1987; Scott et al., 1993; 
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Wilson and Leon, 1987). Thus, olfactory signals are modified in the olfactory bulb before 

being sent to higher olfactory cortices (Figure 1.1 ). 
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Figure 1.1 The basic structure and synaptic circuitry in the olfactory bulb 
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3.1.2 Central targets of the olfactory bulb 

From the olfactory bulb, the output sensory signals project to the central olfactory cortex 

via the lateral olfactory tract (LOT) composed of axons from mitral/tufted cells. Olfactory 

cortex includes five main areas (Buck, 1996; Kandel et al., 2000): 1) the anterior 

olfactory nucleus (AON), connecting the symmetrical regions of the two olfactory bulbs 

(Schoenfeld and Macrides, 1984; Scott et al. , 1985); 2) the piriform cortex; 3) the 

olfactory tubercle; 4) the amygdala which projects into the hypothalamus; and 5) the 

entorhinal area which projects into the hippocampus. From all areas, except the AON, 

axons will project to the orbitofrontal cortex either directly, or indirectly through the 

thalamus (Buck, 1996). The input pathways through the thalamus to the orbitofrontal 

cortex are thought to account for the perception and discrimination of odors, whereas the 

pathways through amygdala and hypothalamus are thought to mediate the emotional and 

motivational aspects of smell (Kandel et al. , 2000). In addition to receiving inputs from 

each of the olfactory cortices, the olfactory bulb receives information from the locus 

coeruleus, raphe nucleus, and horizontal limb of the diagonal band (Shipley et al. , 1995; 

Shipley, 1985). Thus, the olfactory bulb has widespread influence on the brain through its 

output and is influenced itself through many inputs. 
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3.2 Neural consequences of olfactory learning within the olfactory bulb 

3.2.1 2-DG uptake marks neuronal activity 

Learned behavioral reactions m olfactory learning correspond with specific neural 

changes in olfactory bulbs. The olfactory bulb adjusts its activation to learned odors. This 

neural change can be measured with C14-2-DG autoradiography. Coopersmith et al. , 

(1986) trained pups with odor-tactile paired stimulation from PNDl-18. On PND 19, they 

found the uptake of 2-DG was increased in specific regions in the glomerular layer of the 

olfactory bulb, when pups responded to the learned odor. The neural response was 

specific to the odor used as a CS (Coopersmith et al., 1986), i.e., training with one odor 

can not increase the 2-pG uptake for another odor. It is even specific to the trained odor 

concentration (Carmi and Leon, 1991 ), i.e., training with a high odor concentration results 

in increased 2-DG uptake to the high odor concentration, compared with low odor 

concentration or clean air. The neural change (2-DG uptake increase) can also occur on 

the day after one-trial pairing of odor and tactile stimulation, during the first postnatal 

week (Sullivan and Leon, 1987). Only an odor-tactile stimulation paired training session 

induces the increase of 2-DG uptake. Either odor alone or backward presentation of 

tactile stimulation and odor was ineffective (Sullivan and Leon, 1986). There was no 

difference in respiration between pups that showed the increased uptake of 2-DG and 

those that did not. Only pups that had learned to prefer the odor showed an increased 
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uptake of 2-DG (Sullivan et al. , 1988). Therefore, the increased uptake of 2-DG is not 

caused by increased stimulation of the olfactory system itself (e.g. through increased 

breathing), but is specific to the CS used. 

In addition to the metabolic changes mentioned above, there are olfactory bulb structural 

changes caused by olfactory associated learning. Both trained and control pups have the 

same number of glomeruli within the 2-DG foci. However, trained pups have wider 

glomerular layers and a greater size of individual glomeruli with no differences in the 

nonfocal regions of the glomerular layer itself (Woo et al., 1987). The number of 

glomerular layer cells within the 2-DG foci of trained pups was increased notably 

compared with the control pups. These glomerular layer cells could consist of glial, short

axon, small external tufted and/or periglomerular cells. An increase in the number of any 

or all of these cell types could contribute to the enhanced 2-DG uptake noted by adding to 

the number of metabolically active cells (Woo and Leon, 1991). No difference was 

observed outside the 2-DG foci in the glomerular layer (Johnson et al. , 1995; Woo and 

Leon, 1991 ). Thus, structural changes only happen at the area where olfactory inputs 

occur. 

3.2.2 Optical imaging shows increased blood flow with odor activity 

Another means of showing brain activity is by the use of optical imaging to detect 

changes in blood flow, thus changes in brain activity. Yuan et al. , (2002) investigated 
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whether optical imaging could be used to detect changes in intrinsic signals at the 

glomerular level of the olfactory bulb in the early olfactory learning paradigm. They 

trained PND 6 rat pups by either pairing odor (peppermint) and tactile stimulation 

(stroke), or peppermint only (control littermates). Both conditioned pups and control 

littermates underwent imaging of intrinsic optical signals one day after the training trial. 

During the imaging, all anesthetized pups were presented with odors. Conditioned pups 

showed significantly greater intrinsic signals to the peppermint odor compared to control 

littermates exposed to peppermint odor but not paired with stroking. However, the 

intrinsic signal of conditioned pups responding to a control odor (amyl acetate) was not 

significantly different from that of control littermates. These findings illustrate that odor 

preference memory can be detected by optical imaging techniques (Yuan et al., 2002). 

The results were cons!stent with the earlier observations from 2-DG uptake indicating 

that learning increases metabolic activity in the olfactory bulb. 

3.2.3 Other changes in the olfactory bulb related to learning 

In addition to visible changes in the activity of the bulb related to learning, there are 

physiological changes occurring in the neonatal olfactory bulb following early olfactory 

learning. For instance, pairing an odor with a US decreases habituation of mitral cell 

firing in response to the odor during training (Wilson and Sullivan, 1992). In addition, the 

pairing produces an odor-specific long-term change in spatia-temporal output patterns of 

the olfactory bulb, mainly expressed as increased inhibitory responses to the learned odor, 
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i.e., this classical conditioning selectively modified the response patterns of mitral/tufted 

cells associated with regions of focal 2-DG uptake for that odor and the modified 

response pattern occurred on the first inhalation of the learned odor (Wilson and Leon, 

1988b). It was proposed that changes in olfactory bulb output are due to changes at the 

mitral cell and granule cell dendrodendritic reciprocal synapse. Those changes can occur 

either on the mitral cell or granule cell side of the synapse to cause odor-specific, 

localized changes in feedback inhibition of mitral cells (Wilson and Sullivan, 1994). 

Further evidence has shown that systemic injection of 2 mg/kg isoproterenol (learning 

dose) increased nerve-evoked field potentials (ON-EFPs) in normal rat pups, compared to 

saline or higher (6 mg/kg) isoproterenol dose. In contrast, in bulbar 5-HT depleted rat 

pups, 6 mg/kg isoproterenol (nonleaming dose) increased ON-EFPs, suggesting 

norepinephrine (NE) .can overcome serotonin (5-HT) deficits and promote specific 

electrophysiological changes that critically underlie odor preference learning (Yuan et al. , 

2000). 

3.2.4 Learned responses are intrinsic to the olfactory bulb 

Changes in bulb neural firing patterns only take place in response to the odor that has 

been learned. However, one can not distinguish the changes in the bulb by different types 

of learning, i.e., appetitive or avoidance. Both olfactory preference learning and 

avoidance learning are capable of inducing 2-DG uptake increases, and suppressing the 

neural activity in the bulb. Specifically, pairing odor with either an unpleasant US 
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(footshock) or a favorable US (tactile stimulation) modifies bulb responses in similar 

ways. All these response patterns differ significantly from responses in control pups, but 

are not different among themselves. In addition, the neural changes caused by preference 

learning and avoidance learning in the trained pups can be reversed with extinction 

(Sullivan and Wilson, 1991a). 

3.3 Molecular mechanisms of olfactory learning 

3.3.1 Neurotransmitters involved in olfactory learning 

As mentioned above, there are learned odor responses intrinsic to the olfactory bulb. 

Thus, CS and US pathways must converge within the bulb. Information about the CS 

coming from olfactory receptor cells in the olfactory epithelium is conveyed by the 

olfactory nerve to glomeruli of the olfactory bulb. Information about the US is assumed to 

be conveyed by ascending central inputs to the bulb, e.g. noradrenergic inputs from the 

locus coeruleus. Therefore, there are several neurotransmitters participating in either the 

CS or US pathways that mediate or modulate the bulb response during learning. 
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3.3.1.1 Noradrenergic input is necessary and sufficient in olfactory learning 

The olfactory bulb receives dense noradrenergic inputs from the locus coeruleus. These 

noradrenergic fibers project to all layers of the olfactory bulb, primarily to the internal 

plexiform and granule cell layers, to a lesser degree to the external plexiform layer, and 

sparsely to the glomerular layer (McLean and Shipley, 1991 ). These inputs are present at 

birth (McLean and Shipley, 1991) and functional during the first postnatal week (Wilson 

and Leon, 1988a). 

Norepinephrine inputs to the olfactory bulb are necessary for early odor preference 

learning. Systemic injections of the ~-adrenoceptor antagonists propranolol or timolol 

prior to training inhibi~ acquisition of conditioned odor preference (Sullivan et al., 1989; 

Sullivan et al., 1991 ). Propranolol infused directly into the olfactory bulb during training 

also disrupts early olfactory learning (Sullivan et al., 1992). The impairment in learning is 

dose dependent effects of ~-adrenoceptor antagonist and is not associated with any 

detectable change in sensitivity to either odor or US (Sullivan et al., 1991 ). Furthermore, 

in the adult, NE depletion from the olfactory bulb with 6-0HDA does not impair 

olfactory detection or discrimination (Doty et al., 1988). Additionally, bilateral infusion 

of 6-0HDA into the locus coeruleus of PND4 pups significantly reduces olfactory bulb 

NE content, and impairs acquisition of trained odor preference (Sullivan et al., 1994). 
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Pairing of an odor with a noradrenergic activator is sufficient for the acquisition of odor 

preference in neonate pups. Combining an odor with a systemic injection of the ~-

adrenoceptor agonist isoproterenol results in a preferential behavioral response to that 

odor (Langdon et al. , 1997; Price et al., 1998; Sullivan et al. , 1989; Sullivan et al., 1991). 

The dose related effect on the learned response is an inverted U shaped, or parabola. 

Understimulation (low dose of agonist) or overstimulation (high dose of agonist) fails to 

induce the learned preferential response. Experimental manipulation of NE levels is 

consistent with in vivo effects, since direct measurement of NE in the olfactory bulbs of 

PND 3 rat pups indicates that tactile stimulation and oral infusion of milk increase 

olfactory bulb NE levels (Rangel and Leon, 1995). Firing of locus coeruleus neurons in 

the developing brain is intimately related to input from peripheral sensory sources, e.g. 

stroking (Nakamura et al., 1987). 
' 

The effects of systemic injection of isoproterenol are cumulative when paired with a 

regular US (stroking) in producing early olfactory learning (Sullivan et al. , 1991). A 

suboptimal dose of isoproterenol combined with a US reduced in strength, such as less 

frequent stroking, produces a significant learned odor preference. However, either of 

them alone does not. Combination of an optimal dose (2 mg/kg) of isoproterenol with a 

normal frequency of stroking causes overstimulation and no learning. These results 

indicate that both the isoproterenol and tactile US are mediated through a common NE 

linked pathway in early olfactory learning. There may be pathways other than the locus 

coeruleus I NE to bulb input that mediate the tactile US and such redundancy in having 
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more than one US pathway may be ethologically advantageous to the animal. In fact, 

there appear to be other US mechanisms (see 3.3.1.3 and 3.3.1.4) but the neuroanatomical 

pathways involved are not known. 

Norepinephrine is also important for consolidation of early memones m neonates. 

Injecting propranolol up to 1 hour after the end of the training session blocks memory for 

the learned odor preference acquired through odor-milk conditioning (Sullivan and 

Wilson, 1994 ). However, NE is not required in the retrieval of the acquired memory. 

Injecting propranolol or timolol before testing (24 h after training) has no effect on 

expression of the learned odor preference (Sullivan and Wilson, 1991 b). This dependence 

on NE for acquisition and consolidation, but not expression, is similar to the role ofNE in 

dentate gyrus long-term potentiation (LTP). Several labs have reported that NE . 
antagonists impair induction of LTP, but do not disrupt expression of previously 

established L TP (Bliss et al., 1983; Dahl and Sarvey, 1989; Harley et al., 1989; Robinson 

and Racine, 1985). 

