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Abstract 

Bayesian approaches to the analysis of population dynamics are becoming 

more common in some areas of fisheries research. The search for a stock

recruitment relationship is considered a central problem of fish population 

dynamics and has been explored in many studies. In this study, posterior 

distributions are estimated for both the Ricker and Beverton-Holt stock

recruitment curves, using the Normal, Log-normal and Poisson distributions, for 

both the Baltic Areas 22-24 and NAFO subdivision 3Ps cod stocks. Prior 

distributions were changed and the sensitivity of the results were investigated. 

The posterior estimates are sensitive to our choice of prior distribution, which can 

have an important practical effect on the study of stock-recruitment issues in a 

number of different fisheries. The Gibbs sampler was used to overcome 

difficulties in calculating the posterior distributions. 
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Chapter 1 

Introduction 

Mathematical models are commonly used to describe relationships among 

fisheries variables (Hilborn and Walters, 1992; Quinn and Deriso, 1999). To relate a 

model to data observed in a fishery, an appropriate method is required to estimate 

parameters in the model (Chen and Fournier, 1999). In general, there are two 

statistical approaches that can be used for parameter estimation: frequentist and 

Bayesian approaches. The statistical problem is similar for both approaches: each is 

used to make statistical inferences about parameters in the model (Berger, 1985; Box 

and Tiao, 1992). 

Bayesian approaches to the analysis of population dynamics are becoming more 

common in some areas of fisheries research (Liermann and Hilborn, 1997; Meyer and 

Millar, 1999; Harley and Myers, 2001; Chen and Holtby, 2002). 
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The stock and recruitment problem may be considered as the search for the 

relationship between spawning stock size and the subsequent recruitment in numbers 

to a year class. This is a central problem of fish population dynamics, since it 

represents nature's regulation of stock size, whether or not the populations are being 

exploited. 

Understanding the dynamics of recruitment requires full understanding of the 

dynamics of spawning stock biomass (Ricker 1975). Knowledge ofthe stock

recruitment (SR) relationship is commonly obtained through quantitative modeling. 

SR models are mathematical functions that describe relationships between spawning 

stock abundance and its subsequent recruitment (Jiao eta!., 2004a). Many SR models 

have been developed. Two commonly U:sed SR models are the Ricker (1954) and the 

Beverton-Holt (1957). 

The SR relationship of cod stocks has been explored in many studies (Myers et 

a!., 1995; Myers and Barrowman, 1996). Hilborn and Walters (1992) noted that the 

estimation of the SR relationship is perhaps the most difficult work in fisheries stock 

assessment. For many fish stocks, the SR relationships are not clear (Ricker, 1975; 

Hilborn and Walters, 1992). The shape ofthe recruitment curve is often hard to 

determine because of small sample sizes and high variability in recruitment. 
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Large variations in recruitment have been observed for many fish species (Myers 

and Barrowman, 1996). The variations in recruitment tend to increase with the 

spawning stock biomass (Myers et al., 1995), which has led to wide adoption ofthe 

assumption that recruitment at a given level of spawning stock biomass follows a 

lognormal distribution (Hilborn and Walters, 1992). The lognormal distribution has 

been used as an alternative to the normal distribution (Quinn and Deriso, 1999). The 

normal error distribution assumption is no longer widely used in SR analysis, 

although it tends to be more realistic if the survival of individuals during their early 

life stages is density-independent and constant (Shelton, 1992). 

Practical difficulties, induced by the complexity (nonlinearity and high 

dimensionality) of biologically meaningful models, have limited the implementation 

of the Bayesian approach until recently. Recent advances in computing power and 

algorithms for solving complex integrals has contributed to the widespread use of the 

Bayesian approach. One approach to computing these complex integrals is Markov 

Chain Monte Carlo (MCMC) methods, which attempt to simulate values from the 

posterior distribution. These methods include traditional non-iterative methods such 

as importance sampling (Geweke, 1989) and the simple rejection sampling. More 

powerful iterative Monte Carlo methods such as data augmentation (Tanner and 

Wong, 1987), the Metropolis-Hastings algorithm (Hastings, 1970) and the Gibbs 

sampler are available. By using the above methods, difficult calculations are avoided 

and are replaced with a sequence of easier calculations. 
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In Chapter 2, we discuss the rationale behind the Bayesian approach to statistical 

analysis. Monte Carlo Markov Chains, in particular the Gibbs sampler, are 

introduced as methods for sampling from posterior distributions. Background is 

given on the Ricker and Beverton-Holt SR models and an outline of previous Bayes' 

estimation in fisheries research is given. Chapter 3 introduces the Baltic areas 22-24 

data and gives detailed results of the analysis. Chapter 4 introduces the NAFO 

subdivision 3Ps data and gives detailed results of the analysis. In both Chapters 3 and 

4, Bayesian and frequentist results are discussed and compared. One of our main 

goals is to assess how sensitive the estimates are to the choice of prior distribution. 

Finally, in Chapter 5, the results of the analysis are discussed and some suggestions 

are given for future research in this area. 
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Chapter 2 

Background 

2.1 Introduction 

In this chapter, we start with an introduction to the concepts behind Bayesian 

analysis and the estimation of posterior distributions through MCMC methods. Next, 

the Ricker and Beverton-Holt stock-recruitment curves are introduced. Sequential 

population analysis is discussed and finally reference is made to the varying 

applications that have used Bayesian analysis in fisheries research. 

2.2 Bayesian Modeling 

The Bayesian approach to statistics is fundamentally different from the classical 

approach to statistics. In the classical approach the parameters 0 =(01, ••• ,0M) are 

considered to be unknown, but fixed quantities. A random sample y=(y1, ••• ,yn)is 
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drawn from a population and based on the observations in the sample, information 

about (} is obtained. 

In the Bayesian approach, the parameters (} are considered to be random 

quantities, whose variation can be described by probability distributions 7r( B) called 

prior distributions. A sample is taken from the population and the prior distributions 

are updated using the information contained in the sample. The updated prior 

distribution is called the posterior distribution or conditional distribution of (} given 

y. The posterior distribution for (}is given by the following equation: 

7r(Biy) 7r(O)f(yiB) 
f(y) 

(2.1) 

where f(y I B) is the probability distribution andf(y)= J7r(B) f(y I B) dB is the 

marginal distribution of the data y . This formula is known as Bayes ' Theorem 

(Carlin and Louis, 1998). Once the posterior distribution of a parameter has been 

obtained, it can be used to calculate estimates of the parameter. 

There are two types of prior distributions: informative and non-informative (or 

reference) priors. Informative prior distributions summarize the evidence about the 

parameters, from different sources, and may have a considerable impact on the 

results. Box and Tiao (1992) define a non-informative prior as one that provides little 

information that is relative to the experiment. (An overview of the selection of prior 

distributions by formal rules is given by Kass and Wasserman (1996) and guidelines 
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on prior specification in fisheries stock assessment are given in Punt and Hilborn 

(1997).) 

Even for models of moderate complexity, the integrals to find f(y) in (2.1) are 

not solvable in closed form and niust be solved numerically. This can be 

computationally difficult and has been a major impediment towards the widespread 

use of Bayesian methods. One approach to computing these complex integrals is 

Markov Chain Monte Carlo (MCMC) methods, which attempt to simulate values 

from the posterior distribution. These methods include traditional non-iterative 

methods such as importance sampling (Geweke, 1989) and the simple rejection 

sampling. More powerful iterative Monte Carlo methods such as data augmentation 

(Tanner and Wong, 1987), the Metropolis-Hastings algorithm (Hastings, 1970) and 

the Gibbs sampler (Gelfand and Smith, 1990) produce a Markov chain which 

represents a (correlated) sample from the joint posterior distribution. By using the 

above methods, difficult calculations are avoided and are replaced with a sequence of 

easier calculations. 

The Gibbs sampler is a MCMC technique for generating random variables from a 

distribution indirectly, without having to calculate the density (Casella and George, 

1992). The key to the Gibbs sampler is that only univariate conditional distributions 

are considered. This type of distribution is much easier to simulate than complex 

joint distributions since they often have simple, known forms, e.g. Normal, Poisson, 
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Gamma. Thus, n random variables are simulated sequentially from the n univariate 

conditional distributions rather than a single n-dimensional vector in a single pass 

from the full joint distribution (Walsh, 2004). This is discussed in more detail below. 

Suppose we are given a joint density f(x,y1,. .. ,yp) and we are interested in 

obtaining characteristics of the marginal density 

(2.2) 

This integration would be quite difficult to solve either analytically or 

numerically. The Gibbs sampler allows for the effective generation of a sample 

x1, ... ,xm ~ f(x) without computing or approximating f(x) directly. 

We illustrate the Gibbs sampler by considering a bivariate random variable (x, y). 

The Gibbs sampler generates a sample from f(x) by sampling from the conditional 

distributions f ( x I y) and f (y I x), which are often known statistical models. This is 

achieved by generating a 'Gibbs sequence' of random variables: 

~,X~, YJ', x;, .. . , r;;, X~. (2.3) 

The Gibbs sampler starts with an initial value for ~ = y~ and obtains x0 by 

generating a random variable from the conditional distributionf(x I y = y0 ). The 

Gibbs sampler then uses x0 to generate the value of y1 by generating a random . 
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variable from the conditional distributionf(y I x = x0 ). The remainder of the 'Gibbs 

sequence' is obtained iteratively by alternately generating values from 

X~~ f(xl Y; = y~) 

~+I ~ f(y I X~ = X~) . (2.4) 

Under reasonably general conditions, the distribution of X~ converges to f(x) 

as k ~ oo (Casella and George, 1992). Repeating the above process k times generates 

a 'Gibbs sequence' oflength k, where a subset of points (x;,YJ for 1 ~ i ~ m < k are 

the simulated sample from the full joint distribution. 

