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Abstract 

This investigation explores the development of day-ahead security-constrained 

unit commitment (SCUC) plans for electrical power systems. Such plans involve the 

coordination of power system generators in response to variations in loading conditions 

over a twenty-four hour period. This plan must minimize costs associated with fuel 

consumption and system losses while satisfying all operational constraints. 

This investigation proposes a novel hybrid approach involving the use of particle 

swarm optimization (PSO) for SCUC planning. As this biologically-inspired 

methodology is both robust and is based on an advanced strategy for exploring large 

search-spaces, it is well suited for this highly-constrained power systems problem. 

A proposed methodology is implemented in software and a series of test cases are 

used to assess its functionality. The results of the simulations indicate that the software 

produces generation schemes that meet all system constraints and that have lower 

operating costs than those produced with linear programming methodologies. The hybrid 

PSO solution may therefore be seen as an effective tool for SCUC planning. 
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Chapter 1 

Introduction 

With the tremendous competition of the modem deregulated electric utility 

industry, generation, transmission, and distribution companies are forced to minimize 

operating costs wherever possible. Companies involved in the transmission and 

distribution of electricity must carefully balance capital and maintenance budgets while 

relying on the application of new technologies and optimization methodologies to 

improve the efficiency of their transmission networks. 

In this chapter, a brief overview of the types of analyses used by electric 

generating companies is introduced. The particle swarm optimization approach proposed 

in this work is presented, along with a brief summary of the contributions of this 

investigation. An outline of this thesis is also provided at the end of the chapter. 

1. 1 Unit Commitment in a Day-Ahead Market 

In many highly-interconnected electric markets such as those found in Norway, 

Denmark, Finland, and Sweden [1] and also in California [2] companies coordinate the 

sale of electricity based on day-ahead planning. In such arrangements, companies present 

data relating to electrical supply and demand for the following day. These figures are 

then used in negotiation of electrical energy prices as sales and purchases are made. 

While such arrangements depend on accurate day-ahead load forecasts, companies 

with the capacity for generating electricity (GENCOs) are under additional pressure to 

juggle generation schemes to ensure that each Watt is produced in an optimal manner. If 
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a GENCO is to survive in such a market, it must coordinate the production of electricity 

to minimize fuel costs, system losses, and the amount of power that must be purchased 

from neighbouring utilities. 

Generator scheduling, also known as unit commitment (UC) or economic dispatch 

(ED) planning is a type of analysis used by electric generating companies to accomplish 

this task [3]. With consideration given to aspects such as fuel, environmental, and 

maintenance costs, GENCOs in a day-ahead market must successfully coordinate the 

operation of their electric generators for successive twenty-four periods. 

1.2 Security-Constrained Unit Commitment 

The desire to minimize generator production costs often comes in direct conflict 

with the need to ensure the secure operation of a power system. Despite market-driven 

pressures, system security remains the most important aspect of power systems 

engineering. In an attempt to reach a compromise between these two opposing objectives, 

security-constrained unit commitment (SCUC) has emerged. 

It should be noted that in this investigation, the term "security" will focus 

primarily on the operation of a power system while ensuring that no operational 

constraints are violated. This definition is in contrast to the standard definition of power 

system security which involves the capability of an ac network to remain in a normal 

operating state following all likely contingencies [4]. In this investigation, such 

contingencies will not be considered. 
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As discussed in Chapter 4, SCUC involves a tremendously complex optimization 

problem as power systems are non-linear, time-varying entities. In addition, the 

coordination of electric generators involves a mixed-integer problem [5]. 

1.3 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a powerful approach for the optimization of 

non-linear problems that was first proposed by Kennedy and Eberhart [6] in 1995. Like 

the genetic algorithm before it, this methodology is biologically-inspired and represents a 

heuristic approach that, while not guaranteeing an optimal solution, attempts to find a 

near-optimal solution in a reduced computational time. 

PSO has been shown to be a computationally efficient approach that may be 

implemented in as few as two lines of code [6]. When compared to other evolutionary 

algorithms, PSO has been shown as often being faster (by at least one order of 

magnitude) while demonstrating a resistance to becoming trapped in local minima [7]. 

Theoretical explanation of PSO methodologies are provided in Chapter 3. 

1.4 SCUC Using Particle Swarms 

This thesis proposes a hybrid strategy for dealing with SCUC planning by 

combining conventional power flow optimization techniques with particle swarms. In this 

strategy, linear programming power flow optimization techniques are used to identify 

generators within a system that are operating inefficiently. The particle swarms may then 
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be used to determine which of these units should be deactivated to ensure that the system 

is running in an optimal or near-optimal manner. 

The effectiveness of this swarm-based strategy was evaluated as it was applied in 

two day-ahead SCUC case studies involving theoretical power systems. The results of 

these studies indicate that this approach has the ability to reduce operating costs while 

adhering to system constraints. 

1.5 Contributions to Research 

As a result of this research, the following contributions were made by the author: 

I. The completion of an investigation relating to the effectiveness of a hybrid 

particle swarm optimization tool for reducing electric utility operating costs by 

improving the efficiency of generator scheduling; 

2. The analysis of security-constrained unit commitment problems by investigating 

aspects such as SCUC constraints, costs, and proposed methodologies; 

3. The publication of technical papers [8, 9] relating to application of particle swarm 

methodologies in SCUC applications; 

4. The development of a software application with the following capabilities: 

a. Capacity to develop a unit commitment scheme given day-ahead loading 

data for a power system; 
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b. Capability to coordinate generators such that all system constraints relating 

to system power flows, generator operation, and computational time and 

storage are met; 

c. Capacity to reduce operating costs associated with fuel consumption, system 

losses, and other parameters based on forecasted load data; 

1.6 Thesis Summary 

The outline of this report is as follows: Chapter 2 involves a summary of research 

relating to conventional techniques used for the analysis of UC and SCUC problems. 

Chapter 3 contains a discussion of background information relating to particle swarm 

optimization and includes a review of relevant literature. Chapter 4 involves a description 

of the SCUC planning problem along with all associated constraints and operational 

costs. A software implementation of the proposed methodology for dealing with the 

SCUC problem is introduced in Chapter 5. Chapter 6 involves a review of two SCUC 

case studies along with an assessment of simulated results. Conclusions and 

recommendations for future SCUC research are presented in Chapter 7. 
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Chapter 2 

Related Work 

This chapter provides an overview of literature relating to the formulation of the 

UC/SCUC problem and to the conventional methodologies that are employed to develop 

effective solutions. It should be noted that literature relating to the theory and 

applications of PSO methodologies are discussed in the following chapter. 

2.1 UC and SCUC Planning 

The literature described in this section relates to UC and SCUC planning in 

electric power systems. This research provides general background information relating 

to these optimization problems and also to the various conventional methodologies that 

may be used to develop acceptable solutions. 

With respect to the formulation of UC problems, consideration must be given to 

system constraints and operating costs. Both of these aspects are introduced in what has 

become a classic power systems textbook by Wood and Wollenberg [3], a reference that 

presents both the mathematical and power systems theory behind UC planning. 

The work of Cohen et al. [ 10] assists in the definition of aspects such as system 

spinning reserve requirements and the limitations of individual units. In this research, 

definitions for concepts such as unit minimum up and down times as well as emission 

limits are explained. Wang et al. [11] assist in supplementing the above discussion 

though the consideration of unit ramp limits and their inherent effect on the UC problem. 
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In other research, particularly in that of Raj an et al. [ 12], it may be noted that 

alternative models for generator operating limits are considered. This investigation 

involves the modelling of generator minimum on and off times as an exponential function 

as opposed to the discrete model described by Cohen. 

As an important aspect of the UC problem involves the minimization of fuel 

costs, several researchers have explored the modelling of generator fuel consumption as 

well as applicable constraints. Vemuri et al. [ 13] provide a thorough description of these 

constraints, while Chiang [14] explores the relationship between generator fuel 

consumption and power output. Chiang's work is also notable as it describes the 

inaccuracies in popular cost function models as a result of aspects such as valve-points, a 

concept further discussed in the research of Park et al. [ 15]. 

Economic dispatch problems are further complicated when consideration is given 

to power flow constraints. These constraints are discussed in the research of Ma et al. 

[ 16] where aspects such as transmission line loading and bus voltage regulation are 

considered. 

A wide variety of conventional approaches have been explored in the research to 

assist with UC planning problems. The methodologies include exhaustive enumeration, 

priority listing, dynamic programming, and linear programming. 

Exhaustive enumeration has been explored in the works of Hara et al. [ 17] and 

Kerr et al. [ 18]. These investigations involve an assessment of all possible unit 

combinations over the short-term timeframe. Each of these works discusses that although 

this approach guarantees an optimal solution to the UC planning problem, it is not 

practical for larger systems due to time constraints. 
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Priority listing techniques are described in the works of Lee et al. [ 19]. These 

works describe how such an approach dramatically reduces computation time as 

generator outputs are controlled solely based on the thermal rate of each unit. The 

researchers all give consideration to fuel consumption constraints [20] and restrictions 

relating to power flow transactions between neighbouring systems [21]. 

Many studies have also been performed relating to the application of dynamic and 

linear programming methodologies to UC problems. With respect to dynamic 

programming, the primary focus of this research is directed at reducing the relatively 

large amount of computational time required when using this approach. Ouyang et al. 

[22] attempt to modify traditional dynamic programming techniques by using a variable 

optimization window that reduces the overall number of UC combinations. The work of 

Chang et al. [23] investigates linear programming and how this approach is better able to 

deal with power system constraints. The overall conclusions that may be drawn from 

these investigations indicate that even when the computational time required for the 

dynamic programming strategy is reduced, this methodology is often unable to generate a 

solution that meets all system constraints within a specified time limit. As Chang 

describes, although linear programming is a faster approach and is better able to deal with 

system constraints, this methodology is inconsistent in its ability to converge on an 

acceptable solution. 

A variety of alternative conventional methods have also been thoroughly explored 

in UC research. These methods are presented in the work of Padhy [5] in his extensive 

survey of literature in this field. In addition to the techniques described above, Padhy 

provides an overview of approaches that include Lagrangian relaxation, branch and 
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bound methods, interior point optimization, Tabu searches, simulated annealing, expert 

systems, fuzzy systems, and artificial neural networks. While detailed explanations of 

these advanced methodologies are beyond the scope of this investigation, it is important 

to recognize that a variety of strategies are being developed for dealing with SCUC 

optimization problems. 
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Chapter 3 

Particle Swarm Optimization 

Particle swarm optimization (PSO) was first proposed by Kennedy and Eberhart 

[6] in 1995 as a new technique for the optimization of nonlinear problems. Like other 

types of evolutionary computation before it, this heuristic approach is a form of 

evolutionary computation and is biologically-inspired. To date, variations of PSO have 

been developed for dealing with the optimization of continuous functions and also with 

binary decision making [24]. As indicated in the literature, each of these variations has 

been shown to be both simple in its implementation and computationally inexpensive. 

This chapter involves an introduction to particle swarms and heuristic 

methodologies. Concepts relating to evolutionary computation are discussed and the 

advantages of such strategies are presented. An overview of the mathematical, 

sociological, and computer engineering aspects of particle swarms are also examined. 

The chapter concludes with a review of literature that pertains to the development of the 

theory and applications of particle swarm optimization. It should be noted that particular 

emphasis is placed on the application of particle swarms and other evolutionary 

methodologies to UC and SCUC problems. 

3. 1 Heuristic Methodologies 

One of the primary attributes of particle swarm optimization is that it is a heuristic 

methodology. By definition, a heuristic technique is an approach that does not guarantee 

an optimal solution, but hopes to identify a very good or near-optimal solution in a 
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reduced computational time [25]. This strategy is typically employed in optimization 

problems that may not be solved using conventional algorithms due to time constraints or 

due to the degree of complexity of the problem. 

When faced with such a problem, a heuristic strategy is used to provide a shortcut 

where only a portion of the overall set of solutions is evaluated. Rather than using a 

brute-force algorithm, a heuristic approach limits its search to only a subset of solutions 

where the optimum is likely to be found. This subset is chosen based on a strategy that 

has the capacity to use the information from each evaluated solution to help direct the 

search towards the optimum. Such a strategy must be robust and must be able to 

efficiently manoeuvre through the set of possible solutions without getting caught in 

obstacles such as local minima. Since heuristic approaches are able to dynamically 

respond and adapt to information collected at each step in the search for the optimum 

solution, they are defined as a type of artificial intelligence. 

3.2 Evolutionary Computation 

One of the fundamental paradigms of heuristics involves the use of evolutionary 

computation to assist in the identification of an optimal solution. These strategies have 

developed over the past fifty years and consist of a number of sub-branches that include 

both the genetic algorithm and evolutionary programming. While each of these fields is 

unique, both attempt to evolve an optimal solution based on the concept of survival of the 

fittest. 

The genetic algorithm was first proposed by John Holland [26] in the early 1960's 

m an attempt to develop an adaptive system that could dynamically respond to its 
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environment. In his work, he proposed the use of a population of individuals where each 

member of the population served as a particular solution to a problem. Specifically this 

population was seen as being analogous to a set of chromosomes - the biological building 

blocks of DNA. Just as a chromosome is characterized as having a set of genes, each 

member of Holland's population was encoded with a variety of traits that defined each 

particular solution. 

The strategy proposed by Holland was to evaluate the quality of each solution and 

to effectively quantify the fitness of each member of the population. Once this process is 

complete, probabilistic methods may be used to select members of the population that 

will be able to transfer their genetic information to the next generation through 

reproduction. 

As in the biological world, only the fittest members of a species would survive 

and the ideal situation would therefore involve the transmission of healthy genetic 

information to future generations. At the same time, negative characteristics would be 

eliminated from the gene pool. The members of the subsequent generation would 

therefore consist of combinations of the best genetic material from their predecessors. As 

a result, the overall fitness of the population would improve. In terms of an optimization 

problem, this process is iterated until the population converges on an optimal or near­

optimal solution. 

While the genetic algorithm focuses primarily on genetic crossover to evolve an 

acceptable solution to an optimization problem, evolutionary programming relies on an 

alternative biological process: mutation. This process was proposed by Fogel in 1994 

[25] and involves randomly varying the individual genetics of the population members. 
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As a result of this process, new genetic combinations may be found and member fitnesses 

may be improved. 

As with the genetic algorithm, future generations are created based on 

probabilistic methods where the fitness of each member is taken into consideration. It 

should be noted, however, that evolutionary programming does not employ genetic 

recombination. 

Although these methodologies differ in their implementation, both processes may 

be characterized by the following steps: 

1. Initialize a random population of potential solutions. 

2. Calculate the fitness of each member of the population. 

3. Use probabilistic methods to select members of the population for 

reproduction. For example, a weighting system may be employed to 

increase the likelihood that the fittest members of a population will have 

their characteristics transferred to future generations 

4. Perform evolutionary operations (crossover, mutation). 

5. Iterate the above procedure. 

3.3 The Advantages of Evolutionary Computation 

The evolutionary computation strategies described above have several advantages 

over traditional optimization paradigms. These advantages include the ability to avoid 

getting stuck in local minima and a lack of dependence on auxiliary calculations [27]. 
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With respect to ability to avoid local minima, an evolutionary computational 

strategy represents a powerful alternative as it employs a population of search operators. 

This approach is beneficial in that it allows for the implementation of a searching strategy 

that is based on the collective knowledge of the population. In addition, the use of 

operations such as crossover and mutation allows for the operators to move freely 

through the hyperspace of potential solutions to regions where the optimal solution may 

likely be found [7]. 

Evolutionary computation strategies are also beneficial in that they do not depend 

on auxiliary calculations. While many hill-climbing paradigms rely on functional 

derivatives to direct the search for an optimal solution, evolutionary searches rely solely 

on the calculation of fitness values for each member of its population. These fitnesses are 

often directly related to the output of the function that is being optimized and therefore 

present a more efficient alternative. 

3.4 The Particle Swarm Methodology 

Based on the advantages described above, Kennedy and Eberhart began the 

development of a new evolutionary strategy that was based on the biological and 

sociological behaviour of animals such as those demonstrated by flocking birds or 

schooling fish. While such animals demonstrate the ability to effectively communicate 

and cooperate as a group to reach common objectives, the particle swarm methodology 

hopes to imitate this behaviour to help direct its population toward an optimal solution. 

As described above, particle swarm optimization is accomplished using a 

population of search agents (known as particles) that are randomly scattered to a set of 
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positions in the hyperspace of potential solutions. For a problem consisting of n variables, 

the hyperspace would have n dimensions and the ith particle would be assigned the 

position vector: 

(3.1) 

In (3.1 ), Xi is a vector of continuous variables that represents a particular solution 

to the cost function that is to be optimized. By evaluating the cost functions for each 

member of the population, the particles begin to explore what is known as the fitness 

landscape of the optimization problem [25]. 

Unlike other evolutionary strategies, particle swarm optimization does not rely on 

reproductive operations such as crossover or mutation to explore the n-dimensional 

hyperspace. Rather, the population of particles adopts the behaviour of a group of 

animals such as a flock of birds searching for food in a field. In this process, each particle 

is assigned a velocity in the hope of directing it toward the regions where the highest 

fitnesses have been found. The velocity vector of the ith particle is specified as: 

(3.2) 

Once each particle has been assigned a velocity, the new position of each particle 

may be calculated as: 

(3.3) 
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This process is iterated in the hopes that the particles will begin to swarm in the 

vicinity of the optimal solutions to the problem. 

According to the model proposed by Kennedy and Eberhart, the velocities that are 

to be assigned to each particle are based on a series of mathematical equations that 

represent sociological phenomena. As each particle must intelligently determine which 

direction it should travel, it must rely on a combination of its own experiences and on the 

collective knowledge of the group to determine the best course of action. 

With respect to particle learning based in individual experiences, Kennedy and 

Eberhart suggest that an intelligent organism that is performing a search will likely be 

drawn to a location where it has had success in the past. For example, migrating birds 

often return to the same nesting areas after travelling for extended periods of time. With 

respect to a mathematical optimization problem, a component of the velocity of the ith 

particle will therefore direct it toward P;n, the position within the n-dimensional search­

space where it has attained its highest fitness to date. From a computer programming 

perspective, the coordinates of P;n must be recorded for each member of the swarm. 

The velocity assigned to each particle also depends on the collective knowledge 

of the swarm population. From a sociological sense, this refers to an individual's desire to 

imitate the behaviour of elite members of a community. In reference to particle swarm 

optimization, each member of the swarm community will be attracted to Pgn. the location 

of the highest fitness to date. This rule would require a computer program to store the 

coordinates of Pgn and update as required. 

The final particle velocity component prescribed by Kennedy and Eberhart 

consists of an inertia factor that influences a particle to continue moving in the same 
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direction as the previous iteration. This additional parameter permits the swarm to 

explore the area in the vicinity of a previously-attained maximum value. To accomplish 

this strategy, a computer program would be required to store a velocity vector for each 

particle. 

These three components may be seen in the formula proposed by Kennedy and 

Eberhart: 

(3.4) 

It may be noted that each of these components is weighted by acceleration factors, 

represented by w, c1, and c2, respectively. In addition, to ensure that all particle velocities 

have a certain degree of randomness, rand1 and rand2 represent random numbers between 

zero and one. This use of random numbers is employed as it ensures that the movement 

of each particle is different from the other members of the population. This is particularly 

useful in later iterations of the optimization process when several of the particles have 

likely converged on a particular region of the search-space. In such a case, the 

randomness decreases the probability that the particles will follow the same path and 

therefore ensures that a larger portion of the search-space is explored. 

As stated above, these equations provide solutions consisting of continuous 

variables. In some optimization problems, however, solutions may be binary in nature 

and the ith particle of the swarm will be defined by a vector having components xil, ... , X;n 

that are ones and zeros. When considering such a problem, solutions may be defined as 

bitstrings of length n and the search-space becomes an n-dimensional hypercube as 

illustrated in Figure 3.1. 
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Figure 3.1 Three-Dimensional Hypercube 

Kennedy and Eberhart [24] described binary particle swarm optimization (BPSO) 

as being similar to ordinary PSO. As in the continuous case, the population of particles 

occupies a set of positions within the n-dimensional search-space. As well, each particle 

is assigned a velocity that is calculated based on the relative fitnesses of the population. 

The primary difference with BPSO, however, is that these velocities are used to 

determine if the positional vector elements of each particle should be set to one or zero. 

This binary decision-making process is accomplished by thresholding the velocities to the 

range [0.0 1.0] using the sigmoid function: 

I 
s( V;d) = -----

1 + exp( -v;d) 

(3.5) 

The resulting number is then compared against Pict, a vector of random numbers 

drawn from a uniform distribution between 0.0 and 1.0. Kennedy and Eberhart then 

prescribed that the following formula be applied: 

if P;d < s(v;d) then xid = 1; else xid = 0 (3.6) 
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It should be noted that in both the continuous and binary versions of PSO, a 

maximum velocity, Vmax, may be set to control the behaviour of the swarm [28]. Such a 

parameter assists in reducing erratic particle movement in the continuous case, while 

ensuring that each particle has the ability to change state in the BPSO case. In this BPSO 

case, the capping of large velocities prevents the saturation of the sigmoid function. For 

example, by limiting Vmax to a magnitude of 4, the sigmoid function cannot produce a 

value lower than 0.017 or higher than 0.982. As a result, there is at least a -2% chance 

that the particle will change its binary state. The particle therefore cannot become 

"trapped", regardless of the system parameters. 

As indicated by the above equations, PSO involves a relatively simple 

methodology that may be implemented in just a few lines of code. As well, the principal 

memory requirement for the swarm involves the storage and manipulation of two n­

dimensional arrays (one for position, one for velocity). 

3.5 The Development of Particle Swarm Optimization (PSO) 

The literature presented in this section relates to particle swarm optimization and 

its evolution as a strategy for the optimization of complex non-linear problems. In 

addition to the comprehensive studies that have been published relating to particle swarm 

techniques, this section also involves a review of investigations pertaining to the analysis 

and selection of swarm parameters, the capacity of particle swarms to deal with system 

constraints, and the comparison of particle swarms to other evolutionary techniques. 

Other topics discussed in this section relate to particle swarm optimization strategies and 

applications that have been investigated in recent research. 

- 19-



As described in Chapter I, particle swarm optimization was first proposed by 

Kennedy and Eberhart in 1995 [ 6]. Since its initial discovery, a series of comprehensive 

works have been published to explore relevant mathematical and sociological phenomena 

associated with this technique. The first such study was also performed by Kennedy and 

Eberhart in 2000 with the publication of Swarm Intelligence [27]. The work represents 

one of the most recognized studies of the methodology and is widely referenced in the 

literature. More recent comprehensive studies have been published by Englebrecht in 

2005 with Fundamentals of Computational Swarm Intelligence [29] and by Clerc in 2006 

with Particle Swarm Optimization [25]. Each of these publications investigates particle 

swarm optimization from a multidisciplinary standpoint by reviewing how the subject 

relates to the fields of computer science, mathematics, sociology, and engineering. 

Over the past decade a series of studies have been performed in an attempt to 

assess the behaviour of particle swarms and to improve their performance. Many of these 

investigations are concerned with the selection of swarm parameters and how they may 

be designed to improve efficiency and convergence time. One such study is that of 

Eberhart and Shi [28] where a study was performed to address the stability of particle 

swarms. In this research, particle speed limitations were established in an attempt to 

control the movement of the swarm as it searched for an optimal solution. Other such 

investigations include those of Zheng et al. [30] in their analysis of the application of 

time-varying acceleration factors to improve the control of swarm movement. 

Other relevant studies associated with particle swarm optimization involve 

constraint handling. As many engmeenng and mathematical problems are highly 

constrained, studies such as those performed by Coath et al. [31] investigate alternatives 
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for ensuring that an acceptable solution is found in an efficient manner. This study 

involves the application of penalty factors and the analysis of how swarm convergence 

may be affected. In addition, a comparison is made between this strategy and the 

alternative concept of a feasible solution method where solutions are rejected if they do 

not meet all system constraints. Other studies involving the ability of particle swarms to 

perform in a constrained optimization environment include the work of Michalewicz et 

al. [32]. In this study, a stepping procedure is proposed where the optimization process 

does not attempt to meet all system constraints at once. Rather, this procedure tries to 

meet them one at a time in a divide and conquer strategy. 

