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Abstract 

Inferences in generalized linear mixed models (GLMMs) which includes count and 

binary data as special cases are extremely important. As it is proven to be difficult 

to obtain consistent and efficient estimates of the parameters (regression effects and 

variance of the random effects) of such models, there is a vast growing literature deal

ing with this important estimation problem. Among them, the method of moments 

(MM), Penalized quasilikelihood (PQL) and Hierarchical likelihood (HL) approaches 

are more familiar. It is however known that the MM approach always produces con

sistent estimates, whereas the PQL approach may not provide consistent estimates 

for all the parameters of the model. A recently proposed generalized quasilikelihood 

(GQL) approach has proven to be better in the sense of consistency and efficiency as 

compared to the MM and other improved MM (IMM) procedures. There does not, 

however, exist any comparative study between the GQL and the HL approaches. In 

this thesis, we have made a comparison between these two approaches mainly through 

an extensive simulation study involving the Poisson-normal mixed model. It is found 

that the HL approach may not produce consistent estimates for the regression effects 

specially when the variance of the random effects is large. In contrast, the GQL 

approach is found to always produce consistent estimates for all parameters of the 

model. These two estimation methodologies are also illustrated by analyzing a data 

set on the health care utilization in St. John's, Canada . 
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Chapter 1 

Introduction 

1.1 Background of the Problem 

Analyzing clustered count data is an important problem in economics and biomed

ical studies, among others. For example, in health economics studies, one may be 

interested to estimate the effects.of certain covariates such as gender and education 

level on the number of visits to the physician paid by different members of a family. 

Here, the number of visits to the physician is a count response variable. Similarly, in 

biomedical studies, the number of weekly asthma attacks on a member of a family 

can be treated as a count response variable. Interest of the study may be to estimate 

the effects of different covariates such as gender, smoking habit and mother's smoking 

habit on the number of weekly asthma attacks. 

In both of these examples, the count responses (number of visits to the physician 

or number of weekly asthma attacks) within a family are correlated. This correlation 

arises from the shared common unobserved family effects. It is important to determine 

the effect of the covariates on the responses after taking such familial correlations into 

account. 
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There are many studies on the estimation of the regression effects as well as the 

variation of the family effects. These studies are done in a generalized linear mixed 

model (GLMM) set-up which accommodates count as well as binary response data. 

In general, whether the responses are count or binary, the GLMMs for such re

sponses are derived from the well-known generalized linear model (GLM) (McCullagh 

and Neider, 1989) by adding random effects to the linear predictor. A random vari

able Yii for the jth member (j=1, ... , ni) of the ith family (i=1, ... , K), with exponential 

density 

(1.1) 

follows a GLM when 'r/ij has a linear form, namely, 'r/ij = x~i(3 where Xij is the 

vector of covariates and (3 is the vector of regression parameters. In ( 1.1), a(.) and 

b(.) are known functions. Note that the exponential form (1.1) contains the Poisson 

distribution for count response Yii· As far as the GLMM is concerned, it is developed 

by adding random effects, say 1'i to the linear predictor 'r/ij, where 1'i is independently 

and identically distributed with mean 0 and variance a 2 , i.e. 1'i i}.:! (0, a 2 ). Thus in 

the GLMM set-up, the count response Yij follows (1.1) with a(rJij) = exp ('r/ij), where 

I (3 + * * 'f'i iid (0 1) d • d .ll' l d k 'r/ij = xij a Zi 1'i , 1'i = - "' , , an Zi IS a ran om euects re ate nown 
a 

covariate for the ith cluster. 

Under the GLMMs setup, it has proven to be difficult to obtain consistent and 

efficient estimators for the regression parameters and the variance of the random 

effects. A full or exact likelihood analysis is complicated as it requires a complex 

integration over the distribution of the random effects. This integration problem 

compels one to avoid the exact likelihood estimation method, even though it is known 

that maximum likelihood estimators will be fully efficient (optimal). To overcome this 

computational problem, many authors, over the last decade, have used best linear 

unbiased predictor (BLUP) analogue analytical methods, where random effects are 

treated as fixed effects (Henderson 1953) and estimated as such. The regression and 

variance parameter of the GLMMs are then estimated, based on the estimates of the 
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so-called random effects. For example, we refer to Schall (1991), Breslow and Clayton 

(1993), Breslow and Lin (1995), Kuk (1995), Lin and Breslow (1996), and Lee and 

Neider (1996, 2001). 

Breslow and Clayton (1993), by using these BLUP analogue approaches, pro

posed two closely related approximate methods, namely the penalized quasi-likelihood 

(PQL) method and the marginal quasi-likelihood (MQL) method for inferences in 

GLMMs. The PQL generally produces biased estimates, especially for the variance 

of the random effects. The amount of bias can be considerably large when the true 

variance of the random effects is large and the cluster size is small (see Sutradhar and 

Qu, 1998). 

To remove biases in the estimates, Kuk (1995) and Lin and Breslow (1996), among 

others, provided asymptotic bias corrections both for the regression and the variance 

component estimates. Breslow and Lin (1995), in the context of binary GLMMs with 

a single component of dispersion, provided a correction factor for the estimator of 

the variance of the random effects derived from a Laplace approximations (Solomon 

and Cox, 1992) as well as PQL. They also provided a first order correction term for 

the regression coefficients estimated by PQL (see also Goldstein and Rasbash, 1996, 

for improvements). The bias correction in PQL estimators due to Breslow and Lin 

(1995) appears to improve the asymptotic performance of the uncorrected quantities 

only when the true variance component is small; more specifically, when it is less than 

or equal to 0.25. 

Following the generalized estimating equation approach of Zeger et al. (1988), 

Breslow and Clayton (1993), as mentioned above, also used the MQL method toes

timate the regression effects of GLMMs. The application of the estimating equation 

approach for the regression parameters requires the first and second order marginal 

moments of the responses. The exact first and second order moments of the responses 

under the GLMMs are, however, typically not available. Breslow and Clayton (1993) 

used an approximate mean vector and "a working covariance" matrix as in Zeger et al. 
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(1988) to construct the estimating equations for the regression parameters (see also 

Waclawiw and Liang, 1993). Similar to PQL approach, this "working" covariance

based MQL approach also produces biased estimates for the regression effects (see 

also Rodriguez and Goldman, 1995), especially for the intercept parameter (see Su

tradhar and Qu, 1998). The standard errors of the MQL estimators are, in general, 

larger than the corresponding PQL estimators for all the regression parameters. Most 

importantly, both the PQL and MQL approaches produces highly biased estimates 

for the variance of the random effects, with the MQL approach being worse between 

the two. 

As opposed to the approximate MQL approach (Zeger et al., 1988; Breslow and 

Clayton, 1993), there also exists an exact MQL approach (Sutradhar and Rao, 2001) 

which exploits the correct covariance structure in constructing the estimating equa

tions. Note that the exact MQL approach proposed by Sutradhar and Rao (2001) 

is however developed only for small values of the variance of the random effects. 

Recently, this MQL approach has been improved by Sutradhar (2004) where the 

covariance matrix needed for the construction of the estimating equation has been 

computed for any small or large values of the variance of the random effects. This ap

proach has been referred to as exact quasi-likelihood, or generalized quasi-likelihood 

( GQL), approach. 

As opposed to the PQL approach of Breslow and Clayton (1993), Jiang (1998) 

proposed the traditional method of moments (MM) for the estimation of regression 

effects and variance component, where unconditional first and second order moments 

are computed by using a simulation approach for numerical integration. However, the 

MM approach does not yield efficient estimates for the parameters of the mixed model, 

in particular for the variance components of the model. Jiang and Zhang (2001) have 

attempted to improve the efficiencies of the MM based estimators of Jiang (1998). 

Sutradhar (2004) has however shown that the improved method of moments (IMM) 

by Jiang and Zhang (2001) can also be highly inefficient compared to the generalized 

quasi-likelihood (GQL) approach constructed by taking the familial correlation into 
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account correctly. 

Similar to the PQL approach by Breslow and Clayton (1993), Lee and Neider 

(1996) proposed a hierarchical likelihood (HL) approach. Lee and Neider (1996) used 

the hierarchical likelihood function to estimate the regression effects as well as random 

effects considering them as fixed effects and then by using these estimates to obtained 

the estimate of the variance component (see also Lee and Neider, 2001). Even though 

many authors have examined the performance of the PQL approach, there does not 

appear to be any comparative studies with the HL approach of Lee and Neider (1996). 

Since the PQL approach has consistency problems, and IMM is inefficient compared 

to the GQL approach, it remains to be seen how the HL approach performs compared 

to the GQL approach. 

1.2 Objective of The Thesis 

The discussion in the previous section indicates that the PQL approach suffers from an 

inefficiency problem especially for estimating the variance component. It is also clear 

that the GQL approach (Sutradhar, 2004) performs better among existing competing 

approaches such as the IMM approach of Jiang and Zhang (2001). However the GQL 

approach was not compared by Sutradhar (2004) with the existing HL approach which 

is another widely used competitive technique. These reasons motivated us to conduct 

a comparative study between the GQL and the HL approaches in the context of 

clustered count data analysis, which is an important application of GLMM's. 

