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Abstract 

Offshore Oil and Gas producing platforms discharge produced water into the sea during 
production operations. This water contains toxic contaminants that are harmful to the 
marine environment. Produced water is treated before its discharge into the sea to reduce 
risks to the environment. Despite treatment, produced water contains a certain amount of 
contaminants that are not feasible to treat before discharge and can cause environmental 
concern. 

The main objective of this study is to develop decision support software with an 
application to characterize risk of produced water released from offshore platforms 
during operation. The specific objectives are: (1) development of a database for produced 
water contaminants; (2) integration of a chemical database with selected initial dilution 
and subsequent dispersion IIlOdels; (3) development of a probabilistic fish growth model; 
( 4) development of human health cancer and non-cancer risk assessment methodologies 
using probabilistic concepts; (5) development of a methodology to estimate the 
distribution of chemicals in the bones/shell/skeleton and flesh of a fish; and (6) 
application of the methodologies to a hypothetical case study. A chemical specific 
approach rather than total toxicity approach was employed to predict exposure 
concentration. Both deterministic and probabilistic hydrodynamic initial dilution models 
were used in this research. Monte Carlo simulations were performed in the probabilistic 
analysis. 

The database on chemicals was integrated into the initial dilution and dispersion models 
for predicting available concentration in the marine environment. This predicted 
environmental concentration (PEC) was converted to exposure concentration (EC) by 
incorporating probability of exposure and bioavailability. The concentration of 
contaminants in fish tissue was predicted through integrating a fish growth model and is 
presented in a modular form in the software. 

The risk of produced water to human health was based on the methodology of 
contaminated seafood ingestion. The hazard quotient (HQ) for non-carcinogens was 
predicted through dividing the chronic daily intake (CD[) by the reference dose (RjD). 
The cancer risk was predicted through multiplying the CD/ by the slope factor (SF). The 
deterministic and probabilistic analyses for risk assessment were integrated into the 
software. Risk from radionuclides in produced water was performed in a separate module 
and integrated with the main database. 

This study has introduced a concept of chemical distribution within a fish's body and 
variability in the lipid contents in the fish. The change in edible parts during the exposure 
period has been predicted through a probabilistic fish growth model and integrated with 
the human health risk assessment methodologies. 

(ii) 
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Chapter 1 

Introduction 

1.1 Background of the study 

Production of oil, to meet the world's energy demand, has increased by 

approximately 100% in each decade since the beginning of the 20th century. Despite 

innovations in renewable energy technologies, the oil and gas sources are still supplying 

63% of the world's total energy demand (Patin, 1999) and the other 37% of the total 

energy is from different sources of renewable energy including hydro, solar, wind, wave, 

wood and coal. In addition, the world's present population is increasing at an 

approximate rate of 76.5 million per year and consequently the industrialization demand 

is increasing. To cope with such increased demands, there is a quest to explore new oil 

and gas energy sources. 

Exploration, development and production are the three main phases in oil and gas 

industry activities. During exploration, the oil reserve is estimated. Through drilling, 

process wells are constructed to extract oil and gas. During this phase, drilling cuttings 
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and drilling muds are generated as wastes. In the production phase, the main wastes 

generated are produced water and produced sand. Produced water is the water brought up 

from the hydrocarbon bearing strata during the extraction of oil and/or gas. It includes 

formation water, injected water, small volumes of condensed water, and any chemicals 

added down hole or during the oil/water separation process (USEPA, 1993). Each year, 

6.91 million m3 of produced water is discharged to surface waters from the offshore 

industry (Wiedeman, 1996). The average discharge of produced water from one platform 

is about 1500 tonnes/day (GESAMP, 1993). Produced water can account for 2% to 98% 

of the extracted fluids from the reservoir (Stephenson, 1992; Wiedeman, 1996). Thus 

offshore oil and gas platforms became the largest source of oil discharges in the 

Norwegian sector of the North Sea in 1993, discharging 585 tonnes out of total 783 

tonnes (Syvertsen et al. 1996). 

The ratio between oil and water in produced water varies widely with time, location 

and properties of the formation layer. Over the economic life of a typical oil field, 

generation of produced water can exceed by ten times the volume of hydrocarbons 

(Stephenson, 1992). The ratio of oil to water in produced water for 30 oil and gas 

producing platforms has been estimated by the USEPA (1993) to be between 0.1 and 

12.6. Since the produced water is the combination of water present in the hydrocarbon 

layers and process chemicals added to the hole during the production phase, its chemical 

composition is highly variable and complex in nature. Produced water contains several 

potential toxic metals, small amounts of radionuclides, as well as industrial additives 

(DFO, 2001). These waters are treated to satisfy regulatory standards prior to discharge 
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into surface waters. Despite their treatment, produced waters still contain toxic chemicals, 

which are of environmental concern. There is a concern that the produced water 

discharge may be causing contamination in fish and fish habitats (DFO, 2001). In the 

North Sea, sub lethal effects have been observed in both adult fish and larvae at varying 

distances from some platforms (DFO, 2001) discharging produced water. 

The 5% to 10% concentration of typical produced water from a North Sea platform 

show 50% reduction in growth (ECso) for Photobacterium and five other organisms 

(Brendehaug et al. 1992). The LCso (Lethal concentration for 50% mortality) for Copepod 

(Calanus finmarchicus) based on a one-day exposure, as reported by Somerville et al. 

(1987), is 100 ml/1. Metal specific toxicological studies have been conducted in the past. 

For example, for an exposure duration varying from 8 days to 51 days, the LCso and the 

maximum acceptable tissue concentration (MATC) of arsenic for saltwater crustaceans 

are in the range of 893 to 70000 ~-tg/1, while the LC50 for fish, based on a 19-day exposure 

to cadmium, ranges from 108 to 16000 ~-tg/1 (ANWQG, 2000). A toxicological study for 

copper shows LCso for molluscs (Ostrea edulis) based on a 5-day exposure as 20000 ~-tg/1 

(ANWQG, 2000). Another study for effects of benzene on marine invertebrates (Cancer 

magister) determined LC5o based on a 40-day exposure in the range between 180 and 

1200 ~-tg/1 (ANWQG, 2000). Since there are more than eighty distinct chemicals in 

produced water and their toxicity varies considerably, risk assessment studies for these 

chemicals is becoming an increasingly important issue (Ofjord et al. 1996). 
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Once the produced water is discharged into surface water, it is quickly diluted even 

within a 50m radius from the port of discharge (Furuholt, 1996; Meinhold et al. 1996; 

Mukhtasor, 2001). Numerous models (CORMIX, DREAM, OOC, CHARM) calculate 

dilution based on effluent and ambient properties. Ecological risk assessment studies 

from produced water were performed by Furuholt (1996), Stephens et al. (1996) and 

Karman et al. ( 1996) on the basis of contaminants in produced water. Meinhold et al. 

(1996) performed a human health risk study from radionuclides in produced water. 

Elevated levels of concentrations of contaminants in fish tissue were noted in several 

studies (Trefry et al. 1996). 

The outfalls are designed on the basis of a 'Mixing Zone' concept, which is defined 

as the permitted impact zone where water quality criteria may be exceeded as long as 

acutely toxic conditions are prevented. Using the CORMIX (The Cornell Mixing Zone 

Expert System) model, which was developed by Doneker and Jirka (1990), the dilution of 

produced water can be predicted which indirectly gives the values of predicted 

environmental concentration (PEC). This software can designate a water quality criteria 

zone, which can be permitted as the mixing zone based on the regulations of different 

agencies. It does not, however, have any module to predict ecological or human health 

risk associated with the produced water. The software has not been designed as a tool to 

predict contamination from produced water discharges and does not have any database 

for produced water contaminants. The Dose Response Effects Assessment Model 

(DREAM), developed by Johnsen et al. (1999) does not have any module to predict 
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human health risk. It predicts the effects to fish and zooplankton exposed to complex 

mixtures of chemicals (Johnsen et al. 1999). 

The models discussed above are based on a deterministic approach. The types and 

quantities of chemicals in produced water are variable due to natural variability of 

reservoirs and differences in the process equipment used in separating the contaminants 

from produced water. In addition, ocean environmental variability and the model 

parameters' variability are important in calculating chemicals' concentration in marine 

biota. CORMIX and DREAM do not include the uncertainty due to the variability. For 

risk assessment purposes, the single-valued output may be an average value, which is one 

of the many different possibilities. Inclusion of the uncertainties in the model parameters 

and the concentration distributions would provide a better prediction of exposure 

concentration (EC) than those of the single value output models. The risk from produced 

water depends on the distribution of contaminants in the marine environment (Smith et al. 

1996; Somerville et al. 1987; Karman and Reerink, 1997). The fish tissue concentration 

from a snap shot value of lipid content in a fish was predicted by the USEPA (1997); 

however the lipid content in fish is a seasonally variable factor (Campbell et al. 1988; 

Madenjian et al. 2000). The relevant uncertainty in lipid content needs to be incorporated 

for a more realistic prediction of the concentration of contaminants in fish tissues. 

The effect of exposure period in predicting fish tissue concentration was ignored in 

the USEPA (1997) methodology. Change in fish weight within the exposure period has 

an effect on lipid, flesh and bone content. The edible part of a fish is determined as the 

summation of flesh, skin and lipid content. Metals and other chemicals are accumulated 
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in the edible part of a fish and thus pose risk to human health through the food chain. 

Metals can be transported from tissue to tissue in the edible parts of the fish (Campbell et 

al. 1988). Metals can also bioaccumulate in fish liver and kidneys (Eisler, 2002). In 

addition to metals, naturally occurring radioactive materials (NORM) pose risks to human 

and marine life. Being chemically similar to calcium, the NORM components mostly 

accumulate in bones (Meinhold and Hamilton, 1992). Neff (2002) reported that more 

than 42 percent of the accumulated radium is deposited in the bone of a fish. Use of a 

uniform concentration throughout the whole body of a fish may lead to overestimation of 

risk from NORM components, as humans generally do not eat the bone/ shell/skeleton. 

Ratios of concentration factors for radium in non-edible parts to edible parts in a fish 

follow a lognormal distribution. The geometric mean of the ratios was predicted as 9.9. 

The total edible part of a fish varies from 64% to 87% (USEPA, 1996a). 

There is no single general software that can be used for human and ecological risk 

assessment studies. There is also a need to fill the gap in the methodologies for human 

health risk assessment so that the risk to human health and ecological entities from 

contaminants in produced water can be predicted using a single software system. The 

integration of the produced water contaminants database with the available models and 

methodologies is also necessary to predict risk using a single software system. These 

issues are addressed in the present work. 

1.2 Scope and purpose of the research 

The proposed software in this research has the following features: 

6 



• 

• 

Database for produced water contaminants; a total of 118 chemicals have been 

listed in the database. The chemicals are selected mostly from produced water 

from oil and gas platforms. 

Integrating the database of contaminants with initial dilution and subsequent 

dispersion models. Several dilution and dispersion models were studied before 

selection of the best models. The dilution model developed by Mukhtasor (2001) 

and the dispersion models by Doneker and Jirka ( 1990) and Huang et al. ( 1994) 

have been used in this study. 

• Development of deterministic and probabilistic fish growth model. As discussed 

in the previous section, a fish growth model is a required component in this study. 

To incorporate the uncertainty, a probabilistic model has also been developed and 

integrated with the software system. 

• Development of human health cancer and non-cancer risk assessment 

methodologies for non-radionuclides using probabilistic concepts. 

• 

• 

Development of human health cancer risk assessment methodologies for 

radionuclides using the concept of chemicals' distribution between 

bones/skeleton/shell and flesh in fish. 

Application of the methodologies to a hypothetical case study . 

The database for produced water contaminants was developed through an extensive 

literature search with citation of references. All the references can be accessed and 

printed through the application. Chemical's physical, chemical and toxicological data for 

human, as well as marine species, including fish, have been stored in the database. 
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Navigation, addition of a new contaminant, printing and a query for data can be 

performed through user-friendly commands. Once the selection of contaminant(s) is 

done, the integration of contaminant(s) with the analysis is automatic. Both deterministic 

and probabilistic dilution models (Mukhtasor, 2001) have been integrated with dispersion 

models to characterize the exposure concentrations for marine biota. The input data fields 

have been arranged to make the analysis site-specific. The deterministic and probabilistic 

growth models for fish have been integrated with the exposure concentrations to predict 

fish tissue concentrations. The developed human health risk methodologies are integrated 

with the predicted fish tissue concentrations. Both deterministic and probabilistic 

approaches have been adopted in predicting human health cancer and non-cancer risk. 

The software predicts risk through individual chemicals for up to five non-radionuclide 

and three radionuclide contaminants. The total risk prediction is based on a probabilistic 

summation approach with a probabilistic concept of independence in occurrence of each 

event. The carcinogenicity is automatically detected through database properties. A case 

study is presented to highlight the application of the software. 

1.3 Thesis outline 

This thesis consists of seven chapters. The background, scope and purpose of the 

research are discussed in chapter 1. In chapter 2, the theoretical background of the 

research, the database for the chemicals associated with produced water, marine biota 

database and relevant properties are discussed. Chapter 3 presents the development of 

fish growth models. Chapter 4 covers the available dilution models, dispersion models, 
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selection of initial dilution models, model parameters input, and fish growth model 

parameters. 

In chapter 5, the framework for risk assessment is developed. The problem 

formulation, analysis and risk characterization for ecological risk assessment is discussed 

in this chapter. Prediction of exposure concentration for marine organisms, integration of 

fish growth models and prediction of contaminants' concentration in fish tissue are also 

discussed in chapter 5. Chapter 6 presents a hypothetical case study for an oil platform on 

the east coast of Canada. The developed models and methodologies for risk assessment 

have been applied in this case study based on the limited available data. Chapter 7 

provides conclusions and recommendations for future studies. 
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Chapter 2 

Characterization of Produced Water 

2.1 Introduction 

Offshore oil and gas fields have in the past been usually located in water depths up to 

500 meters, which is known as the shelf zone. This is often also a zone of large-scale 

economic activities. A schematic of the shelf zone, which is bordered by the ocean 

coastline on one side and by the continental slope on the other side, and exceeds 30 

million square kilometers in the world, is presented in Figure 2.1. Oil and gas reservoirs 

have a natural water layer known as formation water. The water that lies under the 

hydrocarbon layers in the reservoirs is the main source of chemicals in produced water 

(Figure 2.2). Most of the offshore oilfields produce large quantities of contaminated 

water that can have significant environmental effects when discharged, if not handled 

properly. Produced water is the highest volume waste generated during oil and gas 

production operations. The quantity of produced water from an oil field varies from site 

to site depending upon the characteristics of the oil reservoir and the age of the field. 
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Figure 2.1 Typical shelf zone (modified after Patin, 1999) 

The amount of treated produced water discharged from a single platform is usually 

less than 1500 m3 per day whereas discharge from large treatment facilities that process 

produced water from several platforms may be as high as 25,000 m3 per day (Menzie, 

1982). In the year 1990, the oilfields of the Gulf of Mexico (GOM) produced 5.45 

million m3 of water (Reilly, 1991) while the oil fields in the UK sector of the North Sea 

discharged 148 million m3 of produced water into the sea in 1993 (HMSO, 1994). 

Discharge of produced water on the UK continental shelf from 1991 to 2000 is presented 

in Figure 2.3. In this sector, produced water discharge was increased by 60% from 1991 

to 2000. The oil discharged into the North Sea with the produced water from the UK 

sector varies in the range of 0.0038% to 0.0066% of the total oil produced in this sector. 

In the period from 1995 to 2000, the discharged oil was almost 0.005% of the total 

produced oil in this sector. Produced waters are treated to satisfy regulatory standards 

before being discharged into the sea. In the UK sector of the North Sea, the oil content in 

discharged produced water shows a decreasing trend as shown in Figure 2.4. But the 
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amount of produced water discharge has an increasing trend (Figure 2.3). As a result, the 

total amount of oil discharged into the ocean remains approximately the same from 1991 

to 2000 in this sector (Figure 2.3). 

Oil 
reservoirs 

Figure 2.2 Typical location of oil and gas reserve (modified after Patin, 1999) 

In the Norwegian sector of the North Sea, a similar increase of produced water 

discharge (above 90 million tonnes) and associated oil is expected (Brandehaug et al., 

1992). The rate of discharge varies from 4000 m3/day in the Gulf of Mexico, USA, to 

123000 m3/day in the Java Sea, Indonesia (Brandsma and Smith, 1996; Smith et al., 
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1996; Somerville et al. 1987). An average discharge from a coastal well ranges from 1.7 

m3 per day in the Gulf coast to 7.4 m3 per day in Cook Inlet, Alaska (Wiedeman, 1996). 

In each year, approximately 1.4 million m3 of produced water is discharged to surface 

waters by the coastal oil and gas industry (Wiedeman, 1996). The Offshore Operators 

Committee (OOC) conducted a study of 42 platforms in the Gulf of Mexico that 

discharged 419m3 of oil into the Gulf of Mexico in 1989 while in the same year, 4119 m3 

of oil was discharged into the North Sea from 89 platforms (Stephenson, 1992). 
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Figure 2.3 Oil and produced water discharges on the UK Continental Shelf (data source: 
Development of UK Oil and Gas Resources 2001; http://www.dbd

data.co.uklbb2001/contents.htm) 

The Oslo and Paris (OSPAR) commission predicted the increased discharge of oil 

from produced water in the North-East Atlantic area since 1984 (Wills, 2000) as a result 
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of increased amount of produced water discharge. The volume of treated produced water 

discharged into the ocean in different parts of the world is presented in Table 2.1. Despite 

regulatory limitations on oil concentrations in the discharged produced water, the total 

amount of discharged oil is increasing throughout the world, which is mainly due to the 

increased amount of produced water discharge. The average discharges in the different 

regions are not the same as shown in Table 2.1. The Gulf of Mexico has the highest rate 

of produced water discharge (Table 2.1) to the sea. 
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Figure 2.4 Oil as a percent of produced water on the UK Continental Shelf (Data source: 
Development of UK Oil and Gas Resources 2001; http://www.dbd

data.co. uk/bb200 1/contents.htm) 

Table 2.1 Volume of produced water discharged into ocean (source: Neff, 1998) 

Location Discharge rate (m5/day) 
US Gulf of Mexico 549000 
Offshore, California 14650 
Cook Inlet, Alaska 22065 
North Sea 512000 
Australia 100000 
West Java Sea (3 offshore 192000 
facilities) 
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2.2 Oil to water ratio in produced water 

The ratio between oil and produced water varies widely with time, location and 

properties of the formation layers. In the early stages of production, the volume of 

produced water is relatively small, but with time, the hydrocarbon yield decreases and the 

produced water volume increases (Wiedeman, 1996). As a consequence of hydrocarbon 

layer depletion, injection of more water into the well is required to maintain the pressure 

for oil and gas extraction and it results in more produced water generation over the 

economic life. Table 2.2 shows the ratio of oil to produced water from 30 platforms. 

Some statistics of the ratios are: maximum 12.63, minimum 0.1, mean 3.5 and median 1.7 

(USEPA, 1993). 

2.3 Physical properties of produced water 

Physical properties of produced water depend on characteristics of the formation 

water layer, type of oil or gas produced (e.g. heavy or light), types and quantities of 

contaminants and treatment followed during production. Table 2.3 represents the 

variability in the physical properties with locations and quantities discharged into the sea. 

The discharge of produced water to the sea from individual platforms is in the range of 

314- 2.4x105 m3/day and the density of produced water varies between 988- 1185 kg/m3 

(Table 2.3). Oil concentration in the discharged produced water ranges between 2 - 565 

mg/1 and the pH ranges from 3.7 to 10. Produced water also contains dissolved and 

suspended solids and some produced water has higher salinity level (Table 2.3). 
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Table 2.2 Oil to water ratio in produced water. (source: USEPA, 1993) 

Company !Platform Oil/Condensate Produced water Water to oil 
(bbl/day) (bbl/day) ratio 

Conoco IEC 33A 76.6 62 0.81 
Mobil EC 14CF 807 2005 2.48 
Conoco V 119D 890 2817 3.17 
Shell V255A 950 1298 1.37 
Gulf SMI 23B 228 495 2.17 
Shell V39D 395 634 1.61 
Exxon SMI6A 250 625 2.5 
Marathon EI 57A-E 1200 500-2000 0.42-1.67 
Shell SMI 115A 750 1200 1.6 
Mobil EI120CF 3500 2000 0.57 
Shell SMI 130B 21500 9733 0.45 
Conoco lEI 208B 1501 350 0.23 
Shell lEI 18CF 2000 22000 11 
Gulf lEI 238A 40 2 0.05 
Placid lEI 296B 1500 1470 0.98 
Chevron SS107 (S94) 501 4610 9.2 
Chevron SS107 (S93) 2875 12500 4.35 
Amoco SS 219A 3000 800-1000 0.27-0.33 
Gulf ST 177 2800 1072 0.38 
Shell BM2C 10794 6590 0.61 
Texaco BDCCF5 873 11028 12.63 
Gulf ST 135 6000 8400 1.4 
Amoco MTD 90A 2244 15000 6.68 
Conoco ~D45E 745 1578 2.12 
Conoco 1\VD 701 5273 10721 2.03 
Texaco GIB DB600 554 3796 6.85 
Shell K\TD 105C 2091 7532 3.60 
Shell SP62A 1800 3100 1.72 
Shell SP 24/27 24000 150000 6.25 
Shell SP65B 5000 3000 0.6 
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Table 2.3 Physical properties of produced water 

Oil PW Seawater PW Oil Temper 
Platform Produced Discharge density density content ature Salinity DO COD TOC TSS TDS 
Details (m3/day) (m3/day) (kg/m3

) (kg/m3
) (mg/1) (OC) (mg/1) pH (mg/1) (mg/1) (mg/1) (mg/1) (mg/1) 

Magnus (18 
fields), North 37750- 140-
Sea• 79493.65 106000 1025 1020 8.0-360 59-68 17-1800 - 160 
Forties Delta• 239000 1049 68 76 44400 340 
Ula• 81760 1048 37 68 40440 71 
Cleeton• 314 1000 58 14.3 31 290 
Clyde• 314500 1080 34 72 72700 45 
Forties 
Charlie• 201300 1040 50 76 34200 250 
North Sea 70-
Platforms 1573300 ------ 2-220 na 44630 na 
Brentb 10800 17222 1018 7.8 40 24000 
Braeb 3791 4335 1039 68 69 30000 
Fortiesb 4284 8583 1039 50 76 34000 
Clydeb 4134 9062 1080 40 72 71000 
Roswellc 122450 6.8-7.2 0.1 250 25000 225000 
Hobbsc 34000 6.8-7.4 0.06 155 200 59800 
Lovingtonc 1198 7.0-7.3 1.4 694 400 5700 

1014- 12400- 100-
North Sead 1185 2.0-64 81000 6.7-7.3 nc 1000 -----

1020- 16900- 142-
Murchisond 1021 7.0-75 18690 7.1-8.1 441-869 335 15-85 

1019- 10310- 127- 3.0-
Huttond 1025 9-220 21035 6.9-8.3 2070 15-522 29.0 

1014- 80- 1.2-
Worldd 1140 2-565 200000 4.3-10 1220 0-1500 1000 
Kepple Creek 2690.6-
(KClr 110070 2.0-28 5.0-7.1 6.7-13.9 13-430 
Kepple Creek 0.0-
(KC2)e 41582 3.5-25 5.1-6.7 1.9-13.1 20-156 
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Platform 
Oil PW Seawater PW Oil Temper 

Salinity DO COD Produced Discharge density density content ature pH TOC TSS TDS 
Details 

(m3/day) (m3/day) (kg/m3
) (kg/m3

) (mg/1) (OC) (mg/1) (mg/1) (mg/1) (mg/1) (mg/1) (mg/1) 

Little 
Hurricane 
Creek 2935.2-
(LHC2t 259276 4.0-26 5.1-7.1 7.1-13 14-90 
Little 
Hurricae 
Creek 1687.74-
(LHC3t 264168 1-25.5 5.1-6.8 6.5-13.2 23-90 
Hurricane 22014-
Creek(HC2t 670204 6.5-13.2 3.8-6.3 6.2-12.5 44-368 
Hurricane 17855.4-
Creek(HC3)e 562580 6.2-12.5 3.7-6.2 6.2-12.5 58-388 
Hurricane 1149.6-
Creek(HC4t 210356 6.4-13.1 5.1-7.4 5.1-7.4 14-91 
Bass Straitf 14000 1026 988 90 
Gulf of 
Mexicof 3977.8 1017 1088 29 

26235-
Java Seaf 123225 ----- ---- 62-90 
North Sea1 10000 1027 1014 30 
Bintulu COTg 12000 8.2 2.15 58 
Lutong COTg 16000 8.5 1.45 137 
Labuan COTg 17000 8.8 1.4 706 

1020- 16900- 142-
Murchisond 1021 7.0-75 18690 7.1-8.1 441-869 335 15-85 
a. Flynn eta!. (1996) c. Tellez and Ntrmalakhandan (1992) e. 0, Neil eta!. (1992) 
b. Stagg et a!. ( 1996) d. Tibbetts et al.(l992) f. Smith eta!. (1996), Somerville eta!. (1987), Brandsma and Smith (1996) g. Din eta!. (1992) 
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2.4 Contaminants in produced water 

As produced water is the mixture of formation water, injected water, chemicals added 

during extraction of oil and gas and the process chemicals used to treat the produced 

water, it may contain toxic chemicals that are of concern for the marine environment. The 

contaminants in produced water can be categorized into metals, BTEX (Benzene, 

Toluene, Ethyl Benzene and Xylenes), PARs (polycyclic aromatic hydrocarbons), NPD 

(Naphthalene, Phenanthrene and Dibenzothiophene including their alkyl homologues) 

and NORM (naturally occurring radioactive materials). 

The toxicity and persistence of PARs in produced water is of the greatest 

environmental concern (Neff, 2002) and thus led to many studies associated with their 

effects (OGP, 2002; Neff and Sauer, 1996; Mulino et al. 1996). The metals that are 

present most frequently in produced water are Barium, Cadmium, Chromium, Copper, 

Iron, Nickel, Lead and Zinc (Neff, 2002). Because of their bioaccumulative nature, the 

metals may pose risk to the marine environment (Trefry et al. 1996). Despite the high 

amounts of BTEX in produced water, the BTEX may not pose high risk as these 

compounds evaporate rapidly as soon as they are discharged into the marine environment 

(Furuholt, 1996). As NORM components in produced water have long half-lives, they 

may pose risk to human health through the food chain. Meinhold et al. (1996) performed 

human health cancer risk studies from radionuclides in produced water. 

Dissolved aliphatic hydrocarbons (Decane through Tetratriacontane) in produced 

water from paraffinic oils are within the range of 606-2677 )..Lg/1 (OOC, 1975; Lysyj, 

1981; OOC, 1982; Burns, 1983; Middleditch, 1983; Caudle, 1988; Brown, 1990). 

19 



Phenols have been found in varying amounts in the water associated with all types of oils 

(Paraffinic, Asphaltenic, Gas condensate). The water from gas condensate has a higher 

quantity of phenols and low molecular weight aromatic compounds (Callaghan, 1990). 

Produced water from paraffinic oils generally has a higher concentration of simple fatty 

acids but produced water from asphaltenic oils can have notable amounts of naphthenic 

acids (Stephenson, 1992). Treatment of produced water is applied on the platform under a 

certain set of rules before discharge into the ocean. This water still contains some oil 

and/or residues. The contaminants' type and concentration vary from well to well, even 

among the different layers in the same well (Patin, 1999). The difference in the lower 

limit and upper limit of various types of contaminants and their diffusion characteristics 

in ambient seawater make the environmental impact assessment complex. 

The worldwide petroleum hydrocarbon input into the oceans from produced water 

represents about 0.4% of the total amount of petroleum hydrocarbons entering the 

world's oceans from all sources (NRC, 1985). Petroleum hydrocarbons usually represent 

10% to 65% of the total organic matter in the produced water (Neff et al. 1996). The 

organic chemicals, heavy metals and radionuclides in produced water are of concern for 

ecology and human health and therefore a considerable volume of literature addressing 

effects of produced water discharges has been developed (Ray and Engelhardt, 1992; 

Reed and Johnsen, 1996). 