Other research in the field of particle swarm optimization relates to the 

comparison of this methodology to other types of evolutionary computation. In the work 

of Kennedy and Spears [33], the rate of convergence of the swarms is compared to that of 

the genetic algorithm. This investigation notes that, for a series of non-linear 

mathematical optimization problems, the particle swarms are almost universally faster 

than the genetic algorithm and are less affected by dimensionality. A similar study was 

performed by Habib and Al-Kazemi [34]. This study investigated how particle swarms 

are better able to optimize mathematical distance functions than other evolutionary 

methodologies. 

A significant amount of research has also been performed to investigate ways to 

improve the searching strategies of particle swarms. In the work of Clerc [35], a series of 

experiments are performed to examine how to deal with a no hope swarm that is unable 

to find a suitable solution. In this investigation, Clerc explores the notion of how such a 
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swarm may be reset after a predefined amount of time if its fitness does not meet a 

minimum set of criteria. 

Particle swarm strategies are also examined by Eberhart and Shi [36]. In this 

study, the ability of swarms to solve dynamic optimization problems is examined. As a 

proposed solution in this investigation, portions of the particle swarm population are re­

randomized in an attempt to respond to the time-varying aspects of the system that is to 

be optimized. 

Coello and Lechuga [37] have also investigated particle swarm behaviour in an 

attempt to develop strategies for dealing with multi-objective optimization problems. In 

this research, the fitnesses of particles within a swarm are ranked based on the concept of 

Pareto dominance. In such a strategy, all system objectives are prioritized and may 

therefore be used to dictate the behaviour of the swarms. 

Another development in the field of particle swarms was proposed by Kennedy 

and Eberhart [24] in their exploration of a strategy by which the swarms may be used in 

the optimization of discrete problems. In this paper, it is described that many 

optimization problems are binary in nature and it is shown that swarms may be employed 

to determine an optimal set of system states. 

An important portion of ongoing research relating to particle swarms involves the 

application of particle swarms to solve mathematical, computer science, and engineering 

problems. With specific interest in the area of electrical engineering, a number of 

investigations have been preformed to explore the applications of particle swarm to such 

areas as the development of neural networks, state of charge estimation in battery packs, 

and the optimization of antenna systems. 
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With respect to neural network development, Hu et al. [38] have explored how 

particle swarms may be used as an alternative to back-propagation methodologies. In this 

investigation, the swarms are used to help determine how to optimally interconnect 

neural networks and to optimize network learning. The research indicates that the swarms 

may be particularly useful for systems containing non-differentiable components. 

Neural networks are applied in a practical electrical engineering problem in the 

work of Peng et al. [39]. In this study, a series of neural networks are defined using 

particle swarm optimization to estimate the state of charge in battery pack system. These 

neural networks provide an alternative to a complex mathematical model that is 

particularly useful as the problem involves a hybrid vehicle system that is defined by a 

number of non-differentiable parameters. 

Particle swarm optimization is also used as tool for the optimization of antenna 

systems as found in the work of Boeringer et al. [ 40]. This study further demonstrated the 

capability of particle swarms in dealing with the optimization of non-linear systems and 

discusses the potential of this methodology for dealing with a wide variety of 

electromagnetics problems. 

Based on the studies described above, particle swarm optimization may be seen as 

a relatively new optimization tool that is particularly beneficial for dealing with systems 

that are either non-linear or non-differentiable in nature. To date, particle swarms have 

been used in a wide range of electrical engineering problems and it is expected that 

further applications will be discovered as new swarm strategies are developed. While it 

has been shown that swarms often perform better than other evolutionary strategies, it is 

- 23-



expected that the popularity of this methodology will continue to grow as research is 

performed to help further improve its efficiency. 

3.6 The Application of Evolutionary Techniques to UC and 

SCUC Planning 

With the growing popularity of evolutionary methodologies such as the genetic 

algorithm and particle swarm optimization, several researchers have investigated the 

potential application of these techniques to unit commitment problems. The following 

studies relate specifically to investigations where power systems optimization is 

performed using these evolutionary approaches. 

Several studies have been performed involving the use of the genetic algorithm to 

assist in economic dispatch problems. In the research of Raj an et al. [ 41] and Yang et al. 

[42] investigations have indicated that genetic techniques generally have higher 

convergence rates than methodologies involving dynamic programming or even more 

advanced techniques such as Lagrangian relaxation. It was also found that the genetic 

algorithm produces a higher quality result. 

Despite consistent convergence, however; Kazarlis et al. [43] discusses how the 

genetic approach requires a significant amount of computational time for effective power 

systems optimization. In addition to this shortcoming, the work of Mantawy et al. [44] 

discussed another drawback to this approach involving a relatively high memory 

requirement. 

In response to these issues and due to the strength of particle swarm techniques in 

dealing with non-linear optimization problems, several researchers have begun to explore 
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the application of swarm methodologies in power systems analysis. As described in the 

work of Chang and Lu [45], distribution networks may be optimized by using partic1e 

swarm techniques to coordinate system feeders. In this study, feeder optimization a11ows 

for load aggregation where improved system load factors lead to reduced operating costs. 

The economic analysis of power systems is also studied in the research of Xiaohui 

et al. [46], which focuses primarily on the relationships of neighbouring systems in a 

modem, deregulated electric utility market. In this study, partic1e swarms are used to 

maximize profitability through the optimization of the sale and purchase of electricity. 

Studies specifica11y involving the optimization of economic dispatch problems 

through the use of partic1e swarm inc1ude the work of Gaing [47]. This study compares 

the performance of particle swarms to the genetic algorithm with respect to unit 

commitment analysis and finds that the swarms have a higher convergence rate than the 

alternative evolutionary strategies. It is still found, however, that the speed of 

convergence is unacceptably long for a day-ahead planning situation. 

More recent studies include the work of Ting et al. [ 48] where a binary particle 

swarm approach is used in an attempt to optimize a power system generation scheme 

while adhering to operational constraints. While this study indicates that the proposed 

solution is capable of producing acceptable results, it is noted that the use of a separate 

particle swarm for each hour of the operating period presents a variety of difficulties. 

Such a strategy requires a large computational time and may not be suitable for a day­

ahead planning situation. In addition, the use of multiple swarms results in a lack of 

correlation between successive hours and may lead to large variations in the prescribed 

active outputs of system generators. As a result, such a strategy may cause violations of 
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the operational constraints for system generators and may therefore cause a unit's 

lifespan to be reduced. 

A variety of hybrid approaches have been proposed in recent research in an 

attempt to improve the ability of particle swarms to handle unit commitment constraints. 

Such studies include the work of Sriyanyong and Song [49] where particle swarms are 

combined with Lagrangian relaxation techniques and that of Victoire and Jeyakumar 

[50], where Tabu search methodologies are employed. The results of each of these 

investigations indicate that such hybrid techniques may be used to improve the overall 

performance of the swarm. 

Other recent developments relating to the application of particle swarms involve 

the use of multi-objective optimization schemes where attempts are made to reduce not 

only operating costs, but also to help reduce the emission of greenhouse gases. The study 

of Al-Rashidi and El-Hawary [51] presents a strategy whereby the Pareto dominance 

approach [37] described above may be employed to meet all operating constraints. 

In summary, evolutionary strategies such as the genetic algorithm and particle 

swarm optimization have been employed in a number of studies to assist with power 

systems optimization. The results of these studies indicate that the strategies are able to 

eliminate the shortcomings of conventional methodologies such as high computational 

times and memory requirements. Recent trends in the literature also indicate that 

alternatives such as hybrid approaches are able to further improve the computational 

efficiencies. Based on these findings, a hybrid particle swarm optimization approach 

would likely provide an acceptable means of responding to the challenges of day-ahead 

seve planning. 
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Chapter 4 

Security Constrained Unit Commitment {SCUC) Planning 

Security-constrained unit commitment (SCUC) planning involves the coordination of 

a power system's generating units in an attempt to minimize operating costs while 

adhering to a set of operational constraints. As discussed below, this optimization is 

exceedingly difficult due to its classification as a time-varying, non-linear, mixed integer 

problem. This chapter provides an overview of these challenges and presents the 

numerous constraints that further complicate the optimization process. SCUC operational 

costs are also discussed at the end of this chapter. 

4. 1 SCUC Problem Identification 

The classical unit commitment problem consists of an attempt to respond to a 

time-varying load by modifying a system's generating scheme. The time-varying nature 

of this problem requires that a power system not only be optimized in one particular state. 

Rather, all system constraints must be met and costs must be minimized for the overall 

operating period. This may be particularly problematic, however, as the desire to reduce 

instantaneous costs may conflict with the optimization of the overall period. 

Another challenge presented in SCUC planning involves the non-linear nature of 

power systems optimization. In classical unit commitment problems [3], a simplified 

model of a system is presented and the non-linearities brought about by system load 

flows are avoided. In these analyses, the system is modeled as a single bus that is 

connected to all generating units and to all loads. In such a system, many parameters are 
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neglected and a simple priority list methodology may be employed. Unfortunately, this 

technique pays no attention to load flow constraints and is therefore unacceptable for 

seve planning. 

When a system is to be optimized and load flow constraints are considered, well 

established calculus-based techniques exist for optimizing generator schemes. For larger 

systems, these techniques are implemented in computer programs such as the Matpower 

3.0.0 toolbox for Matlab [52]. These programs are capable of calculating each generator's 

optimal active power output within seconds. Such programs are unsuccessful, however, 

in that they are unable to deal with the mixed-integer aspect of the optimization problem. 

Problems arise with calculus-based algorithms in that they can only examine a 

system in one particular mode of operation. More simply, these techniques are unable to 

tum a generator on or off to identify an optimal solution. Rather, they will only minimize 

the output of inefficient generators. This limitation may be particularly problematic in 

systems where generator outputs have non-zero minima and the system is under light 

loading conditions. In such cases, several (if not all) generator outputs may be set to 

minimum, non-zero values. As a result, planners must somehow choose which minimized 

units to deactivate. It should be noted that this procedure becomes exceeding difficult in 

larger systems as n minimized generators would result in 2n possible on/off combinations. 

4.2 SCUC Constraints 

While the challenges described in the previous section demonstrate the degree of 

difficulty of an SCUC optimization problem, a significant number of constraints must 

also be considered when developing an acceptable solution [2, 1 1, 13, 16, 20, 48, 49 J. 
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These constraints relate to system power flow limitations, generator operation limitations, 

and the computational time and storage requirements of the optimization algorithm. 

4.2.1 Power Flow Constraints 

As stated in the introduction, the first priority of a power systems engineer is 

reliability. All SCUC solution must therefore be defined such that no power flow 

constraints are breached during the specified operating period. These power flow 

constraints include: 

• bus voltage magnitudes 

• bus voltage angles 

• generator active power outputs 

• generator reactive power outputs 

• apparent power flow in system branches 

The voltage magnitude at each bus must be held within maximum and minimum 

values. For example, typical bus voltage specifications require that voltages stay within a 

range of [0.95-1.05] per-unit. 

Due consideration must also be given to bus voltage angles as a generator may 

lose synchronism if a bus voltage angle exceeds 90°. Such a situation would lead to 

system instability and is therefore not permitted. 

Generator active and reactive power limits represent other important power flow 

constraints. As a generator excitation is varied, the reactive power produced by a unit 

may vary from a negative to a positive value. Reactive power limits therefore typically 

have a negative minimum and a positive maximum (e.g. from -40 to 40 MVar). With 
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respect to active power output, certain generators may not be permitted to operate below 

a specified value for efficiency reasons. As a result, active power limits typically have a 

positive minimum, as well as a positive maximum. It should be noted that generator 

motoring is not permitted in this investigation. 

The final operating constraint for a system involves the flow of apparent power in 

the various system branches. These values are limited by the maximum MV A limit of 

each line and must be calculated at both the sending and receiving ends. 

4.2.2 Generator Operating Constraints 

In addition to the standard power flow criteria, unit commitment problems must 

also consider maintenance-related issues involving the start-up and shutdown of each 

generator [2]. For example, if a generating unit is frequently switched on and off, its 

lifespan may be dramatically reduced. Many generators therefore have limits dictating 

their minimum on/off times. 

Other maintenance-related issues include generator ramping limits [11]. It is often 

undesirable or perhaps beyond a unit's capability to dramatically increase or decrease 

active power output in a short period of time. In response to this, ramp limits must be 

enforced. 

It should be noted that this investigation involves the analysis of systems 

containing only thermal units. As a result, constraints associated with generators that are 

driven by hydroelectric or other means have not been explored. While system elements 

such as "must run" units are beyond the scope of this investigation, they may be 

considered in future research based on the content of this thesis as described in Chapter 7. 
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4.2.3 Computational Time & Storage Constraints 

As described in the introduction, system generating schemes are usually based on 

the day-ahead market. It is therefore reasonable to assume that generating schemes must 

often be planned in less than twenty-four hours. As part of the planning process, time 

should also be allotted to ensure that a generating scheme is properly verified so that it 

may be approved and implemented. 

With respect to computational power and storage space, SCUC planners may set 

constraints based on available hardware and software. 

4.3 SCUC Costs 

As stated above, the SCUC problem involves finding an optimal (or near-optimal) 

solution that minimizes operating costs while adhering to all power flow and maintenance 

constraints. The calculation of operating costs requires the consideration of: 

• 
• 
• 
• 

fuel consumption costs 

start-up costs 

shutdown costs 

system losses 

Fuel consumption costs are a combination of a unit's heat rate and fuel costs and 

use a polynomial expression to convert the amount of active power produced into dollars 

[43]. Typically this relationship is represented by a three-term expression: 
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hourly fuel cost($) = a+ bP + cP2 (4.1) 

P in the above equation represents the active power [MW] produced by the 

generator, while the coefficients a, b, and c have units of [$/h], [$/MWh], and [$/MW2h], 

respectively. 

Start-up costs represent the estimated cost of fuel consumed during the start-up of 

the generator. A typical start-up cost found in this investigation is approximately $100 for 

a lOOW unit. Similarly, shutdown costs consider the cost of fuel consumed when a unit is 

taken offline. Typically, shutdown costs are deemed to be negligible. 

System losses involve the costs associated with power that does not reach the 

customer as it is consumed by system transmission lines. Losses are calculated by 

identifying the amount of active power consumed by the resistive component of the 

system transmission and multiplying the resulting MWh value by the specified electrical 

rate. 
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Chapter 5 

SCUC Software Implementation 

For the purposes of this investigation, a software package was developed to assist 

in day-ahead SCUC planning and the creation of a generating scheme that would meet all 

system constraints while improving operating efficiency. This chapter involves a 

discussion of the six modules that include: the Input Module, the Minimum Generators 

Module, the Particle Swarm Module, the Pathfinder Module, the Load Flow Verification 

Module, and the Output Module. Code for all software modules may be found in 

Appendices A, B, and C while a flow control diagram illustrating their interaction is 

provided in Figure 5.1. 

Figure 5.1 
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5. 1 Overview of SCUC Modules 

The optimization process begins with the Input Module which allows for the 

specification of all system parameters and operational constraints. Once all system 

variables have been defined, power flows within the system may be optimized using 

calculus-based linear programming techniques in the Minimum Generators Module. 

These techniques may be used to identify system generators that have minimal active 

power outputs at various stages of the operating period. 

Upon completion of this step, the hour with the highest number of minimized 

generators is assessed by The Particle Swarm Module. In this module, the objective is to 

determine the optimal generator on/off combinations for that particular hour using the 

binary particle-swarm methodology described in Chapter 3. 

The next step of the SCUC planning process involves determining the overall 

generation sequence for the operating period. For this stage, the Pathfinder Module is 

employed to use the combinations defined by the Particle Swarm Module to extrapolate a 

generation scheme for all remaining hours. For a sequence to be acceptable, however, it 

must meet the system operating constraints defined in Chapter 4. 

During the Particle Swarm and Pathfinder stages, the Load-Aow Verification 

Module is used to ensure the reliable operation of the power system by ensuring that all 

power flow constraints are met. 

Upon completion of the above stages, control is passed to the Output module 

which is responsible for providing all required unit commitment and operational data to 

the user. 

- 34-



It should be noted that all SCUC software was developed using a series of Matlab 

m-files. With respect to software design, global variables were used for a many of the 

main data storage matrices to minimize virtual memory requirements. While this practice 

may reduce the efficiency of the program, it was chosen due to simplicity of 

implementation. Improvements to this aspect of the software design are discussed in 

Chapter 7 which includes recommendations for future work. 

5.2 The Input Module 

The primary objective of the Input Module is to allow for SCUC software to have 

the versatility to develop economical day-ahead solutions for a wide variety of power 

systems. The software was developed to allow a user to input system-specific information 

so that load flows may be optimized. The various features of this module allow the user 

to include both technical parameters and financial data associated with the operation of 

thermal units and system losses. 

5.2.1 System Case Files 

As stated above, one of the pnmary components of the Input Module is the 

capacity to store load flow data for the power system that is to be optimized. A user may 

input such data through the creation of a case file - a Matlab m-file that contains data 

relating to system buses, branches, generators, areas, and generator costs. Each of these 

parameters may be input in matrix form where each row refers to a specific entity within 
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the power system and each column relates to the characteristics of that entity. Each of 

these matrices is defined in Appendix D. 

It should be noted that once a system case file has been prepared containing all 

necessary information in the proper format, the user may instruct the SCUC software as 

to the name of the desired file so that the required parameters may be obtained. 

5.2.2 Hourly Load Data and Other Parameters 

In addition to entering parameters into system case files, users may also use the 

Input Module to provide the software with day-ahead loading data that may be used for 

SCUC planning. For improved simplicity, the Input Module has the capacity to extract 

this data from a Microsoft Excel spreadsheet. This task is performed automatically once 

the user has input the name of the desired file and of the specific spreadsheet containing 

the system loading data. 

Other information that may be entered as part of the Input Module includes 

energy costs, which are measured in dollars per megawatt-hour. These values assist in the 

calculation of system losses. 

5.2.3 Particle Swarm and Optimization Parameters 

The parameters associated with the particle swarm optimization methodology are 

also provided in the Input Module. These parameters allow for a user to customize the 

optimization strategy to best suit a particular power system planning problem. Based on 

computational time limits and the size of the power system in question, the user can 
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adjust variables including the swarm population size, the number of iterations the swarm 

is allowed to search, and the overall software time limit at which point the software must 

provide the day-ahead power system generation scheme. 

Other variables associated with the particle swarms include other parameters 

discussed in Chapter 3, such as acceleration coefficients, w, c1, and c2, and the maximum 

particle speed, Vmax. As discussed, these variables help to control the movement of the 

particles within the swarm [25, 29]. By fine tuning these parameters through 

experimental trials, a systems planner may modify the movement of the particles to 

ensure that the optimization process functions as efficiently as possible. 

A final variable that may be defined in the input module is the Boolean parameter 

al!On. This variable is typically set to false when the software is to perform its 

optimization process under normal operating conditions. Under certain circumstances, it 

may be desirable to deactivate the particle swarm optimization algorithm and to simply 

use a calculus-based linear programming solver to optimize the system and to leave all 

system generators operational. In such a case, the allOn variable may be switched to 

TRUE. This will result in the execution of a much simpler optimization algorithm that 

will require much less computational time. Because all generators are active for the entire 

operating period, this algorithm is unlikely to produce the most cost effective solution. 

5.3 The Minimum Generators Module 

Once all system parameters have been entered and processed by the Input 

Module, the first calculations performed by the SCUC are to use the calculus-based linear 

programming software to optimize the power system for each hour of the operation 
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period with all system generators in operation. As discussed in Chapter 4, the solver will 

assess which generators are inefficient and should therefore have minimal active power 

outputs. For these calculations, this module employs the system information from the 

case file and scales the loading data for each hour according to the values specified in the 

Microsoft Excel source file. It is important to note that all system generators are activated 

for this analysis. 

Once the process IS complete, the Minimum Generators Module tallies the 

number of minimized generators for each hour of the operating period. The hour with the 

highest number of minimum generators is identified and output from the module as the 

variable lightHour. As this hour has the highest number of possible generator on/off 

combinations, it is this hour that will be the focus of the particle swarm optimization and 

the third module of the SCUC software. 

As an example of this procedure, the eight-unit power system below may be 

considered. The system was simulated for each hour of the operating period with all units 

activated and was analyzed by the Minimum Generators Module. Based on these 

analyses, generators having a minimal and non-minimal active power outputs were 

identified as follows: 

(In the matrices below: I =non-minimal output, 0 = minimal output) 

Hour 1: [1 0 0 0 0 0 1] Minimum Generators: 5 

Hour 2: [1 0 0 I I 0 0 1] Minimum Generators: 4 

Hour3: [1 0 0 0 0 1] Minimum Generators: 4 (5.3) 

Hour4: [1 0 0 0 1] Minimum Generators: 3 
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Hour5: [1 0 I I I I 0 1) Minimum Generators: 2 

In the example above, Hour 1 has the highest number of minimum generators and 

would therefore be labelled as lightHour. As this hour has five minimized units, there 

exist 25 = 32 possible generator on/off combinations. This information is required for the 

analyses that are performed by the other modules of the SCUC software. 

5.4 The Particle Swarm Module 

The objective of the Particle Swarm Module is to determine inexpensive 

generator on/off combinations for the hour identified as lightHour by the Minimum 

Generators Module. This is accomplished through the application of the optimization 

strategy discussed in Chapter 3 where binary particle swarms [24] are used to identify 

which generators should remain functional while a calculus-based linear programming 

solver is used to specify the active power of these units and to calculate operational costs. 

5.4.1 Particle Swarm Tables 

While particle swarm optimization processes have the objective of finding the 

ideal or least-expensive solution, it is important to note that a large number of generator 

on/off combinations will be evaluated during the swarm's search. As well, as defined in 

Chapter 4, identifying optimal solutions for each individual hour may not necessarily lead 

to an optimal generation schedule for the overall period [48]. It should therefore be noted 
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that the Particle Swarm Module does not have the objective of finding a single optimal 

combination, but rather a set of combinations that could potentially become strong 

candidates for the optimal generation scheme of the overall twenty-four hour operating 

period. 

With this strategy in mind, the Particle Swarm Module is designed to maintain a 

series of tables that are used for the storage of the large number of results that are 

calculated during the optimization. As the various operational costs are calculated for 

each combination of generator on/off settings, these values are stored in ascending order 

by total cost. When the Pathfinder Module (described below) attempts to find an optimal 

scheme for the overall operating period, it can therefore begin its search with the least 

expensive combinations for the first hour. 

The maximum number of generator combinations that may be evaluated during 

the optimization process will equal the product of the swarm population size, popSize, 

and the number of iterations allowed for the search, iterCount. This product may also be 

known as maxCombos, a variable used in the SCUC program. It should be noted that if 

lightHour contains a large number of minimized generators, maxCombos will likely be 

less than the total number of possible generator on/off combinations. System engineers 

must therefore take this into consideration when selecting the variables defined in the 

Input Module 

The following tables are created by the Particle Swarm Module as data IS 

recorded during the optimization process: 

1. settings - This table is a one-dimensional array that contains binary on/off 

settings for all power system generators. The array can hold a number of 
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elements equal to the product of maxCombos times the number of power 

system generators. For example, if a system containing n generators were to 

be optimized by a particle swarm with a population size of p that was allowed 

to search for i iterations, the settings matrix would have a length of nx pxi 

elements. The array below indicates how generator setting would be stored if 

a system with n generators were to be optimized by a particle swarm where 

maxCombos = m: 

2. fuelCosts - This table is also a one-dimensional array that contains the fuel 

costs (in dollars) of all system generators. These values are calculated based 

on thermal rate polynomial equations defined in ( 4.1 ). This table has the same 

dimensions as the settings matrix and data is stored in the same format. 