More specifically, in Chapter 2, we describe the Poisson mixed model and review 

its basic properties. We derive the exact likelihood function and note its complexity 

for the estimation of the parameters. We also provide comments on the PQL and IMM 

approaches. In Chapter 3, we discuss the GQL and HL approaches and provide the 

necessary estimating equations for the regression effects as well as variance component 
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of the random effects. In Chapter 4 we conduct an extensive simulation study to 

examine the relative performance of the GQL and HL approaches. In Chapter 5 

we provide an illustrative example of the methodologies that we have explained in 

Chapter 3. Finally, we conclude the thesis with some remarks in Chapter 6. 



Chapter 2 

Poisson-Normal Mixed Models 

Even though the Poisson-Normal mixed model is well studied in the literature, we also 

review this model here for the convenience of describing the GQL and HL approaches 

in the next chapter. As far as the basic properties of this model are concerned, we 

provide all possible moments up to order four. The product moments of the third 

and fourth orders are required useful for the construction of the GQL approach. 

In this chapter, we also discuss the exact likelihood properties of this model for 

the purpose of estimation. Some comments about the moments based, such as IMM 

estimation, and approximate likelihood based approaches such as PQL estimation, 

are also given. 

2.1 Poisson Mixed Models 

Suppose that Yij is the count response variable for the jth (j=l, .... , ni) individual in 

the ith (i=l, ... ,K) cluster (e.g. family). Also suppose that Xij is the pxl vector of 

fixed covariates and (3 is the effect of Xij on Yij· Note that as ni members belongs 

to the ith cluster, the count response from these members of the ith cluster will be 

correlated. This is because they are likely to share a common familial/cluster effect, 

7 
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say 'Yi· Here the responses conditional on 'Yi are independent. 

Suppose that conditional on "fi, Yij has a Poisson distribution with density function 

(2.1) 

where E (Yij I 'Yi) = JJij = exp (x~y(3 + Zi"fi). Here Zi is a random effects related 

known covariate for the ith cluster. 

Since responses in a given cluster are conditionally independent, the conditional 

likelihood of these responses is 

ni 

Li(f3,"fi) =IT f(Yijl"fi) (2.2) 
j=l 

Under the assumption that 'Yi ij:j (0, o-2
), the unconditional likelihood function is 

K 

L (/3, o-2
) = IT J Li(/3, 'Yi) 

i=l 

K ni 

= IT IT J f(Yiji'Yi)¢('Yi)d"fi 
i=l j=l 

(2.3) 

where ¢('Yi) is the probability density for the random effects 'Yi· 

In general, it is assumed that 'Yi in (2.1) follows the normal distribution. For 

example, we can see Breslow and Clayton (1993), Jiang (1998) and Sutradhar (2004). 

The unconditional likelihood in (2.3) then takes the form 

K ni 

L (/3, o-2
) = IT IT J J(yiji'Yi) ¢*('Yi) d"fi 

i=l j=l 

(2.4) 

with ¢* ('Yi) as the normal density with mean 0 and variance o-2 • The likelihood 

estimation of f3 and o-2 will be discussed later in section 2.2. For now we concentrate 

on the basic moment properties of the mixed model (2.4). 
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2.1.1 Basic Properties of the Model: Moments up to Order 

Four 

For the Poisson-Normal mixed model discussed in the last section we can derive the 

marginal and product moments up to order four as in the following lemmas. 

Lemma 2.1. For j=l, ... ,ni, the first order marginal moment of Yij is 

(2.5) 

Lemma 2.2. For j f= k, j,k=l, ... ,ni, the second order marginal and product moments 

of ~j and ~k are 

E (y2) 2 z~ u 2 

ij = mij + mij e ' (2.6) 

(2.7) 

Lemma 2.3. For j f= k f= l, j,k,l=l, ... ,ni, the third order marginal and product 

moments of Yij, Yik and Yit are 

(2.8) 

(2.9) 

(2.10) 

(2.11) 
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Lemma 2.4. For j =!= k =!= l =!= m, j,k,l,m=i, ... ,ni, the fourth order marginal and 

product moments of }ij, Yik, Yil and lim are given by 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Proof. Since }ij conditionally follows the Poisson distribution with mean p;j we can 

write the first four conditional moments of this distribution as: 

E (Yij I l'i) = I-LTj = exp (x~j/3 + Zi !'i) 

E (Yi] I l'i) = 1-LTj + 1-LT/ 
E (Yi~ I l'i) = I-LTj + 3pT/ + I-LTj 

3 

E (Yij I /'i) = I-LTj + 7 1-LT/ + 6pT/ + 1-LT/ 

Because the random effects, /'i ~ N(O, 0"2
) and Zi are known, we can write 

which is the marginal moment of first order as in Lemma 2.1. 

(2.20) 

(2.21) 

(2.22) 

(2.23) 
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Now by exploiting the conditional second order moments (2.21) one obtains the 

unconditional second order marginal moments as 

Similarly, the unconditional product moments of order 2 given in (2.7), can be com

puted as 

To derive all third order moments in Lemma 2.3, we first compute the marginal 

third order moments as 

2 2 2 3 32 2 = m·
3
· + 3m .. ez; a + m .. e z; a 

' ~J ~J ' 

which is (2.8). Next, the product moments of order 3 are computed as 

and 

E (YiJ lik) = E'Yi E (YiJ lik I 'Yi) = E'Yi { E (YiJ I 'Yi) E (lik I 'Yi)} 

= E-r; { (J-Lti + J-Lt/ ) J-Ltd 
= mij mik eZJ a2 + m~j mik e3ZJ a2' 

E (lij lik lil) = E'Yi E (lij lik lil I 'Yi) 

= E'Yi { E (lij I /i) E (lik I 'Yi) E (lil I 'Yi)} 
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By using computations similar to those of Lemma 2.3, one may obtain the results 

of Lemma 2.4 for the fourth order moments. The formulas for the marginal as well 

as product moments of order four are 

and 

E (li; Yik) = E'Yi E (li; Yik I l'i) = E'Yi { E (li; I l'i) E (Yik I l'i)} 

= E'Yi{ (tL;i + 3fL:/ + IL;/)IL;k} 
z2 a 2 3 2 3z~ a 2 3 6z2 a 2 

= mij mik e ' + mij mik e ' + mij mik e ' , 

E (li; li~) = E'Yi E (li; li~ I l'i) = E'Yi { E (li; I l'i) E (li~ I /'i)} 

= E'Yi { (tL;i + /L;i 
2

) (tL;k + IL;k 
2
)} 

22 2 322 2322 2 2622 = m· ·m· ezi a + m .. m· e Z; a + m· ·m· e zi a + m .. m. e zi a 
2J tk 1J •k 2J tk 1J tk ' 

E (li; Yik Yiz) = E'Yi E (li; Yik Yiz I '/'i) 

= E'Yi { E (li; I l'i) E (Yik I l'i) E (Yiz I l'i)} 

= E'Yi { (!L;j + /L;j 2 ) IL;k /L;z} 
3z2 a 2 2 6z2 a 2 

mij mik mil e ' + mij mik mil e ' , 



E (Yij Yik Yiz Yim) = B-y; E (Yij Yik Yiz Yim I 'Yi) 

E( ** **) = 'Yi J-lij J-lik Mil /-lim 

6z? u 2 

= mij mik mil mim e ' 
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The above results from Lemma 2.1 to 2.4 may be used to construct the mean, 

variance, covariance and other corrected moments up to order 4. In particular, the 

mean and the variance of a count response under the Poisson-normal mixed model 

are given by 

(2.24) 

and 

(2.25) 

respectively. By similar calculation as in (2.25), the covariance between the jth and 

kth (j# k) individuals in the ith cluster is 

(2.26) 

The mean (2.24), variance (2.25) and covariance (2.26) are all functions of f3 and 

a 2 • Furthermore, it follows from (2.25) that as a 2 increases the variance of the data 

increases exponentially. Consequently, the a 2 parameter is referred to as the over

dispersion parameter. The primary objective of the analysis is to estimate the f3 and 

a 2 parameters consistently and efficiently by using the available familial data. 
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As mentioned earlier, in order to derive consistent and efficient estimates for (3 and 

0"2 , different estimation techniques have been used in the literature. The moments 

up to order four that we have presented above may be exploited for such estimation. 

Two of the moments based estimation techniques, such as IMM and GQL will be 

discussed in this thesis. The IMM approach is briefly discussed in Section 2.3.1, and 

the GQL and the HL approaches will be given in the next chapter. 

For non-moments based estimation approaches, in the following section, we ex

amine the complexity involved in the exact likelihood approach. We then discuss the 

PQL approximation in Section 2.3.2 and HL approximation in the next chapter. 

