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Abstract

In hydrology the ability to model the average daily river flow for rivers
plays an important role in the prediction of possible disasters such as flooding.
The analysis of data and the accuracy of predictions rely on fitting suitable
models to such data. In this i we i i i time series

modeling and in particular we study the theory of two approaches to model

h

such time series. One assumes the ing random

of the time series is bilinear. The second approach uses wavelet smoothing
techniques to decompose the time series into a wavelet smoothed compo-

nent and a random The random is then modeled by

a suitable linear or bilinear process. By investigating the structure of the
autocorrelation and third order cumulants, we find that the pure bilinear
process is best for the data sets under study. Models were fitted to six time
series data sets based on the average daily river flow variable for six rivers
in Canada using both hy A si ion study was d d to
establish the suitability of the models by comparing its performance to the

original time series. The bilinear was not in

average daily river flow. However, the wavelet methodology illustrated an
attractive technique to model such a time series.



Acknowledgments

I wish to thank my supervisor, Dr. Alwell Oyet {Department of Mathe-

matics and M

ial University of dland) for helpful com-
ments and suggestions about my practicum. I wish to thank Dr. Leonard
Lye (Faculty of Engineering and Applied Science, Memorial University of
Newfoundland) for the data and background material for this research.

I acknowledge the D of Math ics and istics for the fi-

nancial support in the form of Teaching Assistantships and Sessional Lec-
turer.

I also wish to thank my parents for their continuous encouragement and
support throughout my university career.

Finally, I am grateful of the support from my twin brother Dennis who

has been with me every step of the way.



Contents

Abstract i
Acknowledgments ii
List of Tables vi

List of Figures

1 Preliminaries 1
L IOEOANEHON o« ousierormznmimsmmmia & 8 & £a8 o b eSS 1
12 Bilinear Models . . . ... i ciiiiisas e seene 4
1.3 Stationarity and Invertibility Conditions . . . . ... ..... 5

131 Statlonarity - .=cccmnEs s i 6

13.2 Tnvertibility . . .. . o oeou e 8

2 The River Flow Data 10
10

2.1 Introduction . . .




231 Approach Based On Examining Squares Of Time Se-

TB DI . oo s 0 onm = o prmrie e bist e s B s b e 13
232 Approach Based On Tukey’s One-Degree-Of-Freedom
Test For Non-Additivity . ... ............. 14
2.3.3 Tsay's Approach Based On Column Stacking . . . . . . 15
2 BN oo o B S s £ 6 B B B B S B S sl 17
Bilinear Time Series Model 21
31, Tntraduetion vis s w5 w @ g s e eaiiie s 6 g E 21
3.2 Estimation of the Parameters of the Bilinear Time Series Model 22
3.2.1 Newton-Raphson Iterative Technique . . . .. ..... 23
322 Partial Derivatives . ........cco0uven.n 24
3.23 Initial Bstimates . .................... 26
324 ModelSelection . - . - . .iccciiia e 27
3.3 Model Fitting to River FlowData . . . . .. ... ....... 28
3.4 Results of Simulation Study . . . ... ............. 32
‘Wavelet Filtering a1
41 Introduction . . ... ...ccooiaisaas it aenan 41
42 Wavelet Smoothing . . . . - - - - ..veccecascccscns 44
43 Betimation . . ...oc 2o s nmicmesipiemssdneiien 46
4.4 Model Identification Based on Third Order Moments and Cu-
TS~ coreciiaivie & & o soomsana s Ss  ve Be e E  %R 48
AT TREBIES i is 5 5 0 7 s rSanE TR A G 50
4.5 Model Fitting to River FlowData . . . . ... ......... 55
4.6 Results of Simulation Study . .. ................ 58



5 Conclusion
Bibliography
A Data Sets

B Time Series Plots

69

71

74

87



List of Tables

2.1
2.2
2.3
24
2.5
2.6

3.1

3.2

33

34

4.

o

Computed F-statistics and p-values for Peace River . . .. . .
Computed F-statistics and p-values for Castle River . . . . . .
Computed F-statistics and p-values for South River . . . . . .
Computed F-statistics and p-values for Salmonier River . . . .
Computed F-statistics and p-values for Gander River . . . . .
Computed F-statistics and p-values for Moberly River . . . . .

Sampling Properties of X;, Mean(X;), St.Dev(X;) and Max(X,)
(Peare River): 22,2442 4 440 45 e ras s Beifda sy
Sampling Properties of X;, Mean(X;), St.Dev(X;) and Max(X,)
(SBREDIRIRERY 5500w i & 5555 10 3 . et S s 3
Sampling Properties of X;, Mean(X;), St.Dev(X;) and Max(X)
(SaINONIEE RIVEE) |« o coiomimipin 2w & o b simim o noonis it o
Sampling Properties of X, Mean(X,), St.Dev(X;) and Max(X,)
(CRUABERIVEL) 1wommsisns v 513 41 5 oo B A
Sampling Properties of X;, Mean(X,), St.Dev(X,) and Max(X.)
(Moberly River) .

C(1, ko) Pattern for arbitrary ¢ . . . ... ...........



42

4.

o

44

4.

o

4

@

47

Al
A2

A4
A5
AS

Sampling Properties of X;, Mean(X,), St.Dev(X,) and Max(X,)

(Peace River) svesme B
Sampling Properties of X;, Mean(X,), St.Dev(X.) and Max(X,)
(CBsUERIVEL) - . - - coimtcin oo 5 wm s se 5 o srers wimims 60
Sampling Properties of X, Mean(X,), St.Dev(X,) and Max(X,)
(SORTIERITR). =« .o mvssbied 56 8 85 8 o5 & wwmus 62
Sampling Properties of X, Mean(X,), St.Dev(X,) and Max(X,)
(SulmonterRiver) » camini® % 5 255008 § 8 S daeed 63
Sampling Properties of X;, Mean(X,), St.Dev(X,) and Max(X,)
{Cader BIVEEY : oo d 5 5 TSSERG 5 & mosEvATS 65
Sampling Properties of X;, Mean(X,), St.Dev(X,) and Max(X,)
(MOBERIRIVE) & = ssvmrnia s 4 & 5 v & 0 by § ¥ S3GwE 66
River Flow Data For Peace River 75

River Flow Data For Castle River
River Flow Data For South River . . . . .
River Flow Data For Salmonier River
River Flow Data For Gander River . .. ............ 83
River Flow Data For Moberly River . . . . ... ........ 85

vii



List of Figures

3.

v

3.3

3.

kS

35

41
42
4.3
44
4.5
46

Plot of actual time series (solid line) with overlaid simulated
bilinear time series plot (dotted line) for Peace River . . . . .
Plot of actual time series (solid line) with overlaid simulated
bilinear time series plot (dotted line) for South River . .. . .
Plot of actual time series (solid line) with overlaid simulated
bilinear time series plot (dotted line) for Salmonier River . . .
Plot of actual time series (solid line) with overlaid simulated
bilinear time series plot (dotted line) for Gander River . . . .
Plot of actual time series (solid line) with overlaid simulated
bilinear time series plot (dotted line) for Moberly River . - . .

Standardized cumulant trace of Peace River . .. .......
Standardized cumulant trace of Castle River . . . . . ... ..
Standardized cumulant trace of South River . .. .......

trace of jer River . . . ... ..

Standardized cumulant trace of Gander River . . .. .. ...
Standardized cumulant trace of Moberly River . . . . .. ...

36



4.

9

Plot of actual time series (solid line) with overlaid simulated
diagonal pure bilinear time series plot (dotted line) for Peace

4.

)

Plot of actual time series (solid line) with overlaid simulated
diagonal pure bilinear time series plot (dotted line) for Castle

4.9 Plot of actual time series (solid line) with overlaid simulated
diagonal pure bilinear time series plot (dotted line) for South

4.10 Plot of actual time series (solid line) with overlaid simulated

diagonal pure bilinear time series plot (dotted line) for Salmonier

4.11 Plot of actual time series (solid line) with overlaid simulated
diagonal pure bilinear time series plot (dotted line) for Gander

B.1 Time series plot for Peace River . . . ... ........... 88
B2 Time series plot for Castle River . . . .. . ........... 89

B.3 Time series plot for South River . . . ... ...........

B.4 Time series plot for Salmonier River . . . .

B.5 Time series plot for Gander River

B.6 Time series plot for Moberly River . .............. 93

ix



Chapter 1

Preliminaries

1.1 Introduction

A time series consists of observations that are collected in time. Some exam-

ples of a time series are daily temperatures in St. John’s from 1980 to 1999;

monthly kil flown by an airli pany; and company profits in suc-
cessive years. In most instances, the time series is considered linear and with
the theory of linear models well defined along with its easy interpretation, it
is not uncommon to fit linear models to most data. A typical example is the
maximum daily or yearly flow of Canadian rivers. Hydrologists have used
linear models in describing most of these flow data. Using tests for linearity,
we show in this work that some of these flow data are generated by non-linear
processes.

Although, in many situations, linear models do provide adequate approx-
imations to the ‘true’ process generating the data, it may not necessarily be

the best model. A series may be generated by an underlying random struc-



ture that is non-linear, and perhaps non-Gaussian. When considering such
a series it would be insitefull to consider a non-linear approach. This has

the of many 1i time series models that have
the capability to deal with such series. Some nonlinear models currently in

use are:

a. Bilinear Time Series Models: Since, in this practicum, we are restricting
our work to bilinear models the structure of this model will be given in
Section 1.2

o

Threshold Models: There are several groups of threshold models and
one such group is known as the piecewise linear models. The general
structure of this group of threshold models described by Tong (1990)
is as follows: Let X, be a k-dimensional time series and, for each ¢, let
J; be an indicator random variable, taking integer values {1,2,...,l}.
The model is then given by

X = BYWX, + AUIX, | + HW¢, + ) 1y

where, for J; = j, AY and HO) are coefficient matrices of size kxk, C%)
is a k x 1 vector of constants, and ¢; with zero mean and a covariance
matrix.

c ional A ive Models: To i this group of models we
will give the of the i ive models of order

one and it will be clear to see how this model may be extended to
include higher-order lags. The structure described by several authors,



see Tong (1990), is

where & is a sequence of i
dom variables, 0 < p < ¢ +1 <00, @, # 0 and b, #0.

The focus of this practicum is directed towards fitting models to river
flow data consisting of daily averages. The ability to model daily flow data
would be an enormous asset in hydrology. The Average daily flow variable
is a variable that is used for the assessment of water supply reliability and
for study of inflows into reservoirs. If a daily flow variable is successfully
modeled then the storage size required of a reservoir can be determined.

This practicum is organized in the following way. In Chapter 1 we will
introduce some concepts that will be essential in understanding the chapters
that follow in this practicum. Section 1.2 discusses the bilinear model and
describes the components which make up the model. Section 1.3 will outline
the i ity and i ibili ditions of the bilinear time series model.

The data used th this i will be di in Chapter
2 along with linearity tests of the data. In Chapter 3 we will discuss the

estimation procedure for fitting bilinear models; fit bilinear models to the
Canadian river flow data; and use these models to simulate our own data.
Chapter 4 will consist of wavelet smoothing to attempt to make the time
series simpler. We will then fit appropriate models to the new time series
and simulate data based on the new models. Finally, the two methods used in

this practicum will be compared in Chapter 5 along with a general discussion

3



of the results.

1.2 Bilinear Models

Non-linear models often involve complex calculations and are, at times, very
difficult to analyze and interpret. The bilinear time series model studied by
Granger and Andersen (1978) and Subba Rao (1981), is one non-linear time
series model that is simpler than most.

Let e, t € Z be a sequence of i and i

random variables with E(e;) = 0 and E(e;?) = 0® < co. Let a;,0s,...,ap,
€1,€2,..-5¢gand by, 1 <@ <m, 1 <j <k be real constants. If a time series

X, satisfies the difference equation

» . m &
Xe+ ) 05Xej =) cjej+ 33 byXiiewj+er, (1.3)
= ==

=1
then X, is defined as a bilinear process that satisfies a bilinear time series
model (1.3) denoted by Subba Rao (1981) as BL(p,q,m, k). The model
given by (1.3) along with simpler forms of the model have been discussed by
Granger and Andersen (1978), Subba Rao (1981), Quinn (1982), Bhaskara
Rao, Subba Rao and Walker (1983), and Sesay and Subba Rao (1991),
amongst others.

The bilinear model given in (1.3) is 2 non-linear model, but the structural
nature of this model is similar to that of linear models. The model given
in (1.3) can be broken down into three components. The first part is the
autoregressive (AR) part, the second is defined as the moving average (MA)
part and the third part of the process is the pure or completely bilinear part.

4



In (1.3), if we let b; = 0 for all 7 and j, we obtain the autoregressive-moving
average model ARMA(p, q). Therefore, the structural theory of the bilinear
model is il to that of the ive model, the moving average

model, and the mixed autoregressive-moving average model.

If b; = 0 for all < j in (1.3), the model is said to be super-diagonal.
In (1.3), if b; = 0 for all ¢ > j, the model is referred to as a sub-diagonal
model, and it is known as a diagonal model if b;; = 0 for all 7 # j.

1.3 Stationarity and Invertibility Conditions

If a time series model is to be useful in interpreting and forecasting it is es-
sential, based on the Box-Jenkins methodology, that the time series is both
stationary and invertible. In general, a time series X, is said to be stationary
if the statistical properties of the time series remain unchanged with time.
A time series X, is said to be strictly stationary if for any set of times t;,
i =1,2,...,m and any positive integer m the joint probability distribu-
tion of {Xi, Xey, - - - Xo,, } is identical to the joint probability distribution of
{Xty+hs Xta+hs - - - Xen+n} for any integer h. If the joint moment up to order
2 exist and remain unchanged with time, then the time series X, is said to be
2% order stationary or weakly stationary. The invertibility of a time series
X, simply implies that having knowledge of {Xx}, h < ¢ is equivalent to
having knowledge of ex, h < t.

Phan and Tran (1981) derived these conditions for the first order bilinear
model. Subba Rao (1981) obtained the itions for ptoti i il
and invertibility of a time series satisfying the model BL(p,0,p, 1). Granger




and Andersen (1978) and Quinn (1982) have derived these conditions for
simpler bilinear models than that of Subba Rao (1981).

This report will mainly deal with a time series X, that satisfies the bilinear
model BL(p,0,m, k) and hence, to fix ideas, we shall discuss stationary and
invertible conditions for the model BL(p,0,p, 1) given by

2 2
PR 5 0% PEEN oT S 149
= =

Interested readers can refer to Liu and Brockwell (1988) for a more general

discussion.

