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Abstract 

Regioselectivity in Diels-Alder reactions is usually explained using frontier 

molecular orbital and/or electrostatic rationales. Steric interactions may play an 

important role in determining stereoselectivity. Thus, a hypothesis was suggested by the 

Burnell group that steric hindrance might contribute significantly to regioselectivity as 

well. Attempts to test this hypothesis focused on methyl-substituted para-benzoquinones. 

Dienes which were used had structures such that the regiochemical bias would be due to a 

steric factor rather than an electronic one. Previous work by the Burnell group dealt with 

dienes which did not show any such bias. This document deals with cyclic dienes to 

alleviate some prior problems. 2,6-Dimethyl-para-benzoquinone was initially used as the 

dienophile since many compounds found in nature have two methyl groups with a 1,3-

relationship within them. Various dienes were used with this dienophile using various 

conditions, but unsatisfactory results required a change in the dienes to make them more 

stable and a change in the dienophile towards a better steric probe. Diels-Alder reactions 

with the new dienes and dienophiles were carried out under various conditions, still 

producing no satisfactory results. New dienophiles, N-phenylmaleimide and 2-methyl-N

phenylmaleimide, were used with the same dienes in an attempt to learn about the 

reactivity of the dienes and obtain Diels-Alder adducts. Some success was seen with 

these dienophiles. All of the results are summarized, along with modifications that had to 

be made to the Diels-Alder substrates. 

The geminal acylation reaction can be applied to many ketones and acetals. The 
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various routes that were devised towards the synthesis of a steroid skeleton, via a double 

geminal acylation, as well as modifications to the original routes, are discussed. The first 

attempts involved the Michael addition of silyl enol ethers to a,J3-unsaturated ketones to 

give diketones. Some success was achieved, but due to some undesired results, substrates 

had to be modified. These modifications led to substrates which could be used as 

precursors to natural products, and a route was devised for future work on this objective. 

The second route towards the required diketones used ozonolysis and was successful. 

The third and fourth routes involved alkylations, which proved to be difficult. Various 

conditions were tried and some showed positive results. Some new information dealing 

with the reactivity of alkylation substrates as well as double alkylations was discovered. 

Also, several substrates were more difficult to produce than anticipated. Various routes 

were attempted and the substrates were obtained. Some results, such as the reductive 

succinoylation, seen before in the Burnell group were observed with this work as well. 

Possible precursors to other natural molecules were obtained and routes are proposed 

towards such molecules. 
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1. Regioselectivity in Diels Alder Reactions 

1.1 Introduction 

Regioselectivity in Diels-Alder reactions is often explained using electrostatic 

and/or frontier molecular orbital (FMO) considerations. This involves the favorable 

overlap between the larger coefficients of the HOMO of the diene and the LUMO of the 

dienophile during the transition state. 1 In other words, FMO theory proposes that 

regioselectivity is controlled by the interaction of the end of the diene with the larger 

coefficient in its HOMO, and the end of the dienophile with the larger coefficient in its 

LUMO. The closer the two orbitals are in energy, the more strongly the orbitals will 

interact. The overlap is greatest when the diene attacks the site in the dienophile which 

has the larger LUMO coefficient. Thus, this is the predicted site of attack.2 FMO theory 

uses these interactions to predict the regioselectivity ofDiels-Alder reactions. The 

reaction in Scheme 1 illustrates an example where the experimental result corresponds 

with the FMO prediction ofregioselectivity.2
•
3 

Many studies have used FMO theory to predict the regioselectivity ofDiels-Alder 

reactions.3 Anh et al.3
b have applied FMO theory to approximately 100 examples of the 

Scheme 1 

Ph'( 0.624 + -0.677 I 
::::::,.._ 0.189l 

-0.473 C02Me 

Coefficients of frontier orbitals determined by HUckel methods 
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Diels-Alder reaction. Some examples from his work, with major products shown, are 

provided in Scheme 2. The more nucleophilic site of a diene is the terminus with the 

higher HOMO coefficient. A relationship between experimentally measured quantities 

and the site of attack has been found by Houk et al? using ESR spectra. The hyperfine 

Scheme2 

NC'( 0.585 + -0.677l NCD 
0.189 I CO,Me -0.563 C02 Me 

( 0.533 
C02 Me &CO, Me + 0.189 ( 

~ -0.601 
-0.677 

Ph Ph 

&CHO CHO 
( 0446 + 0.051 ( 

~ -0.530 
-0.734 

"(0.653 + 
~ -0.551 

-0.645l 

0.359 CN UCN 
~ 0.443 C02 Me 

C02 Me 0.189 ( + 
~ -0.554 -0.671 

C02H C02H 

Coefficients of frontier orbitals determined by Hucke! methods. 

couplings observed in these spectra of a radical anion of a molecule are related to the site 

of attack on the neutral molecule. The hyperfine couplings correlate with the spin 
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densities of a site, and the spin densities are related to the coefficients of the singly 

occupied orbital of the radical anion. This singly occupied orbital is the LUMO of the 

neutral molecule. They found a clear correspondence between the magnitudes of the 

LUMO coefficients and the preferential site of attack by nucleophiles for both donor- and 

acceptor-substituted benzoquinones. Many ofHouk's studies used benzoquinones and 

naphthoquinones. 

Alston4 found that where the generalizations of the FMO theory have failed, 

regioselectivity could be predicted when secondary orbital interactions are considered. 

Secondary orbital interactions refer to overlap between pairs of atomic orbitals involved 

in the reorganization of the 1t system, but such interactions do not participate directly in 

the breakage or formation of o bonds (Figure 1 ). 5 One such example is the prediction of 

Figure 1: Secondary orbital interactions. 

Primary orbital 
interactions 

the regioselectivity of 1,2-disubstituted butadienes in Diels-Alder reactions. Primary 

orbital interactions could not predict the observed regioselectivity of the reactions in 

Scheme 3, as well as many other reactions (not shown).4 However, when secondary 

orbital interactions were included in the FMO theory calculations, the preferred 

regioisomer was successfully predicted each time.4 Alston found that the secondary 

orbital coefficient of the dienophile would interact preferentially with the larger 

3 



secondary orbital coefficient of the diene. Even though FMO theory has successfully 

predicted the regioselectivity of many Diels-Alder reactions, it has its drawbacks. 

Accurate predictions using FMO analysis assumes that the relative energies of the frontier 

Scheme3 

"( 0.561 ~COOCH3 -cr~OOCH, 
+ 0.4 ... I IJ 

0.257 
0.468 

"( 0.561 CN -&CN 0.445(1' + ... 
~ 0.468 0.242 

Cof!,~ 0.563 COOH c.H,{rcooH 

+ 
0.456 (!' ... I 

~ 0.432 
0.284 

C6Hs C6Hs 

Cof!, '( 0.535 COOH Cof!,--6-COOH 
+ 

0.456 (!' ... I 
~ 0.421 

0.284 

Coefficients of frontier orbitals determined by CND0/2 methods. 

MO's at the ground state will not be significantly altered during the transition state. Bach 

et al. 6 found this is not the case. He found that the energies do indeed change at the 

transition state. He stated that "large geometric perturbations occur on going from the 

ground state to the transition state that result in significant destabilization of key frontier 

orbitals." He found that the prediction, based upon ground state arguments, that the two-

electron HOMO-LUMO interaction is stabilizing and will have the largest influence on 

the regiochemistry of the reaction is not translated to the transition state. He attributed 

4 



the shortcomings ofFMO treatments of the Diels-Alder reaction to this destabilization of 

frontier orbitals at the transition state. 

Hehre et aC recognized that a drawback to the FMO theory is in misassigning the 

regioproduct in cycloadditions to dienes substituted by two different groups or by the 

same group in different diene positions. He attributed the shortcomings ofFMO theory to 

the assumption of additivity of substituent effects on orbital coefficients or to 

Scheme4 

R 

+ __( 
NC CN 

R 

CN 

equating a difference in orbital coefficients to regiochemical preferences. FMO theory 

correctly suggested that a methoxy substituent will dominate a methyl group in a 1,4-

disubstituted diene when directing regioselectivity (Scheme 4), and properly ordered the 

relative directing abilities of acetoxy and ethyl groups in the 1,4 positions. However, 

FMO theory failed to show that a phenyl substituent is a much better regiodirector than a 

methyl group when they are in the 1,4 positions of a diene. FMO theory also fails to 

indicate phenyl and chloro substituents are better regiodirectors than methyl substituents, 

Scheme 5 

+ 
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and also that 2-ethoxy, 2-acetoxy, 2-trichloroacetoxy, 2-phenyl and 2-chloro substituents 

are not as strongly regiodirecting as a methyl group in the !-position of butadiene. In 

Scheme 5, the product shown is another experimental result, where FMO theory predicted 

that the methoxy group should be a stronger director. 

There is a recognition that steric effects can greatly influence facial selectivity and 

reaction rate in Diels-Alder reactions. It has been seen in many cases that the Diels-Alder 

reaction is highly facially selective, and the main factor that controls this selectivity is 

steric effects, which force the diene to attack preferentially the less sterically demanding, 

or more open, surface. 8 Steric interactions also influence the rate of Diels-Alder 

reactions, slowing the reaction if the steric effects are large.9 For example, 5-

methoxycarbonyl-2-pyrone (1) reacts faster than 5-methoxycarbonyl-6-methyl-2-pyrone 

(2), which reacts much faster than 5-methoxycarbonyl-4,6-dimethyl-2-pyrone (3) 

Figure 2: Pyrones which react at different rates due to sterics. 

M~,c{t 
0 

1 2 3 

(Figure 2). This difference in rate has been attributed to steric influences.9 Endo/exo 

selectivity, previously explained using secondary orbital considerations, is now believed 

to be controlled largely by steric effects. 5' 
10 However, steric effects are almost never 

implicated when referring to regiochemical control. It is possible the other major facet of 

6 



the Diels-Alder reaction, regioselectivity, might also be controlled by previously 

underappreciated steric influences. 

Some synthetic examples, such as the formation of various steroids by Valenta et 

al., 11 the assembiy ofkempane diterpene precursors by Liu and Burnell, 12 work by Pitea et 

al., 13 and by Reusch et al. 14 (Scheme 6), contradict predictions made when using FMO 

theory. More selectivity is seen than orbital coefficients suggest. It appears that at least 

Scheme 6 

0 

+ v benzene 

H3CO 6. 
ref. II 0 H3CO 

0 
0 

0 

v toluene H 
H H + 6. 

ref. I2 
0 

0 

C( 
'o 

benzene/ether 

+ 0 
Ag20 

rt 0 

0 ref. I3 OH 

( 
0 

+ 4 6 

ref. 14 

0 0 
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one other factor is controlling the regiochemistry in these examples. In each case, the less 

hindered termini of the diene and dienophile came together. Furthermore, high 

regioselectivity was seen, with the major products being the ones shown, in at least a 4:1 

ratio with the minor product. There does not seem to be a convincing FMO-based 

explanation that accounts for such high selectivity since, in each case, the coefficients of 

the diene or the dienophile are very similar. According to FMO theory, the LUMO and 

HOMO with the larger coefficients would overlap, thus determining the regiochemistry. 

However, in Scheme 6, the coefficients of one of the two reacting partners in each 

reaction has very little bias. FMO theory would predict approximately a 1:1 mixture of 

the two possible regioisomers since there is probably no significantly larger orbital 

coefficient on either of the two reacting partners in each of the cases in Scheme 6. Thus, 

FMO theory does not seem to explain the regioselectivities shown in Scheme 6. It is 

possible that this orbital bias is so small that it might be insignificant, and there may be a 

different reason for the high regioselectivity. The results make more sense when steric 

effects are taken into consideration. It is highly likely that the two new bonds forming in 

the Diels-Alder reaction do not form synchronously, and that at the transition state, one 

bond would have formed more completely than the other. Thus, the two incipient bonds 

would be quite different in length. It would make sense for the more complete bond to 

form between the two less hindered ends of the diene and the dienophile, forcing the two 

more hindered ends to form the second bond. The reactions in Scheme 6 are four 

examples where the regioselectivity is very high and there is an indication that steric 

effects may play a role. In each case, the less substituted, less sterically hindered, end of 

8 



the diene joins with the less substituted, less sterically hindered, end of the dienophile. 

The goal of the work described in this thesis was to find experimental evidence 

for high regioselectivity where the FMO theory would fail to predict the regiochemical 

outcome, especially in cases where there are small differences between the HOMO and 

LUMO coefficients. Dimethyl-para-benzoquinones were chosen as the dienophiles to 

probe the steric versus electronic considerations. There were three reasons for this 

choice. The first was that quinones are the only examples for which there has been a 

Figure 3: Results of HOMO-LUMO calculations carried out on quinones. 

0 0 0 

HOMO: -0.0425 ¢1:5635 
-0.0461 0.6361 

-0.42~tQ-f4273 
-0.4829 0.4823 

-0.42~4814 
-0.4818 0.4251 

0 0 0 
0 0 0 

LUMO: 0.3439 ¢13471 -0.34~.3455 -03~*3346 -o.3489 -0.3363 0.3397 0.3397 0.3347 0.3503 

0 0 0 
HOMO: -10.776 eV HOMO: -10.692 eV HOMO: -10.682 eV 
LUMO: -1.670 eV LUMO: -1 .609 eV LUMO: -1 .607 eV 

suggestion that steric effects may play a role in determining the regiochemistry of Diels-

Alder reactions. 15 The second was that quinones are synthetically important 

Figure 4: Dienes used in previous steric vs. electronic investigations. 

