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Abstract 

Industrial and technological developments of the past 100 years have resulted in 

significant perturbations to the global sulphur cycle. The use ofbiomonitors, such as lichens, 

for quantifying environmental changes has grown in importance over the last decades and 

offers promising developments for the understanding of global elemental cycles. 

The present study was designed to investigate the response of lichens to changes in 

atmospheric sulphur conditions, as measured by changes in sulphur isotopic composition and 

concentration in lichen thalli. A reciprocal transplant of lichen thalli was performed between 

a "polluted" and "unpolluted" site, with respect to sulphur sources and concentration. 

Samples were collected monthly for a period of 18 months. 

Multiple regression with periodic functions was used to model the observations. All 

lichens showed a gradual change in isotopic composition and concentration toward the 

values at the transplant site, but did not reach local conditions. No long-term trend was 

discernible for sulphur concentration measurements in lichens transplanted to the polluted 

site, probably due to a significant increase in sulphur concentrations at that site over the 

course of the experiment. Seasonal trends were identified at both sites, and at the polluted 

site appeared to be closely related to anthropogenic sulphur emission patterns. Some 

sources of seasonal variation at the unpolluted site were unidentifiable, but influences from 

anthropogenic sources were identified, and influences from biogenic sources suggested. The 

mechanics of relocation did not affect lichen responses. It is likely that distinguishing 

between the organic and inorganic fractions of sulphur would have helped in interpreting 

results. 
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Chapter 1. Introduction 

1.1 Statement of problem 

The global sulphur cycle has undergone substantial perturbations in the past century 

as a result of industrial and technological developments. Industrial activities are contributing 

significantly to the input of sulphur gases to the atmosphere. Sulphur dioxide emissions are 

linked directly to environmental problems such as global warming and acid precipitation, 

which may in tum lead to changes in rock weathering, forest growth and ocean productivity 

(Schlesinger, 1991 ). The use of biomonitors, organisms which can serve as indicators of 

environmental pollutants, is growing in importance and can provide valuable information 

on the state of our environment. Lichens are long-lived perennial organisms characterized 

by a symbiotic association between a fungus and an alga or cyanobacterium (Hale, 1974). 

Because they lack protective mechanisms to regulate the uptake of gaseous molecules 

(Hfiffner eta!., 2001 ), lichens are particularly sensitive to air pollutants (Purvis eta!., 2000)~ 

they have been used for more than a century as biomonitors of air quality (Nylander, 1866). 

Several studies have considered the physiological effects of sulphur and its 

compounds on lichens, but few have examined the response of lichens to changes in the 

isotopic composition of atmospheric sulphur. The present study was designed to investigate 

an aspect of this response, as measured by changes in the thallus of the sulphur isotopic 

composition and concentration. Changes in sulphur conditions were induced via a reciprocal 

transplant oflichen thalli between urban/polluted and marine/unpolluted locations, the level 

of pollution being a function of the concentration and origin of the atmospheric sulphur. 
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The question as to whether epiphytic lichens are able to respond quantitatively to 

changes in sulphur conditions has already been partly answered (Wiseman and Wadleigh, 

2002), and so the interest ofthis study lay rather in quantifying this response and comparing 

it for both directions of change. Some studies have investigated qualitative lichen responses 

to improvements in air quality (e.g. increases in biodiversity and/or lichen numbers), but we 

are not aware of any study in which a quantitative response was investigated. Furthermore, 

the extent of background variation (both natural and anthropogenic) and seasonality in 

sulphur isotopic composition and concentration remains to be determined. 

The general purpose of this study is to investigate the response of the epiphytic 

pendulous lichen Alectoria sarmentosa to changes in the concentration and isotopic 

composition of atmospheric sulphur as characterized by changes in the lichen thallus of 

these parameters. Specific objectives include: i) to determine whether the act of 

transplanting lichen material affects the response oflichens to changes in the concentration 

and isotopic composition of atmospheric sulphur, ii) to assess the seasonality of the 

abundance and isotopic composition of atmospheric sulphur, and iii) to determine whether 

the speed and magnitude of change vary with the direction of transplant (e.g. from 

"polluted" to "unpolluted" or vice versa). 

It is anticipated that relocating lichens withing the same general area will not affect 

their response to sulphur conditions. Some background (natural and/or anthropogenic) 

variation is expected at both sites and is expected to be related mostly to anthropogenic 

sources at the polluted sites and natural sources (sea spray) at the unpolluted site. It is 
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expected that the sulphur content and isotopic composition of transplanted lichens will 

change gradually under the new conditions until becoming indistinguishable from those 

measured in locally-growing lichens. The response oflichens originating from the polluted 

site is expected to be slower than that of lichens originating from the unpolluted site, 

perhaps as a consequence of physiological damage sustained from prolonged exposure to 

high levels of sulphur dioxide. 

From a biological standpoint, it would be interesting to consider the influence of the 

change of sulphur isotopic composition and concentration on lichen physiology and growth. 

As well, it is likely that additional variables, such as lichen age, play a role in the response 

mechanism of lichens. Photosynthetic rates have been found to be greater in younger 

portions of lichen thalli (Maguas and Brugnoli, 1996). Such considerations are, however, 

beyond the scope of this study. 

1.2 The sulphur system 

Understanding the global sulphur cycle is of primary importance, especially in view 

of the significant contribution of anthropogenic sources to the cycle. This section includes 

a brief overview of the global biogeochemical sulphur cycle with emphasis on the 

atmospheric component and anthropogenic contributions. The presence of sulphur in the 

biosphere is discussed, and a brief section on sulphur isotopes is included. 
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1.2.1 The global sulphur cycle 

Sulphur is the fourteenth element in abundance in the Earth's crust, occurring to the 

extent of0.047% (Grinenko and Ivanov,1983). It exists in nature in five valence states (-2, 

0, +2, +4 and +6) and, although not required in large quantities, is essential to life for both 

plants and animals. The biogeochemical sulphur cycle has changed considerably throughout 

the planet's history, mainly due to the appearance of new metabolic pathways and changes 

in their importance (Schlesinger, 1991 ), but its present state reflects extreme human-induced 

perturbations. 

Three major global reservoirs of sulphur can be identified, these are: reduced 

sulphide of sediments, oxidized sulphate of evaporites and other sediments, and seawater 

sulphate (Holser et a/., 1989; Schlesinger, 1991). The sulphur cycle is driven by 

transformations between the different valence states, which are accomplished in part through 

inorganic processes and in part through microbial activity (Schlesinger, 1991 ). The release 

of reduced sulphur compounds into the oxidizing atmosphere of our planet leads to their 

oxidation to sulphur dioxide (S02) and methane sulphonic acid (CH3S03H or 

MSA)( oxidation state +4 ), and ultimately to sulphuric acid (H2S04; oxidation state +6). The 

oxidation state of +6 is the thermodynamically stable form of sulphur in the presence of 

oxygen. Microbial reduction processes complete the cycle by transforming the oxidized 

sulphur back to its reduced forms. 

The three basic reservoirs and the interactions between them are illustrated in Figure 

1.1. Weathering on the continents mobilizes the sulphur bound in pyrite minerals and 

1.4 



evaporites, while river flow carries it to the oceans. The fate of marine sulphate is either to 

be precipitated as sulphate in evaporite deposits or to be reduced by biological processes and 

deposited as pyrite in marine sediments (Holser eta!., 1989). The biological reduction 

process is carried out by anaerobic sulphur-reducing bacteria of the generaDesulfovibrio and 

Desulfotomaculum (Roy and Trudinger, 1970). The overall reaction can be represented by: 

SO/" + CH20 ..... S2-+ C02 + 2H20 

where the CH20 represents any degradable organic carbon and the S2
- represents any 

completely reduced sulphide (Bolser et al., 1989). This process is termed "dissimilatory 

sulphate reduction" (DSR) and can be thought of in terms of a process similar to 

denitrification, with the sot acting as an alternative electron acceptor during the oxidation 

of organic matter. The term "dissimilatory" implies that the sulphate is not used as a nutrient 

by the bacteria carrying out the reaction, but rather as a means of obtaining the necessary 

energy for metabolic functions. 

Let us now consider the global sulphur cycle in more detail. Figure 1.2 illustrates the 

magnitude and direction of the major sulphur fluxes between ocean, land, and atmosphere 

before the industrial era (a) and at present (b). The lithosphere is the main source of mobile 

sulphur, and the ocean is the final sink. The minerals anhydrite (CaS04) and gypsum 

(CaS04·2H20) found in oceanic deposits are two of the most geochemically important 

evaporite minerals. These contain sulphur in the oxidized form of sulphate (+4), which is 

the third ion in importance in ocean water ([S04] = 2712 mglkg; Holland, 1978) after 
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sodium and chloride. The sulphur supplied to the cycle by continental rocks is mainly in the 

form of pyrite minerals, where it exists in its most reduced form; sulphide (- 2). The 

weathering and erosion of evaporite and sulphide minerals contribute to the natural river 

load ofS04. 

Mobilized sulphur eventually reaches the oceans as sulphate (via river flow or from 

precipitation originating above land), where it can be taken out of the system through the 

processes mentioned above, or recycled. Most of the sulphur recycled to the atmosphere is 

in the form of sulphate aerosols, or sea spray (Brimblecombe eta!., 1989). These particles 

enter the atmosphere in the form of tiny droplets that have become airborne as a result of the 

bursting ofbubbles at the surface (Macintyre, 1974; Wu, 1981). The salt left behind when 

the water evaporates from the bubbles crystallizes and forms the sea salt aerosols, which 

crudely approximate the composition of seawater (Glass and Matteson, 1973). Sea spray 

sulphates are found everywhere in the oceanic atmosphere and along the coasts. 

Sulphur can also be transferred from the oceans to the atmosphere through other 

processes, such as the production of biogenic gases, volcanic eruptions and the release of 

S compounds at hydrothermal vents. The major annual movement of sulphur through the 

atmosphere occurs from land to sea. This is believed to be a result of human influences on 

the sulphur cycle, without which the net transport of sulphur would carry a small amount of 

Sin the reverse direction (Brimblecombe eta!., 1989; Schlesinger, 1991). Anthropogenic 

S emission at present accounts for approximately 55% of total sulphur input to the 

continental atmosphere (Brimblecombe eta!., 1989). 
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1.2.1.1 Sulphur in the atmosphere 

The atmosphere is a very mobile system in which most processes take place in no 

more than a few days. Sulphur enters the atmosphere in gaseous or particulate form from a 

variety of sources. The major natural fluxes influencing the global atmospheric sulphur 

budget are: i) biogenic emissions from coastal regions, the open ocean and the land, ii) 

aeolian weathering of sulphates, iii) sea salt sulphate from the ocean, and iv) volcanic 

exhalations. Table 1.1 lists the major sulphur gases and their characteristics. 

Biogenic sources of sulphur have been estimated to constitute as much as 50% of the 

total atmospheric burden (Kellogg eta/., 1972; Ryaboshapko, 1983 ). These emissions occur 

predominantly in the form of reduced sulphur compounds. They can be grouped in the 

following way: emissions from vegetation, emissions from wetlands, emissions from land, 

and emissions from oceanic environments. Firstly, because sulphur is a necessary element 

for plant growth, it can be released directly during the decomposition of organic matter. 

Sulphur is known to be volatilized from living plant leaves, as well as decaying leaves, and 

to be released by bacteria and fungi during plant decomposition. Some plants are also known 

to emit hydrogen sulphide (H2S), dimethyl sulphide (CH3SCH3 or DMS), carbonyl sulphide 

(COS) and carbon disulphide (CS2) (Aneja and Cooper, 1989). Secondly, sea marshes and 

the tidal flats of marine environments are areas of intense biological activity that serve both 

as sources and sinks for a number of sulphur compounds. Because of the relatively high 

concentrations of sulphate in marine waters, sulphur plays an important role in biological 

processes in these environments, notably as the major electron acceptor for respiration in 
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anoxic sediments (Ingvorsen and J0rgensen, 1982). Although H2S is the major sulphur 

product of this process, other volatile sulphur compounds, such as DMS, DMDS 

(dimethyldisulphide; CH3S2CH3), CH3SH (methyl mercaptan), COS and CS2 have been 

identified in such environments (Aneja eta/., 1979; Hill et al., 1978). Thirdly, the emission 

of volatile sulphur compounds such as DMS, H2S, CS2 and COS has been measured on land, 

especially in wetland areas, but also from bare soils (Goldan eta/., 1987). And lastly, the 

oceans are a major source of biogenic sulphur for the atmosphere, especially DMS, which 

is produced by benthic and mostly planktonic marine algae (Andreae and Barnard, 1984). 

DMS is the major biogenic gas emitted from the ocean and represents 50% of all biogenic 

gases emitted to the atmosphere (Ferek eta/., 1986). DMS, which is oxidized to a sulphate 

aerosol in the atmosphere, is believed to be the major source of cloud-condensation nuclei 

over the oceans and to play an important role in the regulation of the Earth's climate 

(Charlson et al., 1987). 

The second most important flux in the atmospheric component of the sulphur cycle 

is the aeolian weathering of sulphates from the continental surface. This flux is difficult to 

quantify and may vary greatly in time and space. Arid regions, and especially areas where 

dust stonns are frequent, may contribute the largest portion of aeolian sulphur material to 

the atmosphere (Grinenko and Ivanov, 1983). At present, the contribution of this source to 

the atmospheric sulphur budget is estimated at less than 6% of total S emissions 

(Brimblecombe et al., 1989) and is thought to have increased significantly as a result of 

human activities that increase erosion, such as the development of grazing, intense pasturing 
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in dry regions, irrigative farming in arid zones, etc. (Brimblecombe eta/., 1989). 

The contribution of sea spray sulphates to the global sulphur budget is uncertain. 

Brimblecombe eta/. (1989) estimate its annual contribution to the cycle as 144 Tg (S), 

which represents approximately 42% of the total sulphur input to the atmosphere. Only a 

very small proportion of the seawater sulphate passes over land c~ 10%), a transfer which 

is possible only in coastal locations (Moss, 1978; Whelpdale, 1992). 

Finally, volcanic exhalations contribute predominantly S02 andH2S, with some S03 

and various sulphates (Kellog eta/., 1972). Although most of the sulphur on the Earth's 

surface originated from outgassing of deep crustal and mantle regions, the contribution of 

volcanoes to the present sulphur budget is quite small, with estimates as low as 2% (Nielsen, 

1974). H2S is also emitted in significant amounts by hydrothermal vents in the ocean 

(Brimblecombe eta/., 1989). 

1.2.1.1.1 Sulphur deposition processes 

Compounds in the atmosphere can be brought to the surface through a variety of 

mechanisms. Those mechanisms for which the mode of deposition is precipitation are 

termed "wet deposition processes", while those that do not involve precipitation are referred 

to as "dry deposition processes". 

Sulphur removal from the atmosphere by wet deposition can occur in several ways. 

Sulphur gases can be removed during uptake into raindrops within clouds (in-cloud 

scavenging), uptake into raindrops as they are falling to the ground beneath the clouds (sub-
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cloud scavenging) (Ryaboshapko, 1983), or they can be adsorbed onto frozen precipitation 

elements (Whelpdale, 1992). Sulphate particles are efficient cloud condensation nuclei 

(CCN) and can thus be incorporated into precipitation or scavenged by cloud droplets and 

falling drops (Whelpdale, 1992). The efficiency of sulphur removal by wet deposition 

processes depends on their fonn and on characteristics of the precipitation (i.e. type, 

intensity, duration, frequency). For aerosol particles with diameters between 0.1 and 1 J..Lm, 

the primary removal mechanism is precipitation scavenging (Brasseur eta/., 1999). Particles 

with diameters of 10 J..Lm or more may be removed by gravitational sedimentation. Smaller 

particles and gases are more efficiently brought back to the surface by turbulent atmospheric 

motions. The actual uptake of these smaller particles may be accomplished by chemical 

reaction, dissolution, adsorption and other mechanisms (Whelpdale, 1992). 

1.2.1.2 Anthropogenic contributions 

Technological developments have altered the global biogeochemical sulphur cycle, 

but the anthropogenic influence takes place in many ways, some of which are not easily 

quantified. 

The most substantial disturbance to the sulphur cycle arises from the combustion of 

sulphur-containing fuels for energy purposes. Sulphur may be present in all fuels ofbiogenic 

origin, albeit with great variation. The purest of fuels with regards to sulphur content is 

natural gas, with an average concentration of0.05% S (by weight) (Ryaboshapko, 1983). In 

general tenns, coal is the type of fuel which contains the most sulphur by weight, with a 
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world average of2.2% (Bhatia, 1978). Sulphur exists in natural gases and oils as hydrogen 

sulphide and organic compounds, whereas it exists in coals as organic compounds, pyrites, 

and sulphate (Ryaboshapko, 1983). 

During fuel combustion, sulphur is oxidized to sulphur dioxide (S02) and partially 

to sulphur trioxide (S03), and released into the atmosphere. It is generally accepted that 95% 

of the sulphur in fuel is released into the atmosphere upon combustion (Kellogg et a!., 

1972), of which 96% is in the form ofS02 and 4% in the form ofS03 (Kiyoura eta!., 1970). 

Most of the sulphur dioxide emitted is deposited locally in precipitation and dryfall; the 

remaining undergoes long range transport (LRT) (Schlesinger, 1991). Sulphur dioxide may 

be oxidized in the atmosphere in the gas phase, on the surface of soil particles, and in the 

liquid phase of droplets in clouds and fog (Ryaboshapko, 1983). Oxidation in the gas phase 

is by far the dominant process, and is attributable primarily to reaction with the hydroxyl 

radical (OH) to form SO/ (Cox and Sheppard, 1980). Because the concentration of the 

hydroxyl radical may vary according to cloudiness, time of day, season and latitude 

(intensity of solar radiation), the rate of S02 oxidation may be extremely variable. 

Other anthropogenic activities that significantly affect sulphur cycling through the 

emission of sulphur gases are: ferrous and non-ferrous ore smelting, oil processing, and 

sulphuric acid production (Ryaboshapko, 1983). Anthropogenic sulphur emissions exhibit 

daily, weekly and seasonal variation. 

Several other processes by which human activities increase sulphur mobilization 

should also be considered, in spite of the fact that these are not directly linked to industrial 
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emissions. These are: i) increased mobilization of sulphate from rocks and soils through 

mining and agricultural practices, leading to the augmentation of sulphur concentration in 

river runoff, ii) increased aeolian emission of sulphate-containing dust to the atmosphere 

from dry land surfaces, caused by farming and animal husbandry practices, and by increased 

exposure of salty lake sediments, iii) the increased production of volatile sulphur compounds 

in coastal seawater as a result of fertilization by nitrate, phosphate and other organic 

materials, and iv) changes in the rates of chemical transformation of S compounds in the 

atmosphere caused by modifications in the chemical climate (such as the abundance of 

hydroxyl radicals over industrialized regions) (Brimblecombe eta/., 1989). 

1.2.1.3 Sulphur in the biosphere 

Sulphur is required by living systems and can be found in a wide variety of 

compounds, but only a few of these are considered to be required for normal cell function 

(in plants). These are: the amino acids cysteine and methionine, glutathione, thiamine, 

vitamin B, biotin, ferrodoxin, lipoic acid, coenzyme A (Krouse et a!., 1991 ). As a general 

rule, 90% ofthe sulphur in plants is contained in the S-containing amino acids (Blair, 1979). 

Most of this sulphur is obtained through the absorption of sulphate from the soil 

solution, but various sulphur compounds present in the atmosphere may be deposited on 

vegetation surfaces (including lichens), where they can be oxidized when they encounter 

water (Taiz and Zeiger, 1998). Higher plants are also able to metabolize some gaseous 

sulphur compounds through their stomata (Taiz and Zeiger, 1998). Most plants have sulphur 

1.12 



contents of0.1 - 1.5% on a dry weight basis (De Kok, 1990). Assimilatory sulphate reduction 

(ASR) is the sulphur absorption process used by autotrophs. During this process, absorbed 

sulphate (+6) is reduced to fonn the thiol groups ( -4) of sulphur-containing organic 

compounds. There appear to be two pathways for ASR: the first is used by most oxygen

evolving photosynthesizers (all eukaryotic algae, some prokaryotic cyanobacteria, higher 

plants) and utilizes adenosine-5'-phosphosulphate (APS) as a sulphate donor for reduction; 

the second is used by organisms that lack oxygen-evolving photosynthesis (yeast, some 

bacteria -such as E. coli-, some cyanobacteria), with 3'-phosphoadenosine-5'phosphosulphate 

(PAPS) as the sulphate donor. (Schiff, 1983). 

The APS pathway involves the uptake of sulphate from the external environment, its 

activation with ATP (adenosine triphosphate), its transfer to a carrier molecule, and its 

reduction to sulphite (SOt; +4), and subsequently to sulphide (S2
·; -2)(Trust and Fry, 

1992). It is represented in Figure 1.3 by the black arrows. 

The activation process with ATP is necessary due to the stability of SO/" (Taiz and 

Zeiger, 1998). The products of the activation reaction are adenosine-5'-phosphosulphate 

(APS) and pyrophosphate (PPJ The reaction is energetically unfavourable, and so the 

products must be rapidly converted: PPi is hydrolyzed to organic phosphate (Pi); APS is 

thought to react with ATP to fonn 3'-phosphoadenosine-5'phosphosulphate (PAPS), before 

being reduced to sulphite, and subsequently to sulphide (Taiz and Zeiger, 1998). The 

sulphide is eventually incorporated into the amino acid cysteine, which is the precursor to 

the amino acid methionine (Schiff, 1983; Taiz and Zeiger, 1998). 
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The PAPS pathway is the main reductive pathway of bacteria and cyanobacteria 

(Figure 1.3: white arrows). In the reaction sequence of this assimilatory pathway, the 

internalized sulphate is further activated to PAPS by another A 1P molecule before being 

transferred to a thiol carrier (tr(SH2)) and reduced to the oxidation state of -4 in sulphite. 

The last step involves the further reduction of sulphite to sulphide (- 2) and is carried out 

by reduced ferredoxin (Andreae and Jaeschke, 1992; Trust and Fry, 1992). 

Among the biological processes that involve sulphur is a sulphur oxidation process 

utilized by some bacteria. Autotrophic bacteria belonging to the genus Thiobacillus are 

considered to be the most important group of these sulphur-oxidizing organisms. These are 

able to use elemental sulphur and incompletely oxidized inorganic compounds as specific 

electron donors for the assimilation of carbon dioxide (Ralph, 1979). 

Dissimilatory sulphate reduction is a process in which the sulphate ion is used by 

some bacteria as an alternative electron donor under anaerobic conditions (section 1.2.1 ). 

1.2.2 Sulphur isotopes and isotope fractionation 

Originally, the aim of isotope abundance measurements was to identify natural 

isotopes of elements and to quantify their natural abundance. In the more recent years, 

studies have focussed on natural stable isotopes (mainly C, H, 0, Nand S) to interpret 

geochemical changes in nature. 

Sulphur has 16 isotopes, four of which are stable: 32S (95.02%), 33S (0.75%), 34S 

(4.21%) and 36S (0.02%). Due their greater relative abundance, 32S and 34S are those 
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nonnally used in stable isotope research. The sulphur isotopic composition of a given 

material is stated relative to a reference material and expressed as units of per mil (x/1000: 

%o). The historical reference material for relative isotope ratio measurements of sulphur 

isotopes was an iron sulphide (FeS) from the Cafi.on Diablo iron meteorite, and was believed 

to represent the primordial ratio of34S to 32S (1:22.22). Because oflarge variability in o34S 

(up to 0.4%o; Beaudoin eta!., 1994), its use has been discontinued. The reference material 

now used is Vienna CDT (V-CDT). It has a sulphur isotopic composition of O%o. The 

isotopic composition of a sample is related to that of a reference material according to the 

following equation: 

34 [34S/32S . 0 S (%o) = sample 
34s;32s 

reference 

1} 1000 

where 34S/32S represents the ratio of34S to 32S isotopes in the reference material and sample. 

A positive o34S value indicates an enrichment in the heavy isotope 34S, whence a negative 

value denotes enrichment in the light isotope 32S. 

"Isotopes effects" is the tenn given to the differences in chemical and physical 

properties that arise as a result of differences in the atomic mass of an element (Hoefs, 

1987). These "effects" can lead to the differential exchange of isotopes of a given element 

in a reaction, a principle known as "isotope fractionation". The main phenomena that can 

produce isotopic fractionation are isotope exchange reactions and kinetic processes. Isotope 

exchange reactions are processes in which the isotope distribution between different 

chemical substances, different phases or individual molecules, changes, but without causing 
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any change in the chemical system itself. Such reactions can be viewed as a case of general 

chemical equilibrium, with heavier isotopes being preferentially accumulated in the 

molecule with the stronger bonds, or in the case of different phases, in the phase with the 

lower vapour pressure (solid>liquid>gaseous) (Hoefs, 1987). 

Kinetic effects leading to isotope fractionation occur when "the rate of a chemical 

reaction is sensitive to atomic mass at a particular position in one of the reacting species" 

(Hoefs, 1987). Isotope measurements taken during unidirectional chemical reactions always 

demonstrate an enrichment of the lighter isotope in the end products of the reaction. 

In the case of sulphur, most ofthe natural range of isotopic composition is between 

-40%o to +40%o relative to CDT. The isotopic compositions of the main atmospheric 

sulphur species are shown in Figure 1.4. Stable sulphur isotope measurements constitute a 

powerful tool in the investigation of sources of anthropogenic sulphur in the environment 

in cases where these differ significantly in their signatures from those of the natural sources. 

1.2.2.1 Sulphur isotope fractionation in biological systems 

Assimilatory sulphate reduction by autotrophs generally results in small isotope 

shifts, with o34S that are typically 1.5%o lighter than the sulphate source. This has been 

verified for algae and aquatic plants (Mekhtiyeva, 1971) and epiphytic lichens and mosses, 

which use atmosphericS as a sulphur source (Krouse, 1977; Winner eta!., 1978; Case and 

Krouse, 1980). On the one hand, the initial step in the assimilatory pathway of sulphate 

reduction -the uptake of sulphate in the cell- is expected to result in very little isotope 
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fractionation (Figure 1.3) (Trust and Fry, 1992). The same can be said for the activation 

steps involving ATP and the transfer to a carrier molecule. On the other hand, large 

fractionation is expected for the reduction steps involving the breaking of sulphur-oxygen 

bonds (Trust and Fry, 1992). It is thought that the rate ofS04
2

• reduction in plants is limited 

either by the uptake, or the activation of sulphate, as the overall fractionation observed is 

small, which would not be the case were the reaction limited by one of the reduction steps 

(Trust and Fry, 1992). 