1.3.1 Stationarity

The i i ition for a process satisfying
X+ a1 Xeo1 = e + buXe-1ee-1 (1.5)

where E(e;) = 0 and E(e?) = 02 < oo has been established by Phan and
Tran (1981). They have shown that there exists a strictly stationary process
X, if a} +0%?%, < 1. Subba Rao (1981) established conditions for strict
stationarity of a process X, satisfying (1.4). To discuss this condition we

must first write the model in matrix notation. Let

Xe

Xe= X':"

Xept1/ pt



and let us define the following matrices

—a —ap —Gp1 —Gp bu bu bn
1 0 0 0 0 0 0
A= : ,B=
(] 1 R . 0 0 0
and
C=
0

pxl

Equation (1.4) can now be rewritten in the form

X, = AX1 + BX 101 + Cex

(16)

where E(e;) = 0 and E(e?) = 02 < co. Subba Rao (1981) has shown that if

p(A® A+d’B®B) <1

(L.7)

where ® is the Kronecker product and p(-) is the spectral radius or the

maximum eigenvalue function, then there exists a strictly stationary process
X, satisfying model (1.6). For example, if a; = -0.01, a; = —0.2, b, = 0.1,

b12 =0.08 and o = .5 then,

001 0.2 01 008
A= ,B=
10 0o 0



Then, using the Kronecker product

0.0004 0.002 0.002 0.04
0.0002 O 0.2 0

A@A=
0.0002 02 0 0
% 0 0 0
and
0.01 0.008 0.008 0.0064
0 0 0 0
B®B=
0 0 0 0
0 0 [ 0

and the maximum eigenvalue of (A® A+c2B® B) is equal to 0.2146096 < 1.

1.3.2 Invertibility

To state the sufficient condition for invertibility of the bilinear model BL(p, 0, p, 1),
as discussed by Subba Rao (1981), we must consider the notation defined in
Section 1.3.1 and define



The following condition

H'BE[z,z)|B'H < (H'C)? (1.8)

is a sufficient condition for invertibility of model (1.6).



Chapter 2

The River Flow Data

2.1 Introduction

The data sets analyzed in this chapter and the remainder of this practicum
are presented in Tables A.1-A.6 in Appendix A. The data in Tables A.1-
A6 consists of mean daily river flow measurements collected by Environment
Canada for the years 1995 and 1996. Since the year 1996 was a leap year,
each data set consists of 731 observations. There are gaging stations located
at specific points in each river which measure the water level throughout each
day. The water level is then converted to flow rates of m®/s and the mean
river flow for that day is then recorded.

Section 2.1 consists of a description of each data set used in this practicum.
Section 2.3 describes three approaches for testing a time series for linearity.
In Section 2.4, the results from the tests for linearity are given.



2.2 Data

The data in Table A.1 contain mean daily river flow measurements from Peace
River at Hudson Hope in British Columbia. Table A.2 presents the mean
daily river flow measurements for Castle River in Alberta. The river flow

measurements contained in Tables A.3, A.4 and A.5 were taken from South

River near Holyrood, Salmonier River near Lamaline and Gander River at
Big Chute in Newfoundland respectively. The daily river flow measurements
in Table A.6 were measured from Moberly River near Fort St. John in British
Columbia.

The data sets are presented in the form of time series plots in Appendix
B. Figure B.1 is the time series plot for Peace River. The river flow mea-
surements range from a minimum of 329 m?/s to a maximum of 5190 m?®/s.
There does not appear to be any pattern in the time series over the two years.
The daily river flow in the summer of 1996 more than doubled the maximum
of any other day throughout the two years. The time series plot for Castle
River is displayed in figure B.2. The minimum river flow measurement for
Castle River is 1.62 m®/s and the maximum is 812 m®/s. Over the two years,
there did appear to be a pattern in the time series. The river flow was low
during the first 4 months, then the river flow begins to increase over the next
2 months and starts to decrease again after 6 months. The last four months
of the year is similar to the first four.

The time series plots for the three rivers in Newfoundland are displayed in
Figures B.3, B.4 and B.5. South River B.3 and Salmonier river B.4 portrayed
similar patterns to each other, but the actual time series never depicted any

patterns over the two years. South River had a minimum river flow of 0.069

11



m*/s and 2 maximum of 13 m®/s and Salmonier River had a minimum of
0.043 m®/s and a maximum of 63.5 m*/s. Gander River, displayed in Figure
B.5, never showed any particular pattern. For the two years, Gander River
had a minimum river flow of 23.5 m®/s and a maximum flow of 669 m*/s.

Displayed in Figure B.6 is the time series plot for Moberly River. This
plot did display a pattern. The mean daily river flow dramatically increased
in the summer months and remain very low during the remaining months
of the year. Moberly river had a minimum river flow of 1.24 m®/s and a
maximum flow level of 87.1 m®/s.

In this practicum we selected only two years of data for convenience to

the techniques being impl Although we looked for patterns
over the two year period, a time series consisting of a ten year period would
be more valuable to a researcher when attempting to detect patterns in river
flow data for a particular river, especially when trying to distinguish between
dry and wet years.

2.3 Tests for Linearity

Before any formal modeling was performed on the data, we found it necessary
to test the time series for linearity. The statistical approach and methods we
have adopted will establish whether the time series is linear or non-linear.
Tong (1990) discussed both informal graphical methods and formal tests in
order to distinguish a time series as either linear or non-linear. Although
the graphical methods are useful, it was deemed sufficient to consider only
the formal tests. Three of the tests were selected for application to the data

12



given in Appendix A. The tests are described in Section 2.3.1, 2.3.2. and
2.3.3. The first two tests are known as Portmanteau tests and the third is a
test with a specific alternative. The null hypothesis is always that the time

series X, is linear.

2.3.1 Approach Based On Examining Squares Of Time
Series Data

‘The approach, based on squares of time series, was proposed by McLeod and
Li (1983). This test for linearity was motivated by the fact that

pe(XP) = {pr(X))}?, forall 7
where
pr =2y = corr(Zpsr, Z2)

provided that X, is a stationary Gaussian time series.

It is a useful test for i 1i ity, and the non-
linearity may be in the direction of bilinearity. The test proposed by McLeod
and Li (1983) is performed as follows. Let £1,,, ...,y be the fitted residuals
from an ARM A model. The sample autocorrelation of the squared residuals
74 is then given by

Joi (65 — 8%) (e — 6%)

z
P i
= Y@~ 5%) (2.1)



Now, the test statistic is then given by

N(N+2) TR T}

) (22)

Q=

where Q ~ x?, for some integer m.

2.3.2 Approach Based On Tukey’s One-Degree-Of-Freedom
Test For Non-Additivity

The second test for linearity we will consider was proposed by Keenan (1985).
Let (X, X2,...,Xy) denote a time series. The algorithm for Keenan’s test
for linearity based on Tukey's one-degree-of freedom test for non-additivity
proceeds as follows:

1. Regress X; on {1, Xe—1, Xe=2, .., Xe-sr}, where M is a fixed positive
integer. From this model, calculate the fitted values {X.}, the fitted
residuals, &, t = M +1,M+2,..., N, and the residual sum of squares,
RSS =T &2

»

Regress X7 on {1, Xe—1, Xea, - -, Xs—sr} and calculate the fitted resid-
uals, (&}, t=M+1,M+2,...,N.

3. Regress (&ars1, 42, - -, én) 0n (Ears1, Enrsas .- €n) and calculate,

14



~ H
n=m ( 38 )
=M+

where 7 is the regression coefficient. The test statistic is now calculated
as,

FoTA 242

T RBRSS-7

where the null distribution of F is Fy y_aar—2-

(23)

2.3.3 Tsay’s Approach Based On Column Stacking

Tsay (1986) devised an approach to test for linearity that is an improvement
to Keenan's test. The test is based on column stacking and the power of
the test is increased over Keenan’s test. This third test is implemented as

follows:

1. Regress X; on {1, X;—1, Xt—2, ..., Xi—a} and calculate the fitted resid-
vals {&}, t = M +1,M +2,...,N. The regression model will be
denoted by

X, =Yb+e (2.4)
where Ye = (1, Y1, Ye-2,- .-, Yiar) and b = (o, by, . . ., bar), where M
is a fixed positive integer.
2. Let Z, be a row vector with dimension m = 1M (M +1). Using only the

15



measurements on or below the main diagonal and applying the usual

column stacking operation, Z; is obtained from the symmetric matrix

U,U., where Uy = (Xeet, Xeoa, - - Kemar)-

un w2 v
. un um uxs
Uit =

un u: s

Ugr  Ug2 Ud3

For example, if

u
Uzq
Uz

Usa / axa

Then, applying the usual column stacking operation Z; = {un, 21, ua1,
ay, Uaz, Us2, Uaz, Uss, gy, Uuae}. Using multivariate regression, regress Ze
on {1, Xe1, Xe2, - -, Xe-p}, where the regression model is given by

Ze=YH+E&.

(2.5)

Finally, from the fitted model we obtain the fitted residual vector

st arsa, - En}

3. Regress (Ears1,én42:---1én) o0 (Earsr, Enazs- -, €n) and obtain the
least squares residuals {&}, t = M +1,M +2,..., N. Now, the test

statistic is calculated as,

Fo (Zéa)EEE) (T e

(26)

my &t

o)) (N—M—m—1)

where the summations range from ¢t = M +1 to t = N. Asymptotically,

the null distribution of F is Fiu(ars1)N—yuats31-1-

16



2.4 Results

‘We applied the tests for linearity described in Sections 2.3.1, 2.3.2 and 2.3.3
to the six data sets given in Appendix A. In all three tests, M is a positive
fixed integer with no specific rule on how to choose an appropriate value.
Therefore, all three test were ran with M = 4,5,7,10. The test statistics
along with their respective p-values for the six rivers are shown in Tables
2.1-2.6 below.

With the exception of Gander River results displayed in Table 2.5, the
p-values ibited in the tables i agree with each other. For all

rivers with the exception of Gander River, the results provide significant
evidence that the river flow time series is non-linear and this explains why
we are using non-linear models to describe the data. Gander River had
an inconsistency in the results and this discrepancy was a consequence of
Keenan'’s Test. For all four values of M, the p-values for Keenan’s test were
not significant suggesting that the time series X, is linear. The test devised
by McLeod and Li had significant p-values for all four values of M which
were in agreement with Tsay’s test. Since the bilinear model is made up
of a linear component and a pure bilinear component it appears to be a

reasonable model for studying such a series.



Table 2.1: Computed F-statistics and p-values for Peace River

McLeod and Li | Keenan's Test Tsay’s Test
M | Stat |P-value | Stat | P-value | Stat | P-value
4 |2624.18 0 4.907 | 02706 | 33.719 0
5 | 3191.92 0 5.093 | .02432 | 25.156 0
7 | 4267.33 0 5.133 | .02377 | 15.535 0
10 | 5732.45 0 4.662 | .03177 | 10.161 0

Table 2.2: Computed F-statistics and p-values for Castle River

McLeod and Li Keenan's Test Tsay’s Test
M | Stat |P-value | Stat |P-value| Stat | P-value
4 | 340.500 0 444.305 0 296.897 0
5 | 343.834 0 402.314 0 207.055 0
7 | 350.014 0 381.226 0 137.412 0
10 | 353.602 0 404.158 0 113.998 0




Table 2.3: Computed F-statistics and p-values for South River

McLeod and Li | Keenan's Test Tsay’s Test
M| Stat |P-value| Stat | P-value| Stat | P-value
4 | 314.848 0 92.193 0 56.682 0
5 | 316.360 0 54.586 0 40.279 0
7 | 316.446 0 49.729 0 22.435 0
10 | 316.452 0 63.686 0 15.886 0

Table 2.4: Computed F-statistics and p-values for Salmonier River

McLeod and Li | Keenan’s Test Tsay’s Test

Stat | P-value | Stat | P-value | Stat | P-value
368.808 0 81.240 0 9.003 0
368.893 0 81.304 0 6.339 0
370.807 0 75.193 0 3.749 0
10 | 377.266 0 86.321 0 3.050 0

o e | B
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Table 2.5: Computed F-statistics and p-values for Gander River

McLeod and Li | Keenan’s Test Tsay’s Test
M| Stat |P-value | Stat |P-value | Stat | P-value
4 | 2680.57 o 1.2899 | 0.2564 | 6.7751 0
5 | 3224.16 0 0.8769 | 0.3494 | 13.8336 0
7 | 4123.24 0 1.2292 | 0.2679 | 7.7224 0
10 | 5035.81 0 0.8604 | 0.3530 | 5.6089 0

Table 2.6: Computed F-statistics and p-values for Moberly River

McLeod and Li Keenan's Test Tsay’s Test
M | Stat |P-value| Stat |P-value| Stat | P-value
4 | 2682.11 0 20.5615 0 15.5925 0
5 | 3229.63 0 25.7950 0 12.4396 0
7 | 4146.93 0 35.3119 0 9.7567 0
10 | 5119.35 0 29.9219 0 7.7252 0
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Chapter 3

Bilinear Time Series Model

3.1 Introduction

The bilinear time series model was introduced in Chapter 1, where some of the
theoretical concepts behind the model were discussed. The purpose of this

chapter is to discuss i for the of a bilinear

time series model and describe the methodology used to choose the best
model. We will also apply the techniques discussed to modeling Canadian
river flow data.

Section 3.2 will outline the underlying theory of the estimation procedure
used to estimate the parameters of bilinear time series models. The Newton-
Raphson technique is also described, along with the estimating equations
required for this procedure. The concepts of Section 3.2 will be applied in
the subsequent sections. In Section 3.3 we fit bilinear time series models to
five of the six data sets from the river flow data discussed in Chapter 2. We

attempted to fit bilinear models to all six data sets but were unsuccessful in
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doing so with the data from Castle River. We did, however, overcome the
difficulties with the data from Castle River using the methods described in
Chapter 4. Finally, in Section 3.4, based on simulated data from the fitted
models, we study the sampling properties of the mean and standard deviation
and compare these results with the original data.

3.2 Estimation of the Parameters of the Bi-

linear Time Series Model

In this section we will obtain the parameter estimates of the bilinear time

series model given by

3 m &
Xe+ Y X +a=3 Y bjXeiej+e (3.1)
= =i

where e, are assumed to be il and i i istri as

N(0,02). The model given above is the same as BL(p, 0, m, k) with an extra
parameter a added. Subba Rao (1981) suggests that this additional parame-
ter, which affects only the mean, is very useful when fitting bilinear models
to raw data. The parameters which will be estimated in model (3.1) are
{a;,1 <i<p}, {b;j,1 <i<m,1<j <k}, o and o2 for n observations for
a total of p + mk + 2 parameters.