Norepinephrine has been proposed to determine the sensitive postnatal period for 

acquisition of odor preference learning. Newborn rats have an enhanced ability to learn 

odor preferences produced by pairing an odor with tactile stimulation (stroking) during 

the first postnatal week (Woo and Leon, 1987). Within this period, all unconditioned 

stimuli serve to induce odor preference, i.e., pups learn to prefer odors paired with either 

tailpinch or mild footshock, just as they do odors associated with a standard reward 
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(Camp and Rudy, 1988). This sensitive period is attributed to the unusual physiological 

properties of the locus coeruleus in newborn rats. During the sensitive period, the 

noradrenergic locus coeruleus neuron projections are present and functional (McLean and 

Shipley, 1991 ; Shipley, 1985; Sullivan et al. , 1989). There is greatly reduced 

autoinhibition of locus coeruleus a.2 receptors and enhancement in autoexcitation through 

the locus coeruleus a 1 receptor (Marshall et al. , 1991). Thus, noradrenergic locus 

coeruleus neurons are readily and tonically activated by sensory input, e.g. tactile 

stimulation, during that period (Nakamura et al. , 1987). Additionally, locus coeruleus 

neurons are equally responsive to noxious and innocuous stimuli in anesthetized pups, 

whereas innocuous stimuli are ineffective at inducing the activity of neurons in the locus 

coeruleus in mature anesthetized rats. Also, during the sensitive period, locus coeruleus 

neurons are electroton!cally coupled; this appears to decline with age (Christie et al., 

1989). Therefore, during the sensitive period, locus coeruleus neurons are more 

"excitable" and more locus coeruleus neurons are likely to respond due to their 

electrotonic coupling. 

The lack of distinction between unpleasant and pleasant stimuli disappears in the second 

and/or third postnatal week, when the mild footshock starts to produce an aversive 

learning response (Camp and Rudy, 1988). During the post sensitive period, NE released 

in the olfactory bulb during olfactory learning is dramatically reduced, compared to that 

released during the sensitive period (Rangel and Leon, 1995). This reduction in NE 

release is ascribed to the increase of locus coeruleus a.2 receptor autoinhibition and the 
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decrease of a.1 receptor autoexcitation. Manipulating the neonatal locus coeruleus 

autoreceptors by usmg an a.2 antagonist and an a.1 agonist, pups were again able to 

demonstrate odor preference learning during the post sensitive period (Moriceau and 

Sullivan, 2004). This confirms the contribution of NE to the sensitive-period for 

preference learning in neonates. 

3.3.1.2 Serotonergic input modulates noradrenergic input in olfactory learning 

Another neurotransmitter involved in early olfactory learning is 5-HT. Serotonergic axons 

arise from the raphe nuclei to arrive in the olfactory bulb postnatally (McLean and 

Shipley, 1987a). They terminate extensively in the glomerular layer and less so in the 

external plexiform, int~rnal plexiform and granule cell layers of the bulb (McLean and 

Shipley, 1987b ). By localized injection of the neurotoxin 5, 7 -dHT into the anterior 

olfactory nucleus of PND 0 or PND 1 pups, serotonergic fibers that reach the olfactory 

bulb can be depleted. This depletion impairs odor preference learning induced by odor

tactile stimulation training on PND6 (McLean et al., 1993). However, the 5-HT2N 2c 

receptor agonist 2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOl) paired with 

odor during training on PND 6 did not induce learning and memory on PND7 (Price et 

al., 1998). When DOl was combined with isoproterenol, it decreased the effective US 

dose. That is, a suboptimal isoproterenol dose (1 mg/kg) is effective, but a previously 

optimal isoproterenol dose (2 mg/kg) is ineffective (Price et al. , 1998). Depletion of 5-HT 

within the olfactory bulb shifted the isoproterenol dose curve such that a higher 
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isoproterenol dose (odor + stroking + 4 mg/kg or odor + 6 mg/kg) is needed to produce 

learning (Langdon et al., 1997). Thus, serotonin plays a modulatory role, but not a 

necessary role, in early olfactory learning in rats. 

3.3.1.3 Glutamatergic inputs in olfactory learning 

Mitral and tufted cells are glutamatergic. Glutamate is also the neurotransmitter 

mediating the CS odor in the bulb (Berkowicz et al., 1994; Yuan et al., 2000). Activation 

of glutamate receptors appears to facilitate olfactory learning. Blockade of N-methyl-D

aspartate (NMDA) receptors by using APS (NMDA receptor antagonist) before olfactory 

preference training suppresses behavioral preference and the enhanced olfactory bulb 2-

DG uptake to the learn~d odor (Lincoln et al., 1988). However, NMDA antagonists may 

also impair normal bulb function, (Wilson et al., 1996), because NMDA receptors are 

required for transmitting olfactory information. Thus, pups may not respond to olfactory 

stimuli properly. The precise role of the NMDA receptor in olfactory learning remains to 

be identified. Additionally, other kinds of glutamate receptors also show a facilitating role 

in olfactory learning. Infusion of (2S, 2'R, 3'R)-2-(2'3-dicarboxycycloproplyl) glycine 

(DCG-IV, a type 2 metabotropic glutamate receptor agonist) in olfactory bulb induces 

olfactory preference learning in rat pups (Rumsey et al., 2001). In this case, DCG-IV acts 

as a US. This result suggests a mechanism that is different from the NE input into the 

olfactory bulb as the US for the induction of early olfactory preference learning. The 
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potential of more than one transmitter system mediating the US may be advantageous to 

the pup (if one system fails another could still provide an important US input). 

3.3.1.4 GABAergic disinhibition of mitral cells is critical in olfactory learning 

Olfactory learning in young rats involves noradrenergic modulation of reciprocal 

dendrodendritic synapses between mitral cells and GABAergic granule cells. By using an 

aversive olfactory learning model in young rats, that are trained on PND 11 and tested on 

PND 12, Okutani and coworkers identified a role for GABA receptors in the olfactory 

bulb in olfactory learning (Okutani et al., 1999; Okutani et al., 2002; Okutani et al., 

2003). Infusion of the GABA(A) receptor agonist muscimol into olfactory bulbs during 

training impaired aversi.ve learning in a dose-dependent manner. Infusion of low or high 

doses of the GABA(A) receptor antagonist bicuculline produced odor preference or 

aversion learning, respectively. These results indicate that disinhibition of mitral cells in 

the olfactory bulb has a role in olfactory learning, and suggest that the degree of 

disinhibition may determine the acquisition of either preference or aversion for the 

trained odor (Okutani et al., 1999). Bicuculline-induced aversive responses lack odor 

specificity. Specificity of preference responses was not tested. Bicuculline infusion 

resulted in aversion not only for the trained odor, but also for an odor never presented. 

Moreover, bicuculline infusion alone is sufficient to produce dose-dependent aversion to 

strange odors. Therefore, disinhibition of mitral/tufted cells from granule cells by 

blocking GABA(A) receptor induces aversion to normal odors non-specifically (Okutani 
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et al. , 2002). Infusion of baclofen [a GABA(B) receptor agonist] into the olfactory bulb 

also prevents aversive olfactory learning in a dose-dependent manner, while infusion of 

saclofen [a GABA(B) receptor antagonist] induced aversive responses not only to the 

trained odor, but also to normal odors not presented previously. Olfactory aversion was 

also seen even if saclofen was infused without odor exposure (Okutani et al. , 2003). Thus, 

olfactory preference learning in young rats is modulated through GABA(A) receptors. 

Aversive olfactory learning in pups is mediated by both GABA(A) and GABA(B) 

receptors. The aversion appears to be nonspecific to the odor. In summary, stimulation of 

bulb GABA (A, B) receptors blocks the aversive olfactory learning, and inhibition of bulb 

GABA (A, B) receptors induces nonspecific aversive olfactory learning. 

3.3.1.5 Dopaminergic !nfluence on olfactory learning 

During olfactory preference learning, extracellular DA increases significantly. On PND3, 

odor alone or tactile stimulation alone in a 1 0-min training session increases extracellular 

DA levels by approximately 200%. This increase lasts for more than 50 minutes. 

Combining odor with stroking, a condition that induces olfactory preference learning, 

increases DA levels by approximately 400%. This change also persists for 50 minutes 

(Coopersmith et al., 1991). 

Depletion of DA impairs early olfactory learning. On PND 5, pups were either injected 

with saline or treated with desmethylimipramine/6-hydroxydopamine to selectively 
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deplete DA from the brain. On PND 7, these pups were trained with odor-milk pairings. 

They were tested for odor preference on PND 8. Dopamine depleted pups did not learn an 

odor preference. This deficit can be reversed by amphetamine (Weldon et al. , 1982; Wool 

et al. , 1987). 

Dopamine ' s role in early learning appears to be limited to the post-training consolidation 

period. Systemic injections of the DA-Dl receptor antagonist SKF 83566 immediately 

before or after odor-tactile stimulation training blocks odor preference learning. However, 

the effects of pretraining injections of SKF 83566 can be blocked by post-training 

injections ofthe DA agonist apomorphine (Weldon et al., 1991). 

The role of specific D~ receptors in the olfactory bulb requires clarification. Injecting a 

DA-D1 receptor blocker impairs odor preference after odor-tactile pairing, but a DA-D2 

receptor blocker does not. Since the DA-D2 receptor is the dominant receptor subtype in 

the olfactory bulb (Bouthenet et al., 1987; Guthrie et al. , 1991 ), DA effects may not be 

mediated through the olfactory bulb circuitry. The 2-DG uptake pattern shows several 

areas in the brains of pups given odor-milk pairings that differ from those of controls 

(Hall and Oppenheim, 1987). These areas include the olfactory tubercle, the 

hippocampus, and the central amygdaloid nucleus. The effects of systemic DA 

manipulation on odor learning may occur within the olfactory tubercle, an area rich in 

DA-D1 receptors (Wamsley et al. , 1989). Nonetheless, (1) there are dopaminergic cells in 

the olfactory bulb glomerular layer, (2) there is a significant increase of DA levels in the 
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olfactory bulb after odor-tactile stimulation training (Coopersmith et al., 1991) and (3) 

DA expression in the olfactory bulb is notably sensitive to olfactory experience (Baker, 

1990; Wilson and Wood, 1992). Thus, it is anticipated that olfactory bulb DA has a role 

in olfactory function and plasticity. 

3.3.1.6 Opioid influence on olfactory learning 

Intracerebral infusions or systemic injections of morphine were shown to support early 

olfactory preference learning (Kehoe and Blass, 1986a; Kehoe and Blass, 1986b ). 

Recently, it was also shown that the endogenous opioid system is important in early 

olfactory learning (Roth and Sullivan, 2001 ; Roth and Sullivan, 2003). The endogenous 

opioid system is functi?nal in pups during the first postnatal week. Blocking opioid 

receptors during training by systemic injection of naltrexone (a nonspecific opioid 

antagonist) disrupted acquisition of odor preference on PND 8, but not odor aversion on 

PND 12. Posttraining injection of naltrexone not only blocked consolidation of odor 

preference on PND 8, but yielded an odor aversion. Thus, the opioid system has a critical 

role in both acquisition and consolidation of odor preference during the sensitive period 

(Roth and Sullivan, 2001). Naltrexone disrupted expression of odor preference, but not 

the learned odor aversion in older pups. Therefore, opioids are also important in the 

expression of early olfactory preference (Roth and Sullivan, 2003). Since prenatal drug 

exposure is known to change the endogenous opioid system (Smotherman and Robinson, 
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1994), these results imply that human prenatal opiate exposure could disrupt early 

learning and maternal attachment in infants. 

3.3.2 Disinhibition model of olfactory learning in neonatal rats 

Wilson and Sullivan, ( 1994) proposed an intercellular mechanism for early olfactory 

learning. As mentioned previously, CS odor inputs are conveyed by the axons of olfactory 

sensory neurons (OSNs) that terminate on primary dendrites of mitral/tufted cells. The 

secondary dendrites of mitral/tufted cells form reciprocal dendrodendritic synapses with 

granule cells. To which, excited mitral/tufted cells release excitatory glutamate. Excited 

granule cells then release GABA onto mitral/tufted cells to inhibit them. Granule cells are 

the primary target of ir:puts from other areas of the brain to the olfactory bulb, including 

NE release from locus coeruleus (Macrides and Davis, 1983) induced by the US. US 

induced NE input is distributed widely in the olfactory bulb. Conditioned changes are 

likely to occur at areas where NE inputs overlap with CS evoked odor-specific glomeruli 

within the olfactory bulb. Before conditioning, the majority of mitral/tufted cells respond 

to a given odor in an excitatory manner, but habituate rapidly, probably because of the 

feedback inhibition by granule cells. During CS-US conditioning, NE inputs activated by 

the US attenuate the inhibitory synapse from granule cells to mitral/tufted cells (Wilson 

and Leon, 1988a), and block habituation to the CS. This enhanced responsiveness to CS 

odor during training in some way potentiates the mitral/tufted cells synaptic efficacy onto 

granule cells. During CS-odor-only testing, the increased synaptic efficacy is expressed as 
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enhanced feedback inhibition, and observed as increased suppressive responses of 

mitral/tufted cells to the CS odor (Wilson and Sullivan, 1994). 

3.3.3 The CS-US convergence on mitral cell model and its intracellular 

mechanisms 

Yuan et al., (2003b) proposed a new intercellular and intracellular model for early 

olfactory learning in the olfactory bulb. The model proposes that the synergistic action of 

P-noradrenergic and serotonergic 5-HT2Aic input takes place within the mitral cells of the 

olfactory bulb. By using confocal imaging, they demonstrated that P-adrenoceptors and 5-

HT2AJc receptors colocalize mainly on mitral cells. Additionally, both P-adrenoceptor and 

5-HT2AJc receptor activation can work through the cyclic adenosine monophosphate 

(cAMP) related pathway in mitral cells in the olfactory bulb, as they do in neocortex 

(Morin et al., 1992). P-adrenoceptor activation induced by isoproterenol significantly 

increases cAMP in the olfactory bulb, at either the optimal learning dose or higher doses. 

