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Abstract 

In aquaculture, the ability to predict future performance potential of eggs and larvae can 

help optimize hatchery production and lower overall production costs. In this study, egg 

batches spawned by Atlantic cod (Gadus morhua) broodstocks were collected, incubated 

to hatch, and the larvae reared to yolk-sac absorption. Objectives were to determine 

whether lipid classes, fatty acids, and amino acids could be used as indicators of egg and 

larval quality; to compare the utility of biochemistry and blastomere morphology as 

indicators of future performance potential; and to study changes in egg and larval 

biochemistry during ontogenetic development. Variability in several lipids and free amino 

acids was significantly correlated with fertilization and hatching success, particularly the 

phospholipids and the monosaturated fatty acid 24:1. Lipids showed conservation 

throughout embryo development, while free amino acids were catabolized as a primary 

energy source. Several blastomere morphological measures in newly fertilized eggs (eg. 

cell symmetry, uniformity, margins and adhesions) showed positive correlations with 

hatching success. These results show that both biochemistry and blastomere morphology 

can be useful tools for determining the performance potential of egg batches in culture, 

and that free amino acids serve as a primary energy source for endogenous-feeding eggs 

and larvae. 
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1 Introduction and background 

1.1 Introduction 

The Atlantic cod, Gadus morhua, of the family Gadidae, is found on both sides of the 

North Atlantic, and ranges as far south as North Carolina to Greenland in the north. A fish 

with a heavy body and large head, the mature cod averages - 70 em in length, with 

offshore stocks growing even larger (Stares et al. 2007). It is a groundfish, living at 

depths of 60- 120m, with some stocks showing seasonal migratory patterns. Patterns of 

migration can differ among stocks. For example, Labrador cod moves north and south 

along the coastline, but remains in cold waters, while cod in the Gulf of St. Lawrence 

move into the Gulf in spring and south-east in the fall (Leim and Scott 1966). 

While spawning patterns differ among stocks, those off the coast of Newfoundland 

generally spawn around May. The mature female produces- 0.5 to 3 million eggs in one 

spawning season, with egg production changing according to population densities and 

fish size (Stares et al. 2007). The growth rates of cod differ depending on stock and 

season. When mature, the cods' diet consists mainly of other fish (for example, herring 

and capelin), while younger cod depend more on a diet of amphipods, euphausiids, 

polycheates and molluscs, and some plants (Leim and Scott 1966). 

For centuries, cod have been fished for both private and commercial use, and have been 

used for food, liver oil and even in glue production. Their abundance on the coast of 

Newfoundland and Labrador resulted in a thriving fishery. However, overfishing and an 

1 



increase in market demand have put great strain on Northwest Atlantic cod stocks. These 

cod populations have experienced a severe drop in population numbers since the 1960s, 

with the total population estimated currently at 1-2% of historical levels. As a result, the 

Newfoundland cod fishery experienced a moratorium in 1993 and is now limited to a 

restricted commercial and recreational fishery (Hutchings 2003). 

With the decline of the wild stocks, there has been a rising interest in cod aquaculture in 

order to meet international market demands. Norway currently has a cod industry well 

underway, while Canada, Scotland and the USA are following suit. Continued intensive 

research into developing protocols for the rearing of these fish at all stages of their life 

history can help cod aquaculture be a successful and sustainable industry,. 

Temperature, lighting regimes, salinity levels and nutrition have been manipulated in 

order to develop effective protocols for rearing marine fish in captivity (Bjornsson and 

Olafsdottir 2006, Clark et al. 1995, Davie et al. 2007, Purchase and Brown 2001, 

Puvanandren et al. 2006). However, further research is necessary so that the growth and 

quality of stocks can be further improved. Of particular interest is broodstock 

management and its effect on egg and larval quality indices. The growth and survival of 

fish in early life stages affects the recruitment and final product (Zhao et al. 2001). By 

developing methods to increase growth and survival rates at this stage, hatchery 

production can be maximized. 

An understanding of the factors affecting egg and larval quality can serve as a means to 

separate poor eggs from highly successful eggs, thus allowing producers to select viable 
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eggs that will result in maximum rates of fertilization, hatch, and larval survival. The 

viability of fish eggs - that being the success of fertilization and hatch - has been found 

to be dependent on a number of factors. These include genetic, environmental, and 

biochemical factors. Several parameters measured in newly spawned eggs of marine 

finfish species have been proposed and/or used as indicators of future egg viability or 

hatching success. For cod, these include both morphological and biochemical indices 

(Kjorsvik et al. 1990, Thorson et al. 2003, Vallin and Nissling 1998). This thesis looks in 

particular at the potential of biochemical parameters (lipid, fatty acid (FA) and free amino 

acid (FAA)) in comparison with blastomere morphology parameters as indicators of egg 

viability and hatching success and their utilization during egg development. 

1.2 Objectives 

By analyzing lipid, fatty acid and free amino acid levels in newly spawned eggs, and 

tracing the catabolism of these through development, the above variables may be 

correlated with the viability of eggs and larvae in culture. Thus they can be potentially 

useful indicators of future performance potential such as egg survival and hatching 

success. Similar studies have been done on sea bass (Nocillado et al. 2000), common 

wolffish (Halfyard and Parrish 2002), and Atlantic halibut (Zhu et al. 2003, Evans et al. 

1995). 

In this research several batches of eggs spawned from cultured cod broodstock at the 

Aquaculture Research and Development Facility (ARDF) were followed from spawning 

to yolk-sac absorption. Relationships among lipid classes, fatty acids, free amino acids, 
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fertilization success, and hatching success were examined in a manner similar to that of 

Penney et al. (2006), but here the full suite of FA as proportions (% ), ratios and 

concentrations (per egg or larva) were used. As well, low fertilization success samples 

were obtained in order to extend the viability range beyond that of Penney et al. (2006). 

In addition to lipids and FA, levels of FAA were also analysed in relation to egg and 

larval viability. 

Comparisons are made between the use of morphology and biochemistry as indicators of 

egg and larval viability. Studying lipid and amino acid utilization during ontogenetic 

development increases the knowledge of which nutrients are essential for the developing 

embryo and endogenous larvae. Identification of new biochemical indices of egg and 

larval quality contributes to developing broodstock management and husbandry protocols 

that allow maximum quality and survival of early life cod in culture. It also provides 

information that will allow producers to use the best means for selecting high quality eggs 

to ensure better survival during the early life history of their stocks. 

1.3 Background 

Currently, the most common method used to evaluate egg quality is to examine 

blastomere morphology. Fertilized eggs are examined under a stereoscope to evaluate 

such things as cell symmetry and uniformity (see Materials and Methods for further 

explanation). In general, batches of eggs showing an unusually high percentage of 

abnormal development are considered of poor quality (Kjorsvik et al. 1990, Bromage et 

al. 1994). 
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Studies on several marine fish have looked at correlating blastomere morphology with 

hatching success and larval survival. Symmetry has been correlated with hatching success 

in haddock (Rideout et al. 2004) and halibut (Shields et al. 1997). However, there are still 

some problems with using blastomere morphology as an indicator of success. For 

example, Vallin and Nissling (1998) found that these abnormalities often correct later in 

embryo development. Therefore, another measure needs to be found to improve 

predications about the quality and potential viability of eggs and larvae. 

The following is a brief overview of some of these, followed by a review of the 

importance of lipid biochemistry in egg and larval development and why it may be useful 

as an indicator of potential success. 

1.3.1 Broodstock effect 

Differences in life histories are seen between different fish populations, signifying a need 

for stock selection in culture situations. Maternal condition has been closely linked with 

the quality and condition of eggs. Ouellet et al. (2001) found that cod egg production 

correlated with number of batches from females in high pre-spawning condition, that is 

length and condition factor (CF = w!l\ However, there was no relationship of maternal 

condition and size with survival of eggs and larvae, nor with hatching success. There is a 

positive relationship between egg size and larval viability parameters - age at first 

feeding, swimbladder development, and growth rate after 15 days post hatch (dph)- with 

size, condition and age of female Icelandic cod (Marteinsdottir and Steinarsson, 1997). A 

positive correlation between egg size and larval size at hatch in Atlantic cod was noted by 
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Knutsen and Tilseth (1985). It is possible that maternal condition is only a factor in some, 

but not all, cod populations. 

In research on Baltic and Skagerrak cod, Pickova et al. ( 1997) found that the factors 

which most influenced the phospholipids (PL) in eggs was more related to stock 

differences than to diet. It is likely a combination of these that affects egg quality, but 

studies on improving diets is important for improving quality of eggs in any given stock. 

Broodstock nutrition has a major effect on egg quality. Broodstock diet affects growth of 

the fish as well as of the gonads, thus affecting fecundity (Watanabe 1985). Wroblewski 

et al. (1998) captured wild cod and fed them in captivity over several years. These captive 

cod experienced better growth and a fecundity 2-4 times that of wild cod on a natural diet. 

Nutrients in eggs come from glycophospholipoprotein vitellogenin, which is synthesized 

in the liver of the female and incorporated into the oocytes to eventually be processed into 

yolk proteins (Ohkubo and Matsubara 2001). The yolk can be defined as all the material 

which is deposited into an oocyte (via vitellogenesis) that subsequently serves as nutrients 

for the developing embryo and endogenous larvae (Wiegand 1996 ). 

Lipids are a major nutrient m fish diets, and thus can have influence on both the 

broodstock and the subsequent individual egg batches. Lipids and fatty acids (FA) in the 

eggs can reflect that of the broodstock diet (Rainuzzo et al. 1997). Thus the condition of 

the female should be expected to influence that of the egg. In a comparison of wild and 

farmed cod stocks, eggs from farmed cod showed lower levels of phosphatidylinositol, 

arachidonic acid (AA) and pigment than those of wild cod. These three factors were also 
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positively linked with success (fertilization success and survival to hatch). It was 

therefore recommended that the diet of farmed cod include higher proportions of AA 

(Salze et al. 2005). 

Another factor which can affect egg and larval quality is the genetics of the stocks used. 

Genetics in turbot and halibut have been found to account for about 30% of growth 

variation (Imsland and Jonsdottir 2002), and can account for many of the differences 

between fish populations. 

1.3.2 Biochemical factors: Lipids, fatty acids and amino acids 

The majority of past research has focused on the formulation of diets for larval and adult 

stages and, while broodstock nutrition has been well documented, less is known about the 

roles of lipids during the very early stages of life history - that is, the lipid stores of eggs 

and endogenously feeding larvae. There is a need for specific indicators that can help 

predict the success (or quality) of spawns in culture. With a controlled environment and 

selected stock being a fixed variable it is likely that the best indicator is biochemical -

specifically, lipids, FA and amino acids. 

From egg to first-feeding larval stage, cod depend on an endogenous supply of nutrients. 

These come from proteins, carbohydrates, and a supply of FA and lipids within the egg 

and yolk. Protein is a large nutrient component in marine fish eggs, up to 59% of egg 

composition in Atlantic halibut (Zhu et al. 2003). It seems logical that there is a necessary 

requirement of these nutrients for certain developmental changes to occur. As one might 
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expect, both egg and yolk size varies according to the requirements of different species of 

fish, as well as the total lipids (TL) which are stored. 

Lipid analyses may show a relationship between the levels of these lipids and FA, and the 

success of the eggs and larvae. The PL and triacylglycerols (TAG), along with many of 

the w3 and w6 fatty acids, are found in great abundance in most fish species, and at all life 

stages. Of particular importance are the polar PL phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE), and neutral lipid TAG, which serve as the main sources 

of stored energy in eggs (Pickova et al. 1997). PL are also important in the formation of 

cells and tissues (Parrish 1999). These polar lipids can make up 61 - 71% of total lipids in 

some Gadidae and flounder species (Wiegand 1996). Also of great importance are the w3 

polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosohexaenoic 

acid (DHA), which are shown to be required at some level by most fish species (Pickova 

et al. 1997). 

Lipids and FA act as sources of energy for the growing embryo and newly hatched larvae, 

as well as providing building blocks for physical development. While all lipid classes 

may be used as fuel (Wiegand 1996), the presence of particular lipids and FA in the egg 

and yolk-sac are essential for survival. Studies have shown that by profiling these in early 

life stages of marine fish, one may be able to predict the nutrient requirements for larval 

diets (Nocillado et al. 2000). Also, by understanding the influence of their levels and 

ratios it may be possible to predict the success of individual batches of eggs. This can 

include such things as fertilization and hatching potential. In wolffish, Anarhichas lupus, 

significant relationships have been found between egg lipid and fatty acid variability, 
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fertilization success, hatching success, and larval mortality (Halfyard and Parrish 2002, 

Tvelten et al. 2004 ). 

Fraser ( 1988) found that PC in cod was the only phospholipid that declined in absolute 

terms during cod embryogenesis, while the neutral lipids were catabolized during the first 

week following hatch. According to the Rainuzzo et al. ( 1997), polar lipids (particularly 

PC) are preferentially catabolized following hatch, whereas PE is synthesized or 

conserved. Simlar results were found for rockfish, Dentex dentex (Mourente et al. 1999). 

It is likely that this synthesis comes from the fatty acids produced by PC catabolism. 

While sufficient levels of these lipids and FA are needed to support a developing embryo 

and the newly hatched larvae, research has shown that it depends not only the base level 

of these, but also the relations between them. Ratios of DHA:EPA affect hatching, growth 

and neural development of both the common and spotted wolffish (Halfyard and Parrish 

2002, Tvelten et al. 2004), yellowtail flounder (Copeman et al. 2002), and cod (Pickova et 

al. 1997). These studies have all found that DHA:EPA has a positive correlation with 

growth, survival and neural function. There are a variety of reasons that may explain this, 

including the fact that there is competition between DHA and EPA for some enzymes in 

order to esterify FA into phospholipids, and also that there are high levels of DHA found 

in neural membranes (Copeman et al. 2002). Thus a low DHA:EPA may compromise 

neural development. Rainuzzo et al. ( 1997) state that high amounts of EPA in relation to 

DHA can create an imbalance in the structure of PL. Pickova et al. (1997) found that the 

AA content of the phospholipid fraction also influences egg viability and symmetry in 

cod, and is involved in prostaglandin formation. AA and EPA are both used as a substrate 
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for eicosanoids (Copeman et al. 2002), which are prostaglandins and other oxygenated 

FA responsible for a variety of physiological functions. 