Roe et al. (1996), Smith et al. (1996) and Stephenson, (1992) studied several oil 

development platforms for contaminants in the North Sea, Gulf of Mexico, Java Sea and 

Bass Straits. Their findings are tabulated in Table 2.4. The average concentrations of 
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metals in North Sea produced water are much higher than those of the Gulf of Mexico or 

the Java Sea, while the average concentrations of BTX, NPD, NORM and PAHs are 

higher in the Gulf of Mexico than those of the North Sea produced water. Radionuclides 

are highest in the Gulf of Mexico (Neff, 2002; Stephenson, 1992). The ranges of 

concentrations for organic chemicals and metals in produced water worldwide vary 

significantly. The information compiled after Neff et al. (2002) is presented in Table 2.5. 

Table 2.4 Typical concentrations of different pollutants in different regions (Units are in 
f,Lg/1 otherwise stated; Data compiled from Roe et al. (1996), Smith et al. (1996), 

Stephenson (1992), Stagg et al. (1996) and Neff (2002)) 

Parameter North sea (6 platforms) Gulf of Mexico Java Sea (6 platforms) Bass Straits 
Min Ave Max Min Ave Max Min Ave Max 

As nr nr nr nr nr nr 1.5 4.7 9 <1.5 
Ba 12000 27430 42100 nr nr nr nr nr nr nr 
Cd 20 6670 10000 0 27 98 nd 0.5 nd <5 
Cr 0.05 13.2 40 0 186 390 7.5 124 185 <5 
Cu 2 128.8 600 0 104 1455 nd 5.2 nd <5 
Fe 4 20.57 23 nr nr nr nr nr nr nr 
H_g 1.9 4 9 nr nr nr 0.004 0.006 0.0012 0.044 
Ni nr nr nr 0 192 1674 45 95 143 <5 
Pb 50 112.5 270 2 670 5700 12 193 260 23 
Zn 0.26 47 200 17 170 1600 nd nd nd <30 
Benzene 1417 4430 6853 2 1318 8722 69.3 1720 3000 24 
Toluene 2174 2571 2947 60 1065 4902 90.8 650 1300 nr 
Ethylbenzene 425 961 1503 26 68 110 26 41 56 
Xylene 675 2201 3411 160 440 720 13 247 480 
BTX 1100 15740 66900 nr nr nr nr nr nr nr 
Naphthalene 38 272 398 0 132 1179 8.4 35 99 1.6 
Phenol 33 1934 5100 0 1049 3660 nr nr nt nr 
226Ra (pCi/1) nr nr nr 4 262 584 nr nr nr nr 
228Ra (pCi/1) nr nr nr 18 277 586 nr nr nr nr 
Note nr: data were not reported; nd: data were not detected; Min: Minimum; Ave: Average; Max: Maximum 

The contaminants in produced water are generally a large number of organic and 

inorganic chemicals that are dissolved and dispersed into the produced water from the 

geological formation layers over millions of years. There is a concern about the aromatic 
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substances in produced waters. These are mainly a diverse group of unsaturated cyclic 

compounds principally of carbon and hydrogen. Some heteroatoms may also be present 

in produced water (OGP, 2002). The bulk composition of aromatic hydrocarbons in 

produced water does not vary significantly over the life of a field and there appears to be 

poor relationship between total oil content and the concentration of aromatic compounds 

(OGP, 2002). The concentration of aromatic compounds in produced water from 18 oil 

production fields operated by Norsk Hydro and Statoil in the Norwegian sector of the 

North Sea is presented in Table 2.6. 

Table 2.5 Organic chemicals, radium and metals in produced water 

Parameter Concentration (/-lg/1) 
Total Organic Carbon (TOC) :s; 100 - ;::: 11000000 
Total Saturated Hydrocarbons 17000-30000 
Total Benzene, Toluene, Ethylbenzene, Xylenes (BTEX) 68-578000 
Total Polycyclic Aromatic Hydrocarbons (PAHs) 40-3000 
Steranes /Triterpanes 140-175 
Total Phenols 600-23000 
Organic Acids :s; 1-1 0000000 
Sulfates :s; 1000-8000000 
Arsenic 0.004-320 
Barium < 1. 0-2000000 
Cadmium 0.0005-490 
Chromium <0.001-390 
Copper <0.001-55000 
Lead <0.00 1-18000 
Manganese 0.2-7000 
Mercury <0.001-75 
Nickel <0.001-1670 
Iron 0.1-465000 
Zinc 0.005-200000 
Total Radium (pCi/1) 0-5150 
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The PAHs assemblage is dominated by the more soluble lower molecular weight two and 

three-ring PAHs. Alkyl PAHs are more abundant than the parent compounds and 

phenanthrene is more abundant than anthracene (Neff, 1979). The aromatic fraction of 

produced water is dominated by BTEX and NPD (OGP, 2002). These compounds are 

highly soluble in water. High molecular weight PAHs are less water-soluble (Neff et al. 

1996) and thereby less harmful to marine species. They are present mainly in or 

associated with dispersed oil (OGP, 2002). Moreover, the higher molecular weight PAHs 

are mostly removed from produced water before discharge and thus the impacts induced 

by the higher molecular weight PAHs are reduced. The solubility of petroleum 

hydrocarbons in seawater decreases as their size (molecular weight) increases (Eastcott et 

al.1988; McAuliffe et al. 1966). The efficiency of dispersed oil separation has very little 

impact on the more soluble lower molecular weight PAHs. Thus the only PAHs from 

produced water that can reach lethal concentrations in receiving waters are the two and 

three- ring PAHs. The BTEX compounds are volatile and will evaporate rapidly from 

produced water discharged close to the sea surface or from the positively buoyant 

plumes. The NPD components are less volatile but will evaporate to some degree. The 

PAHs compounds are the less water-soluble compounds and are expected to be associated 

with particulates and oil droplets in the produced water (OGP, 2002). 

As the produced waters are subjected to treatment prior to discharge into the sea, the 

concentrations of the contaminants in the treated produced waters are of interest. The 

regulatory limitations of permissible oil content in produced water are different in 

different regions. 
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Table 2.6 Concentration of aromatic compounds in produced water (source: OGP, 2002) 

Compound Minimum concentration Maximum concentration 
(J.Lg/1) (J.tg/1) 

Benzene 32 14966 
Toluene 58 5855 
Eth_yl benzene 86 565 
M- Xylene 258 1289 
P-Xylene 74 331 
0- Xylene 221 1064 
TotalBTEX 730 24070 
Naphthalene 194 841 
C 1-Naphthalenes 309 2901 
C2-Naphthalenes 145 3207 
C3-Naphthalenes 56 2082 
Phenanthrene 9 111 
C 1- Phenanthrenes 17 323 
C2- Phenanthrenes 14 365 
C3- Phenanthrenes 9 273 
Dibenzothiophene 1 23 
C 1- Dibenzothiophenes 6 103 
C2- Dibenzothiophenes 4 120 
C3- Dibenzothiophenes 3 89 
TotalNPD 766 10439 
Acenapthylene 0.1 6.1 
Acenapthene 0.3 15.3 
Fluorene 4.1 66.7 
Anthracene 0.1 2.6 
Fluoranthene 0.1 3.6 
Pyrene 0.2 7.7 
Benz (a) anthracene 0.1 2.8 
Chrysene 0.6 15.2 
Benzo (b) fluoranthene 0.1 3.4 
Benzo (k) fluoranthene 0.0 0.6 
Benzo (a) pyrene 0.0 1.1 
Indeno (1,2,3 -c, d) pyrene 0.0 0.4 
Dibenz (a, h) anthracene 0.0 1.2 
Benzo (g, h, i) perylene 0.0 2.7 
Total16 EPA PAHs 5.8 129.2 
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The regulatory limitations of oil content with discharged produced water for different 

regions are presented in Table 2.7. The regulations allow the discharge of oil up to a 

certain level and thereby the dispersed contaminants as well as the dissolved 

contaminants are discharged into the sea with the produced waters. The water-soluble 

fraction of produced waters consists of a large variety of polar organic compounds 

originating from the oil itself, formation waters in the reservoir and the chemicals in the 

production process (Brendehaug et al, 1992). Contaminants in BPT (Best practicable 

technology) treated produced water are presented in Table 2.8. 

Table 2. 7. The regulatory limitations in different regions 

TheOSPAR Discharged oil to produced water ratio must not exceed 40 ml/1. OSP AR 

area plans to reduce it to 30 ml/1 by 2006. 

The North Sea 

(UK Sector) 
UK sector North Sea discharge limitation 35 ml/1 

Norway Discharged oil to produced water ratio must not exceed 40 ml/1. 

(Regulation imposed by State Pollutant Control Authority (SFT)) 

Canada 30 day average: 40 ml/1; 24 hour average: 60 ml/1. (C-NOPB 2001, NEB) 

United States 30 day average: 29 ml/1; 24 hour average: 42 rnl/1. (US EPA, MMS 

(Minerals Management Service). 
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Table 2.8 Pollutant concentrations for best practicable technology (BPT) treated 
produced water Effluent (source: Wiedeman, 1996) 

Pollutant Settling effluent Pollutant Settling effluent 
concentration (~g/1) concentration (~g/1) 

Conventional and non-conventional Q_ollutants Trichlorofluoromethane 294 
Total Recoverable Oil and 53 x10, Other Volatile Organics 
Grease 
Total suspended solids 0.13x10° Carbon Disulphide 8.48 
Ammonia 65.8xl03 Chloromethane 28.6 
Chlorides 65.1 x10° m- Xylene 136 
Total Dissolved Solids 84.04 x106 0 &P Xylene 86.1 
Total Phenols 2030 Vinyl Acetate 29.4 
Priority Pollutants Metals 2-Butanone 122 
Antimony 166 2- Hexanone 35.8 
Arsenic 10.80 2- Propanone 913 
Beryllium 5056 Priority Pollutants (Semi volatile organics) 
Cadmium 22.80 Bis (2-Ethylhexl) phthalate 46 
Chromium 128 Di-N- Butyl Phthalate 46 
Copper 180 Naphthalene 144 
Lead 515 Phenol 553 
Mercury 0.58 Other Semi volatile organics 

Nickel 109 Benzoic Acid 3813 
Selenium 250 Benzyl Alcohol 49.5 
Silver 252 Hexanoic Acid 790 
Thallium 180 n- Decane 139 
Zinc 329 n- Docosane 38 
Other Metals n- Dodecane 225 
Aluminium 1072 n-Eicosane 68 
Barium 52573 n-Hexosane 36.1 
Boron 20244 n-Hexadecane 283 
Calcium 2.5 xl0° n-Octacosane 35.2 
Cobalt 83.6 n-Octadecane 82.9 
Iron 15492 n-Tetracosane 38.2 
Magnesium 615.7 x10j n-Tetradecane 119 
Manganese 1301 n-Triacontane 35 
Molybdenum 86.9 o-Cresol 121 
Strontium 205.5xl0° p-Cresol 149 
Sulfur 96830 1, 2: 3, 4 Di epoxy butane 71.1 
Tin 305 2-Methylnapthalene 67.2 
Titanium 32.4 2-4 Dimethylphenol 117 
Vanadium 96.6 Radionuclides (pCi/1) 
Yttrium 25 Gross alpha 383.54 
Priority Pollutants (Volatile Organics) Gross Beta 312.63 
Benzene 4285 Lead 210 64.28 
Ethylbenzene 115 Radium226 172.18 
Methylene Chloride 170 Radium 228 228.4 
Toluene 3370 
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2.5 Database 

Removal of contaminants from produced waters follows several standard procedures. 

Characterization of produced water has been conducted by several studies including 

Brendehaug et al. 1992; Tibbetts et al. 1992 and Shepherd et al. 1992. Physical and 

chemical properties of different chemicals have been extensively studied through 

numerous studies (Howard et al. (1979-1991); Mackay et al. (84-2001); Mackay and 

Shiu, and others). Studies on the lethal effects to marine fish and other invertebrates from 

produced water components have become important to environmental engineers and 

ecological scientists. 

Despite numerous studies on produced water contaminants, their fate and transport in 

the marine environment, toxicity, discharge concentrations and risk induced to the 

ecology and humans, the data of produced water contaminants for risk assessment 

purposes is not well organized. Organization of the toxicological information and other 

related physical and chemical properties for the contaminants in produced water are 

necessary to make the data available for risk assessment studies. 

2.5.1 Produced water contaminants database 

A database on contaminants, consisting of physical, chemical and toxicological 

information was assembled in this research. Some process chemicals that are added in 

several steps of the production process have also been included. A collection of 118 

contaminants has been organized in the database. The database can be expanded through 

a simple procedure. The properties included in the database are discussed briefly below. 
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• CASRN: Each chemical has a unique number for identification. This number is 

termed as 'Chemical Abstracts Service Registry Number'. For example, the 

CASRN of benzene is 71-43-2 and toluene is 108-88-3. 

• Molecular Weight: The molecular weight of any compound (g/mol) is the mass 

per gram mole. For example, water has a molecular weight of 18.01 whereas the 

molecular weight of Toluene is 92.13. 

• Henry's Law Constant (HLC): The pressure of the gas above a solution is 

proportional to the concentration of the gas in the solution (Pa-m3 /mol). For 

example, Acetic acid has a Henry's law constant of 0.0182 Pa-m3/mole. 

• Toxicity Weighting Factor (TWF): Ratio of potential effects of a chemical to the 

effects from an equal amount of copper (standard chemical for developing 

weighting factors by USEPA, 1993). For example, Arsenic has a toxicity

weighting factor of 4.16 while for Antimony it is 0.0125. 

• Carcinogenicity: A chemical that poses a risk of cancer is classified as a 

carcinogen. The USEP A (1984) classified the chemicals according to the weight 

of evidence. 

A: Human carcinogen (known human carcinogen) 

B: Probable human carcinogen. These are grouped into two subcategories as B 1 for 

limited human evidence and B2 for sufficient evidence to animals and inadequate 

or no evidence in human. 
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C: Possible human carcinogen. 

D: Not classified as to human carcinogenicity. 

E: No evidence of carcinogenicity in humans or evidence for non- carcinogenicity 

for humans. For example, benzene is a carcinogen but chromium is not. 

• Slope Factor (SF): The slope factor for a chemical relates the chronic dose to the 

lifetime risk. Slope factor = risk I unit dose. Slope factor is used only for 

carcinogenic chemicals. Benzo[a]pyrene has a slope factor of 0.00033 

( mg/kg/ day) -l 

• Reference Dose (R.IJ): Maximum dose of the chemical that will not cause any 

harmful effect (mg/kg-day) to humans. It is used for non-carcinogenic chemicals 

or for those that have both carcinogenic and non-carcinogenic characteristics. 

Cadmium has RtD = 0.0005 (mg/kg/day). The reference dose is defined as an 

estimate of a daily dose for which no risk of deleterious effects during a lifetime 

is expected. 

• Suspended Solid-Water Partition Coefficient (Kssdw): The ratio of 

concentration of pollutant in the suspended solids to the concentration in water at 

equilibrium is the suspended solid-water partition coefficient. Cadmium has a 

partition coefficient of 320000 to suspended solid. 

• Bioconcentration Factor (BCF): The ratio between the concentration of a 

chemical in an organ or organism to the concentration in water. The 

bioconcentration factor can vary from species to species. For example, cadmium 

has a bioconcentration factor of 2213 1/k:g for fish. 
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• Vapor Pressure: The particle pressure of a vapor at the surface of its parent 

liquid at 25°C. For example, Water has a vapor pressure of 101 kPa, whereas 

benzene's is 12.7 kPa. 

• Solubility: The solubility of the compound in water at 25°C. For example, 

benzene has a solubility of0.0018 mg/L. 

• Conversion Factor (CF): In the toxicity test, some fraction of metal is dissolved 

and some is bound to particulate matter. The dissolved fraction of metals closely 

approximates the biologically available fraction. The conversion factors predict 

how different the criteria would be if they have been based on measurements of 

the dissolved concentrations. Each metals total recoverable fraction must be 

multiplied by the conversion factor to obtain a dissolved criterion that must not be 

exceeded in the water column. For example, at a water hardness of 100 mg/1 as 

CaC03, the acute total recoverable criterion for silver is 4.06 ).!g/1. The conversion 

factor for silver is 0.85. So the dissolved silver criterion is 3.45 ).!g/1. The 

conversion factor for Cadmium is 0.994 (USEPA, 1996). 

• Sorption Coefficient (Koc): The sorption constant is defined in two ways: the 

adsorption of the compound on organic carbon and the distribution of the 

compound in the soil. For example, benzene has a Koc of 1.74. 

• Octanol-Water partition coefficient (Kow): is defined as the ratio of a chemical's 

concentration in the octanol phase to its concentration in the aqueous phase of a 

two-phase octanol/water system. For example, Benzene has Log (Kow) = 2.13. 
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• Half Life (T112): The time required to reduce the amount of chemical by half. 

According to a first order decay reaction, the half-life of a chemical is defined by 

0.693/k where k is the decay rate of the chemical in the media. For example, 

Benzene has a half life of 170 hours in water. 

• Leaching Factor (LF): The fraction of a chemical that is leached into the media. 

In this case, the medium is water. For example, Barium has a leaching factor = 

0.0021. 

• Uncertainty Factor (UF): Dose extrapolations for humans from animal studies 

are associated with several uncertainties. Several categories of uncertainties are 

assigned to quantitative risk assessment. The uncertainty factors are calculated as 

F1·F2·F3· .... Fn where F1• F2 .. ·Fn are the uncertainties from various sources. If 

animal studies data are used for dose calculation the uncertainty is 

UF=10x10x10=1000 (10 for interspecies, 10 for intraspecies, 10 for potential 

synergism). When the exposure pathway is inappropriate, another factor will have 

to be incorporated and the total uncertainty would become 10000. If the data were 

collected from a human study then interspecies variation would become 1 and the 

UF would be 100 (Hallenbeck and Cunningham, 1991). 

• Lowest Observed Adverse Effect Limit (LOAEL): The lowest concentration of 

a chemical for which an effect is observed. For Barium, LOAEL to fish is 0.21 

)lg/1. 
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• No Observed Adverse Effect Limit (NOAEL): No observed adverse effect limit: 

The concentration of a chemical that does not show any adverse effect to the 

exposed animal. 

• No Observed Effect Concentration (NOEC): It is the highest dose of a chemical 

to any organism for which no effect is observed. For example, Cadmium has a 

NOEC of 2.53 ).-lg/1 for fish. 

• Typical concentration in the Ocean: The background level of cadmium in the 

ocean is 0.02 ).-lg/1. 

• Lethal Concentration for 50% Mortality (LCso): The lethal concentration at 

which 50% of the exposed organisms died. Cadmium has LCso for a fish of 2.95 

).-lg/1. 

• Sediment-Water Partition Coefficient (Ksedw): The ratio of concentration of 

pollutant in the sediment to the concentration in water at equilibrium, Cadmium 

has a partition coefficient of 2000 for sediment. 

The interface of the database is presented in Figure 2.5. Data for all contaminants can 

be accessed directly from the database window. It is presented in Figure 2.6. The specific 

reference can be viewed by double clicking the relevant reference number. It is presented 

in Figure 2.7. The particular definition can be viewed through clicking on the property 

name. Figure 2.8 shows the related interface. 
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Figure 2.5 Contaminants' database form 
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Figure 2.6 Interface of contaminants data table 
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Figure 2.7 Interface of individual reference 
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h Chemical Properties EJ~~ 

Definitions of some important Properties 
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~ ...................................... , Print All Definitions 

1 

I 
Figure 2.8 Interface of individual property definition 

The full references can be accessed through a single command button. This is 

presented in Figure 2.9. All references and definitions can be printed by user-friendly 
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commands. Any reference can be added or deleted. Figure 2.10 shows the form to add or 

delete any reference. 
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Figure 2.10 Interface of add/delete command execution 
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A contaminant can be selected through browsing the navigation commands or by 

direct query. If the name is typed partially or in full, related contaminants will be 

presented. The same purpose can be served by inserting the CASRN of the chemical in a 

specified format. The required contaminant can be accessed from that window. These are 

shown in Figures 2.11 and 2.12 . 

.b QUERY FORM [g[Q)~ 

Contaminant Search 

FIND I 
r. NAME r CASRN 

[fhe Name can be incomplete but starting 
must match with the existing name) 

Close J 
Chemical Abstracts Service Registry Number. 
Exact matching in '#- #- #' format required. 

Figure 2.11 Interface of query form 
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7440·42·8 
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ABORT I 
Figure 2.12 Interface of query result 
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Once the selection of contaminant(s) for analysis is done, the contaminant(s) can be 

viewed with selected properties in a window by clicking a command button. These can be 

printed if required. Figure 2.13 shows the necessary interface. 

:1> EXTRACTED CONTAMINAtHS [g[@~ 

Print J Return ~ I 

Figure 2.13 Selected contaminants' properties 

A comprehensive database for the properties of produced water contaminants is presented 

in Appendix 1. 

2.5.2 Marine biota database 

Selection of endpoints refers to the actual environmental value that is to be protected. 

Selection of endpoints is critical to problem formulation, which is the main part of 

ecological risk assessment (ERA). The endpoints are the focus of management and 

conceptual model development (USEP A, 1998). The selection of endpoints is guided by 

three criteria, 

• Ecological relevance: The endpoints can be identified 

• Susceptibility to known or potential stressors 
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• Relevance to management goals 

The ecological risk assessment (ERA) will be discussed in Chapter 5. The most 

commonly selected endpoint for ERA is fish. In addition to fish, the regulatory agencies 

and other researchers (ANWQG, 2000; Reed et al., 1996; Sadiq, 2001; USEPA ECOTOX 

Database; Booman and Foyn, 1996; Reish et al., 1976-82) usually select different marine 

species including algae, shrimp, molluscs, bivalves. In the present work, a total of 25 

different species have been selected in addition to fish, to compare lethality for the 

exposed condition. It is shown in Figure 2.14. Species NOEC and LC50 databases are 

presented in Appendices 2 and 3 respectively. The data for fish is presented in Appendix 

1. The most dominant pathway for human uptake of contaminants is seafood ingestion. 
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Figure 2.14 Endpoints species and their NOEC and LCso with exposure period 
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2.6 Summary 

The characterization of produced water has been emphasized in this chapter. The 

database developed for contaminants in produced water has been stored in the database 

section of the software. The database related interfaces are presented in this chapter. The 

limiting criteria for produced water discharges in different zones and the variability in 

physical and chemical properties have been discussed. Fish has been considered as the 

economically important marine species by numerous studies (ANWQG, 2000; Reed et 

al., 1996; Trefry et al., 1996). The average daily intake (ADI) of contaminants has been 

used to predict human health risk. Calculation of fish tissue concentrations is required to 

predict ADI in humans. These concentrations are used for the next steps of risk 

calculation. The growth of fish has been analyzed by using the models described in the 

following chapter. 
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Chapter 3 

Development of Fish Growth Model 

3.1 Introduction 

Contaminants from produced water can be transported to the human body through 

ingestion of marine organisms including fish. Some contaminants may accumulate in 

human tissues or organs and can pose risk to human health. Exposure of migratory fish 

to produced water is a function of several factors like the sensitivity of fish to 

contaminants, and scope of fish migration from polluted zone to unpolluted zone. Unlike 

mammals, growth of fish is a continuous process throughout their life (Jones, 2002) and 

there occurs a change in lipid and bone contents depending on food availability and 

seasonal variation. By changing lipid and bone contents in the exposure period, growth 

plays an important role in accumulating contaminants in edible tissues. An approach to 

develop a model for fish growth has been considered in this study. 
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3.2 Model development framework 

An empirical growth model has been developed in this study from data provided by 

Johnson (2000) and Falk et al. (1982). These data were collected from four different 

places during July, August and October 1999 along eastern Washington and from the 

NorthWest Territories in Canada for the Department of Fisheries and Oceans in 1979. 

The approach for model development is divided into four segments. 

• Development of curvature and initial condition parameter models 

• Age prediction from data using the Von Bertalanffy growth equation 

• Development of length-weight model. 

• Development of age-weight model 

The segments are interrelated according to Figure 3 .1. 

Prediction of age using 
Von Bertalanffy equation ~ 
and development of 
length-weight model 

Data for length and 
weight of fish 

Model for curvature 
and initial condition 

parameter 

Age weight 
model 

Figure 3.1 Model development framework 

Weight data 
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3.3 Fish age-length model 

Numerous models of fish growth are available in the literature. A growth model 

developed by PUtter (1920) is considered the basis for other growth models (Sparre et al. 

1998). Von Bertalanffy (1934) developed a growth model that has been shown to 

conform to the observed growth of most fish species and is widely used in research areas 

(Francis, 1996; Miller et al. 2000) because of its flexibility and consistency (Sparre et al. 

1998). This function is the most commonly used growth function for adults (Jones, 2002). 

It has become one of the cornerstones in fishery biology because it is used as a sub-model 

in more complex models describing the dynamics of fish populations (Sparre et al. 1998). 

The Von Bertalanffy growth model is presented as 

(3.1) 

where, 

Lt = Fish length at age t (year) 

L"' = Asymptotic length at infinitely long period 

k = Curvature parameter (1/year) 

t = Age in years 

t0 = Initial condition parameter 

The asymptotic length (Lo) of fish is a hypothetical length at an infinite age. In reality, L~ 

for a species is considered as the available maximum length from the fish databases and 

literature (Miller et al. 2000). L"' depends on species type, food availability and other 
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physical activities of the fish itself. The maximum size of Sea Trout is reported as 

1400mm in Canada (FishBase, 2000). In the Baltic Sea, the maximum length for Trout 

(Salmo trutta trutta) is reported as 1420mm (Chrzan, 1959). In a study for Lake Superior, 

Miller et al. (2000) used Lo as 900mm for Trout. Available data from literature and 

databases on species maximum length is presented in Table 3.1. 

Table 3.1 Maximum lengths of fish 

Species name Maximum Length (Lo) mm Source 
Atlantic Cod 1410 USDOC (2003) 
Haddock 880 USDOC (2003) 
Ocean Pout 980 USDOC (2003) 
Striped Bass 1020 US DOC (2003) 
Trout 1420 Chrzan (1959) 
Trout 1400 FishBase (2000) 
Atlantic Mackerel 450 USDOC (2003) 
Summer Flounder 780 USDOC (2003) 
American Plaice 650 USDOC (2003) 
Atlantic Halibut 1540 USDOC (2003) 

The curvature parameter (k) that determines how fast the fish approaches its 

maximum length (L.,), varies significantly with the asymptotic length consideration. 

Based on the maximum length and species, the values of k have been predicted in the 

range of 0.03 to 0.8 I year (FishBase, 2000). For relatively small fish, k is large and 

hence, within a year or two, most of the short-lived species reach their maximum length 

as shown in Figure 3.2. The other species have a flat growth curve with lower k and need 

many years to gain Loo (Sparre et al. 1998). The initial condition parameter (t0 ) is the 

hypothetical age when a fish has zero length. This term does not have any biological 
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significance as the growth starts at hatching when the larva already has a certain length, 

which may be called initial length at t =0 on the day of birth. The parameter to has been 

found in literature to be between -2.14 to 0.152 year. For relatively smaller L=. to tends to 

be positive and for large L""" this value is negative (Figure 3.3). The parameters k and t0 

vary with the asymptotic length of a fish species and thus can be defined as a set of 

parameters (Sparre et al. 1998). Typical variation of k and t0 with Loo is presented in 

Figure 3.3. 
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The parameters for Trout (salmo trutta trutta) are tabulated in Table 3.2. Two equations 

were developed with R2 values 0.89 and 0.91 respectively to predict the curvature 

parameter (k) and the initial condition parameter (t0 ) from asymptotic length (Loo). 
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The equations are presented as 

(3.2) 

(3.3) 

where, 

k = Curvature parameter 
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Loo = Asymptotic length of fish (mm); in reality, it is the maximum length of fish. 

e1, ez, e3, e4 = coefficients, predicted as 0.035 ± 0.023, 1490 ± 382, -2.47 ± 0.29 and 

1164 ± 190 respectively by analyzing the data from Table 3.2 with the statistical software 

(Data fit). 

