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Abstract

In hydrology the ability to model th e average daily river How for rivers

plays an important role in t he prediction of possi ble disasters such as flooding.

The analysis of data and the accuracy of predicri c ns rely on fit t ing suitable

mod els to such data. In t his prac ticum we investi gate nonlinear time series

modeling and in particu lar we study the theo ry of t WO approaches to mode l

such time series. On e appro ach assumes the und erlying ran dom structure

of th e ti me series is bilinear. The second app roach uses wavelet smoothing

tech n iques to decom pose the tim e series into a wavel et smoot hed com po­

nent and a rand om com ponen t. T he random com po nent is t hen mo deled by

a suit ab le linea r or bilinear process. By investigating th e structure of the

autocorrelation and third order cum ulan ts, we find t hat th e pure bilinear

process is best for t he da ta sets unde r st ud y. Mode ls were fit ted to six time

seri es data sets based on t he average dail y river flow variable for six rive rs

in Canada using bo th approaches. A simula t ion study was conduct ed to

esta blish th e suitabillty..of the mode ls by co mparing its pe rformance to the

original tim e series. T he bilinear approach \\"8S not fa vora ble in mode ling

average dail y river Bow. However, the wavelet methodology illustrated. an

att rac t ive technique to mode l such a t ime series .
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Chapter 1

Preliminaries

1. 1 In t r oduction

A time series consist s of observa tio ns that are collecte d in t ime. Some exam-

pies of a time series are dai ly tempe rat ures in St . J ohn 's from 1980 to 1999;

month ly kilomete rs flown by an airli ne company; an d company profits in suc­

cessive years. In most instan ces , the time seri es is considered lineae and wit h

the theory of linear models well defined along wit h its easy interpretation, it

is not uncommon to fit linear models to most data . A typ ical example is the

maximum daily or yea rly Bow of Ca nadian rivers. Hyd rologist s have used

linear models in describ ing most of t hese 80w da ta . Using tests for linearity,

we show in this work t hat some of these Bowdata are gene rated by non-linear

processes .

Alt hough, in many situations, linear models do provide adequate approx­

ima tions to the ' true' process genera ti ng th e dat a, it may not necessar ily be

the best modeL A series may be generated by an un derlying random struc-



ture t hat is non -linear. and pe rhaps non-Gaussian. \Vhen considerin g such

a series it would be insite full to conside r a non-linear ap proach. This has

prompted the devel opment of man )"non -linear time seri es models that have

the capability to deal wit h such series. Som e nonlinear models curre ntl y in

a . Bilin ear Time Seri es Models : Since , in this prac ticum, we are restricting

our ...."ark to bilinear models the st ructure of t his model will be given in

Sec t ion 1.2.

b . Threshold Mod els: T here are several gro ups of thr esho ld mod els an d

one such gro up is known as the piec ewise linear models. T he general

structure of this grou p of threshold models desc ribed by Tong (1990)

is as follows: Let X t be a k-dimensional t ime ser ies and , for each t , let

J1 be an indica tor ran dom variable, ta king int eger values {l , 2, . . , l} .

The model is t hen gi ven by

wher e, for J r =j, A U) and H UI are coefficient ma t ricesofsize kxk, CU)

is a k x 1 vecto r of consta nts, and f j with zero mean and a covariance

matrix.

c. Fractional Autoregressive Mod els: To illust rate th is group of models we

will give the st ruct ure of the fractional autoregressive models of or de r

one an d it will be clear to see how this mod el may be ext ended to

inclu de higher-order lags. Th e st ruct ure d escr ib ed by sever al au t hors ,



see To ng (1990), is

(1.2)

where f, is a sequence of independen tly and identically distributed ran­

dom variables, a S p S q + 1 <00 , a, I- 0 and b, '!' o.

The focus of this practicum is direct ed towards fit t ing models to river

flow data consis t ing of daily averages. T he abilit y to model dai ly flow da ta

would be an enormous asse t in hydrol ogy. Th e Average da ily flow variab le

is a variable that is used for the assessment of water sup ply relia bility and

for st udy of inflows into reservoirs. If a dai ly How varia ble is successfully

modeled t hen the sto rage size requ ired of a reservo ir ca n be de term ined.

Th is pr ac t icum is organized in the following way. In Cha pter 1 we will

intro duce some concepts that will be essent ial in understand ing the chapters

that follow in this prac ticum . Section 1.2 discusses the bilinear model and

describes the components wbich make up the model. Sect ion 1.3 will outline

the stationarity and invertibili ty condit ions of the bilinear time series model.

T he data used t hro ughout this pracuicum will be discussed in Chapter

2 along with linearity tes ts of the data. In Chapter 3 we will discuss the

estimation procedure for fitting bilinear models ; fit bilinear models to the

Canadian rive r How data ; and use these models to simulate our own data.

Chap te r 4 will consist of wavelet smoot hing to attempt to mak e the time

series sim pler . We will t hen fit appropriat e models to the new time series

and simulate data based OD. th e new models . F inall y, th e two me thods used in

tbis prac t icum will be compar ed in Chap ter 5 along with a general discussion



of the results.

1.2 B ilinear M odels

Non-linear models often involve complex calculations and are , at times, very

difficult to analyze and interp ret. T he bilinear time se ries model st udied by

Granger and Andersen (1978) and Subba Ra o (1981), is one non-linear time

series model that is simpler than most.

Let el , t E Z be a sequence of independent and identically dist rib uted

ra ndo m variables wit h E (el) =0 and E(eI2) = u 2 < 00. Let a il a:lt · · · , aI"

ci , C:l, • . , <«and b i,j , 1 :::;i :::; m , 1 :::;j .:5k be real const ants. If a time series

Xl sa tisfies t he differen ce equation

p q ... II:

XI + L aiXI-i = L Cjel _i + L L D;i.'<l-iel- i + ell (1.3)
i -I i-I i .. l i ",1

then X l is de fined as a bilinear proc ess th a t satisfies a bilinear ti me seri es

model (1.3) denoted by Subba Ra o (1981) as B L(p , q, m , k). Th e mod el

given by (1.3) along with simpler forms of th e mode l have been d iscussed by

G range r and Andersen (1978) , Subba Rae (198 1), Quinn (1982), Bhaskara

Rao, Sub ba Rao and Walker (1983), an d Sesay and Subba Rao (1991),

amo ngst others .

Th e biline ar mode l given in (1.3) is a non-linear mode l, but the structural

nature of th is mod el is simila r to t hat of linear mod els. Th e mod el given

in (1.3) can be bro ken down into t hree componen ts . T he first part is the

au to regressive (AR) part, the second is defined as the moving average (MA)

part and the third par t of the process is the pure or comp lete ly bilin ear par t .



In (1.3) , if we let btj = 0 for al l i and i, we ob tain the auto regressi ve-moving

avera ge mode l ARMA(p, q). Therefore, the st ructu ral theory of the bilinear

mode l is analogous to th at of th e autoregressive model, the moving average

model , and t he mixed autoregressive-movi ng average model.

U bi j = 0 for all i < i in (1.3) , the model is said t o be sup er-d iagonal .

In (1.3), if b;; = a for al l i ~ i . the model is referred to as a sub-diagonal

model , and it is known as a diagon al model if bi ; =0 for all i f j.

1.3 S tatio narity a nd Invertibilit y Con ditions

If a time series mode l is to be useful in inte rpr et ing and forecasting it is es­

senti al , based on t he Box-J enkins methodology, that the tim e series is both

stationary an d invertib le. In general, a time series XI is said to be stationary

if t he st a tis tic al pro perti es of the ti me series remain uncha nged wit h time.

A tim e se ries X I is said to be st rictl y stationary if for an y set of tim es tj,

i = 1,2 , . ,. , m and a ny positive integer m the joint probab ility distribu­

t ion of { XII . X to, • • Xr- } is identical to the joint probabilit y dis tri butio n of

{ X"+I.. X I2+1l• .. X t.+Il} for any int eger h. If t he joi nt moment up to ord er

2 exist an d remain unchanged wit h t ime, then t he t ime se ries X ! is sai d to be

2"" order station ary or weakly stationary. T he invert ibility of a time series

Xl simply implies t ha t having knowled ge of {X il l. h ~ t is equivaJent to

having knowledge of ell. h ~ t.

Pban and Tran (1981) derived th ese conditions for the firs t orde r bilinear

model. Subba Rao (1981) obtain ed the conditions for asym pt otic stat ionarity

and invert ibility of a time series sa t lsfyi a g the mode l BL(p, 0, p, 1). Granger



and Andersen (1978) and Quinn (1982) have derived these conditions for

simpler bilinear models t ha n that of Subba Rao (1981).

This report will mainly deal wit h a time series Xl that satisfies the bilinear

model B L(P,O,m. k ) an d hence, to fix ideas. we shall discuss stationary and

invert ible condi tions for th e mode l BL(p ,O,p , 1) given by

, ,
x , + L 0i Xt _i = ec + L bjIXt_ ie c_1

i _l .",1
(1.4)

Interested readers can refer to Lin and Brock well (1988) for a more general

discussion.

1.3.1 Stat io narity

T he stationarity condition for a process satisfying

(1.5)

where E(el) = °and E(en = 00' < co has been estab lished by Ph an and

Tr an (1981). Th ey have shown th at t here exists a stric tly st at ionary process

X c if a1 + U2~1 < 1. Subba Rae (1981) established conditions for strict

stationarity of a process Xl satisfying (1.4) . To discuss this condition we

must first write th e model in matrix notation. Let

[

X , )X
t
_

l
X, =

Xt~P+l p X l



and let us define the following matrices

A~ [-;' -a, . -";' -:J ,B~ [ b~'

o p >ep 0
~d

Eq ua tion (104) can now be rewritten in the form

lIzl b:Jl
... ~' ]

o p >e,

(1.6)

where E(et) =0 and E(en = (p < 00. Subba Rao (1981) has shown t hat if

p(A0A +u'lB®B) < 1 (1.7)

where 0 is the Kronecker product and p( .) is t he spectral radius or the

maximum eigenvalue function, then t here exists a strictly stationary process

X l satisfying model (1.6) . For example, if a t = - 0.01, (l:l = -0.2, bll = 0.1,

bn = 0.08 and o = .5 t hen ,



And

Th en, using the Kronecker product

(

0.0004

0.0002
Ac;)A =

0.0002

1

0.002 0.002 0,04 )
o 0.2 0

0.2 0 0

° ° 0
and

[

0,01 0.008 0.008 0.0064J
o 0 0 0

B0 8 =
o 0 0 0

o 0 0 0

and the maximum eigenvaJue of (A@A+ cr B 0B) is equal 00 0.2146096 < 1.

1.3 .2 Inve r t ib ili t y

To state the sufficien t condi tion for invertibility of the bilinear mode l BL(p, a,p , I ),

as discussed by Subba Rao (1981), we must conside r the notation defined in

Sect ion 1.3.1 and define



The follc wing condit ion

H'B E[XIX;]B' H < (H' e)'

is a sufficient condition for iovertibility of model (l.6) .

(L8 )



Chapter 2

The River F low D at a

2.1 Introdu ction

The da ta sets analyz ed in t his chapter and the remain d er of this practicum

are presented in Ta bles A. l ·A.6 in Appendix A . The data in Tables A.l ­

A.6 con s ist s of mean daily river flow measurements collected by Environment

Ca nada for the years 1995 and 1996. Since the year 1996 was a leap yea r,

each data set consists of 731 observations. Th ere are gaging sta t ions loca ted

at specifi c points in each river which meas ure t he wate r level throughout each

d ay. T he wa te r level is tben converted to Bow rates of m 3{s an d th e mean

river flow for that day is t hen recorded.

Sect ion 2.1 consis ts of a description of each data se t used in t his practicum .

Sect ion 2.3 describes t hree approaches for testing a t ime series for linearity.

In Sect ion 2.4, t he results from th e tests for linearity are given.

10



2.2 D a t a

The data in Tab le A. l contain mean daily river 80w measurements from Peace

River at Hudso n Hope in British Columbia. Table A.2 presents the mean

daily river flow measurements for Castle River in Alberta. The river 80w

measurements contained in Tables A.3. AA and A.5 were take n from Sout h

River near Holyrood. Selmonier River near Lamaline and Gande r River at

Big Chut e in Newfoun d land respectively. T he dai ly river Sow meas u rements

in Table A.6 were meas ured from Moberly Ri ver near Fort St. J ohn in British

Co lumbia.

Tile data set s are present ed in the form of tim e series plot s in Appendix

B . Figur e B.l is t he t ime series plot for Pea ce River. Th e rive r flow mea­

surem ents range from a minimum of 329 mJls to a max imu m of 5190 mJ/s.

T here do es not a ppear to be any pat tern in t he time series over t he two years.

T he daily river 60w in the summer of 1996 more than doubled the maximum

of any oth er day throughout the two years. The time se ries plot for Castle

River is displayed in figure B.2. The minimum river 80w measurement for

Castle River is 1.62 m3 /s and t he maximum is 812 m3/ s. Over the two years,

t here did appear to be a pattern in the time series . The river flow was low

during t he first 4 months, tben tbe river 80w begins to increase over the next

2 months and starts to decrease again afte r 6 months. T he last fou r months

of the year is similar to the first four.

T he time se ries plots for the t hree rive rs in Newfoundland are disp layed in

Figures 8.3, 8 .4 and B.S. South River 8. 3 and Salmonier river 8 .4 po rtr ayed

similar patterns to each other, but the actual time series never depicted any

patterns over the two year s. South River had. a minimum river Bow of 0.069

11



m'ls and a maximum of 13 m'ls and Salmoni er River had a minimum of

0.043 m 3/s and a maximum of 63.5 m 3 /s. Gander Ri ver, dis p layed in Figure

B.5, never showed any particular patte rn. For the two yean. Gander River

had a minimum river Bow of 23.5 m3I 8 and a maximum fiow of 669 m3 / s.

Displayed in Figure 8 .6 is t he time series plot for Mobe rly River. This

plot di d display a pat tern. Th e mean daily river flew dramatically increased

in the summer month s and remain very low d urin g the rem aining mont hs

of the year . Moberly river had a minimum river flow of 1.24 m J I s and a

maximum flow level of 87.1 m JIs.

In this practlcum we selected only two rears of data for convenience to

illustrate the t echniques be ing implemented. Alt hough we looked for patt erns

over th e two year period . a ti me series consisting of a ten year period would

be more valuable to a research er when attempt ing to det ect p at terns in river

60w data for a particular ri ver. especially when tryi ng to distingu ish be tween

dry an d we t years .

2.3 Tests for Linearity

Before any form al modeling was performed on the data, we foun d it necessary

to test the time series for linearity. Th e statistic.al approach and met hods we

have ado pted. will establisb whet her the time series is lineae or non-li neal".

