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Abstract 

The area of Component Based Software Engineering ( CBSE) is rapidly emerging 

as a means of mitigating the complexity faced by software architects during the de

sign and maintenance of large software systems. Unfortunately, given the substantial 

number of components that may be deployed in a given software architecture, suc

cessfully establishing compatible interaction amongst components can be a difficult 

problem to solve. The purpose of this work is to show that compatibility between 

components may be determined by developing a formal model to describe component 

interfaces and their behaviour. In addition to promoting reuse and substitutability 

in the design and maintenance of software systems, this approach may also have a 

significant effect on the reliability and trustworthiness of software systems. 

At a fundamental level, a component can be regarded as a cohesive logical unit 

of abstraction with well-defined interfaces that provide services to its environment or 

request such services. This work sets the foundation for a formal model of component 

composition by using Petri nets to represent the behaviour of component interfaces. 

Compatibility is established by verifying that interfaces can satisfy all requested se

quences of operations. The requires and provides relationships are discussed in the 

context of formal languages generated by the corresponding labelled Petri net models. 

The compatibility of the interfaces is determined by examining various structural and 

reachability properties of the net obtained by the composition of the interfaces. 

As commercial components become increasingly available and the web services 

industry becomes more vibrant, formal compatibility assessment is an important step 

toward the construction of large, distributed software systems. 
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Chapter 1 

Introduction 

1.1 Motivation 

The challenges and difficulties associated in the development of large-scale software 

projects are well documented [96, 111] as are the analyses of project failures [36]. 

Over the years, numerous strategies have been developed to help mitigate these dif

ficulties. Object-oriented programming [12] and numerous architectural description 

languages [71] have been introduced in order to make the development of software 

systems more tractable. During recent years, component based software engineering 

(CBSE) [16] has been emerging as viable means of software construction whereby 

pre-manufactured software structures with well-defined interfaces are designed and 

implemented, and subsequently incorporated into larger software systems [45]. While 

this approach has met with some degree of success, there remains the problem of 

determining compatibility between components. 

In his provocative paper, No Silver Bullet - Essence and Accident in Software 



Engineering [14], Frederick Brooks Jr. identified four essential difficulties that impede 

the construction of large software systems: complexity, conformity, changeability and 

invisibility. Of these four so-called "essences," the problem of complexity is often 

regarded as the most difficult to address and subsumes the other three. 

Attempts to address the complexity inherent in the software design process have 

met with mixed success. For example, visual programming languages and environ

ments [95, 113] attempt to allow software designers to model software the same way 

hardware designers create circuits. However, because the design and creation of soft

ware is very much a mental exercise, completely accurate physical representation is 

not possible, thereby limiting the scope of problems that can be solved by visual 

programming techniques. 

Artificial intelligence and expert-systems [66] have also been presented as possible 

answers to the problem of complexity. However, until we, as software designers, 

are able to justify all the reasons why a particular software design is more suitable 

than another and until we are able to enumerate those reasons as a series of logical 

rules suitable for consumption by a machine, AI and expert systems approaches will 

only be applicable in the design of specific domain systems. Expert human designers 

acknowledge that there is a certain level of art in the construction of well-designed 

software systems; extracting and distilling these qualitative features and representing 

them concisely and accurately has proven to be elusive. 

While the advent of high-level languages has produced significant productivity 

gains in the area of software implementation and deployment, high-level languages 

have not contributed significantly to a reduction in the inherent complexity of soft

ware analysis and design. As designs of modern day software systems have grown 
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increasingly complex, popular implementation languages such as Java, C and C++ 

are still relatively low-level when compared to the high-level abstractions necessary 

to solve nontrivial problems. 

Consequently, a formal, high-level approach towards the composition of software 

subsystems would lessen the development burden on software architects and thus be 

amenable to the construction of larger, more complex software systems. In particular, 

a formal model to describe the composition of software entities and to determine their 

resulting compatibility is crucial in the construction of large software systems. This 

work is an attempt to establish a foundation for such an approach. 

Classical techniques of determining compatibility have typically focused on compile

time metrics such as consistency between the numbers and types of method arguments 

and on appropriate use of a method return type. While such static checks are clearly 

important, they are insufficient in establishing the dynamic or behavioural compat

ibility between two or more software components. For example, it is possible for a 

server component to provide methods that exactly match the static requirements of 

a client component, however, if the service component imposes a rigid ordering upon 

the sequence of these method calls that are not adhered to by the client, it is still pos

sible for the two components to exhibit conflicting behaviours. Such conflicts result 

in component incompatibility. 

1.2 Research Objectives 

The primary goal of this research is to provide a formal model of component inter

action by representing the behaviour of components at their interfaces using Petri 

3 



nets [78, 86]. Interface compatibility is established by determining those interfaces 

which can satisfy all possible sequences of requested operations. The "requires" and 

"provides" relationships are discussed in the context of formal languages generated by 

the corresponding Petri nets in a component's deployment environment. By analyzing 

the structural and dynamic properties of the Petri net representing the composition of 

the components' interfaces, compatibility between components is tested and verified. 

Of particular importance in the development of software systems is whether two 

separate software modules, one of which relies on the services of the other, can suc

cessfully interact with one another to fulfill their requirements. One of the primary 

objectives of this work is to provide a formal definition of compatibility in terms of 

the languages manifested by the interfaces. With this objective satisfied, a formal 

means to actually assess or verify that two or more components satisfy this property 

can then be found by composing the nets and showing the resulting net is free of 

deadlocks. Multiple strategies can be used for deadlock detection, depending upon 

the structural and behavioural properties of the composed net; this work describes the 

advantages and disadvantages of each method. To help mitigate some of the complex

ity associated with the analysis of the composed net, various net reduction algorithms 

are proposed to limit the number of the elements in the net. More complicated in

teractions between multiple providers and multiple requesters are also discussed both 

formally and with examples. 

This work is not focused on decomposition strategy of software design nor is 

it focused on the actual construction of the atomic elements themselves. Rather, 

the goal of this work is to facilitate the determination that two or more software 

entities can successfully be composed to achieve a useful goal in the context of a larger 
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software system. Ultimately, it is hoped that this work may provide the necessary 

infrastructure to build autonomous self-assembling software systems that may evolve 

independently. 

1.3 Practical Implications 

Initially, the implications of this research should increase the reliable construction 

of software systems. From an industrial perspective, software integration and reuse 

are two primary challenges facing the pragmatic construction of large-scale software 

systems. During the early stages of development, components should be reused as a 

cost-saving measure so as to reduce re-implementation of commonly used function

ality. Compatibility assessment can help determine whether a pre-existing software 

entity can be reused in a particular environment. Later, when independently de

veloped software modules are integrated to form larger software architectures, it is 

important to assess the compatibility of these modules so that the developers can be 

assured that the software structures are able to communicate effectively with each 

other. The strategy presented in this work may be able to provide quantitative metrics 

which can be used to assess compatibility of software components. 

In the area of software maintenance, substitutability allows upgrades of software 

systems already deployed in a production environment. Whether new components are 

acting as traditional clients or servers in a multi-tier architecture or the components 

are in a peer network of components, it is vital that they are able to operate correctly 

in their deployed environment. Again, compatibility assessment is crucial in this area. 

Eventually, this research may help facilitate the further advancement of self-
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organizing applications (34] in which applications evolve to adapt to changing en

vironments or requirements. This could lead to the construction of software systems 

that can dynamically reconfigure themselves to adapt to changing conditions as dic

tated by their context. Closely related to this is the notion of software evolution (22] 

in which sub-elements of software projects are replaced over time to satisfy new de

mands placed upon a software system. The feasibility of such systems depends largely 

upon the dynamic integration of separate software entities, during which compatibil

ity evaluation must be performed. 

1.4 Outline of Thesis 

Software development methodologies are briefly presented in Chapter 2 which also 

provides an overview of the concept of software architectures in general. Chapter 3 

describes the concept of component-based software engineering, a software develop

ment strategy which is gaining wider acceptance in the construction of sophisticated 

software systems. This chapter also reviews some current component-based systems 

used in practice. The important features of this methodology, which form the basis of 

the remainder of the thesis, are emphasized. Various informal and formal definitions 

of components are presented in Chapter 4. Various properties related to Petri nets 

in general are also proposed as well as algorithms for net reductions and deadlock 

detection. Also in this chapter, a formal model of component interfaces that employs 

Petri nets is introduced. Moreover, the notion of interface languages is proposed and 

elaborated upon. Chapter 5 describes the different strategies that can be used to 

compose component interfaces and presents formal frameworks for establishing com-
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patibility between two components. The proposed framework is based on the Petri 

net models of component interfaces and deadlock detection in the composed model. 

In Chapter 6, some examples that demonstrate the proposed approach are provided. 

Finally, Chapter 7 concludes the thesis and discusses future work. 
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Chapter 2 

Software Development 

Methodologies 

Prior to discussing software architectures in general, and component based systems 

in particular, this chapter provides context to the complexities of software develop

ment. The following section is devoted to a high-level review of the techniques used 

to address the complexities associated with the development of large-scale software 

systems. Numerous paradigms and methodologies have evolved to address inherent 

difficulties associated with the engineering of large software systems [18]. Recent 

strategies have attempted to raise the level of abstractions at which the software 

designer and, subsequently, implementer operate. 

2.1 Background of Software Development Trends 

By briefly studying the historical evolution of software representation, we can attempt 

to extrapolate future trends in software development. Representations of modern soft-



ware originated with machine code, the lowest-level representation to which any other 

software representation is usually translated prior to execution. This representation of 

hardware operations and their corresponding arguments as a series of bits, while offer

ing ultimate flexibility, is very error-prone as a development language. To counteract 

this deficiency, symbolic languages were created to represent hardware instructions 

and their arguments. While certainly less error-prone than raw machine-code, the 

symbolic languages, also referred to as assembler [53], offered limited advantages in 

terms of raising the level of abstraction - each symbol is essentially mapped directly 

onto a hardware instruction, there is typically no concept of data types and control 

flow is quite arbitrary. 

With the advent of compilers, higher-level representations of software were pos

sible. Programming languages such as FORTRAN use program statements that more 

closely model the corresponding mathematical domain. Each programming state

ment could conceivably be mapped to several low-level machine instructions, but the 

programmer is kept isolated from these details, thereby making the programming 

task easier. These programming languages also introduced a set of fundamental set 

of data types which could be easily manipulated by the programmer. The use of 

arbitrary flow of control was also discouraged in favour of more restricted looping 

constructs and function calls. This led to programs with a greater degree of structure 

and modularity and hence served to increase program comprehension. 

Eventually, the importance of data encapsulation began to arise, in which the 

fundamental representation of data structures was concealed behind a well-defined 

interface. Access to a data structure's composite data elements could only be made 

indirectly via the interface. Consequently, the designer of the data type could change 
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the internal representation without adversely affecting the users of the data type as 

the interface would remain the same. These so-called abstract data types (ADTs) [99] 

gave rise to object-based programming. 

In an effort to promote the reuse of code, the concepts of classes and inheritance 

were introduced in languages such as SIMULA-67 and SMALLTALK. By allowing a 

derived class to inherit and extend the behaviour of a base class, developers are en

couraged to extend existing classes rather than developing their own. Other features, 

such as run-time binding of function calls (polymorphism), further relieve the pro

grammer from creating tedious and error-prone dispatch tables. The combination of 

data encapsulation, inheritance and polymorphism gave rise to object-oriented pro

gramming [12]. 

The trend described above suggests two simultaneous developments in the evo

lution of software representation. The first is an attempt to raise the level of ab

straction by placing more responsibilities on the translation tools. Features such as 

type checking, exception handling and dynamic dispatch become the responsibility 

of the compile-time and run-time environments. These advances allow the developer 

to concentrate more fully on aspects directly related to solving a given problem. The 

second trend, and perhaps counter-intuitively, is that new software representations 

tend to be more restrictive or constrained than their predecessors. Arbitrary control 

flow is sacrificed in favour of more restricted looping or recursive constructs. Direct 

access to encapsulated data elements that implement a more complex data struc

ture is prohibited in favour of using a more abstract interface instead. By imposing 

well-defined restrictions upon the data representations and control flow, the software 

representation as a whole becomes more tractable, less arbitrary and, therefore, more 
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comprehensible for the developer. 

The concepts of systematic module decomposition and reuse mentioned earlier 

have been aggressively promoted as a means to counteract the complexity inherent 

in the design and implementation of software systems [82, 83, 105]. Unfortunately, 

while this approach was initially very appealing, the effort required to design and 

implement a module that is simultaneously generic and useful, can be overwhelming. 

Also, truly generic software entities can be very difficult for software designers to 

efficiently deploy, thereby limiting the advantages gained by module reuse. 

The importance of examining successful software systems and documenting their 

common design decisions also cannot be ignored in the evolution of the software de

velopment process. Such documentation has led to the creation of design patterns [21] 

which attempt to make software development more template-oriented. Design pat

terns originate from recognizing the frequent occurrence of similar design structures 

across several successful software systems. These design structures can then be gener

alized and documented, thereby creating a library of patterns. These patterns, once 

shared with the development community, can then be adapted and reused for sim

ilar problems in other domains. For example, the Composite pattern can be easily 

adapted to represent the hierarchical composition of graphic elements in a visualiza

tion product or can be used to represent the hierarchical composition of hardware 

components in a CAD package. While design patterns can, in theory, transcend all 

levels of software representation, they are most commonly employed in the context 

of object-oriented and component-based software development [38]. 

Scenario-based software analysis has also met with some success in the comprehen

sion and maintenance of software systems [54]. In this strategy, the various activities 
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that the system is required to support are identified. These so-called "system uses" 

are developed from the perspective of both the different end-users and the developers 

of the systems. By analyzing software from these two perspectives, multiple views of 

the system can be derived and studied. Scenarios can be used to determine whether 

an existing software system successfully satisfies its qualitative requirements in do

main specific areas. High degrees of coupling and low degrees of cohesion, both of 

which can negatively impact the design of a system, can also be found by identifying 

locations in the software where scenario interaction and interdependence are at their 

greatest [54]. 

Somewhat related to this is Aspect Oriented Programming (AOP) [26, 31]. Under 

this paradigm, functionalities that are employed by several software subsystems are 

identified as cross-cutting concerns. For example, functionality that involves writ

ing diagnostic or debugging information to a file or database would be regarded as 

a cross-cutting concern since it has the potential to be used by a large number of 

subsystems. Other cross-cutting concerns can involve aspects related to authentica

tion and database transactions. AOP involves the identification of locations in the 

code base where cross-cutting concerns or aspects arise (these locations are called join 

points) and the injection of appropriate code segments that implement the aspects 

into those join points. This injection of code, called weaving, is most effectively done 

automatically by software tools. 

Agile methods [10] are also becoming more relevant in both research and indus

try. Agile methods include adaptive software development [46], which strongly em

phasizes the iterative nature of the development process while maintaining focus on 

the required feature sets. Extreme programming [7, 98] is another example of an ag-
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ile method that has been successful in emphasizing the benefits of pair-programming, 

test-driven development, unit testing and continuous integration of software, amongst 

many other aspects. Agile methods deemphasize the predictive nature of the tradi

tional waterfall software life-cycle in favour of a more adaptive style of software de

velopment which can more readily contend with rapidly changing requirements. This 

style promotes more frequent releases of code, greater collaboration with the intended 

consumers of the software and greater communication between the software develop

ers themselves. As a result, agile methods appear to be most effective in relatively 

small, collocated teams of about a dozen developers. 

Currently, concepts related to software architecture are becoming more widespread 

as a means of addressing the complexity associated with software development [5, 40]. 

Software architecture attempts to tie together many of the more recent trends in 

software development, including object-oriented design patterns and scenario-based 

software analysis, in an attempt to make the production of large-scale software easier 

and more effective. Software architectures are discussed in more detail in next section. 

The paradigms and methodologies described above by no means constitute an 

exhaustive list of all the practices in the software design and development field today; 

however they do provide an overview of current techniques which are being employed 

to facilitate design and implementation of software systems. 

2.2 Software Architecture 

Software architecture [1] represents an attempt to limit the complexity of software de

velopment by studying a software system at a very high-level of abstraction. Details 
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regarding low-level abstractions such as APis, protocols, algorithms and data struc

tttres, for example, are elided in favour of a more general view of the design. Software 

representation, consequently, is described using architecture description languages 

(ADLs), that offer a wider, more abstract view of software systems and may even be 

used to represent evolving software architectures [76]. 

When thinking of software architecture, it is sometimes useful to apply analogies 

with other domains where the concept of an architecture is better understood. For ex

ample, in the context of computer hardware, the architecture can be thought of as an 

interconnected collection of smaller functional entities (or building blocks). However, 

unlike physical architectural domains, a functioning software project does not have a 

physical manifestation. Therefore, many "real world" analogies relating to software 

architecture have been deemed to be inadequate and may actually misrepresent the 

numerous nuances associated with a software system [4]. 

2.2.1 Definitions 

Over the years, many definitions of software architecture have been proposed. Indeed, 

the Software Engineering Institute (SEI), based in Carnegie Melon, currently lists in 

excess of one hundred definitions of "software architecture" at their website: 

http://www.sei.cmu.edu/architecture/definitions.html 

These definitions are almost always informal and quite broad. They attempt to offer 

guidelines, as opposed to rigid formal definitions, in an effort to establish a foundation 

for software architecture as a viable area of research and study. 
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In developing a definition for software architecture, Shaw and Carlan [91] iden-

tified several issues associated with the structure of a software system. These issues 

include: component organization, global control structures, protocols, assignment of 

functionality to design elements, composition of design elements, physical distribu-

tion, scaling and performance, dimensions of evolution and selection among design 

alternatives. They summarize these issues with the following description of software 

architecture [91]: 

"Abstractly, software architecture involves the description of elements from 
which systems are built, interactions amongst those elements, patterns that 
guide their composition, and constraints on these patterns. In general, a 
particular system is defined in terms of a collection of components and inter
actions amongst those components." 

This definition, while certainly comprehensive, is probably overly ambitious. For ex-

ample, the phrase "patterns that guide their composition, and constraints on these 

patterns" is probably better left to the domain of architectural styles. Architectural 

styles arise by applying the concepts of design patterns and idioms to software archi-

tecture. For example, architectural styles such as client/server, pipe-and-filter and 

blackboard architectures are commonplace in the software community, but a defi-

nition of software architecture itself should not limit itself by enforcing a particular 

pattern. A more succinct definition of software architecture was offered in a discussion 

group at the SEI during 1994 [40]: 

"The structure of the components of a program/system, their interrelation
ships, and principles and guidelines governing their design and evolution over 
time." 

The above definition reprises of the concept of a component and their corresponding 

interactions. It also introduces the importance of the design and subsequent main-
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tenance of software systems. Once a software system has been deployed, changes to 

its required operation are almost inevitable. For example, problems in the imple-

mentation have to be corrected, new requirements have to be satisfied and platform 

limitations have to be overcome. A definition of software architecture should consider 

the flexibility and extensibility of the software system. 

Recently, more formal attempts have been made to derive a consensus on the 

definition of "architecture" as it applies to the software domain. For example, the 

Computer Society approved IEEE Standard 1471 which offers the following definition 

of an architecture [67]: 

''the fundamental organization of a system embodied in its components, their 
relative relations to each other and to the environment, and the principles 
guiding its design and evolution." 

This definition is only a minor variation of the SEI definition offered in 1994. IEEE 1471 

attempts to standardize neither processes nor architectural description languages. 

Instead, it attempts to build consensus regarding the definitions of various aspects 

associated with software architecture. In addition to the above definition, this IEEE 

Standard also provides a conceptual framework for software architecture which at-

tempts to show architecture in the context of its entire environment. This framework 

is reproduced in Figure 2.1. 

Important aspects of the conceptual framework are the notions of view and view-

points. These attributes appear to be inspired by the scenario-based approach to 

software analysis and design. IEEE 14 71 considers a view to be a collection of ab-

stractions or representations (i.e., models) that describe one particular aspect of a 

system. A viewpoint serves as a framework to establish common terminologies and 
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Figure 2.1: Conceptual framework for IEEE Standard 1471 

notations upon which a view can be constructed. 

Also of particular interest is the issue of stakeholders and concerns. Different 

stakeholders may have different requirements with respect to a software system. By 

enumerating the concerns of stakeholders and having them directly influence the 

architectural description, the system produced will more likely satisfy their demands. 

It should be noted that stakeholders not only include the end-users of a software 

system - developers and administrators of the system also have legitimate concerns 

relating to the extensibility and maintenance of the system. 
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One recurring theme that occurs in many definitions of software architecture is 

the concept of an entity, or, more commonly, a component. This concept will be 

elaborated upon in Chapter 3. 

2.2.2 Architecture Representation 

A software architecture can be described using an architecture description language 

(ADL) [39]. ADLs "usually provide both a conceptual framework and a concrete 

syntax for characterizing software architectures." As with software architecture, there 

is no formal definition as to what constitutes an ADL or what features a language 

must have in order to qualify as an ADL. Typically, however, ADLs must provide 

features to represent and analyze a software system at a high-level of abstraction. 

Unfortunately, as we raise the level of abstraction, we cannot help but lose some 

of the precision afforded to us by more conventional and lower-level languages such 

as Java and C. Any tool capable of generating an implementation directly from an 

ADL must employ a certain degree of "intelligence" when translating a high-level 

abstraction to a low-level executable. Therefore, ADLs which allow for the automatic 

generation of a compliant implementation may choose to offer the designer access 

to lower-level abstractions so as to increase the viability of the generated code. Of 

course, having an unambiguous ADL whose semantics is well-defined can contribute 

significantly to the automatic generation of a software system. 

A framework has been created for the classification and evaluation of ADLs [71]. 

In order to qualify as an ADL, a language should provide support for the specifica

tion of components, connectors and configurations (i.e., topologies). With respect 
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to components and connectors, an AD L would normally support the specification of 

attributes such as interfaces, types, semantics, constraints, and evolution. An ADL 

configuration should provide some degree of support for many different attributes, 

including understandability, compositionality, constraints, evolution and dynamism. 

Note that it is not necessary for a language to support all these attributes in order for 

it to be considered as an ADL. For example, dynamism, which allows for the inser

tion, removal and replication of architectural elements during run-time, is supported 

by relatively few ADLs. A toolset that supports the ADL can contribute significantly 

to the overall usefulness of the ADL. Such tools can work with the ADL to gen

erate lower level code, provide architectural analysis and refinement, offer multiple 

architectural views and support dynamic execution or simulation of an architecture 

described by an ADL. 