As with all models which involve lagged values of the X,, we cannot
evaluate the residuals for an initial stretch of data. We therefore consider the
conditional likelihood based on {Xy41, X742, - - -, Xn} given {Xy, Xz ..., Xy}
where v = {maz(p,m, k) + 1}. The joint pdf of {e,, ey41, -- -, €q} is given by
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i ==F &, g
-(5a) e |mEe e
Xa}. The condi-

28p, b1, brz, - i) =
(61,02, .. -, psme+1) are found by maximizing the likelihood function or by

which is also the likelihood function of {Xys1, Xysz,-
tional maximum likelihood estimates of § = (a, ay, as,

minimizing

=3¢ ©3)
=

with respect to 6, the least squares fit. To minimize § we must solve

TR en)

which is done through the Newton-Raphson iterative

3.2.1 Newton-Rapl Iterative Teck

‘The Newton-Raphson iterative procedure is based on the Taylor series expan-
sion. It requires an initial guess for the first set of parameters and then the
function is i in the hood of that guess. The Newton-

Raphson iterative equation to be used to minimize Q() can be obtained by

the following method. First, let ¢ = p +mk +1,

3Q(8)
86,
8Q(8)
cey=|

29(0)
90,
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be a vector of first-order partial derivatives and
_[2e®
2= [ao‘—ae,

be a matrix of second-order partial derivatives. To solve equation (3.2), we

use the Taylor series expansion, and expand G(6) near § = 6 and assuming
third order and higher terms are negligible we obtain

G(6o) + H(8o)(8 — 60) = 0. (3.5)
Next, we solve (3.5) for 6 to obtain

0 =6, — H™"(60)G (60)
Therefore, in general, the (i + 1) iteration is given by

640 = g0 _ F(69)G(69) (3.6)

known as the Newton-Raphson iterative equation, and hence we obtain the
parameter estimation technique for the model.

3.2.2 Partial Derivatives

The first- and second-order partial derivatives of Q(6) are given by

QO) _ & de . _
—89.- = ZL:"Ee‘—ag(, i=12,..
(7)
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t’ﬂ?(") - aqaeg 2
2, Z + Z"aeao

x-l? ,_7—12

Solving model (3.1) for e, it is clear that the partial derivatives of e; must

satisfy the following recursive equations:

dec _ &, o ey
%% = 1—;;1;,,)(‘_‘ e (3.8)
de: _ L N e
e = Xt ?;g‘b.,xm o t=LZ-.p (3.9)
oe $ 34 x, 20t
B = xk_,eg_,—§jz=;b.,xk_. T (3.10)
r=12...,m s=12, K
e _  OE ey
3 = ‘;E""X“‘W (3.11)
O _ _ €—j
e = Elz:b',x,_. S BP=L2e.p (312)
Pe _ Oy P, o Doy
r=12...,m s=12....k
e, de-, e
g = Nt z}:b‘,xg.; Fo TR (3.14)

i=1,2,.4 1,2,...,m, am=1,2.....k
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FPe ey deis
Tty = X _X"'abr.
Pe,..
- X, E
Z.:.,Z_.'”’ T (3.15)

nr=12...,m s5s=12...k

where we assume the initial conditions e, =0, ¢t = 1,2,...,7 — 1, and also

A direct result of the initial assumptions together with equation (3.9)
leads to all second-order partial derivatives with respect to a and a;, i =
1,2,...,p equaling zero. Using the recursive equations (3.7), (3.8), (3.9)
and (3.14), the first and second order derivatives of Q(6) can be evaluated
for a given set of initial values of o, {a;} and {b;;}. The first and second
order derivatives of Q(f) can now be used in the Newton-Raphson iterative
technique discussed in Section 3.2.1.

3.2.3 Initial Estimates

Afu of the Ne Raphson iterative ique is the

initial estimates of the parameters. If a poor set of initial parameters are
used, it is highly probable that one will not achieve convergence. There
are different strategies one may consider when tackling this problem. The

approach we found very effective is more of a step-up approach: fit a basic
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model to the data first, then add additional parameters, one at a time.

To fit a bilinear time series model of order BL(p,0,m, k), we first fit a
bilinear model of order BL(2,0,1,1), constant « included. To fit this model
we fit an AR(2) model and use the esti as initial
for the autoregressive part of the bilinear model, and for the moving-average
part, we set b;; = 0. We next fit the bilinear model of order BL(2,0,1,2)

using the estimates from the BL(2,0, 1, 1) as initial estimates and set ;2 = 0.
‘We continue this until all b;j, i =1,2,...,m; j =1,2,...,k parameters are
estimated. Once the pure bilinear part of the model is fitted, we fit the

autoregressive part in a similar fashion.

3.2.4 Model Selection

Once we begin to fit bilinear time series models to the data, we must consider
the order of the bilinear model that best represents the data. To choose the
order of the model, we will consider three criteria: the Akaike Information
Criterion (AIC), a bias-corrected version of the A/C known as the AICC
suggested by Hurvich and Tsai (1989) and the BIC which attempts to correct
the over-fitting nature of the AIC. These criteria are defined by:

AIC = (N — M)logé? +2(p+mk +1) (3.16)

2(p+mk +1)n

N—Grmk+2) 1g

AICC = (N - M)logd? +

52
BIC = (N~ (p+mk+1))log [%
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+n(L +log V27) + (p + mk + 1)

(S, X2 - NG2)
x log | (3.18)
where,
st 3 g
CTN-M 57, Y

It is essential that the above functions are calculated based on the same
number of observations for each model. The number of observations used
in the calculation of the above criterion is given by (N — M), therefore M
should be selected such that (N — M) will remain constant for each model
fitted.

Based on the AIC, AICC and BIC criteria, we choose the model with
the smallest AIC, AICC and BIC values. Therefore, we continue to fit
models until the information criteria increase, then we choose the previous
model. The AIC, AICC and BIC do not always coincide with each other.
If two of three criteria agree, then the choice of the model will be made based
on these two criteria. If it so happens that all three criteria disagree, then a
simulation study can be conducted and the choice of the model will be made

based on the sampling properties of the estimates.

3.3 Model Fitting to River Flow Data

Bilinear models were fitted to data from Peace River, South River, Salmonier
River, Gander River and Moberly River. It was found that the methods

described in the previous section could not be used to estimate the parameters
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for the data from Castle River for models of order higher than BL(2,0,1,1).
For this reason, we never included Castle River in the model fitting of this
section or in the simulation results of the next section. The reason for the
difficulty is believed to be a of the large variability in the data.
With a minimum river flow of 1.62 m®/s and a maximum river flow of 812
m?3/s, Castle River had a range of 810.38 m?/s. Castle River, with 2 mean
of 20.47 m®/s, had a variance of 1699.128 m?/s.

When modeling the other five rivers, it was found that working with

the actual time series was very tedious. On many occasions, the inverse of

Fisher’s T ion matrix was bl i This problem

was easily solved through a simple transformation of the time series. The

known as izing, is given by

— Bx,
=SB 3.19
o (3.19)

Standardizing the time series will, in fact, leave the estimates of the para-
meters of the models unchanged with the exception of &, which is simply an
estimate of the mean. Therefore, the models discussed in this section will be
based on the standardized series.

The bilinear models were fitted based on the three criteria AIC, AICC
and BIC discussed in the previous section. For Peace River it was found
that the AIC, AICC and BIC were minimized when p = 5, m = 1 and
k = 2. The values of AIC, AICC and BIC were -2608.7665, -2908.5670,
and -1185.3044 respectively. The estimated values of the model coefficients
where o = 0.0088, a; = —1.1881, a; = 0.4594, az = —0.1598, ay = 0.0657,
a5 = —0.1553, by; = 0.2185 and by, = 0.0867. Therefore, the fitted model for
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Peace River is

X; — 1.1881X]_, +0.4504X; , —0.1598X;
+ 0.06578X]_, —0.1553X]_; + 0.0088
= 0.2185X]_,e. +0.0867X| ez +e¢ (3-20)

where the value of 32 = 0.0262.

The AIC, AICC and BIC for South River were minimized when p = 3,
m = 1and k = 1 and the values of the criteria were -368.0355, -367.9527
and 1047.6431 i The esti d values of the at of the
model are & = —0.0399, a; = —0.9835, a; = 0.2791, a3 = —0.1773 and
by = —0.0641. The bilinear model for South River is as follows

X! - 0.9835X_, +0.2791X]_, — 0.1773X}_y
— 0.0399 = —0.0641X)_,e,y + e (3.21)

where the value of 52 = 0.592.

The BIC criteria for the Salmonier River was inconsistent with the AIC
and the AICC. The selection of the order of the model for this river was
more involved than the others. We found that the B/C was minimized when
p=2m=1and k = 1 while the AIC and the AICC were minimized
when p =3, m =1 and k = 1. We then performed a simulation study for
both models and studied 1i ies of specific istics. We found
that the best model of the two was the model of order p = 3, m = 1 and
k =1. The AIC, AICC and BIC for this model were -473.7456, -473.6628
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and 942.1053 ively. The i of the model are a =
—0.0449, a, = —1.2251, a, = 0.4812, a3 = —0.0776 and b;; = —0.0866. The
fitted model for Salmonier River is

X, — 1.2251X]_, +0.4812X]_, — 0.0776X]_,
— 0.0449 = —0.0866X/_,ecy + e (3.22)

where the value of 62 = 0.5112.

For Gander River, it was when p =5, m = 1 and k = 1 that the AIC,
AICC and BIC were minimized and the values were -3566.6934, -3566.5385
and -2153.2538 respectively. The bilinear model had the following parameter
estimates: a = —0.0009, a; = —2.3217, a» = 2.1609, a3 = —1.1658, a4 =
0.4121, as = —0.0719 and by, = —0.0617. Therefore, the fitted model for

Gander River is

X, — 2.3217X_, +2.1609X]_, — 1.1658X}_,
+ 0.4121X]_, — 0.0719X]_5 +0.0009
= —0.0617X)_jecs +e¢ (3.23)

where the value of 52 = 0.007.

For Moberly River, it was found that the AIC, AICC and BIC were
minimized when p =3, m =1 and k = 1. The values for the criteria where
AIC = —4014.0864, AICC = —4014.0137 and BIC = —2619.2296. The

values of the coefficis of the model are & = —0.0007, a; =
—2.0568, a; = 1.3421, a3 = —0.2777 and by; = —0.125. The bilinear model
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for Moberly River is as follows

X — 2.0568X)_, + 1.3421X,_, — 0.2777X]_,
— 0.0007 = ~0.125X]_jec1 + € (3.24)

where the value of 52 = 0.0038.

3.4 Results of Simulation Study

In the previous section we fitted bilinear time series models to five Canadian
rivers based on the river flow variable. It is important to see if the behavior
of the fitted models exhibit properties similar to that of the actual flow
data. An investigation of the behavior of the fitted models can be achieved
by conducting a simulation study. For each of the five rivers we simulated

n = 731 observations from the fitted model

» m k

SaXij—a+ Y b Xl e +e (3.25)
= ==

where e, ~ N(0,52). This was repeated 2000 times. The transformation of
the time series was then reversed in order to be comparable to the original
series as follows

X = Xjox, + px.. (3.26)

Next, we examined the sampling properties of the mean, standard deviation

and the maximum value of the simulated time series X,.
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The results of the simulation study for each river are displayed in Tables
3.1-3.5. There are four rows in each table were the first row contains sam-
pling properties of the original time series X,. The second, third and fourth
rows contain sampling properties of the mean of X, the standard deviation
of X, and the maximum of X, for 2000 simulations. For each river, we inves-
tigated whether this process was able to simulate the original time series by
constructing a time series plot of the actual time series X, overlaid with one
of the 2000 simulated bilinear time series.

1. Peace River:

Table 3.1: Sampling Properties of X;, Mean(X), St.Dev(X;) and Max(X.)
(Peace River)

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | St.dev

X 329 694 1180 1278 1490 5190 | 950.6962

Mean()_(g) 604.6 | 1121 1270 1294 1445 2354 | 251.6964

St.Dev(X.) | 334.8 | 511.6 | 583.3 |607.8 | 678.8 | 1545 | 135.9731

Max(X,) | 1677 | 2737 | 3112 | 3222 | 3585 | 7541 | 720.485

The mean and standard deviation of X, are 1279 and 950.6962 respec-
tively. The mean of the means of X, = 1294 is close to the mean of
the actual time series X;. The mean of the standard deviation of X, is
equal to 607.8 which is different from the actual series suggesting that
the sampling properties of the standard deviation of X, are poor. The

for the

value were also poor with values
max(X,) = 5190 and the mean of max(X,) = 3222.
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Figure 3.1: Plot of actual time series (solid line) with overlaid simulated
bilinear time series plot (dotted line) for Peace River

Figure 3.1 displays time series plots of both the actual series X, and the

simulated series X;. It is observed that the simulated series from the

fitted bilinear model follows the general pattern of the original series,

but there is immense variation between the two series mainly within
the interval of approximately 100 to 380 days. The variation between
the two series leads to the questioning of the usefulness of this model.

2. South River:

Table 3.2: Sampling Properties of X;. Mean(X,), St.Dev(X,) and Max(Xy)

(South River)
Min. | Ist Qu. | Median | Mean | 3rd Qu. | Max. | St.dev
X 0.069 | 0.2605 | 0.416 | 0.6855| 0.752 13 0.964
Mean(X,) |-0.133 | 0.5591 | 0.6992 |0.7009 | 0.8573 |1.448 | 0.2307
St.Dev(X,) | 1.149 | 1.433 1.514 | 1.519 | 1.597 |1.993 | 0.1203
Max(X,) | 3.542 | 4.425 | 4.727 | 4.766 | 5.072 |7.302 | 0.4907
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The sampling properties of the mean of the means of X; = 0.7009
appears to behave much the same as the mean of X, = 0.6855. As did
Peace River, there seem to be discrepancies with respect to the mean
of the standard deviations and the mean of the maximum of X,. The
standard deviation of the series X is 0.964 and the standard deviation
of X, is equal to 1.519. The original series had a maximum value of 13
while the mean of max(X,) was equal to 4.766.

