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ABSTRACT 

Lichens that are under environmental stress undergo changes in their metabolism 

and biochemistry. The most interesting compounds that are involved in this response are 

the lichen phenolics. Changes in the relative amounts of these compounds might indicate 

differing levels of environmental stress, such as ultraviolet light exposure and ground 

level ozone. Semi-quantitative analysis of dried and ground lichen samples was 

I 

performed on an Agilent 1100 series LC-MS using reversed phase liquid chromatography 

with ESI-MS and UV diode array detection. 

Cladina mitis and Cladina rangiferina exposed to differing exposures of 

ultraviolet light were obtained from Ontario. Usnea dasypoga and Bryoria trichodes were 

collected from different sites with varying ground level ozone exposure in New 

Brunswick. Changes in the relative amounts of lichen phenolics such as usnic acid, 

atranorin and fumarprotocetraric acid were of interest as these compounds have 

demonstrated ultraviolet absorption in the UV -B wavelengths and/or antioxidant 

properties. These compounds may be involved in a defensive response of the lichen to 

environmental stress. 

A method of analysis was developed that requires neither a chemical 

derivatization step nor a pre-concentration step. This method improvement simplifies the 

analytical method, shortens analysis times and removes the necessity for the use of toxic 

reagents. These improvements increase the viability of this method for use as a future 

pollution monitor in rural and undeveloped areas. 
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CHAPTER! 

INTRODUCTION 

1.1 Lichens and Environmental Monitoring 

Lichens have been used for decades as monitors of the health of ecosystems (1, 2, 

3, 4). This can be done by observing the quality of live lichen, (5, 6) or by cataloguing all 

the lichen species in an area and tracking the numbers of species over time (1, 7). A 

I 

reduction in the health of the lichen or downward trend in biodiversity might indicate that 

a particular ecosystem was under some environmental stress (1). An increase in airborne 

pollution may affect the abilities of some more sensitive lichens to compete with more 

hardy varieties, which would lead to a decrease in biodiversity of lichens in that area (1 ). 

A different approach to using lichens as environmental monitors involves quantitatively 

analysing for pollutants, like lead, (8) uranium, (9) fluoride (10, 11, 12) and zinc (13), 

which have been absorbed into the porous lichen tissue (or thallus). Lichens are long-

lived organisms that are very porous and tend to absorb pollutants that have been 

deposited on them, either from rainfall or from the atmosphere. Lichen are also sensitive 

to gaseous pollutants like S02, N02, and 0 3, due to their large surface area and lack of 

defences that are common to the higher plants (waxy cuticle, stomata, etc.) (1). Studies 

have also shown that lichen are sensitive to increased harmful ultraviolet rays, (14, 15, 

16) conditions like those that can be found in Antarctica, where maximum thinning of 

upper level ozone has been observed. Another study found that by determining the 

maximum tolerable concentration of S02 for different lichen species, and then mapping 
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areas where each lichen was found to be thriving, it was possible to create a map of S02 

concentrations (1). Each of these studies employ lichens as passive environmental 

monitors. Our goal in this project was to determine whether the phenolic compounds 

produced by the lichen and believed to be linked to defence (1, 17, 18, 19) could be 

analysed quickly by LC-MS so that these responses could be used as a quantitative 

passive biomonitor for environmental stressors such as ground level ozone and increased 

levels of harmful ultraviolet radiation. 

1.1.1 Biology and Biochemistry of Lichens 

Lichen are a group of organisms that exist as a symbiotic relationship between an 

algae and a fungus (1). The fungus (or mycobiont) provides a fibrous structure of hyphae 

for the algae (or photobiont) to grow on, and the algae provides sugars from 

photosynthesis as nourishment for the fungus (1). The fungal and algal partners can be 

separated and can be cultured separately, however, since they have evolved together and 

have specialized to exist as members of the symbiotic relationship, neither symbiont will 

flourish alone (20). The body of a lichen is referred to as the thallus, (plural thalli). 

Lichen are subdivided into three different forms, crustose, foliose and fruticose (1, 5, 10). 

Crustose lichens grow embedded in the outer layers of a substrate, with little exposed 

tissue (e.g. lichen that grow on rocks that cannot be scraped off with a knife). The second 

type of lichen is foliose, which has structures that seem to resemble leaves or petals, 

attached at a centre point and radiating outwards, with the "petals" also attached to the 

surface of the substrate, usually parallel to the substrate. Fruticose lichens are stem-like 
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or hair-like in that they have structures that are only attached at a single point. An 

example of fruticose lichen is the type of lichen known as "Old Man's Beard" which 

hangs from trees in hair-like strands. All the lichens used in this study are fruticose 

lichens. Cladonia mitis and C. rangiferina are reindeer lichens that grow on the ground, 

while Bryoria trichodes and Usnea dasypoga are "Old Man's Beard" types. The 

mechanisms that lichens use for defence are not as well understood as the defences of the 

higher plants. Higher green plants have a waxy outer cuticle which allows the leaves to 

I 

shed deposited pollutants better, and pores (called stomata) that can be closed to restrict 

the flow of airborne pollutants to the inside of the leaf (5, 10). Many lichen produce 

complex phenolics and it is hypothesized that these phenolics may play a role in 

protecting the lichen from environmental damage. These lichen phenolics consist of 

depsides, depsidones and dibenzofurans (21, 22) where the depsides consist of two or 

three orcinol or (3-orcinol moieties linked by an ester bond (a depside bond), the 

depsidones are similar with the addition of an oxygen bridging bond that completes the 

characteristic 7 membered ring and the dibenzofurans whose skeleton matches that of 

their namesake. The lichen phenolics are not produced in significant quantities by either 

the mycobiont or the photobiont if they are allowed to grow separately (1). These 

compounds are found as crystalline extracellular deposits so it is hypothesized that they 

are not necessary for internal cell metabolism (23). 

3 



(a) 

( b ) 

{ c ) 

Figure 1.1 Growth forms of the lichen thallus a) crustose b) foliose c) fruticose (1) 
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1.1.2 Use of Lichen as Environmental Monitors 

Most lichen can only be found in pristine areas where there is little to no air 

pollution, (1, 10) however, there are a few species, such as Xanthoria that thrive in more 

polluted urbanized areas (1). Surveys can be used to map the ranges of various lichens 

with different tolerances to airborne pollution. The data can then be used to produce a 

geographical representation of mean levels of air pollution (1). Over time, changing 

c0ncentrations of pollutants can be mapped, and by using data about prevalent wind 
I 

directions and speeds, the sources of this pollution can be identified (1). 