RO 

RO 

4 5 6 
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dienophiles. 11
• 

12 The third was that calculations done by Xidos and Burnell show there is 

very little LUMO bias in these types of quinones. 16 Results of these calculations done 

using B3L YP/6-31G* reporting orbital coefficients perpendicular to the plane of the 

dienophile can be seen in Figure 3. 2,6-Dimethyl-para-benzoquinone was chosen 

initially since many substances found in nature, such as various steroids, contain two 

methyl groups in a 1,3 relationship. Furthermore, the difference in the C-2 and C-3 

LUMO coefficients very small and is smaller than that found in other methyl-substituted 

quinones. 

In order to prove a steric involvement, the dienes needed to have a structure such 

that most of the regiochemical bias would be due to a steric factor rather than an 

4 

Scheme 7 

0 

+~--~ 
0 

7 

0 

10 
8 

OR 

9 

electronic one. Previous work in this investigation 17 involved dienes 4, 5, and 6 (Figure 

4). The reaction in Scheme 7 was to be carried out to investigate regiochemical bias with 

SchemeS 

0 0 

+ v OR 
RO RO 

0 I 0 

5 7 10 11 
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diene 4, which might have two possible endo-addition products, 8 and 9. If the 

hypothesis of "less-hindered" goes to "less-hindered" holds true, 8 would be the preferred 

product. If diene 4 showed regiochemical bias and 8 was the major product, then the 

reaction involving diene 5 in Scheme 8 was to be carried out to investigate the effect of 

introducing an electronic or orbital bias. If 10 was the major product, then a steric effect 

would be more important. If 11 was the major product, then an electronic or orbital effect 

could be deduced to be more important. If the major product of the reaction in Scheme 7 

were 9, then the reaction involving diene 6 in Scheme 9 was to be carried out. 

+ ~ 
0 

6 7 

Scheme9 

RO RO 

OR 

13 

In the case where 12 was the major product, then a steric effect would be more important. 

If 13 was the major product, then an electronic or orbital effect would be more important. 

These predictions are based on the orbital difference of the diene since the dienophile 

would create very little orbital bias. The investigation of steric versus electronic/orbital 

effects using dienes 4, 5, and 6 was therefore undertaken. 17 However, problems were 

encountered. One problem was the difficulty in making and storing the dienes due to 

their low boiling points and ease of polymerization. The second, major problem was that 

diene 4 showed no bias in regioselectivity when reacted with 2,6-dimethyl-para-

11 



benzoquinone (7). The two possible products 8 and 9 were obtained in a 1 : 1 ratio. A 

result which had some regiochemical bias was therefore required to further test the 

predictions of steric involvement which came about due to results such as those in 

Scheme 6. What was likely was that the steric differences presented by dienes 4, 5, and 6 

were not in an effective location, especially the steric difference created by the t-butyl 

group at C5. The fact that the dienes were not rigid and the bond between the two double 

bonds can rotate to have a thermodynamically more favoured s-trans orientation might 

also have played a role in the undesirable results. This orientation could give rise more 

easily to a less reactive diene. In light of these problems, new dienes, 14, 15, and 16, 

shown in Figure 5, were considered. The rigidity created by the ring the single bond 

Figure 5: Proposed cyclic dienes for the steric vs. electronic investigations. 

0: 
14 

RO~ 

16 

between the two double bonds to be s-cis, and forces the sterically different 

characteristics, the CH2 and the gem-dimethyl group, to be in a location where they would 

Scheme 10 

0 

~+v + 
0 

0 0 
14 7 17 18 

more effectively impede approach by the dienophile. This would potentially create more 
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of a steric interaction than the less rigid methyl and t-butyl groups in the three dienes 4, 5, 

and 6 previously considered. 

The reaction between diene 14 and 2,6-dimethyl-para-benzoquinone (7) in 

Scheme I 0, which would be carried out to investigate the initial regiochemical bias, 

Scheme 11 

0 

rl/ yy RO 

RO~ + y--~ 
0 

15 7 19 

+ 
RO 

would have two possible "endo" products, 17 and 18. If the reaction in Scheme I 0 shows 

bias, then the reactions in Scheme II and Scheme I2 with dienes 15 and 16, respectively, 

would be carried out to introduce electronic or orbital effects to see if the regioselectivity, 

relative to the gem-dimethyl group, would change. If 19 and 21 are the major products, 

Scheme 12 

0 

RO'Q+~-~RO 
0 

16 7 
0 

21 
0 

22 

respectively, then steric effects would still be dominant. If20 and 22 are the major 

products, then it can be deduced that electronic or orbital effects would be more 

important. If adducts of the same type as the major adduct in Scheme 10 persisted in 

Schemes II and I2, then a steric effect would be more dominant. 
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1.2 Results and Discussion 

The initial work that had to be carried out was to synthesize dienes 14, 15 and 

16. 18 This was done using lithium diisopropylamine and TMSCl on the substrate 23 to 

Scheme 13 

0 OTMS 

Q diisopropylamine 

Q TMSCl )IIIII 

THF, -78°C 

23 70% 24 

give the silyl enol ether 24 (Scheme 13). A TMS protecting group was chosen as 

opposed to a TBS group because TMS is less bulky. Before dienes 14 and 15 were 

Scheme 14 

0 

TMSOO v benzene 
+ ... starting materials 

80°C 

0 
24 7 

0 

TMSOO + v toluene ... starting materials 
Il0°C 

0 
24 7 

0 

TMSOO + v p-xylene 
starting materials ... 

ll4°C 

0 
24 7 
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synthesized, Diels-Alder reactions were attempted, over time periods which ranged from 

24 to 96 hours, using 24 and 2,6-dimethyl-para-benzoquinone (7). Diene 24 was added 

to 7 and heated in refluxing benzene only to return starting materials (93% recovery) 

(Scheme 14). Since the reaction yielded no desirable result, the temperature was 

increased and the reaction was carried out in a higher boiling solvent. Diene 24 and 

quinone 7 were heated in refluxing toluene, but only enone 23 and starting materials were 

recovered (92% recovery). The same two substrates were subjected to even harsher 

Scheme 15 

0 

0 v benzene 

+ • 7, starting material 
80°C 

0 

25 7 

conditions, refluxing in p-xylene, only to experience no Diels- Alder reactivity and the 

return of both starting materials (87% recovery). A simpler diene was chosen instead of 

using 14 and 15, which were of similar complexity to 24, to try to obtain a Diels-Alder 

OH 

~ 
26 

Scheme 16 

Fremy's sa1t 

ether /H20 
(46%) 

)Ill 

0 

4 
0 

27 

adduct. 1 ,3-Cyclohexadiene (25) was chosen as the diene. This was combined with the 

same dienophile 7 in benzene under reflux conditions (Scheme 15). Unfortunately, only 
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the unreacted quinone was recovered again (57% recovery). However, more satisfactory 

results may be obtained with 2,5-dimethyl-para-benzoquinone (27). Compound 27 was 

considered to be a better probe for a potential steric interaction since the two carbonyls 

are chemically identical in the ground state. This quinone was synthesized from 2,5-

dimethyl phenol (26) using Fremy' s salt in an emulsion of ether and water19 (Scheme 16). 

1,3-Cyclohexadiene (25) was added to 27 in dichloromethane at room temperature and 

allowed to react for 16 h, but only starting materials were retrieved (43% recovery) 

(Scheme 17). However, once a mixture of25 and 27 was heated and BF3-Etz0 was 

Scheme 17 

0 

0 + 4 CH2Cl2 ... starting materials 
40°C 

0 
25 27 

0 

0 4 BF3·Et20 

+ ... 
CH2Cl2 

0 (83%) 
25 27 

added, the Diels-Alder adduct 28 was obtained in a 83% yield. Due to this positive result 

with 25 and the undesirable recovery of the enone seen in some instances, it was thought 

there was a possibility that the diene 24, which contained the TMS group, may have been 

proto-desilylated. However, if dienes containing a TBS group were used in the Diels-

Alder reactions, the possibility existed that the bulkiness of the TBS group could slow 
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down the hydrolysis process and provide a better chance for an adduct to form. Even 

though TBS dienes would be easier to handle, easier to store, and would be less 

susceptible to proto-desilylation, we were not sure the bulkier TBS group would not have 

an effect on the reaction due to an additional steric contribution. Nonetheless, the TBS 

group was needed, so it was hoped the size of the protecting group had no significant 

effect on the reaction. 

31 

Scheme 18 

0 TBSOTf 

6 Et3N • 
CH2Cl2, 0°C 

29 (50%) 

1) p-toluenesulfonylhydrazid:PO 
H2S04,MeOH 

I 
2) H20, K 2C03 

(51%) 32 

0 

Q 
34 

.. 

CH2Cl2, 0°C 

(70%) 

OTBS 

6 
30 

OTBS 
TBSOTf 

~ Et3N 

CH2Cl2, 0°C 

(61%) 33 

OTBS 

Q 
35 

Dienes 30, 33, and 35 were prepared from 2-cyclohexen-1-one (29), 5,5-dimethyl-

2-cyclohexen-1-one (32) and 4,4-dimethyl-2-cyclohexen-1-one (34), respectively, using 

TBSOTf and triethylamine in dichloromethane18 (Scheme 18). Enone 32 was formed 

from dimedone (31) usingpara-toluenesulfonylhydrazide and sulfuric acid in methanol 
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followed by the addition of water and potassium carbonate. Diels-Alder reactions were 

then attempted using these dienes. 

Scheme 19 

0 

TBS0.-0 4 CH2Cl2 

+ starting materials 

0 
30 27 

0 

TBS0.-0 4 BF3·Et20 
starting materials + 

CH2Cl2 

0 
30 27 

0 

TBS0.-0 4 BF3·Et20 
starting materials + CH2C12 

0 
30 27 

0 

TBS0.-0 4 SnC14 

+ ... starting materials 
CH2C12 

0 
30 27 

The nonmethylated diene 30 was combined with quinone 27 under mild 

conditions, refluxing in dichloromethane, but only starting materials were recovered 

(89% recovery) (Scheme 19). A Diels-Alder adduct from 30 and 27 was desired at this 

point, even if it was obtained using conditions that may affect regioselectivity, in order to 
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find out what the spectroscopic data of the desired adduct looked like. Attempts to obtain 

this Diels-Alder adduct involved the use of Lewis acid catalysts. Lewis acids often 

influence the regioselectivity of Diels-Alder reactions, but when used with 27, this would 

not make a difference since steric versus electronic effects would still be probed. 

Addition of a Lewis acid to 27 largely changes its LUMO, and thus, its coefficients. 

Once the Lewis acid is added, the double bonds are no longer identical, so the coefficients 

of each double bond are no longer identical. The diene has a choice to which double 

bond it adds, similar to giving it a choice between two different molecules with which to 

react. If the diene is biased, it could be determined which effect is dominant, steric or 

electronic, depending on the adduct formed. One adduct would form as the result of 

steric effects dominating, and the other adduct would form as the result of electronic 

effects dominating. Unfortunately, the attempts were futile when BF3·E~O was used, 

with or without heat (Scheme 19), and only the enone and/or starting materials were seen 

in the resulting material (68-74% recovery). The results were unchanged with SnC14 

(Scheme 19) with no evidence seen for Diels-Alder adduct formation, and only starting 

materials were recovered (79% recovery). Other Lewis acids were not tried since no 

Diels-Alder reactivity had been seen. There is a good chance that if no reactivity at all 

was seen, none would be seen with more reactive Lewis acids. If some reactivity had 

occurred with BF3·E~O, or SnC14, then more reactive Lewis acids such as A1Cl3 would 

have been tried due to the good chance of increasing Diels-Alder reactivity. 

The same two substrates, 30 and 27, were subjected to higher reaction 

temperatures (Scheme 20). Again, only starting materials were obtained when these two 
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were heated at 110°C in toluene in a sealed tube (92% recovery). When heated at 140°C 

TBSO~ + 

30 

TBSO~ + 

30 

Scheme 20 

0 

4 toluene 

0 

27 
0 

4 p-xylene 

0 
27 

starting materials 

aromatic products 
no adduct 

in p-xylene, in a sealed tube, only unidentified aromatic products were seen with no sign 

of starting materials or desired products. Quinones are known to act as oxidizing agents, 

so it is possible that the quinone was aromatizing the diene. The crude NMR suggested 

aromatic compounds but since no Diels-Alder adduct was present, it was not purified. 

Due to these results with the nonmethylated diene, it was decided to carry out Diels-Alder 

Scheme 21 

0 

TBSOO + 4 toluene 
starting materials 

0 

35 27 

reactions with the methylated diene 35 since it would not be aromatized as easily. Diene 

35 was combined with dienophile 27 and heated at 11 ooc in toluene in a sealed tube. 

With great disappointment, only starting materials were obtained (91% recovery) 
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(Scheme 21 ). It was decided to abandon the quinones as the dienophiles to try to learn 

more about how the dienes themselves behave. 