Nocillado et al. (2000) found by sorting sea bass eggs into two groups (zero fertilization 

vs fertilization and hatch) there were differences in TL, saturated fatty acids (SF A), EPA, 

and DHA. Their results show that egg components may serve as quality measures in 

spawns of sea bass. Pickova et al. (1997) suggest that the DHA:EPA ratio serves as an 

important factor influencing egg viability in cod. Halfyard and Parrish (2002) found that 

in both eggs and larvae, the total and specific fatty acid and lipid class content (DHA, 

EPA, DHA:EPA, TAG and PL) were positively correlated with survival and growth in 

the common wolffish. 

A recent paper published by Penney et al. (2006) looked at the morphology as well as 

lipid biochemistry of Atlantic cod eggs. This paper compared eggs from three different 

groupings (according to broodstock). Factors measured included egg size and dry 

weights, as well as blastomere morphology, TL and lipid classes, and FA and ratios. 

Because of the low variability in blastomere morphology characteristics, Penney et al. 

(2006) were unable to correlate these factors with hatching success, and also found that 

neither TL, lipid classes, FA, nor their ratios, could be correlated with hatching success. It 

is worth noting that the range of fertilization in this study was somewhat narrow at 93.7 -

98.7%. It was suggested at the end of the paper that biochemical indicators for cod egg 

viability should include lipid profiling in combination with measurements of free amino 

acids (FAA). 
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FAA are also important factors to consider when studying egg quality. While lipids have 

been the main focus of energy metabolism in developing eggs and larvae of marine 

fishes, studies on FAA have shown an important role in energetics as well. While some of 

the FAA are incorporated into protein of the developing embryo (R(Z)nnestad et al. 1992b, 

R(Z)nnestad et al. 1993, Sivaloganathan et al. 1998), the decline in the FAA pool cannot be 

wholly attributed to protein synthesis. Instead, the breaking down of FAA is used as an 

energy source either along with other nutrients, or as a separate resource (Fyhn and 

Serigstad 1987, R(Z)nnestad et al. 1992a, R(Z)nnestad et al. 1992b, R(Z)nnestad et al. 1993, 

R(Z)nnestad et al. 1994, Finn and Fyhn 1995, Fyhn and Govani 1995, Sivaloganathan et al. 

1998). As well, some FAA are depleted at a significant rate during development, while 

others seem to be conserved. In the common wolfish, taurine - a non-essential amino acid 

- was found in higher levels in the eggs of higher quality (Halfyard and Parrish 2002). 

This may indicate an important role for particular FAA in the successful development of 

the fish. 

It is also possible that FAA contribute to the synthesis of lipids and FA. Zhu et al. (2003) 

found that FAA serve as the carbon skeleton on which lipids are built in eggs and 

endogenous larvae of Atlantic halibut. It was found that throughout development, FAA 

decreased while phospholipids increased, meaning that lipid synthesis from FAA might 

be related to the restructuring of membranes. 

As both a source of energy and as building blocks for proteins and cell membranes, FAA 

play an important biochemical role in the development success of marine fish eggs and 

11 



larvae. The contribution of FAA to early life success in species such as cod is important 

to consider, and may provide a useful indicator of viability for commercial hatcheries. 

12 



2. Lipids and fatty acids in eggs and yolk-sac larvae of Atlantic cod 

2.1 Introduction 

From both an ecological and commercial viewpoint, egg quality and larval viability go 

hand in hand. This experiment looks at the relationship among lipid classes, fatty acids, 

fertilization success, and hatching success in cod egg batches from communal spawning 

groups. Seeing if there are thresholds, minimum levels and ratios that allow maximum 

viability can then help in the development of broodstock diets that will lead to high 

quality eggs, as well as more efficient first-feeding diets that provide requisite nutrients to 

the larvae. 

The second purpose of this experiment was to examine the use and conservation of the 

lipids and FA in cod throughout development of the embryo and endogenous larvae. This 

can thereby increase the understanding of which nutrients are important for energy as 

well as for incorporation into membranes and tissues, and thus contribute to the 

development of broodstock diets which give the best advantage to offspring as well as to 

formulating diets for larval cod in the first days of feeding (Whyte et al. 1993 ). 

2.2 Materials and methods 

2.2.1 Sampling methods 

A total of twelve separate egg batches were collected throughout the experiment. Ten 

batches of eggs were collected from the cod broodstock held in a communal spawning 

tank in the Aquaculture Research and Development Facility at the Ocean Sciences 
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Centre, Logy Bay, Newfoundland. Another two batches (LowFert B and LowFert C) 

were acquired from paired matings. A total of 150- 200 ml of eggs(- 52,500- 70,000 

eggs) were used for each batch and were immersed in a Perosan disinfectant bath for one 

minute before being transferred to tanks. The eggs were reared in 300 L flow-through 

incubators at 6 ± 1 °C, with a density of approximately 50 eggs/L, with each separate 

batch kept in its own tank. The tanks were monitored regularly for mortalities and for 

hatched larvae, and dead eggs were flushed out daily. 

At collection, a subsample of one hundred eggs from each batch was examined under a 

stereoscope to estimate fertilization success (percentage of eggs showing cell cleavage), 

and blastomere morphology (adapted from Shields et al. 1997). This was performed at the 

two - sixteen cell stage. Morphological characteristics included the following: 

1) Cell symmetry: the percentage of eggs showing normal symmetry in 

blastomere cell division. 

2) Uniformity: the percentage of eggs showing blastomere cells which were 

uniform in size and shape. 

3) Adhesions: the percentage of eggs showing normal adhesion of blastomere 

cells. 

4) Margins: the percentage of eggs showing clear margins between separate 

blastomere cells. 
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5) Clarity: the percentage of eggs showing clarity in blastomere cells (no 

cloudiness) 

6) Cell number: the percentage of eggs showing expected number of cells 

with proper division (e.g. two, four, eight, sixteen). 

Eggs were from all batches were sampled immediately after spawning, at fertilization 

(Day 0), halfway to hatch (- 40 degree days), pre-hatch (- 78 dd), post-hatch (80-90 dd), 

half-way to yolk-sac absorption (114 dd) and at yolk-sac absorption (145 dd). The 

unfertilized eggs were collected separately for analysis along with the fertilized eggs from 

the same batch at Day 0. The separate batches were classified as high fertilization success 

(> 70% of eggs fertilized: HighFert), or low fertilization success ( < 70%: LowFert). Each 

egg batch was sampled in triplicate. Triplicate samples (fifty eggs/sample, one hundred 

larvae/sample) were taken from each batch for each sampling stage. Egg samples were 

rinsed with filtered seawater, gently blotted dry, and then placed in 10 mL lipid-clean 

vials with - 2 mL of CHCh. Larvae were collected on glass-fibre filters, rinsed with 

filtered sea water, and placed in 10 mL vials. The vials were then filled with N2 (g), 

sealed with Teflon tape, and stored at -20°C until lipid and fatty acid analysis took place. 

Triplicates of twenty eggs and fifty larvae were also sampled for measuring wet and dry 

weights. 

2.2.2 Lipid extraction and analysis 

Lipids were extracted from the samples using a modified Folch ( 1957) method with 2: 1 

chloroform-methanol. In brief, one ml methanol was added to the vial, and the sample 
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was ground into a pulp and sonicated in an ice bath for four minutes. The tube was then 

placed in a centrifuge and spun at > 1000 rpm for approximately two minutes. The organic 

(bottom) layer was removed using the double pipetting technique, and placed in a lipid

clean 7 ml vial. This process was repeated three to four times. The extract was then 

concentrated using nitrogen and transferred into a lipid-clean 2 ml vial. 

The lipid extract was separated into classes using a silica gel coated Chromarods-SIII in 

four solvent systems, and lipid analysis was carried out using an Iatroscan Mark V 

TLC/FID analyzer. The separation of the hydrocarbon to ketone groups (HC to KET) was 

achieved by first focusing the rods in acetone, and then developing twice in 

hexane:diethyl ether:formic acid (98.95:1:0.05) for 25 minutes, followed by 5 minutes 

drying and then developing another twenty minutes. Rods were then scanned to the 

lowest point behind the KET peak. To separate the glyceryl ether (GE) to diacylglycerol 

(DG) groups, the rods were developed for 40 minutes in hexane:diethyl ether:formic acid 

(79:20:1) and scanned to the lowest point behind the DG peak. The last development 

system, for separating the acetone mobile polar lipid (AMPL) and the phospholipid 

groups, consisted of two 15 minute developments in acetone, followed by two ten minute 

developments in chloroform:methanol:choloroform-extracted-water (5:4: 1). The entire 

length of the rods was then scanned. Peaks were compared with a 9-component lipid 

standard to identify lipid classes. 
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2.2.3 Fatty acid derivatization and analysis 

Fatty acid methyl ester derivatives were made using hexane and BF3/CH30H. In brief, 

approximately half of the lipid extract was transferred into a 7 ml lipid-clean vial and 

evaporated with nitrogen to dryness. Approximately 0.5 ml hexane and 1.5 ml 

BF3/CH30H were added to the vial, which was then vortexed and sonicated for four 

minutes. The headspace of the vials was then flushed with nitrogen, capped and placed at 

85°C for 1.5 hours. Next, 0.5 ml of chloroform extracted water and 2 ml of hexane were 

added and the resulting upper organic phase transferred to a 2 ml vial. The sample was 

blown dry with nitrogen and refilled with 2 ml hexane. Vials were filled with nitrogen 

and capped, sealed with Teflon tape, and vortexed and sonicated once more. 

The fatty acid component of the sample was analyzed using a Hewlett Packard 6890 

Series II gas chromatograph with a flame ionization detector. Resulting peaks were 

compared with a Supelco 37-component standard in order to identify FA. 

2.2.4 Statistical analysis 

Samples were sorted according to fertilized vs unfertilized eggs and fertilization and 

hatching success to see if there are statistical relationships between lipid and fatty acid 

profiles and the egg viability. Those FA examined were those which comprised greater 

than 1% of the total FA. All statistical tests were carried out using SigmaStat Version 13. 

Pearson correlations were used for fertilization and hatching success, and levels of 

particular lipid classes and FA. Comparisons between fertilized eggs and unfertilized eggs 

were made using a paired t -test, and between groups of high fertilization success (> 70%) 
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and low fertilization success ( <70%) comparisons were made using a t-test. For samples 

which did not pass normality or equal variance tests, and could not be made to pass by 

transformation, the median was tested using a Mann-Whitney Rank Sum test. 

To examine changes through development, one-way ANOV As were performed to look 

for changes in levels of lipids and FA over time. A Dunn's test was used to perform pair

wise comparisons where significant differences were found. For those samples which did 

not pass normality or equal variance, and could not be made to pass by transformation, a 

Kruskal-Wallis one-way ANOVA on ranks was performed. 

2.3 Results 

Fertilization success ranged from a low of 46% (LowFert C) to 99% (HighFert G and H). 

Hatching occurred between 82.6 dd (HighFert A) and 100 dd (LowFert B). Of the egg 

batches used in this study, ten batches survived to hatch. Of the two which did not 

survive, HighFert B was of 98.0% fertilization success and LowFert C was of poor 

success at 46% (Table 2.1 ). 

Cell number was significantly correlated with fertilization success (r = 0.615, p = 0.044), 

so that an increase in cells with abnormal cell division correlated with an decrease in 

fertilization success. High abnormalities in blastomere symmetry (r = 0.848, p < 0.001), 

cell adhesion (r = 0.809, p = 0.001), cell uniformity (r = 0.693, p = 0.018) and cell 

margins (r = 0.658, p = 0.028) correlated with a lower hatching success (Table 2.1). 

Correlations between individual lipid classes and FA can be found in Appendix I. While 

most correlations were relatively weak (r < 0.8), 24:1 showed a positive correlation with 
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fertilization success (r = 0.671, p = 0.024), hatching success (r = 0.682, p = 0.021), and 

cell symmetry (r = 0.688, p = 0.019) and adhesions (r = 0.699, p = 0.017). 

No significant differences were found between the dry weight of fertilized and 

unfertilized eggs, nor between eggs in groups of high or low fertilization success (Table 

2.2). From 0 dd to 85 dd, there was no significant difference in egg dry weight, however 

at 40 dd the eggs in the LowFert groups were significantly smaller than those in the 

HighFert group. 

Total lipid (TL) made up about 10% of the dry weight of eggs, with no differences seen 

between fertilized eggs and unfertilized eggs nor between eggs of high and low 

fertilization success (Table 2.3). Phospholipid was the predominant lipid class, with all 

other classes making up less than 1% of the total dry weight. The only significant 

differences found were in the means of TAG and PL between groups of high and low 

fertilization success. Higher levels of TAG were found in egg batches with low ( < 70%) 

fertilization success (Mann-Whitney Rank Sum test, p = 0.003), and higher levels of PL 

in batches with high (>70%) fertilization success (Tukey's t-test, p = 0.026). 

The saturate 16:0 was the predominant fatty acid found in all eggs, followed by 18: 1 ro9 

and 22:6ro3 (DHA). Levels of EPA (20:5ro3) were the next abundant. No significant 

differences were found between any of the fatty acids for fertilized vs unfertilized eggs. 