Many software packages are available, free of charge on the Internet, to perform 

Bayesian analysis. One such package is BUGS, a near-acronym for Bayesian 

inference Using Gibbs Sampling. This software was developed at the Medical 

Research Council (MRC) Biostatistics Unit at the University of Cambridge and was 

initially described by Gilks, Thomas and Spiegelhalter (1994). (BUGS is available 

from the website http://www.mrc-bsu.cam.ac.uk/work/bugs and comes with complete 

documentation and two volumes of examples.) 

As an illustration of the Gibbs sampler used in the BUGS software, Example 1 

from Casella and George (1992) was reproduced using BUGS. The joint distribution 

of x=0,1, ... ,n and O~y~1 is given by: 
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The conditional distributions are as follows: 

f(x I y) ~ Binomial(n,y) 

f(y I x) ~ Beta(x +a,n -x + /3). 

The marginal distribution f(x) can be obtained analytically and is: 

j(x) = (nJ r(a + /3) r(x + a)r(n- X+/))' 
X r(a)r(/)) r(a + f3 + n) 

the beta-binomial distribution. Characteristics of f(x) can be directly obtained from 

the above formula either analytically or by generating a sample from the marginal 

distribution without fusing with the conditional distributions. Figure 2.1 shows two 

samples x1, ••• ,xm of size m = 500 from the beta-binomial distribution given above 

with n = 16, a =2 and f3 =4. The two histograms are quite similar, illustrating that 

the Gibbs sampler method implemented in BUGS is indeed generating variables from 

the appropriate marginal distribution. 
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Figure 2.1 Comparison of two histograms or 500 samples each. The black histogram was obtained 
using the Gibbs sampler from BUGS and the white histogram was obtained directly from the Beta
Binomial distribution with n = 16, a= 2 and~= 4. 

A key issue in the successful implementation of the Gibbs sampler or any other 

MCMC method is the number of runs until the chain converges (the length of the 

burn-in period). A poor choice of starting value and/or prior distribution can greatly 

increase the required burn-in period. Typically, the first 1000 to 5000 elements are 

discarded and convergence is assessed by inspecting the time series trace (a plot of 

the random variables being generated versus the number of iterations). These trace 

plots can be used to determine a minimum burn-in period. A chain is said to be 

poorly mixing if it stays in small regions of the parameter space for a long period of 

time, as opposed to a well mixing chain that seems to explore the space (Walsh, 

2004). A poorly mixing chain can arise because the posterior distribution is 
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multimodal and the choice of starting values traps the chain near one of the modes. 

The trace plots can also be used to show evidence of poor mixing of the chain. 

2.3 Stock-Recruitment Models 

A significant amount of research has been conducted on studying recruitment of 

juvenile fish to a fishable population at various stages in life history. A major issue 

surrounding recruitment is whether recruitment to the population is mostly due to the 

size of the spawning stock or environmental conditions. Empirical relationships 

between spawning stock and recruitment show extreme annual variability (Larkin 

1973, Ricker 1975, Getz and Swartzman 1981, Rothschild 1986). Bounds must be 

placed on recruitment to a population due to limiting factors such as abundance of 

food, spawning area, rearing area and cannibalism (Quinn and Deriso 1999). 

The regenerative process of a population is important to the sustainability of that 

population. This cycle of regeneration of a fish population can be illustrated as: 

Eggs --+ Larvae --+ Juveniles --+ Recruits --+ Spawners --+ Eggs --+ ... 

(Quinn and Deriso, 1999). 
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The abundance at each of these stages can be assumed to be in proportion to the 

previous stage, in the simplest model. For example, recruitment is proportional to 

spawning stock, or 

R==aS. (2.5) 

This relationship is called 'density independent' since the ratio of recruitment to 

spawning stock (RJS) is independent of the population density as measured by 

spawning stock. Here, a is called the productivity or density-independent parameter. 

Normally, this relationship is not realistic since R is able to increase without bound as 

a function ofS. 

Generally, density-dependent effects are present at some (or all) stages in the life 

history of a fish population, making the simple model, (2.5), incorrect. Mortality in 

the population is comprised of both density-independent and density-dependent 

effects. Density dependent loss can arise from predation, the principal source of 

mortality in young fish. The population of young fish before recruitment inhibits 

itself through competition for food (resulting in larval starvation) or space (such as 

overcrowding of eggs). Using this density dependent assumption the relationship 

between spawning stock and recruitment can be modeled using the following: 

R==_!!§_ 
l+fJS' 

- 13-
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where a is the productivity parameter, representing the number of recruits per 

spawner at low numbers of spawners and fJ controls the level of density dependence. 

This model is known as the Beverton-Holt stock-recruitment curve and was first 

derived by Beverton and Holt (1957). This relationship is a strictly increasing 

function of spawners, which approaches the asymptote 

a 
R =

P fJ' (2.7) 

which is the maximum recruitment. 

f(x) ' 

0 

, , 

, 
, 

2000 4000 

--. ---

·-······· 

6000 8000 10000 

X 

Figure 2.2 The Beverton-Holt stock-recruitment curve. Three curves are shown, 
corresponding to different values of the productivity parameter (a.= 0.1 is the solid line, 
a= 0.08 is the dashed line and a =0.05 is the dotted line) and a constant value for 
~ =0.001. 
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Now, suppose that the spawning stock inhibits the population of young fish before 

recruitment (such as through cannibalism). Again, mortality in the population is 

made up of both density-independent and density-dependent effects. Using these 

assumptions, the relationship between spawning stock and recruitment can be 

represented by: 

(2.8) 

where a is the productivity parameter, representing the number of recruits per 

spawner at low numbers of spawners and f3 controls the level of density dependence. 

This model is called the Ricker stock-recruitment curve and was first derived by 

Ricker (1954). This relationship is dome-shaped as a function of spawners, with a 

maximum at the point 

(2.9) 
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Figure 2.3 The Ricker stock-recruitment curve. Three curves are shown, corresponding 
to different values of the density dependence parameter(~= 0.0001 is the solid line,~= 
0.001 is the dashed line and~ =0.0005 is the dotted line) and a constant value for a= 1. 

Many other stock-recruitment models exist. For example, the Ludwig-Walters 

model (Ludwig and Walters, 1989), the Cushing model (Cushing, 1973), the Deriso-

Schnute model (Deriso, 1980; Schnute, 1985) and the Sheppard model (Sheppard, 

1982). The focus of this analysis is on two commonly used stock-recruitment 

models, the Ricker and the Beverton-Holt as described above. 

- 16-



2.4 Sequential Population Analysis 

For marine populations, population numbers and fishing mortality are usually 

estimated using sequential population analysis (SPA) of commercial catch-at-age 

data. SPA techniques include virtual population analysis (VPA), cohort analysis, and 

related methods that reconstruct population size from catch-at-age data (Hilborn and 

Walters, 1992). 

The commercial catch-at-age data are combined with estimates from research 

surveys and commercial catch rates to estimate the numbers at age in the final year 

and to reconstruct previous numbers at age under the assumption that commercial 

catch at age is known without error and that natural mortality at age is known and 

constant (Myers et a/., 2002). 

A major source of uncertainty in the SPA estimates of recruitment and spawning 

stock biomass is that catches are assumed known ·without error. This is important 

when estimates of discarding and misreporting are not included in the catch-at-age 

data used in the SPA. These errors are clearly important for some of the Atlantic cod 

stocks during certain periods (Myers et al., 1997) and will affect estimates of 

replacements each spawner can produce at low population densities. Other sources of 

error are due to the survey methodology and the distribution of the fish population. 

- 17-



Both data sets used in this analysis were estimated using SPA techniques. 

2.5 Bayesian Analysis of Fisheries Problems 

Bayesian analysis methods are gaining popularity in fisheries research in part 

because they lend themselves to input from disparate sources and in part due to recent 

advances in computing algorithms and power. Numerous recent papers are available 

dealing with topics ranging from state-space model implementation of the delay

difference model (Meyer and Millar, 1999) to estimating salmon escapement goals 

(Adkinson and Peterman, 1996), which utilize the Bayesian approach to data analysis. 

Meyer and Millar (1999) used a Bayesian approach to fit the delay-difference and 

surplus production models, since it could easily handle realistic distributional 

assumptions as well as the nonlinearities in the equations. 

Liermann and Hilborn (1997) calculated a prior distribution for a depensation 

parameter that was used in the analysis of other similar fish stocks. Bayesian 

methods were used to incorporate the two sources of variability (measurement error 

and between stock variability) so that the distribution of the depensatory parameter 

could be isolated. 
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Chen and Holtby (2002) used a Bayesian framework to develop a regional stock 

recruitment meta-model that combined information from multiple fish stocks. 

Sample data was used to estimate the unknown regional parameters. 

Millar (2002) addressed the problem of specifying default priors for several 

common fisheries models, the Ricker and Beverton-Holt stock recruitment curves, the 

von Bertalanfly growth curve, the Schaefer surplus production model and sequential 

population analysis. 

Harley and Myers (2001) estimated catchability during research trawl surveys. 

The hierarchical Bayes model provided a more reliable estimator under a wide range 

of conditions. 

Robb and Peterman (1998) developed a decision-making framework for 

management of a sockeye salmon fishery that explicitly accounts for uncertainties in 

the stock recruitment relationship, annual recruitment, run timing and catchability. 

Adkinson and Peterman (1996) estimated optimal escapement goals for salmon, 

using both knowledge of the physical determinants of salmon productivity and stock 

recruitment data. A Bayesian approach allowed for the integration of information 

from diverse sources and provided a framework for decision-making that took into 

account the uncertainty reflected in that data. 
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Chen and Fournier (1999) evaluated the impact of outliers onthe derivation of the 

posterior distribution in Bayesian analysis using a simple growth curve. 