N-Phenylmaleimide (36) was chosen as the new dienophile since it is generally a 

more reactive dienophile and high temperatures would be needed less for it to react. We 

were hoping to get a Diels-Alder adduct at lower temperatures where compounds are less 

Scheme22 

0 

TBSO~ QNPh toluene 0 
+ ll0°C TBSO 

( 79%) 
0 0 

30 36 37 

0 

TBSO~ QNPh 
p-xylene 

+ starting materials 
140°C 

0 
30 36 

0 

TBSO~ QNPh 
BF3·Et20 

+ 36, starting material 
CH2CI2 

0 0°C ~ rt 

30 36 

0 

TBSO~ ~h SnCl4 

+ 36, starting material 
CH2CI2 

0 0°C ~ rt 

30 36 

likely to aromatize. N-Phenylmaleimide was first reacted with the nonmethylated diene 

30 (Scheme 22) in toluene and heated at 110 oc in a sealed tube. The Diels-Alder adduct 
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37 was formed in a 79% yield. To be consistent with previous experimental work with 

the quinones, the same two substrates, 30 and 36, were heated at 140 oc inp-xylene in a 

sealed tube, but only starting materials were the result (93% recovery). Since Diels-Alder 

reactions are reversible, it is likely that heating at 140 oc in p-xylene in a sealed tube is 

too extreme for the Diels-Alder adduct to stay intact. Enough energy was provided for 

the reverse reaction to occur, causing the adduct to revert back to starting materials. If 

this were the case, it would appear as if no reaction had occurred and that the starting 

materials were unchanged. Thus, the retro-Diels-Alder is the preferred reaction at 140 oc 

in p-xylene in a sealed tube. Still keeping with the same reaction conditions as with the 

quinones, N-phenylmaleimide was combined with 30 in the presence ofBF3·H20 and 

SnC14 (Scheme 22), but the results were no more promising than previous Diels-Alder 

reactions carried out which involved Lewis acids. Only the dienophile was recovered 

(69-75% recovery), along with some intractable material. 

Since there was some success with N-phenylmaleimide as the dienophile, it was 

decided to choose a dienophile that better matched the steric characteristics of the methyl 

quinones and still have similarities to N-phenylmaleimide. Thus, 2-methyl-N

phenylmaleimide (38) was chosen. This compound would be a reasonably efficient 

dienophile due to its electron-deficient double bond, it would not aromatize the dienes, 

and it should have a similar steric effect as the methyl quinones 7 and 27. Dienophile 38 

was combined with the nonmethylated diene 30 and heated at 110 oc in toluene in a 

sealed tube. Some starting materials were recovered as well as a small amount of the 

adduct, 39 (Scheme 23). The adduct is believed to have the regiochemistry shown since 
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maleimides are known to add exclusively endo. 20 The same two substrates, 30 and 38, 

were combined in p-xylene at room temperature for fourteen days, but only starting 

Scheme23 

TBS0--0 
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+ ~NPh 
0 

38 

TBSO~ + ~NPh 
0 

35 38 

+ ~NPh 
0 

30 38 

X+ YNPh 
TBSON" ~ 

0 

35 38 

p-xylenea 

rt 

p-xylenea 

rt 

toluene 

toluene 

starting materials 

starting materials 

TBSO 

0 
39 

(very small amount) 

TBSO 

40 0 
(very small amount) 

a. A very long reaction time waS' anticipated, sop-xylene was used, at room temperature, to 
avoid evaporation of solvent. 

0 

materials (71% recovery) were seen in the extracted material. Dienophile 38 was also 

reacted with the methylated diene 35, by both heating at 110 oc in toluene in a sealed tube 

and stirring at room temperature in p-xylene. Again, a small amount of adduct was seen 
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when the reaction was heated at 110 oc in toluene, but only starting materials (74% 

recovery) were recovered from stirring in p-xylene at room temperature (Scheme 23). It 

should be noted that in none of the reactions in which the maleimides were used as the 

dienophile did any aromatic material appear in the product. This is consistent with the 

hypothesis that the quinones were aromatizing the dienes since aromatic material was 

seen when quinones were used as the dienophiles. 
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1.3 Conclusions and Future Work 

It seems that the molecules discussed in this chapter will only show consistent 

Diels-Alder reactivity under extreme conditions, and even then, only with certain dienes 

and dienophiles as the substrates. In more extreme conditions, the adduct seems to revert 

Scheme24 
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back to starting materials. Even catalysts could not force these substrates to come 

together. Thus, high pressure systems are most likely what will be needed for the 

substrates to react in an expected way. Precedence for high pressure systems being 

successful where thermal conditions were not has been established by a number of 

groups. Examples of such reactions can be seen in Scheme 24. The Burnell21 group 

observed no reaction between diene 41 and dienophile 42 after 5 days under reflux in 

benzene but obtained the desired adduct 43 at 1.28 GPa. Dauben's22 attempt to react 44 

and 45 under thermal conditions, yielded 46 in only 2%, but the yield increased 

dramatically to 97% when the reaction was carried out at high pressure. Dauben23 also 

increased yields of 48 and 51 by using high pressure systems as did Welker et a/. 24 in 

producing 54 after thermal conditions gave very low yields. Therefore, the project was 

put on hold until a high pressure system becomes routinely available to the Burnell group. 

26 



2. Probing the Use of the Geminal Acylation Reaction for the 

Formation of a Steroid Skeleton 

2.1 Introduction 

The geminal acylation reaction is the net replacement of a carbon-oxygen double 

bond by two geminally substituted acyl groups.25 Kuwajima found that the reaction of 

acetals with 1,2-bis[(trimethylsilyl)oxy ]cyclobutene (56) passed through a pinacol 

intermediate by an aldol addition. This reaction was initiated by a Lewis acid or a 

fluoride catalyst. A general outline of this reaction can be seen in Scheme 25. 

Scheme25 

Lewis acid 

TMSO O 

R~yti-~ 
H00 R2 57 

Kuwajima25 reported that TiCl4 was the most effective Lewis acid for geminal acylation 

with aldehydes and aliphatic acetals. This is not surprising since Mukaiyama26 had found 

Scheme26 

1\ 

TMSODOTMS 

0 56 0 0 

BF3·Et20 

(96%) 
59 60 
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that TiC14- catalyzed reactions of silyl enol ethers with acetals gave the desired products 

in good yields. Kuwajima reported that BF3·E~O gave the best results with more reactive 

acetals. He claimed that ketones were not susceptible to geminal acylation conditions and 

did not react under various acidic and basic conditions. 25 This was consistent with the 

reported absence of reactivity of silyl enol ethers with ketones in other systems. 27 

The Burnell group discovered two factors which added to Kuwajima's findings 

(Scheme 26). 28 The first was that the proposed two-step process can be carried out in one 

pot, often in a higher yield, by using two to three equivalents of 56 and a large excess of 

BF3 ·E~O. The second was that this BF3·E~O one-step process yields the 2,2-

Scheme 27 

TMSO OTMS 

disubstituted- I ,3-cyclopentanedione 60 from the ketone in satisfactory yields when a 
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small volume of H20, equal to the volume ofBF3·E~O, is added to the medium 

containing the cyclobutanone intermediate. This discovery now allowed the geminal 

acylation reaction to be carried out directly on ketones and not just with their 

corresponding acetals. Burnell proposed that the addition of H20 and acid must facilitate 

the rearrangement by hydrolysis of one or both of the (trimethylsilyl)oxy groups of the 

no-longer-isolated cyclobutanone intermediate 57.28 In saying this, acetals are often the 

preferred of the two starting material options since they are known to coordinate more 

strongly with the Lewis acid than their parent ketone.29 The mechanism of the geminal 

acylation reaction is illustrated on an acetal in Scheme 30. The initial Mukaiyama-like 

aldol reaction is initiated by coordination of the Lewis acid with an oxygen of the acetal 

61. This activates the tertiary carbon, making it susceptible to nucleophilic attack. The 

double bond in 1 ,2-bis(trimethylsilyloxy)cyclobutene 62 acts as the nucleophile. The 

nucleophilic attack is facilitated by the loss of one (trimethylsilyl)oxy group to give the 

cyclobutanone intermediate 57. This is followed by acid-initiated acyl migration similar 

to a pinacol rearrangement to afford the 2,2-disubstituted 1 ,3-diketone 58. 

The yields of the geminal acylation reaction are very sensitive to the steric 

environment of the ketone or acetal. Work done by Jenkins and Burnel128 showed that a.-

Figure 6: a-methylated substrates of geminal acylation reactions. 

0 0 0 0 

~ /y ~ (<65%) 
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methylated substrates do not give products in useful yields in the geminal acylation 

reaction, (Figure 6). When there is a carbonyl a to, or an ester P to the ketone moiety 

(Figure 7), the geminal acylation reaction is inhibited completely 30
• However, molecules 

with an ester y to the acetal moiety, or further away (Figure 8), react normally when 

Figure 7: Geminal acylation substrates containing a or P carbonyl. 

X 
~0 

exposed to geminal acylation conditions. 28 The sensitivity towards substitution could 

place significant limits on the usefulness of the geminal acylation reaction, but it can also 

be used as an advantage, as Wu and Burnell showed in their synthesis of isokhusimone. 

In this synthesis, the doubly acetalized substrate 63 was subjected to geminal acylation 

Figure 8: Geminal acylation substrates containing y esters. 

ro 
~COEt 
(91%) 2 (80%) 

conditions and the less hindered acetal reacted efficiently to give the 1 ,3-pentanedione 

moiety (Scheme 28), whereas the more hindered acetal only underwent hydrolysis during 

work-up, to give 64 in a very good yield.30 When the acetal contains alkyl or aryl 

substituents, the trend seen is that yields decrease as the alkyl substituents become larger 
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(Figure 9). Compounds 65 and 66 gave yields of 48% and 0%, respectively, whereas 

reactions with the unsubstituted acetal 59 proceeded under geminal acylation conditions 

with a 96% yield.30 Thus, acetals with certain alkyl substituents such as that in 66 resist 

Scheme 28 

63 0 64 

reactivity and can be seen as protecting groups in geminal acylation conditions.30 The 

reason why alkyl substituents on the acetal impede reactivity is not known, but it is 

possible that the acetal reacts differently. It is possible that the oxygen-carbon bond with 

the alkyl group may be broken to produce a carbocation. 

Figure 9: Acetals with alkyl substituents used as geminal acylation substrates. 

Me Me Ph,KPh 
1\ }-( ~ 0 0 0 /'o 

00 
59 65 66 67 

(96%) (48%) (0%) (82%) 

Compound 56 may attack this carbocation instead of the tertiary one. Bicyclic 

compounds such as 67 are more reactive than a-methylated substrates and give the 

desired geminal acylation product in very acceptable yields even though 67 is a 

substituted. 30 Reactions of some unsaturated bicyclic systems were unsuccessful under 
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geminal acylation conditions. Products were obtained which must have been derived 

from initial geminal acylation products followed by the rupture of the bicyclic framework 

(Scheme 29). Acetal68 gave only a 12% yield of72, the consequence of an intermediate 

allylic cation 71 closing onto an enol oxygen. The major product seen from this substrate 

was 74, which was likely the result of hydrolysis of72 during work-up, rather than the 

Scheme29 

1b 
68: n=1,69: n=2 

0 

.~,cd)c) 
0 

70 

j 
0 
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HO 

capture of water by 71, since efforts were made to exclude water from the reaction 

medium. On the other hand, acetal 69 gave 73 in a 56% yield as the only isolated 

product. 30 Reactions failed under geminal acylation conditions with acetals like those in 

Figure 10 which are derived from conjugated cyclic enones, where the double bond 

remained in the a,J3-position during acetalization. This is likely due to the stabilization 
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of the positive charge on the tertiary carbon by the double bond rendering the carbocation 

sufficiently unreactive so that it does not attack 56, leading to recovered enone through 

Figure 10: ex, (}-Unsaturated cyclic acetals. 

(0%) (0%) 

aqueous work up. Also, undesired products may result from 1,4 additions.28
•
30 However, 

substrates, such as 75 and 76, where the double bond of the cyclic enone migrates to the 

1\ 

0 
75 

(75%) 

Figure 11: Jl,y-Unsaturated cyclic and ex-aromatic acetals. 

76 
(72%) 

oR 
77 

(77%) 

0 

()) 
78 
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J3, y -position during acetalization and compounds with aromatic components a to the 

acetal or ketone, such as 77 and 78, underwent geminal acylation in very good yields28• 30 

(Figure 11). 