On the other hand, high fertilization success batches had much higher levels of 24: 1 than 

those with low fertilization success (Mann-Whitney Rank Sum test, p = 0.037). While 

saturates and MUF A make up most of the fatty acid profile (- 70-80% total FA), there 
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were no significant differences between these nor PUF A, PIS ratios or total w3s (Tables 

2.3 and 2.4). 

No significant differences were found in larval weights over time, or between groups 

(Table 2.5). Among the lipid classes, the only one which showed significant changes over 

time on a per individual basis was PL. There were no changes during embryo 

development, but the total phospholipid levels were significantly lower at yolk-sac 

absorption (Figure 2.1 ). PL was significantly different between high success and low 

success eggs at Day 0 and at 40 dd. 

The fatty acid saturates 14:0 and 18:0 also changed significantly. The saturate 14:0 

showed significantly lower quantities at the end of the sampling period, while 18:0 had 

significantly higher quantities at the end (Figure 2.2). For these FA, there was a 

significant difference between fertilization groups at 40 dd. Low success eggs showed 

significantly lower quantities only at this stage, while high success eggs did not change 

significantly. 

The PUFA 20:5w3, 22:5w3 and 22:6w3 all showed significantly lower quantities from 

post-hatch to yolk-sac absorption (Figure 2.3). From day 0 to post hatch, levels were 

conserved, and the significant difference only occurred by 114 dd. Total PUFA (Figure 

2.4) show significantly lower quantities post-hatch, and essential FA (DHA +EPA+ AA) 

also followed this pattern (Figure 2.8). The sum of w3 and w6's are also similar (Figure 

2.6). 
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The ratio of PUFA to SAT, or P:S, shows significantly lower values post-hatch (Figure 

2.5). Ratios of ro3 to ro6 is significanly lower at 145 dd (Figure 2.7), while AA:EPA 

changed from 0.06 at 0 dd to 0.25 at 145 dd, as EPA levels drop. DHA:EPA experienced 

only a difference of 1.89 at 0 dd to 2.27 at 145 dd (Figure 2.9). 
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Table 2.1: Blastomere morphology at day 0, fertilization success and hatching success of individual Atlantic Cf!d egg batches. 

No significant differences exist in morphology of eggs of high success and low success. 

Batch Fertilization Symmetry** Uniformity** Adhesions** Margins** Clarity Cell number* Degree days Hatch 
Success (%) (%) (•A.) (%) (%) (%) to hatch Success 

% % 
HighFertA 97.0 97.0 92.0 99.0 89.0 95.0 100.0 82.6. 88.0 
HighFertB 98.0 70.0 88.0 91.0 72.0 94.0 96.0 N/A 0 
HighFertC 97.0 94.0 96.0 99.0 88.0 100.0 99.0 88.4 91.3 
HighFertD 97.0 80.0 92.0 96.0 93.0 96.0 96.0 91.2 4.0 
HighFertE 95.0 90.0 98.0 98.0 100.0 100.0 100.0 88.3 77.3 

N 
HighFertF 96.0 88.0 92.0 96.0 76.0 98.0 96.0 89.4 89.3 

N HighFertG 99.0 97.0 93.0 100.0 97.0 97.0 95.0 87.2 95.5 
HighFertH 99.0 97.0 93.0 100.0 92.0 100.0 94.0 85.0 77.3 
LowFertA 66.0 88.0 92.0 93.0 98.0 99.0 94.0 90.3 40.0 
LowFert B 52.0 80.0 84.0 94.0 74.0 100.0 90.0 100.0 23.0 
LowFertC 46.0 80.0 88.0 94.0 62.0 98.0 92.0 N/A 0 
LowFertD 69.0 90.0 95.0 99.0 96.0 97.0 99.0 91.8 66.0 

*Correlates with Fertilization Success 

**Correlates with Hatching Success 



Table 2.2: Mean dry weight (pg) per individual Atlantic cod egg. No significant 

differences exist between groups .. 

Fertilized eggs Unfertilized eggs High Low 
Fertlization Fertilization 

HighFert A 9.28 9.18 9.28 
HighFert a 11.3 12.2 11.3 
HighFert C 9.78 7.70 9.78 
HighFert 0 11.4 9.40 11.4 
HighFert E 9.68 9.75 9.68 
HighFert F 9.65 10.2 9.65 
HighFert G 12.9 12.7 12.9 
HighFertH 12.5 16.0 12.5 
LowFertA 8.52 12.3 8.52 
LowFertB 11.7 10.8 11.7 
LowFertC 9.43 10.8 9.43 
LowFert 0 10.0 8.45 10.0 

Total 10.5 :t 0.40 10.8 :t 0.65 10.8 :t 0.49 9.91 :t 0.66 
Means 
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Table 2.3: Lipids and fatty acids in fertilized and unfertilized Atlantic cod eggs. Values 

are pg ind "1, mean ±standard error. Fatty acids shown are those which appeared in 

samples at > 1% total FA content in either group. No significant differences existed 

between groups. 

Fertilized eggs Unfertilized Eggs 
{n=12} {n=12} 

Li~ids {~g/individual} 

Hy_drocarbons 0.13 ± 0.04 0.14 ± 0.05 
Stery_l Esters/Wax Esters 0.14 ± 0.05 0 

Ethyl Ketones 0.06 ± 0.04 0.06 ± 0.03 
Methy_l Ketones 0.32 ± 0.11 0.57 ±0.24 
Triacy_lg_ly_cerols 0.42 ± 0.13 0.05 ± 0.30 

Sterols 0.79±0.14 0.66 ± 0.14 
Acetone Mobile Polar 

Li[!_ids 0.42 ± 0.08 0.29 ± 0.07 
Phose.holif!.ids 6.69 ±0.58 5.85 ± 0.61 

Total Lif!.ids 9.66 ± 0.90 9.79 ± 1.29 
Fatt~ Acids {~g/individual} 

14:0 0.11 ± 0.01 0.10 ± 0.02 
16:0 1.85 ± 0.17 1.98 ± 0.29 

16:1w9? 0.13 ± 0.01 0.13 ± 0.02 
16:1w7 0.18 ± 0.02 0.17 ± 0.02 

18:0 0.24 ±0.02 0.40 ± 0.07 
18:1w9 0.93 +0.08 0.91 ±0.12 
18:1w7 0.31 ± 0.03 0.32 ±0.04 
20:1w9 0.22 ±0.02 0.20 ± 0.03 
20:5w3 0.41 ± 0.08 0.47 ± 0.12 
22:5w3 0.05 ± 0.01 0.05 ± 0.01 
22:6w3 0.89 ± 0.18 0.95 ± 0.26 

24:1 0.17 ±0.03 0.13±0.02 
£:SAT 2.25 ± 0.21 2.34 ±0.34 

£:MUFA 2.08 ± 0.19 1.88 ± 0.26 
£:PUFA 1.66 ± 0.29 1.72 ± 0.42 

P:S 0.75±0.10 0.79±0.12 
w3 1.46 ± 0.27 1.51 ± 0.39 
w6 0.13 ± 0.02 0.15±0.03 
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Table 2.4: Lipids and fatty acids in Atlantic cod egg batches of high (> 70%) and low 

( < 70%) fertilization success. Values are pg ind -z, mean ± standard error. Fatty Acids 

shown are those which appeared in samples at> 1% total FA content in both groups. 

High fertilization Low Fertilization 
(n=8) (n=4) 

Lipids (~g individuar1
) 

Hydrocarbons 0.12 ± 0.05 0.14 ± 0.07 
Steryl Esters/Wax Esters 0.20 + 0.07 0.01 + 0.01 

Ethyl Ketones 0.08 ±0.06 0 
Methyl Ketones 0.45 ± 0.15 0.04 ± 0.04 
Triacylglycerols 0.17 ± 0.068 0.99 ± 0.34b 

Sterols 0.65 ± 0.19 1.10±0.12 
Acetone Mobile Polar 

Lipids 0.49 + 0.10 0.26 + 0.15 
Phospholipids 7.53 ± 0.768 4.76 ± 0.41b 

Total Lipids 11.04 ± 1.18 7.95 ± 1.07 
Fatty Acids 

(~g/individual) 

14:0 0.11 ± 0.01 0.11 ± 0.01 
16:0 1.85 ± 0.24 1.84 ± 0.24 

16:1w9? 0.13 ± 0.02 0.12 ± 0.02 
16:1w7 0.18 ± 0.02 0.17 ± 0.02 

18:0 0.25 ± 0.03 0.22 ± 0.03 
18:1w9 0.96 ± 0.12 0.87 ± 0.11 
18:1w7 0.32 ± 0.04 0.30 ± 0.04 
20:1w9 0.22 ± 0.03 0.22 ± 0.03 
20:5w3 0.49 ± 0.12 0.27 ± 0.05 
22:5w3 0.06 ± 0.01 0.06 ± 0.01 
22:6w3 1.12 ± 0.27 0.47 ± 0.10 

24:1 0.21 ± 0.048 0.09 ± 0.02b 
LSAT 2.27 + 0.28 2.23 + 0.29 

LMUFA 2.16 ± 0.26 1.97 ± 0.23 
LPUFA 2.02 ± 0.41 0.96 ± 0.18 

PIS 0.89 ± 0.15 0.48 ± 0.08 
w3 1.80 ± 0.38 0.82 ± 0.17 
w6 0.15 ± 0.03 0.10 ± 0.01 

*Treatments in the same row followed by different superscript letters are significantly different (P<0.05) 

25 



Table 2.5: Dry weights of Atlantic cod eggs and larvae through development: 

Fertilization (Day 0) to Yolk-sac absorption (- 10 dph). Significant differences between 

high success and low success indicated by superscript letters. All weights are pg 

individuaf1
• 

Fertilized Half-way to Pre-hatch Post- Yolk 
Eggs hatch (n=10) hatch* absorption* 

(n=12) (n=12) (n=10) (n=10) 

HighFert A 9.28 11.2 12.2 7.74 7.15 
HighFert 8 11.3 11.0 
HighFert C 9.78 11.9 8.60 7.97 7.94 6.60 
HighFert D 11.4 13.0 15.7 7.63 7.35 5.88 
HighFert E 9.68 12.7 12.6 7.87 6.37 4.83 
HighFert F 9.65 13.3 12.6 8.26 5.70 4.83 
HighFert G 12.9 14.2 13.5 7.59 10.1 8.87 
HighFertH 12.5 12.9 9.75 9.80 9.47 
LowFertA 8.52 11.1 13.0 8.17 8.00 5.43 
LowFertB 11.7 10.6 10.3 7.29 5.34 4.60 
LowFertC 9.43 9.83 
LowFertD 10.0 9.50 8.70 8.60 6.43 6.65 

HighFert 10.8±1.41 12.5 ± 1.09a 12.1 ± 8.12 ± 7.81 ± 1.57 6.36 ± 1.54 
Mean 2.35 0.77 

LowFert 9.91 ± 1.34 10.3 ± 0.735 10.7 ± 8.02± 6.59 ± 1.34 5.56 ± 1.03 
Mean 2.17 0.68 

Total Mean 10.5 ± 1.39 11.8 ± 1.46 11.7 ± 8.09± 7.44 ± 1.54 6.09 ± 1.38 
2.29 0.71 

*Indicates larval weights. 
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Figure 2.1: Total phospholipids (mean+ standard error, as pg individual1)from egg 

fertilization to larval yolk-sac absorption for Atlantic cod. Line indicates time of hatch. 

Bars with different letters are significantly different within groups. (One-way ANOVA, 

p<O.OS). 

*indicates sampling period where high success and low success groups are significantly 

different. 
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Figure 2.2: Saturates from egg fertilization to larval yolk-sac absorption for Atlantic 

cod (mean+ standard error, as pg individuaf1
). a) 14:0 b) 18:0. Line indicates time of 

hatch. Bars with different letters are significantly different within groups. (One-way 

AN OVA, p<O.OS). 

* indicates sampling period where high success and low success groups are significantly 

different. 
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Figure 2.3: Omega-3 polyunsaturates from egg fertilization to larval yolk-sac 

absorption for Atlantic cod (mean+ standard error, as pg individuaf1
). a) 20:5w3 b) 

22:5w3 c) 22:6w3. Line indicates time of hatch. Bars with different letters are 

significantly different (One-way ANOVA, p<O.OS). 
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Figure 2.4: Sum patterns from egg fertilization to larval yolk-sac absorption for 

Atlantic cod (mean+ standard error, as pg individuaf1
). A) I MUFA b) I PUFA. Line 

indicates time of hatch. Values are for all eggs/larvae from all groups in sample period. 

Bars with different letters are significantly different (One-way ANOVA, p<O.OS). 
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Figure 2.5: Ratio of PUFA to SFA (P:S) over time (mean+ standard error). Values are 

for allAtlantic cod eggs/larvae from all groups in sample period. Line indicates time of 

hatch. Bars with different letters are significantly different (One-way ANOVA, p<O.OS). 
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Figure 2.6: Sum of total a) omega-3 and b) omega-6, over time (mean+ standard 

error). Values are for all Atlantic cod eggs/larvae from all groups in sample period. 

Line indicates time of hatch. Bars with different letters are significantly different (One-

way AN OVA, p<O.OS). 
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Figure 2.7: Ratio of total w3 to w6 over time (mean +standard error). Values are for 

all Atlantic cod eggs/larvae from all groups in sample period. Line indicates time of 

hatch. Bars with different letters are significantly different (One-way AN OVA, p<O.OS). 
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Figure 2.8: Sum of essential FA: DHA +EPA + AA (mean + standard error, ug 

individual-1
) across time. Values are for all Atlantic cod eggs/larvae from all groups in 

sample period. Line indicates time of hatch. Bars with different letters are significantly 

different (One-way ANOVA, p<O.OS). 
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Figure 2.9: Ratios of a) AA:EPA and b) DHA:EPA across time (mean +standard 

error). Values are for all Atlantic cod eggs/larvae from all groups in sample period. 