Note that architecture representations are not limited to ADLs. Indeed, some 

progress has been made in using the Unified Modelling Language (UML) to represent 

architectures [70]. Unfortunately, UML, which has traditionally been used in the 

design and analysis of object-oriented software systems, has not proven to be effec

tive in modelling the nonfunctional aspects of an architecture. In particular, UML 

offers weak support for representing architectural constraints and explicit software 

connectors. Other nonfunctional aspects including portability, maintenance and con

figuration management can also be difficult to represent in UML. However, when used 

in conjunction with an existing ADL, UML diagrams may provide a more effective 

visual representation of a software architecture. 

Attempts have also been made to create a mathematical basis for modelling large 

software systems [17]. Dynamic aspects of a software system can be modelled using 
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heterogeneous algebras. Mathematical foundations offer a greater level consistency 

in architectural designs and may permit environments which are more amenable to 

simulation and verification strategies. However, the vocabulary of a rigidly formal 

mathematical model is often beyond that of a typical software architect, thereby 

discouraging strictly mathematical approaches to architecture description. 

2.2.2.1 Overview of ADLs 

Several ADLs have been described in the literature and each year, there are new 

developments in this area. Some of the more popular ADLs include Rapide, UniCon 

and Wright. 

Rapide [64, 65] is an "event-based, concurrent, object-oriented language" for pro

totyping system architectures, particularly distributed systems. There are five major 

languages associated with a Rapide description. Interfaces to components are defined 

using a types language; the propagation of events throughout the collection of compo

nents is described by an architecture language; constraints on component behaviour 

are represented by the specification language; executable modules are described by the 

executable language and, finally, a pattern language is used to represent the various 

families of events. Rapide allows for the simulation of an architecture during which it 

generates a partially ordered set (poset) that enumerates the dependencies between 

events prior to execution. Rapide was influenced not only by software languages such 

as ML and C++, but also by hardware description languages such as VHDL and 

Verilog. 

UniCon [90] uses two fundamental elements in its description of a software archi

tecture: the component (players) and the connector (roles). Components represent 
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the "locus of computation and state." The properties and specification of a compo

nent are determined by the component's interface. These properties represent both 

functional and nonfunctional aspects of the component's behaviour. UniCon defines a 

comprehensive collection of built-in component types. These built-in components in

clude Module types, which are used to represent a single compilation unit and Process 

types which represent independently scheduled processes as defined by the underly

ing operating system. Connectors represent the relations among components; central 

to the specification of the connector is the interaction protocol. The connectors can 

be used to enforce type and sequence constraints amongst the components. As with 

components, there are numerous built-in connector types. For example, the connector 

type Pipe represents the conventional Unix pipe connector; the type RemoteProcCall 

provides a connector for making calls to procedures which may reside outside the 

address space of a given component. Ideally, both components and connectors can 

be hierarchical in nature and impose concepts of data abstraction and encapsulation 

upon its internal elements (early specifications of the UniCon language, however, did 

not provide a means to define compositional connectors). 

The Wright [2] architecture description language employs formal abstractions for 

the definition and subsequent analysis of an architecture. As with most other ADLs, 

Wright employs the concepts of components and connectors. It also introduces the 

concept of a configuration, which is a collection of component instances combined by 

connectors. The configuration essentially gives rise to the topology of the architecture 

being described. Components are comprised of an interface and a computation. The 

interface, in turn, is comprised of an arbitrary number of ports which serve as the 

conduit through which components interact with their environment. Connectors, as 
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expected, serve to define the communication between components. The connectors 

impose a set of requirements that must be met by a component in order for the 

connection to be deemed appropriate. If the component satisfies the requirements, the 

component is permitted to make certain assumptions about its operational context. 

By employing formal representations of software architectures, Wright offers nu

merous advantages since formal models are suitable for mathematical analysis and 

manipulation through machine-driven techniques. However, formal representations 

can become very complicated and incomprehensible, especially if they employ nota

tions which are unfamiliar to software architects. 

The use of an existing, well-established language as the basis of an architectural 

description language has also been evaluated. For example, the use of Java and 

JavaBeans as a potential architectural description language has been studied [100]. 

Unfortunately, application builders, which are commonly used to interconnect Java

Beans, do not allow the semantics of components to be exposed and do not provide 

support for the evolution of components or connections. Also, the JavaBeans con

nection and configuration frameworks do not allow the specification of interaction 

protocols or global constraints, thereby limiting the i1sefulness of this language as a 

viable ADL. 

2.3 Summary 

Modern day large-scale software projects are rarely built in a monolithic fashion. 

Teams of developers working independently, in accordance to (hopefully) well-defined 

specifications, construct subunits of the final project which must then be subsequently 
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assembled or integrated. In addition, software entities are being designed to be in

creasingly generic in nature and are intended to be used and reused in several inde

pendent projects. 

Many of the ideas offered in the definitions of software architecture can be used 

as a foundation to systematically describe the structure and dynamics of software 

systems. Informally, a software architecture, at its highest level, can be represented 

by three major abstractions: components, which serve as the units of functionality 

for the architecture; interfaces, through which the components communicate with its 

external environment; and connections which dictate the topology of the architecture 

and provide context to the components. 

Intuitively, a software architecture can be defined as a graph in which vertices 

represent components and their respective interfaces and edges are used to represent 

the connections between components and their interfaces and the connections between 

communicating interfaces. 

As more emphasis is being placed on the system integration phase of the software 

engineering discipline, the notion of constructing fully functioning software systems 

from the composition of existing disparate entities is becoming increasingly important. 

In all recent development methodologies, there is always a need to "put the pieces 

together"; to assemble the individually designed and implemented entities into a 

fully functioning system. A formal means by which software can be automatically 

integrated would, therefore, be desirable. 

This thesis uses many of the fundamental tenets of component-based software en

gineering in an attempt to lay down a framework upon which automated assembly 

of software systems may occur. The following chapter discusses the pragmatic devel-
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opments behind the current state of the art in the field of component-based software 

engineering. 
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Chapter 3 

Component-based Systems 

Central to the construction of any large software project is the modularization and 

decomposition of large software entities into smaller units with a well-defined function. 

During this decomposition, there must exist well-defined boundaries between what 

an entity does and how it actually does it. Component-based software engineering 

has been proposed as a means to achieve these and other goals, so as to facilitate 

the software development process [15]. Although initially proposed over thirty-five 

years ago, it is only in the past decade that component-based software engineering 

has become viable as a means of constructing large-scale software systems. 

3.1 Components 

Components are the building blocks of software systems and hence comprise the 

fundamental elements of reuse in a software architecture. Informally, a component is 

considered to be the primary functional unit and the fundamental data type in an 

architectural design. The connections between the components serve to determine 



the flow of control and to provide a context or environment for the components. 

Components allow one to represent a high-level software model relatively faithfully 

by closely modelling entities that occur in the context and vocabulary of the problem 

space. 

The idea of achieving conceptual integrity or so-called cohesion via concept anal

ysis is an important factor when designing components. Indeed, ideas related to 

module decomposition and module restructuring [105] may prove to be helpful in 

attaining component conceptual integrity. 

Components must be generic enough to work in a variety of contexts and in coop

eration with other components [110]. At the same time, however, their functionality 

must not be excessively vague or generic so as to inhibit reuse. During the design of a 

software system, it is important to maintain a balance between the number of compo

nents and their respective functionality. Deploying too many components at the same 

level of abstraction may lead to an exponential explosion of contextual interdepen

dencies amongst them, thereby dramatically increasing the complexity of the system. 

Too few components may discourage reuse as designers would be motivated to design 

their own smaller and more efficient components rather than deploy excessively large, 

monolithic, uncohesive components in a given architecture. 

3.2 Component Definitions and Representation 

As with the term software architecture, many definitions of component exist in the 

literature. In their attempt to convey the essence of what constitutes a component, 

these definitions tend to be vague and sometimes even arbitrary in nature. Some 
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definitions found in the literature are presented and discussed below. 

Szyperski provides the following definition [102]: 

"A software component is a unit of composition with contractually speci
fied interfaces and explicit dependencies only. A software component can be 
deployed independently and is subject to composition by third parties." 

This definition introduces the concept of an interface which represents the access 

point to a component from external sources. Interfaces represent the notions of data 

encapsulation and abstract data types, whereby access to a component's behaviour is 

restricted via the component's interface. Well-defined and comprehensive interfaces 

can also serve as a mechanism for reuse and substitutability. For example, if a software 

system accesses the services of a component only through a specified interface, then 

that component can be easily swapped out and replaced with another that supports 

the semantics of the original interface - the underlying implementation of the new 

component could be completely different. The interface serves to specify what services 

a component is able to provide. 

Before a component can be deployed, it must be aware of all contextual depen-

dencies, that is, what external services the component requires in order to behave 

correctly. In addition to requiring other components, a component may also require 

a specific deployment environment or container. This environment is dictated by the 

component world or component model, which is discussed later in this section. Note 

that in order to promote reuse, a component's contextual dependencies should not be 

excessive; components should be self-contained. 

Also important in the above definition is the concept of independent component 

deployment. This feature allows a complete software architecture to be broken down 
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into its constituent components during the design and development stage of the sys-

tern. Then, instead of deploying all the components as a single monolithic executable, 

the components are deployed individually into an operating environment. This mod-

ular approach to software deployment allows subsystems to be replaced or upgraded 

relatively easily without having to terminate and restart the entire system. 

With contractually specified interfaces and well documented contextual depen-

dencies, a third party should be able to acquire components from two independent 

parties and compose them into a useful software system to perform some desired task. 

This would represent the ideal world of component programming where software en-

tities can be traded as commodity items like resistors and capacitors in the hardware 

world. Composition of these separate components can then take place to produce a 

useful system. 

The following definition reiterates the importance of component interfaces. How-

ever, it also emphasizes that a software component should aim for reusability by 

narrowing the scope of the component's behaviour [89]: 

"Reusable software components are self-contained, clearly identifiable artifacts 
that describe and/or perform specific functions and have clear interfaces, 
appropriate documentation and a defined reuse status" 

By qualifying the behaviour and the context of a component, this definition suggests 

that components should limit their functionality so as to reduce the possibility of over-

lapping behaviours amongst different components. In a software system, this serves 

to make the deployed components more orthogonal, thereby reducing redundancy 

and enhancing efficiency. In the context of the above definition, the word artifacts 

implies that components themselves can take on many forms including source code, 
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an executable or a shared library. Regardless of the form, the component itself should 

exist as a packaged unit, as opposed to being spread over several files, for example. 

The documentation and reuse status attributes given in the above definition rep-

resent information related to the component that is necessary for effective usage and 

deployment of the component by end users. This documentation should consist not 

only of the component's requirements, services and deployment issues, but should 

also provide information regarding the component designer and maintainer. 

Perhaps one of the most succinct component definitions originates from Brown [16]: 

"An independently deliverable piece of functionality providing access to its 
services through interfaces." 

This definition highlights the relatively autonomous nature of a component and again 

stresses the requirement of a well-defined interface through which services are offered. 

As with the previous definitions, this definition offers little in the way of mechanisms 

to describe the formal semantics of a component and its interaction with its environ-

ment. The subsequent chapter will review some more formal definitions of components 

and propose an alternative method for formally representing components and their 

interaction with other components in the context of a software architecture. 

3.3 Components and Objects 

One of the issues raised in the context of components is that of "semantic overlap" 

between components and objects. This section provides a comparison of the concepts 

behind components and objects and also demonstrates some criteria to help distin-

guish between them. While components and objects have similarities, there are also 
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important subtle differences. 

The most obvious similarity between components and objects is that both support 

the notion of an interface through which the external world communicates with the 

component or object [110]. The concept of data encapsulation is important to both 

components and objects and both of them should indicate what services they require 

of and provide to the external environment. However, components, unlike objects, 

may not have a persistent state [101]. As such, components may lack the concept of 

identity which is integral to the Booch definition of an object [12]. Components are 

also used to represent larger, coarser grained entities than objects. As a result, it is 

not unusual for a component to actually be comprised of several classes, which are 

instantiated to objects when the component is actually deployed. Note that while 

object-oriented techniques are commonly used for component design and implemen

tation, components can be implemented using any programming paradigm such as 

functional programming or even more conventional procedural-based programming. 

Component design and implementation are not restricted to object-oriented abstrac

tions. 

Component architectures, through the use of "intelligent" interconnections, are 

able to provide a richer set of possibilities for component interaction [39]. Object 

interaction, however, is restricted to method invocation only. While this method 

invocation may be determined at run-time through polymorphism, or even made over 

a network (using CORBA, for example), invocation is still relatively rudimentary 

when compared to more recent advances in component architectures. Indeed, in the 

context of component architectures, the connection mechanism may take a much 

more pro-active role in the underlying semantics of component interaction. From the 
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perspective of object-oriented programming, connections between objects via method 

invocation are more passive. For example, in a traditional environment in which 

the connectors are passive, a server component would typically be responsible for 

prioritizing the requests it receives- the connector would simply provide the conduit 

through which the requests are delivered. In an environment in which the connectors 

are more active, the responsibility of prioritizing the requests could conceivably be 

handled directly by the connector itself. This has the added benefit of decoupling the 

prioritization of requests from the other responsibilities of the server. 

Another difference between components and objects, is that an object is a unit of 

instantiation whereas a component is a unit of deployment. Because of this, object

oriented strategies usually lead to the creation of monolithic applications consisting 

of many objects which all must be deployed simultaneously as a single unit in or

der to be functional. By taking a component-based approach, a functioning system 

can be deployed in a more incremental fashion. This has the added benefit in that 

small changes to a deployed production system can be made simply by deploying 

the appropriate components rather than deploying the entire application. Indeed, 

if the component software system is well designed, it may not even be necessary to 

terminate and restart the entire system during minor system upgrades. 

With respect to the deployment issue above, many components are usually dis

tributed as dynamic link libraries, shared objects or Java archive files (in the context 

of Enterprise JavaBeans) whereas object-oriented programs are typically distributed 

as executables. Another important aspect is the execution environment of objects 

and components. Executables produced from object-oriented programming operate 

in the context of an operating system environment. Components, however, typically 
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operate in the context of a container. This container, which acts as an intermediary 

between the component and the underlying operating system determines the lifetime 

of its components. 

3.4 Component-Based Software Development 

New software development disciplines are emerging to address the issues associ

ated with component software systems. In particular, component-based development 

(CBD) and component-based software engineering (CBSE) have arisen to provide 

a systematic approach toward the analysis and construction of software systems by 

assembling prefabricated components [30, 48]. 

Amongst the advantages of CBD is the ability to rapidly construct and deploy 

software systems which have a high degree of complexity. By acquiring and inte

grating software components from different vendors, a software developer can rapidly 

construct a fully-functioning software system. If the software components used to 

build the system have been verified to be functionally correct and accurate, then the 

overall system should have a similar level of quality, provided that the components 

were integrated correctly. 

CBD also allows software developers to substitute new components into a given 

architecture so as to meet various nonfunctional requirements (for example, memory 

usage). Ideally, components can be substituted for others that support an identical 

interface and compatible semantics. This allows the development process to quickly 

evaluate the merits of different components in the context of an existing architecture. 

There are many factors, however, that are holding back component-based software 
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development. For example, the lack of a viable component market limits the number 

of components publicly available for reuse. As the component market matures, how

ever, the number of components as well as the domains over which the components 

operate will expand, making component-based development a more realistic option 

in the development of complex software systems. 

One of the reasons for the limited number of components available for purchase 

is the high degree of difficulty in producing a component which is both usable and 

reusable. In order for a component to be usable, the user of the component must be 

able to integrate the component easily into an existing architecture. Because of this, 

a component's interface should be relatively simple and easy to understand. However, 

in order for a component to be reusable, the designer of the component must make 

the component as generic and as flexible as possible so as to allow the component to 

operate in a wide variety of environments. As such, a generic component will typically 

require a more complicated interface. A more complicated interface, while promoting 

reusability, inhibits usability. Naturally, a balance between reusability and usability 

must be achieved. 

During component development, care must be taken to ensure that components 

are both reliable and resistant to change. The component developer must also be 

very clear in documenting the component's constraints and requirements. Because a 

collection of components can be deployed incrementally, the environment of a com

ponent may be constantly changing. As a result, components must be designed to 

be resistant to contextual change. With respect to the incremental component de

ployment mentioned in the previous section, components that are fragile in their 

deployment environment are more susceptible to reliability issues as adjacent com-
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ponents change around them. Component versioning and dependency strategies can 

help ensure inter-component compatibility [30]. 

3.5 Current Component Models 

In industry, components were originally introduced to handle the construction of com

monly used graphical user interface entities. However, as the component landscape 

matured, components have become more flexible to handle more general problem 

domains. Component models essentially provide the foundation upon which com

ponent deployment and communication take place. Component models provide the 

infrastructure through which components can identify each other and subsequently 

interact with one another. This section highlights some of the component models 

prevalent in the industry. 

3.5.1 Common Object Request Broker Architecture (CORBA) 

CORBA is a standard put forth by the Object Management Group (OMG) [80]. 

As such, the standard is platform and vendor neutral. CORBA basically allows for 

distributed objects to locate and interact with one another over an Object Request 

Broker (ORB). Method arguments are marshalled at the client end and transmitted 

over the ORB via a well-defined protocol, typically the Internet-InterORB Protocol 

(IIOP). They are subsequently unmarshalled at the server end, the method is invoked 

and any return values are similarly transmitted back to the client. 

In order to locate objects, CORBA defines the Naming Service which allows ob

jects to be located by name. The naming service is part of the CORBAServices 
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package which also provides support for system-level services such as persistence, 

events, transactions and database queries. Higher level abstractions and constructs 

are defined by CORBAFacilities framework which addresses issues related to both 

the horizontal and vertical application markets. 

One of the strengths of CORBA is the fact that it supports multiple languages 

through the use of an Interface Definition Language (IDL). This language allows the 

developer to define the method signatures and object hierarchy of all the distributed 

objects in a system. A translator is then used to map IDL to a conventional language, 

typically C++ or Java. Hence, libraries of objects written in different languages are 

able to interact with one another. Strictly speaking, because CORBA only provides 

an object-oriented approach to the conventional Remote Procedure Call (RPC), it 

could be argued that CORBA does not conform to the conventional definition of 

component as presented above. Attempts to rectify this have begun recently with the 

introduction of the CORBA Component Model (CCM) by the OMG [104]. 

3.5.2 J2EE / Enterprise JavaBeans 

Enterprise JavaBeans (EJB) from Sun Microsystems is a more recent development 

in the component model industry [88]. This component model, which is part of the 

J2EE framework, offers a relatively mature platform for component deployment and 

interaction. Many attributes from CORBA have been borrowed and enhanced by 

EJB including the concept of a naming service and the communication protocol used 

by EJB components to communicate with one another (IIOP). The J2EE framework 

provides support for the 3-tier architecture in which clients (tier one) communicate 
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indirectly with the EJBs residing on a server (tier two). The EJBs then interface 

with backend databases (tier three) in order to satisfy the clients' request. 

EJBs reside in the context of a container on the server, therefore all communication 

to the EJB must take place through a remote interceptor object which links the client 

with the EJB. The container decides the life cycle of all the EJBs under its domain and 

can instantiate more EJB components as required. This contributes to the scalability 

of the J2EE architecture. The container can also take care of other responsibilities 

such as persistence and security, therefore allowing the EJB developer to concentrate 

solely on the functionality of the component without being distracted with ancillary 

tasks. This separation of responsibility between the EJB and the container allows for 

the construction of a more robust architecture. Parameterization of EJB components 

is made possible via a deployment descriptor. This XML file is placed on the server 

as part of the deployment of the component and offers a way to change the behaviour 

of a system without having to recompile its constituent components. 

Unfortunately, EJB, by definition, is language dependent. However, because the 

EJB specification has adopted the IIOP remote communication protocol, it is possible 

for EJB to communicate with other CORBA objects on a network. The J2EE archi

tecture also has the advantage of being vendor neutral as the specification produced 

by Sun may be implemented by other vendors. Indeed, other vendors such as IBM, 

IONA, and BEA Systems have implemented their own versions of the J2EE architec

ture in addition to Sun. JBoss, a freely available, open-source implementation of the 

J2EE architecture is also available. 
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3.5.3 .Net 

In recent years, Microsoft has proposed the so-called .Net framework. Compared 

to other offerings, it is relatively immature and is intended to be platform neutral. 

Claims of language neutrality have been compromised by the promotion of Microsoft

controlled languages such as Visual Basic and C# as the basis for the .Net framework. 

Despite the level of univendor control, some attempts have been made to duplicate 

this framework outside the confines of the Microsoft platform. Recently, some efforts 

have also been made to make the platform amenable to vendor neutral languages. 

Such efforts may make this architecture worthy of further study in the future. 

3.5.4 Summary 

As the above discussion of component models demonstrates, there is no consistent 

approach to modelling components and their interactions. There are several compet

ing approaches each with their own advantages and disadvantages. CORBA offers 

the most mature technology; however J2EE has been able to adopt many of the more 

successful concepts originated by CORBA to create a viable server-side component 

model. 

Of particular importance is the fact that none of the pragmatic component devel

opment models described in this chapter provides a viable way of determining com

patibility between software components. Apart from the very limited static checking 

of parameter and return types, none of the models makes any attempt to estab

lish the dynamic consistency between components that must be present in order for 

components to successfully interact with one another. 
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Chapter 4 

Formal Component Models 

The previous chapter reviewed some popular definitions of components used in the 

literature. Since all these definitions are informal, they are not suitable to formal, 

automated analysis for the purposes of assessing component compatibility. Therefore, 

formal definitions are required which would allow one to determine if a component

based system satisfies the requirements, especially in terms of compatibility. Sec

tion 4.1 provides an overview of some formal definitions of components quoted from 

the literature. Section 4.2 provides formal definitions related to Petri nets. Section 4.3 

and 4.4 proposes a formal model that uses Petri nets to represent the behaviour of 

component interfaces. Using the concepts in this chapter, a formal definition of com

ponent compatibility is given in the next chapter. 

4.1 Formal Models of Components 

Prior to laying down the foundation upon which component compatibility can be 

established, a formal model of a component, and in particular its interface, must be 



developed. The development of a formal model provides the possibility of automating 

the interconnection of software entities which leads to a software architecture that 

complies with a given software specification. A formal model for representing the 

static and dynamic attributes of component interfaces is presented in subsequent 

sections. 

Apart from the informal definitions of components discussed earlier, more formal 

definitions of components have also been proposed in the literature. Often, a compo-

nent is defined using a BNF formalism. For example, the following is a BNF description 

of a component in which the component's interface, parameters, methods, behaviour 

and context are enumerated [72]: 

component ::= 

component component-name is 
interface componenLmessage_interface 
parameters component-parameters 
methods component-methods 
[behaviour component-behaviour] 
[context component-context] 

end component-name 

Definitions for other syntactical classes, including componenLmessage_interface, com-

ponenLmethods and component-behaviour are also provided. Using formal grammars 

for component definitions facilitates the possibility of automatic code generation. 