Tong (1990) discussed. bot h informal gra phical met hods an d form al tests in

order to distingu ish a time se ries as either linear or non- linear. Although

the gra pbical met hods ar e useful, it was deemed sufficient to consider only

the formal tests . Three of th e tests were selected for app lication to the data
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given in Appendix A . T he tests are described in Sectio n 2.3. 1, 2.3.2. and

2.3.3. T he first two tests are mown as Portman tea u tests and t he t hird is a

test with a specific altemative. T he null hypothesis is aI\\"8.)'5 that t he time

series X t is linear .

2 .3 .1 Approach B ased O n Examin in g Squares Of T ime

Series D a t a

T he approach , based on squares of time series , was proposed by McLeod an d

Ll (1983). T his test for lineari ty was mot ivat ed by th e fact tha t

where

provided t ha t Xl is a stationary Gaussi an time series .

It is a usefu l test for detecting Don-lineari ty. and moreover the nOD­

linearity may be in the direction ofbilinearity. The test proposed by Mcleod

an d Li (1983) is performed as follows. Let €l ,€2 , . " , i N be the fitted resid uals

from an ARMA mod el. The sample aut ocorrelation of the squared resid uals

r" is t hen given by

(2.1)
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where

Now, th e test statistic is th en given by

Q= N (N+2)Eklr:
(N k)

where Q ..... x;.£or some inte ger m.

(2.2)

2.3 .2 Approach B as ed On Tukey 'a One- Degree-Of-Freed om

Test For Non-A d di t ivi ty

T he second test for linearity we will consider was proposed by Keen an (1985) .

Let (X ltX2, • •• , X N ) de note a tim e series. The algorit hm for Keenan's tes t

£or linearity based on Tukey 's one-degree-o f freedom test £or non-ad dit ivity

proceeds as fello ws:

1. Regress Xl on {1, X ,_I, X t_2• . . . , X t_u }, where M is a fixed positive

integer . From th is model. calcul a te th e fitted values {Xl} ' t he fitted.

residuals, e" t = M + 1.M +2, .. ,N , an d t he resid ual su m o£squares ,

ass = Ee/.

2. Regress X: on {l ,X1_ I , Xt _ 2 , . . , Xl_lol l and calculat e t he fitted resid­

uals , {tIl. t = M + 1. M +2, . . ,N.

14



where 110 is the regre ssion coefficie nt . The test st at ist ic is now calc ula ted

as,

r,2(N-2M - 2)
F= RSS r,2

where the null distribution of F is F1,II_21ot_2.

(2.3)

2.3 .3 Tsay's Appr oa ch Based. On Colu m n St ackin g

Tsay (1985 ) devised. an approach to test for linearity t hat is an im provement

to Keenan 's test. T he test is based o n colum n stacking and t he power of

the test is increased over Keena n's test. T his th ird tes t is imple mente d as

follows :

1. Regress X t on {1,X1_ 1,XI _ 2 , • • ,Xt _ M} a nd ca lculat e t he fit ted restd­

ua ls {i l}' t = M + I , M + 2, . . . , N . The regressio n model will be

denoted by

(2.4)

where Y t = (l,"Y,;_1>"Y,;_2, •. , "Y,;-M) and b = (bo,b., . . ,b lot ) , where M

is a fixed positive intege r.

2. Let Zt be a row vector with dime n sion m = ~M(M+ 1) . Using on ly the
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measurements on or below the main diagonal an d a pp lying the usual

column staclcing operation, Z\ is obta ined from th e sym met ric mat rix

u:.Ut , where U\ = (Xt _ I .Xt _ 2 , •• • XI _ M ) . For exam ple, if

[

U U

U"
U~Ul =

U"
U"

U" au U" )
Un uaa Uu

U 3;l Un U:j..(

~;l lIU U<H 4><t

Th en, app lying t he usual column stacking o peration Zl = {Ull . lI2 lt 113 L.

UtI! Un , lin. Ut2 , Uu.~, 144}. Using mult ivariate regressi on, regress Zt;

on (1 .XI_I,XI_2, ..• XI_U}, where t he regressi on model is given by

(2.5)

Fi nally, from the fit ted model we obtai n th e fitted resid ual vector

{{M+I.{U+2, ", {N}'

3. Regr ess (eU'+ll eU'+2•...• eN) on ({M+lt{M +2, ..• {N ) an d obtain t he

leas t squ ares residu als {a ll , t = M + 1, M + 2•..• N . Now, t he test

stati sti c is calculated as ,

F = (r: {leIHr:i:{I)- I(r:{lel)'(N - M - m - 1)
mr:a~

<2.6)

where t he summations ran ge from t = M+l to t = N . .Asym ptotically,

t he null distribution of F is F t M(M+ il ,N- t M(,W+31- 1'
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2 .4 R esult s

We app lied the tests for linearity described in Sections 2.3.1, 2.3.2 and 2.3.3

to t he six data. sets given in Ap p endix A . In all three tes ts , M is a positive

fixed integer wi th no specific rule 0 0 how to choose an ap prop riate value .

Therefore , al l three test were ran with M = 4,5, 7,10. The test st atistics

along wit h t heir respective p-val ues for the six rivers are shown in Tables

2.1-2.6 below.

Wi th t he except ion of Gande r River resu lts disp layed in Tab le 2.5, the

p-val ues exh ib ited in th e tables consisten tly agre e with each ot he r . For all

river s wit h t he except ion of G ander River , t he results provide sign ificant

evi dence th at the river flow time series is non-linear and t his explains why

we are using nou- Iinear models to describe th e data . Ga nde r Rive r had

an inconsistency in the results and this disc repancy was a consequ ence of

Keenan's Tes t . For all four values of M , t he p-values for Keenan's test were

not significant sugges ti ng that t he tim e series X I is linear . The test devised

by McLeod and Li had sign ifican t p-values for all four values of M which

were in agreement with Tsar 's test . Since t he bilinear model is made up

of a linear component and a pure bilinear component it appears to be a

reasonable model for studying such a series.
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Tab le 2.1: Computed F·statistics and p-values for Peace River

McLeod and Li Keenan 's Test Tsay 's Test

M Sta t Pcvalue Stat P-value Stat Pi-value

• 2624..18 0 4.907 .02706 33.719 0

5 3191.92 0 5.093 .02432 25.156 0

7 4267.33 0 5.133 .02377 15.535 0

10 5732.45 0 4.662 .03177 10.161 0

Tab le 2.2: Comp uted F·statistics and p-values for Castle River

Mcl.eod and Li Keenan's Test Tsay 's Test

M Stat P-value Stat Pcvalue Stat Pcvalue

• 340.500 0 44.4.305 0 296.897 0

5 343.834. 0 4.02.314 0 207.055 0

7 350.014 0 381.226 0 137.412 0

10 353.602 0 404.158 0 113.998 0

18



Table 2.3: Computed F·statistics and p-valu es for South River

McLeod and Li Keenan's Test T say 's Test

M St a t Pcvalue Sta t P-valu e Stat Pcvalue

4 314.848 0 92.193 0 56.682 0

5 316 .360 0 54.586 0 40.279 0

7 316.446 0 49.729 0 22.435 0

10 316.452 0 63.686 0 15.886 0

Ta ble 2.4: Computed F-statistics an d p-values for Salmon ier River

Mcleod and Li Keenan 's Test Tsay's Test

M Stat P-value St at P vvalu e Stat Pcvalue

4 368.808 0 81.240 0 9.003 0

5 368 .893 0 81.304 0 6.339 0

7 370 .807 0 75.193 0 3.749 0

10 3n.266 0 86.321 0 3.050 0
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Table 2.5: Co mputed F-sta tistics and p-values for Gander River

McLeod a nd Li Keenan's Test Tsay's Test

M Stat P-value Stat Pcvalue Stat Pcvalu e

4 2680.57 0 1.2899 0 .2564 6.7751 0

5 3224.16 0 0.8769 0.3494 13.8336 0

7 4123 .24 0 1.2292 0.2679 7.7224 0

10 5035.81 0 0.8604 0.3530 5.6089 0

Tab le 2.6: Com.puted F- sta tist ics and p-values for Moberly Rive r

McLeod an d Li Keenan 's Test Tsay 's Test

M Stat P-va lue Stat P-value Stat P-value

4 2682.11 0 20 .5615 0 15.5925 0

5 3229.63 0 25.7950 0 12.4396 0

7 4146.93 0 35.3119 0 9.7567 0

10 5119.35 0 29.9219 0 7.7252 0
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Chapter 3

Bilinear Time Series Model

3.1 Introduction

The bilinear time series mode l was in trod uced in Chapter 1, where some ofthe

t heore tical concepts behind the model were discussed . The purpose of this

chapter is to discuss techn iques for estimating the parameters of a bilinear

time seri es mode l and describe the met hodology used to choose the best

model. We will also apply the techniques discussed to modeling Canadian

river 80w data.

Section 3.2 will ou tl ine th e underlying theory of the estimat ion procedure

used to estimate t he pa ram ete rs of bilinear ti me series models. T he Newton­

Rapbson technique is also descri bed , along wit h t he estimating equa t ions

req uir ed for this proced ure. Th e conce p ts of Sect ion 3.2 will be app lied in

the subsequent sec tio ns . In Sect ion 3.3 we fit bilinear ti me se ries mode ls to

five of t he six data sets from the river flow dat a disc ussed in Chapter 2. We

a t tem pt ed to fit bilin ear mode ls to all six data sets but were unsuccessful in
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do ing so with the da ta from Castle River. We did, however , overco me the

difficulties wit h the data from Castle River using t he methods described in

Chapter 4. Fin ally, in Section 3.4, basedon simulated data from t he fitted

models, we study the sampling propert ies of t he mean and standard deviation

and com pare these resu lts wit h t he origin al da ta .

3 .2 E s t imatio n of the P aramet e r s o f t he Bi-

linea r T ime Series M odel

In th is sectio n we will obtain the param eter estimates of t he bilin ear ti me

series model given by

• m •

x , + L Qjxl _ j + 0: = L L b.jXI_jel-j + el (3.1)
j _L .=lj_1

where e, are ass umed to be independently and ident ically distrib uted as

N(O,~). T he model giv-en above is the same as BL(p, 0, m, k) with an extra

parameter 0: ad ded. Subba Rao (1981) suggests that this additional param e­

ter , which affect.s on ly the mean , is very useful when fitting bilinear models

to raw data. The parameters which will be estimated in mode l (3.1) are

(4;, 1:5 i:5 p), {b.;-jol :5 i:5 m , 1:5 i:S k}, a , and u: for n observations for

a total of p + m k + 2 parameters.

As with all models which involve lagged val ues of th e X" we cannot

evaluat e the residu als for an ini tial st retch of data. We th erefore consider the

cond itional likelihood based on {X"+l. X,.+2,' " ,X..} give n { X 1, X 2 . . . , X,. }

where v = (max(p ,m, k )+ I }. The join t pdf of {e,., e,,+I>. . .e s } is given by
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( 1)'9") [1 ' ]f {%) = 2lfa: exp ~~ e; (3.2)

which is also t he likelihood function of {X.,..l. X.,.2 •...• X ..}. T he con dl­

tionalmarimumlikelihood estimatesoffJ = (a , a a.111•.. . • a,.,bu .b I2 , • . • • b....ty =

(81l ~' . . , 8p+.... +1)' are found by maximizing th e likelih ood func tion or by

minimizing

(3.3 )

with respect to 0, the leas t squares fit. To minimi ze () we must solve

(3.4)

which is don e t hro ugh the Newto n-Ra phson iterative tech n ique.

3.2.1 N ewton-Raphscn It era t ive Tech nique

The Newton-Raphson ite ra tive proced ure is based on the Taylor series expan­

sio n, It requires an ioit ial guess for the first set of parameters an d then the

funct ion is approximated in t he neighbo rhood of that guess . T he Newton­

Raphson iterat ive equa tion to be used to min imize Q(8) can be obtained by

the following method. First , let q =p + mk + 1,

("""J
".
"""G(.)~ ,.,

"""".
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be a vector of first-o rder partial derivatives and

H(9) = [!PQ(9 l ]
(JfJ;.f)(J;

be a matrix of second-order partial derivatives. To solve equation (3.2), we

use the Taylor series expansion , and expand G(8) near 8 = 8 and assuming

third o rde r and higher term s are neg ligible we obtain

G(80 ) + H (8o)(8 - 90 ) = o.

Next, we solve (3.5) for 9 to ob t ain

Therefore, in general , t he (i + l )th it era t ion is given by

(3.5)

(3.6)

known as t he Newton-Raphson it erative equation, an d hence we obtain the

parameter estimation technique for the model.

3 .2 .2 P artial D eri va t ives

The first- an d secon d-order partial de riva tives of Q(8 ) ar e given by

(3.7)
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iPQ(9) 2t~~+2 t et~
86i86j t="1 86, 86j l='r 88i88j '

i = I. 2, .. . ,q ; j = I, 2, ... , q.

Solving mode l (3.1) for e" it is d ear tha t the partial deriva tives of et must

satisfy the following recursive equat ions;

- X t_ret-. - t i: bijXt _ ;~:-j,
i= lj= 1 ......

r = 1.2, ... , m; s = 1. 2, .. . •k

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

- X t_ra: t: . - f. t. boj Xt - j8iJ' e,8 ;:j , (3.13)
VU i= l j ,*1 Q ..... .

r = 1, 2, . . . , m; 3 = 1,2 , .. .• k

- X I _ r a8et~. - of i: bojXt_I~' (3.14)
a; i=l j= L a; ......

i= 1, 2, . . . , p; r=1, 2, ...• m j 3= 1,2 , . . , k
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-Xt _ r :e~-; -X 1 a;~:

... I: _ (flet_i
- ~~ b,iXt-j abr.ab.- .. ,

r,r'= 1,2•. . . •m ; s ,s' = 1,2, . . .• k

(3.15)

wher e we assume t he initial condit ions et = 0, £ = 1. 2, . . • .., - 1, and also

~ 0 and 8~::Oj =0 ' i ,j= 1,2 , .. , q; £=1,2 , .. ,.., - 1

A direct result of the initial assumptions together with equation (3.9)

leads to all second -ord er partial derivatives with respec t to a an d a" i =

1,2• . . , p equaling zero . Using the recursive eq uat ions (3. 7). (3.8), (3.9)

and (3. 14). th e first and seco nd orde r derivat ives of Q(8) can be evaluated

for a given set of initial values of a , { Ili} and {b,j} . Th e first and second

orde r d eri va tives of Q(8) can now be used. in the Newton-Raphson iterative

technique d iscussed in Sec ttoc 3.2.1.