3. pfCosts - This table includes all power flow costs that are calculated during 

the particle swarm optimization. (Fuel costs are not included m these 

calculations). Each element of this array represents the sum of all costs 

associated with the start-up and shutdown of system generators, costs 

associated with system losses and costs that result from penalty factors -

monetary values that are charged as a result of the violation of an operational 

constraint [31]. Penalty factors are further described below. Each element of 
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the pfCosts matrix represents the sum of costs for the entire power system. 

This matrix therefore has a length equal to the value of maxCombos. 

4. comboCosts - The elements of this table represent the total operational cost 

(in dollars) of the generator on/off combinations that are assessed during the 

particle swarm optimization process. The generator fuel costs from the 

fuelCosts table are summed with the corresponding costs from the pfCosts 

table. Like the pfCosts table, comboCosts has an array length equal to the 

value of maxCombos. 

5. combolndices - This table serves as an index for the other tables of the 

Particle Swarm module. It contains a set of reference numbers that have been 

assigned to each generator on/off combination evaluated during the particle 

swarm optimization process. Reference numbers are assigned to specific 

combination based on the conversion of the base-two bitstring representing 

the set of active and inactive generators (where active generators are 

represented by ones and inactive generators are represented by zeros) to a 

base-ten number. For example, if the eight-generator system described above 

were assigned the following combination by the particle swarm optimization 

process: 

Generator 7: Active 
Generator 6: Inactive 
Generator 5: Inactive 
Generator 4: Inactive 
Generator 3: Active 
Generator 2: Inactive 
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Generator 1: Inactive 
Generator 0: Active 

this combination may be represented by the binary string 1000100 I. If this 

binary number is converted to a base ten number, 137 would be the reference 

number assigned to the combination as: 

2 7 + 23 + 2° = 137 (5.5) 

To reduce computational time, when the particle swarm is presented with a 

generator combination, it will calculate the reference number for that combination and 

scan the combolndices table to verify that it has not already been evaluated. This process 

prevents the execution of duplicate load flows. This process also guarantees that the total 

number of load flows performed will be less than the value of maxCombos. 

As stated above, the elements of each table are sorted based on calculated cost 

values. This indicates that as less expensive solutions are identified, more expensive 

solutions are shifted to make room. This process also ensures that corresponding values 

in the various tables are stored in the same order. For example, the first reference number 

in the combolndices table has power flow costs equal to the value in the first cell of the 

pfCosts table and a total cost equal to the value of the first cell of the comboCosts table. If 

this example system were specified as having n generators, the first n elements of the 

settings and fuelCosts arrays would also be associated with this combination. 

Equivalently, the values in the settings and fuelCosts tables associated with the second 
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reference number in the combolndices table would be located in the elements ranging 

from { n + 1 : 2n } . 

It should be noted that this process has a linear order of complexity and could 

potentially require that the operating cost of each solution be compared again all other 

solutions. This design was chosen, however, as the developed process would be much 

more efficient than the complex calculus-based analyses required when unnecessary 

linear optimizations are performed. 

5.4.2 The Particle Swarm Optimization Process 

The optimization process defined by the Particle Swarm Module is executed as 

defined in Chapter 3. The process begins by initializing a random population of generator 

on/off combinations for lightHour. As this optimization procedure is only concerned with 

whether generators with minimized active power outputs should be activated or 

deactivated, all other (non-minimized) generators will be left in operation. 

Each member of the population of generator combinations is then assigned a 

reference number and a validity check is performed to ensure that the system capacity 

remaining after all specified generators have been disabled is greater than the system 

load. Combinations failing to comply with this requirement are immediately discarded to 

prevent unnecessary load flow calculations. 

All acceptable, non-duplicate generator combinations are then simulated by the 

software as copies of the original power system case files (as defined in Section 5.3.1) are 

made and the generator matrices are modified to deactivate the specified units. This 

modified case file may then be passed back to the calculus-based linear programming 
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optimizer where the active power outputs of all remaining generators are determined. At 

this time, system operating costs are recalculated and the Load Flow Verification Module 

(described below) is used to ensure that no system constraints are violated. Once this 

process is complete, all results are stored in the appropriate Particle Swarm Table as 

described above. It should be noted that if no acceptable generator on/off combinations 

can be found without violating system constraints, a Boolean variable known as 

criticalFlag is activated and the software returns an error to the user. 

Once an iteration of the optimization process is complete and all combinations of 

the swarm population have been evaluated, calculations are performed to determine 

particle velocities [6]. These calculations follow the binary particle swarm strategy 

described in Chapter 3 where probabilistic methodologies are used to determine if 

specific generators should be activated or deactivated [24]. This process is then repeated 

until the specified number of iterations is reached. At this point, control is passed to the 

Pathfinder Module. 

In the eight-unit power system example defined above, the matrices below 

represent the best generator on/off combinations identified by the Particle Swarm Module 

and their respective costs: 

(For the Matrices Below: 1 =unit is active, 0 =unit is inactive) 

lightHour Combination 1: [1 0 0 o o o I] Hourly Cost= $11,500 

lightHour Combination 2: [I o 0 I I 0 0 I] Hourly Cost = $11 ,800 (5.6) 

Hourly Cost = $12,500 lightHour Combination 3: [I 0 0 0 I) 
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5.5 The Pathfinder Module 

The overall objective of the Pathfinder Module is to use the tables created by the 

Particle Swarm Module to determine an optimal generator schedule for the overall 

twenty-four hour operating period. The algorithm proposed for the Pathfinder module 

involves taking each proposed generator combination for lightHour and applying the 

same (or similar) settings to all other hours of the operating period. The combinations 

that were identified for lightHour may therefore be seen as a base from which the rest of 

the generator schedule is extrapolated. 

The implemented design was chosen due to the need to enforce generator 

operating constraints (particularly generator ramping limits) when developing an 

acceptable SCUC solution. This objective may be achieved by finding a set of optimal 

generator settings for a particular hour and making as few changes as possible when 

compensating for load variations as time progresses. This may be contrasted with a 

design that employs particle swarm optimization for every hour. In such a design, the 

lack of connectivity between each hourly solution could result large variations in 

generator outputs over the operating period and may therefore decrease the likelihood of 

finding an acceptable solution. 

These extrapolations are performed by taking each combination that was 

identified for lightHour in the Particle Swarm Module and using the logical 'OR' 

function with the matrices created by the Minimum Generators Module. As described 

above, these Minimum Generator Matrices indicate which generators were identified as 

having a minimum active power outputs at each hour of the operating period by the 

calculus-based solver. 
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This procedure is illustrated below in the continuation of the eight-unit example. 

As described above, the least expensive on/off combination identified by the Particle 

Swarm Module for lightHour was defined as: 

lightHour Combination I: [I 0 0 I 0 0 0 I] Hourly Cost= $11,500 (5.7) 

This combination is therefore applied to all other hours of the operating period 

using the bitwise logical 'OR' operator with the Minimum Generator Matrices: 

Generator On/Off Settings: 

Houri: [I 0 0 0 0 0 I) OR [I 0 0 0 0 0 1] = [1 0 0 I 0 0 0 I) 

Hour2:[I 0 0 0 0 I) OR [1 0 0 0 0 0 1] = [1 0 0 0 0 1] 

Hour3: [I 0 0 0 0 I) OR [I 0 0 0 0 0 1] = [I 0 0 0 0 I) (5.8) 

Hour4: [I 0 0 0 1) OR [1 0 0 0 0 0 1] = [I 0 0 0 I) 

Hour5:[I 0 0 I) OR [1 0 0 0 0 0 1] = [1 0 0 I) 

The new on/off combinations are then fed back to the calculus-based solver to 

determine the active power outputs of all operational system units. The resulting 

operating costs of the prescribed settings were determined to be: 

Hour 1 Operating Cost: 

Hour 2 Operating Cost: 

Hour 3 Operating Cost: 
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Hour 4 Operating Cost: 

Hour 5 Operating Cost: 

$14,300 

$15,500 

Once all operating costs have been calculated for the overall SCUC generator 

schedule, the process is repeated using a different combination for lightHour. This 

process therefore involves cycling through as many combinations as possible until either 

the computational time limit for the SCUC program expires or all lightHour possibilities 

have been exhausted. 

To ensure power system reliability, all hourly generator combinations are 

analyzed by the Load Flow Verification Module (described below). If it is found that a 

particular set of generator on/off settings results in the violation of power system 

constraints, the overall generator schedule is rejected and the software moves on to the 

next lightHour combination on which a new schedule may be developed. In the unlikely 

event of a case where all SCUC solutions are in violation of system constraints, a 

criticalFlag variable is activated and the software notifies the user of the error. 

Another important attribute of the Pathfinder Module is the capacity to ensure that 

generator ramping limits are enforced for the operating period [ 11]. This is accomplished 

as the maximum and minimum active power output limits for all units are recalculated for 

each hour based on the settings for the previous hour. As an example of this functionality, 

a generator that is rated to produce an active power output in the range of 30-200MW and 

that has a ramping limit of 50MW may be considered. If the prescribed active power 

output for Hour 1 is 130MW, the Pathfinder Module will modify the allowable operating 
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range of the unit for Hour 2 to ensure that the output stays within the range of 80-

180MW. It should also be noted that the Pathfinder Module has a looping feature to 

ensure continuity between the end of one operating period and the beginning of the next. 

5.5.1 Review of the Pathfinder Methodology 

The proposed Pathfinder procedure will result in a generator schedule where unit 

settings for consecutive hours will be very similar due to the incorporation of attributes 

such as ramping limits. This is desirable as frequent switching on and off of a system 

generator may result in a reduced lifespan for the unit. As described in Chapter 2, 

previous investigations [ 48] have found that if particle swarms were to be performed for 

each hour of the operating period, the generator schedule would be highly discontinuous 

and could potentially violate minimum on/off time constraints of system units. 

Disadvantages of the proposed methodology are such that the search for the 

optimal generator schedule for the operating period will involve a very limited 

exploration of the overall search-space. This is due to the fact that the optimization 

strategy does not attempt to optimize each hour of the operating period. 

5.5.2 Pathfinder Module Record Keeping 

As part of its procedure, the Pathfinder Module creates a table know as UCpath -

a data structure that contains all of the pertinent information for the twenty-four hour 

seve generator schedule. This table contains the set of all operational costs as well as 

the prescribed generator active power output settings for all units. The table is designed 
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such that each row contains information for a specific hour of the operating period. In a 

day-ahead SCUC planning exercise, the UCpath table would therefore contain twenty-

four rows. 

The operational data contained within the UCpath table are stored in a series of 

fields that are defined as follows: 

Field I - comboNumber - This field contains the reference numbers of the 

generator on/off combination employed for each hour of the operating 

period. 

Field 2 - runningTotal - This field represents the total operational cost of the 

system. 

Field 3 - comboCost- This field represents the hourly overall operating costs for 

the system 

Field 4 - comboFuelCost - This field represents the hourly fuel costs for the 

system 

Field 5- comboTimeCost- This field represents the hourly generator costs for the 

system (excluding fuel costs). Generator start-up and shutdown costs are 

considered along with penalty factors incurred due to violations of 

minimum on/off time contraints and ramping limits. 

Field 6- comboPFCost- This field represents the hourly power flow costs for the 

system. Penalty factors incurred due to power flow violations and 

expenses due to system losses are considered for this total. 

Field 7 - comboSimilarity - This field serves as means of tracking the similarity 

of the generator on/off combinations for consecutive hours of the 
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operating period. This figure represents the sum of the units that have 

been switched on or off during each hour. 

In addition to these columns, the UCpath table also contains information relating 

to the prescribed active power settings for each generator of the power system. These 

values represent the optimal outputs calculated by the calculus-based solver as defined 

above. The overall number of columns of the UCpath table will therefore equal to seven 

(the number of fields) plus the total number of generator units. 

As defined above, all generator schedules created by the Pathfinder Module are 

extrapolated based on the set of generator on/off combinations for lightHour. The 

UCpath table will therefore be filled with a unique generator schedule based on each 

lightHour combination. This schedule will then be erased as the process is repeated. 

Before being erased, the overall operating cost of each schedule is evaluated and 

compared to that of the best SCUC solution to date. If the cost of a particular solution is 

found to be lower, the entire UCpath table is copied to a new table known as bestPath. 

The bestPath table therefore contains all prescribed generator settings and operational 

costs for the best possible SCUC solution identified during the Pathfinder procedure. At 

the end of this procedure, this table is passed to the Output Module where all required 

information may be provided to the user. 
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5.6 The Load Flow Verification Module 

The Load Flow Verification Module works in conjunction with both the Particle 

Swarm and the Pathfinder modules and is used to ensure that all generator on/off 

combinations do not violate any of the power system constraints defined in Section 4.2.1. 

This software is located in a separate Matlab m-file and a separate function known as 

lfCheck that may be called as required. If any load flow violations are detected by this 

module, a penalty factor fee is added to the calculated power system operating cost 

consisting of fuel costs, etc. As all power flow restrictions must be met to ensure the 

reliable operation of the power system, these penalty factors are significantly large and 

will cause the SCUC software to immediately reject the proposed generating scheme. 

This strategy may therefore be seen as a combination of both penalty factor and feasible 

solution methodologies [3 I]. 

5. 7 The Output Module 

At the completion of the procedure performed by the Pathfinder Module, the 

bestPath table containing all generator settings and operational cost data is forwarded to 

the Output Module for the final stages of the SCUC software. The Output Module 

performs a series of tasks including verification of an acceptable SCUC solution, 

reordering of the generator scheduling, and the plotting of output graphs. 

The first task performed by the Output Module involves verification of the 

criticalFlag variable to ensure that an acceptable SCUC solution has been found. If no 
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such solution was found, the user is notified of the error and the program immediately 

terminates. 

The second objective of the Output Module is to reorganize the data of the 

bestPath table such that it is in the proper chronological order. As stated above, the first 

rows of the bestPath and UCpath tables contain data for the hour known as lightHour. It 

should be noted, however, that lightHour may not be the first hour of the operating 

period. The Output Module must therefore reconfigure this data as it is copied to a new 

table known as orderedPath. As part of this process, the runningTotal field of the 

bestPath table must be recalculated starting from the first hour of the operating period. 

Once this process is complete, the Output Module outputs a series of graphs that 

may be analyzed by power systems engineers so that the final proposed SCUC solution 

may be approved for implementation. Two such graphs are printed and these include (a) 

a graph that displays the active output of all generating units for the overall operating 

period and (b) a graph that illustrates the hourly operating costs of the power system. 

Graph (b) contains a series of plots associated with fuel costs, generator operational costs, 

and system costs associated with losses. 

Once all required graphs have been generated, the SCUC program terminates its 

operation. 
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Chapter 6 

SCUC Case Studies and Results 

For the evaluation of the proposed SCUC planning methodology, a set of case 

studies were performed involving simulated power systems and day-ahead planning 

scenarios. For each system, the SCUC software was required to generate a twenty-four 

hour generation scheme that would meet all system constraints at an operating cost lower 

than the results obtained using only the calculus-based linear programming methodology 

[23] employed by existing Matpower software [52]. 

This chapter provides an overview of the power system case studies and the 

specifications that were defined for the software simulations. The benchmark simulations 

involving the linear programming methodology are presented along with the resulting 

generation schemes. This chapter also discusses the simulations that were performed 

using the particle swarm software. The case studies are discussed with reference to the 

software modules presented in Chapter 5 and the simulation results are presented and 

compared to those of the benchmark system. 

6. 1 Power System Case Studies and Simulation Specifications 

The simulated power systems chosen for the case studies were based on a number 

of networks from an IEEE test case archive [53]. These systems include a 57-bus system 

with 7 thermal units, and a 118-bus test system with 54 thermal units. All operating 

parameters for the systems are defined in Appendices E and F, respectively, where 

Matlab case files for both systems are provided. For each of these power systems, 
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simulated load factors were varied uniformly over the operating period as illustrated by 

Figure 6.1. This curve is based on actual loading data from CAISO, The California 

Independent System Operator [54]. This corporation is responsible for overseeing the 

day-ahead energy market in California and ensuring the reliable operation of the power 

system. 

Simulations for both test cases were performed using MA TLAB 6.5 and the 

Matpower 3.0.0 toolbox. Applications were executed on laptop computer with an Intel 

Celeron 2.2GHz processor. The Windows XP operating platform was employed with 

3.5GB of available virtual memory. 

With respect to the ability of the software to meet specified time constraints, the 

simulations were performed to represented day-ahead planning situations. As a result, a 

computational time limit of sixteen hours was specified. (Such a timeframe would 

provide adequate opportunities for the verification of the generated results and the 

implementation of the generation scheme within the corporate energy management 

system). It should be noted, however, that analyses relating to the computational 

complexity and the time requirements associated with the various processes of the 

implemented software are beyond the scope of this investigation. Although the software 

has been developed using a modular format, the modules have been defined for the 

purposes of illustrating the various methodologies that have been employed for the SCUC 

planning process. The computing resources required for each module are therefore not 

considered as part of the performance evaluation of the software. Such considerations are 

described in Chapter 7 as part of the recommendations for future work. 
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Figure 6.1 System Load Factors for the 24-Hour Operating Period 

6.2 System Optimization Using Only Calculus-Based Solvers 

Both power system test cases were first optimized for the specified operating 

period using existing calculus-based linear programming software. In this portion of the 

investigation, the runopjfunction Matpower 3.0 toolbox was used to optimize the power 

system for each hour of the operating period. As this software does not have the capacity 

to deactivate system generators as a potential means of reducing costs, all generators 

were kept in operation for the entire twenty-four hours. Benefits for this strategy include 

the fact that computational time is minimized as no time is spent optimizing the 

-56-



activation and deactivation of system generators. In addition, planners need not be 

concerned with generator constraints relating to minimum on/off times. 

6.2.1 Linear Programming Optimization of the 57-Bus System 

The Matpower software was used to optimize the active power outputs of the 

seven generators of the 57-bus power system. The results of this optimization are 

specified in Figure 6.2 and Table 6.1 which illustrate the prescribed generator settings for 

each hour of the operating period. 

As a result of this optimization, the operating costs for the system over the 

twenty-hour hour period are illustrated in Figure 6.3 and Table 6.2. These figures 

illustrate costs due to generator fuel consumption and system losses. It may be noted that 

as all generators remain active for the entire operating periods, no costs associated with 

generator start-up are incurred. Based on these values, the total estimated operating costs 

for the power system is approximated as $275,300. 
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Figure 6.2 

Table 6.1 

: Honr>> 1 2 3 4 
Gen 1 50 50 50 50 

: Gen2 20 20 20 20 
· Gen 3 20 20 20 20 
, Gen4 20 20 20 20 
, Gen5 157 131 128 131 
; Gen6 20 20 20 20 

Gen 7 118 99 97 99 

/---
I "'- '\ 

\ 
\ 

LP-Optimized Generator Settings for the 57-Bus Power System 

(Three generators are operating at minimal values) 

LP-Optimized Scheme for the 57-Bus Power System (MW) 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 
50 53 62 65 67 69 69 68 67 66 65 66 74 81 80 77 73 66 57 
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
20 20 20 21 21 22 22 21 21 21 21 21 23 25 25 24 23 21 20 
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
144 173 204 214 220 224 225 221 217 216 213 215 243 264 260 252 239 216 185 
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
108 131 154 162 166 169 170 167 164 163 161 162 184 200 197 191 181 164 140 
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Figure 6.3 
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LP-Optimized Operating Costs for the 57-Bus Power System 

-59-



Table 6.2 LP-Optimized Operating Costs for the 57-Bus Power System 

i Hour Fuel Cost Gen Start-up Cost System Losses Total 
' 1 $ 9,314.60 $ $ 177.59 $ 9,492.10 ; -

' 2 $ 8,423.10 $ $ 146.60 $ 8,569.70 ' -
; 

3 $ 8,325.30 $ $ 143.64 $ 8,46890 i -
4 $ 8,400.00 $ - $ 145.89 $ 8,545.90 

I 5 $ 8,855.40 $ - $ 160.70 $ 9,016.10 
! 6 $ 9,963.10 $ - $ 202.99 $ 10,166.00 
I 7 $ 11,236.00 $ - $ 258.14 $ 11,495.00 
: 8 $ 11,644.00 $ - $ 277.34 $ 11,922.00 
i 9 $ 11,904.00 $ - $ 289.79 $ 12,194.00 i 
: 10 $ 12,095.00 $ - $ 299.12 $ 12,394.00 
! 11 $ 12,120.00 $ - $ 300.34 $ 12.420.00 
' ' 12 $ 11,945.00 $ $ 291.75 $ 12,23600 ' -

13 $ 11,805.00 $ - $ 28498 $ 12,090.00 
14 $ 11,733.00 $ - $ 281 55 $ 12,014.00 
15 $ 11,626.00 $ - $ 276.50 $ 11,903.00 

i 16 $ 11,684.00 $ - $ 279.20 $ 11,963.00 

' 
17 $ 12,916.00 $ - $ 341.29 $ 13,257.00 

: 18 $ 13,826.00 $ - $ 391.80 $ 14,218.00 
j 

19 $ 13,642.00 $ $ 381.24 $ 14,023.00 i -
20 $ 13,314.00 $ - $ 362.91 $ 13,677.00 

i 21 $ 12,736.00 $ - $ 331.75 $ 13,067.00 
22 $ 11,762.00 $ - $ 282.93 $ 12,045.00 

I 23 $ 10,448.00 $ - $ 222.81 $ 10,671.00 
I 24 $ 9,314.60 $ - $ 177.59 $ 9,492.10 

Total $269,032.10 $ - $ 6,308.44 $275,339.80 

6.2.2 Linear Programming Optimization of the 118-Bus System 

The Matpower linear programming software was also used to optimize the active 

power outputs of the fifty-four generators of the 118-bus power system. The results of 

this optimization are specified in Figure 6.4 and Table 6.3 which illustrate the prescribed 

generator settings for all hours of the operating period. 
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Figure 6.4 LP-Optimized Generator Settings for the 118-Bus Power System 

(Twenty-eight generators are operating at minimal values) 
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Table 6.3 LP-Optimized Scheme for the 118-Bus Power System (MW) 
... .. 

