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Abstract

This thesis reports the study of a series of novel acetylenic 7r-extended

tetrathiafulvalene derivatives (exTTFs). The detailed research is divided into two

major projects. In the first project, acetylenic anthraquinoid-type exTTFs (referred

to as TTFAQs) were synthesized and characterized. The target compounds have

rigid macrocyclic enyne conjugated 7r-frameworks which can be constructed by

a one-pot, 4-fold Sonogashira coupling strategy. The molecules show interesting

solid-state stacking in single crystals, and rich electronic and redox properties as

characterized by UV-vis and fluorescence spectroscopy, cyclic voltammetry, and

spectroelectrochemi try. In the second project, a series of acetylenic tetrathiafulvalene

vinylogues (TTFVs) and their structural analogues, oligoyne-derived TTFs, were

synthesized and studied. Two routes are explored for the selective formation of

macrocyclic TTFV and acyclic TTFV oligomers. Electronic and redox properties

of these molecules were characterized by various instrumental analyses. Oligoyne­

TTFs undergo electropolymerization to form stable TTFV-containing polymer films

which show electrochromic behavior. Solid-state reactivity of oligoyne-TTFs were

studied by differential scanning calorimetric and thermogravimetric analysis. Finally,

in a side project, a series of TTFV-centered tweezer-like molecules and TTFV-crown

ether hybrids were designed and synthesized as supramolecular hosts for [60]fullerene

and metal cations.
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Chapter 1

Introduction

1.1 A Brief Overview of Tetrathiafulvalene and 7T'-

Extended Tetrathiafulvalene Derivatives

1.1.1 Structures of Tetrathiafulvalenes

Tetrathiafulvalene (TTF) is a sulfur-containing heterocyclic compound, the structure

of which consists of two 1,3-dithiole rings connected via a carbon-carbon double bond.

Structure 1 shown in Figure 1.1 is the simplest TTF, from which much more complex

TTF analogues can be derived by expanding its 1r-conjugated molecular skeleton.

Figure 1.1: Structure of tetrathiafulvalene.

1r-Extended TTFs (exTTFs) generally refer to larger TTF analogues with various

-------



conjugated moieties attached to either the side chain positions or placed in between

the two dithiole rings. For example, compounds 2-4 in Figure 1.2 illustrate exTTFs

with fused aromatic structures on the side chain positions of dithiole rings, H and

compounds 5-8 are exTTFs containing different 7r-bridges between the two dithiole

rings of TTF. 7-10

Figure 1.2: Selected structures of 7r-extended tetrathiafulvalenes.

1.1.2 General Properties of TTFs

TTFs and exTTFs are well known for their excellent electron donating abilities that

stem from the remarkable stability of their oxidized cationic products. Unsubstituted

TTF 1 can readily donate up to two electrons through two successive reversible single-

electron transfer proces es, with E~ox = 0.34 V, E20x = 0.78 V vs Ag/AgCI in MeCN. ll

The dithiole ring of TTF upon oxidation becomes a 6-7r electron aromatic system,

and the gained aromaticity greatly stabilizes the resulting cationic and dicationic

species. The second oxidation potential (E2ox ) of TTF is higher than the first one

(E~ox)' This is partially due to the destabilizing Coulombic repulsion between the



two close-lying positive charges in the dications [TTF]2+ (Scheme 1.1). For TTF

derivatives featming a sufficient degree of electron delocalization through extended

7r-conjugated frameworks, the Coulomb repulsion however can be effectively reduced.

As a result, the gap between the two oxidation potentials may decrease or even reverse

due to the enhanced stability of the TTF dication. For instance, the second oxidation

of exTTF 9 (Figure 1.3) was found to be so much easier than the first oxidation

step that 9 actually underwent a simultaneous two-electron transfer upon oxidation.

Such electrochemical behavior, referred to as the "inverted potential" scenario, is a

commonly seen property among numerous exTTFs. The electron donating property

of a substituted TTF is also significantly affected by the natme of its substituent

groups. As a general trend, an electron-withdrawing substituent would reduce the

electron-donating ability of TTF, therefore resulting in increased oxidation potentials,

and vice versa for an electron-donating group. 12 The electronic substitution effect thus

offers a useful approach to finely tune the electronic properties of TTFs to be suitable

for device applications.

F\ F\ F\

:X: iT SIS ~: :X::s"s+
'=.I '=.I '=.I
TIF [TTFf [TTF]2+

Scheme 1.1: Stepwise two-electron oxidation of unsubstituted TTF.

1.1.3 Recent Applications of TTFs

TTFs have found many applications, most of which are based on their electron

donating abilities. In the latter part of this section, an overview of these applications



9a,R=H
9b,R=SMe
9c,R=SCH2CH2S
9d,R=Me
ge,R-R= (CH=CH)2

Rf=(R

'*~RFigure 1.3: Examples of exTTFs bearing an anthraquinoid central unit.

is given with the emphasis on the most recent breakthroughs. The purpose of this

section is to show the broad applications of TTF that are enabled and benefited from

rational molecular design and engineering.