‘Soutn Aver

Figure 3.2: Plot of actual time series (solid line) with overlaid simulated
bilinear time series plot (dotted line) for South River

The time series plots of the actual series X, and the simulated series
X, is found in figure 3.2. It is easily seen that the simulated time series
plot does not, in any significant interval, model the actual time series.
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3. Salmonier River:

Table 3.3: Sampling Properties of X., Mean(X,), St.Dev(X;) and Max(X)
(Salmonier River)

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | St.dev

X 0.043 | 1.025 2.58 4.208 5 63.5 5.9732

Mean(X,) | 111 | 3.694 | 4.238 | 4.247 | 4.847 |7.193| 0.8899

St.Dev(X,) | 749 | 8.766 | 9.116 |9.148 | 9.516 [11.22| 0.5599

Max(X,) 21.73 | 2641 27.92 | 2816 | 29.72 |39.53 | 2.497814

e

Figure 3.3: Plot of actual time series (solid line) with overlaid simulated
bilinear time series plot (dotted line) for Salmonier River

Once again, while the sampling property of the mean of X, appeared
adequate, the mean of the standard deviation and the mean of the
maximum value of X, were not in accordance to the standard deviation
and the maximum value of X,. The values for the mean, the standard
deviation and the maximum value of X, were 4.208, 5.9732 and 63.5
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respectively and the mean of the means of X; = 4.247, the mean of the
standard deviation of X; = 9.148 and the mean of max(X,) = 28.16.
Figure 3.3 exhibit similar results to that of Figure 3.2. There are large
variations between the plot of the actual time series and the plot of the
simulated time series throughout the entire two year period.

4. Gander River:

Table 3.4: Sampling Properties of X;, Mean(X;), St.Dev(X,) and Max(X,)

(Gander River)

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | St.dev
X 235 | 7635 | 108 |130.1| 160 | 669 | 941205
Mean(X,) |55.36| 1181 | 131 | 131 | 1449 |197.3| 20819
St.Dev(X,) | 67.95 | 92.06 | 98.92 | 99.59 | 106.7 |138.9 | 10.8221
Max(X,) |259.8| 3448 | 369.7 | 373 | 397.6 |532.9 | 40.35806

‘The sampling properties of the mean and standard deviation for 2000
simulations for Gander River exhibited properties almost identical to
the actual time series. However, Figure 3.4 display results suggesting
the fitted bilinear model is not useful in simulating the data. Over
the two year period, the simulated series continuously varies from the
actual series. The mean of the time series X, is equal to 130.1 while
the mean of the means of X, is 131. The standard deviation of the
actual series is equal to 94.13 which is very similar to the mean of the

standard deviations of X, = 99.59. The mean of the maximum value

37



of the simulated series X, was equal to 373 which was almost half of
that of the original series X, which had maximum value of 669.

Figure 3.4: Plot of actual time series (solid line) with overlaid simulated
bilinear time series plot (dotted line) for Gander River

5. Moberly River:

Table 3.5: Sampling Properties of X;, Mean(X,), St.Dev(X,) and Max(X;)

(Moberly River)
Min. | Ist Qu. | Median | Mean | 3rd Qu. | Max. | St.dev
X 1.24 1.84 3.24 13.17 | 15.25 87.1 | 18.741
Mean(X,) |-7.403| 9.93 | 1335 |13.25 | 17.01 |20.72 [ 5.5015
StDev(X,) | 1212 | 1728 | 1911 [19.39 | 2125 |32.19| 3.047
Max(X,) 26.46 | 50.29 54.68 | 54.85 | 59.51 |81.01 | 6.982

The fitted model for Moberly River simulated the best results for the
but the

mean and standard

value of the si

series was off by a large margin. However, the simulated series does
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not appear to follow the pattern of the original series as can be seen
from Figure 3.5. The simulated series consistently deviates from the
path of the original series. The mean of the time series X, is 13.17 as

compared to the mean of the means of X; which has a value equal to
13.25. The values for the standard deviation of X, and the mean of the
standard deviation of X, were also very close equaling 18.741 and 19.39
respectively. The maximum of X, was 87.1 and the mean of max(X;)
was 54.85.

Figure 3.5: Plot of actual time series (solid line) with overlaid simulated
bilinear time series plot (dotted line) for Mloberly River

There were instances based on the bilinear approach where the sampling
properties of the simulated time series followed closely to that of the actual
time series. One statistic in particular, max(X,), had very poor sampling

properties for all five rivers. The simulation: size is one possible reason for the

poor ies. If the sil ion size was i d from n = 2000
to n = 5000 then it is possible that the estimation of the max(X,) would be

more accurate. A second possible reason is that the bilinear model is poor at
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modeling extreme values. However, as a whole the simulation study for the
five rivers easily explained that the fitted models were very poor. In Chapter
4, we combine the wavelet filtering approach and third order cumulants to
improve the fit when modeling river flow data.
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Chapter 4

Wavelet Filtering

4.1 Introduction

This chapter will consist primarily of decomposing a time series X, using
wavelet smoothing techniques, into a wavelet smoothed version and a random
component which we describe with pure bilinear models. Essentially, a time

series X; passes through a filter where the time series is decomposed into two

a isti and a random component. It is the
random component that is of interest and we will fit a diagonal pure bilinear
process, denoted by DPBL(g), to this component of the non-stationary time
series. The filtering process highlights any hidden non-stationarity and sim-
plifies the structure of the random component. The diagonal pure bilinear

process is given as

.
X, =3 0Xeeite (1)
=
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where e, is a of inds dent and identis istri G

random variables with mean u = 0 and constant variance c? and §;, 1 <i < g
are constants. The model in (4.1) is a special case of the general bilinear
autoregressive moving average process of Granger and Anderson (1978).

A wavelet system is the collection of dilated and translated versions of a
scaling function ¢(z) and a primary wavelet ¥(z) defined by

Six(z) =27 %277z — k) (4.2)
and

Yis(e) =272z k), jkeZ (43)

respectively. The functions ¢(z) and ¥(z) are choosen to satisfy the equations

#(z) = VZY hpé(2z — p) (44)
=
and
¥(z) =VZY 662z —7), gr=(~1)horir (45)
rezZ

for a sequence {h,} of constants, called filter coefficients, with

42



/ b(z)dr =1, [ w(z)dz =0, / (z)dz =1.

‘The Haar wavelet basis is the simplest example of a wavelet system on
L2(S). The scaling function is:

1, f0<z<1
if0<z “8)
0, otherwise

#(z) = Ip,y(z) = {

The refining relations for the Haar wavelet basis are

#(z) = 62z — 1) + $(22)
and
(=) = 6(22) - 42z~ 1).

In Section 4.2 we discuss the methodology behind wavelet filtering and
the estimation of the filter i will be il in section 4.3. Section
4.4 will consist of the method used to determine what models will be fitted to
the data. The approach used in section 4.4 is based on pattern recognition of

third order cumulants. In section 4.5 we will fit diagonal pure bilinear models
denoted by DPBL(q) to the Canadian river flow data discussed in Chapter
2. From the fitted models in section 4.5, we will simulate data in Section

4.6 and compare the sampling properties of the mean, standard deviation,
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minimum value and maximum value to that of the original time series.

4.2 Wavelet Smoothing

Smoothing techniques can be very efficient, but the performance of the filter
relies greatly on the choice of the filter coefficients; see Brockwell and Davis
(1996). To begin this procedure, the user must decide upon a specific wavelet
filter. The time series X, is then allowed to pass through a linear wavelet
filter which decomposes X, into a non-random wavelet smoothed version 7(t)
and a random component W (£). W(t) is the remainder of the time series X,
after 7j(t) has been removed. It has some autocorrelation structure, but the
underlying aspect of W (t) is that it is still a time series and moreover, it has
a simpler structure than X,.

The series X, is from linear inations of nU) at various

levels of j given by

Xe=1@ 40O W4 4™ 4 = n(m) + W(E) (@7

where 7° is a multiple of a scaling function ¢(¢) and n0 is a linear combi-
nation of 27 dilated and translated versions of a primary wavelet function
denoted by %(t). The linear combination 7(¢; m) can be written in terms of
6(t) and pI4(t) = 29/ (2t — k) as



n(t;m) = dé(t) + izf cie NETIE() (4.8)
=0 k=0

The work completed in this chapter will involve the Daubechies wavelet
system generated by s¢(z) and s¥(z). Along with (4.8) the series X, is

given by
N
Xe =3 qj(t)w; + W(t) where N, =2m+. (4.9)
=1
The components of the N, x 1 vector w = (w, ..., wy.)" are the filter coeffi-

cients {d, c;x} which will be determined from n realizations of the time series
{X:}. The vector q = (q1(t),-..,qn.(t))" is comprised from the wavelet sys-
tem chosen for the filtering process. We can see from (4.9) that the nonlinear

time series { X} is broken down into and described by two components. The

first isa dom wavelet d version and the second
is a random process.

The rational behind using wavelet smoothing techniques is twofold. The
first is to avoid the problem of trying to select a suitable nonlinear technique,
from among many, to apply to our nonlinear process. The second reason is

to avoid the often b and near problem of

the in i i models. In this sec-

tion we gave a brief discussion on the methodology of wavelets and in the
next section, as discussed by Oyet (1999), we will outline some theory be-
hind the estimation of the filter coeffici For more elab i i
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on the properties, uses and applications of wavelets see Daubechies (1992),
Strang (1989), Alpert (1992), Antoniadis, Gregoire and McK (1994)
and Hirdle, Kerkyacharian, Picard and Tsybakov (1998).

4.3 Estimation

Without loss of generality, we will assume that the space of all possible
values of ¢ has been normalized to the [0, 1] interval. Given n realizations of
a nonlinear time series X, then, from Oyet (1999), the smoothed version is
evaluated as

Arsm) = [ A Xeo(e) de®) (4.10)

‘where
h(rit) = 4(IBa(®; B =B(v,8) = [ a()a () de()
and £(t) is the empirical distribution function of {t;},. It can be established
that #(r) is unbiased with variance
V(i(r,m)) = R'T@Q'(r)B"DxB“Q(") +2q(r)B™'D,B'q(r)
where

D = [ a@aOv( et
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.
D = [ [y QOLE(O0(6) Rule — ) de()es(s)

and R,(-) is the autocovariance function of W (t). At this point, it must be
determined how to choose the most appropriate values for v(t). The approach
taken by Oyet (1999) is to choose v(t) such that the Integrated Variance of
7(r) denoted by I'V(ii(r)) is minimized. The Integrated Variance of 7(r) is
given by

Wemm) = [ Vetrm) dr= 2oy 4 2rpy
= 20 Mia-tq o) dec)
wof [ d@H a0
x u(tjuls) Rult ) dE(E)dE(s)  (4.11)

where H=BA™'B and A = [] q(r)q'(r) dr.

The IV given in (4.11) can be minimized by finding an iate weight
function v(t). The approach taken by Oyet (1999) is to search for an ab-
solutely i measure which minimizes the /V loss function by allow-

ing the measure £ to be extended to the space of all distribution functions.
The weight suggested by Oyet (1999) is

wltin) = ug = [ Ia-tao at @)

% .
lla~¥a(0)ll"
Then vg(t; ug) minimizes (4.11) under the constraints that m(t)u(t) = 1 and
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Jem(t)dt =1.

4.4 Model Identification Based on Third Or-
der Moments and Cumulants

Before models are fitted to the random component W (t) of the series X,
using the DPBL(q) process given by (4.1), the order of the process will be
determined using third order moments and cumulants. If we assume third
order stationarity, the third order cumulant depends only on &; and k; for
all admissible integers ¢, k; and k, and is given by

Clkska) = mkr, ka) = plR(ke) + Rkz) + R(ky — ko)) —
where m(ky, k) = BE(XeXi4k, Xisk,). It has been shown by Gabr (1988)
that the cumulants C(ky, k) of a real valued process X; have the following
symmetric relationship:

Clki, k2) = Clka, k1) = C(—ky, k2 — k1) = Clbky — k2, —k2).

From this relation, once the values in the upper half of the first quadrant of
the Euclidean plane are known, then all the values of C(k1, k2) are defined.
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Table 4.1: C(1, ko) Pattern for arbitrary ¢

k| 1 2 3 --- g g+1 g+2 q+3
K
1 NZ NZ NZ --- NZ NZ 0 0

From Oyet (1999) we have that C(ky, kp) = 0 for k; < g, ks — ki > q and
kL > g,ks — ky > q and C(ky, k) nonzero when k, > k;. Based on these
results, it has been shown that the third order cumulants define a pattern in
the upper half of the first quadrant of the k&, plane as shown in Table 4.1.
This pattern is then easily extended to the entire Euclidean plane from the
symmetric relationship satisfied by the cumulants. A useful pattern then, for
detecting the order of a DPBL(q) as can be seen in Table 4.1 is: C(1, k2) =0,
for ko =q + 2,9+ 3, ... and nonzero elsewhere for an arbitrary value of g.

To determine the order of the model we will investigate the behavior of

the standardized cumulants, given by

C(L k)
€00 (4.13)

(L, k) =

for a given finite sample time series X, satisfying (4.1). We estimate the
third order cumulants in (4.13) by

1 n—ki—ka L N ”
C(kn, k2) ey 1 Z% (Xe = X) (Xewr, = X) (Xt — X)
=
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where,

The order of the best model will be k3 — 1, where k3 is that value of k,
at which p(1,k;) cuts-off. The cut-off point refers to the point at which
p(1,k2) = 0. Since the sample estimates of p(1, k;) will not be exactly zero,
we will use the standardized cumulant trace, a plot of the absolute values of
5(1, kz) versus ky, to determine the point where 5(1, k,) cuts off. Therefore,
k3 will be the value of k; where the standardized cumulant trace begins to
stabilize and hence, the order of the model will be k3 — 1.

4.4.1 Results

The model fitting and simulations will be conducted on the time series W ()
given by (4.7). For this reason, the cumulant traces portrayed in this section
were plotted based on W(t). For all six Canadian river flow data given in
A dix A, the ized lant traces were plotted and the order of

the best model was selected based on the approach discussed earlier in this
section.

Two of the six cumulant traces showed a distinct cut-off point while the
other four did not show any clear point of stability. For the four rivers which
did not have a distinct cut-off point we attempted to improve the cumulant
trace through differencing. Depending on the river we used either first order,
second order or third order differencing. Given a time series X, the first,

second and third order differences are given by
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Y% = Xe—Xen, t=23....,n (414)

¥ = Ke=2Wpr + Xy, £=3,4:00,n (4.15)

Y = Xe—3Xe1 +3Xe2— Xes, t=4,5,...,n (4.16)

respectively. Ifat this stage the cut-off point was not 100% clear, we narrowed
the possibilities down to two or three successive choices. Models were then
fitted to all points and based on the AIC criteria discussed in section 3.2.4
the best model was selected. The standardized cumulant traces for each river

are shown in Figures 4.1 - 4.6.