If the goal of the study is to observe the effects of pollution in a small area, then a 

different technique can be employed. This technique involves monitoring how many 

different species of lichen are present in an area, and observing how that number changes 

with time. Areas with increasing levels of pollution may experience a loss of biodiversity 

over time, as the more sensitive lichens are no longer competitive (1). Comparing relative 

population amounts of lichens that are sensitive to pollution to lichen populations that are 

relatively hardy can shed insight into the changing levels of pollution in an area. 

Transplantation of mature lichen into polluted areas can discern the physical or chemical 

effects of high levels of airborne pollution on a sensitive lichen species so that such 

effects can be used in areas where there has been a rise in pollutant concentrations (1, 24, 

25). 
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Figure 1.2 Reindeer lichen in Howley, Newfoundland. (Photograph taken by the author.) 
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One chemical technique involves extracting pollutants that have been deposited or 

precipitated on the lichen by prevailing winds or rainfall from the lichen thallus and 

developing a geographical representation of the concentrations of airborne pollutants in 

the area sampled (1). The porous structure of the lichen provides a large surface area for 

adsorption and absorption. Heavy metals such as uranium, (9) zinc, (13) and lead (8) and 

non-metals like fluoride (10, 11, 12) have been studied in this fashion. This method is 

useful in the study of analytes that form deposits on the lichen surface, or that are 

adsorbed into the lichen structure, however the type of pollutants that are of interest to 

this study are not persistent and cannot be extracted from the lichen so a different 

methodology is necessary. 

It is has been proposed that lichen phenolics may be a form of defence against 

such stressors as harmful levels of ultraviolet radiation (23, 26, 27, 28) and oxidizing 

ground-level ozone (19, 28). If that is the case, there may be an increase in the production 

of these lichen phenolics in areas with higher levels of stressors, or there may be changes 

in the lichen phenolics at the molecular level, in the form of photolysis or oxidative 

damage (29, 30). If these lichen phenolics are analysed quantitatively, a link between 

concentrations of phenolics in the lichen thallus and degrees of environmental stress 

could be found. 

1.1.3 Atmospheric Stressors 

As has already been discussed, lichens are long lived organisms (1) that share 

many qualities with the more complex plants, but that are generally thought to be lacking 

7 



in sophisticated defence mechanisms against the effects of airborne pollution and harmful 

UV rays (1). Some of the main constituents of gaseous airborne pollution include ground 

level ozone, and S02. Heavy metals can also be deposited on the lichen by prevailing 

winds and by contaminated rainfall. 

Ground level ozone is produced by a photochemical reaction between volatile 

organic compounds and oxides of nitrogen (Knox) (5, 10), high concentrations can be 

harmful to people, livestock and crops (5, 10). Not to be confused with the stratospheric 

ozone layer which filters out the higher energy UV rays, ground level ozone is formed 

mainly as a result of burning fossil fuels and chemical manufacturing processes (10). 

Ozone decomposes in a living organism to produce hydrogen peroxide (H20 2) 

hydroperoxide (H02.) and hydroxide (OH-) anions and hydroxyl (OH·) and oxygen (0·) 

radicals, which in tum cause oxidative damage to membrane lipids, fatty acids and 

proteins (10, 31, 32). This causes a disruption of membrane integrity which causes lipids 

to leak into the cytoplasm (32). Photosynthesis ceases and protoplasmic membranes 

disintegrate. Oxidation of membrane lipids is believed to be one of the most important 

mechanisms in ozone injury (32). Lichen phenolic acids that have antioxidant properties 

would combat this injury, and some of the lichen phenolics have been demonstrated to 

possess antioxidant activity (33). 

The damaging effects of ultraviolet radiation increase as wavelengths get shorter, 

so the spectrum of UV light is separated into three classifications: UV -A (320-400 nm), 

UV-B (320-290 nm) and UV-C (200-290 nm) (2, 34). UV-C is the most energetic type of 

UV radiation, however it is completely absorbed in the stratosphere (2). UV -B radiation 
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is therefore the most energetic type that reaches the surface of the earth, though in low 

intensity as most is absorbed by ozone in the stratosphere (2). Thinning of the protective 

ozone layer is allowing higher intensities of UV -B radiation to reach the surface of the 

earth (2). UV-B radiation promotes carcinogenic and mutagenic activity, and rising levels 

are a cause for concern (2). UV -B radiation can cause formation of dimers, replacements 

and other changes to cellular DNA. Contrary to expectations, the latest evidence suggests 

that high levels of UV light passing through the ozone hole in the Antarctic are having 

I 

little effect on photosynthesis (16). Antarctic mosses and liverworts increase production 

of sunscreen pigments to block out harmful UV rays (16). Many lichen phenolics have an 

absorption maximum in the UV-B range, (2) as can be seen in Table 1.1, so it is possible 

that these compounds form a type of defence for the lichen. Studies have shown a 

negative correlation between amounts of lichen phenolics and cumulative amounts of 

UV -B exposure {2, 28). 

Atranorin 210,252,262s,320 

Usnic acid 234, 282 

Fumarorotocetraric acid 212, 240,318 

Table 1.1: Absorbance maxima of three lichen phenolics that have been suggested as part of a defense 
mechanism against UV radiation. (39) 

1.1.4 Lichen phenolics 

The lichen acids, more aptly named lichen phenolics, are of particular interest to 

chemists (1, 17, 20). These lichen phenolics are produced by the symbiotic relationship in 

the lichen, though some may be produced in small quantities in the mycobiont (35). 
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There are several types of lichen phenolics differentiated by their structural 

characteristics (1). Many of these phenolics are substituted depsides, depsidones and 

dibenzofurans, most containing at least one carboxylic acid moiety (20, 21). The lichen 

phenolic is considered to have two different portions for the purposes of naming, an 

"acid" piece and an "alcohol" piece, that is determined by their position relative to the 

ester linkage between them. (In a typical esterification reaction one reagent is an alcohol 

and the other is a carboxylic acid). The orcinol (5-methylbenzene-1,5-diol) depsides have 

a carbon-carbon bond in an ortho- position to the ester bond, while the fi-orcinol (2,5-

dimethylbenzene-1,3-diol) depsides have carbon-carbon bonds in both the ortho- and 

meta- positions, with the meta- carbon-carbon bond flanked by two carbon-oxygen bonds 

(see Figure 1.4) (21). Depsidones differ in that the two aromatic moieties are joined by an 

ether bond as well as an ester bond, thus forming a 7 -membered heterocyclic ring. The 

lichens that were in this study contain ~-orcinol depsides, depsidones or dibenzofurans. 

Each lichen species may contain one or more lichen phenolics (22, 29). Some lichen 

phenolics are also found in small quantities in the fungi that comprise the mycobiont of a 

lichen, though not in the high amounts that are seen in lichens themselves (35). 