2.2 Complexity of Exact Likelihood Estimation for 

Poisson Mixed Models 

In generalized linear mixed model, the exact likelihood function can be written as 

(2.27) 

Since f(Yiiil'i) is given by (2.1), and under normality for the random effects, the 

density ¢("yi) is the same as ¢*(li), 

1 IF 
~exp(- 20"2) (2.28) 

The conditional Poisson model (2.1) can be written as 



"(• "d "d 
where 'Yi = _.!:. ~ N(O, 1) as 'Yi ~ N(O, a 2

). 
0' 

Then by using (2.28) the likelihood function in (2.27) is equivalent to 
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(2.30) 

But, unfortunately, the integral in (2.30) does not have an analytic solution. One 

may however compute this likelihood function numerically. For example, Fahrmeir 

and Tutz (1994) and Jiang (1998) suggested to simulate 'Yiw (w=1,2 ... ,M) for a huge 

M say M = 10,000, from the standard normal distribution and compute the likelihood 

as 

(2.31) 

Note however that when likelihood estimating equations for (3 and a 2 are written 

following (2.31), their solutions will still be numerically cumbersome. As a remedy, 

there exists several approximations to this likelihood approach, such as PQL, HL and 

GQL. Since these approaches are relatively simpler than the above exact likelihood 

approach, we concentrate on such simpler techniques in the present thesis. 

2. 2.1 Effects of Ignoring Random Effects { 'Yi} in f3 Estimation 

When we ignore random effects { 'Yi}, observations in a cluster become independent. 

One, consequently, can use the simpler version of (2.30) to obtain the likelihood 

estimates for the regression effects (3. This is because, when random effects { 'Yi} con

sequently a 2 = 0, the mixed model (2.30) reduces to the fixed model. The likelihood 

function for this well known fixed effects model is then given by 



16 

K n; 

L = II II f(Yij) 
i=l j=l 

IT IT f-lilij e-f-!;j 

i=l j=l Yij! 
(2.32) 

where J-lij = exp(x~j/3). 

This computational simplicity for the independence case raises an issue to examine 

the effects of various values of a 2 in the estimation of (3 when a 2 = 0 is used in 

estimation. In this subsection we examine this issue through a simulation study. 

For the purpose of computation of the maximum likelihood estimate of (3 when 

a 2 = 0 by (2.32), we first write the likelihood estimating equation as 

8logL 
[)(3 

K n; 

= L L (YijXij - J-lijXij) = 0, 
i=l j=l 

which can be written in matrix and vector notation as 

K 

L x: (Yi - J-li) = 0, 
i=l 

where Yi = [Yil,Yi2, .... ,yinJ' and J-li = E[Yi] = [J-lil,J-li2, .... ,J-linJ', with 

and 

Xill Xi12 Xilp 

xi= 
Xi21 Xi22 Xi2p 

Xin;l Xin;2 Xin;p 
niXP 

(2.33) 

(2.34) 

(2.35) 
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The estimating equation (2.34) may be easily solved by using the iterative algorithm 

(2.36) 

where the quantity within the square bracket is evaluated at j3 = ~(r), r being the rth 

iteration and 

mil 

0 
Ai= 

0 

0 

mi2 

0 

0 

0 

We remark that the likelihood estimating equation (2.34) constructed under the 

independence assumption is in fact the same as the traditional moment estimating 

equation for j3 (see Section 2.3.1). Furthermore, the likelihood equation (2.34) is 

also the same as the well known quasilikelihood (QL) estimating equation. This 

equivalence will be clear from the next chapter where the GQL estimating equation 

is developed for the regression effects j3 in the presence of (j2 . 

2.2.2 Regression Estimation when Random Effects { 1'i} are 

Ignored: A Simulation Study 

In the simulation study, we generate the data by using the Poisson-normal mixed 

model (2.1) with 

(2.37) 
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where 'Yi ~ N(O, 1), but estimate /31 and /32 under the assumption that a 2 = 0, i.e, 

'Yi = 0 for all i = 1, ... , K which in practice means that 'Yi has been ignored. We 

choose the number of cluster, K=100, for convenience. We also consider small or 

large cluster sizes such as ni = 2 and 4 for all i=1,2, ... ,K, where ni is the cluster size. 

To use (2.37), we consider the true values of the regression parameters as /31 = 

1.0 and /32 = 1.0, and select two covariates as follows 

1 for j = 1, 2, ... , ni/2; i = 1, 2, ... , K/2 

Xijl = 0 for j = ni/2 + 1, ... , ni; i = 1, 2, ... , K/2 

1 forj=1, ... ,ni; i=K/2+1, ... ,K 

1 for j = 1, 2, ... , ni/2; i = 1, 2, ... , K/2 

2 forj=ni/2+1, ... ,ni; i=1,2, ... ,K/2 
Xij2 = 

0 for j = 1, 2, ... , ni/2; i = K/2 + 1, ... , K 

1 for j = ni/2 + 1, ... , ni; i = K/2 + 1, ... , K 

We choose various small and large values of a 2 , namely, a 2 = 0.2. 0.6, 1.0, 1.5, 

2.0 and 2.5. Next, under each of 1000 simulations, we use the responses as generated 

above, as well as the covariates Xijl and Xij2 , to obtain the likelihood estimates of /31 

and /32 by using (2.36). The simulated means (SM) of the the likelihood estimates of 

/31 and /32 along with their simulated standard errors (SSE) are reported in Table 2.1. 

We also have computed the simulated relative bias (SRB) for the estimates defined 

by 

SRB _ 1 SM -True parameter value 1 100 - SSE X . 
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Table 2.1: The SM, SSE and SRB of the likelihood estimates of (31 and (32 when 
random effects are ignored in estimation but the data were generated for selected 
values of CJ

2 > 0; K=100; n = 2 and 4; true values of the regression parameters: 
!31 = 1.0 and (32 = 1.0, 1000 simulations. 

Variance of the Cluster size 2 Cluster size 4 

random effects, CJ2 Statistic (31 (32 !31 !32 

0.20 SM 1.0636 1.0608 1.0625 1.0619 

SSE 0.0387 0.0238 0.0272 0.0170 

SRB 164 255 230 364 

0.60 SM 1.1607 1.1816 1.1623 1.1823 

SSE 0.0353 0.0216 0.0244 0.0151 

SRB 455 841 665 1207 

1.00 SM 1.2512 1.3012 1.2530 1.3001 

SSE 0.0311 0.0188 0.0219 0.0131 

SRB 808 1602 1155 2291 

1.50 SM 1.3516 1.4605 1.3534 1.4604 

SSE 0.0290 0.0184 0.0202 0.0127 

SRB 1212 2503 1750 3625 

2.00 SM 1.4085 1.6771 1.4087 1.6778 

SSE 0.0311 0.0283 0.0233 0.0201 

SRB 1314 2393 1754 3372 

2.50 SM 1.5369 1.7416 1.5382 1.7416 

SSE 0.0227 0.0131 0.0157 0.0095 

SRB 2365 5661 3428 7806 

It is clear from Table 2.1 that when CJ2 is close to zero, the likelihood estimates of 

(31 and (32 appears to be very close to the true parameter values. This is expected as 

the estimation is done by using the 'working' independence assumption, that is, CJ2 

=0. As the value of CJ2 however increases the estimates of (31 and (32 appear to deviate 
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more and more from the true parameter values. For example, when a 2 = 0.2 and n 

= 2, in estimating the true parameters {31 = {32 = 1.0, the independence assumption 

based likelihood estimates are found to be sl = 1.0636 with standard error 0.0387 

and percentage relative bias 164, and {32 = 1.0608 with standard error 0.0238 and 

percentage relative bias 255. For a large value of a 2 , such as a 2 = 2.5, the estimates 

are found to be s1 = 1.5369 with standard error 0.0227 and percentages of relative bias 

2365, and s2 = 1.7416 with standard error 0.0131 with percentages of relative bias 

5661. It is clear that a 2 = 2.5, {31 and {32 are estimated with huge biases. Thus, the 

independence assumption based likelihood approach fails to estimate the parameters 

adequately. When cluster size increases, the estimates appear to become much more 

biased. For example, when n = 4 for the same a 2 = 2.5, the percentage relative 

biases of s1 and s2 are 3428 and 7806, whereas for n = 2, they were 2365 and 5661 

respectively. 

The simulation demonstrate clearly that there is a detrimental effect of ignoring 

the presence of the random effects even when one is only interested to estimate the 

main regression effects. This definitely motivates one to estimate the regression effects 

by taking the random effects into account i.e. removing the assumption a 2 = 0. In 

the next section we discuss the simultaneous estimation of these parameters, namely, 

f3 and a 2
. 
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2.3 Approximation to Likelihood Inference 

The existing leading approximations to the (complex) likelihood approach are as 

follows: 

(1) Improved method of moments (IMM). 

(2) Penalized quasi-likelihood (PQL) approach. 

(3) Hierarchical likelihood (HL) approach. 

( 4) Generalized quasi-likelihood ( GQL) approach. 