1. Model order for Peace River:

The standardized cumulant trace in Figure 4.1 was based on W(t). The
trace appears to stabilize after k3 = 6, therefore the order of the model
to be fitted is DPBL(k; — 1) = DPBL(3).

000102 03 04 08 08

by 3 o = = == B

Peace Cata

Figure 4.1: Standardized cumulant trace of Peace River



2. Model order for Castle River:
‘The standardized cumulant trace in Figure 4.2 was also based solely on
W (). The cut-off point in this cumulant trace is taken to be k5 = 2.
The model to be fitted for this time series is DPBL(1).

00005 010 015 020 0%

°
°
H

s 2o B 50

Caatie Oata

Figure 4.2: Standardized cumulant trace of Castle River

o

Model order for South River:

When the dardized trace was for W (t) we

could not find any apparent cut-off point to distinguish a suitable
model. First order differencing was then implemented on W (t) to con-
struct the trace found in Figure 4.3. It appears that the cut-off point
is at either k3 = 4 or k3 = 5. All models of order less than and equal
to 4 will be fitted and the best model will be determined based on the
AlC.
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Figure 4.3: Standardized cumulant trace of South River

4. Model order for Salmonier River:

First order differencing was also implemented on the time series W (t)

after a cut-off point could not be ined from the dized

cumulant trace. From Figure 4.4, which is the cumulant trace based
on the differencing, shows that after k3 = 4 the trace begins to stabilize.
Therefore, we will fit a DPBL(3) to this series.

2% s o = = e 5
Saimon ata
Figure 4.4: i trace of Sal ier River
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5. Model order for Gander River:

In this case the trace for W (t) highlighted certain regular fluctuations
which suggested seasonal effects which were not apparent in the original
series. For this reason, third order differencing was performed on the
time series W (¢) and then a second standardized cumulant trace was
plotted as shown in Figure 4.5. The cut-off point was not clear-cut
so the values 2, 3 and 4 were selected for k3. The models DPBL(1),
DPBL(2) and DPBL(3) will be fitted and the best model will then
be established using the AIC criteria.

00 02 04 05 08 10

Figure 4.5: Standardized cumulant trace of Gander River

L

Model order for Moberly River:

The standardized cumulant trace of W (¢) for this case also highlighted
seasonal effects which were not detected in the original series. Hence,
the standardized cumulant trace shown in Figure 4.6 was constructed
from the second order differencing of W (t). The value of the cut-off
point selected is k3 = 5, hence a DPBL(4) process will be used to fit

a model to this time series.



00 02 04 06 08 10 12

Figure 4.6: Standardized cumulant trace of Moberly River

4.5 Model Fitting to River Flow Data

Diagonal pure bilinear models, given by (4.1), were fitted to all six time series
given in Appendix A after the wavelet smoothed version had been removed.
The models were fitted to the time series W (t) or W'(t), where W’(¢) is
W (t) after impl ing the i i ing for each time series

as discussed in the previous section along with the transformation given by
(3.19). For the time series where it was suggested to fit more than one model,
the best model was selected based on the AIC criteria.

For Peace River we fitted a DPBL(3) and the estimated coefficients of
the model are 6, = —0.1327, 6, = 0.0825, 63 = —0.0228, 6; = 0.0399 and
05 = 0.0285. Therefore the fitted model for Peace River is

W(t) = —0.1327W'(t — L)ecy + 0.0825W'(t — 2)er—2
~ 0.0228W'(t — 3)ers + 0.0399W"(t — d)ers
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+ 0.0285W'(t —5)ecs +e: (417)

where 62 = 0.8031.
A DPBL(1) was fitted to Castle River. The estimate value of the model
parameter is 6, = 0.0079 axd the fitted model is given by

W(t) = 0.0079W"(¢ — 1)ec—y +e¢ (4.18)

where 6% = 0.99.

Diagonal pure bilinear models of order less than and equal to four were
fitted to the time series for South River. The AIC was minimized for the
DPBL(1) model with a value of —133.7435. The parameter estimate for the
model is 6, = —0.0636 and_ the resulting model is

W'(t) = —0.0636W"(t — L)ery + e (4.19)

where 6% = 0.8282.

For Salmonier River, we fitted a DPBL(3) model to the time series. The
estimates of the coefficients for the model are 8, = —0.0548, 8, = —0.0390
and 63 = —0.0133. The model is given by

W(t) = —0.0548W'(t — 1)e;y — 0.0390W(t — 2)er—z
— 0.0133W/(t — 3)ers +ex (4.20)
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where 62 = 0.8015.

The previous section proposed following three possible models for Gander
River: DPBL(1), DPBL(2) and DPBL(3). The DPBL(2) model recorded
the smallest value for the AJC = —8.2037. The estimates for the model
coefficients are #; = —0.0345 and 6, = 0.0222 leading to the following model

W'(t) = —0.0345W'(t — 1)e,—1 +0.0222W'(¢ — 2)e,—2
+ e (4.21)

where 62 = 0.9831.

‘Two models fitted to Moberly river were DPBL(3) and DPBL(4). Based
on the AIC criteria the better model was the DPBL(4). The AIC =
—48.9466 and the estimates of the parameters for the model are 6; = —0.0282,
6y = —0.0016, 63 = —0.0162 and 6, = —0.0103. The model is given by

W'(t) = —0.0282W(t — 1)e,—; — 0.0016W'(t — 2)e,—2
— 0.0162W"(t — 3)ee—s — 0.0103W"(¢ — 4)er—s

+ e (4.22)

where 6% = 0.9288.
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4.6 Results of Simulation Study

At this stage we must consider whether the wavelet smoothing technique
along with using the diagonal pure bilinear process to model W (¢) sustains
specific properties of the original process, mainly the mean, standard de-
viation and maximum value. The properties were studied by simulating
n = 2000 time series based on W(t) or W'(t). The transformation of the
time series was then reversed, based on (3.26), along with any differencing
that may have been invoked. We then combined the wavelet smoothed ver-
sion with the simulated random linear component to obtain the following

time series,

Xo=i(t:5) + W(2). (4.23)

Next, we calculated the mean, standard deviation and maximum value for

each of the n = 2000 si series and those ing prop-

erties to that of the original series. Finally, we investigated whether this
process was able to simulate the original time series by overlaying the time
series plot of the original series with that of one of the 2000 simulated series.

Enumerated below are the results for each of the six rivers. For each river,
properties of X, are given together with some properties of the mean of X,

of the standard deviation of X;, and of the maximum of X,.



1. Peace River

Table 4.2: Sampling Properties of X;, Mean(X,), St.Dev(X;) and Max(X.)

(Peace River)
Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | St.dev
X, 329 694 1180 1278 1490 | 5190 | 950.6962
Mean(X,) | 1250 | 1272 1277 1277 1283 | 1305 | 8.1848
St.Dev(X,) | 9186 | 9425 | 9484 | 9482 | 9536 |9742 | 8.226
Max(X,) | 4944 | 5312 | 5402 | 5410 | 5500 | 6126 | 141.6315

The results from the above tables show that both the mean of the

means of X, and the mean of the standard deviations of X, are almost

identical to that of the mean and standard deviation of the original

series. The original series had a mean and standard deviation equal to

1278 and 950.6962 respectively as compared to the mean of the means

and the mean of the standard deviations of {X,} which were equal
to 1277 and 948.2 respectively. The mean of the max(X,) = 5410 is

greater than the maximum value of the original which is equal to 5190.
This is mainly due to the large range of values in the original series.
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Figure 4.7: Plot of actual time series (solid line) with overlaid simulated
diagonal pure bilinear time series plot (dotted line) for Peace River
Figure 4.7 consists of time series plots of both the actual series X, and
the simulated series X,. From the plot it is observed that the simulated
series follows the pattern of the original series. There are some slight
variations from the original time series, but the variations are centered

around the original series.
2. Castle River

Table 4.3: Sampling Properties of X;, Mean(X,), St.Dev(X,) and Max(X.)
(Castle River)

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | St.dev

X 1.62 4.135 8.1 20.47 21.2 812 | 41.2205

Mean(X;) |1652| 20.03 20.7 |20.67 | 21.32 |24.09 | 1.0052

St.Dev(X,) | 38.39 | 40.79 | 4141 |41.41 | 42.04 |44.16| 0.8877

Max(X,) 199.1| 2288 | 239.2 | 240.4 | 250.7 | 306.1 | 16.7219
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In Chapter 3, we were unsuccessful in fitting models to this time se-
ries when assuming that the series followed a general bilinear process.
Based on the techniques used in this chapter, we see that the proce-
dure has preserved the properties of the mean and standard deviation.
The results of the simulation of n = 2000 time series are: the mean
of the means of X, was equal to 20.67 and the mean of the standard
deviations of X, was equal to 41.41. These values are almost identical
to the original time series which had a mean of 20.47 with a standard
deviation of 41.2205. The mean of the max(X,) = 240.4 was extremely
smaller than the maximum value of X = 812.

Caste River

Figure 4.8: Plot of actual time series (solid line) with overlaid simulated
diagonal pure bilinear time series plot (dotted line) for Castle River

Figure 4.8 displays time series plots of the original series X, and the
simulated series X,. The fitted series followed the pattern of the original
series in its entirety with only one exception. The simulated series was
unable to peak at the same magnitude as the original series. The
original series had flow rates of 396, 812 and 244 m®/s on day 157,
158 and 159 respectively. The simulated series peaked at around 200
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m?/s. This also explains the large difference between the mean of the
max(X,) and the max(X;).

3. South River

Table 4.4: Sampling Properties of X;, Mean(X,), St.Dev(X,) and Max(X,)
(South River)

1st Qu. | Median | Mean | 3rd Qu. | Max. | St.dev
X 0.2605 | 0.416 | 0.6855 | 0.752 13 0.964
Mean(X;) 0.6196 | 0.6395 | 0.6405 | 0.6616 |0.7564 | 0.0303
St.Dev(X,) 1.247 1.265 | 1.265 | 1.283 1.34 | 0.0264
Max(X,) 12.39 1295 | 12.96 | 13.54 | 15.44 | 0.8083

The mean of the means of X, for South River was equal to 0.6855 which
was very close the the mean of X, which had a value of 0.6405. The
mean of the standard deviations of X; was equal to 0.964 which was
slightly different from the standard deviation of the actual time series
which was equal to 1.265. The values of the max(X,) and the max(X,)
were very close with values 12.96 and 13.0 respectively.
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Figure 4.9: Plot of actual time series (solid line) with overlaid simulated

diagonal pure bilinear time series plot (dotted line) for South River

The time series plot of the original series X, and the simulated series

X, are displayed in Figure 4.9. The simulated series did not follow the

pattern of the original series to the same extent as the previous two

rivers.

4. Salmonier River

Table 4.5: Sampling Properties of X;, Mean(X,), St.Dev(X.) and Max(X.)

(Salmonier River)

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | St.dev
X 0043| 1025 | 258 [4208] 5 63.5 | 5.9732
Mean(X;) |3.250 | 3677 | 3.784 | 3788 | 3.897 |4.323 01617
St.Dev(X,) | 6.91 | 7.356 | 7.456 | 7.457 | 7.561 | 7.988 | 0.1544
Max(X,) |50.51| 6052 | 63.26 |63.48 | 66.38 |75.96 | 4.3091
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Figure 4.10: Plot of actual time series (solid line) with overlaid simulated
diagonal pure bilinear time series plot (dotted line) for Salmonier River

The results of the mean and standard deviation for Salmonier River
were not as precise as the results recorded for the other five rivers,
however, the sampling properties did appear to be maintained. The
mean of the actual time series and the mean of the means of the X,
were 4.208 and 3.788 respectively. The standard deviation of X, and
the mean of the standard deviations of X; were 5.9732 and 7.457 re-
spectively. The maximum value of X, = 63.5 was almost identical to
max(X,) which recorded a value of 63.48. The plot of the simulated
series X, in Figure 4.10 did not resemble the original series X,. Al-
though the sampling properties were preserved in the simulation, the
fact that the simulated plot did not follow the pattern of the original

series questions the appropriateness of the model.
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5. Gander River

Table 4.6: Sampling Properties of X;, Mean(X,), St.Dev(X;) and Max(X;)

(Gander River)

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | St.dev
X 235 | 7635 | 108 |130.1| 160 | 669 |94.1295
Mean(X,) |127.1| 1201 | 1295 |1295| 130 |132.3 | 0.7032
St.Dev(X) | 97.26 | 99.27 | 99.75 | 99.74 | 100.2 |102.4 | 0.69997
Max(X;) |600.5| 652 | 664.6 | 6649 | 677.9 |753.8 | 18.8715

Based on the results of the mean, standard deviation and maximum

value of the simulation study, we see that the procedures used in this

chapter sustained these properties for the Gander River. The original

series had a mean of 130.1 while the mean of the means of X, was
129.5. The standard deviation of X, was equal to 94.1295 while for X,

the mean of the standard deviations was 99.74. The maximum of X,
was equal to 669 while the mean of max(X;) was 664.9.
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Figure 4.11: Plot of actual time series (solid line) with overlaid simulated
diagonal pure bilinear time series plot (dotted line) for Gander River

With only some slight deviations from the original series, the simulated

series in Figure 4.11 modeled the original series effectively.

6. Moberly River

Table 4.7: Sampling Properties of X, Mean(X,), St.Dev(X;) and Max(X;)
(Moberly River)

Min. | 1st Qu. | Median | Mean | 3rd Qu. | Max. | St.dev
X 124 1.84 324 13.17 15.25 87.1 | 18.7409
Mean(X,) |12.94| 13.07 | 131 | 131 | 1313 [13.29| 0.0465
SZ.DEV(Xg) 18.89 19 19.04 19.04 19.07 | 19.17 | 0.0463
Max(X,) |86.69| 88.71 | 89.36 | 89.4 | 90.06 |92.72 | 0.9966

The results of Moberly River also showed convincing evidence that

the method of wavelet smoothing worked extremely well when fitting

models to river flow data. For Moberly River, the mean of X, was 13.17
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as compared to the mean of the means of X; which was equal to 13.1.
The standard deviation of X, was equal to 18.7409 which was very
close the the mean of the standard deviation of X, which had a value
of 19.04. The results for the maximum value were max(X;) = 87.1 and

max(X,) = 89.4.
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Figure 4.12: Plot of actual time series (solid line) with overlaid simulated
diagonal pure bilinear time series plot (dotted line) for Moberly River

Figure 4.12 displays time series plots of the original series X; and the
simulated series X;. The plot of the simulated series imitated the origi-
nal series with the exception of some small variations that were mainly

centered around the original series.