Because higher plants may be able to use sulphur gases in the atmosphere as a 

sulphur source in addition to dissolved sulphate from the soil solution, it has been suggested 

that the differing isotopic composition of sulphur in various plant parts (e.g. roots as 

opposed to leaves) may reflect differences in sulphur source. For example, conifer needles 

and deciduous leaves have o34S values between those of soil sulphate and atmospheric 

sulphur gases (Krouse eta!., 1991; Figure 1.5). This has also been demonstrated in a study 

by Krouse eta!. (1984) for the moss Polytrichumjuniperinum (Figure 1.6). Measurements 

for the upper portion of the moss yielded o34S values near+ 20 %o, hence very close to the 

o34S of the source (West Whitecourt Gas Plant, Alberta: o34S = 22%o). The root sections, 

however, had a o34S of+ 13%o, consistent with the isotopically lighter sulphur present in the 

surrounding humus. Lichens, on the other hand, have no roots and tend to have o34S values 

consistent with atmosphericS (Krouse, 1977; Krouse et al., 1984). AlthoughASR by plants 

in nonnal conditions rarely results in isotope shifts that exceed a few per mil, there is 

evidence that abnonnal nutritional factors (e.g. sulphur-stress in high concentrations ofS02) 
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may give rise to larger isotope shifts. For example, Winner eta!. ( 1981) found that the H2S 

emitted by plants as part of a protection mechanism against sulphur dioxide stress 

(DeCormis, 1968; Spaleny, 1977; Wilson eta!., 1978) was depleted in 34S compared to the 

sulphur source, a situation which resulted in an enrichment in 34S in the plant. Studies by 

Case and Krouse (1980) and Krouse eta/. (1984) yielded similar results. 

1.3 Lichens 

1.3.1 The lichen symbiosis 

Lichens are long-lived perennial organisms characterized by a symbiotic association 

between mycobiont (fungus) and photobiont partners (eukaryotic alga; phycobiont or 

cyanobacteria; cyanobiont) (Hale, 1974). Lichens are amongst the most widely distributed 

eukaryotic organisms in the world, with approximately 13 500 known species, encompassing 

20% of all known species of fungi (Galun, 1988). The photobiont and mycobiont partners 

live in a close, mutually beneficial association, forming a new entity with usually very little 

resemblance to either one of its components (Galun, 1988). The fungal partner typically 

accounts for 90% of the total lichen mass, and so the fungus provides the taxonomic 

definition of a lichen species (Galun, 1988). The mycobiont provides structure and 

protection from the elements to the photobiont, while in return being provided with 

photosynthates (polyols in the case of green algal lichens; glucose in the case of 

cyanolichens) (Nash, 1996). A cyanobiont partner also provides nitrogen fixed from the 

atmosphere to the mycobiont. (Honegger, 1991 ). Some associations may include organisms 
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from as many as three different kingdoms; a fungus, an alga, and a cyanobacterium. Some 

400 such species of lichens have been recognized thus far (Galun, 1988). 

The evolution of lichens is subject to great uncertainty among lichenologists. Some 

have hypothesized that lichen components (green algae, cyanobacteria and fungi) evolved 

from lichens, but it is generally assumed that the opposite situation actually occurred. There 

is very little evidence of lichens in the fossil record, but this may well be due to lack of 

preservation rather than absence (Nash, 1996). What some consider to be the oldest lichen 

fossil dates from the Mesozoic epoch, with many more from the Cenozoic (Smith, 1921 ). 

1.3.2 Lichen growth forms and morphology 

Much variability exists in the anatomy and morphology of lichens. Above all, the 

anatomical and morphological configurations must serve to facilitate the coexistence of the 

symbiotic partners and the exchange of metabolites (Jahns, 1988), but there are an infinite 

number of possibilities in shapes and tissue arrangement that may serve this purpose. The 

lichen thallus is the structure that differentiates between lichenized and non-lichenized fungi 

(Jahns, 1988). Lichen thalli are traditionally classified into three growth forms: crustose, 

foliose and fruticose (Hale, 1974), with some intermediates. The arrangement of the 

different tissues and the degree of attachment to the substrate are the distinguishing elements 

used in the classification. It is important to note that although such a classification system 

is undoubtedly useful, there exists no clear-cut definition as to where exactly the boundaries 

between the growth forms lie. The following includes a brief description of basic 
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morphological components and lichen growth fonns. 

Within the thallus, the main tissue subdivisions are into upper cortex, photobiont 

layer, medulla and lower cortex. Heteromerous lichen species have stratified thalli with 

clearly defined algal layer and medulla (and cortex in some), whereas homoeomerous 

species, which are considered to be primitive lichens, show very little anatomical 

differentiation (Jahns, 1988). The basic building blocks for the lichen thallus are elongate 

cellular threads, called hyphae (Ahmadjian, 1967). The vast majority of lichens possess an 

upper cortex, which is usually 10-15 urn thick and composed of more or less heavily 

gelatinized hyphae cemented together (Ahmadjian, 1967). The cortical tissues may serve 

different functions, including: mechanical protection, modification of energy budgets 

(Kershaw, 1985), anti-herbivore defence (Reutiman and Scheidegger, 1987) and protection 

of the photobiont against excessive light (Biidel, 1987; Jahns, 1988). The algal layer is 

formed by the upper part of the medulla, which usually occupies the centre of the thallus 

structure and is composed ofloosely interwoven hyphae threads (Ahmadjian, 1967). Figure 

1. 7 shows cross-sections oflichens from the crustose (a), foliose (b) and fruticose (c) growth 

forms. 

The crustose lichens are flattened, with the entire lower surface growing on the 

substrate, and cannot be loosened without damage (Jahns, 1988). A transect of a crustose 

lichen from top to bottom reveals an upper cortex, an algal layer, and a medulla. Together, 

the endolithic (growing inside rocks) and endophloeodic (growing inside wood) varieties 

comprise the majority of the crustose growth type (Biidel and Scheidegger, 1996), which 
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includes more than 80% of all lichen species (Budel and Scheidegger, 1996). The 

squamulose growth type represents a transition between the crustose and foliose lichens. It 

is characterized by scale-like overlapping lobes that are not fully attached to the substrate, 

but raised above it (Jahns, 1988). 

Foliose and fruticose lichens, collectively called the 'macrolichens', are loosely 

attached to and easily removed from the substrate (Jahns, 1988). Foliose or leaf-like lichens 

typically have a stratified organization, with easily distinguishable upper and lower surfaces. 

Some species connect to the substrate using root-like structures called rhizines (Jahns, 

1988). Both a lower and upper cortex can be identified in a microscopic vertical cut. 

The fruticose lichens grow erect or pendent, and the thalli possess no clearly 

distinguishable upper or lower surfaces. The different tissues are, as in the foliose type, 

layered, but the thalli are built in three dimensions: the cortex envelops the thallus stalks or 

filaments, while the algal layer is located in the centre. The thallus of the fruticose lichens 

can be strap-shaped (resembling foliose thalli; built both radially and dorsiventrally) or 

cylindrical (radial construction) (Jahns, 1988). Many fruticose lichens are epiphytic, thus 

dependent upon other vegetal organisms for mechanical support, but not for nutrients. 

Epiphytic lichens derive moisture and nutrients from dry and wet deposition, with little or 

no influence from the substrate (Sloof and Wolterbeek, 1993). 

Some lichen genera develop a two-fold thallus differentiated into a horizontal part 

(thallus horizontalis) and an erect part (thallus verticalis) (Jahns, 1988). The horizontal 

component of the thallus can be of the crustose or foliose types, while the vertical 
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component is typically of the fruticose type. The gelatinous lichens, which are composed of 

mycobiont and cyanobiont partners, do not represent, per se, a lichen growth form, as these 

may exhibit the crustose, foliose, and fruticose growth forms. The gelatinous quality ofthese 

lichens exists only when the lichens are wet, and is a result of water absorption in the 

gelatinous sheaths cyanobacteria ( J alms, 1988). 

1.3.3 Lichen nutrition 

1.3.3.1 Nutrient sources 

Lichens derive the macro- and micronutrients necessary for their growth and survival 

from the atmosphere and/or the substrate (Nash, 1996). Atmospheric deposition to lichens 

occurs by wet (precipitation and occult precipitation) and dry (sedimentation, impaction and 

gaseous absorption) deposition mechanisms (Knops et a!., 1991). Occult precipitation 

(principally fog and dew) is particularly important to lichens both for nutritional reasons and 

as a source of moisture, as the concentrations of nutrients (and contaminants) may be 

substantially higher in occult precipitation compared to rainfall (increased dilution) (Nash, 

1996). 

Many lichens, especially those of the crustose and foliose types, occur on soils or 

rocks and may be in intimate contact with lithic sources of nutrients (Jalms, 1988). Lichens 

can effect the weathering of rocks and soils by mechanical or chemical means, leading to 

the mobilization of nutrients, followed by uptake into the lichen. It is not surprising then that 

many lichen species appear to be confined to particular rock or sediment types, and even 
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species of trees (Wirth, 1972; Roux, 1981 ). A proportion of the total nutrient intake may 

originate from aeolian dust carrying relatively large amounts of AI, Fe, Sc, Ti and other 

elements of lithic origin (Richardson, 1992). Epiphytic lichens may as well be affected by 

the dynamics of nutrient processing in the canopy, where elements leached from the foliage 

may become readily available. 

1.3.3.2 Accumulation mechanisms 

As a result of the absence of a root system and protective structures (i.e. stomata, 

waxy layer, cuticle), the exchange of elements and nutrients in lichens occurs across the 

entire surface (see section 1.4.1 ). Three major mechanisms by which nutrient or contaminant 

accumulation occurs are: ion exchange in cell walls, intracellular uptake, and particulate 

entrapment. 

Ions absorbed by lichens via the ion exchange process are typically positively 

charged metallic ions (Richardson, 1992). These bind to sites on the cell walls ofboth the 

fungi and algae (Xue eta!., 1988; Tyler, 1989), probably on carboxylic groups that are part 

of proteins (Richardson et al., 1985). Once bound to the cell wall, the ions may be displaced 

by others with a greater affinity (Richardson and Nieboer, 1981). Ion-competition 

experiments conducted by Nieboer and Richardson (1980) determined that the affinity of 

ions for exchange sites increases in the following sequence: monovalent class A< divalent 

Class A <borderline divalent < divalent Class B. Anion uptake by lichens (mostly anions 

of uranium) has been investigated to a more limited level; anion exchange sites have not 
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been identified thus far. 

Intracellular uptake consists of less than 10% of total uptake (Brown and Beckett, 

1985) and is assumed to involve energy expenditure, as has been demonstrated for the 

intracellular uptake of phosphate (Farrar, 1976). 

Particulate trapping may be one of the ways by which lichens are able to accumulate 

elements beyond their metabolic needs without effecting significant damage to metabolic 

functions. Considerable intracellular space exists within lichens (e.g. estimated at 18% for 

Xanthoria parietina: Collins and Farrar, 1978) and the presence of trapped particles within 

these spaces has been demonstrated with scanning electron microscope procedures (Garty 

et al., 1979: Johnsen, 1981~ Jones et al., 1982~ Purvis et al., 2000). Insoluble particulates 

from metal-rich emissions become entrapped in the expanding hyphae of the lichen, much 

in the same way as particulates derived from the soil or substrate may become part of the 

thallus structure (Richardson, 1992). 

1.3.3.3 Water relations 

Lichens are poikilohydric organisms, thus their water status varies with their 

surrounding environment (Nash, 1996). The uptake of water, which may come from a 

variety of sources, from liquid precipitation and collected runoff to fog and dew, is generally 

regarded as being passive. Although biological variables such as thallus structure and 

anatomy may contribute significantly to the process of water absorption and evaporation, the 

dynamics of water movement in lichens are largely controlled by physical processes 
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(Rundel, 1988; Nash, 1996). This passive relationship translates into a question of balance 

between absorbing water to maintain thallus moisture content (thus maximizing rates of net 

photosynthesis) and restricting rates of water loss. 

One way for lichens to maximize photosynthetic production lies in having high 

surface to volume ratios, as in the fruticose and the foliose growth fonns. This can be 

achieved by changes in the growth form or branching patterns (Rundel, 1988), but is 

profitable only when water availability is not an issue. For example, whereas temperate 

forest areas with high amounts of precipitation throughout the year (and high light levels) 

are dominated by the macro lichens, xeric habitats support mostly crustose varieties (Run del, 

1980; Kantvilas eta!., 1985; Rundel, 1988). 

Typically, lichens in the air-dry state have water contents ofless than 15-30% on a 

weight basis (Nash, 1996), but their saturated moisture contents are quite high (120-200% 

of the thallus dry weight for typical fruticose and foliose lichens with phycobionts ), 

especially those with cyanobionts (250-400% for some genera, 400-1300% for some of the 

gelatinous lichens) (Blum, 1973). Dry thalli do not show any detectable C02 exchange 

(Rundel, 1988), but 1-2 minutes following rehydration from a desiccated state, non

metabolic release of C02 begins (Smith and Molesworth, 1973). This is followed by a period 

of resaturation respiration, during which the levels of 0 2 consumption and C02 release 

exceed normal base levels for hydrated thalli; this stage may last from one hour to many 

days (Link and Nash, 1984), until falling ambient humidity levels cause the lichens to 

dessicate. In the desiccated state, photobiont cells loose their turgor and become contorted 
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and smaller in size (Brown et al., 1987; HOdel and Lange, 1991), gas exchange ceases and 

the cell membranes become partially leaky as a result of the loss of integrity (Brown and 

Brown, 1990). Most lichens are resistant to dessication, and many are able to maintain 

positive rates of photosynthesis with thallus moisture in equilibrium with air at 80% 

humidity (Rundel, 1988), a trait which sets them apart from most vascular plants and 

bryophytes, which are incapable of hydrating beyond the moisture compensation point with 

aerosol water only (Rundel, 1988). Tolerance to dessication varies widely between species 

and is believed to be linked to the presence of glutathione disulphide (GSSG), a product of 

the oxidation of glutathione (y-glutamyl-cysteinyl-glycine), which plays a significant role 

in biological functions in catalysis, synthesis and transport (Bergman and Rennenberg, 1993; 

Meister, 1995). The accumulation of GSSG and protein-bound gluthianone apparently 

protects thiol groups from dessication-induced oxidative injury in dessication tolerant plants 

and lichens (Kranner and Grill, 1997). 

1.3.4 Lichen reproduction 

The reproduction of a symbiotic organism may be regarded as somewhat complex, 

if one considers that if the two partners are disseminated separately, the symbiosis must be 

reestablished each time. While a large proportion of foliose and fruticose lichens reproduce 

by vegetative means (i.e. propagules including both members of the association), most of 

the crustose species produce large amounts of fungal spores, apparently depending upon 

resynthesis for dispersal (Galun, 1988). But clearly, a prerequisite for resynthesis following 
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spore release is the existence of the algal partner (Trebouxia, comprising 50-75% of all 

lichen photobionts) in a free-living state, something which has only recently been 

unequivocally proven (Galun, 1988). In lichens, usually only the mycobiont expresses full 

sexual reproduction (Btidel and Scheidegger, 1996). 

Vegetative reproduction implies the dispersal of symbiotic propagules (i.e. 

containing both partners). Of the vegetative propagules, isidia and soredia are the most 

important {Btidel and Scheidegger, 1996). Isidia are finger-like structures, ranging in height 

from 30 J.Lm to 1mm, often cylindrical and simple or branched that are present on the thallus 

surface {Btidel and Scheidegger, 1996). So redia consist of a few photobiont cells enveloped 

in a loose, spherical cover of hyphae, ranging from 20 to 50 J.Lm in diameter, developing on 

the thallus surface {Btidel and Scheidegger, 1996). Lichens in the dessicated state are very 

brittle and crumble easily, releasing fragments that may develop into new thalli {Btidel and 

Scheidegger, 1996). While most vegetative reproduction occurs via the dispersal of 

symbiotic propagules, some lichens are known to release actual thallus fragments -under 

high winds or after trampling by animals- that may develop into new individuals (e.g. 

Bryoria, Ramal ina and Cladonia; Btidel and Scheidegger, 1996). 

1.3.5 Alectorioid lichens 

Alectoria sarmentosa ("Witch's hair") is part of a group oflichens commonly known 

as the beard or hair lichens and is the most common of the tree-dwelling species of the 

Alectoria genera, which comprises seven North American species (Brodo eta!., 2001). 
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Lichens of the genera Alectoria are shrubby to pendent epiphytic fruticose lichens, with 

slender, hair-like rounded branches. Alectoria species grow attached to bark and wood or 

on the ground in well-lit situations (Broda eta!., 2001 ). Thallus colour usually ranges from 

pale greenish yellow to gray to black (rare); the yellow-green tones are a result of the 

presence ofusnic acid (Broda and Hawks worth, 1977). Although there are some exceptions, 

Alectoria can be thought of as a cold climate genus, with most species found in northern or 

mountainous areas (Broda and Hawksworth, 1977). Alectoria lichens are usually found on 

the acidic bark of coniferous trees, although it is not known whether this is due to an actual 

preference for the bark of these trees, or a result of climatological factors. It has been 

suggested, however, that some Alectorioid species (i.e. A. jubata) may prefer acidic bark and 

that, as a result, moderate pollution stress from acid rain (which leads to bark acidification) 

may benefit these lichens, enabling them to colonize deciduous trees (Skye and Hallberg, 

1969). 

The oceanic boreal species A. sarmentosa is common in Newfoundland, but is 

largely confined to the coasts or the interior highlands (Ahti, 1983). A. sarmentosa has a 

pendent thallus, commonly 20-40 em long (exceptionally to 80cm), greenish grey to bright 

golden yellow (Broda and Hawks worth, 1977) and grows on a variety of trees, but especially 

conifers (Picea spp., Tsuga heterophylla, Abies spp., Pseudotsuga menziesii and Pinus 

contorta; Broda and Hawsworth, 1977). The photobiont partner is believed to be Trebouxia, 

a chlorophyte alga (Broda et a!., 2001 ). A. sarmentosa ranks with the terri colo us species 

Cladina mitis and Cladina rangiferina as a preferred winter food for caribou (Broda and 
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Hawksworth, 1977). Studies on the importance of lichen species in the diets of caribou 

populations across North America have estimated the summer diet to consist of 10-25% of 

lichens (Boertje, 1984; Gauthier et al., 1989; Crete et al., 1990), while the winter diet 

amounts to approximately 62% of lichens (Boertje, 1984). Rominger and Oldemeyer ( 1990) 

determined that during years of rapid snow accumulation, arboreal lichens such asAlectoria 

were the most important forage of caribou in autumn and winter. Thus, at least in part, the 

productivity of the lichen flora influences the carrying capacity of caribou in rangelands. 

1.4 Biomonitoring with lichens 

Lichens have become increasingly popular as natural monitors of pollution. This can 

be explained in part by the low cost ofbiomonitors compared to monitoring instruments, and 

the possibility of investigating almost limitless numbers of sites and of obtaining distribution 

patterns and comparative data (Galun and Ronen, 1988). The characteristics of an ideal 

biomonitor are defined by Puckett ( 19 88) in the context of metal deposition studies, but can 

easily be extrapolated to other fields of interest. The organism: 

1- must be capable of accumulating the substance of interest in measurable amounts, 

2- must be available in terms of quantity and distribution, to avoid biased sampling, 

3- must be available throughout the year, 

4- should show differential uptake/accumulation related to exposure levels, 

5- must not be subject to significant uptake of the substance of interest from other sources, 

when used in airborne contamination assessment, 
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6- must lend itself to repeated sampling, 

7- must lend itself to cost-effective collection and analysis. 

This section includes a brief look at the physiological characteristics that make 

lichens biomonitors of choice, an overview of different types ofbiomonitoring approaches, 

including transplant, and a survey of the known effects of pollutants on lichens, with an 

emphasis on so2. 

1.4.1 Why does it work? 

The first account of lichens being recognized as biomonitors dates from 1866, when 

Nylander reported his finding that the lichen population in some Paris gardens was declining 

and attributed the decline to the presence of'impurities' in the air: "Les lichens donnent a 

leur maniere Ia mesure de Ia salubrite de I 'air et constituent une sorte d 'hygiometre tres 

sensible"1
• 

Lichens, unlike higher plants, do not possess the ability to regulate the uptake of 

gaseous molecules and particulate matter from the atmosphere. They are devoid of such 

protective mechanisms as cuticles, wax layers or stomata (Richardson, 1988; Haffner eta/., 

2001). The lack of protective mechanism and a root system result in the absorption of 

dissolved and particulate compounds anywhere on the lichen surface. Lichens, especially the 

fruticose filamentous type, have relatively high surface to volume ratios and have been 

The lichens provide in a way a measure of the salubrity of the air and constitute a kind of very 
sensitive hygiometre. 
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found to be more sensitive to atmospheric pollutants than corticolous lichens (Aguiar eta!., 

1998; Haffner et al., 2001). Early work in the field suggests that the relative resistance of 

lichens to air pollutants may be related to thallus morphology. Dassler and Ranft (1969) 

derived a tendency of increasing sensitivity from foliose, to fruticose to filamentous species, 

potentially related to proportional differences in the absorbing surface area (see section 

1.4.3). 

The ability of lichens to absorb compounds from the atmosphere well beyond their 

biological needs constitutes an advantage in the sense that it enables them to colonize a wide 

range of environments and to tolerate extreme natural climatic conditions (Gal un and Ronen, 

1988). Conversely, this mechanism increases the sensitivity oflichens to airborne pollutants. 

1.4.2 Biomonitoring approaches 

The use of lichens for biomonitoring purposes can be passive (i.e. qualitative) or 

active (i.e. quantitative). Passive monitoring entails the use of the distribution and 

composition of the lichen flora in a given area as an indicator of overall air quality (e.g. 

species richness is a function of air quality). 

1.4.2.1 Passive biomonitoring 

This type of biomonitoring typically requires the prior classing of lichens into 

categories according to their relationship to air pollutants. One such classification scheme 

is given by Galun and Ronen (1988): 
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1. Sensitive species: include species on which pollutants have a rather detrimental 

effect and others with varying degrees of sensitivity. Eventually, all become deleted 

by air pollution. 

2. Tolerant species: lichens species that are resistant to pollution and remain intact in 

their native habitat. 

3. Replacement species: species that appear after the major part of the native lichen 

community has been destroyed by the effects of pollution. 

In the early days of lichen biomonitoring, research often lead to the production of 

lichen distribution maps (e.g. Skye, 1968~ Seitz, 1972~ Sugiyama eta/., 1976). The studied 

site (usually a city) was divided into different zones: the lichen desert (main pollution centre~ 

tree trunks bare oflichens), a struggle zone (around the pollution centre; tree trunks poorly 

colonized)~ and the normal zone (lichens thrive). More recent research typically includes 

additional variables in lichen distribution maps, such as frequency and coverage for 

example. 

The index of atmospheric purity (I.A.P.) is a good example of a pollution index used 

in passive biomonitoring studies (LeBlanc and De Sloover, 1970) and is calculated as 

follows: 
IAP=_!_•~Q•f 

10 i...J 
where n = number of species found at the station~ Q = the ecological index of each species 

(the number of species found in the vicinity of the species studied at all the stations); and 
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f= the degree of frequency of cover for the species at the particular station. Species richness 

is proportional to the numerical value calculated with the lAP. 

1.4.2.2 Active biomonitoring 

Active monitoring involves the use of lichen thalli exposed to sites of interests or 

specific compounds or conditions where they function as integral indicators for the presence 

or absence of phytotoxic pollutants. Direct and indirect approaches may be used. 

Using physiological responses of lichens to the presence of pollutants is one 

particularly prominent method of biomonitoring with lichens. In this approach, the 

physiological response of one or many lichen species to a specific pollutant, or a 

combination of pollutants, is investigated. Once such a response has been determined to 

result from exposure to toxins, it can be employed as an indicator. The investigation of 

physiological indicators has been performed for a number of toxins and combinations of 

toxins, from heavy metals (Garty eta!., 1992; Garty eta/., 1998b; Kauppi eta/., 1998; 

Takacs eta!., 1999; Pawlik-Skowronska eta!., 2001) to acidic deposition (Garty eta/., 1992; 

Kauppi eta!., 1998) and pollutants such as ozone (Menzel, 1976; Sigal and Nash, 1983; 

Eversman and Sigal, 1987), fluorides (Leblanc eta!., 1972; Perkins and Millar, 1987a; 

1987b) and sulphur dioxide (see section 1.4.3). 

Because it may be difficult to measure the impact of a particular compound on 

lichens in a natural setting, many of the findings which relate the effects of toxins on lichen 

physiology have been made using controlled experimentation techniques. Controlled 
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exposure to pollutants may be achieved through such methods as the use of fumigation 

chambers (Fields and St. Clair, 1984; Eversman and Sigal, 1987; Balaguer and Manrique, 

1991; Balaguer eta!., 1997; Deltoro eta!., 1999;; Kong eta!., 1999) or the soaking oflichen 

thalli in solutions containing specific compounds or pollutants (Garty eta!., 1992; Kauppi 

eta!., 1998). Fumigation has also been performed in the field (Moser eta!., 1983). 

Biomonitoring studies are usually conducted in proximity to a site of interest, for 

example in urban areas or near the location of a specific industrial installation (smelter, oil 

refinery, etc.). To monitor atmospheric pollution, lichens may be sampled at the site(s) of 

interest and compared to other lichens of the same species growing in areas that are 

considered to be "unpolluted". Damage to the lichens is assessed by evaluating certain 

physiological parameters in the two groups, and then comparing them. 

Lichens can also be used as monitors of atmospheric pollutant deposition for such 

compounds as metals, radioactive elements, pesticides, sulphur, etc. Because the uptake 

mechanism in lichens is largely passive, prolonged exposure to a pollutant typically 

increases concentrations (sulphur: Gilbert, 1965; Leblanc and Rao, 1973; Kauppi and 

Halonen, 1992; Haffner et a!., 2001; Wiseman and Wadleigh, 2002, metals and trace 

elements: Kauppi and Halonen, 1992; Tuba and Csintalan, 1993; Sloof, 1995). The content 

of a particular substance in a lichen can thus be measured and related to patterns of 

deposition. For example, studies have shown that heavy metal concentrations in lichens can 

be correlated with bulk deposition rates of heavy metals (Pilegaard, 1979; Sloof, 1995). 

Another example is an epidemiological survey of the incidence of lung cancer in an area 
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near a steel foundry in Scotland conducted by Gailey eta!. (1985), in which the main areas 

of metal deposition were identified by measuring the metal content in lichens after 

prolonged exposure to the foundry emissions. 

1.4.2.2.1 Transplant studies 

A method of conducting biomonitoring studies with lichen involves the 

'transplanting' of lichen thalli. Transplanting consists in the relocation of lichen thalli 

originating from an area relatively untouched by toxic emissions to a site of interest (or the 

opposite, in rare cases). The method of transplant used is largely dependent on the 

morphological type ofthe lichen species used in the study. In the case of crustose and foliose 

lichens, the substrate is usually removed with the lichen thallus to avoid damaging it. This 

may be rather difficult when the substrate is rock, but relatively simple in the case of bark. 

Brodo (1961) was the first to use a transplant method for foliose lichens. Bark cores 

supporting lichens were removed from oak trees and affixed to host trees with grafting wax. 