The advantages and disadvantages of the PQL and the IMM approaches are discussed 

extensively in the literature. For further discussion on the PQL approach we refer to 

Breslow and Clayton (1993), Breslow and Lin (1995) and Sutradhar and Qu (1998), 

among others. For additional discussion on the IMM approach we refer to Jiang 

and Zhang (2001) and Sutradhar (2004), among others. Nevertheless, for the sake of 

completeness we provide the estimation formulas under these two approaches in the 

following subsections. The other two approaches (GQL and HL) will be considered 

in Chapter 3. 

2.3.1 Improved Method of Moments (IMM) 

Jiang and Zhang (2001) presented the improved method of moments (IMM) as an 

improvement over the method of moments (MM) discussed by Jiang (1998). Since, 

conditional on the random effects, Ylji j=1, ... ,ni, and YijYiki j<k =2, ... ,ni, may be 

shown as sufficient statistics for the parameters of the model. Jiang and Zhang 

(2001) used them and wrote a base statistic 
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N ni N ni 

s = L L Yij + L L YijYik (2.38) 
i=1 j=1 i=1 j<k 

for the estimation of() = (/3, o")', where, N = 2:~1 ni and compute its expectation 

given by p(B) = E(S). For U = 8p'(B)j8() and V = Cov(S), these authors then solved 

the estimating equation 

B[S-p(O)]=O (2.39) 

where B = U'V- 1
• Note that as the computation of V matrix is complicated, Jiang 

and Zhang (2001) proposed a simple matrix which is free from higher order moments 

such as B = B0 = diag(I1 , 1'r<) and solved the estimating equation 

Bo [S - p(B)] = 0, (2.40) 

for f3 and O". Sutradhar (2004) has however demonstrated that the use of B0 (free 

from higher order moments) actually may lead to inefficient estimates. 

2.3.2 Penalized Quasi-Likelihood (PQL) 

Breslow and Clayton (1993) used the Penalized quasi-likelihood (PQL) estimation 

approach as an approximation to the exact likelihood approach. The PQL approach 

can be summarized by the following two steps; 

Step 1 : By assuming 0"
2 known, the regression effects f3 and the random effects 

'Yi (pretended to be fixed effects) are jointly estimated by maximizing a penalized 

quasi-likelihood function. To be specific, the penalized quasi-likelihood function is 

given by 
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(2.41) 

where ;y = ( 11 , ... , ii, ... , {K )' with ii as the posterior mode of ri computed from 

ah( ri) I O{i = 0, h( ri) being given by; 

n; n; 2 

h(ri) =- :2::: YiJ(x~J/3 + ri) + :2::: exp(x~J/3 + ri) + 2~2 . (2.42) 
j=l j=l 

The maximization of the PQL function (2.42) with respect to (3 and 'Yi is achieved 

by solving the estimating equations 

K n; 

gl(/3,!) = :2::: l::{YiJ- exp(x~J/3 + {i)}Xij = 0 (2.43) 
i=l j=l 

and 

(2.44) 

where g1 (.) and g2 (.) are obtained by taking the derivatives of the (2.42) with respect 

to (3 and 'Yi respectively. Let S denotes the estimate of (3 and ii denotes the estimate 

of ri· 

Step 2 : Then by using S and ii obtained from Step 1 they constructed a profile quasi

likelihood function in the form of a working normal likelihood function with correct 

mean and covariance and obtained the restricted maximum-likelihood estimate of a 2
. 

The profile quasi-likelihood based score equation for a 2 is given by 
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=0 (2.45) 

The estimate of a 2 obtained from above equation will be denoted by ;2 

It has however been demonstrated by Sutradhar and Qu (1998) [see also Jiang 

(1998)] that the PQL method can be inconsistent, specially for the variance compo

nent of the random effects a 2 , when cluster size is small. 

Note that as the IMM approach has major problems with regard to efficiency 

(Sutradhar, 2004) and the PQL approach has serious drawbacks with regard to the 

consistency (Sutradhar and Qu, 1998; Jiang, 1998) of the estimate of the variance 

parameter of the random effects, these approaches will not be studied any more in 

this thesis. 



Chapter 3 

Generalized Quasi-Likelihood and 

Hierarchical Likelihood Inferences 

It is clear from the discussion in the last chapter that the PQL approach may not yield 

consistent estimate for the variance component, (j
2 , of the random effects, whereas the 

IMM approach may yield consistent but inefficient estimate for this parameter. Recall 

that there also exists generalized quasi-likelihood (GQL) [see Sutradhar (2004)] and 

hierarchical likelihood (HL) [see Lee and Neider (1996)] approaches for the estimation 

of both f3 and (j
2 • Also recall that the GQL approach has been compared with the 

IMM approach by Sutradhar (2004) where it was shown that GQL approach is not 

only consistent but also more efficient than the IMM approach. In view of this, 

there does not arise any necessity to compare the GQL and PQL approaches, mainly 

because of the fact that the PQL approach may yield inconsistent estimate for (j
2 

[Sutradhar and Qu (2001), Jiang (1998)] whereas GQL always produces consistent 

estimate for this parameter. Note however that the relative performance of the GQL 

approach as compared to the HL approach has not yet been studied. The purpose of 

this chapter is to examine the relative performance of these two, i.e. GQL and HL 

approaches with regard to both consistency and efficiency. 

25 
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3.1 Generalized Quasi-likelihood (GQL) Inference 

In this section we provide a review on the construction of the GQL estimating equa

tions for the parameters of the Poisson-Normal mixed model. 

3.1.1 GQL Estimating Equations 

To construct the GQL estimating equation for the regression effects, (3, we first con

sider a distance vector Yi - mi (i=1,2, ... ,K) such that E(li - mi) = 0. Here, 

Yi = [yil, Yi2, .... , YinJ' and mi = E[li] = [mil, mi2, .... , minJ', with 

(3.1) 

by Lemma 2.1. Now, for known a 2
, the GQL approach then solves the GQL estimating 

equation 

(3.2) 

[Sutradhar (2004)], where ~i is the covariance matrix of Yi· Note that this GQL 

estimating equation is an extension of the quasilikelihood (QL) estimating equations 

proposed by Wedderburn (1979) for the independence case, which is derived by ex

ploiting only the mean and the variance functions. Further note that the formula for 

the elements of this ~i matrix are given by (2.25) and (2.26). After some algebras, 

the matrix of derivatives in (3.2) may be simplified as 

where 



X ill Xi12 Xilp 

xi= 
Xi21 Xi22 Xi2p 

Xin;l Xin;2 Xin;p 

mil 

0 
Ai= 

0 
n;xp 

0 

mi2 

0 

0 

0 
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Note that the GQL estimating equation (3.2) may be solved by using the iterative 

algorithm 

~(r+l) (3.3) 

where the quantity within the square bracket is evaluated at (3 = ~(r), r being the rth 

iteration. 

Note that the GQL iterative equation (3.3) produces both consistent and efficient 

estimates. To be specific, since E(Yi) = mi , it produces consistent estimates 

because it is constructed based on the unbiased estimating functions Yi - mi ; for 

all i = 1,2, ... , K. Furthermore, as the weight matrix L;i in (3.3) is actually the true 

covariance matrix of Yi, the GQL approach produces efficient estimate for (3. 

By similar computation as in the GQL estimating equation for (3, we may also 

construct a GQL estimating equation for a 2
• To be specific, we now use the squares 

and the products of the observations and take their differences from their correspond

ing means to constitute a distance vector. Let Wi = [y[1, ... , YFn;' Yi1Yi2, ... , Yin;_ 1 Yin;]' 

ni(ni + 1) . 
be the 

2 
x 1 vector of squares and products of the responses from the 1th 

cluster. Also, let >.i = E(Wi) = [>.ill, ... , >-in;n;, >.i12, ... , Ain;_ 1n;]' and Oi = Cov (Wi) 

be the expectation and covariance of wi· Now, following (3.2), one may write the 

GQL estimating equation for a 2 as 
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(3.4) 

Note that the GQL estimating equation (3.4) may be solved by using the iterative 

equation 

[( 

K 1 ) -

1 

K 
1 l ~ 8\ n:-1 8)..i ~ 8\ n:-1 ( . _ ;., ·) 

~ !::} 2 2 !::} 2 ~ !::} 2 2 W2 2 . ua ua . ua 
2=1 2=1 2 .2 

a =a (r) 

(3.5) 

where the quantity within the square bracket is evaluated at a 2 = ; 2(r), r being the 

rth iteration. 