Hour>> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Gen 1 30 30 3D 3D 30 3D 30 30 3D 3D 30 30 30 30 3D 30 3D 45 42 34 30 30 30 30 
Gen2 3D 30 30 30 30 3D 30 30 30 3D 30 30 30 30 3D 30 30 3D 3D 30 30 3D 30 30 
Gen 3 30 3D 30 3D 3D 3D 30 30 30 30 30 30 3D 3D 3D 3D 3D 30 30 3D 30 30 3D 30 
Gen 4 30 30 30 30 3D 3D 30 30 30 30 30 3D 30 30 30 3D 3D 30 30 3D 30 30 30 30 
Gen5 250 239 235 235 254 295 341 355 365 371 372 366 361 359 355 357 391 406 404 400 387 360 312 271 
Gen6 53 50 50 50 54 63 73 76 78 80 80 78 77 77 76 76 84 88 87 86 83 77 66 57 
Gen7 30 30 30 3D 30 30 30 30 3D 30 30 30 30 30 3D 3D 3D 38 34 30 30 3D 30 3D 
Gen8 30 30 30 30 30 30 30 3D 30 30 3D 3D 30 3D 3D 3D 3D 3D 3D 3D 30 3D 30 30 
Gen9 3D 30 30 3D 3D 3D 30 30 30 30 30 3D 30 3D 3D 3D 3D 36 33 30 3D 30 30 30 

Gen 10 3D 3D 30 30 3D 3D 30 30 3D 30 30 30 30 30 3D 3D 3D 3D 3D 30 30 30 30 30 
Gen 11 119 114 112 112 122 141 163 170 174 177 178 175 173 172 170 171 187 195 194 191 185 172 149 130 
Gen 12 172 165 162 162 176 203 235 246 252 257 257 253 250 248 245 247 270 281 280 276 267 249 216 187 
Gen 13 30 3D 30 30 30 30 30 30 30 30 30 3D 3D 30 3D 3D 30 3D 30 3D 30 3D 30 3D 
Gen 14 30 3D 30 3D 30 3D 3D 3D 30 30 3D 30 3D 3D 3D 3D 3D 3D 30 30 30 30 30 30 
Gen 15 3D 3D 3D 30 30 30 30 30 30 30 3D 3D 30 30 30 30 3D 3D 30 30 30 30 3D 30 
Gen 16 30 3D 3D 3D 30 3D 30 30 30 30 3D 3D 3D 30 30 3D 3D 3D 3D 30 30 3D 30 30 
Gen11 30 3D 3D 30 3D 3D 30 3D 30 30 3D 3D 3D 3D 30 3D 30 31 30 30 3D 30 3D 30 
Gen 18 3D 30 30 30 30 3D 3D 30 30 32 32 3D 30 30 3D 3D 56 77 74 67 51 30 30 30 
Gen 19 3D 30 30 3D 30 3D 30 30 3D 34 35 30 30 3D 3D 30 55 74 71 64 51 30 30 30 
Gen 20 30 30 30 30 30 30 30 30 30 30 3D 30 30 30 3D 3D 30 3D 30 3D 30 30 30 30 
Gen 21 128 123 121 121 131 151 174 181 186 189 189 187 184 183 181 182 196 203 201 199 195 183 159 139 
Gen 22 33 32 31 31 34 39 45 47 48 49 49 49 48 48 47 47 51 52 52 51 50 48 41 36 
Gen 23 30 30 30 30 30 30 30 30 30 30 30 30 30 30 3D 3D 53 76 72 64 48 30 30 3D 
Gen24 30 30 30 30 30 3D 30 30 30 30 3D 30 30 30 3D 30 55 79 75 66 49 3D 30 3D 
Gen 25 99 95 94 94 101 117 135 140 144 146 147 145 143 142 140 141 152 158 157 155 151 142 124 108 
Gen 26 98 94 92 92 100 115 132 138 141 143 144 142 140 139 137 138 150 155 154 153 148 139 121 106 
Gen 27 30 30 30 30 30 3D 30 30 30 30 3D 30 30 30 3D 3D 30 3D 3D 30 3D 3D 30 3D 
Gen 28 230 220 217 217 234 270 311 324 332 338 338 333 329 327 323 325 353 366 364 359 350 327 285 249 
Gen29 229 220 217 217 234 269 309 322 330 336 336 332 327 325 322 323 351 363 361 357 347 326 284 248 
Gen30 294 281 277 277 299 344 396 413 423 430 431 425 419 416 412 414 451 468 465 460 447 418 364 318 
Gen 31 30 30 3D 3D 30 30 30 30 30 3D 3D 30 30 30 30 30 30 3D 30 3D 30 30 30 30 
Gen32 30 3D 30 30 3D 30 30 30 30 30 30 3D 3D 30 3D 30 3D 30 30 3D 30 30 3D 30 
Gen 33 30 30 30 30 30 30 30 30 30 30 3D 3D 30 30 3D 3D 3D 3D 3D 30 30 30 30 30 
Gen 34 30 30 30 30 3D 30 30 30 30 30 30 30 30 3D 30 30 30 32 3D 30 30 3D 30 30 
Gen 35 30 30 3D 30 30 3D 30 30 30 30 30 3D 3D 30 3D 3D 3D 48 44 35 3D 30 30 3D 
Gen 36 3D 30 30 30 30 3D 30 30 30 30 3D 30 3D 30 30 30 3D 3D 3D 3D 3D 30 30 30 
Gen 37 276 265 261 261 281 325 375 391 401 407 408 402 397 394 390 392 429 447 444 438 424 395 344 299 
Gen38 30 3D 3D 30 30 3D 30 30 30 30 3D 3D 30 30 3D 3D 30 3D 3D 30 3D 30 30 3D 
Gen 39 3D 30 30 30 30 3D 30 30 30 30 3D 30 3D 30 3D 3D 3D 3D 3D 30 30 30 3D 30 
Gen40 302 289 285 285 308 357 412 430 441 448 449 442 436 433 429 431 476 499 495 488 470 435 378 328 
Gen 41 30 30 3D 30 3D 3D 30 30 30 30 30 30 3D 3D 3D 3D 3D 3D 30 3D 30 30 30 3D 
Gen42 3D 30 30 30 3D 3D 3D 30 30 3D 3D 30 3D 30 30 30 3D 3D 3D 30 30 30 30 30 
GenU 3D 3D 30 30 30 30 30 30 3D 3D 3D 30 3D 3D 30 3D 30 30 30 30 3D 3D 3D 30 
Gen 44 3D 3D 30 30 30 3D 3D 30 3D 30 3D 3D 3D 30 30 30 3D 30 30 30 3D 3D 30 3D 
Gen 45 139 132 130 130 141 165 193 201 207 211 211 208 205 203 201 202 224 234 233 229 221 204 176 151 
Gen 46 3D 30 3D 3D 30 3D 31 33 34 34 35 34 33 33 33 33 37 38 38 38 36 33 3D 3D 
Gen 47 30 3D 3D 3D 30 30 3D 3D 30 3D 30 3D 30 30 30 3D 3D 3D 30 3D 30 3D 30 3D 
Gen 48 3D 3D 30 3D 30 30 3D 30 30 30 3D 3D 30 3D 30 3D 3D 30 3D 3D 3D 30 3D 30 
Gen 49 3D 30 3D 30 3D 30 3D 3D 3D 3D 3D 30 3D 3D 3D 3D 3D 36 33 3D 3D 3D 3D 3D 
Gen50 30 3D 3D 3D 30 30 3D 30 3D 3D 30 3D 3D 3D 30 3D 3D 30 30 3D 30 3D 3D 3D 
Gen 51 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 
Gen52 3D 3D 3D 3D 30 30 3D 30 30 3D 3D 3D 3D 30 3D 3D 3D 43 40 35 3D 3D 3D 3D 
Gen 53 3D 30 3D 30 30 3D 3D 3D 3D 30 30 3D 3D 3D 3D 30 3D 30 30 3D 30 3D 3D 3D 
Gen54 3D 3D 3D 30 30 3D 30 3D 3D 30 30 3D 3D 30 30 3D 3D 3D 3D 3D 30 3D 30 30 
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As a result of this optimization, the operating costs for the system over the 

twenty-four hour period are illustrated in Figure 6.5 and Table 6.4. As with Test Case I, 

these figures illustrate costs due to generator fuel consumption and system losses. Again, 

as all generators remain active for the entire operating periods, the Test Case does not 

involve costs associated with generator start-up. Based on calculated values, the total 

estimated operating costs for the power system is approximated as $2.813M. 

Figure 6.5 

Gen Start-up Costs 
Fuel Costs 
System Losses 
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I 
________ ./ 

LP-Optimized Operating Costs for the 118-Bus Power System 
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Table 6.4 LP-Optimized Operating Costs for the 118-Bus Power System 
·~~~-~- "" ' ... ,.. ... ... 
Hour Fuel Cost Gen Start-up Cost System Losses Total 

1 $ 91,161.00 $ - $ 3,025.90 $ 94,187.00 
2 $ 94,826.00 $ - $ 3,431.20 $ 98,257.00 

' 
3 $ 102,500.00 $ - $ 4,393.00 $ 106,890.00 

' 4 $ 111,360.00 $ - $ 5,695.00 $ 117,050.00 
5 $ 114,200.00 $ - $ 6,155.60 $ 120,360.00 
6 $ 116,020.00 $ - $ 6,460.70 $ 122,480.00 
1 $ 117,450.00 $ - $ 6,641.00 $ 124,100.00 

. 8 $ 117,660.00 $ - $ 6,656.90 $ 124,310.00 
9 $ 116,300.00 $ - $ 6,508.60 $ 122,810.00 
10 $ 115,320.00 $ - $ 6,342.60 $ 121,660.00 
11 $ 114,820.00 $ - $ 6,258.50 $ 121,080.00 
12 $ 114,080.00 $ - $ 6,134.90 $ 120,210.00 

·13 $ 114,480.00 $ - $ 6,201.00 $ 120,680.00 
14 $ 124,880.00 $ - $ 6,956.00 $ 131,840.00 
15 $ 134,140.00 $ - $ 7,142.70 $ 141,280.00 
16 $ 132,130.00 $ - $ 7,130.10 $ 139,260.00 
17 $ 128,710.00 $ - $ 7,084.90 $ 135,800.00 
18 $ 123,240.00 $ - $ 6,880.00 $ 130,120.00 
19 $ 115,020.00 $ - $ 6,292.50 $ 121,320.00 

• 20 $ 105,870.00 $ - $ 4,864.50 $ 110,740.00 
21 $ 98,005.00 $ - $ 3,810.60 $ 101,820.00 
22 $ 93,905.00 $ - $ 3,32620 $ 97,231 00 
23 $ 91,837.00 $ - $ 3,098.80 $ 94,936.00 
24 $ 91,161.00 $ - $ 3,025.90 $ 94,187.00 

•Total $ 2,679,075.00 $ - $ 133,517.10 $ 2,812,608.00 

6.3 Test Case Optimization Using SCUC Software 

Simulated day-ahead planning for both power systems was performed using the 

implemented SCUC software described in Chapter 5. The sections below contain 

descriptions of the operation of the various software modules. 

6.3.1 Test Case Optimization: The Input Module 

As described above, system case files containing all power flow parameters were 

input in the specified formats along with the twenty-four hour loading data. Energy costs 
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were also input to allow for the calculation of system losses. This value was chosen based 

on Newfoundland Power's electrical rate of 8.458 ¢/kWh [55]. 

For both power systems, particle swarm parameters were provided for the Input 

Module according to the recommendations of Kennedy and Eberhart [27]. While the size 

of the particle swarm population and the permitted number of search iterations varied for 

each power system, values of 0. I, 0.5, and 0.5 were chosen for the inertia weight, w, and 

the acceleration coefficients, c1 and c2, respectively. These values allow for improved 

stability in the movement of the swarm and would therefore be more likely to produce a 

higher-quality result. As well, the maximum particle speed, Vmax, was set to a value of 

four [28]. 

6.3.2 Test Case Optimization: The Minimum Generators Module 

As described above, the minimum generators module is responsible for 

identifying power system generators that have been minimized by the calculus-based 

linear programming solver. The results of this procedure for the 57-bus and I 18-bus 

systems are illustrated in Table 6.5 and Table 6.6, respectively. As indicated in these 

tables, the maximum number of minimum generators in the 57 -bus system was observed 

during the first five hours of operation. During this period, the outputs of five system 

generators were minimized. For the I I 8-bus system, the number of minimum generators 

was maximized in Hour 4 where 41 of the 54 generators are minimized. Based on these 

findings, the lightHour variable may be defined as Hour I for the first test case (selected 

arbitrarily from the first five hours) and as Hour 4 for the second. 
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Table 6.5 Minimum and Non-Minimum Generators for the 57-Bus Power System 

(Zeros indicate minimum generators, while ones indicate non-minimum generators) 

:Hour> 1'2 'j '4 '5 67 '8 9 ·1o T1 ,~1~2 '13, 14 15 16 17 18 19 20 21 22 23 24 
IGen 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
!Gen2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
:Gen 3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
:Gen 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
:Gen5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
:Gen6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
;Gen 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
:MinGens 5 5 5 5 5 5 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 
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Table 6.6 Minimum and Non-Minimum Generators for the 118-Bus Power System 

(Zeros indicate minimum generators, while ones indicate non-minimum generators) 

Hom> 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 1& 17 18 19 20 21 22 23 24 
Gen1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 
Gen2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen6 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
GenS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
Gen 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Gen 18 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 
Gen19 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 0 0 
Gen20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
Gen24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 
Gen25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen2& 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Gen 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 
Gen36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
Gen46 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 
Gen47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
Gen50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 
Gen53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MinGens 40 40 40 41 40 40 40 39 39 39 37 37 39 39 39 39 39 35 27 29 32 35 39 40 
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6.3.3 Test Case Optimization: The Particle Swarm Module 

Once lightHour was identified for both test cases, particle swarm optimizations 

were performed to determine the least expensive generator on/off combinations for the 

specified hours. 

The optimization procedure was greatly simplified for the first test case as the five 

minimum generators produced a relatively small search-space of 25 = 32 possible 

generator on/off combinations. Based on this result, a particle swarm with a population of 

twenty was selected and permitted to search for twenty iterations. Although these 

selections may seem very large for such a small search-space, the functionality built in to 

the Particle Swarm Module prevents the evaluation of duplicate load flows. As a result, 

the swarm was able to quickly exhaust all thirty-two possibilities without unnecessary 

calculations. Therefore, for small cases such as these, the software is capable of indirectly 

performing exhaustive enumeration. 

The results of this procedure are illustrated in Table 6.7 which lists the ten best 

generator combinations identified by the Particle Swarm Module. 

Table 6.7 Particle Swarm Results for the 57-Bus Power System 

Combo> 1 2 3 4 5 
6 ... 

7 
8 ....... 

9 10 
Gen 1 61 0 0 54 55 55 57 58 58 0 
Gen2 0 0 0 20 0 0 20 0 0 20 
Gen3 0 22 0 20 20 20 0 0 0 20 
Gen 4 0 0 0 0 0 20 0 0 20 0 
Gen5 198 219 232 179 178 177 189 187 187 209 
Gen G 0 0 0 0 20 0 0 20 0 0 
Gen 7 147 165 175 133 133 133 140 140 141 157 
Cost $8,325 $8,353 $8,436 $8,497 $8,712 $8,714 $8,718 $8,734 $8 741 $8,742 
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The benefits of the particle swarm optimization are much more evident in the 

second test case where there is an extremely large search-space of 2 41 = 2.2xi0 12 possible 

generator on/off combinations. While it would be impossible to exhaust all possibilities 

as in the previous test-case, the software must rely on the capability of the SCUC 

software to limit its search to areas of the hypercube where an optimal solution is more 

likely to be found. 

A population size of twenty was once again chosen. This specification was made 

as research has indicated that even for extremely large search-spaces, search efficiency 

does not dramatically improve with a larger swarm population [25]. Instead, the swarms 

are to be given a longer time in which to perform their search. As a result, a limit of 100 

iterations was selected. Based on these specifications, the Particle Swarm Module is 

permitted to search a maximum of two thousand of the over two trillion possibilities. 

The progress of the swarm is shown in Figure 6.6 which illustrates how the 

overall operating price for the hour was reduced as new and more efficient generator 

combinations were identified. As shown, the swarm gradually reduced the hourly 

operating price for lightHour from approximately $83,500 to under $81,000. 

The ten best generator combinations and their respective operating costs for the 

second test case are illustrated in Table 6.8. It should be noted that 1982 generator on/off 

combinations were assessed for the second test case and that all of these settings were 

passed along to the Pathfinder Module. It was found that 18 combinations were either 

duplicates or were rejected due to violation of system constraints. 
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Figure 6.6 Progress of the Particle Swarm for the 118-Bus System 
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Table 6.8 Particle Swarm Results for the 118-Bus Power System 

:coillilo> 
~' ~ ~ ,,~ ''"~~ < .,, '_,.~~' 

1 2 3 4 5 6 7 8 9 10 
Gen 1 0 0 0 0 0 0 30 30 0 0 
Gen 2 0 0 0 0 0 30 0 0 0 30 
Gen 3 30 0 0 0 0 30 30 0 30 0 
Gen 4 158 165 168 162 162 164 161 158 158 155 
Gen 5 228 237 243 235 234 237 232 227 228 225 
Gen 6 0 0 0 0 0 0 0 0 0 30 
Gen 7 30 0 0 30 30 0 0 30 30 30 
GenS 0 30 0 30 0 0 30 0 0 0 
Gen9 30 0 0 30 0 30 0 0 0 0 
Gen 10 30 30 0 0 30 0 30 30 30 0 

• Gen 11 0 0 0 0 0 30 0 0 30 0 
Gen 12 0 0 0 0 30 0 0 0 0 0 
Gen 13 30 30 0 0 0 0 0 0 0 30 

: Gen 14 159 166 167 165 165 166 167 162 160 161 
' Gen 15 41 43 42 42 42 43 43 42 41 41 
: Gen 16 30 0 30 0 0 0 0 0 30 30 

Gen 17 0 0 0 0 0 0 0 0 0 0 
Gen 18 122 128 127 126 127 127 128 124 123 124 
Gen 19 121 127 126 125 126 126 127 123 122 123 
Gen 20 0 30 30 0 0 0 0 0 30 0 
Gen 21 288 302 302 296 298 299 300 292 290 292 
Gen 22 286 300 300 294 296 297 299 290 288 290 

· Gen 23 371 390 389 379 383 384 387 375 374 374 
Gen 24 0 0 0 0 0 0 0 0 0 30 
Gen25 0 0 0 0 0 0 0 0 0 30 
Gen26 0 0 0 30 0 30 0 0 0 0 
Gen27 0 30 0 0 30 0 0 0 0 30 
Gen28 30 0 0 0 0 0 0 30 0 0 
Gen29 30 0 0 30 30 0 0 0 0 0 
Gen 30 350 372 366 356 363 363 366 352 353 359 
Gen 31 0 0 30 0 30 0 0 0 0 0 
Gen 32 30 0 30 30 0 30 30 0 30 0 
Gen 33 405 440 411 405 420 408 409 399 405 425 
Gen 34 0 0 0 0 0 30 0 0 0 0 
Gen35 0 0 0 0 0 0 30 30 0 0 
Gen 36 0 0 0 0 0 0 30 0 0 0 
Gen 37 0 0 0 0 0 30 0 30 0 0 
Gen 38 189 208 195 188 199 195 199 183 188 199 
Gen 39 31 0 33 0 34 33 0 30 31 0 
Gen40 0 0 0 0 30 0 0 0 0 0 
Gen 41 30 0 30 30 0 0 0 0 0 0 
Gen42 0 0 30 30 0 30 0 0 30 0 
Gen43 0 0 0 30 0 0 0 30 30 30 
Gen44 40 0 0 40 0 0 40 40 0 0 
Gen45 0 30 0 0 0 0 0 30 30 30 
Gen46 30 0 0 0 30 0 30 30 30 0 

' Gen 47 0 0 0 30 0 0 0 0 0 0 
· Gen48 0 0 0 0 0 0 30 0 0 0 

Gen49 30 30 0 0 0 0 0 30 0 0 
Gen50 0 0 0 0 0 30 30 0 0 0 
Gen51 30 0 0 30 0 0 0 0 30 0 
Gen52 339 347 341 336 343 334 324 328 326 335 
Gen53 72 73 72 71 73 71 68 70 69 71 
Gen54 0 30 0 0 0 0 0 0 30 0 

Cost $80,590 $80,708 $80,935 $80,976 $81,086 $81,292 $81,477 $81.624 S81,635 $81.686 
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6.3.4 Test Case Optimization: The Pathfinder and Output Modules 

For both test cases, the Pathfinder Module was used to extrapolate an optimized 

generation scheme for the overall operating period. This task is accomplished by cycling 

through as many combinations as possible of those identified by the Particle Swarm 

Module. 

For the 57 -bus power system of Test Case I, the generation scheme illustrated in 

Figure 6.7 and Table 6.9 was generated by the Output Module. This proposed scheme 

had an estimated operating cost of $247,500 for the twenty-four hour period. This value 

represents a savings of 11.7% over the costs of the linear programming generator 

schedule, provided above in Table 6.2. Operating costs for the SCUC-optimized solution 

are provided in Figure 6.8 and Table 6.1 0. As the generation scheme met all operating 

constraints and demonstrated an improved efficiency, this may be seen as an acceptable 

SCUC solution. 

Figure 6.7 
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SCUC-Optimized Generation Scheme for the 57-Bus Power System 
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Table 6.9 SCUC-Optimized Scheme for the 57-Bus Power System (MW) 
,_,1,, '""~v hv~v"~' ~V=NAV ~y-= OYAY'"~' ~~' ~'~'A>'P ,,,~. 

12" 
V'VVVVVVVNAV 

Hour>> 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 
Gen1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

: Gen 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
; Gen 3 20 20 20 20 20 21 25 26 27 27 27 27 26 26 26 26 29 32 31 31 29 26 23 20 
' Gen4 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 

Gen5 196 171 168 170 183 213 248 258 265 271 271 267 263 261 258 259 293 317 312 303 288 262 226 196 
Gen6 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
Gen7 150 131 129 130 140 164 190 199 204 208 208 205 202 200 198 199 225 244 240 233 221 201 174 150 

System Losses 

I \. 

I \ 

I \ 

\. / 

Figure 6.8 SCUC-Optimized Operating Costs for 57-Bus Power System 
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Table 6.10 SCUC-Optimized Operating Costs for 57-Bus Power System 
'Y cc" w "~Y-~~~"- '~ ~m~~"~v-~~' '~ >-System Losses · Hour Fuel Cost Gen Start-up Cost Total 

1 $ 8,122.00 $ - $ 203.11 $ 8,325.10 
2 $ 7,229.20 $ - $ 168.04 $ 7,397.30 
3 $ 7,131.20 $ - $ 164.44 $ 7,295.60 
4 $ 7,206.10 $ - $ 167.19 $ 7,373.20 
5 $ 7,662.20 $ - $ 184.49 $ 7,846.70 
6 $ 8,771.30 $ - $ 231.33 $ 9,002.60 
7 $ 10,046.00 $ - $ 290.65 $ 10,337.00 
8 $ 10,454.00 $ - $ 311.47 $ 10,766.00 
9 $ 10,715.00 $ - $ 325.19 $ 11,040.00 
10 $ 10,906.00 $ - $ 335.45 $ 11 ,241.00 
11 $ 10,930.00 $ - $ 336.80 $ 11,267.00 
12 $ 10,755.00 $ - $ 327.34 $ 11,083.00 
13 $ 10,615.00 $ - $ 319.88 $ 10,935 00 
14 $ 10,543.00 $ - $ 316.11 $ 10,859.00 
15 $ 10,436.00 $ - $ 310.54 $ 10,747.00 
16 $ 10,494.00 $ - $ 313.52 $ 10,807.00 
17 $ 11,728.00 $ - $ 381.75 $ 12,109.00 
18 $ 12,639.00 $ - $ 437.01 $ 13,076.00 
19 $ 12,454.00 $ - $ 425.47 $ 12,880.00 
20 $ 12,127.00 $ - $ 405.44 $ 12,532.00 
21 $ 11,547.00 $ - $ 371.29 $ 11,918.00 
22 $ 10,572.00 $ - $ 317.63 $ 10,890.00 
23 $ 9,256.80 $ - $ 253.08 $ 9,50990 
24 $ 8,122.00 $ - $ 203.11 $ 8,325.10 

Total $240,461.80 $ - $ 7,100.33 $247.562.50 

For the 118-bus power system of Test Case 2, the SCUC software produced the 

generation scheme illustrated in Figure 6.9 and Table 6.11. This proposed scheme had an 

estimated operating cost of $2.588M for the twenty-four hour period. This represents a 

savings of 8.0% over the costs of the linear programming solution, illustrated above in 

Table 6.4. Operating costs for the SCUC-optimized solution are provided in Figure 6.10 

and Table 6.12. Again, this generation scheme meets all operating constraints and 

improves the efficiency of the system. 
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Figure 6.9 SCUC-Optimized Generation Scheme for 118-Bus Power System 
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Table 6.11 SCUC-Optimized Scheme for the 118-Bus Power System (MW) 
. . .. •w••••• ...... 