Also, by having a comprehensive collection of well-defined software components, the 

likelihood of finding a component that accomplishes a required task is increased, 

thereby promoting the potential for reuse. However, such syntactic definitions can-

not address the dynamic behavioural aspects of component descriptions. 

Another avenue towards component specification and representation is to apply a 

more mathematical approach [8]. For example, if Components, Interfaces and Con-
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nections denote the sets of all components, interfaces and connections, respectively, 

then the relationships between these entities can be formalized through functional 

descriptions. The association of an interface with a component can be described by 

the function assigned: 

assigned: Interfaces---+ Components. 

Similarly, the concept of a connection between the interfaces of two components is 

specified by a relation: 

connifs: {{i,j} I i,j E Interface 1\ i i= j}. 

Many other aspects, such as interface and component behaviour, component compo-

sition and various constraints can also be defined similarly. This approach towards 

formal component specification is sufficiently generic and can be used to define com-

ponent interaction in a variety of contexts. Unfortunately, this model results in a 

very static representation of the underlying architecture implemented by the deployed 

components. As a result, the model is insufficient for modelling the modification of 

a component's behaviour during runtime; the model is unable to distinguish between 

design time and execution time. 

As with architecture description, there have been several attempts, recently, to use 

the Unified Modelling Language (UML) as a basis for component definition and rep

resentation [58]. Indeed, version 1.5 of the UML specification provides the following 

definition of a component [79]: 

"A component represents a modular, deployable, and replaceable part of a 
system that encapsulates implementation and exposes a set of interfaces . ... 
A component conforms to the interfaces that it exposes, where the interfaces 
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represent services provided by elements that reside on the component. A 
component may be implemented by one or more artifacts, such as binary, 
executable, or script files. A component may be deployed on a node." 

Unfortunately, the UML specification, which was primarily designed to model 

object systems, contains several semantic overlaps that make it less than ideal for 

component modelling. In addition, issues regarding connection mechanisms are not 

fully addressed by UML 1.5. Other problems include the inability to accurately model 

all the nuances of specific component technologies, such as EJB and CCM (described 

in Section 3.5). With the advent of UML 2.0 and the notion of "UML Profiles," many 

of these problems may be addressed, thereby making UML more amenable to the 

description of component-based systems and software architectures, in general [84]. 

4.2 Petri Net Component Models 

As indicated earlier, several attempts have been made to define a component: many 

of these attempts have been summarized in [102]. Informally, a component can be 

thought of as a cohesive logical unit of abstraction with a well-defined interface, that 

provides services to its environment. In order to behave correctly, the component 

would also likely require the services of other components in its environment. 

Some attempts to formally define a component and its behaviour have made use 

of Petri nets [108]. Component composition and compatibility assessment using Petri 

net models are established in the literature [57, 92]. Related to this area is the 

composition and interoperability of web services [68] and verification of workflow 

composition [107]. While the method presented herein shares high-level concepts 

with those presented in the literature, this method of composition and compatibility 
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assessment is fundamentally different from those proposed by earlier efforts. In par

ticular, the composition strategy is based on sharing the labels rather than elements 

of net models, so the interface is composed of services rather than messages or mes

sage channels. This work is a further refinement of an earlier composition attempt 

presented in [29], in that this approach supports multi-requester and multi-provider 

composition scenarios. 

For verification of component compatibility, the low-level, internal details of the 

component will be disregarded as they are not important in the formalism discussed 

below. The focus of attention is on the behaviour at the level of the components' 

interfaces and not the internal dynamics of the components themselves. While it 

is certainly true that there may be an inseparable relationship between a compo

nent's internal behaviour and the dynamics manifested at the component's interface, 

this model will concentrate only upon the interface itself. The relevant behavioural 

properties that are necessary to ensure compatibility between components manifest 

themselves at the components' interface, thereby rendering internal communications 

irrelevant unless they affect the interface behaviour. 

The definitions and concepts in subsections 4.2.1 and 4.2.2 are taken from [33, 

78, 86, 115]. The remaining subsections introduce new structural concepts and a 

deadlock detection strategy which are used in subsequent chapters to help simplify 

and analyze Petri net models. 
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4.2.1 Petri Nets 

Petri nets [86] have been proposed, by Carl Adam Petri, as a simple and convenient 

formalism for modelling systems that exhibit concurrent actions. Traditional for

malisms, developed for analysis of systems with sequential behaviour, are inadequate 

for representation of concurrent activities and their synchronization. 

Petri nets are bipartite directed graphs, in which the two types of nodes, called 

places and transitions, represent conditions and events (Petri nets are sometimes 

called condition-event systems). An event can occur only when all conditions as

sociated with it, and represented by arcs directed to the event node, are satisfied. 

An occurrence of an event usually satisfies some other conditions, indicated by arcs 

directed from an event node. In effect, an occurrence of an event causes some other 

event(s) to occur and so on. 

Definition: A place/transition Petri net (sometimes also called a net structure) N is 

a triple N = (P, T, A), where Pis a finite set of places (which represent conditions), 

T is a finite set of transitions (which represent events), and A is a set of directed arcs 

connecting places with transitions and transitions with places, A~ P x TUT x P. (A 

is sometimes called the flow relation or causality relation, and can also be represented 

in two parts, a subset of P x T and a subset ofT x P.) For each place p E P and 

each transition t E T, the input and output sets are defined as: 

Inp(p) = { t E T I (t,p) E A }, 

Out(p) = { t E T I (p, t) E A }, 

Inp(t) = {pEP I (p, t) E A }, 

Out(t) = {pEP I (t,p) E A }. 
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The structure of a net can be represented by a matrix which denotes the connectivity 

between the places and transitions of the net. 

Definition: A connectivity matrix (or incidence matrix), C, of a net N = (P, T, A) 

is a matrix in which the rows correspond to places, the transitions correspond to 

columns, and the entries are defined by: 

-1, if PiE Inp(ti)- Out(ti), 

Vpi E P Vti E T: C[i,j] = +1, if PiE Out(ti)- Inp(tj), 

0, otherwise. 

As will be shown later, the connectivity matrix can be used to determine various 

properties of nets. 

The dynamic behaviour of a net is represented by marking functions which assign 

a non-negative number of tokens to each place of a net. 

Definition: A marked net, M, is a pair M = (N, m0), where N is a net structure, 

N = (P, T, A), and mo is the initial marking function, m0 : P ~ { 0, 1, ... }. Marked 

nets are also defined as M = (P, T, A, mo). A place which is assigned a nonzero 

number of tokens is called a marked place. Otherwise, it is called an unmarked place. 

A marking function (or, more simply, a marking) is commonly represented as a 

(column) vector in which the number of elements is equal to the number of places in 

the net and each element represents the number of tokens in the corresponding place 

of the net. 

Under certain conditions, the tokens can "move" in the net, changing one marking 

into another. 

Definition: In a marked net M = (P, T, A, mo), a transition t E Tis enabled by the 

marking m0 if all its input places are marked by mo; the set of all transitions enabled 
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by m0 is denoted E( m0 ): 

E(mo) = { t E T I Vp E lnp(t) : mo(p) > 0 }. 

Each transition, which is enabled by a marking, can fire (or, an event represented 

by this transition can occur). An occurrence of an event removes (simultaneously) a 

single token from all input places of the transition representing the occurring event, 

and (also simultaneously) adds a single token to all output places of this transition. 

An occurrence of an event represented by transition t enabled by marking m 

creates a new marking m' which is directly reachable (i.e., reachable in one step) 

from m. 

Definition: In a net N = (P, T, A), a marking m' is directly reachable from a marking 

m, m ~ m', if there exists t E E(m) such that: 

m(p)- 1, if p E lnp(t)- Out(t), 

Vp E P: m'(p) = m(p) + 1, if p E Out(t) - lnp(t), 

m(p), otherwise. 

If an enabled transition tk fires in marking m, then the new marking, m', can be 

determined using the connectivity matrix: m' = m + C[*, k], where m and m' are 

column vectors which represent the markings before and after the firing, respectively, 

and C[*, k] represents the kth column of C, i.e., the column which corresponds to the 

transition tk. 

Definition: A marking m' is generally reachable from a marking m, m 8 m', if there 

exists a sequence of (intermediate) markings mi0 , mi11 ••• , mik such that mio = m, 

mik = m', and ffiit-1 ~mit fore= 1, ... 'k. 
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Definition: The set of reachable markings of a marked net M 

M(M), is the set of all markings reachable from m 0 in M: 

M(M) = { m: P ~ { 0, 1, ... } I mo 8 m }. 

(P,T,A,mo), 

The set of reachable markings can be finite or infinite. If it is finite, the net is bounded, 

otherwise it is unbounded. If a marked net M is bounded, there exists a constant k 

(called the bound) such that: 

Vm E M(M) Vp E P: m(p) ~ k. 

If this bound is equal to 1, the net is called safe. 

Definition: A place is shared iff its output set contains more than one transition: 

pis shared¢:? card(Out(p)) > 1. 

A net which does not contain shared places is (structurally) conflict-free. 

Definition: A place is (structurally) free-choice iff all transitions sharing it have 

identical input sets: 

pis free-choice¢:? Vti, ti E Out(p) : Inp(ti) = Inp(ti)· 

A net is free-choice if all its shared places are free-choice. 

For a free choice place p in a net N, a marking m either enables all transitions 

sharing p, or none of these transitions is enabled by m. 

Definition: A marked net M is dynamically conflict-free iff for all reachable markings 

and for each place p, at most one transition in the output set of pis enabled by m: 

M is dynamically conflict-free¢:? Vm E M(M) Vp E P: card(E(m) n Out(p)) ~ 1. 
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Conflict-free nets represent systems with deterministic behaviours i.e., systems in 

which the "next actions" are always uniquely determined. There are several sub-

classes of Petri nets, such as state machines and marked graphs, for example. More 

information on these subclasses can be found in [78]. 

A sequence of transitions ( ti1 , ti2 , ••• , tik) is a firing sequence at marking m if ti1 

is enabled by m, ti2 is enabled by the marking obtained by firing ti1 , and so on. 

Definition: A firing sequence at marking m, cr(m), in net N is defined as: 

where E(m) is the set of transitions enabled by m. The set of all firing sequences at 

the initial marking mo of Mi is denoted by F(Mi). 

Each firing sequence cr can be described by a firing vector which indicates the 

number of occurrences of each transition in the sequence cr. 

Definition: The firing vector, fu, of a firing sequence cr is a mapping fu : T ~ 

{0, 1, ... }, where fu(t) is the number of occurrences oft in cr. The firing vector of cr 

is also known as a Parikh vector of cr. 

It should be observed that a firing vector does not uniquely identify a firing se-

quence - a valid firing vector may correspond to many possible firing sequences in a 

marked net. 

Definition: A net M = (P, T, A, m 0 ) is live if, for all transitions t E T, and any 

marking m reachable from m0 , t can fire in m or some subsequent marking reachable 

from m: 

M is live{::} Vm E M(M) \It E T 3m' E M(M) : m 8 m' 1\ t E E(m'). 
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Live nets correspond to systems in which all events can occur (eventually). Absence 

of the liveness property may indicate some sort of "problem" in the system. A net 

which is not live contains a deadlock or a livelock. 

Definition: A marking m in net N = (P, T, A) is dead if it does not enable any 

transition, i.e., 

m is dead{:} E(m) = 0. 

If the set of reachable markings of M = (N, mo) contains a dead marking, then M 

contains a deadlock: 

deadlocked(M) =:3m E M(M) : E(m) = 0. 

Deadlocks in Petri nets can be analyzed by checking the sets of reachable markings 

(for bounded nets) or by studying structural properties of nets. The concepts of 

siphons and traps [43] are commonly used in the structural analysis of nets. 

Definition: A siphon in a net N = (P, T, A) is a subset of places S ~ P such 

that Inp(S) ~ Out(S), where Inp(S) = UsES Inp(s) and Out(S) = UsES Out(s). A 

minimal siphon is defined as a siphon which does not include any other siphon. A 

siphon is proper if Inp(S) c Out(S). A basis siphon is a siphon that cannot be 

represented as a union of other siphons. 

It can be observed that any union of siphons is also a siphon and that all minimal 

siphons are also basis siphons. Any siphon in a net contains one of the minimal 

siphons and any siphon in a net can be represented by the union of one or more basis 

siphons. In a siphon S, all input transitions are also output transitions of S, so if 

S becomes unmarked, it remains unmarked for all subsequent markings. It can be 

shown that for each dead marking m in a net N, the set of unmarked places is a 
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siphon [74]. Algorithms for extracting basis and minimal siphons in a net are well 

established in the literature [11, 52]. Unfortunately, in the general case, the running 

time of these algorithms is not polynomial [28, 103]. 

Definition: A trop in a net N = (P, T, A) is a subset of places Q ~ P such that 

Out(Q) ~ lnp(Q). A minimal trop is defined as a trap which does not include any 

other trap. A marked trop is defined as a trap which has at least one of its places 

marked. 

If the input and output transitions of a subset of places are the same, then the 

subset of places represents both a trap and a siphon. This is known as a siphon-trop. 

4.2.2 Siphons and Liveness 

Siphons are an important concept in determining liveness of a net. If a marking 

reachable from the initial marking results in a siphon becoming unmarked, (i.e., all 

places of the siphon are unmarked), then the net cannot be live. Deadlock-freeness 

can be asserted by ensuring that each minimal siphon in the marked net can never 

become unmarked [43]. 

Whether or not a minimal siphon, S, can become unmarked can be determined 

by minimizing the number of tokens in the siphon. This is typically formulated as a 

linear programming problem [25, 27, 74, 93, 94]: 

min ( L m(p)) subject to: x ~ 0; m = mo + Cx ~ 0 
pES 

where C is the connectivity matrix of N, x is the yet unknown firing vector that 

minimizes the number of tokens in the siphon and m is the final marking obtained 

from the initial marking mo by the firing vector x. Because no place in any marking 
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can ever have a negative number of tokens, all elements in the final marking vector 

must be greater than or equal to zero, which is indicated in the constraints above. 

The objective function can also be expressed as: 

L:m(p) L (mo(P) + C[p, *]x) 
pES pES 

L (mo(p) + I:x[t]- I:x[t]), 
pES tEinp(p) tEOut(p) 

where C [p, *] is the row vector of C corresponding to place p. The constraints for the 

linear programming problem can be formulated as follows: 

x(t) 2:: 0, t E T; 

mo(p) + L:x(t)- L:x(t) 2:: 0, pEP. 
tEinp(p) tEOut(p) 

It can be observed that the objective function is derived from rows in the connectivity 

matrix that correspond to the places in the siphon, whereas the constraints are derived 

from all rows (places) in the connectivity matrix, and not just those in the siphonS. 

If a solution of the linear programming problem exists, it is provided as a firing vector, 

which does not take into account the ordering of firing transitions. It is possible that 

the solution of the linear programming problem has no corresponding firing sequence; 

a simple example of such a situation is presented in the next section. Therefore, each 

solution of the linear programming problem is followed by a verification step which 

checks if the firing vector is feasible. This can be done by a recursive function which is 

analogous to backtracking in classic AI searches [13]. An example of such a function 

feasible is given in Figure 4.1. The function takes, as arguments, the net N, the initial 

marking m0 and the firing vector x which is the solution of the linear programming 

problem. The function returns a firing sequence that corresponds to the firing vector 
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func feasible(N,m,x): sequence 
begin 

var m' ' x' 
/* the new marking *I 

' /* the new firing vector *I 
f; /* the (partial) firing sequence *I 

if zero(x) then 
return(<>) /*the empty sequence* I 

endif; 

for each tin enable(N, m) do 
if x[t] > 0 then 

x' := x; 
x'[t] := x'[t]- 1; 
m' := fire(N, m, t); 
f := feasible(N, m', x'); 
if f =f fail then 

return(< t, f >) 
endif 

endif 
endfor; 
return( fail) 

end 

Figure 4.1: Function feasible 

x, if one exists, or fail if one does not. The enable function in Figure 4.1 returns the 

set of transitions in the net that are enabled by the given marking. The fire function 

takes a net, its marking and a transition and returns the new marking that results 

from firing the transition. The zero function takes a vector and returns true if all 

the elements in the vector are zero. 

If the firing vector is deemed feasible by the procedure, then it creates an un-

marked siphon so the net cannot be live. As with many backtracking algorithms, 

this algorithm is exponential with respect to the magnitude of non-zero elements in 

the initial vector x. However, in practice, the magnitude of the non-zero elements 
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returned by the linear programming minimization procedure is typically quite low. 

Indeed, in larger nets, the number of zero elements in the vector may be quite high, 

thereby mitigating the time required to test the feasibility of the vector. 

In the general case, linear programming cannot be used directly to find deadlocks 

because the condition that all transitions are disabled (so there is a deadlock), can 

be a nonlinear one. However, if the net is an event graph (i.e., each transition has 

exactly one input and one output place), the deadlock can be determined directly 

using linear programming as a solution of the following problem: 

min (2:: m(inp(t))) subject to: mo + Cx ~ 0, x ~ 0, 
tET 

where Cis the connectivity matrix of Nand inp: T ~ P, i.e., inp(t) determines the 

single input place for a transition, t. 

This property forms the basis of yet another approach to deadlock detection [55, 

56, 75], which first unfolds the (general) net to a simple occurrence net (reduced 

to a finite prefix which represents all important properties of the original net), and 

then uses linear programming to check if this finite prefix indicates a deadlock in the 

original net. It has been shown [69] that in some cases, the unfolding results in a 

very compact net, but in the general case, the unfolded net can be quite complex [56]. 

Unfolding strategies can also be employed for reachability analysis as well [35]. 

4.2.3 Example One 

This section provides a comprehensive example of a Petri net to demonstrate many 

of the concepts introduced in the previous section. Figure 4.2 is a Petri net with five 

places (represented by circles), four transitions (represented by rectangles) and eleven 
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arcs. Inp(ta) = {p4,p5} and Out(p5) = {ta, t4}, for example. Its initial marking is 

represented by the column vector m0 = [1, 0, 1, 0, OjT; the solid black circles in p1 and 

p3 represent the tokens of the initial marking. 

P1 P2 

Ps 

Figure 4.2: A Petri net 

The connectivity matrix of this net is as follows: 

+1 -1 0 0 
-1 0 0 +1 

C= -1 0 +1 0 
+1 0 -1 0 

0 +1 -1 -1 

Since p5 is a shared place, the net is not conflict-free. The places PI, p2, Pa and 

p4 are all (trivially) free-choice. However, place p5 is not free-choice since lnp(t3 ) =/= 

lnp(t4). For the shown initial marking, the net is not dynamically conflict-free because 

the marking [0, 0, 0, 1, 1 jT, reachable from m0 , enables two transitions, t3 and t4. 

The only transition initially enabled in the net is t2. As it fires, the token is 

removed from p1 and is added to p5 , creating marking, [0, 0, 1, 0, 1jT which enables t4. 

t3 is not enabled by this new marking since p4 E lnp(ta) is not marked. 

53 



When t2 fires, the marking changes from m0 = [1, 0, 1, 0, OjT to [1, 0, 1, 0, OjT + 

[-1, 0, 0, 0, 1]T = [0, 0, 1, 0, 1]T. When t4 then fires, the new marking is [0, 0, 1, 0, 1]T + 

[0, 1, 0, 0, -1jT = [0, 1, 1, 0, o]T. The transition sequence (t2, t4, t}, t2) is a firing se-

quence for this Petri net. This firing sequence is represented by the firing vector 

[1, 2,0, 1]. 

The list of all reachable markings for this net is given in Table 4.1, in which 

markings 5 and 6 constitute dead markings. 

Table 4.1: Reachable markings of the net in Figure 4.2 

I Node I Marked Places I Firing Transition I Next Marking I 
0 {Pt,P3} t2 1 
1 {p3,Ps} t4 2 
2 {p2,P3} tl 3 
3 {Pt,P4} t2 4 
4 {p4,Ps} t3 5 

t4 6 
5 {p3} - -

6 {p2,P4} - -

An alternative way to assess deadlock-freeness is to perform structural analysis 

and linear programming. The siphons and traps of this net, as well as their minimal 

counterparts and the basis siphons, are presented in Table 4.2. The subsets of places 

{PbP2,P3,Ps} and {p3,p4} are both siphon-traps. 

The test for deadlock-freeness is initially based on the minimal siphons, {PI,P2,Ps}, 

{PbP3,Ps}. For S = {PllP2,Ps}, the minimization objective function is: 

I:m(p) 
pES 

1- Xt3 
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Table 4.2: Siphons/traps in Figure 4.2 

Siphons: {p~, P2, P3, P4, Ps}, {p~, P2, P3, Ps}, {p~, P2, P4, Ps}, 
{Pt,P2,Ps}, {p~,p3,P4}, {p~,p3,P4,Ps}, {Pt,P3,Ps}, 
{p3,p4} 

Minimal Siphons: {Pt,P2,Ps}, {PI,P3,Ps}, {p3,p4} 
Traps: {PI,P2,P3,P4,Ps}, {Pt,P2,P3,Ps}, {p2,P3,P4}, 

{P2,P3,P4,Ps}, {p3,P4} 
Minimal Traps: {p~, P2, P3, Ps}, {p3, P4} 
Basis Siphons: {Pt,P2,P4,Ps}, {Pt,P2,Ps}, {PI,P3,P4}, {Pt,P3,Ps}, 

{p3,P4} 

This objective function is derived by adding all rows of the connectivity matrix that 

correspond to each place in the siphon {Pt,P2,Ps}. For example, the (xt1 - Xt2 ) term 

corresponds to the first row (p1) of the matrix and the subsequent terms correspond 

to the second and fifth rows (p2 and p5 ). The number of tokens in the siphon at the 

initial marking is added to the objective function. 

Hence, the linear programming problem is to minimize 1 - Xt3 , subject to the 

constraints: 

P1: Xt1 - Xt2 + 1 ~ 0, 

P2: -Xf! + Xt4 ~ 0, 

P3: -Xt1 + Xt3 + 1 ~ 0, 

P4: Xtl - Xt3 ~ 0, 

Ps: Xt2 - Xt3 - Xt4 ~ 0, 

Xt 1 ~ 0, Xt2 ~ 0, Xt3 ~ 0, Xt4 ~ 0. 

The first five constraints correspond to places of the net and specify that the number 

of tokens in each place cannot be negative. The final group of constraints simply 

states that all transitions cannot fire a negative number of times. 

Solving this problem gives the vector [1, 2, 1, 1], which can be verified by the fea-
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sible function to correspond to the firing sequence: (t2, t 4 , i}, t2, t3) which empties the 

siphon and also results in the net becoming deadlocked. Using the same technique on 

the other siphon, {p11 p3,ps}, results in the firing vector [1, 2, 0, 2], which corresponds 

to the firing sequence (t2, t4, t 11 t2, t4). This provides another means of creating a 

deadlock. In this particular example, it is not necessary to examine the basis siphons 

in order to determine if a deadlock is present. However, as will be shown in a subse

quent example, examination of the basis siphons may be needed to obtain a deadlock 

in the net. If a deadlock cannot be obtained by minimizing the number of tokens in 

any sequence of basis siphons, then the net is deadlock-free. 