In (3.5), the derivative 8)..i/8a2 is computed from the following formulas: 

(3.6) 

(3.7) 

Note that all the elements of the third and fourth order moments matrix ni may 

be computed following Lemmas 2.2, 2.3 and 2.4. For convenience, we show below 

how to compute some of them. For example, 

2 22 3 22 222 
= mij + mij (7ez; a - 1) + 2mij ez; a (3e z; a - 1) 

4 2 22 422 + mij e Z; a ( e Z; a - 1)' (3.8) 

Cov (fi], }i~) = E (Yi] }i~) - E (Yi]) E (Yi~) 
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(3.9) 

- m·. m· ezl u2 + m2 m· e3z[ (72 + m·. m2 e3z[ (72 
- 2J 2k ij zk ZJ ik 

+ m;j m;k e3z[ u2 ( e4z[ u2 - 1) (3.10) 

z2 u2 ( 2z2 u2 ) 
= mij mik mil e ' e ' - 1 

2 2 22 422 + mij mik mil e Z; a ( e Z; IT - 1) (3.11) 

(3.12) 

Note that both (3.2) and (3.4) have to be solved simultaneously for f3 and a 2
• Let 

SaQL and d2aqL be the solutions of (3.2) and (3.4) respectively. 

3.2 Hierarchical likelihood (HL) Inference 

Lee and Neider (1996) used the Hierarchical likelihood (HL) approach for estimation 

of the parameters in GLMM. In this approach, similar to that of the PQL approach, 

they jointly estimate f3 and 'Yi. They however estimate these quantities by maximiz

ing the hierarchical likelihood function, whereas in the PQL approach Breslow and 

Clayton (1993) estimated these quantities by maximizing a penalized quasi-likelihood 

function. The estimate of a2 by HL approach appears to be quite different than the 

PQL approach. To be specific, in the HL approach, an adjusted profile hierarchical 

likelihood function is constructed and maximized with respect to a 2
. Then by using 

the estimates of f3 and "fi, they obtained the maximum adjusted profile h-likelihood 

estimate of a 2
. 

We now provide a brief review of the HL approach as follows. 
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3.2.1 HL Estimating Equations 

The hierarchical likelihood or h-likelihood, denoted by h, is defined as 

(3.13) 

where 

K ~ N ~ N ~ 

= - L L 11:j + L L Yij log(fJ;j) - L L log (Yij!), (3.14) 
i=l j=l i=l j=l i=l j=l 

and 

(3.15) 

iid 
under the normality assumption for Iii that is, under the assumption that /i rv 

N(O, a 2
). 

In (3.14), 

(3.16) 

Now for known /i, the HL estimating equation for f3 may be written as 

(3.17) 

where, Xi and Yi are the same as in the GQL approach, whereas 11i = [Mi1 , Mi2 , .... , MinJ' 

with Mij as in (3.16). 
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Note that the HL estimating equation (3.17) may be solved by using the following 

iterative equation 

where, Wi = diag (Mi1, MJ2 , .... , MinJ the quantity within the square bracket is evalu

ated at f3 = ~(r), r being the rth iteration. 

Next, for known f3 and rJ2 the estimating equation for 'Yi in the HL approach is 

given by 

(3.19) 

Note that the HL estimating equation (3.19) may be solved by using the iterative 

equation 

1•(•+11 = 'ii(•l + [ (t, lli; zj + ;, ) -
1 {t, (y;;- lli;) Z; - ;: } l . 

!i=!i(r) 

(3.20) 

where the quantity within the square bracket is evaluated at 'Yi = 1i(r)' r being the 

rth iteration. 

For the estimation of rJ2
, Lee and Neider (1996) exploited the general adjusted 

profile h-likelihood given by 

(3.21) 

under the GLMM set-up. Since <p = 1 for the Poisson model, the general adjusted 

profile h-likelihood in ( 3.21) reduces to 

1 1 
hA = h + 2zog(27r)- 2zog{det(H)}, (3.22) 
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for the Poisson-normal mixed model. In both (3.21) and (3.22) the H matrix is defined 

as 

where 

Xn X12 

X= Xjl Xj2 

XnKl XnK2 

Z= 

0 

[ 
X'WX X'WZ l H= 
Z'WX Z'WZ+U 

(p+K)x(p+K) 

Xlp 

Xjp 

XnKP 

0 

0 

0 

W= 

l:n;xp 

l:n;xK 

JLi1 

0 

0 

0 

* IL1n1 

1 0 

0 1 

0 0 

0 

0 

0 

1 

0 

0 

ILKnK 2: n;xl: n; 

KxK 

Now maximization of (3.22) with regard to a 2 is achieved by using the iterative 

equation given by 

(3.23) 

where the square bracket [ ] (r) indicates that the quantity in [ ] is evaluated at a 2 = 

a[r)' r being the rth iteration. 

8hA 
For the purpose of computing 

8a2 

formulas in details. That is, 

82 hA 
and m (3.23), we now give their 

8a4 

1 8log { det (H)} 
2 8a2 

(3.24) 
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where 

oh K L:~1II -oa-2 = - -2a-2 + =2=a":-4 _:;._ 

and 

Olog {det (H)} _ (H-1 8H) _ (n oU) oa2 - trace oa2 - trace oa2 , 

with D = [(Z'WZ + U)- Z'WXX'WXX'WZt1 as the bottom diagonal matrix 

of H-1 with appropriate dimension. It then follows from equation (3.24) that 

(3.25) 

Now, by taking a further derivative of (3.25) or (3.24) with respect to a 2
, we obtain: 

82 h 1 82log { det (H)} 
---
8a4 2 8a4 (3.26) 

where 

(3.27) 

and 

8
2
log{det(H)} { _1 (82H)} { _1 (f)H) _1 (f)H)} oa4 = trace H oa4 . - trace H oa2 . H oa2 

= trace { D ( ~;:) } - trace { D ( :~) . D ( :~) } 

2 tr(D) 
a6 

tr(DD) 
aB 

(3.28) 

By using (3.27) and (3.28) in (3.26) one obtains 
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(3.29) 

Note that all the estimating equations (3.18), (3.20) and (3.23) have to be solved 

simultaneously for /3, '"Yi and a 2
• Let ~HL and iiHL be the solution of (3.18) and 

(3.20) respectively. Similarly, we denote the estimate of a 2 obtained from (3.23) by 

; 2HL· 

In the next chapter we conduct a simulation study to compare the performance 

of the GQL estimates of f3 and a 2 obtained from (3.3) and (3.5) with those of the HL 

estimates obtained from equations (3.18), and (3.23). 



Chapter 4 

GQL vs HL Estimation: A 

Simulation Study 

Recall from Chapter 2 that when count responses of the member of a family are 

treated to be independent, the likelihood estimate of j3 obtained from (2.36) performs 

very poorly especially when CJ2 is large. As a remedy, the GQL and HL approaches 

described in Chapter 3 in order to estimate both j3 and CJ2 parameters. The purpose 

of this chapter is to compare the performances of fiHL and d2HL obtained from 

(3.18) and (3.23) with those of fiaQL and d2aQL obtained from equations (:3.3) and 

(3.5), through a simulation study. Note that as mentioned in Chapter 2, apart from 

the GQL and HL approaches, there also exists other alternative approaches, namely 

PQL and IMM, for the estimation of j3 and CJ2 . These later approaches are not 

included here for comparison as they have been found to have serious consistency and 

efficiency problems mainly for the estimation of the variance parameter (Sutradhar 

and Qu, 1998) of the random effects. 

35 
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4.1 Simulation Design 

Note that in Chapter 2 we carried out a simulation study to examine the effects of 

ignoring a2 on the likelihood estimation for the regression parameter j3 = (/31 , /32 )'. 

It was found that there is a large negative bias when a 2 is ignored when estimating 

(3. For convenience, here we consider the same simulation design as in Chapter 2 but 

we examine the performances of the GQL and HL approaches in estimating both (3 

and a2
• Thus, the count data in a given simulation are generated following ( 2.37) 

with the same (31 = (32 = 1.0 and the same covariates Xij 1 and Xij 2 . For the selection 

of a2
, we however consider various small and large values, namely, 

a2 = 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2. 

Note that even though much more larger a2 such as a2 = 1.5, 2.0 and 2.5 were 

considered in Chapter 2, here we have chosen the values of a2 up to 1.2. We remark 

here that the values of a2 = 1.0 and 1.2 are themselves quite large. This is because 

under the Poisson mixed model, the variance of the response Yii is given by (2.25), 

namely, V(Yij) = mij + m~j (ezlo-
2 

- 1), which become quite large even if a2 = 1.0 

or 1.2. By the same token, some authors such as, Breslow and Lin (1995, P.90) were 

able to estimate this variance parameter a2 consistently where a2 ranges up to 0.5. 

4.2 GQL and HL Estimation 

Recall that under the Poisson mixed model, the GQL estimate of (3 is obtained by 

solving the estimating equation 

K !::! I 

"'"' umi -1 6 {)(3 L:i (Yi - mi) = 0, 
i=l 

[see equation (3.2)] whereas the variance of the random effects is estimated by solving 

the estimating equation 
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[see equation (3.4)]. Note that both of these equations are known to be unbiased. 

This is because E(Yi - mi) = 0 as well as E(Wi) = ).i· Moreover, the weight matrices 

Ei and ni in the above estimating equations are the true covariance matrices of Yi 

and Wi respectively. This principle of using the true covariance matrix as the weight 

matrix makes the GQL estimating equations efficient. This is already known from 

Sutradhar (2004) that the GQL estimates of (3 and a 2 are consistent and efficient as 

compared the MM and IMM estimates. These estimates were however not compared 

with the so-called HL estimates. 