Bark 'plugs' have also been inserted in wooden exposure plates when no suitable host trees 

could be found (Schonbeck and van Hut, 1971). Lichens from unpolluted regions can be 

transplanted to a particular site of interest, or along a pollution gradient (Tarhanen et al., 

2000; Haffner eta!., 2001). Haffner eta!. (2001) exposed thalli of four lichen species at ten 

sites along an S02 gradient in Germany and the Czech Republic for 4 months. At 4-weeks 

intervals, samples were removed and tested for element and anion content, pigment content 

(chlorophylls, phaeophytins, carotenoids), respiration and photosynthesis rates. Thallus 
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bleaching, which indicates chlorophyll loss, was found to occur in all species, in some sites 

as early as 4 weeks after the onset of exposure. All species suffered chlorophyll loss, 

membrane leakage, and decreased respiration and photosynthesis rates. Total sulphur 

concentrations were found to reflect mean sulphur immissions at the sites and increased over 

the course of the experiment. Fruticose species were found to be more sensitive to S02 stress 

than other growth forms. 

Crustose lichens are particularly useful in metal accumulation studies because they 

are, as a general rule, less sensitive than fruticose lichens. They can also be used for 

biomonitoring in cases where fruticose lichens are rare, (Purvis eta!., 2000), such as in arid 

regions. Fruticose lichens are, however, the preferred type of lichen in biomonitoring 

studies. This is due in part to the fact that these are easier to handle (the thalli are usually 

much larger and rarely attached securely, if at all, to the substrate), are generally more 

sensitive to pollutants, and also because of the greater incidence of purely epiphytic lichen 

in this particular morphological type. Fruticose lichens may be removed from the substrate 

and put into mesh bags, which are then attached to a pole or tree (Gonzalez eta!., 1998; 

Gonzalez and Pignata, 2000; Carreras and Pignata, 2001 ); or the substrate (twig or branch) 

can be removed along with it and reattached somewhere else. This last method has the 

advantage of reducing the disturbance to the lichen and has been used in a large number of 

studies, including this one. 

One consideration in studies that rely on the relocation, or transplant, of lichens to 

a different location is whether or not the act of relocation itself may account for some or all 
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ofthe observed response. In the case where fruticose epiphytic lichens are not removed from 

their substrate (usually twigs or branches), one would assume that the transplantation is 

unlikely to have an effect. Nevertheless, some have seen fit to verify this hypothesis. 

Garty et a!. (1993) found no significant differences in ethylene production at a 

control site between Ramal ina duriaei (a fruticose, epiphytic lichen) thalli retrieved in situ 

and thalli resuspended in the same area. Zambrano eta!. (1999) and Zambrano and Nash 

(2000) also tested the hypothesis that the transplant itself could modify lichen response, but 

found no significant transplant affect for all variables tested (net photosynthesis, chlorophyll 

content, total carotenes in both studies) for lichens relocated in same site and undisturbed 

lichens in the same area. 

It is possible to bypass the investigation of the transplant response factor by 

transplanting a portion of the lichens to a study site, while re-transplanting the remainder of 

the lichens on the tree of origin. The resuspended lichens therefore serve as a basis for 

comparison, eliminating the need to consider the effect of the relocation itself, since all 

lichens are submitted to the same manipulations. This is by far the preferred strategy (Garty 

eta!., 1993; 1997a; 1997b; 1997c; 1998a; 1998b; 2001). 

1.4.3 Lichens and atmospheric pollutants 

Fumigation studies are especially useful for investigating the physiological responses 

oflichens to specific air pollutants and have been performed for such pollutants as sulphur 

dioxide, hydrogen fluoride, ozone, nitrogen dioxide and peroxyacetyl nitrate. Fields (1988) 
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describes the order of sensitivity of lichen physiological processes in fumigation studies as 

follows: N2 fixation (in cyanolichens) > K +efflux/total electrolyte leakage> photosynthesis, 

respiration > pigment status. 

1.4.3.1 Sulphur dioxide 

S02 is a major component of urban and industrial atmospheres and a wealth of 

studies have shown that it can be extremely deleterious to lichens, to the extent of 

eradicating sensitive species. Sulphur dioxide is a very soluble gas and is thus easily 

dissolved in rain water or moisture present within the thallus. At low pH, S02 combines with 

water to form sulphurous acid, at which point it can be oxidized by 0 2 to H2S04 (Nielsen, 

1972). Sulphurous and sulphuric acid possess oxidizing power, but relatively little compared 

to the compounds that can form at higher pH. In such conditions, S02 forms the sulphite or 

bisulphite ions, which then combines with water before being oxidized to the sulphate ion 

as part of the lichen resistance mechanism (Richardson, 1992; Kong et a/., 1999). Of 

particular interest are the free radicals that can be produced as a result of this reaction 

sequence, notably the superoxide radical (02") (Tan and Liu, 1981 ), as these are believed to 

influence every aspect of lichen physiology. so2 is thought to be metabolized within the 

photobiont cells of the thallus (Lange eta!., 1989). 

Sulphur dioxide affects biological systems in two ways: through acidification and 

through oxidation. In the case oflichens, oxididation is considered to be the dominant effect. 

The phaeophytinization of chlorophyll is a result of acidification and can be used as a 
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physiological indicator or S02-induced damage (Balaguer et al., 1997; Gonzales and Pignata, 

1997; 2000; Kong et al., 1999). Physiological responses to the oxidating capacity of S02 

include, but are not restricted to: pigment bleaching or degradation (Henriksson and Pearson, 

1981; Gonzalez et a!., 1996; Kong et a!., 1999), the production of peroxidation products, 

such as hydroperoxy-conjugated dienes and maliondialdehyde (Gonzales and Pignata, 1997; 

Gonzales eta!., 1998; Carreras and Pignata, 2001 ), membrane injury and subsequent leakage 

of electrolytes (Puckett eta!., 1974; Tomassini et al., 1977; Pearson and Henriksson, 1981; 

Pearson and Rodgers, 1982), peroxidation of membrane lipids (Gonzales and Pignata, 1994; 

Levin and Pignata, 1995). Other responses of lichens to S02 oxidative stress are: the 

production of stress-ethylene (Epstein et al., 1986), changes in the level of endogenous auxin 

{Epstein et al., 1986) decrease in photosynthetic and respiration capacity, eventually leading 

to complete photosynthetic breakdown (Moser eta!., 1983; Haffner et al., 2001), 

Visible effects ofS02 stress include bleaching ofthe thallus or loss of pigmentation 

(Moser eta!., 1983; Haffner eta!., 2001). Haffner eta!. (2001) studied the physiological 

responses of four lichen species in a transplant experiment along an S02 gradient. All 

lichens exposed underwent bleaching and discolouration of the thallus with time, indicating 

chlorophyll destruction. Sites of facilitated gas exchange such as apical regions, soralia and 

pseudocyphelles were preferentially bleached following exposure to so2 gas. 

Sulphur can be accumulated in lichens as a result of the metabolizing of sulphur 

dioxide or the uptake of sulphate from acidic deposition or wind-blown sea spray. Many 

studies have suggested a positive correlation between sulphur concentration in lichens and 
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the amount ofS02 in the air(Gilbert, 1973; Puckett and Fineman, 1980; Hopp andKappen, 

1981; Richardson and Nieboer, 1983), suggesting that sulphur accumulation in lichens 

provides a reasonable estimate of S02 concentration in the atmosphere (Garty et al., 1977; 

1985; Levin and Pignata, 1995). Sulphur content has also been used to assess pollution 

damage to lichens in association with specific emission sources (Richardson and Nieboer, 

1981; Showman and Long, 1992; Gonzales and Pignata, 1994; Garty et al., 1996) and has 

been correlated in sensitive species to the impact on physiological parameters (Malhotra and 

Khan, 1983; Garty eta!., 1985; Haffner eta!., 2001). Studies have shown that lichens 

located closer to urban centres tend to have greater sulphur concentration. For example, 

Nieboer and Richardson (1981) found that Cladonia mitis thalli collected within a ten-mile 

radius of a nickel smelter in Sudbury, Ontario, Canada, had a sulphur content that was more 

than twice the local background level. In a study that aimed at tracing the sources of sulphur 

in Newfoundland, Canada, using stable isotopes of sulphur, Wadleigh and Blake (1999) 

found the highest sulphur contents in lichens associated with known industrial point sources. 

1.4.4 Lichens and stable isotopes 

Not many studies have investigated stable isotopes in lichens. Carbon isotope 

discrimination techniques have been used for a few lichen species, in an attempt to 

characterize the photobiont associations (Magm\s eta!., 1993). In the lichens that were 

studied, the least discrimination occurred in lichens with a single photobiont (discrimination 

was least in associations with a cyanobiont), whereas lichens with cyanobacteria in 
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cephalopodia showed the highest discrimination. Maguas and Brugnoli ( 1996) also used 

carbon isotope discrimination techniques to investigate spatial variation in photosynthetic 

uptake and carbon discrimination. Their results suggested that spatial variations in carbon 

discrimination across the thalli of five lichen species (Lasallia postulata, Lobaria 

amplissima, L. pulmonaria, L. scrobiculata and Peltigera canina) were related to thallus 

age: carbon discrimination was greatest in marginal regions of the thallus (tips) compared 

to the central and basal regions. Teeri (1981) investigated the stable carbon isotope 

composition of six lichen species and determined that all species sampled exhibited carbon 

isotopic compositions consistent with the RUBP carboxylase photosynthetic pathway as a 

main method of C02 uptake, with some small influence from another pathway, possibly PEP 

carboxylase (mean 013C: -23.7%o). 

Krouse (1977) measured the sulphur isotopic composition of different materials (air, 

lichens, soil, pine needles) and found that the fruticose lichens of the genus Usnea had 

isotopic compositions that coincided closely with the air, which suggested that uptake of 

sulphur from the atmosphere by lichens occurs via direct pathways. Wiseman and Wadleigh 

(2002), investigated the response of transplanted fruticose lichens ofthe speciesAlectoria 

sarmentosa to changes in levels of sulphur atmospheric pollution by measuring sulphur 

isotopic composition and concentration. The lichens were transplanted from an area where 

the main source of sulphur is sea spray to an area dominated by anthropogenic sources, and 

monitored for one year. The sulphur isotopic composition was found to decrease semi

linearly, while the concentration increased semi-linearly. A period of 18 months would have 
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been necessary for the lichens to reach local sulphur conditions. 
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Table 1.1: Atmospheric sulphur species; formulas, valences, sources, sinks and residence times11 

Species Formula Valence 

Dimethyl sulphide -2 

(DMS) 

Carbonyl Sulfide ocs -2 

Hydrogen sulfide -2 

Carbon disulfide -2 

Sulphur dioxide S02 +4 

Methane sulfonic acid CH3S03H +4 
(MSA) 

Sulphate sot +6 

Natural 

Oceanic (99%; 16TgSyr·'l 
-Phytoplankton (breakdown ofDMSP) 
- Coastal seaweed beds 

Terrestrial (l%l 
- Organic decomposition 

Oceanic (0.3 TgS yr-ll 
- Vegegation 

Terrestrial (0.3 TgS yr-ll 
- Vegetation 
-Soils 

-Volcanoes (0.1 TgS yr"1
)b 

- Terrestrial plants and soils 
-Oceans 
- Microbial sulphate reduction 

- Vegetation 
-Soils 

-Volcanoes (10%)0 

- Vegetation 

- End product of DMS oxidation 

-Sea spray 

Sources 

-Biomass 

-Biomass 
-Industria 

-Chemica 
industry) 

-Fossil fu, 
-Coal (5. 

-Biomass 

- Oxidatio 
- Oxidation of S02 
-Aeolian soil weathering (0.19- 19 TgS yr·1

)d 

a: List is not exhaustive. Jntennediate products are not mentioned. Major sources and sinks only are identified. 
b: Brasseur, 1999 
c: Bates et a/., 1 992 
d: Aneja, 1990 
e: all processes within clouds that result in removal from the atmosphere 
f: all processes of removal by precipitation below clouds 
g: Nielsen, 1972 
h: Kurylo, 1978 
i: Rodhe, 1978 
j: Cox and Sheppard, 1980 





d residence timesn 
Sources 

)MSP) 

re identified. 

Antlrropoge11ic 

-Biomass burning (12%)b 

- Biomass burning 
- Industrial activities 

- Chemical processing (especially cellulose 
industry) 

-Fossil fuel combustion 
-Coal (53%)b, Oil (28%)b 

-Biomass burning (1.4- 2.9 TgS yr'1, 2%)0 

- Oxidation of anthropogenic S02 
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Sinks Residence time 

Gas-phase < 1 day1 

- Reaction with OH radical 
- Reaction with N03 radical (in coastal zones, at night) 
- dissolution in aqueous particles 

Seawater 
- BiologicaVchemical consumption 

Tropospheric 
- Uptake by soils 
- Uptake by vegetation 
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Figure 1.1: Simplified box model ofthe global sulphur cycle (modified from Holser et al., 
1989) 

1.44 



:_, 
;'\ 

' ' ., 
; ' 

::t. ,·=· 
~ / {t( . :~_!1:11~.~-~®uremlssion,... 

01 8 : ' t·' in coastal regions 

~\\:~{_.'; 
c.> ~ · ;' { _ sllort-lived_ suphur_e~lon __ ,.. .., 

. . from open ocean 01 

. ;' i ', _ _l_ong-~_yE!<_j_sulp!"lJ'.I*T!iss!.Of!_,.. c.> 
,. . . , • from open ocean 
1 

i · : \ sea-sa~ sulphur ~ :'· ....... ·----------ll>-:.. 
b. ··--!.... --. 

I' ;" :, ; 

/ :_ 0 ~} 
{·. ! 'j 

. -.... 
-. i 

·-.. I 
~- : 

~---: 
·-- I 
- -- i 
_;~_-_\. 
1\) 
0 

• i 
I 
t 
i 
' o;cr 

3•3 
S!:~ 
'9-IID 
m'o 
Ill~ 

-. __ ,..---~ 
·-....... -; 
-- i --.... i 

-:-__ i 
---~ .::·· l 

·- "---·· 

__ } 

h 
i~~~ 

,\ 

• I \ 

~ ''\ 
~~\·;-
!!! m-..•. :;-1\l ·. 
10 .: 

· .. -. ~. 

__ ..... ! 
·--._I 
·-- \ 

"' 0 

• 

i 
i 
' ... 
"' 0 

~ ~ ~E!p()Sition '!'fEll. 
-.. oceans 

- ·-~. / 
-- i -.. --1 
---\ 

• ..._,I -... ~ 



External ----------·· .... 
SO/. 

ATP 

tr(SH2) 

PAPS · --····-
--
l 
' · ATP 

fd,.., 

so 2
··--·--- -·!.-s2

• + td 3 .. ox 

Internal ··--········-·..,. APS + PPi 
~-- -- ... ·-so42· 

CarSH 

" CarS-S03• ·-:::---.... CarS-S032·~ . ..,. S2
• + fdox 

I : I 

fd,od I RSH fd,.d 

" cars-s· 
+ 

fdox 

Figure 1.3: Reaction sequence for the assimilatory pathway of sulphate reduction. Black 
arrows: major pathway, used by eukaryotic algae and higher plants. White arrows: secondary 
pathway, used by bacteria, some cyanobacteria (modified from Brunold, 1990). 
APS = adenosine-5'-phosphosulphate; A TP =adenosine triphosphate; CarSH =unidentified carrier molecule; 
Cars-s· =carrier-bound sulphide; CarS-S03• =carrier-bound sulphite; fd..d =reduced ferredoxin; fdox =oxidized 
ferredoxin; PAPS= adenosine 3'-phosphate 5'-phosphosulphate; PPi =inorganic pyrophosphate; RSH =a thiol 
molecule; tr(SH2) = reduced thioredoxin. 
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section of the fruticose (c) growth fonn (modified from Ahmadjian, 1967). 
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Chapter 2: Materials and Methods 

2.1 Choice ofbiomonitor 

The choice of A. sarmentosa as a biomonitor for this study stems from a number of 

considerations. Firstly, A. sarrnenlosa is abundant in Newfoundland, especially along the 

coasts (Ahti, 1983). Secondly, it is relatively easy to identify, as only a few other lichens 

(e.g., Bryoria spp.) in the Newfoundland region resemble it. Thirdly, the mass of an A. 

sarmentosa thallus is sufficiently large for sulphur isotope analysis, if one considers that 

approximately 9llg of sulphur in the fonn ofS02 in each sample processed is necessary to 

ensure reasonable accuracy and confidence in the isotope ratio measurements using current 

technology (Yun, 2000). Fourthly,A. sarrnentosa is a pendulous lichen easily separated from 

its sulbstrate. Lastly, A. sarmentosa is an epiphyte and therefore not likely to be influenced 

by its substrate, thus eliminating the need to consider nutrient uptake from the substrate. 

2.2 Study area 

2.2.1 Sulphur sources in Newfoundland 

Point sources of sulphur in the atmosphere of Newfoundland include the Come-by

Chance oil refinery, several teepee-type incinerators, and some oil-fired power generating 

stations (Figure 1. 8). The Come-by-Chance oil refinery (North Atlantic Refining), located 

approximately 100 km from St. John's, in southeastern Newfoundland, Canada, is the largest 

single point source of S02 on the island ofNewfoundland. Prior to 2000, sulphur emissions 

from the refinery amounted to 35,000 t S02 per year on average, but process modifications 
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in 2000/2001 reduced emissions to approximately 15,000 t of S02 per year. The isotopic 

composition of the sulphur originating from the burning of Bunker C fuel for power 

generation has not been measured directly, but is probably similar to the average for eastern 

North America (o34S- + 5 %o) and o34S values measured in epiphytic lichens from the area 

(Wadleigh and Blake, 1999). Fuel samples from the refinery were analysed for o34S; values 

ranged from - 2. 98 to 0 %o (Ennis, 1999). 

The oil-fired Holyrood Generating Station is located approximately 2.5 km from Seal 

Cove, a small municipality (pop.< 500) 35 km northwest of St. John's, and operates mainly 

during the winter months. Emissions are estimated at 15 000 tonnes S02 annually. 

A small oil-fired power plant is also located on the Memorial University of 

Newfoundland St. John's campus and is operated year -round to provide heat and emergency 

power to adjoining buildings. Sulphur emissions are less than 1000 tonnes S02 per year. 

Diffuse sources of sulphur on the Avalon Peninsula include motor vehicles, home 

heating (mainly oil-based), and sea spray sulphates. 

2.2.2 Sampling sites 

The prime requirement for the choice of the two sampling locations was the 

existence of a large disparity in their respective sulphur isotopic compositions and 

concentrations. This was to ensure that between-site differences in measurements exceeded 

natural variability within the lichen population. The disparity was assessed using results 

from a previous study by Wadleigh and Blake (1999) in which the sulphur isotopic 
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composition was measured in lichens of the Alectoria sarmentosa species throughout the 

island ofNewfoundland, and through preliminary sampling performed at the Riverhead site 

on 27 October 2001, which indicated a dominant coastal influence (034S = 17.8 ± 1.7 %a; 

n=9). 

A second requirement for the choice of sites was accessibility, as regular visits were 

required over an 18-month period. Road closure due to snow accumulation and high winds 

is frequent on the Avalon Peninsula, Newfoundland. 

A last prerequisite was the absence of significant long range transport of pollutants 

from mainland Canada on the Avalon Peninsula. This has been verified by Wadleigh and 

Blake (1999) in a lichen biomonitoring study. Measured sulphur isotopic composition will 

therefore reflect mostly local sources. 

2.2.2.1 MUN Botanical Garden, St. John's 

The MUN Botanical Garden (BG) is located in St. John's, Newfoundland, on the 

Avalon Peninsula (Figure 1.8: inset). This site was chosen to represent an urban/polluted 

location. Atmospheric sulphur in the area is predominantly of anthropogenic origin 

(Jamieson and Wadleigh, 1999; Jamieson and Wadleigh, 2000). Sources include the burning 

of fossil fuels for transportation, heating and electricity generation, and incinerators. The 

sulphur isotopic composition, as measured in precipitation and lichens, is approximately 

+ 6 %o (Wadleigh and Blake, 1999; initial sampling). 
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The site is in a natural stand typical of a mixedwood boreal forest, with the majority 

of trees of coniferous species, such as Picea ,\pp. and Abies ba/samea. Deciduous species 

present at the site include Betula papyrifera, Betula popul ifol ia, Salix bebbiana and Populus 

tremuloides. Undergrowth vegetation is dominated by Cornus canadensis and various 

ericaceous species (Kalmia polifo/ia, Gaultheria hispidula). 

2.2.2.2 Riverhead (St. Mary's Bay) 

The community of Riverhead, on the Avalon Peninsula, is located 90 km south-west 

of St. John's and represents a marine/unpolluted location. The sulphur is believed to 

originate chiefly from sea spray sulphates, as indicated by sulphur isotopic compositions in 

vegetation approaching +20%o (Wadleigh and Blake, 1999; this study). The vegetation is 

typical of a lower foothill forest and is dominated by a single tree species, Pice a glauca. The 

forest floor is poorly drained and is covered by various moss species, including sphagnum 

moss. Undergrowth vegetation is dominated by ericaceous species (Ledum groenlandicum, 

Kalmia pol ifol ia, Oxycoccus microcarpus). Other species of importance include Eriophorum 

spp. and Cornus canadensis. 

2.3 Experimental design 

The experimental design was determined and tested prior to the start of the 

experiment using data from a similar study by Wiseman and Wadleigh (2002) and general 

linear models (GLM). Two types of design were considered for this experiment: a 
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randomized complete block design and a completely randomized design. The randomized 

complete block design would have pennitted us to account for non-homogeneity within 

trees, or for the possibility that the tree on which a lichen is transplanted can act as a variable 

in itself. This scheme would then have permitted us to follow each group of trees through 

time, because if isotopic ratios vary from tree to tree, then a time-dependence of the isotopic 

ratio from randomly selected samples alone cannot be expected. In order to test this 

possibility of a "tree" factor, 30 lichens from 5 trees were sampled at Riverhead in October 

2001 and analysed for their sulphur isotopic composition and concentration (Table 2.1 ). The 

p-values obtained with a one-way ANOVA where 0.049 for o34S and 0.109 for [S], 

indicating that at a confidence level of 90%, the tree on which lichen is transplanted does 

not have a significant effect on its response to changes in atmospheric sulphur. A confidence 

level of90% was used in this case because of the small sample sizes. Although randomized 

complete block designs make better use of infonnation, completely randomized designs 

allow for simpler sampling strategies and statistical analyses. In view of this, a completely 

randomized design was used in this study. 

Three components were included in the experimental design: a reciprocal transplant 

effect (T: intersite relocation), a local transplant effect (TC: intrasite relocation), and in situ 

variation (C: undisturbed lichens, or reference). The intersite relocation treatment (T) is the 

basis of the experiment and was expected to provide infonnation on the response oflichens 

to changes in the concentration and isotopic composition of atmospheric sulphur. The local 

transplant or intrasite relocation (TC) component was added to detennine whether the act 
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of re-suspending lichen material alters lichen response. The reference element (C) served 

the purpose of assessing the natural seasonal variability in the concentration and isotopic 

composition of atmospheric sulphur, while at the same time providing a baseline level with 

which to compare the transplanted lichen data. 

2.4 Experiment setup 

The experiment was set up at both sites between 10 and 13 November 2001. Thirty 

trees which met the following conditions were haphazardly selected at each site and 

numbered: i) the tree was alive; ii) the tree was of a coniferous species (such as Abies 

balsamea or Picea abies); and iii) the tree was supporting healthy individuals of the 

Alectoria sarmentosa species (this served as proxy infonnation that the trees provided a 

suitable habitat for the lichens). Each tree was identified with a tag bearing a number from 

1 to 30 and the location (RH for Riverhead, BG for MUN Botanical Garden). 

At each site, branches at heights no greater than 2.5 m were taken from each of the 

30 trees and stored in clear plastic bags until relocation at the other site (total time in plastic 

bags was under 24 hours). The number of branches taken per tree was not fixed, but a 

minimum of 4 lichens thalli were taken from each tree to ensure the presence of enough 

lichen material for the duration of the study, in the event that some were removed by 

animals, through wind action, etc. The branches bearing the lichens were cut using pruning 

shears. Non-powdered latex gloves were worn at all time to prevent contamination. Each 

tree from which branches were removed received lichens from the other site. The lichen-
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bearing branches were attached at a height of 1 - 2.5 m to the trees using clear plastic cable 

ties. 

Twelve lichen-bearing branches were also removed at each site and reattached to 

branches of the 30 selected trees at the same site to construct the intrasite relocation 

treatment. The branches were selected according to availability of lichen material. The 

branches were labeled "TC". 

Eight samples (each sample consisting of a complete lichen thallus) were taken 

randomly from each site during the initial setup to assess the background values for isotopic 

composition and concentration at the start of the experiment. The sulphur isotopic signals 

were 7.0 ± l.O%o and 18.3 ± 1.4%o for BG and RH, respectively; the sulphur concentrations 

were 772 ± 157 ppm and 484 ± 21 ppm for BG and RH, respectively ("month 0" data, Table 

11.1 ). 

Samples were taken monthly from each site starting in December 2001 and ending 

in May 2003 (see Table 2.2 for sampling times and period intervals). The sampling scheme 

was determined randomly at the start of the experiment. Using QuattroPro™, each 

tree/treatment combination was assigned a random number. The combinations were then 

sorted according to the random number assigned to them The design included 3 samples per 

month for each site for the local variation, and 7 in total for the intrasite and intersite 

relocations. The fixed number of samples for reference was deemed necessary, as no prior 

data on the natural background variation of the sulphur isotopic composition was available. 
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At collection time, each sample was labelled according to: i) time of collection 

(month); i) site of collection; iii) treatment; and iv) tree number. For example, 14-BG-TC7 

stands for a lichen thallus collected on tree number 7 at the Botanical Garden on the 

fourteenth month of sampling, from a branch of the intrasite relocation treatment. 

2.5 Sample preparation 

The lichen thalli collected at each sampling location were placed in clear plastic bags 

and stored in a refrigerator until processed. The amount of time between sampling and the 

initial processing of the sample never exceeded three days. This was to minimize any storage 

effect and to prevent mould growth. Non-powdered latex gloves were worn at all times 

during the manipulation of lichen material. In the first months of sampling, colorimetric 

tests according to the method described by Richardson (1992) were performed on lichen 

thalli from both sites. This was to verify that the lichens were indeed of the Alectoria 

sarmentosa species. It was deemed necessary, especially in view of colour differences 

between local lichens from St. John's and Riverhead. 

The first step in sample preparation was the removal of any foreign objects (conifer 

needles, insects, twigs, etc.) from the lichen thalli using clean stainless steel tweezers. The 

lichens were subsequently left to dry between two layers of clean Kimwipe™ towels to 

prevent contamination. Depending on the degree of hydration of the lichens at the time of 

collection, drying required from one to five days. There appears to be no consensus in the 

literature concerning the washing of the lichen samples prior to analysis. Notwithstanding 
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the existence of a general accord as to the necessity of removing any detritus from the 

lichen, it has been suggested that the washing oflichen material could result in a bias in the 

interpretation of the sources of sulphur stable isotopes (Wadleigh and Blake, 1999), as the 

sulphur removed by washing could potentially be of a different isotopic composition. An 

additional concern is that removing particulate material from the thallus would preferentially 

remove non-biological material, a distinction which was not desired in this case. Some 

studies have made use of washing (e.g., Gonzalez eta!., 1998; Garty eta!., 2001). The 

samples used in this study were not washed. 