It is thought that the production of lichen phenolics must be necessary for the 

survival of the organism as it would consume energy to produce these substances that 

could be best utilized elsewhere, however the specific purpose for the production of these 

phenolics is unknown. It has been hypothesized that lichen phenolics may provide a form 

of UV defence, (29) defence from oxidative stress, (33) anti-feedant (preventing 

consumption by insects or animals) (18, 29) or alelopathic (antagonizing organism that 
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would compete for the same location) (29) action. Many lichen phenolics have been 

shown to exhibit these defensive activities that could be self-promoting to the lichen. 

If these lichen acids are actually a form of defence, then it can by hypothesized 

that stressors affecting the lichen would cause one of two measurable responses in the 

levels of lichen phenolics present: either the lichen will produce more of the required 

phenolic in an effort to counteract the effects of higher amounts of stress, or the lichen 

phenolics will react with the stressor to neutralize its harmful effects, and be decomposed 

I 

to a different, possibly less active form in the process of protecting the lichen (29, 30). 

Three lichen phenolics are highlighted due to their abundance in the lichens 

studied. Atranorin (Figure 1.4, B) has been shown to absorb UV -B radiation (26), usnic 

acid (Figure 1.6) is a UV -B absorber (26) and has also demonstrated antioxidant 

properties, and fumarprotocetraric acid (Figure 1.5, E) is a depsidone and depsidones 

have been shown to have antioxidant properties (33). 

HO/&OH OH 
5-m ethylb enze ne-1,3- dio I 

CH3 

2 ,5- dim ethylb enzen e-1,3- dio I 

Figure 1.3: Orcinol (5-methylbenzene-1,3-diol) and jJ-orcinol (2,5-dimethylbenzene-1,3-diol) form the 
structural basis for separating the depsides and depsidones into groups. 
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c~ 

H~\O-~ H3
C - OH 

OH 

- O*OOH 
0 

H3C OH O-CH3 

A. CH3 B. CH3 

M=360 M=374 

c. HCJJ 

0

3 _ucu OH 

0 CH3 

M=390 

Figure 1.4: Three typical fi-orcinol depsides; A: barbatic acid, B: atranorin and C: squamatic acid. 

12 
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0 CsH11 

OH HON 
::::--- 0 

HOOC 

CsH11 

H11cs B. M=512 

M=470 

c. M=388 D. M=358 

H 

M=472 

E. 

Figure 1.5: Two typical orcinol depsidones; A: physodic acid, B: alectoronic acid and three typicall3-
orcinol depsidones; C: salazinic acid, D: psoromic acid and E: fumarprotocetraric acid. 
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Figure 1.6: Structure of usnic acid, a dibenzofuran derivative that is found in many lichen species. 

14 



1.2 Lichen Analysis 

Different methods have been employed to study lichen phenolics, including thin-

layer chromatography (TLC) (36), thin layer densitometry (37), high performance liquid 

chromatography (38, 39) and pyrolysis gas chromatography-mass spectrometry (28). 

TLC has been popular for analysis of lichen phenolics, and is by far the most 

widely used, due to its ease of use and low cost. Depsides and depsidones absorb UV 

light, so detection of these compounds on the TLC plates doesn't require treatment (such 
I 

as being converted to coloured complexes) to reveal the chromatogram. Solvent systems 

for separation of the different lichen phenolics are well documented in the literature due 

to the popularity of the technique (40). A closely related technique called TLC UV-

densitometry involves quantitatively measuring the density dependant UV absorbance or 

fluorescence of a spot on a TLC plate. This technique offers some advantages over 

HPLC; less time is required to develop a method for optimal separation and multiple 

samples can be analysed concurrently (37). Unfortunately some compounds have been 

shown to exhibit photolability under the conditions of the densitometric analysis (37) and 

so it is not an ideal method. 

High-performance liquid chromatography coupled with a photodiode array 

detector (DAD) allows collection of all the data that would be available from a traditional 

HPLC, including retention times and some inferences that can be made on peak purity 

based on the shapes of the individual peaks, as well as the complete UV-vis spectra of the 

corresponding peaks as recorded by the DAD. Since the UV spectra of many of the 

secondary lichen metabolites are well documented (42), this data can serve to help 
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identify lichen phenolics in lichen extracts. Many of the orcinol and ()-orcinol depsides 

and depsidones have been shown to co-elute (53) and in these cases a more selective type 

of analysis is required for identification. Mass spectrometry is a more selective technique 

and combined with retention times and UV spectra it can be applied to identify lichen 

phenolics for which standards are not readily available. 

Most lichen acids are not commercially available and in many cases synthesizing 

standards is not an option. In addition, there seemed to be a niche for a method for 

analysing very small samples of lichen, without the requirement for a chemical 

derivatization step. With such a method, the last few millimetres of growth on fruticose 

lichen could be collected and analysed. Many small samples could be collected by a 

single researcher, their locations identified with a GPS and recorded. This data would 

provide a "snapshot" map of the pollution levels in an area for a single day, or for an 

entire season, depending on the amount of lichen that is analyzed and the speed of its 

growth. 

High performance liquid chromatography with UV-vis diode array detection 

coupled to an electrospray ionization mass spectrometer is well suited to this analysis. 

Most lichen acids have an absorption maximum in the ultraviolet spectrum, and the DAD 

is equipped to record the full absorption spectrum of each chromatographic peak (41). 

The UV spectra of many lichen phenolics are documented so this is an aid to 

identification ( 42). The diode array detector and the mass spectrometric detector are both 

very sensitive, allowing for detection of very small concentrations of lichen phenolics. 
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Electrospray ionization is a soft form of ionization, therefore unfragmented [M-Hr peaks 

are expected in the negative ion scan (43). 

1.2.1 Electrospray mass spectrometry 

Electrospray ionization mass spectrometry is well suited to direct sample 

introduction from a high-performance liquid chromatograph, since the eluting solvent can 

easily be removed in the mass spectrometer in the first drying stage (43, 44). Electrospray 

is considered to be a soft ionization technique that can produce ions from polar, non

volatile and thermally labile compounds (43, 44, 45). A liquid sample is introduced to the 

spectrometer via a stainless steel needle that is maintained at a potential difference of -25 

ke V with respect to a cylindrical electrode that surrounds the needle. This induces a fine 

spray of charged liquid particles. The charged droplets pass through a desolvating 

capillary and as the solvent is removed the droplets reduce in size until the electrostatic 

repulsion between the charged analyte molecules cause the analyte to desolvate and 

become charged molecules in the gas phase ( 46). (Figure 1.9) This process is considered 

to be a very "soft" form of ionization (compared to electron impact ionization, for 

example) so there is very little fragmentation of the ions that are formed. If fragment ions 

are desirable a potential difference (known as the fragmentation voltage) between the end 

of the capillary and the skimmer can ionize the nitrogen drying gas and this gas can 

collide with the analyte and increase fragmentation in a process called Collision Induced 