21 23 Hour>> 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 18 19 20 22 24 
Gen1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 72 67 0 0 0 0 
Gen2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen5 346 335 331 331 350 391 424 428 431 431 429 427 430 429 427 428 441 433 423 421 436 429 408 367 
Gen6 74 71 70 70 75 84 92 94 95 95 94 94 95 94 94 94 98 94 91 91 97 95 88 79 
Gen7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 68 63 0 0 0 0 
Gena 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 67 63 0 0 0 0 

Gen10 3D 30 30 30 30 3D 30 30 3D 3D 30 30 30 3D 3D 3D 42 33 30 30 33 3D 30 30 
Gen11 165 160 158 158 167 187 202 205 207 207 206 205 206 206 205 205 212 209 205 203 209 206 195 175 
Gen 12 238 231 228 228 242 270 292 296 299 299 297 296 298 297 296 297 300 301 295 293 302 298 281 253 
Gen 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen 14 30 30 30 30 30 30 30 30 30 30 30 3D 30 30 30 30 30 30 30 30 30 30 30 30 
Gen 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen16 30 30 30 30 30 30 52 65 73 57 49 45 70 68 64 66 78 60 47 42 60 69 30 30 
Gen17 30 30 30 30 3D 30 52 64 70 57 50 46 68 66 63 65 75 60 49 45 60 67 3D 30 
Gen18 0 0 0 0 0 0 0 0 0 50 79 76 0 0 0 0 50 94 87 83 87 0 0 0 
Gen 19 0 0 0 0 0 0 0 0 0 50 71 68 0 0 0 0 50 88 82 78 77 0 0 0 
Gen20 30 30 30 3D 30 30 30 30 3D 30 30 30 3D 3D 30 30 30 30 30 30 3D 30 30 30 
Gen21 166 161 159 159 168 189 204 207 209 206 204 203 208 208 207 207 211 209 207 205 205 208 196 177 
Gen22 43 41 41 41 43 48 52 53 53 53 53 52 53 53 53 53 54 53 53 52 52 53 50 45 
Gen23 30 30 3D 3D 30 30 76 90 99 95 91 85 96 93 90 92 100 94 88 81 79 94 45 30 
Gen 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 99 92 85 82 0 0 0 
Gen 25 128 124 122 122 130 145 156 159 161 160 159 158 160 160 159 159 164 163 162 160 160 160 151 136 
Gen26 127 123 121 121 129 144 155 157 159 158 158 157 158 158 157 158 162 162 160 159 159 158 149 135 
Gen27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen 28 301 291 288 288 305 341 367 373 377 375 373 371 375 374 373 374 385 382 377 374 377 375 354 320 
Gen29 299 289 286 286 303 338 364 370 374 372 369 367 373 372 370 371 381 378 374 371 373 372 351 318 

• Gen 30 387 375 371 371 392 437 471 479 484 482 480 477 482 481 479 480 495 492 485 481 486 481 454 411 
Gen31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

e_Gen 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 64 sa 0 0 0 0 
Gen35 3D 30 30 30 30 3D 46 67 64 64 63 58 61 59 57 58 83 79 69 63 74 60 3D 30 
Gen36 30 3D 30 3D 30 3D 30 30 30 30 30 30 30 30 30 30 33 31 3D 30 3D 30 30 3D 
Gen37 365 354 350 350 370 414 447 454 459 459 457 454 457 456 454 455 472 471 465 460 465 457 430 388 
Gen38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen39 30 3D 3D 30 30 30 30 30 30 3D 30 30 30 30 30 30 30 30 3D 30 30 30 30 30 
Gen40 422 409 405 405 428 476 515 525 531 534 533 529 529 527 525 526 553 557 548 542 546 528 495 448 
Gen41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen 45 197 191 189 189 200 224 242 246 249 249 249 247 248 247 246 246 258 254 249 247 254 247 234 210 
Gen46 33 32 31 31 33 38 41 41 42 42 42 41 41 41 41 41 43 42 41 40 43 41 39 35 
Gen47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen48 3D 3D 3D 30 30 30 59 72 80 84 83 78 77 75 72 74 100 71 50 45 95 76 33 3D 
Gen49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 59 55 0 0 0 0 
Gen 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Gen 51 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 42 40 40 40 41 40 40 40 
Gen52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 70 67 0 0 0 0 
Gen53 3D 3D 30 30 30 30 35 48 56 53 49 44 53 51 48 49 74 53 35 30 63 52 3D 30 
Gen54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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System Losses 

I 

/ 

Figure 6.10 SCUC-Optimized Operating Costs for 118-Bus Power System 
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Table 6.12 SCUC-Optimized Operating Costs for 118-Bus Power System 
' ... ,... . ......... 

System Losses :Hour Fuel Cost Gen Start-up Cost Total 
l 1 $ 75.475.00 $ - $ 5,115.30 $ 80 590.00 
! 2 $ 79,192.00 $ - $ 5,735.90 $ 84 928.00 
: 3 $ 86,981.00 $ - $ 7,170.60 $ 94 151.00 

4 $ 98,605.00 $ - $ 8,274.70 $ 106 880.00 
5 $ 102,910.00 $ - $ 8,534.70 $ 111 440.00 

. 6 $ 105,630.00 $ - $ 8,721.60 $ 114 350.00 
1 $ 108,120.00 $ 200.00 $ 8,184.30 $ 116 500.00 
8 $ 108,740.00 $ - $ 8,038.80 $ 116 780.00 

i 9 $ 106,880.00 $ - $ 7,947.20 $ 114 820.00 
10 $ 104,590.00 $ - $ 8,648.80 $ 113 240.00 
11 $ 103,840.00 $ - $ 8,597.30 $ 112 430.00 
1Z $ 102,720.00 $ - $ 8,521.30 $ 111,240.00 
13 $ 103,320.00 $ - $ 8,562.30 $ 111 880.00 
14 $ 117,030.00 $ 300.00 $ 8,673.90 $ 126 000.00 
15 $ 129,350.00 $ 600.00 $ 7.413.90 $ 137 360.00 . 16 $ 127,990.00 $ - $ 7,064.10 $ 135 060.00 
17 $ 124,270.00 $ - $ 6,991.20 $ 131 260.00 
18 $ 115,820.00 $ - $ 8,237.90 $ 124 060.00 
19 $ 104,140.00 $ - $ 8,618.10 $ 112 760.00 
20 $ 90,740.00 $ - $ 7,750.90 $ 98,491.00 

: 21 $ 82,417.00 $ - $ 6,307.00 $ 88,724.00 
2Z $ 78,258.00 $ - $ 5,576.20 $ 83,834.00 
23 $ 76,161.00 $ - $ 5,226.80 $ 81,388.00 
24 $ 75,475.00 $ - $ 5,115.30 $ 80,590.00 

Total $ 2,408,654.00 $ 1.100.00 $ 179,028.10 $2,588,756.00 
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6.4 Analysis of Results 

Based on the operational results provided above, the implemented hybrid particle 

swarm approach produced SCUC solutions with reduced operating costs compared to 

those generated by conventional linear programming techniques. One of the main reasons 

for this phenomenon is the fact that the linear programming methodology did not have 

the capacity to deactivate inefficient generators. Without this capability, many generators 

were forced to produce minimal active power outputs, resulting in a higher operating 

cost. 

In response to this shortcoming, a potential solution could involve the relaxation 

of generator operating constraints and allow the units to produce an output lower than the 

specified minimal value. For example, without a specified minimum output voltage, 

many inefficient generators could potentially be minimized to produce zero MW and 

therefore be deactivated. When performing SCUC planning, however, this practice is 

unacceptable as it would introduce conditions where generators could potentially be 

prescribed to produce a finite active power output greater than zero but lower than the 

specified minimum. Such a generation scheme would eventually lead to increased 

maintenance costs as the affected units would be operating outside of their specified 

range of operation. For the purposes of this investigation, the enforcement of minimum 

generator active power output constraints was therefore deemed to be necessary. 

-79-



Chapter 7 

Conclusions and Recommendations for Future Work 

An investigation was performed involving the application of particle swarm 

optimization techniques to SCUC planning. These heuristic techniques are advanced in 

their capacity to explore large search-spaces and may be used to find near-optimal 

solutions in a reduced operating time. 

The use of particle swarms is recommended as conventional techniques are 

unable to adequately perform SCUC planning as the process involves a time-varying, 

non-linear, mixed-integer problem. This problem is also further complicated as it is 

highly constrained. Limitations associated with generating units and power flow 

constraints must be considered while an efficient methodology must be used to meet 

computational time and data storage requirements. 

7.1 Summary 

The methodology proposed for this investigation involves a combination of 

calculus-based linear programming optimization techniques with particle swarms. The 

SCUC planning methodology was implemented in a software package consisting of six 

modules including an Input Module, a Minimum Generator Module, a Particle Swarm 

Module, a Pathfinder Module, a Load-Flow Verification Module and an Output Module. 

The SCUC software was applied to two theoretical test systems requiring day­

ahead generation strategies. The results that were generated met all system constraints 

and provided a reduced operating cost. It should be noted, however; that the results 
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generated for both test cases are not guaranteed to be the optimal solutions as only a 

fraction of the overall search-space is explored. In addition, the exploration of the search­

space is further reduced due to the fact that a heuristic particle swarm technique is only 

used to optimize one hour of the operating period. In this design, generator scheduling for 

the remaining hours is based on extrapolation. 

One of the primary objectives of this investigation, however, is to provide a near­

optimal solution in a simulated day-ahead environment. Based on the result of this 

investigation, the proposed methodology produced more cost-efficient results than those 

produced by the linear programming method and may be seen as a viable means of power 

system optimization given the specified time constraints. 

7.2 Future Work 

As the investigation undertaken in this thesis is exploratory in nature, it is 

designed to identify and highlight challenges that need to be pursued in order to advance 

the effectiveness of the proposed technique. The positive results of this study may 

therefore be seen as a foundation for individuals who wish to perform further research in 

the area of security constrained unit commitment using particle swarms. 

Based on the content of this thesis, opportunities for future work include: the 

verification of the reliability of the methodologies described in this report, the 

comparison of the performances of alternative heuristic techniques such as the genetic 

algorithm, the analysis of software efficiency and the modification of the 

parameters/strategies used in this report, and the expansion of the functionality of the 

developed software. 
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7.2.1 Analysis of the Reliability of the Proposed Methodology 

While the methodology described in this report was evaluated using two test 

cases, future research may be conducted to assess the performance of the software in 

response to variations in power system operating conditions. Although this investigation 

has verified that the software is capable of generating solutions for systems of varying 

size, it would be beneficial to assess the capability of the software when faced with 

variations in aspects such as loading schemes, power system constraints, and generator 

operating constraints. 

With respect to loading schemes, the test case data for this investigation were 

based on actual data for a system operating under normal conditions. By modifying this 

data to reflect a more volatile system, it would be possible to ensure that the software can 

develop SCUC solutions for cases with more extreme variations in system loading. 

Power system and generator constraints could also be modified to simulate more 

extreme circumstances and to test the capacity of the software to function under tighter 

operating constraints. Research may therefore be performed to examine practical systems 

and to determine acceptable limits for the operating conditions and constraints of such 

networks. 

It may also be noted that if constraints are particularly rigid, situations may arise 

when no security-constrained unit commitment solution exists and the proposed software 

program may therefore be incapable of recommending an acceptable generation scheme. 

Future research may therefore be used to investigate real-life systems and utility 

operating strategies for dealing with such cases. If all constraints cannot be met, the 

system constraints must be prioritized and quantified by associating penalty factors with 
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constraints that cannot be met. For example, if a generator must be turned on before the 

expiration of a minimum off time, a penalty factor could be determined based on such 

aspects as an anticipated increase in maintenance costs. 

Recommendations for future work relating to the reliability of the proposed 

software should also consider the use of actual system data with respect to generator 

ramping limits. For example, the hypothetical data used in the test cases may not 

accurately reflect the reality of system generators where large variations in active power 

outputs are unacceptable. The use of generator data from manufacturers and utility 

companies could therefore be used to ensure that the proposed SCUC software is able to 

produce acceptable solutions given realistic constraints. 

7.2.2 Performance Comparison of Alternative Heuristic Techniques 

The methodology described in this investigation involves the use of particle 

swarms to handle the binary aspect of the mixed-integer security-constrained unit 

commitment problem. It is recommended, however, that the performance of alternative 

heuristic techniques such as the genetic algorithm and other types of evolutionary 

programming be explored. A comparison of such techniques would ensure that the 

methodology employed by the software is capable of converging on an optimal or near­

optimal solution as quickly as possible. 

In addition to entirely heuristic techniques, future researchers may also be 

interested in investigating how the proposed methodology compares to hybrid algorithms 

involving Lagrangian relaxation [49] or Tabu searches [50]. Such a comparison could 
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explore which techniques are better equipped for dealing with SCUC problems in terms 

of computational time, reliability, and strength of solution. 

7.2.3 Software Analysis and the Modification of Parameters 

As described in Chapter 6, the analysis of computational resource requirements 

and the complexity of the SCUC software has not been considered as part of this 

investigation. Such analysis, however, would serve as a means of evaluating the 

efficiency of the software package and potentially improving the quality of the generated 

solutions. It is therefore recommended that various Matlab functions including "tic" and 

"toe" be used to monitor the efficiency of each module. The results of these assessments 

may then be used in an attempt to reduce required computational times. Once these 

computational times have been recorded, consideration may be given to the optimization 

of the parameters and strategies that have been specified for the particle swarms. 

As described in Chapter 5, design considerations associated with particle swarm 

optimization include selection of the number of particles that will formulate the swarm 

and the number of generations over which the swarm will be allowed to search. Other 

parameters include the acceleration factors that place the relative weightings on the 

swarm sociological factors that were described in Chapter 3. Each of the above 

parameters was tuned on the researched recommendations [27, 29]. However, time­

varying values may potentially be used to improve the efficiency of the swarm [30]. 

Other papers even suggest a variety of strategies where time-varying concepts may be 

used so that a swarm may dynamically respond to an optimization problem [36]. It is 

therefore recommended that investigations be performed to assess if these strategies may 

- 84-



be used as part of SCUC planning to improve the quality of results and computational 

time. 

Other approaches for improving the efficiency of the SCUC software would 

involve the application of alternative software engineering techniques to reduce the 

complexity of the algorithms employed in the various modules. For example, as opposed 

to applying linear searches when sorting the various tables of the Particle Swarm Module, 

binary search techniques may be used. In addition, the operating efficiency of Matlab 

may be improved by eliminating the use of global variables as described in Chapter 5. 

7.2.4 Expanding Software Functionality 

This investigation has focused primarily on the optimization of power systems 

containing only thermal units. It is therefore recommended that the functionality of the 

developed software be expanded to include alternative energy sources such as 

hydroelectric and wind power. 

While this modification would allow for the SCUC planning for a wider variety of 

power systems, this expanded functionality could be used to address environmental 

aspects such as the reduction of the emission of greenhouse gases. By incorporating 

government regulations relating to the Kyoto Protocol, limits on emissions may be 

enforced. In addition, proposed systems where electric utilities would receive credits for 

displacing greenhouse gases may be included in operating cost calculations. 

As the production of electricity by alternative means would involve new sets of 

constraints, research should be performed to identify financial, maintenance, and 

environmental considerations that would need to be included in the implemented 
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software. For example, when considering hydroelectric units, environmental constraints 

involving minimum flow rates and must run units often need to be enforced to prevent 

damage to rivers and stream ecosystems. When wind power units are considered, power 

quality issues may involve the calculation of the system's overall wind penetration. This 

figure would need to be limited to prevent the propagation of harmonics. 

7.3 Summary of Recommendations 

The recommendations for future work based on this investigation and the contents 

of this thesis may be summarized as follows: 

I. Assess the reliability of the implemented software in response to variations in 

system loading schemes and operational constraints. Investigate the failure­

handling alternatives such as the incorporation of a set of penalty factors that 

are calculated based on unit maintenance requirements. 

2. Investigate the performance of alternative methodologies for the optimization 

of the binary component of the SCUC mixed-integer problem. Techniques 

such as the genetic algorithm may be implemented and compared to the 

particle swarm-based software. Other hybrid methodologies incorporating 

techniques such as Lagrangian relaxation may also be considered. 

3. Perform analyses to assess the computational time requirements of the various 

modules of the SCUC software. Parameters associated with the particle 
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swarms may then be optimized. The number of particles, iterations, and the 

values of acceleration coefficients associated with the movement of the 

swarms should be considered. Formal programming methods may also be 

employed to improve software efficiency. 

4. Expand the functionality of the SCUC software so that systems containing 

generating units that produce energy from alternative energy sources may be 

considered. Constraints associated with these generators may be researched 

and implemented in the software. Financial and environmental considerations 

relating to the Kyoto protocol may also be included. 
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Appendix A SCUC Software -Main Program 

The software below consists of the main SCUC program. The Input Module, the 
Minimum Generators Module, The Particle Swarm Module, and the Output Module are 
included in this section. 

%%%%%%%%%%%%%%%o/c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ENGR Thesis - SCUC.m 
% Created: 2005-12-02 
% Modified: 2006-06-30 
% Robert Collett - 9907908 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function SCUC 

% Initialization 
clear all: 
close all: 
delete('temp*. *') 

startTime =clock: 

%-------------------------------------------------------

%Definition of Global Variables 
o/c--------------------------------------------------------
global settings: 
global combos: 
global fuelCosts: 
global pfCosts: 
global baseMV A; 
global bus; 
global origBus: 
global origBranch: 
global gen: 
global origGen; 
global branch; 
global areas: 
global gencost; 
global penaltyValue; 
global fileCount; 
globallfCount: 
global bestCostsForlter; 
global minGens: 
global combolndices; 
global comboCosts; 
global maxCombos; 
global MWrate: 
global opt: 
global light Hour: 
global hourFactors; 
global aiiOn: 
global popSize; 
global iterCount: 
global w; 

global cl: 
global c2: 
global Vmax: 
global caseFile; 
global hourCount; 
global thisHour; 
global startTime; 
global bestCost; 
global bestPath; 
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~~~~%%%%%~~~%%%~%%%%~%%~~~~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

~ Input Module 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Swarm Parameters 
popSize = 20; 
iterCount =50; 
w =.I: 
cl = .5: 
c2 = .5: 
Vmax =4: 

%Options 
casefile = 'case57': 
aiiOn =0: 

%Hourly Load Data Source File Info 
exceiFile = 'hourFactors.xls': 
exceiSheet = 'VLight24'; 

%-Time Limit Information 
timeLimit = 16*3600: %seconds 

%Energy Costs 
MWrate = .08458* I 000: 

ifaiiOn ==I 
swarm Data( I)= I: 'kpopSize 
swarmData(2) = I: 'kiterCount 
saveFile = strcat(date,'-'. casefile, · ALLON'); 

else 
saveFile = strcat(date.'-', casefile,' SWARM'): 

end 

o/c Extract System Data 
opt= mpoption('ENFORCE~Q~LIMS', I, 'OUT~SYS~SUM', 0, 'OUT_ALL_LIM', 0, ... 

'OUT~BRANCH', 0. 'OUT_BUS', 0, 'VERBOSE', 0): 

hourfactors = xlsread(excelfile, exceiSheet): 
hourCount = size(hourFactors, 1): 

[baseMVA, bus. gen. branch, areas, gencost] = Ioadcase(casefile); 

fileCount = 0: 
origBus =bus: 
origGen = gen: 
origBranch =branch: 
genCount = size(gen, I): 
busCount = size(bus, I): 
bestCostsForlter =zeros( I, iterCount); 
genSettings = zeros( I. genCount): 
minGens = zeros(hourCount. genCount): 
penalty Value = I e9: 

pfDataFile = strcat(casefile, 'LFDATA-', exceiSheet); 

%%'k%%%'7co/c%%o/c%'k'k'k'k%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Minimum Generators Module 
%%%%%%o/co/c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Get generator maximin power settings 
genMaxes = gen( :,9): 
genMins = gen(:,IO): 
genRange = genMaxes-genMins: 

thisHour = I: 
while thisHour <= hourCount 

%Setup Buses 
bus = origBus; 
branch = origBranch: 
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thisBus = I: 
totaiLoad = 0: 
while (thisBus <= busCount) 

bus(thisBus, 3) = origBus(thisBus. 3)* hourFactors(thisHour): 
bus(thisBus. 4) = origBus(thisBus. 4)* hourFactors(thisHour): 
total Load= totalLoad + bus(thisBus, 3): 
thisBus = thisBus + I: 

end 

genNo = 1: 
gen = origGen: 
while(genNo <= genCount) 

gen(genNo, 2) = gen(genNo. I O)+(gen(genNo, 9)-gen(genNo, I 0))/2; 
gen(genNo, 8) = I: 
genNo = genNo + I : 

end 

fileCount = fileCount + I: 
tempfile = strcat('tempCase',int2str(fileCount)): 

savecase(tempfile. baseMV A. bus, gen. branch. areas. gencost): 
[baseMVA. bus. gen, gencost. branch, f. success. et] = runopf(tempfile, opt): 

'!<Check if generator is a minimum: 0 for min. I for others 
genNo= 1: 
while(genNo <= genCount) 

if gen(genNo. 2) == gen(genNo, I 0) 
minGens(thisHour, genNo) = 0: 

else 
minGens(thisHour. genNo) = 1: 

end 
genNo = genNo + I : 

end 
thisHour = thisHour + I: 

end 

%Identify hour with most min gens 
leastGens = sum(minGens( 1.:)): 

i= 1: 
lightHour = i: 
while i <= hourCount: 

if leastGens > sum(minGens(i.:)): 
lightHour = i: 
leastGens = sum(minGens(i,:)): 

end 
i =i+l: 

end 

%****************************************************************** 
%Particle Swarm Module 
~****************************************************************** 

%Setup Matrices for Data Storage 
max Combos= popSize*iterCount: 
savefile = strcat(date,'-', casefile, 'PSO'); 
settings= zeros( I. maxCombos*genCount): %gen settings for each hour( e.g. 1101011) 
fuelCosts = zeros( I. maxCombos*genCount): %fuel costs for each combo for each hour 
pfCosts =zeros( I, maxCombos): 'kpf costs for each combo for each hour 
comboCosts =zeros(], maxCombos): 
combo Indices= zeros( I. max Combos): 

combos = 0: %a count of the number of combos that are counted 

%Initialize Swarm Parameters 
velocities= zeros( I, popSize*genCount): 
bestONOFF = zeros( I, popSize*genCount); 
bestOveraliONOFF = zeros( I ,genCount); 

9c If a liOn mode is active, activate all generators 
%Otherwise use a random initial population 
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if aliOn == 0 
genONOFF =round( rand(} ,popSize*genCount)): 

else 
genONOFF =ones( I ,popSize*genCount): 

end 

%Initialize best costs 
bestPopCosts = ones(popSize.l )*9e9: 
bestOverallCost = 9e9: 

%Initialize Critical Flag 
criticalFlag = 0; 

iterNo= 1: 
while(iterNo <= iterCount) 

popNo= I; 
while(popNo <= popSize) 

%Ensure all Non-Minimum Gens will be on 
genONOFF((popNo-1 )*genCount+ I :popNo*genCount) = ... 

or(genONOFF((popNo-1 )*genCount+ I :popNo*genCount),minGens(lightHour,:)); 

% Get poplndex 
pop Index = 0; 
i = 1: 
while i <= genCount 

if genONOFF((popNo-1 )*genCount+i) > 0 
poplndex = poplndex + 2A(i-l): 

end 
i=i +I; 

end 

%Setup Buses 
bus = origBus; 
branch = origBranch: 

thisBus = 1: 
total Load = 0: 
while (thisBus <= busCount) 

bus(thisBus, 3) = origBus(thisBus. 3)* hourfactors(lightHour): 
bus(thisBus, 4) = origBus(thisBus. 4)* hourfactors(lightHour): 
totalLoad =total Load+ bus(thisBus. 3): 
thisBus = thisBus + I: 

end 

%Tum gens on/off according to genONOFF 
genNo= I; 
gen = origGen; 
while(genNo <= genCount) 

if genONOFF( (popNo-1 )*genCount+genNo) < I 
gen(genNo, 2) = 0: 
gen(genNo, 8) = 0: 

else 
gen(genNo, 2) = gen(genNo, I O)+(gen(genNo. 9)-gen(genNo, I 0))/2: 
gen(genNo, 8) = I : 

end 
genNo = genNo + I : 

end 

o/oPerform new loadflow if solution is reasonable 
tota!Load = sum(bus(:,3)): 
availGen = sum(gen(:,9)*gen(:.8)): 
if(availGen > totalLoad) 

success= I; 
else 

success= 0; 
end 
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%Check if combo has already been checked 
found= 0; 
done=O; 
i =I; 
fileCount = fileCount + I; 
while (done== 0 && i <=max Combos && success> 0) 

if poplndex == combolndices(i) II pop Index== 0 
found= I; 
done= I; 

end 
i=i+ I; 

end 

%If combo has not been checked, perform load flow 
if (done= 0 && success> 0) 

[tempSettings, tempFue!Costs, tempPFCost] = IfCheck; 

%Calulate Losses 
k= I; 
losses= 0; 
while(k <= size(branch, I)) 

losses =losses+ abs(abs(branch(k, 12))-abs(branch(k.I4)))*MWrate: 
k=k+l; 

end 
currentCost = tempPFCost + sum(tempFue!Costs)+losses: 

end 

%Store combo in costing order 
i= I; 
while (currentCost <penalty Value && done== 0 && success> 0) 

%Case I - (Special for first hour) 
%Solution is too expensive-> Don't Save 
if (i > maxCombos) 

done= I; 

%Case2 - Save Solution 
elseif(currentCost < comboCosts(i) II comboCosts(i) == 0) 

done= I; 
if combos < maxCombos 

combos = combos + I; 
end 

%Make room for new settings 
if i <max Combos 

comboCosts(i+ I :size(comboCosts,2)) = comboCosts(i:size(comboCosts,2)-l ); 
combolndices(i+ I :size(combolndices,2)) = combolndices(i:size(combolndices,2)-1 ): 
fueiCosts((i*genCount)+ I :size(fue!Costs.2)) = fueiCosts((i- I )*genCount+ I :size(fueiCosts,2)-genCount): 
settings((i*genCount)+l :size(settings,2)) = seuings((i-1 )*genCount+ I :size(seuings,2)-genCount); 

end 

comboCosts(i) = currentCost: 
combolndices(i) = poplndex: 
settings((i- I )*genCount+ I :i*genCount) = tempSettings: 
fuelCosts((i-1 )*genCount+ I :i*genCount) = tempFue!Costs: 
pfCosts(i) = tempPFCost +losses; 

%Compare with popNo's best fitness to date 
if(currentCost < bestPopCosts(popNo) II bestPopCosts(popNo) < 0) 

bestPopCosts(popNo) = currentCost: 
bestONOFF((popNo- I )*genCount+ I :popNo*genCount) = genONOFF((popNo-1 )*genCount+ I :popNo*genCount); 

if (currentCost < bestOverallCost) 
bestOveraJICost = currentCost: 
bestPopNo = popNo: 
bestOveraiiONOFF = genONOFF((popNo-1 )*genCount+ I :popNo*genCount): 

end 
end 

end 

i =i +I; 
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end 

%After all population members have been evalauated -> 
%Update Swann 

if pop No == popSize 

%Store bestCost 
bestCostsForlter(l, iterNo) = bestOveraliCost; 
rho Vector= rand(genCount*popSize); 

popCounter = I ; 
while(popCounter <= popSize) 

genNo= I; 
while(genNo <= genCount) 

%Calculate new velocities 
velocities( (popCounter-1 )*genCount+genNo) = w*velocities( (popCounter -I )*genCount+genNo ) ... 