Both stroking with odor and stroking alone are capable of increasing cAMP. Serotonin 

depletion of the olfactory bulb does not influence basal level of cAMP but inhibits the 

cAMP elevation produced by isoproterenol. Finally, the US and the CS synergistically 

influence cAMP response element-binding protein (CREB) phosphorylation. Unlike the 

cAMP increase that is influenced by the US pathway and can be induced under both 

learning conditions (optimal isoproterenol dose + odor, stroking + odor), and non-
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learning conditions (higher isoproterenol dose + odor, stroking only), CREB 

phosphorylation is related to the learning condition. Only the learned pairing (optimal 

isoproterenol dose+ odor, stroking+ odor) increases CREB phosphorylation. Neither the 

higher isoproterenol dose + odor, nor stroking alone increases CREB phosphorylation. 

Thus, CREB phosphorylation is a critical step that requires convergence of both US and 

CS intracellular pathways. 

The new learning model can be described in the following way: On the surface of mitral 

cells in the olfactory bulb, the US is mediated by NE activation of ~-adrenoceptors. In 

tum, ~-adrenoceptors activate the cAMP cascade and the cyclic amp-dependent protein 

kinase A (PKA) pathway. The CS mediated by glutamate activates alpha-amino-3-

hydroxy-5-methyl-4-iso-xazole-propionic acid (AMPA)/NMDA receptors. NMDA 

receptors recruit the Ca2+/Calmodulin (CaM) pathway. Finally, these two pathways 

converge to promote CREB phosphorylation. The CREB phosphorylation triggers 

memory-related structure changes required for long-term memory. (Figure 1.2.) 
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Figure 1.2 Proposed intercellular and intracellular pathways in the olfactory bulb 

activated by P-adrenoceptors and S-HT2A receptors 
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4 cAMP/PKA/CREB cascade in learning and memory 

The cAMP I PKA I CREB cascade has been implicated in invertebrate learning, e.g. 5-HT 

induced sensitization in Aplysia (Bacskai et al. , 1993; Bailey and Kandel, 1993; Bartsch 

et al., 1995; Bartsch et al. , 1998; Bernier et al., 1982; Brunelli et al., 1976; Byrne and 

Kandel, 1996; Castellucci et al., 1982; Castellucci et al., 1989; Dash et al., 1990; 

Goldsmith and Abrams, 1992; Hedge, 1997; Hu et al., 1993; Kaang et al., 1993; Kandel, 

2001; MacDougald and Lane, 1995; Martinet al., 1997; Montarolo et al., 1986), olfactory 

learning in Drosophila (de Belle and Heisenberg, 1994; Goodwin et al. , 1997; Hammer 

and Menzel, 1995; Han et al., 1992; Heisenberg et al., 1985; Heisenberg, 1998; Li et al., 

1996; Nighorn et al., 1991; Skoulakis et al., 1993; Tully et al., 1990; Tully et al., 1994; 

Wolf et al., 1 99 8; Xi a and Storm, 1997); in mammals, cAMP is also required for 

conversion of early LTP to late LTP (Frey et al. , 1993; Huang et al. , 1994; Kandel et al., 

2000). All of these models can help us to understand the possible role of the 

cAMPIPKAICREB cascade in learning and memory in mammals. 

4.1 cAMP/PKA/CREB cascade in Aplysia 

Eric Kandel won the 2000 Nobel Prize in Medicine for work on the cAMPIPKA/CREB 

cascade in learning and memory in Aplysia. His studies focused on nonassociative 

learning- sensitization at the sensory-motor neuron connection- that supports 
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withdrawal reflexes (Bacskai et al., 1993; Bailey and Kandel, 1993; Bartsch et al., 1995; 

Bartsch et al. , 1998; Bernier et al., 1982; Brunelli et al., 1976; Byrne and Kandel, 1996; 

Castellucci et al., 1982; Castellucci et al., 1989; Dash et al. , 1990; Goldsmith and 

Abrams, 1992; Hedge, 1997; Hu et al., 1993; Kaang et al., 1993; Kandel, 2001; 

MacDougald and Lane, 1995; Martin et al., 1997; Montarolo et al. , 1986). His work 

identified the role of cAMP/PKA/CREB cascade in both short-term and long-term 

memory in Aplysia. 

Short-term memory induced by a single training session (a single tail shock or a single 

application of 5-HT to the sensory neurons) lasts only minutes and does not require new 

protein synthesis. Long-term memory induced by five spaced training sessions [five tail 

shocks or five applications of 5-HT (5 minutes each at 15 minutes interval) to the sensory 

neurons] lasts several days and requires new protein synthesis (Montarolo et al. , 1986). 

Additional spaced training sessions produce sensitization that lasts for weeks (Castellucci 

et al., 1989; Kandel, 2001 ). These two forms of memory overlap. Both short-term and 

long-term memories require changes in signal strength at several synaptic connections, 

such as the connection between sensory and motor neurons. This increased synaptic 

signal strength is caused by 5-HT release onto the sensory neurons. 

Intracellular second-messenger pathways, e.g., the cAMP cascade, critical in forming 

short-term memory, are also involved in long-term memory. In short-term sensitization, a 

single tail shock or one pulse of 5-HT produces one-time 5-HT release and leads to the 
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utilization of pre-existing proteins. Serotonin acts on G-protein coupled receptors, on the 

sensory neuron, to activate adenylyl cyclase (AC), leading to increases in cAMP (Bernier 

et al., 1982), resulting in activation of PKA (Castellucci et al., 1982). Sequentially, PKA 

phosphorylates a number of target substrates and enhances transmitter release by closing 

K+ channels, leading to an increase in the excitability of sensory neurons. Excitability 

increases the Ca2+ influx upon subsequent stimulation resulting in increased transmitter 

release. The duration of these modifications is identical to that of the short-term memory 

(Byrne and Kandel, 1996; Goldsmith and Abrams, 1992). 

Repeated tail shock or repeated exposure to 5-HT converts the short-term form of 

memory into a long-term form. This process requires gene expression, new protein 

synthesis, and the gro:vth of synaptic connections. Repeated training sessions lead to 

prolonged high PKA activity. The catalytic subunits separated from the regulatory subunit 

of PKA have sufficient time to translocate into the nucleus (Bacskai et al., 1993). There, 

they phosphorylate and activate a transcription factor called CREB-1 (Kaang et al., 1993). 

The catalytic subunit of PKA also recruits mitogen-activated protein kinase to translocate 

to the nucleus (Martin et al., 1997) to remove the suppressive action of CREB-2 on 

CREB-1 (Bartsch et al., 1995). Once CREB-1 is activated, it triggers the expression of a 

number of downstream genes (Bartsch et al., 1998; Dash et al., 1990). There are two 

especially important downstream genes. One encodes the enzyme ubiquitin hydrolase, a 

specific ubiquitin protease regulating proteolysis of the regulatory subunits of PKA 

(Hedge, 1997). Cleavage of the regulatory subunit prolongs the activity of PKA, causing 
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persistent phosphorylation of PKA substrate proteins, e.g. CREB and K+ channels. The 

second gene encodes CCAA T/enhancer binding protein (C/EBP), one of the factors in the 

gene cascade necessary for the growth of new synapses (Bailey and Kandel, 1993 ; Hu et 

al., 1993; MacDougald and Lane, 1995). 

4.2 cAMP /PKA/CREB cascade in Drosophila 

The fruit fly Drosophila is particularly suited to genetic manipulation. Four mutations in 

single genes that lead to learning deficits have been isolated: dnc, rut, amn, and PKA-Rl. 

All of these genes are expressed in the same brain region-the mushroom bodies (MBs) 

(Han et al., 1992; Nighorn et al. , 1991). The MBs are not directly necessary for olfactory 

perception (de Belle and Heisenberg, 1994; Heisenberg et al. , 1985), or for simple forms 

of visual, tactile or motor learning (Wolf et al. , 1998), but are required for olfactory 

learning and memory (Hammer and Menzel, 1995; Heisenberg, 1998). 

Learning studies with Drosophila mutants suggest that there are tight constraints on the 

level of cAMP and PKA activation for optimal learning and memory. All four mutants 

fail to show either classical conditioning or sensitization. All have a defect in the cAMP 

cascade (de Belle and Heisenberg, 1994; Heisenberg et al. , 1985). Flies with dnc 

mutation lack phosphodiesterase, an enzyme that degrades cAMP, resulting in unusually 

high levels of cAMP. Mutation in rut results in deficient Ca2+/CaM-dependent AC 
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(Ca2+/CaM AC). Ca2+/CaM AC is activated by simultaneous Ca2+ entry from electrical 

activity and activation of G-proteins through a transmitter receptor-coupled system (Xia 

and Storm, 1997). Thus, rut mutants lack the protein necessary for the convergence of 

pathways from odor (CS) and electric shock (US). Restoring rut gene expression limited 

to the MBs rescues the normal ability for olfactory learning in rut mutant flies. Flies 

containing the amn mutation lack a peptide transmitter that acts on AC (Tully et al. , 

1990). This neuropeptide is most abundant in two modulatory neurons that project to the 

MBs. When the amn neuropeptide is released onto the MB lobes, it can trigger a 

prolonged activation of the cAMP cascade. This prolonged activation is required for the 

consolidation to transform short-term memory into long-term memory. Mutants of amn 

are defective in mid-term memory and long-term memory (Tully et a!., 1994). Mutant 

PKA-Rl flies are defective in PKA. PKA is the primary downstream target of cAMP. The 

duration of PKA activation is believed to determine whether short-, medium- or long

term memory is formed. Thus, PKA-Rl mutants lacking PKA have learning deficits 

(Goodwin eta!., 1997; Li eta!., 1996; Skoulakis eta!., 1993). 

4.3 cAMP/PKA/CREB cascade in rats/mammals 

There are few studies that have made direct measurements of cAMP changes in 

mammalian models. However, pharmacological studies in rats and mice, and genetic 

studies in mice provide evidence that the cAMP/PKA/CREB pathway plays an important 
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role in learning and memory in mammals. A series of elegant studies of transgeni.c mice 

expressing R(AB), a dominant negative form of PKA regulatory subunit, indicates 

impressive evidence for the role of PKA in learning (Abel et al. , 1997). When tested for 

fear learning, R(AB) mice showed deficits in long-term, but not short-term, contextual 

fear conditioning. Cue learning was unaffected in these mice. Both cued and contextual 

fear conditioning have been shown to depend on the amygdala, whereas contextual fear 

conditioning involves the hippocampus (Kim et al., 1993; Phillips and LeDoux, 1992), 

suggesting PKA acts in the consolidation of hippocampus-dependent memories (Abel et 

al. , 1997). 

Schafe and colleagues tested the role of PKA m cued fear conditioning. They 

administered Rp-cAM,P (a PKA inhibitor) either intraventricularly pnor to training 

(Schafe et al., 1999), or directly into the lateral nucleus of the amygdala immediately after 

training (Schafe and LeDoux, 2000), to examine the effect. In both experiments, infusion 

of Rp-cAMP impaired long-term (24 hours after conditioning), but not short-term (0.5 

and 4 hours after conditioning) fear memory trained with the conditioned auditory cue. 

Administration of the protein synthesis inhibitor anisomycin in each of these 

pharmacologic studies showed a very similar effect to that of Rp-cAMP. This suggests 

PKA is also involved in protein synthesis dependent learning consolidation in the 

amygdala, the process by which short-term memory is converted into long-term memory 

(Selcher et al., 2002). Differences between the R(AB) mice and normal drug treated mice 

with respect to cue fear conditioning may relate to the activation of PKA in transgenic 
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mtce, i.e., amygdala PKA activity in R(AB) transgenic mice may not be inhibited as 

completely as in drug treated mice. 

Further examination of the R(AB) transgenic m1ce with additional pharmacological 

studies ~how a time course for PKA-dependent contextual fear conditioning. 

Bourtchouladze et al., (1998) identified that an impairment in contextual memory for the 

R(AB) transgenic mice formed between 1 and 3 h after behavioral training. In wild-type 

mice, intraventricular injection of Rp-cAMPS, an inhibitor of PKA, that acts on the 

regulatory subunit, produced contextual learning impairments that imitated the amnesia 

observed in the R(AB) mice. Injection of Rp..:cAMPS at various time points after training 

outlined different PKA-dependent consolidation periods. In a strong contextual fear 

training paradigm, thr~e CS-US pairings resulted in one PKA dependent period 

immediately after training ( < 1 h), whereas a single pairing produced two critical periods, 

one immediately after training and another 4 hours later. Mice injected with Rp-cAMPS 

at all other time points displayed normal contextual learning. These experiments suggest 

PKA activation is required during the consolidation period to develop long-term memory 

(Bourtchouladze et al., 1998). 