Line indicates time of hatch. Bars with different letters are significantly different (One-

way ANOVA, p<O.OS). 
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2.4 Discussion: 

2.4.1 Lipids and fatty acids in day 0 eggs 

Kjorsvik et al. (1990) defines egg quality as the potential of an egg to produce viable 

larvae. Naturally, in order for this to occur the egg must first successfully fertilize, and 

then must hatch successfully. Thus, these two aspects are essential for good quality eggs. 

Some early indicators of egg quality include egg shape, buoyancy, yolk osmolarity, 

chromosomal aberrations, nutritional condition of broodstock, and occurrence of 

overripening in the egg. However, early morphological abnormalities can also serve as 

reliable and quick indicators of egg quality (Kjorsvik 1990, Bromage et al. 1994 ). 

Correlations among blastomere morphology, fertilization success, and hatching success 

show that blastomere morphology is a useful indicator of egg viability in Atlantic cod. 

Symmetry and adhesion had particularly strong positive correlations with hatching 

success and thus are strong candidates for indicators. While this was not found in the 

research done by Penney et al. (2006) it may be due to the high quality of batches in that 

study, whereas ranges of viability in the present study are much broader. This may 

indicate, however, that morphology is no different to using fertilization success itself as 

the sole parameter. Correlations between individual lipid classes and FA can be found in 

Appendix I. While most corrlations were relatively weak (r < 0.8), 24:1 showed a 

positive correlation with fertilization success, hatching success, and cell symmetry and 

adhesions, which means that the fatty acid 24: 1 is more important than thought, and 

should be examined further (see below). 
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Similar to Penney et al. (2006), positive correlations were also shown between 

morphologies, showing that morphological abnormalities usually co-occurred. In a study 

on haddock embryos, Rideout et al. (2004) observed similar results, but it was also found 

that occurrence of asymmetry in blastomere cells could be used to predict hatching 

success. A study on Atlantic halibut by Shields et al. (1997) showed that hatch rate 

correlated positively with symmetry, cell size, adhesions and cell margins. In both of 

these studies, fertilization rates were generally high- > 95% in Rideout et al. (2004) -

but did not correlate with hatching success. 

Vallin and Nissling (1998) report that malformations during early blastula (2-32 cells) 

cannot be considered as a consistent indicator of poor viability because evidence has 

shown that these abnormalities may be repaired later in development. In that study, some 

egg batches with irregular morphology actually resulted in higher hatch rates than those 

without. The recommendation from this study was that a more consistent measurement 

would be malformations at gastrulation, when egg mortality more often occurs. This 

being said, a large number of studies on various marine fish species do suggest that there 

is some validity in using cleavage patterns to estimate early embryo viability (Shields et 

al. 1997, Rideout et al. 2004, Penney et al. 2006). 

Two of the egg batches did not survive to hatch. HighFert B and LowFert C (98% and 

46% fertilization success respectively) did well for the first week of incubation, with 

losses comparable to that of other batches. However, at 40.5 dd for HighFert B and at 

76.4 dd for LowFert C, a sudden and unaccountable loss of eggs occurred. Not enough 

eggs remained for further sampling, and thus survival to hatch was 0. Other batches being 

held in the same system did not experience these sudden losses. Since HighFert B was 
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considered the high success group with a 98% fertilization success, and LowFert C was 

low at 46%, and there were no significant differences between these groups, something 

aside from lipids and FA contributed to this high loss. Since water temperatures remained 

within the 5.5-7.5 range for all incubation times, seawater was UV filtered, and oxygen 

levels were always at maximum, water quality does not appear to be a factor. Possible 

factors may include biochemical, such as FAA, proteins, carbohydrates, vitamins or 

minerals; unknown factors related to genetic variability among parental broodfish; 

problems with blastula development later than the 2-16 cell stage; or some unidentified 

husbandry problem such as bacterial or viral infection. Morphological development could 

be a problem, as Vallin and Nissling (1998) stated that abnormalities could occur at the 

gastrula stage. 

The other factor affecting egg and larval viability which was considered in this thesis is 

lipid biochemistry. While lipid and fatty acid profiles may be reported according to % TL 

or FA, or as concentrations (% dw or !Jg/g), these data do not indicate how much lipid is 

available to an individual (egg or larvae). Therefore, the values are mainly expressed in 

this thesis as mass per individual. Values expressed as per unit of dry weight can be 

found in the Appendices. 

Overall values of PL in Day 0 eggs, at 70.5% TL, were comparable with those levels 

found in the study by Penney et al. (2006), and higher than in Finn et al. (1995). 

However, Finn et al. had higher TL at 14.8 ± 0.50 !Jg ind- 1
• TAG in this study was lower 

than that of Penney et al. (2006), at only 3.67% TL, or 0.42 ± 0.13 !Jg ind- 1
• This may be 

due to differences in the amount of lipid storages in the TAG of the eggs. 
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While levels of 16:0, 18:0, and 18:1w9 were comparable with that of Finn et al. (1995), 

and higher than in Penny et al. (2006), the total DHA was much lower (at 0.89 ± 0.18 flg 

ind- 1 I 11.75 ± 1.91% FA) as were the levels of EPA (at 0.41 ± 0.08 flg ind- 1
/ 5.90 ± 

0.65% FA) than both. Although these levels were low, the eggs successfully hatched and 

likely exceeded a minimum requirement for essential FA. In the PUF A, the high level of 

w3 (averaging 88% of PUFA) reflects the important structural role of PL containing these 

FA in developing embryos (Wiegand 1996). 

A comparison of lipid and fatty acid profiles between eggs of high fertilization success 

and those of low fertilization success showed that there were significant differences, on a 

per individual basis, in levels of TAG, PL and the MUFA 24:1. While higher levels of PL 

and 24:1 were found in those batches with high fertilization success, the levels of TAG 

were actually higher in the low success groups (Table 2.4). The high level of TAG may 

possibly be attributed to an overripening of the eggs, which in tum contributed to the low 

fertilization success in the batches (Kjorsvik et al. 1990). Overripening can result in 

morphological and compositional changes in the egg, and therefore a loss in quality 

(Evans et al. 1995). PL are essential for energy as well as for membrane formation, and 

thus the high levels in all batches may increase fertilization potential. The higher 

presence of 24: 1 in high success groups can be attributed to the concurrent high amount 

of PL. This fatty acid is found in high levels in the sphingomyelin of fish tissue (Hellgren 

2001, Serot et al. 1998). Sphingomyelin is important for the formation of myelin sheaths 

around nerve fibers. Nervonic acid, 24:1, is found in high amounts in the 

phosphoglycerides of herring brains, however its exact function has not been thoroughly 

explored (Mourente and Tocher 1992). 
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There were no significant differences between groups in the sums of SF A, MUF A or 

PUF A, nor in the sums of total w3 and w6 FA. The lack of differences between other 

lipid and fatty acid levels in the eggs of high and low fertilization success batches may be 

due to several factors. First of all, all the eggs sampled were those which were 

successfully fertilized. It can be assumed therefore that in order for fertilization to be 

successful these eggs had to contain a requisite amount of certain nutrients to support a 

developing embryo. Thus those eggs which were sampled, even if coming from low 

success batches, were the eggs which would be expected to be of the highest quality in 

that particular group. Also, the broodstock from which these eggs were acquired were all 

fed the same diet. Therefore it can be assumed that the same nutrients, at the same levels, 

are available to the fish. It is expected that the eggs produced by these fish would have 

similar levels of FA and lipids, assuming that nutrition is the only factor affecting egg 

production. However, it is also possible that lipids and FA alone are not the primary 

factors. responsible for differences in egg quality. In other words, lipid and FA indicators 

alone are not adequate to predict future viability among batches of fertilized eggs in 

Atlantic cod. 

In order to see if there are differences in eggs which successfully fertilized and those 

which did not, samples were taken of unfertilized eggs when fertilized eggs were 

collected at Day 0. The comparison could then be made between fertilized and 

unfertilized eggs from the same batches, to see if lipid and fatty acid levels differed. 

These comparisons were made between the 2 - 16 cell stage of cleavage, when original 

nutrient levels would not be expected to be greatly affected by embryo development. 
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Results showed, however, that there were no significant differences between the levels of 

lipids and FA of these eggs. When ratios of FA were also looked at in comparing high 

and low fertilization eggs, and fertilized and unfertilized eggs within batches, which 

included looking at DHA:EPA, AA:EPA, ro3:ro6 FA, P:S, and also the sums of the 

essential FA (EPA, AA and DHA), no significant difference was found for any of these 

(See Appendix). The results were similar in a study on eggs of Atlantic halibut by Evans 

et al. (1995). 

Lipid and fatty acid content of eggs may not influence the ability to be fertilized. Instead 

it may be attributed to other factors, which may include outside influences such as the 

quality of sperm (Dushkina 1975, Rurangwa et al. 2004). It is possible that these eggs did 

have potential to be successfully fertilized but for some other reason did not. However, 

there may also be factors involving the egg itself, including other nutrients such as 

protein or carbohydrate content. As well, though found in much smaller amounts, 

biochemicals such as vitamin and mineral levels can play a role in embryo and larval 

success (Brooks et al. 1997). It may be that lipids and FA cannot be used as the sole 

indicator, as other variables may contribute to the total energy in eggs and yolk-sac 

larvae. One of these factors may include free amino acids, which will be looked at further 

in this thesis. 

Because ten of the egg batches were collected from communal spawning tanks, it is 

possible that eggs collected came from more than one female. This can mean that eggs in 

one 'batch' could have been a combination of eggs from more than one female. In this 

case, sample from a single batch may actually be pooled eggs from more than one group 

of eggs. This makes it difficult to attribute values such as fertilization success with full 
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confidence as applying to a single spawn from a single female. However, communal 

spawning tanks are common practice, and economical in relation to space and labour in a 

commercial setting. As well, variation in morphologies and biochemistry of eggs can 

occur over time with one single female. In situations where fish from the same stock are 

kept in the same tank, in identical health and condition, and from the same age group, 

then these variations are expected to be normal. Hatching success averaged 56%, which is 

less than averaged from the study by Penney et al. (2006) at 7 4. 7 - 83.1% and the range 

was broader at 0- 95.5%. This was also comparable to Vallin and Nissling (1998) who 

had an average hatch rate of 64% in Baltic cod, and Marteinsdottir and Steinarsson 

(1998) whose hatching success ranged from 0 -100%. However, two of the LowFert 

batches were acquired from paired matings, where eggs could be attributed to a known 

female. Any variations in this data is known to come from within a single batch of eggs. 

2.4.2 Changes in lipid profiles from fertilization to yolk-sac absorption 

Examining the lipid profile of eggs and larvae throughout development gives insight into 

which classes and particular FA are catabolized or conserved, and thus indicates which 

are important as sources of energy or building blocks for membranes and tissues. By the 

use of the lipid in endogenous larvae it is possible to know which FA need to be available 

in first-feeding diets. Knowing which FA are essential for developing embryos can 

contribute to the formulation of broodstock diets which give eggs the best biochemical 

advantage. 

In lipid classes in this study, the only one which showed significant changes on a per 

individual basis was phospholipids. The total phospholipid levels was found in lower 

42 



quantities after hatch (Fig 2.1 ). This was also found in the barfin flounder in Ohkubo and 

Matsubara (2001). However, in the white seabream, PL only showed a decline after 

embryogenesis, and remained constant post-hatch (Cejas 2004). On a per dry weight 

basis, there was no significant change in levels of PL (See Appendix 1). 

The saturates 14:0 and 18:0 also changed significantly in this study. The shorter chain 

14:0 decreased post hatch, while 18:0 increased post-hatch (Fig 2.2). This shows while 

14:0 was catabolized, 18:0 was not. A similar increase in 18:0 was also evident in the 

Atlantic halibut (Zhu et al. 2003), where 16:0 also increased, and in the common dentex 

(Mourente et al. 1999) where 18:0 increased as 11g/mg total lipid, though decreased as 

ng/individual as total lipids decreased 1.6 11g per individual per day. However, in the 

Pacific halibut 18:0 showed a significant decrease during development (Whyte et al. 

1993). Wiegand (1996) states that saturates, particularly 18:0, are retained by most 

marine fish larvae. The monosaturates showed no differences across stages. This conflicts 

with the common idea that MUF A are preferentially catabolized by developing embryos 

(Wiegand 1996). Since catabolization patterns may differ between species, it may be that 

this is not the case at all for cod. This stability during embryogenesis may mean that cod 

are using another source for energy - perhaps carbohydrates, proteins or free amino acids. 

The polyunsaturates 20:5ro3, 22:5ro3 and 22:6ro3 all showed significantly lower 

quantities at 114 dd. Total PUFA decreased post-hatch, and the essential FA (DHA + 

EPA +AA) decreased significantly in the same fashion. The sum of ro3 and ro6's followed 

the same pattern. Because the PUF A decrease, and no significant difference was found 

for total SFA, the sum ratio of PUFA to SFA, or P:S, decreased significantly post-hatch. 

However, AA:EPA and DHA:EPA levels were higher post-hatch. While the 

43 



polyunsaturates show a decrease, these increasing ratios indicate that DHA are 

preferentially conserved compared to EPA, and may therefore be more important to the 

embryo and pre-feeding larvae. 

In a normal culture situation, food is introduced to larvae as early as 2 dph. The larvae in 

this study were starved to 10 dph ( 145 dd) for utilization of endogenous yolk sac nutrients 

in the absence of exogenous feeding. The fact that the ro3 FA, essential for development, 

are being used at this point indicates that it is important that larvae are fed before this 

depletion can occur. A voiding loss of essential fatty acids can contribute to more viable 

larvae. 