Figure 12: Mono and dimethylated 1,2-bis[(trimethylsilyl)oxy] cyclobutene. 
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Crane, Jenkins and Burnell31 carried out modifications to the geminal acylation 

reaction that included the use of3-methyl-1,2-bis[(trimethylsilyl)oxy]cyclobutene (79) 

and 3,3-dimethyl-1,2-bis[(trimethylsilyl)oxy]cyclobutene (80) as the nucleophiles (Figure 

12). This modification is very useful since methyl or gem-dimethyl substituents appear in 

many natural products. 31 Reactions of 80 with ketones gave better yields than with 

acetals, and unhindered substrates gave the best yields. 31 They found that geminal 

Scheme30 

0 80 
BF3·Et20 0 

(40%) 

BC13, H 20, HF 

(98%) 

acylation reactions with 80 were more successful when BC13 was the Lewis acid used 

(Scheme 30). They proposed that this was due to a difference in the mechanisms that 

BC13 and BF3 ·E~O facilitate.32 The proposed mechanism for the geminal acylation 

reaction with BC13 is shown in Scheme 31. The initial aldol reaction is induced by the 

formation of a cyclic borate 82 in which two B-Cl bonds are broken and two 0-B bonds 

are formed. This inhibits subsequent equilibration of the aldol product. This is the key 

difference with the BF3-E~O-catalyzed mechanism, since BF3·E~O allows for the 

equilibration of the cyclobutanone intermediate, which leads to significant amounts of a 

furanone by-product 84 (Scheme 32). The process seen in Scheme 32 may invoke direct 

attack on the carbocation, but the alkene was isolated by the Burnell group. Thus, the 
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carbocation is probably deprotonated prior to the formation of the furanone. Furanones 

were never observed in reactions with 56 and 79 so a carbocationic intermediate was 

suspected. Upon addition of water, hydrofluoric acid and trifluoroacetic acid, the acyl 

migration proceeded to yield the 2,2-disubstituted-1 ,3-cyclopentanedione product 83.32 

81 

-~Cl 
I 2 

~Cl ----~ 

HF 

l 
0 

Scheme 31 

Cl 
I 

B 
o' 'o 

82 

~ 
83 ° 

Studies were carried out with 79 on the relative stereochemistry at the spiro 

center. Cyclobutanones from acetals undergo rearrangement to cyclopentanediones by 

inversion at the cyclohexyl C-1 with little stereochemical scrambling. 31 This was also 

true for the processes with 56 for both acetals and ketones. This means thatthe 
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stereochemistry of the cyclopentanedione derived from acetals was largely determined by 

Scheme 32 
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the stereochemical preference in the frrst aldol reaction. The stereochemistry of the 

cyclopentanediones from ketones was generally the opposite of this and seemed to 

Scheme33 
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indicate some equilibration of the cyclobutanone.31 Compound 80 generally gave poorer 

yields than 79 under geminal acylation conditions, but produced cyclopentanediones with 

Figure 13: TetraMe-bis[TMSO]cyclobutene and geminal acylation furanone products. 

37 



much higher stereoselectivity.31 

Reactions of aromatic ketones, such as 85, with 79 and 80 produced minor 

amounts oflactones, such as 86, (Scheme 33), but proceed to give 1,3 diketones in fair to 

good yields under anhydrous conditions, whereas geminal acylation reactions of saturated 

ketones with 79 and 80 required H20 . 33 

Reactions were also carried out with 87 on acetone and cyclohexanone, but no 

cyclopentanedione products were seen. Only furanones 88 and 89, respectively, were 

isolated (Figure 13). 

The geminal acylation reaction is a powerful C-C bond forming tool. It introduces 

a 1,3-cyclopentanedione substructure, which is useful for the synthesis of many natural 

products.29 Some examples include Wu and Burnell's syntheses of a sesquiterpene, 

isokhusimone (90)30
· 

31 and the estrone derivative 91.34 The use of the geminal acylation 

reaction in these syntheses can be seen in Scheme 34. 
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Instances have been encountered where the cyclobutanone ring 93 has been 
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cleaved under acidic conditions (Scheme 35). Certain Lewis acids (A1Cl3, TiC14, SnC14, 

SbC15) permit 56 to be reactive enough to transform 92 into a y-keto ester quantitatively, 

with SnC14 providing the highest yield of 94 in a one-pot process. Isolation of the 

intermediate 93 can be avoided using this Lewis acid. 35 This process is known as 

reductive succinoylation of a ketone function, and it was found that susceptibility to ring 

cleavage greatly depended on the structure of the substrate. For example, the aldol 

products obtained from cyclohexanone and cyclopentanone acetals underwent reductive 

succinoylation easily in the presence of a small amounts of the catalyst. On the other 

Lewis acid 

92 

Scheme35 
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hand, acetone acetal was not susceptible to reductive succinoylation and underwent 

geminal acylation effectively.25 The reductive succinoylation process was also used to 

explain the low yielding geminal acylations when a series of acetals derived from ketones 

with a-methyl groups were used as the substrates. 30 Work was done on the use of acetals 

bearing alkyl substituents as well as modifications to the geminal acylation reaction 

conditions, but the reductive succinoylation process still posed a problem. 36 This 
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behaviour was observed during the course of work which will be presented in this 

document. However, in these instances, BF3-E~O and BC13 were the Lewis acids 

involved. Even though this reaction pathway has been used in a positive way, since 94 

can react with various electrophiles,35 to synthesize dl-lanceol for example,25 it was 

undesired in the work presented in this document, and posed problems which hindered 

the productivity of this research. 

There is a need for synthetic steroids which have an oxygen functionality at C-1 37
-

39 since many biologically-active steroids and analogues have this characteristic. Some 

examples can be seen in Figure 14. We proposed that the geminal acylation reaction 

Figure 14: Steroids with oxygen functionality at C-1. 

( + )-withanolide E 2,3-dihydrosalpichrolide B 

OAc 

3b-acetoxy-l a,2a-epoxyandrostane 

might be utilized in the synthesis of a C-1 oxygenated steroid. The remainder of this 

document describes proposed routes to obtain this goal and attempts to follow these 

routes along with conclusions as to why certain processes happened and others did not. 
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2.2 Retrosynthetic Analysis 

A proposed route to a steroid skeleton with oxygen functionality at C-1 and C-1 7 

is outlined in Scheme 36. Retrosynthetic cuts were made in the analysis as indicated by 

the broken lines on the steroid skeleton 95, which left the pentaketone 96 as the target 

compound. One of these carbonyls can be obtained by oxidation of the alcohol 97. The 

two 1,3-diketone components, and thus the A- and D-rings of the steroid could be the 

result of two geminal acylation reactions to the diketone 98 using 1 ,2-

his[ (trimethylsilyl)oxy ]cyclobutene and 1 ,2-bis[(trimethylsilyl)oxy ]cyclopentene. The 

two carbonyl functionalities in 98 could be distinguished by obtaining one from an 
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acetal, as in 99. This molecule could come from alkylation of the protected ketoalcohol 

101 with the iodoacetal 100. These molecules could be obtained from 2,5-hexanedione 

and 3-buten-2-one, two readily available compounds. 

Scheme 3 7 illustrates a second route to the steroid skeleton, which is similar to the 

first except having an acetylene moiety, which can be converted to ketone 96 when 
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needed. Again the pentaketone 96 , described previously in Scheme 36, would be 

obtained. The required diketone with the acetylene functionality 105 could come from 

alkylation of2,6-heptanedione (106) with propargyl bromide. Since 2,6-heptanedione is 

not commercially available, it would have to be prepared. This could be achieved 

through the Michael addition of the silyl enol ether 107 to 3-buten-2-one (102). 

A modification to this last route can be seen in Scheme 3 7 as well. The diketone 

with the acetylene component 105 can be derived from the dialkylation of methyl 

acetoacetate (110) with the iodoketal100 and propargyl bromide since previous work 

with this system displayed a loss of an acyl group. 39 The iodoketal could be prepared 

from 3-buten-2-one (102). 
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2.3 Results and Discussion 

2.3.1 Endeavors Towards the Steroid Skeleton Originating with 2,6-

Heptanedione 

The frrst attempts towards the synthesis of 2,6-heptanedione followed a procedure 

by Mukaiyama and Kobayashi, which involved the Michael addition of silyl enol ethers 

to a,p- unsaturated ketones to give diketones.41 Such a reaction is catalyzed by the 

combination of a neutral molecule and a weak Lewis acid under mild conditions. The 

catalyst that Mukaiyama developed was the combination of trityl chloride (TrCl) as the 

neutral molecule and tin(II) chloride as the weak Lewis acid. The exact catalytic 

mechanism by which this reaction proceeds is unknown. What is known is that the 

Figure 15: Coordination of TrCI to Lewis acid. 

Tr----Cl----SnC12 or Tr----SnC13 
8+ 8- 8+ 8-

catalyst is formed by the neutral molecule coordinating to the Lewis acid, in the fashion 
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depicted in Figure 15, to generate a partial positive charge on the trityl moeity. 

To make 2,6-heptanedione by Mukaiyama's procedure, the silyl enol ether of 

acetone 107 was needed. Compound 107 was obtained in a 66% yield by treating acetone 

with TBSOTf and Et3N in CH2Cl2• This silyl ether was then reacted with 3-buten-2-one 

under Mukaiyama's conditions in the hope of forming the desired diketone (Scheme 38). 

However, only trityl-protected compounds and intractable material were seen. It was 

unclear as to why the reaction was not working, but a low recovery of starting material or 

product indicated that the volatility of both starting materials, and even the product, could 

be causing problems. Evidence of polymerization was also seen in the 1H NMR spectra. 

To test the reaction, a starting material with a larger molecular mass and less likely to 

polymerize, the silyl enol ether of acetophenone 114 that was prepared the same way as 

the previous silyl enol ether, was reacted under the modified Michael addition conditions 

with 3-buten-2-one. The expected diketone 115 was obtained, but in only a 20% yield 

(Scheme 39). The remainder of the material was acetophenone and trityl-protected 

compounds. The recovery of acetophenone and not enone indicates the problem was with 
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the enone. 

Enones 116 and 102 may be participating in another reaction in these modified 

Michael additions. In the interest of learning more about the geminal acylation reaction 

with unsymmetrical diketones, the geminal acylation conditions were applied to 115, but 

unfortunately only starting material was recovered. The modest success with the larger 

molecule under Mukaiyama' s Michael addition conditions was consistent with our 

hypothesis of smaller molecules causing problems, so a larger unsaturated ketone, 2-

cyclohexen-1-one (116), was chosen for the next reaction. This Michael acceptor was 

reacted with 114, and the expected diketone 117 was obtained in a 40% yield (Scheme 

40). The higher yield was not surprising since the product (117) was less volatile than the 
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others, 106 and 115. The unsymmetrical diketone (117) was subjected to geminal 

46 



acylation conditions. The mono reacted product 118 was isolated but in a 9% yield only. 

This product was the expected one because it was felt that resonance stabilization would 

stabilize the carbonyl a to the aryl. The stabilization would render this carbonyl 

component less susceptible to the geminal acylation conditions than the aliphatic ketone. 

Low yielding mono-geminal acylation reactions, such as the one in Scheme 40, were not 

uncommon. Previous members of the Burnell group have seen low yields of 

monoreacted product as the result of geminal acylation reactions when there is another 

oxygen atom near the reaction site.40 This type of molecule (118) would be of interest to 

learn about and synthesize since applying a McMurray coupling to molecules like 118 

Scheme 41 
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would yield ring systems of natural products such as 3,4-anhydro-13,14-

dihydroxyfloridanolide, a sesquiterpene lactone of the seco-prezizane type.42 

Since there had been some success reacting the cyclic enone 116 with 114, 116 

was subjected to Mukaiyama's modified Michael addition conditions with 107, but only 
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intractable material was obtained (Scheme 41 ). Different molar equivalents of catalysts 

(0.05, 0.1, 0.3, 1) and an excess of each starting material, up to double proportions were 

tried, but no trace of 119 was ever found. 

Even though Mukaiyama's modified Michael additions appeared to work in some 

instances such as 116 with 114, the yields were always low. In the instance which was 

most important to this research, i.e., to form 2,6-heptanedione, the reaction did not work 
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at all. Thus, an alternative route was explored. A second route by which the desired 
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diketone 106 might be synthesized is outlined retrosynthetically in Scheme 42. 

2,6-Heptanedione might be derivable from 1 ,2-dimethylcyclopentene (120) via 

ozonolysis. This can be mapped back to 1,2-dimethylcyclopentan-1-ol (121) through 

elimination and this, in tum, might be derived from 2-methylcyclopentanone (122) by 

attack of an organometallic reagent. In the forward direction, the enamine of 123 was 

obtained in a 84% yield from cyclopentanone and pyrrolidine in benzene (Scheme 43). 

The enamine was then alkylated with iodomethane in dioxane in a 53% yield to provide 

the a-methyl ketone 122. This was followed by reaction with MeLi in ether in the hope 

of obtaining the alcohol121. Although some 121 was obtained, starting material was 

also recovered along with 121 in a 1:1 ratio. The mixture was not simply subjected to 

more MeLi because it was believed that some of the MeLi acted as a base and formed an 

enolate which would prevent subsequent reaction of MeLi with the carbonyl group. 

Thus, the use of additional MeLi would not change this behaviour. Compounds 121 and 

122 could not be separated on silica since they co-eluted, so they were carried through an 

elimination reaction with phosphoric acid as a mixture since only the alcohol should 

react. The resulting mixture was not isolated and the solvent was not removed due to the 

danger of losing any alkene given its low boiling point. In light of this, the mixture was 

subjected to ozonolysis conditions. The reaction proceeded in the desired way with only 

the alkene reacting to give the diketone 106. Since the diketone was less volatile, 121 

and 122 were evaporated under a stream of nitrogen upon work-up. Thus, the need for 

separation was eliminated. Both carbonyls of this diketone were then reduced to afford 

the diol 125. The formation of a mixture of diastereomers was not a concern since the 
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alcohols would eventually be reoxidized into ketones after a few other steps. Compound 

125 was to be carried through a synthetic route similar to one which will be seen later 

with 2,5-hexanediol (Scheme 49), but unfortunately time did not permit for it to be done 

and included in this document. Research using compound 125 in a route similiar to the 

one in Scheme 52 can be carried out by future members of the Burnell group. 