Studies with CREB-deficient mtce indicate normal CREB activity ts necessary for 

learning (Bourtchouladze et al., 1998; Kogan et al., 1997). In studies with CRE-LacZ 

reporter mice, CREB-mediated gene transcription was assessed in response to contextual 

or auditory cued fear learning (Impey et al., 1998). In contextual fear conditioning, which 
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requires both amygdala and hippocampus, eRE-dependent gene expression significantly 

increased in areas eA 1 and eA3 of the hippocampus. In auditory cue fear conditioning, 

which requires amygdala but not hippocampus, eRE-dependent gene expression 

increased in the amygdala, but not the hippocampus. Therefore, learning activates the 

eREB-eRE transcriptional pathway in specific areas of brain during different behavioral 

conditioning paradigms. 

4.4 cAMP/PKA/CREB cascade in hippocampal L TP 

Explicit memory in mammals is thought to involve L TP in the hippocampus (Kandel et 

al. , 2000). In the hippocampus, there are three major pathways: the perforant pathway, the 

mossy fiber pathway and the Schaffer collateral pathway. A brief high-frequency train of 

stimuli (a tetanus) to any of these three major synaptic pathways increases the amplitude 

of the excitatory postsynaptic potentials in the target hippocampal neurons. This 

facilitation is called L TP (Kandel et al., 2000). 

L TP has two phases. One stimulus train produces an early LTP that lasts 1-3 hours and 

does not require new protein synthesis. Four or more stimulus trains induce a late L TP 

that lasts at least 24 hours and requires new protein and RNA synthesis (Kandel et al., 

2000). The transformation from early to late phase L TP was shown to depend on cAMP 

cascade activation in Schaffer collateral and mossy fiber pathways in the hippocampus 
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(Huang et al., 1994) and in hippocampal perforant pathway (Nguyen and Kandel, 1996). 

Frey et al. , (1993) also provided evidence that formation of late phase L TP in 

hippocampal CA 1 required cAMP activation. This late phase L TP could be prevented by 

impairing PKA or promoted by activating the cAMP cascade (Frey et al. , 1993). 

The process of conversion from early to late phase NMDA-dependent LTP has been 

described in the following way: A single train of action potentials activates NMDA 

receptors in postsynaptic cells, leading to Ca2
+ influx and activation of a set of second 

messengers inducing early LTP. When the action potential trains are repeated, PKA will 

be activated for a sufficient time to translocate into the nucleus and phosphorylate CREB. 

Phosphorylated CREB (pCREB), in tum, activates downstream target genes, leading to 

structural changes at the synapse. Mutations in mice that block PKA or CREB activation 

decrease or abolish the late phase of LTP (Abel et al., 1997; Bourtchuladze et al., 1994). 

4.5 cAMP/PKA/CREB cascade in odor preference learning in rat pups 

McLean et al. ( 1999), observed that the phosphorylation of CREB increased significantly 

at 10 minutes after training in the olfactory bulbs of pups trained by odor + stroking, 

compared to control pups (odor only or stroking only), by using Western blot analysis. 

Additionally, by using immunocytochemistry, they showed pCREB in mitral cells within 

the dorsolateral quadrant of the bulb to be significantly elevated in pups trained by the 
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odor-stroke pamng. No significant differences were detected among control groups 

(naive, odor only, or stroking only) or in the granule or periglomerular cells of the 

dorsolateral region among any trained groups (McLean et al., 1999). The location of the 

pCREB changes is consistent with the results of 2-DG uptake and optical imaging 

studies, which show similar localized changes in the bulb when pups learned a preference 

for the same odor (Sullivan and Leon, 1987; Yuan et al. , 2002). These data suggest that 

pCREB could have a role in memory formation for olfactory preference learning. 

Increases in pCREB occur as an early step following conditioning that usually induces 

long-term olfactory memories in rat pups. 

The phosphorylation of CREB was examined during NE-induced odor preference 

learning in rat pups wjth either normal or 5-HT-depleted olfactory bulbs (Yuan et al., 

2000). Systemic injection of 2 mg/kg isoproterenol, the optimal dose inducing odor 

preference learning, increases pCREB expression in the olfactory bulbs at 10 min after 

conditioning, in normal rat pups, but not in bulbar 5-HT-depleted rat pups. The dose of 6 

mg/kg isoproterenol, which is ineffective in inducing odor preference learning in normal 

rat pups, but facilitates learning in 5-HT depleted pups (Langdon et al., 1997), enhanced 

pCREB expression in rat pups with bulbar 5-HT depletion. These results again suggest 

that there is a link between pCREB and olfactory preference memory formation. Yuan et 

al., (2003b) also demonstrated that 5-HT depletion reduces the optimal isoproterenol (2 

mg/kg)-induced cAMP elevation. More P-adrenoceptor activation (6 mg/kg dose of 
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isoproterenol) overcomes the 5-HT induced deficit. This reinforced the hypothesis that 

NE and 5-HT activation work synergistically through the cAMP pathway. 

The role for CREB and pCREB in early odor preference learning in rats was directly 

examined by infecting the olfactory bulb with herpes simplex virus overexpressing wild 

type CREB (HSV -wt-CREB) and expressing dominant-negative mutant CREB (HSV -dn

CREB) (Yuan et al., 2003a). Infection of HSV -LacZ was used as a control to determine 

whether virus injection itself would affect olfactory learning. Overexpression of dn

CREB prevented the learning induced by stroking + odor, and shifted the inverted U 

curve (isoproterenol dose - response curve) rightwards, such that a higher dose was 

necessary to induce learning. Overexpression of wt-CREB also impaired the learning 

induced by stroking + odor, but it shifted the dose-response curve to the left, i.e., the 

lower dose could produce learning, but the normally optimal dose did not. Control virus 

expressing LacZ did not affect learning. Once learning occurred, with either 

overexpressed wt-CREB or dn-CREB, pCREB was elevated compared to the nonleaming 

LacZ control groups. However, in the overexpressed wt-CREB group, in which no 

learning occurred, pCREB also increased higher than LacZ control group that did learn. 

These data demonstrate that CREB and pCREB play a causal role in early mammalian 

odor preference learning. Since overexpressing wt-CREB interferes with learning, there 

may be an optimal pCREB window for learning under normal conditions. 
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cAMP expression at the end of odor exposure during the odor preference training was 

examined (Yuan et al., 2003b). The result shows cAMP increases under the two effective 

learning conditions, odor paired with stroking and odor paired with 2 mg/kg 

isoproterenol, compared with the naive and saline groups. However, the two ineffective 

learning conditions, stroking alone and odor + a higher dose ( 4 mg/kg) of isoproterenol, 

also significantly increased cAMP level over naive and saline groups. There were no 

differences observed between either odor + stroking and stroking only, or odor + a 2 

mg/kg dose of isoproterenol and odor + a 4 mg/kg dose of isoproterenol. This contrasted 

to the results that only effective learning conditions increase the levels of pCREB. That 

is, pCREB increases more with the odor+ stroking than with the stroking-only condition 

(McLean et al., 1999) and a 2 mg/kg dose of isoproterenol induces a higher level of 

pCREB than the odor+ a 6 mg/kg dose of isoproterenol (Yuan et al., 2000). Therefore, 
' 

unlike the Aplysia, in which the CS and the US pathways appear to converge on AC and 

where higher levels of cAMP determine the occurrence of learning (Abrams et al., 1998), 

in the olfactory learning of rat pup, US and CS pathways appear to converge at a later 

stage, e.g. CREB phosphorylation. (Figure 1.2.) 

5 Rationale and hypothesis 

Isoproterenol-induced learning and CREB phosphorylation both show correspondent 

inverted U or parabolic shape with isoproterenol dose. Normally a 2 mg/kg dose of 

42 



isoproterenol is optimal to induce early olfactory learning and also elevates pCREB level. 

The higher ( 4 mg/kg) dose is ineffective as a US in normal pups (Langdon et al. , 1997). 

The dose of 6 mg/kg has also been shown to be ineffective in learning and in producing 

pCREB in normal pups (Yuan et al., 2000). A similar inverted U shaped curve was 

described for stroking-induced learning, when stroking was combined with isoproterenol 

(Sullivan et al., 1991). Thus, the inverted U shaped dose-response curve might be a basic 

property of the learning system. 

The observed cAMP increases with increasing isoproterenol dose is inconsistent with the 

hypothesis that cAMP levels account for the relationship seen between isoproterenol dose 

and behavior, and pCREB levels. The depletion of 5-HT that causes impairment of 

learning which can be overcome by providing a higher than normal level of NE suggests 

that a critical cAMP level is required for learning (Yuan et al., 2000), and that lower 

levels of cAMP are insufficient to produce the intracellular signals required by learning. 

Why then does a higher level of cAMP associate with learning failure? Yuan et al. , 

(2003b) proposed three hypotheses to explain the lack of learning with higher 

isoproterenol doses: ( 1) Higher levels of cAMP increase Ca2
+ entry, which, in tum, aids 

calcineurin-induced CREB dephosphorylation and counteracts PKA effects; (2) Higher 

levels of cAMP promote increased rate of cAMP hydrolysis by phosphodiesterase 4 

(PDE4) activation through PKA (Ang and Antoni, 2002). This would decrease the level 

of the cAMP expression and alter its spatial-temporal pattern; (3) Elevated cAMP levels 

promote faster cAMP extrusion, another regulatory mechanism to maintain a low level of 
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free intracellular cAMP (Wiemer et a!., 1982), thus, would decrease cAMP levels and 

alter its spatial-temporal pattern. 

To evaluate these last two hypotheses, the present study examines in more detail the 

temporal relation of cAMP expression with optimal and higher doses of isoproterenol, or 

saline, all paired with odor. Five time points were chosen for determining cAMP levels: 

initiation of training (odor presentation), 5 min after initiation of training, immediately 

after the training session, 5 and 1 0 min after training finished. Because CREB 

phosphorylation appears to peak 10 min after training has finished under learning 

conditions (Yuan eta!., 2000), the influence on CREB phosphorylation by cAMP should 

happen within this period. 

To examine the role of2 mg/kg isoproterenol alone (optimal learning associated dose) on 

cAMP levels, a second experiment was carried out, in which cAMP levels were tested 

with 3 training conditions: saline without odor (without either CS or US input), 2 mg/kg 

isoproterenol without odor (US input only), and 2 mg/kg isoproterenol with odor (both 

CS and US inputs). Two time points were chosen: immediately after training and 5 

minutes after training. 

I hypothesized that there was an optimal cAMP level relative to the conditioning. In that 

scenario, saline plus odor would not be strong enough to elevate cAMP to an optimal 

level. Only an optimal isoproterenol dose (2 mg/kg) paired with odor would maintain 
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cAMP within the optimal level. As for the 6 mg/kg dose of isoproterenol (nonleaming 

dose) plus odor, cAMP would increase higher than 2 mg/kg dose of isoproterenol plus 

odor at the end of conditioning. But afterwards, the high level of isoproterenol might 

either decrease cAMP very quickly below the optimal level, or keep cAMP higher than 

the optimal level. 
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CHAPTER II METHOD 

1 Subjects 

In Experiment I, 115 Sprague-Dawley rats, both male (n=60) and female (n=55), from 10 

litters were used. Fifteen groups were included: 3 dosages (saline, 2 mg/kg of 

isoproterenol, 6 mg/kg of isoproterenol), at 5 time points, immediately prior to 10 

minutes odorized bedding training, 5 minutes after odor training started, immediately 

after removal from odorized bedding, 5 minutes and l 0 minutes after odor training 

finished. 

In Experiment II, 46 Sprague-Dawley rats, both male (n=22) and female (n=24), from 4 

litters were used. Six groups were included: 1 dosage of isoproterenol (2 mg/kg) at 2 time 

points, immediately after 10 minutes of odorized bedding training and 5 minutes after 

odorized bedding training, 2 dosages (saline or 2 mg/kg isoproterenol) at the same 2 time 

points, with respect to training, but without odor presentation (pups were sacrificed 

immediately after removal from 10 minutes on fresh bedding or 5 minutes post removal 

from fresh bedding). 
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Litters were culled to 12 pups per litter on PND 1 (the day of birth is considered PND 0). 

The dams were maintained under a 12-hour light-dark cycle at 22°C in polycarbonate 

cages containing hardwood chips at the Health Sciences Centre of Memorial University 

of Newfoundland animal care facility. Food and water were accessible ad libitum. All 

experimental procedures were approved by the Memorial University Institutional Animal 

Care Committee, and conformed to the standards set by the Canadian Council on Animal 

Care. 

2 Odor conditioning, drug injection and sample collection 

Rat pups were distributed among groups. A maximum of one male and female pup from 

the same litter was usea for each training group. According to the procedure described in 

Yuan et al., (2003b), on PND 6, saline or isoproterenol (2 mg/kg, or 6 mg/kg, Sigma 

Chemical, St. Louis, USA) was injected subcutaneously 40 minutes prior to odor 

preference training. Thirty minutes following injection, the pups were removed from the 

dam and placed on fresh bedding. Ten minutes later, pups in all of the groups of 

experiment I, or in groups trained on odor scented bedding in experiment II, were placed 

on peppermint scented bedding (0.3 ml peppermint extract in 500 ml bedding). In 

experiment II, pups in groups trained without odor were placed on fresh bedding for the 

training period. 
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All training sessions were done in an experimental room where the temperature was kept 

constant at 28°C. This allowed pups to maintain body temperature in the absence of the 

darn. 