To illustrate an example in which linear programming can yield an infeasible 

vector, consider the simple net given in Figure 4.3. The objective function associated 

Figure 4.3: A Petri net with an infeasible firing vector 

with the minimal siphon {p2} is 1 - Xt2 - Xt3 • The constraints obtained from the 
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connectivity matrix are: 

PI : Xtt + Xt2 - Xta ~ 0, 

P2 : 1- Xt2 - Xt3 ~ 0, 

P3 : -Xt1 + Xt3 ~ 0, 

Xt1 ~ 0, Xt2 ~ 0, Xt3 ~ 0. 

The firing vector [1, 0, 1] satisfies the constraints while minimizing the objective func

tion to zero. However, this vector violates the feasibility test (because in the initial 

marking, neither t1 nor t3 can fire) and this vector must therefore be rejected during 

deadlock analysis. 

For larger net models, the extraction of the minimal and basis siphons can become 

more troublesome because of the time complexity. This can be mitigated by elim

inating "similar" siphons of the net while still preserving the underlying structural 

properties of the net that may generate a deadlock. This is the topic of the next 

section. 

4.2.4 Similar and Essential Siphons 

In many net models, the number of siphons increases very quickly with the size of 

the model. It appears, however, that for deadlock detection, only a small number of 

siphons is needed. The concepts of essential siphons and siphon similarity are intro

duced to determine which siphons are important and which are not when determining 

deadlock in a Petri net. 

Definition: Two siphons S1 and S2 in a net M are similar, St "' S2, if for all 
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reachable markings either both are marked or both are unmarked: 

81 rv 82 {::} Vm E M(M) : mark(81, m) = 0 {::} mark(82, m) = 0 

where mark(8,m) = 'EvEsm(p). 

Corollary 4.1 The relation of siphon similarity is an equivalence relation on the set 

of siphons of a marked net M, so it implies a partition of this set into classes of 

similar siphons. 

The corollary is a straightforward consequence of the definition of similar siphons. 0 

Definition: Set 8 = {81, 82, ••• , 8n} is the set of essential siphons forM if no two 

siphons in 8 are similar and if any other siphon of M is similar to one of the siphons 

in 8. 

Corollary 4.2 The set of essential siphons of a net M contains one siphon from 

each equivalence class of the siphon similarity relation. 

The corollary is a straightforward consequence of the definition of essential siphons. 

0 

As a consequence of this corollary, non-essential siphons of M can be eliminated 

by removing from M elements which create similar siphons. 

Definition: A simple path in a net N is a sequence of transitions and places 

"lioPi1 titPi2 ••• Pik tik, such that: 

(Vl -5: j '5: k : Inp(pij) = { tij_J 1\ Out(pij) = { tij}) 1\ 

(Vl -5: j < k : Inp(tij) = {Pij} 1\ Out(tij) = {Pii+J). 

58 



Each simple path is denoted path(ti0 , tik), though there can be several simple paths 

connecting tio and tik. In order to represent the places along a path, the places 

function can be used to "extract" the places for a given path, 1r: 

{p} U places(o-), if 1r = po-, 

places ( 1r) = places ( o-), if 7r =to-, 

0, if 7r =c. 

There are two classes of paths in a net that can lead to simplifications that do not 

adversely affect the net's behavioural properties with respect to deadlock analysis. 

These paths are called parallel paths and alternate paths and are defined in the 

following subsections. 

4.2.4.1 Parallel Paths 

Informally, parallel paths are represented by a pair of delimiting transitions that 

encompass two (or more) simple paths, as illustrated in Figure 4.4. 

Definition: Parallel paths are any two simple paths which connect the same transi-

t· J 

Figure 4.4: Parallel paths in a Petri net 
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Definition: Two or more simple paths are equally marked if they all possess at least 

one token or if they all possess no tokens in the initial marking. 

It can be observed that if two or more parallel paths are equally marked, then if 

a siphon contains the set of places in one of the parallel paths, then similar siphons 

exist that contain places in each of the other parallel paths. 

Corollary 4.3 For equally marked parallel paths 1r1 and 1r2 , ifplaces(7r1 ) is a subset 

of siphon Si in M, then places(1r2) is a subset of another siphon Si which is similar 

to si, si 1'-J sj. 

This corollary follows as a consequence of the definition of siphons and similar siphons. 

0 

Corollary 4.4 If a net M has parallel paths, then the set of essential siphons for 

M', a net obtained from M by removing one of the parallel paths, is also a set of 

essential siphons for M. 

This corollary is a straightforward consequence of Corollary 4.3 and the definition of 

essential siphons. o 

Eliminating nonessential siphons forM can thus be performed by first reducing M 

until it has no parallel paths, and then finding minimal/basis siphons in the reduced 

net. A procedure that identifies parallel paths in a given net is shown in Appendix C. 

4.2.4.2 Alternate Paths 

Informally, alternate paths are delimited by two or more pairs of transitions which 

envelop simple paths. In addition, all of the transition pairs share a common simple 

path, known as the base, as illustrated in Figure 4.5. 
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Definition: An alternate path in a net N = (P, T, A) is a collection of disjoint, 

simple paths path(tiu til), path(ti2 , th), ... , path(tin, tjJ, tit =/= tik' tit =/= tik' for 1 ::; 

f < k::; n, with an additional simple path (called the base), path(pi,Pi) connected to 

t.,~----~--~~·------~~ t;, 
I~ I 

,J/'_-------- ~~~---------- ~: 
lJ---..o • . . . ~---~ 

Figure 4.5: Alternate paths in a Petri net 

Corollary 4.5 For alternate paths 1r1, ... , 1rk with base 7ro, if places(1ri) is a subset 

of a siphon Si in M, then places(7ro) is a subset of another siphon St which is similar 

This corollary is a straightforward consequence of the definition of essential siphons 

and alternate paths. 0 

An algorithm to identify all alternate paths in a net N is described in detail in 

Appendix C. 

Corollary 4.6 If a net M has alternate paths, then the set of essential siphons for 

M', a net obtained from M by removing the base of alternate paths, is also a set of 

essential siphons for M. 

61 



This corollary is a straightforward consequence of the definition of essential siphons 

and alternate paths. D 

By removing the bases of all alternate paths in a net, siphon extraction becomes 

less troublesome since the number of (inessential) siphons is reduced. 

4.2.5 Deadlock Checking 

The reduction of parallel and alternate paths preserves the deadlocks of the original 

model, so a simpler, reduced net can be examined for deadlock. If none of the minimal 

siphons can be emptied of their tokens, then the net is deadlock-free. If, however, 

(some) minimal siphons can be emptied and the resulting marking is not dead, then 

further analysis is required to determine whether or not a deadlock actually exists 

in the net. Therefore, a systematic, siphon-based verification of deadlocks in marked 

Petri nets recursively tries to empty as many siphons as possible. The performance of 

this procedure is improved if only essential siphons are considered, but this essentiality 

of siphons is not necessary. 

The recursive algorithm to detect the presence of a deadlock is presented in Fig

ure 4.6. While this deadlock detection algorithm is believed to be original, other 

techniques related to deadlock prevention and avoidance are also available [63]. The 

algorithm takes a marked net (N, m) and the set of minimal and basis siphons, S 

and Sb, respectively, and determines if there is a sequence in which the siphons can 

be emptied to produce a deadlock. 

The deadlock function initially tests the marking of the net to determine if it is 

dead. If so, the function returns immediately, terminating any recursion. If not, the 
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func deadlock(N, m, S, Sb) : boolean 
begin 

var m' 
' I* the new marking *I 

/* the new siphon set *I S' 
n, 
v· 

' 

' 
/*the minimum number of tokens in a siphon* I 
I* the minimizing firing vector *I 

if enable(N, m) = 0 then 
return true 

endif; 
if S # 0 then 

for each s in S do 
v, n := lp_minimize(N, m, s ); 
if not zero( v) and n = 0 and feasible(N, m, v) then 

m' :=m+C x v; 
S' := marked(m', S); 
if deadlock(N, m', S', Sb) then 

return true 
endif 

endif 
endfor 

endif; 
if sb # 0 then 

return deadlock(N, m, sb, 0) 
endif; 
return false 

end 

Figure 4.6: FUnction deadlock 

function iterates over each marked siphon, testing if the siphon can become empty. 

The lp_minimize function takes a marked net and a siphon and attempts to minimize 

the number of tokens in the siphon using linear programming. This function returns 

the minimum number of tokens that the siphon can possess ( n) as well as a firing 

vector which minimized the tokens ( v). If the siphon can be emptied and the vector 

is feasible, the marking of the net is updated and the marked function is used to 
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determine the subset of siphons that still possess tokens under the new marking. The 

deadlock function is then called recursively to try to empty other siphons, if necessary. 

Because the number of minimal siphons is typically quite small, the deadlock 

function is initially run on the set of minimal siphons to determine if they can be 

emptied to produce a deadlock. The initial invocation of the function is as follows: 

where mo is the initial marking Sm is the set of minimal siphons and Sb is the set of 

basis siphons. If a deadlock is not obtained by analyzing minimal siphons, the function 

undergoes a second round of recursion, as shown near the bottom of Figure 4.6: 

deadlock(N, m, sb, 0) 

The same algorithm is used to identify a deadlock, but this time the basis siphons, Sb 

are used instead of the minimal siphons. If no sequence of basis siphons can be found 

which, when emptied, results in a deadlock, then the net is deadlock-free. In the 

worst case, due to the implicit backtracking, the complexity of the deadlock function 

is exponential with respect to the number of siphons. But because a deadlock can 

usually be reached by several paths, even large net models can be analyzed quite 

efficiently as illustrated in Chapter 6. 

4.2.6 Example Two 

To demonstrate other features of the deadlock algorithm, the unbounded net pre

sented in Figure 4. 7 is analyzed. This net has several parallel paths and an alternate 

path. The eliminated parallel paths and the base of the alternate path are denoted 
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Figure 4. 7: Petri net for example two 

by dashed and dotted lines, respectively, in Figure 4.8. Elimination of these paths 

does not adversely affect the deadlock analysis of the net. 

The original net has a total of 91 basis siphons, 15 of which are minimal siphons, 

and another 15 of which are siphon-traps. Although the number of siphons is not 

particularly large, removing the parallel and alternate paths can dramatically reduce 

the number of siphons in the net that need to be analyzed. After simplification, 

the reduced net has just four basis siphons, two of which are minimal. The other 

two siphons are actually (marked) siphon-traps, so they can be disregarded for the 
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Figure 4.8: A Petri net with parallel and alternate paths identified 

purposes of deadlock analysis as they cannot become empty. As a result, the relevant 

basis siphons and the minimal siphons are identical in this case. The basis and 

minimal siphons are shown in Table 4.3 and the minimal siphons are illustrated in 

Figure 4.9. The constraints, as deduced from the connectivity matrix of the reduced 

net are presented in Table 4.4. (The constraint that each transition must fire a 

non-negative number of times is not explicitly given in the table.) Note that the 

"self-loops" between the place/transition pairs p?/t6, p12 /t6 and PI4/tg result in extra 

constraints that must be satisfied by the linear programming minimization. 
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Table 4.3: Siphons in Figure 4.9 

Minimal Siphons: 81 = {P6,Ps,Pg}, 
82 = {PI2,P13,PI5} 

Basis Siphons: 83 = {p6,pg,pg}, 
84 = {p6,P7,Ps,pg}, 
Ss = {PI2,PI3,PI5}, 
86 = {PI2,PI3,PI4,PI5} 

Pu --------

Figure 4.9: A Petri net with parallel and alternate paths removed 

The marked net and the minimal siphons (81, 82), both of which are marked, are 

passed into the deadlock function. The objective function 1- Xt6 , corresponding to 

81, can be minimized to zero by the firing vector [1, 1, 1, 1, 0, 0, 0, OJ which corresponds 
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Table 4.4: Constraints for the Petri net of Figure 4.9 

l Place l Constraint 

P6 Xt3 - Xt5 ~ 0 
P7 Xt5 + Xt6 ~ 0 
P7 Xt5 - Xt6 ~ 0 
Ps Xt5 - Xt7 ~ 0 
pg -Xt3 - Xt6 + Xf7 + 1 ~ 0 

P12 Xt6 - Xt9 + Xt 10 - Xt 11 + 1 ~ 0 
P12 -Xt6 - Xt9 + Xt10 - Xt11 + 1 ~ 0 
P13 -XtlO + Xt13 ~ 0 
P14 Xt9 + Xt13 ~ 0 
P14 -Xtg + Xt13 ~ 0 
P15 Xt11 - Xt13 ~ 0 

to the feasible firing sequence (t3 , t 5 , t7 , t6 ). This firing sequence marks places P7 and 

p12. The function then recurses, checking the updated siphon set {82 } and the new 

marking. The objective function corresponding to 82 , i.e., 1-Xt9 , is then minimized to 

zero by the firing vector [0, 0, 0, 0, 1, 1, 1, 1]. The corresponding feasible firing sequence 

is (t11 , t13, t 10 , t9), which marks p7 and p14 . This is a dead marking which causes the 

recursion to unfold. 

This example also shows that the ordering of siphons can influence the behaviour of 

the deadlock algorithm. If the siphons are analyzed by the deadlock function in reverse 

order (i.e., first 8 2 then 8 1) then 8 2 would become empty by firing (tn, t13, tw, tg) 

resulting in p9 and p14 becoming marked. However, at this point, 81 cannot be 

emptied of its token since t6 can never fire. Therefore, the function would return 

false, causing the recursion to unfold and an attempt would then be made to empty 

the next siphon, 8 1, in the original marking. This attempt would be successful and 

the function would recurse with the new siphon set {82 }. The remaining siphon in 

this set, 8 2 , could also be emptied, producing the same deadlock as demonstrated 
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earlier. 

A further example in which the set of relevant basis siphons is different than the 

set of minimal siphons is presented in Chapter 6. 

The existence of deadlock is used to assess component compatibility, as will be 

described in Chapter 5. Prior to this, the fundamental notions of interface models 

and interface languages are needed, which are described in the next section. 

4.3 Interface Models 

Component interfaces are represented by cyclic Petri nets in which labels are associ

ated with transitions. 

Definition: A model of a component's interface is a labelled Petri net: 

where (Pi, 7i, Ai, mi) is a deadlock-free, marked Petri net, Li is an alphabet repre

senting a set of services which are associated with transitions by a labelling function 

R.i : 1i -+ Li U { c}, where c is the empty label, c ~ Li, and Fi is a set of final markings, 

Fi ~ M(Mi)· Final markings are used to indicate sequences of firings in cyclic nets. 

This is somewhat similar to the concept of final states in finite automata. 

It is believed that requiring an interface net to be live is overly restrictive, hence 

only the weaker condition of deadlock-freeness is imposed upon the net. While this 

may mean that some of the services may become disabled, this may have been the 

intention of the original interface designer, particularly if some services can be used 

just once or a limited number of times. A component interface is usually represented 
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by a net in which Fi = {mi}, i.e., the set of final markings contains just the initial 

marking. A simple example of an appropriately marked and labelled interface is 

presented in Figure 4.10. 

b c 

Figure 4.10: A component interface with services a,b,c and d 

In any software system, there will naturally be many components and each com-

ponent can have several interfaces. In order to represent communication between 

components, the interfaces are divided into provider interfaces (p-interfaces) and re-

quester interfaces ( r-interfaces) [77]. 1 

In the context of a provider interface, a labelled transition can be thought of as a 

service provided by that component. Each transition provides only one service. La-

belled transitions on the provider essentially denote entry points into the component. 

It should be noted that it is possible to have unlabelled transitions on an interface 

(i.e., labelled by c:). Such transitions may be needed to implement behavioural logic 

of the interface and do not actually constitute a service. 

Since the services provided by a component need to be uniquely identified, it is 

1 Note that this model does not prevent a component from having a provider interact with a 
requester interface belonging to the same component. This would be an example of a recursive or 
feedback component. 
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required that each service in each p-interface has exactly one labelled representation: 

In addition to the uniqueness of the labelled transitions in each p-interface, all 

providers must be c:-conflict-free: 

Vt E T Vp E lnp(t) : Out(p) -1- {t} ==? .e(t) -1- c:. 

The label assigned to a transition represents a service or some unit of behaviour. 

For example, the label could conceivably represent a conventional function or method 

call. The return type and parameters are all encapsulated or abstracted by the 

label and are of no concern to the model as a whole. It is assumed that if the p

interface requires parameters from the r-interface, then the appropriate number and 

types parameters are delivered by the r-interface. Similarly, it is assumed that the 

p-interface generates an appropriate return value to the r-interface, if required. 

Another assumption is that if an r-interface requests an arbitrary service a of a 

provider component that supports that particular service via its p-interface, then the 

provider component will be able to satisfy that service (i.e., the component servicing 

the request will not fail due to lack of resources or software faults, for example). 

4.4 Interface Languages 

Some proposals have restricted interface behaviour to regular languages, or modest 

variations thereof [85, 87]. However, by employing Petri nets, this model allows for 

significant flexibility in the protocol language between components [78]. For example, 

the protocol languages could conceivably be context-free, which, in the context of 
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modelling the behaviour of a relatively simple data structure such as a stack, could 

be quite useful. It is known that Petri net languages include all regular languages, a 

subset of context-free languages and a subset of context-sensitive languages [78]. 

Possible sequences of services provided by a p-interface are determined by the 

transition labels of all possible firing sequences in the Petri net model of an interface. 

the set of all strings over Li obtained by labelling firing sequences which begin with 

'n7.i and end at one of the final markings: 

1\ mE Fi} 

As an example, the language describing the behaviour of the interface presented 

in Figure 4.10 with F = {mi} is defined by the regular expression (a(blc)*d)*. 

4.5 Summary 

A formal model representing the interface of a component by a labelled Petri net has 

been introduced. This model captures the behavioural properties of a component's 

interface which can also be characterized as the language generated by the model. In 

the next chapter, this model is used to assess the compatibility between a provider 

and requester component by studying the structural and linguistic properties of the 

respective interface models. 
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Chapter 5 

Component Composition and 

Compatibility 

As described earlier, in the context of software architectures and component-based 

programming, there is increasing emphasis on the integration phase of the software 

development process. This chapter uses the concept of Petri nets (introduced in the 

previous chapter) to propose a foundation upon which the composition of two or more 

components can be analyzed. 

Such a composition must enforce a compatible sequence of operations between 

components providing services (provider components) and components that request 

them (requester components). For the purposes of this chapter, the component that 

initiates the interaction and issues the operations will be deemed the requester and the 

other component will become the provider. The structural properties of the resulting 

composition can be analyzed to verify the compatibility of the component integration. 

With a formal method of establishing component compatibility, it may be possible 



to provide some level of automation to the tedious but important process of system 

integration. 

5.1 Component Compatibility 

Compatibility of two components is determined by the behaviour at their respective 

interfaces. For two components to interact, the provided services must be compatible 

with requested ones. This means that not only must all the services required by the 

requester be made available by the provider, but also that any sequence of services 

demanded by the requester must be satisfied by the provider. 

Definition: A requester interface Mi and a provider interface M; are compatible iff 

.C(Mi) ~ .C(M;). 

This definition implies that the provider's alphabet L; must be a superset of the 

requester's alphabet Li, Li ~ L;, although usually it will be assumed that Li = L; 

because the symbols in Li - L; obviously have no influence on the compatibility of 

the components. If the nets representing the requester and provider interfaces are 

bounded, and a provider interface is interacting with a single requester interface, 

the compatibility can be verified directly on the basis of the definition of interface 

compatibility. 

Corollary 5.1 The language of a bounded interface Mi is regular, so it can be rep

resented by a deterministic finite automaton. 

Proof: A nondeterministic finite automaton, A, is usually defined as A= (S, A, D., so, F) 

where S is a set of states, A is the alphabet, D. is the transition relation and is a 
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subset of S x (AU c-) x S, so E Sis the initial state and F ~ Sis the set of final, or 

accepting, states. 

If the interface Mi = (Py,, 7i, Ai, Li, li, mi, Fi) is bounded, its reachability set, 

'R.(Mi) = (M(Mi), A, mo), is finite, so it can be used as the set of states of a finite 

automaton defining the language .C(Mi): 

where: 

~ ~ M(Mi) x (AU {c-}) x M(Mi) and 

(m,a,m') E ~ {::} :Jt E T: m ~ m' 1\ li(t) =a and 

(m,c-,m') E ~ {::} :Jt E T: m ~ m' 1\ li(t) =c. 

The construction of A(Mi) guarantees that .C(Mi) = .C(A(Mi)). D 

A(Mi) is, in general, a nondeterministic automaton with €-transitions, which, 

however, can be converted to an equivalent deterministic finite automaton [62]. 

In many cases, the finite automaton defining the language of an interface can 

be derived directly from the net representing the interface. For bounded nets, the 

compatibility can be verified by simple operations on the interface languages. 

Corollary 5.2 Bounded requester and provider interfaces Mi and M;, respectively, 

are compatible iff 

.C(Mi) n .C(M;) = 0, 

where L is the complement of L. 

D 

For regular languages L 1 and L 2, the condition L 1 nL2 = 0 can be checked because 

regular languages are closed under complementation and intersection, so checking the 
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emptiness of a language is equivalent to checking if the set of accepting (or final) 

states in the finite automaton defining the language is empty. 

The states that are present in an automaton that accepts the intersection of the 

two languages can be determined by the algorithm shown in Figure 5.1. The function 

alphabets and disjoint sets of states (S1 n S2 = 0). In the worst case, this function 

func product( All A2) : state_list 
begin 

var states := {(sb s2)}; 
new:=< (sb s2) >; 

while new #-<> do 
s := head(new); 
new:= tail( new); 
for each a in A do 

s' := (ch(s.one, a), 82(s.two, a)); 
if s' (j. states then 

states := states U{ s'}; 
new := append( new, s') 

endif 
endfor 

end while; 
return states 

end; 

Figure 5.1: FUnction product 

will return a list containing IS1I x IS2I states. However, pragmatically, the number of 

states will be less, depending upon the number of transitions in each automaton. 

If the interfaces are unbounded or if a provider interface interacts with several 

requester interfaces, a different approach to verifying the compatibility is needed, 

in which the inclusion of requester and provider languages is checked indirectly, by 
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checking properties of the composition of requester and provider interfaces. 

5.2 Component Composition 

This section provides an overview of attempts to compose two or more interface nets 

together under a variety of circumstances. Some of the advantages and disadvantages 

of these strategies are discussed. A new model of composition is then proposed which 

addresses the issues that arise from the discussed composition attempts. 