McAllister and Ianelli (1997) estimated population model parameters using catch-

age data and indices of relative abundance for yellow fin sole in the Bering Sea. The 

example illustrates how catch-age data can markedly improve estimates via Bayesian 

methods. 

Rivot et al. (200 1) warned that in stock recruitment analysis, as in many 

applications, the Bayesian posterior inferences can be very sensitive to the choice of 

prior distribution. It has been suggested that a comprehensive sensitivity analysis be 

conducted for different specification of prior distribution to ensure a robust result 

(Chen and Holtby, 2002; Punt and Hilborn, 1997; Millar, 2002). 

2.6 Research Objectives 

Fisheries data have been frequently analyzed as if errors are normally, identically 

and independently distributed (Chen and Fournier, 1999). Jiao et al. (2004a, 2004b) 
i· 

introduce non-normal errors into the analysis of stock-recruitment data. In this study, 

we incorporate prior knowledge for both the Ricker and Beverton-Holt stock-

recruitment curves, using the Normal, Lognormal and Poisson distributions. 
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Each model was fitted using the BUGS software package on cod (Gadus morhua) 

stock-recruitment data from the Baltic Areas 22-24 and the NAFO subdivision 3Ps. 

These two cod stocks were chosen because of the marked contrast in the 

environmental conditions, ranging from a highly brackish system with weak 

advective regime (Baltic) to a more oceanic system with stronger advective regime 

(3Ps). For each model, the prior distributions were changed and the sensitivity of the 

results were investigated. If the posterior estimates are sensitive to our choice of 

prior distribution, this has an important practical effect on the study of stock

recruitment issues in a number of different fisheries. The Deviance Information 

Criterion (DIC) (Spiegelhalter et al, 2002) was calculated for each model as a 

measure of model fit. 
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Chapter 3 

Baltic Areas 22-24 Data 

3.1 Background 

The Baltic Areas 22-24 are located in the Baltic Sea. The Baltic Sea is a semi

enclosed sea bordered by nine countries as depicted in the center of the map below 

(Figure 3.1). 
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Figure 3.1 Map ofthe Baltic Sea 

There are approximately 100 species of fish, many of commercial importance 

including cod (Gadus morhua L.) in the Baltic Sea. The cod are separated into two 

stocks: the western stock, located in ICES fishing areas 22-24 and the eastern stock, 

located in ICES areas 25-32 

(http:/ /oceanides. jrc.cec.eu.int/Baltic%20Sea%20 W eb%20Page/baltic sea environment.htm, May 15, 

2005). The following figure shows the ICES fisheries areas in the Baltic Sea (Areas 

22-24 are towards the bottom right). 
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Figure 3.2 Map of the ICES fishing areas in the Baltic Sea 

3.2 Exploratory Data Analysis 

Analysis of the Baltic Areas 22-24 data began with a look at some exploratory 

plots (Figure 3.3). The first plot shows the relationship of recruitment to spawning 

stock biomass. For the most part, recruitment increases as spawning stock increases. 

The second plot shows the autocorrelation plot for recruitment. The 95% confidence 

limits about zero are included on the plot. Autocorrelation in recruitment is weak and 

hence was not of concern. 

The third plot is of recruitment vs. time. This plot shows a very definite decrease 

in the counts of recruits over time. The fourth plot is of spawning stock biomass vs. 
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time. Spawning stock biomass is constant for the first 15 years before it decreases 

dramatically. 

3.3 Ricker Model 

3.3.1 Initial Results 

The Ricker model (2.8) was fitted in BUGS on the Stock-Recruitment data from 

the Baltic Areas 22-24. We considered modeling recruitment using both normal and 

lognormal distributions. Four combinations of recruitment and stock were initially 

considered, where we used either the original data or transformed data as follows: R 

& S, R & log S, log R & S, and log R & log S. 

The following prior distributions were assigned: a- N(0,1), f3- N(0,100) and 

r- Gamma(1,1), where r==.};, which is commonly referred to as the precision. 

The Gamma distribution is of the following form: 

(3.1) 

Each model was run for a burn-in period of 5,000 iterations, followed by an 

additional 10,000 iterations. The same initial starting values for the MCMC were 

used for each model (a =0.2, /3=2.0, r =1.0). The results are given in Table 3.1. 
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Table 3.1 Initial results for the Ricker S-R model using the prior distributions: a- N(O, 1), fJ- N(0,100) 

and r- Gamma(1,1) 

Recruitment Stock A 

/J i a-a 
(R) (S) (std. dev.) (std. dev.) (std. dev.) (std. dev.) 

R s -0.02199 2.497 0.00912 10.82 
(0.9899) (1.894) (0.00267) (1.665) 

R* logS* -0.1699 -0.02138 1.952 0.7411 
(0.194) (0.01869) (0.5883) (0.1166) 

logR s -0.02199 2.497 0.1883 2.382 
(0.9899) (1.894) (0.05503) (0.3664) 

log R* logS* -0.6377 0.0801 10.91 0.3131 
(0.3372) (0.03263) (3.236) (0.0488) .. * 10,000 IteratiOn burn-m period with an addttlonal10,000 Iterations (due to vtsual evidence ofnon

convergence) 

For the normal case (RandS) (Figure 3.4), the posterior distribution of a was 

symmetric, with a mean of -0.2199 and a standard deviation of0.9899. The posterior 

distribution of a was virtually unchanged from the prior distribution. The posterior 

distribution of f3 was highly skewed to the right with a mean of 2.497 and standard 

deviation of 1.894. This was a substantial departure from the prior distribution of 

N(O, 100). Autocorrelation was present for the first ?lags for a and the first 10 lags 

for f3 . The posterior distribution of -r was slightly skewed to the right, with mean 

0.00912 and standard deviation of0.00267. The posterior distribution of CF was also 

slightly skewed to the right ( CF = .}; ). The mean and standard deviation of CF were 

10.82 and 1.665 respectively. Autocorrelation in -r and CF was weak and hence was 

not of concern. 
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For the second case (Rand logS) (Figure 3.5), the posterior distribution of a 

was skewed to the left. Its mean and standard deviation were -0.1699 and 0.194 

respectively. This departs from the prior distribution ofN(O, 1 ). The posterior 

distribution of p was also skewed to the left, with a mean of -0.02138 and standard 

deviation of 0.01869. Severe autocorrelation was present for both a and p. The 

posterior distributions may not be correct since the chain has not mixed and 

thoroughly explored the parameter space. The posterior distributions for r 

and a were both skewed to the right. Autocorrelation in r and a was weak and hence 

was not of concern. 

For the lognormal case (log RandS) (Figure 3.6), the posterior distribution of a 

changed little relative to the prior distribution. It was still centered close to 0 (-

0.02199), with a standard deviation of approximately 1 (0.9899). The posterior 

distribution of p changed little from the normal case (R and S). Autocorrelation was 

present for the first 7 lags for a and the first 10 lags for p as before. The posterior 

distribution of r was approximately symmetric with a mean of 0.1833 and standard 

deviation of0.05503. The posterior distribution of a was approximately symmetric 

with mean 2.382 and standard deviation of0.3664. Autocorrelation in r and a was 

weak and hence was not of concern. 

For the fourth case (log Rand log S)(Figure 3.7), the posterior distributions of a 

and f3 appeared to be bimodal. Severe autocorrelation was present for a and p . 
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The posterior distributions may not be correct since the chain has not mixed and 

thoroughly explored the parameter space. This interpretation holds for all subsequent 

posterior distributions. The posterior distribution of r was approximately symmetric 

with a mean of 10.91 and standard deviation of3.236. The posterior distribution of 

CY was slightly skewed to the right. Autocorrelation in r and CY was weak and was 

not of concern. 

The prior distributions were changed to a~ N(10,1), p ~ N(0,1) and 

r ~ Gamma(1,0.2). Once again, four combinations were considered (R & S, R & log 

S, log R & S, and log R & log S). Each model was run for a bum-in period of 5,000 

iterations, followed by an additional 10,000 iterations. The same initial starting 

values were used for each model (a =0.2, p =2.0, r = 1.0). The results are given in 

Table 3.2. The kernel density plots of the posterior distributions and autocorrelation 

plots have similar shapes to those in Figures 3.4- 3.7. 

Table 3.2 Results for the Ricker S-R model using the prior distributions: a- N(lO,l), f3- N(O,l) and 

r ~ Gamma(l,0.2) 

Recruitment Stock " jJ i " a (Y 

(R) (S) (std. dev.) (std. dev.) (std. dev.) (std. dev.) 

R s 9.97 0.7952 1.76e-10 77910.0 
(0.9871) (0.6105) (1.125e-10) (11980.0) 

R logS 9.059 0.02643 7.03 e-10 39060.0 
(0.9216) (0.09046) (2.348 e-10) (6215.0) 

logR s 9.985 0.8034 0.009091 10.840 
(0.9846) (0.6093) (0.00266) (1.667) 

logR logS 5.796 0.5617 0.1396 2.855 
(0.8195) (0.08215) (0.05799) (0.6176) 
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For the normal case, RandS, the posterior distribution of a was symmetric, with 

a mean of 9.97 and a standard deviation of 0.9871. Again, the posterior distribution 

of a was virtually unchanged from the prior distribution. The posterior distribution 

of fJ was highly skewed to the right with a mean of 0. 7952 and standard deviation of 

0.6105, which was a departure from the prior distribution ofN(O, 1). Autocorrelation 

was present for the first 7 lags for a and the first 1 0 lags for fJ . The posterior 

distribution of r was slightly skewed to the right, but was approximately symmetric, 

with a mean and standard deviation close to 0 (1.76e-10 and 1.125e-10 respectively). 

Since r = .};; , we find the posterior distribution of cr was also slightly skewed to the 

right with a very large mean (77190.0) and standard deviation (11980.0). 

Autocorrelation in r and cr was weak and hence was not of concern. 