The pups in the present experiments were subjected to training procedures, but were not 

tested for recall, in order to examine the level of cAMP specifically during acquisition of 

odor preference learning. Previous studies in our laboratory (Langdon et al., 1997; 

McLean et al., 1993; Price et al., 1998), as well as in others (Sullivan et al., 1989; 

Sullivan et al. , 1991; Sullivan and Leon, 1986; Sullivan and Leon, 1987), have shown 

that pups subjected to these training procedures show predictable behavioral outcomes, 

i.e., 2 mg/kg isoproterenol plus odor induce odor preference for the conditioned odor, 

whereas either saline or 6 mg/kg isoproterenol plus odor does not. 

Samples were collected according to the method described in Yuan et al., (2000, 2003). 

At the appropriate time points, the pups in the relevant groups were sacrificed by 

decapitation. Both olfactory bulbs were removed from the skull and flash frozen on dry 

ice. All samples were subsequently stored at -70°C in microcentrifuge tubes until assayed 

for cAMP content. All groups were assayed at the same time. 
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3 cAMP assay and protein determination 

3.1 cAMP assay 

The cylic AMP Enzyme Immunoassay (cAMP EIA) Kit from Cayman Chemical (Ann 

Arbor, USA), was used to assay for cAMP levels. This assay is based on the competition 

between free cAMP and a cAMP-acetylchotinesterase (AChE) conjugate (the cAMP 

tracer) for a limited number of cAMP-specific rabbit antibody binding sites. Because the 

concentration of the cAMP tracer is held constant while the concentration of free cAMP 

varies between samples, the amount of cAMP tracer that is able to bind to the rabbit 

antibody will be inversely proportional to the concentration of cAMP contained in the 

sample. 

3.1.1 Reagents preparation 

The day before the assay was to be performed, all buffers and reagents were prepared 

according to the instructions provided by the Cayman Chemical (Ann Arbor, USA). 

Briet1y, EIA buffer was made by diluting the contents in the EIA buffer concentrate vial 

with 90 ml of ultrapure water. Wash buffer was made by diluting 2.5 ml wash buffer 

concentrate to a total volume of 1 liter with ultrapure water and adding 0.5 ml of Tween 

20. Phosphate buffer was made by diluting the phosphate buffer concentrate to a final 
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volume of 200 ml with ultrapure water. The cAMP AChE tracer was reconstituted by 6 

ml EIA buffer. The cAMP antiserum was reconstituted by 6 ml EIA buffer. The cAMP 

standard was reconstituted by 1 ml of phosphate buffer. 

3.1.2 Sample preparation 

Frozen olfactory bulbs were homogenized in 250 J.ll phosphate buffer, containing 5% 

trichloroacetic acid (TCA) on ice using a hand held pestle homogenizer. Precipitates were 

removed by centrifuging at 1,500 x G for 10 minutes at 4 °C. The supernatant solution 

was transferred carefully to a clean test tube, while the pellet was kept for protein 

determination. 

TCA was extracted from the supernatant with 5 volume water-saturated ether. [To make 

the water-saturated ether, water was added to ether until layers formed; these were mixed 

and the top layer (ether layer) was used]. The residual ether was removed by heating the 

supernatant to 70°C for 5 minutes. The 50 J.ll supernatant was diluted in 150 f.ll phosphate 

buffer. 
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3.1.3 Performing the assay 

The reagents were added in the 96-well plate provided with the kit. In each well, there 

were 50 !J.l cAMP standard or sample, 50 !J.l cAMP tracer, and 50 !J.l cAMP antiserum. 

Each standard or sample was run in duplicate. Afterwards, the plate was covered with 

plastic film and incubated for 18 hours at 4 °C. 

When incubation was terminated, the wells were emptied and rinsed five times with wash 

buffer to remove any unbound reagents. Ellman's reagent, containing the substrate for 

AChE and reconstituted with ultrapure water, was added to each well. After developing 

the plate on an orbital shaker in the dark for 120 minutes at room temperature, the 

enzymatic reaction in ~ach well produced a distinct yellow color. The plate was read at a 

wavelength of 415 nm, by using a BIO-RAD Model 3550 Microplate Reader. The total 

cAMP content was calculated in pmol accounting for dilution and total volume, after 

comparing sample values in each well to those of the standard curve which consists of 

eight points from 0.115 to 15 pmol. 

3.2 Protein determination 

The TCA protein pellet was reconstituted with 800 !J.l dH20 and then the protein 

concentration was determined by a Bicinchoninic Acid (BCA) protein assay Kit (Pierce, 
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Rockford, USA). The procedure included adding the samples, standards and reagents to a 

96-well plate, incubating the plate for 30 minutes at 37°C, and reading the plate at 595 

nm in the BIO-RAD Model 3550 Microplate Reader. The total protein amount was 

calculated in mg accounting for dilution and total volume, after comparing sample values 

in each well to those of the standard curve which consists of eight points from 0.005 to 

0.05 mg. The final cAMP value in each animal was then calculated as pmol/mg protein. 

4 Statistical analysis 

In experiment I, a two-way ANOV A was used to statistically compare the drug dose 

(saline, 2 mg/kg isoproterenol, or 6 mg/kg isoproterenol), the time, and drug dose over 

time interaction effects. The least significant differences (LSD) test was used for post hoc 

compansons. 

In experiment II, a one-way ANOV A was used for statistical comparison of the treatment 

groups (saline without odor, 2 mg/kg isoproterenol without odor, and 2 mg/kg 

isoproterenol with odor). The Student-Newman-Keuls test was used for post hoc 

comparisons. A Student t-test was used for the comparison of times (immediately after 

training and 5 minutes after training) within the same treatment group. 
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CHAPTER III RESULTS 

1 Experiment I 

Before I started the experiment, I hypothesized that there was an optimal cAMP level 

relative to the conditioning. In that case, saline plus odor would not be strong enough to 

elevate cAMP to an optimal level. Only an optimal isoproterenol dose (2 mg/kg) paired 

with odor would maintain cAMP within the optimal level. As for 6 mg/kg dose of 

isoproterenol (nonleaming dose) plus odor, cAMP would increase higher than 2 mg/kg 

dose of isoproterenol plus odor at the end of conditioning. But afterwards, the high level 

of isoproterenol might either decrease cAMP very quickly below the optimal level, or 

keep cAMP higher than the optimal level. However, the results I got are unexpected. 

In the 2-way ANOVA drug (3) over time (5), there was a significant drug by time 

interaction [F(8,100)=2.925, P=0.0056]. See Figure 3.1. There was also a significant drug 

effect [F(2,100)=14.056, P<O.OOOl] which showed that the cAMP expression of the 6 

mg/kg isoproterenol group was higher than that of the saline and 2 mg/kg isoproterenol 

groups. 
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1.1 cAMP expression at different time points under the three drug 

conditions 

At the start of training (0 min in Figure 3.1), cAMP expression was not significantly 

different among the three dosage groups: saline, 2 mg/kg dose of isoproterenol and 6 

mg/kg dose of isoproterenol, although the mean level was lowest in the saline group 

[Mean± SEM = 83 pmol/mg ± 7.6 (saline); 94 pmol/mg ± 3.9 (2 mg/kg iso); 98 pmol/mg 

± 11.6 (6 mg/kg iso)]. 

Five minutes after the pups were placed on the peppermint scented bedding (5 min in 

Figure 3.1 ), cAMP expression in the 2 mg/kg isoproterenol group decreased significantly 

. 
(Mean ± SEM = 73 pmol/mg ± 6.3), compared with the 6 mg/kg isoproterenol group 

(Mean± SEM = 106 pmol/mg ± 9.4; 2 mg/kg iso vs. 6 mg/kg iso, P<0.05). There were no 

differences between the 2 mg/kg isoproterenol group and the saline group (Mean ± SEM 

= 100 pmol/mg ± 8.6), or between the 6 mg/kg isoproterenol group and the saline group. 

After the 10 minute odor presentation ( 10 mm m Figure 3.1 ), cAMP levels were 

significantly higher in both the 2 mg/kg isoproterenol group (Mean ± SEM = 114 

pmol/mg ± 11; P<0.05) and the 6 mg/kg isoproterenol group (Mean ± SEM = 118 

pmol/mg ± 9.3; P<0.05) than in the saline group (Mean± SEM = 81 pmol/mg ± 8.2). 

There was no difference in cAMP levels between the isoproterenol treated groups. 
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Five minutes after ending odor presentation (15 min in Figure 3.1 ), cAMP levels in the 2 

mg/kg isoproterenol group decreased (Mean ± SEM = 74 pmol/mg ± 8.2), and was 

significantly lower (P<0.05) than the 6 mg/kg isoproterenol group (Mean ± SEM = 127 

pmol/mg ± 9.2). There was no difference between the saline group (Mean± SEM = 101 

pmol/mg ± 7.6) and either isoproterenol group. 

Ten minutes after ending odor presentation (20 min in Figure 3.1 ), cAMP expression was 

highest in the 6 mg/kg isoproterenol group (Mean ± SEM = 139 pmollmg ± 8.7) and 

lowest in the saline group (Mean ± SEM = 80 pmollmg ± 7.7). cAMP levels in the 2 

mg/kg isoproterenol group (Mean± SEM = 112 pmollmg ± 7.4) was also higher than in 

the saline group (P<O.O.S), but significantly lower than in the 6 mg/kg isoproterenol group 

(P<0.05). 

1.2 cAMP expression within treatment groups 

Every treatment group shows a different cAMP pattern. See Figure 3 .1. There was no 

difference in cAMP levels among the five time points in the saline group, although a 

weak oscillatory pattern is suggested in the means [(Mean± SEM = 83 pmol/mg ± 7.6 (0 

min); 100 pmollmg ± 8.6 (5 min); 81 pmollmg ± 8.2 (10 min); 101 pmollmg ± 7.6(15 

min); 80 pmollmg ± 7.7 (20 min)], such that cAMP expression was higher at five minutes 
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after training started and at five minutes after training finished. The 2 mg/kg isoproterenol 

group exhibited a significant oscillatory pattern of cAMP level. The cAMP levels were 

lowest 5 minutes after the start of odor exposure (Mean± SEM = 73 pmol/mg ± 6.3) and 

highest at 10 minutes after the start of odor exposure (Mean± SEM = 114 pmollmg ± 11; 

P<0.05). Level of cAMP then decreased and was significantly lower 5 minutes after the 

end of odor exposure (Mean ± SEM = 74 pmol/mg ± 8.2) than at the end of odor 

exposure (P<0.05). But by 10 minutes after the end of odor exposure, it was significantly 

elevated (Mean± SEM = 112 pmol/mg ± 7.4; P<0.05) over the previous time point. In 

the 6 mg/kg isoproterenol group, cAMP levels increased linearly with time. Some of the 

time points showed the increase was significant: 5 min (Mean± SEM = 106 pmol/mg ± 

9.4) vs. 10 min (Mean± SEM = 118 pmol/mg ± 9.3; P<0.05, increase); 10 min vs. 15 

minutes (Mean± SEM = 127 pmol/mg ± 9.2; P<0.05, increase); 15 min vs. 20 minutes 

(Mean± SEM = 139 pmol/mg ± 8.7; P<0.05, increase). 

Therefore, the condition previously shown to produce learning, the 2 mg/kg dose of 

isoproterenol paired with odor, produces a significant oscillatory pattern of cAMP levels 

in 5 minute intervals. The nonlearning condition, 6 mg/kg isoproterenol paired with odor, 

has much higher cAMP levels and cAMP increases in a temporal linear pattern across the 

whole period; saline plus odor shows a weak oscillation pattern, but there is no difference 

among those time points. 
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Figure 3.1. cAMP shows an oscillatory pattern with learning. 

CS (odor) paired with an optimal US (2 mg/kg iso) produces 5 min peaks and 

troughs of cAMP expression. With training by odor plus saline (Saline), cAMP 

levels show a non-significant weak pattern of oscillations. Odor paired with a 

supraoptimal non-learning isoproterenol dose (6 mg/kg iso) produces a linearly 

increasing cAMP pattern. 
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2 Experiment II 

It was not clear if 2 mg/kg dose of isoproterenol itself could produce the peak and trough 

pattern of cAMP activation, or that pattern requires both odor and 2 mg/kg dose of 

isoproterenol. Is the oscillation pattern learning specific? Experiment II was set up to 

addresses that question. There were three groups in different training conditions: saline 

without odor, 2 mg/kg isoproterenol without odor, or pairing of 2 mg/kg isoproterenol 

with odor. cAMP measurements were taken at the end of training and 5 minutes later, a 

time of the cAMP peak and the cAMP trough seen in Experiment I. 

2.1 cAMP expression at different time points 

At the end of training (1 0 minutes in Figure 3 .2), there were significant differences in 

cAMP expression among saline (no odor) group, 2 mg/kg isoproterenol (no odor) group, 

and 2 mg/kg isoproterenol +odor group, [one-way ANOVA, P=O.Ol23, F(2,20)=5.528]. 

