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Proof: Let E > 0 and assume E is sufficiently small so that 

D(u,E) = {x € Xjd(u,x) < E} , 

is a compact subset of X. Then, since 
00 

{T.} is an equicontinuous 
1 . 1 1= 

sequence of functions converging pointwise to T and since D(u,£) is 

compact, the sequence 
00 

{T.} converges uniformly on D(u,E) 
1 . 1 1= 

to T. 

We choose N such that i > N => d(T.x,Tx) < (1 - K)E 
1 

for all x E D(u,E), 

where K < 1 is a Lipschitz constant for T. 

Then, if i > N and x t D(u,E), 

d(T.x,u) < d(T.x,Tx) + d(Tx,Tu) 
1 - 1 

< (1 - K)E + Kd(x,u) 

< (1 - K) E + KE 

00 

This proves that if i > N, then { T . } maps D ( u , E) 
1 . 1 

into 
1= 

itself. 

Let A. be the restriction of T. to D(u,E) into itself. Since 
1 1 

D (u, E) is a compact metric space and each A. 
1 

is contractive, therefore, 

by a Theorem due to Edelstein [9 ], each A. 
1 

has a unique fixed point, 

for each i > N· - , which must, from the definition of A. 
1 

and the fact 

that T. 
1 

has only one fixed point, be 

each 1 > N. Therefore, the sequence 

to u. 

2. 3. On the Subsequential Limits. 

u .. 
1 

Hence, u. E D(u,E) 
1 

for 

00 

{u.} of fixed points converges 
1 . 1 1= 

Ng [17] has considered the converse problem: suppose it is not known 

about the existence of fixed points of the limit mapping T and suppose 



T 
n 

has a fixed point u . 
n 

Can one conclude the existence of any fixed 

point of T from subsequential convergence of {u } ? 
n 

The following 

theorem due to Ng [17] gives a partial answer to this ~uestion. 

Theorem [2.3.1]: Suppose 

00 

is equicontinuous of mappings from X (i) {T } an sequence 
n n=l 

into X, each of which has a fixed point u . n 

(ii) {T } converges pointwise to a mapping T X-+ X. 
n 

(iii) {u } has a convergent subsequence {u } whose limit is u. 
n nk 

Then u is the fixed point of T. 

Proof: Since the sequence {T } 
n 

is equicontinuous, given £ > 0 there 

exists o > 0 such that d(x,y) < o implies d(T x,T y) < £/2, 
n n 

for all 

n. On the other hand for o > 0 there exists N(o) such that k > N 

implies d(u,u ) < 6. 
nk 

Hence for k ~ N(o); we have 

Therefore for sufficiently large k, 

d(Tu,u ) = 
nk 

< d(Tu,T u) + d(T u,T u ) 
- nk nk nk nk 

We have proved 

< £/2 + £/2 

= £. 

Tu = lim u , 
k-+oo nk 

so Tu = u. 

The following theorem due to Ng [17] is worth mentioning. 

Theorem [2.3.2]: Suppose 

(i) {Tn}
00 

is any sequence of mappings from X into X with 
n=l 

fixed points 

mapping T. 

{u }, converging uniformly to a continuous 
n 
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(ii) has a convergent subsequence 

Then u is a fixed point of T. 

Proof: The inequality, 

d(Tu,u ) 
nk 

= d(Tu,T u ) 
nk nk 

< d(Tu,Tu ) + d(Tu ,T u ), 
- nk nk nk nk 

whose limit is 

implies u -+ Tu, 
nk 

since T is continuous and the sequence {T } 
n 

converges to T uniformly. 

2.4. Results for More General Mappings. 

u. 

We now investigate a few interesting results as a solution to the 

problem posed in the beginning of this chapter for the following types 

of mappings: 

f : X -+ X such that 

(i) d(f(x),f(y)) .::_ ad(x,f(x)) + bd(y,f(y)) 

(ii) d(f(x) ,f(y)) .::_ ad(x,f(y)) + bd (y, f (x)) 

(iii) d(f(x),f(y)) .::_ ad(x,f(x)) + bd(y,f(y)) + cd(x,y) 

(i v) a (f (x) 'f (y)) .::_ ad(x,f(y)) + bd(y,f(x)) + cd(x,y) 

(v) d(f(x) ,f(y)).::_ ad(x,f(x)) + bd(y,f(y)) + cd(x,f(y))+ ed (y, f (x)) 

+ gd(x,y) 
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for all x,y € X where a,b,c, e and g are non-negative real numbers. 

Dube and Singh [8 ] proved the following theorem. 