Now to shed some light on the properties of the HL estimators for (3 and a 2
, we 

recall for (3.17) that the HL estimate of (3 is obtained by solving 

ah 
8(3 

K 

:L x; (Yi-p:) 
i=l 

0. 

Note that this equation is unbiased conditional on 'Yi· Thus it is not surprising that 

weight matrix is the identity matrix in such an equation. This is because conditional 

on "fi, the clustered responses are independent. Nevertheless, the estimation effect of 

'Yi will be reflected on the behavior of the HL estimate of (3, "/i being estimated by 

solving 

oh 
O"fi 

n; 

L (Yij - t-tij) Zi 
j=l 

[see equation (3.19)]. In fact the estimation effects of 'Yi on (3 estimation may be 

unsatisfactory at times specially when a 2 is large. This is because, as a 2 increases, 

one may not be able to estimate 'Yi consistently. An intuitional justification for this 

inconsistency becomes clear when conditional on "/i, an expectation is taken over 
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the responses in the estimating equation for 'Yi· This operation produces 'Yi on the 

average as 0, even though 'Yi can be quite large when 0'2 is large. The purpose of 

the simulation study is to examine the behavior of this 'Yi estimation based approach. 

Further note that the PQL approach of Breslow and Clayton (1993) also estimates 

'Yi in a similar fashion that leads to biased and hence inconsistent estimates for the 

parameters, specially for 0'2 (Sutradhar and Qu, 1998), when the true 0'2 is large. 

Turning back to the HL estimation of the remaining parameter, that is of 0'2 , we 

recall its estimating equation from (3.25) given by 

This equation reveal that the estimate of 0'2 also highly depends on the estimation 

of 'Yi· Since "fi, on the average, is estimated to be zero or small quantities, this equation 

also shows that 0'
2 as a function of 'Yi may not be consistently estimated, specially 

when the true 0'
2 is large. 

4.3 Relative Performance ofGQL and HL Approaches 

In this section we examine the performances of the GQL and HL estimation ap

proaches in estimating the regression effects (;3) as well as the variance of the random 

effects (0'2) of the model through the simulation study. Note that the HL approach 

requires the estimation of 'Yi for the estimation of the ;3 and 0'2 , whereas the GQL 

approach does not at all require such estimation of random effects. This makes the 

GQL approach simpler. Moreover, as indicated earlier, the use of the estimates of 'Yi 

for the estimation of ;3 and 0'2 under the HL approach may in fact be counter pro

ductive in the sense of consistency. Nevertheless, we had to compute the estimates of 

'Yi under the HL approach under each simulation. But there are too many estimates 

to report as i goes from 1 to K = 100. 
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Table 4.1: Comparison of simulated mean values, standard errors (SSE), and relative 
bias (SRB) of the regression estimates and estimates of variance of random effects by 
the GQL and HL approaches for selected values of CJ

2
: K=100; n=2; true values of 

the regression parameters: /31 = 1.0 and /32 = 1.0 

Cluster Value 

size (J2 Method Quantity /31 /32 (j-2 

2 0.20 GQL SM 1.0101 1.0105 0.19464 

SSE 0.0429 0.0292 0.03485 

SRB 24 36 15 

HL SM 1.0402 1.0312 0.18771 

SSE 0.0412 0.0262 0.02524 

SRB 98 119 49 

0.40 GQL SM 1.0151 1.0177 0.38080 

SSE 0.0458 0.0335 0.05454 

SRB 33 52 35 

HL SM 1.0777 1.0671 0.37277 

SSE 0.0399 0.0265 0.03490 

SRB 195 253 78 

0.60 GQL SM 1.0156 1.0202 0.57406 

SSE 0.0518 0.0389 0.07232 

SRB 30 52 36 

HL SM 1.1275 1.1157 0.56804 

SSE 0.0379 0.0330 0.04994 

SRB 336 351 64 

..... Continued 
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Table 4.1: (Continued) 

Cluster Value 

size (J2 Method Quantity (31 (32 (j-2 

2 0.80 GQL SM 1.0167 1.0211 0.76685 

SSE 0.0577 0.0434 0.08797 

SRB 29 49 38 

HL SM 1.2498 1.2320 0.86248 

SSE 0.0467 0.0613 0.09693 

SRB 535 378 64 

1.00 GQL SM 1.0136 1.0184 0.96705 

SSE 0.0603 0.0503 0.10138 

SRB 23 37 33 

HL SM 1.5517 1.5168 1.86070 

SSE 0.0860 0.1038 0.39500 

SRB 642 498 218 

1.20 GQL SM 1.0151 1.0167 1.1580 

SSE 0.0648 0.0532 0.10970 

SRB 23 31 38 

HL SM 2.0532 1.9972 4.94560 

SSE 0.1144 0.1306 0.91610 

SRB 921 764 409 

Now to compute the GQL and HL estimates of (3 and CJ2 we have chosen to use 

1000 simulations. In each simulation, the count responses were first generated as 

described in Section 4.1. These responses along with the covariates explained in the 

same section, Section 4.1 [see also Section 2.2.2], are then used in the GQL and HL 

estimating equations for (3 and CJ2 provided in the last section [see also Section 3.1 

for the GQL and Section 3.2 for HL estimating equations]. To be specific, /3cQL 
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and d2aQL under each simulation were obtained by using the iterative equations 

(3.3) and (3.5), respectively. Similarly, under each simulation, ~HL and d2 HL were 

obtained by using the iterative equations (3.18) and (3.23) respectively. Based on 

1000 simulations, the average of these estimates, that is, the simulated means (SM), 

along with their simulated standard errors (SSE) and simulated percentage relative 

biases (SRB), were computed and reported in Tables 4.1, 4.2 and 4.3, for cluster size 

n = 2, 4 and 6, respectively. 

For cluster size 2, it is clear from Table 4.1 that the GQL estimators for (31 

and (32 are almost unbiased, whereas the HL estimators appear to have large biases, 

especially when a 2 is large such as a 2 > 0.6. As far as their standard errors are 

concerned, the HL estimates of (31 and (32 appears to have smaller standard errors 

than the corresponding GQL estimators. This result clearly shows that for large 

a 2 the HL estimator converges to the wrong value with smaller standard error, and 

hence the HL estimator may not be consistent. With regard to the GQL estimators, 

as they are almost unbiased, and they are actually consistent even though their SSE 

are slightly larger. These results motivated us to display the percentage relative biases 

for both GQL and HL estimates. These SRBs clearly demonstrate that HL estimates 

have very large relative biases as compared to those of GQL estimates. 

We now interpret some of the specific results from Table 4.1. To do this, we choose 

a moderately small value of a 2 = 0.4 and a large value of a 2 = 1.2 and examine the 

estimates of (31 and (32 • It is seen that when a 2 = 0.4, the GQL estimates of (31 and (32 

have SRB 33 and 52, whereas the HL estimates have SRB 195 and 253, respectively. 

Thus, the HL estimates clearly exhibit large biases even if a 2 is small, such as a 2 = 

0.4. When the SRBs for a 2 = 1.2 are considered, it is found that the GQL estimates 

of (31 and {32 have SRBs 23 and 31, whereas the HL approach produces estimates with 

921 and 764 SRBs. These and other results from Table 4.1 clearly show that the GQL 

estimators performs uniformly better than the HL estimators in estimating the main 

parameters, i.e., the regression effects of the model. 
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Table 4.2: Comparison of simulated mean values, standard errors (SSE), and relative 
bias (SRB) of the regression estimates and estimates of variance of random effects by 
the GQL and HL approaches for selected values of r72

: K=100; n=4; true values of 
the regression parameters: (31 = 1.0 and (32 = 1.0 

Cluster Value 

size 0"2 Method Quantity !31 !32 (j2 

4 0.20 GQL SM 1.0073 1.0084 0.20012 

SSE 0.0341 0.0243 0.03557 

SRB 21 35 0.33 

HL SM 1.0408 1.0344 0.19816 

SSE 0.0302 0.0196 0.01870 

SRB 135 176 10 

0.40 GQL SM 1.0109 1.0122 0.39234 

SSE 0.0405 0.0305 0.06464 

SRB 27 40 12 

HL SM 1.0878 1.0760 0.40431 

SSE 0.0293 0.0185 0.05466 

SRB 300 411 8 

0.60 GQL SM 1.0142 1.0136 0.58426 

SSE 0.0454 0.0357 0.06864 

SRB 31 38 23 

HL SM 1.1380 1.1197 0.61907 

SSE 0.0286 0.0183 0.04224 

SRB 483 654 45 

..... Continued 
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Table 4.2: (Continued) 