3 .2 .3 Init ial Estimates

A fundamental componen t cf tb e Newto n-Hapbson ite rat ive technique is the

init ial est ima tes of t he parameters. If a poor set of initial pa rameters are

used , it is high ly probabl e that one will not ach ieve converge nce. T her e

are diffe rent strategies one may consid er when tac kling thi s problem . T he

app roach we found very effect ive is more of a st ep-up approach: fit a basic
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model to the d ata first , then add additio nal parameters, one at a tim e.

To fit a bil inear t ime series mo del of order BL(p,O,m,k ), we first fit a

bilinear mod el of order B£(2,0 , 1, I ), constant 0 included. To fit this model

we fit an AR (2) model and use the estimated parameters as initial estimates

for th e autoregressive part of t he bilinear model, and for the moving-average

part, we set btl = 0. We eext fit the bilin ear model of order BL(2,0,I,2 )

using the est imates from t he B£(2, 0, 1, 1) as ini ti al estimates and set bl 2 = O.

We co ntinue t his unti l all bi j , i = 1,2 , .. , m; j = 1,2 , '., k parameters are

est im ated. O nce th e pure bilinear part of t he model is fitted, we fit t he

autoregressive part in a similar fashio n.

3.2.4 Model Selection

O nce we begin to fit bilinear tim e seri es mode ls to th e da ta , we mus t co nsider

t he orde r of the bili near mode l that best rep resen ts the data. To choose t he

orde r of t he model, we will consider t hree criteria: t he .AJcaike Information

Cri te rio n (A IC), a bias-corrected version of the AlC known as the AleC

suggested by Hurvich and Tsai (1989) and the B IC which a ttempts to correct

the over-fitting na ture of the AlC. These criteria are d efined by;

AIC = (N - M ) loga-; + 2(p + mk + 1) (3 .16)

AICC = (N- M )logo; + ;(p~:~:~~) (3.17)

BIG (N-(p+mk+ l » IOg [ N NO'; ]
(p + mk +l)
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where ,

+ n( l + log v'2# ) + (p+mk + 1)

x 10 [(E~( Xi - Na~) ] .
g (p+ mk+l)

(3.18 )

It is essent ial that t he above functio ns are ca lculated based on the sam e

number of obse rvat ions for each mod el. Th e numbe r of obse rva t ions used

in the ca lcul at ion of the a bove criterion is given by (N - M) , t herefore M

shoul d be selected such that (N - M ) will remain constan t for each model

fit ted .

Based no the AIG . AI CC an d BIC criteria, we choose the mode l with

the sm al lest Ale. AlGC and BIC values. Th erefore, we continue to fit

mod els until the inform ation crite ria increase, then we choose the pre vious

mod el. Th e AIC , AlGC and BIC do not always coincide with each ot her .

If two of three crite ria agree , th en t he choice of t he model will be made based

00 t hese two criteria . If it so ha ppens th a t all t hree criteria disagree , then a

simulat ion st udy can be conducted and the choice of the model will be mad e

based on th e sampling prope rt ies of th e es timates.

3.3 Model Fitting to River Flow Data

Bilinear models were fitt ed to data from Peace River. Sout h River, Salm onier

River , Gan der River and Moberly River . It was found th at the met hods

descri bed in t he pre vious sect ion could not be used to estimate the parameters
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for the data from Castle River for models of order higher than B£ (2,O, 1, 1).

For this reaso n , we neve r inclu ded Castle River in t he model fitting of this

section or in the simu la tion results of the next secti on. Th e reason for th e

difficulty is believed to be a consequence of the lar ge variability in the data.

With a minimum river Row of 1.62 m3Js and a maxi mum river flow of812

m 3J!J, Castle River had a ran ge of 810 .38 m3Js. Castle River, with a mean

of 20.47 m3Js, had a variance of 1699.128 m3/s.

When modeling t he other five rivers , it was found that working with

th e act ua l time series was very ted ious. On many occasions, t he inverse of

F isher's Information matrix was unmanageabl e num erica lly. T his pr oblem

was eas ily solved t hrough a simple tran sforma tion of the time series. T he

transform at ion , known as st andard izing, is given by

x;=X, - 1JX , .

ox ,
(3.19)

Stan dardizing the time series will, in fact , leave t he est imates of the para­

met ers of the mod els unchanged with the exce ptio n of o, which is sim ply an

estimate of the me an . Th erefore, th e mod els discussed in this sect ion will be

based on th e stan dardiz ed series .

The bilinear mod els were fitted based on t he three crit eria AlG , .4ICC

and B IC discussed in t he previous section. For Peace River it was found

t ha t t he AlC , AlCC and B I C were minimized when p = 5, m = 1 and

k = 2. The values of AIC, AICC and B IC were · 2608.7665, -2908 .5670,

and -1185.3044 respec t ively. The estim ated values of t he model coefficients

where 0: = 0.0088, 4 1 = - l. 1881, 42 = 0.4594, aJ = - 0.1598, a 4 = 0.0657,

as = - 0.1553, bu = 0.2185 an d b12 = 0.0867. T herefore, th e fitted model for
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Peace River is

x: - 1.l881X;_1 + 0.4594X";_2 - 0.IS98X;_3

+ O.06578X;-4 - 0. 1553X;_5 + 0.0088

O.2185X; _let_l + 0.0867X;_14_2 + e, (3.20)

where the value of u2 = 0.0262.

Th e AlG, AlCC and BIC fOTSou th River were minimi.2ed when p = 3,

m = 1 an d k = 1 and t he values of th e criteria were ~368 .0355, -367 .9527

a nd 1047 .6431 respectively. The estimated valu es of t he coefficient s of t he

model are Q = -0.0399, a l = - 0.9835, U2 = 0.2791, a3 = - 0.1773 and

bll = -0.0641. The bilinear model for Sou th River is as follows

x ; - O.9835X;_1 + 0.2791X :_2 - O.ln 3X:_3

- 0.0399 = -O.064IX ;_let_l + e,

where t he val ue of u2 =0.592.

(3 .21)

Th e BlC criteria for the Sal monier River was inconsistent wit h t he AIC

an d t he Al CC . The selection of th e orde r of the mode l for this river was

more involved than the oth ers . We found that the B IC was min imized when

p = 2, m = 1 and k = I while t he AlC and the A I CC were minimized

when p = 3, m = 1 and It = 1. Yle t hen performed a simulat ion stu dy for

both mode ls and studied sam pling propert ies of spec ific sta tistics. We foun d

that the best model of t he two was the model of orde r p = 3, m = 1 a nd

k = 1. The AlC, AleC and BIC for this model were · 473.7456, -473 .6628
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and 942.1053 resp ect ively. T he paramete r est imates of the mod el are a =
- 0.0449, a1 = -1.2251, a, = 0.4812, a3 = -0.OTl6 and bll = -0.0866. The

fitted mod el for Salmo nier River is

x; - 1.2251X:_1 + 0.4812X :_2 - 0.OTl6X;_3

- 0.0449 = -0.0866X;_le,_l + el (3.22)

where the value of u' = 0.5112.

For Gand er River , it was when p = 5, m = 1 and k = 1 t hat th e AIG,

AlGC and B IC were minimized an d the values were -3566.6934, -3566 .5385

and -2153.2538 respectively. Th e bilinear mod el had the following paramete r

estimates; 0' = - 0.0009, a l = -2.3217, a 2 = 2.1609, a3 = -1.1658, a..c =
0.4121, as = - 0.0719 an d bll = - 0.0617. T here fore, t he fitt ed model for

Gander River is

x; - 2.3217X; _1+ 2.1609X :_2 - 1.1658X ;_3

+ 0.4121X; _4 - 0.0719X:_s + 0.0009

(3.23)

wher e th e value of i? =0.007.

For Moberly River, it was found t hat the AIC , AICC and BIC were

min imized wben p = 3, m = 1 an d k = 1. Th e values for t he cri teri a where

AlC = - 4014.0864, AICC = - 4014.0137 and B I C = -2619.2296. T he

estimated values of the coefficients of the model are 0' = -0.0007, a t =
-2 .0568, a, = 1.3421, a3 = - 0.2777 and bll = - 0.125. The bilinear model
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for Moberly River is as follows

x; - 2.0568X;_1 + 1.342 1X; _2 - 0.2m X:_J

- 0.0007 =- 0.125X:_1e t _ 1 + e t

where the value of &2 = 0.0038.

3.4 R esults of Simulation Study

(3.24)

In the previ ous secti on we fitted bilinear tim e series mod els to five Can adi an

rivers based on t he river How varia ble. It is important to see if th e behavior

of the fitted models exhib it properties similar to t hat of th e act ual flow

data. An invest igat ion of th e bebavior of the fitt ed models can be ach ieved

by cond ucti ng a simula t ion st udy. For each of tb e five rivers we simula ted

n = 731 observa t ions from the fit ted mod el

• m •

X; = - l: ajX:_J - 0"+ l: l: bijX:_iet_j + et (3.25)
j"" l i=lj= 1

where el .... N(O, q~). This was repeated 2000 times. T he transform a tion of

the time series was then reversed in order to be compar able to the origin al

series as follows

(3.26)

Next, we exa mined the sampling properties of th e mean , st andard devia t ion

and t he maxim um value of the simu lated t ime series s;
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The results of t he simulation st udy for each river are displayed in Tab les

3.1-3.5. The re are four rows in each tabl e were the first row contains sara ­

piing prope rties of the original time series XI ' The second, third and fourt h

rows contain sampling properties of the mean of x; the standard deviation

of XI an d the maximum of XI for 2000 simul ations. For each river , we inves­

tigated whet her this process was able to sim ulate the origin al t ime series by

const ructing a time series plot of the actu al t ime series X I overlaid with one

of th e 2000 simu la ted bilin ear time series .

1. Peac e Rive r:

Table 3.1: Samp ling Properti es of x; Mean (X,}. St .Dev(X e) and Max (Xe)

(Peace River )

Min. lstQu. Median Mean 3rd Qu . Max. St.dev

X, 329 69. 1180 1278 1490 5190 950.6962

Mean(Xe) 604.6 1121 1270 1294 1445 2354 251.6964

St .Dev (X I ) 334.8 511.6 583.3 607.8 678.8 1545 135.9731

Max (XI ) 16n 2737 3112 3222 3585 75<1 720.485

The mean and stan dard deviation of XI are 1279 and 950.6962 respec­

ti vely. The mean of the means of x, ",.. 1294 is dose to t he mean of

the act ual t ime series Xt. T he mean of t he standard deviation of XI is

equal to 607.8 which is di fferent from the act ual series sugges ting th at

the sam pling propert ies of th e st an dard deviation of XI are poo r. The

sam pling propert ies for the maximu m value were also poor wit h values

max(X1} ",.. 5190 and the mean of ma.x(X 1 ) = 3222.
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Figure 3.1: Plot of act ual time series (solid line ) with overlaid simulated
bilinear time seri es plot (dotted line ) for Peac e River

F igur e 3.1 disp lays time series plots of both the actual series XI an d the

simulated serie s XI' It is observed t hat the simulated series fro m the

fitted bilinear mode l follows the gener al pa tte rn of th e original seri es,

but th ere is immense variation between the two series mainly within

the interval of a pproxi mately 100 to 380 days . T he varia t ion between

the two series leads to the questioning of t he usefu lness of t his mod el.

2. South River :

Ta ble 3.2 : Sampling Prop erties of Xc, Mean (X c), St. Dev(Xc) and Ma.x(X t )

(Sout h River)

Min . 1st Qu . Medi an Mean 3ed Qu. Max. Sr.dev

X. 0.069 0.2605 0.416 0.6855 0.752 13 0.964

Mean( Xc) · 0.133 0.5591 0.6992 0.7009 0.8573 1.448 0.2307

St. Dev(X c) 1.149 1.433 1.514 1.519 1.597 1.993 0.1203

Max (X c) 3.542 4.425 4.727 4.766 5.072 7.302 0.4907
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The sampling propert ies of t he mean of the means of X( = 0.7009

a ppears to behave much the same as the mean of X( = 0.6855. As did

Peace River , t here seem to be discrepancies with respect to th e mean

of the stan dard deviations and t he mean of t he maximum of X(. The

sta ndard deviation of t he series Xl is 0.964 and the sta ndard deviatio n

of X( is equal to 1.519. T he original series had a maximum value of 13

while the mean of max (X I ) was equal to 4.766.

Figur e 3.2 ; Plot of actual t ime series (soLid line) with overlaid simu la ted
bilinear t ime series plot (dotted Line) for South River

T he time series plots of the act ual series Xl and the simulated series

.Y:c is found in figure 3.2. It is easily seen that the simulated ti me series

plot does not . in any significant interval , model the actual time series .
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3. Salmonier River:

Table 3.3: Sampling Propert ies of X l> Mean (X I ) , St .Dev(X I ) and Max(XI )

(Sa hnonier River)

Min. 1st Qu. Median Mean 3rd Qu. Max. Sr.d ev

X, 0.043 1.025 2.58 4.208 5 63.5 5.9732

Mean(XI ) 1.11 3.694 4.238 4.247 4.847 7.193 0.8899

St .Dev(X,) 7.49 8.766 9.116 9.148 9.516 11.22 0.5599

Max(X,) 21.73 26.41 27.92 28.16 29.72 39.53 2.497814

Figure 3.3: P lot of actual tim e series (solid line) with overlaid simula ted
bilinear time series plot (dotted line) for Salm ou ter River

Once again , while th e sam pling prop erty of the mean of X, app ea red

adequ ate , the mean of th e standard deviation and the mean of th e

maxi mum value of x,were not in accordance to the standard deviati on

and the maxi mum value of Xl ' T he values for the mean , t he stan d ard

deviation and th e maximum value of X, were 4.208, 5.9732 an d 63.5
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respectively and the mean of the means of x, = 4.247 , t he mean of t he

standard de via t ion of X, = 9.148 an d t he mean of max( X,) = 28.16.

Figure 3.3 exhibit sim ilar results to th a t of Figu re 3.2. Th ere are lar ge

variat ions be tween the plot of the act ual time series and t he plot of t he

simulated time series t hroughout t he enti re two year peri od .

4. G an der River.

Table 3.4 : Sam p ling P ro pert ies of X" Mean (X I ) , St .Dev( X I ) and Ma.'C(X,)

(Gan der River )

Min. 1st Qu. Median Mean 3rd Q u. Max. St.dev

X , 23.5 76.35 lOB 130.1 160 669 94.1295

Mean (X I ) 55.36 118.1 131 131 144 .9 197.3 20.819

St. Dev(X,) 67 .95 92.06 98.92 99.59 106.7 138.9 10.8221

Max(X ,) 259 .8 344.8 369. 7 373 397.6 532.9 40.35806

The sampling p roperties of the mean and standard deviation for 2000

simulat ions for Gander River exhib ited propert ies almost iden tical to

t he act ual time series. However , F igure 3 .4 d isplay results suggest ing

th e fitt ed bili near model is not useful in sim ulating t he da ta. O ver

the two year period , t he simulated seri es co ntin uously varies from the

act ual series . T he mea n of the time series X l is equ al to 130.1 while

th e mean of the means of Xl is 131. Th e stan dar d deviat ion of the

actual series is equa l to 94.13 which is very similar to t he mean of the

standard de viations of X, = 99.59 . T he mean of t he maximum value
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of the sim ulated series XI was equal to 373 which was alm ost half of

that of the original series XI which had maximum value of 669.