Theorem [2.4.1]: Let (X,d) be a metric space and let T be a mapping 
n 

of X into itself with at least one fixed point u 
n 

for each n = 1,2, .... 

Suppose there is a non-negative real number a such that 
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Al. d(T x T y) < a{d(x,T x) + d(y,T y)} 
n ' n - n n 

for all x,y € X (n = 1,2, ... ). 

00 

If the sequence {T } 
n 

converges pointwise to a mapping T : X + X 
n=l 

with a fixed point u, then u is a unique fixed point of T and the 

converges to u. 

Next we give a modification of Theorem [2.4.1] as follows: 

Theorem [2.4.2]: Let (X,d) be a metric space and let T be a mapping 
n 

of X into itself with at least one fixed point u 
n 

for each n = 1,2, 

Suppose there are two non-negative real numbers a and b (a + b f 1) 

such that, 

A2. d(T x,T y) < ad(x,T y) + bd(y,T x) n n - n n for all x,y (S X, n = 1,2, 

00 

If the sequence {T } 
n 

converges pointwise to a mapping T : X + X 
n=l 

with fixed point u, then u is a unique fixed point of T and the 

sequence {u } 
n 

00 

converges to u. 
n=l 

Proof: {T }
00 

converges pointwise to T, therefore for given s > 0 
n n=l 

and u E X, there is a positive integer N such that n > N implies 

d (T n u, Tu) < -1____,.,.~-:-~-b- • E where 

a and b are the same as in Condition A2. 

Now we have for any n ~ N, 

since u 
n 

d(u ,u) d(T u ,Tu) n n n 

< d(T u ,T u) + d(T u,Tu) 
- n n n n 

< ad(u ,T u) + bd(u,T u ) + d(T u,Tu) - n n n n n 

= ad(u ,T u) + bd(u,u ) + d(T u,Tu), n n n n 

is a fixed point of T . 
n 



< a[d(u ~Tu) + d(Tu~T u)] + bd(u,u ) + d(T u,Tu) n n n n 

= ad(u ,u) + ad(T u,Tu) + bd(u ,u) + d(T u~Tu) n n n n 

Since u is a fixed point of T. 

= (a + b)d(u ~u) + (1 + a)d(T u,Tu) 
n n 

i.e. 
1 + a ( ) d(un~u) ~ 1 _ a _ b • d Tnu,Tu • 

Therefore for n > N, 
1 + a 

d(un~u) < 1 - a - b 
1 - a - b 

1 + a • E = E J 

i.e. 
(I) 

{u } converges to u. 
n n=l 

To show that u is a unique fixed point of T, let v be another 
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fixed point of T. Then in a similar way {u }00 converges to v which 
n n=l 

implies u = v. Hence the theorem. 

Remark [2.4.3]: The conclusion of the theorem holds if we replace 

condition A2 of Theorem [2.4.2] with either condition A3 or A4 stated below: 

A3. d(T x~T y) < ad(x,T x) + bd(y,T y) + cd(x,y) n n - n n 

for all x,y€ X, a.,b 1 c > 0 and a +b + c f 1 and n = 1,2, .... 

A4. d(T x,T y) < ad(x,T y) + bd(y,T x) + cd(x,y) n n - n n 

for all x,y € X, a,b,c > 0 and a+ b + c f 1 and n = 1~2, .... 

Next, we give a theorem under AS, which is much more general than 

other given conditions. 

Theorem [2.4.4]: Let (X,d) be a metric space and let T be a mapping 
n 

of X into itself with at least one fixed point u 
n 

for each n = 1,2, 

Suppose there are non-negative real numbers a,b,c,e, and f (c ~ e ~ f f 1) 

such that 

AS. d(T x,T y) < ad(x,T x) + bd(y,T y) + cd(x,T y) + ed(y,T x) n n n n n n 

+ fd(x,y) 

for all x,y E. X (n = 1 , 2, ... ) . 



If the sequence {T } converges pointwise to T : X -+ X with fixed 
n 

point u, then u is the unique fixed point of T and the sequence 

00 

{un} converges to u. 
n=l 

Proof: {T }
00 

converges pointwise to T. Therefore for s > 0 and 
n n=l 

u £ X, there is a positive integer N such that n > N implies 
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1 -d(T u,Tu) < 
c - e - f 

1 + b • E where b,c,e, and f are defined 
n + c 

in AS. 