Cluster Value 

size (]"2 Method Quantity !31 !32 Q-2 

4 0.80 GQL SM 1.0125 1.0108 0.78193 

SSE 0.0483 0.0399 0.07726 

SRB 26 27 23 

HL SM 1.1661 1.1430 0.82808 

SSE 0.0277 0.0205 0.05278 

SRB 600 698 53 

1.00 GQL SM 1.0092 1.0086 0.98110 

SSE 0.0533 0.0438 0.08812 

SRB 17 20 21 

HL SM 1.2435 1.2147 1.09220 

SSE 0.0256 0.0156 0.06490 

SRB 951 1376 142 

1.20 GQL SM 1.0079 1.0097 1.17190 

SSE 0.0523 0.0442 0.08980 

SRB 15 22 31 

HL SM 1.2894 1.2594 1.34880 

SSE 0.0249 0.0164 0.07270 

SRB 1162 1582 205 

For the estimation of (]"2 , the GQL and HL approaches appear to perform almost 

the same when the true value of (]"2 is small such as (]"2 < 1.0. For (]"2 = 1.0 and 1.2, 

the HL approach becomes highly biased, whereas the GQL approach appears to be 

only slightly biased. For example, for the true (]"2 = 0.4, the GQL approach produced 

G-bQL = 0.3808 with standard error 0.0545 and percentage relative bias 35, whereas 

the HL approach produced G-'Jn = 0.3728 with standard error 0.0349 and percentage 
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relative bias 78. Furthermore, when the true a 2 is large such as a 2 = 1.2, the GQL 

approach produced o}JQL = 1.158 with standard error 0.1097 and percentage relative 

bias 38, whereas the HL approach produced a'Jn = 4.9456 with standard error 0.9161 

and percentage relative bias 409. These results clearly show that the GQL estimator 

for a 2 is almost unbiased irrespective of the true value (small or large) of a 2 , whereas 

the HL estimator is almost unbiased for small a 2 but highly biased for large a 2 . These 

results about the performances of the GQL and HL estimates of a 2 are also verified 

through the comparison of SRBs. For example, when a 2 = 0.4, the SRBs of the GQL 

estimate is found to be 35, whereas the SRBs produced by the HL approach is found 

to be 78. 

When the simulation results for Tables 4.2 and 4.3 for n = 4 and 6, are compared 

with those of Table 4.1, it appears that the GQL estimators of (31 and (32 continue to 

perform better with lower SRBs, when the cluster size increases. The HL approach 

however shows poor performances with higher SRBs when cluster size increases. Thus 

the GQL approach uniformly performed better than the HL approach in estimating 

regression effects even if the cluster size was small, Note that in practice in familial 

studies cluster sizes will usually be small. 

With regard to the estimation of a 2
, the result of all three Tables 4.1, 4.2 and 4.3 

show that when n increases both GQL and HL approaches produce better estimates 

of a 2
, but the GQL approach always remains better than the HL approach in terms 

of SRB. 
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Table 4.3: Comparison of simulated mean values, standard errors (SSE), and relative 
bias {SRB) of the regression estimates and estimates of variance of random effects by 
the GQL and HL approaches for selected values of a2

: K=l 00; n=6; true values of 
the regression parameters: /31 = 1.0 and (32 = 1.0 

Cluster Value 

size a2 Method Quantity /31 /32 a-2 

6 0.40 GQL SM 1.0112 1.0115 0.39263 

SSE 0.0351 0.0283 0.05388 

SRB 32 41 14 

HL SM 1.09580 1.08310 0.41699 

SSE 0.02400 0.01520 0.02610 

SRB 399 547 65 

0.80 GQL SM 1.0081 1.0080 0.79385 

SSE 0.0460 0.0375 0.14485 

SRB 18 21 4 

HL SM 1.15830 1.13660 0.84985 

SSE 0.02700 0.02070 0.04668 

SRB 586 660 107 

1.20 GQL SM 1.0049 1.0053 1.18060 

SSE 0.0491 0.0415 0.08470 

SRB 10 13 23 

HL SM 0.62217 0.64976 1.83400 

SSE 0.11312 0.10386 0.32340 

SRB 334 337 196 

In the next chapter, we will provide an illustration of the relative performance of 

the GQL and HL approaches for the Health Care Utilization Data. 



Chapter 5 

A Numerical Illustration: Health 

Care Utilization Data Analysis 

In Chapter 4 we discussed the relative performances of the GQL and HL approaches 

under the Poisson-normal mixed model setup through an extensive simulation study. 

In this chapter, we provide a numerical illustration of these two estimation methodolo

gies by analyzing the Health Care Utilization Data collected by the General Hospital, 

St. John's, Canada. We must however caution that the GQL estimates should be 

recommended for any practical use. This is because it was demonstrated in the last 

chapter through a simulation study that overall, the GQL approach performs better 

in estimating all parameters when compared to the HL approach. 

5.1 Health Care Utilization Data 

Consider the health care utilization data collected by the Department of Community 

Medicine, Health Science Center (General Hospital) in St. John's, Canada in 1985. 

This data set comprises information from K = 48 families. Of these families, 36 are of 

size 4 (ni = 4, i = 1, .... ,36), and the remaining 12 are of size 3 (ni = 3, i = 37, .... ,48). 

46 
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Table 5.1: Summary Statistics of Physician Visits by Different Covariates in the 
Health Care Utilization Data for Year 1985. 

Number of Visits 

Covariates Level 0 1 2 3-5 ~6 Total 

Gender Male 28 22 18 16 12 96 

Female 11 5 15 21 32 84 

Chronic Diseases No 26 20 15 16 11 88 

Yes 13 7 18 21 33 92 

Education Level < High School 17 5 11 10 15 58 

~ High School 22 22 22 27 29 122 

Age 20-30 23 17 14 15 15 84 

31-40 1 1 3 3 3 11 

41-50 4 4 5 12 8 33 

51-65 10 5 8 5 13 41 

66-85 1 0 3 2 5 11 

Each of the family members was asked about the number of visits they made to a 

physician during 1985. Their gender, the number of chronic diseases in 1985 they have 

been suffering from, education level and age were recorded. In fact, these families 

were followed for 6 years up to 1990, but in the present application we will deal with 

the 1985 data only. Note that in the present setup the responses, i.e., the number of 

visits paid by each member, are counts. Further, as ni (3 or 4) members belong to the 

same ith (i = 1, .... ,48) family, it is likely that the responses of the family members are 

correlated. In this chapter we will take these correlations into account and examine 

the effects of the four associated covariates on the number of visits to the physician 

by the members of the family. 
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5.1.1 Exploratory Analysis 

To have a feel for the relationship between the number of physician visits by a family 

member and his/her covariates, we have computed some summary statistics as shown 

in Table 5.1. 

It is seen from Table 5.1 that, in general, more males appear to visit a physician a 

smaller number of times, while a large number of females visit a physician at least 3 

times. As expected, we see that an individual with chronic diseases visits a physician 

more often. Physician visits for individuals with a higher level of education seems to 

be evenly distributed, i.e. individuals are just as likely to visit a physician once as 

3-5 times. For those with lower level of eduction, they appear to either not visit a 

physician, or visit a large number of times. With regard to the relationship between 

number of visits and age, we have temporarily made 5 age groups and observed that 

some of the individuals in the 20-30 age group have visited a physician a large number 

of times. As expected, a large number of individuals did not visit a physician at all. 

For older age groups, there was a tendency for an individual to see a physician more 

often. 

It is also seen that irrespective of the covariates, an individual on the average has 

visited his/her physician 3.92 times with variance 22.66. 

5.2 GQL and HL Based Analysis of the Data 

Note that although the summary statistics shed some light on the relationship between 

the number of physician visits and the four covariates, we wish to fit an appropriate 

model to these data and make a valid confirmatory analysis. For this we note that 

the responses are counts, which may be treated as a Poisson variable. However, it 

was found that the average number of physician visits for an individual was 3.92, with 

variance 22.66. This indicates that there is overdispersion in the data. This is not 
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surprising, as the variance component of the random family effects may cause this. 

Since the responses are collected from members of the same family, they will be cor

related which again may be measured through the variance component of the family 

effects. In terms of the notation of this thesis, these family effects are considered as "Yi 

for the ith family and it is assumed that these random family effects follow univariate 

normal distribution with mean 0 and variance a 2
. 

We denote the covariates gender, chronic disease status (CD), education level 

(EL) and age by x 1 , x2 , x3 and x4 respectively. To be specific, we define these four 

covariates for the jth (j = 1, ... , ni) member of the ith (i = 1, ... , K = 48) family as 

female 

male 

less than high school 

high school or above 

without chronic diseases 

with chronic diseases 

Xij4 = exact age of the individual 

The purpose of this section is to compute the regression effects (3 = ( (31 , .... , (34 )' 

of the four covariates on the number of physician visits, taking the overdispersion 

parameter a 2 into account. We do this computation by using both the GQL and HL 

approaches described in Chapter 3. 