1.1.3.1 Applications of TTFs in Organic Conductors and Superconduc-

tors

The first and most important application of TTFs is in the field of organic

conductors and superconductors. As early as 1972, the first organic conductor

[TTFj+CI- was reported by Wudl. 13 In the solid structure of this charge-transfer

salt, the 1r-donors (TTFs) had their central double bonds effectively stacked to allow

sufficient intermolecular orbital interactions. This salt was found to show metallic

electrical conductivity along the direction of molecular stacking. In the following

year, another remarkable charge-transfer compound, TTF-TCNQ (TCNQ stands for

tetracyanoquinodimethane), was reported to exhibit a high conductivity value of

ca. 400 S cm-1 at room temperature. 14 In the TTF-TCNQ complex, delocalized

electrons were readily generated by intermolecular charge transfer from TTF to

TC Q, which accounted for the excellent conductivity of the materials. 15 Since then,

a large number of TTF-based organic metals have been synthesized and some of



them have shown superior superconductivity.16 One excellent example is K-(BEDT-

TTFhCu(N(CNh)Cl (BEDT-TTF stands for bis(ethylenedithio)terathiafulvalene).

First discovered in 1990, this material still holds the record of highest transition

temperature Tc = 12.8 K at ambient pressure. 17 Nowadays, TTF-based conductors

and superconductors are still topics of active and growing research interest. Besides

single crystals of charge transfer complex, 18-20 TTF-based materials prepared in other

micromorphologies such as thin films,21-23 organogels,24 01igomers,25 polymers, 26-28

and neutral coordination polymers 29 have also been found to show conductivity or

superconductivity upon doping. In general, the conductivity of a solid material can

be improved by facilitating charge carrier generation. For TTF-based materials, this

can be achieved by lowering the energy gap between the TTF donor and associated

acceptor units. In addition, the formation of conduction path within the solid also

plays a critical role in affecting conductivity.30 In this light, optimal molecular solid­

state packing that allows for efficient intermolecular overlap of 7r or d orbital is

often desirable. Molecular structural tailoring and modification therefore present

an important and indispensable approach for tuning the conductivity of TTF-based

materials. Some examples of TTF-based molecular and macromolecular conductors

are given in Figure 1.4.



14a,A=Pb2+

14b,A=Zn2+

Figure 1.4: Selected examples of TTFs showing conductivity or superconductivity.



1.1.3.2 Applications of TTFs in Organic Field Effect Transistors

TTF and derivatives have been frequently employed as the active components in

organic field effect transistors (OFETs), mostly acting as p-type semiconductor .31-34

In contrast to the properties needed for conductors, less efficient intermolecular

interactions is a prerequisite for TTF materials in OFETs in order to retain semi­

conductivity. For example, b nzene-fused bis(tetrathiafulvalene) 15 with 2-ethylhexyl

chains (see Figure 1.5) was used as the p-channel semiconductors in a solution­

processed OFET. 32 The device achieved a mobility of 5.6 x 10-4 cm2V-1s-1 with

an on/off ratio of 1.6 x 104• The presence of branched alkyl chains in 15 was

believed to contribute to the excellent OFET performance, since they led to reduced

conductivity of the thin flim by prohibiting tight intermolecular packing and enhanced

solubility (processability). In 2009, Roncali studied a series of TTFs with different

spacers, including N-methylpyrrole, furan, thiophene, and meta- or para-phenylene

linkages. 33 It was reported that the TTF bearing a meta-phenylene spacer gave the

highest mobility and on/off ratio. Such a good performance was ascribed to the

spacer effects that modulated the vertical self-assembly of molecules and increased

the first oxidation potential of the TTF. TTFs have also been used as source/drain

(S/D) electrodes in OFETs.35,36 It was demonstrated that organic bottom-contact

transistors using TTF-TC Q with metallic conductivity as SID electrodes provided

smaller contact resistance and larger overall mobility by more than one order of

magnitude than those using Au electrodes. 35



15R=2-elhylhexyl

Figure 1.5: Two TTF derivatives that have found use in the fabrication of high

performance OFETs.

1.1.3.3 Applications of TTFs in Plastic Solar Cells

TTFs are good candidates for making solar cell materials as well. 37 One way to

increase the efficiency of solar energy conversion is to generate a stabilized charge-

separated (C-S) state upon light irradiation in a donor-acceptor system. TTFs are

suitable electron donors for this purpose because they can be easily oxidized, and

the resulting cations and dications are stabilized by aromaticity. Upon interaction

with a suitable acceptor such as CGO, facile charge transfer from TTF to the acceptor

unit can be promoted by photon excitation, generating stabilized radical ion pairs.