Now for all n > N 

d(u ,u) = d(T u ,Tu) n n n 

< d(T u ,T u) + d(T u,Tu) - n n n n 

< ad(u ,T u ) + bd(u,T u) + cd(u ,T u) + ed(u,T u ) + - n nn n n n nn 

since u 

fd(u ,u) + d(T u,Tu) 
n n 

=a· 0 + cd(u ,T u) + (e + f)d(u ,u) + (1 + b)d(T u,Tu), n n n n 

and u 
n 

are fixed points of T and T respectively. 
n 

< (1 + b)d(T u,Tu) + (e + f)d(u ,u) + c {d(u ,Tu) + d(Tu,T u)} n n n n 

i.e. 

and for 

= (1 + b + c)d(T u,Tu) +~ + e + f)d(u ,u). Since u is a n n n 

fixed point of 

1 + b + c d(u ,u) < d(T u,Tu) n 1-c-e-f n .1 

1 + b + c n > N d(u ,u) < -=-1--------= 
- J n -c-e-f 

1 - c - e - f 
1 + b + c 

• E 

= £. 

00 

T , 
n 

Hence {u } converges to u. 
n n=l 

To show that u is a unique fixed point of T, let v be another 

00 

fixed point of T. Then in a similar way {u } converges to v n n=l 
which implies u = v. 

Hence the theorem. 
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Remark [2.4.5]: 

(i) If a = b and c = e = f = 0, we obtain Theorem [2.4.1] as 

a corollary to our theorem. 

(ii) If a = b = f = 0, we get a similar generalization of 

Theorem [2.4.2]. 

(iii) If c = e = 0, we get condition A3 of Remark [2.4.3]. 

(iv) If a= b = 0, we get condition A4 of Remark [2.4.3]. 

Example [2.4.6]: Let T [0,2] -+ [0,2] be defined as n 

T X = 1 X 
1,2, + 

2(n 1) n = n + 

Clearly the fixed point of T is given by n 

2n + 2 for each 1,2, u = n = ... 
n 2n + 1 

Also Tx = lim T X = 1 for all X € [0, 2] and thus u = 1 is 
n n-+co 

the fixed point of T. 

It is easily seen that T satisfies any of the conditions 
n 

Al, A2, A3, A4, or AS with the proper choice of constants for all the 

points in [0,2]. 

The following result under the uniform convergence of the sequence of 

mappings was given by Dube and Singh [ 8]. 

Theorem [2.4.7]: Let (X,d) be a metric space and let T be a mapping 
n 

of X into itself with at least one fixed point u n 
for each n = 1, 2, . . . . 

Let T X-+ X be a mapping with a fixed point u such that, 

Bl. d(Tx,Ty) ~ a{d(x,Tx) + d(y,Ty)} for all x,y ~ X, where a 

is a non-negative real number. If the sequence 
co 

{T } converges 
n n=l 

uniformly to T, then the sequence 
co 

{u } of fixed points converges 
n n=l 

to u. 



[ 4 8] If in Theorem [2.4.7], the mapping T fails to satisfy 
Remark 2. · : 

condition Bl, but satisfies condition B2 be}ow, still the conclusion of 

the theorem holds. 

Theorem [2.4.9]: Let (X,d) be a metric space and let Tn be a mapping 
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of X into itself with at least one fixed point u 
n 

for each n = 1, 2, . . . . 

Let T X + X be a mapping with a fixed point u such that, 

B2. d(Tx,Ty) ~ ad(x,Ty) + bd(y,Tx) for all x,y EX, where a 

and b are non-negative real numbers such that a + b f 1. If the 

sequence {T }= 
n n=l 

converges uniformly to T, 

of fixed points converges to u. 

then the sequence {u } 
n 

(X) 

n=l 

Proof: Since 
(X) 

{T } 
n n=l 

converges uniformly to T, given s > 0 there 

is a positive integer N such that n > N implies 

d(T u ,Tu ) < 1 E (1 - a - b) where a and b are as defined 
n n n + b 

in B2 above. 

Now for any n > N 

since 

d(u ,u) d(T u ,Tu) 
n n n 

u and 

~ d(Tnun,Tun) + d(Tun,Tu) 

< d(T u ,Tu) + ad(u ,Tu) + bd(u,Tu ) - nn n n n 

= d(T u ,Tu ) + ad(u ,u) + bd(Tu,Tu ) , n n n n n 

u 
n 

are fixed points of T and T 
n 

respectively. 