Figure 3.4; Plo t of actual time series (solid line) with overlaid simulat ed
biline ar tim e series plot (dot t ed line) for Gander River

5. Moberly River;

Ta ble 3.5: Sa mpli ng Properties of Xl. Mean (X I ) , St .Dev(XtJ a nd Ma.'C(XI )

(Moberlv River )

Min . 1st Qu. Median M~ 3rd Qu . Max . St.dev

X, 1.24 1.84 3.24 13.17 15.25 87.1 18.741

Mean (X I ) · 7.403 9.93 13.35 13.25 17.01 29.72 5.5015

St .Dev(X I ) 12.12 17.28 19.11 19.39 21.25 32.19 3.047

Max(X,) 26.46 50.29 54.68 54.85 59.51 81.01 6.982

T he fitted mode l for Moberly River simul ated tb.e best results for the

mea n and sta ndar d devia t ion, but the maximum value of the simuLated

series was off by a la rge ma rgin. However, the simulated series does
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not appear to foUow th e pa ttern of cb e origi nal series as can be seen

from F igu re 3.5. The simu late d series cnnsis tent.ly deviates from t he

path of th e origin al seri es. The mean. of t he tim e series X, is 13.17 as

compared to the mean of the means -of s;which has a value equal to

13.25 . The values for the stan dar d deviation o f XL and t he mean of th e

standar d d evia tion of XLwere also very close equaling 18.741 and 19.39

respectively. Th e maximum of X l was 87.1 a nd the mean of max (X I )

was 54 .85.

Figu re 3.5: P lot of actual time series (so l id line) with overlaid sim ula ted
bilinea r time series plot (dott ed line] for M oberly River

There were ins tan ces based on the bilinear approach where th e sam pling

pro pert ies of th e simulat ed time series foUowed closely to that of t he ac tual

t ime series . One statistic in particular. m ax (X I ) . had very poo r sampling

pro perties for a116ve rivers. T he simulation. size is one possible reaso n for t he

poor sampling pro perties. If t he simulation size was increased from n = 2000

to n =5000 th en it is possible t hat the est imation of th e max(XI ) would be

more accurate. A second possible reason is that t he bil inear mode l is poor a t
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modeling ext reme values . However, as a whole the simulation study for the

five rivers easily exp lained that t he fitted models were very poo r. In Chapter

4 , we combine the wavelet filte ring approach and third ord er cu mulants to

improve the fit when modeling river flow data.
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Chapter 4

Wavelet Filtering

4 .1 Introduction

This chapter will consist primarily of decomposing a t ime series X I, using

wavelet smoothing techniques, into a wavelet smoothed version and a random

component which we describe with pure bilinear models . Essentially, a time

se ries XI passes through a filter where the tim e series is decomposed into two

components, a deterministic comp onent and a ran dom component . It is the

random component that is of interest and we will fit a diagon al pure bilinear

process, denoted by DPBL(q), to this component of the non-stationary time

series. The filtering process highlig hts any hidden non-stationarity and sim­

plifies the structure of the random com ponent. The diagonal pure bilinear

process is given as

(4.1)
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where t'l is a sequence of independent and identically distributed Gaussian

random variables with mean JJ= 0 and constant variance u 'l and 6r, 1 :5 i :5q

are constants. The model in (4.1) is a special case of the general bilinear

autoregressive moving average process of Granger and Anderson (1978).

A wavelet system is the collection of dilated and translated versions of a

scal ing function o;6{x ) and a primary wavelet ,p(x) defined by

(4.2)

and

(4.3)

respect ivel y, The functions o;6(x) and W(x) are choosen to satisfy the equat ions

and

O(x) =v'2L "'Or'" - p),.x
(4.4)

,p(x ) =v'2L g.0 (2x - r) . g.. ~ (- l )' h_.., (4.5),,.
for a sequence {n,.} of consta nts, called filter coefficients , with
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/ .(%)dz =I , / ,p(%)dz ~ 0, / W(%)dz - 1.

The Haar wavelet bas is is th e sim plest example of a wavelet system on

C2 (S). The scaling function is:

{

1,
¢lex) = /[O,l]{X) =

0,

if 0 ~ x < 1

ot herwise
(4.6 )

T he refining relat ions for the Haar wavelet basis are

.(%)~ .(2% - 1) + . (2%)

,p(%) _ . (2%)- . (2%- 1).

[0 Secti on 4.2 we discuss t he meth odo logy behi nd wave let filtering and

t be estimat ion of th e filter coefficients will be described in sectio n 4.3 . Secti on

4.4 will consist of the met hod used to determine wha t mod els will be fitted to

t he da ta . The approach used in section 4.4 is based on patte rn recognition of

third ord er cumulants . In sec tio n 4.5 we will fit d iagonal pure bilinear models

denoted by DP B L(q) to t he Canadian rive r flow da ta discussed in Chapter

2. From the fitted mode ls in section 4.5, we will simulate data in Sectio n

4 .6 and compare the sam pling properties of t he mean , standar d deviation,
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mini mum value and maximum value to th at of the original time series.

4 .2 Wave let Smoothing

Smoothing techniques can be very efficient, bu t the performance of the filter

relies greatly on the cho ice of the filter coefficients; see Brockwe ll and Davis

(1996). To begin this procedure, the user must dec ide upon a spec ific wavelet

filter. The t ime series X l is t hen allowed to pass th rough a linear wavelet

filte r which dec:omposes Xl into a non-random wavelet smoo t hed version 1j(t)

and a random component W(t). ~V( t ) is the remainder of the tim e series Xl

after 1j(t ) has been removed . It has some autocorrelation struc ture, but the

underlying as pec t of W (t ) is that it is still a t ime ser ies and moreover, it has

a simp ler s tru ct ure t han Xl ,

Th e series Xl is constructed from linea r co mbinations of 11UI at \ 1Ul.OUS

levels of j given by

where 11~ is a multiple of a sc:aIing function .p(t) and 11U1 is a linear combi­

na tion of 2' dilated and translated versions of a primary wavelet functio n

denoted by !,bet). T he linear combinat ion 11(t;m) can be written in te rms of

.p(t) and !,b-J,A(t) =2Jf1.t/J(2Jt - k) as
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'7(t;m) = d4J(t)+ f E1
Cjlr. N",,-j,ol:(t)

j=O t=O

(4.8)

The work com pleted in this chapter will involve the Daubech.ies wavelet

syst em generated by 5¢(Z) and 5""(X). .-\lon g with (4.8) the seri es Xl is

given by

N.

X, = :E qj(t )w; + We t ) wh ere N. =2"'+1. (4.9)
; =1

T he components of the N. x 1 vector w = (Wit. .. ,WN.)' are th.e filter coeffi­

cients (d. cjlJ which will be dete rmined from n realizat ions of t he t ime series

( X,}. The vecto r q = (ql (t )•. . .• qN.(t»' is com prised from the wave let sys­

tem chosen for the filtering process. We can see from (4.9) that the nonlinear

rim e series (Xl} is broken down int o and describ ed by two components. T he

first component is a non-random wavelet smoothed vers ion and the second

is a random process.

The rat ional behind using wavelet smoothing techniques is twofold. The

first is to avoid the problem of trying t o select a suitable nonlinear techn ique,

from am ong many, to app ly to ou r nonlinear process . T he second reaso n is

to avoid the often cumbersome an d some t imes near im possible probl em of

est imat ing the par ameters in complica ted non linea r models. In this sec­

tion we gave a brief d iscussion on the method ology of wavelets an d in the

next sect ion, as discussed by Oyet (1999). we will outl ine some theory be­

hind t he estim at ion of th e filter coe fficients . For more elaborate discus sions
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on the properties, uses and ap plications of wavelets see Daubechies (1992),

Strang (1989), Alpert (1992) , Antoniadis, Grego ire and McKeague (1994)

and Hardie, Kerkyacharian, Picard and Tsybakov (1998) .

4 .3 Estimation

Without toss of generality, we will assume that the sp ace of al l possible

values of t has been normalized to the [0, 11 interval, Given 11. reali zat ions of

a non linear time series X, t hen , from Ojee (1999) , th e smoothed version is

evaluated as

ij (r ; m) = fo' her; t) X ,v( t) ~(t)

where

her ; t) = q' (r )B - 1q{t); B =B (v , ~ ) = l q( t )q' (t )v (t ) d{{t )

(4.10)

and ~(t) is the empirical distribution function or {t;}j" l . It can be established

that l}(r) is unbiased with varia nce

where
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O 2 = 101k>.• q (t )q' (s)v ( t )v (s)R..,(t - 3) d{(t)~(S)

and R..,(.) is th e autocovariance func tion of W et). At this point, it must be

determi ned how to choose th e most appropriate va lues for vet ). Th e approach

take n by Oyet (1999) is to choose vet ) such that the Integrated Vari ance of

!'j(T) denoted by IV(7j(T)) is min imized. The Integrated Variance of !'jeT) is

given by

IV(7j(T;m )) 101
V(!'j(T; m )) dr = ~(O) t r ( D 1H - I } + 2tr{ D 2 H- I }

R,.:O) l ItW 1q(t ) II'v(t ) <I«t )

+ 2 f L; q '(s)H -1 q (t )

x v( ')v(s) R..( t - s ) <I« ' )<I«s) (4.11)

where H = BA- IB and A = fal q (r )q ' (r ) dr ,

T he IV given in (4.11) can be minimized by finding an appropriateweigllt

function vet) . The approach taken by Oyet (1999) is to sea rch for an ab­

solutel y co ntinuous measure which minimizes til e IV loss func tio n by allow­

ing t he meas ure ~ to be ext ended to the space of all d istri bu t ion functions .

The weight suggested by Oyet (1999) is

Vo(t; u) ~ II
A
-l

q
(' )II; uq ~ l ilA - lq (t )1Idt (4. 12)

Then uo(t;uQ) mi nimizes (4.11) under the constrai nts that m (t )u(t) = 1 and
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fo1m(t)dt= 1.

4 .4 Model Identification B as ed on Third Or-

d er Moments and Cumulants

Before models are fitted to the random component W et ) of t he series Xl

using the DPBL(q) process given by (4.1), the order of the proc ess will be

dete rm ined using third order moments and cumulants . If we assum e t hird

order st a t ionarity, the t hird order cumulan t depends only on k1 and k 2 for

all ad missible integers t, k. an d k, and is given by

where m(k l , k2 ) = E(XIXI+.t,X I+.t. ). It has been shown by Ga hr (1988)

tha t th e cum ulants C(kll k2 ) of a real valued process X I have t he following

symmetric relat ionship:

C (k h k2) =C(~, kd = C( - k t , k2 - kd = C( k1 - k2, -~) '

From this relation, once th e values in t he upper half of the first quadrant of

the Eucl idean plan e are known , then al l the values of C (k l>k2 ) are defined.
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Tabl e 4.1: C( 1,k,l Pattern for arb itra ry q

q q+ 1 q+2 q+3

k,

NZ NZNZ · · ·NZ NZ

From Oyet (1999) we have th at G(k" k,) = 0 for k1 :5o,k, - k1 > q and

k1 > q, k, - k1 ;:: q and C(k lo k, ) nonzero when k, > kt • Based on these

results , it has been shown t hat t be third order cumulants define a pat tern in

the upper haIf of the first quadrant of the k tk, plane as shown in Ta ble 4.1.

This pattern is t hen easi ly extended to t he entire Euclidean plan e from. the

sym metr ic rela tionship satis fied by the cumulants. A useful pa tt ern the n , Cor

detecting th e order ofa DPBL(q) as can be seen in Tabl e 4.1 is: C {1,k , l = 0,

Cork, = q + 2 , q + 3, ... and nonze ro elsewhere for an arb itrary value of q.

To determine th e order of the model we will invest iga te t he beha vior of

t he standardized cumu lants, given by

p(l , k, ) - ~~~,~i (4.13)

for a given fini te sample time series XI satisCying (4.1) . We est imate the

third order cumulants in (4.13) by
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where,

1 "
X~- L: X•.

n t=l

The order of the best model will be ki - 1, where k2 is that value of k,

at which pCl, k,) cuts-o ff The cut-off point refers to the po int at which

p( l , k, ) = O. Sin ce the sample estimates of pCl, k, } will not be exactly zero,

we ~;U use the standardized cumu lant trace, a plot of the absolute values of

p(1,k,) versus k" to det ermine the poin t where .11(1, k2 ) cuts off. Th erefore,

leiwill be t he value of k2 where the st andardized cumul an t tr ace begins to

stabilize and hence, the order of the model will be k2 - 1.

4.4.1 R esults

The model fitt ing and simul ations will be cond ucted on the t ime series W et)

given by (4.7) . For this reason , the cum ulan t traces portrayed in this sectio n

were plotted based on W et). For al l six Canadian river flow da ta given in

Appe nd ix A, t he sta ndardized cumu lan t tr aces were plot ted and the order of

t he best model was selected based on the approach d iscussed earl ier in this

section.

Two of t he six. cumula nt t races sho wed a disti nct cut-off point while t he

ot her four did not show any clear point of stability. f or t he (our rive rs which

did not have a d istinc t cut-olI point we at tem pted to impro ve the cumulant

t race t hrough differencing. Depend ing on th e river we used eithe r first ord er ,

second orde r or third order differencing. Given a time series Xl> the first ,

second and thir d order differences are given by

so



Yo

Yo

Yo

X,-XI_I> t=2,3 , __ , n

X, - 2X r_ 1 +XI _ 2, t = 3, 4, _ . , n

X, - 3X,_1 + 3XI _ 2 - X,_3 , t = 4, 5, . . , n

(4.14)

(4.15)

(4.16)

resp ecti vely. ITat this stage t he cut-o ff poin t was not 100% clear, we narro wed

th e possib ilit ies down to two or th ree successive cho ices. Models were t hen

fitted to all poin ts and based on th e Ale cri teria discussed in section 3.2.4

the bes t mode l was selected . T he standard ized cumulan t traces for each river

ar e shown in F igures 4.1 • 4.6.

L Model order for Peace River;

T he st andardized cumulant trace in F igu re 4.1 was based on W et). T he

trace appears to stabilize after ki = 6, therefore the orde r of the model

to be fitted is DPBL(ki - 1) = D PBL(5).