Dissociation. The analyte ions may also become multiply charged (45) a1;1d this can be 

very useful for analyzing compounds with high molecular weights; the multiple charges 
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lower the mlz ratio below the upper limit of the detector, allowing molecules that are 

usually to large to be detected to be analyzed. This method can be used for both 

negatively and positively charged species. The majority of ions that are formed in the 

positive mode are~ and the ions that are formed in negative scan mode are primarily 

[M-Hf. There are advantages and disadvantages of each type of scan when analysing for 

lichen phenolics; a positive scan will show low abundances since ionization of a 

carboxylic acid favours the formation of negative ions while a negative scan shows much 

higher abundances accompanied by interference peaks from salt adducts ( 45), 

predominantly Na+ and K+, and clusters (46). Formation of these clusters ([M-H+C02], 

[M-H+H20] etc.) is favoured in the presence of formic acid in negative mode (47). 

nebulizer 
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1-----:37/ 
-- ' 

skimmer 

Fragmentation 
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Figure 1.7: Schematic of an electrospray mass spectrometer. 
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Figure 1.8: Diagram of the mechanism of desolvation within an electrospray mass spectrometer to 
produce gas phase ions. 
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2.1 Materials 

CHAPTER2 

EXPERIMENTAL 

Atranorin (a mixture of 50% atranorin and 50% chloroatranorin as delivered by 

the manufacturer) and usnic acid (99%) were obtained from Sigma-Aldritch. Dr. Jack 

Elix of the Australian National University provided lichen phenolics that are not 

commercially available, including fumarprotocetraric acid, rangiformic acid, salazinic 

acid, psoromic acid, squamatic acid, barbatic acid, physodic acid and alectoronic acid. 

Solvents used included nanopure water, ACS grade concentrated formic acid, 

ACS grade concentrated phosphoric acid and HPLC grade methanol. The drying gas for 

the mass spectrometer was nitrogen gas in the form of liquid nitrogen that was produced 

in the liquid nitrogen plant in the Memorial University physics department. 

All samples were passed through 13 mm 0.45 micron Fisherbrand syringe filters 

to prepare samples for injection into the LC-MS. 
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2.2 Sample Collection and Preparation 

A complete description of the sampling methods and maps to the sites where the 

lichens were collected have been published in earlier works (28, 50) An abridged 

description of sampling methods will be included here. The UV study used lichens 

Cladonia mitis and Cladonia rangiferina that were provided by Dr. Dianne Fahselt who 

had used these species in studies on the effect of UV light on total phenolic levels. (26, 

I· 

48) 

The lichens were exposed to four different lighting conditions; visible light (400-

700nm), visible light plus UV-A (320-700), visible plus UV-A and UV-B (290-700) and 

a control set that was stored in the dark, but otherwise treated in the same fashion. The 

visible light samples were exposed to a fluorescent light source. The visible plus UV -A 

samples were irradiated by the visible source and by a phosphorescent source equipped 

with a mylar filter that excludes wavelengths shorter than 320 nm. The sources used for 

the visible, UV -A and UV -B exposed lichen were the same, with the mylar filter 

exchanged for a cellulose one that excludes UV -C wavelengths. All the lichen samples, 

save the control, were exposed for three days. All the lichens were then dried overnight in 

an oven, which renders them metabolically inactive (50), and stored in the dark. The most 

recent growth was clipped from three thalli and pulverized in a ball mill. This was stored 

at room temperature, in the dark, in sealed vials. This process was performed in Dr. 

Fahselt's laboratory. The lichen used in the ozone related study were collected by the 

Atlantic Forestry Service, and prepared by Tanya MacGillivray in Dr. Helleur' s 
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laboratory. (28, 50) The lichen were cleaned of debris, and the newest growth on three 

thalli was collected and ground into a fine powder in an agate mortar and pestle. Passive 

ozone monitors were analyzed by the Atlantic Forestry Service. (50) 
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2.3 Lichen Analysis 

2.3.1 Extraction of Lichen Phenolics 

In preparation for analysis, the lichen phenolics were extracted from control 

lichen material. Initially, acetone was investigated as a suitable solvent but it presented 

one difficulty; a large solvent peak at the beginning of the UV diode array chromatogram 

since acetone absorbs at 254 nm. Extraction with acetone, drying under nitrogen gas and 

I 

dissolution in methanol was attempted, however; once the extracts were dried, dissolution 

in a comparable amount of methanol was not possible. Finally, extraction of the lichen 

phenolics in methanol was attempted and the quantity and number of phenolics detected 

was comparable with those detected in acetone extraction. Previous research suggested 

that the carboxylic moieties on the lichen phenolics would form methyl esters if 

extraction was performed in methanol (51) but no evidence of this phenomenon was 

observed. 

Initially, extractions were performed with -10 mg of lichen powder which 

required filtration of the extract through a glass wool plug in a Pasteur pipette before 

filtration through a 15 mm diameter 0.45 micron regenerated cellulose syringe filter 

could take place. (Filtration of small particles is necessary to prevent clogging of the 

guard column) The glass wool filters were exchanged for 0.45 micron syringe filters due 

to their ease of use. Experiments were performed to determine the smallest sample size of 

lichen powder that could be reliably weighed on a Perkin Elmer AD-2Z Autobalance 

microbalance, extracted, and analyzed. The final amount was determined to be -2 mg, 
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with the limiting factor being the mass which is large enough to be easily weighed on the 

microbalance, yet small enough to not clog the 0.45 micron syringe filters. 

The final procedure for extraction of lichen sample and filtration of extract is as 

follows: -2 mg of lichen powder was weighed out on a Perkin Elmer AD-2Z 

Autobalance by difference. The weighing vessels used were aluminum pans that were 

originally intended for performing differential scanning calorimetry measurements. The 

lichen powder was transferred to a 1.5 mL amber glass vial with volume graduations. 

Addition of 500 f.lL of methanol was followed by 10 minutes agitation in an ultrasonic 

cleaner (Mettler Electronics Corporation). This was allowed to settle for 5 minutes, and 

the supernatant was filtered through a 0.45 micron syringe filter. A second aliquot of 500 

f.lL was added to the lichen sample, and sonicated for a further 10 minutes. The resultant 

slurry was filtered through the same syringe filter as before, 500 f.lL of methanol was 

added to the lichen sample vial to rinse it, the final volume was also filtered, and all three 

volumes are combined to reach a final volume of 1.5 mL. It was confirmed by LC-MS 

that a third extraction did not yield a significant amount of the lichen phenolics hence the 

lichen phenolics were exhaustively extracted. 