2.3.2 Working Towards the Steriod Skeleton via Alkylation 

This route required a protected ketoalcohol101 as the substrate and an iodoacetal 

100 as the alkylating agent (Scheme 44). These compounds were derived from 

Scheme 44 
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2,5-hexanedione and 3-buten-2-one, respectively. Compound 100 was prepared in a 41% 

overall yield by first treating 3-butene-2-one with hydroiodic acid in benzene, and then 

reacting the resulting iodide 111 with ethylene glycol and p-toluenesulfonic acid (Scheme 

45). 
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The synthesis of the protected ketoalcohol101 began with attempts to mono-

reduce 2,5-hexanedione (103) using 0.1 molar equivalents ofNaBH4 in MeOH. Only 

starting material was recovered. The NaBH4 was tested with cyclohexanone, and it 

provided cyclohexanol in a 98% yield, so the reagent was not the problem. Upon treating 

103 with 0.3 equivalents ofNaBH4, the desired mono-reduced product 126 was obtained, 

but only as a minor product (4:1) (Scheme 46). The major product was the doubly 

reduced product 127. Different molar equivalents (1.0, 1.5) of the reducing agent were 

Scheme46 
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trie<L but they gave no better results. It seemed that the rate of reduction of the second 

carbonyl was faster than the first reduction. Once the first hydride adds, a borotrihydride 

128 is formed (Scheme 47). The second reduction would occur intramolecularly to give a 
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cyclic borate 129. The unreactivity of the cyclic borate 129 is surprising since the 

transition state seems to involve a seven-membered ring. Normally this would not be 

anticipated as a problem, but 7 -exo-trig reactions would allow for this ring closure, unlike 

if the transition state were a five- or six-membered ring. However, it did pose a problem. 

The doubly reduced product indicates that this intramolecular reaction appears to be faster 

than the intermolecular reduction, or the reduction of the first carbonyl. It was decided to 

try a different reducing agent since many are available. K -Selectride® was chosen since it 

only has one hydride to deliver. Therefore, the intramolecular reduction seen in Scheme 

47 was much less likely. K-Selectride® was added to a solution of the diketone 103 in 

Figure 16: Enoi/Enolate form ion of the K-Selectride® ligand. 

A B 

THF, but it gave an unexpected result. The material obtained contained only starting 

material. There was no reason to believe the K-Selectride® had decomposed since it was 

simultaneously being used in other reactions, which proceeded in the expected manner. It 
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is conceivable that K-Selectride® functioned as a base, rather than a nucleophile when 

presented with diketone 103. Bidentate co-ordination of 103 to the potassium ion would 

afford complex A (Figure 16), which could then proceed to enolate B upon deprotonation 

and enolization in either order. Complex B would be unreactive toward K-Selectride®, 

either as a base or a nucleophile, and thus would deliver the starting material103 upon 

work-up. 

Further attempts to obtain the ketoalcohol 101 in reasonable yield were futile as 

well. Efforts were made to protect the mono-reduced product in situ by first adding 

NaBH4 in MeOH, and, once the methanol was removed, adding TBSCl and imidazole in 

ether (Scheme 48). The hope was that the mono-reduced product would form and then be 

protected before the second ketone would be reduced. This was based on the 
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presumption that the reduction of the second alcohol was directly related to the reduction 

of the first. Thus, by not having any of the first alcohol present but instead having it 

protected, it was hoped the second reduction would not take place as quickly. However, 

only starting material and the diol 127 were seen. It was possible that, after the addition 

ofNaBH4, the putative borotrihydride 128 shown in Scheme 47 was not reactive towards 

TBSCI. Thus, the TBS did not add to the oxygen and the reaction proceeded as outlined 

in Scheme 4 7, again yielding the diol 127. Thus, the protected alcohol ketone would not 

be obtained using this general strategy. 

A new approach that did not require mono-reduction and proceeded through 127 

was implemented to obtain 101 (Scheme 49). 2,5-Hexanedione was reduced to the diol 

using an excess ofNaBH4 in methanol. Protection with 0.45 molar equivalents of TBSCl 

and 0.5 molar equivalents of imidazole in ether provided the mono-protected alcohol130. 

The fact that none of the di-protected alcohol was seen indicated that the first protection 

was faster than the second. That the first protection hindered the second was interesting 

since the hydroxyl groups were a fair distance apart. Compound 130 was then oxidized 
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using two different agents, pyridinium dichromate and Dess-Martin periodinane (DMP). 

PDC was the superior oxidizing agent in this case since it gave the protected ketoalcohol 

in 92% yield, and DMP gave 101 in a 82% yield. 

Now that both alkylating substrates had been synthesized, the next step along this 

route to the steroid skeleton was the alkylation. The initial alkylation reaction was 

attempted with LDA in THF (Scheme 50). However, this yielded none of the desired 

product, so an additive, HMP A, was added to the reaction. Again, no positive result was 

obtained; only starting materials were recovered. It was thought that the iodoacetal might 

not be a very good alkylating agent. Also, the anion may be stabilized by the OTBS 

component and the oxygens on the acetal once the iodoketal is in the vicinity of the 

Figure 17: Intramolecular complexation of oxygens and lithium. 

alkylating substrate (Figure 17). If this were the case, the iodide component would not be 

able to get near the anion for a nucleophilic attack to occur. There is evidence, with the 

chiral auxiliaries SAMP and RAMP, to support the hypothesis that remote oxygen atoms 

can stabilize an anion.42 The reaction mixture was warmed to 0°C, in an effort to 
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equilibrate the kinetic enolate to the more stable enolate. The warming process, would 

support remote oxygen stabilization and inadvertently keep the reaction from proceeding 

in the desired fashion. 

Due to these results, a simpler alkylating agent, iodomethane, was applied 

(Scheme 51). It, too, was added to a solution of 101 and LDA in DME along with the 

same additive, HMP A, but unfortunately, only starting material made up the recovered 

matter. This indicated there may have been a problem with both of the alkylating 

substrates 100 and 101. 

Another way the alkylation product 99 might have been obtained was through the 

enol acetate of the protected alcohol/ketone. Two procedures to produce an enol acetate 

of 101 were tried usingp-toluenesulfonic acid and isopropenyl acetate as the solvent, one 

at room temperature and one under reflux conditions (Scheme 52). Neither gave 

desirable results. The reaction at room temperature gave no recognizable products, and 

the one at reflux gave only deprotected alcohol. The procedure was modified by 

0 

~ 
101 OTBS 

0 

~ p-TsOH 
b. 101 OTBS 

Scheme 52 

p-TsOH 
rt 

no recognizable 
products 

~ 
0 

~ 
OTBS 126 OH 

56 



refluxing in benzene to incorporate a Dean-Stark apparatus to remove any water that 

might evolve and inhibit the reaction, but the result was unchanged. Since the 

deprotected alcohol was seen, it was decided to protect the alcohol with a more robust 

protecting group to avoid loss of the protecting group. The diol 127 was monoprotected 

Scheme 53 
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in the same way as the protection in Scheme 50 with 0.45 molar equivalents of TIPSCl 

and 0.5 molar equivalents of imidazole in ether. Oxidation with PDC gave the protected 

ketoalcohol133 along with what seemed to be very large amounts of TIPS-X impurities. 

This product needs to be purified before any attempts to make the enol acetate are carried 

out on it. Since time constraints prohibited further investigation of this reaction product, 

this purification would have to be attempted by someone else in the Burnell group. 
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2.3.3 Making the Steroid Skeleton through the Double Alkylation of Methyl 

Acetoacetate 

A third route towards 98 utilized a double alkylation of methyl acetoacetate. The 

third oxygen functionality in 98 could come from a variety of alkylating substrates 

Scheme 54 
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containing functionality that could easily be converted to a ketone. The three alkylating 

substrates chosen to work with were the iodoacetallOO, propargyl bromide and allyl 

iodide. Each reaction used sodium hydride as the base. The iodoacetallOO was the first 

alkylating agent tried since this compound already contains an oxygen functionality in the 
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required site. Compound 109 was obtained but in a 7% yield only. This result was 

similar to other alkylation reactions conducted with this iodoacetal (Scheme 54). When 

the alkylating agent was changed to propargyl bromide, the expected product 135 was 

obtained with a yield of 66%. This result was encouraging, and so, propenyl iodide was 

subjected to an alkylation reaction with methyl acetoacetate, again using sodium hydride. 

Since iodides are generally better electrophiles than bromides, it was thought that a higher 

yield of 137 would result when propenyl iodide was used. However, a significant change 

in yield was not found to occur. Unfortunately, the reactions never went to completion 

since, one or sometimes both, starting materials were always recovered. The propargyl 

bromide and propenyl iodide were not seen in the product mixture probably due their 

volatility. This characteristic may not have been a factor which prevented completion of 

the reaction since an excess of these reagents, up to 1.5 molar equivalents, was used. It 

seemed that these products 109, 135, and 137 (Scheme 54) decomposed on silica, so 

subsequent reactions were carried out on the crude mixtures. It was later discovered that 

column chromatography using neutral alumina purified these mixtures very efficiently, 

but time did not permit subsequent reactions to be carried out on the pure products. 

The iodoacetal100 was added to crude 137 along with NaH in THF and the 

compounds shown in Scheme 55 were obtained. Both starting materials were recovered, 

along with the product 109, of alkylation of 100 with 110. This was a little puzzling at 

first since it seemed as if an exchange of a whole alkyl group had taken place. However, 

this was not the case. Compound 137 had been carried through the reaction sequence 
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as the major component of a crude mixture which had contained methyl acetoacetate. It 

can be presumed that the methyl acetoacetate had reacted with some of the iodoacetal100 

in an alkylation reaction to yield 109. However, the amount of 109 produced was low 

(4:1, 137:109). This concurred with the amount of methyl acetoacetate mixed with 137 to 

start with since the ratio of 137 to 110 was 4:1, also. The alkylation of methyl 

acetoacetate with 100 indicated that the reaction conditions were appropriate for 

alkylation, but due to the absence of dialkylated product, the monoalkylation also 

suggested that the monoalkylated substrate 137 will react significantly more slowly than 

the unalkylated substrated 110. It was obvious these molecules needed to be purified 

before they could be used in subsequent reactions. 

Since some previous reactions indicated problems with the iodoacetal as an 

alkylating agent, a simpler one, iodomethane, was tested (Scheme 56). Compound 137 

was combined with iodomethane still in the presence ofNaH and THF, but unfortunately 

only starting material was obtained. The double alkylation of methyl acetoacetate is a 
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Scheme 56 
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difficult task to achieve, especially the second alkylation. 

As a side project, some work was done on the geminal acylation reaction with a 

diacetal as the substrate (Scheme 57). 2,4-Pentanedione was converted into diacetal 139 

using ethylene glycol and p-TsOH. Then the geminal acylation was carried out, both with 

BF3·Et0 and BC13• In both cases, it appeared that the compound was singly and doubly 

geminally acylated, but then subsequent reactions with ethylene glycol gave 140 and 141. 

The mono- and di-1,3-cyclopentanedione moieties seemed to have formed but then each 

underwent reductive succinoylation which has been seen previously in Kuwajima' s 

work25 and by the Burnell group. 30
a The 1 ,2-ethanediol (or derivative) generated during 

the reaction participates in an acid-catalyzed ring opening of the acylation product which 

led to ketoesters 140 and 141. The majority of cases of reductive succinoylation seen in 

the Burnell group were seen with a-methylated substrates and some a-alkylated 

substrates in Kuwajima's group. Both groups predicted that the ease of ring cleavage 

depends on the structure of the substrate. The reductive succinoylation seen with 139 

may be due to the fact that each acetal has a pseudo a-methyl substituent disguised as the 
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quaternary carbon in each adjacent acetal. Thus, these reductive succinoylation results 

follow those previously seen with a-methylated substrates. 
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2.4 Conclusions and Future Work 

The synthesis of steroid backbones is a very delicate and complicated process. 

The routes proposed in this document may be feasible but require some modifications. 

Since long-chain diketones are not readily available, and Mukaiyama's procedure did not 

seem to work well with volatile and easily polymerized substrates, a new process to form 

them will have to be found. Ozonolysis procedures proved to be slightly more successful, 

but research to drive reactions to completion would have to be performed. A possible 

retrosynthetic route which does not involve alkylation but does utilize alkene 120 and 

ozonolysis can be seen in Scheme 58. 

00 
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Due to problems seen with alkylating the iodoketallOO, the alcohol101, and 

methyl acetoacetate 110 such as only partial alkylation or no alkylation at all, more 

research will need to be carried out to find more suitable alkylating routes. Certain 
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features of the alkyl group are required. Thus, the alkylating agent 100 would be 

unchanged. Precedence has been set for the alkylation of methyl acetoacetate. 44 

However, effects of solvent, temperature, concentration, and the counter ion would need 

to be studied. Different additives such as HMP A and LiCl would have to be included in 

order to attempt to improve the yields of alkylation. An alternative to direct alkylation 

could be investigated. A possible retrosynthetic route where a Michael addition instead 

of an alkylation could be used is shown in Scheme 59. 
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Successful geminal acylation reactions performed upon substrates such as 117 

would prove to be beneficial since McMurry couplings carried out on these products such 

as 118 would lead to many natural products such as 3,4-anhydro-13,14-

dihydroxyfloridanolide (Scheme 60). Research carried out in this thesis has begun the 

foundation for this. A possible retrosynthetic route can be seen in Scheme 60. The 

McMurry coupling may be useful to make steroids in an alternate way as well. Two 

possible retrosynthetic routes are proposed in Schemes 61 and 62. 