The parameters k and t0 decrease exponentially with the increase of the asymptotic 

length of fish (shown in Table 3.2 and Figure 3.3). For Loo = 1400mm, k and t0 have been 
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predicted using equations 3.2 and 3.3 as 0.10 and -1.64 respectively. A typical growth 

curve for Trout is shown in Figure 3.4. 

Table 3.2 Parameters for fish length (source: FishBase, 2000) 

Species Asymptotic Curvature parameter Initial condition 
length (Loc) mm k (1/year) parameter to (year) 

Sea Trout 500 0.78 0.087 
Sea Trout 570 0.4 -0.5 
Sea Trout 599 0.4 -0.5 
Sea Trout 599 0.34 -0.65 
Sea Trout 700 0.21 -1.1 
Sea Trout 1010 0.334 -1.06 
Sea Trout 1190 0.108 -2.14 
Sea Trout 1420 0.173 -1.69 
Rainbow Trout 518 0.397 0.321 
Rainbow Trout 744 0.383 0.624 
Atlantic Cod 1320 0.09 -0.32 
Atlantic Cod 1100 0.11 -0.48 
Halibut 1870 0.07 -1.11 
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3.4 Fish length-weight model 

When the body proportion, which is the ratio of body depth to length or head length 

to body length, remains constant, growth is referred to as isometric and where this ratio 

varies, the growth is called allometric (Jones, 2002). Numerous approaches have been 

made to develop a relationship between length and weight of fish. For isometric growth, a 

fish's biomass is a cubic function of its length and for allometric growth it does not 

follow the exact cubic functional relation (Jones, 2002). The generalized model equation 

can be written as 

(3.4) 

where, 

Wt = Weight at age t 

f 1 = Growth parameter for particular species 

f 2 =3 for isometric growth, otherwise allometric growth 

Lt =Length at age t (year) 

Most of the length-weight models have the general form of equation 3.4. The parameters 

f 1, !2 vary with location, species, and other growth affecting factors such as food 

availability, migration from one zone to another zone and the ambient conditions. These 

parameters for length-weight model were compiled from different sources and are shown 

in Table 3.3. USDOC (2003) has a wide range of model collection for length-weight 

relationship that follows a similar form of equation (Equation 3.4). A similar effort to 

establish a relationship for the length and weight data from Johnson (2000) and Falk et al. 
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(1982) has been considered in this study. The parameters f 1 andf2 vary in the range of 

5.1x10-6 to 0.04 and 2.60 to 3.31 respectively based on the different species as shown in 

Table 3.3. American Plaice has the highest rates of weight changes in the length range of 

30 to 650 mm (Table 3.3). The value of f 2 varies between 2.6 to 3.1 for Rainbow Trout 

and 2.92 to 3.1 for Atlantic Cod (Table 3.3). 

The asymptotic length of Sea Trout on the basis of available data was considered and 

the corresponding k and t0 have been predicted using equations 3.2 and 3.3. The age of 

fish in the marine environment has been predicted using equation 3.1. Available 

statistical software was used to perform a non-linear regression to relate length and 

weight of a fish. Several polynomial and exponential models were verified in the 

analyses. The best-fit model to represent a length-weight relationship has a similar format 

as equation 3.4. The predicted coefficients are shown in Table 3.4. The values of the 

predicted parameters agree well with those in Table 3.3. 

Table 3.3 Parameters for length-weight model 

Species Length range jj !2 Source 
(mm) 

Halibut 1810 0.0195 3.0 Crawford et al.(1993) 
Rainbow Trout 165-348 0.0063-0.0118 2.604-3.006 FishBase (2000) 
Halibut 80-970 0.000005084 3.1904 USDOC (2003) 
Rainbow Trout 325-691 0.0088 3.063 FishBase (2000) 
American Plaice 30-650 0.000002904 3.3062 USDOC (2003) 
Sea Trout 343-864 0.0038-0.0158 2.914-3.227 FishBase (2000) 
Atlantic Cod 150-380 0.0041-0.0117 2.916-3.03 FishBase (2000) 
Atlantic Cod 150-1060 0.0058 3.144 Thurow et al. (1982) 
Brook Trout 58-323 0.0112 2.99 Carlander et al.(1969) 
Cutthroat Trout 0.0434 2.825 Carlander et al.(1969) 
American Plaice 100-360 0.0044 3.204 Coull et al. (1989) 
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Table 3.4 Predicted parameters for selected species 

Parameter Mean 90th percentile 90th percentile Statistical 
lower value upper value software 

fi 4.04 E-05 2.3E-05 5.79 E-05 S Plus 

!2 2.82 2.76 2.88 S Plus 

fi 4.03E-05 2.33E-05 5.73E-05 Datafit 
!2 2.82 2.76 2.88 Datafit 

The model has been fitted with an R2 value of 0.97 and is presented in Figure 3.5. The 

model's goodness of fit was tested with available statistical functions. The residuals of 

the model development have been plotted on normal probability paper as shown in 

Figures 3.6 and 3.7. 
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Figure 3.5 Length-weight model 
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3.5 Fish age-weight model 

Growth is typically measured as the change in length or weight with the age of the 

fish. Growth of a fish is strongly influenced by the temperature of its environment, as 

well as food supply (Jones, 2002). Growth rate also depends on the type of measurement: 

whether length or weight of fish is measured. At a younger age, growth in length is less 

than that of the growth in weight (Jones, 2002). The simplest way to measure the growth 

rate over a period of time is to take the ratio of change in weight to the original weight. 

Mathematically, 

where, 

Wa =Weight at age t0 

Wr = Weight at age t 

g 1 = Growth rate 

This linear model gives a reasonable fit in the larval period but fails to model over longer 

periods (Laird et al. 1965). In periods when growth is accelerating; for example at 

intermediate sizes, the exponential growth rate fits better for instantaneous growth values 

(Jones, 2002). The growth rate in the intermediate stage of fish can be defined as 

(3.6) 

where, 

t-t0 =Duration for which growth is to be predicted. 
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Equation 3.6 can be written as 

W 
- W g 1 ( t-to) 

t- oe (3.7) 

The statistical data for different species fish indicates that the growth is not exponential 

throughout the entire lifetime of a fish (FishBase, 2000; USDOC, 2003; Jones, 2002). To 

predict growth, a better model is required (Jones, 2002). A general pattern of absolute 

growth for fish is slow when fish are small, fast when fish are at an intermediate size, and 

slow again as fish become large and begin to reproduce. This leads to an S-shaped or 

sigmoidal growth curve (Jones, 2002). 

To express the S-shaped curve for weight at time t, a mathematical S-shaped function for 

the weight of fish (Wr) has been introduced as 

( 
Wt J c ( -at) Ln Wa =-;; 1-e (3.8) 

where, 

a and c = Growth parameters that can be predicted through statistical analysis. 

t= Age in years 

Wa =Initial weight 

Wr = Weight at age t 

Equation 3.8 is a nonlinear equation and nonlinear regression must be performed to 

predict a and c. The least squares method of determining the parameters by minimizing 

the sum square error (SSres) was employed to determine mean values of a and c. The sum 

square error can be calculated as 
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(3.9) 

To minimize the sum square error (SSres), equation 3.9 was differentiated with respect to 

each parameter and set to zero, giving the following equations: 

II 
II 

(3.10) 
c te-at 

II 

a 

(3.11) 

Equations 3.10 and 3.11 are also nonlinear, so their solution requires an iteration process. 

The nonlinear function can be expanded into a Taylor series around an initial starting 

value and then the Gauss-Newton methods can be applied to estimate the parameters. The 

expanded Taylor series for equation (3.8) can be simplified as 

(3.12) 

where W]i is the derivative of the nonlinear function with respect to the jth parameter, 11 is 

the difference between jth parameter's value and the starting value. The left side of 

equation 3.12 is the residual. In equation 3 .12, 11 is the regression coefficient and W]i is the 
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regression variable. The linear regression structure built by Gauss-Newton procedure can 

be expressed as follows 

(3.13) 

where E1 represents the model error term and 

/\[ /\] Wt co -a t 
Yi = Ln( W 

0 
J. ----;: I -e 0 

l ao i 

(3.14) 

The parameters can be estimated using the following sequences: 

a. Determination of the starting value of the jth parameter. 

b. Estimation of '})from equation 3.13 using multiple least square. 

c. Estimation of a new value of the jth parameter (add the increment with initial 

value). 

d. Use the new jth value as the starting value. 

e. Follow the process until convergence is reached. 

This procedure can be carried out by several statistical packages. Statistical regression for 

nonlinear models for the dataset was performed by statistical software: S Plus and 

Datafit. The predicted values for the model fit are tabulated in Table 3.5. 

Table 3.5 Parameters for age-weight model 

Parameter Mean 901
n Percentile 901

n percentile 901
n percentile Statistical 

Deviation lower value upper value software 
a 0.34 0.02 0.32 0.36 S Plus 
c 1.59 0.05 1.54 1.64 S Plus 

a 0.34 0.03 0.31 0.37 Datafit 
c 1.6 0.04 1.56 1.64 Datafit 
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In both analyses, the mean values for the parameters are the same. There are 

negligible differences in the upper and lower limits of the parameters. The fitted model 

has an R2 value of 0.99 and presented in Figure 3.8. Goodness of fit for the model was 

tested with a standard module in Minitab. The normal probability plot for residuals is 

presented in Figure 3.9 and the Anderson- Darling normality test for the residuals was 

performed in Minitab. The resulting P value was 0.00 and mean was approximately zero 

as presented in Figure 3.10. 
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The ratio between mean a and c was constant in both analyses by Datafit and S Plus 

softwares. Replacing the coefficients in equation 3.8 by the estimated values and 

introducing the error term, the equation 3.8 can be rewritten as 

Wt co -a t /\[ /\] Ln(wJ= a~ J., o u (3.15) 

where, the error term £is approximately normally distributed with a mean about zero and 

a standard deviation of 0.12. Setting the values of the parameters, the models can be 

presented as 

Ln(~J = 1.59 (1-e -0.34 t) 
W0 0.34 

(3.16) 

Ln(Wt J= 1.59±0.05(1-e-(0.34±0.02)t)+N(O,O.l2) 
W0 0.34±0.02 

(3.17) 

Similarly, the data was analyzed with polynomial, inverse polynomials, concave/convex 

function, and exponential function using S Plus and Datafit software. However, those 

models did not fit well with the data and the goodness of fit tested by Minitab did not 

support those types of models. The model in equation 3.16 and 3.17 has been identified 

as the best-fit model. 

Equation (3.16) is a single output equation that works deterministically for a given set 

of parameters on the basis of an average value. On the other hand, equation (3.17) deals 

with error term £, and an uncertainty measure of the model through incorporating mean ± 

standard error for the parameters. In predicting body weight of a fish, uncertainty could 
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arise from different sources including, but not restricted to data uncertainties, model 

uncertainties, species variability, feeding patterns of different fish species, surrounding 

environment, and migration activities. Since deterministic models cannot incorporate 

related uncertainties (Lee and Cheung, 1991; Wood, 1993), a probabilistic concept has 

been introduced. The parameters can be determined mathematically by converting the 

scale of equation 3.8 and then plotting on graph paper as follows. 

~x Ln( :; ) = ( 1-e-at) 

~ L{1-~xLN(:; )J =-at 

~ L{ 1-k 1 x LN( :: ) J = -at 

=>Y=mX 

where, 

a 
k 1 =

c 

m = -a 

(3.18) 

Modeled weight for Trout is plotted in Figure 3 .11. The models can be used to predict 

weight of fish during an exposure period. However, the parameters a and c are not 

constant for all species and thus particular species statistical data need to be analyzed for 

predicting the values of the parameters. The parameters a and c are not independent and 

therefore can be treated as a set of parameters. Trout may achieve 2 to 5 kg weight within 

3 to 6 years of age in normal environmental conditions when most of the fishes are 
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caught for commercial purposes (Huet, 1986). The developed models (equations 3.16 and 

3.17) may be used to predict the weight of up to 7-year-old fish with good statistical 

agreement. For older fish, further study is required to model the weight of fish. 
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The initialization of human health risk prediction from produced water starts with 

prediction of contaminants' concentration in the edible parts of fish. As the growth of fish 

is a continuous process, the weight of the edible parts varies within the exposure duration 

in the contaminated zone. The fraction of lipid in a fish is a seasonally variable factor 

(Campbell et al. 1988; Madenjian et al. 2000) that varies within 0.5 to 12% (USEPA 

1996a) and thus use of snapshot lipid content does not represent the variability. 
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Prediction of contaminants' concentration in fish follows several interrelated 

methodologies. The USEPA, (2000) calculates the concentration in fish tissue as 

C exp = C w X p X BAF (3.19) 

where, 

Cexp = Exposure concentration for fish 

Cw = Concentration of contaminants in water 

p = Exposure probability 

BAF = Bioavailable fraction 

Relating this exposure concentration with bioconcentration factor, concentration in fish is 

calculated as 

(3.20) 

where, 

CF Fish tissue concentration 

BCF = Bioconcentration factor 

Fr =Fraction of lipid in fish 

In this approach, the snapshot lipid content inherits uncertainty due to its variability 

across the species and seasons (Campbell et al. 1988; Madenjian et al. 2000). As 

discussed in Chapter 2, metals have higher bioconcentration factors and therefore can be 

accumulated in the fish tissue by several orders of magnitude more than those in the 

media (Campbell et al. 1988). Metal also shows multicompartmental distribution within 

invertebrate tissues and thus is transported from tissue to tissue (Campbell et al. 1988); 

hence metal can be transported from lipid to flesh. Most of the metals are stored in an 
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inactive form within lipid and tissues (Campbell et al. 1988) and thus their accumulation 

in bones is not significant (Campbell et al. 1988; Eisler 2002). The assumption of metals 

distributions in the whole body of fish would predict lower concentration of contaminants 

in fish tissue. The equation 3.20 does not consider the edible part in a fish, which varies 

in the range of 64 to 87% of the whole body weight (USEPA, 1996a). This needs to be 

incorporated for more realistic prediction of fish tissue concentration. 

As the growth of fish occurs, contaminants uptake varies in different stages of growth 

and thus the accumulation of contaminants in fish tissue varies. The fish growth models 

assist in predicting contaminants concentration in fish tissue and thus play an important 

role in human health risk assessment from fish consumption. A fish can uptake 

contaminants through its gills, skin and food chain and release these through excretions, 

the mouth and other physical activities (Campbell et al. 1988). Contaminant uptake is 

affected by several factors like temperature, salinity, gills capacity, passage through the 

intestines and others. Other than the uptake phenomena, the cumulative accumulation of 

contaminants is the focus of the study. To incorporate the variability for the fish tissue 

concentration calculation, the change in the edible part of fish within an exposure period 

needs to be incorporated. The distribution of total accumulated contaminants throughout 

the edible parts will provide more realistic prediction. The application of the models is 

discussed in the following chapters. 

3.6 Summary 

The empirical models of fish growth have been discussed in this chapter. To develop 

the growth models, a number of primary models, including the curvature parameter and 
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initial condition parameter models have been developed. The age of fish was calculated 

using the Von Bertalanffy growth function (equation 3.1). The experimental data of fish 

weight was modeled with the calculated age and deterministic and probabilistic forms of 

the models have been developed as in equations 3.16 and 3.17. The importance of the 

growth models in relation to lipid and edible parts of fish is discussed in this chapter. 
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Chapter 4. 

Model Selection and Integration of Models with the 

Software 

4.1 Introduction 

Once produced water is discharged into the ocean, it mixes with the ambient water 

and becomes diluted. The aromatic hydrocarbons in treated produced water are attenuated 

rapidly in the marine environment (OGP, 2002) due to advection, dispersion and 

diffusion as a result of ocean environmental conditions. Field studies and dispersion 

modeling of the fate of produced water in the North Sea show a typical initial dilution of 

1000 fold within 50 tolOO meters of the discharge point (Furulolt, 1996; Riksheim and 

Johnsen, 1994). The volatile BTEX compounds, the most abundant aromatic compounds 

in produced water, evaporate rapidly upon mixing with the surface water (OGP, 2002). In 

the Norwegian sector of the North Sea, a 1996 study on effects of polycyclic aromatic 

hydrocarbons (PAHs) on a caged fish placed 500m downstream from a major discharge 

location resulted in no significant biological effects to that fish (OGP, 2002). The 

biodegradation half lives of aromatic compounds range from less than a day to several 
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months (Johnsen et al. 2000) and thus significant amounts and varieties of aromatic 

hydrocarbons fall below the risk level within a very short period of time after the 

discharge. Certain amounts and varieties of contaminants, including the heavy metals, 

non-volatile and semi-volatile chemicals, and the process chemicals that are still present 

in the produced waters may pose risk to ecological entities and health hazards to humans 

through the food web. 

In the Gulf of Mexico, zero discharge of produced water within 3 miles of the 

structures was imposed in both BAT and NSPS regulatory options (USEPA, 1993), which 

is an acknowledgement of environmental impacts from offshore operations. The 

arrangements of discharging produced water at a distance of more than 3 miles from the 

structures are costly and feasibility depends on the ambient ocean characteristics. Some 

offshore oil producing platforms inject produced water into the underlying soil strata. 

This technique is site-specific and the performance depends on the porosity of the 

underlying soil strata and their absorption capacity as well as their permeability. These 

are limited to areas such as Cook Inlet, Alaska and some platforms in Norway. 

The discharge velocity is much higher than the ambient seawater velocity and the 

point of discharge is located at sufficient depth below the water surface to enhance 

dilution (Mukhtasor, 2001). As a result of the difference in the momentum flux, the 

effluent discharge can be characterized as a buoyant jet flow (Mukhtasor, 2001). The risk 

associated with the contaminants discharged with the produced water depends strongly 

on the contaminants' fate and distribution in the ambient seawater (Somerville et al., 

1987; Meinhold et al., 1996; Karman and Reerink, 1998), which mainly depend on 
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hydrodynamic characteristics, discharge geometry and the ambient seawater flow 

characteristics. Field measurements are the best methods to assess a contaminant's 

concentration in the surrounding areas for risk assessment purposes, although the 

feasibility, cost and time required for the fieldwork can be prohibitive. Moreover, the 

field measurements can be employed after the platforms start discharging produced water 

and in most cases, it is impossible or impractical to measure field concentration 

continuously throughout the whole area of the contaminants' dispersion. 

To assess contaminants' concentrations for risk assessment purposes, hydrodynamic 

modeling plays an important role (Lee et al. 1991; Huang et al. 1994, 1996; Mukhtasor, 

2001) and therefore development of hydrodynamic modeling for initial dilution and 

dispersion has achieved much attention in recent years. The plume trajectory and 

turbulent diffusion, in addition to initial dilution is also an important measure for 

hydrodynamic modeling (Somerville et al. 1987). The major weakness of currently 

available ecological risk assessment (ERA) models is their inability to define the whole 

scenario induced by a produced water contaminant based on selected endpoints that need 

to be protected. 

In developing hydrodynamic models, the mixing of produced water has been 

conceptualized as two separate regions (Lee et al. 1991; Mukhtasor, 2001). The first 

region, where the discharge trajectory, momentum flux and geometry play important 

roles is known as the near field (NF). The other region, in which the ambient 

characteristics become important, is known as the far field (FF). In the far field, the 

trajectory and dilution are mainly controlled by ambient water characteristics, such as the 
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strength and direction of seawater currents, and through buoyant spreading motions and 

passive diffusion (Doneker and Jirka, 1990). 

4.2 Various dilution models 

Numerous dilution models are available for initial dilution prediction. The available 

models, their feasibility and scope of applications are discussed in this section. 

Dilution model by Lee and Cheung (1991): The jet behavior for a buoyancy 

dominated discharge is governed by the dimensionless depth zu3 IB where B is the 

discharge buoyancy, u is the ambient current velocity and z is the depth above discharge. 

The buoyancy length scale his defined as B!u3 and B is defined as Q ( iJPJI Pa) g, where Q 

is the source volume flux and is equal to u11rt:z2!4, where u1 is the exit velocity of jet, d is 

the diameter of the exit pipe, iJp1 is the density difference between the ambient water ( Pa) 

and effluent (Pe) and is defined as (Pa -Pe) and g is the acceleration due to gravity. Two 

length scales are used in this model, in which, lQ is the measure of direct effect of jet 

geometry on flow characteristics and lM is the measure of the distance where buoyancy 

becomes more effective than the jet momentum. 

( )

1 I 2 

lQ =d ; (4.1) 

(4.2) 

For z I lQ > > 1, the volume flux is not important, so the dilution changes to 

s =f(zlib) (4.3) 

where, 
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S = Centerline dilution (dimensionless) 

For (z!lb<<l), the dilution equation for the buoyancy-dominated near field (BDNF) is 

given by 

(4.4) 

For (zllb>> 1), the dilution equation for the buoyancy-dominated far field (BDFF) is 

given by 

(4.5) 

where, 

C1, C2 = Constants 

The average values for C1 and C2 were determined to be 0.10 and 0.51 respectively. The 

dilution characteristics within the transition zone were merged into near field and far field 

models. No specific solution was incorporated to predict the dilution in the transition 

zone. 

Dilution model by Lee and Neville-Jones (1987): Lee and Neville-Jones (1987) 

presented the following models for minimum surface dilution based on the field data for 

horizontal buoyant jets at a number of United Kingdom outfalls: 

(BDNF, zllb <5) (4.6) 

(BDFF, zllb ~ 5) (4.7) 
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where, 

S = Centerline dilution in the boil center 

z = Water depth above the discharge 

The flow characteristics in the transition zone were ignored in this model. 

Dilution model by Proni et al. (1994): Proni et al. (1994) suggested the dilution 

model as 

(BDNF, zilb <0.1) (4.8) 

(BDFF, zilb ::?0.5) (4.9) 

For the transitional regime between the BDNF and BDFF, the power law equation was 

developed as 

(4.10) 

where, 

; , r; = Site-specific constants 

r; varies between 5/3 to 2 and ; can be predicted as a regression coefficient. The only 

differences between this model and the Lee and Cheung ( 1991) model are in the 

coefficients and parameter (zilb) ranges for BDNF and BDFF. 

Dilution model by Huang et al. (1998): Huang et al. (1998) developed a centerline 

initial dilution model that covers all the flow regimes, from the buoyancy dominated near 
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field (BDNF) through the intermediate regime to the buoyancy dominated far field 

(BDFF) with a single equation. The model equation is as follows 

(4.11) 

where, 

b1, b2, b3 and d2 =Model constants. 

z = Height above discharge. 

The values of C1 and C2 from Lee and Cheung (1991) were substituted for b1, b2 

respectively. The other two constants b3 and d2 were predicted as 0.1 and 2 respectively. 

The equation is able to provide dilution at any regime of buoyancy dominated near field 

(BDNF), transition and buoyancy dominated far field (BDFF). The prediction of 

constants b3 and d2 was based on trial and error, which is not a standard procedure for 

predicting coefficients. For the BDNF region, the dilution is the same as that of Lee and 

Cheung (1991) but for higher zllb (>0.5), the dilution is higher than that of Lee and 

Cheung (1991 ). The dilution models are plotted in Figure 4.1. 

Dilution model by Mukhtasor (2001): Mukhtasor (2001) developed a model for 

outfall dilution based on the model relating initial dilution in terms of SQ!ul and zllb 

only as proposed by Huang et al. (1998). The model equations were developed as 

s~ = 0.13 ~ + 0.46e--;!![; ( J
-0.31 -0.22 

uz lb 
(4.12) 
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10 
Model Comparison 

• Experirrental data from Lee and Cheung ( 1991) 
- - Huanget al (1998) 
--Mukhtasor (2001) 
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Figure 4.1 Plot of dilution model for Huang et al. ( 1998) and Mukhtasor (200 1) 
and experimental data from Lee and Cheung ( 1991) 

{ J
-QJftQW { J ~z~ =(0.13±0.02 

1
: +(0.46±0.02)ex -0.2~0·04 + N(0,0.092) (4.13) 

(4.14) 

where, 
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S = Initial centerline dilution 

Q =Effluent discharge (m3/sec) 

u= Ambient water velocity (m/sec) 

N(0,0.092)= Normally distributed error term with mean 0 and standard deviation 0.092 

z= Height of water surface from discharge point (m) 

h= Vertical distance at which the effluent velocity is reduced to ambient velocity (m) 

g= Acceleration due to gravity =9.81 m/sec2 

Pa= Ambient water density (kg/m3
) 

Pe= Effluent density (kg/m3
) 

In this equation, both the buoyancy dominated near field (BDNF) and buoyancy-

dominated far field (BDFF) are connected through the transition zone and thus these 

models are able to predict dilution at any regime including the buoyancy-dominated near 

field, transition zone and buoyancy-dominated far field. The near field mixing is 

applicable for deep-water conditions where a distinct buoyant jet rises to the surface and 

dilution occurs as a result of turbulent jet entrainment (Jirka and Lee, 1994). The deep-

water condition is defined as 

H 
->0.22F0 
d 

William (1985) defined F 0 as 

where, 

(4.15) 

(4.16) 
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H = Depth of the ambient water (m) 

d =Diameter of the port (m) 

Fa= Froude Number. 

Equation 4.15 has minimum sensitivity to the discharge angle (Jirka and Lee, 1994). The 

inability of the discharge to satisfy the above condition (Equation 4.15) may return 

instability and thus a local circulation zone can be developed which is generally avoided 

to achieve maximum initial dilution (Hamdy, 1981). The local instability is presented in 

Figure 4.2 (Tsanis and Valeo, 1994). The general characteristics of discharge from a 

horizontal outlet pipe close to bottom is to touch the floor tangentially and the particles 

near the boundary layer impinge on the sea bed. Discharge from a vertical outlet exits 

vertically at high speed and the plume is weakly deflected until the plume velocity 

approaches the ambient velocity. When the jet velocity approaches the ambient velocity, 

it bends in the direction of ambient current. The length at which the plume velocity 

becomes less important and the ambient current start advecting the plume is called the 

length scale lb. These are shown in Figures 4.3 and 4.4 respectively. 
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Figure 4.2 Local instability of effluent flow (Modified after 
Tsanis and Valeo, 1994) 

For a stable discharge from an open-ended outfall into unstratified running water, the 

initial dilution predicted by Mukhtasor' s model (equations 4.12 and 4.13) agrees 

reasonably well with the other models described above. 

The horizontal distance at which the plume impinges on the surface and deflects to 

follow the ambient current direction is called the boil center as presented by Wright 

(1977 b) as 

C 3/2 
4Z 

where, 

(4.17) 

(4.18) 

For z < < h (BDNF) 

For z >> h (BDFF) 
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C3 and C4 = Constants 

Sea Botton\ 

Dkt:an.ce ttoD\ jet (Dl) 

Figure 4.3 Typical horizontal discharge of effluent (source: 
Tsanis and Valeo, 1994) 

Transition 

_,..,_._ .... -· ------

Figure 4.4 Typical vertical flows with instantaneous appearance. (source: 
Doneker and Jirka, 1990) 

Variation of C3 has been measured from photographic measurements in the range of 

0.517 to 1.494 and 0.2254 to 1.7075 (Wright 1977a, 1977b). The constant C4 can also be 

predicted from a relationship presented by (Wright, 1977b) 

( 4.19) 
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(u .Q)l/2 
l = ___;_J __ 
m u 

where, 

(4.20) 

lm = Length scale (m), a measure for momentum dominated jet with a cross flow 

u1 = Initial jet velocity (rnls) 

Cs = A constant that depends on the method of obtaining data, i.e. 0.6037 from 

photographic and 1.27 61 from concentration measurement. 

C3 and C4 were suggested by Doneker and Jirka (1990) as 0.5824 and 1.0 respectively. 

For smooth transition between the BDNF and BDFF, the distance was defined by Huang 

et al. ( 1996) as 

(4.21) 

where, 

a1 and a2 = Constants 

a1 and a2 were determined by Huang et al. (1996) as 

a 1 = 0.5- 0.5ln( z I lb) (4.22) 

(4.23) 

In the BDNF, the rising buoyant plume is weakly deflected by the ambient water velocity. 

It approaches the surface almost vertically. The bulk dilution at the end of the control 

volume is defined by Wright et al. (1991); Doneker and Jirka, (1990); Huang et al. (1996) 

for BDNF and BDFF as 

(4.24) 

(4.25) 
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where, 

Cs1 and Cs2 = Experimental constants. 