2.3.2 Flow Injection Analysis with Diode-Array and ESI 

One type of analysis that can be performed on an LC-MS by bypassing the 

chromatography column is flow injection analysis (FIA). This process involves 

connecting the autoinjector directly to the inlet of the mass spectrometer. In this way 

many small injections of a solution can be performed while incrementally changing a 
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single parameter. There is no chromatographic separation, so this method is most useful 

when solutions of standards are analyzed, as a mixture of compounds will have 

overlapping masses in the mass spectrum. FIA was utilized for optimizing the parameters 

of the mass spectrometer. This was particularly useful in determining the optimal 

fragmentation voltage that would deliver the maximum number of [M-Hr molecular ions 

to the detector while minimizing fragmentation. Extracted ion chromatograms of the [M

Hr ions of the selected lichen acids were used to determine the optimal voltage for 

multiple lichen phenolics, as would be encountered in a lichen extract. Injection volume 

was 5 J.!L, with the fragmenting voltage ranging from 25 eV to 400 eV in steps of 25 eV. 

Flow Injection Analysis was also utilized when evaluating atmospheric pressure 

chemical ionization (APCI) as a possible method for quantifying lichen acids. This 

method resulted in excessive fragmentation with minimal molecular ions for all 

parameters tested and the technique was not used. 

2.3.3 High Performance Liquid Chromatography-Eiectrospray Ionization Mass 

Spectrometry 

For HPLC-ESI-MS analyses, an Agilent 1100 series liquid chromatograph-mass 

sensitive detector equipped with a diode-array UV-visible detector was used. The 

equipment was controlled with HP LC-MSD Chemstation software, which was also used 

to collect and analyze the data. 

The solvents used were A: 0.1M aqueous formic acid and B: methanol with an 

initial condition of 30% methanol, increasing linearly to 100% over 30 minutes, 
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remaining at 100% methanol for 5 minutes, then returning to initial conditions over one 

minute at the completion of the analysis. The method that was compatible with the 

HPLC-DAD and electrospray mass spectrometry was developed from the method 

suggested by Huneck, Feige and Lumbsch (38) where the water-methanol-o-H3P04 

(70:30: 1) solvent system was similar to that suggested by C. F. Culberson for the HPLC 

(52). The substitution of formic acid for the phosphoric acid was necessary as the 

manufacturer's specifications state that the steel fittings of the mass spectrometer are not 

compatible with phosphoric acid. An Eclipse XDB-C18, 5J.1m, 4.6 x 250 mm reversed 

phase column fitted with a guard column was used in the separation of the polyphenolics. 

Initially the solvent flow rate was 0.7 mL·min-1
, during the course of this research the 

flow rate was increased to 1.0 mL·min-1 to reduce analysis times. 

The diode array was set to collect chromatographic data at 254 nm, over a 

bandwidth of 16 nm,. The slit width was 1 nm. UV-vis absorbance spectra were collected 

for each peak from 210 nm to 400 nm. 

The fragmenting voltage of the mass spectrometer was set at 70 eV. The drying 

gas rate was 12 L per minute with a nebulizer pressure of 45 PSI. (It should be noted that 

these pressures are not the recommended pressures from the manufacturer, but somewhat 

lower; the liquid nitrogen storage Dewar that was used as a source for nitrogen used as a 

drying gas could not provide pressures higher than the ones reported above.) Drying gas 

temperature was held at 350°C. Ions were collected over a mass range of 100-1000 mass 

units in scan mode. 
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2.4 Treatment of Data 

As mentioned earlier, the lichen in both the UV study and the ozone study were 

sampled in such a way that the samples would be representative of the population of 

lichens available in each area. Only the newest growth on each lichen thallus was used, 

ensuring that the lichen tissue sampled was all the same age, and would have had the 

same environmental conditions before the tests were carried out. The samples from each 

experimental condition were combined to further homogenize the lichen material. 

It was decided to use the DAD to quantify the lichen phenolics found in the 

extracts as some fragmentation and adduct formation were seen in some mass spectra of 

fumarprotocetraric acid and usnic acid. The peak areas were normalized to the mass of 

lichen powder that was extracted. Two replicate extractions were performed on lichen 

powder from each experimental condition, and each of these two extracts were analyzed 

on the LC-DAD-MS three times to reduce error in the mean values. The mean and 

standard deviations of these values were used draw the conclusions found in this work. 

An analysis of variance was performed and negated the null hypothesis in each case, 

confirming that the results were significantly different. 
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Figure 2.1: Flowchart describing the analysis procedure. 
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CHAPTER3 

RESULTS AND DISCUSSION 

3.1 Method Development 

The first goal of this project was to develop a method for analyzing lichen 

phenolics in an LC-ESI-MS equipped mass spectrometer with a diode array. Methods 

existed for analysis by LC-DAD that used a reversed phase column and with a mobile 

I 

phase that combined methanol and dilute 0.1% v/v aqueous phosphoric acid in isocratic 

elution, a fixed gradient or changing gradients. The acid is required to ensure that the 

lichen phenolics do not elute with the solvent peak. These methods could not be adapted 

directly to LC-ESI-MS as the stainless steel fittings in the mass spectrometer are not 

compatible with phosphoric acid. Formic acid was chosen since it is compatible with the 

internal components of the mass spectrometer, because it has a pKa of 3.75 and because it 

is volatile and should not leave any residue in the mass spectrometer inlet. (The mass 

spectrometer is particularly sensitive to the formation of salt adducts as well as to a build-

up of non-volatiles on the inlet.) A pKa of 3.75 is also convenient, as it assures that at no 

time will the eluent have a pH less than 2, that being the lower operating limit for the 

column. This is a precautionary measure to avoid damaging the column. Chromatograms 

using the method as proposed by Huneck, Feige, and Lumbsch (38) and the new method 

using formic acid were performed to compare the two. It was found that the run time 

could be considerably decreased if the flow rate was increased to 1.0 mL·min-\ instead of 

0.7 mL·min-1
• Also, the concentration of formic acid in the aqueous component ofthe 
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mobile phase was increased from 0.01 M to 0.1 M. (The equivalent pH of dilute formic 

acid to phosphoric acid at 0.1% v/v concentration.) This gave an aqueous phase with a 

pH of 3.2, which allowed for a better separation of the late-eluting compounds atranorin 

and usnic acid. 