< d(T u ,Tu ) + ad(u ,u) + b{d(Tu,T u ) + d(T u ,Tu )} - nn n n nn nn n 

Therefore 
J 

= (1 + b)d(T u ,Tu ) + (a + b)d(u ,u) n n n n • 

( 1 + b) d ( T u , Tu ) 
d(un,u)< n n n 

1 - a - b 



1 + b 
Thus for n > N, d(un,u) < (1 - a - b) 

= E • 

00 

Hence {un}n=l 
converges to u. 

(1 - a - b) 
1 + b 

• E 

To show that u is a unique fixed point of T, let v be another 

fixed point of T. 
00 

Then in a similar manner {u } converges to v 
n n=l 

which implies u = v. Hence the theorem. 

Remark [2.4.10]: The conclusion of Theorem [2.4.9] will remain valid 

if we replace condition B2 with either condition B3 or B4 stated below: 

B3. d(Tx,Ty) ~ ad(x,Tx) + bd(y,Ty) + cd(x,y) 

for all x,y € X; a,b,c > 0; a+ b + c f 1 and n = 1,2, .... 

B4. d(Tx,Ty) ~ ad"(x,Ty) + bd(y,Tx) + cd(x,y) 

for all x,y ~X; a,b,c > 0 ; a + b + c f 1, and n = 1,2, 

Next we give the proof of the theorem under the more general 

condition BS. 
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Theorem [2.4.11]: Let (X,d} be a metric space and let T be a mapping 
n 

from X into itself with at least one fixed point u 
n 

for each 

n = 1,2, Let T : X + X be a mapping with a fixed point such 

that, 

BS. d(Tx,Ty) < ad(x,Tx) + bd(y,Ty) + cd(x,Ty) + ed(y,Tx) + fd(x,y) 

for all x,y ~X, where a,b,c,e,f are non-negative real numbers 

such that c + e + f f 1. If the sequence converges uniformly to 

T, then the sequence {u }oo 
n 

of fixed points converges to u. 
n=l 

Proof: S1"nce {T }00 ·f 1 T converges un1 orm y to , 
n n=l 

given s > 0 there is 

a positive integer N such that n > N implies, 
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• E where a,c,e,f a:l''e the 

same as in BS. 

Now for any n, 

d(un,u) = d(Tnun,Tu) 

< d(T u ,Tu ) + d(Tu ,Tu) 
- n n n n 

< d(T u ,Tu ) + ad(u ,Tu) + bd(u,Tu) + cd(u ,Tu) + ed(u,Tu) + fd(u ,u) _ nn n n n n n n 

= d(T u ,Tu ) + ad(T u ,Tu ) + b • 0 + cd(u ,u) + ed(Tu,Tu ) + fd(u ,u) n n n n n n n n n 

Since u and u 
n 

are fixed points of T and T 
n 

respectively. 

< (1 + a)d(T u ,Tu ) + (c + f)d(u ,u) + e{d(Tu,T u ) + d(T u ,Tu )} nn n n nn nn n 

= (1 + a + e)d(T u ,Tu ) + (c + e + f)d(~n,u) n n n 

Therefore ( 1 + a + e) 
d (u , u) < n (1 - c - e -

Now for n 2:._ N, 

(1 + a + e .) 
d (u , u) < n (1 - c - e - f) 

00 

Hence {un} converges to u. 
n=l 

f) d(T u ,Tu ) n n n 

(1 - c - e - f) 
(1 + a + e) • E = E • 

Proof of uniqueness of u follows from the same procedure as Theorem [2.4.9]. 

Hence the theorem. 

Remark [2.4.12]: In Theorem [2.4.11], 

(i) If a= b and c = e = f = 0, we obtain Theorem [2.4.7] as 

a corollary to our theorem. 

(ii) If a= b = f = 0, we get Theorem [2.4.9]. 

(iii) If c = e = 0, we get condition B3 of Remark [2.4.10]. 

(iv) If a = b = 0, we obtain condition B4 of Remark [2.4.10] 

as a corollary. 



Example [2.4.13]: Let T : [0,2] ~ [0,2] be defined as 
n 

Also 

fixed 

1 n 
T X = - + l X n n 3n + 

for all x E [0,2], (n = 1,2, ... ). 

Clearly the fixed point of T 
n 

is given by, 

3n + 1 u = n(2n n + 1) 
for each n = 1,2, ... 

Tx = lim T X 
1 = -X 

n 3 for all x t [0,2] and thus u = 0 is the 
n~co 

point of T. 

It is easily seen that with the proper selection of constants, T 

satisfies any of the conditions Bl, B2, B3, B4 or BS for all the 

points in [0,2]. 

Also lim u 
n 

. 3n + 1 
= llm n (2n + 1) 

n~co 

= 0 = u. 
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