Cs1 varies from 3 to 5 in stagnant water (Wright et al. 1991; Huang et al. 1996). To 

incorporate the uncertainty, values between 3 and 5 are used for Cs1 in equation 4.24 

(Mukhtasor, 2001) 

For the BDFF, the buoyant jet is strongly deflected and the approach of the buoyant 

jet is almost horizontal. Cs2 was calculated from experiments to be in the range of 1.5 to 

2.0 (Doneker and Jirka, 1990; Huang et al. 1996). Typical calibrated values based on 

field tests for the coefficients are 2.01 and 1.74 respectively (Huang et al. 1996). 

The plume width at the downstream end of the control volume Lo is estimated by 

(Doneker and Jirka, 1990) and Huang et al. (1996) as 

For BDNF (z!h <0.1) (4.26) 

In this case, the upstream intrusion length, Ls was defined by Akar and Jirka (1994) and 

Doneker and Jirka (1990) as 

Ls =2.12z312 (1-cose)312 zb-l!J 

Ls = 0.38lb 

where, 

for li/z > 6.11 ( 1-cos 8) 

for li/z 56.11( l-ease) 

(4.29) 

(4.27) 

(4.28) 
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is the angle between the rising jet axis and water surface as defined by Huang et al. 

(1996). 

For BDFF (zlh > 10) the plume width at the downstream end of the control volume 

Lo is defined by the following equations with the assumption of an equivalent cross-

section aspect ratio for the flow section of 2:1 (Doneker and Jirka, 1990; Huang et al. 

1996). 

La= 2~SaQ 
2u 

(4.30) 

(4.31) 

The distance from the boil center to the downstream end of the control volume is given 

by 

xv1 = Cv1z for z!lb <0.1 (4.32) 

xv2 = Cv2z for z!lb >10 (4.33) 

where, 

XoJ, xD2 = Distances of the control volume end from boil center (m) 

CDJ, C02 =Constants that have been set as 3.0 (Huang et al. 1996, Wright et al. 1991) and 

0.6 (Huang et al., 1996; Doneker and Jirka, 1990). 

In all cases, the plume thickness at the end of control volume can be defined by Huang et 

al. (1996) as 

h = SaQ 
0 

uL0 

(4.34) 
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For the regions of zilb <0.1 and zilb > 10, the above equations are satisfied. For the 

transition region, i.e. 0.1 5 zilb 5 10, the smooth curve can be obtained using the 

interpolation suggested by Huang et al. (1996) as equations 4.21 to 4.23. 

4.2.1 Dilution model selection 

From the review of several initial dilution models, the model developed by 

Mukhtasor (2001) predicts dilution more realistically when compared with the others and 

the coefficients of the models were predicted with good statistical agreement. The 

prediction of dilution with a continuous equation for the BDNF, transition zone and 

BDFF provides simplicity in calculations. Moreover, the fit of the equation has better 

statistical agreement with the data than the other models (Mukhtasor, 2001). The method 

of predicting the constants b3 and d2 (Equation 4.11) is repeatable rather than the trial and 

error approach of Huang et al. (1998). Despite some limitations of the empirical 

formulation, these models can be used for predicting outfall dilution (Mukhtasor, 2001) 

and hence these can be employed in predicting dilution for produced water discharge. 

4.2.2 Selected model's parameters 

For the model (Mukhtasor, 2001), the required parameters are discussed briefly in this 

section. 

• Effluent discharge rate (Q) 

The average discharge of produced water from one platform is about 0.01736 m3/sec 

(GESAMP, 1993). A study from 30 oilfields shows the range of produced water 
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discharge to be 3.68 x 10-6 m3/sec to 0.276 m3/sec (USEPA, 1993). A detailed survey on 

produced water discharge rate has been conducted in chapter 2. 

• Height above discharge (z) 

The depth of ambient water varies between 2.5 m (Meinhold et al. 1996) to 150 m 

(Brandsma and Smith, 1996) at the discharge point depending on the location and type of 

platform. In the Open bay in Louisiana, the depth above the discharge varies from 1.3 to 

5.0 meters while in the Bass Strait, the depth above discharge port is approximately 12 

meters (Meinhold et al. 1996; Brandsma and Smith, 1996). Height above discharge is 

highly variable and is the most dominant factor in predicting dilution (Equations 4.12 and 

4.13). 

• Ambient water velocity (u) 

Ambient water velocity at the offshore platform location varies between 0.03 and 0.3 m/s 

(Brandsma and Smith, 1996; Somerville et al. (1987)). The USEPA (1995b) used an 

ambient velocity of 0.05 m/sec for the open bay in Louisiana. 

• Ambient water density (Pa) 

The ambient water density ranges between 1005 kg/m3 (USEPA, 1995a) to 1027 kg/m3 

(Brandsma and Smith, 1996; Somerville et al. 1987. 

• Produced Water density (Pe) 

Produced water density ranges between 988 kg/m3 (Brandsma and Smith, 1996; 

Somerville et al. 1987) to 1140 kg/m3 (Tibbetts et al. 1992). The data was compiled from 

different sources in the literature and is discussed in chapter 2. 
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The dilution is directly proportional to the square of the discharge depth while the 

discharge rate is inversely related to the dilution. Typical modeled dilution with discharge 

depth for an assumed flow is presented in Figure 4.5. The plume width and thickness 

vary with distance from the discharge port. For a typical discharge, this variation is 

presented in Figure 4.6. The dilution increases with the distance from the port of 

discharge while the plume thickness reduces sharply after its impingement with the 

surface water and then the rate of decrease becomes less (Figure 4.6). 

Dilution for high ambient velocity (0.3 m/sec) 
300 ~------------------------------------------------~ 

250 • Q = 0.115 mA3/sec 

• Q = 0.162 m"3/sec 

200 
I = 0 

·;::: 
::i -...... 150 "0 -<':l ...... ....., ...... = - 100 

0 ~----~------~------~----~------~------~----~ 
8 10 12 14 16 18 20 22 

Depth above discharge (m) 

Figure 4.5 Typical dilutions with discharge depth 

4.2.3 Integration of initial dilution models with dispersion models 

A typical example of buoyant spreading is presented in Figure 4.7 (source: Doneker 

and Jirka, 1990). The dilution and dispersion of the outfall plumes are governed by the 
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ambient flow characteristics (Huang et al. 1996) and the boundary layer of the spreading 

plume entrains ambient fluids (Doneker and Jirka, 1990). Turbulent diffusion and wave 

effects were neglected for the buoyant spreading model. Huang et al. (1996) and 

Mukhtasor (200 1) used the buoyant spreading model that was presented by Doneker and 

Jirka (1990) as 

h( X)_ (lf. X )Ja-l -----
ho Lo 

(4.35) 

( 
J/2 ]2/3 

L( x) = 3 (J[}jz_] _!_ + 1 
La Lo Lo 

(4.36) 

where, a is the entrainment coefficient ranging from 0.15 to 0.6. A typical field test 

value of a is 0.59 (Huang et al. 1996; Doneker and Jirka, 1990) and j3 is the model 

constant ranging from 0.707 to 1.414 with a typical field test calibrated value of 1.33 

(Huang et al. 1996; Doneker and Jirka, 1990), h is the buoyancy length scale, typically 

evaluated at 5 m depth (Hazen and Sawyer, 1994), xis the plume centerline distance and 

x = 0 is set at the center of the downstream end of the control volume, and L(x) is the 

plume width. 

The parameter L(x) is assumed to be related to o(x), the standard deviation of the 

concentration distribution across the plume width by 

L(x) = 2(3/12 cr(x) (4.37) 

The above equation is consistent with Brooks (1960). The dilution of a contaminant 

concentration associated with buoyant spreading processes is typically estimated by 

considering the error function for distribution across the plume width in the surface 
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plume and a uniform distribution across the plume thickness (Mukhtasor, 2001). To 

simplify the problem, the assumption of uniform distribution of contaminants across the 

plume thickness has been made (Huang et al. 1996). 
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Figure 4.6 Typical variation of plume width and thickness with distance 

Based on the above assumption and mass balance, the pollutant concentration at any 

point (x, y) is estimated (Huang et al. 1996) as 

h 1 [ (0.273L + yJ (0.273L - yJ] C(x,y)=1.832Ca_Q__ eif .fi 0 +erf .fi 0 

h(x) 2 2 X CJ(X) 2 X CJ(X) 
(4.38) 

Equation (4.38) is valid for x ~0. 

where, 
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y =Perpendicular to x-axis in the same plane (xis along the plume centerline). 

Ca = Bulk pollutant's concentration at the downstream end of the control volume (at 

x=O) estimated from associated bulk dilution. 

y 

Initial 
Condition 

Plan View 

X 

Frontal Zone 

Figure 4.7 Typical buoyant spreading of outfall plume (Doneker and Jirka, 1990) 

The error function can be estimated as 

2 z 2 
erf ( z) = 

1 
fe-z dz 

"V7r 0 

2 [ z
3 

z
5 

z
7 

: =- z--+---+ J1i 3.1! 5.2! 7.3! ..... 
(4.39) 

2 a n z2n +1 
=- I(-1) 

J1i n =O (2n+1)n! 

The limiting values of error functions are erf (0) = 0 and erf ( oo) = 1 
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The distribution of the related error has been assumed as normal. It such cases, the area 

under the normal distribution curve can be evaluated using statistical tables by a change 

in variable accordingly. (William,1985). The variable can be modified as 

erf(z) = 2A(P) (4.40) 

where, 

P = 1.414 z and A(P) =the area under standard normal distribution from 0 top along the 

abscissa. 

Equation ( 4.38) is valid for only x ~ 0. Integration of concentration distribution in the 

control volume zone with equation (4.38) is required and to use the equation at x < 0 it 

needs modification. At x < ( -Ls - XD), it is assumed that the pollutant's concentration is 

zero. When (Ls- XD) < x < 0, the concentration is 1.2Ca to be consistent with Huang et al. 

(1996). The average boil concentration is defined as (Co/1.7S) at (-Ls-XD) ::;x ::;(Ls-XD), 

where Co is the concentration prior to the discharge and S is the centerline initial dilution 

(Hazen and Sawyer, 1994; William, 1985). A parabolic shaped function defined by Akar 

and Jirka, ( 1994) has been adopted for this model. 

For (-Ls- XD) < x <0, the function is given by 

[ 

L 

]

0.5 
x+x + 

L(x)=L D s 
0 

X +L D s 

(4.41) 

This model is intended to estimate hydrodynamic characteristics of the plume in the 

vicinity of the discharges, in which effects from turbulent diffusion are less dominant 

than those of buoyant spreading. Studies show that the ecological effects from produced 

water can generally be associated with the distance from the outfall and that the effects 
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are usually limited to close to the discharge location (within 500m to 1000m radii) 

Mukhtasor, (2001). Rapid dilution in the marine environmental system may be the reason 

for reduced ecological impacts (Frost et al. 1998; Somerville et al. 1987; Stromgren et al. 

1995). The discharge scenarios are generally designed to evaluate regulatory ambient 

water quality criteria, those are on mixing zone concept, and are limited to 100-200m 

from the discharge location (Mukhtasor, 2001). A single linear limit of 300m for the 

mixing zone has been incorporated in many states in the USA for simplicity (USEP A, 

1995), while for human health risk assessment purposes, the USEPA (1998) used a 

distance of 100 meter radius around the discharge port. 

The initial dilution models are in deterministic and probabilistic forms based on 

physical principles. The dispersion models are based on a deterministic approach with 

statistical error distribution. Due to the ocean characteristics and advection of the plume, 

the concentration of pollutants may vary both in time and space. Huang et al. ( 1996) 

defined a coordinate system to simulate this variation in which a fixed global system (X, 

Y) is defined and the origin is fixed at the point of discharge. A translating coordinate 

system (x, y) for the surface plume is defined at x = 0 at the end of control volume andy 

is perpendicular to the x-axis. The transformation between the systems is presented 

according to Huang et al (1996) as follows. 

x = X cos cp + Y sin qJ - x b - x 0 

y = Y cos cp - X sin cp 

where, 

(4.42) 

(4.43) 

cp =Current direction (radian) with respect to the X- coordinate direction. 
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X and Yare the global axes with origin (0,0) at the point of discharge. X is in the ambient 

current's direction and Y is perpendicular to the X-axis. 

The simulated concentration may be considered as a "snapshot" of an outfall plume at 

a particular time and space. The configuration and motion of plumes are then simulated 

by a series of "snapshots". The area of selection can be divided into uniform grids and by 

employing near, intermediate and far field models can estimate the concentration at each 

grid. A typical grid for the control volume is presented in Figure 4.8. For a hypothetical 

offshore oil field in eastern Canada having a discharge of 0.212 m3/sec with the port at 

12m depth from the surface without any stratification, a contour was plotted for a 300m x 

300m zone. A typical plot is shown in Figure 4.9. The ambient density was assumed as 

1025 kg/m3 and the produced water density as 1005 kg/m3
• A comparison of dilution in 

the near field region (NFR) using the CORMIX model and the Mukhtasor (200 1) model 

is shown in Table 4.1. 

CONCENTRATION GRID AROUND DISCHARGE POINT 
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Figure 4.8 Concentration grids around the discharge point 
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Figure 4.9 Typical contour for produced water plume. 

Table 4.1 Dilution comparisons with CORMIX model 

Scenario Dilution by Dilution by CORMIX Model 
Mukhtasor Without surface With surface 
(200 1) model wind wind 

Q=0.212 m3/sec; u = 0.06 m/sec 
Pa=l026 kg/m3; Pe=988 kg/m3 26.3 24.4 34.7 
z =11m 
Q=0.212 mj/sec; u = 0.06 m/sec 
Pa=1026 kg/m3; Pe=1000 kg/m3 23.6 22.4 28.3 
z =11m 
Q=0.212 m3/sec; u = 0.06 m/sec 
Pa=1027 kg/m3;pe=1014 kg/m3 21.6 19.4 21.5 
z =11m 
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Mukhtasor (200 1) did not consider the effects of water surface wind. The predicted 

dilutions by Mukhtasor's (2001) model for three different scenarios are close to the 

CORMIX prediction but the difference is significant if the ambient wind is considered 

(Table 4.1). 

4.2.4 Integration of models with contaminants database 

The selection of the contaminants is to be made from the database. The program is 

interfaced with an MS Access database for the contaminants in produced water that have 

been stored in the system. Upon selection of a contaminant, the contaminant is activated 

and an automatic link is developed within the software system. Based on the input 

parameters, the software calculates the concentration of the contaminant in the ambient 

seawater. The initial dilution models and the related components (Equations 4.12 to 4.43) 

have been connected sequentially in the software system. The inter-relations of the 

database with the models used in the package have been described in Figure 4.10. The 

probabilistic analysis and graphical outputs have been performed in spreadsheets, which 

can be accessed using a mouse click as in Figure 4.11. A user manual to use the software 

is provided with the software. 
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Figure 4.11 Opening interface of spreadsheet details 

89 



4.2.5 Dilution model parameters and contaminant(s) concentration 

input 

The model parameters such as effluent discharge rate, density, depth of the discharge 

port from water surface, ambient water velocity and density are relevant to a given site. 

The concentration of the contaminant is variable with site selection. These parameters 

can be entered using a model input interface as shown in Figure 4.12. The Model 

description is available for viewing and printing. Graphical descriptions of control 

volume, boil location (xb), plume's width (L 0 ) and thickness (h 0 ) at the end of control 

volume, plume's upstream intrusion length (Ls), :zllb, and vertical angle of the jet (8) are 

available for viewing. These are calculated by the model equations and typical figures are 

shown in Figure 4.13. Mukhtasor (2001), Huang et al., (1996) and Doneker and Jirka 

(1990) have discussed the parameters in details. 
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Input Ambient Data------- ----·-----·-Concentration at control volume 
Flow rate of produced water (m"3/slj0.212 · BENZENE r=:-~::=:= 

Height above discharge (m) r;-;-- : 
Ambient seawater velocit).l (m/s) ro:os- : 

Ambient sea water densit).l (kg/m"3) fi0'26'" ' 
i 

Produced water densit).l (kg/m"3lj988 

PHENOL J39.835613 

CADMIUM j1.D253208 

ZINC j6.455724 

1-::--·------------:---·--:--··-:c:-------' 
·· Input concentration (ug/1) ---·---------·,-Click on the label for details--·-·-····--- -----

BE NZE N Ej1328 Plume width at DIS end of control volume (Lo) [4'2.i3'8'1 

TOLUENEj1 065 

PHENOLj1 049 

CADMIUMw-

ZINq170 

Angle between effluent jet and water surface j1.39013 

Plume's U /S intrusion Length, Ls (m) j8.1 0348 

Boil Location from discharge point (m) 12.00916 

Par a meter (z/lb] j 3. 08464 

Length of control volume (m) j41.1 034 

Plume thickness at Control Volume end (m) !2.20807 

Dilution at Control Volume end: j26.3332 

Figure 4.12 Model data and contaminant's concentration input 
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Figure 4.13 The parameters for the dilution model 
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4.3 Integration of fish growth model with exposure concentration 

The fish growth models (Equations 3.16 and 3.17) have been incorporated with the 

software system. Equation 3.16 predicts the total weight deterministically and equation 

3.17 does the same in probabilistic form. Based on the total weight and variability in lipid 

contents of fish, the total amount of the accumulated contaminants in fish can be 

predicted. This contaminant will be analyzed for human health risk assessment purposes. 

4.3.1 Fish growth model parameters 

The parameters required to predict fish growth are 

• Initial weight of fish (W0 ) 

• Parameter (a) and (c) 

For an illustration, a migratory fish like Rainbow Trout (Salmo Gairdneri) is considered. 

The Rainbow Trout spawns from January to May in fresh water. During its life cycle, it 

spends about 1-2 year in fresh water and then migrates to the sea when it has a weight of 

50-200g (Huet, 1986; Robin, 1989). At the time of spawning, it returns to the fresh water 

and spawns (Huet, 1986). This weight can be considered as the initial weight (W0) offish 

for the growth model. The other two parameters to predict growth of fish have been 

denoted by a and c. These two parameters have been predicted as 0.34 (0.32-0.36) and 

1.59 (1.54-1.64) respectively in Chapter 3. An error term for the probabilistic model 

(equation 3.17) has been introduced as N (0,0.12). This error term is normally distributed 

with a mean 0 and standard deviation 0.12. 
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4.4 Summary 

The importance of dilution models and their methods of calculation have been 

discussed in this chapter. The available dilution models and their limitations have also 

been discussed. The advantages of dilution models by Mukhtasor, (2001) over the other 

available models have been described. Integration of fish growth models has been 

performed. The approach of the software to predict risks has been shown in this chapter. 

In predicting the exposure concentration (EC), the probability of exposure (p) and the 

bioavailability will be incorporated in the predicted environmental concentration (PEC) 

calculated in this chapter. The following chapters discuss the ecological and human 

health risk framework based on the predictions in this chapter. 
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Chapter 5. 

A Methodology for Risk Assessment from Produced 

Water 

5.1. Introduction 

Risk assessment is a careful investigation for any stressor that may cause harm to a 

selected endpoint that has environmental or economical importance. Ecological risk 

assessment (ERA) evaluates the likelihood that adverse ecological effects may occur or 

are occurring as a result of exposure to one or more stressors (USEP A, 1998a; CCME, 

1997). In this chapter, methodologies of the ecological and human health risk associated 

with produced water discharges from offshore operations will be discussed. 

5.2 Ecological risk from contaminants in produced water 

The ecological risk assessment of produced water has gained much attention in the 

last two decades. Numerous studies on ERA have been carried out to assess the ecological 

risk from produced water (Brendehaug et al. 1992; Stagg et al. 1996; Neff et al. 1979; 
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Neff and Sauer, 1996; Neff et al. 1997; Neff, 2002; Booman and Foyn, 1996). 

Considerable research has been conducted in characterizing ecological risks from 

produced water contaminants (Ray and Engelhardt, 1992; Reed and Johnsen, 1996). 

Addressing the ecological impacts, several regulatory agencies set different discharge 

criteria for the oil content of produced water in different regions (C-NOPB, USEPA, 

MMS, OSPAR). 

No significant biological effects from chronic exposure to produced water to a caged 

fish were detected in a study by the OGP (2002). Several EC50 (concentration that 

restricts growth of 50% of the exposed population) and LC50 (concentration that kills 50% 

of the exposed population) values for different marine species were reported for produced 

water toxicity by Holdway (2002) and Neff (2002) as a percent of total oil in produced 

water. Neff et al. (1996) concluded, that the risk from PAHs in produced water was 

minimal. In that study, the concentrations in ambient water, sediment and fish tissue were 

compared with threshold limits. Change in respiration rates has been observed in fish 

eggs and larvae exposed to benzene (Eldridge et al.1977), one of the most abundant 

contaminants in produced water. No effects on oxygen consumption rates to yolk-sac 

larvae was detected with 25 )...lg/1, 100 )...lg/1 or 500 )...lg/1 phenol concentration for a 2-day 

exposure scenario, but for a 5-day exposure, effects on oxygen consumption were 

detected at 25 )...lg/1 and 100 )...lg/1 concentrations (Booman and Foyn, 1996). Booman and 

Foyn (1996) determined the 24-hour LC50 as 7 mg/1 BTX (mixture of benzene, toluene 

and xylene) for adult Crustaceans (Calanus spp.) and over 5.6 mg/1 for naupliar stages. 

Very rapid dilution occurs in volatile components of produced water and thus volatile 
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components fall below the criteria limit within a short distance from the discharge point 

(Neff and Sauer, 1996). Karman et al. (1996) performed a quantitative risk assessment for 

the Statfjord and Gullfaks oil fields. In that assessment, the predicted environmental 

concentration (PEC) was divided by the predicted no-effect concentration (PNEC) to 

determine ecotoxicological risk. PNEC is the highest concentration at which almost all 

biota are protected. The PNEC was calculated as 

PNEC= GM 
1000/ Fn 

(5.1) 

where, 

PNEC =Predicted no-effect concentration 

GM= Geometric mean of all available EC50 or LCso values. However to be more 

conservative, NOEC for the most sensitive effect parameters is considered if data is 

available (Mukhtasor, 2001) 

n = Number of species for which toxicity data for that chemical is available 

5.3 Framework for ecological risk assessment 

The comprehensive framework for ecological risk assessment (ERA), developed by 

the USEPA (1998a) is presented in Figure 5.1. The risk assessment framework has three 

main components as 

• Problem formulation 

• Analysis 

• Risk characterization 
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5.3.1 Problem formulation 

Problem formulation is the foundation and first step of the entire ecological risk 

assessment. It is a process of describing the sources of stressors, identifying the endpoints 

and the reasons for endpoints being affected. The entire process consists of three 

components: (i) assessment endpoints (ii) conceptual models and (iii) analysis plan. 

Assessment endpoints are critical to problem formulation as these should be the 

explicit expressions of actual environmental value that is to be protected. Three principle 

criteria are used to select assessment endpoints: (i) ecological relevance, (ii) susceptibility 

to potential stressors and (iii) relevance to the management goals. Fish has been assumed 

as the main assessment endpoints by several regulatory agencies and researchers 

(ANWQG, 2000; Mukhtasor, 2001; Sadiq, 2001; USEPA ECOTOX online database). 

The conceptual models are presented to express the relationship between ecological 

entities and stressors. Produced water may affect the benthos because of contaminants' 

accumulation in the sediments, but such impacts may be difficult to detect due to natural 

spatial and temporal variability in population density of infaunal organisms (Osenberg et 

al. 1992). Higashi et al. (1992) observed that the water-soluble fraction in produced water 

from a Carpinteria, California platform has the most biological effects while the 

sediments adsorbed fraction has the least effects. The egg, larvae, small fish and other 

small organisms drift with the water column and thus are exposed to the produced water 

plume. The larger fish move throughout the water column, eat phytoplankton, 

zooplankton and smaller fish and thereby are exposed through contact and the food web. 
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PROBLEM 
FORMULATION 

Integrate available 
information 

Characterization of exposure Characterization of ecological effects 

Measure of ... .. Measures of ecosystems and .... 
""" .... ... 

exoosure 

i 

RISK 
CHARACTERIZATION 

receotors characteristics 
I 
I 

Stressor
response profile 

Communicating results to the risk manager 

.. Measures ... 
of effects 

i 

Risk management and communicating results to the interested party 

Figure 5.1 Framework for ecological risk assessment (USEPA, 1998a) 
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The analysis plan is the final component in problem formulation, which includes the 

methods, data needs, and methods of performing analysis phase. This component 

includes pathways and relationships identified during problem formulation that will be 

pursued during the analysis phase. 

5.3.2 Analysis phase 

Analysis is a process that identifies the two primary components of risk, exposure and 

effects, and the relationships between each other and ecosystem characteristics. There are 

three steps to be followed in the analysis phase. 

• Evaluating the validity of data and models to be used for the analysis phase 

• Characterization of exposure 

• Characterization of ecological effects 

Evaluating the validity of data and models has been discussed in chapter 2 to 4. 

Characterization of exposure identifies the sources of contaminants, their exposure 

pathways and describes their temporal and spatial distribution. The source of 

contaminants is the first and most important component in the exposure analysis. The 

source can be defined in two ways. The first is the location where the stressors originate. 

In case of produced water discharges, the outlet point of the pipe is the original source. 

The second source can be defined as the current location of the stressors. The 

contaminants, which are transported from discharge port to the water column due to 

momentum, buoyancy and ambient current, could be the future source of contaminants. 
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The source characterization should consider the influence of the emission on transport, 

transformation or bioavailability of the stressor. 

Bioavailability of the stressors is the extent to which a contaminant can be absorbed 

by a living organism. Although the solubility of PAHs and other organics vary widely, to 

be in conservative prediction, all contaminants except metals have been assumed as 

completely dissolved in produced water and thus are 100% bioavailable to the marine 

organisms. The terms, leaching factor (LF) and conversion factor ( CF) were incorporated 

to determine the bioavailable fraction of heavy metals in the pore water of sediments for 

drilling waste discharges (USEPA, 1996; USEPA, 2000). Table 5.1 presents a partial 

listing of leaching factors and conversion factors of some metals. The conversion factors 

were derived assuming a hardness of 100 mg/1 as CaC03 (USEPA, 1996). The predicted 

environmental concentration (PEC) of the contaminant is adjusted by multiplying PEC 

with a factor for bioavailable fraction. 

Table 5.1 Factors to determine bioavailable fraction of contaminants 

Metals Leaching factor (LF) Conversion factor ( CF) 
for saltwater 

Arsenic 0.005 1.000 
Cadmium 0.11 0.994 

Chromium (III) N/A 
Chromium (IV) 0.034 0.993 

Copper 0.0063 0.83 
Lead 0.02 0.951 

Mercury 0.018 0.85 
Nickel 0.043 0.99 

Selenium -- 0.998 
Silver --- 0.85 
Zinc 0.0041 0.946 
Iron 0.13 ---

Barium 0.0021 ---
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The next important component is the spatial and temporal distributions of the 

stressors, which is predicted in this research by the dilution and dispersion models. The 

migratory organisms including fish need not stay close to the contaminated plume and the 

organism can move within the area under study. The probability of exposure (p) was 

determined as the ratio of the impact zone to the area under study (USEPA, 2000; Sadiq 

2001). The USEPA (1999) used an area of lOOm radius around the point of discharge for 

predicting human health risk. A similar approach for this study has been followed to 

predict probability of exposure (p). The exposure concentration is adjusted as 

Cexp= Cw x p x BAF 

where, 

(5.2) 

Cexp = Exposure concentration for fish 

Cw =Predicted Environmental Concentration (PEC). It is predicted using equations 4.12, 

4.13 and 4.38 

p = Exposure probability 

BAF = Bioavailable fraction 

Determination of the contact or co-occurrence of the stressors and the endpoints is the 

final step in exposure assessment. For produced water, the contact of marine organisms is 

quantified as the amount of contaminants ingested, inhaled or absorbed through skin. 