+ cl *rand*(bestONOFF((popCounter-1 )*genCount+genNo)-genONOFF((popCounter-1 )*genCount+genNo )) ... 
+ c2*rand*(bestOveraliONOFF(genNo )-genONOFF( (popCounter-1 )*genCount+genNo) ); 

%Enforce Vmax Limits 
if (abs(velocities( (popCounter-1 )*genCount +genNo)) > V max) 

if velocities((popCounter-1 )*genCount+genNo) <-Vmax 
velocities((popCounter-1 )*genCount+genNo) =-Vmax: 

else 
velocities((popCounter-1 )*genCount+genNo) = Vmax; 

end 
end 

%Update each dimension 
sig Vector = 11(1 +exp( -velocities((popCounter -I )*genCount+genNo) )); 
if (sigVector > rhoVector((popCounter-1 )*genCount+genNo)) 

genONOFF((popCounter-1 )*genCount+genNo) = I; 
else 

genONOFF((popCounter-1 )*genCount+genNo) = 0: 
end 

genNo = genNo +I ; 
end 
popCounter = popCounter + I ; 

end 
end 
pop No = pop No + I; 

end 
delete 'temp*.m'; 
iter No = iter No + I; 

end 

if( combos)== 0 
combos= I; 
criticaiFiag = I; 

end 

save(pfDataFile, 'settings', 'minGens','fue!Costs', 'pfCosts', 'combos', ... 
'lightHour', 'critica!Fiag', 'bestCostsForlter'); 

%------------------------------------------------------------------
% Pass control to Pathfinder Module by calling "pathfinder" function 
%------------------------------------------------------------------
comboGen!Ds = zeros(hourCount, max( combos)); 
timePenalty = zeros(hourCount,genCount); 

fields= 7; 
%UCpath = [comboNumber, runningTotal, comboCost, comboFueiCost, comboPFCost, comboSimilarity, comboSettings) 
UCpath = zeros(hourCount, fields+genCount); 
bestCost = 0; 

hour= I; 
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dpstart = clock; 
[UCpath] = pathfinder(UCpath, hourCount, fields, timeLimit); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Output Module 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%End of program if path not found 
if criticalAag == I; 

disp('Critical Rag Error') 
return 

end 

%Get Correct Order 
i = 1: 
while (i <= hourCount) 

orderedPath(lightHour,:) = UCpath(i,:); 
if (lightHour = hourCount) 

lightHour = I; 
else 

lightHour = lightHour + I; 
end 
i =i + 1: 

end 

%Recalculate Running Totals 
i= 1: 
runningTotal = 0; 
while (i <= hourCount) 

runningTotal =running Total+ orderedPath(i,3); 
orderedPath(i,2) = runningTotal: 
i =i +I; 

end 

%----------------------------------------------------------------------

%Calculate total costs 
%----------------------------------------------------------------------
%Get data from 
bestOverallCost = orderedPath(hourCount, 2); 
bestOverallSettings = orderedPath(:. fields+ I :fields+genCount); 
bestHourlyFuelCosts = orderedPath(:, 4); 
bestHourlyTimeCosts = orderedPath(:, 5): 
bestHourlyPFCosts = orderedPath(:, 6); 

%Get Results and finish 
totalTime = etime(clock, startTime): 
save(savefile) 
delete('temp*. *') 

%-------------------------------------------------------
% Plot Results 
%--------------------------------------------------------

close all 
figure('DefaultAxesColorOrder',[O 0 0], ... 
'DefaultAxesLineStyleOrder','-1:1--1-.') 
plot( I :hourCount, bestOverallSettings ); 
Title('Generator Settings for the 24-Hour Operating Period'); 
xlabel('Time (Hours)'); 
ylabel('Generator Active Power Outputs (MW)'); 
figure('DefaultAxesColorOrder',[O 0 0], ... 
'DefaultAxesLineStyleOrder','-1:1--1-.') 
hold on 
plot( I :hourCount, bestHourlyTimeCosts); 
plot(! :hourCount, bestHourlyFue!Costs, '-.'); 
plot( I :hourCount, bestHourlyPFCosts, ·--'); 
Title('Operating Costs for the 24-Hour Operating Period'); 
xlabei('Time (Hours)'); 
ylabei('Operating Costs($)'); 
Legend('Gen Start-up Costs', 'Fuel Costs', 'System Losses'); 
hold off 
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Appendix B SCUC Software- Pathfinder Module 

This section includes the code for the pathfinder.m Matlab file containing the Pathfinder 
Module. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% ENGR Thesis- pathfinder.m Version 4 
% Created: 2005-12-02 
% Modified: 2005-06-30 
% Robert Collett - 9907908 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [UCpath] = pathfinder(UCpath, hourCount, fields, timeLimit) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Pathfinder Module 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global settings: 
global combos: 
global fue!Costs: 
global pfCosts: 
global baseMV A; 
global origGen: 
global branch: 
global bus; 
global origBus; 
global origBranch: 
global gen; 
global areas; 
global gencost: 
global fileCount: 
global bestCost; 
global bestPath; 
global pathCount; 
global minGens: 
global MWrate: 
global opt; 
global lightHour; 
global hourFactors; 
global startTime; 
global aiiOn: 
global penaltyValue: 

%Min on/off time settings 
limitHours = 3; 
minOnTime = limitHours; %genOnOff(genNo, I); 
minOffTime =limitHours; %genOnOff(genNo,2): 

busCount = size(bus, I); 
genCount = size(gen, I); 

%Cycle through all combos for first hour 
thisCombo = I: 
runningCost = 0; 

ifaiiOn 
combos== 1: 

end 

while (timeLimit > etime(clock,startTime) && thisCombo <=combos) 
UCpath( I, fields+ I :fields+genCount) = settings((thisCombo-1 )*genCount+ I :thisCombo*genCount); 
UCpath( I ,4) = sum(fueiCosts((thisCombo-1 )*genCount+ I :thisCombo*genCount)): 
UCpath(l,6) = pfCosts(thisCombo); 
UCpath(l ,3) = sum(UCpath(l ,4:6)); 
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UCpath(l ,2) = UCpath(l ,3); 

%Cycle through remaining hours for current combo 
hourCounter = 2; 
criticalFiag = 0; 
while (timeLimit > etime(clock,startTime) && hourCounter <= hourCount && critica!Fiag < I) 

if hourCounter+lightHour <= hourCount; 
thisHour = hourCounter+lightHour; 

else 
thisHour = mod(hourCounter+lightHour, hourCount); 

end 

runningCost = UCpath(hourCounter-1, 2); 
comboTimeCosts = zeros( I ,genCount); 
%-----------------------------------------------------------------
%Get Bus Settings 
%---------------------------------------------------------------------
bus= origBus; 
branch = origBranch; 

thisBus =I; 
totalload = 0; 
while (thisBus <= busCount) 

bus(thisBus, 3) = origBus(thisBus, 3)* hourFactors(thisHour); 
bus(thisBus, 4) = origBus(thisBus, 4)* hourFactors(thisHour); 
totalload = totaiLoad + bus(thisBus, 3); 
thisBus = thisBus + I ; 

end 

%----------------------------------------------------------------------

%Get Generator Settings 
%----------------------------------------------------------------------

%Ensure all Non-Minimum Gens will be on 
ifaiiOn 

genONOFF = ones( I, genCount); 
else 

genONOFF = or(UCpath( I, fields+ l:fields+genCount), minGens(thisHour,:)); 
end 

%----------------------------------------------------------------
%Ensure min on/off settings are met 
%--------------------------------------------------------------------
genNo= I; 
gen = origGen; 
while(genNo <= genCount) 

if (hourCounter > minOnTime && hourCounter > minOffTime) 
last Output = UCpath(hourCounter-1, fields+genNo); 
currentOutput = genONOFF(genNo); 

wasOn =0; 
if (lastOutput > 0) 

wasOn =I; 
end 
isOn =0; 
if (currentOutput > 0) 

isOn= I; 
% Check if device is being started 
if(was0n==0) 

% Check if device was off fort> minOffTime 
I= I; 
stiiiOff= I; 
while (stillOff && t-1 < minOffTime) 

%Initialize counter to scroll back through time 
counter = hourCounter - t; 
if (counter < I ) 

counter = hourCount+counter; 
end 
if(UCpath(counter, fields+genNo) == 0) 
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stillOff= I; 
t=t+ I; 

else 
stil!Off= 0; 

end 
end 

if (I- I < minOfiTime) 
%Violation - gen cannot be started 
genONOFF(genNo) = 0; 

else 
%Add start-up cost 
comboTimeCosts(genNo) = comboTimeCosts(genNo) + gencost(genNo, 2); 

end 
end 

else %if device is off, check if it has been just switched off 
if (wasOn == I) 

% Check if device was on fort > minOnTime 
t= I; 
stillOn =I; 
while (stil!On && t-1 < minOnTime) 

%Initialize counter to scroll back through time 
counter= hourCounter - t; 
if (counter < I) 

counter = hourCount+counter: 
end 
if(UCpath(counter, fields+genNo) > 0) 

stillOn= I; 
t=t+ I; 

else 
stillOn =0; 

end 
end 
if (t-1 < minOnTime) 

%Violation- gen cannot be switched off 
genONOFF(genNo) =I; 

end 
end 

end 

%---------------------------------------------------------------------
%Check First Few Hours 
%--------------------------------------------------------------------

if(hourCounter = hourCount) 
iterator = I ; 
while(iterator <= minOnTime II iterator <= minOfiTime) 

if iterator = I 
lastOutput = genONOFF(genNo); 
currentOutput = UCpath( I , fields+genNo ); 

else 
lastOutput = UCpath(iterator-1, fields+genNo); 
currentOutput = UCpath(iterator, fields+genNo); 

end 

wasOn =0; 
if (lastOutput > 0) 

wasOn= I; 
end 
isOn =0; 
if ( currentOutput > 0) 

isOn =I; 
% Check if device is being started 
if (wasOn = 0) 

% Check if device was off fort > minOfiTime 
t= I; 
stillOff= I; 
while (stillOff && t-1 < minOfiTime) 

%Initialize counter to scroll back through time 
counter= iterator- t; 
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if (counter < I) 
counter = hourt:ount+counter; 

end 
if(UCpath(counter, fields+genNo) == 0) 

stillOff= I; 
t=t+ I; 

else 
stillOff=O; 

end 
end 

if (t-1 < minOfiTime) 
%Violation - not off long enough 
%Check if state can saftely be changed 
if (iterator == I) 

if UCpath(minOfiTime, fields+genNo) = UCpath(minOfiTime+ I, fields+genNo) 
UCpath(l, fields+genNo) = 0; 
UCpath(l, I)= I; 

else 
comboTimeCosts(genNo) = comboTimeCosts(genNo )+ penalties( I); 

end 
else 

if UCpath(iterator+minOfiTime, fields+genNo) = UCpath(iterator+minOfiTime+ I, fields+genNo); 
UCpath(iterator, fields+genNo) = 0; 
UCpath(iterator, I)= I; 

else 
comboTimeCosts(genNo) = comboTimeCosts(genNo)+ penalty Value; 

end 
end 

end 
end 

else %if device is off, check if it has been just switched off 
if(wasOn= I) 

% Check if device was on fort > minOnTime 
I= I; 
stii!On= I; 
while (stii!On && t-1 < minOnTime) 

%Initialize counter to scroll back through time 
counter = iterator - t; 
if (counter < I) 

counter= hourt:ount+counter; 
end 
if(UCpath(counter, fields+genNo) > 0) 

stiliOn =I; 
1=1+ I; 

else 
stillOn =0; 

end 
end 
if(t-1 <minOnTime) 

%Violation - not on long enough 
%Check if state can saftely be changed 
if (iterator == I) 

if UCpath(minOnTime, fields+genNo) == UCpath(minOnTime+ I, fields+genNo) 
UCpath(l, fields+genNo) = I; 
UCpath(l, I)= I; 

else 
comboTimeCosts(genNo) = comboTimeCosts(genNo)+ penalty Value; 

end 
else 

if UCpath(iterator+minOnTime, fields+genNo) == UCpath(iterator+minOnTime+ I, fields+genNo); 
UCpath(iterator, fields+genNo) = I; 
UCpath(iterator, I)= I; 

else 
comboTimeCosts(genNo) = comboTimeCosts(genNo)+ penalty Value; 

end 
end 

end 
end 
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end 
iterator = iterator + I; 

end 
end 

end 

%-----------------------------------------------------------------
%Tum gens on/off according to genONOFF 
%----------------------------------------------------------------------
if genONOFF(genNo) < I 

gen(genNo, 2) = 0; 
gen(genNo, 8) = 0; 

else 
%Enforce Ramp Limits 
rampScale = I ; 
if (gen(genNo, 9) > 149) 

maxRamp = gen(genNo, 9)*rampScale*.4; %genOnOff(genNo,3); 
elseif (gen(genNo, 9) > 99) 

maxRamp = gen(genNo, 9)*rampScale*.5; %genOnOff(genNo,3); 
elseif (gen(genNo, 9) > 25) 

maxRamp = gen(genNo, 9)*rampScale*.75; %genOnOff(genNo,3); 
else 

maxRamp = gen(genNo, 9)*rampScale; %genOnOff(genNo,3); 
end 

lastOutput = UCpath(hourCounter -I, fields+genNo ); 
gen(genNo, 9) = min(lastOutput+maxRamp, gen(genNo, 9)); 
gen(genNo, 10) = max(lastOutput-maxRamp, gen(genNo, 10)); 

gen(genNo, 2) = gen(genNo, I O)+(gen(genNo, 9)-gen(genNo, I 0))/2; 
gen(genNo, 8) = I ; 

end 
genNo = genNo + I ; 

end 

%---------------------------------------------------------------------

%Perform new loadflow if solution is reasonable 
%----------------------------------------------------------------------
total Load= sum(bus(:,3)); 
availGen = sum(gen(:,9).*gen(:,8)); 
fileCount = fileCount + I ; 
if(avai!Gen > tota!Load) 

[tempSettings, tempFueiCosts, tempPFCost] = lfCheck; 
currentCost = tempPFCost + sum(tempFueiCosts); 

%1floadflow produces acceptable solution-> store solution 
if(currentCost <penalty Value) 

UCpath(hourCounter, fields+ I :fields+genCount) = tempSettings; 

%Calulate Losses 
k= I; 
losses= 0; 
while(k <= size(branch,l )) 

losses= losses+ abs(abs(branch(k,l2))-abs(branch(k,l4)))*MWrate; 
k=k+l; 

end 

%Store Settings 
UCpath(hourCounter, 4) = sum(tempFueiCosts); 
UCpath(hourCounter, 6) = tempPFCost +losses; 

%If solution is unacceptable ->raise flag 
else 

criticaiFlag = I; 
end 

else 
critica!Flag = I; 

end 

%--------------------------------------------------------------------
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'K Add up time costs and check for violations 
'7c--------------------------------------------------------------------
if(sum(comboTimeCosts) >penalty Value) 

criticaiRag = I; 
else 

%Get totals 
UCpath(homCounter,5) = sum(comboTimeCosts); 
UCpath(hourCounter,3) = sum(UCpath(hourCounter,4:6)); 
UCpath(hourCounter,2) = UCpath(hourCounter-1 ,2) + UCpath(hourCounter,3); 

%At last hour-> Check if cost is better than bestCost 
ifhourCounter = hourCount 

if(UCpath(hourCounter,2) < bestCostll bestCost < I) 
bestCost = UCpath(hourCounter,2); 
bestPath = UCpath; 

end 
pathCount = path Count+ I; 

end 
end 
hourCounter = hourCounter + I; 

end 
delete('temp* *') 
thisCombo = thisCombo + I ; 

end 
%Return best path 
UCpath = bestPath: 
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Appendix C SCUC Software -Load Flow Verification Module 