For the second case, Rand logS, the posterior distribution of a was symmetric, 

with a mean of9.059 and a standard deviation of0.9871, which was close to the prior 

distribution ofN(10, 1). The posterior distribution for fJ was highly skewed to the 

right with a mean of0.7952 and standard deviation of0.6105, which was a departure 

from the prior distribution. Autocorrelation was present for the first 7 lags for a and 

the first 1 0 lags for fJ . The posterior distributions of r and cr were highly skewed 

to the right. Autocorrelation in r and cr was weak and hence was not of concern. 
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For the lognormal case, log RandS, the posterior distributions of a and f3 were 

very similar to those obtained in the normal case (R and S). Autocorrelation was still 

present for the first 7 lags for a and the first 1 0 lags for f3 . The posterior distribution 

of r was approximately symmetric with a mean of 0.009091 and standard deviation 

of 0.00266. The posterior distribution of a was approximately symmetric with mean 

10.84 and standard deviation of 1.667. Autocorrelation in r and a was weak and 

hence was not of concern. 

For the fourth case, log R and log S, the posterior distributions of a and f3 were 

different than their respective prior distributions. Severe autocorrelation was present 

for both a and f3 . The posterior distributions of r and a were skewed to the right. 

Autocorrelation was weak and hence was not a concern with these parameters. The 

log transformation of the spawning stock biomass was not appropriate for this 

application and thus was not investigated any further. 

The prior distributions were changed to a~ N(O,lOOO), f3 ~ N(0,500) and 

r ~ Gamma(l, 0.2) . Each model was run for a bum-in period of 5,000 iterations, 

followed by an additional 10,000 iterations. The same initial starting values were 

used for each model (a =0.2, f3 =2.0, r =1.0). The results are given in Table 3.3. 

The kernel density and autocorrelation plots were of similar shape to those in Figures 

3.4-3.7 respectively. 
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Table 3.3 Results for the Ricker S-R model using the prior distributions: a~ N(O,lOOO), f3 ~ N(0,500) 

and T ~ Gamma(I,0.2) 

Recruitment Stock 
,., 

/3 
,., ,., 

a T (j 

(R) (S) (std. dev.) (std. dev.) (std. dev.) (std. dev.) 

R s -0.1314 3.817 1.76 e-10 77910.0 
(5.553) (2.888) (1.125 e-10) (11980.0) 

logR s -0.04664 3.819 0.009096 10.84 
(5.528) (2.901) (0.002661) (1.668) 

For the normal case (R and S), the posterior distributions of T and u were very 

similar to those obtained in the previous example. The posterior distribution of a 

was symmetric, with a mean and standard deviation that was substantiality different 

from the prior distribution (-0.1314 and 5.553 respectively). The posterior 

distribution of f3 was highly skewed to the right, with mean 3.817 and standard 

deviation of2.888. Again, autocorrelation was present for the first 7lags for·a and 

the first 1 0 lags for f3 . 

For the lognormal case (log RandS), the posterior distributions of a and f3 

were very similar to those obtained in the first case (R and S). Autocorrelation was 

still present for the first 7 lags for a and the first 1 0 lags for f3 . The posterior 

distributions of T and u were very similar to those obtained in the previous example. 

Autocorrelation in T and u was weak and hence was not of concern. 
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3.3.2 NLS Estimates for the Ricker Model 

The Ricker S-R model was fitted to the Baltic Areas 22-24 data using non-linear 

least squares (NLS). The NLS procedure calculated maximum likelihood estimates 

(MLE). The likelihood function is maximized when the sum of squared residuals , 

I (R;- S;ea- fJS; J , (3.2) 
i=l 

is minimized. The solutions to this equation are obtained by an iterative procedure. 

The estimates obtained from NLS were used to find non-informative prior 

distributions for a , fJ and r in BUGS. 

Four sets of initial values for a and fJ were chosen in order to assess the 

behavior of the NLS function. The first set of values was obtained by taking the 

maximum (R, S) pair (99329, 100362.78) and using the fact that the maximum of the 

Ricker curve is at the point(~ e•-', ~). The fourth set of values was obtained 

similarly except using the minimum (R, S) pair (22835, 32710.72). 

1) a == 11.65, fJ == 0.00002900 

2) a == 0, fJ == 0 

3) a = 5, fJ == 0.001 
4) a = 1.908, fJ = 0.00005845 
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The results for all four combinations of Stock and Recruitment are given in Table 

3.4. 

Table 3.4 NLS estimates for the Ricker S-R model 

Recruitment Stock " " " a f3 l' a 
(R) (S) (std. error) (std. error) 
R s 0.7299 7.277 e-07 7.677 e-10 36092.2 

(0.5820) (1.470 e-05) 
R logS -0.0893 -0.8516 7.678 e-10 36090.1 

(4.811) (0.4563) 
logR s -6.8935 3.2178 e-05 0.6273 1.2626 

(0.09247) (2.591 e-06) 
logR logS 0.2550 0.01947 2.2154 0.6719 

(0.3422) (0.03297) 

Similar results were obtained for all four sets of initial starting values indicating 

that this function was not sensitive to the choice of the starting values. The estimates 

for a , f3, l' and a obtained using NLS, were significantly different than those 

obtained previously in BUGS. 

3.3.3 Results for the Normal and Lognormal Distributions 

In order to replicate these estimates in BUGS, non-informative prior distributions 

need to be assigned to a , f3 and l' . The following prior distributions were selected 

for a , f3 and l' for the normal and lognormal cases by trial and error. 
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i) S & R: 

ii) S & log R: 

a~N(0,10000) 

fJ ~ N(o,I0-12) 

r~Gamma(1,0.2) 

a~N(0,100) 

p ~ N(o, 10-s) 

r~Gamma(1,0.2) 

The estimates obtained using these. prior distributions were very similar to those 

obtained using NLS (Table 3.5). Severe autocorrelation was present in both cases 

(Figure 3.8 and Figure 3.9). RUiining each model for a longer burn-in period 

(1 00,000) did not correct this. 

Table 3.5 Estimates ofRicker S-R Model using the prior distributions: a-N(O,lOOOO), 

P-N{o,I0-12 ) and r-Gamma(l,0.2) for the Normal case and a-N(O,lOO) ,p-N(o,I0-8) and 

r-Gamma(l,0.2) for the lognormal case 

Recruitment Stock ~ ~ ~ ~ 

a fJ r (}' 

(R) (S) (std. dev.) (std. dev.) (std. dev.) (std. dev.) 

R* S* 0.7222 1.333 e-6 8.443 e-10 35660.0 
(0.5141) (1.305 e-5) (2.744 e-10) (5697.0) 

logR s -6.902 3.197 e-5 0.5324 1.419 
(0.08246) (2.239 e-6) (0.1599) (0.2248) 

* 15,000 iteration bum-m period With an additionallO,OOO iteratiOns, due to visual evidence of non
convergence 

The deviance information criterion (DIC) can be used as a measure of model fit or 

adequacy that depends on both the prior distributions of the parameters and the data 
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that are observed. The DIC is defined as a Bayesian measure of fit, plus twice the 

effective number of parameters (Spiegelhalter et al., 2002). The Bayesian measure of 

model fit is the posterior mean deviance, D(1J) , defined as 

D(1l)=- 2log{p(y I B)}+2log{f(y)}, 

where e =E(B I y) is the posterior mean of the parameters. The effective number of 

parameters, p D , can be estimated by 

PD =E81y[-21og{p(y I B)} ]+2log{p(y 10)}. 

Thus the DIC is defined as 

DlC=D(0)+2pD. 

The DIC value for each of the above models is given below.· 

1) S & R: 527.817 

2) S & log R: 76.693 

The initial starting values for the MCMC were changed (a =1 0, {J =1 0, r =1 0) to 

see if the choice of the initial values had an impact on the estimates. Similar results 

were obtained for both models, but convergence of both chains was much slower. 

Each chain was initially run for a 5,000 iteration bum-in period followed by an 

additional 1 0,000 iterations. Then, the chain was rerun, adding an additional 10,000 

iterations to the bum-in period each time, until the chain converged. The details and 

estimates for the lognormal case are given in Table 3.6. Similar results were obtained 

for the normal case. After the 45,000 iteration burn-in period, the estimates are very 
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close to those obtained in Table 3.5. The kernel density plots of the posterior 

distributions and the autocorrelation plots obtained had similar shapes to those in 

Figures 3.8 and 3.9. 

T bl 3 6 Ill a e f ustratton o convergence o fR" k S RM d 1 . d"ffi tc er - - o e esttmates usmg 1 erent startmg va ues 

Iteration " " f a p (j 

(std. dev.) (std. dev.) (std. dev.) (std. dev.) 

5,001 - 15,000 -2.12 0.005575 0.04579 8.28 
(3.77) (0.006201) (0.05926) (3.91) 

15,001-25,000 -6.193 5.471 e-5 0.1418 2.745 
(0.004312) (1.009 e-10) (0.0415) (0.4225) 

25,001 -35,000 -6.232 5.36 e-5 0.1491 2.682 
(0.06416) (3.269 e-7) (0.04479) (0.4226) 

35,001-45,000 -6.389 4.745 e-5 0.2526 2.172 
(0.1561) (5.277 e-6) (0.1194) (0.544) 

45,001-55,000 -6.569 4.184 e-5 0.3637 1.713 
(0.03143) (1.879 e-7) (0.1056) (0.2609) 

The prior distribution for T was changed to investigate how sensitive the 

estimates are to this change. The following prior distributions were used. Details are 

given for the lognormal case only (Table 3.7). Similar results were obtained for the 

normal case. For all of the prior distribution specifications, the estimates changed 

very little, suggesting that the prior distribution for T has little effect on the 

parameter estimates. A bum-in period of 5,000 iterations followed by an additional 

10,000 iterations was used in each case. Plots of the density functions for each of 

these Gamma distributions is given in Figure 3.10. (The plot in the top left hand 

corner is of the Gamma(l, 1) distribution. The plot in the top right corner is of the 

Gamma(0.01, 100) distribution. The rest of the plots are ordered similarly.) 
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i) r ~Gamma( I, 1) 

ii) r~Gamma(O.Ol,l 00) 

iii) r ~Gamma( I 000,0.001) 

iv) r~Gamma(1000,1) 

v) r~Gamma(5,0.2) 

vi) r ~ Gamma(1, 0.001) 

The kernel density plots of the posterior distributions and the autocorrelation plots 

were similar to those shown in Figure 3.9. 