5.2.1 Simple Composition Models 

The composition of a requester and provider nets, Mi and Mi, respectively, can be 

defined in many ways, and several versions of composition have been proposed in the 

literature [57, 92]. In its simplest form, composition can be performed by "fusing" 

(some) transitions in the two nets; this fusion performs the synchronization of the 

corresponding operations. 

For the purpose of component composition, the fusion of transitions with the 

same labels is possible in simple cases, as outlined in Figure 5.2 [24]. This technique 

is very straightforward and can be useful in a wide variety of circumstances. This 

strategy can also be used to compose components when the requester interface uses 

the same operation more than once as described by the COSY approach [51]. Un

fortunately, this results in a proliferation of labelled transitions, which may make 

subsequent analysis of the composed net challenging. This can be especially true 

when a requester uses a provider's service many times or when repetition occurs over 

two or more components. Also, if two or more requesters are involved in the com-
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Figure 5.2: F\1sion of a requester and provider service 

position, the requesters themselves would have to be connected together. This may 

be problematic in cases in which the requesters are to maintain independence from 

one another. To alleviate these issues, it is desirable to have each provider's service 

appear only once in the composed net. This can be done by extending the composi-

tion model slightly, as illustrated in Figure 5.3. Each transition representing a service 

operation to be employed during the composition is "extracted" from the provider 

and the corresponding transitions in the requester's interface are replaced with syn-

chronizing transitions to coordinate their interaction with the shared transition of the 

provider. A very similar strategy can be used when fusing multiple requester inter-

faces to a provider, as illustrated in Figure 5.4. Moreover, the operation a may be 

composed of some other operations, as in a hierarchical approach [37]. For example, 

Figure 5.5 shows the operation a implemented as a simple sequence of a1 and a2 in 

a requester. This requester can be hierarchically decomposed into its underlying net 

prior to composition with a provider. 

More complex hierarchical constructs are possible. For example, if the hierarchical 
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Figure 5.4: Fusion with multiple requesters 
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Figure 5.5: Elementary hierarchical composition 

sequence is used more than once in the composition, then this can be implemented 

by factoring the high-level operation a (i.e., the transition labelled by a) from all 

participants involved in the composition. The composition is shown in Figure 5.6. 

Similarity with Figure 5.3 should be observed. 

Performing composition in this manner allows for several different modes of in-

teraction to occur between interfaces. In addition, this composition model resolves 

some ambiguity with respect to the semantics of the composed net since there is only 

one instance of the transition representing the service operation after the composition 

has taken place. Indeed, this method of composition is structurally similar to that 

described by Lauer and Campbell [60] which uses Petri nets to represent path pro

grams. This method is also described further in the COSY-style approach [51]. While 
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----------, 

I I ... __________ , 

Requester Interface 
M, 

Provider Interface 

Mi 

Figure 5.6: Hierarchical composition with the same operation requested twice. 

this strategy of composition is reasonably flexible, it suffers from some drawbacks. 

This method appears to assume a semantic symmetry between programs which may 

not be strictly true in the context of the composition of provider and requester soft-

ware components. For example, in the case when a free-choice structure exists in the 

requester, this model of composition can cause the provider to artificially impose its 

sequence of operations upon any requesters. For example, Figure 5. 7 demonstrates 

a simple example in which a requester has a free-choice structure that allows it to 

invoke a orb operations in any order. However, after composition, it is denied the 

ability to invoke the b operation before the a operation due to the structure of the 

provider. Consequently, this composition model is inadequate, since the sequencing 

constraint of the provider is incompatible with that of the requester. A model of com-

position must ensure that the sequence of operations of the provider cannot affect the 
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Requester Interface 
M, 

a I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

b I 

, ... -------- ... 

a 

b 

Provider Interface 
M; 

Requester Interface 
M, 

I ... ______ ., 
Provider Interface 

M; 

Figure 5. 7: Provider imposing sequence order on a requester 

sequence of requested operations. 

5.2.2 Proposed Composition Model 

In order to address the issues presented in the previous section, a new model of in-

terface composition is proposed and formalized. In this model, the composition is 

performed by "melding" an r-interface Mi = (~, 1i, Ai, Li, J!i, mi, Fi) and a corre-

Mii = (Pij, Tij, Aij, Li, J!ii, mij, Fij), assuming Pin Pi= 7i n Ti = 0. While the com-

position strategy defined below addresses the issues described earlier, other possible 

approaches for composing interface nets, with possibly different properties, may exist. 

The definition of Mii is based on those transitions in the p-interface and r-interface 
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that have non-empty labels, i.e., the service transitions. Let: 

i'i {tE1i:fi(t)#c}, 

Ti { t E 1j : fi(t) # c }. 

The composition strategy is visually demonstrated by Figures 5.8 and 5.9 which show 

a requester and provider interface before and after composition, respectively. 

Requester 
M; 

,------------------------------------------------------------, 
I ••• 

t; 

'------------------------------------------------------------' 
' 
,----------------------------------------------------------, 

a 

Provider 
M; 

' 

Figure 5.8: A requester and provider interface before composition 

Overall, the composition of a requester and a provider interface introduces four 

new places and three new transitions for each common service transition, while the 

requester's corresponding service transitions are removed. Two of the new places (Pt, 

and p~, in Figure 5.9) and the three new transitions (t~, t~' and t?' in Figure 5.9) are 

created for each service request in the r-interface, and the transition/place pair t?' 

and p~, allows the requester to initiate the interaction with the provider and to direct 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

'R.-section . ; 

Mi ~- .. e 
I 
I 
I 
I 
I 
I •• 
I 
I 
I 
I 
\ 

Requester 
M, 

Provider 
Mi 

I .. 
·' .·I 

I 
I 
I 
I 
I 

Figure 5.9: A requester and provider interface after composition 

the ensuing sequence of operations. This prevents the "requester free-choice" problem 

described earlier. The other place (pt.) and transitions (t~ and t?) serve to coordinate 

and serialize the requesters' interaction with the provider at the service point. The 

remaining pair of new places are introduced for each service of the provider interface 

(Pi. and pr in Figure 5.9) are situated on either side of the service transition and 
1 1 

serve to coordinate the access to the service itself. 

The composition of a single requester with a single provider can be formally defined 

as follows: 

Definition: Let Pi n Pi = Ti n Ti = 0. A composition of an r-interface Mi = 
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T.·. t] ~ U Ti - :fi U { t~, t~', t~" : ti E :fi } ; 
A- U A· - P X 'i:· - 'i:· X 0

· - P· X T~ · - T~ · X P· U t J t t t .rt J J J J 

{ ~' t~'), (t~',ri,J, (P~,, tD, (t~,Pt.), (pt., t~'), (t~',p?) : 

ti E :fi 1\ p~ E lnp(ti) 1\ p~ E Out(ti) } U 

{ (pj, tD, (t~,#t), (#tj, tj), (tj,p'fj), (p~i' t?), (t~,p'j) : 

tiE 'ii 1\ tiE Ti 1\ fi(tj) = fi(ti) 1\ 

pj E lnp(ti) 1\p'j E Out(ti) }; 

fi(t), if t E ~' 

fi(t), if t E 1j, 

c, otherwise; 

mi(P), if p E ~' 

mi(P), if p E Pi, 

0, otherwise; 

Fii {mii : Pii ---+ {0, 1, ... } I 

ffiii ~ ~ E Fi 1\ ffiij ~ Fj E Fj 1\ 

Vp E ~i - ~ - Pi : mii (p) = 0}. 

All new transitions introduced by the composition are assigned empty labels, and all 

labelled transitions of the requester are merged with the corresponding transitions 

of the provider. Consequently, there is no duplication of service names in the com-

posed model. The marking function of the composition is based upon the markings 

of the interface nets of the underlying pair of interacting components - the new 
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places introduced by the composition do not have any tokens initially. The set of 

final markings, Fii, of the composed net is obtained from the final markings of the 

component nets. The symbol ~ is used as the "restriction" operator (of the marking 

functions) in this context. 

The discussion of some properties of the composition uses the concepts of R-

section and P-section of the composition, which correspond to slightly modified r-

interface and p-interface models. The R-section of this composition is defined to be 

Pn_ ~ U { Pti,p~i :tiE 't } U { Pti,p~i :tiE 'ij }; 

T n. 1i - Ji U { t~, t?, t~" : ti E Ji } U Tj; 

{ (p~, tt), (tt,pu, (p~i' tD, (t~,ptJ, (t~,p~j), 

(p~i' tj), (tj,p'~), (p~, t~'), (pti, t?), (t~',~'): 

ti E Ti 1\ (~, ti) E Ai 1\ (ti,p?) E Ai 1\ 

ti E 'ij 1\ (pj, ti) E Ai 1\ (ti,p'J) E Ai }; 

Vt E Tn.: .€n.(t) 

Vp E Pn.: mn_(p) 

.ei(t), if t E Ti, 

.€i(t), if t E Tj, 

.s, otherwise; 

if p E ~' 

otherwise. 

and the set Fi does not change. 
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The P-section of this composition is Mi = (Pp, Tp, Ap, L, R.p, mp, Fj), where 

Pi U { p~.,p~. :tiE T3· }; 
J J 

A. - p. X T· - f. X p. u 
J J J J J 

{ (pj, tD, (t~,p~j), (p~i' tj), (tj,p~), (rffj, tn, (t~',p'J) = 

ti E Ti I\ (pj, ti) E Ai I\ (tj,p'J) E Ai }; 

{ 

R.i(t), if t E Tj, 
Vt E Tp : R.p(t) 

c:, otherwise; 

__ { mi(p), if p E Pi, 
Vp E Pp: mp(p) 

0, otherwise; 

and the set Fi does not change. 

The R-section and P-section are shown in Figure 5.9. Some elements near the bound-

ary of the two interfaces are common to the R-section and P-section. 

5.3 Compatibility Verification 

Compatibility of an r-interface and a p-interface is verified by checking properties of 

their composition. In particular, as will be shown later in this section, if the net 

resulting from the composition of two component interfaces is deadlock-free, then the 

two components are indeed compatible with one another. The compatibility of an 

r-interface and a p-interface can also be described in terms of their languages. 

Corollary 5.3 For composition of an r-interface Mi and a p-interface Mj, the lan

guage of the R-section Mi is the same as that of Mi and the language of the P -section 
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Mi is the same as that of Mi: 

.C(Mi) 

.C(Mi) 

The corollary follows from the observation that the structures of Mi and Mi (and 

of Mi and Mi) are the same (i.e., the additional elements are introduced as simple 

paths replacing single transitions), so for each firing sequence u in Mi, there exists a 

firing sequence 7f in Mi such that fi(u) = fi(u). Similarly for Mi and Mi. D 

Corollary 5.4 For composition of an r-interface Mi and a p-interface Mj, the lan

guage of the composed model Mii = Mi t> Mi is a subset of the language of the 

requester, .C(Mii) ~ .C(Mi). 

Proof by contradiction: The corollary is not true, so there is a string x E .C(Mii) 

such that x fl. .C(Mi)· Let a be the first symbol in x which is not generated by Mi 

and let a be the label of ti, a = fii(ti)· Since ti is enabled in Mii' and it also is an 

element of Mi, it must also be enabled in Mi by the same firing sequence as in Mii 

(restricted to Mi) which contradicts the assumption. D 

Corollary 5.5 For composition of an r-interface Mi and a p-interface Mj, the lan

guage of the composed model Mii = Mi t> Mi is a subset of the language of the 

provider, .C(Mii) ~ .C(Mi)· 

The justification is the same as for Corollary 5.4. D 

Before introducing the next result, the notion of merging (or interleaving) se

quences of symbols is introduced. Let symb(x) represent the set of symbols in se

quence x. 
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Definition: If symb(x) n symb(y) = 0, then the merging of strings x andy is a set of 

strings merge(x, y) defined as follows: 

where 

and 

and 

merge(x,y) = {z E (symb(x) Usymb(y))* I hx(z) = x 1\ hy(z) = y} 

{

a, 
Va E symb(x) U symb(y) : hx(a) = 

c, 

if a E symb(x), 

otherwise, 

{ 

a, if a E symb(y), 
Va E symb(x) U symb(y) : hy(a) = 

c, otherwise. 

The operation merge(x, y) is sometimes called the shuffle of sequences x andy. 

If symb(x) n symb(y) = A -::f 0, the strings x and y can be merged only if their 

substrings composed of common symbols are identical: 

merge(x, y) = {z E (symb(x) U symb(y))* I hx(z) = x 1\ hy(z) = y 1\ hA(x) = hA(y)} 

where 

{ 

a, if a E A, 
hA(a) = 

c, otherwise. 

For example, merge( "abc", "12") = { "abc12", "ab lc2", "ab 12c", "al bc2", "al b2c", 

"a12bc", "labc2", "lab2c", "la2bc", "12abc" } and merge( "lab23c", "a45b6c") = 

{ "la45b623c", "la45b263c", "la45b236c" }. 

However, the second definition of merge is equivalent to the previous one, as 

illustrated by the following proof: 1 If A = symb(x) n symb(y) -::J 0, then for each 

1 Proof courtesy of Dr. R. Janicki. 
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merged string z, hA(z) = hx(hy(z)) = hy(hx(z)), so (hx(z) = x and hy(z) = y) imply 

hy(hx(z)) = hy(x), which is equivalent to hx(hy(z)) = hy(x). Since hy(z) = y, we 

have hx(Y) = hy(x). Obviously, hx(x) = x and hy(y) = y, so hx(Y) = hy(x) implies 

hx(hy(y)) = hy(hx(x)), i.e., hA(Y) = hA(x). Consequently, hx(z) = x and hy(z) = y 

imply that hA(Y) = hA(x), making the latter equality unnecessary in the second 

definition. The merge function is a special case of the "restriction" or "concurrency" 

operator (II) which has been used in the past by Hoare to denote two processes 

interacting in lock-step synchronization with one another [47]. This operation has also 

been used by Janicki and Lauer in the preliminary development of COSY systems [51] 

and in the context of Petri net languages by Hack and Starke [44, 97]. 

Theorem 5.1 The language of the composition of two interfaces with the same al

phabet L, an r-interface Mi and a p-interface Mi is the intersection of .C(Mi) and 

.C(Mi): 

By Corollaries 5.4 and 5.5, .C(Mi t> Mi) ~ .C(Mi) n .C(Mi)· What remains to be 

shown is that .C(Mi) n .C(Mi) ~ .C(Mi t> Mi)· 

Proof by contradiction: The theorem is not true, so there exists a string x such 

that x E .C(Mi)n.C(Mi) and x ~ .C(Mit>Mi)· Let a be the first symbol in x which is 

not generated by Mit>Mj, and let a be the label oft, a= .eii(t). Since tis an element 

of Mi and is enabled in Mi by an initial firing sequence O'i (such a sequence must exist 

since x E .C(Mi)), and since t is also an element of Mi and is enabled in Mi by an 

initial firing sequence Uj (such a sequence must exist since x E .C(Mi)), any sequence 

O'ij E merge(ui, ui), enables tin Mit> Mi, which contradicts the assumption. D 
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Theorem 5.2 Two interfaces with the same alphabet L, an r-interface Mi and a 

p-interface Mj, are compatible iff the language of the composition, .C(Mi C> Mj), is 

equal to the language of the r-interface .C(Mi). 

The theorem is a consequence of Theorem 5.1 and the definition of interface compat

ibility: 

The first equivalence above follows from set theory. D 

Theorem 5.3 Two interfaces with the same alphabet L, an r-interface Mi and a 

p-interface Mi, are incompatible iff the composition Mii = Mi C> Mi contains a 

deadlock. 

An r-interface Mi is incompatible with a p-interface Mi if .C(Mi) ~ .C(Mi)· It needs 

to be shown that such incompatibility is represented by a deadlock in Mii· 

1. .C(Mi) ~ .C(Mi) =? Mii contains a deadlock. 

If .C(Mi) ~ .C(Mi), there exists a string x E .C(Mi), such that x ft .C(Mii)· 

Let a be the first symbol of x which is not generated by Mij, and let a= .e(tk), 

tk E Tii. Since tk is enabled in Mi but is not enabled in Mi;, the requested 

service a cannot be satisfied by Mi, so Mi must be waiting for some other 

requested service and this creates a deadlock in Mii 

Proof by contradiction: The claim is not true, so Mii = Mi C> Mi contains 

a deadlock and .C(Mi) C .C(Mi)· If Mii contains a deadlock, then there 
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exists an initial finite firing sequence u = ti1 ti2 •.. tik such that E(mk) = 0. 

However, in Mi, CTi, the firing sequence obtained by restricting u to 7i, can be 

continued (Mi does not contain a deadlock), so the deadlock can be due only 

to composition with Mj, i.e., f(u) ~ .C(Mj), which contradicts the assumption 

.C(Mi) ~ .C(Mj)· D 

In summary, the issue of component interface compatibility can be reduced to a 

problem of detecting deadlocks in a net that results from the composition of two in

terfaces. This model is extended (in subsequent sections) to handle several requesters 

interacting with a single provider as well as several requesters interacting with several 

providers. 

5.3.1 Compatibility and Deadlock Detection 

The most straightforward and most robust approach to deadlock detection is based 

on exhaustive exploration of the marking space of a net M (i.e., the exploration of 

the set of reachable markings, M(M)), and checking if it contains any dead marking 

(which represents a deadlock). However, such an approach can be used only for 

bounded models and even for bounded models, this marking space can be huge due 

to the so called state space explosion [106]. An alternative approach can be based 

on structural properties of net models, and in particular, on siphons (Section 4.2). 

Since an unmarked siphon is a necessary condition for a deadlock (and a sufficient 

condition for non-liveness), verification of component compatibility can be performed 

by checking if any combination of the minimal and/ or basis siphons of the composed 

net can be emptied so as to produce a deadlock. Of all such siphons, only essential 
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siphons, as defined in Section 4.2.4, should be checked. Although the number of 

essential siphons depends upon the structure of the net, practical experience indicates 

that usually there are just a few essential siphons, which makes compatibility checking 

more efficient. 

5.3.2 Requester and Provider Alphabets 

In the definition of component composition, it is assumed that the alphabets of com

posed interfaces are the same or that the requester alphabet is a subset of the provider 

alphabet, Li ~ Lj. If Lj ::::> Li, the operations which are provided but not requested 

have no effect on the composition, so they can all be replaced by c. On the other 

hand, if the alphabet of the requester Li is a superset of the provider Lj, Li ::::> Lj, 

then the interfaces cannot be compatible because all requested operations in the sub

set Li _:_ Li cannot be satisfied. Consequently, if a component has several requester 

interfaces with different sets of requested services, each such interface is considered 

separately, with its set of services. 

5.4 Multicomponent Composition 

The previous section described the composition of a single requester interface with a 

single provider interface. In practice, however, a provider may have several requesters 

demanding its services concurrently; or a requester may demand the services of sev

eral providers. This section describes how the previous composition model can be 

extended to describe a variety of multicomponent interactions and compositions. 
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5.4.1 Multirequester Composition 

In multirequester composition, several requester interfaces interact with the same 

provider interface. For example, multiple web clients connecting to a web service 

would constitute a multirequester composition. Multirequester composition is a 

straightforward generalization of the approach presented in Section 5.2. Figures 5.10 

and 5.11 show a simple example of two requesters composed with a single provider. 

For clarity, the multiple arcs to and from the transition in the requesters have been 

removed. The composition of multiple requesters M 1 = {MbM2 , .•• ,Mk}, with 

I 
I 
I 
I 
I 
I •·• ----11~ 
I 
I 
I 

: Provider 

Requester; 

a 

t; 

a 

t; p'J 

r--- ••• I 
I 

------------------------------------------------------------( \ 

a 

, ... Requesterk ... , 
'------------------------------------------------------------~ 

Figure 5.10: Multirequester interaction (before composition) 
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a single provider Mi is denoted by M1 t> Mi. Moreover, for each requester Mi, 

i = 1, 2, ... , k, let 'ii denote the set of labelled transitions of a single requester: 

'ii = { t E 1i : f(t) f:- c }, i E J. 

The set of all labelled transitions of all the requesters involved in the composition is: 

I 
I 
I 
I 
I 
I 
I 
I 
I 

\ Provider 

Requester, ... ' 
I 
I 
I 
I 
I 
I 

' \ 

... Requesterk ... , 
'------------------------------------------------------------' 

Figure 5.11: M ultirequester interaction (after composition) 

Finally, let the set of all the requesters' transitions (both labelled and unlabelled), 
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all places, all arcs and all final markings be denoted, respectively, as: 

TI = u 7i, PI = u Pi, AI = u Ai, FI = u Fi. 
iEI iEI iEI iEI 

Definition: Let MI = {Mb M 2 , ••• , Mk} be a family of r-interfaces with the same 

alphabet L and with disjoint sets of places and transitions, and let Mi be a p-

interface also with the same alphabet L. The composition of MI with Mil denoted 

Pii PI U Pi U { PtpP~i :tiE Ji 1\ i E I} U { p~i,p~i :tiE Ti }; 

Tii TI U T;- TI U { t~, t?, t?': ti E 'ii 1\ i E I }; 

~ ~u~-~x~-~x~-~x~-~x~u 

ti E 'ii 1\ i E I 1\ p~ E Inp(ti) 1\ p~' E Out(ti) } U 

{ (pj, tD, (t~,p~j), (p~i' tj), (tj,prj), (prj, tn, (t?,p'J): 

ti E Ti 1\ tiE Ji 1\ i E I 1\ fi(ti) = fi(ti) 1\ 

pj E Inp(ti) 1\ p'j E Out(ti) }; 

fi(t), if t E 1i 1\ i E I, 

c, otherwise; 

mi(p), ifp E ~ 1\ i E I, 

0, otherwise; 
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The multirequester composition model described above is able to represent prag

matic features of traditional software architectures. For example, the notion of re

source exhaustion can be represented by initially marking a provider with a finite 

number of tokens in the place connected to its first operation. As requesters connect 

with the provider, the provider's tokens are transfered from this place to implement 

the interaction. When this place becomes unmarked, the provider is operating at 

full capacity and cannot serve more requests concurrently. Any future requesters 

connecting with the provider would have to wait until an earlier requester completes 

interacting with the provider. 

Another observation is that the nature of the composition makes it impossible 

for a requester to perform its operations in any order that is different from the one 

imposed by the provider. Although the service transitions are ultimately shared by 

all requesters, the orders in which each requester can access the services is consistent 

with the order imposed by the provider. 

The multirequester composition must take into account concurrency of requests 

from different r-interfaces. Therefore, the compatibility is checked for the worst case 

scenario, i.e., the composition of all r-interfaces with the p-interface. 

Definition: A family of r-interfaces M 1 = {M11 M 2, .•• , Mk}, is compatible with a 

p-interface Mi iff any sequence of requests that can be issued by M1 can be provided 

by Mi. 