Internal absorption for some stressors is also required to determine actual contact and the 

uptake is evaluated by considering the amount of contaminants internally absorbed by an 

organism. For conservativeness and simplicity, the internal absorption for all 

contaminants except radio nuclides has been assumed to be 100 percent in this research. 
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The gastrointestinal absorption factors for radionuclides from USEPA (1999a) have been 

used in this study. 

Characterization of ecological effects describes the effects induced by a stressor, links 

them to the assessment endpoints and evaluates the changes with varying stressor level 

(USEPA, 1998a). The effects from produced water discharges can be acute or chronic. 

The effects resulting from a shorter exposure (96-hour or less) is called as an acute effect 

(USEPA, 1991). The acute effects are of different types including respiration effects, 

death, food intake. The effect that is carried out for a long time, such as several years or 

even throughout one-tenth or more of a life span, is known as a chronic effect. The 

chronic effects are characterized as reduced growth, reduced reproduction and change in 

lifecycle including lethal effects (USEPA, 1991). The primary focus of ecological risk 

assessment is the individual organism as it has optimum organizational characteristics, 

which can be studied easily (Suter, 1993; Calabrese and Baldwin, 1993; Osenberg et al., 

1992). The toxicological information of individual contaminants in produced water has 

been compared with the exposure concentration (EC). 

5.3.3 Risk characterization 

Risk characterization is the final phase of ecological risk assessment (ERA) and 

describes the adverse ecological effects to the selected end points. The associated 

uncertainties in the models are also discussed in this phase. The ratio of exposure 

concentration to the concentration that causes effects is the quotient. For a mixture of 

chemicals, the hazard quotient for each constituent for certain toxicity endpoints (e.g., 
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LC10, LCso, EC10, ECso, NOEC, etc) are calculated and added together assuming the 

toxicities are additive or approximately additive; but the toxicity of a chemical mixture 

may be greater or less than the predicted individual toxicities and thus additive toxicity 

may result in erroneous conclusion (USEPA, 1998a; USDOE, 1998). Table 5.2 presents 

toxic effects of chemical mixtures on fish. The ratio between mean exposure 

concentration and PNEC is shown in Figure 5.2a. Uncertainties can be incorporated into 

single-point estimates to provide a statement of likelihood that the effect point estimate 

exceeds the exposure point estimate (Figures 5.2b and 5.2c). In produced water 

discharges, the single point estimates for exposure and effects (Figure 5.2a) and the 

uncertainty in exposure will be considered (Figure 5.2b). The mean response 

concentrations have been adopted through literature search and documented in the 

databases in the appendices. 

Risk quantification can be performed for up to five non-radionuclide and three 

radionuclide contaminants in a single run. The analysis for a single chemical can also be 

performed in this software. The hazard quotient for each contaminant is determined as 

HQ = Exposure concentration (5.3) 
NOEC (No observed effect concentration) 

where, 

HQ = hazard quotient 
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Table 5.2 Responses and effects from chemicals mixture (Calabrese and Baldwin, 1993) 

Toxicants Response Species Joint action Multiple of 
additive joint action 

Ammonia+ Threshold Rainbow Additive 
0.7 to 1.0 

Phenol LCso trout 
Ammonia+ 48-hr LCzs Rainbow More than 

1.2 Copper trout additive 
Phenol+ 48-hr LCso Rainbow Less than 

0.9 Copper + Zinc trout additive 
Nickel+ 48-hr LCso Rainbow Additive 

0.7 Copper + Zinc trout 
Cyanide+ 30-day ECso Fathead Less than 

0.6-0.8 
Chromium (growth) minnow additive 
Cyanide + Zinc 96-hr LCso Bluegill Less than 

0.4 
additive 

Cadmium+ 96-hr LCso Fathead More than 
1.3 

Copper + Zinc minnow additive 
Nickel+ 10-week More than 

13 
Chromium LCso additive 

The occurrence of exposure to each of the contaminants has been assumed as 

independent and the total risk is predicted as 

R(A+ B+ C + D +E)= R(A+ B + C +D)+ R(E)- R(A+ B + C + D)xR(E) 

R(A + B + C +D) = R(A + B + C)+ R(D)- R(A + B + C) x R(D) 

(5.4) 

R(A + B +C)= R(A +B)+ R(C)- R(A + B)x R(C) 

R(A +B) = R(A) + R(B)- R(A) x R(B) 

where, 

A, B, C, D and E = 15
\ 2nd, 3rd 4th and 5th contaminant respectively 

R refers to respective effect 
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Exposure estimate 
(e.g., mean 

concentration) 

l 
e.g., uncertainty around 
mean concentration 

e.g., uncertainty around 
mean concentration 

Response estimate 
(e.2: .• mean NOEC) 

Response estimate (e.g., 
meanNOEC) 

e.g., uncertainty around 
NOEC 

Probability 
(Exposure cone. > 

EC) 

Figure 5.2 Risk estimation techniques: (a) Comparison of point estimate; (b) Comparison 
of point estimate of a stressor-response relationship with uncertainty associated with an 
exposure point estimate (c) Comparison of point estimates with associated uncertainties 
(source: USEPA, 1998a) 

5.4 Human health risk from contaminants in produced water 

Produced water discharges from offshore platforms may pose a human health risk 

through seafood ingestion. Study of human health risk from radium, a radioactive 

contaminant in produced water, has become important over the last decade (Meinhold 
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and Hamilton, 1992; Meinhold et al. 1996; Hamilton et al. 1992). Meinhold et al. (1996) 

predicted elevated risk from lead ingestion in fish for produced water discharges in the 

Open bay, Louisiana. Certain types of contaminants discharged from offshore operations 

may be accumulated in fish tissues and thereby pose risk to human health through food 

ingestion (Sadiq, 2001; USEPA, 2000). The evaluation of a conceptual model for risk 

assessment purposes can be performed through justifying related hypotheses. These are 

tabulated in Table 5.3. For produced water discharges, the source of contaminants is 

produced water as described in chapter 2; the pathway is seafood ingestion that may be 

contaminated with toxic chemicals in produced water; and the receptors are the human 

beings. 

Table 5.3 Conceptual model evaluation (source: USEPA, 1989a) 

Component Variables Hypotheses to be tested 
• Contaminants • Source exists 
• Concentrations • Source can be contained 

Sources • Time • Source can be removed and 
• Locations disposed 

• Source can be treated 
• Media • Pathway exists 
• Rates of migration • Pathway can be interrupted 

Pathways • Time • Pathway can be eliminated 
• Loss and gain 

functions 
• Types • Receptor is not impacted by 
• Sensitivities migration of contaminants 
• Time • Receptor can be relocated 

Receptors • Concentrations • Institutional controls can be 
• Numbers applied 

• Receptor can be protected 
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5.5 Prediction of fish tissue concentration 

Produced water may contain radium as a part of naturally occurring radioactive 

material (NORM) in addition to other contaminants like metals, PARs, VOC etc. Radium 

disintegrates through emissions of alpha, beta and gamma particles as characterized in 

chapter 2. A different approach for radium concentration in fish tissue has been discussed 

in section 5.5.1 below. 

5.5.1 Fish tissue concentration for non-radionuclides 

The weight of fish is predicted using the initial weight and parameters as described in 

section 4.3.1 in which the total lipid content can be predicted on the basis of lipid percent 

in a fish. Moisture and lipid content in a fish varies with species and time. These are 

tabulated in Table 5.4. In the Storage and Retrieval (STORET) database, the mean fillet 

percent lipid varies between 0.8 and 4.5 and the mean whole-body percent lipid ranges 

from 3.8 to 6.3 for various groups of fish species. In the National study of chemical 

residues in fish (NSCRF) report, the values range from 1.6 to 4.9 and 3.8 to 6.3 percent 

respectively USEPA (1992). The edible part in a fish was determined as the sum of 

moisture and lipid content in a fish from Table 5.4. These data reveal edible parts of a 

minimum of 64% and a maximum of 87% with a mean of 78% in fish. The edible parts in 

fish follow a lognormal (4.36,0.063) distribution. The Figure 5.3 shows the probability 

plot. The lipid percent of fish also follows a lognormal (1.139,1.032) distribution. The 

probability plot is shown in Figure 5 .4. The total contaminants accumulated in fish tissue 
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can be predicted with the respective bioconcentration factors as noted in Appendix 1. The 

following equations have been formulated to calculate fish tissue concentration. 

CL = Cexp X BCF (5.5) 

where, 

CL = Concentration of contaminant in lipid of a fish (~-tglkg) 

BCF = Bioconcentration factor (1/kg) 

Cexp =Exposure concentration (~-tg/1) as predicted by equation (5.2) 

(5.6) 

where, 

WL =Weight of lipid (kg) 

W1 = Weight of fish (kg) 

F L = Fraction lipid content in a fish 

The total contaminants in a fish is calculated from 

(5.7) 

where, 

We =Total accumulated contaminants in a fish (~-tg) 

By distributing the contaminants throughout the whole edible part of a fish, the tissue 

concentration was predicted as 

(5.8) 

where, 

C1 = Concentration in fish tissue (~-tglkg) 
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Fepr = Ratio between the weight of edible part to the weight of whole fish 

Table 5.4 Moisture and lipid content in selected species (source: USEPA, 1996a) 

Species Moisture Total lipid Category Comments 
content(%) content(%) 

Anchovy, European 73.37 4.101 Finfish Raw 
Bass, Stripped 79.22 1.951 Finfish Raw 
Carp 76.31 4.842 Finfish Raw 
Haddock 79.92 0.489 Finfish Raw 
Halibut, Atlantic and Pacific 77.92 1.812 Finfish Raw 
Halibut, Greenland 70.27 12.164 Finfish Raw 
Herring, Atlantic & Turbot 72.05 7.909 Finfish Raw 
Herring, Pacific 71.52 12.552 Finfish Raw 
Mackerel, Atlantic 63.55 9.076 Finfish Raw 
Ocean Perch, Atlantic 78.80 1.296 Finfish Raw 
Pike, Northern 78.92 0.477 Finfish Raw 
Salmon, Atlantic 68.5 5.625 Finfish Raw 
Salmon, Chinook 73.17 9.061 Finfish Raw 
Salmon, Coho 72.63 4.908 Finfish Raw 
Salmon, Pink 76.35 2.845 Finfish Raw 
Sardine, Atlantic 59.61 10.545 Finfish Canned in oil 
Seatrout, mixed species 78.09 2.618 Finfish Raw 
Trout, Rainbow 71.48 2.883 Finfish Raw 
Trout, mixed species 71.42 5.901 Finfish Raw 

Crab, Alaska King 79.57 N/A Shellfish Raw 
Lobster, Northern 76.03 0.358 Shellfish Raw 
Shrimp, mixed species 52.86 10.984 Shellfish Cooked, breaded 

and fried 
72.56 1.421 Canned 

Mussel, Blue 80.58 1.538 Shellfish Raw 
Oyster, Eastern 85.14 1.620 Shellfish Raw 
Squid 78.55 0.989 Shellfish Raw 

64.54 6.763 Cooked, Fried 
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Figure 5.3 Lognormal probability of edible part in a fish 
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Figure 5.4 Lognormal probability of lipid percent in fish 

The edible part of a fish excludes the bones, gills, guts and the external part of the skin. 

In Table 5.4, the moisture and lipid percentage are summed together to obtain the edible 

part of a fish. 
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5.5.2 Fish tissue concentration for radionuclides 

The presence of radium in produced water is variable throughout the world. Table 5.5 

presents available data for radionuclides in produced water from different platforms. The 

concentration factor (ratio of concentration in an organ or organism to the concentration 

in the media) for radionuclides in fish varies depending on type of fish and organ such as 

flesh, skin or bone (Meinhold and Hamilton, 1992). A study on marine species shows the 

concentration factors of 226Ra and 228Ra for bone are higher than those for the muscle in 

Sole, Ray, Sardine, Mackerel, Oil fish, Oyster (Ostrea sp.), Clam (Meretrix sp.), Green 

mussel (Perna viridis) and Snail (Petalla radiate) (Iyengar 1984; Iyengar et el. 1980; 

Neff, 2002). The concentration factors for fish in soft tissues were in the range of 21-130 

(Iyengar et el. 1980). The IAEA (1982) recommended a concentration factor of 100 for 

the whole fish and this is more representative than the value of IAEA (1985), which 

suggests a value of 500 for the concentration factor (Hamilton et al. 1992, Iyengar et el. 

1980). However, organ based concentration factors vary significantly in fish. Studies on 

three species of fish suggested that radium is accumulated in bones mostly and least in 

the flesh (Meinhold and Hamilton, 1992). Concentration factors based on radium content 

of the whole organism can overestimate the level of radium in the edible portion 

(Iyengar, 1984). More than 40% of radium in a fish is accumulated in bones and only 6% 

in the edible flesh (Neff, 2002). Several species of lake fish bioaccumulate radium to 

higher concentrations in bone than in muscle (Neff, 2002). 
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a e T bl 55 C oncentratwn o ra mm components m pro uce f d' d d water 
Platform Information 240Ra (pCi/1) u~Ra (pCi/1) 21Upb Source 

(pCi/1) 
South Marsh Island 236A, Gulf of 91±0.13 239±67 12.3±0.53 Hart et a1 (1996) 
Mexico 
V errnilion 214 A, Gulf of Mexico 300±157 229±29 5.6±5.5 Hart et al 1996) 
South Marsh Island 130B, Gulf of 162±43 164±146 7.7±4.7 Hart et a1 (1996) 
Mexico 
High Island 595 CF; Gulf of Mexico 1494±1989 356±19 12.5±2.6 Hart et al ( 1996) 
Eugene Island 189; Louisiana 225 111 -------- Hart et al ( 1996) 
BPT treated Produced Water 172.18 228.4 64.28 Wiedeman et 

al.(1996) 
Ship Shoa1169; Louisiana 260 240 ---------- Hart et al ( 1996) 
Open Bay, Louisiana 191.4 (122.4) 250 (163.6) Meinhold et al. 

(1996) 
Lirette Tank Battery #1, Louisiana 477±30 ---------- ---------- Mulino et al. 

(1992) 
Golden Meadow Tank Battery #3, 143±6.5 149±5.6 ---------- Mulino et al. 
Louisiana (1992) 
South Timbalier Block 52 Platform C, 190±7 198±13 ---------- Mulino et al. 
Louisiana (1992) 
Pargo, Brazil (Sampling Period- 162 221.4 -------- Vegueria et al. 
September 1997) 2002 
Pargo, Brazil (Sampling Period-March - 67.5 116.1 -------- V egueria et al. 
1998) 2002 
Pampo, Brazil (Sampling Period-March 54 19.71 -------- V egueria et al. 
-1998) 2002 
Pargo, Brazil (Sampling Period-June- 105.3 102.6 --------- V egueria et al. 
1998) 2002 
Pampo, Brazil (Sampling Period-June- 22.14 62.1 ---------- Vegueria et al. 
1998) 2002 
Pampo, Brazil (Sampling Period- 51.3 62.1 --------- Vegueria et al. 
August -1998) 2002 
Gulf of Mexico (42 Platforms) 4-584; 18-586; -------- Stephenson 

Mean 262±156 Mean 277±146 (1992) 
EPA 3 Facility Study 4-218 4-68 ---- Stephenson 

Mean 68±65 Mean 29±19 (1992) 
Louisiana DEQ Study 0-930 0-928 Stephenson 

Mean 68±144 Mean 165±150 (1992) 
West Cameron 448 (Ambient) 0.30±0.17 0.3 0.37±0.15 Hart et al ( 1996) 
South Marsh Island 186/195 (Ambient 0.13±0.006 0.6±0.53 0.03±0.06 Hart et al ( 1996) 
reference site) 
Galveston 90 (Ambient reference site) 0.07±0.06 0.7±0.66 0.23±0.21 Hart et al (1996) 
Galveston 205 (Ambient reference site) 0.13 ±0.06 0.93±1.21 0.3±0.26 Hart et al ( 1996) 

*Values within bracket() indicate standard deviation;± Indicates deviation from mean value 
BPT= Best Practicable (Available) Technology 
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The average concentration of 226Ra in shell is 9.3 times higher than that of the soft 

tissues in mussels (Neff, 2002). Iyengar (1984) determined the average concentration of 

226Ra in bone to be 5.0 to 7.9 times higher than that of the soft tissues in fish 

(Ophiocephalus sp.). In lake Trout and Whitefish, this ratio varies between 1.7 and 9.2 

and 3.1 to 34.3 respectively (Clulow et al. 1998). The concentration factors for different 

organs are tabulated in Table 5.6. The data were compiled from Swanson (1983), Iyengar 

(1984), Iyengar et al. (1980), Hamilton et al. (1992) and Neff (2002). 

The concentration factors (CF) for radium in flesh follow a lognormal (3.58, 1.29) 

distribution. In bone/skeleton/shell, the concentration factors also follow a lognormal 

(5.58,1.1) distribution. The ratios of CFs between bone/skeleton and flesh follow a 

lognormal (2.29,1.20) distribution. The geometric mean of CFs between 

bone/skeleton/shell and flesh was calculated to be 9.9. The edible portion in a fish has a 

mean value of 78 percent (Table 5.4). The probability plots for the concentration factors 

are shown in Figures 5.5, 5.6 and 5.7. 

The distribution of radium in fish can be calculated from 

xxWt XC flrad + (1- x) xWt X Cbonerad = Wrad 

=> X X W 1 XC jlrad + (1- X) X W 1 X y XC jlrad = Wrad (5.9) 

=> c = wrad 
jlrad [X + (1 - X) y] X W

1 

Cflrad = Radium concentration in edible part (pCi/kg) 

Cbonerad = Radium concentration in bone/shell/exoskeleton (pCi/kg) 

Wrad =Total radium accumulated in fish (pCi) 
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Wt = Weight of fish (kg) 

x = Edible part of a fish 

y = Concentration factor ratio of radium in non-edible part to edible part of fish 

For mean values of x andy, equation 5.9 can be written as 

c - wrad 

jlrad - 2.958 X Wt 
(5.10) 

Table 5.6 Organ specific concentration factors of radium in fish 

Species Radium CF CF (flesh) CF (bone, Ratio 
(1) Component (skin) (4) shell, (5)/(4) 

(2) (3) skeleton) (5) 
White sucker Ra 31 12 1793 149.4 

Lake whitefish Ra 93 3 360 120 
Lake trout Ra 20 1 10 10 

Oyster Ra -- 50 500 10 
Green mussel Ra -- 46 419 9.1 
Snail (Petalla Ra -- 44 256 5.8 

radiate) 
zzoRa -- 55 370 6.7 

Sole 22~Ra -- 21 160 7.6 

Oil sardine 
"'"()Ra -- 130 610 4.7 
"'"(jRa -- 44 180 4.1 

Ray 
zzoRa -- 60 65 1.1 
"'"(jRa -- -- 98 

Prawn 
"'"()Ra -- 80 360 4.5 
zz~Ra -- 56 300 --

Moluscs- uoRa -- 44-63 156-500 2.5-11.4 
marine 

Crustaceans- 22~Ra -- 35-360 230-800 0.6-22.9 
marine 
Crab U(jRa -- 35 800 22.9 
Clam Ra -- -- 200 --

Moluscs Ra -- 2-240 -- --

Ratio 
(5)/(3) 

57.8 
3.9 
0.5 
--
--
--

--
--

--
--
--
--
--
--
--

--

--
--
--
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Lognormal Probability Plot of CF in Flesh 
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Figure 5.5 Probability plot for concentration factors in flesh/ soft part 
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Figure 5.6 Probability plot for concentration factors in bone/skeleton/shell 
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Figure 5.7. Probability plot for concentration factors ratios in bone to soft part 

(5.11) 

Crad = Cexp xBCF (5.12) 

where, 

Cexp is calculated using equation 5.2 

BCF = Whole fish bioconcentration 

Cad = Radium concentration in whole fish (pCilkg) 

Wr is calculated using equation 3.16 or 3.17 (This equation gives W1 in g. A conversion 

factor of 1000 is applied to convert W1 from g to kg). 

5.6 Exposure quantification for human health risk 

The exposure pathway of produced water contaminants through fish ingestion is 

presented in Figure 5.8. The general procedures involved in exposure assessment are 
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shown in Figure 5.9. From produced water discharges, ingestion of seafood has been 

assumed as the dominant pathway for uptake of contaminants. Direct contact between 

humans and contaminants from produced water in the ocean environment has been 

assumed to be negligible in this study. 

Figure 5.8. Exposure pathway of contaminants through contaminated fish ingestion 

• 
• 

STEPl STEP2 

Physical environment • Sources of stressors 
Potentially exposed • Exposure route 
population • Exposure point 

STEP3 

Exposure Intake 

c\ce.nt'"tion v>ri>/' 

~ Pathway specific-/ 
exposure 

Figure 5.9 Exposure assessment process (modified after USEP A, 1989a) 
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The intake of contaminants through food ingestion for non-radionuclides was performed 

by USEPA (1998) as 

CD! = _c..::....1_x_F_IR_x_E_F_x_E_D_ 
BWxAT 

where, 

(5.13) 

CD!= Chronic daily intake of contaminant (mg/kg-day) 

CJ = Concentration in fish tissue (mg/kg of fish) 

FIR =Fish ingestion rate (kg/day) 

EF =Exposure frequency (days/yr) 

ED = Exposure duration (yrs) 

BW = Average bodyweight over the exposure period (kg) 

AT= Averaging time (days) 

Fish ingestion rate (FIR) 

The USEPA 95th percentile value of fish intake is 132 g/day (USEPA, 1990). 

Assessment according to age group shows 95th percentile intake of 51 g/day for children 

below or equal to 14 years and 85 g /day for 15-44 age group (USEPA, 1997). The 99th 

percentile values are 98 and 138 g/day respectively. Recreational fishermen generally 

catch fish near the platforms and dilution is less in this region. Hence, recreational 

fishermen are more susceptible to ingesting produced water contaminated fish than those 

from the far field (Meinhold et al. 1996). The upper 95th percentile fish ingestion rate of 

170 g/day was recommended for Native American Subsistence Populations by USEPA 
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(1996a). A lognormal distribution to approximate long-term fish ingestion rate was 

suggested by the USEPA (1996a). The USEPA (1999) used the 99th percentile fish 

consumption as 177 g/day for human health risk assessment. Meinhold (1996) derived 

distributions for fish caught near the Open bay platform at Louisiana for the purpose of 

risk assessment (Table 5.7). This follows a lognormal (3.455, 0.622) distribution where 

the parameters 3.455 and 0.622 represent the natural log of the median and the standard 

deviation respectively. 

Table 5.7 Fish ingestion rate (Meinhold et al. 1996) 

Intake (g/day) 
Recreational Fishermen Children 
and Families 

Arithmetic Mean 38.4 16.6 
Median 31.5 13.6 
Standard Deviation 26.4 11.6 
Minimum 3.3 1.3 
Maximum 228.6 115.7 
95tn Percentile 89.5 38.5 

Fraction of fish contaminated with produced water (FR) 

Throughout the exposure period, it is unrealistic to assume that all the fish ingested 

are from the contaminated site. A study by the USEPA for the 1-20 age group shows that 

0.123 kg/day recreational fish was consumed out of total 0.219 kg/day ingestion. An 

average meal of 60g/day finfish and shellfish in which 16 g is freshwater finfish, 13g 

saltwater finfish and 31 g shellfish was reported (Schultz et al. 1996). A survey of 

restaurants shows an average of 889 dishes of 1500 total each week in 1992 were served 

with seafood. On the basis of data provided by the USEPA (1997), Dellenbarger et al. 

120 



(1993) and Schultz et al. (1996), marine fish was almost 50% of the total fish ingestion. 

Moreover, all the marine fish need not necessarily come from the contaminated zone and 

therefore, the assumption of 50% of the total ingested fish from the contaminated zone 

still provides conservative estimates. 

Exposure frequency (EF) 

The USEPA (1989, 1991a) recommended the exposure period for all exposure 

pathways as 350 days in a year. In this recommendation, a minimum of 2 weeks absence 

from the exposure scenario has been assumed. This will provide a conservative 

estimation of risk. 

Exposure duration (ED) 

Exposure duration (ED) is the length of time for which exposure to certain stressors 

occurs through a specific pathway. In the case of some chemicals, indirect exposure may 

occur even if the source has ceased. Therefore, the USEP A Office of Solid Waste ( OSW) 

recommends the use of a default reasonable maximum exposure (RME). The number of 

years that a person is likely to spend in the vicinity of the source can be derived from data 

on mobility rate and median time in a residence (USEPA, 1998). The USEPA OSW 

recommended the exposure duration values that are presented in Table 5.8. 
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Table 5.8 Exposure duration (USEPA, 1998) 

Exposure Duration Values 
Recommended Exposure Scenario Receptor Value (Years) 
Child Resident 6 
Adult Resident 30 
Subsistence Fisher 30 
Subsistence Fisher Child 6 
Subsistence Farmer 40 
Subsistence Farmer Child 6 

Body weight (BW) 

The USEP A (1990a) defined the bodyweight of an adult receptor as 70 kg and a child 

(1 to 7 years) receptor as 17 kg. The USEPA OSW recommends the child weight as 15 kg 

for risk assessment purposes (USEPA, 1994). The USEPA (1999) used 70 kg as 

bodyweight for human health risk assessment. 

Averaging time (AD 

The human life expectancy is taken to be 70 years (USEPA, 1999). For non-

carcinogens, the averaging time is the same as the exposure duration and for carcinogens, 

the length of life is to be used (USEPA, 1998; Louvar and Louvar, 1998). The USEPA 

OSW used an averaging time of 70 years. The average life expectancy in different 

regions of the world is presented in Table 5.9. 

5. 7 Methodology for human health risk assessment 

Equation 5.13 (USEPA, 1998) assumes 100% consumption of contaminated fish. It is 

unlikely that the total fish consumed by the population at risk is from a contaminated 
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source. The field surveys by Dellenbarger et al. (1993), Schultz et al. (1996), USEPA 

(1997) presented the distributions of sources. Fish ingestion rate varies widely from 

region to region based on peoples' choice and fish availability (Meinhold et al. 1996; 

USEPA, 1990; USEPA, 1996a; USEPA, 1997). 

Table 5.9 Human life expectancy (source: Human Development Reports) 

Country Life Expectancy 
(Years) 

Australia 79 
Canada 79.2 
France 78.7 
Japan 81.3 
United Kingdom 77.9 
United States 76.9 
High human development countries 77.1 
Medium human development countries 67 
Low human development countries 49.4 
World 66.7 

As discussed before, the lognormal distribution can be used to approximate the long-term 

fish ingestion rate (USEPA, 1996a). Equation 5.13 can be modified to incorporate the 

fraction of the produced water contaminated fish ingested from a marine source as 

follows. 

Non -carcinogens 

For non-carcinogenic risk assessment as 

C1 xFIRxFRxEFx10-6 

CDI=~--------------
BWx365 

where, 

(5.14) 

CD!= Chronic daily intake of contaminant (mg/kg-day) 
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Ct = Concentration in fish tissue (~g/kg of fish) 

FIR =Fish ingestion rate (g/day) 

FR = Fraction of fish from contaminated source 

EF =Exposure frequency (days/yr) 

BW = Average bodyweight over the exposure period (kg) 

10 -6 = Conversion factor for fish tissue concentration and fish ingestion 

365 = Conversion of averaging time from year to days 

Carcinogens (non-radionuclides) 

Equation 5.13 can be modified for carcinogenic risk assessment as 

C1 xFIRxFRxEFxEDxl0-6 
CD! c = __;_ _________ _ 

BWxAT 
(5.15) 

where, 

CD!c = Chronic daily intake of carcinogen (mg/kg-day) 

Ct = Concentration in fish tissue (~g/kg of fish) 

FIR =Fish ingestion rate (g/day) 

FR = Fraction of fish from contaminated source 

EF =Exposure frequency (days/yr) 

ED = Exposure duration (yrs) 

BW = Average bodyweight over the exposure period (kg) 

AT= Averaging time in days; for high human development countries, the life expectancy 

= 77.1 yrs = 77.1 yrs x365 days/yrs = 28141 days (Table 5.9). 
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Radionuclides 

To develop a carcinogenic effect, the radionuclides have to be absorbed into the 

blood. The fraction that is absorbed by blood from the intestinal tract is known as the 

gastrointestinal absorption factor (Gl). Absorption of 100 percent radionuclides from 

intestinal tract to blood would provide an overestimation of the risk calculation. The 

USEPA (1999a) tabulated the GI factor for radionuclide components: these have been 

used in this study. 