Much of this research seems to give rise to fmding ways to go along with mother 

nature's wishes, as opposed to fighting them. An example of this is the preparation of 

101 which was achieved in an improved yield, as was shown in Scheme 49. Many of the 
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problems seen here could be overcome by changing procedures. 
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Scheme 61 
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Experimental 

General Experimental Procedures: 

All reactions were performed under oxygen-free nitrogen. Dichloromethane was 

dried and distilled from calcium hydride and stored over molecular sieves. THF was 

distilled from sodium!benzophenone immediately before use. Concerns about the 

volatility of some products led us to be cautious when removing solvents under reduced 

pressure. Thus, in some NMRs trace amounts of solvent are found. 

Thin layer chromatography (TLC) was done on Macherey-Magel Polygram® SIL 

GIUV254 precoated silica plates. Silica gel60 (230-400 mesh) was used for flash 

chromatography. Melting points were measured using a Fisher-Johns melting point 

apparatus and are uncorrected. 

Nuclear magnetic resonance (NMR) spectra were obtained using a General 

Electric GN-300NB spectrometer operating at 300.1 MHz and a Broker A VANCE 500 

MHz spectrometer operating at 500.0 MHz for 1H NMR, and a Broker A VANCE 500 

MHz spectrometer operating at 500.0 MHz for 13C NMR. CDC13 was used as the solvent. 

Chemical shifts are reported in ppm and are relative to tetramethylsilane (0 = 0.00 ppm) 

for 1H NMR and CDC13 (0 = 77.0 ppm) for 13C NMR. Infrared (IR) spectra were 

acquired on neat samples using a Broker Tensor 27 spectrophotometer equipped with a 

MIRacle ATR accessory unit. Gas chromatography-mass spectrometry (GC-MS) for 

selected compounds were performed on a Hewlett Packard 57 lOA gas chromatograph 

using a Finnigan MAT ion trap detector. 
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TMSOO 
5,5-Dimethyl-2-(trimethylsilyloxy)-1,3-cyclohexadiene (24) 

According to a procedure by Buckle, 18 n-butyllithium (6.0 mL, 9.6 mmol) was added 

dropwise to a solution of diisopropylamine (1.25 mL, 8.92 mmol) in THF (20 mL) at 0 

°C. The mixture was cooled to -78 °C, and a solution of 4,4-dimethyl-2-cyclohexen-1-one 

(1.1 mL, 8.4 mmol) in THF (6 mL) was added dropwise. The resulting mixture was 

stirred for 1.5 h. TMSCl (1.1 mL, 8.7 mmol) was added, and the mixture was stirred for 

1.5 h. The mixture was warmed to room temperature and stirred for 45 min. The THF 

was removed under reduced pressure, leaving a residue. This residue was dissolved in 

pentane (20 mL). The pentane was removed under reduced pressure to give an orange, 

transparent liquid (0.92 g, 56%): IR vmax3045 (m), 3021 (w), 2946 (m), 1650 (s), 1598 

(m) cm-1
• 

1H NMR (CDC13): o 5.55 (2H, d, J= 1.4 Hz), 4.83-4.77 (1H, m), 2.11 (2H, d, J 

= 4.7 Hz), 1.01 (6H, s), 0.19 (9H, s). 13C NMR (CDC13): o 147.1, 140.1, 127.6, 101.2, 

37.3, 30.9, 26.6, 0.1. MS mlz (%):53 (38), 67 (44), 81 (48), 82 (64), 96 (100), 124 (24), 

147 (7) 197 (3, M+ + 1). 
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2, 5-Dimethyl-para-benzoquinone (27) 

According to a procedure by Zimmer, 19 a mixture of Fremy' s salt ( 4.80 g, 8.94 mmol) 

and sodium acetate solution (1.0 M, 8 mL) was added to a solution of2,5-dimethylphenol 

(0.48 g, 3.9 mmol) in ether (10 mL). The mixture was stirred for 2 h, and then extracted 

with ether (3 x 50 mL). The combined organic layers were washed with H20 (50 mL) 

and dried over MgS04• and the solvent was removed under reduced pressure to give 27 as 

a bright reddish-orange solid (0.25 g, 46%). mp: 70-71 °C. IR Vmax 3056 (w), 1663 (s) 

cm-1
• 

1H NMR (CDC13): o 6.70 (2H, q, J= 1.7 Hz), 2.1 (6H, d, J= 1.7 Hz). 13C NMR 

(CDC13): o 188.0, 145.8, 133.3, 15.4. 
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cis-2,5-Dimethyltricyclo[6.2.2.02
·
7]dodeca-4,9-diene-3,6-dione (28) 

1,3-Cyclohexadiene (0.03 mL, 0.3 mmol) was added to a solution of27 (20 mg, 0.15 

mmol) in CH2Cl2 (15 mL). The mixture was heated at reflux for 48 h, then cooled to 0 

°C. BF3·E~O (5.7 J.LL, 0.045 mmol) was added, and the mixture was stirred at room 

temperature for 48 h. Water was added ( 10 mL ), and the reaction mixture was extracted 

with ether (3 xiS mL). The combined organic layers were washed with 0.1 M aqueous 

NaOH solution (20 mL) and H20 (20 mL) and dried over MgS04, and the solvent was 

removed under reduced pressure. Flash chromatography yielded 28 as a yellow solid (32 

mg, 83%): mp: 59-61 °C (lit.23 60-62°C). IR Vmax 3043 (w), 2958 (m), 2870 (w), 1656 (s) 

cm-1
• 

1H NMR (CDC13): 0 6.51 (lH, s), 6.29 (1H, t, J= 7.3 Hz), 6.10 (lH, t, J= 7.3 Hz), 

3.08-3.01 (1H, m), 2.93-2.87 (lH, m), 2.51 (lH, s), 1.94 (3H, s), 1.91-1.84 (2H, m), 1.78-

1.70 (2H, m), 1.32 (3H, s). 13C NMR (CDC13): 0 203.0, 200.6, 150.4, 139.4, 136.6, 

132.2, 58.5, 51.2, 39.4, 37.3, 26.5, 26.2, 19.0, 16.5. 
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TBSO~ 
2-(tert-Butyldimethylsilyloxy)-1,3-cyclohexadiene (30) 

Compound 30 was prepared using a procedure by Buckle. 18 A solution of 2-cyclohexen-

1-one (0.25 mL, 2.6 mmol) in CH2Cl2 (10 mL) was cooled to 0 oc and Et3N (0.56 mL, 4.0 

mmol) was added slowly. After 15 min, TBSOTf(0.72 mL, 3.1 mmol) was added. The 

mixture was stirred for 3 0 min, warmed to room temperature for 2 h, poured into ether 

(100 mL), and washed with aqueous saturated NaHC03 (2 x 16 mL) followed by brine 

(16 mL). The combined organic layers were dried over MgSOiK2C03, and the solvent 

was removed under reduced pressure to give 30 as an orange, transparent liquid (0.27 g, 

50%): IR vmax 2910 (m), 1667 (m) cm-1
• 

1H NMR (CDC13): o 5.91-5.82 (lH, m), 5.73-

5.65 (lH, m), 4.89-4.82 (1H, m), 2.21-2.09 (4H, m), 0.93 (9H, s), 0.15 (6H, s). 13C NMR 

(CDC13): 0 146.2, 128.9, 124.6, 101.9, 22.5, 21.4, 0.1, -3.4. 
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1) 
5,5-Dimethyl-2-cyclohexen-1-one (32) 

According to a procedure by Buckle, 18 p-toluenesulfonhydrazide (11.3 g, 60.4 rnmol) 

was dissolved in MeOH (150 mL). 5,5-Dimethyl-1,3-cyclohexanedione (8.47 g, 60.4 

rnmol) was added followed by 8 drops of concentrated H2S04 • The mixture was stirred 

overnight and concentrated under vacuum. H20 (300 mL) was added followed by 

potassium carbonate (66.3 g, 476 mmol). The mixture was steam distilled, and the 

distillate was saturated with NaCl and extracted with ether (4 x 100 mL). The combined 

organic extracts were washed with brine (60 mL), dried over MgS04• and concentrated 

under reduced pressure to give 32 as a bright yellow, transparent liquid (3 .12 g, 51%): IR 

vmax 3589 (bw), 2958 (m), 1653 (s) cm-1
• 

1H NMR (CDC13): 0 6.88 (IH, dt, J= 4.1, 10.2 

Hz), 6.05 (lH, dt, J=2.0, 10.1 Hz), 2.29 (2H, s), 2.34-2.22 (2H, m), 1.06 (6H, s). 13C 

NMR (CDC13): o 199.9, 148.3, 129.0, 51.8, 39.9, 33.9, 28.3. 

72 



TBSO~ 
2-(tert-Butyldimethylsilyloxy )-5,5-dimethyl-1,3-cyclohexadiene (35) 

Based on a procedure by Buckle, 18 4,4-dimethyl-2-cyclohexen-1-one (0.25 mL, 1.9 mmol) 

was dissolved in CH2Cl2 (10 mL) and cooled to 0 °C. Et3N (0.41 mL, 2.9 mmol) was 

added dropwise. After 10 min, TBSOTf (0.64 mL, 2.8 mmol) was added. After 15 min, 

the mixture was warmed to room temperature and stirred for I h. The mixture was 

poured into ether (100 mL) and the solution was washed with aqueous saturated NaHC03 

(2 x 15 mL) followed by brine (15 mL). The solution was dried over MgSO/K2C03, and 

the solvent was removed under reduced pressure to give 35 as an orange-yellow, 

transparent liquid with a chemical yield based on integration of the crude NMR since the 

impurities could not be removed without destroying the product (0.48 g, 79%): IR vmax 

3401 (bw), 2907 (m), 1681 (m), cm-1
• 

1H NMR (CDC13): o 5.55 (2H, q), 4.81-4.74 (1H, 

m), 2.11 (2H, d, J= 4.6 Hz), 1.01 (6H, s), 0.93 (9H, s), 0.13 (6H, s). 13C NMR (CDC13): 

0 159.9, 158.5, 126.8, 124.9, 71.3, 45.7, 36.1, 34.4, 27.7, -3.0, -3.6. 
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cis-endo-8-(tert-Butyldimethylsilyloxy )-4-phenyl-4-azatricyclo [ 5.2.2.02
•
6

] undec-8-ene-

3,5-dione (37) 

A solution of30 (3.68 mg, 0.146 mmol) andN-phenylmaleimide (20 mg, 0.12 mmol) in 

dry toluene (20 mL) was sealed in a glass tube. The mixture was heated at 120 oc for 7 d. 

The mixture was cooled to room temperature, and the solvent was removed under 

reduced pressure to give 37 as a white solid (0.035 g, 79%): mp: 154-157°C. IR vmax 

3065 (w), 2943 (m), 2856 (w), 1733 (w), 1694 (s) cm·1
• 

1H NMR (CDC13): 0 7.49-7.18 

(5H, m), 4.98 (1H, dd, J= 6.9, 2.6 Hz), 3.27-3.19 (1H, m), 3.18-3.05 (1H, m), 3.04-2.89 

(2H, m), 1.67-1.56 (4H, m), 0.89 (9H, s), 0.17 (3H, s), 0.12 (3H, s). 13C NMR (CDC13): o 

178.1, 177.3, 154.8, 132.1, 128.9, 128.3, 126.4, 100.8, 45.2, 44.4, 38.1, 32.7, 25.2, 24.1, 

17.9, -4.6, -4.7. 
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endo-8-(tert-Butyldimethylsilyloxy)-2-methyl-4-phenyl-4-azatricyclo[5.2.2.02
·
6]undec-

8-ene-3,5-dione (39) 

A solution of2-methyl-N-phenylmaleimide (21.5 mg, 0.115 mmol) and diene 30 (31.9 

mg, 0.152 mmol) in toluene (10 mL) was sealed in a glass tube. The solution was heated 

at 115 oc for 2 d. The mixture was cooled to room temperature, and the solvent was 

removed under reduced pressure to yield 39 as a yellow oil with a chemical yield based 

on the integration of the crude 1H NMR spectrum (ca. 4 mg, 8%): 1H NMR (CDC13): o 

7.30-7.15 (5H, m), 5.91-5.69 (lH, m), 2.24-2.02 (7H, m), 1.43 (3H, s), 0.93 (9H, s), 0.12 

(6H, s). 
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endo-8-(tert-Butyldimethylsilyloxy)-2,1 0,1 0-trimethyl-4-phenyl-4-aza

tricyclo [ 5.2.2.02
•
6

] undec-8-ene-3,5-dione ( 40) 

A solution of2-methyl-N-phenylmaleimide (20.5 mg, 0.110 mmol) and diene 35 (36.2 

mg, 0.151 mmol) in toluene ( 1 0 mL) was sealed in a glass tube. The solution was heated 

at 115 oc for 2 d. The mixture was cooled to room temperature, and the solvent was 

removed under reduced pressure to yield 40 as a yellow oil with a chemical yield based 

on integration of the crude NMR (3.07 mg, 7%): 1H NMR (CDC13): 0 7.30-7.12 (5H, m), 

5.85-5.74 (1H, m), 2.00-1.95 (IH, m), 1.32-1.01 (4H, m), 1.13 (3H, s), 1.00 (6H, s), 0.91 

(9H, s), 0.12 (6H, s). 
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~ 
2-(tert-Butyldimethylsilyoxy)-1-propene (1 07) 

Compound 107 was prepared using a procedure by Buckle. 18 A solution of acetone (0.25 

mL, 3.4 mmol) in CH2Cl2 (10 mL) was cooled to 0 °C, and Et3N (0.47 mL, 3.4 mmol) was 

added dropwise. After 10 min, TBSOTf(0.78 mL, 3.40 mmol) was added. After 20 min, 

the mixture was warmed to room temperature and stirred for 1 h. The reaction mixture 

was poured into ether (100 mL) and washed with aqueous saturated NaHC03 (2 x 15 mL) 

and brine (15 mL). The combined organic layers were dried over MgSO/K2C03 and 

concentrated under reduced pressure to give 107 as a clear liquid (0.39 g, 66%): IR vmax 

2930 (m), 1636 (m) cm·1
• 

1H NMR (CDC13): 0 4.04 (2H, s), 1.77 (3H, s), 0.91 (9H, s), 

0.15 (6H, s). 13C NMR (CDC13): 0 156.2, 91.2, 25.7, 22.7, 18.1, -2.9, -4.6. 