Flow injection analysis (FIA) was performed on the major constituents of the 

lichen phenolic mixtures (atranorin, usnic acid (Figure 3.1) and fumarprotocetraric acid) 

to determine the optimal settings for the control parameters of the electrospray mass 

spectrometer. This involved injecting small samples of a solution (5 J.!L with a 

concentration of about 100 J..Lg per mL) sequentially and changing one parameter 

incrementally. The diode array response does not change because each injection contains 

the same volume of the same solution. The extracted ion chromatogram of the molecular 

ion of each lichen phenolic was then used to find the optimal setting for a mixture of 

phenolics. The parameters that were optimized in this way were the ionization voltage, 

and the drying gas temperature. The ionization voltage of 70 e V was chosen as it was 

shown to give the maximum abundances of all three standards while minimizing 

fragmentation as well as formation of clusters and adducts. The drying gas flow rate was 

not optimized as 1 mL·min-1 is the upper limit for liquid flow rate that can be 

accommodated by the mass spectrometer and thus the drying gas flow rate must then be 

set at the highest acceptable level for optimal performance. Due to limitations with the N2 

gas source (a large volume liquid nitrogen storage Dewar) the maximum flow rate was 11 

L·min-1 instead of 13 L·min-1 as recommended by the manufacturer. 
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For this study the sample preparation was tailored in such a way that a small 

sample size could be used, allowing for multiple analyses of a single lichen thallus. The 

LC-MS is a sensitive detector for lichen phenolics, so the lower limit of the sample size 

was found to be the mass which was reproducible on the Perkin Elmer AD-2Z 

Autobalance. The ground lichen powder is very fine and susceptible to the effects of 

static electricity, making a reproducible mass below 100 ).lg difficult to obtain. An 

average sample mass of 2 mg was chosen as it was sufficiently large to minimize the 
I 

effects of static electricity, and small enough to resist overloading the 0.5 J.lm cellulose 

syringe filter as to block it. 

This sample preparation method contains no chemical derivatization step (50), as 

the lichen phenolics absorb strongly in the ultraviolet spectrum, also, they are not 

strongly attracted to the polar reversed phase column unless the pH is below their pKa. 
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Figure 3.1 Diode array absorbances at 254 nm and total ion current for flow injection analysis to 
determine the optimal fragmentation voltage for usnic acid. 
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3.2 Qualitative Lichen Analysis 

Qualitative analyses of the extracts of the four lichen species that were sampled in 

this study were performed using all of the capabilities of the LC-MS instrument; liquid 

chromatography coupled with a diode array detector and ESI as well as flow injection 

analysis. Specific lichen phenolics can be identified by their UV spectra as well as by 

mass spectrometric analysis. Flow injection analysis allows for analysis of previously 

I 

purified lichen phenolics for the purpose of investigating the behaviour of lichen 

phenolics in the environment of the ESI mass spectrometer. 

Diode array detection allows for identification and quantification of probable 

lichen phenolics as the majority of lichen acids have UV chromophores and absorb to 

some degree in the UV range, with rangiformic acid being a notable exception. The 

absorption spectra of a wide range of lichen phenolics are known, and absorption maxima 

can form a basis for identifying lichen phenolics. Since even closely related lichen 

species may have lichen phenolic profiles that are different, which lichen phenolics are 

present, and their relative intensities can form a "fingerprint" of the species. Taxonomists 

often use secondary compound profiles, records of the phenolics that are common to a 

species, and their relative amounts, to identify closely related species. 

With ESI operating in negative scan mode, one can expect to find a pseudo-

molecular ion peak at [M-Hr, however, in addition to this peak, some of the lichen 

phenolics show fragmentation peaks, as well as adducts and clusters. Sodium adducts are 

a well known phenomenon in ESI-MS, and care is usually taken to insure that no sodium 
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is being introduced into the sample. Here sodium was already a component of the lichen 

tissue, and could not be avoided. Usnic acid exhibits a peak at 709.1 rnlz that could be the 

[2M-2H+Nar ion. Calculations for the carbon isotope ratio indicate that this peak does 

contain twice the number of carbon atoms as the [M-Hr peak of usnic acid. FIA was 

performed for atranorin, usnic acid and fumarprotocetraric acid to determine an optimal 

fragmentor voltage that would give the maximum ion abundance with the least 

interferences, and it was noted that higher fragmentor voltages gave a higher ratio of the 

709 rnlz peak to the [M-Hr peak of usnic acid. Fragmentor voltages ranging from 25 eV 

increasing to 125 e V in 25 e V intervals were tried. Another phenomenon that has been 

documented is the formation of clusters in aqueous solutions containing formic acid. (47) 

Fragmentation is rare at the voltages that were employed in this study (70V), however 

fragmentation of fumarprotocetraric acid into fumaric acid and protocetraric acid was 

observed. Also, some fragments were observed where a depside (such as atranorin) ester 

bond between the two aromatic rings was cleaved, but this was anticipated and 

fragmentation was kept to a minimum by using low fragmenting voltages. 
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Figure 3.2 Analysis of a standard solution of usnic acid. DAD absorbance measured at 254nm, TIC, 
full UV spectrum and mass spectrum of usnic acid. 
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3.2.1 Cladina mitis 

The combined chromatograms of the methanol extract of C. mitis indicated the 

presence of fumarprotocetraric acid and usnic acid. Usnic acid absorbs strongly in the 

UV-B range and is considered to be a potential light filter. Related species of several 

closely related lichens contain usnic acid instead of atranorin which lends credence to the 

idea that they perform the same light-blocking role. An aliphatic lichen acid, rangiformic 

acid was also detected in an extracted ion chromatogram, though it doesn't absorb at 254 

nm, and doesn't show up in the chromatogram produced using UV detection at 254 nm. 

Lichen phenolics exist as extracellular deposits within the lichen, and though rangiformic 

acid resembles a fatty acid, and could be expected to be found in lichen membranes, it is 

found in these same extracellular deposits, indicating that it may serve a similar purpose 

in the lichen. 
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Figure 3.3: Analysis of the methanol extract of C. mitis; Chromatogram at 254 nm, TIC, UV 
spectrum and mass spectrum of the 36.6 minute peak matches the UV spectrum and mass spectrum 
of usnic acid. 
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Figure 3.4 Structures of usnic and rangiformic acid. 
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Figure 3.5: Analysis of the methanol extract of C. mitis: DAD chromatograms at 245nm, 
254nm and Total Ion Current. 
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seen in Figure 3.5. 
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3.2.2 Cladina rangiferina 

The chromatogram of the methanol extract of C. rangiferina (Figure 3.8) 

indicates the presence of fumarprotocetraric acid and significant quantities of atranorin 

(Figure 3.9). Fumarprotocetraric acid was identified by mass spectrum and UV spectrum 

in the qualitative study, however, it was below the limit of quantitation in the quantitative 

study. Atranorin was abundant in the extracted sample, and can be identified both by its 

characteristic ultraviolet absorption spectrum and by the peak in the total ion 
I 

I 
chromatogram. Atranorin absorbs strongly in the ultraviolet, especially in the UV -B 

range, and is considered to be a light filter for the lichen, to protect it from the damaging 

influences of UV radiation. (26) 
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Figure 3.7: Structures of atranorin and fumarprotocetraric acid 
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Figure 3.8: Liquid chromatogram and total ion current for the extract of C. rangiferina 
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3.2.3 Usnea dasypoga 

Salazinic acid and usnic acid compose the phenolic component of the methanol 

extract of U. dasypoga as seen in Figure 3.9. Both of these compounds absorb in the UV

B range, and could absorb harmful ultraviolet rays before they can interact with the 

lichen thalli. Salazinic acid may also act as an antioxidant. (33) 

Salazi ni c acid 

Figure 3.10: Structure of salazinic acid 
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3.2.4 Bryoria trichodes 

The main phenolic component of the extract of B. trichodes is fumarprotocetraric 

acid. Fumarprotocetraric acid absorbs UV -B radiation, and has also been shown to 

demonstrate antioxidant ability (33). It is possible that this compound serves a dual role 

as environmental protection in this lichen as antioxidant and UV filter . 