The simulated time series plots for Peace River, Gander River and Moberly
River simulated their respective original time series extremely close. The
simulated time series plot for Castle River was also very close to that of the
original series, with the only exception being the point in the time series
where a minimal number of points peaked the series far above any other

interval in the series. The simulated time series plots for South River and
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Salmonier River depicted similar patterns to that of their original series but
were not as exact as the other four. The main reason for this is the number
of ups and downs throughout the original series made it more difficult to
simulate the series exactly.

The effectiveness of the procedures to model river flow data as presented
in this chapter was based on two ch istics. The first was
concerned with the ability of the fitted model to preserve sampling properties

of the original series, and the second pertained to the models capability to
simulate the original time series. Overall, the sampling properties and the
simulated plots for all six rivers gave convincing evidence that the procedures
discussed throughout this chapter were very effective in modeling a two year
period of river flow data.
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Chapter 5

Conclusion

In many instances when analyzing time series data the time series is con-
sidered to follow a linear process and this is the best approach provided the
assumption of linearity is correct. A major problem that arises when model-
ing time series data is assuming the time series follows a linear process when

in fact it is non-linear. In many situations a time series may be generated by

an underlying random that is li and if this linearity

is overlooked the fitted models will have no meaning. The time series con-
sidered in this practicum were tested for linearity in Chapter 2 and in all
instances the time series were found to be non-linear.

In this practicum we fit time series models to the river flow variable for
six rivers based on two hes. The first h di in Chapter
3 assumed the time series followed a bilinear process. The second approach

discussed in Chapter 4 involved decomposing the time series into a wavelet

smoothed version and a random using wavelet hing tech-

niques, where the random component was assumed to follow a pure bilinear
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process. Simulation studies for both approaches were conducted to identify
whether the fitted models behaved in a similar manner to the original time
series.

For both certain 1i ies of the series
‘were compared to the original series. A time series plot which consisted of the

simulated series and the original series was also constructed for each river.
‘When assuming the time series followed a bilinear process there were some

cases where the i ies of the si d series were very close

to that of the original series. However, in neither instance did the simulated
plot provide encouraging evidence that the times series had an underlying
structure that was bilinear. The techniques employed in Chapter 4, how-
ever, were very successful in modeling the mean river flow time series. The
simulated results where almost identical to their respective original series.
The ability to appropriately model the river flow variable is a huge re-
source in the field of hydrology. The work in this icum and

especially the methods from Chapter 4, if applied to at least a 10 year river
flow series, will aid hydrologists in making improved forecasts and predic-

tions.
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Table A.1: River Flow Data For Peace River

1610 1590 1590 1590 1600 1600 1610 1620 1600 1590 1600 1580 1560 1580
1560 1520 1530 1530 1530 1520 1490 1490 1490 1490 1450 1430 1420 1360
1370 1310 1280 1220 1210 1140 1130 1130 1130 1140 1120 1120 1140 1190
1250 1280 1270 1230 1120 987 846 851 851 839 847 845 849 858 847 840 847
846 843 842 841 845 842 842 845 838 836 840 847 829 834 832 834 831 833
830 883 876 834 830 823 762 708 661 578 470 475 480 480 482 485 486 488
600 660 690 680 675 770 840 870 800 760 710 690 688 730 818 803 712 671
671 422 338 363 436 341 342 412 345 347 350 348 348 347 344 335 348 350
344 345 346 345 343 347 350 353 352 352 349 432 356 361 393 338 340 338
336 353 343 342 341 342 345 352 369 344 355 330 329 484 344 342 341 341
342 342 402 363 343 338 336 336 337 545 659 670 418 466 380 347 432 577
492 536 680 539 648 511 640 527 562 752 579 588 915 1010 995 1020 830
878 1090 915 689 614 656 550 348 401 659 568 578 613 481 392 347 344 385
381 356 354 354 355 354 354 378 378 360 357 357 387 356 355 388 426 353
350 448 403 387 367 532 353 355 354 575 902 517 589 351 346 517 935 966
869 643 495 496 526 580 468 490 457 474 476 443 546 716 529 934 605 902
1030 1060 1140 1230 1100 744 666 665 717 794 681 660 534 657 824 899 921
1040 1140 739 663 688 1210 956 735 846 931 1140 728 719 969 1260 1400
1300 1020 1350 1410 1350 1250 1350 1320 1250 1100 1050 1000 970 990 950
930 900 1070 1150 1180 1170 1160 1150 1160 1300 1700 1450 1230 1230 1650
1680 1760 1640 1700 1700 1700 1710 1710 1740 1740 1740 1740 1740 1740
1740 1740 1740 1630 1590 1550 1530 1530 1530 1530 1530 1530 1530 1510
1390 1390 1390 1380 1410 1380 1340 1340 1300 1200 1200 1230 1210 1220
1220 1220 1240 1230 1340 1330 1340 1410 1460 1470 1470 1420 1190 1180
1210 1210 1270 1270 1260 1250 1280 1280 1280 1280 1300 1310 1270 1270
1280 1290 1270 1270 1280 1260 1270 1270 1260 1250 1260 1260 1260 1250
1310 1310 1270 1260 1280 1280 1280 1200 1170 1190 1240 1290 1280 1250
1250 1260 1260 1250 1250 1240 1220 1200 1200 1190 1190 1180 1170 1150
1140 1130 1120 1100 1100 1110 1120 1130 1140 1150 1160 1170 1180 1180
1180 1170 1160 1150 1140 1130 1110 1100 1100 1100 1100 1120 1100 950 960
1000 1070 1120 1200 1600 1570 1570 1560 1550 1610 1320 1000 850 780 770
790 820 725 640 595 600 650 900 825 700 600 605 612 785 939 1010 921 566
525 737 1120 1050 1050 1140 1350 1370 1440 1430 1520 1310 1250 1420 1410
1460 1420 1440 1410 1390 1380 1310 1510 1660 1610 1530 1570 1500 1500
1820 2510 3420 4220 4550 4460 4510 4590 4660 4650 4660 4660 4660 4670
4730 4740 4760 4780 4880 4950 4940 4930 4920 4980 4710 3540 3480 3680
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4160 4650 4920 5010 5020 5060 5010 5010 5100 5190 5060 3690 2320 729
2000 3800 4150 4180 3800 3250 3190 3180 3180 3110 3010 2800 2390 1820
1770 1750 1750 1760 1750 1750 1740 1730 1730 1750 1780 1740 1760 1780
1770 1730 1770 1800 1710 1780 1770 1750 1800 1760 1790 1740 1730 1810
1730 1770 1780 1780 1770 1770 1770 1650 1610 1580 1600 1330 760 897 1070
918 796 720 593 416 388 924 1200 1300 1300 1420 1540 1410 1470 1490 1500
1500 1500 949 925 1350 1420 1420 1250 1380 967 965 1140 1380 1260 1410
1530 1020 1240 1330 1530 1500 1540 1110 726 698 875 1120 1200 1300 1100
1140 1230 1340 1440 1540 1620 1650 1650 1600 1480 1400 1340 1380 1440
1500 1450 1450 1470 1490 1500 1490 1460 1450 1470 1460 1450 1460 1480
1460 1450 1460 1490 1500 1510 1500 1440 1400 1380 1340 1340 1390 1450
1500 1500 1490 1470
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Table A.2: River Flow Data For Castle River
2.36 2.30 2.26 2.22 2.19 2.15 2.10 2.12 2.16 2.28 2.26 2.20 2.17 2.13 2.10
2.08 2.05 2.03 2.02 2.03 2.05 2.05 2.05 2.14 2.18 2.23 2.30 2.40 2.50 2.60 2.75
2.95 3.12 3.10 3.06 2.98 2.88 2.84 2.78 2.74 2.69 2.64 2.58 2.53 2.50 2.47 2.45
2.47 2.52 2.85 3.30 3.70 3.92 4.00 4.03 4.00 3.90 3.79 3.68 3.51 3.50 3.50 3.52
3.62 3.90 4.46 5.09 6.10 6.75 8.34 9.48 8.66 8.18 8.50 8.71 8.25 8.01 7.79 7.64
7.98 7.61 7.27 7.06 6.71 6.29 6.18 5.91 5.85 5.83 5.78 6.04 6.30 6.26 6.30 7.23
7.29 7.28 7.56 7.70 7.45 7.47 7.39 7.53 7.80 7.64 7.22 7.27 7.18 7.21 7.68 8.00
8.60 9.00 9.60 10.90 10.80 11.00 10.90 10.60 10.60 10.10 10.70 11.00 11.80
14.60 43.00 70.50 78.10 60.00 54.70 58.30 64.00 60.30 57.60 65.70 75.80 78.00
91.90 89.20 76.50 74.30 64.40 59.10 56.60 60.50 55.50 49.60 52.40 69.00 90.80
111.00 111.00 102.00 95.90 89.30 90.90 396.00 812.00 244.00 146.00 105.00
88.20 83.00 81.10 80.60 73.50 70.00 70.60 68.30 62.40 62.90 56.30 64.60 65.40
64.10 61.80 59.40 61.20 54.30 50.80 48.10 48.50 47.60 52.00 61.80 54.20 48.70
45.70 41.50 38.70 38.70 34.90 31.40 28.40 26.00 24.70 24.40 22.20 20.90 19.90
19.40 32.20 29.00 26.60 28.50 25.80 23.20 22.70 20.70 19.00 17.90 17.20 16.70
18.60 17.50 16.40 15.40 14.30 14.80 15.20 14.40 13.70 16.90 17.50 16.50 15.80
15.10 14.80 14.30 14.10 13.60 13.10 12.30 11.90 11.40 10.90 10.70 10.50 10.00
9.77 9.60 9.82 9.58 9.19 8.73 8.34 8.24 8.20 8.33 8.36 7.87 7.64 7.46 7.37 7.20
6.88 6.88 6.71 6.68 6.70 6.82 6.46 6.26 6.07 5.88 5.74 5.54 5.36 5.23 5.05 4.95
5.33 4.99 5.05 4.90 4.81 5.07 4.86 4.75 4.67 4.60 4.57 4.76 8.90 10.60 11.10
11.00 10.50 10.60 11.80 11.90 11.40 10.80 10.40 10.20 9.68 9.22 8.82 8.66 8.25
7.90 7.60 6.61 6.39 5.78 5.65 5.94 5.68 5.62 5.52 5.32 6.00 10.90 9.35 9.44 9.85
9.45 11.30 15.60 21.10 22.70 24.50 24.10 21.30 19.40 17.60 16.20 19.60 22.90
21.60 17.30 15.70 20.60 42.30 38.80 31.30 25.60 22.70 19.10 16.10 14.90 10.90
11.30 11.40 11.60 11.80 12.00 11.80 11.70 10.90 9.95 10.30 9.70 8.72 8.10 8.11
8.30 8.70 9.00 9.30 9.40 9.50 9.60 8.50 7.50 7.00 6.99 6.18 5.41 4.74 4.15 4.19
4.88 5.68 6.60 7.68 8.95 7.85 7.40 6.97 6.57 6.19 5.83 5.63 5.45 5.26 5.08 4.90
4.74 4.58 4.42 4.26 4.12 3.98 3.86 3.74 3.63 3.53 3.41 3.31 3.41 3.49 3.97 4.69
5.53 6.54 7.71 9.82 12.50 15.90 14.80 13.70 9.37 9.04 9.51 8.92 8.42 7.96 8.38
7.74 7.60 7.47 7.36 7.23 7.10 7.02 6.94 6.84 6.76 6.68 6.70 8.98 12.00 11.20
10.80 10.40 10.00 9.80 9.57 9.35 9.10 8.89 8.69 8.53 8.39 8.24 8.10 7.96 7.82
7.92 7.69 7.53 7.38 7.31 7.27 7.21 7.17 7.13 7.09 7.05 8.05 10.40 14.20 22.90
38.60 56.40 50.30 41.20 33.70 29.40 27.70 29.40 30.60 28.80 27.40 25.70 24.10
22.70 22.40 43.60 39.30 33.50 29.70 26.60 24.90 23.90 23.70 23.30 22.20 22.00
21.40 21.90 22.10 21.00 19.70 18.80 18.80 20.20 25.10 37.60 48.20 57.10 64.90
69.20 65.90 59.70 53.90 52.00 64.90 63.40 61.30 64.80 66.90 82.70 88.90 79.60
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70.90 64.00 64.70 76.10 118.00 125.00 101.00 94.50 117.00 123.00 103.00 86.30
76.20 67.10 65.30 63.70 63.10 65.50 61.60 50.30 40.50 35.50 46.40 45.10 56.90
63.00 57.30 55.00 55.40 52.40 48.40 45.50 45.10 45.00 45.90 42.20 35.90 31.60
28.80 27.30 26.80 25.60 23.50 21.70 20.40 19.50 19.10 18.80 18.00 16.30 15.10
14.70 14.20 13.70 13.50 13.60 13.70 13.10 11.90 11.80 12.20 10.10 9.61 9.08
8.76 8.42 8.74 8.33 7.82 7.50 7.25 7.04 6.86 6.59 6.52 6.41 6.24 6.06 5.96 5.59
5.42 5.31 5.24 5.04 4.89 4.58 4.51 4.45 4.47 4.34 4.29 4.09 3.76 3.78 3.73 3.74
3.90 4.13 3.94 3.77 3.71 3.70 3.64 3.53 3.49 3.47 3.45 3.38 3.35 3.66 5.15 4.46
4.17 4.19 4.27 4.19 4.15 4.14 4.10 4.00 3.89 3.96 4.07 4.20 4.26 4.29 4.27 4.33
4.32 4.25 4.22 4.16 4.09 4.04 4.03 4.01 3.98 4.04 4.00 3.90 3.91 3.95 3.82 3.68
3.64 3.67 3.66 3.59 3.48 3.45 3.46 3.46 3.45 3.44 3.44 3.28 3.13 3.01 2.95 2.82
2.56 2.46 2.35 2.23 2.14 2.02 1.95 1.87 1.80 1.74 1.71 1.69 1.68 1.62 1.66 1.65
1.66 1.67 1.68 1.72 1.83 1.97 2.07 2.05 2.03 1.98 1.94 1.92 1.91 1.92 1.94 1.96
2.01 2.10 2.12 2.11 2.10 2.09 2.08 2.07 2.06 2.04 2.04 2.03 2.04 2.04 2.04 2.00
1.97 1.96 1.94 1.96 1.97 1.98 1.99
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Table A.3: River Flow Data For South River
0.560 0.510 0.475 0.450 0.430 0.418 0.740 9.490 10.300 3.510 1.520 13.000
0.900 0.650 1.510 1.620 1.690 1.250 0.948 0.809 0.688 0.596 0.538 0.654 0.730
0.693 0.627 0.560 0.500 0.460 0.420 0.385 0.350 0.320 0.295 0.272 0.340 0.440
0.390 0.340 0.320 0.290 0.270 0.260 0.245 0.235 0.280 0.320 0.280 0.260 0.240
0.260 0.940 0.850 0.740 2.790 3.580 1.640 1.550 1.200 0.922 0.775 0.650 0.570
0.500 0.440 0.390 0.900 7.500 6.160 2.600 1.280 1.250 0.681 0.690 0.540 0.500
0.470 0.440 0.410 0.600 4.580 5.060 3.430 2.330 1.370 1.100 0.922 0.754 0.615
0.542 0.500 0.460 0.420 0.400 0.380 0.370 0.355 0.340 0.650 1.140 0.884 0.705
0.637 0.726 1.230 1.980 1.950 1.420 1.130 0.921 0.848 0.848 0.780 0.685 1.640
1.670 2.350 1.800 1.150 0.850 0.687 0.605 0.533 0.500 0.479 0.456 0.440 0.440
0.475 0.581 0.642 0.601 0.532 0.494 0.451 0.397 0.346 0.312 0.293 0.279 0.267
0.257 0.284 0.279 0.257 0.244 0.215 0.195 0.191 0.191 0.199 0.204 0.201 0.213
0.227 0.216 0.192 0.182 0.325 0.356 0.310 0.268 0.247 0.245 0.278 0.395 0.392
0.313 0.262 0.233 0.228 0.228 0.193 0.166 0.158 0.159 0.149 0.137 0.131 0.122
0.115 0.107 0.131 0.176 0.174 0.162 0.141 0.125 0.101 0.089 0.087 0.090 0.088
0.087 0.081 0.078 0.082 0.081 0.084 0.544 0.714 0.488 0.360 0.378 0.474 0.414
0.301 0.240 0.195 0.168 0.153 0.143 0.139 0.144 0.132 0.116 0.103 0.096 0.094
0.090 0.083 0.076 0.069 0.074 0.076 0.074 0.072 0.072 0.071 0.069 0.073 0.076
0.097 0.102 0.113 0.212 0.405 0.371 0.316 0.271 0.228 0.372 0.735 0.576 0.469
0.399 0.301 0.245 0.207 0.178 0.164 0.169 2.440 1.520 0.793 0.535 0.450 0.420
0.366 0.337 0.643 0.687 0.511 0.409 0.342 0.303 0.278 0.262 0.249 0.236 0.231
0.222 0.209 0.201 0.220 0.265 0.286 0.278 0.266 0.254 0.649 0.977 0.842 0.770
0.550 0.360 0.290 0.295 0.300 0.270 0.262 0.255 0.242 0.226 0.230 0.234 0.231
0.378 0.405 0.358 0.310 1.310 2.110 1.070 0.644 0.447 0.390 1.050 1.030 0.743
0.677 0.972 1.280 1.070 0.731 0.584 0.503 0.450 0.413 0.394 0.416 0.426 0.393
0.491 0.522 3.020 2.490 1.710 1.400 2.950 1.770 1.200 0.910 0.717 0.764 0.984
0.853 1.530 1.350 1.040 1.130 1.040 1.900 2.140 1.950 1.240 1.080 0.920 0.825
0.750 0.690 0.875 0.850 0.825 0.910 1.100 1.660 1.880 1.950 1.290 0.973 0.769
0.637 0.590 0.540 0.460 0.380 0.320 0.280 0.250 0.232 0.217 0.198 0.186 0.175
0.170 0.260 2.000 1.920 0.950 0.600 1.190 1.160 1.540 3.870 1.800 0.911 0.617
0.541 1.400 1.180 0.721 0.529 0.420 0.340 0.298 0.270 0.245 0.235 0.222 0.210
0.202 0.228 0.245 0.320 1.090 1.260 1.620 0.932 1.050 1.880 1.420 2.470 1.810
1.000 0.660 0.509 0.464 0.490 0.612 1.450 1.710 1.270 0.903 0.658 0.539 0.470
0.410 0.380 0.350 0.320 0.340 0.362 0.330 0.300 0.278 0.265 0.255 0.249 0.311
0.836 0.867 0.711 0.591 0.512 0.582 0.758 0.672 0.508 0.414 0.383 0.381 0.349
0.310 0.298 0.307 0.338 0.402 0.707 0.662 0.604 0.505 0.443 0.453 0.464 0.623
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0.988 1.080 0.916 0.750 0.632 0.580 0.661 0.713 0.688 0.586 0.480 0.422 0.385
0.354 0.329 0.307 0.288 0.272 0.290 0.296 0.294 0.285 0.265 0.422 0.710 0.560
0.439 0.373 0.317 0.294 0.313 0.365 0.377 0.428 0.713 0.606 0.456 0.365 0.312
0.291 0.293 0.291 0.281 0.259 0.228 0.210 0.199 0.189 0.187 0.210 0.307 0.318
0.291 0.252 0.775 1.070 0.691 0.505 0.423 0.356 0.302 0.285 0.262 0.241 0.234
0.241 0.343 0.362 0.329 0.284 0.261 0.247 0.234 0.225 0.220 0.300 0.420 0.525
0.394 0.310 0.288 0.419 1.670 1.840 1.630 1.220 0.876 0.616 0.471 0.391 0.368
0.338 0.294 0.647 1.660 1.090 1.070 0.835 0.590 0.469 0.432 0.396 0.381 0.333
0.302 0.280 0.262 0.250 0.236 0.226 0.212 0.199 0.190 0.188 0.186 0.191 0.176
0.156 0.144 0.134 0.124 0.166 0.170 0.159 0.178 0.224 0.212 0.192 0.184 0.154
0.139 0.125 0.130 0.127 0.118 0.132 0.127 0.121 0.135 0.229 0.905 0.693 0.463
0.376 0.310 0.248 0.224 0.201 0.189 0.174 0.172 0.173 0.182 0.192 0.190 0.188
0.227 0.413 0.408 0.327 0.277 0.258 0.256 0.254 0.260 1.150 1.030 0.656 0.734
0.695 0.502 0.396 0.356 0.316 0.283 0.265 0.774 0.759 0.503 0.429 0.532 1.310
1.080 0.706 0.491 0.405 0.407 0.416 0.405 0.379 0.368 0.354 0.333 0.315 0.296
0.285 0.282 0.303 0.365 0.383 0.389 0.434 0.533 0.491 0.414 0.423 0.506 0.480
0.411 0.371 0.340 0.315 0.301 0.558 2.150 1.630 0.957 0.670 1.170 3.050 2.380
1.600 1.130 0.974 1.010 0.808 0.649 0.569 0.504 1.830 2.340 1.410 0.942 0.718
0.682 1.030 1.790 2.780 2.490 1.530 1.080 0.880 1.100 4.440 3.000 1.570 1.110
0.897 0.776 0.684 0.623 0.615 0.825 1.320 0.906 0.747 0.635 0.591 0.774 0.729
0.684 0.583 0.714 1.140