The GQL estimates of (3 and a 2 were obtained by solving the iterative equations 

(3.3) and (3.5) respectively. Similarly, the HL estimates of (3 and a 2 were obtained by 

solving the iterative equations ( 3.18) and (3.23) respectively. These estimates along 

with their standard errors are displayed in Table 5.2. 
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Table 5.2: The GQL and HL Estimates for the Health Care Utilization Data for Year 
1985. 

Effects of the Covariates Variance 

Method Quantity Gender(~l) CD(~2) EL(~3) Age(~4) fj-2 

GQL Value -0.742 0.671 0.493 0.012 1.543 

SE 0.109 0.149 0.157 0.0038 1.566 

HL Value -0.693 0.689 0.633 0.016 0.187 

SE 0.080 0.088 0.067 0.0017 0.020 

The results in Table 5.2 show that except for the CD covariate, the HL approach 

produces different estimates for the remaining 3 covariates compared to the GQL 

approach. Also, similar to the simulation results, the HL approach appears to have 

smaller standard errors. Thus, the HL approach may have produced unreliable esti

mates for the covariates except for the CD covariate. 

With regard to the estimation of CJ
2

, the HL approach produces quite different 

estimate than the GQL approach. But, as the simulation study indicated that the 

GQL approach always produces consistent estimates also for the CJ
2 parameter, we 

take the 8-~QL = 1.543 as a reliable estimate. Note that to verify the reliability of the 

GQL estimate for CJ
2

, we have further estimated this parameter by using the method 

of moments (MM) discussed by Jiang (1998). To be specific, the CJ2 is estimated by 

solving 

[S- E (S)] = 0 

where 

N n; N n; 

s = L L y~ + L L YijYik (5.1) 
i=l j=l i=l j<k 
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and 

N n; N n; 

E(S) L L [ ffiij + m7j eu
2

] + L L mij mik eu
2 

(5.2) 
i=l j=l i=l j<k 

by Lemma 2.2 with mij = exp (xij/3 + ~ a 2
) by (3.1). It is known that this method 

of moments produces consistent estimate for a 2 parameter. For the health care uti

lization data, this method of moments produces a'ii M = 1.558. This is quite close to 

the GQL estimate verifying the reliability of the GQL estimate. 

We now interpret the effects of the covariates using the GQL estimates. Thus, 

Q-~QL = 1.543 indicates that the data contain large overdispersion. This is also in 

agrement with the results reported in Section 5.1.1 under Exploratory Analysis, where 

it was shown that an individual visits the physician 3.92 times on the average with a 

very large variance 22.66. 

Furthermore, the negative value of sl(GQL), namely Sl,(GQL) = - 0.742, indicates 

that females made more visits to the physician as compared to males. Next, s2(GQL) = 

0.671 and S4 ,(GQL) = 0.012 suggest that the individuals having some chronic diseases 

or individuals who are older pay more visits to the physician, as expected. The effect 

of the education level on the health condition, however, appears to be intriguing. 

This is because s3(GQL) = 0.493 suggests that highly educated individuals have more 

visits compared to individuals with a lower level of education. One of the reasons for 

this type of behavior of this covariate may be that individuals with a higher level of 

education are more concerned about their health condition compared to individuals 

with a lower level of education. 



Chapter 6 

Concluding Remarks 

In this thesis we have considered a Poisson-normal mixed model which is an important 

special case of the well-known generalized linear mixed model. In this problem, it 

is of interest to estimate the regression effects and variance of the random effects, 

consistently and efficiently. A great deal of discussion has taken place over the last two 

decades on the relative performance of some of the widely used estimation methods 

such as MM (Jiang, 1998), IMM (Jiang and Zhang, 2001), PQL (Breslow and Clayton, 

1995) and GQL (Sutradhar, 2004) approaches. But none of these procedures were 

compared with the existing HL (Lee and Neider, 1996) approach, even though this 

later approach appears to be quite familiar. Since the GQL approach was found to 

be better than MM, IMM and PQL approaches, in this thesis, we have examined the 

relative performance of this well behaved GQL approach with the HL approach. 

For the comparison between the HL and GQL approaches, we have first simplified 

all related estimating equations under these two approaches. We then conducted an 

extensive simulation study to examine the relative performances of these procedures 

in estimating both regression effects and variance of the random effects. Note that the 

HL approach requires 3 estimating equations including the estimation of the random 

effects, whereas the GQL approach requires only two estimating equations where it 
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is not needed to estimate the random effects. 

The simulation study was conducted for three different cluster sizes and various 

values of CJ2 (variance of the random effects), small and large. It was found that as 

the value of CJ2 increases, the HL approach starts to produce highly biased estimates 

for the regression effects. The GQL approach was however found to be producing 

almost unbiased estimates for the regression effects, irrespective of the magnitude 

of CJ
2 • As far as the estimation of the variance parameter CJ

2 is concerned, the GQL 

approach was also found to be uniformly better than the HL approach. In this case, in 

contrary to the regression estimation, the HL approach was found to perform better 

even though it trails to the GQL approach. 

Hence, the GQL approach is definitely better than the HL approach in estimating 

all parameters of the model. When other studies mentioned above are taken into 

consideration, the GQL approach appears to be the best so far among the MM, IMM, 

PQL and HL approaches. We therefore recommend the use of the GQL approach in 

practice irrespective of the magnitude of the overdispersion in the familial/cluster 

count data. 

In light of the present thesis, it may be of interest to make a comparative study 

between the GQL and HL approaches in estimating the parameters of the binary 

mixed model. This is however beyond the scope of this thesis. One may further 

consider a much more wider familial longitudinal model for count or binary data. An 

extension of the present GQL approach to such a familial-longitudinal model would 

be an interesting and challenging problem. We hope to study this model in the future. 



Bibliography 

[1] Breslow, N.E. and Clayton, D.G. (1993). Approximate inference in generalized 
linear mixed models. J. Amer. Statist. Assoc., 88, 9-25. 

[2] Breslow, N.E. and Lin, X. (1995). Bias correction in generalized linear models 
with single component of dispersion. Biometrika, 82, 81-92. 

[3] Fahrmeir, L. and Tutz, G. (1994). Multivariate Statistical Modelling Based on 
Generalized Linear Models. Springer - Verlag, New York. 

[4] Goldstein, H. and Rasbash, J. (1996). Improved approximations for multilevel 
models with binary responses. J. Roy. Statist. Soc. Ser. A, 159, 505-513. 

[5] Henderson, C. R. (1953). Estimation of variance and covariacne components. 
Biometrices, 9, 226-252. 

[6] Jiang, J. (1998). Consistent estimators in generalized linear mixed models. J. 
A mer. Statist. Assoc., 93, 720-729. 

[7] Jiang, J. and Zhang, W. (2001). Robust estimation in generalized linear mixed 
models. Biometrika, 88, 753-765. 

[8] Kuk, A. C. (1995). Asymptotically unbiased estimation in generalized linear 
models with random effects. J. Roy. Statist. Soc. Ser. B, 57, 395-407. 

[9] Lee, Y. and Neider, J.A. (1996). Hierarchical generalized linear models. J. Roy. 
Statist. Soc. Ser. B, 58, 619-678. 

[10] Lee, Y. and Nelder, J.A. (1996). Hierarchical generalized linear models: A sythe
sis of generalized linear models, random-effect models and structured dispersions. 
Biometrika, 88, 987-1006. 

[11] Lin, X. and Breslow, N.E. (1996). Bias correction in generalized linear mixed 
models with multiple components of dispersion. J. A mer. Statist. Assoc., 91, 
1007-1016. 

54 



55 

[12] McCullagh, P. and Neider, J.A. (1989). Generalized Linear Models. Chapman 
and Hall, London. 

[13] Rodriguez, G. and Goldman, N. (1995). An assesment of estimation procedures 
for multilevel models with binary responses. J. Roy. Statist. Soc. Ser. A, 158, 
73-89. 

[14] Schall, R. (1991). Estimation of generalized linear models with random effects. 
Biometrika, 78, 719-727. 

[15] Solomon, P. J. and Cox, D. R. (1992). Nonlinear components of variance models. 
Biometrika, 79, 1-11. 

[16] Sutradhar, B.C. and Qu, Z. (1998). On approximation likelihood inference in 
Poisson mixed Model. Canad. J. Statist., 26, 169-186. 

[17] Sutradhar, B.C. and Rao, R.P. (2001). On marginal quasi-likelihood inference in 
generalized linear mixed models. J. Multivariate Anal., 76, 1-34. 

[18] Sutradhar, B.C. (2004). On exact quasilikelihood inference in generalized linear 
mixed models. The Ind. J. of Statist., 66, 263-291. 

[19] Waclawiw, M.A. and Liang, K.Y. (1993). Prediction of random effects in the 
generalized linear model. J. A mer. Statist. Assoc., 88, 171-178. 

[20] Wedderburn, R. (1979). Quasi-likelihood functions, generalized linear models, 
the Gauss-Newton method. Biometrika, 61, 439-447. 

[21] Zeger, S.L. (1988). A Regression Model for Time Series of Counts. Biometrika, 
75, 621-629. 