77 



OTBS 

~ 
1-(tert-Butyldimethylsilyoxy)-1-phenylethene (114) 

According to a procedure by Buckle, 18 a solution of acetophenone (0.97 mL, 8.3 mmol) in 

dry CH2Cl2 (30 mL) was cooled to -78 °C, and Et3N (1.75 mL, 12.6 mmol) was added 

dropwise. After 25 min, TBSOTf(2.87 mL, 12.5 mmol) was added, and the mixture was 

stirred for 20 min. The mixture was warmed to room temperature and stirred for 17 h. 

The mixture was poured into ether (200 mL) and washed with aqueous saturated NaHC03 

(2 x 30 mL) and brine (30 mL). The organic layer was dried over MgSO/K2C03 and 

concentrated under reduced pressure to give crude 114 as an orange, transparent liquid 

(2.45 g, 80%): IR vmax 2930 (m), 1614 (m) cm-1
• 

1H NMR (CDC13): 0 7.68-7.59 (2H, m), 

7.37-7.23 (3H, m), 4.89 (1H, d,J= 1.7 Hz), 4.42 (1H, d,J= 1.8 Hz), 1.00 (9H, s), 0.21 

(6H, s). 13C NMR (CDC13): o 164.3, 161.2, 155.3, 152.0, 149.2, 129.6, 28.7, 15.2, -2.9. 
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1-Phenyl-1,5-hexanedione (115) 

Compound 115 was prepared according to a procedure by Mukaiyama.41 SnC12 (135 mg, 

0.0712 mmol), dried under reduced pressure at 100 oc for 2 h, and 

chlorotriphenylmethane (trityl chloride) (0.0201 g, 0.0721 mmol) were dissolved in 

CH2Cl2 (1 mL). This mixture was stirred for 45 min. The mixture was cooled to -78 °C. 

Compound 114 (0.333 g, 1.42 mmol) and 3-buten-2-one (0.12 mL, 1.4 mmol) were 

dissolved in CH2Cl2 (4 mL), and added to the SnCl/TrCl solution. This mixture was 

stirred for 1 00 min. The mixture was warmed to room temperature and poured into 

aqueous saturated NaHC03 (50 mL). The aqueous layer was extracted with CH2Cl2 (3 x 

20 mL). The combined organic layers were dried over MgS04 and concentrated under 

reduced pressure. Flash chromatography yielded 115 as a pale, yellow liquid (165 mg, 

6%): IR vmax 3058 (w), 2922 (m), 1709 (s), 1676 (s) em-'. 'H NMR (CDC13): o 8.01-

7.89 (2H, m), 7.62-7.51 (IH, m), 7.50-7.40 (2H, m), 3.03 (2H, t,J= 7.1 Hz), 2.58 (2H, t, 

J= 7.1 Hz), 2.16 (3H, s), 2.02 (2H, quintet, J= 6.8 Hz). 13C NMR (CDC13): o 208.7, 

199.9, 137.1, 133.4, 129.0, 128.4, 42.7, 37.4, 30.1, 18.2. 
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3-(2-Phenyl-2-oxoethyl)cyclohexanone (117) 

According to a procedure by Mukai yam~ 41 trityl chloride (30 1 mg, 0.108 mmol) and 

SnC12 (201 mg, 0.106 mmol) were dissolved in CH2Cl2 (1 mL). The mixture was stirred 

for 30 min. The mixture was cooled to -78 °C, and a solution of 2-cyclohexen-1-one 

(0.10 mL, 1.0 mmol) and 114 (269 mg, 1.15 mmol) in CH2Cl2 (4 mL) was added. The 

mixture was stirred for 1 00 min, warmed to room temperature and poured into aqueous 

saturated NaHC03 (30 mL). The mixture was extracted with CH2Cl2 (3 x 20 mL). The 

combined organic layers were dried over MgSO 4 and concentrated under reduced 

pressure. Flash chromatography yielded 117 as a yellow solid (0.903 g, 40%): mp: 74-75 

°C. IR vmax 3062 (w), 2918 (m), 1711 (s), 1680 (s) cm-1
• 

1H NMR (CDC13): 0 8.01-7.88 

(2H, m), 7.63-7.52 (1H, m), 7.51-7.41 (2H, m), 3.08-2.90 (2H, m), 2.63-1.88 (7H, m), 

1.81-1.41 (2H, m). 13C NMR (CDC13): 0 211.1, 198.8, 137.4, 133.5, 128.9, 128.2, 47.8, 

44.7, 41.2, 34.8, 31.3, 25.0. 
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7-(2-Phenyl-2-oxoethyl)spiro[4.5]decane-1,4-dione (118) 

Based on a procedure by Crane,33 a solution of 56 (992 mg, 0.399 mmol) in dry CH2Cl2 (3 

mL) was added to 118 (58.3 mg, 0.270 mmol). BF3·E~O (0.045 mL, 0.36 rnmol) was 

added, and the mixture was stirred for 23 h. The mixture was washed with H20 (2 x 10 

mL). The aqueous layers were re-extracted with CH2Cl2 (3 x 10 mL). The combined 

organic layers were washed with brine (20 mL) and dried over Mg804 • The mixture was 

filtered through a layer of charcoal, a layer of Florisil® and then flushed with CH2Cl2 (1 00 

mL) and ether (100 mL). The solvent was removed under reduced pressure, and flash 

chromatography was carried out on the residue to yield 118 as a cloudy, white, viscous oil 

(7.1 mg, 9%): IR vmax 3056 (w), 2934 (m), 1706 (s), 1669 (s) cm·1
• 

1H NMR (CDC13): o 

7.98-7.89 (2H, m), 7.63-7.52 (lH, m), 7.51-7.40 (2H, m), 3.01-2.88 (4H, m), 2.86 (2H, d, 

J= 6.4 Hz), 1.81-1.62 (5H, m), 1.54-1.35 (2H, m), 1.26 (2H, t, J= 7.8 Hz). MS mlz (%): 

51 (19), 77 (71), 105 (100), 120 (81), 164 (47), 284 (1, M+). 
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1,2-Dimethyl-1-cyclopentanol (121) 

Compound 121 was prepared based on a procedure from the Memorial University of 

Newfoundland 2003 Chemistry 2400 laboratory manual.45 2-Methylcyclopentanone (1.03 

g, 11.5 mmol) was dissolved in ether and was cooled to 0 °C. MeLi (1.6 M solution in 

hexanes, 16 mL, 22 mmol) was added dropwise, and the mixture was warmed to room 

temperature and stirred for 24 h. The mixture was quenched with saturated NH4Cl (12 

mL). The organic layer was washed with aqueous saturated NaHC03 (25 mL) and brine 

(25 mL) and dried over MgS04• The solvent was removed under reduced pressure to 

yield the diastereomers of 121 in a 2:1 ratio as a clear, colorless mixture with 2-

methylcyclopentanone 122 having a chemical yield based on integration of the crude 

NMR (0.46 g, 38%): 1H NMR (CDC13): 0 1.84-1.40 (7H, m), 1.57 (lH, bd, J= 2.3 Hz), 

1.26 (3H, s ), 1.17 (3H, s ), 0.94 (3H, d, J = 6.9 Hz), 0.89 (3H, d, J = 6.9 Hz). 13C NMR 

(CDC13): o 80.1, 44.0, 37.8, 32.1, 26.1, 20.8, 12.6. 
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2,6-Heptanedione (106) 

Compound 106 was prepared according to a procedure from the Memorial University of 

Newfoundland 2003 Chemistry 2400 laboratory manual.45 A mixture containing 120, 

121, and 122 (3.50 g, 36.3 mmol) was dissolved in concentrated H3P04 (4.6 mL). The 

mixture was distilled using a fractional distillation apparatus. The fraction with a boiling 

range of85-95 oc was washed with H20 (10 mL), aqueous saturated NaHC03 (10 mL), 

H20 (10 mL) and dried over MgS04• The MgS04 was extracted with pentane and 

filtered. The filtrate was not concentrated. MeOH (5 mL) was added to the filtrate, and 

the solution was cooled to -78 °C. Ozone was bubbled through the mixture until a light 

blue color was produced (30 min). Me2S (4 mL) was added, and the mixture was warmed 

to room temperature. N2 was blown over the mixture overnight to remove excess 0 3• 

The residue was washed with aqueous 5% CuS04 (3 x 10 mL). The organic layers were 

dried over MgS04 and filtered. The filtrate was extracted with ether. The solution was 

concentrated by blowing N2 (due to the instability of the compound, the solution was not 

evaporated to dryness.) over the surface to give the crude product 106 as a yellow, 

transparent oil (0.637 g, 16%): IR vmax 3400 (bw), 2939 (m), 1707 (s) cm-1
• 

1H NMR 

(CDC13): o 2.47 (4H, t, J= 7.1 Hz), 2.13 (6H, s), 1.85 (2H, quintet, J= 7.0 Hz). 13C 

NMR (CDC13): o 208.6, 42.4, 29.8, 17.6. 
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2,6-Heptanediol (125) 

Based on a procedure by Melanson,40 NaBH4 (0.264 g, 6.99 mmol) was added in portions 

to a solution of crude 106 (0.395 g, 3.08 mmol) in MeOH (65 mL). The reaction mixture 

was stirred at room temperature for 48 h. H20 was added, and the aqueous layer was 

extracted with CH2Cl2 (3 x 20 mL). The combined organic layers were washed with 

brine (20 mL). The combined aqueous layers were re-extracted with EtOAc (3 x 20 mL). 

The combined organic layers were dried over MgS04 and concentrated by blowing N2 

over the surface of the solution followed by simple distillation to yield 125 as a 

transparent, colorless oil and a mix of the meso and the racemic diastereomers (0.0540 g, 

13%): IR vmax 3335 (bs), 2931 (s), 1711 (w) cm-1
• 

1HNMR (CDC13): o 3.81 (2H, quintet, 

J= 6.1 Hz), 1.63-1.43 (6H, m), 1.20 (6H, d, J= 6.7 Hz). 13C NMR (CDC13): o 71.3, 

39.5, 30.1, 14.6. 
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2-(2-Iodoethyl)-2-methyl-1,3-dioxolane (1 00) 

Based on a procedure by Stowell,46 aqueous concentrated HI (5.4 mL, 72 mmol) was 

added to a solution of3-buten-2-one (2.51 g, 35.8 mmol) in benzene (30 mL). The 

mixture was stirred for 2 h. The two layers were separated, and the organic layer was 

poured into aqueous saturated NaHC03 (30 mL). The organic layer was washed with 

aqueous saturated NaHC03 (3 x 30 mL) and brine (30 mL). The combined aqueous 

layers were re-extracted with benzene (2 x 25 mL). The combined organic layers were 

dried over MgS04 • The filtered mixture was added top-TsOH (0.206 g, 1.09 mmol), and 

ethylene glycol (2.2 mL, 39 mmol) was added. The mixture was heated at reflux for 4 h, 

and H20 was removed using a Barrett apparatus. The cooled mixture was washed with 

aqueous saturated NaHC03 (2 x 25 mL). The organic layer was dried over MgS04 and 

concentrated under reduced pressure to yield a greenish black liquid. This liquid was 

passed through neutral alumina (10 em x 1 em) using hexanes (85 mL) as the eluting 

solvent. The solution was concentrated under reduced pressure to yield 100 as a yellow, 

transparent liquid (1.78 g, 21%): IR vmax 2933 (m), 1624 (w), 532 (m) cm-1
• 

1H NMR 

(CDC13): o 3.99-3.88 (4H, m), 3.20-3.13 (2H, m), 2.32-2.24 (2H, m), 1.31 (3H, s). 13C 

NMR (CDC13): o 109.4, 64.5, 44.0, 23.5, -2.4. 
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2,5-Hexanediol (127) as a diastereomeric mixture 

Based on a procedure by Melanson,40 NaBH4 (2.49 g, 65.7 rnmol) was added in portions 

to a 0 oc solution of2,5-hexandione (5.01 g, 43.9 rnmol) in MeOH (80 mL). The mixture 

was stirred for 24 h. H20 (50 mL) was added, and the mixture was extracted with CH2Cl2 

(3 x 30 mL). The combined organic layers were washed with brine (60 mL), and the 

aqueous layers were re-extracted with ethyl acetate ( 4 x 40 mL ). The combined organic 

layers were dried over MgS04 and concentrated under reduced pressure. Flash 

chromatography was carried out using 50% EtOAclhexane as the eluting solvent to yield 

127 as a pale, yellow oil (3.55 g, 69%): IR Vmax 3320 (bs), 2966 (s), 2930 (s) cm-1
• 

1H 

NMR (CDC13): o 3.89-3.77 (2H, m), 2.06 (2H, bs), 1.66-1.46 (4H, m), 1.21 (6H, d, J= 

6.1 Hz). 13C NMR (CDC13): o 68.2, 67.6, 36.0, 34.8, 23.7, 23.1. 
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5-(tert-Butyldimethylsilyloxy)-2-hexanol (130) 

According to a procedure by Melanson,40 the mixture of diastereomers 127 (0.75 g, 6.4 

mmol) was dissolved in dry ether (7 mL) and TBSCl (0.43 g, 2.9 mmol) was added, 

followed by imidazole (0.22 g, 3.2 mmol). The mixture was stirred at room temperature 

for 24 h. H20 (6 mL) was added, and the mixture was extracted with ether (3 x 7 rnL). 