Oxidative depletion of FA is possible, due to no increase in higher carbon chains and the 

lack of ability of larvae to elongate or desaturate. The decrease in ro3 and ro6, as well as 

the C20's (particularly EPA), may partly be due to oxidation for creating active 

eicosanoids (Whyte et al. 1993). 

Evans et al. ( 1995) state that energy from saturates are important during fertilization and 

development, and Rainuzzo et al. (1997) mention the catabolization of DHA during 

development. However, few changes are seen in this study before 114 dd, when the cod 

are assumed to be going into starvation. This may be explained by the fact that patterns of 

usage differ between species and depend on such things as incubation time and 

temperature. Cod, which undergo a shorter period of incubation at 6°C than do halibut or 

haddock, may first use carbohydrates as a source of energy (Ohkubo and Matsubara 

2001 ), as well as proteins and amino acids. In this case it's likely that until starvation is 
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reached, few changes may be seen in lipid profiles until these nutrients are used up. 

Instead, something else is being preferentially used to fuel maintenance and development. 

The use of nutrients in developing eggs and larvae, apart from lipids, has been shown in 

several studies, and may help explain why lipids and FA appeared to be conserved in this 

study. In the common dentex (Gimenez et al. 2006), carbohydrates played a role in 

hatching success and endogenous larvae mortality. Increased amounts of ketose, glucose-

6-phosphate, glucose and 6-deoxyhexose were associated with low quality, and it is 

suggested that these carbohydrates impaired energy catabolism and caused an 

accumulation of glycolysis metabolites in the larvae. Also associated with low quality 

was the amount of certain metabolic enzymes such as alkaline phosphatase. Alkaline 

phosphatase is involved with the catabolism of PL and dephosphorylation of phosvitin in 

the yolk. High amounts of this enzyme in larvae could cause the yolk to be consumed at a 

fast rate, resulting in higher levels of mortality in endogenous feeding larvae (Gimenez et 

al. 2006). These results indicate that it is essential to recognize the role of these other 

nutrients and enzymes in other species of marine fish. 

FAA are also a possibility as a key source of energy for the developing embryo. This has 

been examined in both turbot (R¢nnestad et al. 1992) and in the gilthead sea bream 

(R¢nnestad et al. 1994), and seen in the cod by Fyhn and Serigstad (1987) where 

significant decreases in the FAA pool were observed during embryogenesis and larval 

development. The effect of FAA on cod egg and larval viability is the subject of the 

following chapter. 
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2.5 Conclusions 

The results of this study show that lipid profiling may be useful in predicting future 

success of eggs. Eggs which came from batches with > 70% fertilization success showed 

higher levels of PL and 24:1, and lower levels of TAG, than eggs of lower success. 

Therefore the measurement of the levels of PL and TAGs in the lipid profile, along with 

24:1, may reflect the potential of particular egg batches. High levels of PL provide energy 

and building blocks for membranes, while 24: 1 can be important for neural development 

and myelation. 

With the exception of the lipids and FA mentioned above, the variability of all other lipid 

and fatty acid levels, as well as lack of significant differences among batches of different 

fertilization and hatching success, may mean that lipid profiling may not be a generally 

reliable tool for predicting the future success of eggs and larvae in a commercial setting 

(Wiegand 1996). Lipid profiling requires access to laboratory equipment and expertise 

not routinely available in commercial hatcheries and, since it does not appear to 

significantly improve the ability to predict future egg viability, cannot be justified at this 

time. A good commercial broodstock diet likely assures that lipid biochemistry is not a 

factor by which egg quality will be affected in a commercial setting, though diet is indeed 

a variable of greater influence in wild stocks. It is also important to remember that other 

factors contribute to differences in egg quality - among them biochemical factors such as 

carbohydrates, enzymes, protein and amino acids, environmental factors such as 

temperature and water quality, and other factors such as stock differences and husbandry 

practices. Blastomere morphology is a much quicker method by which egg quality can be 

determined on site, and, while not 100% reliable, the strong correlation between 
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symmetry and hatching success shows that it is currently the most useful indicator of 

viability to hatch. 

The conservation of lipids in the early stages of development shows that lipids are not the 

chief energy source for cod embryos. Instead, energy may be derived from carbohydrates, 

proteins and free amino acids. Because most lipids were not catabolized until halfway to 

yolk-sac absorption (114 dd), it is important that cod larvae be provided with exogenous 

feed before this stage to prevent starvation and allow conservation of essential FA such as 

DHA and EPA. 

Further research needs to be done on the biochemical composition of cod eggs and the 

effect on egg quality and larval viability. We predict that an examination of amino acid 

profiles, alone or in combination with lipid profiling, will give further insight into egg 

quality and total energy. This combination of factors may be necessary as a composite 

indicator of the available energy for developing embryos. It is possible that factors 

outside of biochemistry, things such as husbandry practices among tanks or batches, are 

quite large compared to the variability in egg energy levels that potential differences 

among batches is obscured. In this case, egg hatching success will be defined more by 

incubation practices than by initial egg quality at fertilization. 
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3 Free amino acids in eggs and yolk-sac larvae of Atlantic cod 

3.1 Introduction 

This experiment investigated the levels of free amino acids (FAA) in eggs and larvae of 

Atlantic cod, Gadus morhua. FAA have shown an important role in energetics of marine 

fish eggs and larvae. While some FAA are incorporated into protein of the developing 

embryo (R!(')nnestad et al. 1992b, R!(')nnestad et al. 1993, Sivaloganathan et al. 1998), the 

decline in the FAA pool cannot wholly contribute to protein synthesis. Instead, the 

breaking down of FAA are used as an energy source either along with other nutrients, or 

as a separate resource. As well, some FAA are depleted at a significant rate during 

development, while others seem to be conserved (Fyhn and Serigstad 1987, R!(')nnestad et 

al. 1992a, R!(')nnestad et al. 1993, Finn and Fyhn 1995, Fyhn and Govani 1995, R!(')nnestad 

et al. 1994, Sivaloganathan et al. 1998). 

The first part of the experiment examined newly spawned egg batches to determine if 

there is a relationship between levels of FAA and batch viability, and to find evidence of 

thresholds for particular FAA. Knowing whether FAA influence viability may then allow 

the selection of eggs with maximum potential, and thus maximize production in 

commercial settings. 

The second part of this experiment examined the trends of FAA quantity from 

fertilization through to yolk-sac absorption (0 - 145 dd) in order to observe which are 

used- either as an energy substrate or for building of protein- and which are conserved. 

This can in tum create an understanding as to which FAA are important for energy and 
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development, and thus help develop broodstock and first-feeding diets that give success 

to eggs and larvae. 

This experiment also examined the use of the EZ:faast™ GC-FID Free (Physiological) 

Amino Acid Analysis Kit as a method for measuring FAA in fish eggs and larvae. FAA 

have been typically measured by extraction with 6% tri-chloroacetic acid (TCA) and 

analyses run on an automatic amino acid analyser such as the Chromaspek 1180, Hilger 

Analytical (Fyhn and Serigstad 1987, R!Z)nnestad et al. 1992a, R!Z)nnestad et al. 1992b, 

R!Z)nnestad et al. 1993, R!Z)nnestad et al. 1994, Fyhn and Govoni 1995, Finn et al. 1995). 

The Amino Acid Analysis Kit used here was designed mainly for the analysis of blood or 

urine samples, and its application in analyzing fish samples, particularly eggs and larvae, 

is not known. While the kit does not measure taurine or arginine, it does measure a 

number of amino acids and their compounds which have not been looked at in previous 

studies. 
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3.2 Materials and methods 

3.2.1 Sampling methods 

Ten separate egg batches from the experiment in the previous chaper were used to 

analyse FAA content. Eggs were sampled for FAA analysis at the same time as lipid and 

FA samples were collected, with six sampling periods from 0 dd to 145 dd (see Materials 

and Methods section in Chapter 2 for description of rearing and sampling protocols). The 

batches were separated into two sampling groups - high fertilization success (> 70% of 

eggs fertilized) in six tanks and low fertilization success ( < 70%) in another four tanks. 

Each group was sampled in triplicate. Triplicate samples (50 eggs/sample, 100 

larvae/sample) were taken from each tank for each sampling stage. Egg samples were 

rinsed with filtered seawater, gently blotted dry, and then placed in 7 mL vials. Larvae 

were collected on glass-fibre filters, rinsed with filtered sea water, and placed in 7 mL 

vials. The vials were then filled with N2(g), sealed with Teflon tape, and stored at -80°C 

until FAA analysis took place. 

3.2.2 Free amino acid analysis 

Egg and larval samples were ground up in 3 and 2 ml distilled water, respectively. Free 

amino acids were extracted and derivatized using an EZ:faast™ GC-FID Free 

(Physiological) Amino Acid Analysis Kit. A total of 100 f..ll of sample was mixed with 

100 f..Ll of an internal standard, norvaline (0.2 mM) and n-propanol, and passed through a 

sorbent tip. It was then washed with 200 f..Ll of n-propanol, and the sorbent material was 

then ejected in an eluting medium consisting of 3:2 sodium hydroxide/N-propanol. Fifty 

f..ll chloroform and 100 f..ll iso-octane were added to the solution to form the organic layer 
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containing the FAA. Finally, 1 N hydrochloric acid was added to lower the pH of the 

solution and complete the derivatization. 

Samples were subsequently run on a Varian 3800 GC-FID to obtain peaks of FAA 

present, with the exception of taurine and arginine. Peak areas were quantified in 

comparison with a known quantity of internal standard to give quantitative values of 

FAA. 

3.2.3 Statistical methods 

Samples were sorted according to fertilized vs unfertilized eggs and fertilization success 

(% total eggs hatched) to determine statistical relationships between free amino acid 

profiles and the egg viability. Both essential and non-essential FAA were examined. All 

statistical tests were carried out using SigmaStat Version 13. Comparisons between 

fertilized eggs and unfertilized eggs were made using a paired t-test, and between groups 

of high fertilization success (> 70%) and low fertilization success ( <70%) comparisons 

were made using a Tukey's t-test. For samples which did not pass normality or equal 

variance tests, and did not pass after transformation, the median was tested using a Mann

Whitney Rank Sum test. 

To examine changes through development, one-way ANOV As were performed to look 

for changes in levels of FAA over time. A Dunn's test was used to perform pair-wise 

comparisons where significant differences were found. For those samples which did not 

pass normality or equal variance tests, and did not pass after transformation, a Kruskal

Wallis one-way ANOVA on ranks was performed. 
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3.3 Results 

Eggs from batches with high fertilization success and those from batches with low 

fertilization success showed significant differences in quantities of sarcosine, thioproline, 

hydroxyproline, ornithine and hydroxylysine. However, when comparing successfully 

fertilized eggs to those which did not fertilize, significant differences were found between 

the majority of the FAA analysed, including total FAA (Table 3.1). 

Appendix II includes a table of correlations that exist between FAA quantities and 

fertilization success, as well as some cell morphologies. Six FAA showed a positive 

correlation with fertilization success (p = 0.008 - 0.031 ), while others correlated 

negatively with cell symmetry, cell adhesions and cell clarity (p = 0.008 - 0.050). 

Cysteine was the only FAA to show a positive correlation, with cell margins (r = 0.520, p 

= 0.008). No FAA showed any significant correlation with hatching success. 

No significant differences existed at any stage, the data are represented as pooled values 

of both high and low success groups. Total FAA drops significantly from 0 dd to 40 dd, 

and shows significantly lower value at hatch (Fig. 3.1 ). Alanine, glycine, valine, 

isoleucine, asparagine, threonine, serine, a-aminodipic acid, and methionine all 

experience significant differences in quantity during embryogenesis, while leucine, 

proline, histidine, allo-isoleucine and phenylalanine only show significant difference after 

hatch (Fig. 3.2 and 3.3). The remaining FAA show no significant changes throughout 

development. Lysine is the only essential FAA which showed no change over time. 
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Table 3.1: Quantities ofF AA at fertilization (Day 0): A comparison of groups of high 
and low fertilization success and of fertilized and unfertilized Atlantic cod eggs. Values 
are nmol ina1

, mean and standard deviation. 