See Figure 3 .2. cAMP levels in the 2 mg/kg isoproterenol (no odor) group (Mean ± SEM 

= 119 pmol/mg ± 8.4) and the 2 mg/kg isoproterenol + odor group (Mean± SEM = 127 

pmol/mg ± 10.3) were significantly higher than the saline (no odor) group (Mean± SEM 

= 88 pmol/mg ± 5.1; P<0.05). Five minutes after training finished (15 min in Figure 3.2), 

there were again significant differences in cAMP levels between the three groups [one

way ANOVA, P = 0.0038, F(2,20) = 7.469]. cAMP level in the 2 mg/kg isoproterenol+ 
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odor group (Mean± SEM = 75 pmollmg ± 6.3) were significantly lower than the 2 mg/kg 

isoproterenol (no odor) group (Mean± SEM = 114 pmollmg ± 9.1; P<O.Ol). The saline 

(no odor) group (Mean ± SEM = 86 pmollmg ± 6.9) was significantly lower than the 2 

mg/kg isoproterenol (no odor) group (P<O.OS), but did not differ from the 2 mg/kg 

isoproterenol + odor group. 

2.2 cAMP expression within treatment groups 

The saline (no odor) group expressed a similar cAMP level at the end of training (Mean± 

SEM = 88 pmollmg ± 5.1), and five minutes after training finished (Mean± SEM = 86 

pmollmg ± 6.9). The 2 mg/kg isoproterenol (no odor) group showed a higher level of 

cAMP both when the training had just finished (Mean± SEM = 119 pmollmg ± 8.4) and 

five minutes later (Mean± SEM = 114 pmol/mg ± 9.1). There was no difference between 

these two time points. cAMP expression in the 2 mg/kg isoproterenol + odor group 

decreased significantly at five minutes after training finished (Mean ± SEM = 75 

pmollmg ± 6.3), compared to the point when training had just finished (Mean ± SEM = 

127 pmollmg ± 10.3; P<O.Ol). 

In summary, when there was neither odor input nor isoproterenol input, cAMP remained 

constant in olfactory bulbs (Figure 3.2A). A 2 mg/kg dose of isoproterenol alone (US 

input alone) elevated cAMP levels relative to the saline alone group at both time points 
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(Figure 3.2B). Only pups that received odor paired with 2 mg/kg dose of isoproterenol 

showed the peak/trough pattern (Figure 3 .2C), a significant peak at the end of pairing and 

a significant trough 5minutes later. That is, this peak/trough pattern is specifically 

associated with the pairing of the CS (odor) and the US (2 mg/kg dose of isoproterenol). 

It does not occur with the US alone, CS alone, or without either US nor CS. These data 

suggest that the oscillation of cAMP which was shown in Experiment I is specific to 

conditioning. 

60 



A Saline 8 2 mg/kg lso c 2 mg/kg lso 
(no odor) (no odor) +odor c 160 

Q) .... 140 0 .._ 
a_ 120 

0'> 100 
E ** ::::: 80 
0 
E 60 
0.. 40 
a_ 
~ 20 

"5 0 
N=7 N=7 N=8 N=8 N=8 N=8 

10 15 10 15 10 15 

Time (min) 

Figure 3.2. The oscillatory pattern of cAMP requires CS-US pairing. 

cAMP levels were measured at two time points: the end of training (1 0 min) 

and 5 min later (15 min), in three training groups: saline without odor, 2 mg/kg 

isoproterenol without odor, and 2 mg/kg isoproterenol with odor. A. Without 

either odor (CS) or isoproterenol (US) input, cAMP levels remained constant in 

the bulb. B. 2 mg/kg isoproterenol input only (without odor) increases cAMP 

levels at both time points relative to saline. C. Pairing of odor with 2 mg/kg 

isoproterenol produced a significant peak at 10 min relative to saline and a 

significant trough at 15 min relative to the 2 mg/kg isoproterenol alone (t-test. 

** p< 0.01 ). 
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CHAPTER IV DISCUSSION 

1 Summary of the experimental design and major findings 

This project was an extension of the study done by Yuan et al. , (2003b). In Yuan et al. , 

(2003b), cAMP levels were determined following training. They identified that olfactory 

bulb cAMP levels increased with isoproterenol dose, i.e., both 2 mg/kg dose of 

isoproterenol plus odor and 4 mg/kg dose of isoproterenol plus odor increased cAMP 

significantly, compared with saline plus odor; 1 mg/kg isoproterenol plus odor group 

showed intermediate cAMP level. In addition, cAMP was also increased by stroking with 

or without odor. Therefore, olfactory bulb cAMP levels increased in response to ~

adrenergic activation (the US), under both learning and nonlearning conditions. 

Consequently, there arose a question: what is the pattern of cAMP activation related to 

learning? Testing cAMP levels at one time point did not provide enough information to 

answer this question. The objective of this study was to characterize the temporal changes 

in cAMP levels in a learning and nonlearning environment relative to the ~-adrenergic 

agonist isoproterenol dose at several time points during and after training. 

When I first began my study, I hypothesized that there was an optimal cAMP level 

relative to the learning. In that scenario, saline plus odor would not be strong enough to 
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elevate cAMP to an optimal level. Only an optimal isoproterenol dose (2 mg/kg) paired 

with odor would maintain cAMP within the optimal level. As for 6 mg/kg dose of 

isoproterenol (nonlearning dose) plus odor, cAMP levels would be higher than 2 mg/kg 

dose of isoproterenol plus odor at the end of conditioning. Afterwards, the high level of 

isoproterenol would either decrease cAMP very quickly below the optimal level, or keep 

cAMP above the optimal level. 

After the study, I found the temporal change of cAMP shows an oscillatory pattern with 

learning condition and the oscillations are specific to conditioning. The present results 

that 2 mg/kg and higher doses of isoproterenol paired with odor produce significantly 

higher cAMP in the olfactory bulb than saline paired with odor at the end of the 10 

minute training perio.d, replicate the previous finding in Yuan et al., (2003b). The 

peak/trough pattern of cAMP expression seen immediately after training relative to 5 

minutes after training in the 2 mg/kg dose of isoproterenol + odor pairing group in 

Experiment I was replicated in Experiment II. 

2 Reports exemplifying cAMP oscillations and their time 

course 

The finding of cAMP peaks and troughs when odor is paired with a learning-effective 

dose of isoproterenol was unexpected when I first formulated the hypothesis of the study. 
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However, there is increasing evidence showing that oscillatory patterns of cAMP are 

likely to be a more important pattern for intracellular signaling than a simple cAMP 

increase. Reports exemplifying this pattern in slime mold, secretory cells, L TP and long

term facilitation are discussed below. 

Periodic synthesis and release of cAMP in aggregation of the cellular slime mold 

Dictyostelium discoideum was reported by Konijn and Shaffer (Konijn, 1972; Shaffer, 

1975). During their aggregation on a surface, one or a few cells at the center of an 

aggregation territory autonomously emits pulses of cAMP with a period of about five 

minutes. These pulses are detected by adjacent cells that respond by chemotaxing towards 

the source, and also by emitting their own pulses of cAMP. Hence, cAMP travels as a 

wave out from the aggregation center due to two processes: a triggering by autonomous 

cells and signal transmission by relay-adjacent cells (Raman et al. , 1976). 

More closely related to olfactory cAMP oscillations are cAMP oscillations found in 

gonadotropin-releasing hormone (GnRH) secretion. GnRH secretion is controlled by a 

variety of regulatory mechanisms intrinsic to individual neurons or networks of GnRH

secreting neurons and by extrinsic regulatory mechanisms regulated by neurotransmitters 

released onto GnRH neurons. The development of the highly differentiated GT1 GnRH

secreting neuronal cell lines has provided a model to study the signaling mechanisms 

involved in the complex regulation of GnRH secretion (Mellon et al., 1990). The pulsatile 

release of GnRH approximately every 15 - 20 minutes appears to be an intrinsic property 

64 



of individual or networks of GnRH neuron(s) (Martinez et al. , 1992b). In vivo, numerous 

neurotransmitters are released onto GnRH neurons to stimulate GnRH secretion (Kordon 

et al., 1994). In vitro, neurotransmitters stimulating GnRH release from GTl cells include 

DA (Martinez et al. , 1992c) and NE (Martinez et al., 1992a). Treatment of GTl cells with 

DA and NE increase intracellular cAMP levels and GnRH secretion in a dose-dependent 

manner (Martinez et a!. , l992a; Martinez et al. , 1992c). The level of secretion of GnRH 

was proportional to the activation of AC and increases in cAMP levels (Martinez et al., 

1995). 

There are studies focusing on the role of the cAMP signaling pathway in regulating the 

pulsatile GnRH secretion (Vitalis et al., 2000). First, they showed treatment of GTl cells 

with DA increased cAMP levels, and also stimulated GnRH secretion. Second, they 

found GTl cells expressed and had functional cAMP-gated cation channels. Third, PKA 

did not increase GnRH release, but conversely inhibited the cAMP-induced GnRH 

release. Forth, GTI cells expressed AC V, which was inactivated by PKA. Based on these 

data, they proposed signaling pathways to represent potential timing mechanisms for the 

pulsatile release of GnRH. The stimulation of GTl cells increased cAMP formation 

through activated AC. In tum, cAMP activated cAMP-gated cation channels increased the 

excitability of GTl cells, resulting in the stimulation of GnRH secretion. On the other 

hand, increased cAMP activated PKA. The activated PKA decreased cAMP levels by 

inactivating AC V, thereby constituting a negative-feedback mechanism for GnRH 
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secretion. This mechanism results in oscillation in cAMP levels, which provides a 

biochemical basis for timing the pulsatile release of GnRH. 

Similar to the cAMP oscillation in GnRH secreting cells is regulation of secretory activity 

in prolactin cells. Haisenleder eta!., (1992) examined whether pulsatile changes in cAMP 

are more effective than a continuous stimulation in increasing pituitary hormone gene 

expression. They found prolactin and alpha thyrotropin subunit mRNAs were increased 

by cAMP analogs, 8-bromo cAMP or Bt cAMP, only in a pulsatile manner (given every 

60 minutes for 24 hours). Continuous Bt cAMP was ineffective. These data suggest that 

pulsatile changes in intracellular cAMP are essential for maximal expression of the 

prolactin and alpha genes. Thus, pulsatile changes in intracellular second messengers may 

be necessary for sig!lal transduction from the plasma membrane to the nucleus 

(Haisenleder et al., 1992). 

Oscillatory patterns of cAMP are also found outside the areas of the brain controlling 

reproduction (pituitary/hypothalamus). Oscillations have also been found in the 

hippocampus. A PKA - dependent L TP in hippocampus is induced by the stimulation of 

temporally spaced trains of high frequency every 5 minutes (Duffy and Nguyen, 2003). 

Continuous trains do not produce PKA-dependent LTP (Woo et al., 2003). More 

specifically, stimulation to the CAl Schaffer collateral pathway with multiple trains of 

100Hz, which are spaced at 5-l 0 minute intervals, induces long-lasting LTP. This long

lasting LTP requires activation of the cAMP - PKA pathway for its full expression and 
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continuance (Abel et al. , 1997; Blitzer et al., 1995; Huang and Kandel, 1994; Nguyen et 

al. , 2000; Wong et al. , 1999; Woo et al., 2003). Genetic and pharmacological 

manipulations show that only spaced stimulation preferentially induces PKA-dependent, 

long-lasting LTP in area CAl (Woo et al., 2003). LTP induced by temporally spaced 

stimulation was impaired in the Schaeffer collateral pathway in hippocampal slices from 

PKA mutant mice. On the contrary, L TP induced by temporally compressed or 

continuous stimulation was normal in slices from PKA mutant mice (Woo et al., 2003). 

In addition, LTP induced by spaced stimulation was significantly suppressed by KT -5720, 

an inhibitor of catalytic subunits of PKA, in brain slices from wildtype mice. In contrast, 

the long-term maintenance of the L TP induced by temporally compressed stimulation in 

brain slices from PKA mutant mice is not significantly influenced by application of KT-

5720 (Woo et al., 2003). Therefore, LTP induced by these compressed patterns of . 
stimulation does not require PKA activation, but PKA-dependent LTP is selectively 

induced by temporally spaced, multitrain stimulation. Changing the temporal spacing of 

stimulation critically modulates the PKA-dependence of hippocampal LTP. 

Duffy and Nguyen, (2003) used intracellular perfusion of various PKA modulators to 

examine the role of postsynaptic PKA in long-lasting LTP in hippocampal area CAl 

(Duffy and Nguyen, 2003). They found that four 100Hz trains (4 x 100Hz), separated by 

5 minutes, evoked a large, non-decaying postsynaptic potentiation for up to 2 hours in the 

Schaeffer collateral pathway. This postsynaptic potentiation decayed significantly within 

1.5 hour by postsynaptic infusion of PKA inhibitor, either Rp-cAMPS or PKk22 (6-22 
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amide peptide). In contrast, postsynaptic infusion of PK.k22 did not change the 

postsynaptic potentiation induced by a single 100 Hz train. These findings reinforce the 

view that long-lasting LTP induced by temporally spaced stimulation requires activation 

of postsynaptic PKA. The cAMP-PKA - dependent LTP is strongly correlated with 

hippocampal long-term memory in mice (Abel et al. , 1997). The coincidence of its 

stimulation required for 5-minute intervals suggests cAMP oscillations may be involved 

in PKA-dependent LTP. 