Table 3. 7 Effects of changing the prior distribution of r 

Prior Distribution of r A A f A 

a fJ (}' 

(std. dev.) (std. dev.) (std. dev.) (std. dev.) 

r~Gamma(1,1) -6.859 3.32 e-5 0.6591 1.276 
(0.06715) (1.821 e-6) (0.1996) (0.2035) 

r ~Gamma( 0.0 1,100) -6.894 3.218e-5 6.905 0.3818 
(0.02669) (7.495 e-7) (0.652) (0.01814) 

r~Gamma(1000,0.001) -6.91 3.175e-5 0.9942 1.003 
(0.08072) (2.268 e-6) (0.03128) (0.01579) 

r ~ Gamma(1 000,1) -6.894 3.216 e-5 59.62 0.1296 
(0.009875) (2.78 e-7) (1.875) (0.002039) 

r ~ Gamma(5, 0.2) -6.38 4.844 e-5 0.2959 1.887 
(0.04444) (4.904 e-7) (0.07745) (0.2561) 

r ~Gamma(!, 0.001) -0.9399 0.007156 0.005716 13.89 
(3.547) (0.00619) (0.002225) (2.464) 

The prior distribution for fJ was changed in order to investigate the impact on the 

estimates and to show that the precision of fJ needs to be very large (1 ,000,000 for 

the normal case and 10,000 for the lognormal case). The prior distributions for a 
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and r remained unchanged from the above models (Table 3:5). Each model was 

rerun using larger variances (smaller precision) for f3 as indicated below. Details are 

given for the lognormal case only. Similar results were obtained for the normal case. 

i) p ~ N(o,I0-6 ) 

ii) p ~ N(o, 10-4
) 

iii) p~N(o,I0-2 ) 

The results of these changes in the specification of the prior distribution for f3 are 

summarized in Table 3.8. 

Table 3.8 Effects of changing the prior distribution for f3 
Prior Distribution of f3 " " " " a f3 T (J' 

(std. dev.) (std. dev.) (std. dev.) (std. dev.) 

p ~ N(o,I0-6 ) -0.1101 0.02543 0.009096 10.84 
(3.166) (0.01928) (0.002658) (1.667) 

f3~N(0,10-4) -0.08888 0.08073 0.009095 10.84 
(3.12) (0.06067) (0.002659) (1.667) 

fJ-N(o,I0-2
) -0.03443 0.257 0.009092 10.84 

(3.085) (0~1927) (0.002657) (1.667) 

Changing the prior distribution of f3 has a strong effect on the resulting estimates. 

These results strongly suggest that the estimates are very sensitive to the choice of the 

prior distribution of f3 and that the precision of f3 needs to be large. 
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The prior distribution for a was chariged in order to investigate the sensitivity 

and hence required precision in specifying a . The prior distributions for f3 and r 

remained unchanged from the above model (Table 3 .5). The model was rerun using 

the different variances for a as indicated below. Again, results are given for the 

lognormal case (Table 3.9). Similar results were obtained for the normal case. 

i) a~ N{0,0.01) 

ii) a~N(0,1) 

iii) a~N(0,10000) 

iv) a~N(0,106 ) 

v) a~N{0,108 ) 

vi) a~N(0,1010 ) 

Table 3.9. Effects of changing the prior distribution for a 
A A i a-a a f3 

(std. dev.) (std. dev.) (std. dev.) (std. dev.) 

a~N(O,O.Ol) -0.01206 0.008244 0.009107 10.83 
(0.3084) (0.005965) (0.002664) (1.665) 

a~N(O,l) -0.03378 0.0083 0.009106 10.83 
(0.9811) (0.005942) (0.002661) (1.665) 

a~N(0,10000) -6.908 3.183 e-5 0.5284 1.425 
(0.1028) (2.88 e-6) (0.1604) (0.2279) 

a~N(0,106 ) -6.904 3.198 e-5 0.5272 1.4727 
(0.106) (3.008 e-6) (0.1617) (0.2283) 

a~N(0,108 ) -6.873 3.287 e-5 0.4968 1.478 
(0.1556) (4.57 e-6) (0.1617) (0.2545) 

a~ N(0,1010
) -254.3 0.005645 0.009094 10.84 

(213.7) (0.007779) (0.002659) (1.668) 
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When the variance of a was greater than or equal to 100, the estimates were not 

sensitive to the choice of prior distribution fora. If the variance of a was less than 

100, the estimates were very sensitive to the choice of prior distribution for a . 

3.3.4 ML Estimates for the Ricker Model 

The Poisson distributions are a first approximation to counts of organisms, 

recognizing that aggregating organisms may well be fit by distributions allowing for 

overdispersion, such as negative binomial or gamma. In order to calculate estimates 

of the Ricker model, using the Poisson distribution, we need to maximize the Poisson 

log-likelihood. This is identical to minimizing the negative of the Poisson log

likelihood. This minimization was performed in R using the non-linear minimization 

function (NLM). 

The Poisson log-likelihood for the Ricker model can be written in the following 

form. 

(3.3) 

The minimization function was sensitive to the choice of starting values for a 

and jJ . The following pairs of starting values were investigated. 

i) a =0, jJ=O 
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ii) a =5, f3 =5 

iii) a=10, [3=10 

iv) a =20, f3 =0.007 

The following estimates were obtained (Table 3.1 0). 

Table 3 .l 0 Poisson ML Estimates 

Starting Values " " a f3 
(a,fJ) (std. dev.) (std. dev.) 
(0, 0) 5.286 e-10 -1.796 e-5 
(5, 5) 0.9507 7.147 e-6 

(10, 10) 0.9679 -3.251 e-6 
(20, 0.007) 1.135 1.164 e-5 

The Poisson model would not run in BUGS since the counts of stock recruitment 

were so large (up to 147,000). Spawning stock biomass also has very large values 

(up to 50,000 tonnes). For means approaching 10, there is little practical difference 

between the Poisson and normal distribution. With a count of 147,000 per unit, the 

mean will either exceed 10, or the dispersion will be so huge as to preclude the 

Poisson distribution, where the variance is fixed as the mean value. Exploring the 

Poisson distribution at a different unit size is, however, interesting. 

The original Stock-Recruitment data is estimated using VPA or SPA. The Stock-

recruitment data is in tonnes and numbers of recruits, which can be expressed as well 

in thousands of tonnes and millions of recruits. Recruitment was rounded to the 

nearest integer to represent counts. 
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The negative of the Poisson log-likelihood was minimized again using this 

scaled-down data. The following estimates were obtained for a and,B. Similar 

results were obtained for each pair of starting values. The estimates obtained (Table 

3.11) were not sensitive to the starting values of a and ,8 . 

Table 3.11 Poisson ML Estimates for scaled-down Baltic data (Ricker model) 

Starting Values " " a fJ 
(a,,B) (std. dev.) (std. dev.) 
(0, 0) 0.9066 0.005288 

(1, 0.1) 0.9062 0.005278 
(0.1, 1) 0.9066 0.005288 

(10, 0.00001) 0.9066 0.005288 

3.3.5 Results for the Poisson Distribution 

In BUGS, Poisson models were fitted, using data at the ecosystem scale of 

millions of recruits and thousands of tonnes of spawning stock biomass. Several 

different prior distributions for a and ,8 were investigated to see how sensitive the 

estimates were to the choice of prior distribution. A bum-in period of 5,000 iterations 

with an additional 10,000 iterations was needed for convergence in all cases. The 

following combinations of prior distributions were investigated. 

i) a~N(O,l06 ), ,B~N(o,I0-10 ) 

ii) a~N(0,10000), {J~N(o,l0-6 ) 
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iii) a~N(0,1), p~N(0,1) 

iv) a~exp(O.I), p~Gamma(0.1,0.1) 

v) a~Gamma(1,1), p~exp(1) 

(The form of the exponential distribution that was used was: f(x,/L)=k-;u .) (3.4) 

The following results were obtained (Table 3.12). In all cases, the estimates of a 

and p changed very little, indicating that these estimates were not sensitive to the 

choice of prior distribution. These estimates were not sensitive to the initial starting 

values of a and p. Figure 3.11 shows the kernel density plots and the 

autocorrelation plots for a and p ·for the first case in Table 3 .12. Plots with similar 

shapes as in Figure 3.11 were obtained for the other cases. 

Table 3 12 Poisson estimates for Ricker S-R model 

Prior Distributions A p DIC a 
(std. dev.) (std. dev.) 

a~N(o,1o6 ) 0.8178 0.002876 561.473 

p~N(o,I0-10 ) (0.08201) (0.002121) 

a~ N( 0,1 0000) 0.9112 0.005427 561.702 

p~N(o,I0-6 ) (0.1066) (0.002841) 

a~N(0,1) 0.9011 0.00516 561.709 

p~N(0,1) (0.1076) (0.002862) 

a~exp(O.l) 0.792 0.00218 562.587 

p~Gamma(0.1,0.1) (0.1002) (0.002652) 

a~ Gamma(!, 1) 0.9018 0.005194 561.354 

p~exp(1) (0.09797) (0.002593) 
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Estimates obtained from R using the GLM function with an offset were very 

similar to those obtained by minimizing the negative Poisson log likelihood using the 

NLM function. However, the sign of beta is reversed. 