~j~1
o • ' 0 • • .., • • :><>

Figu re 4.1; Standardized cumu lan t trace of Peace River
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2. Mode l order for Cas t le River:

Th e standardized cum ulant trace in Figu re 4.2 was also based solely on

W et ). The cut-off point in this cumulant trace is taken to be lei = 2.

Th e mode l to be fitted for this time series is DPBL(l) .

Figure 4.2: Standardized cumulant t race of Castle Rive r

3. Mode l orde r for South River:

Wh en t he standardized cum ulant trace was constructed for Wet) we

coul d not find any apparent cut-off point to distinguish a suitable

model. Firs t order differencing was then implemented on Wet) to con­

st ruct the trace found in Figure 4.3. It appears that the cut-off point

is at either lei := 4 or lei := 5. All models of order less th an a nd equal

to 4 will be fitted and the best model will be determined based on the

.4I C .
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j~1
o .. .0 '1i .._

Figur e 4.3; Standardized cumulan t tr ace of Sout h River

4. Model order for Salrn onie r River:

F irst order differencing was also implemented on the time series l-V (t }

after a cut-o ff poin t could not be determined from t he standardized

cumulan t t rac e. From Figure 4.4, which is the cumulant trace based

on the di fferencing, show'S th at afte r lei = 4 the trace begins to stabilize.

Therefore, we will fit a D PBL(3) to t his series.

Figure 4.4; Stand ard ized cumulan t trace of Salm on ier Rive r
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5. Model order for Gander Rive r:

In this case the trace for Wet) highlighted certain regular fluctua.tions

which suggested seasonal effects which were not apparent in the original

series. For this reason, third ord er differencing was performed on the

time series Wet) and then a secon d standardized eum ulant trace was

plotted as shown in Figure 4.5. The cut-off point was not clear-cut

so the valu es 2, 3 and 4 we re select ed for ki . T he mod els DP B L( l),

DP BL(2) an d DPBL (3) will be fitted and t he best mode l will then

be established using the AIC cri teri a .

Figur e 4.5: Standardized cumulant trace of Gander River

6. Model order for Moberly River:

T he standardized cumu lant t race of Wet) for this case also highlighted

season al effects which were not detected in the original series. Hence ,

the standardized cum ula nt trace sh own in F igur e 4.6 was const ru cted

from the second order d ifferenci ng of W et). T he value of the cut -o ff

point selected is ki = 5, hen ce a D P B L(4) process will be used to fit

a mode l to t his time series.
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Q .. ' 0 ' " _ ..

Figure 4.6: Standardized cum ulant trace of Moberly Rive r

4.5 Model Fitting to R iver F low Data

Diagonal pure bilinear models, given by (4.1), were fitted to all six t ime series

given in Appen dix A afte r the wavele t smoothed version had been removed.

The models were fitted to the time series W et) or W '( t ), where W'( t ) is

W et) after imp lemen tin g th e app ropriate differe ncing for each ti me series

as discussed in the previous sec tio n along wit h th e tr ansformation given by

(3.19) . For t he t ime se ries where it was suggested to fit more t han one model ,

the best model was selected based on the AlC cri te ria.

For P eace River we fitted a DPBL(5) and the es tima ted coefficie nts of

the model ar e 9. = - 0.1327, 9, = 0.0825 , 83 = -0.0228, 84 = 0.0399 and

8$ = 0.0285. T herefore the fitted model for Peace River is

W '(t ) - O.1327W' (t - l)cI _ l + O.0825W'(t - 2)Ct_2

- O.0228W '(t - 3)er_J + O.0399W'(t - 4)Ct_4
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+ O.028..5W'(f - 5)et-S + el (4.1 7)

where cr= 0.8031.

A DPBL(l ) was fitted to Cas tle River. Th e estim ate valu e of the model

parameter is 81 = 0.0079 and the fitted model is given by

W' (f ) = O.OO79~V'(t - l) e'_1 + e, (4.18)

where cr= 0.99.

Diagonal pure bilinear models of order less than and equal to four were

fitted to the time series fo r South River. The Al e W11S minimi.2:ed for the

DPBL( l ) mode l with a vaf ue of - 133.7435. Th e parameter est imate for t he

model is 81 =- 0.0636 and the resulti ng mode l is

W '(t) = - 0.0636W'(t - l )e'_ 1 + e, (4.19)

where cr=0.8282.

ForSalmonier River , we fitted a DPBL(3) model to the time series. T he

est imates of t he coefficients for the model are 81 = -0.0548, 82 =-0.0390

and 83 = - 0.0133. The model is given by

W (t ) - 0.05 48W '(t - l )el_1 - 0.0390W'(t - 2)e'_2

- O.Ol 33W ' (t - 3)e'_3 + e,
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where 0'2 =0.8015.

The pre vious section proposed following three possible models for Gander

River: DPBL(l) , DPBL(2) and D P B L(3 ). Th e D PBL(2) model record ed

th e smallest value for t he AlC = - 8.2037. The estimates for the mode l

coefficien ts ar e /h = -0.0345 and 82 =0 .0222 lead ing to t he following model

W '(t ) -0.0345W'(t - l )el_ l + 0.0222W'(t - 2)el _2

+ e, (4.21)

whe re 0'2 =0.9831.

T wo models fitted to Moberl y river we re DPBL(3) and DPBL(4). Based

on t he Ale criteria the better mode l was the DPBL(4). The AIC =

-48.9466 and the est imates of th e parameters for the mod el ar e 81 = -0.0282 ,

82 = - 0 .0016, 83 = - 0.0162 and 84 = -0.0103. T he model is give n by

W '(t ) - O.0282W'( t - l )e l_1 - O.OO16W' (t - 2)el_2

- 0.0162W'(t - 3)e!_3 - O.Ol03W'(t - 4)el-l.

+ e,

whe re 0-2 = 0.9288.
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4 .6 R esults of Simulation Study

At this stage we must consider wheth er the wavelet smoot hing technique

alon g wit h usi ng the di agon al pur e bilinear process to model W et) sust ains

spec ific prop ert ies of t he or igina l process , mainl y the mean , st andard de­

viation and maximum value . T he prop erties were s tudied by simula t ing

n = 2000 time series based on W et) or W '(t ). Th e transformat ion of the

tim e series was th en reversed . based. on (3.26) , along wit h any d ifferencing

that may have been invoked. We th en combined the wavelet smoothed ver­

sion with the simulated random linear component to obtain the following

t ime series,

X,= Ji(t;5) + W et ). (4.23)

Next, we calculated t he mean, s tandard deviation and maximum valu e for

each of the n = 2000 simulated series and compared t hose sampling prop­

ert ies to t hat of the original series. Finally. we investig ated whethe r th is

proC1:'SS was able to simulate t he ori ginal time series by overlaying t he t ime

series plot of the origin al series wit h t hat of one of the 2000 simulated series.

Enumerated be low are the results for each of the six rive rs. For each river,

properties of Xl are given togethe r with some properties of the mean of Xh

of the standard devia tion of XI> and of the maximum. of x;
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1. Peace River

Tab le 4.2: Sam pling Pr opert ies of XI> Mean( Xt ) , St .Dey(Xt ) and Max(X t )

(Peace River)

Min. I st Qu . Median Mean 3rd Qu. Max . Sr.dev

X, 329 694 1180 1278 1490 5190 950 .6962

Mean (Xt ) 1250 1272 1277 1277 1283 1305 8.1848

St .Dev(Xt ) 918.6 942.5 948.4 948.2 953.6 974.2 8.226

Max(Xt ) 4944 5312 5402 54 10 5500 6126 141.63 15

T he results from the above ta bles show t hat both the mean of t he

means of x,and the mean of th e stan dard deviations of Xt are almos t

identical to t ha t of t he mean and standa rd deviat ion of the origina l

series . T he origin al series had a mean a nd stan dard devia tion equal to

1278 and 950.6962 respectively as compared to th e mean of th e means

and the mean of th e stan dard devia ti on s of {X t } which were equal

to 1277 and 948.2 respectively. T he mean of t he max (X t ) = 5410 is

greater th an the maxi mum value of the original which is equal to 5190.

This is mainly du e to the large rang e of values in the original series .
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Figu re 4.7: Plot of actual time series (solid tine) with overlaid simulat ed
diagonal pure bilinear tim e seri es plot (dotted line) for Peace River

Figure 4.7 consists of tim e series plots of both the act ual seri es XI and

t he simul.at ed seri es XI, From the plot it is obse rved that t he sim ulat ed

series follows the pattern of the original series. There ar e some slight

variati ons from the origina l time series , bu t th e varia t ions are centered

around t he origin al series .

2. Cas tle Rive r

Ta ble 4.3 : Sampling P ropert ies of Xj , Mean(XI ) , St .Dev(XI ) and Ma.x(X,)

(Cas tl e River]

Min. Is tQu. Median Mean 3rd Qu . Max. St .de v

X, 1.62 4.135 8.1 20.47 21.2 812 41.2205

Mean (XI ) 16.52 20.03 20.7 20.67 21.32 24.09 1.0052

St .Dev(XI ) 38.39 40.79 41.41 41.41 42.04 44.16 0.8877

Max( X ,) 199.1 228 .8 239.2 240.4 250.7 306.1 16.7219
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In Cha pter 3, we were unsuccess ful in fitting models to this time se­

ries when assuming that t he series followed a general bilinear process.

Based on the techn iques used in this cha pte r, we see tha t the proce­

du re has prese rved the propert ies of the mean an d standard deviation.

T he results of the simulat ion of n = 2000 time series are: the mean

of t he means of x, was equal to 20.67 and th e mean of t he standard

devia tio ns of x,was equ al to 41.41. T hese values are almos t ident ical

to t he original t ime series which had a mean of 20.47 with a standard

devia tio n of 41.2205. The mean of t he max (X c) = 240.4 was ext remely

smaller th an the maximu m value of X t =812.

Figu re 4.8: Pl ot of actual tim e series (solid line) with overlaid simu lated.
diagonal pur e bilinear time series plot (dot ted. line) for Castle River

Figure 4.8 displays tim e series plots of the origin al series Xc and the

simu la ted series Xt _ Th e fitted. series followed t he pat tern of th e original

series in its entirety with only one excepdcn . Th e simu lated. series was

unab le to peak at the sa me magnitude as t he origin al series . The

original series had Bow rat es of 396, 812 and 244 m3js on day 157,

158 and 159 respectively. Th e simulated series peaked at around 200
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m~ / 5. This also explains t he large di fference betwee n the mean of the

ma.'C(X I ) and th e max( X I ) .

3. Sout h River

Ta ble 4.4: Sampling Prope rties of Xl, Mean (X I ) . St.Dev(X I ) and Max(X, )

(Sou th River )

Min . IstQu. Median M"", 3rd Qu . Ma.'C. Sr.d ev

X, 0.069 0.2605 OA16 0.6855 0 .752 13 0.964

Mean(Xt ) 0.5394 0.6196 0.6395 0.6405 0 .6616 0.7564 0.0303

St .Dev(X ,) 1.167 1.247 1.265 1.265 1.283 1.34 0.0264

Ma.'C(Xe) 9.976 12.39 12.95 12.96 13.54 15.44 0.8083

The mean of t he means of Xl for South River was equal to 0.6855 which

was very dose the the mean of X , which had a value of 0.6405. Th e

mean of the standard deviations of fCI was eq ual to 0.964 which was

slightly different from t he standard devi a tion of the actual time series

which was equal to 1.265 . Th e values of the max( Xc) and th e max( X,)

were very close with values 12.96 and 13.0 respectively.
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. ,t I " .',' 1 , 1 , I"'t'i~~~
Figure 4.9: P lot of ac tu al time seri es (solid line) wit h. overlaid simulated
diagonal pur e bilinear ti me se ries p lot (dot ted line ) for South River

The time series plot of t he original series K, and t he simulated seri es

XI are disp layed in F igur e 4.9. T he simulated series did not follow th e

pat tern of t he origina l series to the same extent as t he pr evious two

rivers .

4. Salmonier Ri ver

Ta ble 4.5: Sam pling P ropert ies of Xl> Mean( X I ) , St. Dev( X t } and Max(X t )

(Salm onier River ]

Min. Ist Qu. Median M,= 3rd Qu. M=. St.dev

X. 0 .043 1.025 2.58 4.208 5 63 .5 5.9 732

Mean (XI ) 3.259 3.677 3.784 3.788 3.897 4.323 0.1617

St.Dev(Xt ) 6.91 7.356 7.456 1.457 7.561 7.988 0. 1544

Max(X I ) 50 .51 60.52 63.26 63.48 65.38 75.96 4.3091
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Figur e 4.10 : Pl ot or actual time series (solid line) wit h overlaid sim ulated
diagon al pure bilinear t ime seri es plot (dotted Hne) for Saim onier River

T he resul ts or t he mean and st andard deviat ion for Sa lmon ier Ri ver

were not as precise as th e results recorded for t he other five rive rs,

however, t he samp ling properties d id a ppear to be maintained. Th e

mean or t he actual time series an d the mean or the means or the Xl
were 4.208 an d 3.788 respectively. The standard devia t ion or Xl and

t he mean or th e standa rd deviations or XI were 5.9732 and 7.457 re­

spect ively. The maximum value or Xl = 63.5 was almost ident ical to

max-eX!) which recorded a value or 63.48 . The plot or the simu late d

series XI in Figu re 4.10 did not resemble the original series X !. Al­

though th e sam pling properties were preserved in th e sim ulat ion, th e

feet th at t ile simulated plot did not rollow the pa t te rn or the origin al

series q uestions t he appropriateness or the mod el.
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5. Gander River

Table 4.6: Sampling Properties of X c. Mean (Xt ) , St .Dev( X I ) and Max( X I )

(Gander Ri ver]

Min . lstQu. Median Mean 3rd Q u. Mex. St .dev

X. 23.5 76.35 108 130.1 160 669 94. 1295

Mean(X I ) 127.1 129.1 129.5 129.5 130 132.3 0.7032

St .Dev (X I ) 97.26 99.27 99 .75 99.74 100.2 102.4 0.69997

Max (X t ) 600.5 652 664.6 664.9 677.9 753.8 18.8715

Based on t he results of th e mean, standard deviation and maximum

value of t he simulat ion study, we see that the proced ures used in th is

chapter sustained t hese properties for t he Gan der River . The original

seri es had a mean of 130.1 while the mean of the means of x, was

129.5. The standard deviation of XI was equal to 94 .1295 while for x,
the mean of the standard devi ations was 99.74 . The maximum. of Xl

was equal to 669 while the mean of max (X I ) was 664.9 .
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F igure 4.11: P lot of actual t ime series (so lid line) with overlaid simulated
diagonal pure bilinear time series plot (dotted line) for Gan der Rive r

With only some slight devia tions from the original series , the simula ted

series in Figure 4.11 mode led t he origin al se ries effectively.