Theorem 5.4 If a family of r-interfaces M1 = {M11 M2, ... , Mk} is compatible 

with a p-interface, Mj, then each r-interface Mi, i = 1, 2, ... , k, is also compatible 

with Mi. 
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Proof by contradiction: The theorem is not true, so there is .an r-interface Mi 

which is incompatible with Mi if M1 is compatible with Mi. Consequently, there 

exists a sequence of service requests x E .C(Mi) such that x ¢:. .C(Mi)· However, the 

compatibility of M1 with Mi means that an arbitrary sequence of requests of M 1 is 

satisfied by Mi, so, in particular, a sequence z of requests starting with the requests 

of Mi, z = xy, is satisfied by Mi, which contradicts the assumption that x ¢:. .C(Mi)· 

D 

Corollary 5.6 If M1 = {Mb M2, ... , Mk} is compatible with Mj, then any subset 

MI' C M1 is also compatible with Mi. 

The proof is a straightforward adaptation of the previous proof. D 

Theorem 5.5 For a family M1 if r-interfaces, M1 = {Mb M2, ... , Mk}, the com

patibility of each r-interface Mi, i = 1, 2, ... , k, with the same p-interface Mi is not 

a sufficient condition for compatibility of M1 with Mi : 

(VMi E M1: Mi 1> Mi) =fo M1 1> Mi 

Proof: Let M1 = {M1,M2} and .C(M1) = .C((aa)*), .C(M2) = .C((bb)*). Then 

.C((abablbaba)) C .C(MJ). Let .C(Mi) = .C((aalbb)*). Mi is compatible with M1 as 

well as with M 2, but is incompatible with M1. D 

Consequently, for multirequester composition, the maximum configuration of re

questers needs to be verified for compatibility with the provider interface. Incompat

ibility arises if this maximum configuration introduces a deadlock in the composed 

net, as described in Section 5.3. 
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5.4.2 Multiprovider Composition 

The composition discussed in the previous sections can be easily applied to the case 

when several providers interact with a single requester (or multiple requesters). This 

could take the form, for example, of a requester component that queries several 

databases simultaneously. In the case when a single requester interacts with several 

providers, the model can be split into a collection of independent requester-provider 

pairs in which each provider has its unique alphabet, and each such pair can then be 

analyzed independently. 

In formal terms, it is possible that the same r-interface, Mi, is composed with 

two p-interfaces Mj and M'J, such that Lj n L'J = 0. In such cases, Mi could be 

split into two r-interfaces, M~ interacting with Mj, and Mr interacting with M'J. 

Alternatively, Mi can be directly composed with both Mj and M'J, provided that 

the composition uses a relevant subset of Li, i.e., Lin Lj for composition with Mj 

and Lin L'J for composition with M'J. If M~ is compatible with Mj and M~' with 

M'J, then Mi is compatible with Mj and M'J and vice versa, so the two approaches 

are equivalent. 

Theorem 5.6 Let MJ = {M 1, M 2 , ••• , Mk} be a family of p-interfaces and Mi be 

an r-interface. If Mi is compatible with each Mi p-interface, j = 1, 2, ... , k, then 

Mi is compatible with MJ. 

Proof by contradiction: If each p-interface, M;, j = 1, ... , k is compatible with 

Mi, then MJ is not compatible with Mi, so there exists an interface, say M;, and 

a sequence of requests s E .C(Mi) such that Mi is deadlocked for s. Let O"j = h(s), 
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where 

{

a, 
Va ELi : h(a) = 

c, otherwise. 

Since Mi is compatible with Mi, Uj must be accepted by Mii>Mj, which contradicts 

that Mi is deadlocked on ui. 0 

5.4.3 Multiprovider /Multirequester Composition 

The case of multiple requesters interacting with several providers (many-to-many) can 

be converted to a family of multiple requester/ single provider cases, and analyzed as 

discussed earlier. The following theorem and its proof are essentially an amalgamation 

of the two earlier theorems. 

Theorem 5. 7 Let M1 = {M1, M2, ... , Mk} be a family of r-interfaces, and MJ = 

{Mi,M~, ... ,Ma be a family ofp-interfaces. If M1 is compatible with eachMj,j = 

1, 2, ... , .e, then M 1 is compatible with MJ. 

Proof: The theorem is a straightforward extension of Theorems 5.4 and 5.6. 0 

The strategy discussed earlier can be used for compositions that involve multi-

ple requesters and multiple providers. For example, Figure 5.12 shows two simple 

providers and two requesters that require the services of each provider. The composi-

tion of all four interfaces is shown in Figure 5.13. The same model of composition can 

be used to compose several interfaces into a single net. Because the net is bounded, 

reachability analysis can be used to test the net for deadlocks. Reachability analysis 

shows that the bottom-most requester causes the net to deadlock, for example, when 

it attempts to invoke operation b two consecutive times from the provider on the 
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Requester 

b 

Provider 
c 

b 

Provider 

Requester 

Figure 5.12: Two requester and two provider interfaces 

right. This is a violation of the provider which imposes a strict ordering on the ser-

vices that can be demanded of it by a requester. The deadlock can also be identified 

through structural analysis. 

A more sophisticated example demonstrating multi provider fmultirequester inter-

action is presented in the following chapter. 

5.5 Mixed Requester-Provider Interfaces 

Normally, requester and provider interfaces are disjoint because of different logical 

requirements on "requested" and "provided" operations. However, if an interface 

M 0 = (Po, T0 , A0 , Lo, f 0 , mo, F0 ) contains some "request" operations, Lor C Lo, and 

some "provider" operations, Lop c L0 , LornLop = 0, it can be split into two interfaces 
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Figure 5.13: Composition of two requester and two provider interfaces 

Mor = (Po, To, Ao, Lon fon mo, Fo) and Mop= (Po, To, Ao, Lop, fop, mo, Fo), where 

and 

{ 

fo(t), 
Vt E T : for ( t) = 

c:, 

if fo(t) E Lon 

otherwise, 

{ 

fo(t), if fo(t) E Lop, 
Vt E T: fop(t) = 

c:, otherwise. 

Theorem 5.8 If an interface Mo is compatible with an r-interface Mi and a p-

interface Mj, then Mop is compatible with Mi and Moris compatible with M;. 

Proof by contradiction: The theorem is not true, so if an interface Mo is com-

patible with an r-interface Mi and a p-interface M;, then Mop is incompatible with 

Mi or Mor is incompatible with M; and there exists a sequence a E C(Mi 1:> Mop) U 

C(Mor 1:> M;) which deadlocks Mor or Mop· If Mop is deadlocked on a, then there 
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must exist a sequence u' E L~ such that u = h' ( u') where: 

{ 

a, if a E Lop, 
Va E La : h' (a) = 

c, otherwise, 

and u' deadlocks M 0 , which contradicts compatibility of Mi and M 0 • A similar 

argument can be used for a deadlocked Mor· 0 

5.6 Examples 

This section provides examples which illustrate the composition of provider and re-

quester component interfaces using the construction technique presented in the pre-

vious sections. To demonstrate the concepts, the example of a database client in-

teracting with a database server will be used. The examples will also highlight the 

importance of being able to represent interface protocols whose languages are not 

regular. 

5.6.1 Database Transactions 

As a simple example of the composition of a requester and provider interface mod-

elled as Petri nets, Figure 5.14 represents a simple database client (requester) and a 

database server (provider). 

The first requested service is denoted by a which could represent an operation 

that opens the database and prepares it for queries, for example. The interface 

then requests a sequence of operations in which each operation b is followed by a 

corresponding operation c (these could represent read and write operations to the 

database, respectively). Finally, the requester invokes service d which could represent 
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Requester 

------------------------~·~------------------------

a d 

b c 

b c 

a d 

Provider 

Figure 5.14: Database requester and provider interfaces 

the closing of the database. If there is only one final marking which is the initial 

marking, i.e., F = {mo}, the cyclic behaviour of the model is represented by the 

regular expression (a(bc)*d)*. The provider interface, which represents the database 

server, imposes the restriction that the a service must be invoked first followed by any 

sequence of band/or c services, followed finally by the d service. Again, if the initial 

marking is the only final marking, the behaviour of the database server is described 

by the expression (a(bic)*d)*. 

The composition of interfaces shown in Figure 5.14 creates the net shown in Fig

ure 5.15. This composition is achieved by using the construction technique presented 

in Section 5.2. The composed net can be simplified as described in Section 4.2.4, so 

as to facilitate structural analysis. The reduced net is shown in Figure 5.16. 
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Requester 

--------------------~·~------------------~ 

Provider 

Figure 5.15: Composition of compatible database requester and provider interfaces 

It should be noted that the composition given in Figure 5.15 enforces the restric

tion that the database must be opened by the client (requester) before any operations 

take place upon the database server (provider). Similarly, the requester must close 

the database in order to satisfy the constraints of the provider. 

The condition .C(MR.equester) ~ .C(MProvider) is obviously satisfied in this case and 

it can be checked that the model shown in Figure 5.15 is deadlock-free (the unreduced 

model is bounded and its marking space contains fifteen markings, none of which 

is dead). From a structural perspective, when the composed net is simplified, the 

reduced net contains just two minimal siphons, as denoted by the places containing 

the diagonal line patterns in Figure 5.16; five of the places belong to both siphons and 

therefore contain a crosshatch pattern. FUrther analysis reveals that these siphons are 

actually marked siphon-traps, so the net is deadlock-free since neither of the minimal 
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Provider 

Figure 5.16: Composition of compatible database requester and provider interfaces 

after simplification 

siphons can become empty. 

As an example of incompatibility, consider the case where the roles of the p

interface and r-interface from the previous example are swapped (so the requester's 

language is described by (a(bic)*d)*, and the provider's language by (a(bc)*d)*) and 

the interfaces recomposed. The resulting net exhibits deadlock as demonstrated by 

the composition shown in Figure 5.17. The dotted arcs, lines and transitions rep

resented elements of the net which can be eliminated so as to simplify structural 

analysis. A deadlock situation occurs when the requester invokes service c imme

diately after invoking a but the provider requires that service b be invoked before 

service c can be requested. Hence the resulting net is deadlocked, demonstrating in

compatibility between the two interfaces. In this case, the language of the requester 

is a superset of the language of the provider. Other deadlocks result if the requester 

attempts to perform operations b or d immediately after performing operation b. 
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This is contrary to the provider which insists that the invocation of a b operation be 

followed by a c operation. 

Requester 
P1 

---------------------------------{~:~---------------------------------
,,,' 
, , 

I 
I 

·--'--· L-,--1 ft 

J 
I I 

'"'/ P5 
I 

---

. 
I . . . 
I 
I 
I 
I 
I 
1 a 
I 

.. t ~~ ...... 
Pta~ .)--~ t-~ ) Pt1 

- !. ~ ... 

Provider P21 

I 
I 
I 
I 
I 

' d ' ,( ~i ...... 
Pt9 ~ 1---{ ~-~ 1 Pm ...... ~~ _, 

' ' 

Figure 5.17: Composition of incompatible database requester and provider interfaces 

In this particular case, the deadlock can be easily detected by reachability analy-

sis since, in the original, unreduced composition, there are a total of only 18 possible 

markings, three of which result in deadlock. Alternatively, siphons can be used to 

identify the deadlock. The reduced net contains two minimal siphons that are not 

P:n}. The objective functions corresponding to these siphons are -x2-x4+x6+x10+1 

and -x3 + x8 + 1, respectively. To empty the siphons, linear programming is used 

to determine if there is a way to minimize the number of tokens in a siphon to zero 

subject to the constraints in Table 5.1, as obtained from the connectivity matrix of 
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the reduced net. 

Table 5.1: Constraints for the Petri net of Figure 5.17 

I Place I Constraint 

P2 -Xt2 - Xta - Xt4 + Xt6 + Xts + Xtw :2::: 0 
P3 Xt5 - Xt6 :2::: 0 
P4 Xt11 - Xt12 :2::: 0 
P6 Xt2 - Xt7 :2::: 0 
P7 Xt7 - Xt8 :2::: 0 
Ps Xt3 - Xt9 :2::: 0 
pg Xt9 - Xt 10 :2::: 0 

P10 Xt4 - Xt 11 :2::: 0 
Pis Xt8 - Xt9 :2::: 0 
PIS X~ - Xt7 + Xt 10 - Xt 11 :2::: 0 
P21 -Xt5 + Xt12 + 1 :2::: 0 

Attempting to drain S1 is successful and results in deadlock. The resulting firing 

vector is [0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0]. (In the context of the reduced net, each element in 

the firing vector corresponds to transitions t 2 , ••• , h 2.) This firing vector corresponds 

to the firing sequence (t5 , t6 , t3 ) in the reduced net. The final marking of this sequence 

is shown in Figure 5.17. S2 can also be emptied to produce a deadlock. The firing vee-

tor that minimizes this siphon's objective function to zero is [2, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0] 

which corresponds to the firing sequence (t5 , t6 , t2 , t7 , t8 , t2). Because a deadlock was 

identified by analyzing the minimal siphons, there is no need the analyze the basis 

siphons of the reduced net in this particular case. 

5.6.2 Database with Nested Transactions 

The example discussed in the previous subsection models a transaction system in 

which open and close pairs cannot nest. Client interaction with a database component 
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that supports nested transactions can also be represented by a simple modification of 

the previous model. This highlights the importance of a model being able to represent 

the context-free nature of the interactions between the client and server in which each 

"opening" of a nested transaction must be matched against a corresponding "closing" 

of the transaction. This behaviour cannot be described by a regular language. 

A requester and provider interface that employ nested database transactions can 

be represented by the Petri nets given in Figure 5.18. 2 The provider interface keeps 

track of the number of opened transactions by accumulating a corresponding number 

Requester 

d 

Provider 

Figure 5.18: Database requester and provider interfaces using nested transactions 

2Note that in the figure, the requester Petri net prohibits the opening of a new transaction in 
between the b service and c service. This can be easily changed by introducing a new arc from the 
b transition to the top-most place in the requester. 
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of tokens in its top-most place (p16) • Similarly, the number of tokens in the bottom-

most place of the requester (p2 ) indicates how many transactions have been opened. 

The composed net, shown in Figure 5.19, does not exhibit any deadlock, implying 

.. t r~ .. ·-
~ }-~ !-~\ } 
,_, I I ":'' 

P>7 -• P>a 

1'21 

d 
.. t ~~ ,._ 

~ }- -~ ~-~ ~ 
-' I 1 ,_, 

Pl9 '- P2o 

Figure 5.19: Composition of requester and provider interfaces using nested transac-

tions 

that the interfaces are indeed compatible. Because the net is unbounded, reachability 

analysis is not a viable method to show deadlock-freeness. Instead, deadlock-freeness 

can be verified by using structural analysis. After reducing the net, the only proper 

minimal siphon is {PbP3,P6,]J7,pg,piO,PI6}, which corresponds to the objective func-

tion 1-x2 -x3 +x6 +x10 • The constraints, obtained from the connectivity matrix, are 

shown in Table 5.2 Linear programming shows that the minimum number of tokens 
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Table 5.2: Constraints for the Petri net of Figure 5.19 

J Place J Constraint 

PI - Xh - Xt2 - Xt3 + Xta + XtlO + Xt12 + 1 ~ 0 
P3 Xts - Xt6 ~ 0 
P2 -Xt2 - Xt3 + Xt6 + Xt10 ~ 0 
P4 Xt2 - Xt7 ~ 0 
Ps Xt3 - Xtn ~ 0 
P6 Xt11 - Xt12 ~ 0 
P7 Xt1 - Xt5 ~ 0 
Ps -Xt4 + Xt8 ~ 0 
pg Xt7 - Xt8 ~ 0 

PIO Xto - Xt 10 ~ 0 
Pn Xt4 - Xt0 ~ 0 
PI6 Xta - Xt7 + Xt8 - Xt0 + Xho - Xt11 ~ 0 
P21 -Xt5 + Xt6 - Xt11 + Xt12 + 1 ~ 0 

in the minimal siphon cannot be reduced to zero thereby showing that the composed 

net is deadlock-free. The two nets are indeed compatible. 

5.7 Summary 

This chapter has presented a formal model for the composition of software components 

and the verification of their compatibility. Various strategies for the composition of 

multiple components in a software architecture have also been addressed. The exam-

ples in this chapter have demonstrated the viability of the presented compatibility 

verification technique. More advanced examples which demonstrate multicomponent 

composition, compatibility checking and multiple interfaces are presented in the next 

chapter. 
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Chapter 6 

Example of Application 

To demonstrate the practicality of the approach described earlier, an extended, non

trivial example involving an electronic prescribing system is presented in this chapter. 

The purpose of this example is to demonstrate the composition of more substantial 

components. To this effect, this chapter first provides the system model describ

ing how the components interact at a high-level. Each of the nets representing the 

components' interfaces are then described in detail and finally, their composition is 

provided and analyzed. 

It should be noted that many of the lower-level details regarding the interface 

behaviours are not fully specified. They include details related to aspects specific 

to a particular implementation of the application and are not pertinent to interface 

compatibility. For example, whether the notion of authentication requires a swipe 

card or a password (or both) is irrelevant to the actual interaction between the com

ponents. The same applies to the user interface issues and the location of the data 

repositories accessed by each component. Also, some of the interfaces are simplified 



for pedagogical purposes. It should be noted that the composition strategy proposed 

in the previous chapter can be used to integrate components of arbitrary complexity; 

however, the net resulting from complex compositions can become quite complicated. 

6.1 System Model and Events 

There are three primary components involved in the system: the physician, patient 

and prescription server. An ancillary authentication component may also be present 

to verify the identities of the system participants, but is not explicitly included in 

the example. As can be seen from Figure 6.1, all three components interact with one 

another at some point during their respective lifetimes. 

Figure 6.1: Component model of an e-prescription system 

The basic sequence of events, or use-case, in which a physician creates a prescrip

tion and a patient subsequently fills the prescription can be outlined as follows: 

1. A patient visits a physician; during this visit all relevant medical data is ex

changed electronically. From an implementation perspective, the patient com-
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ponent could take the form of a smart card with embedded software and hard

ware that allow access to all information relevant to the patient's medical record. 

Since the patient initiates the interaction, he/she is the requester and the physi

cian is the provider. 

2. The physician component interacts with the prescription server in order to ob

tain (or verify) the patient's drug history. During this phase, the role of the 

physician changes to that of a requester and the prescription server becomes 

the provider. 

3. Once the physician has all the pertinent information, a diagnosis is made. In 

the context of this example, the diagnosis may be computer-assisted but the 

final diagnosis would have to be approved by the physician. If a prescription 

is necessary, then the physician relays details of the prescription to the patient 

and the prescription server (potential drug interaction difficulties could also be 

detected at this point). If no prescription is necessary, then the patient is so 

advised and no further interaction with the prescription server is necessary. 

4. Finally, if a prescription was granted, the patient interacts (indirectly via the 

pharmacy) with the prescription server to fill and pay for the prescription. 

The interfaces implemented by each of these components are described in the 

following subsections. 
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6.1.1 Patient Component Interfaces 

Each patient component has two interfaces - one for interacting with a physician 

and another for communicating with a prescription server. A model of a patient 

interface for interaction with a physician is shown in Figure 6.2. In practice, this is 

the patient interface that would be used by a computer in the physician's office to 

access the relevant data on the card, and to relay information related to the final 

diagnosis. Naturally, the information obtained from the interaction between the two 

electronic components would be complemented by a more thorough examination of 

the patient by the physician. Such data could be provided to the system manually 

prior to the diagnosis. 

----------------~·~----------------

symptoms 

Figure 6.2: Patient component interface for physician components 

The "standard" first step in the patient-physician interaction is authentication. 

As mentioned earlier, a separate authentication component can be used, but for the 

purposes of this example, it is assumed that the authentication mechanism is self

contained within the domain of the interacting components. 
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After authentication, the patient interface may transmit the patient's entire family 

history if this is the first time the physician is examining the patient. Alternatively, if 

the physician already has the patients family history on record, then only updates are 

sent, for efficiency. Services for the transmission of allergies and symptoms are then 

invoked. While both services can be implemented iteratively, the allergies service will 

transmit the allergies to the physician in bulk, whereas the symptoms service will 

deliver the symptoms incrementally, for demonstration purposes. Because symptoms 

are transmitted in an iterative manner, an end_symptoms service is used so as to 

ensure that both the provider and requester exit the iteration synchronously. (The 

end_symptoms service could also have be named no_more_symptoms.) Upon trans

mission of all the relevant medical data, the physician component has all the needed 

information, at which point the diagnosis service is invoked. The resulting diagnosis 

may or may not result in a prescription- the interface handles both cases. Finally, 

the communication between the patient and physician ends with the discharge op

eration which effectively terminates the authenticated session. A more complicated 

implementation could allow an arbitrary ordering of the allergies and symptoms ser

vices. 

A patient component has a second interface to interact with the prescription 

server. This interface would have services for authenticating, filling a prescription 

and one or more payment methods. If the patient component supports only one 

payment option, for example, a debit account which would be maintained on the 

smart card, then the service invocation could be very linear in nature, as shown in 

Figure 6.3. 

Alternatively, a patient component may support more than one payment option 
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------------4·~------------~ 

authenticate fill debit encLpa.yment disconnect 

Figure 6.3: Patient component interface for prescription server (one payment option) 

------------4·~-----------------

insuflicient 

Figure 6.4: Patient component interface for prescription server (multiple payment 

methods) 

to cover the cost of the prescription, as shown in Figure 6.4. For example, a patient 

could cover some or all of the cost with an insurance plan. Also, the payment portion 

of the interface allows for a loop to consider the possibility that the insurance may 

not cover the entire cost of the drug (the insuflicient service would be used at this 

point), thereby requiring the rest of the cost to be made up for via (one or more) 

invocations of the debit service. 
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Additional payment methods, such as credit card, or borrowing, could also be 

implemented by the interface. 

6.1.2 Physician Component Interface 

Unlike the patient interface, the physician interface shown in Figure 6.5 does not 

impose any constraints on the order in which the allergies and symptoms are given 

by the patient component, but requires that all three steps, symptoms, allergies 

and drug_history, are performed in some order. As long as the diagnosis service is 

not activated prior to providing all relevant details, the component interfaces have 

the potential to be compatible. Another major difference between the patient and 

physician interfaces is that the physician interface requires an ability to obtain the 

drug history of the patient prior to the diagnosis and prescription services so as to 

prevent a patient from receiving two identical prescriptions from two different doctors. 

The drug history could conceivably be supplied by the patient component. However, 

to reduce the possibility of tampering, the physician interface should satisfy this 

service by consulting an external source, such as the prescription server itself. 

------------------------4·~----------------

Figure 6.5: Physician component interface 
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Once all the relevant information is available, the diagnosis service can be activated 

and a prescription, if necessary, can be created by the physician interface reconnecting 

with the prescription server. If no prescription is necessary, then no further interaction 

with prescription server is required. 