Table 3.13 Poisson GLM Estimates obtained using an offset 

Recruitment Stock a 
(R) (S) (std. error) 

R S 0.9213 
(0.1069) 

3.4 Beverton-Holt Model 

(std. error) 
-0.005705 
(0.002845) 

3.4.1 NLS Estimates for the Beverton-Holt Model 

The Beverton-Holt model (2.6) was fitted to the Baltic Areas 22-24 data set using 

non-linear least squares. Numerous combinations of starting values for a and fJ 

were tried and the following estimates were obtained (Table 3.14). These estimates 

were not sensitive to the choice of starting values. However, for the normal case, the 

model would not run unless fJ was 0 or very close to 0 (- 0.00001~{J~0.001 ). 
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Table 3 14 Beverton-Holt NLS estimates 

Recruitment Stock A A f a f3 (J' 

(R) (S) (std. dev.) (std. dev.) 
R s 2.073 7.164 e-7 0.001600 24.9966 

(1.231) (1.544 e-5) 
logR s 1.33240 0.02542 36.6300 0.1652 

(0.5684) (0.05197) 

Next, the NLS estimates were re-created in BUGS. Through trial and error, the 

following prior distributions were selected. 

i) S & R: 

ii) S & log R: 

a~N(0,10000) 

f3- N(o, w-6
) 

r-Gamma(107 ,1) 

a-N(0,10000) 

fJ-N(o,w-6
) 

r-Gamma(200,1) 

A burn-in period of 30,000 iterations with an additional 10,000 iterations was 

needed for the lognormal case to converge and a bum-in period of 150,000 iterations 

with an additional 10,000 iterations was needed for the normal case to converge. 

Severe autocorrelation was present in both cases and was not corrected by running the 

chains for longer bum-in periods. The following estimates were obtained in BUGS 
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(Table 3.15). Kernel density plots of the posterior distributions and autocorrelation 

plots are given in Figures 3.12 and 3.13 respectively. 

Table 3.15 Estimates ofBeverton-Holt model using the prior distributions: a~ N(O, 10000), 

,B~N(o,w-6 ) andr~Gamma(107 ,1) for the Normal case and a~N(0,10000), ,B~N(o,w-6 ) and 

r~Gamma(200,1) for the lognormal case 

Recruitment Stock A 

/3 f 
A 

a u 
(R) (S) (std. dev.) (std. dev.) (std. dev.) (std. dev.) 

R s 2.169 1.947 e-6 7.674 e-4 36.1 
(0.01037) (1.33 e-7) (2.479 e-7) (0.00583) 

logR s 0.8903 0.08156 31.11 0.1796 
(0.06827) (0.006251) (2.115) (0.006116) 

The DIC value for each model were: 

1) S & R: 20000300.00 

2) S & log R: 325.530 

The prior distribution for a was changed in order to investigate the sensitivity 

and hence required precision in specifying a . Details are given for the lognormal 

case (Table 3 .16). Similar results were obtained for the normal case. The prior 

distributions for fJ and r remained unchanged from the original models (Table 3.15). 

Each model was rerun using different variances for a, as given below. In all cases, a 

burn-in period of 30,000 iterations, with an additional 10,000 iterations was needed 

for convergence. 

i) a-N(O,O.l) 
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ii) a~ N(O,l) 

iii) a~N(0,100) 

Table 3.16 Effects of changing the prior distribution of a 
Prior distribution A A i a-a f3 

For a (std. dev.) (std. dev.) (std. dev.) (std. dev.) 

a~N(O,O.l) 0.2497 0.02285 31.28 0.1796 
(0.02377) (0.002177) (2.127) (0.0061) 

a~N(0,1) 0.7939 0.07273 31.12 0.1796 
(0.07261) (0.006651) (2.116) (0.006114) 

a~N(0,100) 0.8564 0.07846 31.12 0.1796 
(0.07898) (0.007233) (2.115) (0.006115) 

a~N(0,1010 ) 0.8905 0.08158 31.11 0.1796 
(0.06827) (0.006251) (2.115) (0.006116) 

The prior distribution for f3 was changed in order to investigate the sensitivity 

and hence the required precision in specifying f3 . Again, details are given for the 

lognormal case. Similar results were obtained for the Normal case. The prior 

distributions for a and r remained unchanged from the original model (Table 3.15). 

Each model was rerun using different prior distributions for p as given below. In 

both cases, a bum-in period of 30,000 iterations, followed by an additional 10,000 

iterations was needed for convergence. 

i) f3~N(0,0.01) 

ii) f3~N(O, 10) 
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Table 3.17 Effects of changing the prior distribution of f3 

Prior distribution " /3 " " a T (}' 

For f3 (std. dev.) (std. dev.) (std. dev.) (std. dev.) 

fl~N(O, 0.01) 9.012 0.826 31.05 0.1798 
(0.7197) (0.06593) (2.11) (0.006119) 

fl~N(O, 10) 16.03 1.469 31.05 0.1798 
(1.618) (0.1482) (2.11) (0.006119) 

The prior distribution for r was changed in order to investigate the sensitivity 

and hence the precision required in specifying r . Details are given for the lognormal 

case. Similar results were obtained for the normal case. The prior distributions for 

a and f3 remained unchanged from the original model (Table 3.15). Each model 

was rerun using the prior distributions for r as given below (Table 3.18). A burn-in 

period of 30,000 iterations, followed by an additional 10,000 iterations was needed 

for convergence. 

Table 3.18 Effects of changing the prior distribution of T 

Prior distribution " " i " a f3 (}' 

For r (std. dev.) (std. dev.) (std. dev.) (std. dev.) 

r ~ Gamma(l, 1) 0.3544 0.03245 1.706 0.7919 
(0.1483) (0.01358) (0.5034) (0.1225) 
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3.4.2 ML Estimates for the Beverton-Holt Model 

In order to calculate estimates of the Beverton-Holt model using the Poisson 

distribution, we need to maximize the Poisson log-likelihood. The equation for the 

Poisson log-likelihood for the Beverton-Holt model is 

l(a,fi)=I[-( aS; ]+R;log(as;)-R;log(1+PS;)J. 
; 1+PS; 

(3.4) 

The following estimates were obtained for a and p . This NLM function does 

not run when the initial value of a is equal to 0. 

Table 3.19 Poisson ML Estimates for scaled-down Baltic data 

Starting Values a /J 
(a,p) (std. dev.) (std. dev.) 
(0.1, 1) 2.5985 0.007532 
(1, 0) 2.5985 0.007532 

(100, 1) 2.5999 0.007552 
(1, 0.001) 2.5985 0.007532 
(0.01, 10) 920.6031 13.4628 

These estimates were not sensitive to the starting value of p. However, when the 

starting value of a was smaller than 0.1, the estimates were very sensitive to the 

starting value. 
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3.4.3 Estimates of the Poisson Distribution 

The NLM estimates were replicated in BUGS. A burn-in period of 5,000 

iterations with an additional 10,000 was required. Several different prior distributions 

for a and P were investigated to see the effect on the estimates. The following 

combinations of prior distributions were investigated. 

i) a~N(0,108 ), P-N(o,l0-10
) 

ii) a~ N(O,l), p-N(o,l0-8 ) 

iii) a-N(O,l), P-N(O,l) 

iv) a-exp(l), P-Gamma(l,l) 

v) a-Gamma(l,l), P-exp(l) 

The following results were obtained (Table 3.20). In all cases, the estimates of a 

and P changed very little, indicating that these estimates were not sensitive to the 

choice of prior distribution. Also, these estimates were not sensitive to the initial 

starting values of a and P . Figure 3.14 shows the kernel density plots of the 

posterior distributions and the autocorrelation plots for a and p for the N(O, 1) case. 

Similar shaped plots were obtained for the other cases. 
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Table 3 20 Poisson estimates for Beverton-Holt S-R model 

Prior Distributions A 

/J DIC a 
(std. dev.) (std. dev.) 

a- N(0,108
) 2.283 0.003247 561.203 

p- N(o,w-w) (0.1828) (0.002326) 

a-N(O,l) 2.219 0.002489 561.554 

p- N(o,w-s) (0.1629) (0.002072) 

a-N(O,l) 2.437 0.005468 561.204 

P-N(O,l) (0.02893) (0.003879) 

a-exp(l) 2.646 0.008259 560.830 

P-Gamma(l,l) (0.3362) (0.004536) 

-51 -



Figure 3.3 Exploratory plots of the Baltic data 
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Figure 3.4 Kernel density and autocorrelation plots of the posterior distributions of a, p, r and a 
for the initial results in Table 3 .I (R &S) 
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Figure 3.5 Kernel density and autocorrelation plots ofthe posterior distributions of a, p, T and a 
for the initial results in Table 3.1 (R & logS) 
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Figure 3.6 Kernel density and autocorrelation plots ofthe posterior distributions of a, fJ, T and cr 
for the initial results in Table 3.1 (log R & S) 
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Figure 3.7 Kernel density and autocorrelation plots of the posterior distributions of a, p, T and 0' 

for the initial results in Table 3.1 (log R & logS) 
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Figure 3.8 Kernel density and autocorrelation plots of the posterior distributions of a, f3, r and a 
for the results in Table 3.5 (R &S) 
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Figure 3.9 Kernel density and autocorrelation plots ofthe posterior distributions of a, f3, r and (J" 

for the results in Table 3.5 (log R & S) 
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Figure 3.10 Gamma density function plots 
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Figure 3.11 Kernel density and autocorrelation plots of the posterior distributions of a and f3 for the 

results in Table 3.12 (R is Poisson) 
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Figure 3.12 Kernel density and autocorrelation plots ofthe posterior distributions of a, /3, T and a 
for the results in Table 3.14 (R &S) 
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Figure 3.13 Kernel density and autocorrelation plots ofthe posterior distributions of a, j3, r and a 
for the results in Table 3.14 (log R &S) 
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Figure 3.14 Kernel density and autocorrelation plots of the posterior distributions of a and f3 for the 

results in Table 3.19 (R is Poisson) 
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Chapter4 

NAFO subdivision 3Ps Data 

4.1 Background 

The NAFO subdivision 3Ps cod stock is located off southern Newfoundland from 

Cape St. Mary's to just west of Burgeo Bank, and over the St. Pierre Bank and most 

of Green Bank. Cod from this stock generally grow faster than those from other areas 

further northward but slower than in the Baltic. At least 50% of the females are 

mature by age 5 (~53 em) in recent cohorts compared to age 6 (~58 em) among 

cohorts in the 1970's and early 1980s (DFO 2004). 
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Figure 4.1 Map ofNAFO subdivision 3Ps. 