In addition to cAMP being associated with L TP, cAMP oscillations have been found in 

long-term memory of Aplysia. Repeated spaced 5 minutes pulses of 5-HT induce long-

term sensitization in Aplysia (Montarolo et al., 1986). Facilitation of the monosynaptic 

connections between the sensory and motor neurons contributes to both long-term and . 
short-term sensitization of the gill and siphon withdrawal reflex in Aplysia. To analyze 

the relationship between these two forms of sensitization at the cellular and molecular 

level, this monosynaptic sensorimotor component in Aplysia can be reconstituted in 

dissociated cell culture. Montarolo et al. , ( 1986) exposed the cultures to either a single 5 

minute application of 5-HT or to five applications of 5-HT (5 minutes each) at 15 minutes 

intervals. Then the treated cells and connections were reexamined 24 hours later. The 

cultures treated with five applications of 5-HT showed a significant increase in the 

strength of the connections. In contrast, untreated controls or cultures receiving a single 

5-HT application showed no significant change in their synaptic strength (Montarolo et 

al., 1986). 5-HT application could activate the cAMP pathway which is required for the 
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formation of both short-term and long-term sensitization (Kandel et al., 2000). Repeated 

stimulation by 5-HT may induce cAMP changes in an oscillatory pattern given the close 

temporal coupling between 5-HT application and cAMP production seen in other studies 

(Huang et al., 1971). Although it still needs to be determined whether these various 

observations reflect a basic temporal requirement of intracellular cAMP signaling, they 

suggest that cAMP oscillations are a highly conserved phenomenon used to regulate 

cellular functions. 

3 Mechanisms underlying cAMP oscillations 

Changes in concentrations of intracellular messengers are now known to be only one of 

the means used to er.1code transduction information. Specific responses can also be 

attained through changes in the speed, amplitude and spatial-temporal pattern of 

signaling messengers (Hunter, 2000). Different pathways interact with one another to 

shape the final biological response. The resulting signaling networks provide unique 

cellular responses to induce complex behaviors (Bhalla and Iyengar, 1999). Therefore, I 

speculate the mechanism underlying cAMP oscillations is likely to be based on 

interactions between diverse intracellular signals. 
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3.1 Interaction between intracellular Ca2
+ and cAMP signaling 

pathways 

As mentioned previously, olfactory learning in neonatal rats is a classical conditioning 

paradigm. Classical conditioning involves learning a relationship between the CS and US 

(Kandel et al. , 2000). According to the intracellular model for this early olfactory learning 

paradigm, proposed in Yuan et al., (2003b), US and CS co-activate mitral cells in the 

olfactory bulb. Inside mitral cells, the cAMP - PKA pathway is activated by US activation 

of the ~-adrenoceptors. The CS odor signal, conveyed by olfactory sensory axons, 

activates NMDA/ AMP A receptors on the mitral cells. Activated NMDA receptors lead to 

Ca2+ influx, which, in tum, activates intracellular Ca2+/CaM - protein kinase C (PKC) 

pathways. There have been many reports showing that Ca2+ and cAMP signaling 

pathways interconnect with each other, both at the level of second messenger generation 

and at the level of their intracellular target processes. 

An important issue related to learning surrounds the identification of substrates where 

both the CS and US interact within cells to specifically induce learning. The cAMP 

signaling pathway is initiated by the binding of transmitters with G protein coupled 

receptors on the cell membrane (Kandel et al., 2000). The binding activates the receptor 

coupled G protein, which in turn activates AC, the enzyme producing cAMP from 

adenosine triphosphate (ATP) (Kandel et al., 2000). AC is a large polypeptide located on 

the plasma membrane in a transmembrane manner. There is a Ca2+/CaM binding site 
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believed to be in its cytosolic domain (Vorherr eta!., 1993; Wu eta!., 1993). Stimulation 

of AC by Ca2
+ is mediated by CaM (Bakalyar and Reed, 1991; Tang and Gilman, 1992). 

There are several isoforms of A C. Ca2+ can activate some of them, but inhibits others, e.g. 

AC1 and AC8 are Ca2+/CaM-stimulated enzymes, whereas Ca2+ inhibits AC3. 

Hippocampal mossy fiber LTP requires an increase in presynaptic Ca2+ (Johnston, 1992; 

Zalutsky and Nicoll, 1990). Coupling of Ca2+ to activation of AC 1 is crucial for mossy 

fiber LTP (Villacres eta!., 1998; Weisskopf eta!., 1994). Mossy fiber LTP is significantly 

impaired in AC 1 knockout mice. High concentrations of forskolin, an AC activator, 

induces mossy fiber LTP to comparable levels in wild type and AC1 mutant mice, 

indicating that signaling components downstream from AC, including PKA, are not 

affected in AC 1 knockout mice. Cerebellar parallel fibers exhibit an L TP with similar . 
properties to hippocampal mossy fiber LTP (Salin et a!., 1996). It is also dependent on 

extracellular Ca2+ and AC activation. AC 1 knockout mice show a complete lack of 

parallel fiber/Purkinje cell LTP (Lev-Ram et a!., 2002; Storm et al. , 1998). This blockade 

is bypassed by application of an exogenous cAMP analog, suggesting that it results 

specifically from deletion of AC 1. AC 1 knockout mice do not show normal spatial 

memory when examined in the Morris water task, a test that measures the ability of a 

mouse to navigate by means of direct and indirect visual cues (Wu et a!., 1995). This 

suggests that AC 1 may be important for spatial memory. Both AC 1 knockout or AC8 

knockout mice exhibit normal long-term memory for contextual and passive avoidance 

learning and long-lasting LTP (L-LTP), but AC1 X AC8 mice do not (Wong eta!. , 1999). 
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Administration of forskolin to area CAl of the hippocampus restores normal memory for 

passive avoidance learning in AC 1 X AC8 mice. The defect in L-LTP is also reversed by 

application of forskolin to ACl knockout X AC8 knockout hippocampal slices. These 

data indicate that Ca2+ -stimulated AC activity is essential for L-LTP as well as long-term 

memory. L-LTP and long-term memory are initiated by activation of NMDA receptors 

and postsynaptic Ca2+ increases. Both of these processes depend on cAMP signaling and 

gene transcription. The increased cAMP signal is hypothesized to arise from CaM

stimulated AC (Wang and Storm, 2003). 

AC3 has been identified to be critical for detection of odorants in the main olfactory 

epithelium (Wong et al., 2000). The mechanism recruits inhibition of AC3 by Ca2+/CaM 

kinase II, which in tum causes cAMP decreases associated with odorant-stimulated 

cAMP transients (Wei et al., 1998). Therefore, AC3 is ideally suited to provide a 

mechanism that contributes to rapid decline in intracellular cAMP. 

POE is another effector on the cAMP signaling pathway (the intracellular US pathway), 

which is also acted on by intracellular Ca2+ (the intracellular CS pathway). PDE is the 

enzyme that controls the intracellular concentrations of cyclic nucleotides by catalyzing 

their hydrolysis (Beavo et al., 1994). Several POE isoforms have been identified. There 

are Ca2+ -dependent isoforms, e.g. POE 1, and Ca2+ -independent isoforms, e.g. PDE4. 

Each POEl enzyme has two CaM-binding domains, which allow their activity to be 

stimulated by Ca2+ (Rybalkin and Beavo, 1996). Various POE 1 isoforms respond to Ca2+ 
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stimulation differently. In addition, they show different sensitivities to the CaM

dependent phosphodiesterase inhibitors (Y an et al. , 1996). 

PDEs are targets of complex regulation by various intracellular signaling pathways 

(Beavo, 1995; Conti, 2000; Houslay and Milligan, 1997). In regulating cardiac adrenergic 

responses, the increase in Ca2
+ triggered by the a-adrenoceptor activation attenuates 

cAMP increase levels by activating PDE1 (Houslay and Milligan, 1997). Modulation of 

cAMP hydrolysis by Ca2
+ and protein phosphorylation is important in the generation of 

second messenger signals in AtT20 cells (Ang and Antoni, 2002). [The pituitary 

corticotroph tumour cell line AtT20 has been extensively studied as a model system for 

the mechanism of action of neuropeptides (Antoni, 1996; Antoni, 2000; Axelrod and 

Reisine, 1984). PDEL and PDE4 enzymes are the main cAMP hydrolyzing PDEs in 

AtT20 cells (Ang and Antoni, 2002).] 

The cAMP pathway provides feedback influences on both Ca2
+ channels and Ca2

+ pumps 

to regulate the intracellular Ca2
+ level. cAMP can act directly on the cyclic nucleotide

gated (CNG) channels to regulate Ca2
+ entry. CNG channels were first identified in 

retinal photoreceptors and OSNs. Although their activity shows very little voltage 

dependence, they are classified in the voltage-gated ion channels superfamily (Kaupp and 

Seifert, 2002). 
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The cyclic nucleotides, cAMP and cGMP, directly activate CNG channels by binding to a 

site on the channel protein. The channel activation depends on the ligand concentration. 

All CNG channels respond to some extent to both cAMP and cGMP (Kaupp et al., 1989). 

In hair cells, specific activation by cAMP and not by cGMP has been reported 

(Kolesnikov et al., 1991 ). CNG channels are nonselective cation channels. They can not 

discriminate well between alkali ions and allow the pass of divalent cations evenly, in 

particular Ca2+ (Finn et al., 1997; Hackos and Korenbrot, 1997; Picones and Korenbrot, 

1995). Unlike ligand-gated neurotransmitter receptors, CNG channels do not desensitize 

in the continuous presence of the ligand. But, their activity is modulated by the Ca2
+-

binding protein calmodulin and by phosphorylation (Gordon et al., 1992). 

As a second messenger, cAMP can act on channels located throughout the cell through . 
the cAMP/PKA pathway. Target channels can be located on the cell soma, dendrites, 

axons, and even presynaptic terminals. Therefore, different types of channels can be 

affected, including resting channels, voltage-gated channels, that form the action potential 

and provide Ca2
+ influx for neurotransmitter release, and ligand-gated channel~, such as 

the NMDA receptor which is permeable to Ca2
+ when opened by ligand binding (Kandel 

et al. , 2000). As a result, ci+ enters through a variety of pathways, many of which can be 

regulated by the cAMP pathway. 

The internal Ca2
+ stores are in the smooth endoplasmic reticulum. The release into the 

cytoplasm of the high concentration of Ca2
+ in the lumen and is controlled by a Ca2+ 
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channel in the membrane (Kandel et al., 2000). That Ca2
+ channel is a large protein that 

contains a receptor on the cytoplasmic surface for inositol 1 ,4,5-trisphosphate (IP3). 

Binding of IP3 to that receptor leads to opening the Ca2
+ channel and releasing Ca2+ into 

the cytoplasm (Kandel et al., 2000). IP3 is a second messenger on the inositol-lipid 

pathway. When binding of transmitter to a receptor activates the G protein, the G protein, 

m turn, activates phospholipase C (PLC). This phospholipase cleaves 

phosphatidylinositol 1 ,4,5-bisphosphate (PIP2) into two second messengers, IP3 and 

diacylglycerol (DAG; Kandel et al., 2000). cAMP can exert its influence on Ca2
+ release 

through phosphorylation of IP3 receptors by PKA to change their characteristics. 

Phosphorylation by PKA has been identified for several types of IP3 receptors (Mignery 

et al., 1990; Sudhof et al., 1991 ). Phosphorylation of purified type I IP3 receptor from 

mouse cerebellum increases Ca2
+ flux in reconstituted lipid vesicles (Nakade et al., 1994). 

In permeabilized hepatocytes Ca2+ release is enhanced after the addition of catalytic 

subunits of PKA (Bird et al., 1993). 

Plasma membrane Ca2
+ -A TPase is important because it removes ci+ from the cytosol to 

maintain resting Ca2
+ concentrations in the cytosol (Haynes, 1993). Sarco-endoplasmic 

reticulum Ca2+ -ATPase performs the essential function of removing Ca2+ from the 

cytosol to the smooth reticulum (Pogwizd et al., 2001). Both are key points for the 

regulation of Ca2+ metabolism, Ca2+ extrusion and Ca2
+ sequestration, respectively. The 

activity of Ca2+ -A TPase has been shown to be influenced by several mechanisms, 

including Ca2+/CaM, PKA and PKC (Carafoli, 1994). cAMP was indirectly observed to 
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mcrease Ca2+ extrusion in platelets (Johansson et al. , 1992). Therefore, cAMP could 

regulate Ca2+ metabolism by acting on these Ca2+ pumps. 