6. Moberly River

Tab le 4.7: Sa mpling Pr opert ies of X" t-lean(X,), St .Dev(JYt ) and Ma.'C(X,)

(MoberLyRiver)

Min. 1st Qu. Medi an M,= 3rdQu. M= . St.dev

X, 1.24 1.$4 3.24 13.17 15.25 87 .1 18.7409

Mean(X,) 12.94 13.07 13.1 13.1 13.13 13.29 0.0465

St .Dev(X,) 18.89 I" 19.04 19.04 19.07 19.17 0.0463

Max(X I ) 86.69 88.71 89.36 89.4 "(l.OO 92.72 0 .9966

T he results of Moberl y River also showed convincing evidence that

th e met hod of wavelet smoot hing worked ex tremely well when fitt ing

models to river flow data. For Moberly River, the mean of Xl was 13.17
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as compared to th e mean of the means of XIwhich was equ al to 13.l.

T he st andard devi ation of X l was equal to 18.7409 which was very

close the the mean of the standard deviation of XIwhich had a value

of 19 .04. The results for th e marimum value were max (X, } = 87.1 and

max(X,) = 89.4 .

{Ji __:~I
Figu re 4.12: Plo t of ac tual time series (solid line) with overlaid simulated
diagon al pure bilinear t ime seri es plot (dotted line ) for Mob erly River

F igure 4.12 d isplays t ime series plots of t he original seri es X, and the

simulated series s; Th e plot of the sim ulated series imitated the origi­

nal series with t he except ion of some small variations that were mainly

cente red around t he ori ginal series.

T he sim ulated tim e seri es plots for Peace River, Gander River and Moberly

River simulat ed th eir respective origin al time series extremely close . T he

simulated tim e series plot for Castle River was also very close to that of th e

original series , with the only exce ption being the poin t in t he time series

where a minimal number of poin ts peaked the series far ab ove an y oth er

interval in t he seri es . Th e simulated time se ries plots for South River an d
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Salm onier River de picted similar patterns to that of t heir original series but

were not as exact as t he ot her four. The main reaso n for this is the number

of ups and downs t hro ugho ut t he original series mad e it more difficult to

simu lat e t he series exac tly.

T he effectiveness of th e procedures to model rive r flow da ta as present ed

in th is chapter was based on two characteristics. Th e first comp onent was

concerned with the abili ty of th e fitt ed model to preserve sam pling prope rt ies

of t he original series, an d the second pertained to the mod els capabilit y to

simula te the origin al t ime series . Overall . the sampling propert ies and t he

simulated plots for all six rivers gave convincing evidence t hat the proced ures

discussed th roughout this chapter were very effective in mod eling a two ye ar

period. of river flow data.
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Chapter 5

Conclusion

In many ins ta nces when analyzing time series data t he time series is con­

sidered to fe llow a linear process and this is t he best approach provided th e

assumption of linearity is correct. A major prob lem that arises when mode l­

ing time series data is assuming t he t ime series follows a linear process when

in fact it is non-li near . In man y sit uat ions a t ime series may be generated by

an unde rlying rand om structure th.at is non -linear and if this non-lineari ty

is over looked t he fitted mod els will have no mean ing. T he time series coo­

sider ed in th is practicum were tes t ed for lineari ty in Ch apter 2 and in all

instances t he time series were found to be non-linear .

In this practicum we fit t ime series models to the rive r flow variable for

six rivers based on two app roaches. The first ap proach discussed in Chapter

3 assumed the ti me series followed a bilinear process. The secon d approach

discussed in Chapter 4 involved decomposing th e time series into a wavelet

smoot hed version and a ran dom component , using wavelet smoothing tech ­

niqu es, where th e random component was assumed to follow a pure bilin ea r
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process . Simula t ion studies for bot h approaches we re cond uct ed to identify

whet her the fitted models behaved. in a similar man ner to the original time

se ries.

For both ap proaches certain samp ling properties of the simulated series

were compared to the original series. A time series plot which consisted of the

sim ulat ed series and t he original seri es was also constructed for each river.

When assum ing the t ime series followed a bilinear process there ..sere some

cases where the sampling prope rti es of the simulated series were very close

to that of the original series. However , in neither inst ance did t he simula ted

plot pr ovide encour aging evtdence that the t imes seri es bad an underlying

st ruc t ure tha t was bilin ear . T he techniques emp loyed in Chapter 4, hew­

ever, were very successful in modeling the mean river Bow time series . T he

sim ulated results where almost identic al to thei r respect ive original series .

Th e a bility to ap prop riately mod el the river Bow varia ble is a huge re­

source in the field of hydro logy. Th e work comple ted in th is prac ti cum and

especially the met hods from Chapter 4, if applied to at least a 10 year river

flow series , will aid hydrologists in making improved forecas ts an d predlc-

tions.
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Appendix A

Data Sets



Table A.I : River Flow Data For Peace River
1610 1590 1590 1590 1600 1600 1610 1620 1600 1590 1600 1580 1560 1580
1560 1520 1530 1530 1530 1520 1490 1490 1490 1490 1450 1430 1420 1360
1370 1310 1280 1220 1210 1140 1130 1130 1130 1140 U20 1120 1140 1190
1250 1280 1270 1230 1120 987 846 851 851 839 847 845 849 858 847840847
~~842841~842~~~~~~8~~~~831~

~~m~~mmM6615n~4n~~~~__
6OO~~~rnm~m~~71O~~m8U~712~1

6n ~ ~~~~1 ~412 ~~~mm~7~mm~

~ ~5~~WW~~~2 ~~m~Hlmm~~

~~3~~~I ~ ~ ~2~ ~M5~m~~~MIMI

~ M2~~~~~~~7~6~6ro 418 ~~W~25n

492 536 680 539 648 511 640 527 562 752 579 588 915 1010 995 1020 830
m~ 915_614M6 ~m 401 ~9~ 5n613 481 m W~~