High Success Low Success Fertilized Unfertilized 
Free Amino Eggs Eggs Eggs eggs 

Acids (n=6) _(n=4) (n=10l l_n=9) 
Alanine, ALA 22.8 ± 2.10 25.0 ± 3.36 23.7 ± 1.93a 11.4 ± 2.28b 
Sarcosine, SAR 0.47±0.13a 0.25 ± 0.03b 0.46 ± 0.12 0.37 ± 0.64 
Glycine, GL Y 7.05 ± 0.58 6.57 ± 0.83 9.51 ±2.75a 4.90 ± 1.30b 
amino-n-butyric acid, 

0.50 ± 0.64 b ABA 0.71 ± 0.12 0.99±0.15 0.82±0.10a 
Valine, VAL 14.1 ± 1.55 13.8 ± 1.94 13.8 ± 1.19 a 7.70 ± 1.13b 
Aminoisobutyric acid, 

0.27 ± 0.05b BAIB 0.46 ± 0.10 0.51 ± 0.06 0.47 ± 0.12a 
Leucine, LEU 10.8 ± 0.70 11.5 ± 1.66 11.1 ± 1.65 a 5.65 ± 1.02b 
Isoleucine, ILE 12.1 ± 1.14 11.8 ± 1.66 11.8 ± 0.98 a 5.78±1.10b 
Allo-isoleucine, AILE 1.43 ± 0.67 0.05 ± 0.05 2.40 ± 1.72 0. 67 ± 0.33 
Asparagine, ASN 14.4 ± 2.13 17.5 ± 3.00 24.7 ± 8.85a 6.94 ± 1.60b 
Threonine, THR 12.1 ± 2.87 20.7 ± 3.54 15.9 ± 2.42a 7.17 ± 2.12b 
Serine, SER 47.3 ± 12.8 40.3 ± 17.5 68.5 ± 11.3a 30.4 ± 10.0b 
Proline, PRO 4.02 + 0.38 4.53 + 0.67 4.25 + 0.37a 2.02 ± 0.44b 
Thioproline, TPR 1.30 ± 0.48a 0.16 ± 0.04b 1.96 ± 1.27 1.16±0.52 
Aspartic acid, ASP 1.23 ± 0.20 1.32 ± 0.16 1.22 ± 0.13a 0.75±0.13b 
Methionine, MET 2.46 ± 0.42 3.60 ± 0.49 2.93 ± 0.35a 1.49 ± 0.35b 

Hydroxyproline, HYP 19.6 ± 6.12a 4.98 ± 0.49b 12.2 ± 3.40 14.8 ± 6.01 
Glutamic acid, GLU 1.50 ± 0.47 3.35 ± 0.79 2.36 ± 0.49a 1.15±0.41b 
Phenylalanine, PHE 1.99 ± 0.28 2.79 ± 0.39 2.37 ± 0.24a 1.22 ± 0.29b 
a-aminodipic acid, AAA 17.1±1.86 20.4 ± 2.30 47.65 ± 28.9 a 16.4 ± 1.71b 
a-aminopimelic acid, 

0.90 ± 0.24 b APA 1.27 ± 0.38 2.26 ± 0.47 1.71 ± 0.31 a 
Glutimine, GLN 0.45±0.18 1.10 + 0.30 0.76±0.18 1.04 ± 0.39 
Ornithine, ORN 8.25 ± 2.54a 3.61 ± 0.65 b 10.0 ± 4.37 6.10 ± 2.02 
Glycine-proline, GPR 0.33 ± 0.33 1.27 ± 1.16 0.79 ± 0.59 1.24 ± 0.77 
Lysine, LYS 0.31 ± 0.11 0.53 ± 0.13 0.41 ± 0.09 0.19 ± 0.07 
Histidine, HIS 0.20 ±0.09 0.40 ± 0.10 0.30 ± 0.07 0.15±0.06 
Hydroxylysine, HL Y 18.4 ± 6.90a 3.81±1.12b 20.3 ± 10.2 15.0 ± 5.55 
Tyrosine, TYR 12.1 ± 2.86 17.7±4.16 17.7±3.64a 6.34 ± 2.01 b 
Proline-hydroxy proline, 
PHP 82.5 ± 30.8 18.1 ± 5.81 98.5 ± 52.0 60.0 ± 24.4 
Tryptophan, TRP 2.41 ±0.72 4.44 ± 0.83 3.33 ± 0.58a 1.82 ± 0.50b 
Cystathionine, CTH 14.0 + 5.32 3.49 ± 0.78 15.5 + 7.49 11.4 ± 4.11 
Cystine, C-C 1.92 ± 0.43 1.85 ± 0.32 1.80 ± 0.26 1.60 ± 0.35 
TOTAL 335 ±53.1 299 ±40.0 443 ± 131a 227 ± 55.5b 

*Treatments in the same row followed by different superscript letters are significantly different (P<0.05) 
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Figure 3.1: Total FAA (a) and sum of essential and non-essential FAA (b) from egg 

fertilization (0 dd) to larval yolk-sac absorption (145 dd). Values are mean ±standard 

error. Line indicates time of hatch. Values are for all Atlantic eggs/larvae from all 

groups in sample period. 
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Figure 3.2: Essential FAA from egg fertilization (0 dd) to larval yolk-sac absorption 
(145 dd). The line indicates time of hatch. Values are mean ±standard error. Values 
are for all Atlantic cod eggs/larvae from all groups in sample period. 
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Figure 3.3: Non-essential FAA from egg fertilization (0 dd) to larval yolk-sac 
absorption (145 dd). The line indicates time of hatch. Values are mean ± standard 
error. Values are for all Atlantic cod eggs/larvae from all groups in sample period. 
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3.4 Discussion 

3.4.1 Free amino acids in day 0 eggs 

The EZ:faast™ GC-FID Free (Physiological) Amino Acid Analysis Kit was successful in 

measuring levels of FAA in cod eggs and larvae. Total FAA quantities were comparable 

to those of other studies on marine fish eggs and larvae, where the TCA method was used 

(Fyhn and Serigstad 1987, R0nnestad et al. 1992a, R!Z)nnestad et al. 1992b, R!Z)nnestad 

R!Z)nnestad et al. 1994, Fyhn and Govoni 1995). The kit is easy to use, and the quick 

preparation of samples makes it a useful tool for performing analysis in a commercial 

setting. While the kit could not measure taurine and arginine levels, it did provide data for 

a range of FAA broader than that provided by the TCA method. 

Free amino acids have been shown to be used by cod, as well as other marine fish 

species, during embryogenesis as a source of energy and as building blocks for important 

protein growth (Fyhn and Serigstad 1987, R0nnestad et al. 1992a, R!Z)nnestad et al. 1993, 

Finn and Fyhn 1995). Without these FAA available, it can be assumed that success of 

eggs and newly hatch larvae will be limited. The results of FAA analysis on Day 0 eggs 

show that some FAA may indeed be related to an egg's ability to be successfully 

fertilized. However, it is not certain that the difference in FAA is a cause for differences 

in fertilization, or a result of fertilization itself. A simple experiment to collect batches of 

eggs before exposure to sperm for FAA analysis preceding fertilization, and then to 

follow the batches through fertilization, would indicate whether FAA levels differ prior to 

fertilization, and can then be linked to resulting fertilization success. 
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The average total FAA, at 443 ± 131 nmol ind- 1
, is more than twice the totals reported by 

Fyhn and Serigstad (1987) for Day 0 cod eggs. However, the array of FAA included in 

this study is larger, and while missing taurine and arginine, it includes eighteen FAA not 

reported in that study. These contribute to an increased total. When looking at only those 

which were studied by Fyhn and Serigstad, with the exclusion of taurine and arginine, the 

total is reduced by almost half and thus close to their value of 200 nmol ind- 1
. This shows 

that there are a broad array of FAA which may play a role in embryogenesis and larval 

development, beyond those looked at in earlier papers, including papers examining other 

marine fish species (R!I)nnestad et al 1992a, R0nnestad et al. 1992b, R!l)nnestad et al. 

1993, Finn and Fyhn 1995, Silvanoganathan et al. 1998, Halfyard and Parrish 2002). 

The quantities ofF AA in eggs which successfully fertilized, compared to those which did 

not, show significant differences in most FAA, including total FAA. Significant 

differences existed between quantities of five individual FAA in high success vs low 

success groups, and not in total FAA. While the eggs in this case were all those from each 

group that were successfully fertilized, it may be that all FAA need to meet a particular 

threshold to allow fertilization to occur. In the case of those FAA which did not show a 

significant difference, the threshold would have to be below the lowest level in the two 

groups and therefore did not influence the success of fertilization. 

The correlations between FAA and fertilization success show a positive relationship. 

Only five of the FAA showed significant differences in the two groups, between egg 

batches of high and low fertilization success. These were sarcosine, thioproline, 

hydroxyproline, ornithine, and hydroxylysine. On average, the levels of these five in the 

low success group were less than half those of the high success group. There is little 
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information available about the exact roles of these amino acids in fish, however it is 

known that hydroxylated proline and lysine are important in the formation of collagen 

(Eastoe 1957), which is important in early life stages for the development of the skeletal 

system and fish skin. No significant correlations exist between FAA and hatching 

success, indicating that FAA do not influence hatching potential. 

3.4.2 Changes in quantities of free amino acids from fertilization to yolk-sac 

absorption 

While the majority ofF AA measured showed a significant decrease in levels throughout 

development, there were eighteen which appeared to be conserved. Of all of these, lysine 

was the only essential FAA which was not metabolized. Lysine was already at a very low 

level at the time of fertilization, and this may be why it was conserved. Use of this amino 

acid for energy or protein synthesis would have resulted in a total depletion very quickly. 

Total FAA showed a large decrease at the time of hatch, along with most individual FAA. 

While some FAA could be lost with the chorion upon hatch, it is more likely that the 

decrease is a result of the energy cost of the hatching process. At the time of yolk-sac 

absorption (10 dph, or 145 dd), the total FAA had decreased to 6.40 nmol ind- 1
• These 

results indicate that FAA is an important energy substrate during the early development 

of cod, a finding that agrees with previous work on cod (Fyhn and Serigstad 1987, Finn 

and Fyhn 1995). When comparing FAA depletion to the relative stability of most FA 

during embryogenesis, it appears that FAA are a primary source of nutrients for both 

energy and tissue growth while lipids are conserved until post-hatch. This indicates that 

lipids and FAA together may be the important indicators to measure to define total 

59 



energy availability for the developing embryo. This has been found with many marine 

fish species, including Atlantic halibut (Hippoglossus hippoglossus), lemon sole 

(Microstomus kitt), turbot (Scophthalmus maximus), Atlantic spot (Leiostomus xanthurus) 

and menhaden (Brevoortia tyrannus) (Fyhn and Serigstad 1987, R¢nnestad et al 1992a, 

R¢nnestad et al 1992b, R¢nnestad et al 1994, Finn and Fyhn 1995, Fyhn and Govoni 

1995). Work in these species measuring oxygen uptake and ammonia excretion has 

shown that FAA are being depleted primarily as a source of energy during these early 

stages (R¢nnestad et al 1992a, R¢nnestad et al 1992b, R¢nnestad et al 1994 ). 

Previous research has found that some species of marine fish, including cod, depend on 

FAA as the primary source of energy during embryogenesis at approximately 75% (Fyhn 

and Serigstad 1987), while only about 23% (Finn et al. 1995) of lipids and FA are 

catabolized during this time and the majority only catabolize from hatch and onward 

(Finn and Fyhn 1995). While this is evident in fish whose yolk has no oil globule, those 

with oil globules, such as Atlantic spot, depend primarily on lipids and FA for fuel (Fyhn 

and Govoni 1995). 

As examined in Chapter 2, a significant increase was seen at hatch of the monosaturate 

18:0. Research by Zhu et al. (2003) on Atlantic halibut found that depleted FAA may be 

used as a precursor for lipid synthesis. Once deaminated, the carbon skeleton may then be 

used as a carbon source for lipid formation. Under hypoxia, fish embryos may experience 

the stimulation of fatty acid chain elongation. This can occur during the hatching process 

of pelagic embryos (Finn et al. 1991). 
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As well, there were no evident differences in the depletion of essential FAA over non

essentials, so they are not preferentially conserved. Since essential amino acids can only 

be provided through the diet, this means that the requirement of essential FAA by first 

feeding larvae should be emphasized in formulation of first feeding diets and 

enrichments. By getting high levels of these FAA into larvae, it is possible that the 

potential for subsequent survival and growth will be greatly improved through providing 

a high source of energy as well as building blocks for body protein. 

3.5 Conclusions 

The EZ:faast™ GC-FID Free (Physiological) Amino Acid Analysis Kit was effective in 

measuring FAA. It is a quick method, with a preparation of approximately ten minutes 

per sample, and is very easy to use. This makes it a valuable tool for performing analysis 

in a commercial setting. 

Results show that FAA play an important role in the nutrition of developing cod embryos 

and endogenous-feeding larvae, and FAA profiling may be useful for examining viability 

of early life cod. The majority of FAA significantly differed between fertilized and 

unfertilized eggs within batches. It is not certain whether this difference exists before 

fertilization occurs, and is a precursor to fertilization, or if an increase in levels of FAA 

occurs as a consequence of fertilization itself. In this case, since lipids did not show any 

difference, the FAA would have to be derived from the breaking down of proteins. This 

protein breakdown in the egg may occur at fertilization in order to provide energy for the 

developing embryo. 
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Differences between FAA in high and low fertilization success groups were found in 

sarcosine, thioproline, hydroxylysine, ornithine and hydroxylysine. It is recommended 

that this be tested with further study into the specific roles of these in embryo 

development and metabolism. Because of the differences that exist in Day 0 eggs, these 

particular FAA may be useful for indicating egg and larval success and should be 

examined further. Appendix II includes a table of correlations that exist between FAA 

quantities and fertilization success, as well as some cell morphologies. A number of FAA 

showed a positive correlation with fertilization success, while others correlated negatively 

with cell symmetry, cell adhesions, and cell clarity. Cysteine was the only FAA to show a 

positive correlation with cell margins (see Appendix II, Table 3). These correlations 

indicate that FAA have a significant relationship with embryo development. There were 

no significant correlations with hatching success, which indicates that levels of FAA do 

not influence hatching potential. 

The catabolism of FAA in early development indicates that, while lipids and fatty acids 

are being conserved, FAA serve as a primary fuel and building blocks for protein 

synthesis. There did not appear to be any preferred conservation of essential FAA over 

non-essential. The FAA which were conserved was the essential lysine- already at low 

levels relative to most other FAA at Day 0 - and seventeen other non-essentials. This 

information can now contribute to developing diets for broodstock and first-feeding 

larvae which are high in the FAA needed for energy, and for supplementing those which 

are at extremely low levels in yolk-sac larvae. 
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4 Overall conclusions 

The two most abundant components of marine fish eggs are lipids and amino acids. Both 

of these are utilized from the yolk-sac during embryogenesis and early larval 

development as sources of energy, as well as building blocks for the growth of tissues. 

The determination of how these biochemical factors affect egg and larval quality can 

serve as a means to separate poor eggs from highly successful eggs, allowing producers 

to select viable eggs that will result in maximum rates of fertilization, hatch, and larval 

survival. Levels of total lipids, lipid classes, fatty acids and free amino acids were 

followed in Atlantic cod eggs and larvae from fertilization to yolk-sac absorption, and 

correlated with fertilization and hatching success. A select number of lipid classes and 

free amino acids correlated with fertilization and hatching success, and significant 

differences were found between high and low success groups in some lipid classes and 

FAA. The phospholipids and the fatty acid 24:1 showed the most potential as markers of 

viability, with 24: 1 correlating with both fertilization and hatching success. Lipids 

showed conservation throughout embryogenesis, with PL and the phospholipids 20:5ro3, 

22:5ro3 and 22:6ro3 only decreasing from hatch to yolk-sac absorption. The majority of 

FAA was catabolized as a primary energy source during embryogenesis. Blastomere 

morphologies were also analyzed in fertilized eggs. Cell symmetry, uniformity, margins 

and adhesions showed positive correlations with hatching success (p < 0.001 - 0.028). 