• 
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Figure 3.12: Liquid chromatogram and total ion current for B. trichodes 

48 



3.3 Lichen Acid Analysis and Environmental Stressors 

It has been assumed for some time that the role of lichen phenolics is as a form of 

defence for the lichen. These compounds require a large investment of energy that the 

lichen might be better served by using somewhere else, unless these compounds serve as 

an evolutionary advantage to the lichen. It stands to reason that the lichen wouldn't 

produce these compounds if they weren't beneficial in some way to the lichen as a 

species. Lichen phenolics exist as extracellular deposits, so are not considered to be 
I 

available as intermediates or catalysts for any metabolic pathways. (17) Most of the 

lichen phenolics absorb UV radiation in the UV-A and UV-B ranges, and many fluoresce 

in the UV or in the visible spectrum. Some of the phenolics also exhibit antioxidant and 

antifeedant properties. If these compounds are responsible for protecting the lichen from 

these environmental stressors, then it stands to reason that there will be measurable 

changes in the levels of these compounds in the lichen thalli, and that these changes are 

detectable in extracts of the thalli by using liquid chromatography with a UV -vis diode 

array detector and with ESI-MS. 
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3.3.1 Ultraviolet study 

3.3.1.1 C. mitis 

The main phenolic of interest in the methanol extracts of C. mitis is usnic acid. It 

has been shown to be both a possible UV absorber, as well as an antioxidant. Semi

quantitative results for the analysis of the relative amounts of this phenolic in response to 

exposure to differing intensities of UV radiation can be seen in Figure 3.13. These 

results seem to suggest that exposure to increasing energies of UV radiation cause a 

depletion of usnic acid in the lichen. This would seem to suggest that even visible light 

has sufficient energy to deplete usnic acid in the lichen although UV -A has a greater 

effect, and UV -A plus UV -B exposure has the most pronounced impact on the amount of 

usnic acid in the lichen. If usnic acid is photolysed or undergoes rearrangement (54) after 

absorption of ultraviolet light, it might stand to reason that more of an effect will be 

observed with more energetic wavelengths of light. It is also possible, however, that a 

longer excitation wavelength could elicit a reaction where a shorter, more energetic 

excitation wavelength would not if the absorption wavelength is quantized. 
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Usnic acid in C. mitis per milligram of lichen (dry weight) 
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Figure 3.13 Relative content of usnic acid in C. mitis exposed to various light conditions 
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3.3.1.2 C. rangiferina 

The relative amounts of atranorin in C. rangiferina can be seen in Figure 3.14. It 

appears that with increasing energies of UV radiation there is more atranorin in the lichen 

thallus. This seems to suggest that more atranorin is synthesized with increasing 

intensities of radiation. If atranorin does perform the role of UV blocker in the lichen, 

then a biological response that produces higher levels of this UV blocking agent in 

response to higher levels of radiation would be advantageous to the lichen. The control 

sample that was collected in the wild but kept in the dark isn't significantly different from 

the irradiated samples in this case, this may indicate that the control may have endured 

some light stress in the laboratory, either during sample handling, or as an extract. 

Precautions such as using brown glass containers were used to reduce the effect that light 

would have on the extracted samples. 
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Figure 3.14 Relative levels of atranorin in C. rangiferina exposed to various light conditions. 
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3.3.2 Ground Level Ozone Study 

3.3.2.1 U. dasypoga 

Relative amounts of usnic acid in U. dasypoga from 5 sites in New Brunswick 

can be seen in Figure 3.15. It appears that usnic acid levels drop with increasing levels of 

ground level ozone. This suggests that either the lichen's ability to produce usnic acid is 

being compromised by oxidative damage from ground level ozone, or that usnic acid is 

reacted with the ground level ozone as an anti-oxidant and is chemically altered during 

the process. Fahselt and Begora (36) found that lichens that were irradiated with 

ultraviolet radiation showed a decrease in usnic acid but no increase of usnic acid 

constituents, possibly the oxidative products are similarly volatile. 
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Figure 3.15 Relative levels of usnic acid in U. dasypoga from various sites of ozone exposure 
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3.3.2.2 B. trichodes 

The relative amounts of fumarprotocetraric acid in lichen from five sites with 

differing ozone exposures can be seen in Figure 3.14. There does not seem to be any 

significant correlation, however, it is suspected that since fumarprotocetraric acid also 

absorbs UV light, more than one mechanism may be at play in this instance. The lichens 

were sampled at 5 sites on a transect extending inland between Point Lepreau, NB and 

Fredericton, NB. All 5 sites were rural sites, but they have various levels of ground level 

ozone. Microclimate effects near each of the sites may contribute to unpredictable 

environmental influences. 
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CHAPTER4 

CONCLUSIONS 

In conclusion, liquid chromatography · coupled with electrospray mass 

spectrometry is a good technique for the qualitative and semi-quantitative analysis of 

lichen acids. Quick, easy sample preparation as well as automated sample injection allow 

for the possibility of mapping the changes in lichen phenolic production over a large area. 

The small (-2 mg) sample sizes that are required would allow a single researcher to 

collect many samples over a wide area. The type of data required from the analysis can 

be customized by adjusting the operating parameters of the LC-MS. 