It should be observed that this particular physician interface may require two 

separate connections with the prescription server. This could be alleviated by having 

one authentication/ disconnect pair instead of two, essentially leaving the connection 

to the prescription server interface "open" for the entire duration of the interaction 

between the physician and patient. The prescription server, described in the next sec

tion, does not allow for multiple operations to take place in a single session; however, 

this could be changed, if necessary. 

6.1.3 Prescription Server Component Interface 

The provider interface of the prescription server, presented in Figure 6.6, is relatively 

simple when compared with the patient and physician interfaces. After authentica

tion, three primary services may be activated by the requester: with the appropriate 

credentials, a drug history can be requested, an e-prescription can be requested, or 

an e-prescription can be filled by paying via debit card and/or insurance. Only one 

of these three choices may be used during any single interaction. 

With respect to authentication, it can be common to all subsequent services offered 

by the prescription server. The operations that a requester can perform on the pre

scription server depend upon the permissions level of the requester itself. For example, 

a component that is authenticated as a patient would have the ability to request that 
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debit 

Figure 6.6: Prescription server interface 

a prescription be filled. It would not have permission to make e-prescriptions, but it 

should have the ability to request its own drug history and not the history of oth

ers. The implementation would ultimately have to confirm that the requester has the 

appropriate credentials to carry out each service that it requests of the prescription 

server. However, if it is required that different types of authentication be used for 

each branch of services offered by the prescription server, then the server interface 

could be separated into three separate interfaces, if desired, each one with its unique 

authentication mechanism. The compositions described below will be the same. Also, 

the authentication required by a patient to debit his or her bank account would likely 

be different than the authentication required to access the prescription server to fill a 
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prescription. The authentication to access the bank account would be encompassed 

by the debit transition itself. 

In order to illustrate some elements of concurrency, the prescription server shown 

in Figure 6.6 can handle two requests simultaneously, which is represented by two 

tokens in the place of the prescription server that leads to the authenticate service 

transition. 

Compatibility testing between a patient and prescription server is possible only 

when a patient has acquired a prescription from a physician. The validation of the 

prescription could be done as part of the authentication service. Upon completion of 

the interaction, the prescription server can then disconnect from the requester, allow

ing for any resources employed during the interaction to be appropriately deallocated, 

and used for serving subsequent requests. 

6.2 Composition of Interfaces 

This section describes the composition of the various interfaces. The resulting com

posed models are analyzed for compatibility using reachability analysis and linear 

programming. 

6.2.1 Patient-Physician-Prescription Server Composition 

An overview of the composition of one patient requester, one physician and two 

prescription server interfaces is outlined in Figure 6.7. The left and right portions 

of the composed net, as delimited by the dashed boxes, are shown magnified, with 

corresponding transition labels, in Figures 6.8 and 6.9, respectively. 
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--------------~--~~-------

·-------- .. ; ......... . 

Figure 6. 7: Overview of patient-physician-prescription server composition 

In the context of the patient-physician composition, the patient (Figure 6.2) is 

the requester and the physician (Figure 6.5) is the provider since it is the patient 

that initiates the interaction. The composition of the authentication and the fam-

ily _history/ family _history _update free choice structure is a direct application of the 

rules presented earlier. After this point, the patient requester interface imposes an 

order on its two subsequent services (symptoms and allergies), which the physician 

provider interface is able to accommodate since it places no restriction on the relative 

order of these two service invocations. The drug_history service is not available in the 

patient interface but does exist in the prescription server interface. In order to sat-

isfy this service, the physician provider interface becomes a requester interface when 

demanding the drug_history service of the prescription server provider interface. 

Even though there are two prescription server interfaces in the composition, they 

would likely represent the same prescription server with the same data repository. As 
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~----------------~· 

authenticate drug..history disconnect 

• -----=------{. 
Figure 6.8: Left part of Figure 6. 7 



discharge 

prefK:ri.ption 

·~------------------------------------

Figure 6.9: Right part of Figure 6. 7 



mentioned above, the composition could have been accomplished using a single pre

scription server interface if the server permitted more than one prescription-related 

service to be performed during a single session. Also note that there is no direct 

interaction between the prescription server interface and the patient interface - the 

patient interface used in this composition is intended to interact only with the physi

cian interface. As a result, the fill and debit service transitions of the prescription 

server are unused in the composition. Interaction between patient interfaces and the 

prescription server interface is described in the next subsection. 

Once all the components have their services satisfied by the composition, the 

resulting net can be analyzed. Although the model is quite complex, it is sequential, 

so a small number of reachable markings is expected. Indeed, reachability analysis 

reveals that there are 221 reachable markings of the net, none of which is dead. The 

absence of deadlocks demonstrates the compatibility of the four interfaces. 

The model shown in Figure 6. 7 has several parallel and alternate paths as de

scribed in Section 4.2.4; the redundant paths can be removed without adversely af

fecting subsequent deadlock analysis of the model. The simplified net, after removing 

all appropriate elements associated with the parallel and alternate paths, is shown in 

Figure 6.10; it has 74 minimal siphons, all of which are also marked traps. Conse

quently, the net is deadlock-free since none of the minimal siphons can ever become 

empty. It can be shown that the number of minimal siphons appears to roughly dou

ble each time an alternate or parallel path is re-introduced, so elimination of parallel 

and alternate paths can substantially reduce the number of minimal siphons. 
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Figure 6.10: Simplified patient-physician-prescription server composition 

6.2.2 Patient-Prescription Server Composition 

To demonstrate multi-requester composition, the two patient interfaces (from Fig

ures 6.3 and 6.4) and prescription server interface (Figure 6.6) are composed. One of 

the patient interfaces provides for only one payment option, while the other allows 

for two such options (debit and insurance). Combining these nets results in the net 

shown in Figure 6 .11. 

Reachability analysis of this composed net reveals that there are 515 distinct 

markings. Although the number of markings is higher than for the previous composi

tion, it is still relatively small considering the complexity of the composed net. Again, 

the resulting net is bounded (the bound is equal to two) thereby making reachability 

analysis straightforward in this case. 

As with the previous example, siphon extraction can be simplified by removing 

the elements associated with numerous parallel and alternate paths, creating the net 

shown in Figure 6.12. Analysis of this simplified net reveals five minimal siphons, all 

126 



~ 
0 

:0 ·c;; 
0 
0.. s 
0 
(.) 

1-< 

~ 
1-< 
Q) 
rn 

~ 
0 ...... 
~ 

0.. ...... 
1-< 
(.) 
rn 
Q) 

• 1-< • 0.. 
I 

~ 
Q) ...... 
~ 
(.15 

0.. 
,....; 
,....; 

"' Q) 
1-< 

So ...... 
~ 

127 



of which are also marked traps. The resulting composed net is thus deadlock-free and 

the composition of the prescription server with the two different patient requesters is 

indeed compatible. 

• 

• 

Figure 6.12: Simplified patient-prescription server composition 

6.2.3 Incompatible Composition 

To demonstrate a case where deadlock arises, a patient requester component interface 

similar to Figure 6.4 is modified by reversing the arcs connected to the insufficient 

transition. Intuitively, this new patient requester interface cannot be compatible 

with the prescription server provider since the latter interface requires that either an 

insurance or debit service be invoked prior to using the insufficient operation. This 

restriction is not obeyed by the modified patient interface. Figure 6.13 shows the 
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composition of this modified interface with the other patient and prescription server 

interfaces. 

• 

----------------------~@~-----------------------

Figure 6.13: Incompatible composition between patient-prescription server interfaces 

The incompatibility that results from the new component can be demonstrated 

using reachability analysis. There are 483 unique markings, one of which is dead, as 

shown in Figure 6.14. Hence the resulting composition is incompatible. 

Using siphons extraction and linear programming to isolate the deadlock is also 

possible. Deadlock does not result by emptying either of the two minimal siphons 

present in the simplified net. However, when the algorithm of Figure 4.6 analyzes 

the 17 basis siphons, a siphon sequence can be identified which, when followed in 

the minimization process, does result in a deadlock situation. A detailed analysis 

and some further discussion of deadlock determination in this net is presented in 
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----------------------~0~---------------------

Figure 6.14: Dead marking of patient-prescription server composition 

Appendix A. 

6.2.4 Analysis of Unbounded Component Compositions 

As a final example of compatibility assessment, consider the case in which a physician 

may issue a patient more than one prescription. The physician and patient interfaces 

can be modified as shown in Figures 6.15 and 6.16, respectively. (These figures show 

only the changes necessary to the interfaces in Figures 6.2 and 6.5- the remainder 

of the interfaces are unchanged.) 

The patient interface keeps track of the number of prescriptions assigned to it by 

the shaded place in Figure 6.15. This place is shared between the patient interface that 

communicates with the physician and the patient interface that communicates with 

the prescription server. The modifications required in the latter patient interface to 
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no_prescription 

diagnosis 

prescription 

Figure 6.15: Modifications to the patient interface of Figure 6.2 

no_prescription 

prescription authenticate disconnect 

Figure 6.16: Modifications to the physician interface of Figure 6.5 

handle multiple prescriptions is presented in Figure 6.17. To keep the example simple, 

only the patient interface of Figure 6.3 will be used in the composition. The addition 

of a more service can also be made to the prescription server interface of Figure 6.6 

in a similar manner. 

To test for compatibility, all interfaces are composed into one net using the com

position strategy presented in the previous chapter. For the purposes of this example, 

the prescription server will be limited to servicing the requests of only one patient. 
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fill 

more 

Figure 6.17: Modifications to the patient interface of Figure 6.3 

The entire composition is shown in Figure 6.18. The place that is shared between the 

two patient interfaces is shaded in the figure. The fact that this place can accumulate 

an arbitrary number of tokens implies that the markings for this net are unlimited, 

thereby making the net unbounded- an arbitrary number of prescriptions may be 

assigned to a patient. Consequently, reachability analysis cannot be used to test 

deadlock-freeness; structural analysis can be performed instead. After removing the 

parallel and alternate paths the reduced net has 78 minimal siphons. All of these 

siphons are also marked traps so the composition of the modified interfaces is indeed 

deadlock-free. 

In addition to demonstrating how compositions resulting in unbounded nets can 

be analyzed, this example also demonstrates how one interface can influence the 

interactions of another via a shared place. Other extensions to the model involve 

allowing multiple patients to visit a physician. Because a physician can service only 

one patient at a time, extra transitions and places are necessary in the respective in

terfaces to simulate the notion of a "waiting room," and to coordinate the appropriate 

"prescription counter" places. While these extra net elements would obviously make 

the composed net more complicated, the same analysis strategy can be employed as 
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demonstrated by this chapter. 

6.3 Summary 

This chapter provided a non-trivial example to demonstrate how compatibility be

tween two or more interfaces can be determined formally by representing the dynamic 

behaviour of the interfaces as Petri nets and studying the resulting composition for 

deadlock. While reachability analysis may appear to be the most straightforward op

tion for the analysis, siphon extraction and linear programming can be used when the 

model is unbounded or the space of reachable markings becomes excessively large. In 

order to simplify siphon extraction, the composed net can be reduced by eliminating 

inessential siphons introduced by parallel and alternate paths. 
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Chapter 7 

Concluding Remarks 

Determining the degree to which components are compatible with one another in a 

software architecture is a multi-faceted issue that, in the general case, requires a com

prehensive understanding of both the static and dynamic nature of the components 

involved. By abstracting away the internal, low-level behaviour of components and 

concentrating upon the dynamic nature exhibited at the respective components' inter

faces, one can establish whether or not the components are compatible, i.e., whether 

or not they can communicate effectively and reliably. 

This work presented a formal approach for composing two or more components by 

integrating the Petri nets that represent their interfaces into a single net. The dynamic 

compatibility is assessed by determining if the resulting net exhibits deadlock. In 

order to identify deadlocks, two methods were discussed, one based on analysis of 

reachable states and the second based upon analysis of net structural properties 

(combined wit~ linear programming). The relative strengths and weaknesses of these 

methods were also discussed. 



7.1 Potential Applications 

This work has several possible applications in the areas of construction and deploy

ment of software systems. It is also believed that the compatibility assessment strat

egy may help promote the reuse of existing software components and may provide 

a metric to measure whether one component can be substituted for another in a 

deployed system. The composition and compatibility techniques may also have ap

plications in the development of large-scale, distributed software systems. 

7.1.1 Software Development and Deployment 

The composition strategy described in this work has potential applications in the 

software development life-cycle. In particular, during the design and implementation 

phase, this composition strategy may serve to encourage component reuse by pro

viding designers and developers a formal means of identifying external components 

which can successfully satisfy the requirements of the components that they build. 

Also, the compatibility of components imply the (minimal) requirements on those 

new components which are supposed to interact with the existing components. 

In addition to the design and implementation phase, the composition technique 

may also be used during the deployment phase to allow a component to dynamically 

discover compatible components. If a component determines that it is compatible with 

more than one component, other discriminating factors, such as latency or memory 

requirements, can be used to choose the preferred component for interaction. 
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7.1.2 Substitutability and Reuse 

All practical software systems are in a constant state of change as functionality is 

enhanced, errors are corrected and efficiency is improved. As part of the evolution 

of a software system, it is sometimes necessary to replace existing subsystems with 

newer subsystems; usually these replacements are intended to improve the behaviour 

of the entire system in some way. Two criteria have been identified which define the 

problem of substitutability [23]: (1) the component that is being used for replacement 

must provide all the services that its previous counterpart provided (it may also 

provide more services, if desired) and (2) any correctness properties that existed in 

the previous system must still be preserved after the substitution has taken place. 

In this context, the model presented in this work can assist in determining the 

feasibility of replacing an existing component with a new component in a software 

architecture during maintenance cycles. In particular, the notion of provider services 

are central to the interface model described by this work and any additions or deletions 

to these services are easily identified. While this model does not ensure that all low

level semantic behaviours related to a component's state are retained, correctness 

criteria with respect to the preservation of service invocations can be evaluated by the 

compatibility checking procedure prior to a component substitution actually taking 

place. A very simple substitutability criterion can be formulated on the basis of 

interface languages (introduced in Section 4.4): Component A can be substituted by 

component B, if for all corresponding interfaces !JA) and !JB), j = 1, ... , k: .C(IJA)) ~ 

.C(JjE)). 

This substitutability aspect can serve to make the upgrading and subsequent main-
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tenance of existing systems easier and may also help promote reuse in a software 

architecture [41, 42, 81]. When new provider components are deployed in an en

vironment, requester components can evaluate them for compatibility and abandon 

their previous providers if the new providers offer better performance. This would 

naturally require a means for components to evaluate the performance of others. 

7.1.3 Web Services 

Related to this work is the increasingly important areas of web-services [9, 19, 50] 

and the more general areas of Service-Oriented Architectures (SOA) [49] and agent

oriented methodologies [32]. Much research is currently being done in these two fields, 

both of which involve the exchange of messages between machines in large-scale, 

distributed software architectures. The need to assess compatibility between client 

and provider services is important to the success of these two development models 

and it is believed that the model presented in this dissertation can be adapted for 

these methodologies. 

7.2 Future Work 

While the applications of the proposed technique for compatibility verification are 

apparent in the software development process, further work and study are necessary 

to enhance the model so as to make it more robust in the context of challenges that 

can be present in the construction of "real-world" software architectures. 
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7.2.1 Deadlock Detection 

The primary challenges facing this model are the aspects related to the deadlock 

detection of the composed net. Reachability analysis, has, surprisingly, been very 

effective at identifying the presence of deadlocks in the composed (bounded) nets of 

the previous chapter. Unfortunately, assessing the reachability of unbounded nets 

is more challenging, but there may be ways to address this problem. In particular, 

the concept of modified reachability trees (MRT) [109] may be helpful in dealing with 

this issue. Alternatively, unbounded nets exhibit a "pumping" effect which can be 

represented by vector addition systems [73]. 

7.2.2 Siphon Extraction 

Structural analysis and linear programming are ideally suited for unbounded nets in 

which the number of places in the composed net is not too large. As the number 

of places in a composed net increases, the extraction of basis and minimal siphons 

becomes much more challenging using currently known algorithms. Additionally, the 

deadlock algorithm and the feasibility check for firing vectors both employ backtrack

ing strategies which increase the complexity of the proposed compatibility verification 

technique. Further empirical evidence is required to fully understand the practical 

complexity of the algorithms proposed in this work. It has been demonstrated that 

the aforementioned complexity concerns can be mitigated by removing parallel and 

alternate paths from the composed net; most likely, the number of siphons in a net can 

be reduced by identifying additional redundant structures in the net and removing 

the corresponding net elements. Alternative algorithms to finding basis and minimal 
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siphons and/ or to identify deadlock should also be investigated [28, 75, 103]. Some 

research has recently been published that describes a strategy to assesses component 

behavioural compatibility without encountering the state explosion problem [3]. De

termining if this technique can be adapted to the composition model presented in this 

work may be beneficial. 

Ideally, siphon extraction and linear programming should only be attempted on 

composed nets when reachability analysis is unreasonable, for example, in the context 

of an unbounded net. 

7.2.3 Semantic Compatibility 

The presented research addresses only one aspect in the broad area of component com

patibility. There are many other issues related to compatibility which are not fully 

addressed. The notion of compatibility proposed by the model in this work provides a 

means to determine the potential for two or more components to interact successfully. 

In particular, this model provides a viable method to assess the structural compatibil

ity of two different interfaces but does not provide a means to determine the semantic 

compatibility. Returning to the example given in Section 6.2.2, if the actual amount 

of money from the both debit card and insurance combined were insufficient to pay 

for the prescription, then this could be regarded as a form of semantic incompatibility 

which cannot be detected by this model. Another example would be a component's 

failure to authenticate because of an invalid password. If authentication fails during 

runtime for example, this does not mean that the two components were incompati

ble. These failures relate to the actual values interchanged between components and 
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are therefore below the level of abstraction of the compatibility model proposed in 

this work. Their effect, however, could be included in the models by introducing 

free-choice structures for more than one outcome of an operation. 

7.2.4 Asynchronous Interaction 

While the composition model does allow for concurrency when multiple requesters 

are simultaneously communicating with a single provider, there is no support for 

spontaneous events or asynchronous behaviours in the composition. Therefore, this 

model may not be particularly amenable to implementing events such as interrupts 

and exceptions arising from serious software faults, such as overflows of arithmetic 

operations. Some representation of such effects could be introduced by additional 

free-choice structures, as indicated above, but a more systematic approach is needed 

in the general case. 

Interfaces whose behaviours are much more complex than that presented in the 

previous chapter can also be represented by the model. Indeed, with the introduction 

of inhibitor arcs in the Petri net model of an interface, an arbitrary protocol can 

be modelled (the modelling power of Petri nets with inhibitor arcs is equivalent to 

Thring machines). Unfortunately, as the number of elements in the composed net 

increases, detecting deadlock becomes more computationally intensive. Moreover, the 

introduction of inhibitor arcs renders the compatibility assessment based on structural 

properties inapplicable (except for some special cases). 
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7.2.5 Temporal Aspects 

Many conventional applications involving interactions amongst components are not 

time dependent and modest latencies between component interaction (whether due to 

hardware or network limitations) are usually acceptable. However, in the case of em

bedded real-time systems, timing issues are of paramount importance. The proposed 

model does not address temporal compatibility of two components. Fortunately, 

through the use of extensions such as timed Petri nets [114, 115, 116], such timing 

aspects may be added to the model and may serve as a means to assess compatibility 

based upon various performance evaluation metrics. 

7.2.6 Model Building 

Another issue not fully addressed by this work is how one can construct the Petri 

net for an interface when given the corresponding requester client code and library 

that implements the interface in the provider. Static analysis of the code can, at the 

very least, enumerate the services provided or requested by a component's interface. 

Static analysis may also reveal, to a limited degree, the sequence of service invocations. 

However, to accurately determine the complete set of sequences in which the services 

occur, a dynamic approach can be taken during which all branches of execution 

are exercised during a run-time simulation so as to deduce the complete Petri net 

structure for an interface. An alternative method for determining the nets is through 

the use of formal specification languages such as JML [20] which can be used to specify 

various pre- and post-conditions in the code via well-defined, structured comments 

prefacing each service definition. By chaining services with corresponding pre- and 
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post-conditions, it may be possible to deduce the net using a code base whose services 

have been appropriately adorned with a complete set of specifications. For example, 

in the extended example of the previous chapter, all services after the authentication 

would require that an authenticated attribute be set to true. A post-condition of 

the authenticate service would be to set this attribute to true in the specification, 

therefore dictating that the authentication service must be performed before any other 

services are invoked. 

7.2.7 Component Discovery 

This model does not provide a formal mechanism for components to discover one 

another in a pragmatic context. Other technologies exist to accomplish this such 

as UDDI, COREA Naming services and JNDI. The question remains, however, as 

to how an initially unconnected component can attempt to intelligently query the 

interfaces of thousands of other interfaces to determine compatibility and to interact 

successfully with other components in a deployment environment. The labels speci

fying the services could be used for preliminary discovery of potentially compatible 

components. Additionally, a hierarchical decomposition of the deployed component 

space on the basis of the linguistic properties of their interfaces may help to alleviate 

some of the complexity of discovery. 

While verifying compatibility during the deployment phase poses some challenges, 

it may also lead to some benefits. For example, it may allow for the possibility of 

a software architecture that can dynamically reconfigure itself [6], potentially giving 

rise to autonomous, self-assembling software systems. It may also lead to the possi-
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bility of removing a component from a running system and plugging in a compatible 

component without adversely affecting the operation of the system. Naturally, issues 

related to state transfer from an old component to a new component would have to 

be addressed before this possibility can become a reality. 

7.2.8 Measures of Compatibility 

Currently, the existing model of compatibility amounts to a decision problem -

either two or more components are compatible, or they are not. The model does 

not allow for a continuum of compatibility measures [112]. Such a measure may 

be helpful especially during maintenance of software systems, when components and 

their interfaces are subject to modifications to improve performance or to provide 

additional functionality. Changes to a component may result in an interface which is, 

for example, 99% compatible with its peer components instead of 100% (which may 

mean that some infrequently used service is not being used in a compatible context). 

If the compatibility measure is relatively high, then it may be possible to introduce 

a facade interface that maintains backwards compatibility with the old interface. 

This would allow for interactions between components that "almost" successfully 

interact with one another. The facade could later be dropped as other components 

are updated. Some work in this general area, using interface automata, has already 

been performed [59]. 
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7.2.9 Design Quality 

The proposed model does not describe the attributes of a well-designed interface or, 

indeed, how to build such an interface. However, there are some qualitative guidelines 

which can be followed. It is known that components with complex interactions are 

difficult to design and implement, especially when not all requirements are known. 