4.2 Exploratory Data Analysis 

Analysis of the 3Ps data began with a look at some exploratory plots (Figure 4.2). 

The first plot shows the relationship of recruitnient to spawning stock biomass. There 

appears to be a weak positive relationship between recruitment and spawning stock. 

The second plot shows the autocorrelation plot for recruitnient. The 95% confidence 

limits about zero are included on the plot.. Autocorrelation for recruitment does not 

seem to be of concern. 
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The third plot is of recruitment vs. time. This plot shows a decrease in the 

number of recruits over time. The fourth plot is of spawning stock biomass vs. time. 

Spawning stock biomass decreases over the first 18 years before increasing again. 

4.3 Ricker Model 

4.3.1 NLS Estimates for the Ricker Model 

The Ricker model (2.8) was fitted to the 3Ps data, using non-linear least squares. 

Again, the estimates obtained from NLS were used to find non-informative prior 

distributions for a, fJ and r in BUGS. 
, I 

Four different sets of initial values for a and f3 were chosen as specified below. 

All four sets of starting values yielded similar results for both cases (Table 4.1 ). 

1) a = 2.69, fJ = 0.000009937 
2) a = 0, fJ = 0 
3) a = 5, f3 = 0.0001 
4) a = 1.8988, fJ = 0.00003057 

Table 4.1 NLS estimates of the Ricker model 

Recruitment Stock " /3 " a-a T 

(R) (S) (std. error) (std. error) 
.. 

R s 0.3490 9.014 e-6 0.001600 24.9966 
(0.2272) (2.496 e-6) 

logR s -7.882 1.225 e-5 36.6300 0.1652 
(0.04810) (5.513 e-7) 
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4.3.2 Results for the Normal and Lognormal Distributions 

In order to replicate the NLS estimates, non-informative prior distributions need 

to be assigned to a , fJ and T • Through trial and error, the following prior 

distributions were selected. 

i) S &R: 

ii) S & log R: 

a~N(O,lOOOO) 

,B~N(o,w-10 ) 

T ~Gamma(7000000, 1) 

a~N(0,10000) 

p~N(o,w-6). 

T ~Gamma( 400,1) 

The following estimates were obtained (Table 4.2). A 30,000 iteration burn-in 

period with an additional 10,000 iterations was needed for convergence. Severe 

autocorrelation was present for both cases. Running each chain for a longer burn-in 

period did not correct this problem. Both cases yielded estimates that were similar to 

those obtained from using non-linear least squares (Table 4.1). Kernel density plots 

of the posterior distributions and autocorrelation plots are given in Figures 4.3 and 

4.4. 
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Table 4.2 Estimates of Ricker S-R model using the prior distributions: a-N( 0, I 0000), 

,B-N(o,J0-10) and -r·-oamma(7000000,1) for the nonnal case and a-N(O,lOOOO), ,B-N(o,w-6) 

and -r:..,Gamma(400,1) forth~ lognormal case 

Recruitment Stock a jJ f a-
(R) (S) (std. dev.) (std. dev.) (std. dev.) (std. dev.) 

R s 0.349 9.014 e-6 0.00147 26.09 
(2.761 e-4) (3.01 e-9) (5.501 e-7) (0.004882) 

logR s -7.863 1.246 e-5 41.0 0.1563 
(0.005878) (6.18 e-8) (2.008) (0.003834) 

The DIC value for each of the above models was: 

1) S & R: 14000400.000 

2) S & log R: 692.720 

The kernel density plots of a and f3 (Figure 4.4), for the S & log R model, were 

quite different than the kernel density plots obtained from previous models. These 

plots were not as smooth and appear to be multimodal. If the chain was run for a 

longer period, the plots become smoother. 

4.3.3 ML Estimates for the Ricker Model 

In order to calculate estimates of the Ricker model using the Poisson distribution, 

the Poisson log-likelihood needs to be maximized as before. Once again, we 

minimize the negative of the Poisson log-likelihood in R using the non-linear 

minimization function (NLM). 
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The following estimates were obtained for a and fJ (Table 4.3). These estimates 

were not sensitive to the choice of starting values for a and fJ . 

· Table 4.3 Poisson ML estimates 

Startiitg Values & " fJ 
(a,/]) (std. dev.) (std. dev.) 
(0, 0) 0.3414 0.008935 

(1, 0.1) 0.3415 0.008933 
(0.1, 1) 0.3414 0.008932 

(10, 0.00001) 0.3416 0.008934 

4.3.4 Results for the Poisson Distribution 

In BUGS, the following prior distributions were investigated to see how sensitive 

the estimates for a and fJ were to the choice of prior distribution. Each model was 

run for a 5,000 iteration burn-in period with an additionallO,OOO iterations. 

i) a~N(O,I06 ), /]~N(o,I0-1!>) 

ii) a~N(O,IOOOO), fJ~N(o,I0-6 ) 

iii) a~N(O,I), fJ~N(O,l) 

iv) a~exp(O.l), fJ~Gamma(O.l,O.l) 

v) a~ Gamma(!, 1), fJ ~ exp(l) 
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The following estimates were obtained(Table 4.4). In all cases, the estimates 

obtained for a andjJ change very little. This indicated that these estimates were not 

sensitive to the choice of the prior distribution. Also, these estimates were not 

sensitive to the choice of initial starting values of a and f3 . Figure 4.5 gives the 

kernel density plots and autocorrelation plots of a and f3 for the first case in Table 

4.4. Similar plots were obtained for the other cases. 

Table 4 4 Poisson estimates for the Ricker S-R model 

Prior Distributions a jJ · DIC 
(std. dev.) . (std. dev.) 

a"':'N 0,106
) 0.2798 0.008219 359.045 

jJ~N 0,10-10) 
(0.08459) (9.397 e-4) 

.. 

a~N(0,10000) 0.3415 0.008937 358.658 

f3 ~ N(o,1 o-6
) 

(0.08705) (9.743 e-4). 

a~N(0,1) 0.3.426 0.008953 358.618 

f3~N(0,1) (0.08701) (9.717 e-4) 

a~exp(0.1) 0.3316 0.008826 358.741 

f3 ~Gamma( 0 .1, 0.1) (0.08845) (9.845 e-4) 

a-Gamma( I, 1) 0.3322 0.008839 358.652 

jJ~exp(l) (0.08517) (9.501 e-4) 
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4.4 Beverton-Holt Model 

4.4.1 NLS Estimates for the Beverton-Holt Model 

The Beverton-Holt model (2.6) was fitted to the 3Ps data set using non-linear least 

squares. Numerous combinations of starting values for a and fJ were investigated. 

These estimates were not sensitive to the choice of starting values. However, for the 

normal case, the model would not run unless fJ was 0 or close to 0 

(- O.OOOOI:S:fJ:S:O.OOI ). The following estimates were obtained (Table 4.5). 

Table 4.5 Beverton-Holt NLS estimates 

Recruitment Stock ·" jJ " . " a r (j 

(R) (S) (std. dev.) (std. dev) (std. dev.) (std. dev.) 

R s 2.405 3.226 e-5 0.001592 25.0654 
(1.676) (3.081 e-5) 

logR s 2.6160 0.1531 82.1763 0.1103 
(1.3907) (0.1285) 

4.4.2 Estimates for the Normal and Lognormal Distributions 

The NLS estimates were re-created in BUGS. Through trial and error, the 

following prior distributions were selected. 

i) S &R: a-N(0,10000) 

fJ-N(o,IO-!o) 

r-Gamma(107 ,1) 
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ii) S &log R: a~N(0,10000) 

,B~N(o,w-s) 

r ~ Gamma(200, 1) 

A burn-in period of 30,000 iterations with an additional10,000 iterations was 

required for the lognormal case to converge, while a burn-in period of 150,000 

iterations was required for the normal case to converge. Severe autocorrelation was 

present in both cases (Figures 4.6 and 4.7), which could not be corrected by running 

the chains for longer burn-in periods. The following estimates were obtained (Table 

4.6) for both the normal and lognormal cases. 

Table 4.6 Beverton-Holt estimates using the prior distributions: a-N(O, I 0000), ,8-N(o,I0-10
) and 

r-Gamma(107,1) for the Normal case and a-N(O,IOOOO), ,8-N(o,I0-5) and r-Gamma(200,1) 

Recruitment Stock " jJ f " a (}' 

(R) (S) (std. dev.) (std. dev.) (std. dev.) (std. dev.) 

R s 2.7699 3.948 e-5 0.002073 21.96 
(0.003935) (7.28 e-8) (6.582 e-7) . (0.003487) 

logR s 2.588 0.2392 69.21 0.1204 
(0.1495) (0.01381) (4.652) (0.004052) 

The DIC value for each model was: 

1) S & R: 19544000.00 

2) S & log R: 219.332 
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4.4.3 ML Estimates for the Beverton-Holt Model · 

In order to calculate estimates of the Beverton-Holt model using the Poisson 

distribution, the Poisson log-likelihood needs to be maximized. The following 

estimates were obtained for a and f3 (Table 4.7). 