Table A.4: River Flow Data For Salmonier River

5.600 5.000 4.650 4.300 3.850 5.000 8.000 53.500 45.000 16.200 8.000 5.600
7.000 9.500 13.900 17.200 18.600 14.800 10.300 6.650 4.000 3.400 2.750 2.250
1.950 1.700 1.500 1.300 1.150 1.050 0.940 0.860 0.790 0.740 0.675 0.630 0.580
0.540 0.505 0.478 0.445 0.422 0.400 0.380 0.360 0.345 0.325 0.900 1.750 1.500
1.320 1.170 1.100 1.020 0.910 0.830 12.800 8.000 5.600 5.600 7.500 9.550
7.250 5.800 4.400 3.200 4.200 9.000 20.000 46.000 30.000 18.000 6.000 3.800
2.400 2.850 3.550 3.400 3.200 2.800 2.600 18.000 46.600 28.200 17.900 9.880
7.700 6.760 5.120 4.110 3.060 2.710 3.900 4.460 4.090 3.000 2.570 2.030 2.030
3.660 5.230 4.900 3.970 3.400 3.980 5.150 6.960 19.000 17.300 10.300 7.010
5.720 4.640 3.950 3.270 4.820 6.540 7.180 4.790 3.490 2.690 2.090 1.640 1.440
1.310 1.160 0.976 0.947 1.370 2.020 2.340 1.940 1.610 1.320 0.958 0.797 0.693
0.592 0.553 0.545 0.554 0.568 0.644 0.621 0.556 0.519 0.502 0.496 0.428 0.300
0.342 0.382 0.386 0.391 0.411 0.411 0.379 0.315 0.287 0.403 0.452 0.366 0.238
0.282 0.511 5.160 8.010 5.580 3.350 2.140 1.580 1.200 0.850 0.609 0.531 0.471
0.399 0.290 0.221 0.178 0.206 0.211 0.163 0.143 0.109 0.108 0.109 0.104 0.094
0.078 0.083 0.083 0.079 0.076 0.068 0.072 0.081 0.070 0.043 0.124 5.340 4.500
4.160 3.250 9.310 13.400 7.550 4.930 3.490 2.340 1.690 1.360 1.050 0.824 0.636
0.495 0.428 0.401 0.354 0.264 0.238 0.227 0.213 0.200 0.203 0.210 0.228 0.212
0.207 0.218 0.195 0.173 0.150 0.124 0.111 0.112 0.115 0.117 0.124 0.128 0.143
0.142 0.438 2.530 1.960 2.250 2.140 1.690 1.310 1.110 0.884 0.765 2.640 63.500
24.200 9.310 5.350 5.340 4.980 3.780 7.080 20.300 11.800 6.610 4.470 2.990
2.390 1.800 1.490 13.000 10.100 7.640 4.670 3.400 2.660 7.960 12.000 7.810
5.600 3.410 2.540 3.850 3.710 2.970 2.450 2.710 2.770 2.390 2.510 2.690 2.370
1.980 1.660 1.520 1.360 3.450 4.910 4.320 6.330 5.250 3.920 3.030 3.220 4.250
3.510 2.770 2.300 1.930 8.130 7.680 6.210 4.690 4.210 4.310 3.880 3.120 2.570
2.550 2.240 2.020 3.630 7.820 6.330 4.880 3.610 3.040 42.400 24.400 13.500
9.090 22.100 13.200 8.800 5.680 4.350 3.710 3.300 3.000 2.700 2.500 2.300
2.200 2.080 4.800 20.400 17.000 9.480 5.750 4.870 4.100 3.450 3.100 2.800
3.300 4.200 5.400 6.900 8.500 7.250 6.200 5.400 4.700 4.100 3.550 3.150 2.800
2.250 1.900 1.650 1.400 1.200 1.100 0.910 0.815 0.740 0.690 0.650 2.000 4.000
10.000 7.000 9.000 8.000 6.750 6.000 9.800 7.000 4.600 2.800 2.150 4.000 3.600
3.000 2.400 1.750 1.400 1.200 1.060 0.950 0.850 0.775 0.700 0.650 0.625 0.600
4.000 9.970 10.700 9.560 5.670 5.430 7.080 10.300 14.800 9.710 4.500 3.030
2.040 1.530 1.550 3.560 12.500 10.500 8.320 4.950 3.680 2.950 2.700 2.400
2.200 1.950 1.750 1.600 1.450 1.350 1.250 1.150 1.070 1.000 1.150 3.100 9.290
7.540 5.060 3.490 2.670 19.000 14.000 10.000 4.200 2.600 2.000 1.600 1.450
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1.280 1.120 1.000 0.950 1.500 2.400 1.700 1.400 1.200 1.080 0.860 1.600 3.200
2.600 2.100 1.750 1.320 1.600 1.800 2.200 1.900 1.700 1.480 1.300 1.200 1.050
3.600 3.000 1.800 1.450 3.400 3.000 2.520 2.120 2.000 2.060 2.680 3.090 2.340
1.760 1.460 1.150 2.530 4.140 5.640 5.140 5.010 7.900 6.530 4.510 3.070 2.120
1.600 1.510 1.320 1.220 1.190 1.010 0.873 0.740 0.674 0.603 0.779 2.700 2.180
1.750 1.460 2.710 3.560 3.230 2.700 2.280 1.680 1.280 1.150 0.910 0.923 1.990
1.850 1.650 1.210 0.970 0.799 0.650 0.482 0.375 0.312 0.255 0.424 1.060 0.836
0.666 0.575 0.536 0.546 6.190 11.400 10.700 9.440 6.340 3.890 2.500 3.690
7.120 5.070 3.230 7.640 16.300 10.800 9.360 6.640 4.100 2.580 2.120 1.960
2.100 1.920 1.590 1.300 1.310 6.330 4.880 3.480 2.390 1.680 1.260 1.530 1.550
1.210 0.949 0.774 0.633 0.554 0.465 0.489 0.492 0.391 0.843 2.300 1.390 1.050
0.969 0.917 0.760 0.582 0.485 0.412 0.363 0.719 0.813 0.600 0.538 0.817 3.810
2.720 4.040 5.000 5.800 4.500 2.920 2.050 1.430 0.974 0.767 0.607 0.565 0.535
0.500 0.450 0.650 1.380 1.250 1.150 1.100 1.030 0.960 0.930 0.940 6.750 5.400
4.000 6.500 5.000 4.000 3.100 3.200 2.900 2.280 2.450 8.400 6.000 4.400 3.400
3.800 9.500 6.500 5.200 4.200 3.250 5.200 6.000 5.000 4.200 3.600 2.920 2.550
2.180 1.930 2.250 2.800 3.400 4.200 4.000 3.600 3.200 2.550 2.200 2.000 3.000
4.950 4.200 3.650 3.180 2.800 2.450 2.180 7.000 20.100 14.000 10.000 7.500
5.950 7.250 6.300 10.500 8.000 14.000 15.200 7.430 5.540 4.750 3.560 23.600
18.000 7.830 5.180 3.550 2.570 3.740 5.280 5.240 4.670 4.890 3.780 4.670
13.000 26.000 15.600 8.750 5.530 3.350 2.290 1.770 2.270 3.650 8.620 8.070
5.620 3.830 2.730 2.630 4.000 3.600 3.450 4.400 8.000 7.000
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Table A.5: River Flow Data For Gander River
40.8 40.2 39.2 39.3 39.1 38.8 40.0 48.2 66.3 103.0 134.0 149.0 152.0 152.0
152.0 148.0 151.0 155.0 155.0 153.0 150.0 145.0 138.0 135.0 132.0 128.0 122.0
116.0 109.0 104.0 98.3 92.5 88.5 83.7 80.6 78.4 74.8 71.1 68.2 65.9 63.3 60.5
58.455.552.9 51.4 51.2 48.3 47.0 46.0 44.2 42.6 425 41.6 41.343.9 447475
56.5 66.3 75.4 80.7 83.5 84.9 84.3 83.2 82.2 80.0 81.1 91.4 115.0 141.0 161.0
172.0 177.0 175.0 169.0 159.0 152.0 146.0 139.0 134.0 143.0 167.0 204.0 233.0
251.0 258.0 256.0 246.0 232.0 217.0 203.0 189.0 179.0 165.0 152.0 143.0 136.0
130.0 128.0 128.0 129.0 130.0 136.0 156.0 203.0 294.0 431.0 575.0 653.0 669.0
658.0 634.0 615.0 612.0 607.0 603.0 593.0 549.0 499.0 464.0 445.0 426.0 403.0
381.0 364.0 349.0 337.0 325.0 312.0 300.0 289.0 275.0 263.0 248.0 233.0 216.0
201.0 185.0 173.0 161.0 150.0 140.0 131.0 126.0 120.0 111.0 103.0 98.0 93.1
90.1 86.9 81.3 78.3 75.9 72.4 70.9 68.2 65.8 65.3 66.8 67.9 65.9 65.2 66.4 74.0
85.2 92.7 96.8 95.0 92.5 88.9 84.9 80.2 76.3 72.6 70.8 68.8 65.2 62.0 59.7 58.4
64.4 78.7 82.5 77.1 71.3 66.1 63.0 60.6 56.6 53.1 50.0 48.7 45.9 41.9 39.3 39.2
39.2 37.9 36.7 36.6 38.2 41.5 47.0 52.8 54.6 55.6 56.7 56.7 54.5 53.6 52.3 52.4
51.8 50.2 47.7 45.9 44.8 42.3 39.9 39.4 38.2 35.3 33.6 39.4 45.9 47.2 47.3 48.2
48.1 46.8 47.1 47.3 46.6 46.8 48.0 52.7 57.6 59.5 59.3 57.7 63.4 74.2 83.1 87.0
87.3 85.2 80.9 77.6 73.3 71.5 98.4 158.0 187.0 191.0 187.0 190.0 194.0 189.0
180.0 176.0 169.0 160.0 152.0 141.0 132.0 126.0 116.0 120.0 122.0 128.0 126.0
120.0 116.0 113.0 112.0 111.0 110.0 105.0 104.0 106.0 111.0 114.0 113.0 113.0
114.0 117.0 119.0 121.0 121.0 116.0 111.0 105.0 103.0 101.0 103.0 101.0 97.3
94.5 93.8 88.4 87.3 86.9 86.9 86.5 86.7 86.4 87.0 88.8 89.0 89.8 89.7 93.2 95.1
95.393.7 92.5 91.8 90.2 90.8 94.4 96.8 97.1 97.8 114.0 189.0 237.0 255.0 285.0
363.0 389.0 375.0 342.0 308.0 275.0 253.0 228.0 210.0 193.0 179.0 171.0 163.0
153.0 145.0 140.0 133.0 126.0 118.0 113.0 105.0 100.0 97.5 96.9 98.7 102.0
113.0 134.0 163.0 186.0 198.0 210.0 205.0 192.0 175.0 158.0 143.0 132.0 123.0
114.0 107.0 100.0 92.5 88.5 82.7 77.9 76.4 72.4 70.8 69.3 74.6 73.4 77.0 84.9
115.0 163.0 185.0 189.0 189.0 189.0 196.0 201.0 191.0 178.0 163.0 149.0 137.0
125.0 113.0 104.0 96.0 87.5 83.2 76.6 73.1 73.8 83.5 98.2 119.0 129.0 129.0
130.0 170.0 258.0 294.0 291.0 272.0 251.0 233.0 231.0 261.0 312.0 346.0 348.0
340.0 322.0 305.0 290.0 275.0 255.0 240.0 228.0 216.0 204.0 192.0 185.0 175.0
180.0 189.0 195.0 190.0 181.0 172.0 168.0 166.0 162.0 154.0 140.0 132.0 139.0
142.0 140.0 132.0 128.0 122.0 115.0 110.0 107.0 109.0 115.0 124.0 122.0 121.0
122.0 125.0 126.0 127.0 133.0 139.0 141.0 139.0 135.0 129.0 124.0 118.0 112.0
108.0 105.0 102.0 97.2 91.4 89.5 86.8 85.2 92.7 105.0 113.0 116.0 116.0 114.0
112.0 111.0 109.0 105.0 102.0 96.0 91.4 90.7 87.8 85.6 93.0 104.0 113.0 115.0
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115.0 113.0 109.0 108.0 108.0 109.0 109.0 110.0 110.0 109.0 105.0 101.0 102.0
106.0 108.0 109.0 109.0 110.0 109.0 106.0 101.0 100.0 96.3 92.4 89.4 86.2 82.9
78.0 75.0 75.2 76.2 76.6 81.1 84.7 89.3 89.8 87.7 83.4 80.1 78.5 78.3 76.5 744
71.2 67.6 68.9 76.3 85.9 92.3 93.0 92.9 92.1 88.8 85.1 82.1 83.0 114.0 167.0
192.0 196.0 191.0 182.0 172.0 165.0 160.0 154.0 146.0 137.0 126.0 122.0 127.0
131.0 130.0 124.0 117.0 108.0 101.0 93.7 86.3 81.0 74.9 69.8 64.6 59.3 57.5
55.9 53.2 49.4 47.0 46.4 43.8 40.8 39.8 39.1 37.6 37.0 36.0 36.8 36.9 35.5 35.2
34.9 34.5 32.8 31.6 30.2 29.1 28.3 27.4 26.0 25.0 23.9 23.5 23.5 25.8 26.3 27.8
28.1 28.0 27.3 26.7 26.2 26.4 30.0 33.8 37.9 39.9 64.1 149.0 199.0 208.0 212.0
212.0 207.0 199.0 192.0 186.0 170.0 166.0 172.0 173.0 167.0 160.0 155.0 160.0
163.0 161.0 156.0 150.0 142.0 131.0 122.0 121.0 119.0 115.0 110.0 105.0 98.7
93.8 90.9 88.1 84.4 82.3 78.7 77.7 77.4 76.3 75.7 77.8 76.3 78.3 79.6 80.6 78.9
76.9 76.1 76.2 78.5 80.4 80.9 78.9 77.7 78.9 87.2 101.0 120.0 161.0 198.0 207.0
204.0 198.0 190.0 185.0 182.0 178.0 168.0 158.0 151.0 149.0 149.0 151.0 153.0
150.0 144.0 144.0 173.0 228.0 251.0 256.0 252.0 239.0 223.0 206.0 192.0 190.0
196.0 196.0 197.0 190.0 187.0 177.0 166.0 156.0 145.0 143.0 148.0