This is the basic working principle for TTF-based organic solar cells. To achieve

long-lived photoinduced C-S states, tuning of the linkers between the acceptor and

TTF groups is a molecular approach frequently sought after in order to decelerate

charge recombination that follows photoinduced charge separation. In addition

to prolonged lifetime of charge-separated species, sufficiently high charge transfer

mobility is another important factor governing the performance of organic solar cells.

With the high mobilities observed in TTF-based OFETs, it is widely believed that

TTF-based donor materials should facilitate the active layer of organic solar cell to

attain good charge transfer mobility.

There have been a large number of TTF-based donor-acceptor materials developed



for solar cell fabrication. Among them the TTFAQ-C6o /NT system has recently

attracted enormous interest and it is discussed at length in Section 1.2. Herein we first

focus on several representatives of TTF-based D-A molecular and macromolecular

systems that have been extensively investigated as solar cell materials in recent years.

In 2007 a TTF-C60- TTF triad 17 (Figure 1.6) was reported. 38 The structure of 17 is

composed of a pyrozoline-attached C60 acceptor and two TTF donors connected via

amide linkages. This compound was characterized with a very fast photoinduced

C-S rate (> 3.8 x 109 S-1) and a high efficiency (<1> > 0.85). In addition, the

C-S state was remarkably stable with a lifetime of 230 ns in CH2CI2 . It was

suggested that the pyrozoline ring participates in the photoinduced electron transfer

process and accounts for its much longer lifetime than other analogous TTF-C60- TTF

triads. TTF-based polymers have also found usefulness in solar cell devices. For

example, polymer TTF-PAE 18 shown in Figure 1.6 (where PAE refers to poly(p­

aryleneethynylene)s) was designed to exhibit enhanced photovoltaic properties. 39 The

conjugated PAE backbone of 18 acted as electron acceptor, while the coplanarity

of the main chain with TTF side groups allowed continuous 7l"-stacking between

molecules. This molecular design motif appears to be significantly advantageous over

other types of TTF-fused polymers.

1.1.3.4 Applications of TTFs in Chemical Sensors

TTFs have been widely used in the field of chemical sensing, either functioning as

electron mediators4Q--44 or as agents to translate binding events into detectable signals

such as UV-Vis absorption and fluorescence spectral changes or electrochemical

responses. 45 For example, a TTF-TC Q/MW T modified Au electrode immobilized



Figure 1.6: 1\\'0 examples of TTF derivatives for solar cell applications.
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with horseradish peroxidase (HRP) was used for the detection of H20 2 at 0 V. 41

TTF-TC Q served as an electron mediator to facilitate the electron transfer from the

active centre of HRP to the electrode, thus catalyzing the reduction of H20 2 by HRP.

Taking advantage of the electrocatalytic beahaviors of TTF-TCNQ, a PVC/TTF­

TCNQ (PVC, polyvinyl chloride) composite electrode was fabricated for simultaneous

detection of ascorbic acid and uric acid in a flow injection system. 42

TTF-based chemosensors generally consist of various receptor groups linked to

TTF unit(s). The receptor is capable of binding to analytes of interest in a

selective manner, while the binding event induces detectable changes in the electronic

properties of the TTF core. 46 For example, crown ether appended TTFs 19 and 20 in

Figure 1.7 were found to show good sensing properties for Pd2+. 47 In these molecules,

the crown ether moieties acted as metal receptors, and they communicated with the

TTF cores via conjugated linkages. When the binding event 0 curred, two types of

signals would be translated. First, the binding of Pd2+ with the crown ether increased

its electron accepting ability, leading to an observable redshift of the charge-transfer

band in the UV-Vis absorption spectrum. Second, the electron density on the TTF

core was decreased, which resulted in a positive shift of the first oxidation potential.

The second oxidation potential was shifted as well because the binding metal ion was

not released by repulsion from the TTF cation due to the remoteness of the binding

site.

Aside from cation sensors, TTF-based anion sensors have also been developed.

Calix[4]arene is a commonly employed anion receptor to be combined with TTF

units, for example, compounds 21-24 in Figure 1.8. 48 In these sensors, the rigid

molecular structure of calix[4]arene allows for preorganization of TTF side chains

11



Figure 1.7: TTF-crown ether hybrids as cation sensors.

that work together with the calix[4]arene to produce a suitable cavity for selective

binding. Moreover the amide linker groups were designed to effect H-bonding to

enhance affinity for anions. Nevertheless, only compound 21 showed electrochemical

sensory behavior for anions, whereas the other molecules did not afford significant

cyclic voltammetric (CV) changes on binding with anions. It was reasoned that the

intramolecular H-bonds taking place in compound 22 and 24 hindered their binding

with anions, and the molecular rigidity of compounds 23 and 25 disfavored anion

binding as well.