In negative scan mode the analysis is more sensitive due to the prevalence of 

negative ions from ionized carboxylic acid moieties, however, there are also adducts and 

clusters formed that must be taken into account. The same clusters and adducts are less 

prominent in the positive ionization mode; unfortunately this mode is less sensitive as W 

ions of lichen phenolics are not as readily formed in due to the acidic nature of the 

compounds. The UV -vis diode array detector is sufficient for the semi-quantitative 

analysis of UV absorbing lichen phenolics. The mass spectral data complements the 

chromatographic data, and UV spectra of specific chromatographic peaks allow for 

identification of lichen phenolics. This is particularly useful when pure samples of the 

lichen phenolic in question are not readily available, (e.g. rangiformic acid and 

fumarprotocetraric acid) or when trying to classify a newly discovered lichen species. 
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The ultraviolet study offers some insight into the function of lichen phenolic 

compounds in lichens, in particular the conditions under which lichen phenolics are 

formed. It appears that amounts of atranorin in C. rangiferina increase with increasing 

ultraviolet exposure, however, levels of usnic acid in C. mitis have been observed to 

decrease under the same conditions. It is possible that usnic acid undergoes photolysis by 

levels of light, particularly UV-A and UV-B are of a higher intensity than natural sun 

light. It is possible to detect what could be photolytic fragments in the extracts of C. mitis 
I 

that are exposed to artificial ultraviolet light (36). The lichens that were used in the UV 

study were irradiated over two days with higher intensities of light than would be 

encountered in their natural environment. This process may have lead to breakdown of 

usnic acid in the lichen that would have not naturally have occurred, or which may have 

occurred to a lesser degree. Fahselt and Begora (36) compared the effects of irradiating 

an extract of a usnic acid containing lichen with the same exposure to the live lichen 

tissue. Compounds believed to be the result of the photolysis of usnic acid were found in 

the irradiated extract, but not in the extract of irradiated lichen. The compounds that 

result from photolysis may be utilized by the lichen in some way. The increase in 

atranorin levels in C. rangiferina with increasing levels of UV exposure may be 

explained in two ways. One possible explanation is that the increased levels of radiation 

stimulate a higher rate of photosynthesis, and this increase in the metabolism of the 

lichen is accompanied by an increase in the rate of production of lichen phenolic 

compounds. It is also feasible that the production of atranorin is a defensive response to 

stress. Another possibility is that visible light and UV -A radiation could stimulate the 
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production of lichen phenolic compounds due to increased photosynthesis while UV -B, 

having a higher energy, could cause a decrease in these same compounds through 

photolysis. Many photolytic reactions are quantized; perhaps UV -B radiation contains the 

wavelength that has the appropriate energy to cause a change in the lichen phenolic 

molecule. 

Several compounds in the terrestrial ozone study show promise as possible 

indicators of environmental oxidative stress in U. dasypoga and B. trichodes including 

I 

salazinic acid, fumarprotocetraric acid and usnic acid. These compounds have previously 

been found to have antioxidant activity in laboratory studies (33). There is a marked 

decrease in usnic acid levels in U. dasypoga with exposure to increasing levels of ground 

level ozone. If the usnic acid reacted with ozone or oxygen free radicals as an 

antioxidant, it is probable that the usnic acid was cleaved into smaller fragment 

compounds. Fumarprotocetraric acid and salazinic acid have both shown antioxidant 

properties in laboratory testing, though our measurements of these compounds in B. 

trichodes were inconclusive. These results may indicate that these compounds are 

protection for the lichen for more than one type of stressor, which may be why there is no 

direct correlation with the measured amounts of ground level ozone at each site. 

Electron micrograph studies show that the lichen phenolics exist as crystalline 

deposits on the surface of the lichen thallus (23). It seems to be feasible that crystals of 

these UV absorbing compounds would also absorb the UV light, and the crystals are in an 

optimal position on the surface of the lichen thallus to act as a protective barrier. What is 
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not as clear is whether these lichen phenolic crystals can perform as antioxidants by 

reacting with ozone in the solid state. 

In regard to future work in the field of lichen phenolics, there are a number of 

avenues of research that bear further investigation. Analyses of viable lichens that have 

been exposed to varied natural levels of ultraviolet light for extended periods would 

better demonstrate the defensive responses. Healthy lichen from an unpolluted 

environment that are transplanted and exposed to controlled levels of ozone in a 

fumigation setup would be informative as well. As lichen phenolics exist as extracellular 

crystalline deposits, some experiments could be performed on the purified crystals to 

identify degradation products of ultraviolet and oxidative stress. Monitoring these 

degradation products of compounds that exhibit both UV blocking and antioxidant 

properties would help in identifying and quantifying environmental stressors for 

individual species. In a natural environment, the lichen would be exposed to multiple 

types of stressors. It is likely that harmful UV light and oxidizing ground level ozone are 

present in many lichen habitats at the same time, and it would be beneficial to be able to 

distinguish whether the changes in the levels of their lichen phenolics is due to one or the 

other or both stressors in concert. 

Lichens have proven to be excellent monitors of the health of an ecosystem; even 

small changes in air quality can change the distribution of species in a particular area. 

Through the scope of this study, some relationships between the levels of certain lichen 

phenolics and exposure of the lichen to external stressors such as excess ground level 

ozone and harmful levels of UV light have been observed. There seem to be at least two 
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separate mechanisms at work: an increase in the rate of lichen ~molics in response to 

stress, or an increase in light available for photosynthesis, caU!'Jlg an accumulation of 

phenolic in the lichen thallus, and a decrease in the available ammt of lichen phenolics 

through photolysis, oxidative cleavage or another method that caiSes decomposition of 

the phenolics in the thallus. It is entirely feasible that both oftllese mechanisms are 

occurring simultaneously. When more is known about how thecombination of effects 

from different environmental stressors act on the lichen phenolks, the ability to closely 

I 

monitor the relative health of an ecosystem as it changes over time, especially the 

changes that are related to industry and climate change will become a reality. 
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Appendix 1. Sampling Locations for Ozone Study in New Brunswick 

Site# Location GPS coordinates Lichens Collected 
N 45 deg 03 E 66 deg 27 u. B. 

2 Point Lepreau 806" 303" dasypoga trichodes 
N 45 deg 05 E 66 deg 26 u. B. 

4 Chance Harbour 745" 266" dasypoga trichodes 
Provincial Park N 45 deg 10 E 66 deg 26 

5 Trail 250" 440" B. trichodes 
N 45 deg 15 E 66 deg 29 u. B. 

7 Rural Road A 738" 542" dasypoga trichodes 
N 45 deg 21 E 66 deg 29 u. B. 

8 RuralRoadB 310" 767" dasypoga trichodes 
N 45 deg 28 E 66 deg 28 u. B. 

9 Rural Road C 470" 113" dasypoga trichodes 
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Appendix 2. Summary of Ozone Data (50) 

Ozone Concentration Overall average 

Site# July 16-Aug. 6 Aug. 6-Aug. 19 (ppb) 

2 31.4 26.9 29.1 

4 22.2 20.2 21.2 

5 18.8 14.7 16.8 

7 24.8 26.1 25.5 

8 29.9 24.2 27.0 

9 21.5 27.0 24.3 
Lepre au Analyzer 34.9 31.8 33.4 
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Appendix 3: Map of Sampling Locations in New Brunswick (50) 

NEW BRUNSWICK 

· / 
/ 

l 
) 

I 
I 

/ · .. 

' .&9 

.&e 

.&7 

I 

, 
'-111."1L.J,....,.., 'l • :6.2 • I 

\ 

:0 ·point Lepreau 

BAY OF FUNDY 

71 

NOVA 
SCOTIA 