The lichens were weighed once dry and brittle to the touch. The complete lichen 

thalli were subsequently crushed into a fine powder with liquid nitrogen (to make the tissues 

brittle) in an agate mortar and pestle. Before crushing, any sections which appeared to be 

inactive (usually brown or black and very brittle, generally becoming detached with a simple 

touching) were removed, along with fruiting bodies and podetia (holdfasts). The rationale 

for removing these was that sulphur assimilation may vary within the thallus and 

homogeneity is preferred (i.e., cortex/medulla tissue only). The powdered lichen material 

was then placed into glass vials and dried once more, in an oven at 80 C for six to nine 

hours. Fifteen milligrams of lichen material were weighed accurately into 10 X 10 mm, 40 

mg (Ultra-light) tin capsules with approximately 0.2 mg of vanadium pentoxide (V20 5) to 

aid combustion. 
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2.6 Sample Analysis 

Sulphur isotopic composition was determined using a Finnigan MA T™-252 isotope 

ratio mass spectrometer at the Department of Earth Sciences, Memorial University of 

Newfoundland, St. John's. This instrument is interfaced with a Carlo-Erba 1500 elemental 

analyser. The method used for sample analysis was developed by Yun (2000). Analytical 

parameters for the method are given in Table 2.3. 

2.6.1 Sulphur isotopic composition reference materials 

The reference materials used for sulphur isotopic composition calibration were 

IAEA-S-1 (Ag2S; formerly known as NZ-1) 034Svcor = - 0.3 ± 0.3 %o and IAEA-S-2 (Ag2S; 

formerly known as NZ-2) o34Svcor = + 21.0 ± 0.3 %o. The reference material NBS-123 

(ZnS; sphalerite) o34Svcor = + 17.09 ± 0.31 %o was used a as calibration check. The choice 

of isotopic reference materials was based on the expected range of 034Svcor values of+ 3 

to +22 %o (Wadleigh and Blake, 1999). 

2.6.2 Sulphur concentration reference material 

The reference material used for sulphur concentration calibration was BBOT 

(C26H26N20 2S) 7.44% S w/w. 
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2.6.3 Calibration 

The delta 66 values (raw measured isotopic composition) were corrected by two

point linear regression between the delta values for the two reference materials using the 

regression function in QuatroPro ™. 

Detennination of total lichen sulphur content was also perfonned via the mass 

spectrometer. The area under the sulphur signal peak obtained by the spectrometer is 

proportionally related to the total sulphur content: by introducing different-sized samples of 

an elemental reference material into the system, a linear regression curve is obtained, which 

pennits the detennination of total sulphur content. 

Detailed explanations of the calibration method used are presented in Appendix I. 

2.6.4 Analytical error 

The analytical error associated with the measurement of 034S was measured as 0.3%o 

(n = 1 0). The error associated with the measurement of the sulphur content [S] was 

calculated as 18 ppm (n = 10). 

2.7 Statistical analyses and regression models 

All statistical analyses were perfonned using MINITABTM Release 13 software. 

For the purposes of this study, two criteria were considered when usingp-values for 

hypothesis testing in multiple regression models. These were: i) homogeneity of the 

residuals (absence of any pattern); and ii) nonnality of the residuals. Unless otherwise 
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mentioned, the level of significance is ct.= 0.05. Correlation coefficients are calculated as 

Pearson's r product-moment correlation coefficient. 

Results from a similar experiment by Wiseman and Wadleigh (2002) suggested that 

sulphur isotopic composition and concentration observations in transplanted lichens can be 

explained with linear regression models. Linear regression was attempted in the course of 

this study, but proved to be an inaccurate way of modelling the observations. The regressions 

were, in most cases, not significant, and patterns could be observed in the residuals. 

To detect the presence of trends in the data, the observations were plotted using 

LOWESS (LOcally WEighted Scatterplot Smoothing; Cleveland, 1979). LOWESS is a non

parametric exploratory smoothing technique (does not assume linearity or normality of the 

residuals), and as such has no simple equations or significance tests associated with it. It is 

an iterative procedure in which several weighted least squares equations (WLS) are fitted 

to the data. The squared residuals (Yi-tiy are weighted by a factor, which is a function of 

I Yi - ti I: the distance in the Y direction between the observed Yi and the value predicted 

from the previous WLS regression (an iterative procedure). Observations with more variance 

are thus given less influence. The smoothness ofLOWESS is a function of the smoothing 

factor f: as f is increased, more points influence the magnitude oft. The shape of the 

smoothing is detennined solely by the data. 

The use ofLOWESS on sulphur concentration and isotopic composition observations 

revealed the presence of periodic-type trends. Multiple regression with periodic functions 
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was then attempted and yielded significantly better results. The regressions became 

significant and no patterns could be detected in the residuals. 

Table 2.4 contains descriptions of the variables used in the analyses. 

2.7.1 Multiple regression with periodic functions 

The use of multiple regression methods is warranted in situations when several 

explanatory variables are likely to have a bearing upon the observed phenomenon (Helsel 

and Hirsch, 1992). The use of periodic functions in multiple regression is an efficient way 

of describing cyclical functions, such as seasonal trends (Helsel and Hirsch, 1992). Multiple 

regression with periodic functions has been used successfully in environmental studies. For 

example, Hirsch et a/. (1982) used it to describe trends in water quality; variations in 

precipitation amounts and temperature changes affect stream flow, a situation which results 

in strong seasonal patterns in concentrations in surface waters (Helsel and Hirsch, 1992). 

The use of periodic-type regression in this study appears justifiable, considering that 

sulphur concentration (and isotopic composition)- especially in urban areas- varies with 

seasons (Ryaboshapko, 1983). For example, Nriagu and Coker (1978) reported seasonal 

variation in sulphur isotope composition measurements in precipitation over the Great Lakes 

basin. Sulphur concentrations in inhabited areas typically increase in colder temperatures 

as a result of increased fossil fuel combustion. Sulphur isotopic composition, however, is 

a function of the source. In a region with coastal influence, seasonal variation is expected 
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as a result of changes in the importance of each source relative to the others or changes in 

inshore wind frequency. 

A multiple regression with periodic functions can be described by the general 

equation (Helsel and Hirsch, 1992): 

Y = ~0 + ~~ * sin (2nTIME) + ~2 * cos (2nTIME) + ~3 * TIME + other tenns + E 

where "other terms" are exogenous explanatory variables. Additional sine and cosine terms 

may be added to account for the presence of multiple cycles per year. 

The amplitude A of the cycle (half the distance from peak to trough) is defined as: 

When binary variables are used in the regression, two functions are produced, each 

with an associated equation. The regression automatically leads to the two functions being 

in phase. 

2.7.1.1 Model selection procedure 

The data were fitted first at one cycle per year, and then at 2, 4, etc., cycles per year 

in order to determine which model would best fit the data. The significance of each new 

model over the simpler one was tested with nested F-tests (simpler model nested in the 

complex model), as follows: 

F = (SSEs-SSEJ I (d~- dfJ 
( SSEJ dfc) 
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where SSE is the sum of squares of the error term, df is the degrees of freedom of the error 

term, and the subscript letters s and c stand for simple model and complex model, 

respectively. If the F statistic exceeded the tabulated value of the F distribution for (df5-dfc) 

at the numerator and dfc at the denominator at a=0.05, the complex model was chosen in 

preference to the simpler model. 

Thallus weight is related to the age of the lichen and may influence uptake of 

nutrients and other elements. Honneger ( 1996) states that algal cells in the older sections of 

lichens are typically less active with respect to nutrient uptake compared to algal cells in the 

marginal sections (growing). With age, the cortex may become thicker and more compact 

and impede the penetration ofS02 (Wirth and Turk, 1974). The use of "thallus weight" 

(WGT) as an additional explanatory variable was investigated for the relocation effects 

models using partial F-tests. With only one new explanatory variable, the partial F -test yields 

the same results as at-test coefficient for the variable being tested (Helsel and Hirsch, 1992). 

If the computed t-statistic exceeds the critical t1{a/Z), the new explanatory variable accounts 

for a significant amount of variation and should be included in the model. This was done in 

order to determine whether WGT added power to the equation, a situation which would 

warrant its presence in the regression model. The WGT variable, along with the two 

corresponding interaction terms WGT*TR and WGT*TIME were added to the regression 

model. IfWGT or an interaction tenn improved the model significantly, the term was added 

to the model. Only the final regression models are presented here. 
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The significance of the sine and cosine terms is not discussed in the multiple 

regressions used in this study, as these serve only to account for seasonal variability and are 

calculated from the TIME variable. Triple interactions were of no concern for the analyses; 

For simplicity purposes, they were not included in the regression tables. 

In the tables representing data from regression analyses, "SE Coef' stands for 

"standard error coefficient", "DF" stands for "degrees of freedom", "SS" for "sum of 

squares" and "MS" for "mean sum of squares". 

2.7.2 Outliers and missing data 

Suspect outliers can be identified in statistical analyses as observations falling 

outside of the cloud of residuals. MINITAB™ release 13 can detect outliers (observations 

with a large standardized residual). This feature was used for the detection of outliers in this 

study. 

Suspect outliers were identified prior to conducting statistical analyses as o34Svcor 

or [S] values departing by a substantial degree from the treatment mean. The presence of 

suspect outliers was particularly apparent in cases where it would have been possible for 

lichens of two different treatments to be confused (e.g., a reference thallus mistaken for a 

intersite or intrasite relocation thallus, due to the fact that the transplanted branches were 

attached to branches bearing undisturbed lichens); hence o34S or [S] values very different 

from the treatment mean, but close to the mean of another treatment. 
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Outliers were removed only when a model had been accepted. In the case of models 

in which WGT is used as an explanatory variable, observations with a large influence 

(because of very large thallus weights) were also removed. 

Data were missing for one sample (13-BG-T26), due to its loss subsequent to 

collection. 

2.8 Meteorological information 

Weather conditions at a specific location and in a general area can affect the amount 

of sulphur taken up by lichens. For instance, wind direction partially determines where the 

sulphur originates, and wet precipitation amounts can affect lichen nutrient intake and the 

dissolution of sulphur compounds on the thallus (see sections 1.3.3.3 and 1.4.3.1). Krouse 

and van Everdingen (1984) found that o34S values varied by several per mil in soil and 

plants, depending upon the dominant wind direction and location with respect to sulphur 

sources. In view of this, it was deemed necessary to compile weather information for the 

general study area for the duration of the experiment. 

For MUN Botanical Garden site, weather information from the St. John's airport 

(Environment Canada station ID: 8403503; lat. 47° 37' long. 52° 44') was used. Wind speed 

and direction, total precipitation and average daily temperature data were compiled for this 

station from November 2001 to May 2003. Wind rose diagrams for the St. John's airport 

were produced for each sampling period described in Table 2.2. These are included in 

Appendix III. 
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There is no weather station in Riverhead, therefore data from the Salmonier Nature 

Reserve weather station (station ID: 8403622; lat. 47° 16' long. 53° 17') was used for this 

study site. The Salmonier Nature Reserve station is located approximately 36 km north

northeast of the Riverhead study site (see Figure 1.8). Only total precipitation and average 

daily temperature data from this station were compiled. Wind direction and speed 

observations were not available. 

Climatic data for both sites were compiled for each month of study, starting the day 

after one sampling and ending the day before the next (Table 2.2). 
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Table 2.1: Tree comparison data 
Tree a Replicate Weight (mg) &34S (%o) [S] (ppm) 

1 1 781.6 19.6 616 

2 596.0 17.2 494 

3 159.1 17.0 524 

4 188.9 18.7 624 

5 336.3 18.4 553 

6 760.0 18.7 618 

Mean 470.0 18.3 572 

2 1 252.4 14.8 490 

2 639.7 16.3 517 

3 782.5 17.7 522 

4 225.0 15.6 566 

5 175.0 15.5 473 

6 405.2 17.4 531 

Mean 473.0 16.2 517 

3 154.3 16.1 473 

2 129.3 16.8 559 

3 465.2 18.6 590 

4 363.5 15.2 527 

5 518.0 15.0 499 

6 214.1 18.7 547 

Mean 307.0 16.7 531 

4 1 384.5 17.7 560 

2 491.9 17.9 551 

3 307.8 16.5 562 

4 400.7 17.4 573 

5 73.1 16.5 535 

6 314.6 16.2 573 

Mean 329.0 17.0 559 

5 1 235.4 13.4 537 

2 267.2 16.4 548 

3 114.4 15.7 547 

4 569.3 15.6 549 

5 359.9 17.9 605 

6 341.8 17.6 533 

Mean 315.0 16.1 553 

a: The trees sampled were Picea spp. (alive) and are located at the Riverhead site. 
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Table 2.2: SamE ling times and corresEonding exEeriment days for both study sites. 
Site 

Month Botanical Garden Riverhead Time period 

Initial sampling 10.11.2001 1 12.11.2001 3 N/A 

1 08.12.2001 29 09.12.2001 30 13.11.2001- 07.12.2001 

2 13.01.2001 65 13.01.2001 65 10.12.2001- 12.01.2001 

3 09.02.2002 92 09.02.2002 92 14.01.2002- 08.02.2002 

4 09.03.2002 120 09.03.2002 120 10.02.2002- 08.03.2002 

5 06.04.2002 148 06.04.2002 148 10.03.2002- 05.04.2002 

6 05.05.2002 177 05.05.2002 177 07.04.2002 - 04.05.2002 

7 08.06.2002 211 09.06.2002 212 06.05.2002- 07.06.2002 

8 06.07.2002 239 06.07.2002 239 10.06.2002 - 05.07.2002 

9 10.08.2002 274 09.08.2002 273 07.07.2002 - 08.08.2002 

10 06.09.2002 301 07.09.2002 302 11.08.2002-05.09.2002 

11 11.10.2002 336 12.10.2002 337 08.09.2002- 10.10.2002 

12 09.11.2002 365 09.11.2002 365 13.10.2002- 08.11.2002 

13 08.12.2002 394 07.12.2002 393 10.11.2002- 06.12.2002 

14 11.01.2003 428 11.01.2003 428 09.12.2002-10.01.2003 

15 09.02.2003 457 09.02.2003 457 12.01.2003- 08.02.2003 

16 08.03.2003 484 08.03.2003 484 10.02.2003 - 07.03.2003 

17 05.04.2003 512 05.04.2003 512 09.03.2003 - 04.04.2003 

18 03.05.2003 540 03.05.2003 540 06.04.2003 - 02.05.2003 
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Table 2.3 Analytical parameters for the CF-lichen method (Yun, 2000). 
Parameter Description 

Lichen weight 15 mg 

Sn capsule weight 

Combustion reactor temperature 

Combustion reactor packing 

0 2 supply rate 

0 2 loop volume 

He (carrier gas) flow rate 

HP trap packing 

Gas chromatograph column length 

Gas chromatograph oven temperature 

He pressure for C02 dilution 

40mg 

1050 c 
W03, pure Cu, quartz wool 

25-27 mL/minute 

10mL 

80 mL/min 

75% Mg(Cl04) 2, 25% quartz chips 

1.2m 

75 c 
25 psi 
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Table 2.4: Descriptions of variables used in regression analysis. 
Variable Type Description 

DELTAS 

SCONC 

TR 

TTME 

sin(X1tTIMEt 

cos(X1tTIME) 

Continuous 

Continuous 

Categorical 

Continuous 

Continuous 

Continuous 

Sulphur isotopic composition 034SvcoT in %o (per mil) 

Sulphur concentration [S] in ppm 

Applied treatment (coded 0 or 1) 

Time of sampling in days from the start of the experiment 

Sine function of the TIME variable 

Cosine function of the TIME variable 

WGT Continuous Air dry weight of the lichen thallus in milligrams 

a: 21t = 0.0172 day·1 
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Chapter 3. Results 

3.1 Control procedures 

The first two objectives of this study entailed the use of control procedures. These 

were incorporated into the experimental design as the local variation (reference) and 

intrasite relocation treatments. The fonner was designed to gather information on the natural 

variability of the sulphur isotopic composition and concentration at each site, whereas the 

latter was used to verify that the act of transplanting did not alter the response of lichens to 

changes in sulphur conditions. 

Although the investigation of the transplant effect was judged a critical component 

of the experiment, it was not expected that the mechanics of relocation would influence 

lichen response to changes in sulphur conditions. This is in part because the species used in 

this study is an epiphyte, and therefore not reliant upon its substrate for nutrient intake, and 

in part because great care was taken when removing and reattaching the lichen-bearing 

branches. Other studies have explored the possibility of a transplant effect; in the context 

of those specific studies, it was found that relocating a lichen thallus did not affect its 

response to a change in environmental conditions (see 1.4.2.2.1). 

The hypothesis of a disturbance being caused by relocation was tested with 

regression analysis. The treatments were included in the models as a binary variable: 

observations from the reference treatment were coded as 0, observations from the intrasite 

relocation were coded as 1. The models used were as follows (see Table 2.4 for variable 

descriptions): 
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DELTAS= Po+ P1*sin(21tTIME) + P2*cos(21tTIME) + P3*TIME + P4*TR + P5*TR*TIME + e 

SCONC =Po+ P1*sin(21tTIME) + P2*cos(21tTIME) + P3*TIME + P4*TR + P5*TR*TIME + e 

The interaction term TR *TJME represents the rate of change through time for the 

two treatments; if this term is significant, the two treatments change with time at different 

rates. Specific isotopic compositions and concentrations were not considered for this portion 

of the experiment because the aim was to determine whether or not the intrasite relocation 

and reference treatments were significantly different and not to investigate actual time 

variations in the measurements. 

3 .1.1 Botanical Garden 

3.1.1.1 Sulphur isotopic composition 

The regression analysis for the sulphur isotopic composition data from the reference 

and intrasite relocation treatments at the Botanical Garden is presented in Tables 3.1 

(outliers included) and 3.2 (outliers removed). The accepted model was fitted at one cycle 

per year. 

With the removal of the outliers in the regression model, the interaction term 

TR *TIME became non-significant (p = 0.050). The sulphur isotopic composition decreased 

significantly with time (p = 0.015). The p-value for the TR*TIME tenn indicated that the 

slopes for the two treatments were not significantly different (p = 0.05), and thus that the 

observations from the intrasite relocation and reference treatments were indistinguishable 
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with regard to change through time. The observations from the two treatments were 

combined in a new treatment, which will be referred to as the "control treatment". 

3 .1.1.2 Sulphur concentration 

Tables 3.3 and 3.4 give the regression model ofthe intrasite relocation and reference 

data for the sulphur concentration observations at the Botanical Garden. The model was 

fitted at one cycle per year. 

The removal of the outliers improved the predictive capacity of the model 

considerably (R2 increased from 19.1 to 30.0%), but did not alter the significance level of 

any of the terms. The interaction between time and treatment was insignificant in both 

models, indicating that there was no significant difference between the two treatments 

against time. The coefficient for TIME was significant (p < 0. 001 ), and indicated an increase 

in the sulphur concentration over time. The observations were combined in a common 

treatment, designated as the "control treatment". 

3 .1.2 Riverhead 

3.1.2.1 Sulphur isotopic composition 

The results for the multiple regression analysis on the reference and intrasite 

relocation data for the isotopic composition at Riverhead site are given in Tables 3.5 (with 

outliers) and 3.6 (without outliers). The final model was fitted at one cycle per year. The 

removal ofthe outliers had no effect on the significance of any of the terms of interest (i.e., 
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TIME, TR and TR *TIME). Based on the non-significance ofthe interaction term TR *TIME 

in the model with no outliers, the observations from the two treatments were combined in 

a new "control treatment". 

3.1.2.2 Sulphur concentration 

Tables 3.7 and 3.8 contain the results for the regression models of the sulphur 

concentration observations from the intrasite relocation and reference treatments at 

Riverhead. The model was fitted at two cycles per year. The removal of the outlier values 

did not affect any of the tenns of interest (i.e., TR, TIME, and TR*TIME). 

The non-significance of the interaction term TR*TIME indicated that there was no 

significant difference between the two treatments. The observations from the intrasite 

relocation and reference treatments were combined in a "control treatment". 

3.2 Relocation effects 

The hypothesis of an intersite relocation effect was tested using regression analysis. 

Observations for the control treatment include those from reference and intrasite relocation 

treatments. The intersite relocation treatment will be referred to as the "transplant" 

treatment. Observations from the control treatment were coded as 0; those from the 

transplant treatment as 1. The models used were as follows: 
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DELTAS = ~0 + P1*TIME + ~2*TR + ~3*TR*TIME + ~4*WGT + ~5*sin(21tTIME) + 

~6*cos(21tTIME) + ~7*sin(41tTIME) + ~8*cos(41tTI.ME) + ~9*sin(81tTIME) + 

~ 10*cos(81tTIME) + ... + e 

SCONC = ~0 + ~ 1 *TIME + P2*TR + ~3*TR*TIME + ~4*WGT + ~5 *sin(21tTIME) + 

P6*cos(21tTIME) + ~7*sin(41tTIME) + ~8*cos(41tTIME) + ~9*sin(81tTIME) + 

P10*cos(81tTIME) + ... + e 

The observations from the control and transplant treatments for the two response 

variables DELTAS and SCONC were fitted to a multiple regression equation with periodic 

functions. This was carried out for both sites. Once the best model had been decided upon, 

the use ofWGT as an explanatory variable was investigated using nested F-tests models with 

and without WGT (procedure described in section 2.7.1.1). Figures 3.1-3.4 represent the 

regression models for each variable/site combination without outlier values. Peak days are 

defined as the approximate day(s) of the experiment at which the periodic function cycle 

reaches a maximum. Changes in isotopic composition and concentration are described from 

the measured values only and were provided solely as a general indicator of the variability 

in the observations (measured monthly averages and modelled values did not necessarily 

correspond). Measured monthly means and standard deviations for isotopic composition and 

concentration at both sites are provided in Tables 3.17 and 3.18. 
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3.2.1 Botanical Garden 

3.2.1.1 Sulphur isotopic composition 

Tables 3.9 and 3.10 present the regression models for sulphur isotopic composition 

observations at Botanical Garden, fitted at one cycle per year. Figure 3.1 shows the raw and 

fitted sulphur isotopic composition observations against time. Note that for clarity purposes, 

the data were refitted before plotting to remove the effect of weight. The refitted curve was 

very similar to that of the model described in Table 3.10. 

The removal of the outlier values did not alter the results, but improved the 

prediction power of the model, as shown by the increase of the R 2 value from 82.7 to 89. 0%. 

The TR *TIME tenn was significant, indicating that the rate of change over time differed 

between the treatments. The weight variable WGT was also significant and indicated that 

larger thalli tended to have greater isotopic compositions. 

The amplitude of the cycle was 0.5 %o and the approximate peak day was 11 October 

2002 (day 336). The measured sulphur isotopic composition for the transplanted lichens 

decreased from 13.5 ± 1.2 to 9.0 ± 1.4 %o over the study period, but did not reach the level 

of the control lichens, which remained fairly stable over the course of the experiment 

(minimum mean 5.1 ± 0.9 %o; maximum mean 7.3 ± 1.3 %o). The estimated time of 

convergence for the two curves was 1165 days, or after an additional 21 months. 
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3.2.1.2 Sulphur concentration 

The one-cycle-per-year regression models for sulphur concentration data from the 

Botanical Garden are shown in Tables 3.11 (with outliers) and 3.12 (without outliers). The 

raw and fitted observations are plotted in Figure 3.2. 

The removal of the outliers increased the R2value from 43.1% to 50. 8%. TlME and 

TR were the only significant terms, indicating a difference between the two treatments and 

an increase in the sulphur concentration in both treatments over time, but no significant 

difference between the slopes of the two curves. 

The cycle amplitude was approximately 44 ppm and peak days occurred on 9 March 

2002 and 2003 (days 120 and 485). The measured sulphur concentration for the control 

lichens increased from 708 ± 122 to 844 ± 183 ppm, while this increase was from 638 ± 46 

to 674 ± 86 ppm for the transplanted lichens. Based on the regression model, the two curves 

would never have converged. 

3.2.2 Riverhead 

3.2.2.1 Sulphur isotopic composition 

Table 3.13 shows the regression model for the sulphur isotopic composition data 

from Riverhead with outlier values included, whereas Table 3.14 shows results for the same 

analysis performed on the data with the outlier values excluded. The regression model was 

fitted at four cycles per year. The raw and fitted observations are shown in Figure 3.3. 
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Only the TR and TR *TIME tenns were significant. This indicated that the control 

and transplant treatments differed in response. Note that the removal of outlier values 

considerably increased the predictive power of the model (R2 value increased from 75.5 to 

90.3%). 

Control observation means varied between 15.7 ± 1.2 %o and 17.8 ± 1.2 %o over the 

course of the experiment. Measured values in transplanted lichens increased from 8.4 ± 1.5 

%o to 12.9 ± 1.4 %o. The cycle amplitudes were 0.5 %o for the primary cycle, 0.4 %o for the 

secondary cycle, and 0.3 %o for the tertiary cycle. The largest peak occurred on 9 November 

2002 (day 365). Several secondary peaks could also be observed, corresponding to secondary 

and tertiary cycles. The estimated time of convergence for the two treatment curves was 988 

days, or after approximately 15 additional months. 

3.2.2.2 Sulphur concentration 

Tables 3.15 and 3.16 contain the results for the regression analysis perfonned on 

sulphur concentration observations from the Riverhead site. Figure 3.4 shows the data fitted 

to the model presented in Table 3.16. The model was fitted at two cycles per year. 

Removing the outlier values did not alter the significance of any of the tenns of 

interest, but increased the R2 value from 39.5 to 47.3%. The TR*TIME tenn was 

significant, indicating that the rate of change differed between the treatments. Transplant 

observation means decreased from 615 ± 67 ppm to 517 ± 110 ppm, while control means 

oscillated between 438 ± 28 ppm and 700 ±55 ppm. 
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The calculated cycle amplitudes were 22 and 62 ppm for the primary and secondary 

cycles, respectively. Peak days occurred on 9 February 2002 (day 92), 7 September 2002 

(day 302), and 9 February 2003 (day 457). The estimated time of convergence for the two 

treatment curves was 647 days, or after approximately 3 additional months 

3.3 Meteorological information 

Figure 3.5 shows daily precipitation amounts and the 10-day running mean of 

average daily temperatures. On the one hand, the temperature trend over the study period 

was very similar for both sites, with the lowest temperatures occurring between days 60-100, 

and 460-500 approximately, and the highest temperatures between days 225-300. On the 

other hand, the precipitation patterns differed noticeably. While there was a distinct cyclical 

trend at the Botanical Garden, with peaks of high precipitation (partly snow) coinciding with 

low temperatures, and dry periods with temperature highs, no such trend could be discerned 

for the Salmonier Nature Reserve. Precipitation amounts at this location were fairly 

homogeneous over the study period. The range of temperature variation for both sites was 

approximately 28 C. The largest precipitation event occurred on 20 July 2002 

(approximately 80 mm). 

Figures III.l - Ill.18 show the wind rose diagrams for each study interval. It is evident 

that the dominant wind provenances were west and south west. In the fourth and fifteenth 

intervals, however, south was also a significant direction of provenance. 
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Table 3.1: Model for reference and intrasite relocation treatments for sulphur isotopic 
composition observations at the Botanical Garden (outlier values included). 