For radionuclides risk assessment, the intake of radium can be quantified by 

modifying equation 9.18 from Louvar and Louvar (1998) as 

lr = C flrad x F!Rx EF x EDx FR xGI x10-3 (5.16) 

where, 

Ir =Total intake radium intake (pCi) 

Cflrad = Radium concentration in edible part of fish (pCi/kg) 

FIR= Daily fish ingestion rate (g/day) 

EF =Exposure frequency (days/yr) 

ED= Exposure duration (yrs) 

FR = Fraction of contaminated fish ingested 

GI = Gastrointestinal absorption factor 

10 -J = Conversion factor from g to kg 
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5.7.1 Characterization of human health risk 

The final step of risk assessment is the calculation of the upper-bound excess lifetime 

cancer risks and non-carcinogenic hazards for each pathway. Risks and hazards are 

combined for each of the contaminants to characterize total risk for certain receptors. The 

carcinogenic risks are averaged throughout the whole span of life and the non-

carcinogenic hazards are averaged throughout the exposure periods for the risk 

assessment. To characterize the risks and hazards, the approaches are discussed as 

follows. 

Non -carcinogen 

Risk assessment models assume a threshold value for non-carcinogens and exposure up 

to that level which will result in no adverse effect (USEPA, 1989). This is determined as 

HQ= CD! 
RfD 

(5.17) 

where, 

HQ =Hazard quotient 

CD!= Chronic daily intake (Equation 5.6) (mg/kg-day) 

RtD =Reference dose (mg/kg-day) 

The value of HQ ~I indicates a health-protective level (USEPA, 1989). The total non-

carcinogenic hazard attributed through a single exposure pathway is termed as the hazard 

index (HI). The USEP A (1998) calculated hazard index as 

(5.18) 

where, 
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HI = Total hazard for a specific pathway 

HQi =Hazard quotient for contaminant i 

In this approach (USEPA, 1998), all the hazard quotients are assumed to be additive. 

Assuming the probability of exposure to each contaminant is the same and exposure to 

each individual contaminant is independent, the hazard index (HI) is determined using 

the probabilistic summation concepts used in equation 5.4. 

Carcinogen 

For carcinogens, no threshold value is considered. Risk estimates for carcinogens 

represent the incremental probability that an individual will develop cancer over a 

lifetime as a result of specific exposure to a carcinogenic chemical (USEPA, 1989). The 

cancer risk is calculated as 

CR = CDic xSF (5.19) 

where, 

CR = Cancer risk 

CDic = Chronic daily intake of carcinogen (Equation 5.15) (mg/kg-day) 

SF= Slope factor (mg/kg-dayr1 

When the cancer risk is more than 0.01 then the popular one hit model is used for risk 

estimation. The one hit model is presented by Asante-Duah (1993) as 

HCR = 1_ e(-CDicxSF) (5.20) 

where, 

HCR =High cancer risk 

USEPA (1998) predicted the total cancer risk as 
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Total cancer risk = I i CRi (5.21) 

where, 

CRi = Cancer risk from contaminant i 

The cancer risk from each contaminant is assumed independent and thus equation 5.4 has 

been used to determine total cancer risk. 

Radionuclide 

Radionuclides are carcinogenic and thereby no threshold value is noted. The cancer 

risk from radionuclides is calculated as 

CRRAD = Ir xSF (5.22) 

where, 

CRRAD = Cancer risk from radionuclides 

Ir =Total radium intake (pCi) 

SF = Slope factor (pCir1 

The calculation of total radionuclides risk follows equation 5.4 

5. 7.2 Human health risk assessment framework 

The framework for human health risk assessment is presented in Figure 5.1 0. Sadiq . 

(2001) recommended the combination of ecological risk and total non-carcinogenic and 

carcinogenic risk to define total environmental risk from drilling waste. For produced 

water discharges, ecological hazards quotients (HQ), human health hazard index (HI) and 

human health cancer risks have been predicted separately. These risks were then 

compared with the acceptable limits defined by regulatory agencies (e.g. USEPA). 
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Figure 5.10 Proposed framework for human health risk assessment from produced water 
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5.8 Summary 

The framework for ecological risk assessment based on the US EPA methodology is 

discussed in this chapter. Selection of endpoints for ERA and their relevance are noted. 

Ecological risk estimation techniques are discussed. The methodology for conversion of 

predicted environmental concentration (PEC) to exposure concentration (EC) is 

illustrated. The average human life expectancy for the developed countries is considered 

in this study. Modifications of the existing equations to calculate average daily intake 

(AD[) of contaminants have been performed. A new methodology for human health risk 

assessment is presented in this chapter. In this new methodology, a concept of 

contaminant distribution between bones/skeleton/shell and edible parts of fish has been 

introduced. The variability in lipid content and edible parts in fish were incorporated in 

the new methodology. A separate component to predict human health risk from 

radionuclides in produced water has been integrated with the new methodology. Radium 

is accumulated in bones/skeleton/shell of organisms mostly and thus the predicted risk 

would be lower if the radium in bones/skeleton/shell is avoided. A case study will be 

performed in chapter 6 using the methodology of this chapter with the models in chapters 

3 and 4. 
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Chapter 6 

Risk Characterization: A Hypothetical Case Study 

6.1 Introduction 

This chapter has been designed to apply the concept and methodology discussed in 

the previous chapters on a hypothetical case study applicable for the oil and gas 

development activities in the Atlantic Canada. The offshore oil and gas production in 

Newfoundland has an important role on the Canadian economy by producing around 30% 

of the total Canadian conventional light crude oil and it contributes approximately 16% 

of the total gross domestic product (GDP) for the province of Newfoundland and 

Labrador (CNOPB, 2003). As shown in Figure 6.1, most of the oil and gas production 

activities are on the Grand Banks, which have an area of 93200 km2
, located south-east 

from Newfoundland at 46°-48° N and 50°-52° W. The Grand Banks is a submarine 

plateau rising from the continental shelf; has length of 480 km and width of 640 km with 

a varying water depth ranging from 37 to 183 meters. The location of Grand Banks is 

presented in Figure 6.1. 
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Figure 6.1 Location of Grand Banks; not to scale (source: CNOPB, 2003) 

The persistent dense fog, which is formed due to mixing of the cold Labrador Current 

with the warmer Gulf Stream, is a general characteristic of the Grand Banks. This 

characteristic along with shallow water depth develops a favorable environment for 

plankton and fish and therefore the Grand Banks were probably the world's most 

important international fishing ground until 1977, when Canada extended its offshore 

jurisdiction to include most of the area. Although the fishing activities have been reduced 

in the recent years, the economic importance of Grand Banks has been increased as a 
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result of accelerated oil and gas activities. Two oil fields, namely Hibernia and Terra 

Nova, are already in operation and the White Rose oil field is in development for oil 

production from 2005. In the year 2002, the average oil production from these two oil 

fields was estimated as 46805 m3 (0.3x106 bbls) per day with a total production of 16.59 

million m3
. The total estimated recoverable oil reserves in the Grand Banks is 335 million 

m3
, while gas and natural gas liquids (NGLs) are 159 billion m3 and 52 million m3 

respectively (Table 6.1). As shown in Table 6.1, the three fields on the Grand Banks 

namely, Hibernia, Terra Nova and White Rose have a cumulative reserve of 74% oil, 

77% gas and 83% NGLs (CNOPB, 2003) of the total known reserves on the Grand 

Banks. The number of wells in a field varies based on the amount of oil and gas 

extraction. For more extraction, a higher number of producing wells is required (Table 

6.1). 

Approximately 50000 metric tonnes of pelagic and other finfish were landed in the 

year 2002 in Newfoundland and Labrador, which contributed 16% of the total catches of 

pelagic and other finfish in Canada. The fish species available on the Grand Banks are 

not unique and include both pelagic (Mackerel, Atlantic Herring, Capelin, Tuna etc.), 

demersal (Atlantic Cod, Haddock, Skate, Halibut, American Plaice etc.) and shellfish 

(Lobster, Queen/Snow Crab, Sea cucumber etc.). More than 35 fish species, which have 

economic value, are available on the Grand Banks. Therefore, considering its ecological 

importance and economic value, the Grand Banks area is an important area to assess 

ecological risks as a result of exposure to produced water contaminants and human health 

risks from fish ingestion. 
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Table 6.1 Oil and gas activities on the Grand Banks (source: CNOPB, 2003) 

Hibernia Terra Nova Kv"hite Rose (Not in Grand 
operation yet) Banks 

!Discovery year 1979 1984 1984 
location 315 km east 350 km east southeast 350 km east of St. 

southeast of St. of St. John's, NF and ~ohn's, NF and 50 km 
John's, NF 35 km SE of from both Hibernia 

Hibernia; and Terra Nova. 
!Total number of wells 35(17:oil producers, 15 (8: oil producers, 5 

12 water injectors water injectors and 2 Not started 
and 6 gas injectors lgas injectors 

Recoverable oil 
137.6 64.4 45 334.7 !reserve (million m3

) 

!Recoverable gas 
eserve (billion m3

) 
37.2 7.6 76.7 158.6 

~ atural gas liquids 
(NGLs) reserve 25.5 2.2 15.3 51.6 
(billion m3

) 

First oil production November 17, 1997 ~anuary 20, 2002 Possibly in 2005 
Oil production in 
2002 (million m3

) 
10.47 6.12 

Gas production in 
2.44 0.88 

2002 (billion m3) 
Water production in 

0.45 
2002 (million m3

) 

Daily oil production 
28,600 18,205 

11,925-17,490 
in 2002 (m3

) (Design capacity) 
Ambient water depth 

80 95 
(m) 

6.2 Characterization of a hypothetical oil platform on the east coast of 

Canada 

The oil and gas activities in eastern Canada started since 1943 through an offshore 

well off the Prince Edward Island. Since then offshore oil and gas activities have an 

increasing trend and a positive impact on the Canadian economy. The east coast, 
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especially the Grand Banks, has become one of the important offshore oil and gas sources 

in Canada over the last decade. Due to the increased offshore activities on the east coast, 

the degradation of environmental quality in this region has become a concern, and this 

has led to numerous studies on oil and gas platforms in relation to ecological and human 

health risk assessment (Mukhtasor, 2001; Sadiq, 2001, Petro-Canada, 1996). 

Mukhtasor (2001) developed an ecological risk assessment methodology. In that 

study, Mukhtasor (2001) used the whole effluent approach in which the total amount of 

produced water in seawater was selected to characterize the ecological impact. In the 

current study, human health risk assessment methodology has been developed to 

characterize human health risks from produced water contaminants. An individual 

contaminant's toxicity profile has been incorporated in this study, which was not 

included by Mukhtasor (2001). 

A hypothetical oil field on the Grand Banks is considered for application of the 

developed models and the methodologies to characterize risks to human health and 

ecological entities. Relevant information for a potential produced water discharge 

platform in the offshore was collected (e.g. Petro-Canada, 1996). The FPSO (Floating 

Production Storage and Offloading) platform was designed for a capacity of treating 

0.212 m3/s of produced water. The limited available data for the ambient characteristics 

of the Grand Banks, was defined on the basis of DFO (1999, 2001), Petro-Canada (1996) 

and Mukhtasor (2001). 

The ambient data for the location is presented as follows. 

• Water depth: 95 meters 
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• Air temperature: +26.8°C to -17.3° C with mean of +5°C. 

• Wind speed: 9.72 m/sec (average) 

• Water temperature: ranges from -1.7°C to 15.4°C 

• Fog: seasonal from May to July 

• Ice and icebergs: seasonal from April to June 

During winter, the water column is cold and at other times it is a two-layer system in 

which the top layer is approximately 15m thick. The top layer becomes most stratified in 

August and can be considered as the depth of mixing layer. In the comparatively shallow 

Grand Banks, the mean currents are very weak, and vary in the range of 0.05 to 0.15 

m/sec (Petro-Canada, 1996). The current speed on the Grand Banks was analyzed by 

Mukhtasor (2001) and found to follow a lognormal (-3.29, 0.96) distribution. The height 

of the tide is mostly limited to 1m on the east coast of Newfoundland. The dilution of 

produced water discharge is directly related to the square of the depth above the 

discharge and inversely related to the discharge rate (Equations 4.12 and 4.13). The depth 

of produced water discharge is a variable factor that depends on the ambient water 

characteristics and the regulation criteria. It has been discussed in section 4.2.2. The 

depth of the discharge port for this study was assumed as 11m and 8m from the water 

surface for analyzing two scenarios. The density of produced water varies in the range of 

988 kg/m3 (Bass Strait) to 1185 kg/m3 (North Sea) while the ambient seawater density 

varies in the ranges of 1017 kg/m3 (Gulf of Mexico) to 1027 kg/m3 (North Sea) as noted 

in Table 2.3. The information on produced water density for the Grand Banks is not 
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available. The maximum density gradient has been found to be 0.037 and the minimum to 

be 0.013 for the limited data on positive buoyant produced water. 

To characterize the risks, three different density gradients, 0.013, 0.025 and 0.037, 

were considered for this study. The data on produced water contaminants for the Grand 

Banks offshore oil and gas platforms are not available yet. The contaminants' type and 

concentrations in produced water vary significantly from platform to platform and 

therefore the assumption for the contaminants concentrations needs to be carefully 

investigated for this case study. Numerous studies on the effects of produced water were 

conducted in the Gulf of Mexico, Alaska, North Sea, Bass Straits and Java Sea region. 

Tibbetts et al. (1992) compiled the data for physical properties and metals in produced 

water for the North Sea, Murchison and Hutton oil fields. Neff et al. (1997) and Neff 

(2002) studied the worldwide variability of organic chemicals, metals and NORM 

components while OGP (2002) investigated the aromatic compounds in the produced 

water from 18 platforms in the Norwegian Sector. The details of contaminants' types and 

concentrations have been discussed in chapter 2. The data in the Table 2.4 have been 

considered for the case study purpose. 

6.3 Prediction of exposure concentration (EC) for marine species 

The fate and transport models developed by Mukhtasor (2001) have been selected to 

assess initial dilution and consequently the concentrations in the marine environment 

(PEC). The initial dilution has been predicted using equations 4.12 and 4.13 for 

deterministic and probabilistic analyses. The related outputs of the models are calculated 
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using equations 4.14 to 4.34. The spatial distributions of the contaminants' concentrations 

were predicted using the subsequent dispersion models (Equations 4.35-4.41). The 

contour plots for the concentration distributions were performed using equations 4.42 and 

4.43. Upon predicting the environmental concentrations, the exposure concentrations 

were predicted by incorporating exposure probability (p) and the bioavailable fraction 

(BAF). The exposure concentrations are calculated using both deterministic and 

probabilistic approaches, which have been incorporated with the software. 

6.4 Ecological risk assessment 

The exposure concentrations (EC) for the marine entities are predicted using equation 

5.2. The approaches described in Figures 5.2a and 5.2b have been adopted to characterize 

the ecological risks for the case study. For Figure 5.2a, the mean exposure concentration 

has been used in predicting hazard quotient (HQ) in equation 5.3 while in Figure 5.2b, the 

uncertainty around the mean exposure concentration has been incorporated through 

Monte Carlo (MC) simulation. If the hazard quotient (HQ) ~ 1, then the risks induced to 

the respective organism can be considered as negligible (USEPA, 1998a). The total 

hazard attributed through a single exposure pathway is called the hazard index (HI) and 

the HI has been predicted using the probabilistic summation approach in equation 5.4. 

Fish, invertebrates (molluscs, crustaceans etc.), micro invertebrates, algae, phytoplankton 

and zooplankton were suggested as endpoints by the ANWQG (2000) for ecological risk 

assessment purposes from exposure to organic and inorganic chemicals including metals 

in marine water column and sediments. In Australia, ecological risk assessment studies 
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have been conducted for a large variety of marine species, which include Sea urchin, 

Gastropod, Oyster, Scallop, Green Algae, Mussel, Copepod, Amphipod and Prawn 

(ANWQG, 2000). Sadiq (2001), Neff and Sauer (1996), USEPA online ECOTOX and 

IRIS Database, Booman and Foyn (1996), Hamilton et al. (1992), Reish et al. (1976-

1980) considered similar species for ecological risk assessment purposes. The advantages 

of using these indicators are explained by ANWQG (2000). The spatial and temporal 

distributions of the endpoints are very high and need to be understood. The growth 

dynamics and the movements of the migratory species for site-specific assessments 

deserve a high level of understanding to perform ecological risk assessment. 

The most abundant contaminants in produced water include Benzene, Toluene, 

Phenol, Ethylbenzene, Naphthalene, Barium, Cadmium and Chromium. The 

concentration of NORM components in the Gulf of Mexico is the highest of any other 

known offshore location and thus maximum risk from NORM components is expected 

from this region (Neff, 2002). A selection of five contaminants namely Cadmium, Zinc, 

Benzene, Toluene and Phenol and their concentrations from Table 2.4 has been 

considered for this case study. The selection was made on the basis of toxicity and 

quantity discharged with produced water. The concentrations of NORM components from 

Table 2.4 have also been considered for the risk assessment study. 

The total hazards using the deterministic approach for the average and maximum 

concentrations for the five chemicals considering continuous exposure and exposure 

probability have been shown in Figure 6.2. The higher the density gradient, the less the 

effects on fish noticed in Figure 6.2. In this Figure, total hazard is decreasing with the 
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increase of discharge depth. The typical outputs for a density gradient of 0.037, discharge 

depth 11m and average concentrations in Table 2.4 are shown in Table 6.2. Table 6.3 

shows the similar outputs for a discharge depth of 8m and average concentrations in 

Table 2.4 with the same density gradient. 

Name of 
contaminant 

Cadmium 

Zinc 

Benzene 

Toluene 

Phenol 

Name of 
contaminant 

Cadmium 
Zinc 

Benzene 
Toluene 
Phenol 

Table 6.2 Typical outputs of ecological effects (Discharge depth= 11m, Density 
gradient=0.037, Average concentration) 

Exposure concentration NOEC Hazard Quotient to Fish Total Hazard 
to fish (~J.g/1) ( IJ.g/1) (HQ) 

Deterministic Probabilistic Deterministic Probabilistic Deterministic 
9.8E-03 2.8E-03 2.57 3.8E-03 l.lE-03 

2.2E-03 6.2E-04 120 l.SE-05 5.2E-06 

4.4E+00 1.25E+00 10200 4.3E-04 1.2E-04 5.1E-03 
3.5E+00 1.0E+00 5440 6.5E-04 l.SE-04 

3.5E+00 9.9E-01 20200 1.7E-04 4.9E-05 

Table 6.3 Typical outputs of ecological effects (Discharge depth = 8m, Density 
gradient=0.037, Average concentration) 

Probabilistic 

1.4E-03 

Exposure concentration NOEC Hazard Quotient to Fish Total Hazard 
to fish (~J.g/1) ( IJ.g/1) (HQ) 

Deterministic Probabilistic Deterministic Probabilistic Deterministic Probabilistic 
1.7E-02 4.8E-03 2.57 6.5E-03 1.9E-03 
3.8E-03 l.lE-03 120 3.0E-05 8.8E-06 
7.6E+00 2.1E+00 10200 7.4E-04 2.1E-04 8.7E-03 2.5E-03 
6.1E+00 1.7E+00 5440 l.lE-03 3.2E-04 
6.0E+00 1.7E+00 20200 3.0E-04 8.4E-05 
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Figure 6.2 Variation of hazard with density gradient in deterministic analysis (IA = 
impact area; SA= study area; p =exposure probability; p=1 for continuous exposure) 

A probabilistic analysis for hazard quotients and total hazard has been conducted. The 

variations of hazards with density gradient considering continuous exposure and exposure 

probability have been plotted in Figure 6.3. The predicted hazard is much less than the 

critical value of 1 in all cases. The hazards considering the exposure probability were 

predicted to be lower than the hazards predicted using continuous exposure (Figures 6.2 

to 6.3). In the deterministic analyses, the highest hazard was predicted to be 0.46 
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assuming continuous exposure of fish to the produced water plume for a discharge depth 

of 8 m with the maximum concentrations in Table 2.4, while the value was 0.27 for a 

discharge depth of 11 m (Figure 6.2). In the probabilistic analyses considering continuous 

exposure, the highest hazards were predicted as 0.24 and 0.14 respectively for similar 

conditions (Figure 6.3). Considering the exposure probability (p), the highest hazard has 

been predicted as 0.05 for a discharge depth of 8 min the deterministic analysis and 0.02 

in the probabilistic analysis (Figures 6.2 and 6.3). Tables 6.2 and 6.3 show the 

differences in individual hazard quotients (HQ) and total hazard based on the analyses 

(deterministic and probabilistic) and discharge depths. For a density gradient of 0.037, 

the deterministic analysis predicts total hazard as 5.1E-03 while the probabilistic analysis 

predicts as 1.4E-03 for a discharge depth of 11m (Table 6.2). In case of 8m-discharge 

depth, the hazard quotients are 8.7E-03 and 2.5E-03 in deterministic and probabilistic 

analyses respectively (Table 6.3). 

For average concentration of cadmium, typical distributions in the marine 

environment for different discharge depths have been plotted in Figures 6.4 to 6.7. The 

directions of currents have a significant impact on the distributions of contaminants. The 

impact area decreases with the increase of discharge depth (Figures 6.4 and 6.5). The 

impact area increases with the decrease of density gradient (Figures 6.4 and 6.6). The 

minimum density gradient and lowest depth of discharge is the worst-case scenario in this 

study (Figure 6.7). The hazard quotients for all the contaminants were less than 1 and 

thus no or little impact on fish in the marine environment is expected from the produced 

water contaminants. The total hazards are less than one for all the cases. 
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Figure 6.3 Variation of hazard with density gradient in probabilistic analysis 

(IA =impact area; SA= study area; p= exposure probability; p=1 for continuous 

exposure) 
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6.5 Human health risk assessment 

The methodologies described in sections 5.4 to 5.7 have been used to characterize the 

human health risks from produced water contaminants. The equations 5.4 and 5.6 to 5.22 

have been used in characterizing the human health risk. The equations cover the hazard 

index (HI) from non-carcinogens, cancer risk from carcinogens and radionuclides. The 

probabilistic concept as described in equation 5.4 has been incorporated in the case of 

exposure to more than one chemical. The carcinogenicity of any contaminant has been 

denoted by '0' for a non-carcinogen and '1' for a carcinogen. The related parameters to 

predict hazard quotient (HQ), hazard index (HI), and cancer risks (CR) from different 

types of contaminants have been discussed in chapter 5. 

6.5.1 Hazard assessment 

The maximum dose of a chemical that does not pose harmful effects to humans is 

termed the Reference Dose (RfD). The hazard assessment is performed on those 

chemicals that are non-carcinogens or having both carcinogenic and non-carcinogenic 

effects to human. Equation 5.14 has been considered to calculate the chronic daily intake 

(CD!) of a chemical. Equation 5.17 predicts individual hazard quotients (HQ) for the 

contaminants. The probabilistic summation approach as noted in equation 5.4 has been 

incorporated to calculate the hazard index (HI) for the concerned contaminants. To 

calculate the chronic daily intake of contaminants using equation 5.14, the 99th percentile 

fish consumption rate of 177 g/day has been considered. The USEPA (1999) used a 
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similar fish ingestion rate for human health risk assessment. The hazard index (HI) was 

found to be less than 1 in all the iterations. 

6.5.2 Assessment of cancer risk from non-radionuclides 

The chemicals in produced water, which have the capacity to develop cancer in the 

human body, are categorized as carcinogens. Carcinogens do not have any threshold 

limit. The chronic daily intake (CD/) of the carcinogens, which is averaged throughout 

the expected life period, is multiplied with the slope factors (SF) to predict cancer risk. 

The chronic daily intake was calculated using equation 5.15. The cancer risk from 

individual contaminant was predicted using equation 5.19 or 5.20 as discussed in the 

previous chapter. The probabilistic summation approach as equation 5.4 has been used to 

predict the cumulative cancer risk. Table 6.4 shows toxicological information of the 

selected contaminants. Only benzene has both carcinogenic and non-carcinogenic effects 

to human health and the others are non-carcinogenic (Table 6.4). 

Table 6.4 Selected contaminants' toxicological data 

Name of Carcinogenicity Slope factor (SF) RtD (mg/kg-day) 
contaminant (llmg/kg-day)"1 

Cadmium No - 5E-04 
Zinc No - 2E-01 
Benzene Yes 1.5E-02 4E-03 
Toluene No - 2E-01 
Phenol No - 3E-01 

The human health hazard quotient for each contaminant has been predicted for four 

different scenarios. These are shown in Figure 6.8. For lowest density gradient and lowest 

discharge depth, the predicted hazard quotient was highest (Case I). For higher density 
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gradient, the same depth of discharge results in lower effects to humans (Case II). If the 

density gradient is the same, the higher the depth of discharge, the lower the effect. (Case 

I and III, and Case II and IV). 

I

I 2.E-03 

2.E-03 

I2.E-03 

fl.E-03 
jl.E-03 

! l.E-03 
8.E-04 
6.E-04 

4.E-04 

2.E-04 

O.E+OO 

Cadmium Zinc Benzene Toluene 

DCase I 

II Case II 

DCase III 

!DCase IV 

Phenol 

Figure 6.8 Human health hazard quotients in different scenarios 

Case I: Discharge depth 8 m and density gradient 0.013 
Case II: Discharge depth 8 m and density gradient 0.037 
Case III: Discharge depth 11 m and density gradient 0.013 
Case IV: Discharge depth 11 m and density gradient 0.037 

-

The hazard index (HI) and cancer risk in different scenarios are shown in Table 6.5. For 

Case I, the hazard index and cancer risk are highest, while in case IV, these are lowest. In 

all cases, the hazard index and cancer risks are less than the permissible limits. 

Table 6.5 Hazard index and cancer risks in different scenarios 

Case I Case II 

Hazard Index (HI) 2.13E-03 1.6E-03 

Cancer Risk 7.2E-09 5.4E-09 

Case I: Discharge depth 8 m and density gradient 0.013 
Case II: Discharge depth 8 m and density gradient 0.037 
Case III: Discharge depth 11 m and density gradient 0.013 
Case IV: Discharge depth 11 m and density gradient 0.037 

Case III Case IV 

l.lE-03 9.4E-04 

3.8E-09 3.2E-09 
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6.5.2 Assessment of cancer risk from radionuclides 

The concentrations of radium in fish tissues have been predicted using equations 5.9 

to 5.12. The intake of radium by humans through fish ingestion is calculated using 

equation 5.16 and the cancer risks have been predicted using equation 5 .22. The cancer 

risks for mean concentrations of NORM components (Table 2.4) in different discharge 

scenarios are shown in Figure 6.9. The respective exceedence probabilities are shown in 

Figure 6.1 0. The exceedence probability of cancer risk level l.OE-05 is close to zero in 

all cases (Figure 6.10). For Case I, the exceedence probability of risk level l.OE-06 is 

28% while for Case IV the exceedence probability is 9.5%. 

7.E-07 

6.E-07 

S.E-07 

4.E-07 

3.E-07 

2.E-07 

l.E-07 

O.E+OO 

Case I Case II Case III Case IV 

Figure 6.9 Human health cancer risks of NORM components in 
different scenarios 

Case I: Discharge depth 8 m and density gradient 0.013 
Case II: Discharge depth 8 m and density gradient 0.037 
Case III: Discharge depth 11 m and density gradient 0.013 
Case IV: Discharge depth 11 m and density gradient 0.037 
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Figure 6.10 Exceedence probability of cancer risks of NORM components in different 
scenarios 

Case 1: Discharge depth 8 m and density gradient 0.013 
Case II: Discharge depth 8 m and density gradient 0.037 
Case III: Discharge depth 11 m and density gradient 0.013 
Case IV: Discharge depth 11 m and density gradient 0.037 

In another analysis assuming similar field conditions, the new methodology predicts 

lower cancer risk than the conventional approach (Figure 6.11). In the conventional 

approach considering the whole body of fish as being edible, the exceedence probability 

of cancer risk level l.OE-06 is 48% while this approach predicts this as 22% (Figure 

6.11). The mean human health cancer risk in the conventional approach is 2.3E-06 while 

this approach predicts a value of 8.8E-07, which is 2.6 times lower than the conventional 

approach. 
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Figure 6.11 Comparison of exceedence probability of cancer risks from NORM 
components in different approaches 

6.6 Summary 

A case study considering a hypothetical offshore oil field in eastern Canada has been 

performed in this chapter. The Grand Banks has both economic and ecological 

importance considering the oil and gas production and the available marine species. 