This section includes the code for the lfcheck.m Matlab file containing the Load Flow 
Verification Module. 

~~~~~~~~%~%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% ENGR Thesis- lfcheck.m 
% Created: 2005-12-02 
% Modified: 2006-06-30 
~ Robert Collett - 9907908 
%%~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [tempSettings, tempFue!Costs, tempPFCost] = lfCheck 

%%~%~~%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Load Aow Verification Module 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
global settings: 
global combos: 
global fue!Costs: 
global pfCosts: 
global baseMV A: 
global bus: 
global origBus: 
global gen: 
global origGen: 
global branch; 
global areas: 
global gencost: 
global penaltyValue: 
global fileCount: 
global opt: 
global lfCount: 
global hourCount: 
global thisHour; 

busCount = size( bus, I); 
genCount = size(gen, I); 
branchCount = size(branch, I); 

'7c --------- ----------------------------------------------
'7rSetup Penalty Costs 
% ---------------------------------------------------------
successPenalty =penalty Value; 
voltPenalty = penaltyValue; 
genQPenalty = penaltyValue; 
branchPenalty =penalty Value: 
minOnPenalty = penaltyValue: 
minOffPenalty =penalty Value; 
rampPenalty = penaltyValue; 

tempFile = strcat('tempCase' ,int2str(fileCount)); 

savecase(tempFile, baseMVA, bus, gen, branch, areas, gencost); 
o/c [bus, gen, branch, f, success, et] = mopf(tempFile, opt); 
[baseMV A, bus, gen, gencost, branch, f, success, et] = runopf(tempFile, opt); 
lfCount = lfCount+ 1: 

o/cGet Setttings 
tempSettings = gen(:, 2).'; 
tempFueiCosts = zeros(!, genCount); 
tempPFCost = 0: 

%-------------------------------------------------------
% Check PF Contraints 
% -------------------------------------------------------
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pfPenalty = 0: o/rhourly Penalty Factor for PF violations 
o/rCheck if system was solved 
piFiags = zeros(hourCount. 5): 
if (success = 0) 

piFiags(thisHour, I)= I: 
flags= I: 
pfPenalty = pfPenalty + successPenalty: 

else 
'7cSolution is acceptable 

'7cCheck Bus Voltages 
thisBus =I; 
while (thisBus < busCount) 

bus Voltage= bus(thisBus, 8): 
max Volts = bus(thisBus, 12)+.001: 
min Volts= bus(thisBus, 13)-.001; 

if (bus Voltage> max Volts) ll(busVoltage <min Volts) 
piFiags(thisHour, 2) = I: 
flags= 1: 
pfPenalty = pfPenalty + voltPenalty: 

end 
thisBus = thisBus + I: 

end 

o/rCheck Gen Q Output 
thisGen= 1: 
while (thisGen < genCount) 

genQ = gen(thisGen, 3): 
maxQ = gen(thisGen. 4)+2; 
minQ = gen(thisGen. 5)-2: 

if (gen(thisGen, 8) > 0 && (genQ > maxQ) ll(genQ < minQ)) 
piFiags(thisHour, 3) = I: 
flags= 1: 
pfPenalty = pfPenalty + genQPenalty: 

end 
thisGen = thisGen + I: 

end 

o/rCheck Gen P Output 
thisGen= 1: 
while (thisGen < genCount) 

genP = round(gen(thisGen, 2)); 
maxP = gen(thisGen, 9)+2: 
minP = gen(thisGen, 10)-2: 

if (abs(genP) > O)&&((genP > maxP) ll(genP < minP)) 
piFiags(thisHour. 4) = I: 
flags= 1: 
pfPenalty = pfPenalty + genPPenalty: 

end 
thisGen = thisGen + I : 

end 

%Check Line Power Row 
thisBranch = 1: 
while (thisBranch < branchCount) 

branch V AF = sqrt(branch(thisBranch, I 2)A2+branch(thisBranch, I 3)A2); 
branch VAT= sqrt(branch(thisBranch, 14 )A2+branch(thisBranch, I 5)A2): 
branch VA = max(branch V AF, branch VAT): 

max VA= branch(thisBranch, 6)+5: 

if (branch VA> max VA) 
piFiags(thisHour, 5) = I: 
flags= 1: 
pfPenalty = pfPenalty + branchPenalty; 

end 
thisBranch = thisBranch + I: 
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end 

%Get Fuel Costs 
genNo =I; 
while (genNo <= genCount) 

tempFue!Costs(genNo) 
2)*gencost(genNo,6)+gencost(genNo,7)); 

genNo = genNo + I : 
end 

end 
%Get updated penalty cost 
tempPFCost = pfPenalty; 

gen(genNo, 8)*(gen(genNo, 2)*gencost(genNo,5)+gen(genNo, 
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Appendix D System Case File Format 

The fields described below define the matrices contained within the system case 

files. These matrices are used by the implemented software and relate to system buses, 

branches, generators, areas, and generator costs. 

The Bus Matrix contains information relating to all network buses. This matrix 

contains thirteen columns that are described as follows: 

1. Bus ID - A reference number that is assigned to each bus within the power 

system. 

2. Bus Type - Defines if the bus is a PV bus (Type 1 ), a PQ bus (Type 2), or a 

System Slack Bus (Type 3) for the purposes of system load flows. 

3. Pd- The active load connected to the system bus. 

4. Qd- The reactive load connected to the system bus. 

5. Gs- The per-unit shunt conductance connected to the system bus. 

6. Bs- The per-unit shunt susceptance connected to the system bus. 

7. Area Number- A grouping number with which system buses may be associated. 

The Area Number allows for busses to be segregated for financial reasons if 

required. 

8. Vm - The per-unit magnitude of the voltage at the system bus. 

9. Va- The phase angle of the voltage at the system bus in degrees. 

10. Base kV- The base voltage for the system bus. 
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11. Zone - A grouping number with which a system bus may be associated. The 

Zone Number allows for buses to be segregated if a system has multiple rates 

associated with system losses. 

12. Vmax- The maximum voltage permitted at the system bus. 

13. Vmin- The minimum voltage permitted at the system bus. 

The Branch Matrix contains information relating to the transmission lines 

contained within the power system. This matrix has eleven columns that are defined as 

follows: 

1. From Bus - The reference number of one of the two busses to which the 

transmission line is connected. From a load flow perspective, power flows from 

this bus. 

2. To Bus - The reference number of one of the two busses to which the 

transmission line is connected. From a load flow perspective, power flows to this 

bus. 

3. R- The per-unit series resistance of the transmission line. 

4. X- The per-unit series reactance of the transmission line. 

5. B- The per-unit shunt susceptance of the transmission line. 

6. Long Term Rating- Long-term MV A rating of the transmission line. 

7. Short Term Rating- Short-term MV A rating of the transmission line. 

8. Emergency Rating -Emergency MV A rating of the transmission line. 
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9. Turns Ratio- Voltage Ratio of the From Bus to the To Bus. May be applied if a 

buck-boost transformer or voltage regulator is included in the system. 

10. Phase Shift- Phase shift (in degrees) of the From Bus to the To Bus. May be 

applied if a phase shift transformer is included in the system. 

11. Status- Indicates if the transmission line is in service. This is a binary variable. 

The Generator Matrix contains information relating to all power system 

generators. The ten columns of this matrix are defined as follows: 

1. Bus Number - The reference number of the bus to which the generator IS 

connected. 

2. Pgen - The active power output of the generator. 

3. Qgen- The reactive power output of the generator. 

4. Qmax- The maximum reactive power output of the generator. 

5. Qmin- The minimum reactive power output of the generator. 

6. Vset - The per-unit voltage set point for the bus to which the generator 1s 

connected. 

7. MVA Base -The base MV A for the generating unit. 

8. Status- Indicates if the generating unit in service. This is a binary variable. 

9. Pmax- The maximum active power output of the generator. 

10. Pmin - The minimum active power output of the generator. 
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The Area Matrix allows for the SCUC software to develop generator scheduling 

solutions for transmission networks that contain multiple power systems. These 

neighbouring power systems may be grouped into areas that are defined using the two­

column matrix below: 

1. Area ID - A reference number that is assigned to each power system within the 

transmission network. 

2. Reference Bus ID - The reference number of the slack bus within the 

transmission system. 

The Generator Cost Matrix allows for the SCUC software to calculate the hourly 

operating cost for the power system generating units based on each unit's individual heat 

rate. As described in Chapter 4, these heat rates are defined by a three-term polynomial 

( 4.1 ). To provide added functionality, however, the software also allows for the heat rate 

to be expressed as a piecewise linear function. Various elements in the Generator Cost 

Matrix may be modified to select the desired mode of operation. The columns of this 

matrix are described as follows: 

1. Model Type - Permits the user to select a piecewise linear model (Type I) or a 

polynomial expression (Type 2) to define a unit's heat rate. 

2. Start-up Cost- Unit start-up cost in dollars. 

3. Shutdown Cost- Unit shutdown cost in dollars. 

4. Model Order - This value represents (a) the number of data points for a 

piecewise linear function if the unit model is of Type 1 or (b) the order of the 

polynomial used to represent the heat rate for a Type 2 unit. 
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5. Cost Data - All remaining table elements represent parameters specific to the 

heat rate of the system's thermal unit. If the model is of Type 1, the elements of 

the piecewise linear cost function are stored in the matrix using the format: 

(5.1) 

where xo < x1 < x2 ... and (xo, yo), (xJ, YJ), ... are the breakpoints of the piecewise 

functions. Alternatively, if the model is of Type 2, the following format is 

applied: 

[ ••• C(n-1) ••• CJ co] (5.2) 

where the unit's cost is a function of the hourly megawatt output (P) and defined 

by the polynomial: co + c1P + ... + C(n-l)pfn-1). It should be noted that for both 

types of units, the size of the Generator Cost Matrix will vary depending on the 

number of terms used to provide an accurate model. As defined in Chapter 4, 

models used in this investigation will be defined using a second order polynomial 

expressiOn. 
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Appendix E Test Case File- 57-Bus Power System 

function [baseMV A, bus, gen, branch, areas, gencost] = case57 

%%%%%%%%%%%%%%%%%%%%%%%%%%%o/c%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% CASE57a Power flow data for IEEE 57 bus test case. 
% Last modified 2006-02-26 by RCollett 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Converted from IEEE CDF file from: 
% http://www .ee. washington .edu/researchlpstca/ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%----- Power Flow Data -----%% 
%% system MY A base 
baseMV A = I 00; 

%%bus data 
%Bus ID BusType Pd Qd AreaNum Vm Va BasekV Zone Vmax Vmin 
bus= [ 

I 3 55 17 0 0 1.04 0 0 1.06 0.94; 
2 2 3 88 0 0 1.01 -1.18 0 1.06 0.94: 
3 2 41 21 0 0 0.985 -5.97 0 1.06 0.94; 
4 I 0 0 0 0 0.981 -7.32 0 1.06 0.94; 
5 I 13 4 0 0 0.976 -8.52 0 1.06 0.94; 
6 2 75 2 0 0 0.98 -8.65 0 1.06 0.94; 
7 I 0 0 0 0 0.984 -7.58 0 1.06 0.94; 
8 2 150 22 0 0 1.005 -4.45 0 1.06 0.94; 
9 2 121 26 0 0 0.98 -9.56 0 1.06 0.94; 
10 I 5 2 0 0 0.986 -11.43 0 1.06 0.94; 
II I 0 0 0 0 0.974 -10.17 0 1.06 0.94; 
12 2 377 24 0 0 1.015 -10.46 0 1.06 0.94; 
13 18 2.3 0 0 0.979 -9.79 0 1.06 0.94; 
14 10.5 5.3 0 0 0.97 -9.33 0 1.06 0.94; 
15 22 5 0 0 0.988 -7.18 0 1.06 0.94; 
16 43 3 0 0 1.013 -8.85 0 1.06 0.94; 
17 42 8 0 0 1.017 -5.39 0 1.06 0.94: 
18 27.2 9.8 0 0 .001 -11.71 0 1.06 0.94: 
19 3.3 0.6 0 0 0.97 -13.2 0 1.06 0.94; 
20 2.3 I 0 0 0.964 -13.41 0 1.06 0.94; 
21 0 0 0 0 1.008 -12.89 0 1.06 0.94; 
22 0 0 0 0 1.01 -12.84 0 1.06 0.94; 
23 6.3 2.1 0 0 1.008 -12.91 0 1.06 0.94; 
24 0 0 0 0 0.999 -13.25 0 1.06 0.94; 
25 6.3 3.2 0 0 0.982 -18.13 0 1.06 0.94; 
26 0 0 0 0 0.959 -12.95 0 1.06 0.94; 
27 9.3 0.5 0 0 0.982 -11.48 0 1.06 0.94: 
28 4.6 2.3 0 0 0.997 -10.45 0 1.06 0.94; 
29 17 2.6 0 0 1.01 -9.75 0 1.06 0.94; 
30 3.6 1.8 0 0 0.962 -18.68 0 1.06 0.94; 
31 5.8 2.9 0 0 0.936 -19.34 0 1.06 0.94: 
32 1.6 0.8 0 0 0.949 -18.46 0 1.06 0.94; 
33 3.8 1.9 0 0 0.947 -18.5 0 1.06 0.94; 
34 0 0 0 0 0.959 -14.1 0 1.06 0.94; 
35 6 3 0 0 0.966 -13.86 0 1.06 0.94; 
36 0 0 0 0 0.976 -13.59 0 1.06 0.94; 
37 0 0 0 0 0.985 -13.41 0 1.06 0.94: 
38 14 7 0 0 1.013 -12.71 0 1.06 0.94; 
39 0 0 0 0 0.983 -13.46 0 1.06 0.94; 
40 0 0 0 0 0.973 -13.62 0 1.06 0.94; 
41 6.3 3 0 0 0.996 -14.05 0 1.06 0.94: 
42 7.1 4.4 0 0 0.966 -15.5 0 1.06 0.94; 
43 2 I 0 0 1.01 -11.33 0 1.06 0.94: 
44 12 1.8 0 0 1.017 -11.86 0 1.06 0.94; 
45 0 0 0 0 1.036 -9.25 0 1.06 0.94; 
46 0 0 0 0 1.05 -11.89 0 1.06 0.94; 
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47 29.7 11.6 0 0 1.033 -12.49 0 1.06 0.94; 
48 0 0 0 0 1.027 -12.59 0 1.06 0.94; 
49 18 8.5 0 0 1.036 -12.92 0 1.06 0.94; 
50 21 10.5 0 0 1.023 -13.39 0 1.06 0.94; 
51 18 5.3 0 0 1.052 -12.52 0 1.06 0.94; 
52 4.9 2.2 0 0 0.98 -II .47 0 1.06 0.94; 
53 20 10 0 0 0.971 -12.23 0 1.06 0.94; 
54 4.1 1.4 0 0 0.996 -11.69 0 1.06 0.94; 
55 6.8 3.4 0 0 1.031 -10.78 0 1.06 0.94; 
56 7.6 2.2 0 0 0.968 -16.04 0 1.06 0.94; 
57 6.7 2 0 0 0.965 -16.56 0 1.06 0.94; 

]; 

%% generator data 
% Bus# Pgen Qgen Qmax Qmin Vset MVA Base Status Pmax Pmin 
gen = [ 

I 128.9 -16.1 200 -140 1.04 100 575.88 50; 
2 0 -0.8 50 -17 1.01 100 100 20; 
3 40 -I 60 -10 0.985 100 I 140 20; 
6 0 0.8 25 -8 0.98 100 I 100 20; 
8 450 62.1 200 -140 1.005 100 550 50; 
9 0 2.2 9 -3 0.98 100 I 100 20; 
12 310 128.5 155 -150 1.015 100 I 410 30; 

]; 

%% branch data 
%FrBus ToBus R X B LTermRat. ShTerm Rat EmergRat TumRat PhShift Status 
branch= [ 

I 2 0.0083 0.028 0.129 9900 0 0 0 0 1: 
2 3 0.0298 0.085 0.0818 9900 0 0 0 0 I; 
3 4 O.otl2 0.0366 O.D38 9900 0 0 0 0 I; 
4 5 0.0625 0.132 0.0258 9900 0 0 0 0 I; 
4 6 0.043 0.148 0.0348 9900 0 0 0 0 I• 
6 7 0.02 0.102 0.0276 9900 0 0 0 0 I; 
6 8 0.0339 0.173 0.047 9900 0 0 0 0 I; 
8 9 0.0099 0.0505 0.0548 9900 0 0 0 0 I; 
9 10 0.0369 0.1679 0.044 9900 0 0 0 0 I· 
9 II 0.0258 0.0848 0.0218 9900 0 0 0 0 1: 
9 12 0.0648 0.295 0.0772 9900 0 0 0 0 I· 
9 13 0.0481 0.158 0.0406 9900 0 0 0 0 I; 
13 14 0.0132 0.0434 0.011 9900 0 0 0 0 I; 
13 15 0.0269 0.0869 0.023 9900 0 0 0 0 1: 
I 15 0.0178 0.091 0.0988 9900 0 0 0 0 I; 

16 0.0454 0.206 0.0546 9900 0 0 0 0 I; 
I 17 0.0238 0.108 0.0286 9900 0 0 0 0 I· 
3 15 0.0162 0.053 0.0544 9900 0 0 0 0 I; 
4 18 0 0.555 0 9900 0 0 0.97 0 I; 
4 18 0 0.43 0 9900 0 0 0.978 0 I· 
5 6 0.0302 0.0641 0.0124 9900 0 0 0 0 I; 
7 8 0.0139 0.0712 0.0194 9900 0 0 0 0 I; 
10 12 0.0277 0.1262 0.0328 9900 0 0 0 0 1: 
II 13 0.0223 0.0732 0.0188 9900 0 0 0 0 I; 
12 13 0.0178 0.058 0.0604 9900 0 0 0 0 I· 
12 16 O.ot8 0.0813 0.0216 9900 0 0 0 0 I; 
12 17 0.0397 0.179 0.0476 9900 0 0 0 0 I; 
14 15 0.0171 0.0547 0.0148 9900 0 0 0 0 1: 
18 19 0.461 0.685 0 9900 0 0 0 0 I; 
19 20 0.283 0.434 0 9900 0 0 0 0 I· 
21 20 0 0.7767 0 9900 0 0 1.043 0 I· 
21 22 0.0736 0.117 0 9900 0 0 0 0 I; 
22 23 0.0099 0.0152 0 9900 0 0 0 0 I; 
23 24 0.166 0.256 0.0084 9900 0 0 0 0 I; 
24 25 0 1.182 0 9900 0 0 I 0 I; 
24 25 0 1.23 0 9900 0 0 I 0 I; 
24 26 0 0.0473 0 9900 0 0 1.043 0 I· 
26 27 0.165 0.254 0 9900 0 0 0 0 I; 
27 28 0.0618 0.0954 0 9900 0 0 0 0 I· 
28 29 0.0418 0.0587 0 9900 0 0 0 0 1: 
7 29 0 0.0648 0 9900 0 0 0.967 0 I; 
25 30 0.135 0.202 0 9900 0 0 0 0 I· 
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30 31 0.326 0.497 0 9900 0 0 0 0 1: 
31 32 0.507 0.755 0 9900 0 0 0 0 I; 
32 33 0.0392 0.036 0 9900 0 0 0 0 I· 
34 32 0 0.953 0 9900 0 0 0.975 0 I· 
34 35 0.052 O.Q78 0.0032 9900 0 0 0 0 I; 
35 36 0.043 0.0537 0.0016 9900 0 0 0 0 L 
36 37 0.029 0.0366 0 9900 0 0 0 0 I· 
37 38 0.0651 0.1009 0.002 9900 0 0 0 0 I; 
37 39 0.0239 0.0379 0 9900 0 0 0 0 I; 
36 40 0.03 0.0466 0 9900 0 0 0 0 I· 
22 38 0.0192 0.0295 0 9900 0 0 0 0 1: 
II 41 0 0.749 0 9900 0 0 0.955 0 1: 
41 42 0.207 0.352 0 9900 0 0 0 0 I· 
41 43 0 0.412 0 9900 0 0 0 0 I; 
38 44 0.0289 0.0585 0.002 9900 0 0 0 0 I· 
15 45 0 0.1042 0 9900 0 0 0.955 0 I· 
14 46 0 0.0735 0 9900 0 0 0.9 0 I; 
46 47 0.023 0.068 0.0032 9900 0 0 0 0 1: 
47 48 0.0182 0.0233 0 9900 0 0 0 0 L 
48 49 0.0834 0.129 0.0048 9900 0 0 0 0 I; 
49 50 0.0801 0.128 0 9900 0 0 0 0 I· 
50 51 0.1386 0.22 0 9900 0 0 0 0 I; 
10 51 0 0.0712 0 9900 0 0 0.93 0 I· 
13 49 0 0.191 0 9900 0 0 0.895 0 I; 
29 52 0.1442 0.187 0 9900 0 0 0 0 L 
52 53 0.0762 0.0984 0 9900 0 0 0 0 I· 
53 54 0.1878 0.232 0 9900 0 0 0 0 I· 
54 55 0.1732 0.2265 0 9900 0 0 0 0 I· 
II 43 0 0.153 0 9900 0 0 0.958 0 L 
44 45 0.0624 0.1242 0.004 9900 0 0 0 0 I; 
40 56 0 1.195 0 9900 0 0 0.958 0 1: 
56 41 0.553 0.549 0 9900 0 0 0 0 1: 
56 42 0.2125 0.354 0 9900 0 0 0 0 I; 
39 57 0 1.355 0 9900 0 0 0.98 0 L 
57 56 0.174 0.26 0 9900 0 0 0 0 L 
38 49 0.115 0.177 0.003 9900 0 0 0 0 1: 
38 48 0.0312 0.0482 0 9900 0 0 0 0 I· 
9 55 0 0.1205 0 9900 0 0 0.94 0 I; 

]; 

%%----- OPF Data -----%% 
%%area data 
%AreaiD RefBusiD 
areas= [ 

I· 
]; 

%% generator cost data 
% I start-up shutdown n xO yO xn yn 
% 2 start-up shutdown n c(n-1) cO 
gencost = [ 

2 100 0 3 0.0775795 20 0: 
2 100 0 3 0.01 40 o· 
2 100 0 3 0.25 20 0: 
2 100 0 3 O.DI 40 0: 
2 100 0 3 0.0222222 20 0: 
2 100 0 3 0.01 40 0: 
2 100 0 3 0.0322581 20 0: 

]; 

return; 