Predictor Coefficient SE Coef t p 

Constant 

sin(21tTIME) 

cos(21tTIME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

6.7311 

-0.0262 

0.213 

-0.0019349 

-0.641 

0.003362 

DF 

5 

92 

0.2386 

0.1642 

0.1489 

0.0008 

0.4085 

0.00132 

ss 
14.125 

98.222 

Total 97 112.346 

28.21 

-0.16 

1.43 

-2.49 

-1.57 

2.54 

Rz 

MS 

2.825 

1.068 

0.000 

0.873 

0.156 

0.015 

0.120 

0.013 

12.6% 

F 

2.65 

p 

0.028 

Equation: DELTAS= 6.73- 0.026*sin(21tTIME) + 0.213*cos(21tTIME)- 0.00193*TIME 
- 0.641 *TR + 0.00336*TR*TIME 
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Table 3.2: Model for reference and intrasite relocation treatments for sulphur isotopic 
composition observations at the Botanical Garden (outlier values removedn). 

Predictor Coefficient SE Coef t p 

Constant 

sin(21tTIME) 

cos(21tTIME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

6.7012 

-0.0872 

0.2425 

-0.0018178 

-0.4403 

0.002107 

DF 

5 

89 

0.1884 

0.1339 

0.1182 

0.0006 

0.3226 

0.00106 

ss 
12.1341 

58.8069 

Total 94 70.9411 

35.57 

-0.65 

2.05 

-2.96 

-0.36 

1.99 

R2 

MS 

2.4268 

0.6608 

0.000 

0.516 

0.043 

0.004 

0.176 

0.050 

17.1% 

F 

3.67 

p 

0.005 

Equation: DELTAS= 6.70- 0.087*sin(21tTIME) + 0.242*cos(21tTIME)- 0.00182*TIME 
- 0.440*TR + 0.00211 *TR *TIME 

a: outlier values removed: 9-BG-Cl, 11-BG-C2 and 15-BG-TC26 
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Table 3.3: Model for reference and intrasite relocation treatments for sulphur concentration 
observations at the Botanical Garden (outlier values included). 

Predictor Coefficient SE Coef t p 

Constant 

sin(2itTIME) 

cos(27tTIME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

658.57 

45.2 

5.44 

0.4138 

73.11 

-0.2716 

DF 

5 

92 

32.35 

22.25 

20.18 

0.1053 

55.37 

0.1794 

ss 
425026 

1804937 

Total 97 2229962 

20.36 

2.03 

0.27 

3.93 

1.32 

-1.51 

R2 

MS 

85005 

19619 

0.000 

0.045 

0.788 

0.000 

0.190 

0.133 

19.1% 

F 

4.33 

p 

0.001 

Equation: SCONC = 659 + 45.2*sin(2itTIME) + 5.4*cos(2itTIME) + 0.414*TIME + 73.1 *TR 
- 0.272*TR*TIME 
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Table 3.4: Model for reference and intrasite relocation treatments for sulphur concentration 
observations at the Botanical Garden (outlier values removed8

). 

Predictor Coefficient SE Coef t p 

Constant 

sin(21tTIME) 

cos(21tTHv1E) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

649.45 

54.31 

5.89 

0.47994 

68.53 

-0.2579 

DF 

5 

88 

28.02 

19.48 

17.69 

0.09389 

47.85 

0.1585 

ss 
547102 

1277703 

Total 93 1824805 

23.18 

2.79 

0.33 

5.11 

1.43 

-1.63 

Rz 

MS 

109420 

14519 

0.000 

0.007 

0.740 

0.000 

0.156 

0.107 

30.0% 

F 

7.54 

p 

0.000 

Equation: SCONC = 659 + 54.3*sin(21tTIME) + 5.9*cos(21tTIME) + 0.480*T1ME + 68.5*TR 
- 0.258*TR*T1ME 

a: outlier values removed: 13-BG-Cl, 14-BG-C3, 15-BG-TC26, 17-BG-Cl 
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Table 3.5: Model for reference and intrasite relocation treatments for sulphur isotopic 
composition observations at Riverhead (outlier values included). 

Predictor Coefficient SE Cocf t p 

Constant 

sin(21tTIME) 

cos(21tTIME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

16.4737 

-0.363 

0.2803 

0.00085 

0.5474 

-0.00147 

DF 

5 

92 

0.3252 

0.2188 

0.2013 

0.00106 

0.5809 

0.00189 

ss 
5.017 

181.187 

Total 97 186.205 

50.65 

-0.17 

1.39 

0.81 

0.94 

-0.78 

R2 

MS 

1.003 

1.969 

0.000 

0.869 

0.167 

0.423 

0.348 

0.438 

2.7% 

F 

0.51 

p 

0.768 

Equation: DELTAS= 16.5 - 0.036*sin(21tTIME) + 0.280*cos(21tTIME) + 0.00085*TIME 
+ 0.547*TR- 0.00147*TR*TIME 
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Table 3.6: Model for reference and intrasite relocation treatments for sulphur isotopic 
composition observations at the Botanical Garden (outlier values removed8

). 

Predictor Coefficient SE Coef t p 

Constant 

sin(21tTIME) 

cos(21tTIME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

16.7194 

0.0472 

0.3695 

0.0001156 

0.2914 

-0.001055 

DF 

5 

89 

0.2535 

0.166 

0.1569 

0.0008 

0.4442 

0.00144 

ss 
7.419 

100.541 

Total 94 107.959 

65.95 

0.28 

2.36 

0.14 

0.66 

-0.73 

R2 

MS 

1.484 

1.13 

0.000 

0.777 

0.021 

0.887 

0.513 

0.465 

6.9% 

F 

1.31 

p 

0.266 

Equation: DELTAS= 16.7 + 0.047*sin(21tTIME) + 0.370*cos(21tTIME) + 0.000116*TIME 
+ 0.291 *TR- 0.00105*TR*TIME 

a: outlier values removed: 1-RH-C3, 6-RH-Cl, 12-RH-TC19 
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Table 3. 7: Model for reference and intrasite relocation treatments for sulphur concentration 
observations at Riverhead {outlier values included}. 

Predictor 

Constant 

sin(27tTil\.1E) 

cos(21tTil\.1E) 

sin( 47tTil\.1E) 

cos( 47tTil\.1E) 

TI~ffi 

TR 

TR*Til\.1E 

Source 

Regression 

Error 

Coefficient 

471.12 

16.69 

32.66 

-21.39 

-64.98 

0.19586 

-26.96 

-0.0054 

DF 

7 

90 

SE Coef 

18.52 

12.42 

11.68 

12.93 

10.96 

0.0599 

33.04 

0.1069 

ss 
420772 

554824 

Total 97 975596 

t 

25.43 

1.34 

2.8 

-1.65 

-5.93 

3.27 

-0.82 

-0.05 

Rz 

MS 

60110 

6165 

p 

0.000 

0.182 

0.006 

0.102 

0.000 

0.002 

0.417 

0.960 

43.1% 

F p 

9.75 0.000 

Equation: SCONC = 471 + 16.7*sin(27tTil\.1E) + 32.7*cos(27tTil\.1E) - 21.4*sin(47tTil\.1E) 
-65.0*cos(21tTil\.1E)+ 0.196*TIME - 27.0*TR- 0.005*TR*TIME 
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Table 3.8: Model for reference and intrasite relocation treatments for sulphur concentration 
observations at Riverhead (outlier values removeda}. 

Predictor 

Constant 

sin(21tTIME) 

cos(21tTIME) 

sin( 47tTIME) 

cos( 47tTIME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

Total 

Coefficient 

469.11 

13.69 

29.01 

-23.85 

-63.645 

0.17115 

-10.15 

-0.01511 

DF 

7 

84 

91 

SE Coef 

16.13 

10.8 

10.16 

11.38 

9.556 

0.05282 

28.93 

0.09373 

ss 
341142 

378014 

719156 

t 

29.09 

1.27 

2.85 

-2.1 

-6.66 

3.24 

-0.35 

-0.16 

Rz 

MS 

48735 

4500 

p 

0.000 

0.208 

0.005 

0.039 

0.000 

0.002 

0.727 

0.872 

47.4% 

F p 

10.83 0.000 

Equation: SCONC = 469 + 13.7*sin(21tTIME) + 29.0*cos(21tTIME) - 23.8*sin(41tTIME) 
-63.6*cos(21tTIME)+ 0.171*TIME - 10.2*TR- 0.0151*TR*TIME 

a: outlier values removed: 1-RH-C3, 4-RH-TC4, 12-RH-TC3, 13-RH-TCI, 15-RH-Cl, 16-
RH,C2 
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Table 3.9: Model for transplant and control treatments for sulphur isotopic composition 
observations at the Botanical Garden {outlier values included2. 

Predictor 

Constant 

sin(21tTIME) 

cos(21tTIME) 

TIME 

TR 

TR*TIME 

WGT 

Source 

Regression 

Error 

Coefficient 

6.1174 

-0.1998 

0.4472 

-0.0006376 

6.6709 

-0.005641 

0.0009732 

DF 

6 

181 

SE Coef 

0.2559 

0.1349 

0.1276 

0.0007 

0.3591 

0.00111 

0.0003 

ss 
1297.55 

270.92 

Total 187 1568.4 7 

t 

23.91 

-1.48 

3.51 

-0.86 

18.57 

-5.06 

3.44 

Rl 

MS 

216.26 

1.5 

p 

0.000 

0.140 

0.001 

0.390 

0.000 

0.000 

0.001 

82.7% 

F p 

144.48 0.000 

Equation: DELTAS= 6.12- 0.200*sin(21tTIME) + 0.447*cos(21tTIME)- 0.000638*TIME 
+ 6.67*TR- 0.00564*TR*TIME + 0.000973*WGT 
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Table 3.10: Model for transplant and control treatments for sulphur isotopic composition 
observations at the Botanical Garden {outlier values removed:T 

Predictor 

Constant· 

sin(21tTIME) 

cos(21tTIME) 

TIME 

TR 

TR*TIME 

WGT 

Source 

Regression 

Error 

Coefficient 

6.2506 

-0.2462 

0.3878 

-0.0009868 

6.8277 

-0.0058552 

0.0008382 

DF 

6 

168 

SE Coef 

0.2203 

0.1101 

0.1002 

0.0006 

0.2914 

0.0009 

0.0003 

ss 
1205.57 

148.25 

Total 174 1353.82 

t 

28.37 

-2.24 

3.87 

-1.72 

23.43 

-6.59 

2.62 

Rz 

MS 

200.93 

0.88 

p 

0.000 

0.0027 

0.000 

0.088 

0.000 

0.000 

0.010 

89.0% 

F p 

227.69 0.000 

Equation: DELTAS= 6.25- 0.246*sin(21tTIME) + 0.388*cos(21tTIME) - 0.000987*TIME 
+ 6.83*TR- 0.00586*TR*TIME + 0.000838*WGT 

a: outlier values removed: 2-BG-Tl5, 3-BG-T22, 3-BG-T23, 4-BG-T15, 5-BG-T12, 8-BG
T23, 9-BG-T16, 11-BG-T24, 11-BG-T28, ll-BG-C2, 15-BG-T2, 15-BG-T6, 15-BG-TC26 

Amplitude A= 0.5%o 
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Table 3.11: Model for transplant and control treatments for sulphur concentration 
observations at the Botanical Garden (outlier values included). 

Predictor Coefficient SE Coef t p 

Constant 

sin(21tTIME) 

cos(21tTIME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

684.08 

43.73 

·1 

0.31838 

-167.31 

-0.0661 

DF 

5 

182 

22.6 

13.32 

12.62 

0.07319 

35.52 

0.1099 

ss 
2018190 

2665866 

Total 187 4684056 

30.27 

3.28 

-0.08 

4.35 

-4.71 

-0.6 

Rl 

MS 

403638 

14648 

0.000 

0.001 

0.937 

0.000 

0.000 

0.548 

43.1% 

F 

27.56 

p 

0.000 

Equation: SCONC = 684 + 43.7*sin(21tTIME)- l.O*cos(21tTIME) + 0.318*TIME- 167*TR 
• 0.066*TR*TIME 
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Table 3.12: Model for transplant and control treatments for sulphur concentration 
observations at the Botanical Garden (outlier values removed8

). 

Predictor Coefficient SE Coef t p 

Constant 

sin(21tTIME) 

cos(21tTIME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

681.58 

44.28 

0.99 

0.36269 

-164.99 

-0.10984 

DF 

5 

176 

20.2 

11.98 

11.3 

0.06769 

31.52 

0.00992 

ss 
2081119 

2013697 

Total 181 4094816 

33.73 

3.7 

0.09 

5.36 

-5.23 

-1.11 

Rl 

MS 

416224 

11441 

0.000 

0.000 

0.93 

0.000 

0.000 

0.270 

50.8% 

F 

36.38 

p 

0.000 

Equation: SCONC = 682 + 44.3*sin(21tTIME) + l.O*cos(21tTIME) + 0.363*TIME- 165*TR 
- O.llO*TR*TIME 

a: outlier values removed: 9-BG-C1, 13-BG-C1, 14-BG-C3, 15-BG-TC26, 17-BG-Cl, 18-
BG-Cl 

Amplitude A = 44 ppm 
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Table 3.13: Model for transplant and control treatments for sulphur isotopic composition 
observations at Riverhead (outlier values included}. 

Predictor 

Constant 

sin(2 n:TIME) 

cos(2n:TIME) 

sin( 4 n:TIME) 

cos( 4 n:TIME) 

sin(Sn:TIME) 

cos(Sn:TTME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

Coefficient 

16.5478 

0.2544 

0.3168 

-0.3227 

0.3347 

-0.2485 

0.3687 

0.000317 

-7.3723 

0.00618717 

DF 

9 

178 

SE Coef 

0.3257 

0.1875 

0.1818 

0.19 

0.1721 

0.1746 

0.1781 

0.00105 

0.4964 

0.00153 

ss 
1642.81 

496.8 

Total 187 2139.51 

t 

50.81 

1.36 

1.774 

-1.7 

1.94 

-1.42 

2.07 

0.3 

-14.85 

4.05 

R2 

MS 

182.53 

2.79 

p 

0.000 

0.177 

0.083 

0.091 

0.053 

0.157 

0.040 

0.762 

0.000 

0.000 

76.8% 

F p 

65.41 0.000 

Equation: DELTAS= 16.5 + 0.254*sin(2n:TIME) + 0.317*cos(2n:TIME) - 0.323*sin(4n:TIME) 
+ 0.335*cos(4n:TIME)- 0.248*sin(8n:TIME) + 0.369*cos(8n:TIME) + 0.00032*TIME- 7.37*TR 
+ 0.00619*TR*TIME 
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Table 3.14: Model for transplant and control treatments for sulphur isotopic composition 
observations at Riverhead {outlier values removed8

). 

Predictor 

Constant 

sin(27tTIME) 

cos(27tTIME) 

sin( 47tTIME) 

cos( 47tTIME) 

sin(81tTIME) 

cos(81tTTME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

Coefficient 

16.7784 

0.1397 

0.5148 

-0.1184 

0.3627 

-0.252 

0.1464 

-0.000087 

-8.4967 

0.008603 

DF 

9 

173 

SE Coef 

0.2111 

0.121 

0.1175 

0.1228 

0.1116 

0.1129 

0.117 

0.0007 

0.3291 

0.001 

ss 
1852.59 

198.37 

Total 182 2050.95 

t 

79.46 

1.15 

4.38 

-0.96 

3.25 

-2.23 

1.25 

-0.13 

-25.82 

8.57 

Rz 

MS 

205.84 

1.15 

p 

0.000 

0.250 

0.000 

0.336 

0.001 

0.027 

0.212 

0.898 

0.000 

0.000 

90.3% 

F p 

179.52 0.000 

Equation: DELTAS= 16.8 + 0.140*sin(21tTIME) + 0.515*cos(21tTIME)- 0.118*sin(41tTIME) 
+ 0.363*cos( 47tTIME)- 0.252*sin(81tTIME) + 0.146*cos(81tTIME)- 0.000087*TIME- 8.50*TR 
+ 0.00860*TR *TIME 

a: outlier values removed: 1-RH-C3, 3-RH-T14, 4-RH-TIO, 6-RH-TIO, 17-RH-T18 

Amplitude A (21tTIME) = 0.5%o 
(4nTIME) = 0.4%o 
(81tTIME) = 0.3%o 
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Table 3.15: Model for transplant and control treatments 
observations at Riverhead {outlier values included2. 

Predictor 

Constant 

sin(21tTIME) 

cos(21tTIME) 

sin( 41tTIME) 

cos( 41tTIME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

Coefficient 

465.66 

17.534 

15.338 

-22.256 

-53.03 

0.17522 

155.56 

-0.27805 

DF 

7 

180 

SE Coef 

16.4 

9.574 

9.185 

9.688 

8.774 

0.05309 

24.93 

0.07707 

ss 
856096 

13909975 

Total 187 2166071 

t 

28.39 

1.83 

1.67 

-2.3 

-6.04 

3.3 

6.24 

-3.61 

Rz 

MS 

122299 

7278 

for sulphur concentration 

p 

0.000 

0.069 

0.097 

0.023 

0.000 

0.001 

0.000 

0.000 

39.5% 

F p 

16.8 0.000 

Equation: SCONC = 466 + 17.5*sin(21tTIME) + 15.3*cos(21tTIME) - 22.3*sin(41tTIME) -
53.0*cos(41tTIME) + 0.175*TIME+ 156*TR- 0.278*TR*TIME 
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Table 3.16: Model for transplant and control treatments 
observations at Riverhead {outlier values removed4

}. 

Predictor 

Constant 

sin(21tTIME) 

cos(21tTIME) 

sin( 41tTIME) 

cos( 41tTIME) 

TIME 

TR 

TR*TIME 

Source 

Regression 

Error 

Total 

Coefficient 

469.09 

11.845 

19.08 

-26.144 

-55.967 

0.15097 

137.57 

-0.21321 

DF 

7 

171 

178 

SE Coef 

14.43 

8.326 

8.065 

8.494 

7.695 

0.04692 

22.09 

0.06827 

ss 
824988 

917517 

1742505 

t 

32.52 

1.42 

2.37 

-3.08 

-7.27 

3.22 

6.23 

-3.12 

Rz 

MS 

117855 

5366 

for sulphur concentration 

p 

0.000 

0.157 

0.019 

0.002 

0.000 

0.002 

0.000 

0.002 

47.3% 

F p 

21.97 0.000 

Equation: SCONC = 469 + 11.8*sin(21tTIME) + 19.1*cos(21tTIME) - 26.l*sin(41tTIME) 
- 56.0*cos(21tTIME) + 0.151 *TIME+ 138*TR- 0.213*TR *TIME 

a: outlier values removed: 1-RH-T19, 1-RH-C3, 1-RH-TC4, 6-RH-T27, 11-RH-T25, 13-RH
T30, 15-RH-Cl, 16-RH-C2, 17-RH-T25 

Amplitude A (21tTIME) = 22 ppm 
( 47tTIME) = 62 ppm 
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Table 3.17: Descriptive statistics for monthly control and transplant observations at the 
Botanical Gardens (outliers not included~. 

Control Transplant 

0348 (%o) [S] (ppm) 0348 (%o) [8) (ppm) 

Day na mean 8Db n mean 8D n mean 8D n mean 8D 
8 7.2 1.0 8 708 122 NAC NA NA NA NA NA 

29 5 5.7 0.8 5 708 80 5 13.5 1.2 5 638 46 

65 6 6.0 0.6 6 689 124 3 11.9 1.0 4 547 81 

92 7 6.5 0.9 7 801 157 1 11.1 NA 3 618 85 

120 4 6.4 0.2 4 661 39 5 12.6 1.6 6 506 37 

148 6 6.8 0.3 6 827 19 3 12.6 2.0 4 676 45 

177 4 5.9 1.0 4 713 50 6 11.9 1.0 6 496 105 

211 7 5.9 0.9 7 730 131 3 10.6 1.0 3 545 40 

239 4 6.6 0.3 4 731 145 5 12.0 0.5 6 521 63 

274 5 7.3 1.3 4 709 145 4 11.8 0.6 5 562 69 

301 4 6.0 0.7 4 781 99 6 12.4 1.1 6 579 45 

336 3 6.1 1.3 4 874 137 4 11.4 0.7 6 650 72 

365 6 6.9 0.5 6 700 54 4 11.2 0.4 4 524 164 

394 5 6.4 0.5 4 902 201 5 12.2 0.6 5 498 33 

428 4 6.1 0.5 3 887 172 6 10.2 0.7 6 600 93 

457 4 6.2 0.9 4 963 104 3 10.1 1.3 5 765 76 

484 4 6.1 0.5 4 991 50 6 9.5 0.4 6 745 80 

512 5 5.6 0.4 4 801 176 5 9.3 0.5 5 670 37 

540 5 5.1 0.9 4 844 183 5 9.0 1.4 5 674 86 

a: number of observations 
b: standard deviation 
c: not applicable 
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Table 3.18: Descriptive statistics for monthly control and transplant observations at 
Riverhead {outliers not included). 

Control Transplant 

034S (%o) [S] (ppm) o34s (%o) [S] (ppm) 

Day no mean SDb n mean SD n mean SD n mean SD 

3 8 17.0 1.0 8 438 28 NA< NA NA NA NA NA 

30 4 17.4 0.8 4 521 58 5 8.4 1.5 4 615 67 

65 5 17 0.7 5 465 47 5 9.2 0.9 5 627 94 

92 6 16.6 1.1 6 573 86 3 9.3 0.8 4 630 94 

120 5 16.8 1.2 4 480 87 4 9.2 0.7 5 597 40 

148 4 15.9 1.4 4 493 30 6 9.2 1.7 6 639 85 

177 6 17.8 1.2 6 390 20 3 10.3 0.6 3 555 9 

212 6 16.5 1.1 6 446 24 4 9.0 0.4 4 559 75 

239 4 15.7 1.2 4 483 32 6 9.6 0.3 6 558 60 

273 6 16.4 0.4 6 521 40 4 10.0 0.9 4 622 64 

302 5 16.4 1.0 5 610 49 5 10.5 0.5 5 648 74 

337 4 18.4 0.7 4 495 74 6 12.6 0.9 5 571 69 

365 6 17.5 1.3 6 526 116 4 12.7 0.7 4 505 39 

393 6 17.0 1.6 6 442 76 4 12.0 1.0 3 541 138 

428 4 16.9 0.8 4 576 70 6 12.9 0.7 6 595 60 

457 4 16.4 0.7 3 643 18 6 11.7 1.1 6 651 50 

484 5 16.7 0.9 4 700 55 5 11.7 1.1 5 704 45 

512 5 15.9 1.2 5 494 57 4 12.2 1.0 4 520 103 

540 4 17.0 0.5 4 468 37 6 12.9 1.8 6 517 110 

a: number of observations 
b: standard deviation 
c: not applicable 
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Figure 3.1: Raw and fitted observations for sulphur isotopic composition at the Botanical 
Gardens. Solid lines are for control observations; dashed lines are for transplant 
observations. Periodic function fits are represented by the bold lines: LOWESS fits are 
represented by fmer lines (smoothing: f=0.3). Data were refitted without WGT effect for 
clarity purposes (results are very similar). 
Equation: DELTAS= 6.25- 0.246*sin(27tTIME) + 0.388*cos(27tTIME)- 0.000987*TIME 
+ 6.83*TR- 0.00586*TR*TIME + 0.000838*WGT 
Equation for refitted data: DELTAS= 6.60- 0.285*sin(21tTIME) + 0.395*cos(27tTIME)- 0.000964*TIME 
+ 6.84*TR- 0.00582*TR*TIME 
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Figure 3.2: Raw and fitted observations for sulphur concentration at the Botanical Gardens. 
Solid lines are for control observations; dashed lines are for transplant observations. Periodic 
function fits are represented by the bold lines: LOWESS fits are represented by fmer lines 
(smoothing: f=0.4). 
Equation: SCONC = 682 + 44.3*sin(21tTIME) + l.O*cos(21tTIME) + 0.363*TIME - 165*TR 
-O.IIO*TR*TIME 

3.29 



o
'E 

20 

L.. 15 
Q) 
c. -U) 

~ 
....J 
w 10 
0 

X X 

X 

0 

X 

100 200 300 400 500 600 

TIME (days) 

Figure 3.3: Raw and fitted observations for the sulphur isotopic composition at Riverhead. 
Solid lines are for control observations; dashed lines are for transplant observations. Periodic 
function fits are represented by the bold lines: LOWESS fits are represented by fmer lines 
(smoothing: f=0.25). 
Equation: DELTAS = 16.8 + 0.140*sin(21tTIME) + 0.51S*cos(21tTIME) - 0.118*sin(41tTIME) + 
0.363*cos(41tTIME) - 0.252*sin(81tTIME) + 0.146*cos(81tTIME) - 0.000087*TIME - S.SO*TR + 
0.00860*TR *TIME 
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Figure 3.4: Raw and fitted observations for the sulphur concentration at Riverhead. Solid 
lines are for control observations; dashed lines are for transplant observations. Periodic 
function fits are represented by the bold lines: LOWESS fits are represented by fmer lines 
(smoothing: f=0.2). 
Equation: SCONC = 469 + 11.8*sin(21CTIME) + 19.1*cos(21CTIME) - 26.1*sin(41CTIME) 
-56.0*cos(21CTIME) + 0.151 *TIME+ 138*TR- 0.213*TR*TIME 
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Chapter 4. Discussion 

There is limited information on the influence of transplant on sulphur isotopic 

composition measurements in lichens. In fact, we are aware of only one study that addressed 

this question (Wiseman and Wadleigh, 2002). In addition, lichen transplant studies have 

traditionally been performed from unpolluted to polluted locations, hence little infonnation 

is available on lichen response to improvements in sulphur conditions. Finally, the literature 

on studies dealing with rates of sulphur accumulation in lichens remains, at best, indefinite. 

The results discussed here have provided valuable information necessary to answer these 

questions. 