Table A.6: River Flow Data For Moberly River
2.052.032.00 1.97 1.93 1.85 1.82 1.79 1.76 1.75 1.70 1.65 1.64 1.62 1.59 1.58
1.57 1.56 1.56 1.55 1.52 1.48 1.45 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33
1.331.321.321.311.291.28 1.271.26 1.25 1.24 1.25 1.24 1.25 1.25 1.26 1.27
1.28 1.29 1.29 1.30 1.30 1.30 1.31 1.31 1.32 1.33 1.34 1.36 1.35 1.34 1.33 1.32
1.33 1.34 1.35 1.36 1.38 1.42 1.45 1.47 1.49 1.50 1.51 1.50 1.51 1.51 1.52 1.52
1.531.54 1.55 1.58 1.62 1.64 1.67 1.72 1.75 1.79 1.82 1.85 1.86 1.88 1.92 1.97
2.01 2.10 2.15 2.20 2.21 2.24 2.29 2.36 2.42 2.48 2.53 2.63 2.72 2.85 3.00 3.20
3.60 4.50 5.50 6.40 7.19 7.37 8.18 8.95 9.72 10.40 11.70 12.70 13.80 14.70
15.40 16.70 18.90 22.00 25.90 31.20 36.60 41.90 47.80 53.60 58.50 62.60 65.40
66.00 64.40 61.50 58.80 57.00 56.10 55.20 54.60 54.50 55.80 57.30 57.90 56.80
54.80 52.60 50.50 49.20 48.40 48.50 48.10 46.90 45.60 44.20 43.10 41.70 40.50
38.20 36.10 33.80 31.90 30.30 28.90 27.20 25.60 24.80 23.80 22.60 21.40 19.80
18.60 17.40 16.50 16.30 16.40 17.70 26.60 53.30 66.70 76.50 78.90 77.30 73.50
74.00 73.40 69.10 64.00 58.80 53.60 49.10 45.00 40.50 37.80 35.20 33.00 30.70
28.60 26.70 25.10 23.40 21.80 19.90 18.70 17.80 16.40 15.10 14.30 13.40 12.50
11.50 10.80 10.20 9.68 9.09 8.33 8.02 8.00 7.92 7.63 7.62 7.24 6.83 6.59 6.36
6.45 6.61 6.76 6.93 6.93 6.94 6.84 6.82 6.57 6.57 6.62 6.56 6.16 6.17 5.67 5.38
5.23 5.04 4.89 4.74 4.64 4.70 4.84 4.62 4.20 4.08 3.99 3.89 3.77 3.64 3.55 3.41
3.33 3.23 3.12 2.98 2.91 2.88 3.00 3.01 2.95 2.94 2.95 2.84 2.74 2.65 2.62 2.57
2.55 2.57 2.65 2.43 2.29 2.30 2.32 2.43 2.56 2.58 2.62 2.85 2.81 2.77 2.78 2.69
2.70 2.80 2.79 3.11 3.24 2.95 2.68 2.50 2.37 2.32 2.30 2.25 2.00 1.87 1.86 1.92
2.15 2.40 2.50 2.55 2.54 2.52 2.47 2.41 2.38 2.35 2.32 2.29 2.26 2.23 2.20 2.17
2.142.10 2.03 1.99 1.98 1.99 2.00 1.98 1.96 1.90 1.88 1.85 1.84 1.83 1.84 1.85
1.86 1.88 1.90 1.92 1.94 1.95 1.97 1.98 1.99 2.00 2.03 2.04 2.02 2.00 1.99 1.97
1.951.931.90 1.88 1.87 1.87 1.84 1.78 1.75 1.74 1.74 1.73 1.72 1.70 1.65 1.60
1.541.451.39 1.35 1.30 1.26 1.25 1.26 1.27 1.29 1.31 1.32 1.33 1.32 1.30 1.29
1.271.28 1.29 1.30 1.32 1.34 1.35 1.39 1.40 1.43 1.45 1.49 1.48 1.47 1.47 1.50
1.54 1.55 1.54 1.51 1.50 1.47 1.45 1.42 1.41 1.41 1.40 1.40 1.40 1.40 1.41 1.42
1.431.44 1.45 1.47 1.48 1.48 1.49 1.52 1.55 1.56 1.59 1.60 1.61 1.61 1.61 1.61
1.60 1.59 1.58 1.56 1.54 1.52 1.51 1.50 1.50 1.50 1.52 1.55 1.60 1.62 1.69 1.72
1.78 1.80 1.82 1.85 1.89 1.92 1.99 2.05 2.10 2.20 2.40 2.60 3.40 4.20 4.90 5.80
7.00 9.00 11.00 14.00 18.00 22.00 27.00 32.00 35.00 36.40 36.10 34.70 35.40
35.60 35.70 37.70 38.50 37.80 36.80 35.50 34.80 33.00 31.00 28.70 27.30 26.20
25.20 25.10 24.60 24.90 24.60 25.90 28.60 29.90 31.30 33.30 36.20 38.80 41.90
45.60 50.50 53.40 54.30 57.00 64.10 71.00 75.20 78.00 80.70 84.10 86.40 87.10
85.00 82.10 78.60 74.50 70.40 66.40 62.50 59.10 57.40 54.00 49.00 42.00 36.00
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30.20 33.00 34.30 34.20 34.00 34.00 34.90 35.00 34.10 33.60 32.40 32.00 31.90
32.00 32.70 33.50 34.10 34.90 35.50 35.90 35.50 34.00 30.60 25.50 27.00 31.00
34.00 38.00 34.00 31.00 27.00 23.80 21.00 18.80 17.00 15.00 13.40 12.50 11.50
10.80 10.00 9.60 9.00 8.50 7.70 8.50 10.00 14.00 11.50 9.00 7.60 7.20 9.50
11.40 13.00 12.20 11.80 11.40 10.60 10.40 10.00 9.50 8.80 8.40 8.20 8.00 7.60
7.20 6.91 6.61 6.55 7.85 8.63 7.77 7.11 6.71 6.56 6.54 7.10 7.33 7.25 7.11 6.96
6.79 6.70 9.14 6.95 6.78 6.71 6.59 6.61 6.57 6.45 6.23 6.02 5.90 5.74 5.64 6.28
6.44 6.50 7.21 7.64 7.67 8.00 8.06 8.41 8.58 8.66 8.74 8.89 8.67 8.38 8.24 7.77
7.66 7.58 7.94 7.29 7.01 6.94 7.06 6.77 6.57 6.37 6.25 6.01 5.70 5.60 5.58 5.60
5.60 5.60 5.59 5.50 5.42 5.20 4.90 4.59 4.20 4.00 3.65 3.40 3.15 2.95 2.80 2.60
2.45 2.32 2.28 2.23 2.20 2.18 2.17 2.16 2.13 2.11 2.10 2.09 2.08 2.08 2.09 2.10
2.13 2.15 2.18 2.19 2.20 2.22 2.25 2.26 2.29 2.31 2.32 2.33 2.32 2.32 2.31 2.30
2.28 2.25 2.20 2.18 2.13 2.08 2.00 1.96 1.90 1.88 1.84 1.80 1.79 1.77 1.75
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Appendix B

Time Series Plots
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Figure B.1: Time series plot for Peace River
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Figure B.2: Time series plot for Castle River
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Figure B.3: Time series plot for South River
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Figure B.4: Time series plot for Salmonier River
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Figure B.5: Time series plot for Gander River
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Figure B.6: Time series plot for Moberly River
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