~1 ~ 354~~5~~m3n ~357~7W3~~ _ 426353

~ ~~ ~7 3~ ~ ~~ 3MmW2 5 1 7 ~ 351 ~ 517~5966

~~~~5265804~~ ~7~4M «3 M6 n6 m~®5902

1030 1060 1140 1230 1100 744 666 665 717 794 681 6® 534 657824 899 921
1040 1140 739 663 688 1210 956 735 846 931 1140 728 r i s 969 1260 1400
1300 1020 1350 1410 1350 1250 1350 1320 1250 1100 1050 1000 970 990 950
930900 1070 1150 1180 U 70 1160 1150 1160 1300 1700 1450 1230 1230 1650
1680 1760 1640 1700 1700 1700 InO I n O 1740 1740 1740 1740 1740 1740
1740 1740 1740 1630 1590 1550 1530 1530 1530 1530 1530 1530 1530 1510
1390 1390 1390 1380 1410 1380 IMO 1~0 1300 1200 1200 1230 1210 1220
1220 1220 1240 1230 1~0 1330 1340 1410 1460 1470 1470 1420 1190 1180
1210 1210 1270 1270 1260 1250 1280 1280 1280 1280 1300 1310 1270 1270
1280 1290 1270 1270 1280 1260 1270 1270 1260 1250 1260 1260 1260 1250
1310 1310 1270 1260 1280 1280 1280 1200 1170 1190 1240 1290 1280 1250
1250 1260 1260 1250 1250 1240 1220 1200 1200 1190 UOO 1180 1170 1150
1140 1130 U2 0 1100 1100 1110 1120 1130 1140 USO U 60 u ro 1180 1180
1180 11701160 115011401130 1110 1100 1100 1100 noo 1120 1100 950 960
1000 1070 1120 1200 1600 1570 1570 1560 1550 1610 1320 1000 850 780 770
~~m~~~~~825 ~Q~612~~ lmO ~I ~

525 737 1120 1050 1050 1140 1350 1370 1440 1430 1520 1310 1250 1420 1410
1460 1420 1440 1410 1390 1380 1310 1510 1660 1610 1530 1570 1500 1500
1820 2510 3420 4220 4550 4460 4510 4590 4660 4650 4660 4660 4660 4670
4730 4740 4760 4780 4880 4950 4940 4930 4920 4980 4710 3540 3480 3680
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4160 4650 4920 5010 S020 5060 SOlO 5010 5100 5190 5060 3690 2320 729
2000 3800 41SO 41SO3800 32SO3190 31SO3180 3110 3010 2800 2390 1820
1770 17SO 1750 1760 1750 1750 1740 1730 1730 1750 1780 1740 1760 1780
1770 1730 1770 1800 1710 1780 1770 1750 1800 1760 1790 1740 1730 1810
1730177017801780 17701770 1770 1650 1610 1580 1600 1330 760 897 1070
918 796 720 593 416 388 924 1200 1300 1300 1420 1540 1410 1470 1490 1500
1500 1500 949 925 1350 1420 1420 1250 1380 967 965 1140 1380 1260 1410
1530 1020 1240 1330 1530 1500 1540 1110 726 698 875 1120 1200 1300 1100
1140 1230 1340 1440 1540 1620 1650 1650 1600 1480 1400 1340 1380 1440
1500 1450 1450 1470 1490 1500 1490 1460 1450 1470 1460 1450 1460 1480
1460 1450 1460 1490 1500 1510 1500 1440 1400 1380 1340 1340 1390 1450
1500 1500 1490 1470
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Tab le .'\.2: River Flow Data For Cast le River
2.36 2.30 2.26 2.22 2.19 2.15 2.10 2.12 2.16 2.28 2.26 2.202.17 2.13 2.10
2.08 2.05 2.03 2.02 2.03 2.05 2.05 2.05 2.14 2.18 2.23 2.30 2.40 2.50 2.60 2.75
2.953.123.10 3.06 2.98 2.88 2.84 2.78 2.74 2.69 2.64 2.58 2.53 2.50 2.47 2.45
20472.522.85 3.303.703.92 4.004.03 4.003.90 3.79 3.68 3.51 3.50 3.50 3.52
3.623.90 4046 5.09 6.10 6.75 8.34 9048 8.66 8.18 8.50 8.71 8.25 8.017.79 7.64
7.987.617.277.06 6.716.29 6.18 5.91 5.85 5.83 5.78 6.04 6.30 6.26 6.30 7.23
1.29 7.281.56 7.70 7045 7.47 7.39 7.53 7.80 7.64 7.22 7.27 7.18 7.21 7.68 8.00
8.60 9.00 9.60 10.90 10.80 11.00 10.90 10.60 10.60 10.10 10.10 11.00 11.80
14.60 43.00 70.50 78.10 60.00 54.70 58.30 64.00 60.30 57.60 65.10 75.80 18 .00
91.90 89.20 76.50 74.30 64.4059.1056.6060.50 55.50 49.60 52.40 69.00 90.80
111.00 111.00 102.00 95.90 89.30 90.90 396.00 812.00 244.00 146.00 105.00
88.2083.0081.1080.60 73.50 70.00 70.60 68.30 62.40 62.90 56.30 64.60 65.40
64.10 61.80 59.40 61.20 54.30 50.80 48.10 48.50 47.60 52.00 61.80 54.20 48.70
45.7041.5038.70 38.7034.90 31.4028.4026.00 24.7024.40 22.20 20.9019.90
19.40 32.20 29.00 26.60 28.50 25.80 23.20 22.70 20.70 19.00 17.90 17.20 16.70
18.60 17.50 16040 15040 14.30 14.80 15.20 14.40 13.70 16.90 17.501 6.5015.80
15.10 14.80 14.30 14.10 13.60 13.10 12.30 11.90 11.40 10.90 10.7010.50 10.00
9.77 9.60 9.82 9.58 9.19 8.73 8.34 8.24 8.20 8.33 8.36 7.87 7.64 7.46 7.37 7.20
6.88 6.88 6.71 6.68 6.70 6.82 6.46 6.26 6.07 5.88 5.74 5.54 5.36 5.23 5.05 4.95
5.33 4.99 5.05 4.90 4.81 5.074.864.754.674.60 4.57 4.76 8.90 10.60 11.10
11.00 10.50 10.60 11.80 11.90 11.40 10.80 10040 10.209.68 9.22 8.82 8.66 8.25
7.90 7.60 6.616.395.785.655.945.68 5.62 5.52 5.32 6.00 10.90 9.35 9044 9.85
904511.30 15.60 21.10 22.70 24.50 24.10 21.30 19.40 17.60 16.20 19.60 22.90
21.60 17.30 15.70 20.60 42.30 38.8031.3025 .6022 .701 9.10 16.10 14.9010.90
11.30 11040 11.6011.8012.00 11.80 11.70 10.90 9.95 io.so 9.70 8.72 8.10 8.11
8.30 8.70 9.00 9.30 9.40 9.50 9.608.50 7.507.006.99 6.18 5.41 4.744.154.19
4.88 5.68 6.60 7.68 8.95 7.85 7040 6.97 6.57 6.19 5.83 5.63 5.45 5.26 5.08 4.90
4.744.58 4.424 .26 4.123.983.86 3.74 3.63 3.53 3.41 3.313.41 3.49 3.97 4.69
5.53 6.54 7.71 9.82 12.50 15.90 14.80 13.70 9.37 9.04 9.51 8.92 8.42 7.96 8.38
7.747.60 7047 7.36 7.23 7.10 7.02 6.94 6.84 6.76 6.68 6.70 8.98 12.00 11.20
10.80 lOAD 10.00 9.80 9.57 9.35 9.10 8.89 8.69 8.53 8.39 8.24 8.10 7.96 7.82
7.927.697.53 7.38 7.31 7.27 7.21 7.17 7.13 7.09 7.058.05 l OAD 14.20 22.90
38.60 56.40 50.30 41.20 33.70 29.40 27.70 29.40 30.60 28.80 27.40 25.70 24.10
22.7022.4043.6039.3033.5029.70 26.60 24.90 23.90 23.70 23.30 22.20 22.00
21.4021.90 22.10 21.00 19.70 18.80 18.80 20.20 25.10 37.60 48.20 57.10 64.90
69.20 65.90 59.70 53.90 52.00 64.90 63.40 61.3064.80 66.90 82.70 88.90 79.60
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70.90 64.00 64 .70 76.10 118.00 125.00 101.00 94.50 117.00 123.00 103.0086.30
76.20 67.10 65.30 63.70 63.10 65.50 61.60 50.30 40 .50 35 .50 46.40 45. 10 56.90
63.00 57.30 55.00 55 .40 52.40 48.40 45.50 45.10 45 .00 45.90 42.20 35.90 31.60
28.80 27.30 26.80 25.60 23.50 21.70 20.40 19.50 19.10 18.80 18.00 16.30 15.10
14.70 14.20 13.70 13.50 13 .60 13 .70 13.10 11.90 11.80 12.20 10.10 9.61 9.08
8.768.428.748.33 7.82 7.50 7.25 7.04 6.86 6.59 6.52 6.41 6.24 6.06 5.96 5.59
5.425.315.245.04 4.89 4.58 4.514.45 4.47 4.34 4.29 4.09 3.76 3.78 3.73 3.74
3.90 4.13 3.94 3.77 3.71 3.70 3.64 3.533.4.93.473.453.383.353.665.15 4.46
4.174.194.274.19 4.15 4.144.10 4.00 3.89 3.96 4.07 4.20 4.26 4.29 4.27 4.33
4.32 4.254.22 4.16 4.09 4.04 4.03 4.0 1 3.98 4.04 4.00 3.90 3.91 3.953.823.68
3.64 3.673.66 3.59 3.48 3.45 3.46 3.46 3.453.44 3.44 3.28 3.13 3.01 2.95 2.82
2.56 2.46 2.35 2.23 2. 14 2.02 1.95 1.87 1.80 1.74 1.71 1.69 1.68 1.62 1.66 1.65
1.66 1.671.681.721.831.972.072.052.03 1.98 1.94 1.921.91 1.92 1.94 1.96
2.012.10 2. 12 2.11 2.10 2.09 2.08 2.07 2.06 2.04 2.04 2.03 2.04 2.04 2.04 2.00
1.97 1.96 1.94 1.96 1.97 1.98 1.99
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Table A.3: River Flow Data For South River
0.560 0.510 0.4 75 0.450 0.430 0,418 0.740 9.490 10.300 3.510 1.520 13.000
0.900 0.650 1.510 1.620 1.690 1.250 0.948 0.809 0.688 0.596 0.538 0.654 0.730
0.6930.6270.5600.500 0,460 0.420 0.385 0.350 0.320 0.295 0.272 0.340 0,440
0.390 0.340 0.320 0.290 0.270 0.260 0.245 0.235 0.280 0.320 0.280 0.260 0.240
0.260 0.940 0.850 0.740 2.790 3.580 1.640 1.550 1.200 0.922 0.775 0.650 0.570
0.500 0.440 0.390 0.900 7.500 6.160 2.600 1.280 1.250 0.681 0.690 0.540 0.500
0.4700.4400.410 0.600 4.580 5.060 3.430 2.330 1.370 1.100 0.922 0.754 0.615
0.542 0.500 0.460 0.420 0.400 0.380 0.370 0.355 0.340 0.650 1.140 0.884 0.705
0.637 0.726 1.230 1.980 1.950 1.420 1.130 0.921 0.848 0.848 0.780 0.685 1.640
1.6702.350 1.800 1.1500.850 0.687 0.605 0.533 0.500 0.479 0.456 0.440 0.440
0.4750.5810.64.20 .6010.5320,494 0.451 0.3970.3460.3120.293 0.279 0.267
0.2570.2840.2790.2570.244 0.215 0.195 0.191 0.191 0.199 0.204 0.201 0.213
0.2270.2160.192 0.182 0.325 0.356 0.310 0.268 0.247 0.245 0.278 0.395 0.392
0.313 0.262 0.233 0.228 0.228 0.193 0.166 0.158 0.159 0.149 0.137 0.131 0.122
0.1150.1070.1310.1760.1740.1620.1410.1250.101 0.0890.087 0.090 0.088
0.0870.081 0.0780.0820.0810.084 0.544 0.714 0.488 0.360 0.378 0,474 0.414
0.3010.240 0.1950.168 0.153 0.143 0.139 0. 144 0.132 0.116 0.103 0.096 0.094
0.090 0.083 0.076 0.069 0.074 0.076 0.074 0.072 0.072 0.071 0.069 0.073 0.076
0.0970.1020.1130.2120,405 0.371 0.316 0.271 0.228 0.372 0.735 0.576 0.469
0.3990.301 0.245 0.207 0.178 0.164 0.169 2.44 0 1.5200.793 0.535 0.450 0.420
0.3660.3370.6430.6870.511 0.409 0.342 0.303 0.278 0.262 0.249 0.236 0.231
0.2220.209 0.201 0.220 0.265 0.286 0.278 0.266 0.254 0.649 0.977 0.8420.770
0.5500.360 0.290 0.295 0.300 0.270 0.262 0.255 0.242 0.226 0.230 0.234 0.231
0.3780,4050.3580.310 1.310 2.110 1.0700.644 0.4470.390 1.050 1.0300.743
0.677 0.972 1.280 1.0700.7310.584 0.503 0,450 0.413 0.394 0.416 0.426 0.393
0,49 10.5223.0202.490 1.710 1.400 2.950 1.770 1.200 0.910 0.7170.764 0.984
0.853 1.530 1.350 1.040 1.130 1.040 1.900 2.140 1.950 1.240 1.080 0.9200.825
0.7500.690 0.875 0.850 0.825 0.910 1.100 1.660 1.880 1.950 1.2900.9730.769
0.637 0.5900.5400.460 0.380 0.320 0.280 0.250 0.232 0.217 0.198 0.186 0.175
0.1700.2602.000 1.9200.950 0.600 1.190 1.160 1.540 3.870 1.800 0.911 0.617
0.5411.4001. 180 0.721 0.529 0,420 0.340 0.298 0.270 0.245 0.235 0.222 0.210
0.2020.2280.2450.320 1.090 1.260 1.6200.932 1.050 1.880 1.420 2,470 1.810
1.0000.6600.5090,4640.4900.6121.4501.7101.270 0.9030.658 0.539 0.470
0.410 0.380 0.350 0.320 0.340 0.362 0.330 0.300 0.278 0.265 0.255 0.249 0.311
0.8360.8670.711 0.591 0.512 0.582 0.758 0.612 0.508 00414 0.383 0.3810.349
0.3100.2~0.mO.3~0.~0.MO.~ 0.6WO.5050.4430.4~0.~0.~3
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0.988 1.080 0.9 16 0.750 0.632 0.580 0.661 0.713 0.688 0.586 0.480 0.422 0.385
0.3540.329 0.307 0.288 0.272 0.290 0.296 0 .294 0. 285 0.265 0.4 22 0.710 0.560
004390.373 0.317 0.294 0.313 0.365 0.377 0 .428 0.713 0.606 0.456 0.365 0.312
0.291 0.293 0.291 0.281 0.259 0.228 0.210 0 .199 0.189 0.187 0.210 0.307 0.318
0.2910.2520.7751.070 0.691 0.505 0.423 0 .356 0.302 0.285 0.262 0.241 0.234
0.2410.34 3 0.362 0.329 0.284 0.261 0.247 0.2340.225 0.220 0.300 0,420 0.525
0.394 0.3 10 0.288 0.4.19 1.6 70 1.840 1.63 0 1.220 0.876 0.616 0.471 0.391 0 .368
0.338 0.294 0.64 7 1.660 1.090 1.070 0.835 0.590 0.469 0.432 0.396 0.381 0 .333
0.302 0.280 0.262 0.250 0.236 0.226 0.212 0.199 0.190 0.188 0.186 0.191 0 .176
0.156 0.144 0.134 0.124 0.166 0.170 0.159 0.178 0.224 0.212 0.192 0.184 0.154
0.1390.125 0.130 0.127 0.118 0.132 0.12 7 0.121 0.135 0.229 0.905 0.693 0 .463
0.376 0.310 0.248 0.224 0. 201 0.1890.1740.172 0. 173 0.182 0.192 0.190 0.188
0.2270.413 OA08 0.327 0. 277 0.258 0.256 0.254 0.26 0 1.150 1.030 0.656 0.734
0.695 0.502 0.396 0.356 0.316 0.283 0.265 0.774 0.759 0.503 0.4.29 0.532 1.310
1.0800.706 00491 DADS 0.407 0.416 0.405 0.379 0.368 0.354 0.333 0.315 0.296
0.2850.2820.3030.3650.383 0.389 0.434 0.533 OA91 0.4 14 0,423 0.506 0 .480
00411 0.371 0.340 0.3 15 0.30 1 0.558 2.1 50 1.6300.9570.670 1.1703.050 2.380
1.600 1.130 0.9741.010 0.808 0.649 0.569 0.504 1.830 2.340 1,410 0.942 0. 718
0.682 1.030 1.790 2.780 2.490 1.530 LOBO0.880 1.100 4.440 3.000 1.570 1.110
0.8970.7760.6840.623 0.6 15 0.825 1.320 0.906 0.747 0.6350.5910.7740.729
0.684 0.583 0.7141.140
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Table A.4: River Flow Data For Salmon ier River
5.600 5.000 4.650 4.300 3.850 5.000 8.000 53.500 45.000 16.200 8.000 5.600
7.000 9.500 13.900 17.200 18.600 14.800 10.300 6.650 4.000 3.400 2.750 2.250
1.950 1.700 1.500 1.300 1.150 1.050 0.940 0.860 0.190 0.740 0.675 0.630 0.580
0.5400.5050.4780.4450.422 0.400 0.380 0.360 0.345 0.325 0.900 1.750 1.500
1.320 1.170 1.100 1.020 0.910 0.830 12.800 8.000 5.600 5.600 7.500 9.550
7.250 5.800 4.400 3.200 4.200 9.000 20.000 46.000 30.000 18.000 6.000 3.800
2.400 2.850 3.550 3.400 3.200 2.800 2.600 18.000 46.600 28.200 17.900 9.880
7.700 6.160 5.120 4.110 3.060 2.710 3.900 4.460 4.090 3.000 2.5i O2.030 2.030
3.6605.2304.900 3.970 3.400 3.980 5.150 6.960 19.000 17.300 10.300 7.010
5.720 4.6403.9503.2704.8206.540 7.180 4.790 3.490 2.690 2.090 1.640 1.440
1.3101.160 0.976 0.947 1.370 2.020 2.340 1.940 1.610 1.320 0.9580.7970.693
0.592 0.5530.545 0.554 0.568 0.644 0.621 0.556 0.519 0.502 0.496 0.428 0.300
0.3420.3820.386 0.391 0.411 0.411 0.379 0.315 0.287 0.403 0.452 0.366 0.238
0.282 0.511 5.160 8.010 5.580 3.350 2.140 1.580 1.200 0.850 0.609 0.531 0.471
0.399 0.2900.2210 .178 0.2060.2110.1630.143 0.109 0.108 0.109 0.104 0.094