Deterministic and probabilistic analyses have been carried out for ecological and human 

health risk assessment. Two different discharge depths and three density gradients have 

been considered to evaluate 'what if' scenarios. The higher the depth of discharge, the 

lower the effects predicted in this study. The density gradients were found to be inversely 

related to the effects of contaminants. In the probabilistic analyses, the predicted hazard 

quotients, hazard index and cancer risks are lower than those of the deterministic 
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analyses. For lower discharge depth and lower density gradient, the affected area in the 

water column is higher (Figures 6.4 to 6.7). The developed human health risk assessment 

methodologies using the edible parts concept has been applied in this chapter. Figure 6.11 

shows the differences in exceedence probability between the conventional approach and 

this approach of human health risk calculation. This approach results in the lower risk 

from NORM components than the conventional approach. Uncertainty was dealt with by 

Monte Carlo (MC) simulation, which is the most widely used method to consider 

uncertainty in analysis. 
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Chapter 7 

Conclusions and Recommendations 

7.1 Conclusions 

The conclusions on the software developed based on the present methodologies to 

characterize human health risk assessment from produced water contaminants has been 

presented in this section. The conclusions on the methodologies for ecological risk 

assessment have also been drawn in this section. The research was carried out through 

integrating several models and databases and consisted of the following components: (1) 

development of a database for produced water contaminants; (2) integration of 

contaminants' database with selected initial dilution and subsequent dispersion models; 

(3) development of probabilistic fish growth modeling; (4) development of human health 

cancer and non-cancer risk assessment methodologies using probabilistic concepts; and 

(5) application of the methodologies to a hypothetical case study from an offshore oil 

producing platform. 

Keeping these objectives in perspectives, the following are the conclusions of this study: 

1. A database for produced water contaminants was developed in this study. In the past 

several risk assessment studies on produced water contaminants were carried out, but 
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the physical and toxicological data of the contaminants were sparse and thus there 

was a need to organize the data for produced water contaminants. A total number of 

118 contaminants, which mostly belong to produced water, treatment chemicals and 

other added chemicals during the production period and those of environmental 

concern have been compiled in this database. The information was compiled from 

different regulatory agencies and literature. The references for each data can be 

accessed to know more details about the data. The toxicity data of the contaminants to 

human and marine biota has been stored in a user-friendly database, which can be 

accessed conveniently. In addition to the contaminants database, another database for 

twenty-five marine species, which have economic and ecological importance, has 

been developed in this study. In that database, the NOEC and LC5o values for the 

marine species have been compiled from several regulatory agencies and published 

literature. 

2. As the growth of fish is a continuous process, the growth and lipid variability of fish 

during the exposure period is important to predict a contaminant's concentration in 

fish tissue. To incorporate the physical changes of fish within the exposure period, a 

probabilistic fish growth model has been developed in chapter 3. The available fish 

growth models have related the length with weight and age with the asymptotic 

length of fish. The developed models (deterministic and probabilistic) have good 

agreement with two datasets by Johnson (2000) and Falk et al. (1982). The 

uncertainty in the growth parameters was incorporated using probabilistic concepts. 
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3. The available dilution and the subsequent dispersion models have been reviewed in 

chapter 4. The initial dilution models developed by Mukhtasor (2001) have been used 

in this study. The contaminant database and the fish growth models have been 

integrated with the dilution and dispersion models. The previous studies for risk 

assessment used the whole body concentration of a contaminant and thus a portion of 

the contaminant was assumed to be in the non-edible parts of the fish. Metals and 

organic chemicals do not accumulate in the bones, skeleton and exoskeleton 

significantly. These contaminants mainly accumulate in the edible parts of fish and 

thus the use of edible parts would provide more realistic prediction of risk from 

metals and organic chemicals. In this study, the contaminant (non-radionuclide) is 

distributed within the edible parts of fish and thus predicts a higher concentration in 

the fish tissue. On the other hand, radium mainly accumulates in bones, skeleton and 

the exoskeleton of fish. The concentration factors for radium in bones are several 

times higher than in flesh of fish and thus the use of the whole body concentration 

would predict higher radium concentration in the edible part of fish, which ultimately 

predicts higher human health cancer risk through fish ingestion. This approach 

distributes radium between bones/skeleton/exoskeleton/shell and flesh of fish, which 

is more realistic for risk assessment purposes. 

4. The ecological risk from produced water contaminants has been incorporated within 

the software using USEPA (1998a) methodology. The fish ingestion rate (FIR), 

exposure duration (ED), exposure frequency (EF), fraction of contaminated fish (FR), 

human body weight (B"W), averaging time (AI), gastrointestinal absorption factor (G/) 
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and other related parameters have been incorporated with the proposed human health 

risk assessment methodology. The USEPA (1998) used ingestion of 100% 

contaminated fish from a marine source, which is a too conservative consideration. 

For human ingestion, two types of uncertainty are involved: (a) all fish need not 

necessarily be from a marine source and (b) all the marine fish need not necessarily 

come from the contaminated zone. This approach has assumed a fraction of 50% 

contaminated fish ingestion, which is still conservative in relation to the uncertainties. 

The approaches to predict hazard quotients (HQ), hazard index (HI), cancer risk ( CR) 

from non-radionuclides and radionuclides for human have been discussed in chapter 

5. The predicted cancer risk to human from NORM components in produced water 

was less in this approach than that of the conventional approach. 

5. A hypothetical case study based on an oil field in eastern Canada has been 

performed in chapter 6. Different density gradients and variable discharge depths 

have been considered in this study. The higher density gradient between produced 

water and ambient seawater results in lower risk. The higher the depth of discharge, 

the lower the risk predicted in this study. The distribution of radium between 

bones/skeleton/exoskeleton and flesh of fish provides lower risk than that of the 

whole body approach. Minimum ecological impact was predicted in this study. The 

predicted human health cancer risk was below the permissible range. The predicted 

results have been compiled in chapter 6. This case study was to show the risk from a 

typical produced water discharging platform and thus this research would assist in 

taking the necessary steps to avoid significant risk. In this case study, the predicted 
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risks were found to be very low from produced water contaminants. But for a shallow 

water depth situation, the risk may be more because of less dilution. Again, in case of 

NORM components, the risk from fish consumption needs to be further investigated. 

The effects of produced water contaminants depend on the location of the site, 

contaminants available in the produced water from that site, ambient environmental 

conditions and other human consumption factors. This scientifically grounded refined 

methodology for predicting human health risk can be applied to different scenarios to 

achieve a common conclusion about the risk from produced water. 

7.2 Recommendations 

In setting future research directions, the following recommendations are made: 

1. The database compilation was mainly on the basis of produced water 

contaminants. Compilation of other toxic contaminant's data can enhance the 

performance of the database in the ecological and human health risk assessment 

studies. The NOEC (No observed effect concentration) and LC50 (Lethal 

concentration that kills 50% of the exposed population) data for a marine species is 

rare due to the limited sources of available data as most of the tests are interested in 

some effects to the endpoints. An effort to enhance this database might be undertaken 

to develop a unique source of toxicological information for the human health and 

ecological risk assessment studies. 

2. The parameters of the available dilution models were not validated. The model 

was developed for outfalls, which have less density than the ambient water. The 

density of produced water can be higher than the ambient water as discussed in 
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chapter 2. The dilution models did not incorporate the effects of tides, waves and 

effect of stratification in the marine environment. Future research therefore may be 

carried out in that direction to enhance the performance of the models and parameters 

validation. 

3. The growth model for fish (Trout) has been developed based on the available data 

from Johnson (2000) and Falk et al. (1982). The probabilistic growth model has 

incorporated natural variability in predicting the parameters. An effort to validate the 

growth models for other fish species should be undertaken. 

4. The methodologies developed to characterize human health risks from produced 

water contaminants have integrated the dilution and dispersion models, fish growth 

models and concentration distribution between edible parts and non-edible parts of 

fish. The reaction kinetics of the contaminants was not taken into consideration in this 

approach. Future research to focus on the reaction kinetics using these methodologies 

should be carried out for more realistic prediction of human health risk. 

5. The surrounding sediment ecology, in addition to the marine species, may be 

affected from produced water contaminants. If the water is shallow enough, the toxic 

contaminants tend to settle or partition to the sediment. For a shallow water site, this 

fact needs to be incorporated to predict ecological risk. 

7.3 Statement of originality 

The originality of this research can be viewed from the following perspectives: 
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The researcher has been using the toxicological data of different contaminants in 

produced water to characterize human health and ecological risk. A database for the 

produced water contaminants has been developed in this research. 

To characterize risks from produced water contaminants, a software has been developed 

in this research. This software system is able to predict ecological hazards and human 

health risk from produced water contaminants through integrating available models and 

methodologies with the database in the depository information system. The fish growth 

models have been developed to characterize physical changes of fish within the exposure 

periods. The uncertainty in the parameters was dealt with by Monte Carlo (MC) 

simulation. The exposure probability of fish to produced water (p) and the bioavailability 

of the contaminants as used by USEPA (2000) have been considered in this study. In 

characterizing human health risk and risk to ecology from a mixture of contaminants, a 

probabilistic summation approach has been incorporated. 

A new concept of contaminants concentration in fish tissue using edible parts of fish has 

been introduced in this research. This research develops a new framework for human 

health risk assessment studies in relation to produced water contaminants. 
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Appendix 1: Produced water contaminants database 

Appendix 1: Produced Water Contaminants' Database (sample). 

SOLUBILITY _(g/m"3) 
HLC(Pa m"3/mol) 
LOG(Kow) 
BIOCONCENTRATION 

VAPOUR_PRESSURE(Pa) 
HALF _LIFE_(H) 
LOG(Koc) 
SS_WATER_PART _COEFF 
UF 
NOEC (ug/1) 
RfD (mg/kg/day) 

SOLUBILITY _(g/m"3) 
HLC(Pa m"3/mol) 
LOG(Kow) 
BIOCONCENTRATION 

VAPOUR_PRESSURE(Pa) 
HALF _LIFE_(H) 
LOG(Koc) 
SS_ WATER_PART _COEFF 
UF 
NOEC (ug/1) 
RfD (mg/kg/day) 

SOLUBILITY _(g/m"3) 
HLC(Pa m"3/mol) 
LOG(Kow) 
BIOCONCENTRATION 

VAPOUR_PRESSURE(Pa) 
HALF _LIFE_(H) 
LOG(Koc) 
SS_ WATER_PART _COEFF 

NAME 1 ,2_DICHLOROETHANE 

CAS_REG_NO 107-06·2 

MOLECULAR_ WEIGHT 98.96 

Reference 

8524 1 TOXICITY _WEIGHING_FACTOR 
98.97 14 LEACHING_FACTOR 
1.48 17 CONVERSION_FACTOR 
8 15 

AMBIENT CONC (ug/1) 
10489.84 16 CONC_IN_PW(ug/1) 
240 18 SED-PORE WAT· P- COEFF 

LC50(ug/l) 230000 
SF (mg/kg/day)"-1 0.091 
NOAEL (ug/1) 

130000 134 CARCINOGENICITY 
0 

NAME 1 ,2_DICHLOROETHYLENE(CIS) 

CAS_REG_NO 156·59·2 

MOLECULAR_ WEIGHT 96.94 

Reference 

3500 3 TOXICITY _WEIGHING_FACTOR 
341.38 19 LEACHING_FACTOR 
1.86 20 CONVERSION_FACTOR 
15 2 

AMBIENT CONC (ug/1) 
26657.8 3 CONC_IN_PW(ug/1) 
3 21 SED-PORE WAT· P- COEFF 

LC50(ug/l) 
SF (mg/kg/day)"-1 

3000 6 NOAEL (ug/1) 
CARCINOGENICITY 

0.01 6 

NAME 1 ,2_DICHLOROETHYLENE(TRANS) 

CAS_REG_NO 156-60-5 

MOLECULAR_WEIGHT 96.94 

Reference 

6300 3 TOXICITY _WEIGHING_FACTOR 
680.74 16 LEACHING_FACTOR 
2.06 20 CONVERSION_FACTOR 
22 19 

AMBIENT CONC (ug/1) 
45318.3 3 CONC_IN_PW (ug/1) 

SED-PORE WAT- P- COEFF 
1.77 12 LC50(ug/l) 220000 

SF (mg/kg/day)"-1 

Reference 

134 
10 

10 

Reference 

6 

Reference 

137 

I 
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UF 1000 10 NOAEL (ug/1) 0.1 10 
NOEC (ug/1) CARCINOGENICITY 0 10 
RfD (mg/kg/day) 0.02 10 

NAME 2· HEXANONE (METHYLBUTYL KETONE) 

CAS_REG_NO 591-78-6 

MOLECULAR_ WEIGHT 100.16 

Reference Reference 

SOLUBILITY _(g/m"3) 17500 28 TOXICITY _WEIGHING_FACTOR 
HLC(Pa m"3/mol) 9.1575 28 LEACHING_FACTOR 
LOG(Kow) 1.38 28 CONVERSION_FACTOR 
BIOCONCENTRATION 1.1994 28 

AMBIENT CONC (ug/1) 
VAPOUR_PRESSURE(Pa) 1600 28 CONC_IN_PW (ug/1) 35.8 118 
HALF _LIFE_(H) 170 28 SED-PORE WAT- P- COEFF 0.94 28 
LOG(Koc) 0.993 28 LC50(ug/l) 428000 138 
SS_WATER_PART_COEFF 2.9506 28 SF (mg/kg/day)/\..1 
UF NOAEL (ug/1) 
NOEC (ug/1) CARCINOGENICITY 
RfD (mg/kg/day) 

NAME 2·4_DIMETHYLPHENOL 

CAS_REG_NO 105-67-9 

MOLECULAR_WEIGHT 122.17 

Reference Reference 

SOLUBILITY _(g/m"3) 6200 22 TOXICITY _WEIGHING_FACTOR 0.0024 24 
HLC(Pa m"3/mol) 0.638 22 LEACHING_FACTOR 1 
LOG(Kow) 2.3 20 CONVERSION_FACTOR 1 
BIOCONCENTRATION 151.356 23 

AMBIENT CONC (ug/1) 
VAPOUR_PRESSURE(Pa) 13.06 22 CONC_IN_PW(ug/1) 117 118 
HALF _LIFE_(H) 77 27 SED-PORE WAT· P- COEFF 
LOG(Koc) 2.19 25 LC50(ug/l) 40000 136 
SS_ WATER_PART _COEFF 194.94 28 SF (mg/kg/day)/\..1 
UF 3000 10 NOAEL (ug/1) 50 26 
NOEC (ug/1) 30000 136 CARCINOGENICITY 0 10 
RfD (mg/kg/day) 0.02 10 

NAME 2-BUTANONE (METHYLETHYL·KETONE) 

CAS_REG_NO 78-93-3 

MOLECULAR_ WEIGHT 72.11 

Reference Reference 

SOLUBILITY _(g/m"3) 240000 28 TOXICITY _WEIGHING_FACTOR 0.0001 128 
HLC(Pa m"3/mol) 3.6355 28 LEACHING_FACTOR 1 
LOG(Kow) 0.29 28 CONVERSION_FACTOR 1 
BIOCONCENTRATION 0.0975 28 

AMBIENT CONC (ug/1) 
VAPOUR_PRESSURE(Pa) 12100 28 CONC_IN_PW(ug/1) 122 118 
HALF _LIFE_(H) 55 28 SED-PORE WAT· P- COEFF 0.0767 28 
LOG(Koc) -0.0973 28 LC50(ug/l) 400000 134 
SS_WATER_PART _COEFF 0.2398 28 SF (mg/kg/day)/\..1 0 

II 
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UF 1000 10 NOAEL (ug/1) 1771 26 
NOEC (ug/1) 400000 134 CARCINOGENICITY 0 10 
RfD (mg/kg/day) 0.05 10 

NAME 2-METHYLNAPTHALENE 

CAS_REG_NO 91-57-6 

MOLECULAR_ WEIGHT 142.19 

Reference Reference 

SOLUBILITY _(g/m"3) 24.6 99 TOXICITY _WEIGHING_FACTOR 
HLC(Pa m"3/mol) 40.52 100 LEACHING_FACTOR 
LOG(Kow) 3.86 99 CONVERSION_FACTOR 
BIOCONCENTRATION 190 99 

AMBIENT CONC (ug/1) 
VAPOUR_PRESSURE(Pa) 7.33 99 CONC_IN_PW (ug/1) 67.2 118 
HALF _LIFE_(H) 9840 27 SED-PORE WAT· P· COEFF 
LOG(Koc) 3.474 99 LC50(ug/l) 1300 139 
SS_WATER_PART_COEFF SF (mg/kg/day)"-1 
UF NOAEL (ug/1) 
NOEC (ug/1) CARCINOGENICITY 
RfD (mg/kg/day) 

NAME ACENAPHTHENE 

CAS_REG_NO 83-32-9 

MOLECULAR_ WEIGHT 154.21 

Reference Reference 

SOLUBILITY _(g/m"3) 3.8 28 TOXICITY _WEIGHING_FACTOR 
HLC(Pa m"3/mol) 12.174 28 LEACHING_FACTOR 
LOG(Kow) 3.92 28 CONVERSION_FACTOR 
BIOCONCENTRATION 415.55 28 

AMBIENT CONC (ug/1) 124 
VAPOUR_PRESSURE(Pa) 0.3 28 CONC_IN_PW (ug/1) 0.001 119 
HALF _LIFE_(H) 550 28 SED-PORE WAT· P· COEFF 327.38 28 
LOG(Koc) 3.533 28 LC50(ug/l) 3100 140 
SS_WATER_PART _COEFF 1023.07 28 SF (mg/kg/day)"-1 
UF 3000 10 NOAEL (ug/1) 175 26 
NOEC (ug/1) 1000 134 CARCINOGENICITY 0 10 
RfD (mg/kg/day) 0.06 10 

NAME ACETIC ACID 

CAS_REG_NO 64-19-7 

MOLECULAR_ WEIGHT 60.05 

Reference Reference 

SOLUBILITY _(g/m"3) 6841000 28 TOXICITY _WEIGHING_FACTOR 
HLC(Pa m"3/mol) 0.0182 28 LEACHING_FACTOR 
LOG(Kow) -0.31 28 CONVERSION_FACTOR 
BIOCONCENTRATION 0.0245 28 

AMBIENT CONC (ug/1) 125 
VAPOUR_PRESSURE(Pa) 2079 28 CONC_IN_PW (ug/1) 132 120 
HALF _LIFE_(H) 55 28 SED-PORE WAT· P· COEFF 0.0193 28 
LOG(Koc) ·0.697 28 LC50(ug/l) 180000 170 

ill 
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SS_WATER_PART _COEFF 0.0602 28 SF (mg/kg/day)"-1 
UF NOAEL (ug/1) 
NOEC (ug/1) CARCINOGENICITY 
RfD (mg/kg/day) 

NAME ACETONE (2· PROPANONE) 

CAS_REG_NO 67-64-1 

MOLECULAR_ WEIGHT 58.09 

Reference Reference 

SOLUBILITY _(g/m"3) 452880 28 TOXICITY _WEIGHING_FACTOR 
HLC(Pa m"3/mol) 3.72 29 LEACHING_FACTOR 
LOG(Kow) -0.24 4 CONVERSION_FACTOR 
BIOCONCENTRATION 1 30 

AMBIENT CONC (ug/1) 
VAPOUR_PRESSURE(Pa) 30789 31 CONC_IN_PW(ug/1) 913 118 
HALF _LIFE_(H) 20 21 SED-PORE WAT- P- COEFF 0.0226 28 
LOG(Koc) -0.627 28 LC50(ug/l) 100000 142 
SS_ WATER_PART _COEFF O.Q708 28 SF (mg/kg/day)"-1 
UF 1000 10 NOAEL (ug/1) 100 26 
NOEC (ug/1) 403000 143 CARCINOGENICITY 0 10 
RfD (mg/kg/day) 0.1 10 

NAME ALUMINIUM 

CAS_REG_NO 7429-90-5 

MOLECULAR_ WEIGHT 30.01 

Reference Reference 

SOLUBILITY _(g/m"3) 59400 99 TOXICITY _WEIGHING_FACTOR 0.064 128 
HLC(Pa m"3/mol) 0 LEACHING_FACTOR 1 
LOG(Kow) 0.33 99 CONVERSION_FACTOR 1 
BIOCONCENTRATION 3.2 99 

AMBIENT CONC (ug/1) 110 129 
VAPOUR_PRESSURE(Pa) 1.1649E-07 99 CONC_IN_PW (ug/1) 1072 118 
HALF _LIFE_(H) 0 SED-PORE WAT- P- COEFF 1500 99 
LOG(Koc) 1.155 99 LC50(ug/l) 310 144 
SS_WATER_PART_COEFF 0 SF (mg/kg/day)"-1 0 
UF 0 NOAEL (ug/1) 0 
NOEC (ug/1) CARCINOGENICITY 0 0 
RfD (mg/kg/day) 99 

NAME ALUMINIUM PHOSPHIDE 

CAS_REG_NO 20859-73-8 

MOLECULAR_ WEIGHT 57.96 

Reference Reference 

SOLUBILITY _(g/m"3) 192000 99 TOXICITY _WEIGHING_FACTOR 
HLC(Pa m"3/mol) LEACHING_FACTOR 
LOG(Kow) -0.17 99 CONVERSION_FACTOR 
BIOCONCENTRATION 3.2 99 

AMBIENT CONC (ug/1) 
VAPOUR_PRESSURE(Pa) 4.52E-09 99 CONC_IN_PW(ug/1) 
HALF _LIFE_(H) SED-PORE WAT- P- COEFF 
LOG(Koc) 1.155 99 LC50(ug/l) 100 145 
SS_WATER_PART _COEFF SF (mg/kg/day)"-1 

IV 



UF 
NOEC (ug/1) 
RfD (mg/kg/day) 

SOLUBILITY _(g/m"'3) 
HLC(Pa m"'3/mol) 
LOG(Kow) 
BIOCONCENTRATION 

VAPOUR_PRESSURE(Pa) 
HALF _LIFE_(H) 
LOG(Koc) 
SS_WATER_PART_COEFF 
UF 
NOEC (ug/1) 
RfD (mg/kg/day) 

SOLUBILITY _(g/m"'3) 
HLC(Pa m"'3/mol) 
LOG(Kow) 
BIOCONCENTRATION 

VAPOUR_PRESSURE(Pa) 
HALF _LIFE_(H) 
LOG(Koc) 
SS_ WATER_PART _COEFF 
UF 
NOEC (ug/1) 
RfD (mg/kg/day) 

SOLUBILITY _(g/m"'3) 
HLC(Pa m"'3/mol) 
LOG(Kow) 
BIOCONCENTRATION 

VAPOUR_PRESSURE(Pa) 
HALF _LIFE_(H) 
LOG(Koc) 
SS_WATER_PART_COEFF 

Appendix 1: Produced water contaminants database 

100 
0.043 
0.0004 

NAME 

CAS_REG_NO 

26 

26 

MOLECULAR_ WEIGHT 

NOAEL (ug/1) 
CARCINOGENICITY 

ANTHRACENE 

120-12-7 

178.24 

Reference 

0.045 32 TOXICITY _WEIGHING_FACTOR 
3.96 33 LEACHING_FACTOR 
4.34 35 CONVERSION_FACTOR 
9120 34 

AMBIENT CONC (ug/1) 
0.001 32 CONC_IN_PW(ug/1) 
11.36 SED-PORE WAT- P- COEFF 
4.15 12 LC50(ug/l) 
1023.07 28 SF (mg/kg/day)"-1 
3000 10 NOAEL (ug/1) 

CARCINOGENICITY 
0.3 10 

NAME ANTIMONY 

CAS_REG_NO 1440-36-0 

MOLECULAR_ WEIGHT 121.8 

Reference 

TOXICITY _WEIGHING_FACTOR 
LEACHING_FACTOR 
CONVERSION_FACTOR 

1475 98 
AMBIENT CONC (ug/1) 

0 CONC_IN_PW (ug/1) 
SED-PORE WAT- P- COEFF 
LC50(ug/l) 

63095.7 97 SF (mg/kg/day)"-1 
1000 10 NOAEL (ug/1) 
6200 134 CARCINOGENICITY 
0.0004 10 

NAME MANGANESE 

CAS_REG_NO 7439-96-5 

MOLECULAR_ WEIGHT 54.938 

Reference 

87200 99 TOXICITY _WEIGHING_FACTOR 
LEACHING_FACTOR 

0.23 99 CONVERSION_FACTOR 
3.2 99 

AMBIENT CONC (ug/1) 
0 99 CONC_IN_PW (ug/1) 

SED-PORE WAT- P- COEFF 
1.155 99 LC50(ug/l) 

SF (mg/kg/day)"'-1 

0.043 
0 

0.351 
1 
1 

0.05 

13300 

1000 
0 

0.0125 
1 
1 

10 
166 
3981.1 
7250 

0 

0.056 
1 
1 

0.5 
1301 

170 

26 

Reference 

24 

130 

146 

26 
10 

Reference 

24 

129 
118 
97 
134 

Reference 

24 

123 
118 

164 

v 
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UF 10 NOAEL (ug/1} 0.14 26 
NOEC (ug/1) CARCINOGENICITY 0 
RfD (mg/kg/day) 0.14 26 

NAME NAPTHALENE 

CAS_REG_NO 91-20-3 

MOLECULAR_ WEIGHT 128.18 

Reference Reference 

SOLUBILITY _(g/m"3) 31 28 TOXICITY _WEIGHING_FACTOR 0.6597 24 
HLC(Pa m"3/mol) 43 28 LEACHING_FACTOR 1 
LOG(Kow) 3.37 28 CONVERSION_FACTOR 1 
BIOCONCENTRATION 117.21 28 

AMBIENT CONC (ug/1} 0.066 124 
VAPOUR_PRESSURE(Pa) 10.4 28 CONC_IN_PW(ug/1) 144 118 
HALF _LIFE_(H) 170 28 SED-PORE WAT- P- COEFF 92.3 28 
LOG(Koc) 2.983 28 LC50(ug/l) 1000 132 
SS_WATER_PART _COEFF 288.34 28 SF (mg/kg/day)"-1 
UF 10000 10 NOAEL (ug/1) 71 26 
NOEC (ug/1) CARCINOGENICITY 0 
RfD (mg/kg/day) 0.004 10 

NAME N-DOCOSANE 

CAS_REG_NO 629-97-0 

MOLECULAR_ WEIGHT 

Reference Reference 

SOLUBILITY _(g/m"3) TOXICITY _WEIGHING_FACTOR 
HLC(Pa m"3/mol) LEACHING_FACTOR 
LOG(Kow) CONVERSION_FACTOR 
BIOCONCENTRATION 

AMBIENT CONC (ug/1) 
VAPOUR_PRESSURE(Pa) CONC_IN_PW(ug/1) 38 118 
HALF _LIFE_(H} SED-PORE WAT- P- COEFF 
LOG(Koc) LCSO(ug/1) 500000 134 
SS_ WATER_PART _COEFF SF (mg/kg/day)"-1 
UF NOAEL (ug/1) 
NOEC (ug/1) 500000 134 CARCINOGENICITY 
RfD (mg/kg/day) 

NAME NICKEL 

CAS_REG_NO 7440-02-0 

MOLECULAR_ WEIGHT 58.7 

Reference Reference 

SOLUBILITY _(g/m"3) TOXICITY _WEIGHING_FACTOR 0.6759 24 
HLC(Pa m"3/mol) LEACHING_FACTOR 0.043 37 
LOG(Kow) CONVERSION_FACTOR 0.99 38 
BIOCONCENTRATION 100 96 