Therefore, interface development may be performed in an incremental or step-wise 

fashion for subsets of related operations. These subsets may then be clustered into a 

single "super-service," thereby facilitating the reachability or structural analysis. It is 

also the duty of the interface designer to ensure that the interface is "well-behaved," 

for example, it must not contain deadlocks (non-liveness, however, is acceptable). If 

two poorly designed interfaces are created and successfully composed in accordance 

with the model proposed in this work, this does not necessarily mean that the com

position will result in the composed net exhibiting desirable or correct behaviour. 

7.3 Epilogue 

The research described in this thesis represents an important step in the continu

ing evolution of the design and construction of software systems. Establishing a 

well-defined and formal method for determining the extent to which two or more 

components are able to successfully interact can serve to significantly enhance the 

integration of software components in a given software architecture. Ultimately, this 

may contribute to the reliable evolution of a deployed component-based software sys

tem. 

In addition, the formal models proposed in this work constitute a foundation which 
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may enable the automation of some of the tedious aspects of component integration 

and deployment. This work could lead to the formation of autonomous software sys

tems in which each component possesses the knowledge of the services it requires and 

provides via each of its interfaces. By giving components the ability to independently 

determine other compatible components in the context of its deployment, we allow for 

the potential of self-assembling software systems, thereby allowing for an increasing 

degree of automation in the field of software development. Although many practical 

aspects of such systems must be studied extensively, the work presented in this thesis 

provides a possible foundation for such research. 
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Appendix A 

Deadlock Detection 

This appendix provides a detailed demonstration of how structural properties and 

linear programming can be used to analyze the Petri net in Figure 6.13 presented 

in Chapter 6. The net exhibits a deadlock, as shown by the reachability analysis in 

Section 6.2.3. The deadlock can also be determined by simplifying the composed net 

and using linear programming, as will be demonstrated in this Appendix. 

To employ linear programming, the basis and minimal siphons must be extracted 

so that objective functions can be determined. Since the original net has a large 

number of siphons, the concepts of similar and essential siphons, as well as parallel 

and alternate paths can be used to reduce the number of siphons (and to simplify 

their extraction). 

Removing parallel paths and the bases of alternate paths from the net in Fig

ure 6.13 results in the net shown in Figure A.l. The reduced net still preserves the 

deadlock properties of the original net (as discussed in Section 4.2.4); the reduced 

net will deadlock if and only if the original net deadlocks. This simplified model has 
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23 basis siphons, all of which are marked. These basis siphons include five mini

mal siphons and six marked traps, as shown in Table A.l. (The minimal siphons are 

81, 82,818,819 and 820 .) The marked traps can be disregarded because they can never 

become empty to create a deadlock. Therefore, only 17 siphons must be examined 

using linear programming (S~, ... , 8 17 ), the first two of which are minimal siphons. 

The deadlock detection algorithm presented in Figure 4.6 of Chapter 4 first at

tempts to determine if there is a firing sequence which removes tokens from one of 

the minimal siphons (in order to produce a deadlock). The objective function for 

each minimal siphon is determined from the places constituting the siphon and their 

marking, while linear programming is used to determine if a firing vector exists which 

minimizes the objective function to zero while observing the constraints presented in 

Table A.2. These constraints are derived from the structure of the analyzed net and 

represent the requirement that the number of tokens assigned to the place cannot be 

negative. It should be noted that as siphons are emptied, new markings are obtained 

and the constraints can change accordingly. In particular, the constant in each con

straint can change as siphons are emptied of their tokens. (This constant describes 

the marking of a particular place.) Additional constraints include the fact that all 

transitions must fire zero or more times (i.e. Xti, 1 ~ i ~ 36, must all be greater than 

or equal to zero). 
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Figure A.l: Simplified incompatible composition between patient-prescription server interfaces 



Table A.l: Marked basis siphons in Figure A.l 

SI = {PI' P2, P3, P4, Ps, Ps, P7, Ps, pg, Pw, Pu' PI3, PI4, Pis, PI6, PI7, Pis, P20, P22, P24, P2s, P26, P27' P28, P29, P3I' P32, P33, P34, P3s,P36} 
s2 = {PI' P2,P3, P4, Ps, P7, Ps, pg, Pio, Pu' PI2, PI3, Pls, Pis, PI9, P2I' P22, P23, P2s, P26, P27,P2S' P29, P30, P3I' P33, P34, P3s, P36} 
83 = {PI, P2, p3, P4, Ps, P1, Ps, pg, Pw, Pu, PI3,Pis, PI7, Pis, P20, P2I, P22, P2s, P2s, P21, P2B,P29, P3I, P33, P34, P3s, P3s} 
s4 = {PI' P2, P3, P4, Ps, Ps, P7, Ps, pg, Pw, Pu' PI2, PI3, Pis, PI7, Pis, PI9, P2I' P22, P23' P2s, P26, P27, P28, P29, P3o, P3I' P33, P34l P3s, P36} 
S s = {PI, P2, P3, P4, Ps, P1, Ps, pg, Pio, Pu, PI3, Pis, PI7, Pis, P20, P2I, P22, P2s, P2s, P21, P2s, P29, P3I, P33, P34, P3s, P36} 
Ss = {PI, P2, p3, P4, Ps, Ps, P7, Ps, pg, Pw, Pn, PI2, PI3, PI4, Pis, Pis, PI7, Pis, P20, P22, P24, P2s, P2s,P21, P2B, P29, P3I, P32, P33, P34, P3s, P3s} 
s7 = {PI' P2, P3, P4, Ps, P7, ps, pg, Pw,Pu' PI2, PI3, Pis, PI7, Pis, P2o, P2I' P22, P2S ,P26, P27, P28, P29, P3I' P33' P34, P3s, P36} 
Ss = {PI, P2, p3, P4, Ps, Ps, P1, Ps, pg, Pw, Pu, PI2, PI3, PI4, Pis, PI7, Pis, PI9, P2I ,p22, P23, P2s, P2s, P21, P2s, P29, P30, P3I, P33, P34, P3s, P3s} 
Sg = {PI, P2, P3, P4, Ps, P1, Ps, pg, Pio,Pu, PI2,PI3, Pis, Pis, Pis, PI9, P2I, P22, P23, P2s, P26,P27,P28, P29, P30, P3I, P33, P34, P3s, P3s} 
Sw = {PI, P2, p3, P4, Ps, P1, Ps, pg, Pio, Pn, PI3, Pis, Pis, PI7, Pis, P2o, P2I, P22, P2s, P2s, P21, P2B, P29, P3I, P33, P34, P3s, P3s} 
Su = {PI, P2, p3, P4, Ps, P1, ps, pg, Pw, Pn ,PI2,PI3, Pis, PI7, Pis, PI9, P2I, P22, P23, P2s, P2s, P21, P2B, P29, P30, P3I, P33, P34, P3s, P3s} 
SI2 = {PI' P2, P3, P4, Ps, Ps, P7, Ps, pg, Pio, Pn ,PI3' PI4, Pis, PI6, PI7, Pis, PI9, P2o, P22, P24,P2S' P26, P27, P28, P29, P3I' P32, P33, P34, P3s, P36} 
SI3 = {PI, P2, P3, P4, Ps, P1, Ps, pg, Pw, Pu, PI3, Pis, PI7, Pis, PI9, P20, P2I, P22, P2s, P2s, P21, P2B, P29, P3I, P33, P34, P3s, P3s} 
SI4 = {PI' P2, P3, P4, P7, Ps, pg, Pw, Pu' PI3' Pis, PI7, PIS' P20, P2I' P22l P2s, P26, P27,P28, P29, P30,P3I 'P33, P34, P3s, P36} 
Sis = {PI, P2, P3, P4, Ps, Ps, P1, Ps, pg, Pw, Pu ,PI3, PI4, Pis, Pis, PI7, Pis, P20, P22, P24, P2s, P2s, P21, P2B, P29, P30, P3I, P32, P33, P34, P3s, P3s} 
816 = {p~, P2, P3, P4, P7, Ps, pg, Pw, Pn, PI3, Pis, PI7, Pis, P20, P2I, P22, P2s, P2s, P21, P2B, P29, P3I ,p32, P33, p34, P3s, P36} 
SI7 = {PI' P2, P3, P4, Ps, P7, Ps, pg, Pw, Pn' PI2, PI3, Pis, Pis, PI9, P2I' P22,P23, P2s, P26, P27' P2s, P29, P30, P3I' P32, P33, P34, P3s, P36} 

Siphon-traps 
Sis = {PI ,p2, p3, P4, Ps, Ps, P7,Ps ,pg,pw,Pu ,PI2,PI3, PI4, Pis, Pis, PI7, Pis,PI9} 
SI9 = {PI, P2, P3, P4, P7, Ps, pg,pw, Pn,PI3,Pis, PI7,PI8,P20, P2I, P22,P2s, P26, P27,P28, P29, P3I,P33,P34, P3s, P36} 
820 = {P22, P23, P24, P2s, P2s, P21, P2s, P29, P30, P3I, P32, P33, P34, P3s, P3s} 
s2I = {p~, P2, P3, P4, Ps, P7, Ps, pg, Pw, Pn' PI3, PI4, Pis, PI7, Pis, P20, P2I 'P22, P2s, P26, P27, P28, P29, P3I 'P33, P34, P3s, P36} 
s22 = {PI' P2, P3, P4, P7, Ps, pg, Pio, Pn' PI3, Pis, PI7, PIS' P2o, P2I' P22, P23, P2s, P26, P27' P28, P29, P30, P3I' P33, P34, P3s, P36} 
823 = {PI, P2, P3, P4, P1, Ps, pg, Pw, Pn, PI3, Pis, PI7, Pis, P20, P2I, P22, P24, P2s, P2s, P21, P2B, P29,P3I, P32, P33, P34, P3s, P3s} 



Table A.2: Constraints for Figure A.1 

Place Constraint Place Constraint 
PI -Xt1 + Xf!8 + 1 ;:::: 0 PI9 Xt19 - Xt20 ;:::: 0 
P2 Xt11 - Xt12 ;:::: 0 P2o -Xta + Xtg + Xt14 - Xt2o + Xt2s - Xt2a ;:::: 0 
P3 -Xt3 + Xt12 ;:::: 0 P2I Xtr - XtlO - Xt1s + Xt21 + Xt21 - Xt2s ;:::: 0 
P4 Xt13 - Xt14 ;:::: 0 P22 -Xt24 + Xt32 ;:::: 0 
Ps -Xt2 - Xt8 + Xt14 - Xt19 ;:::: 0 P23 -Xt2a + Xt33 ;:::: 0 
P6 -Xt4 + Xt7 + Xt9 + Xt21 ;:::: 0 P24 -Xt2s + Xt34 ;:::: 0 
P7 Xt1s - Xt1a ;:::: 0 P2s -Xt3o + Xt3s ;:::: 0 
Ps -Xt5 + Xf!6 ;:::: 0 P26 -xt22 + Xt3a ;:::: 0 
pg Xf17 - Xt 18 ;:::: 0 P21 Xt22 - Xt23 ;:::: 0 

PIO Xt 1 - Xt11 ;:::: 0 P2s Xt23 - Xt32 ;:::: 0 
Pn Xt6 - Xt7 ;:::: 0 P29 Xt24 - Xt2s ;:::: 0 
PI2 Xt2- Xta ;:::: 0 P3o Xt2s - Xt33 ;:::: 0 
PI3 Xt3 - Xt13 ;:::: 0 P3I Xt26 - Xt21 ;:::: 0 
PI4 Xt4- Xfis ;:::: 0 P32 Xt21 - Xt34 ;:::: 0 
PIS Xt5 - Xt 17 ;:::: 0 P33 Xt2s - Xt2g ;:::: 0 
PI6 Xt8 - Xt 10 ;:::: 0 P34 Xt2g - Xt3s ;:::: 0 
PI7 -Xt9 + Xt10 ;:::: 0 P3s Xt3o - Xt31 ;:::: 0 
PIS Xt2o - Xt21 ;:::: 0 P36 Xt31 - Xt36 + 1 ;:::: 0 

Linear programming shows that the numbers of tokens in S2 (in Table A.1), which 

is represented by the objective function 2- Xt8 - Xt10 , can be minimized to zero with 

the firing vector: 

[1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1]. 

This vector is feasible and corresponds to the firing sequence 

However, emptying this siphon does not result in a deadlock. Furthermore, the first 

minimal siphon, represented by the objective function 2- Xt2 + Xt9 + Xf14 - Xf19 , cannot 

be emptied. Therefore, the algorithm must continue to test all 17 basis siphons to 

(recursively) determine a siphon draining sequence that results in deadlock. 
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Using the deadlock algorithm, it can be determined that draining the basis siphons 

in the sequence of (82, 84 , 811) results in the dead marking shown in Figure 6.14. The 

corresponding objective function for each siphon, the firing vector that minimizes 

each objective function to zero and the firing sequence that corresponds to the firing 

vector are presented in Table A.3. 

Table A.3: Siphons, objective functions and firing vectors/sequences 

I Siphon I Objective function, firing vector and firing sequence 

82 2- Xt8 - Xt10 , 

[1,0,1,0,0,0,0,1,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,0,0,1], 
(t1,t11,t12,t3,t13,t14,ts,t36,t22,t23,t32,t24,t2s,t33,t26,t27,t1o) 

84 1- Xt4 + Xt7- Xts + Xt21' 

[0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], 
(tg, t4) 

817 1 - Xts - XtlO + Xt27 - Xt34 ' 

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0], 
(t34) 

The siphon sequence (82, 84,817) is not unique- other sequences exist which also 

result in the same deadlock. Some of these siphon sequences and the corresponding 

transition firing sequences that result in a deadlock, are shown in Table A.4. These 

siphon sequences were obtained by randomizing the order of the basis siphons and 

running the same algorithm as above. 

The presence of several siphon sequences may help to lessen the time complexity 

of the algorithm in pragmatic cases - the siphons can be ordered in such a way 

that the most likely candidates are analyzed first. Also helping to mitigate the com-

plexity of the algorithm is the fact that when a siphon's tokens are fully drained, 

other "overlapping" siphons could also have become empty. These additional empty 
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Table A.4: Other siphons emptying sequences and their corresponding firing sequences 
that result in deadlock 

I Siphon I Firing sequence 

8u (ti,tii,ti2,t3,ti3,ti4,ts,t36,t22,t23,t32,t24,t2s,t33,t26,t27,tlo,tg) 
817 (t34) 
84 (t4) 
82 (tb tu, t12, t3, t13, t14, ts, t36, t22, t23, t32, t24, t2s, t33, t26, t21, tw) 
8u (tg) 
84 (t4) 
817 (t34) 
8g (tb tu, t12, t3, t13, t14, ts, t35, t22, t23, t32, t24, t2s, t33, t26, t21, tw) 
817 (t34) 
84 (tg,t4) 
817 (t1, tu, t12, t3, t13, t14, ts, t36, t22, t23, t32, t24, t2s, t33, t26, t21, ho, t34) 
8u (tg) 
84 (t4) 
817 (t1,tii,t12,t3,ti3,t14,ts,t36,t22,t23,t32,t24,t2s,t33,t26,t27,tlo,t34) 
84 (tg, t4) 

siphons effectively prune the recursive search space since the algorithm does not ex-

plore siphons that have become emptied as it progresses through its analysis of the 

set of basis siphons. 
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Appendix B 

Petri Net File Format 

This appendix describes a file format that can be used to textually describe the nets 

presented in this thesis. The file structure consists of individual sections listing the 

places, the transitions/ connectivity, and finally the initial marking. Each of these 

three sections are described in more detail in the following sections. For convenience, 

software has been written which can convert graphical descriptions of the nets (in 

xf ig format) into the format described by this Appendix. 

B.l Places 

The places are specified by a comma-separated list of the place names. Each place 

name has the syntax of a traditional identifier (an alphabetic character followed by 

zero or more alphanumeric characters) and each name must be unique. The list of 

places is prefixed by pdef=. The resulting string is then enclosed by net [ and]. 
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B.2 Transitions/Connectivity 

The transitions are then provided in a semi-colon separated list in which each list item 

consists of the transition identifier (preceded by '#') followed by a comma-separated 

list of the identifiers representing the input places of the transition followed by a 

comma-separated list of identifiers representing the output places of the transition. 

The transition identifier is separated from the two lists of places by '=' and the 

input/output places are separated from each other by '/'. 

B.3 Initial Marking 

The initial marking is specified by providing all the places that have tokens in a 

comma-separated list. By default, places in this list will have exactly one token in 

the initial marking. More than one token can be assigned to a place by specifying 

the number of tokens after the place name. A colon separates the place name from 

the number of tokens. 

B.4 Grammar 

A grammar for the textual description of nets is given below: 

Net 

Places 
Transitions 
Trans 
Markings 
Id-List 

net [pdef= Places ] 
( Transitions ) ; 
mark ( Markings ) ; 
Id-List 
Trans {; Trans}* 
#id = Id-List/Id-List 
mark(id[ :num]{ ,id[ :num]}*) 
id {, id}* 
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B.5 Example 

Using the above grammar, the Petri net given in Figure A.l has the following textual 

description: 

net[pdef=p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15, 
p16,p17,p18,p19,p20,p21,p22,p23,p24,p25,p26,p27,p28,p29,p30, 
p31,p32,p33,p34,p35,p36] 

(#t1=p1/p10; 
#t2=p5/p12; 
#t3=p3/p13; 
#t4=p6/p14; 
#t5=p8/p15; 
#t6=p20,p12/p11; 
#t7=p11/p6 ,p21; 
#t8=p5/p16; 
#t9=p17/p20,p6; 
#t10=p21,p16/p17; 
#t11=p10/p2; 
#t12=p2/p3; 
#t13=p13/p4; 
#t14=p4/p20,p5; 
#t15=p14,p21/p7; 
#t16=p7/p8; 
#t17=p15/p9; 
#t18=p9/p1; 
#t19=p5/p19; 
#t20=p20,p19/p18; 
#t21=p18/p21,p6; 
#t22=p26/p27; 
#t23=p27/p28; 
#t24=p22/p29; 
#t25=p29/p30,p20; 
#t26=p23,p20/p31; 
#t27=p31/p32,p21; 
#t28=p24,p21/p33; 
#t29=p33/p34; 
#t30=p25/p35; 
#t31=p35/p36; 
#t32=p28/p22; 
#t33=p30/p23; 
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#t34=p32/p24; 
#t35=p34/p25; 
#t36=p36/p26); 

mark(p1,p36); 
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Appendix C 

Parallel/ Alternate Path 

Algorithms 

This appendix presents algorithms used in Section 4.2.4 (Chapter 4) in the structural 

analysis of Petri nets. In particular, the algorithms identify parallel and alternate 

paths which can be used to reduce the number of inessential siphons and to simplify 

deadlock detection. 

C.l Parallel Paths 

The procedure to identify the transitions that delimit parallel paths in a net is pre

sented in Figure C.l. The procedure examines all transitions in the given net that 

have more than one output place (by definition, a transition that has less than two 

output places cannot act as the origin of a parallel path). Each of the output places 

is then analyzed to determine if there exists more than one simple path that extends 

from the originating transition to the same terminating transition. Each output of 
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the same pair of transitions denotes another parallel path between the two transitions 

(which can be removed from the net). 

proc parallel-paths(N) 
begin 

for each t in Transitions(N) do 
if jOut(t)i > 1 then 

T := { }; 
for each pin Out(t) do 

t' := endtpath(N,p); 
if t' -1- nil then 

if t' E T then 
output( t, t') 

else 
T := TUt' 

endif 
endif 

endfor 
endif 

endfor 
end 

Figure C.1: Procedure parallel-paths 

The parallel-paths algorithm makes use of an auxiliary function called endtpath, 

presented in Figure C.2, which identifies the terminating transition at the end of a 

simple path that starts from the place given as its argument. If the place is not part 

of a simple path, then the function returns nil. The function steps through each 

place and transition along the path ensuring that their respective input and output 

sets are all singletons. The assignment of cant := p -1- first prevents infinite looping 

which may occur if the net contains a cycle. In this function, Out(p) is the set of 

all transitions in the output set of p, whereas out(p) represents the single output 

transition of the given place. The same idea applies to the difference between Out(t) 
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and out(t). The complexity of this algorithm is linear with respect to the sum of the 

number places and transitions. 

func endtpath(N,p) : transition 
begin 

t :=nil; 
first:= p; 
cont := true; 
while cont do 

cont := false; 
if llnp(p)l = 1 and IOut(p)l = 1 then 

t := out(p); 
if llnp(t)l = 1 and IOut(t)l = 1 then 

p := out(t); 
cont := p #- first 

endif 
else 

t :=nil 
endif 

endwhile; 
return t 

end 

Figure C.2: Function endtpath 

C.2 Alternate Paths 

A procedure that identifies the base portion of alternate paths is presented in Fig-

ure C.3. The procedure iterates over the places attempting to identify a place which 

is the starting point of the base of an alternate path. Places whose input sets contain 

only one transition are rejected as they cannot be part of a base path. For all other 

places, the endppath function, described below, is then used to determine if the place 

is the start of a simple path (with the result from endppath being the last place of 
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the simple path). If a place is the start of a simple path, then the sets of transitions 

that lead into and out of the base path are identified. A check is then made (using 

the endtpath function of Figure C.2) to ensure that the two sets of transitions can be 

paired off completely by identifying simple paths between them. If this is successful, 

the two places identified earlier constitute the starting and ending points of a base 

path. 

proc alternate-paths(N) 
begin 

for each pin Places(N) do 
if llnp(p)l > 1 then 

base:= nil; 
rl := endppath(N,p); 
if rJ i= nil then 

T1 := lnp(p); 
T2 := Out(rf); 
for each t in T1 do 

for each p" in Out(t) do 
t' := endtpath (p"); 
if t' f= nil and t' E n then 

T2 := T2- {t'}; 
T1 := T1- {t}; 
base := (p, p') 

endif 
end for 

endfor; 
if T1 = 0 and T2 = 0 and base i= nil then 

output( base) 
endif 

end if 
end if 

endfor 
end 

Figure C.3: Procedure alternate-paths 

The algorithm for the endppath function, used by the alternate-paths function 
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above, is shown in Figure C.4. This function works similarly to endtpath, but instead 

of returning the last transition of a simple path, it returns the last place. The only 

other major difference is that the endppath algorithm must take into account the fact 

that the input set of the starting place of the base and the output set of the final place 

are not necessarily singleton sets. As with endtpath, the complexity of this algorithm 

is linear with respect to the sum of the number places and transitions. 

func endppath(N,p) : place 
begin 

p' :=p; 
first:= p; 
cont := true; 
while cont do 

cont := false; 
if !Out(p')l = 1 then 

t := out(p'); 
if jlnp(t)l = 1 and IOut(t)l = 1 then 

p := out(t); 
if llnp(rf) I = 1 then 

cont := rf f- first 
else 

rf :=nil 
end if 

else 
rf :=nil 

end if 
endif 

end while; 
return p' 

end 

Figure C.4: Function endppath 
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