0.078 0.0830.0830.079 0.076 0.068 0.072 0.081 0.0700.043 0.124 5.340 4.500
4. 1603.250 9.310 13.4007.5504.9303.490 2.340 1.690 1.360 1.050 0.8240.636
0.4950.4280.401 0.354 0.264 0.238 0.227 0.213 0.200 0.203 0.210 0.228 0.212
0.2070.2180.1950.1730.1500.124 0.111 0.112 0.115 0.117 0.124 0.128 0.143
0.1420.438 2.530 1.960 2.250 2.140 1.690 1.310 1.U O0.884 0.765 2.640 63.500
24.200 9.310 5.350 5.340 4.980 3.780 7.0BO20.300 11.800 6.610 4.470 2.990
2.390 1.800 1.490 13.000 10.100 7.640 4.670 3.400 2.660 7.960 12.000 7.810
5.600 3.410 2.540 3.850 3.710 2.970 2.450 2.710 2.770 2.390 2.510 2.690 2.370
1.980 1.660 1.520 1.360 3.450 4.910 4.320 6.330 5.250 3.920 3.030 3.220 4.250
3.510 2.770 2.300 1.930 8.130 7.680 6.210 4.690 4.210 4.310 3.880 3.120 2.570
2.550 2.240 2.020 3.630 7.820 6.330 4.880 3.610 3.040 42.400 24.400 13.500
9.090 22.100 13.200 8.800 5.680 4.350 3.710 3.300 3.000 2.700 2.500 2.300
2.200 2.080 4.800 20.400 17.000 9.480 5.750 4.870 4.100 3.450 3.100 2.800
3.300 4.200 5.400 6.900 8.500 7.250 6.200 5.400 4.700 4.100 3.550 3.150 2.800
2.250 1.900 1.650 1.400 1.200 1.100 0.910 0.815 0.740 0.690 0.650 2.000 4.000
10.000 7.000 9.000 8.000 6.750 6.000 9.800 7.000 4.600 2.800 2.150 4.000 3.600
3.000 2.400 1.750 1.400 1.200 1.060 0.950 0.850 0.775 0.700 0.650 0.625 0.600
4.0009.970 10.7009.5605.6705.430 7.080 10.300 14.800 9.710 4.500 3.030
2.040 1.530 1.5503.560 12.500 10.500 8.320 4.950 3.680 2.950 2.700 2.400
2.200 1.950 1.750 1.600 1.450 1.350 1.250 1.150 1.070 1.000 1.1503.1009.290
7.5405.060 3.490 2.670 19.000 14.000 10.000 4.200 2.600 2.000 1.600 1.450
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1.280 1.120 1.000 0.950 1.500 2.400 1.700 1.400 1.200 1.080 0.860 1.600 3.200
2.600 2.100 1.750 1.320 1.600 1.800 2.200 1.900 1.700 1.480 1.300 1.200 1.050
3.600 3.000 1.800 1.450 3.400 3.000 2.520 2.120 2.000 2.060 2.680 3.090 2.340
1.760 1.460 1.150 2.530 4.140 5.640 5.140 5.010 7.900 6.530 4.510 3.070 2.120
1.600 1.510 1.320 1.220 1.190 1.010 0.873 0.740 0.674 0.603 0.779 2.700 2.180
1.750 1.460 2.710 3.560 3.230 2.700 2.280 1.680 1.280 1.150 0.910 0.923 1.990
1.850 1.650 1.210 0.970 0.799 0.650 0.482 0.375 0.312 0.255 0.424 1.060 0.836
0.6660.575 0.536 0.546 6.190 11.400 10.700 9.440 6.340 3.890 2.500 3.690
7.120 5.070 3.230 7.640 16.300 10.800 9.360 6.640 4.100 2.580 2.120 1.960
2.100 1.920 1.590 1.300 1.310 6.330 4.880 3.480 2.390 1.680 1.260 1.530 1.550
1.2100.949 0.774 0.633 0.5540.465 0.489 0.492 0.391 0.843 2.300 1.390 1.050
0.9690.917 0.760 0.582 0.485 0.412 0.363 0.719 0.813 0.600 0.538 0.817 3.810
2.7204.0405.000 5.800 4.500 2.920 2.050 1.430 0.974 0.7670.607 0.565 0.535
0.500 0.450 0.650 1.380 1.250 1.150 1.100 1.030 0.960 0.930 0.940 6.750 5.400
4.000 6.500 5.000 4.000 3.100 3.200 2.900 2.280 2.450 8.400 6.000 4.400 3.400
3.800 9.500 6.500 5.200 4.200 3.250 5.200 6.000 5.000 4.200 3.600 2.920 2.550
2.1801.9302.2502.800 3.4004.2004.000 3.600 3.200 2.550 2.200 2.000 3.000
4.950 4.200 3.650 3.180 2.800 2.450 2.180 7.000 20.100 14.000 10.000 7.500
5.9507.2506.300 10.5008.000 14.000 15.200 7.430 5.540 4.750 3.560 23.600
18.000 7.830 5.180 3.550 2.570 3.740 5.280 5.240 4.670 4.890 3.780 4.670
13.000 26.000 15.600 8.750 5.530 3.350 2.290 1.770 2.270 3.650 8.620 8.070
5.6203.830 2.730 2.630 4.000 3.600 3.450 4.400 8.000 7.000
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Table A.5: River Flow Data For Gander River
40.8 40.2 39.2 39.3 39.1 38.8 40.0 48.2 66.3 103.0 134.0 149.0 152.0 152.0
152.0 148.0 151.0 155.0 155.0 153.0 lSO.0 145.0 138.0 135.0 132.0 128.0 122.0
116.0 109.0 104.098.3 92.5 88.5 83.7 BO.6 78.4 74.8 71.1 68.2 65.9 63.3 60.5
58.4 55.5 52.9 51.4 51.2 48.3 47.0 46.0 44.2 42.6 42.5 41.6 41.3 43.9 44..747.5
56.566.3 75.4 80.7 83.5 84.9 84.3 83.2 82.2 BO.O 81.1 91.4 115.0 141.0 161.0
172.0177.0175.0 169.0 159.01 52.0 146.0139.0 134.0 143.0 167.0 204.0 233.0
251.0 258.0256.0 246.0 232.0 217.0203.0 189.01 79.0165.0 152.0 143.0 136.0
130.0 128.0 128.0 129.0 130.0 136.0 156.0 203.0 294.0 431.0 575.0 653.0 669.0
658.0634.0 615.0 612.0607.0603.0593.0 549.0 499.0464.0 445.0 426.0 403.0
381.0 364.0 349.0 337.0 325.0 312.0 JOO.O289.0 275.0 263.0 248.0 233.0 216.0
201.0 185.0 173.0 161.0 150.0 140.0 131.0 126.0 120.0 111.0 103.098.093.1
90.186.981.3 78.3 75.9 72.4 70.9 68.2 65.8 65.3 66.8 67.9 65.9 65.2 66.4 74.0
85.292.7 96.895.092.588.984.980.2 76.372.6 70.868.8 65.2 62.0 59.7 58.4
64.4 78.7 82.577.171.366.163.0 60.6 56.653.150.048.745.9 41.9 39.3 39.2
39.237.936.736.638.241.5 47.052.8 54.655.656.756.7 54.5 53.6 52.3 52.4
51.850.247.7 45.944.842.339.939.4 38.2 35.3 33.6 39.4 45.9 47.2 47.3 48.2
48.146.847.147.3 46.6 46.848.052.757.659.559.3 57.7 63.4 74.2 83.1 87.0
87.385.280.977.673.371.5 98.4 158.0 187.0 191.0 187.0 190.0 194.0 189.0
180.0 176.0 169.0 160.0 152.0 141.0 132.0 126.0 116.0 120.0 122.0 128.0 126.0
120.0116.0 113.0112.0 111.0 110.0 105.0 104.0106.0111.0114.0113.0 113.0
114.0117.0119.0 121.0 121.0116.0111.0105.0103.0101.0 103.0101.097.3
94.5 93.888.4 87.3 86.9 86.9 86.5 86.7 86.4 87.0 88.8 89.0 89.8 89.7 93.2 95.1
95.3 93.7 92.591.890.290.894.4 96.8 97.197.8 114.0 189.0 237.0 255.0 285.0
363.0389.0375.0342.0308.0275.0253.0 228.0210.0 193.0 179.0 171.0 163.0
153.0 145.0 140.0 133.0 126.0 118.0 113.0 105.0 100.0 97.5 96.9 98.7 102.0
113.0 134.0 163.0 186.0 198.0210.0205.0 192.0 175.0 158.0 143.0 132.0 123.0
114.0 107.0 100.0 92.5 88.5 82.7 77.9 76.4 72.4 70.8 69.3 74.6 73.4 77.084.9
115.0 163.01&5.0189.0 189.0 189.0196.0 201.0191.0178.0 163.0 149.0 137.0
125.0 113.0 104.0 96.0 87.5 83.2 76.6 73.1 13.8 83.5 98.2 119.0 129.0 129.0
130.0 170.0 258.0 294.0 291.0 272.0 251.0 233.0 231.0 261.0 312.0 346.0 348.0
340.0 322.0 305.0 290.0275.0255.0 240.0 228.0216.0204.0 192.0 185.0 175.0
180.0189.0 195.0 190.0 181.0 172.0 168.0 166.0 162.0 154.0 140.0 132.0 139.0
142.0 140.0 132.0 128.0 122.0 115.0 110.0 107.0 109.0 115.0 124.0 122.0 121.0
122.0 125.0 126.0 127.0 133.0 139.0 141.0 139.0 135.0 129.0 124.0 118.0 112.0
108.0 105.0 102.0 97.2 91.4 89.5 86.8 85.2 92.7 105.0 113.0 116.0 116.0 114.0
112.0 111.0 109.0 105.0 102.096.0 91.4 90.7 87.8 85.6 93.0 104.0 113.0 115.0
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115.0 113.0 109.0 l OS.0 lOS.0 109.0 109.0 110.0 110.0 109.0 105.0 101.0 102.0
106.0 108.0 109.0 109.0 110.0 109.0 106.0 101.0 100.096.392.4 89.4 86.2 82.9
78.0 75.075.2 76.2 76.681.184.789.389.887.783.4 80.178.578.376.574.4
71.2 67.6 68.9 76.3 85.9 92.3 93.0 92.9 92.1 88.8 85.1 82.1 83.0 114.0 167.0
192.0 196.0191.0182.0172.0165.0 160.0 154.0146.0137.0 126.0 122.0 127.0
131.0 130.0 124.0 117.0 108.0 101.0 93.7 86.3 81.0 74.9 69.8 64.6 59.3 57.5
55.9 53.2 49.4 47.0 46.4 43.8 40.8 39.8 39.137.6 37.0 36.0 36 .8 36.9 35.5 35.2
34.9 34.5 32.831.630.2 29.1 28.3 27.4 26.0 25.0 23.9 23.5 23.5 25.8 26.3 27.8
28.128.0 27.3 26.7 26.2 26.4 30.0 33.8 37.9 39.9 64.1 149.0199.0208.0 212.0
212.0 207.0199.0192.018 6.0 170.0166.0 172.0173.0 167.0 160.0 155.0 160.0
163.0 161.0 156.0 150.0 142.0 131.0 122.0 121.0 119.0 115.0 110.0 105.0 98.7
93.8 90.9 88.1 84.4 82.3 78.7 77.7 77.4 76.3 75.7 77.8 76.3 78.3 19.6 BO.678.9
76.976.1 76.2 78.5 80.4 SO.9 78.9 77.7 78.9 87.2 101.0 120.0 161.0 198.0 207.0
204.0 198.0190.0 185.0 182.0 178.0 168.0 158.0 151.0 149.0 149.0 151.0 153.0
1SO.0 144.0 144.0 173.0 228.0 251.0 256.0 252.0 239.0 223.0 206.0192.0190.0
196.0196.0197.0190.0187.0177.0166.0156.0145.0 143.0 148.0
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Tab le A.6; River Flow Data For Moberly River
2.052.03 2.00 1.971.93 1.85 1.82 1.79 1.76 1.75 1.70 1.65 1.64 1.62 1.59 1.58
1.57 1.56 1.56 1.55 1.52 1..018 1.45 1.42 1.40 1.39 1.38 1.37 1.36 1.35 1.34 1.33
1.33 1.32 1.32 1.31 1.29 1.28 1.27 1.26 1.25 1.24 1.25 1.24 1.25 1.25 1.26 1.27
1.28 1.29 1.29 1.30 1.30 1.30 1.31 1.31 1.32 1.33 1.34 1.36 1.35 1.34 1.33 1.32
1.33 1.34 1.35 1.36 1.38 1.42 l A S 1.4.71.49 1.50 1.51 1.50 1.51 1.51 1.52 1.52
1.53 1.54 1.55 1.58 1.62 1.64 1.67 1.72 1.75 1.79 1.82 1.85 1.86 1.88 1.92 1.97
2.01 2.10 2.15 2.20 2.21 2.24 2.29 2.36 2.42 2.48 2.53 2.63 2.72 2.85 3.00 3.20
3.60 4.50 5.50 6.40 7.19 7.37 8.18 8.95 9.72 10..010 11.70 12.70 13.80 14.70
15.40 16.70 18.90 22.00 25.90 31.20 36.60 41.90 47.80 53.60 58.50 62.60 65.40
66.0064.4061.50 58.80 57.00 56.10 55.20 54.60 54.50 55.80 57.30 57.90 56.80
54.80 52.60 50.50 49.20 48.40 48.50 48.10 46.90 45.60 44.20 43.10 41.70 40.50
38.20 36.10 33.80 31.90 30.30 28.90 27.20 25.60 24.80 23.80 22.60 21.40 19.80
18.60 17.40 16.50 16.3016.4017.7026.6053.3066.7076.50 78.90 77.30 73.50
74..0073.40 69.1064.0058.8053.6049.10 45.00 40.50 37.80 35.20 33.00 30.70
28.6026.7025.10 23.40 21.80 19.90 18.70 17.8016.4015.10 14.30 13.40 12.50
11.5010.80 10.209.689.09 8.338.028.007.927.63 7.62 7.24 6.83 6.59 6.36
6.456.616.766.936.93 6.94 6.84 6.82 6.57 6.57 6.62 6.56 6.16 6.17 5.67 5.38
5.23 5.04 4.89 4.74 4.64 4.70 4.84 4.62 4.20 4.08 3.99 3.89 3.77 3.64 3.55 3.41
3.333.233.12 2.98 2.91 2.883.00 3.01 2.95 2.94 2.95 2.84 2.74 2.65 2.62 2.57
2.55 2.57 2.652..0132.292.302.322.432.562.58 2.62 2.85 2.81 2.77 2.78 2.69
2.702.80 2.79 3.11 3.24 2.95 2.68 2.50 2.37 2.322.30 2.25 2.001.87 1.86 1.92
2.152.402.50 2.552.542.522.472.412.38 2.35 2.32 2.29 2.26 2.23 2.20 2.17
2.14 2.10 2.03 1.99 1.98 1.99 2.00 1.98 1.96 1.90 1.88 1.85 1.84 1.83 1.84 1.85
1.86 1.88 1.90 1.92 1.94 1.95 1.97 1.98 1.99 2.00 2.03 2.04 2.02 2.00 1.99 1.97
1.95 1.93 1.90 1.88 1.87 1.87 1.84 1.78 1.75 1.74 1.74 1.73 1.72 1.70 1.65 1.60
1.54 1..015 1.39 1.3S 1.30 1.26 1.25 1.26 1.27 1.29 1.31 1.32 1.33 1.32 1.30 1.29
1.27 1.28 1.29 1.30 1.32 1.34 1.35 1.39 1.40 1.43 1.45 1.49 1.48 1.47 1.47 1.50
1.54 1.55 1.54 1.51 1.50 1.471.45 1.42 1.41 1.41 1.40 1.40 1.40 1.40 1.41 1.42
1.43 1.44 1.45 1.47 1.48 1.48 1.49 1.52 1.55 1.56 1.59 1.60 1.61 1.61 1.61 1.61
1.60 1.59 1.58 1.56 1.54 1.52 1.51 1.50 1.50 1.50 1.52 1.55 1.60 1.62 1.69 1.72
1.781.80 1.82 1.85 1.89 1.92 1.99 2.052.10 2.20 2.40 2.60 3.40 4.20 4.90 5.80
7.00 9.00 11.00 14.00 18.0022.00 27.00 32.00 35.00 36.40 36.10 34.70 35.40
35.60 35.70 37.70 38.50 37.80 36.80 35.50 34.80 33.00 31.00 28.7027.3026.20
25.20 25.10 24.60 24.90 24.60 25.90 28.60 29.90 31.30 33.30 36.20 38.80 41.90
45.6050.5053.4054.30 57.00 64.10 71.00 75.20 78.00 80.70 84.10 86.40 87.10
85.0082.10 78.60 74.5070.4066.4062.5059.1057.4054.00 49.00 42.00 36.00
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30.2033.00 34.30 34.20 34.00 34.00 34.90 35.00 34.10 33.60 32.40 32.00 3L9O
32.00 32.70 33.50 34.10 34.90 35.50 35.90 35.50 34.00 30.60 25.50 27.00 31.00
34.00 38 .00 34.00 3LOO27.00 23.80 2LOO18.80 17.00 15.00 13.40 12.50 lL50
10.80 10.00 9.60 9.00 8.50 7.70 8.50 10.00 14.00 11.50 9.00 7.60 7.20 9.50
l L40 13.00 12.20 lL80 11.40 10.60 lOAO 10.00 9.50 8.80 8.40 8.20 8.00 7.60
7.206.916.616.55 7.85 8.63 7.77 7.11 6.71 6.56 6.54 7.10 7.33 7.25 7.11 6.96
6.79 6.70 9.14 6.95 6.78 6.71 6.59 6.61 6.576.456.23 6.02 5.90 5.74 5.64 6.28
6.44 6.50 7.217.64 7.67 8.00 8.06 8.418.58 8.66 8.74 8.89 8.67 8.38 8.24 7.77
7.66 7.58 7.94 7.29 7.016.94 7.06 6.77 6.57 6.37 6.25 6.01 5.70 5.60 5.58 5.60
5.605.60 5.59 5.50 5.42 5.20 4.90 4.59 4.20 4.00 3.65 3.40 3.15 2.95 2.80 2.60
2.452.322.282.232.202.182.17 2.16 2.13 2.11 2.10 2.09 2.08 2.08 2.09 2.10
2.132.15 2.182.192.202.222.252.262.292.312.322.33 2.32 2.32 2.31 2.30
2.282.25 2.20 2.182.132.08 2.001.96 1.90 L88 1.84 L80 L79 L77 1.75
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Appendix B

Time Serie s Plots
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Pea ce River

Figu re 8 .1: T ime series plot for Peace Rive r
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CaslIe Aiver

Figure 8 .2; T ime series plot for Castle River
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Figure B.3: Ti me series plot for Sou th River
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SalmonierRiver

Figure 8 .4: Time series plot for Salmonier River
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Ganoor River

Figure B.5: Time series plot for Gander River
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Figure B.6: Time series plot for Moberly River
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