AMBIENT CONC (ug/1) 1.05 123 
VAPOUR_PRESSURE(Pa) CONC_IN_PW(ug/1) 109 118 
HALF _LIFE_(H} SED-PORE WAT- P- COEFF 7943.3 97 
LOG(Koc) 0 LC50(ug/l) 8000 127 
SS_ WATER_PART _COEFF 39810.78 78 SF (mg/kg/day)"-1 0.84 77 
UF NOAEL (ug/1) 0 
NOEC (ug/1) CARCINOGENICITY 1 77 
RfD (mg/kg/day) 0 

VI 
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NAME O_CRESOL 

CAS_REG_NO 95-48-7 

MOLECULAR_ WEIGHT 108.13 

Reference Reference 

SOLUBILITY _(g/m"3) 26000 28 TOXICITY _WEIGHING_FACTOR 0 
HLC(Pa m"3/mol) 0.1702 28 LEACHING_FACTOR 1 
LOG(Kow) 1.98 28 CONVERSION_FACTOR 1 
BIOCONCENTRATION 4.775 28 

AMBIENT CONC (ug/1) 30000 133 
VAPOUR_PRESSURE(Pa) 40 28 CONC_IN_PW (ug/1) 121 118 
HALF _LIFE_(H) 17 28 SED-PORE WAT- P- COEFF 3.76 28 
LOG(Koc) 1.593 28 LC50(ug/l) 10200 175 
SS_WATER_PART_COEFF 11.74 28 SF (mg/kg/day)"-1 0 
UF 1000 6 NOAEL (ug/1) 0 
NOEC (ug/1) 0 CARCINOGENICITY 0 
RfD (mg/kg/day) 0.05 6 

NAME 0-XYLENE 

CAS_REG_NO 95-47-6 

MOLECULAR_ WEIGHT 106.2 

Reference Reference 

SOLUBILITY _(g/m"3) 220 28 TOXICITY_ WEIGHING_FACTOR 
HLC(Pa m"3/mol) 564.79 28 LEACHING_FACTOR 
LOG(Kow) 3.15 28 CONVERSION_FACTOR 
BIOCONCENTRATION 70.6269 

AMBIENT CONC (ug/1) 
VAPOUR_PRESSURE(Pa) 1170 28 CONC_IN_PW (ug/1) 86.1 118 
HALF _LIFE_(H) 550 28 SED-PORE WAT- P- COEFF 55.59 28 
LOG(Koc) 2.763 28 LC50(ug/l) 6000 139 
SS_WATER_PART_COEFF 173.742 28 SF (mg/kg/day)"-1 
UF 100 65 NOAEL (ug/1) 0 
NOEC (ug/1) CARCINOGENICITY 0 
RfD (mg/kg/day) 2 65 

NAME P_CRESOL 

CAS_REG_NO 106-44-5 

MOLECULAR_ WEIGHT 108.13 

Reference Reference 

SOLUBILITY _(g/m"3) 22600 3 TOXICITY _WEIGHING_FACTOR 0.007 128 
HLC(Pa m"3/mol) 0.0973 79 LEACHING_FACTOR 1 
LOG(Kow) 1.94 5 CONVERSION_FACTOR 1 
BIOCONCENTRATION 18.2 80 

AMBIENT CONC (ug/1) 21000 133 
VAPOUR_PRESSURE(Pa) 17.32 3 CONC_IN_PW(ug/1) 149 118 
HALF _LIFE_(H) 4008 82 SED-PORE WAT- P- COEFF 0 
LOG(Koc) 1.76 81 LC50(ug/l) 14000 176 
SS_WATER_PART_COEFF 11.5 SF (mg/kg/day)"-1 0 
UF 1000 6 NOAEL (ug/1) 0 
NOEC (ug/1) 0 CARCINOGENICITY 0 
RfD (mg/kg/day) 0.05 6 

NAME PENTACHLOROPHENOL 

CAS_REG_NO 87-86-5 

VII 
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MOLECULAR_ WEIGHT 266.35 

Reference Reference 

SOLUBILITY _(g/m"3) 14 28 TOXICITY _WEIGHING_FACTOR 0 
HLC(Pa m"3/mol) 0.28 28 LEACHING_FACTOR 1 
LOG(Kow) 5.12 4 CONVERSION_FACTOR 1 
BIOCONCENTRATION 5610.09 28 

AMBIENT CONC (ug/1) 0 
VAPOUR_PRESSURE(Pa) 0.00415 28 CONC_IN_PW(ug/1) 0 
HALF _LIFE_(H) 550 28 SED-PORE WAT- P- COEFF 4416.26 28 
LOG(Koc) 4.66 28 LC50(ug/l) 4600 135 
SS_WATER_PART _COEFF 13800.83 28 SF (mg/kg/day)"-1 0.12 10 
UF 100 6 NOAEL (ug/1) 3 26 
NOEC (ug/1) 0 CARCINOGENICITY 1 10 
RfD (mg/kg/day) 0.03 6 

NAME PHENANTHRENE$ 

CAS_REG_NO 85-01-8 

MOLECULAR_ WEIGHT 178.24 

Reference Reference 

SOLUBILITY _(g/m"3} 1.15 99 TOXICITY _WEIGHING_FACTOR 
HLC(Pa m"3/mol) 3.24 28 LEACHING_FACTOR 
LOG(Kow) 4.46 99 CONVERSION_FACTOR 
BIOCONCENTRATION 1857.68 28 

AMBIENT CONC (ug/1) 0.017 124 
VAPOUR_PRESSURE(Pa) 0.000112 99 CONC_IN_PW(ug/1) 90 120 
HALF _LIFE_(H) 550 28 SED-PORE WAT- P- COEFF 1462.36 28 
LOG(Koc) 4.32 99 LC50(ug/l} 438 178 
SS_WATER_PART _COEFF 4569.88 28 SF (mg/kg/day)"-1 
UF NOAEL (ug/1) 
NOEC (ug/1) CARCINOGENICITY 
RfD (mg/kg/day) 

NAME PHENOL 

CAS_REG_NO 108-95-2 

MOLECULAR_ WEIGHT 94.1 

Reference Reference 

SOLUBILITY _(g/m"3) 88360 28 TOXICITY _WEIGHING_FACTOR 0.0193 24 
HLC(Pa m"3/mol) 0.05 28 LEACHING_FACTOR 1 
LOG(Kow) 1.46 28 CONVERSION_FACTOR 1 
BIOCONCENTRATION 27.54 28 

AMBIENT CONC (ug/1) 
VAPOUR_PRESSURE(Pa) 47 28 CONC_IN_PW(ug/1) 553 118 
HALF _LIFE_(H) 55 28 SED-PORE WAT· P· COEFF 1.135 28 
LOG(Koc) 1.07 28 LC50(ug/l) 24800 179 
SS_WATER_PART _COEFF 3.547 28 SF (mg/kg/day)"-1 
UF 300 26 NOAEL (ug/1) 0 
NOEC (ug/1) 20200 179 CARCINOGENICITY 0 
RfD (mg/kg/day) 0.3 26 

NAME SELENIUM 

CAS_REG_NO 7782-49-2 

MOLECULAR_ WEIGHT 78.96 

Reference Reference 
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Appendix 1: Produced water contaminants database 

SOLUBILITY _(g/mA3) 81400 99 TOXICITY _WEIGHING_FACTOR 0.0797 24 
HLC(Pa mA3/mol) 0 LEACHING_FACTOR 1 37 
LOG(Kow) 0.24 99 CONVERSION_FACTOR 0.998 38 
BIOCONCENTRATION 50000 36 

AMBIENT CONC (ug/1) 4 127 
VAPOUR_PRESSURE(Pa) 1215000 99 CONC_IN_PW(ug/1) 250 118 
HALF _LIFE_(H) 0 SED-PORE WAT· P· COEFF 3981.1 97 
LOG(Koc) 1.155 99 LC50(ug/l) 6700 134 
SS_WATER_PART _COEFF 25118.8 97 SF (mg/kg/day)A.1 0 
UF 15 10 NOAEL (ug/1) 0.015 26 
NOEC (ug/1) 2000 134 CARCINOGENICITY 0 
RfD (mg/kg/day) 0.003 10 

NAME SILVER 

CAS_REG_NO 744-02-24 

MOLECULAR_ WEIGHT 107.9 

Reference Reference 

SOLUBILITY _(g/mA3) 70500 99 TOXICITY _WEIGHING_FACTOR 6.0871 24 
HLC(Pa mA3/mol) LEACHING_FACTOR 1 37 
LOG(Kow) 0.23 99 CONVERSION_FACTOR 0.85 38 
BIOCONCENTRATION 87.71 98 

AMBIENT CONC (ug/1) 0.3 126 
VAPOUR_PRESSURE(Pa) 0 99 CONC_IN_PW(ug/1) 252 118 
HALF _LIFE_(H) SED-PORE WAT· P· COEFF 3981.1 97 
LOG(Koc) 1.155 99 LC50(ug/l) 58000 134 
SS_WATER_PART _COEFF 158489.3 97 SF (mg/kg/day)A.1 
UF 2 10 NOAEL (ug/1) 0 
NOEC (ug/1) 6400 134 CARCINOGENICITY 0 
RfD (mg/kg/day) 0.003 10 

NAME STRONTIUM 

CAS_REG_NO 7440·24·6 

MOLECULAR_ WEIGHT 87.62 

Reference Reference 

SOLUBILITY _(g/mA3) 80400 99 TOXICITY _WEIGHING_FACTOR 0 
HLC(Pa mA3/mol) 0 LEACHING_FACTOR 1 
LOG(Kow) 0.23 99 CONVERSION_FACTOR 1 
BIOCONCENTRATION 3.2 99 

AMBIENT CONC (ug/1) 7700 125 
VAPOUR_PRESSURE(Pa) 7.664E-39 99 CONC_IN_PW (ug/1) 205500 118 
HALF _LIFE_(H) 0 SED-PORE WAT· P· COEFF 0 
LOG(Koc) 1.155 99 LC50(ug/l) 170 164 
SS_WATER_PART_COEFF 0 SF (mg/kg/day)A.1 0 
UF 300 26 NOAEL (ug/1) 190 26 
NOEC (ug/1) 190 CARCINOGENICITY 0 
RfD (mg/kg/day) 0.6 26 

NAME STYRENE 

CAS_REG_NO 100-42·5 

MOLECULAR_ WEIGHT 104.16 

Reference Reference 

SOLUBILITY _(g/mA3) 300 TOXICITY _WEIGHING_FACTOR 0.0741 24 
HLC(Pa mA3/mol) 284.65 19 LEACHING_FACTOR 1 
LOG(Kow) 3.05 28 CONVERSION_FACTOR 1 
BIOCONCENTRATION 56.1 28 

AMBIENT CONC (ug/1) 
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Appendix 1: Produced water contaminants database 

VAPOUR_PRESSURE(Pa) 880 CONC_IN_PW(ug/1) 0 
HALF _LIFE_(H) 170 28 SED-PORE WAT· P· COEFF 44.16 28 
LOG(Koc) 2.663 28 LC50(ug/l) 9100 134 
SS_ WATER_PART _COEFF 138.008 28 SF (mg/kg/day)/\..1 0.0303 10 
UF 1000 26 NOAEL (ug/1) 200 26 
NOEC (ug/1) 5100 134 CARCINOGENICITY 1 10 
RfD (mg/kg/day) 0.2 26 

NAME TIN 

CAS_REG_NO 7440-31-5 

MOLECULAR_WEIGHT 120.73 

Reference Reference 

SOLUBILITY _(g/m"3) 7909 99 TOXICITY _WEIGHING_FACTOR 0.3011 24 
HLC(Pa m"3/mol) LEACHING_FACTOR 1 
LOG(Kow) 1.29 99 CONVERSION_FACTOR 1 
BIOCONCENTRATION 100 99 

AMBIENT CONC (ug/1) 3 127 
VAPOUR_PRESSURE(Pa) 0 99 CONC_IN_PW(ug/1) 305 118 
HALF _LIFE_(H) SED-PORE WAT· P- COEFF 5011.87 97 
LOG(Koc) 1.155 99 LC50(ug/l) 170 164 
SS_WATER_PART_COEFF 79432.82 97 SF (mg/kg/day)/\..1 
UF 100 62 NOAEL (ug/1) 
NOEC (ug/1) CARCINOGENICITY 
RfD (mg/kg/day) 0.6 99 

NAME TOLUENE 

CAS_REG_NO 108-88-3 

MOLECULAR_ WEIGHT 92.13 

Reference Reference 

SOLUBILITY _(g/m"3) 515 28 TOXICITY _WEIGHING_FACTOR 0.0018 24 
HLC(Pa m"3/mol) 679.79 28 LEACHING_FACTOR 1 
LOG(Kow) 2.69 28 CONVERSION_FACTOR 1 
BIOCONCENTRATION 24.49 28 

AMBIENT CONC (ug/1) 
VAPOU R_PRESSURE(Pa) 3800 28 CONC_IN_PW(ug/1) 3370 118 
HALF _LIFE_(H) 550 28 SED-PORE WAT· P· COEFF 19.3 28 
LOG(Koc) 2.3 28 LC50(ug/l) 36200 148 
SS_WATER_PART _COEFF 60.243 28 SF (mg/kg/day)/\..1 
UF 1000 10 NOAEL (ug/1) 0 
NOEC (ug/1) 5440 148 CARCINOGENICITY 0 
RfD (mg/kg/day) 0.2 10 

X 



NOEC database for selected marine species 

Appendix 2: Typical NOEC Database (Columns represent f..lg/1 and Day) 

Contaminant's Name ARSENIC Polychates 

Molluscs 973 28 Gastropod Sea Urchin 

Bivalve Oyster Crustaceans 280-973 

Copepod Clams Crustacean larvae 

SeaStar Algae 48 Phytoplankton 

Crab Decapod Polychateslarvae 

Mysid Mussels Echinoderms 
Shrimp 631 29-51 Pelecypod Gastropod larvae 

Rotifer Annelids Amphipod 

Contaminant's Name BORON Polychates 

Molluscs Gastropod SeaUrchin 

Bivalve Oyster Crustaceans 6000(FW) 

Copepod Clams Crustacean larvae 
Sea Star Algae 400-5200 14 Phytoplankton 

Crab Decapod Polychateslarvae 

Mysid Mussels Echinoderms 
Shrimp Pelecypod Gastropod larvae 

Rotifer Annelids Amphipod 

Contaminant's Name CADMIUM Polychates 

Molluscs Gastropod Sea Urchin 
Bivalve Oyster Crustaceans 122 

Cope pod Clams Crustacean larvae 

SeaS tar Algae 8.2-32(FW) Phytoplankton 

Crab Decapod Polychateslarvae 
Mysid Mussels Echinoderms 
Shrimp 4-5 28 Pelecypod Gastropod larvae 

Rotifer 18(FW) 2 Annelids Amphipod 

Contaminant's Name CHROMIUM Polychates 

Molluscs Gastropod Sea Urchin 

Bivalve Oyster Crustaceans 
Cope pod Clams Crustacean larvae 

SeaStar Algae 4.8-1000 7 Phytoplankton 

Crab Decapod Polychateslarvae 

Mysid Mussels Echinoderms 

Shrimp 88 29-51 Pelecypod Gastropod larvae 

Rotifer 2000 (FW) 2 Annelids Amphipod 
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Contaminant's Name 
Molluscs 

Bivalve 

Cope pod 

SeaStar 

Crab 

Mysid 

Shrimp 77 

Rotifer 

Contaminant's Name 
Molluscs 880-904 

Bivalve 

Copepod 
SeaStar 

Crab 

Mysid 

Shrimp 

Rotifer 

Contaminant's Name 
Molluscs 0.12-1014 

Bivalve 

Copepod 

SeaS tar 

Crab 

Mysid 

Shrimp 

Rotifer 

Contaminant's Name 
Molluscs 

Bivalve 

Cope pod 

SeaStar 

Crab 
Mysid 

Shrimp 

Rotifer 

Contaminant's Name 
Molluscs 

Bivalve 

4 

7 

5 
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COPPER 

Gastropod 

Oyster 

Clams 

Algae 

Decapod 

Mussels 

Pelecypod 

Annelids 

LEAD 

Gastropod 

Oyster 

Clams 

Algae 

Decapod 

Mussels 

Pelecypod 

Annelids 

MERCURY 

Gastropod 

Oyster 

Clams 

Algae 

Decapod 

Mussels 

Pelecypod 

Annelids 

MOLYBDENUM 

Gastropod 

Oyster 

Clams 

Algae 

Decapod 
Mussels 

Pelecypod 

Annelids 

PHENOL 

Gastropod 

Oyster 

8-27 

8 

0.9-88 

3.4-18 

10000-150 

14 

183-274 

7-28 

Polychates 

SeaUrchin 

Crustaceans 

Crustacean larvae 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 

Polychates 

SeaUrchin 

Crustaceans 
Crustacean larvae 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 

Polychates 

SeaUrchin 

Crustaceans 

Crustacean larvae 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 

Polychates 

Sea Urchin 

Crustaceans 

Crustacean larvae 

Phytoplankton 

Polychateslarvae 
Echinoderms 

Gastropod larvae 

Amphipod 

Polychates 

Sea Urchin 

Crustaceans 

1.7-42 10-14 

25 29-51 

0.8-10 7-11 

4 7 

670-2200(FW 2-4 
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Copepod 

SeaStar 

Crab 

Mysid 

Shrimp 2410 

Rotifer 

Contaminant's Name 
Molluscs 

Bivalve 

Copepod 

SeaStar 

Crab 

Mysid 

Shrimp 

Rotifer 

Contaminant's Name 
Molluscs 5-42 

Bivalve 

Cope pod 

SeaStar 

Crab 

Mysid 

Shrimp 

Rotifer 

Contaminant's Name 
Molluscs 13000 

Bivalve 

Cope pod 

SeaS tar 

Crab 

Mysid 

Shrimp 

Rotifer 

Contaminant's Name 
Molluscs 

Bivalve 

Cope pod 

15-27500 

27 

8-28 

9 

7-11 

NOEC database for selected marine species 

Clams 

Algae 

Decapod 

Mussels 

Pelecypod 

Annelids 

SELENIUM 

Gastropod 

Oyster 

Clams 

Algae 

Decapod 

Mussels 

Pelecypod 

Annelids 

SILVER 

Gastropod 

Oyster 

Clams 

Algae 

Decapod 

Mussels 

Pelecypod 

Annelids 

VANADIUM 

ZINC 

Gastropod 

Oyster 

Clams 

Algae 

Decapod 

Mussels 

Pelecypod 

Annelids 

Gastropod 

Oyster 

Clams 

I mmol/1 

13000-198 

0.8-3.5 

5-28 

100 

2000 

2 

3-6 

5-14 

21-71 

13 

9 

Crustacean larvae 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 

Polychates 

SeaUrchin 

Crustaceans 

Crustacean larvae 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 

Polychates 

SeaUrchin 

Crustaceans 

Crustacean larvae 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 

Polychates 

SeaUrchin 

Crustaceans 

Crustacean larvae 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 

Polychates 

Sea Urchin 

Crustaceans 

Crustacean larvae 

85(FW) 21 

2.5-42 28-38 

7000 9 

15-2100 8-28 
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SeaStar 

Crab 

Mysid 

Shrimp 

Rotifer 

NOEC database for selected marine species 

Algae 

Decapod 

Mussels 

Pelecypod 

Annelids 70-3260 7-9 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 
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LCso database for selected marine species 

Appendix 3: Typical LCSO Database (Columns represent ug/1 and Day) 

Contaminant's Name 1,1,2 TRICHLOROETHANE Polychates 190000 4 

Molluscs Gastropod Sea Urchin 

Bivalve Oyster Crustaceans 43000-8200 2-4 

Copepod Clams Crustacean larvae 

SeaStar Algae 60000-26 2-4 Phytoplankton 

Crab Decapod Polychateslarvae 

Mysid Mussels 140000 14 Echinoderms 

Shrimp 43000 10 Pelecypod Gastropod larvae 

Rotifer Annelids Amphipod 50000 14 

Contaminant's Name ARSENIC Polychates 

Molluscs 1500-7400 Gastropod Sea Urchin 

Bivalve 3500 4 Oyster Crustaceans 1000 8-51 

Copepod 907 4 Clams Crustacean larvae 230 4 

SeaStar Algae 6-9 Phytoplankton 

Crab Decapod Polychateslarvae 

Mysid Mussels Echinoderms 
Shrimp 2319 4 Pelecypod 3490 4 Gastropod larvae 

Rotifer Annelids 3000-750 Amphipod 

Contaminant's Name BENZENE Polychates 

Molluscs 165000-92 Gastropod Sea Urchin 

Bivalve 190000 4 Oyster Crustaceans 3300-38000 

Cope pod 82ppm <=4 Clams Crustacean larvae 

SeaStar Algae 41000 g Phytoplankton 

Crab 12840 4 Decapod Polychateslarvae 

Mysid Mussels Echinoderms 

Shrimp 97800 Pelecypod Gastropod larvae 

Rotifer >1000 Annelids Amphipod 

Contaminant's Name CADMIUM Polychates 12000 4 

Molluscs Gastropod 3500 4 SeaUrchin 

Bivalve 1600-2500 4 Oyster 20-25 6 Crustaceans 15-100 4 

Copepod !ROO 4 Clams Crustacean larvae 250-380 4 

Sea Star 7100 4 Algae Phytoplankton 

Crab 175000 14 Decapod 14000 4 Polychateslarvae 220 4 

Mysid 15 4 Mussels 500-1000 I Echinoderms 7100-10000 4 

Shrimp 200-300 4 Pelecypod 1480 4 Gastropod larvae 

Rotifer 5200 3 Annelids Amphipod 320 5 
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Contaminant's Name CHROMIUM Polychates 1440-1890 7 

Molluscs Gastropod 105000 4 Sea Urchin 

Bivalve 57000 4 Oyster 611 4 Crustaceans 3400-45000 4 

Cope pod 4500 4 Clams Crustacean larvae 

SeaStar 32000 4 Algae Phytoplankton 

Crab 247 4 Decapod 10000 4 Polychateslarvae 

Mysid Mussels 1200 2 Echinoderms 1700 7 

Shrimp 1560-2450 4 Pelecypod 57000 4 Gastropod larvae 

Contaminant's Name COPPER Polychates 200 4 

Molluscs 400-20000 5-30 Gastropod 58 4 SeaUrchin 300 

Bivalve Oyster 35-45 6 Crustaceans 100-250000 4 

Cope pod 40-60 4 Clams 570 4 Crustacean larvae 48-170 4 

SeaStar Algae 10-15 1-2 Phytoplankton 

Crab Decapod 250000-1 4 Polychateslarvae 180 4 

Mysid Mussels 200 4 Echinoderms 

Shrimp 146-250 4 Pelecypod Gastropod larvae 110 2 

Rotifer 43-84 Annelids Amphipod 1250 4 

Contaminant's Name LEAD Polychates 6800 4 

Molluscs 4400-4520 7 Gastropod Sea Urchin 

Bivalve 8800 7 Oyster 380-550 2 Crustaceans 580 4 

Cope pod 484-876 4 Clams Crustacean larvae 

SeaStar Algae 3110-794 10-14 Phytoplankton 

Crab Decapod Polychateslarvae 

Mysid Mussels 10000 2 Echinoderms 

Shrimp 3130 4 Pelecypod Gastropod larvae 

Rotifer >4000 Annelids 840-7550 28 Amphipod 14100 

Contaminant's Name MERCURY Polychates 22 4 

Molluscs 4.0-5070 5-12 Gastropod 32000 4 Sea Urchin 

Bivalve 58-400 4 Oyster Crustaceans 50-230 4 

Copepod 8-12 4 Clams Crustacean larvae 8.2-17 4 

Sea Star 60 4 Algae Phytoplankton 

Crab Decapod 10-156 2 Polychateslarvae 100 4 

Mysid Mussels Echinoderms 20 7 

Shrimp 250 2 Pelecypod 1000 37 Gastropod larvae 

Rotifer 59-62 Annelids 17-90 7-28 Amphipod 

Contaminant's Name m-XYLENE Polychates 

Molluscs Gastropod SeaUrchin 

Bivalve 235000 3 Oyster Crustaceans 3200-33000 

Copepod 215000 4 Clams Crustacean larvae 

SeaStar Algae 400000 Phytoplankton 
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Crab 

Mysid 

Shrimp 

170000 

21400 4 

Contaminant's Name 
Molluscs 57000 4 

Bivalve 57000 4 

Copepod 67800 4 

SeaStar 

Crab >2000 4 

Mysid 

Shrimp 451280 4 

Rotifer 

Contaminant's Name 
Molluscs 

Bivalve 1200 4 

Cope pod 6000 4 

Sea Star 150000 

Crab 

Mysid 

Shrimp 387-635 4 

Rotifer >20000 

Contaminant's Name 
Molluscs 163-18000 

Bivalve 

Copepod 126 2 

Sea Star 

Crab 

Mysid 

Shrimp 9500 14 

Rotifer 7610 4 

Contaminant's Name 
Molluscs 255-2000 86hr 

Bivalve 

Cope pod 1700-2500 4 

SeaS tar 

Crab 28400-382 4 

Mysid 

Shrimp 600 4 

Rotifer 6000-2800 
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Decapod 

Mussels 

Pelecypod 

NAPTHALENE 
Gastropod 

Oyster 

Clams 

Algae 

Decapod 

Mussels 

Pelecypod 

Annelids 

NICKEL 
Gastropod 

Oyster 

Clams 

4 Algae 

Decapod 

Mussels 

Pelecypod 

Annelids 

<695 

3800 

72000 

47000 

154000-5 

PENTACHLOROPHENOL 
Gastropod 

Oyster 

Clams 250 

Algae 32 

Decapod 

Mussels 750 

Pelecypod 

Annelids 

SELENIUM 
Gastropod 

Oyster 

Clams 

Algae 1000(EC5 

Decapod 

Mussels 

Pelecypod 

Annelids 

11-14 

4 

4 

4 

7 

4 

100 

14 

3 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Polychates 

SeaUrchin 

Crustaceans 

Crustacean larvae 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 

Polychates 

Sea Urchin 

Crustaceans 

Crustacean larvae 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 

Polychates 

Sea Urchin 

Crustaceans 

Crustacean larvae 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 

Polychates 

Sea Urchin 

Crustaceans 

Crustacean larvae 

Phytoplankton 

Polychateslarvae 

Echinoderms 

Gastropod larvae 

Amphipod 

3500-4100 4 

850-5700 2-4 

40000 !0 

435 4 

70-10000 

710-870(EC 2 

90 2 

738-82000 2-3 

XVII 



LCso database for selected marine species 

Contaminant's Name SILVER Polychates 

Molluscs Gastropod SeaUrchin 

Bivalve Oyster 25 12 Crustaceans 

Cope pod 43 ..t Clams 116-208 8 Crustacean larvae 

SeaStar Algae Phytoplankton 

Crab 55 Decapod Polychateslarvae 

Mysid Mussels Echinoderms 

Shrimp 249 4 Pelecypod Gastropod larvae 

Rotifer 120 Annelids Amphipod 

Contaminant's Name THALLIUM Polychates 

Molluscs Gastropod Sea Urchin 

Bivalve Oyster Crustaceans 2130-10000 4 

Copepod 2400 2 Clams Crustacean larvae 

SeaStar Algae 330(ECSO 5 Phytoplankton 

Crab Decapod Polychateslarvae 

Mysid Mussels Echinoderms 

Shrimp 2500 2 Pelecypod Gastropod larvae 

Rotifer 18.8umolll Annelids Amphipod 

Contaminant's Name ZINC Polychates 3500-10700 4 

Molluscs 15000-275 4 Gastropod 50000 4 Sea Urchin 

Bivalve 2500-4300 4 Oyster Crustaceans 400-13000 4 

Cope pod 1450 4 Clams Crustacean larvae 180-1200 4 

SeaStar >10000 4 Algae 13-796 5-10 Phytoplankton 

Crab Decapod 9500-131 Polychateslarvae 1700 4 

Mysid Mussels 175 2 Echinoderms >10000-390 4 

Shrimp Pelecypod 2500-430 4 Gastropod larvae 

Rotifer Annelids Amphipod 580 4 

xvm 







' :w ,. 