It is likely that a combination of these biochemical factors influence the success of cod 

eggs and larvae. No one lipid class, fatty acid, or free amino acid shows strong evidence 
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that it alone would serve as a reliable indicator of egg and larval viability. It is, however, 

evident that free amino acids are important as energy in the developing larvae, and that 

lipids are primarily conserved until after hatch. It is recommended that the role of the 

fatty acid 24:1, as well as the free amino acids showing significant differences among 

Day 0 egg groups, be investigated further to understand their roles in embryo and larval 

development. 

Morphology may still be used as a fast and efficient indicator of embryo viability in a 

commercial setting, however the need still exists to find a more concrete tool for batch 

evaluation. It is suggested that this work be repeated with cod eggs prior to exposure to 

sperm, in order to evaluate the biochemical make-up of eggs before fertilization can 

occur, and then allow these batches to be fertilized and followed through to yolk-sac 

absorption. This will allow analysis of lipid, FA and FAA composition of the complete 

yolk-sac before egg cleavage can begin, which will rule out any changes that may occur 

at the beginning of gastrulation and give a clearer picture of differences that exist in the 

biochemical make-up of batches at spawn. 

The EZ:faast™ GC-FID Free (Physiological) Amino Acid Analysis Kit is a quick and 

effective method for measuring FAA, and has great potential for use in commercial 

aquaculture settings. It is recommended that this kit be tested with samples of a variety of 

fish and marine invertebrates at all stages of development, to examine its potential for 

experiments involving a broader range of models. 
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Appendix 1: 

Supplementary lipid and fatty acid data 
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Table 1: Day 0 Atlantic cod eggs: Values are ug/g dry weight, mean ±standard error. 

High Low 
Fertilization Fertilization Fertilized Unfertilized 

Success Success(< eggs eggs 
(>70%) 70%) 

Lipids ( uw~) 
1128 ± 1045 ± 1099 ± 999± 

Hydrocarbons 426 565 336 354 
Steryl Esters/Wax 1868 ± 958 ± 1556 ± 2300 ± 

Esters 686 673 506 595 
865 ± 568± 628 ± 

Ethyl Ketones 628 0 415 337 
2200 ± 4996 ± 

Methyl Ketones 4378 ± 1471 1006 3631 ± 1031 2221 
1406 ± 7080± 4051 ± 

Triacylglycerols 489 2732 3351 ± 1069 2032 
8907 ± 6625 ± 

Sterols 5944 ± 1716 1491 6960 ± 1248 1275 
Acetone Mobile 2798± 4065± 3293 ± 

Polar Lipids 4727 ± 1005 1100 767 839 
69425 ± 57285 ± 52942 ± 

Phospholipids 6468 7343 65263 ± 4975 4569 
96314 ± 85619 ± 

Total Lipids 10689 9635 92647 ± 7723 88627 ± 11247 

Fatty acids ( uw~) 
901 ± 862 ± 888± 967± 

14:0 136 128 98 164 
15124 ± 15496 ± 16540 ± 

16:0 2407 1991 15255 ± 1689 2617 
1117 ± 1020 ± 1083 ± 1058 ± 

16:1m9? 150 137 108 163 
1546 ± 1349 ± 1477 ± 1568 ± 

16:1m7 229 205 164 213 
2208 ± 2564 ± 2333 ± 2330 ± 

18:0 322 431 255 353 
7416 ± 7969± 7776± 

18:1m9 8272 ± 1263 1090 896 1081 
2887± 2632± 2797 ± 2584± 

18:1m7 398 382 288 361 
467± 468± 467 ± 538± 

18:2m6 90.7 66.1 62.4 97.6 
1912 ± 1844 ± 1888 ± 1806 ± 

20:1m9 348 213 235 269 
3859± 2357 ± 3329 ± 4270 ± 

20:5m3 949 498 639 1081 
545 ± 317 ± 465± 445± 

22:5m3 95.4 58.4 67.2 95.6 
4523 ± 8589 ± 

22:6m3 9088 ±2308 956 7376 ± 1523 2202 
2064± 785 ± 1584 ± 1150 ± 

24:1 476 140 319 234 
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Table 2: Quantities of lipids and fatty acids throughout Atlantic cod egg and larval 
development. Values are ug/g dry weight, mean ±standard error. 

I Half-wav I I 
Half-way to I 

Yolk-sac Yolk-sac 
Fertilization to hatch Pre-hatch Post-hatch absorption absorption 

{Da_yO) (-40ddl {-78dc!) 1-85dd) {- 105dd) {140dd) 

Lipids (ug/g) 
1099 ± 996± 2671 ± 821 ± 3770± 3589 ± 

Hydrocarbons 336 391 886 259 1502 1812 
Steryt 

Esters/Wax 1556 ± 2138 ± 1855 ± 1445 ± 798 ± 1075 ± 
Esters 506 658 702 651 213 457 

568 ± 992 ± 911 ± 771 ± 566± 661 ± 
Ethyl Ketones 415 436 370 357 469 384 

3631 ± 1678 ± 3710 ± 24678 ± 14636 ± 8034± 
Methyl Ketones 1031 478 1163 14484 8468 2678 

3351 ± 743± 921 ± 22427 ± 4508± 4014 ± 
Triacylglycerols 1069 266 694 15372 2381 2556 

6960 ± 5405 ± 5131 ± 11868 ± 8507 ± 6888 ± 
Sterols 1248 1003 1713 2066 2007 1825 

Acetone Mobile 4065 ± 2165 ± 2117 ± 2605± 2959 ± 5054 ± 
Polar Lipids 767 574 707 958 853 1584 

65263 ± 47708 ± 59719 ± 70358 ± 55513 ± 50054 ± 
Phos]J_holipids 4975 4316 7537 7703 11296 5670 

92647 ± 65537 ± 84076 ± 174654 ± 118696 ± 114483 ± 
Total Lipids 7723 4881 9868 44841 20271 15463 
Fatty acids 

(ug/g) 
887 ± 744± 658 ± 1569 ± 575± 674± 

14:0 97.5 77.7 98.9 470 134 104 
15255 ± 14126 ± 11787 ± 33213 ± 18793 ± 26493 ± 

16:0 1689 1571 1774 9564 4296 4414 
1083 ± 916 ± 897 ± 2574± 1250 ± 1624 ± 

16:1w9? 108 102 147 773 207 247 
1477 ± 1233 ± 1158 ± 3095 ± 1116 ± 1825 ± 

16:1w7 164 105 173 886 222 282 
2333 ± 2974± 2469 ± 9215 ± 7049 ± 10901 ± 

18:0 255 591 360 2714 1342 1866 
7969± 6253± 5836 ± 16460 ± 6740± 10255 ± 

18:1w9 896 626 840 5405 1281 1634 
2797 ± 2218 ± 2026 ± 6431 ± 2766 ± 4146 ± 

18:1w7 288 246 302 2106 501 652 
467± 343± 338± 911 ± 341 ± 

18:2w6 62.5 40.7 58.8 277 78.0 412 ± 81 
1888 ± 1547 ± 1377 ± 4436 ± 1541 ± 2465 ± 

20:1w9 235 169 222 1164 265 381 
3329± 2704 ± 3016 ± 6604± 1558 ± 1742 ± 

20:5w3 639 400 922 1544 369 531 
465± 327 ± 348 ± 771 ± 504± 157 ± 

22:5w3 67.2 60.1 78.5 171 190 34.6 

22:6w3 7376 ± 5327 ± 6351 ± 14263 ± 4336± 2993± 
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24:1 

1523 

1584 ± 
318 

818 

1013 ± 
207 

1804 3441 1132 551 

1461 ± 
495 2469 ± 802 1228 ± 275 1991 ± 415 
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Table 3: Fatty acid ratios and sums of Day 0 Atlantic cod eggs. Sum values are ug/g 
dry weight, mean± standard error. 

Fertilized I Unfertilized I High Success I Low Success 
Eggs Eggs Eggs Eggs 

w3/w6 10.2 ± 1.01 13.0 ± 2.95 11.4 ± 5.67 8.60 ±4.72 
AA:EPA 0.06 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.07 ± 0.01 

} essentials 1.32 ± 0.26 1.50 ± 0.39 1.64 ± 1.81 0.75 + 0.56 
DHA:EPA 1.88 ± 0.43 1.87 ± 0.53 2.11 ± 0.20 1.77 ± 0.09 

P:S 0.70 ± 0.62 0.71 ± 0.62 0.84 ± 0.74 0.48 ± 0.27 
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Table 4: Correlations of Day 0 lipid and fatty acid values (p.g ind-1) with fertilization success, hatching success, and egg 
morphology. Values are r-values. Significant correlations (p < 0.05) are in bold. 

Fertilization Hatching Cell 
Lipids Success Success Symmetry. Uniformity Adhesions Margins Clarity Number 
Hydrocarbons + 0.059 -0.171 -0.329 -0.317 -0.194 -0.259 -0.152 ··0.089 
Ethyl Ketones + 0.200 + 0.276 + 0.348 + 0.007 + 0.251 + 0.066 -0.429 ... 0.405 
Methyl Ketones + 0.311 + 0.297 + 0.413 + 0.346 +0.302 + 0.289 + 0.130 ,~ 0.373 
Triacylglycerols -0.547 -0.050 -0.026 -0.430 + 0.081 -0.142 + 0.272 -0.485 
Sterols -0.139 +0.350 + 0. 197 + 0.115 +0.257 + 0.123 + 0.211 -0.061 
Acetone Mobile Polar 
Lipids + 0.218 +0.142 + 0.178 -0.243 + 0.102 -0.013 -0.265 + 0.135 
PhOSJJholiiJids + 0.488 +0.640 + 0.441 +0.406 +0.322 +0.282 + 0.162 + 0.142 
Total Lipids + 0.396 + 0.740 + 0.568 + 0.414 + 0.513 + 0.310 + 0.303 + 0.197 

Fatty Acids 
14:0 + 0.049 +0.664 + 0.535 + 0.367 + 0.482 + 0.247 + 0.469 + 0.138 
16:0 + 0.114 + 0.660 + 0.522 + 0.437 + 0.427 + 0.351 + 0.407 + 0.227 
16:1w9? + 0.265 + 0.595 + 0.470 + 0.440 + 0.429 + 0.381 + 0.243 + 0.185 
16:1w7 + 0.183 + 0.689 + 0.542 + 0.433 + 0.495 + 0.338 + 0.481 + 0.202 
18:0 + 0.239 +0.597 + 0.494 +0.506 +0.393 +0.394 + 0.467 + 0.262 
18:1w9 + 0.260 + 0.642 + 0.494 + 0.474 + 0.414 + 0.353 + 0.393 + 0.255 
18:1w7 + 0.257 + 0.596 + 0.456 + 0.441 + 0.360 + 0.347 + 0.367 + 0.206 
20:1w9 + 0.097 + 0. 532 + 0.398 + 0.421 + 0.411 +0.222 + 0.489 + 0.241 
20:5w3 + 0.436 + 0.369 + 0.314 + 0. 076 + 0.389 + 0.183 + 0.167 -0.201 
22:5w3 + 0.456 + 0.595 + 0.530 + 0. 076 + 0.520 + 0.206 + 0.136 -0.057 
22:6w3 + 0.491 + 0.329 + 0.264 + 0. 076 + 0.338 + 0.170 + 0.046 -0.180 
24:1 + 0.671 + 0.682 + 0.688 + 0. 076 +0.699 + 0.325 + 0.027 + 0.517 



Appendix II: 

Mole Percent Data for Free Amino Acids 
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Table 1: Percent mole values of free amino acids throughout development of Atlantic 
cod eggs and larvae .. Values are%± standard deviation. 