3.2 Evidence for intracellular Ca2
+ oscillations 

Wayman et al., (1995) reported that 4 minute oscillations of cAMP and intracellular Ca2+ 

occur in Human Embryonic Kidney-293 (HEK-293) cells, when the cells are exposed to 

isoproterenol. Incubation of HEK-293 cells expressing AC3 with isoproterenol causes 

Ca2
+ oscillations. These oscillations were not dependent on cAMP increases, because 

dibutyryl cAMP or (S)-cAMP was not able to stimulate them (Wayman et a!., 1995). On 

the contrary, they were dependent upon the interaction between cAMP and 

Ca2+/calmodulin-deper{dent intracellular cascades. Among these interactions, AC3 ts a 

key factor, which is stimulated by hormones and inhibited by elevated Ca2+. 

Wayman et a!. , (1995) and others (Cooper et a!., 1995; Rapp and Berridge, 1977) have 

proposed a mechanism for these hormone-stimulated cAMP and Ca2
+ oscillations in AC3 

cells. When isoproterenol activates AC3 , AC3 catalyzes ATP to produce cAMP. In tum, 

cAMP stimulates PKA, which phosphorylates and activates IP3 receptors, inducing 

internal stored free Ca2
+ to release to the cytoplasm. As cytoplasmic Ca2+ rises, AC3 

activity is inhibited and the production of cAMP decreases. Together with degradation of 

cAMP by phosphodiesterases, intracellular cAMP levels decrease. When cAMP levels 
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drops below a threshold point, the IP3 receptors are inactivated and endoplasmic 

reticulum Ca2+ A TPase pumps remove cytoplasmic Ca2+ to re-establish an equilibrium 

state. If AC3 is continuously exposed to an activator such as isoproterenol, this cycle 

repeats. 

Ca2+ oscillations with a similar time course have also been reported for Kenyon cells in 

the MBs of Drosophila by Rosay et al., (2001). By expressing a transgene of Ca2+ 

sensitive luminescent protein, they showed Kenyon cells had an intrinsic intracellular 

Ca2+ oscillation with an average period of five minutes. These Ca2+ oscillations can be 

strongly modulated by pharmacological agents either in amplitude and/or frequency. Both 

verapamil and diltiazem, that can block vertebrate L-type Ca2+ channels, reduce 

oscillation amplitude (Gielow et al., 1995; Gu and Singh, 1995). Neither of them has an 

effect on oscillation frequency (Rosay et al., 2001). Tetrodotoxin (TTX), a potent blocker 

of voltage-gated N a+ channels (O'Dowd and Aldrich, 1988), inhibits oscillations in a 

concentration-dependent manner (Rosay et al., 2001 ). An inhibitor of fast transient 

voltage-gated potassium channels 4-aminopyridine ( 4-AP) in cultured Drosophila larval 

CNS neurons (Sole and Aldrich, 1988), reduces Ca2+ oscillation amplitude and frequecy 

in a dose-dependent manner (Rosay et al., 2001 ). Kenyon cells express acetylcholine 

(ACh) sensitive receptors (Bertrand et al., 1994; Buckingham et al., 1997). ACh reduced 

oscillation amplitude in a dose-dependent and reversible manner (Rosay et al., 2001 ). 

Kenyon cell dendrites also receive GABAergic input (Yamazaki et al., 1998). 

GABAergic input increases both the amplitude and period of Ca2+ oscillations (Rosay et 
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a!. , 2001 ). Thus, Ca2
+ oscillations can also be mediated through the plasma membrane, to 

be co-acting with electrical activity, and to be affected by excitatory and inhibitory inputs. 

The amplitude of Kenyon cell Ca2
+ oscillations is reduced in the mutant amn. Mutations 

of amn impair olfactory consolidation in Drosophila (Feany and Quinn, 1995; Quinn et 

a!., 1979). This information and the following 3 findings imply that the Ca2
+ oscillations 

have a role in learning and memory: 1) the mushroom bodies are key structures in this 

insect brain for associative learning, especially when the learning is aroused by olfactory 

cues. Kenyon cells are the intrinsic neurons in the MBs. 2) Memory consolidation in the 

honeybee appears to be particularly sensitive to interference within a 3-5 minute window 

after a conditioning trial, i.e., intertrial intervals of 1 or 20 minutes result in stable long

term retention, whereas 3 minutes intervals result in reduced retention (Gerber et al. , 

1998). 3) A spaced training procedure in which the CS and the US are repeatedly paired 

at intervals of up to 15 minutes induces long-term olfactory memory in Drosophila (Tully 

et al., 1994; Yin et al., 1994). Thus, Ca2
+ oscillations act upon both the capability and 

specificity of gene expression (Dolmetsch et al., 1998; Li et al. , 1998). Rosay et al., 

(200 1) proposed that Ca2
+ oscillations in the Drosophila MBs have a role in affecting the 

gene expresswns that will induce synaptic modifications relevant to memory 

consolidation. 
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3.3 Interactions of cAMP transients and spontaneous Ca2
+ spikes 

Gorbunova and Spitzer, (2002) showed that there were interactions between cAMP 

transients and spontaneous Ca2+ spikes in Xenopus spinal neurons. They found 

spontaneous Ca2+ spikes produce increases in the concentration of cAMP and changes in 

cAMP level modulate Ca2+ spike frequency. In tum, Ca2+ spikes are necessary to induce 

changes in cAMP levels. Elimination of natural Ca2+ spikes by the removal of 

extracellular Ca2+ or by the addition of Ca2+ and Na+ channel blockers in the presence of 

Ca2+, blocked production of cAMP transient spikes, although AC remained active. 

Further, Gorbunova and Spitzer, (2002) demonstrated that the pattern of Ca2+ spikes 

strongly influenced the amplitude and duration of cAMP responses. That suggests that 

specific patterns of c;a2+ spikes are selectively required by cAMP transients, whereas 

other patterns are not. 

They proposed a model to describe the reciprocal influence between Ca2+ and cAMP. In 

their model they assumed that (1) Ca2+ oscillations are generated by IP3-receptor

activated Ca2+ release from internal stores and Ca2+ extrusion-sequestration by plasma 

membrane and intracellular Ca2+ pumps, respectively, (2) cAMP is generated by a Ca2+

activated AC and (3) cAMP is degraded by cAMP-activated PDE (Gorbunova and 

Spitzer, 2002). This model produces spontaneous patterns of Ca2+ spike and cAMP 

oscillations at about 5-l 0 minutes that closely resemble those observed experimentally. 

79 



First, cAMP transients are generated by Ca2
+ increases and terminated by self-activated 

inhibition. Second, wavelet analysis of Ca2
+ transients showed frequencies produced by 

the model were similar to those from the experimental records. Third, increases of cAMP 

increased the frequency of ci+ transients. Fourth, different Ca2
+ spike patterns are 

differentially effective in stimulating increases of cAMP. Fifth, selective increases of 

cAMP appear to result from the match of AC and PDE with the time course of ci+ 

oscillations. Elimination of any of the feedback loops abolishes the patterns of transients 

generated by the model (Gorbunova and Spitzer, 2002). 

4 Conclusion and future directions 

Gorbunova & Spitzer's model suggests a way for me to interpret the cAMP oscillations I 

observed in the early olfactory preference learning modeL As mentioned before, the CS 

and US pathways in mitral cells were proposed to be the odor associated Ca2
+ signals and 

NE associated cAMP signals, respectively. I further hypothesize intracellular feedback 

between these two pathways. Odor (CS) activates the NMDA receptor and induces Ca2
+ 

entry. Increased Ca2
+ initiates the feedback loop. Initially a positive feedbacks occurs: 1) 

Increased Ca2
+ activates ACto generate cAMP. 2) Activation of ~-adrenoceptor enhances 

the AC activation. 3) Increased cAMP activates PKA and, in turn, PKA activates IP3 

receptors on smooth endoplasmic reticulum to induce Ca2
+ release from Ca2

+ internal 

stores. This is followed by negative feedback: 1) Activated PKA may activate Ca2
+ 
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pumps on either plasmic membrane or endoplasmic reticulum to increase Ca2+ extrusion 

and sequestration, to decrease Ca2
+ in cytosol. 2) Increased Ca2

+ activates PDE to degrade 

cAMP. 3) Increased Ca2
+ inhibits AC3 to decrease cAMP generation, completing one 

cycle of cAMP oscillation. 

From these feedback loops, we can see that if cAMP production is too strong, which may 

occur with higher doses of isoproterenol (e.g. 6 mg/kg), the oscillatory interaction with 

Ca2
+ may be suppressed. Similarly if cAMP activation is too weak, as seen with the 

suboptimal dose of isoproterenol, or with saline, the necessary levels of peaks and troughs 

may not occur. This argues that receptor recruitment of G protein coupled AC is an 

important component in associative learning. The NMDA receptor that is activated by 

olfactory input providtts an opportunity to activate AC, but odor alone is insufficient to 

trigger associative learning. As seen in the present experiments, weak oscillations occur 

in the odor plus saline condition, but the effect was not significant and, directly out of 

phase with the CS-US combination that produces cAMP oscillations. 

cAMP oscillations can provide an explanation for the inverted U curve of US signaling 

relative to learning. As mentioned in the Introduction, there is an inverted U curve effect 

between US level and learning. Only the 2 mg/kg dose of isoproterenol plus odor 

produces learning. When either a suboptimal dose ( 1 mg/kg) or a supraoptimal dose ( 4 

mg/kg or 6 mg/kg) of isoproterenol is employed as the US, no learning occurs (Langdon 

et al., 1997; Yuan et al. , 2000). Also, when an optimal dose of isoproterenol is used 

81 



together with an optimal stroking, the US becomes ineffective (Sullivan et al., 1991 ). 

Alternatively, a suboptimal dose of isoproterenol and a weak stroking synergized to 

promote learning whereas neither alone could (Sullivan et al., 1991 ). Thus, there appears 

to be a narrow window for US activation to induce learning. 

An inverted U curve effect also exists between the isoproterenol dose and CREB 

phosphorylation. Only the 2 mg/kg dose of isoproterenol plus odor, the learning 

condition, increased pCREB significantly 10 minutes after training finished. Neither 

saline plus odor, nor the 6 mg/kg dose of isoproterenol plus odor could increase pCREB 

after training (Yuan et al., 2000). Thus, there is a relatively narrow window for US 

activation to increase CREB phosphorylation. 

According to the intracellular model proposed in Yuan et al., (2003b), the US mediated 

by ~-adrenoceptors on the mitral cell in the olfactory bulb activates CREB 

phosphorylation through the cAMP-PKA pathway. The US activation level influences 

cAMP. In tum, the cAMP influences pCREB. Thus, relatively narrow and specific 

windows exist for the intracellular US signaling pathway (the cAMP/PKA/CREB 

pathway) to produce learning. The oscillatory pattern of cAMP expression seen here may 

provide an explanation for this narrow and specific signaling window. 

Finally, cAMP levels acting in a frequency-encoding mode, in addition to the familiar 

amplitude-encoded mode, offers several advantages: large energetically wasteful 
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transitions m signals are spared; insignificant fluctuations in signals can be ignored; 

cooperatively effectors only respond to peak concentrations; desensitization to a signal 

can be avoided and diffusion of the signal within the cell can be controlled. Thus, the 

signaling capability of cAMP is greatly increased (Cooper et al., 1995). Taken together, 

the present results, which show that a learning dose of isoproterenol plus odor produces 

peaks and troughs of cAMP occurring at 5 minute intervals; that a higher and nonlearning 

dose of isoproterenol plus odor produces only a linear increase in cAMP; that the 

oscillatory pattern only occurs when the CS and the US are paired, suggest that an 

oscillatory pattern of cAMP is associated with the induction of cAMP-dependent 

classically conditioned odor preference learning in the rat pup. 

Of course, it remams to be seen whether these observations reflect a fundamental 

temporal property of intracellular cAMP signaling that optimally drives all types of 

learning. Doing more experiments with more time points may help to determine whether 

the weak oscillations in saline plus odor group were only due to random variation of data 

or whether they were caused by the odor. If odor itself does induce cAMP oscillations, it 

is possible that there is phase shift in the saline plus odor group, compared to the 2 mg/kg 

isoproterenol plus odor group. 2 mg/kg isoproterenol plus odor may increase cAMP 

sooner than odor alone and, in tum, induce cAMP decrease earlier than odor alone. 

However, doing more experiments was not feasible in the context of this thesis. In the 

future, it will be of interest to test the universality of cAMP oscillations in other learning 

procedures or models. Other techniques, such as immunocytochemistry will reveal 
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whether there is localization of cAMP oscillatory patterns in odor-encoding mitral cells, 

or fluorescence resonance energy transfer will show directly cAMP temporal pattern in 

vivo. On the other hand, Ca2
+ oscillations as proposed by the interaction models are 

clearly predicted and should be investigated as a strong test of the machinery of the 

cellular model which mediates the intracellular CS-US signaling pairing in mitral cells in 

rat pup odor preference learning. Optical imaging could permit a direct examination of 

Ca2
+ patterns. Thus, by measuring both cAMP and Ca2

+ oscillations in odorant

responding mitral cells involved in CS odor encoding and in mitral cells responding to a 

control odor may allow us to identify the temporal patterns associated with learning in 

further detail and to localize their occurrence to specific cells involved in learning and 

memory. 
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