Table 4.7 Poisson ML estimates for the Beverton-Holt model 

Starting Values . " jJ a 
(a,f3) (std. dev.) (std. dev.) 
(1, 1) 2.2171 0.0288 
(1, 0) 2.2169 0.0288 

(10, 1) 2.2170 0.0288 
(1, 0.01) 2.2137 0.0287 

(0.001, 1) 92.148 1.7204 

The NLM function would not run when the starting value of a was 0. These 

estimates were not sensitive to the choice ofthe starting value of f3. When the 

starting value of a was less than 0.1, the estimates were quite sensitive to the choice 

of starting value. 

4.4.4 Estimates of the Poisson Distribution 

The ML estimates were replicated in BUGS through trial and error.· A burn-in 

period of 5,000 iterations with an additional 10,000 iterations was required for 

convergence. Several different prior distributions for a and f3 were investigated to 

see if there was an effect on the estimates. The following combinations of prior 

distributions were investigated. 
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i) a~N(0,108 ), ,B~N(o,10-10 ) 

ii) a~N(O,l); ,B~N(o,{o-8 ) 

iii) a~N(O,l), ,B~N(O,l) 

iv) a~N(0,100), ,B~N(0,1) 

v) a~Gamma(l,l), ,B~exp(l) 

The estimates of a and ,8 (Table 4.8) changed as the prior distributions were 

changed, indicating that these estimates are sensitive to the choice of prior 

distribution. Kernel density plots of the posterior distributions and the autocorrelation 

plots of a and p are given in Figure 4.8 for the N(O, 1) case. Similar shaped plots 

were obtained for the other cases:. 

Table 4 8 Poisson estimates for the Beverton-Holt model 

Prior Distributions " jJ DIC a 
(std. dev.) · (std. dev.) 

a~NI 0,108
) 1.231 0.01058 370.687 

,B~NI 0,10-10) 
(0.1067) (0.001863) 

a~N(O,l) 1.69 0.01906 362.031 

p ~ N(o,10-8
) 

(0.2101) (0.003832) 

a~N(O,l) 2.007 0.02498 361.020 

,B~N(O,l) (0.3491) (0.006467) 

a~N(O,lOO) 2.379 0.03182 361.093 

a~N(O,l) (0.5993) (0.01111) 

a~Gamma(1,l) 2.342 0.03119 360.508 

,B~exp(1) (0.5059) (0.00941) 
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Figure 4.2 Exploratory plots of the NAFO subdivision 3Ps data 
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Figure 4.3 Kernel density and autocorrelation plots ofthe posterior distributions of a, f3, '&' and a 
for the results in Table 4.2 (R &S) 
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Figure 4.4 Kernel density and autocorrelation plots of the posterior distributions of a, f3, 1: and 0' 

for the results in Table 4.2 (log R &S) 

300.0 
200.0 

100.0 

alpha sample: 10000 

0.0 L.r---r------r---.,--1 
-7.88 -7.87 -7.86 

beta sample: 1 0000 

4.00E+7 

3.00E+7 ~ 
2.00E+7 
1.00E+7 

0.0 L.-,----'----,.---....-----r-' 
1.23E-5 1.24E-5 1.25E-5 

tau sample: 10000 

0.2 

0.1 _A_ 
0.0 '-r----.---,---.------.-' 

30.0 35.0 40.0 45.0 

sigma sample: 10000 

150.0-

100.0 ~ 

50.0 _/ "--
0.01-y---....---.------r--.....-J 

0.14 0.15 0.16 0.17 

-77-

1.0 
0.5 
0.0 

-0.5 

alpha 

-1.0 L.r-----,---,----r--..J 

1.0 
0.5 
0.0 

-0.5 

0 

beta 

20 40 

lag 

-1.0 L.-,-------,------r--..J 
0 20 40 

lag 

tau 

1.0 1.. 0.5 
0.0 

-0.5 
-1.0 

0 20 40 

lag 

sigma 

1.0 I 0.5 
0.0 

-0.5 
-1.0 

0 20 40 

lag 



Figure 4.5 Kernel density and autocorrelation plots of the posterior distributions of a and/3 for the 

results in Table 4.4 (R is Poisson) 
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Figure 4.6 Kernel density and autocorrelation plots of the posterior distributions of a, fJ, T and a 
for the results in Table 4.6 (R &S) 
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Figure 4.7 Kernel density and autocorrelation plots of the posterior distributions of a, f3, -r and a 
for the results in Table 4.6 Oog R &S) 
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Figure 4.8 Kernel density and autocorrelation plots of the posterior distributions of a and f3 for the 

results in Table 4.8 (R is Poisson) 
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Chapter 5 

Discussion 

Posterior parameter estimates in fisheries models are quite sensitive to the choice 

of prior distribution. In particular, posterior estimates can differ dramatically from 

the non-Bayesian (LS or ML) estimates. 

The posterior distributions of a and j3, obtained using the Ricker model on the 

Baltic Areas 22-24 data, were quite different than the specified prior distributions for 

the normal and lognormal cases. The DIC value for the lognormal case was 76.693. 

In both cases, the posterior estimates were not sensitive to the choice of initial starting 

values of the chain. The prior distribution specification for r had little effect on the 

posterior results. The results varied greatly depending on the specification of the 

prior distribution for j3. When the variance ofthe prior distribution of a was greater 

than 100, the estimates were highly sensitive to the choice ofthe prior distribution. 

For the Poisson case, the estimates obtained were not sensitive to the choice of the 

prior distributions for a and/3. The DIC value for the Poisson case was 562.587. 
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The posterior distributions of a and f3, obtained using the Beverton-Holt model 

on the Baltic Areas 22-24 data, also differed substantially from the specified prior 

distributions for the normal and lognormal cases. This model required a longer burn

in period in order to converge. The DIC value for the lognormal case was 325.530. 

The prior distribution specification for a and -r had little effect on the posterior results. 

The posterior estimates of f3 varied greatly depending on the specification of the 

prior distribution for f3. For the Poisson case, the estimates obtained were not 

sensitive to the choice ofthe prior distributions for a andfJ. The DIC value for the 

Poisson case was 561.554. 

The Ricker model provided the best fit for the lognormal distribution on the Baltic 

Area 22-24 data (DIC = 76.693 vs. 325.530 for the Beverton-Holt). For the Poisson 

distribution, the DIC values for both models were very close (5()2.587 for the Ricker 

model vs. 561.554 for the Beverton-Holt model). 

Results obtained for the NAFO subdivision 3Ps data, using the Ricker model, 

were similar to those obtained for the Baltic Areas 22-24 data, using the Ricker 

model, for the normal and lognormal cases. The results were sensitive to the choice 

of the prior distribution for f3. The DIC for the lognormal case was 692.720. For the 

Poisson case, the estimates obtained were not sensitive to the choice of the prior 

distributions fora and/3. The DIC value for the Poisson case was 358.658. 
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Results obtained for the NAFO subdivision 3Ps data, using the Beverton-Holt 

model, were similar to those obtained for the Baltic Areas 22-24 data, using the 

Beverton-Holt model, for the normal and lognormal cases. Again, the results were 

sensitive to the choice of th~ prior distribution for fJ and the chain was slower to 

converge than the Ricker model. The DIC for the lognormal case was 219.332. For 

the Poisson case, the estimates varied as the prior distributions of a and fJ changed. 

The DIC for the Poisson case was 362.031. 

The Beverton-Holt model provided the best fit for the lognormal distribution on 

the NAFO subdivision 3Ps data (DIC = 219.332 vs. 692.720 for the Ricker). For the 

Poisson distribution, both the Ricker and Beverton-Holt models yielded similar DIC 

values (358.658 for the Ricker model and 362.031 for the Beverton-Holt model). 

Very different results were obtained for both ofthe data sets, indicating that 

model parameters are stock specific. Generally, results for the normal and lognormal 

distributions were very sensitive to the choice ofthe prior distribution offJ. In 

practice, more emphasis should be placed on properly specifying the prior distribution 

of fJ. 

For all cases, severe autocorrelation was present in the results which could not be 

corrected by running the chain for a longer burn-in period. The use of multiple chains 
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with different starting values also had little effect on this problem. This also implies 

that many of the posterior estimates of a and fJ may be suspect. This is worth further 

investigation. This analysis could also be expanded to include additional sampling 

distributions, such as the Gamma distribution or the Negative Binomial distribution. 

Additional cod stocks could also be investigated since the parameter estimates vary 

depending on the particular stock. 

The posterior estimates were sensitive to our choice of prior distribution, which 

can have an important practical effect on the study of stock-recruitment issues in a 

number of different fisheries. 
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Appendix 

Sample BUGS Syntax 

Below are samples of the BUGS command files that were used to perform the 

analysis for this paper. Sample code is given for each of the three distributions that were 

investigated (Normal, Lognormal and Poisson)~ 

1. Normal distribution sample syntax: 

model 
for (i in 1:N) { 

mu[i] <- S[i]*exp(alpha-beta*S[i]) 
R[i]-dnorm(mu[i],tau) 

} 

alpha-dnorm(O, 0.01) 
beta-dnorm(O, 1000000) 
tau-dgamma(1, 5) 
sigma<- 1/sqrt(tau) 
} 

2. . Lognormal distribution sample syntax: 

model 
for (i in 1:N) { 

mu[i] <- S [i]'*exp (alpha-beta*S [i]) 
R(i]-dlnorm(mu[i],tau) 

. } . . 

alpha-dnorm(O, 0.1) 
beta-dnorm(O, 10000) 
tau-dgamma(1, 5) 
sigma <- 1/sqrt(tau) 
} 
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3. Poisson distribution sample syntax: 

model 
for (i in l:N) { 

mu[i] <- S[i]*exp(alpha-beta*S[i]) 
R[i]-dpois(mu[i]) 

} 

alpha-dnorm(O, 0.0001) 
beta-dnorm(O, 100000) 
} 
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