Halfway to 
DayO, Halfway to yolk-sac Yolk-sac 
Fertilized hatch Pre-hatch Post-hatch absorption absorption 

Alanine, ALA 7.00 ± 2.38 7.48 ± 2.02 5.81 ± 1.13 2.61 ± 2.30 0.97 ± 0.86 1.26 ± 0.54 
Sarcosine, SAR 0.18 ± 0.19 0.16 ± 0.14 0.17 ± 0.07 0.21 ± 0.22 0.57 ± 1.11 0.86 ± 1.17 
Glycine, GL Y 2.07 +0.77 2.69 + 0.56 2.80 + 0.38 2.00 ± 0.69 3.52 ± 2.14 4.60 ± 1.50 
ami no-n-butyric 
acid, ABA 0.27 ± 0.17 0.48 ± 0.40 0.50 ± 0.19 1.11 ± 1.09 0.28 ± 0.47 0.10 ± 0.19 
Valine, VAL 4.30 ± 0.78 5.27 ± 1.66 5.95 ± 1.29 7.44 ± 4.70 2.80 ± 2.49 1.65 ± 1.48 
Aminoisobutyric 
acid, BAIB 0.16 ± 0.06 0.18 ± 0.09 0.26 ± 0.15 0.23 ±0.17 0.47 ± 0.62 0.96 ± 1.10 
Leucine, LEU 3.41 ± 1.02 4.62 ± 1.04 6.37 ± 1.67 13.9 ± 10.9 2.00 ± 3.70 0.26 ±0.56 
Isoleucine, ILE 0.23 + 0.30 0.57 + 1.40 0.14 ± 0.21 0 2.59 ± 2.97 4.09 ± 2.07 
A I/o-isoleucine, 
AILE 3.52 ± 0.92 4.19 ± 1.11 4.34 ± 1.00 3.57 ± 2.09 0.56 ± 1.08 0.03 ±0.07 
Asparagine, 
ASN 5.12 ±1.69 4.12 ± 6.69 2.65 ± 0.73 1.61 ± 1.61 4.96 ± 5.12 4.34 ± 2.12 
Threonine, THR 9.26 ± 9.87 3.26 ± 2.24 2.80 ± 1.43 0.97 ± 1.30 0.33 ± 0.48 0.30 ± 0.45 
Serine, SER 11.4 + 11.5 9.87 ± 5.71 7.53 ± 4.36 2.34 ±4.74 0.05 ± 0.08 0 
Proline, PRO 2.34 ± 2.11 1.06 ± 0.49 0.46±0.14 0.23 ± 0.21 0.11 ± 0.22 0.02 ±0.06 
Thioproline, TPR 0.29 ±0.19 0.20 ± 0.14 0.38 ± 0.13 0.60 ± 0.57 1.64 ± 1.36 2.57 ± 1.66 
Aspartic acid, 
ASP 0.83 ± 0.93 1.31 ± 1.41 0.99 ± 0.57 5.87 ± 5.70 10.8 ± 10.3 11.2 ± 8.89 
Methionine, MET 0.93 ±0.34 0.99 ± 0.52 1.16 ± 0.25 1.18 ± 0.77 0.01 ± 0.03 0.33 ± 0.66 
Hydroxyproline, 
HYP 4.48 + 2.21 3.23 ± 1.69 4.38 ± 1.61 3.30 ± 3.01 7.09 ± 6.71 6.57 ± 3,58 
Glutamic acid, 
GLU 0.74 ± 0.63 0.44 ± 0.33 0.62 ± 0.41 0.14 ± 0.16 0 0.15 ± 0.40 
Phenylalanine, 
PHE 0.71 ±0.30 1.63 ± 2.37 1.85 ± 0.54 4.14 ± 4.27 0.04 ±0.09 0 
a-aminodipic 
acid, AAA 10.5 ± 8.22 14.8 ± 9.92 17.8 ± 5.62 24.3 ± 23.8 17.2 ± 13.8 13.0 ± 8.08 
a-aminopimelic 
acid, APA 0.47 + 0.40 0.44 ± 0.44 0.31 ± 0.32 0.08 ± 0.15 0.11 ± 0.29 0.09 ±0.23 
Glutimine, GLN 0.24 ± 0.26 0.24 ± 0.34 0.30 ± 0.43 0.17 ± 0.22 0 0.08 ± 0.21 
Ornithine, ORN 1.95 ± 0.66 2.05 ± 1.43 2.63 ± 0.98 2.04 ± 1.25 3.13 ± 1.69 4.22 ±0.88 
Glycine-proline, 
GPR 0.40 ± 0.77 0.48 ± 1.20 0.18 ± 0.33 0.15 ± 0.25 0.17 ± 0.49 0.50 ±0.56 
Lysine, LYS 0.11 ±0.10 0.24 ± 0.39 0.19±0.19 0.01 ± 0.02 0 0 
Histidine, HIS 0.08 ± 0.07 0.36 ± 0.77 0.10±0.10 0.01 ± 0.04 0 0 
Hydroxylysine, 
HLY 3.80 ± 2.23 4.19 ± 2.50 4.23 ± 1.11 1.18±1.14 4.95 ± 3.87 4.57 ±2.62 
Tyrosine, TYR 3.88 ± 2.44 3.85 ± 2.57 2.51 ± 1.72 4.20 ± 2.63 9.89 ± 9.42 6.54 ±4.99 
Proline-hydroxy 
proline, PHP 17.1 ±9.88 13.7 ± 8.94 15.7 ± 5.23 2.28 ± 4.19 3.15 ± 6.86 7.82 ± 11.6 
Tryptophan, 
TRP 0.90 ± 0.63 1.08 ± 0.71 1.58 ± 1.00 1.02 ± 0.72 1.30 ± 0.80 1.92 ± 1.09 
Cystathionine, 
CTH 2.79 + 1.65 3.09 + 2.97 2.52 + 0.80 2.44 + 2.09 13.2 ± 17.8 4.14 + 2.96 
Cystine, C-C 0.57 ± 0.39 0.81 ± 0.74 0.73 ± 0.40 0.10 ± 0.15 0.77 ± 1.32 0.32 ± 0.26 
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Table 2: Mole percent values of free amino acids in Day 0 Atlantic cod eggs. Values 
are mean ± standard deviation. 

High Success 
I 

Low Success 
I 

DayO, 
I 

DayO, 
Eggs Eggs Fertilized Unfertilized 

Alanine, ALA 6.84 ± 3.13 7.23 ± 0.68 7.00 ± 2.38 5.36 ± 3.19 
Sarcosine, SAR 0.22 ± 0.24 0.13±0.04 0.18 ± 0.19 0.30 ±0.26 

Glycine, GL Y 1.90 ± 0.97 2.32 ± 0.23 2.07 ±0.77 2.09 +0.80 
amino-n-butyric acid, 

ABA 0.31 ± 0.20 0.21 ± 0.08 0.27 ± 0.17 0.24 ± 0.26 
Valine, VAL 4.19 ± 0.89 4.48 ± 0.68 4.30 ±0.78 5.25 + 2.78 

Aminoisobutyric 
acid, BAIB 0.17 ± 0.04 0.15 ± 0.08 0.16 ± 0.06 0.17 ± 0.11 

Leucine, LEU 3.34 ± 1.28 3.50 ± 0.63 3.41 ± 1.02 2.95 + 1.91 
Isoleucine, ILE 0.09±0.18 0.44 ± 0.34 0.23 ± 0.30 0.48 ± 0.60 

Allo-isoleucine, AILE 3.34 ± 1.17 3.78 ± 0.31 3.52 ± 0.92 2.83 ± 1.46 
Asparagine, ASN 5.22 ± 1.77 4.96 ± 1.81 5.12 ±1.69 4.09 +2.53 
Threonine, THR 12.9 ± 11.6 3.77 ± 1.50 9.26 ± 9.87 3.05 ± 3.92 

Serine, SER 9.87 ± 14.6 13.7 ± 5.03 11.4 ± 11.5 6.43 ± 7.89 
Proline, PRO 3.03 ± 2.56 1.30 ± 0.19 2.34 ± 2.11 1.54 + 2.28 

Thioproline, TPR 0.22 ± 0.19 0.39 ± 0.15 0.29 ± 0.19 0.41 ± 0.28 
Aspartic acid, ASP 1.07 ± 1.13 0.46 ± 0.37 0.83 ± 0.93 0.88 ± 0.95 
Methionine, MET 1.00 ± 0.40 0.81 ± 0.25 0.93 ±0.34 0.71 + 0.52 

Hydroxyproline, HYP 3.61 ± 2.28 5.79 ± 1.43 4.48 ± 2.21 5.83 ± 3.08 
Glutamic acid, GLU 0.92 ± 0.73 0.48±0.40 0.74 ±0.63 0.32 ± 0.39 
Phenylalanine, PHE 0.73 ±0.39 0.67 ± 0.11 0.71 ±0.30 0.86 + 1.29 
a-aminodipic acid, 

AAA 12.3±10.4 7.85 + 2.37 10.5 +8.22 13.5 + 7.37 
a-aminopimelic acid, 

APA 0.53 ± 0.45 0.38 ± 0.36 0.47 ± 0.40 0.31 ± 0.26 
Glutimine, GLN 0.31 ± 0.32 0.14±0.10 0.24 +0.26 0.32 + 0.33 
Ornithine, ORN 1.74 ± 0.69 2.27 ± 0.54 1.95 ± 0.66 2.48 ± 0.91 

Glycine-proline, GPR 0.63 ± 0.95 0.07±0.13 0.40 ± 0.77 0.24 ±0.44 
Lysine, LYS 0.12 ± 0.11 0.10±0.11 0.11 +0.10 0.05 + 0.07 

Histidine, HIS 0.09 ± 0.08 0.05 ± 0.04 0.08 ±0.07 0.37 ± 1.00 
Hydroxylysine, HL Y 3.13±2.18 4.79 ± 2.19 3.80 ± 2.23 6.44 ± 2.78 

Tl'[osine, TYR 4.11 ± 2.69 3.53 ± 2.35 3.88 ± 2.44 3.67 ± 3.86 
Proline-hydroxy 

proline, PHP 14.1 ±10.5 21.5 ± 8.15 17.1 ±9.88 19.7 ± 12.7 
Tryptophan, TRP 1.00 ± 0.60 0.74 ±0.73 0.90 + 0.63 0.74 + 0.88 

Cystathionine, CTH 2.31 ± 1.73 3.51 ± 1.43 2.79 ± 1.65 4.12 ± 1.94 
Cystine, C-C 0.60 ± 0.43 0.52 ±0.38 0.57 ± 0.39 1.18±1.15 
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Table 3: Correlations of Day 0 free amino values (nmol intf1) with fertilization success, hatching success, and egg morphology in 
Atlantic cod. Values are r-values. Significant co"elations (p < 0.05) are in bold. 

Fertilization Hatching Cell 
FAA Success Success S~mmetry Unifonnit~ Adhesions Margins Clarit~ Number 
Alanine, ALA + 0.306 + 0.035 -0.071 + 0.147 -0.041 + 0.287 -0.049 + 0.106 
Sarcosine, SAR -0.011 -0.331 -0.404 -0.300 -0.412 -0.171 -0.187 :-0.169 
Glr_cine, GL Y + 0.028 -0.335 -0.438 -0.339 -0.366 -0.249 -0.225 -0.177 
amino-n-butyric acid1 ABA +0.515 -0.007 -0.438 + 0.268 -0.177 +0.250 -0.267 + 0.394 
Valine2 VAL + 0.182 -0.046 -0.157 -0.038 -0.092 + 0.167 -0.120 -0.009 
Aminoisobutyric acid, BAIB + 0.306 + 0.125 -0.049 + 0.161 -0.157 + 0.190 -0.142 + 0.277 
Leucine, LEU + 0.196 + 0.027 -0.045 + 0.090 + 0.005 + 0.234 + 0.057 -0.010 
Isoleucine, ILE + 0.175 -0.003 -0.059 + 0.037 -0.066 + 0.253 -0.055 -0.033 
Allo-isoleucine1 AILE -0.009 -0.362 -0.446 -0.354 -0.392 -0.280 -0.228 -0.195 
Asearasine, ASN + 0.059 -0.314 -0.427 -0.337 -0.332 -0.258 -0.262 -0.162 
Threonine, THR +0.462 + 0.265 -0.149 + 0.175 + 0.263 + 0.260 -0.155 + 0.191 

-l 
Serine2 SER + 0.433 + 0.214 + 0.085 + 0.072 + 0.189 + 0.182 -0.199 + 0.085 

\C) Proline, PRO + 0.244 + 0.120 + 0.028 + 0.127 + 0.100 + 0.289 -0.010 + 0.062 
Thioeroline, TPR + 0.055 -0.344 -0.443 -0.306 -0.381 -0.259 -0.290 -0.131 
Aseartic acid, ASP + 0.197 -0.183 -0.238 -0.094 -0.276 -0.196 -0.321 -0.061 
Methionine1 MET + 0.390 -0.153 -0.345 -0.043 -0.209 -0.051 -0.409 + 0.146 

I Hr_droxveroline, HYP + 0.009 -0.355 -0.445 -0.338 -0.390 -0.264 -0.246 -0.173 
Glutamic acid, GLU + 0.503 + 0.299 + 0.146 + 0.065 + 0.299 + 0.151 -0.327 + 0.093 
Phenr_lalanine, PHE + 0.445 + 0.165 -0.005 + 0.176 + 0.111 + 0.277 -0.080 + 0.182 
a-aminodieic acid, AAA -0.248 -0.154 -0.166 -0.363 -0.143 -0.171 + 0.198 -0.344 
a-aminoeimelic acid, APA + 0.293 -0.205 -0.365 -0.100 -0.246 -0.143 -0.398 + 0.108 
Glutimine, GLN + 0.222 -0.264 -0.390 -0.159 -0.313 -0.193 -0.467 + 0.034 
Ornithine2 ORN +0.020 -0.346 -0.435 -0.310 -0.389 -0.239 -0.238 -0.152 
Glr_cine-eroline, GPR + 0.203 -0.271 -0.393 -0.160 -0.317 -0.201 -0.396 + 0.033 
Lr_sine, L YS + 0.250 -0.262 -0.407 -0.175 -0.296 -0.189 -0.261 + 0.035 
Histidine, HIS + 0.310 -0.139 -0.283 -0.052 -0.188 -0.085 -0.355 + 0:116 
Hr_droxvlr_sine, HL Y + 0.016 -0.357 -0.440 -0.313 -0.399 -0.249 -0.256 -0.155 



00 
0 

Tyrosine. TYR 
Proline-hydroxy proline, 
PHP 
Tryptophan, TRP 
Cystathionine, CTH 
Cystine. C-C 
TOTAL 

+ 0.158 

-0.027 
+0.488 
-0.011 
+ 0.189 
+ 0.022 

-0.268 -0.407 

-0.356 -0.430 
+ 0.203 + 0.011 
-0.356 -0.432 
+ 0.245 + 0.250 
-0.334 -o.430 

-0.346 -0.284 -0.214 -0.365 -0.167 

-0.338 -0.394 -0.248 -0.207 -0.141 
+ 0.094 + 0.219 + 0.182 -0.313 -0.202 
-0.320 -0.399 -0.237 -0.225 -0.172 
+ 0.181 + 0.043 +0.520 + 0.002 + 0.014 
-0.344 -0.370 -0.238 -0.225 -0.189 