4.1 Control procedures 

With regard to the initial study objective, it was found that the mechanics of 

relocation did not affect lichen responses to changes in sulphur isotopic composition or 

concentration, as expected. Regression analyses performed on data from reference and 

intrasite relocation treatments indicated there was no significant difference between the two 

treatments. The results were concordant with the findings ofGarty eta!. (1993), Zambrano 

eta!. (1999), Zambrano and Nash (2000) and Wiseman (1999). The epiphytic nature of 

Alectoria sarmentosa and the fact that substrates were relocated with the lichen thalli 

probably precluded disturbances that would have altered lichen responses to the changes in 

sulphur conditions. 
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4.2 Relocation effects and natural variability 

The use of multiple regression with periodic functions for modelling the observations 

revealed cyclicity in isotopic composition and concentration measurements. A number of 

studies have shown that pollutant measurements in lichens provide good estimates of 

atmospheric pollutant concentrations (e.g., Gailey eta/., 1985; Zakshek eta!., 1986), but 

this is the first study, to the best of our knowledge, in which periodic-type trends in lichen 

pollutant concentrations were uncovered. Most biomonitoring studies have been chiefly 

concerned with total accumulation time of pollutants, and with the effects ofthese pollutants 

on lichen distribution patterns and physiology. The results obtained here suggested the 

existence of two response time scales: short-term (periodic cycles) and long-term 

(convergence of curves). At first glance, this may appear to conflict with existing 

knowledge, which suggests that relatively long periods oftime are necessary for transplanted 

lichens to reflect local pollutant conditions. For instance, Hale and Lawrey (1985) studied 

lead accumulation by Parmelia baltimorensis; peak values were reached within a year. And 

Wiseman and Wadleigh (2002) showed that 18 months would have been necessary for 

lichens transplanted to an urban location to reach local sulphur conditions. Another potential 

cause for doubting the possibility of detecting cyclical trends could be the fitting of 

observations to a multiple regression equation with periodic functions, which forces the two 

treatment curves to be in phase (even though they have different equations). It could be 

hypothesized that the correspondence between cyclical highs and lows (short-term response) 

between control and transplant observations was a fictitious product of the regression. 
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However, results from the use of LOWESS -a non-parametric smoothing technique- in 

conjunction with the parametric regression models, also revealed periodic-type trends and 

showed that periods of high and low isotopic compositions and concentrations were indeed 

concomitant between the treatments (Figures 4.1 - 4.4). The LOWESS curves followed the 

sinusoid curves closely, adding yet more weight to the argument of cyclical trends, and to 

the possibility of measuring short-term responses in lichens. 

4.2.1 Climatic effects 

Because lichens are able to photosynthesize even at extreme temperatures (up to 70 

C for some species: Lange, 1953), ambient temperatures were not expected to have a direct 

effect on sulphur absorption by lichens. This, of course, was notwithstanding weather-related 

considerations on wetting and drying cycles. An important consideration in urban and 

industrial areas, however, is the influence of weather conditions on human activities, and 

by extension on atmospheric sulphur conditions. Increased fossil fuel combustion in winter 

for home-heating purposes results in an augmentation of sulphur dioxide emissions. This 

influences not only the atmospheric sulphur concentration, but also the isotopic signal (by 

effecting a change in the relative importance of anthropogenic sources to natural ones). 

The influence of climate is such that in an urban area with oceanic influence, one 

would expect to measure the lowest atmospheric sulphur isotopic compositions and highest 

concentrations during periods of cold weather, when natural sources of sulphur can be 

partially eclipsed by anthropogenic sources. In a coastal atmosphere, natural sources have 
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typically greater isotopic signatures than urban sources, due to the presence of sea spray 

sulphates (034S + 21 %o; Rees eta!., 1978). An increase in anthropogenic sulphur dioxide 

emissions would thus lead to an increase in sulphur concentration, but a decrease in the 

isotopic composition. 

The geographical situation of the Riverhead site would, at any rate, presumably 

minimize the influence of sulphur emissions from urban locations and the refinery. 

Likewise, Wadleigh and Blake (1999) found no evidence of significant long-range 

transported sulphur in isotopic composition and concentration measurements in A. 

sarmentosa thalli collected throughout the island of Newfoundland. 

4.2.2 Sulphur isotopic composition 

Results from the Botanical Garden site supported the assumption of anthropogenic 

influence. The lowest 034S values in the control observations occurred between days 110 and 

180, and after day 490 of the experiment (Figure 4.1 ). This roughly corresponded to 

temperature lows observed between days 70-140 and 450-510. The greatest o34S values in 

the control observations occurred between days 300 and 350, in some agreement with 

temperature highs observed between days 220-310. If a lag of 40-70 days between 

temperature variations and the response in isotopic composition was admitted, the 

agreement between temperature patterns and isotopic composition measurements improved 

significantly. Low isotopic compositions were observed during winter months, when 

anthropogenic sulphur emissions were more important. 
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The case of the Riverhead site was not as straightforward. A characteristic feature 

of the isotopic composition model was the presence of two highs in isotopic composition, 

but the absence of any distinct lows. If the sulphur isotopic composition cycles were 

assumed to have been associated with nearby or distant anthropogenic emissions, high 034S 

values would have tended to be associated with warmer temperatures, and lows with cold 

periods. There appeared to exist some agreement between minor lows in the regression 

model (days 120 and 484) and periods of cold weather (days 70-110 and 460-500; Figure 

4. 3 ). The lag period between the start of colder temperatures and its detection in the isotopic 

signal was between 30 and 50 days approximately, similar to the lag observed at the 

Botanical Garden. Some possible sources for pulses of low isotopic composition sulphur 

may have been the widespread use of all terrain vehicles in the site area and anthropogenic 

sulphur from surrounding towns. As well, despite the dominant westerly winds, it is possible 

that some anthropogenic emissions were carried to Riverhead from the north and northwest. 

This is supported by the presence in the wind rose diagrams of peaks from those directions 

(Figures III.1 - III.18). 

The short-term response times observed in isotopic composition at the two sites were 

probably related to rates of sulphur exchange within lichen thalli. Sulphur isotope 

measurements certainly reflected both rates of incoming (from the atmosphere) and outgoing 

(lost during precipitation events) sulphur. Maynard eta!. (1984) determined that although 

the majority of total sulphur in plants is usually in the organic forms of amino acids and 

sulpholipids, inorganic sulphate may become the major sulphur form when excess sulphur 

4.5 



is available. Krouse (1977), Takala eta!. (1985), and Haffner eta!. (2001) showed that 

change in sulphur concentration in lichens transplanted to heavily polluted sites was mainly 

attributable to changes in the inorganic sulphur fraction (sulphate). Wiseman and Wadleigh 

(2002) demonstrated that sulphur isotopic composition measurements in lichens transplanted 

to an urban location could not be described by simple mixing. The distinction between 

inorganic and organic S was not made here, but it is probable that it would have provided 

useful infonnation on the cyclicity observed in the measurements. Total cyclical variations 

in isotope composition measurements in control lichens were small (1%o) and probably 

smaller than actual seasonal variation in atmospheric sulphur. 

The lag between temperature and isotopic composition measurements could have 

been a function of the time necessary for sulphur to be exchanged in the lichen tissues. 

Wiseman and Wadleigh (2002) calculated that after a 12-month exposure time, the 

proportion of sulphur in the transplanted lichens originating from the atmosphere at the 

transplant site was 64%, indicating that at least some of the sulphur originally present in the 

transplanted lichens had been replaced. Lichens are known to store the sulphur-containing 

products of photo- and mycobionts, such as free amino acids and proteins (polyols, and 

polysaccharides) (Gorin eta/., 1988); biologically-bound sulphur would probably remain in 

the thallus longer compared to inorganic sulphur. Memory effects from episodes of high 

sulphur concentration are also a possibility. Reis et a/. (2002) calculated that the 

"remembrance time" in lichens for high sulphur availability conditions was 64 years when 
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calibrated to average conditions, and 0. 3 8 years when calibrated to maximum concentrations 

(pulses of high sulphur concentration). 

An important difference between the two sites was the presence in the Riverhead 

model of three significant pairs of sine/cosine terms, which indicated that secondary cycles 

were detectable (Table 3.14). This suggested influence from mostly non-anthropogenic 

sources of sulphur, as it is unlikely that such complex human-related cycles of sulphur 

emissions were measurable in the relatively unpolluted area of Riverhead but not in the 

urban area of St.John's. However, without additional information, it is difficult to determine 

the nature of these sources. A possibility is that sulphur of biogenic origin contributed to 

lows in isotopic composition. The Riverhead sampling location was located approximately 

500 m from the entrance to St. Mary's Bay. Sulphur oflow isotopic composition produced 

during biological processes in the vicinity probably contributed to cyclical variations. This 

would have added to the difference between the expected o34S value of+ 21 %o for sea spray 

sulphates and the average value over the course of the experiment ( 16.8 ± 1.4 %o in control 

lichens). Sea marshes and the tidal flats of marine environments are areas of intense 

biological activity that serve both as sources and sinks for a number of sulphur compounds. 

Sulphur plays an important role in biological processes in these environments (Ingvorsen and 

J0rgensen, 1982). H2S is the major sulphur product, but other volatile sulphur compounds, 

such asDMS, DMDS ( dimethyldisulfide; CH3S2CH3), CH3SH (methyl mercaptan), COS and 

CS2 have been identified (Anejaetal., 1979; Hill et al., 1978). Biogenic sources tend to have 

o34S values less than 0 %o (Krouse et al., 1991 ). Without the presence of significant human 
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and industrial activity in St. John's, the two locations would probably have shown similar 

seasonal patterns. 

Lichens transplanted to the Botanical Garden responded to the new conditions, as 

indicated by the gradual decrease in isotopic composition, but did not reach isotopic 

compositions typical of locally-growing lichens. In the case of Riverhead, isotopic 

composition measurements also revealed a lichen response to the change in sulphur 

conditions, but again, the 18-month period was not sufficient for the transplanted lichens to 

become indistinguishable from local ones. In contrast, results from Wiseman and Wadleigh 

(2002) suggested that 18 months would have been sufficient for lichens transplanted from 

a marine location to the MUN Botanical Garden to represent local conditions. The average 

difference in sulphur isotopic composition between the two sites was, however, 

approximately 8 %o, compared to an average difference of 11 %o in this experiment. Lichens 

submitted to larger changes in sulphur conditions may require longer adaptation periods. 

Discrepancies between the two experiments may be also be due partly to the fact that 

Wiseman and Wadleigh (2002) used linear regression models, which by their very nature 

cannot account for seasonal variation. Additionally, the mathematical convergence of 

sinusoid curves is likely to occur after longer periods of time compared to linear functions, 

because of cyclicity. In view of this, it is not unexpected that 18 months were insufficient 

for the transplanted lichens to become indistinguishable from local ones. 

Wiseman and Wadleigh (2002) also showed that the isotopic composition measured 

in lichens transplanted to an urban location was not a function of simple mixing. The 
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simultaneous increase in sulphur concentration (Figure 4.4) and decrease in isotopic 

composition (Figure 4.3) in lichens transplanted to the Botanical Garden indicated that both 

uptake (change in isotopic composition) and loss of sulphur (decrease in concentration) were 

taking place simultaneously. Sulphur present in the lichens at the start of the experiment was 

lost during precipitation events and replaced, at least in part, by sulphur from sea spray 

sulphates available from the surrounding atmosphere. We assume that the majority of 

sulphur leached from the thallus was non-biological sulphur (i.e., sulphates). 

Precipitation sulphate measured in St. John's had an average 034S value of+ 7%o 

(Jamieson, 1996), a value similar to isotopic composition measurements for modelled 

observations for the control treatment lichens at this site (min. 5.6 %o, max 7.0 %o: Figure 

4.1). Krouse (1977; 1980) and Winner eta!. (1978) found that ASR caused 034S values 

measured in plants and lichens to be typically 1.5 %o lighter than the sulphur source. The 

difference between minimum isotopic composition measurements and average 034S values 

in rain of 1.4 %o could have been a result of ASR. Had the organic and inorganic sulphur 

fractions been distinguished, we would have been able to better quantify this effect. 

Biologically-bound sulphur is probably subject to more fractionation than inorganic sulphur, 

as the presence of the latter is mostly a result of passive processes. 

The thallus weight variable WGT was present in the isotopic composition model for 

the Botanical Garden and the coefficient was positive (Table 3.10), indicating that larger 

lichens tended to have greater isotopic compositions. The correlation between isotopic 

composition and concentration in the control lichens was significant (r= -0.440, p < 0.001; 
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Table 4.1 ), as it was for weight and isotopic composition (r = 0.207~ p = 0.041 ). In lichens 

growing at the same site, larger thalli (larger weight) would presumably be older. As algal 

cells in the older sections of lichens are less active with respect to nutrient uptake and 

photosynthesis than algal cells in the newer sections (Honneger~ 1996~ Maguas and Brugnoli, 

1996~ respectively) and the cortex in older sections can also thicken and prevent or impede 

the penetration ofS02 (Wirth and Ti.irk, 1974), the greater isotopic composition in the larger 

lichens could be related to differential absorption in new and old sections. Larger lichens 

may have contained more "old" sulphur. Yun (2000) found that sulphur isotopic 

compositions and concentrations differed within A tectoria sarmentosa thalli collected near 

the Come-by-Chance oil refinery with older portions typically showing greater isotopic 

compositions. Mean monthly sulphur concentrations at the Botanical Garden site increased 

during the course of the experiment from 708 ± 122 to 844 ± 183 ppm (Table 3 .17). The 

average sulphur concentration in lichens measured by Wiseman and Wadleigh (2002) in 

1997- 1998 was 500 ± 74 ppm. These results suggest that anthropogenic emissions and the 

proportion of anthropogenic to natural sulphur are increasing in the urban area of St. John's, 

Newfoundland and Labrador~ "older" sulphur would thus have a greater average isotopic 

composition. Indeed, weight and isotopic composition were correlated only in the control 

lichens at this site, although WGT was significant for the model as a whole. As expected, 

such an effect of increased sulphur dioxide emissions was not found at the coastal site of 

Riverhead; isotopic composition and weight in the control lichens were not significantly 

correlated (Table 4.1). In contrast, higher isotopic compositions in lichens transplanted to 
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the Riverhead site were associated with lower concentrations and smaller thallus weights 

(r= -0.358,p= 0.001 andr=- 0.239,p= 0.023, respectively; Table 4.1). This suggests that 

the exchange of sulphur in transplanted lichens occurred faster in smaller thalli. Haffner et 

a/. (2001) showed that sulphur accumulation in lichens exposed to S02 was mainly due to 

the accumulation of inorganic sulphate. If inorganic sulphate is accumulated at a faster rate, 

the converse would also be true: biologically-bound sulphur of anthropogenic origin would 

be lost more slowly than inorganic sulphur. Larger lichens would likely have had higher 

amounts of anthropogenic sulphur at the start of the experiment and the change in isotopic 

composition would have been less evident. 

4.2.3 Sulphur concentration 

As in the case of isotopic composition measurements, seasonal trends (i.e., short

term responses) were detectable in lichens at both sites. At the Botanical Garden, the 

temperature high observed between days 225 and 325 (Figure 4.2) was in agreement with 

a low in sulphur concentration observed between days 210 - 290. Additionally, colder 

periods corresponded with periods of higher sulphur concentrations (days 80 - 150 and 4 25 -

530). The agreement between expected lows and highs in concentration and temperature 

trends was greater than for isotopic composition measurements, but the predictive power of 

the model was lower (R2 = 50.8%). At Riverhead, the regression model indicated the 

presence of an anthropogenic effect similar to that observed in the urban location, as 

suggested by the agreement between concentration highs (between days 99-120 and 457-
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484) and temperature lows (Figure 4.4). The central high (days 273-302), however, occurred 

in the summer period. Results suggested that some anthropogenic emissions were present 

in the atmosphere surrounding Riverhead, but that another source of sulphur was dominant 

during the summer months. Wadleigh and Blake (1999) found no evidence oflong-range

transported sulphur in the atmosphere of Newfoundland~ emissions from the Canadian 

mainland are thus improbable. Results for isotopic composition indicated that an 

anthropogenic effect, if present at all, did not clearly set apart winter and summer isotopic 

compositions. It is probable that the change in concentration was large enough to affect 

sulphur concentration measurements in lichens, but that the difference in isotopic signal was 

not easily detected. Note in Figure 4.4 that the amplitude of the variation in sulphur 

concentration was quite large compared to that of the other models (Figures 4.1- 4.3) and 

that the maxima attained in sulphur concentration were comparable to concentrations 

measured in control lichens at the Botanical Garden. As for the increase in sulphur 

concentration in the summer period, it could have been a result of biogenic emissions of 

sulphur gases, as was suggested for sulphur isotopic composition measurements at 

Riverhead. Much land in the area around the Riverhead site is under the effect of tidal 

action, and sea marshes and the tidal flats of marine environments are known to be 

significant sources of biogenic sulphur compounds, especially in warmer temperatures, as 

a result of increased biological activity (Hill eta!., 1978~ Aneja eta!., 1979~ Ingvorsen and 

J0rgensen, 1982). The peak in sulphur concentration in Figure 4.4 fell precisely during 

periods of wanner temperatures, which would be concordant with these findings. 
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The correspondence between highs/lows and temperature patterns was similar for 

the two Botanical Garden models, allowing a lag of about 50 days in isotopic composition. 

The absence of a lag period in sulphur concentration is comprehensible, as the total sulphur 

concentration is independent of the sulphur form (organic or inorganic), and thus from rates 

of sulphur exchange within the thallus. Wet precipitation events may have caused leaching 

of particulate sulphur, which was being replenished by a continuous supply of anthropogenic 

sulphur. Results agree with previous studies that suggested that sulphur accumulation in 

lichens provides a reasonably accurate estimate of 802 concentration in the atmosphere 

(Gilbert, 1973; Puckett and Fineman, 1980; Hopp and Kappen, 1981; Richardson and 

Nieboer, 1983; Levin and Pignata, 1995). 

The expected response for the transplanted lichens was a gradual change in sulphur 

concentration toward control values (Wiseman and Wadleigh, 2002). This was observed at 

the Riverhead site, but at the Botanical Garden, however, the sulphur concentration model 

(Figure 4.2) showed a gradual increase in calculated sulphur concentration overtime in both 

treatments and indicated that the curves for the two treatments would never have met 

(distance between curves increased with time). Also, the increase in sulphur concentrations 

was such that the time-trends for the two treatments were not significantly different. It is 

probable that the increase in ambient sulphur concentrations over the course of the 

experiment at this site was sufficient to obscure any difference in trend between control and 

transplant lichens. Sulphur accumulation in lichens has been shown to be directly dependent 

on the 802 level of the exposure (Leblanc and Rao, 1973) and sulphur concentration 
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measurements in lichens between 1997 and 1998 were considerably lower (500 ppm 

average) (Wiseman and Wadleigh, 2002). This could also have been a factor at the 

Riverhead site, as sulphur concentrations in the control lichens increased over the course of 

the experiment. Regressions were based on 18 months of observations; it is probable that a 

longer time frame would have revealed additional trends. 

Sulphur absorption may be a function of morphological characteristics. For example, 

thallus age may have been a factor in the larger variability observed in sulphur concentration 

measurements compared to isotopic composition, and consequently to the lower predictive 

powers of the sulphur concentration models. Maguas and Brugnoli (1996) showed that 

carbon discrimination was greatest in younger or marginal sections of thalli for seven lichen 

species. 

In contrast to the isotopic composition model, the regression model for sulphur 

concentration at the Botanical Garden did not include WGT as an explanatory variable. This 

was concordant with our supposition that the weight effect was related to different rates of 

sulphur absorption in old compared to young portions of lichen thalli, as sulphur 

concentration measurements cannot distinguish between old and new sulphur. 

4.2.4 Additional considerations 

A striking result was the presence of significant secondary and tertiary cycles in 

models for the Riverhead site, but not for the Botanical Garden (Figures 3.1 to 3.4). It is 

logical to hypothesize that this was due, at least in part, to the existence of significant 
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anthropogenic emissions in the Botanical Garden area. These emissions had isotopic 

signatures significantly lower than natural sources and were probably eclipsing the higher 

o34S values of natural sources. 

We hypothesized that lichens originating from the Botanical Garden would show a 

slower rate of response compared to those from Riverhead, possibly as a result of 

physiological damage~ this was not borne out by the results. The regression models for 

isotopic compositions indicated that convergence for transplant and control treatments 

would have occurred on the 1165'h day of the experiment at the Botanical Garden, and on 

the 988th day at Riverhead, a difference of approximately 6 months. The regression models 

for sulphur concentration at the two sites could not be compared due to significant increases 

in ambient sulphur concentrations at the Botanical Garden. 

Qualitative observations suggested the presence of some physiological damage in the 

control lichens at the Botanical Garden site throughout the duration of the experiment, and 

in lichens transplanted to that site (especially during last 4 months of experiment). Lichens 

exhibited a distinct dull grey-green colour and were more brittle than lichens originally 

growing in Riverhead. In a majority of cases, inactive sections of the thallus were present 

(dry, brown brittle sections). In a study on the physiological responses of 4 lichen species 

transplanted along an S02 pollution gradient, Haffner eta!. (2001) found that bleaching 

occurred as early as 4 weeks following the onset of exposure and that colour change was 

linked to chlorophyll destruction or loss (also Moser eta/., 1983). Qualitative infonnation 

on physiological parameters would be required to assess the extent of injuries. If injury did 
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occur, it is possible that its effect on sulphur absorption and exchange capacity in lichens 

was offset by other factors, such as the difference in the ratio of incoming to outgoing 

sulphur, which was likely much larger at the Botanical Garden due to higher concentrations 

of sulphur in the surrounding atmosphere. 

The observations for sulphur concentration in the control treatment were consistent 

with results of previous studies, which showed that lichens located closer to urban centres 

tend to have greater sulphur concentrations (Nieboer and Richardson, 1981; Wadleigh and 

Blake, 1999). The average sulphur concentration over the course of the experiment was 776 

± 152 ppm at the Botanical Garden and 511 ± 100 ppm at Riverhead (all control 

observations combined). The relative difference in mean sulphur concentrations between the 

two sites was small compared to the difference in sulphur isotopic compositions. In addition, 

the predictive powers of the regression models for sulphur concentration were considerably 

lower than those for isotopic composition. Because each model included data from two 

treatments, the larger disparity in isotopic composition between the two treatments probably 

increased the predictive powers. The inherent variability in measured values was greater for 

sulphur concentration measurements (17% in 034S values and 20% in [S] for control lichens 

at BG; 8% in 034S values and 20% in [S] in control lichens at RH). 

The overall increase in background sulphur concentrations at the Botanical Garden 

precluded any comparison between the rates of sulphur accumulation/loss (sulphur 

concentration) in the transplanted lichens between the two sites. 
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The expected time of convergence of approximately 21 months for sulphur 

concentration observations at Riverhead between control and transplanted lichens was 

longer than the range of times determined by transplant experiments described in the 

literature. However, other studies focussed on investigating the rate of sulphur accumulation, 

as opposed to sulphur loss. In the case of sulphur isotopic compositions, the results can only 

be compared with those from a study by Wiseman and Wadleigh (2002) in which it was 

reported that transplanted lichens would have required 18 months to reach local conditions. 

The required times, as determined in this experiment, were much longer: 33 and 38 months 

for Riverhead and the Botanical Garden, respectively. This was probably partly due to the 

larger initial difference in isotopic composition between the two sites. 

4.3 Implications for biomonitoring 

One of the common uses of active biomonitoring is the assessment of pollutant levels 

at a given site. Lichens are taken from a "clean" location and relocated to one where the 

atmosphere is known to be contaminated by a certain pollutant. These studies typically last 

less than two years. The present study showed that total adaptation times may be much 

longer than thought before and that a portion of the observed change in pollutant levels may 

be due to seasonal variation, which cannot be accounted for by the use of modelling 

techniques such as simple linear regression. It may be necessary to account for climate

related cycles -especially in urban areas- in order to obtain an accurate representation of 

occurring phenomena. Likewise, using only initial measurements of pollutant concentrations 
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for baseline data may introduce significant error, as levels may vary a great deal between 

seasons; knowledge of pollutant levels in undisturbed lichens throughout the course of the 

experiment may prove necessary. In addition, when considering total response time, the 

extent of the disparity between original and new conditions is likely a factor. A longer 

response time is probably necessary for larger differences. 

A significant finding concerns the ability of lichens to release some of the sulphur 

in their tissues. Many previous authors have indeed assumed that lichens can accumulate 

elements and retain them indefinitely. This is obviously not the case, at least with sulphur, 

and probably with other elements. We did not identify the nature -organic or inorganic- of 

the sulphur leached from the lichen thalli, but it is probable that a majority of the sulphur 

eliminated from the tissues was in the inorganic fonn. In calculating accumulation rates in 

lichens, amounts lost during precipitation events or by other means must also be accounted 

for, hence the need to consider local climatic conditions. 

The use of isotopes in conjunction with concentration measurements in the case of 

sulphur, and perhaps of other elements, pennits a more comprehensive analysis of pollutant 

sources and natural cycles than parameters used individually. When investigating sulphur 

in lichen thalli, distinguishing between organic and inorganic fractions of sulphur may 

provide invaluable infonnation. 
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Table 4.1: Pearson r product-moment correlation coefficients and p-values (below, 
italicized2 for DELTAS, SCONC and WGT in control and transQlanted lichens. 

Botanical Garden (BG) Riverhead (RH) 

Treatment Variable DELTAS SCONC WGT DELTAS SCONC WGT 

Control DELTAS 1 1 

SCONC -0.440 1 -0.196 1 

<0.001 0.053 

WGT 0.207 -0.155 1 0.065 -0.236 1 

0.041 0.128 0.525 0.019 

Transplant DELTAS 1 1 

SCONC -0.415 1 -0.358 1 

<0.001 0.001 

WGT 0.149 0.012 1 -0.239 -0.030 1 

0.160 0.910 0.023 0.780 
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Figure 4.1: Regression model for sulphur isotopic composition at the Botanical Gardens 
(Table 3.10) and mean daily temperature (degrees C; 15-day running mean). 
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Figure 4.2: Regression model for sulphur concentration at the Botanical Gardens (Table 
3.12) and mean daily temperature (degrees C; 15-day running mean). 
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Figure 4.3: Regression model for sulphur isotopic composition at Riverhead (Table 3 .14) and 
mean daily temperature (degrees C; 15-day running mean). 
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Figure 4.4: Regression model for sulphur concentration at Riverhead (Table 3 .16) and mean 
daily temperature (degrees C; 15-day running mean). 
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Chapter 5: Summary and Conclusions 

5.1 Overview 

The foremost objective of this experiment was to investigate the response of the 

epiphytic lichenA!ectoria sarmentosa to changes in atmospheric sulphur conditions. Lichen 

thalli were transplanted reciprocally between two sites showing a large disparity in sulphur 

conditions and sampled and analysed monthly for sulphur isotopic composition and 

concentration. Lichen thalli were also transplanted within the same site. The reference 

(undisturbed lichens) and locally transplanted thalli were sampled concomitantly with the 

lichens transplanted reciprocally between the two sites. Specific objectives of the study 

were: i) to determine whether the act of transplanting alters the lichen response; ii) to 

ascertain the extent of background variation in sulphur conditions, and iii) to compare 

response times for the two directions of transplant. 

As expected, the mechanics of relocation did not affect lichen response to changes 

in sulphur conditions. The change in sulphur isotopic composition and concentration in 

lichens transplanted locally was not significantly different from the change in undisturbed 

thalli at the same site. 

Sulphur isotopic composition and concentration measurements in control lichens 

clearly indicated a predominance of anthropogenic sulphur sources at the Botanical Garden 

(mean 034S in control lichens= 6.33 ± 1.1 %o) and natural (sea spray sulphates) sources at 

Riverhead (mean 034S in control lichens= 16.8 ± 1.4 %o), in agreement with results from 

Wadleigh and Blake (1999) and Wiseman (1999). 
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Multiple regression with periodic functions was used to model the observations and 

proved useful and appropriate. Models generated with this parametric method were 

compared to curves obtained via the non-parametric smoothing technique LOWESS and 

found to be very similar. The use of multiple regression with periodic functions and 

concomitant transplant and control observations enabled the detection of cyclicity in the 

sulphur isotopic composition and concentration data. This was an improvement from the 

results of Wiseman and Wadleigh (2002), who used linear regression to model sulphur 

isotopic composition and concentration observations in lichens transplanted from a 

relatively unpolluted area to the Botanical Garden. 