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AppendixF Test Case File- 118-Bus Power System 

function [baseMVA, bus, gen, branch, areas, gencost] =case liSa 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% CASE liSa Power flow data for IEEE 118 bus test case. 
% Last modified 2006-02-26 by RCollett 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Converted from IEEE CDF file from: 
% http://www.ee.washington.edu/research/pstca/ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%----- Power Aow Data -----%% 
%% system MY A base 
base MY A = I 00; 

%%bus data 
%Bus ID BusType Pd Qd AreaNum Vm Va BasekV Zone Vmax Vmin 
bus= [ 

I 2 51 27 0 0 0.955 10.67 0 1.06 0.94; 
2 I 20 9 0 0 0.971 11.22 0 1.06 0.94: 
3 I 39 10 0 0 0.968 11.56 0 1.06 0.94: 
4 2 39 12 0 0 0.998 15.28 0 1.06 0.94; 
5 I 0 0 0 0 1.002 15.73 0 1.06 0.94: 
6 2 52 22 0 0 0.99 13 0 1.06 0.94: 
7 I 19 2 0 0 0.989 12.56 0 1.06 0.94; 
8 2 28 0 0 0 1.015 20.77 0 1.06 0.94: 
9 I 0 0 0 0 1.043 28.02 0 1.06 0.94: 
10 2 0 0 0 0 1.05 35.61 0 1.06 0.94: 
II I 70 23 0 0 0.985 12.72 0 1.06 0.94: 
12 2 47 10 0 0 0.99 12.2 0 1.06 0.94: 
13 34 16 0 0 0.968 11.35 0 1.06 0.94: 
14 I 14 1 0 0 0.984 11.5 0 1.06 0.94; 
15 2 90 30 0 0 0.97 11.23 0 1.06 0.94: 
16 I 25 10 0 0 0.984 11.91 0 1.06 0.94: 
17 I II 3 0 0 .995 13.74 0 1.06 0.94: 
18 2 60 34 0 0 0.973 11.53 0 1.06 0.94: 
19 2 45 25 0 0 0.963 I 1.05 0 1.06 0.94: 
20 18 3 0 0 0.958 11.93 0 1.06 0.94: 
21 14 8 0 0 0.959 13.52 0 1.06 0.94: 
22 1 10 5 0 0 0.97 16.08 0 1.06 0.94: 
23 I 7 3 0 0 I 21 0 1.06 0.94: 
24 2 13 0 0 0 0.992 20.89 0 1.06 0.94; 
25 2 0 0 0 0 1.05 27.93 0 1.06 0.94: 
26 2 0 0 0 0 1.015 29.71 0 1.06 0.94: 
27 2 71 13 0 0 0.968 15.35 0 1.06 0.94: 
28 I 17 7 0 0 0.962 13.62 0 1.06 0.94: 
29 I 24 4 0 0 0.963 12.63 0 1.06 0.94: 
30 I 0 0 0 0 0.968 18.79 0 1.06 0.94; 
31 2 43 27 0 0 0.967 12.75 0 1.06 0.94: 
32 2 59 23 0 0 0.964 14.8 0 1.06 0.94: 
33 I 23 9 0 0 0.972 10.63 0 1.06 0.94: 
34 2 59 26 0 0 0.986 11.3 0 1.06 0.94: 
35 I 33 9 0 0 0.981 10.87 0 1.06 0.94; 
36 2 31 17 0 0 0.98 10.87 0 1.06 0.94; 
37 0 0 0 0 0.992 11.77 0 1.06 0.94: 
38 0 0 0 0 0.962 16.91 0 1.06 0.94: 
39 I 27 II 0 0 0.97 8.41 0 1.06 0.94; 
40 2 66 23 0 0 0.97 7.35 0 1.06 0.94; 
41 I 37 10 0 0 0.967 6.92 0 1.06 0.94: 
42 2 96 23 0 0 0.985 8.53 0 1.06 0.94: 
43 18 7 0 0 0.978 11.28 0 1.06 0.94; 
44 16 8 0 0 0.985 13.82 0 1.06 0.94: 
45 53 22 0 0 0.987 15.67 0 1.06 0.94; 
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46 2 28 10 0 0 1.005 18.49 0 1.06 0.94; 
47 I 34 0 0 0 1.017 20.73 0 1.06 0.94; 
48 I 20 II 0 0 1.021 19.93 0 1.06 0.94; 
49 2 87 30 0 0 1.025 20.94 0 1.06 0.94; 
50 17 4 0 0 1.001 18.9 0 1.06 0.94; 
51 17 8 0 0 0.967 16.28 0 1.06 0.94; 
52 18 5 0 0 0.957 15.32 0 1.06 0.94; 
53 23 II 0 0 0.946 14.35 0 1.06 0.94; 
54 2 113 32 0 0 0.955 15.26 0 1.06 0.94: 
55 2 63 22 0 0 0.952 14.97 0 1.06 0.94; 
56 2 84 18 0 0 0.954 15.16 0 1.06 0.94; 
57 I 12 3 0 0 0.971 16.36 0 1.06 0.94; 
58 I 12 3 0 0 0.959 15.51 0 1.06 0.94; 
59 2 277 113 0 0 0.985 19.37 0 1.06 0.94; 
60 I 78 3 0 0 0.993 23.15 0 1.06 0.94; 
61 2 0 0 0 0 0.995 24.04 0 1.06 0.94; 
62 2 77 14 0 0 0.998 23.43 0 1.06 0.94; 
63 0 0 0 0 0.969 22.75 0 1.06 0.94; 
64 I 0 0 0 0 0.984 24.52 0 1.06 0.94: 
65 2 0 0 0 0 1.005 27.65 0 1.06 0.94; 
66 2 39 18 0 0 1.05 27.48 0 1.06 0.94; 
67 I 28 7 0 0 1.02 24.84 0 1.06 0.94; 
68 I 0 0 0 0 1.003 27.55 0 1.06 0.94; 
69 3 0 0 0 0 1.035 30 0 1.06 0.94; 
70 2 66 20 0 0 0.984 22.58 0 1.06 0.94; 
71 I 0 0 0 0 0.987 22.15 0 1.06 0.94; 
72 2 12 0 0 0 0.98 20.98 0 1.06 0.94; 
73 2 6 0 0 0 0.991 21.94 0 1.06 0.94; 
74 2 68 27 0 0 0.958 21.64 0 1.06 0.94; 
75 I 47 II 0 0 0.967 22.91 0 1.06 0.94; 
76 2 68 36 0 0 0.943 21.77 0 1.06 0.94; 
77 2 61 28 0 0 1.006 26.72 0 1.06 0.94; 
78 I 71 26 0 0 1.003 26.42 0 1.06 0.94; 
79 I 39 32 0 0 1.009 26.72 0 1.06 0.94; 
80 2 130 26 0 0 1.04 28.96 0 1.06 0.94: 
81 0 0 0 0 0.997 28.1 0 1.06 0.94; 
82 54 27 0 0 0.989 27.24 0 1.06 0.94; 
83 20 10 0 0 0.985 28.42 0 1.06 0.94; 
84 I II 7 0 0 0.98 30.95 0 1.06 0.94; 
85 2 24 15 0 0 0.985 32.51 0 1.06 0.94; 
86 I 21 10 0 0 0.987 31.14 0 1.06 0.94; 
87 2 0 0 0 0 1.015 31.4 0 1.06 0.94; 
88 I 48 10 0 0 0.987 35.64 0 1.06 0.94; 
89 2 0 0 0 0 1.005 39.69 0 1.06 0.94; 
90 2 163 42 0 0 0.985 33.29 0 1.06 0.94; 
91 2 10 0 0 0 0.98 33.31 0 1.06 0.94; 
92 2 65 10 0 0 0.993 33.8 0 1.06 0.94; 
93 12 7 0 0 0.987 30.79 0 1.06 0.94; 
94 30 16 0 0 0.991 28.64 0 1.06 0.94; 
95 42 31 0 0 0.981 27.67 0 1.06 0.94; 
96 38 15 0 0 0.993 27.51 0 1.06 0.94; 
97 15 9 0 0 1.011 27.88 0 1.06 0.94; 
98 I 34 8 0 0 1.024 27.4 0 1.06 0.94; 
99 2 42 0 0 0 1.01 27.04 0 1.06 0.94; 
100 2 37 18 0 0 1.017 28.03 0 1.06 0.94: 
101 I 22 15 0 0 0.993 29.61 0 1.06 0.94: 
102 I 5 3 0 0 0.991 32.3 0 1.06 0.94: 
103 2 23 16 0 0 1.001 24.44 0 1.06 0.94; 
104 2 38 25 0 0 0.971 21.69 0 1.06 0.94; 
105 2 31 26 0 0 0.965 20.57 0 1.06 0.94; 
106 I 43 16 0 0 0.962 20.32 0 1.06 0.94; 
107 2 50 12 0 0 0.952 17.53 0 1.06 0.94; 
108 I 2 I 0 0 0.967 19.38 0 1.06 0.94: 
109 I 8 3 0 0 0.967 18.93 0 1.06 0.94; 
110 2 39 30 0 0 0.973 18.09 0 1.06 0.94; 
Ill 2 0 0 0 0 0.98 19.74 0 1.06 0.94; 
112 2 68 13 0 0 0.975 14.99 0 1.06 0.94; 
113 2 6 0 0 0 0.993 13.74 0 1.06 0.94; 
114 8 3 0 0 0.96 14.46 0 1.06 0.94: 
115 22 7 0 0 0.96 14.46 0 1.06 0.94; 
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116 2 184 0 0 0 1.005 27.12 0 1.06 0.94; 
117 20 8 0 0 0.974 10.67 0 1.06 0.94; 
118 33 15 0 0 0.949 21.92 0 1.06 0.94; 

): 

%% generator data 
% Bus# Pgen Qgen Qmax Qmin Vset MVA Base Status Pmax Pmin 
gen = [ 

0 0 15 -5 0.955 100 100 30; 
4 0 0 300 -300 0.998 100 100 30; 
6 0 0 50 -13 0.99 100 100 30; 
8 0 0 300 -300 1.015 100 100 30; 
10 450 0 200 -147 1.05 100 550 75; 
12 85 0 120 -35 0.99 100 185 50; 
15 0 0 30 -10 0.97 100 100 30; 
18 0 0 50 -16 0.973 100 100 30; 
19 0 0 24 -8 0.962 100 100 30; 
24 0 0 300 -300 0.992 100 100 30; 
25 220 0 140 -47 1.05 100 320 60; 
26 314 0 1000 -1000 1.015 100 414 60; 
27 0 0 300 -300 0.968 100 100 30; 
31 7 0 300 -300 0.967 100 107 30; 
32 0 0 42 -14 0.963 100 100 30; 
34 0 0 24 -8 0.984 100 100 30; 
36 0 0 24 -8 0.98 100 100 30; 
40 0 0 300 -300 0.97 100 100 30; 
42 0 0 300 -300 0.985 100 100 30; 
46 19 0 100 -100 1.005 100 119 30; 
49 204 0 210 -85 1.025 100 304 30; 
54 48 0 300 -300 0.955 100 148 30; 
55 0 0 23 -8 0.952 100 100 30; 
56 0 0 15 -8 0.954 100 100 30; 
59 155 0 180 -60 0.985 100 255 50; 
61 160 0 300 -100 0.995 100 260 40; 
62 0 0 20 -20 0.998 100 100 30; 
65 391 0 200 -67 1.005 100 491 50; 
66 392 0 200 -67 1.05 100 492 50; 
69 516.4 0 300 -300 1.035 100 805.2 100; 
70 0 0 32 -10 0.984 100 100 30; 
72 0 0 100 -100 0.98 100 100 30; 
73 0 0 100 -100 0.991 100 100 30; 
74 0 0 9 -6 0.958 100 100 30; 
76 0 0 23 -8 0.943 100 100 30; 
77 0 0 70 -20 1.006 100 100 30; 
80 477 0 280 -165 1.04 100 577 60; 
85 0 0 23 -8 0.985 100 100 30; 
87 4 0 1000 -100 1.015 100 104 30; 
89 607 0 300 -210 1.005 100 707 50; 
90 0 0 300 -300 0.985 100 100 30; 
91 0 0 100 -100 0.98 100 100 30; 
92 0 0 9 -3 0.99 100 100 30; 
99 0 0 100 -100 1.01 100 100 30; 
100 252 0 155 -50 1.017 100 352 50; 
103 40 0 40 -15 1.01 100 140 30; 
104 0 0 23 -8 0.971 100 100 30; 
105 0 0 23 -8 0.965 100 100 30; 
107 0 0 200 -200 0.952 100 100 30; 
110 0 0 23 -8 0.973 100 100 30; 
Ill 36 0 1000 -100 0.98 100 136 40; 
112 0 0 1000 -100 0.975 100 100 30; 
113 0 0 200 -100 0.993 100 100 30; 
116 0 0 1000 -1000 1.005 100 100 30; 

]; 

%%branch data 
%FrBus ToBus R X B LTermRat. ShTerm Rat EmergRat TurnRat PhShift Status 
branch= [ 

2 0.0303 0.0999 0.0254 9900 0 0 0 0 
3 0.0129 0.0424 0.01082 9900 0 0 0 0 

4 5 0.00176 0.00798 0.0021 9900 0 0 0 0 
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3 5 0.0241 0.108 0.0284 9900 0 0 0 0 I; 
5 6 0.0119 0.054 0.01426 9900 0 0 0 0 I; 
6 7 0.00459 0.0208 0.0055 9900 0 0 0 0 I· 
8 9 0.00244 0.0305 1.162 9900 0 0 0 0 I; 
8 5 0 0.0267 0 9900 0 0 0.985 0 I· 
9 10 0.00258 0.0322 1.23 9900 0 0 0 0 I; 
4 II 0.0209 0.0688 0.01748 9900 0 0 0 0 I; 
5 II 0.0203 0.0682 0.01738 9900 0 0 0 0 I; 
II 12 0.00595 0.0196 0.00502 9900 0 0 0 0 I· 
2 12 0.0187 0.0616 0.01572 9900 0 0 0 0 I; 
3 12 0.0484 0.16 0.0406 9900 0 0 0 0 I; 
7 12 0.00862 0.034 0.00874 9900 0 0 0 0 I· 
II 13 0.02225 0.0731 0.01876 9900 0 0 0 0 I· 
12 14 0.0215 0.0707 0.01816 9900 0 0 0 0 I· 
13 15 0.0744 0.2444 0.06268 9900 0 0 0 0 I· 
14 15 0.0595 0.195 0.0502 9900 0 0 0 0 I; 
12 16 0.0212 0.0834 0.0214 9900 0 0 0 0 I· 
15 17 0.0132 0.0437 0.0444 9900 0 0 0 0 I· 
16 17 0.0454 0.1801 0.0466 9900 0 0 0 0 I• 
17 18 0.0123 0.0505 0.01298 9900 0 0 0 0 I; 
18 19 0.01119 0.0493 O.DI 142 9900 0 0 0 0 I; 
19 20 0.0252 0.117 0.0298 9900 0 0 0 0 I; 
15 19 0.012 0.0394 0.0101 9900 0 0 0 0 I· 
20 21 0.0183 0.0849 0.0216 9900 0 0 0 0 I; 
21 22 0.0209 0.097 0.0246 9900 0 0 0 0 I; 
22 23 0.0342 0.159 0.0404 9900 0 0 0 0 I· 
23 24 0.0135 0.0492 0.0498 9900 0 0 0 0 I; 
23 25 0.0156 0.08 0.0864 9900 0 0 0 0 I; 
26 25 0 0.0382 0 9900 0 0 0.96 0 I; 
25 27 0.0318 0.163 0.1764 9900 0 0 0 0 I• 
27 28 0.01913 0.0855 0.0216 9900 0 0 0 0 I· 
28 29 0.0237 0.0943 0.0238 9900 0 0 0 0 I; 
30 17 0 0.0388 0 9900 0 0 0.96 0 I; 
8 30 0.00431 0.0504 0.514 9900 0 0 0 0 I; 
26 30 0.00799 0.086 0.908 9900 0 0 0 0 I; 
17 31 0.0474 0.1563 0.0399 9900 0 0 0 0 I; 
29 31 O.DI08 0.0331 0.0083 9900 0 0 0 0 I· 
23 32 0.0317 0.1153 0.1173 9900 0 0 0 0 I· 
31 32 0.0298 0.0985 0.0251 9900 0 0 0 0 I· 
27 32 0.0229 0.0755 0.01926 9900 0 0 0 0 I· 
15 33 0.038 0.1244 0.03194 9900 0 0 0 0 I; 
19 34 0.0752 0.247 0.0632 9900 0 0 0 0 I; 
35 36 0.00224 0.0102 0.00268 9900 0 0 0 0 I; 
35 37 0.011 0.0497 0.01318 9900 0 0 0 0 I; 
33 37 0.0415 0.142 0.0366 9900 0 0 0 0 I; 
34 36 0.00871 0.0268 0.00568 9900 0 0 0 0 I; 
34 37 0.00256 0.0094 0.00984 9900 0 0 0 0 I· 
38 37 0 0.0375 0 9900 0 0 0.935 0 I; 
37 39 0.0321 0.106 0.027 9900 0 0 0 0 I; 
37 40 0.0593 0.168 0.042 9900 0 0 0 0 I· 
30 38 0.00464 0.054 0.422 9900 0 0 0 0 I; 
39 40 0.0184 0.0605 0.01552 9900 0 0 0 0 I; 
40 41 0.0145 0.0487 0.01222 9900 0 0 0 0 I; 
40 42 0.0555 0.183 0.0466 9900 0 0 0 0 I; 
41 42 0.041 0.135 0.0344 9900 0 0 0 0 I; 
43 44 0.0608 0.2454 0.06068 9900 0 0 0 0 I; 
34 43 0.0413 0.1681 0.04226 9900 0 0 0 0 I; 
44 45 0.0224 0.0901 0.0224 9900 0 0 0 0 I· 
45 46 0.04 0.1356 0.0332 9900 0 0 0 0 I· 
46 47 O.D38 0.127 0.0316 9900 0 0 0 0 I; 
46 48 0.0601 0.189 0.0472 9900 0 0 0 0 I; 
47 49 0.0191 0.0625 0.01604 9900 0 0 0 0 I; 

42 49 0.0715 0.323 0.086 9900 0 0 0 0 I; 
42 49 0.0715 0.323 0.086 9900 0 0 0 0 I· 
45 49 0.0684 0.186 0.0444 9900 0 0 0 0 I· 
48 49 0.0179 0.0505 0.01258 9900 0 0 0 0 I; 
49 50 0.0267 0.0752 0.01874 9900 0 0 0 0 I; 
49 51 0.0486 0.137 0.0342 9900 0 0 0 0 I· 
51 52 0.0203 0.0588 0.01396 9900 0 0 0 0 I; 
52 53 0.0405 0.1635 0.04058 9900 0 0 0 0 I; 

- 120-



53 54 0.0263 0.122 0.031 9900 0 0 0 0 ]· 

49 54 0.073 0.289 0.0738 9900 0 0 0 0 1: 
49 54 0.0869 0.291 0.073 9900 0 0 0 0 I· 
54 55 0.0169 0.0707 0.0202 9900 0 0 0 0 I; 
54 56 0.00275 0.00955 0.00732 9900 0 0 0 0 I; 
55 56 0.00488 0.0151 0.00374 9900 0 0 0 0 I; 
56 57 0.0343 0.0966 0.0242 9900 0 0 0 0 I; 
50 57 0.0474 0.134 0.0332 9900 0 0 0 0 I; 
56 58 0.0343 0.0966 0.0242 9900 0 0 0 0 I; 
51 58 0.0255 0.0719 0.01788 9900 0 0 0 0 I· 
54 59 0.0503 0.2293 0.0598 9900 0 0 0 0 I; 
56 59 0.0825 0.251 0.0569 9900 0 0 0 0 I; 
56 59 0.0803 0.239 0.0536 9900 0 0 0 0 I· 
55 59 0.04739 0.2158 0.05646 9900 0 0 0 0 I; 
59 60 0.0317 0.145 0.0376 9900 0 0 0 0 I; 
59 61 0.0328 0.15 0.0388 9900 0 0 0 0 I; 
60 61 0.00264 0.0135 0.01456 9900 0 0 0 0 I; 
60 62 0.0123 0.0561 0.01468 9900 0 0 0 0 I; 
61 62 0.00824 0.0376 0.0098 9900 0 0 0 0 I; 
63 59 0 0.0386 0 9900 0 0 0.96 0 I; 
63 64 0.00172 0.02 0.216 9900 0 0 0 0 I; 
64 61 0 0.0268 0 9900 0 0 0.985 0 I; 
38 65 0.00901 0.0986 1.046 9900 0 0 0 0 I; 
64 65 0.00269 0.0302 0.38 9900 0 0 0 0 I; 
49 66 0.018 0.0919 0.0248 9900 0 0 0 0 I; 
49 66 0.018 0.0919 0.0248 9900 0 0 0 0 I; 
62 66 0.0482 0.218 0.0578 9900 0 0 0 0 I; 
62 67 0.0258 0.117 0.031 9900 0 0 0 0 I; 
65 66 0 0.037 0 9900 0 0 0.935 0 I· 
66 67 0.0224 0.1015 0.02682 9900 0 0 0 0 I; 
65 68 0.00138 0.016 0.638 9900 0 0 0 0 I; 
47 69 0.0844 0.2778 0.07092 9900 0 0 0 0 I; 
49 69 0.0985 0.324 0.0828 9900 0 0 0 0 I; 
68 69 0 0.037 0 9900 0 0 0.935 0 I; 
69 70 0.03 0.127 0.122 9900 0 0 0 0 I; 
24 70 0.00221 0.4115 0.10198 9900 0 0 0 0 I; 
70 71 0.00882 0.0355 0.00878 9900 0 0 0 0 I· 
24 72 0.0488 0.196 0.0488 9900 0 0 0 0 I· 
71 72 0.0446 0.18 0.04444 9900 0 0 0 0 I· 
71 73 0.00866 0.0454 0.01178 9900 0 0 0 0 I· 
70 74 0.0401 0.1323 0.03368 9900 0 0 0 0 I; 
70 75 0.0428 0.141 0.036 9900 0 0 0 0 I; 
69 75 0.0405 0.122 0.124 9900 0 0 0 0 I; 
74 75 0.0123 0.0406 0.01034 9900 0 0 0 0 I; 
76 77 0.0444 0.148 0.0368 9900 0 0 0 0 I; 
69 77 0.0309 0.101 0.1038 9900 0 0 0 0 I; 
75 77 0.0601 0.1999 0.04978 9900 0 0 0 0 I; 
77 78 0.00376 0.0124 0.01264 9900 0 0 0 0 ]· 

78 79 0.00546 0.0244 0.00648 9900 0 0 0 0 I· 
77 80 0.017 0.0485 0.0472 9900 0 0 0 0 I; 
77 80 0.0294 0.105 0.0228 9900 0 0 0 0 I· 
79 80 0.0156 0.0704 0.0187 9900 0 0 0 0 I; 
68 81 0.00175 0.0202 0.808 9900 0 0 0 0 I; 
81 80 0 0037 0 9900 0 0 0.935 0 I; 
77 82 0.0298 0.0853 0.08174 9900 0 0 0 0 I; 
82 83 0.0112 0.03665 0.03796 9900 0 0 0 0 I· 
83 84 0.0625 0.132 0.0258 9900 0 0 0 0 1: 
83 85 0.043 0.148 0.0348 9900 0 0 0 0 I; 
84 85 0.0302 0.0641 0.01234 9900 0 0 0 0 I; 
85 86 O.D35 0.123 0.0276 9900 0 0 0 0 I; 
86 87 0.02828 0.2074 0.0445 9900 0 0 0 0 I; 
85 88 0.02 0.102 0.0276 9900 0 0 0 0 I; 

85 89 0.0239 0.173 0.047 9900 0 0 0 0 I; 
88 89 0.0139 0.0712 0.01934 9900 0 0 0 0 I· 
89 90 0.0518 0.188 0.0528 9900 0 0 0 0 I; 
89 90 0.0238 0.0997 0.106 9900 0 0 0 0 I· 
90 91 0.0254 0.0836 0.0214 9900 0 0 0 0 I; 
89 92 0.0099 0.0505 0.0548 9900 0 0 0 0 I· 
89 92 0.0393 0.1581 0.0414 9900 0 0 0 0 I; 
91 92 0.0387 0.1272 0.03268 9900 0 0 0 0 I· 
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92 93 0.0258 0.0848 0.0218 9900 0 0 0 0 1: 
92 94 0.0481 0.158 0.0406 9900 0 0 0 0 1: 
93 94 0.0223 0.0732 0.01876 9900 0 0 0 0 I; 
94 95 0.0132 0.0434 0.011 I 9900 0 0 0 0 I; 
80 96 0.0356 0.182 0.0494 9900 0 0 0 0 I· 
82 96 0.0162 0.053 0.0544 9900 0 0 0 0 I; 
94 96 0.0269 0.0869 0.023 9900 0 0 0 0 I; 
80 97 0.0183 0.0934 0.0254 9900 0 0 0 0 I; 
80 98 0.0238 0.108 0.0286 9900 0 0 0 0 I· 
80 99 0.0454 0.206 0.0546 9900 0 0 0 0 I; 

92 100 0.0648 0.295 0.0472 9900 0 0 0 0 I; 
94 100 0.0178 0.058 0.0604 9900 0 0 0 0 I; 
95 96 0.0171 0.0547 0.01474 9900 0 0 0 0 I; 
96 97 0.0173 0.0885 0.024 9900 0 0 0 0 I; 
98 100 0.0397 0.179 0.0476 9900 0 0 0 0 I• 
99 100 0.018 0.0813 0.0216 9900 0 0 0 0 I; 
100 101 0.0277 0.1262 0.0328 9900 0 0 0 0 I; 
92 102 0.0123 0.0559 0.01464 9900 0 0 0 0 I; 
101 102 0.0246 0.112 0.0294 9900 0 0 0 0 I· 
100 103 0.016 0.0525 0.0536 9900 0 0 0 0 I· 
100 104 0.0451 0.204 0.0541 9900 0 0 0 0 I; 
103 104 0.0466 0.1584 0.0407 9900 0 0 0 0 I; 

103 105 0.0535 0.1625 0.0408 9900 0 0 0 0 1: 
100 106 0.0605 0.229 0.062 9900 0 0 0 0 I; 
104 105 0.00994 0.0378 0.00986 9900 0 0 0 0 I· 
105 106 0.014 0.0547 0.01434 9900 0 0 0 0 1: 
105 107 0.053 0.183 0.0472 9900 0 0 0 0 1: 
105 108 0.0261 0.0703 0.01844 9900 0 0 0 0 I; 
106 107 0.053 0.183 0.0472 9900 0 0 0 0 I; 
108 109 0.0105 0.0288 0.0076 9900 0 0 0 0 I; 

103 110 0.03906 0.1813 0.0461 9900 0 0 0 0 1: 
109 110 0.0278 0.0762 0.0202 9900 0 0 0 0 1: 
110 Ill 0.022 0.0755 0.02 9900 0 0 0 0 I; 
110 112 0.0247 0.064 0.062 9900 0 0 0 0 I; 
17 113 0.00913 0.0301 0.00768 9900 0 0 0 0 1: 
32 113 0.0615 0.203 0.0518 9900 0 0 0 0 1: 
32 114 0.0135 0.0612 0.01628 9900 0 0 0 0 I; 
27 115 0.0164 0.0741 0.01972 9900 0 0 0 0 1: 
114 115 0.0023 0.0104 0.00276 9900 0 0 0 0 1: 
68 116 0.00034 0.00405 0.164 9900 0 0 0 0 1: 
12 117 0.0329 0.14 0.0358 9900 0 0 0 0 I; 
75 118 0.0145 0.0481 0.01198 9900 0 0 0 0 1: 
76 118 0.0164 0.0544 0.01356 9900 0 0 0 0 I; 

]; 

%%----- OPF Data ----%% 
%%area data 
%AreaiD RefBusiD 
areas= [ 

I; 
); 

%% generator cost data 
% I start-up shutdown n xO yO xn yn 
% 2 start-up shutdown n c(n-1) cO 
gencost = [ 

2 100 0 3 0.01 40 0; 
2 100 0 3 0.01 40 0; 
2 100 0 3 0.01 40 0: 
2 100 0 3 0.01 40 0: 
2 100 0 3 0.0222222 20 0: 
2 100 0 3 0.117647 20 0; 

2 100 0 3 O.DI 40 0: 
2 100 0 3 0.01 40 0: 
2 100 0 3 O.DI 40 0; 
2 100 0 3 O.DI 40 0; 
2 100 0 3 0.0454545 20 0: 
2 100 0 3 0.0318471 20 0: 
2 100 0 3 0.01 40 0; 
2 100 0 3 1.42857 20 0: 
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2 100 0 3 O.ol 40 0: 
2 100 0 3 O.ol 40 0: 
2 100 0 3 O.ol 40 0; 
2 100 0 3 0.01 40 0; 
2 100 0 3 O.ol 40 0; 
2 100 0 3 0.526316 20 0: 
2 100 0 3 0.0490196 20 0; 
2 100 0 3 0.208333 20 0: 
2 100 0 3 0.01 40 0: 
2 100 0 3 0.01 40 0: 
2 100 0 3 0.0645161 20 0; 
2 100 0 3 0.0625 20 0; 
2 100 0 3 O.DI 40 0: 
2 100 0 3 0.0255754 20 0: 
2 100 0 3 0.0255102 20 0: 
2 100 0 3 0.0193648 20 0: 
2 100 0 3 O.DI 40 0: 
2 100 0 3 O.DI 40 0: 
2 100 0 3 O.ol 40 0: 
2 100 0 3 0.01 40 0; 
2 100 0 3 O.DI 40 0: 
2 100 0 3 0.01 40 0: 
2 100 0 3 0.0209644 20 0; 
2 100 0 3 0.01 40 0: 
2 100 0 3 2.5 20 0: 
2 100 0 3 0.0164745 20 0: 
2 100 0 3 0.01 40 0: 
2 100 0 3 0.01 40 0: 
2 100 0 3 O.DI 40 0: 
2 100 0 3 0.01 40 0: 
2 100 0 3 0.0396825 20 0; 
2 100 0 3 0.25 20 0; 
2 100 0 3 0.01 40 0; 
2 100 0 3 0.01 40 0: 
2 100 0 3 O.DI 40 0; 
2 100 0 3 0.01 40 0; 
2 100 0 3 0.277778 20 0: 
2 100 0 3 0.01 40 0: 
2 100 0 3 O.DI 40 0: 
2 100 0 3 O.DI 40 0; 

); 

return; 
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