The combined organic layers were washed with H20 (2 x 6 rnL) and brine (6 mL), dried 

over MgS04, and concentrated under reduced pressure to yield 130 as a pale, yellow oil 

(0.16 g, 24%): IR vmax 3334 (bw), 2929 (bm) cm-1
• 

1H NMR (CDC13): o 3.96-3.72 (2H, 

m), 1.69-1.49 (4H, m), 1.29-1.12 (6H, m), 0.90 (9H, s), 0.10 (6H, s). 13C NMR (CDC13): 

0 68.4, 65.8, 35.9, 35.0, 31.6, 25.6, 23.8, 18.0, 15.2, -3.6. 
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5-(tert-Butyldimethylsilyloxy)-2-hexanone (101) 

Acccording to a procedure by Martin,47 PDC (0.162 g, 0.431 rnmol) was suspended in dry 

CH2Cl2 (5 mL), and a solution of130 (0.105 g, 0.452 mmol) in dry CH2Cl2 (5 mL) was 

added dropwise. The mixture was heated at reflux for 24 h under a drying tube 

containing CaCl2 in the condenser. The mixture was diluted with ether, run through 

Celite, and the Celite was flushed with ether (150 mL). The mixture was then washed 

with H20 (6 x 25 mL), and the combined aqueous layers were re-extracted with ether (3 x 

20 mL). The combined organic layers were dried over MgS04 and concentrated under 

reduced pressure to give 100 as a yellowish-brown liquid (0.454 g, 92%): IR vmax 3430 

(bw), 2909 (s), 1705 (w) cm-1
• 

1H NMR (CDC13): 0 3.82 (IH, m), 2.55-2.46 (2H, m), 

2.15 (3H, s), 1.82-1.48 (2H, m), 1.12 (3H, d, J= 6.4 Hz), 0.88 (9H, s), 0.05 (3H, s), 0.04 

(3H, s). 13C NMR (CDC13): o 203.2, 66.1, 38.7, 35.9, 34.8, 31.2, 25.7, 15.7, -3.4. 

88 



OH 

~ 
OTIPS 

5-(Triisopropylsilyloxy )-2-hexanol (132) 

Compound 132 was prepared based on a procedure by Melanson.40 TIPSCl (0.53 mL, 2.5 

mmol) was added to a solution of 127 (0.649 g, 5.49 mmol) in dry ether (6 mL). This 

was followed by the addition of imidazole (0.188 g, 2.76 mmol). Dry ether (4 mL) was 

added, and the mixture was stirred overnight. H20 (6 mL) was added and the aqueous 

layer was extracted with ether (3 x 7 mL ). The combined organic layers were washed 

with H20 (10 mL) and brine (10 mL), dried over MgS04, and concentrated under reduced 

pressure to yield 132 as a pale, yellow oil. Since impurities could not be separated 

without destroying the product, a chemical yield is reported based on integration of the 

crude NMR (0.52 g, 11%): 1H NMR (CDC13): o 3.90-3.81 (2H, m), 1.69-1.50 (4H, m), 

1.32-1.19 (3H, m), 1.18 (6H, d, J= 6.1 Hz), 1.14-1.02 (18H, m). 13C NMR (CDC13): o 

68.3, 67.9, 65.7, 35.9, 35.0, 23.7, 23.4, 17.7, 12.3. 
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5-(Triisopropylsilyloxy)-2-hexanone (133) 

According to a procedure by Martin,47 compound 132 (0.520 g, 1.89 mmol) in dry CH2Cl2 

(20 mL) was added to a suspension ofPDC (0.790 g, 2.10 mmol) in dry CH2Cl2 (30 mL). 

The mixture was heated at reflux for 24 h with a drying tube containing CaC12 in the 

condenser. The mixture was diluted with ether (60 mL) and flushed through celite 

followed by ether (250 mL). The solvent was reduced by 75%, and the residue was 

washed with H20 (5 x 60 mL). The aqueous layers were re-extracted with ether (3 x 50 

mL). The combined organic layers were washed with brine (80 mL), 0.01 M HCl (4 x 15 

mL), dried over MgS04, and concentrated under reduced pressure to yield 133 as a 

reddish-brown, thick oil. Since impurities could not be removed without destroying the 

product, a chemical yield is reported based on integration of the crude NMR (0.251 g, 

68%): IR vmax 3448 (bw), 2892 (s), 1711 (w) em-'. 1HNMR (CDC13): o 4.09-3.981 (1H, 

m), 2.53 (2H, t, J= 9.1 Hz), 2.15 (3H, s), 1.81-1.68 (2H, m), 1.15 (3H, d, J= 6.3 Hz), 

1.10 (21H, s). 13C NMR (CDC13): o 209.1, 67.4, 39.1, 33.2, 29.3, 23.3, 17.7, 12.3. 
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Methyl2-(3-dioxolanobutyl)-3-oxobutanoate (109) 

According to a procedure by Melanson,40 a solution of methyl acetoacetate (0.74 mL, 6.9 

mmol) in dry THF (9 mL) was added dropwise to a solution ofNaH (0.172 g, 7.18 mmol) 

in dry THF (9 mL). A solution of 100 (1.50 g, 6.21 mmol) in dry THF (9 mL) was added 

to the mixture. The mixture was heated at reflux for 20 h, after which time it was cooled 

to room temperature and washed with brine (2 x 10 mL). The combined aqueous layers 

were re-extracted with EtOAc (6 x 10 mL). The organic layers were dried over MgS04 

and concentrated under reduced pressure. Flash chromatography was carried out on the 

residue using neutral alumina with 20% EtOAc/hexane as the eluting solvent to yield 109 

as an orange-brown liquid (0.14 g, 7%): IR vmax 3469 (bw), 2955 (bm), 1716 (s) cm-1
• 

1H 

NMR (CDC13): 0 3.98-3.88 (4H, m), 3.74 (3H, s), 3.50 (1H, t, J= 7.4 Hz), 2.24 (3H, s), 

2.03-1.91 (2H, m), 1.69-1.58 (2H, m), 1.32 (3H, s). 13C NMR (CDC13): 0 203.0, 170.2, 

109.3, 83.7, 64.6, 52.3, 36.2, 28.9, 23.7, 22.6. 
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Methyl 3-oxo-2-(2-propynyl)butanoate (135) 

Based on a procedure by Melanson,40 methyl acetoacetate (0.94 mL, 8.7 mmol) in dry 

THF (10 mL) was added dropwise to a suspension ofNaH (0.292 g, 12.2 mmol) in dry 

THF (10 mL). A solution ofpropargyl bromide (1.38 mL, 15.5 mmol) in dry THF (5 mL) 

was added to the reaction mixture. The mixture was heated at reflux for 24 h, cooled, and 

washed with brine (2 x 25 mL ). The combined aqueous layers were re-extracted with 

EtOAc (4 x 25 mL). The combined organic layers were dried over MgS04 and 

concentrated under reduced pressure to give 135 as an orange, transparent liquid with a 

chemical yield based on integration of the crude NMR (1.10 g, 66%): 1H NMR (CDC13): 

o 3.78 (3H, s), 3.75 (1H, t, J= 7.5 Hz), 2.73 (lH, m), 2.33 (3H, s), 2.01 (1H, t, J= 2.8 

Hz). 
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Methyl 3-oxo-2-(2-propenyl)butanoate (137) 

According to a procedure by Melanson,40 methyl acetoacetate (0.94 mL, 8.7 mmol) in 

THF (15 mL) was added to a solution ofNaH (0.301 g, 12.5 mmol) in THF (30 mL). 

After 10 min, a solution of allyl iodide (0.79 mL, 8.6 mmol) in THF (15 mL) was added. 

The mixture was heated at reflux for 42 h after which time it was cooled and washed with 

brine (2 x 25 mL ). The combined aqueous layers were extracted with ethyl acetate ( 4 x 5 

mL). The combined organic layers were dried over MgS04 and concentrated under 

reduced pressure to yield 137 an orange-brown, transparent liquid with a chemical yield 

based on integration of the crude NMR (1.10 g, 65%): 1H NMR (CDC13): o 5.81-5.66 

(1H, m), 5.17-5.04 (2H, m), 3.74 (3H, s), 3.55 (lH, t, J = 7.3 Hz), 2.60 (2H, m), 2.24 (3H, 

s). 
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Based on a procedure by Melanson,40 the mixture containing compounds 110, and 137 

(0.5016 g, 1.842 mmol) dissolved in dry THF (4 mL) was added to a solution ofNaH 

(0.0849 g, 3.538 mmol) in dry THF (2 mL). A solution of compound 100 (0.8533 g, 

3.538 mmol) in dry THF (4 mL) was added. The mixture was retluxed for 44 h. The 

mixture was cooled to room temperature and washed with brine (2 x 10 mL ). The 

aqueous layers were re-extracted with ethyl acetate (6 x 10 mL). The combined organic 

layers were dried over MgS04 and concentrated under reduced pressure to yield a mixture 

of 100, 109, 137 as an orange, transparent liquid (1.1645 g, 79%). NMR signals for these 

compounds have been reported previously in this document. 
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2,4-Pentandione diacetal (139) 

Based on a procedure by Stowell,46 p-TsOH (0.196 g, 1.03 mmol) was added to a solution 

of2,4-pentanedione (10.0 g, 100 mmol) in benzene (120 mL) followed by the addition of 

ethylene glycol (12.3 mL, 220 mmol). A Dean-Stark apparatus was attached to the 

reaction flask, and the mixture was heated at reflux for 48 h. The mixture was cooled to 

room temperature and washed with saturated NaHC03 (2 x 100 mL). The combined 

aqueous layers were re-extracted with CH2Cl2 (3 x 75 mL). The combined organic layers 

were dried over MgS04 and concentrated under reduced pressure to yield 139 as a yellow, 

transparent liquid (1 0.2 g, 54%): IR vmax 3502 (bw), 2933 (bw) em-'. 1H NMR (CDC13): 0 

3.87 (8H, s), 2.03 (2H, s), 1.43 (6H, s). 13C NMR (CDC13): o 108.8, 64.4, 46.4, 24.8. 
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5-Methyl-4,7-dioxooctanoic acid, (2-hydroxyethyl) ester (140) and 

5, 7 -dimethyl-4,8-dioxoundecanedioic acid, bis(2-hydroxyethyl) ester (141) 

Compound 139 (0.501 g, 2.66 mmol) was dissolved in CH2Cl2 (1 mL) and cooled to 

-78 °C. BC13 ( 4.3 mL, 4.3 mmol) followed by 56 (0.988 g, 4.29 mmol) were added to the 

reaction mixture. The mixture was warmed to room temperature overnight. The mixture 

was then cooled to -78 oc and HF (2.2 mL, 0.13 mmol) dissolved in MeOH (8.7 mL, 

0.21 mmol) was added, and the mixture was stirred for 15 min. The mixture was warmed 

to room temperature and stirred for 1.5 h. The mixture was concentrated under reduced 

pressure and TF A (8 mL, 0.1 mol) was added. The mixture was stirred overnight, washed 

with H20 (2 x 50 mL), and back-extracted with CH2Cl2 (3 x 50 mL). The organic layers 

were washed with brine (4 x 60 mL) and dried over MgS04 • The solvent was removed 

under reduced pressure to give a mixture of 140 and 141 as a cloudy, yellow oil (a trace 

amount): 1H NMR (CDC13): 0 4.22 (6H, t, J = 4.8 Hz), 3.84 (6H, t, J = 7.5 Hz), 2.81 

(6H, t, J= 4.7 Hz), 2.51 (3H, t, J= 4.8 Hz), 2.34-2.29 (6H, m), 2.11 (2H, d, J= 6.2 Hz), 

2.05 (3H, s), 1.68 (9H, d, J= 6.1 Hz). 
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Appendix A 

1H and 13C NMR Spectra 
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