On the one hand, lichens originating from Riverhead and transplanted to the 

Botanical Garden responded to the change in sulphur source. It was estimated that 20 and 

15 additional months would have been necessary for the lichens to reach local isotopic 

compositions at the Botanical Garden and Riverhead, respectively. On the other hand, the 

lichens transplanted to the Riverhead site showed a gradual decrease in sulphur 

concentration, but 3 additional months would have been necessary for the lichens to become 

indistinguishable from local ones. Any response to the change in concentration for lichens 

transplanted to the Botanical Garden was overshadowed by a rise in ambient sulphur levels 

over the course of the experiment. These time estimates took into account cyclicity in the 

observations. 

The lag observed between sulphur isotopic compositions measured in lichens and the 

corresponding temperature effects was between 1 - 2 months at both sites. This was 
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speculated to be related to the time necessary between the assimilation of sulphur and its 

subsequent emission by the lichen. It was suggested that the lag observed in the isotopic 

composition models was indicative ofbiologically-bound sulphur, as there was no lag in the 

correspondence of sulphur concentration measurements and temperature patterns. 

Transplantation oflichens from polluted to unpolluted conditions revealed seasonal 

cycles that could not be completely explained. Biogenic sources of sulphur may explain 

some of the results, especially during the dry/warm summer period. Results suggested that 

sulphur can be purged relatively fast from the thallus when lichens are subjected to lower 

ambient sulphur concentrations, possibly as a result of preferred loss of inorganic sulphur. 

We proposed that lichens can reflect small changes in isotopic composition over the short

term, but that much longer time-periods are required for larger disparities. 

Isotope composition measurements provided more predictive power in the modelling 

of lichen responses, in addition to enabling to distinguish different sulphur sources. 

5.2 Future research 

Sulphur isotope composition and concentration measurements in lichens provide 

useful information on the response of lichens to changes in sulphur conditions. More 

research is needed with regard to the response of lichens to improvements in sulphur 

conditions. The results of this study have implications for monitoring studies, as they 

showed that relatively long periods of time (up to four years) may be necessary before 
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sulphur isotopic composition and concentration measurements in lichens reflect ambient 

conditions. 

No distinction between the organic and inorganic fractions was made in this study. 

In many instances, phenomena observed during the course of this experiment may have been 

more easily explained had these two fractions been quantified. Additionally, measuring 

sulphur isotope composition and concentration in the apical regions of the thalli (newer 

portions) would undoubtedly have provided us with additional clues concerning mechanisms 

of sulphur accumulation and loss, and technological improvements may permit analysis of 

such small samples. 
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Appendix I 

Calibration procedure for sulphur isotopic composition 

The following table is an example of sulphur isotopic composition measurements for 

standard materials. The "raw" o34S is the isotopic composition measured by the instrument, 

whereas the 034Svcor is the known isotopic composition. The dashed line separates standards 

introduced at the beginning of the run from those introduced at the end. 

ID 

IAEA-S-1 

IAEA-S-1 

IAEA-S-2 

-2.01 

-2.67 

+17.72 

-0.3 

-0.3 

+21.0 

TAEA-S-2 +17.43 +21.0 ------------------
IAEA-S-1 - 1.69 -0.3 

IAEA-S-1 

TAEA-S-2 

IAEA-S-2 

- 1.91 

+17.26 

+17.49 

-0.3 

+21.0 

+21.0 

Step 1. Determination of linear function equation 

Once the raw isotopic compositions for the standards are obtained, a linear function 

in the form ofy = mx + b can be calculated, where xis the measured isotopic composition 

andy is the calibrated isotopic composition. 

From the previous data, this yields: 

034Svcor = 1.0890165 • 034Srnw + 1.962939 
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Step 2. Calculation of sample isotopic composition from the linear function. 

For a sample with a measured (raw) isotopic composition of5.73 %o, the calibrated 

isotopic composition is: 

034Svcor = 1.0890165 • 5.73 + 1.962939 = 7.93 %o 

Calibration procedure for sulphur concentration 

The area under the sulphur signal peak (in volts • second) obtained by the instrument 

is proportionally related to the total sulphur content. A linear regression curve can be 

obtained by introducing different-sized samples of an elemental reference material into the 

system, in this case BBOT, which has a sui phur content of7. 44% ( w/w ). The following table 

contains sample data for sulphur content calibration 

ID Weight sample [S} Amt. S-eal AreaS Area S-eal 
(mg) (%ww) (mg) (Vs) (Vs) 

BBOT 0.396 7.44 0.0295 19.730 20.24 

BBOT 0.321 7.44 0.0239 15.597 15.89 

BBOT 0.472 7.44 0.0351 25.359 24.65 

BBOT 0.533 7.44 0.0397 28.445 28.19 

BBOT 0.709 7.44 0.0527 38.019 38.40 

BBOT 0.913 7.44 0.0679 50.412 50.24 

BBOT 0.538 7.44 0.0400 28.279 28.48 

BBOT 0.639 7.44 0.475 34.227 34.34 

Step 1. Calculation of the amount of sulphur 

The amount of sulphur in a sample is a function ofthe sulphur concentration and the 

sample weight, according to the following equation: 
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AmountS (mg) = [S] (%) • sample weight (mg) 

For a sample with a weight of 0.396 mg, the amount of sulphur is calculated as: 

AmountS (mg) = 7.44% * 0.396 mg = 0.0295 mg 

Step 2. Determination of linear function equation 

The relationship between the area under the sulphur peak and the amount of sulphur 

in the sample is directly proportional and can be represented with the equation y = mx + b, 

where x is the amount of sulphur andy is the area under the peak. Thus: 

Area (Vs) = m • amountS (mg) + b 

For the previous data, the equation is: 

Area (Vs) = 779.76432 • amountS (mg)- 2.731925 

A graphical representation of the previous data yields: 

55 

_so • 
t/) 

~45 
~ 

m 40 
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.. 35 
Cl) -·· "C 
c 30 ::s •• 
cu 25 
~ • 
< 20 ·• 

15 • 
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Amount S (mg) 

• Data · Calibration 
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Step 3. Calculation of the sulphur content of a sample 

For a lichen sample with a mass of 14.983 mg and a measured area under the peak 

of 8.63 Vs, the amount of sulphur in the sample is calculated by: 

(Area (Vs) + 2.731925) I 779.76432 = (8.63 + 2.731925) I 779.76432 = 0.014571 mg 

converted into units of parts per million (ppm), this yields: 

= 0.014571 mg S • 1 000 000 mg = 973 ppm 
14.983 mg 1 kg 
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Appendix ll 
Table II. I: 0348~12! and [S] results. 

MUN Botanical Garden Riverhead 

Month ID Weight 
. (mg) 

034SvcoT 
(%o) 

[S] 
(ppm) ID Weight 

(mg) 
OJ4SvcnT 

(%o) 
[S] 

(ppm) 

0 0-BG-Cl 367.4 5.1 845 O-RH-C1 1250.9 15.8 418 

O-BG-C2 421.6 7.8 535 O-RH-C2 1558.8 16.8 452 

O-BG-C3 807.2 7.6 659 O-RH-C3 904.9 17.9 489 

O-BG-C4 275.2 7.4 743 O-RH-C4 801.5 16.4 460 

O-BG-C5 241.8 8.5 525 O-RH-C5 664.8 18.3 432 

O-BG-C6 558.3 7.9 772 O-RH-C6 1438.7 15.5 417 

O-BG-C7 546.6 6.8 795 O-RH-C7 1028.2 17.8 404 

O-BG-C8 540.3 6.9 788 O-RH-C8 970 17.7 432 

l-BG-T6 268 14.4 629 l-RH-T19 458.7 7.8 869 

1-BG-T15 204.7 13.3 678 1-RH-T25 2442.1 9.9 675 

1-BG-T16 145.7 ll.5 646 1-RH-T26 585.7 8.7 585 

1-BG-T21 1400.7 14.4 565 1-RH-T7 279.4 6.2 665 

1-BG-T11 522.3 13.8 673 1-RH-T15 896.8 9.6 534 

1-BG-TC15 622.1 7.0 688 1-RH-TC13 361.4 16.9 487 

1-BG-TC20 348.7 5.1 674 1-RH-TC20 387 16.6 527 

1-BG-C1 429.7 4.9 839 1-RH-C1 760.7 17.8 600 

1-BG-C2 340.7 6.0 624 1-RH-C2 1244.6 18.3 470 

1-BG-C3 356.4 5.6 717 1-RH-C3 456.5 8.9 648 

2 2-BG-T14 214 12.2 653 2-RH-T24 236.1 10.5 731 

2-BG-T9 865.1 12.7 457 2-RH-T20 357.3 8.9 509 

2-BG-T15 377.4 10.1 544 2-RH-T22 417.3 8.6 629 

2-BG-T13 168.7 10.7 535 2-RH-T11 943.1 7.9 558 

2-BG-TC22 189.8 5.5 879 2-RH-T4 322.5 8.9 706 

2-BG-TC7 223.4 5.3 811 2-RH-TC7 380.6 16.3 443 

2-BG-TC20 505.9 6.6 637 2-RH-TC5 273.2 17.0 531 

2-BG-Cl 205.6 5.9 611 2-RH-C1 1315.7 16.9 447 

2-BG-C2 436.9 6.8 579 2-RH-C2 187 16.6 493 

2-BG-C3 875.5 5.6 615 2-RH-C3 1234.6 18.2 411 

3 3-BG-T23 259.9 15.2 520 3-RH-T30 590.7 9.7 589 

3-BG-T22 108.2 9.2 672 3-RH-T19 349 8.4 670 
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Table II.l (continued) 
MUN Botanical Garden Riverhead 

Month ID Weight 
(mg) 

034SvcoT 
(%o) 

[S] 
(ppm) ID Weight 

(mg) 
034SvcoT 

(%o) 
[S] 

(ppm) 

3-BG-T28 172.8 11.1 661 3-RH-T2 123.6 9.7 738 

3-BG-TC17 253.3 6.9 988 3-RH-T14 158.5 17.3 522 

3-BG-TC16 363.1 6.4 825 3-RH-TC18 507.9 14.5 425 

3-BG-TC13 152.9 5.3 942 3-RH-TC19 313.6 17.6 596 

3-BG-TC9 784.2 6.4 611 3-RH-TC3 952.7 16.4 621 

3-BG-C1 562.6 5.5 887 3-RH-C1 400 17.3 520 

3-BG-C2 395.4 7.7 582 3-RH-C2 312.4 17.0 616 

3-BG-C3 483.5 7.2 770 3-RH-C3 289.7 17.0 659 

4 4-BG-T15 331.5 14.5 498 4-RH-T5 178.7 10.2 582 

4-BG-T17 498.9 14.5 516 4-RH-TlO 211.8 19.0 539 

4-BG-T20 167.2 13.2 478 4-RH-T17 525.1 8.7 595 

4-BG-T21 330.4 11.8 528 4-RH-T24 441.3 8.7 630 

4-BG-T22 394.4 10.3 560 4-RH-T30 133 9.0 638 

4-BG-T25 824.4 13.0 458 4-RH-TC4 251.8 18.9 347 

4-BG-TC17 242.7 6.5 713 4-RH-TC28 743.5 16.2 405 

4-BG-C1 231.6 6.5 648 4-RH-C1 132.1 16.3 542 

4-BG-C2 160.6 6.4 662 4-RH-C2 90.5 16.0 405 

4-BG-C3 456.5 6.1 621 4-RH-C3 270.4 16.7 566 

5 5-BG-TlO 633.4 14.1 690 5-RH-Tl 357.2 7.6 734 

5-BG-T12 112.8 6.7 731 5-RH-T6 194.8 8.4 575 

5-BG-T18 201.1 13.5 657 5-RH-T9 563.4 12.4 577 

5-BG-T29 526.3 10.3 626 5-RH-TlO 833.5 9.7 757 

5-BG-TC8 556.1 6.6 816 5-RH-T18 800 9.0 624 

5-BG-TC9 444.1 6.4 851 5-RH-T27 150.1 8.3 568 

5-BG-TC20 230.4 6.6 851 5-RH-TC4 115.4 16.4 460 

5-BG-C1 218.3 6.8 812 5-RH-C1 248.2 14.9 475 

5-BG-C2 339 7.2 807 5-RH-C2 272.5 17.7 514 

5-BG-C3 644.8 7.1 826 5-RH-C3 299.3 14.7 521 

6 6-BG-T12 147.7 12.7 536 6-RH-T3 451.6 10.4 549 

6-BG-T16 155.4 10.8 518 6-RH-TlO 369.6 18.3 557 

6-BG-T18 465.7 12.7 672 6-RH-T18 157.4 10.9 550 

6-BG-T19 114.3 10.9 372 6-RH-T27 432.1 9.7 783 
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Table II.l {continued) 
MUN Botanical Garden Riverhead 

Month ID Weight 
(mg) 

034SvcoT 
(%o) 

[S] 
(ppm) ID Weight 

(mg) 
ol4SvcoT 

(%o) 
[S] 

(ppm) 

6-BG-T25 255.9 13.0 431 6-RH-TC1 394.3 17.5 345 

6-BG-T29 179.9 11.4 448 6-RH-TC8 226 18.3 392 

6-BG-TC14 148.8 5.1 732 6-RH-TC20 472.4 16.6 397 

6-BG-C1 101.7 5.1 645 6-RH-C1 309.8 19.2 423 

6-BG-C2 196.6 7 711 6-RH-C2 400.7 17.5 418 

6-BG-C3 193.3 6.4 763 6-RH-C3 348.8 15.9 364 

7 7-BG-T2 366.9 10.1 583 7-RH-T3 1037.8 8.9 525 

7-BG-T4 757.6 11.8 504 7-RH-T5 140.4 8.5 667 

7-BG-T14 589.2 10.0 547 7-RH-Tl2 859.8 9.0 498 

7-BG-TC8 999.3 6.6 644 7-RH-T25 995.5 9.6 545 

7-BG-TC8 674.1 6.4 531 7-RH-TC8 430.1 17.6 422 

7-BG-TC15 284.8 6.6 788 7-RH-TC16 710 15.8 449 

7-BG-TC22 511.3 5.4 837 7-RH-TC28 596 16.7 473 

7-BG-C1 484 6.8 636 7-RH-C1 431.7 15.0 417 

7-BG-C2 330.2 4.7 769 7-RH-C2 744.9 17.6 445 

7-BG-C3 452.5 4.8 907 7-RH-C3 448.7 15.5 473 

8 8-BG-Tl4 454.7 12.5 566 8-RH-T3 498.6 9.9 558 

8-BG-Tl9 200.6 11.9 495 8-RH-T4 706.1 9.6 465 

8-BG-T20 316.7 ll.S 564 8-RH-T5 519.6 9.8 521 

8-BG-T23 2151.3 13.4 568 8-RH-T13 631.7 9.7 574 

8-BG-T26 936.3 12.6 407 8-RH-T19 408.5 9.4 590 

8-BG-T28 371.5 11.5 525 8-RH-T29 532.8 9.2 641 

8-BG-TC9 436.7 6.8 599 8-RH-TC5 358.1 16.1 514 

8-BG-C1 348.9 6.8 934 8-RH-C1 642.8 17.2 438 

8-BG-C2 675.2 6.5 726 8-RH-C2 516.1 14.9 490 

8-BG-C3 458.2 6.2 664 8-RH-C3 237.2 14.7 491 

9 9-BG-Tl 328.9 12.3 470 9-RH-T8 274.7 9.6 698 

9-BG-T4 464.2 11.6 601 9-RH-T12 437.5 11.3 608 

9-BG-T8 315.6 12.2 530 9-RH-T21 373.8 10.1 636 

9-BG-T16 356.8 8.0 652 9-RH-T26 893.5 9.1 544 

9-BG-T24 665 11.1 559 9-RH-TC13 807.1 17.0 573 

9-BG-TC13 202.9 3.4 874 9-RH-TC16 552.9 16.1 501 
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Table ll.l: {continued} 
MUN Botanical Garden Riverhead 

Month ID Weight 034
SvcDT (S] ID Weight ol4SvcoT [S] 

(mg) (%o) (ppm) (mg) (%o) (ppm) 

9-BG-TC14 297.8 7.3 708 9-RH-TC19 389.1 16.3 476 

9-BG-Cl 776.3 9.2 480 9-RH-Cl 658.3 16.0 495 

9-BG-C2 322.4 5.8 647 9-RH-C2 280.6 16.9 566 

9-BG-C3 481.1 7.9 604 9-RH-C3 183.3 16.2 513 

10 l0-BG-T3 733.9 11.6 518 10-RH-T6 426.6 11.3 643 

10-BG-Tl2 449.5 11.6 591 10-RH-T9 540.8 10.6 558 

10-BG-Tl7 251.2 12.5 632 10-RH-T16 425.2 10.3 732 

10-BG-T20 471.4 13.1 560 10-RH-Tl7 383.7 9.8 710 

10-BG-T23 731.5 14.1 624 10-RH-T23 493.4 10.4 597 

10-BG-T26 548.7 11.3 547 10-RH-TC1 224.4 16.0 619 

10-BG-TC13 295.7 5.5 874 10-RH-TC7 638.2 15.9 643 

10-BG-C1 556.5 6.6 641 10-RH-C1 195.4 16.3 525 

10-BG-C2 261.6 5.3 810 10-RH-C2 245.4 15.6 629 

l0-BG-C3 275.8 6.7 798 10-RH-C3 427.1 18.2 636 

11 11-BG-T4 441.4 12.0 638 11-RH-Tl 293.9 13.5 622 

11-BG-T5 740 12.2 583 ll-RH-T8 340.8 11.9 577 

11-BG-T9 818.9 10.7 722 11-RH-Tl1 394.7 12.8 626 

11-BG-T24 127.4 13.7 596 11-RH-Tl5 192 13.5 395 

11-BG-T28 239.6 14.7 606 11-RH-Tl6 602.3 11.2 573 

11-BG-T30 625.2 10.9 755 11-RH-T22 327.8 12.5 455 

11-BG-TC15 207.1 7.6 785 11-RH-TC20 534.2 18.7 546 

11-BG-C1 490.3 5.2 756 11-RH-Cl 505.4 18.7 389 

11-BG-C2 644.3 4.1 949 11-RH-C2 179.2 18.8 545 

11-BG-C3 169 5.4 1007 11-RH-C3 206 17.4 499 

12 12-BG-Tll 254.5 10.9 761 12-RH-T2 290.4 11.8 474 

12-BG-Tl3 293.4 11.0 475 12-RH-T8 286.6 12.7 552 

12-BG-Tl7 366 11.3 385 12-RH-T20 568.3 12.8 472 

12-BG-T30 612.9 11.8 476 12-RH-T28 290.6 13.6 521 

12-BG-TC7 616.3 6.4 697 12-RH-TC3 289.5 17.8 640 

12-BG-TC16 314.4 7.5 798 12-RH-TC16 1272 16.3 518 

12-BG-TC26 620.9 6.7 678 12-RH-TC19 470.9 20.0 371 

12-BG-C1 203.8 6.6 722 l2-RH-C1 191.5 16.8 590 
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Table II.l: {continued~ 
MUN Botanical Garden Riverhead 

Month ID Weight 034SvcoT [S) ID Weight 034SvcoT [S] 
(mg) (%o) (ppm) (mg) (%o) (ppm) 

12-BG-C2 354.1 6.5 658 12-RH-C2 375.5 16.8 405 

12-HG-C3 322.!! 7.6 650 12-RH-C3 1!!5 17.5 632 

13 13-BG-T2 408.3 12.3 477 13-RH-T9 247.4 12.9 399 

13-BG-T4 374.8 ll.5 516 13-RH-T17 235.7 10.8 549 

13-BG-T7 1110.9 12.0 457 13-RH-T29 242 12.8 675 

13-BG-T266 NA NA NA 13-RH-T30 310.7 11.5 374 

13-BG-T29 277.6 13.2 541 13-RH-TCl 527.5 17.5 342 

13-BG-TC16 360.9 7.2 792 13-RH-TC3 145.1 14.8 545 

13-BG-TC17 375 6.2 926 13-RH-TC28 563.8 16.8 387 

13-BG-C1 582.9 6.7 483 13-RH-C1 380.7 15.9 495 

13-BG-C2 355.7 6.0 895 13-RH-C2 1098.7 19.3 407 

13-BG-C3 171.1 5.9 995 13-RH-C3 938.5 18.0 478 

14 14-BG-Tl 667.6 10.4 500 14-RH-Tl 817.5 13.1 515 

14-BG-T18 222.6 9.4 467 14-RH-T2 328.8 12.8 530 

14-BG-T19 122.1 9.6 691 14-RH-T6 1161.2 12.6 610 

14-BG-T21 334.4 10.0 661 14-RH-T11 297.5 l1.8 669 

14-BG-T24 161.6 10.2 621 14-RH-T15 255.8 14.0 638 

14-BG-T27 101.1 11.4 659 14-RH-T22 195.3 13.2 607 

14-BG-TC7 647.2 5.8 990 14-RH-TC7 2211.9 16.3 505 

14-BG-C1 431.3 6.9 756 14-RH-C1 408 16.1 527 

14-BG-C2 213 6.0 914 14-RH-C2 402.5 17.4 639 

14-BG-C3 110.8 5.8 1170 14-RH-C3 462.6 17.7 632 

15 15-BG-T2 2026.5 10.8 671 15-RH-T7 644 12.5 711 

15-BG-T5 421.5 9.1 761 15-RH-T12 161.9 12.8 693 

15-BG-T6 2474.2 11.8 716 15-RH-T14 296.7 12.5 644 

15-BG-T8 521.5 11.6 821 15-RH-T16 323.5 10.7 665 

15-BG-T9 298.2 9.6 857 15-RH-T23 730.5 11.2 620 

15-BG-TC5 400.6 7.4 829 15-RH-T26 339.5 10.3 574 

15-BG-TC26 972.5 11.6 644 15-RH-TC8 164.2 16.2 625 

15-BG-C1 752.4 6.3 944 15-RH-Cl 185.5 17.4 815 

15-BG-C2 241.3 5.8 1004 15-RH-C2 507.6 16.0 642 
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Table II.l: { continued2 
MUN Botanical Garden Riverhead 

Month ID Weight 
(mg) 

o34Sv)DT 
(%o 

[S] 
(ppm) ID Weight 

(mg) 
o34Sv [S] 

(%o) (ppm) 

15-BG-C3 308.2 5.2 1074 15-RH-C3 663.8 16.0 662 

16 16-BG-Tl 289 9.8 802 16-BG-T7 285.5 12.2 760 

16-BG-T7 606.5 9.5 674 16-BG-Tl3 486.2 10.6 710 

16-BG-T8 502.7 9.9 878 16-RH-T20 390 12.8 674 

16-BG-Tl3 325.3 8.8 678 16-RH-T21 504.1 12.5 646 

16-BG-T22 564.4 9.3 709 16-RH-T29 918.7 10.6 732 

16-BG-T27 406.2 9.8 730 16-RH-TC4 661.5 16.5 623 

16-BG-TC22 480.1 6.3 957 16-RH-TC5 229.9 16.0 715 

16-BG-C1 274.7 5.4 940 16-RH-C1 147.4 18.3 754 

16-BG-C2 285.1 6.7 1028 16-RH-C2 292.5 16.1 777 

16-BG-C3 586.5 6.0 1040 16-RH-C3 684.3 16.6 706 

17 17-BG-T3 535.8 9.7 673 17-RH-Tl3 1346.3 12.3 428 

17-BG-T5 237.7 8.9 632 17-RH-Tl8 192.1 17 466 

17-BG-TlO 233.6 9.5 728 17-RH-T23 314.7 12.0 662 

17-BG-T25 373.3 9.6 644 17-RH-T25 419.3 11.7 751 

17-BG-T27 142.2 8.7 674 17-RH-T28 313.6 13.6 524 

17-BG-TC5 260.1 5.7 854 17-RH-TC13 288.3 17.4 485 

17-BG-TC26 470.4 5.8 853 17-RH-TC18 715.9 15.4 456 

17-BG-C1 216.8 6.2 465 17-RH-C1 340.8 16.7 430 

17-BG-C2 395 5.2 641 17-RH-C2 281.4 15.4 576 

17-BG-C3 488 5.4 855 17-RH-C3 444.9 14.5 521 

18 18-BG-T3 421 9.0 624 18-RH-T4 192.4 11.4 600 

18-BG-T6 720.8 10.7 614 18-RH-Tl4 327.8 12.8 417 

18-BG-TlO 503.3 7.9 810 18-RH-T21 12.7 12.7 507 

18-BG-Tl1 414 7.3 710 18-RH-T24 246 11.7 626 

18-BG-T30 1037.1 10.0 613 18-RH-T27 763.4 16.4 356 

18-BG-TC5 533.5 6.0 941 18-RH-T28 266.9 12.2 595 

18-BG-TC14 607.5 5.2 646 18-RH-TC18 259.5 16.9 491 

18-BG-C1 1231.4 4.6 1129 18-RH-C1 230.5 17.3 417 

18-BG-C2 189.2 3.8 805 18-RH-C2 205.1 17.3 465 

18-BG-C3 412.6 5.6 982 18-RH-C3 432.5 16.2 498 

a: missing sample. 
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0.87% ol obS8fValionS wera mlsolng. 

PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

Q!B !! ~ .!l l! !:!. ~ Q!B !! ~ .!l l! !:!. ~ 
N 0.50 1.33 1.33 1.83 0.50 0.00 s 0.50 2.00 1.33 2.17 0.83 0.00 

NNE 0.50 0.67 0.33 0.33 0.17 0.33 ssw 0.50 uo 1.17 3.00 1.00 0.50 

NE 0.50 0.50 0.00 1.00 0.33 0.00 sw 0.33 4.00 3.17 1.67 0.83 0.67 

ENE 0.17 0.50 0.50 0.17 0.00 0.00 WSW 0.33 2.67 4.17 3.00 1.83 uo 
E 0.00 0.83 0.33 0.00 0.00 0.00 w 0.83 2.00 2.00 5.00 1.83 4.17 

ESE 0.17 0.33 0.50 0.17 0.00 0.00 WNW 0.00 0.67 0.67 3.17 2.00 1.33 
SE 0.00 0.00 0.33 0.00 0.00 0.00 NW 0.67 1.50 1.17 2.00 l.lO 0.67 

SSE 0.33 0.83 0.67 0.33 0.00 0.00 NNW 0.83 2.00 2.00 3.50 0.33 0.67 
TOTAL OBS • 600 ~fiSSING OBS • 4 CAL\! OBS • 23 PERCENT CALM • 3.83 

Figure III.1: Wind rose diagram for St. John's, Month 1 (13.11.2001- 07.12.2001). 
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PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) PERCENT OCCURRENCE: Wind Speed ( Kilomerers Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

!2!! l! ~ ll !! ai ~ !2!!!: l! ~ ll !! ai ~ 
N 0.00 0.37 0.25 0.74 0.49 0.12 s 0.25 1.10 0.37 2.82 1.10 1.59 

NNE 0.00 0.00 0.12 0.86 0.12 0.12 SSW 0.25 0.74 0.98 0.86 0.00 0.37 
NE 0.74 0.61 0.86 0.86 0.49 0.12 SW 0.00 0.49 0.98 2.08 0.74 0.25 

ENE 0.37 0.49 0.25 0.49 0.12 0.00 WSW 0.12 0.98 0.86 5.02 3.68 3.31 
E 1.23 1.96 0.12 0.49 0.37 0.00 w 0.00 1.59 2.33 6.62 4.90 4.66 

ESE 0.25 0.98 0.74 0.49 0.00 0.00 WNW 0.12 0.98 1.10 2.82 1.10 4.41 
SE 0.12 0.61 0.37 1.47 0.98 1.10 NW 0.25 1.10 0.74 3.19 1.84 1.23 

SSE 0.25 0.74 0.37 1.35 1.47 2.08 NNW 0.12 0.86 0.37 1.47 1.23 0.61 
TOTALOBS• 816 MISSINGOBS• 0 CALMOBS• II PERCENT CALM • 1.35 

Figure ITI.2: Wind rose diagram for St. John's, Month 2 (10.12.2001- 12.01.2001). 
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PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) PERCENT OCCURRENCE: Wind Speed ( Kilometm Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

.Q!!i 2 §. ll .!! li ~ .Q!!i 2 §. ll .!! li ~ 
N 0.32 0.80 0.96 2.24 0.64 0.64 s 0.64 0.48 0.00 0.48 0.00 0.00 

NNE 0.00 0.32 0.32 0.80 1.12 1.12 ssw 0.32 0.64 0.00 0.80 0.00 0.80 
NE 0.32 0.32 0.32 0.48 0.16 1.76 SW 0.00 0.48 0.32 1.12 0.16 0.96 

ENE 0.16 0.32 0.16 1.12 0.00 0.96 WSW 0.16 0.64 0.32 0.96 0.00 0.80 
E 0.32 1.44 0.96 1.28 0.48 0.64 w 0.32 0.32 1.12 5.29 2.88 12.02 

ESE 0.16 0.32 0.00 0.32 0.16 1.28 WNW 0.16 0.48 0.80 2.88 1.92 13.30 
SE 0.16 0.32 0.16 0.00 1.12 0.48 NW 0.16 1.28 0.96 2.24 1.60 4.65 

SSE 0.00 0.48 0.00 0.32 0.00 0.48 NNW 0.48 1.92 1.60 1.76 0.48 0.96 
TOTAL OBS • 624 MISSING OBS • 4 CALMOBSn 21 PERCENT CALM • 3.37 

Figure ITI.3: Wind rose diagram for St. John's, Month 3 (14.01.2002- 08.02.2002). 
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PERCENT OCCURRENCE: Wind Speed ( Ktlomelen Per Hour) PERCENT OCCURRENCE: Wind Speed ( Kilometen Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

!2!! !1. ~ g .!! ~ ~ !2!B !1. ~ g .!! ~ ~ 
N 0.00 0.00 0.15 2.78 2.78 0.62 s 0.00 0.31 0.00 2.16 2.16 9.88 

NNE 0.00 0.15 0,15 0.62 0.46 0.77 ssw 0.15 0.46 0.15 2.01 1.70 2.62 
NE 0.00 0.93 0.93 0.46 1.08 0.77 SW 0.15 0.62 1.08 1.54 1.39 2.31 

ENE 0.00 0.77 0.62 0.31 0.15 0.00 WSW 0.00 0.93 1.39 1.39 3.40 3.70 

E 0.15 0.31 0.31 0.15 0.00 0.00 w 0.31 2.78 4,48 3,86 5.09 6.48 

ESE 0.31 0.77 0.00 0.00 0.00 0.00 WNW 0.15 0.62 0.77 1.08 1.54 1.85 

SE 0.00 0.46 0.15 0.77 0.00 0.00 NW 0.15 0.31 0.31 0.93 0.93 1.08 

SSE 0.15 0.31 0.77 0.77 0.15 1.08 NNW 0,00 0.62 0.31 2.01 2.16 0.93 
TOTAL OBS • 648 MISSING OBS • 0 CALMOBS• 4 PERCENT CALM • 0.62 

Figure III.4: Wind rose diagram for St. John's, Month 4 (10.02.2002- 08.03.2002). 
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Joint Frequency Distribution 

Month 5 - April 2002 
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PERCEl'IT OCCURRENCE: Wind Speed ( Kilometers Per Hour) PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) 
LOWER BOUND Of CATEGORY LOWERBOUNDOfCATEGORY 

!!!! !! ~ g !! ll ll !!!! !! ~ g !! ll ll 
N 0.15 0.15 0.46 1.08 0.00 I.Bl s 0.00 0.62 0.62 1.85 I.Bl 4.63 

NNE 0.31 0.00 O.ll 0.31 0.00 0.00 ssw O.ll 0.46 0.46 0.77 1.54 3.09 
NE 0.46 0.00 0.00 0.00 0.00 0.00 SW 0.15 0.62 0.31 1.85 1.54 0.93 

ENE 0.00 0.31 0.15 0.00 0.00 0.00 WSW 0.31 0.62 0.46 4.32 4.01 7.41 

E 0.46 O.IS 0.00 0.00 0.00 0.00 w 0.15 0.62 0.93 3.70 4.63 14.20 

ESE 0.00 0.15 0.00 0.46 0.15 0.00 WNW 0.15 0.00 0.00 0.62 0.62 1.54 

SE 0.15 0.15 0.31 1.39 1.39 1.23 NW 0.00 0.15 0.00 0.62 0.77 3.09 

SSE 0.00 0.46 1.08 2.78 2.01 0.93 NNW 0.00 0.15 0.31 0.93 1.08 7.72 
TOTAL OBS • 648 MISSING OBS • 0 CALMOBS• 5 PERCEl'ITCALM• 0.77 

Figure III.5: Wind rose diagram for St. John's, Month 5 (10.03.2002- 05.04.2002). 
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PERCENT OCCURRENCE: Wind Speed ( Kilomelcn Per Hour) PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

!2!! 2 §. g !! ~ ag !2!! 2 §. g !! ~ ag 
N 0.15 0.89 0.60 1.64 0.45 1.79 s 0.30 0.30 0.00 1.49 1.04 0.00 

NNE 0.45 0.60 0.45 1.49 0.15 0.89 SSW 0.15 0.15 0.30 1.49 0.60 0.30 

NE 0.00 0.30 0.45 1.19 0.60 0.74 SW 0.45 0.60 1.19 3.87 1.64 2.08 

ENE 0.00 0.30 0.00 0.89 0.00 0.30 WSW 0.00 1.19 0.60 5.06 4.61 6.85 

E 0.15 0.74 0.89 1.79 0.00 0.00 w 0.00 1.04 1.34 5.95 3.72 6.25 

ESE 0.00 0.30 0.00 0.89 0.00 0.30 WNW 0.00 1.34 0.89 1.79 0.30 1.04 

SE 0.00 0.45 1.19 1.34 0.60 1.04 NW 0.00 0.15 0.89 1.49 1.49 3.27 

SSE 0.00 0.45 0.60 1.04 0.15 0.00 NNW 0.30 0.00 0.30 2.83 1.93 1.79 

TOTAL OBS • 672 MISSING OBS • 0 CALM OBS • 6 PERCENT CALM • 0.89 

Figure ill.6: Wind rose diagram for St. John's, Month 6 (07.04.2002 - 04.05.2002). 
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PERCENT OCCURRENCE: Wind Speed ( Kilomelm Per Hour) PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

.ill!!: ~ ~ g !! ll ~ .ill!!: ~ ~ g !! ll ~ 
N 0.00 0.63 O.SI 0.2S 0.00 0.00 s O.SI 1.26 0.63 1.26 0.63 O.SI 

NNE 0.2S 0.38 O.SI 0.63 0.13 0.00 SSW 0.2S O.SI 0.76 2.27 1.14 0.2S 
NE 0.2S 0.38 0.8& 0.76 0.00 0.00 SW O.SI 0.63 2.40 4.29 2.40 O.SI 

ENE 0.13 0.63 O.SI O.SI 0.00 0.00 WSW 0.2S 1.39 2.1S 11.49 S.93 6.06 
E 0.2S 0.38 0.00 0.00 0.00 0.00 w 0.2S 1.14 2.1S 10.10 9.22 4.80 

ESE 0.38 0.63 0.2S 0.13 0.2S 0.00 WNW 0.13 0.76 O.Sl 1.26 0.38 1.39 
SE 0.00 O.Sl 0.2S O.SI 0.76 O.Sl NW 0.00 0.2S O.Sl 0,63 0.00 0.13 

SSE 0.00 0.76 0.38 0.2S 0.13 0.38 NNW 0.13 0.38 O.J8 0.76 O.SI 0.2S 
TOTAL OBS • 792 MISSING OBS • I CALM OBS • IS PERCENT CALM • 1.89 

Figure III.7: Wind rose diagram for St. John's, Month 7 (06.05.2002- 07.06.2002). 
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PERCENT OCCURRENCE: Wind Speed ( Kilometen Per Hour) PERCENT OCCURRENCE: Wind Speed ( Kilomcten Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

!2!B 2 ~ .!l l! ll ~ !2!!!. 2 ~ .!l l! ll ~ 
N 0.64 1.76 0.32 2.08 0.00 0.00 s 0.64 1.28 0.64 1.28 0.32 0.00 

NNE 0.64 0.80 0.96 0.48 0.00 0.00 SSW 0.96 0.96 0.80 0.96 0.64 0.00 
NE 1.12 2.24 1.92 1.28 0,00 0,00 SW 0.80 1.92 0.32 1.60 1.12 0.16 

ENE 0.48 2.56 0.64 0.00 0.00 0.00 WSW 0.96 1.76 2.40 S.93 2.56 4.97 

E 0.32 3.21 1.12 0.00 0.00 0.00 w 0.48 2.08 3.21 5.77 2.24 0.00 

ESE 0.32 1.28 1.12 0.32 0.32 0.00 WNW 0.64 0.64 0.64 0.48 0.96 0.00 

SE 0.32 1.60 2.08 1.12 0.32 0.16 NW 0.32 0.48 0.32 1.12 0.80 0.00 

SSE 0.64 2.24 0.48 1.28 0.32 0.00 NNW 0.32 0.80 0.48 2.40 0.16 0.00 

TOTAL OBS • 624 ~USSINO OBS • I CALMOBS• 37 PERCENTCALM• t93 

Figure III.8: Wind rose diagram for St. John's, Month 8 (10.06.2002- 05.07.2002). 
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Month 9 - August 2002 
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4.112 
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4.67 
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5.88 

2.78 

•• :Z.&3 

· • · · · · • • ···1.84· · • • • • ·: • • • • • • • • • E 

3.16 

2.27 

2.78 

~~·~r6~:ii::Vats. 
Wlriil now Is FROM lhe dlroctlona lhcWn. 
0.38% al ObsetVBiionl wet1l mls~119. 

PERCENT OCCURRENCE: Wind Speed ( Ki1omcten Per Hour) PERCENI' OCCURRENCE: Wind Speed ( Ki1ometen Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

!2lli !! ~ ll !! ~ ~ Q!B !! ~ ll !! ~ ~ 
N 0.25 1.64 1.64 1.39 0.00 0.00 s 0.63 0.88 1.77 4.67 2.15 0.00 

NNE 1.26 1.26 2.02 1.14 0.00 0.00 SSW 0.25 0.76 1.26 2.15 0.25 0.00 
NE 0.88 1.39 0.25 0.25 0.00 0.00 SW 0.88 2.90 3.28 4.29 1.39 0.13 

ENE 0.25 1.01 0.38 0.51 0.25 0.13 WSW 0.63 2.40 3.54 13.13 3.79 1.77 
E 0.51 0.63 0.25 0.25 0.00 0.00 w 0.13 l.l2 2.53 7.32 1.14 0.13 

ESE 0.38 0.88 0.51 0.38 0.13 0.00 WNW 0.38 0.13 0.00 0.13 0.00 0.00 

SE 0.25 1.39 0.25 0.51 0.13 0.25 NW 0.38 0.63 0.25 0.13 0.00 0.00 

SSE 0.76 1.14 0.13 0.76 0.38 0.00 NNW 0.38 0.76 0.51 0.13 0.00 0.00 
TOTAL OBS • 792 MISSfNG OBS • 3 CALM OBS • 35 PERCENI' CALM • 4.42 

Figure IIT.9: Wind rose diagram for St. John's, Month 9 (07.07.2002- 08.08.2002). 

III.9 



1.· ·iiSI 
0 I t2 t1 2' » 
Wind Speed (Kilometers Per Hour) 

Joint Frequency Distribution 

Month 10 -September 2002 

...... . ... 

5.29 
3.85 ........ 

1.92 

4.81 
a.e1 

s 

2.24 

4.49 

1.4-4 

0.54 

o.48o o o o o o;- o o o o o o o o o o E 

1.28 

4.01 

Clhns Included at center. 
Rings drawn at10% intiiVall. 
Win<! !low Ia FROM lho Cllnld!ans shown. 
0.18% at abSO<Vallans ware missing. 

PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) PERCENT OCCURRENCE: Wind Speed ( Kilometers Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

!2!B 9. ~ ll !! 3:! ~ !2!B 9. ~ ll !! 3:! ~ 
N 1.12 1.12 0.96 1.92 0.16 0.00 s 0.96 1.76 1.12 1.28 0.32 0.16 

NNE 0.48 0.48 0.48 0.48 0.32 0.00 SSW 0,64 1.12 2.08 0.64 0.32 0.00 
NE 0.32 0.64 0.32 0.16 0.00 0.00 SW 0.64 2.72 1.28 1.28 0.48 0.32 

ENE 0.16 0.48 0.00 0.00 0.00 0.00 WSW 1.44 3.21 4.6, 10.26 ,,93 1.60 
E 0.32 0.16 0.00 0.00 0.00 0.00 w 0.48 2.88 3.8, 8.49 6.41 3,,3 

ESE 0.64 0.48 0.16 0.00 0.00 0.00 WNW 0,32 0.80 0.64 0.32 0.32 0.00 
SE 0.32 2.08 0.64 0.00 0.32 0.64 NW 0.48 0.00 0.80 0.64 0.00 0.00 

SSE 0.48 0.80 0.80 0.96 1.12 0.32 NNW 0.32 1.28 1.76 0.48 0.00 0.00 

TOTAL OBS • 624 MISSING OBS = I CALM OBS • 12 PERCENT CALM • 1.92 

Figure III.10: Wind rose diagram for St. John's, Month 10 (11.0802002- 0500902002)0 
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No o!>sorvaUons wore miSsing. 

PERCENT OCCURRENCE: Willd Speed ( Kilomelm Per Hour) PERCENT OCCURRENCE: Willd Speed ( Kilometm Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

.!lli!. !! ~ ll !! a1 ~ .!lli!. !! ~ ll !! a1 ~ 
N 1.39 2.78 1.14 1.77 0.13 0.00 s 1.26 1.01 I.S2 1.01 0.38 0.38 

NNE 0.88 1.39 1.39 0.63 0.13 0.00 ssw 0.88 1.01 0,,. 1.39 0.,. 0.76 
llo'E 0.38 0.38 0.2S 0.13 0.00 0.00 SW 0.51 1.26 1.39 2.S3 1.14 3.03 

ENE 0.38 0.13 0.00 0.2S 0.13 0.00 WSW 1.26 2.1S 3.41 6.S7 3.16 3.66 
E 0.38 O.SI 0.63 0.2S 0.13 0.00 w 0.63 3.91 3.91 4.SS 2.S3 4.().1 

ESE 0.2S O.SI 0.00 0.2S 0.00 0.00 WNW 0.63 1.14 1.39 2.27 1.14 O.SI 
SE 0.2S 0.38 0.00 0.38 0.00 0.00 NW I.S2 0.88 0.76 2.02 O.SI 0.00 

SSE 0.38 0.63 0.38 0.76 O.SI 0.76 NNW O.SI 0.63 0.2S 1.01 0.2S 0.00 
TOTAL OBS • 792 MISSING OBS • 0 CALM OBS • 27 PERCENT CALM • 3.41 
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PERCENT OCCURRENCE: Wind Speed ( Kilometers Per Hour) PERCENT OCCURRENCE: Wind Speed ( Kilometers Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

!2!R 2 2 .!1. !! ~ !! ruB 2 2 .!1. !! ~ !! 
N 0.62 U4 1.54 2.01 1.54 0.62 s 0.31 0.46 0.15 0.62 0.31 0.31 

NNE 0.00 1.08 1.70 0.62 0.15 0.77 SSW 0.31 0.1$ 0.1$ 0.46 0.62 0.00 

NE 0.00 0.77 0.1$ 0.93 0.46 1.23 SW 0.46 0.93 0.46 0.00 0.77 0.31 

ENE 0.00 0.93 0.46 0.00 0.31 0.31 WSW 0.46 1.70 2.47 1.54 2.62 3.09 

E 0.00 1.39 0.62 0.77 0.31 0.00 w 0.93 3.24 4.32 3.70 $.40 7.25 

ESE 0.00 0.62 1.08 1.23 0.00 0.31 WNW 0.15 0.31 0.62 2.62 2.93 3.24 

SE O.IS 0.46 0.46 1.08 1.23 1.23 NW 0.46 1.08 0.46 1.54 2.93 1.54 

SSE 0.62 0.31 0.31 1.23 1.23 0.31 NNW 0.46 0.15 0.93 1.08 1.85 0.00 

TOTALOBS• 648 MISSINOOBS• 0 CALMOBS• 9 PERCENT CALM • 1.39 
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PERCENT OCCURRENCE: Wind Speed ( Kilometcn Per Hour) PERCENT OCCURRENCE: Wind Speed ( KilometeB Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

!2.!B !! ~ .!l !! !! ~ !2.!B !! ~ .!l !! !! ~ 
N 0." 0.00 0.46 0.31 0." 0.00 s 0.77 1.08 0.77 1.39 1.08 1.08 

NNE 0.00 0.31 0.62 0.00 0.31 0.1~ SSW 0.62 0.93 0.31 0.93 0.31 0.31 
NE 0.1~ 1.23 0.15 0.46 0.00 0.31 SW 0,77 2.01 1.08 0.93 2.01 0.77 

ENE 0.62 0.62 0.00 0.46 0.31 0.1~ WSW 0.62 2.01 U4 7.10 5.2$ 8.49 
E 1.08 2.31 1.39 0.93 0.77 0.00 w 0.62 U4 3.40 7.41 $.$6 2.31 

ESE 0.77 0.62 0.31 0.31 0.77 0,00 WNW 0.31 0.62 0.31 3.40 1.23 1.39 
SE 0.00 0." 0.77 0.31 0.00 0.00 NW 0.00 0.62 1.39 1.23 0.77 0.77 

SSE 0." 0.62 0.15 0.15 0." 0.31 NNW 0." 0.00 0.62 1.08 1.08 0.31 

TOTAL OBS • 648 MISSING OBS • 0 CALM OBS • 18 PERCENT CALM • 2.78 

Figure III.l3: Wind rose diagram for St. John's, Month 13 (10.11.2002- 06.12.2002). 
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PERCENT OCCURRENCE: Wind Speed ( Kllometcn Per Hour) PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

ill!!: !! ~ ll .!! 1i ll ill!!: !! ~ ll .!! 1i ll 
N 0.38 0.25 1.14 0.88 0.76 0.63 s 0.88 1.01 1.01 0.63 0.76 1.01 

NNE 0.00 0.00 0.13 0.51 0.2S 0.88 ssw 0.63 1.52 0.38 0.88 0.38 0.2S 
NE 0.13 0.00 O.SI 0.25 0.00 0.00 sw 0.88 2.27 0.88 1.14 1.64 0.38 

ENE 0.13 0.13 0.13 0.25 0.00 0.00 WSW 1.14 2.78 0.88 1.64 1.14 1.77 

E 0.51 0.76 0.00 0.38 0.25 0.25 w 1.52 2.27 2.40 4.92 5.05 5.81 
ESE 0.00 0.51 0.13 0.13 0.00 0.88 WNW 0.76 1.26 2.65 1.77 2.53 5.68 

SE 0.25 0.76 0.13 0.88 0.76 0.88 NW 0.38 1.14 2.15 1.77 1.14 2.90 

SSE 0.25 0.51 0.88 0.63 0.76 0.38 NNW 0.25 1.26 0.76 1.01 1.77 2.21 

TOT AI. OBS • 792 MISSING OBS • 0 CALM OBS • 20 PERCENT CALM • 2.53 

Figure III.14: Wind rose diagram for St. John's, Month 14 (09.12.2002- 10.01.2003). 
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PERCENT OCCURRENCE: Wind Speed ( Kilomctm Per Hour) PERCENT OCCURRENCE: Wind Speed ( Kilomctm Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

ill! !! ~ ll !! ~ ~ ill! !! ~ ll !! ~ ~ 
N 0.00 0.00 0.30 0.00 0.00 1.04 s 0.30 1.49 0.74 3.87 2.23 2.23 

NNE 0.89 0.74 0.15 0.00 0.00 0.60 SSW 0.00 2.38 1.19 0.89 1.04 o.u 
NE 0.1$ 0.30 0.00 0.00 O.IS 1.04 SW 0.60 1.93 2.08 3.27 0.89 1.49 

ENE 0,74 0.30 0.00 O.IS 0.30 0.89 WSW 0,45 0.45 2.23 6.40 3.72 6.40 
E 0.89 0.45 O.IS 0.45 0.74 1.04 w O.IS 0.45 2.08 4.61 4.17 6.99 

ESE 1.19 O.IS O.IS 1.04 0.15 0.15 WNW 0.30 0.30 0.30 1.19 1.04 1.34 
SE 0.30 0.45 0.15 0.45 0.45 1.04 NW 0.30 0.1$ 0.45 0.60 0.89 0.74 

SSE 1.49 0.60 0.45 0.30 1.34 2.38 NNW 0.45 0.00 0.00 0.00 0.15 0.89 
TOTALOBS• 672 MISSINGOBS• 0 CALM OBS • 16 PERCENT CALM • 2.38 

Figure III.l5: Wind rose diagram for St. John's, Month 15 (12.01.2003- 08.02.2003). 
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PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) PERCE"''T OCCURRENCE: Wind Speed (Kilometers Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

!!!a !! §. ll ll .ll ~ !!!a !! §. ll !! .ll 29. 
N 0.80 0.64 0.16 0.32 0.00 0.00 s 0.16 0.64 0.80 1.44 0.32 0.48 

NNE 0.00 0.00 0.00 0.00 0.00 0.00 SSW 0.64 0.80 0.80 0.16 0.00 0.00 

NE 0.00 0.00 0.00 0.00 0.00 0.00 SW 0.16 1.12 1.12 0.96 0.80 0.64 

ENE 0.16 0.00 0.00 0.00 0.00 0.00 WSW 0.32 0.48 0.00 2.24 2.08 6.09 

E 0.00 0.80 0.16 0.00 0.00 0.16 w 0.80 2.08 1.76 3.37 4.49 22.28 

ESE 0.00 0.16 0.32 0.64 0.48 0.64 WNW 0.16 1.44 1.92 2.24 1.44 5.77 

SE 0.48 0.16 0.32 0.96 0.96 0.80 NW 0.16 0.80 0.80 0.80 0.96 2.08 

SSE 0.32 0.48 0.00 0.16 0.16 2.56 NNW 0.32 0.16 0.64 0.64 0.00 0.00 
TOTALOBS• 624 MISSINOOBS• 0 CALMOBS• 61 PERCENT CALM • 9.78 

Ftgure III.16: Wmd rose dtagram for St. John's, Month 16 (10.02.2003- 07.03.2003). 
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PERCENT OCCURRENCE: Wind Speed ( Kilometen Per Hour) PERCENT OCCURRENCE: Wind Speed ( Kilometcn Per Hour) 
LOWER BOUND OF CATEGORY LOWER BOUND OF CATEGORY 

.!2!B ~ ~ ll l! 3i ~ .!2!B ~ ~ ll l! 3i ~ 
N 0.00 0.00 0.62 0.77 0.00 0.15 s 0.46 1.70 0.46 0.46 2.16 2.62 

NNE 0.00 0.00 0.62 0.1$ 0.00 0.31 ssw 0.62 0.62 0.62 2.01 1.70 1.39 
NE 0.31 0.31 0.31 0.62 0.00 0.00 sw 0.15 0.93 2.93 2.01 1.08 2.01 

ENE 0.62 0.62 0.00 0.15 0.00 0.15 WSW 0.77 2.62 4.48 6.17 3.40 2.31 
E 1.23 0.77 OJ! 0.93 0.00 0.00 w 1.54 3.24 2.62 4.17 3.24 5.86 

ESE 0.77 0.77 0.62 0.15 0.00 0.00 WNW 0.31 0.93 0.93 1.85 2.47 3.09 
SE 0.15 0.93 0.15 0.00 0.00 0.00 NW 0.00 0.31 0.62 0.93 1.23 1.54 

SSE 0.77 0.31 0.00 0.00 0.00 0.00 NNW 0.00 0.15 0.62 1.54 0.77 1.54 
TOTAL CBS • 648 MISSING CBS • 0 CALMOBS• 21 PERCENT CALM • 3.24 

Figure III.l7: Wind rose diagram for St. John's, Month 17 (09.03.2003 - 04.04.2003). 
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PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) PERCENT OCCURRENCE: Wind Speed (Kilometers Per Hour) 

LOWER BOUND OF CATEGORY LOWERBOUNDOFCATEGORY 

£!!!. ~ ~ ll !! ~ ~ £!!!. ~ ~ ll !! ~ ~ 
N 0.46 0.00 0.00 o.u o.u 0.62 s 1.08 1.85 1.8S 1.08 0.31 0.00 

NNE 0.15 0.00 0.00 0.00 0.15 0.00 ssw 1.08 0.46 0.77 0.46 0.00 0.00 
NE 0.62 0.46 0.31 0.00 0.00 0.00 SW 1.08 1.54 1.23 0.62 0.77 0.15 

ENE 0.31 0.46 0.62 0.00 0.15 0.00 WSW 0.62 3.40 l.S4 5.86 2.47 l.S4 
E 1.08 1.54 0.62 o.u 0.00 0.00 w 1.85 3.86 3.55 8.02 5.09 2.62 

ESE 0.77 1.70 1.39 0.46 0.77 0.15 WNW 1.08 0.46 1.08 0.93 1.85 0.46 

SE 0.77 3.86 3.40 3.09 0.15 0.62 NW 0.31 0.46 0.31 1.54 0.31 0.31 

SSE 1.54 1.85 1.23 1.08 0.00 0.31 NNW o.u 0.46 0.31 0.93 1.08 0.31 
TOTAL OBS • 648 MISSING OBS • 0 CALMOBS• 11 PERCENT CALM • 1.70 

Figure III.l8: Wind rose diagram for St. John's, Month 18 (06.04.2003- 02.05.2003). 
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