12



Figure 1.8: Examples of TTF-calix[4]arenes as anion sensors.
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TTFs are also useful building components in the design of sensors for neutral

compounds and supramolecules. For instance, TTFs bearing a calix[4]pyrrole receptor

was found to show good sensory performance for nitroaromatic explosives including

1,3,5-trinitrobenzene (TNB), 2,4,6-trinitrophenol (T P), and 2,4,6-trinitrotoluene

(TNT).49 The calix[4]pyrroles in compounds 26 and 27 (Figure 1.9) formed defined

cavities with annulated TTF subunits as binding pockets. Two non-covalent forces are

operative in binding with nitroaromatic analytes: (1) H-bonding interactions effected

by the pyrrolic N-H protons, and (2) extra 7f surfaces provided by annulated aromatic

systems on the TTF side chains. The complexation of the TTF-calix[4]pyrroles with

nitroaromatic compounds led to a dramatic color change that was observable by the

naked eye. Recently, TTFs were applied to DNA sensing. For example, a TTF­

anthracene 28 encapsulated SW T nanocomposite was found to adsorb D A to give

electrochemical sensing properties. 50

14
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Figure 1.9: Structures of TTFs capable of sensing neutral analytes.
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1.1.3.5 Applications of TTFs in Redox-Controlled Molecular Switches

TTFs are important building blocks for the construction of redox-controlled molecular

switches, owing to their excellent redox behaviors and readily tunable electronic

properties. 51-53 First, most TTFs show reversible redox properties, a must for the

stability of redox switches. Second, different oxidation states of TTFs can be

produced by either chemical or electrochemical means, allowing for two convenient

approaches to exert inputs. Third, TTFs in different oxidation states exhibit different

electronic properties, whi h in turn affords straightforward output signals such as

UV-Vis absorption, fluorescence, and conductivity. Of particular interest is that

in numerous cases TTFs in different oxidation states were found to exhibit very

prominent electrochromic effects, such that the dramatic color changes became visibly

detectable. Figure 1.10 lists a few selected structures of TTF-based molecules

displaying intriguing redox switching properties. For instance, compound 33 was

attached to the surfaces of metal electrodes via the terminal thiolacetyl anchors. The

conductance of this molecule was measured to be high at low voltage with significant

dependence on the oxidation state of TTF. In 2009, a type of TTF-porphyrin based

redox fluorescent switch was reported. 54 In the neutral state, the fluorescence of the

porphyrin units was almost quenched by electron transfer from TTF to porphyrin.

Upon oxidation this electron transfer process was attenuated and the fluorescence of

the porphyrin was hence restored.

16
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Figure 1.10: Examples of TTF-based redox-controlled molecular switches.
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The input/output windows of TTF-based redox switches can be further expanded

when TTF cores in different oxidation states interact with other molecules. A

three-pole supramolecular switch was devised in 1999, which showed three stages

controllable by different voltage inputs. 55 As shown in Figure 1.11, in the neutral

state, TTF was bound to CBPQT4+ (CBPQT, cyc1obis(paraquat-p-phenylene)) by

charge-transfer and 1r - 1r interactions. Upon oxidation to the radical cation, TTF

was released as a free species due to electrostatic repulsion. When further oxidized

to the dication, TTF complexed with the cation receptor-crown ether 1/5DN38CI0.

The three stages shown in Figure 1.11 were associated with distinct colors and the

system was therefore proposed to be useful in electrochromic display devices.

fO~o~ol

~ ~yv yv
°lo~o~ofo

CBPQr+

CBPQr+·TIF

Figure 1.11: Mechanism of a three-hole TTF redox switch.
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TTF-based redox switches can also be used as the integral components for various

molecular machines, especially the "shuttle-like" devices. 56-58 In general, such systems

require three essential parts to be functional-a ring component and two stationary

platforms. Figure 1.12 shows a number of examples of molecular machines containing

TTF as the active unit. Of these compounds, the ring component is a cyclic compound

that can move along the molecular axis, such as CBPQT4+ or ,B-cyclodextrin. 58 The

two stationary platforms show affinity for the ring component through non-covalent

forces. One of them is TTF which interacts strongly with the ring component in

the neutral state; however, the attraction can be reversed to repulsion when TTF is

oxidized. Another stationary part is usually an aromatic group that is less susceptible

to oxidation; for example, naphthalene (NP), hydroquinone (HQ), or triazole. Such a

group can also attract the ring component through 7r-stacking, but not as strongly as

does the neutral TTF. The mechanism of these machines is as follows. In the neutral

stage, the electron deficient ring component CBPQT4+ prefers to be associated with

the strong electron donor TTF. The binding is evident by the observation of a low

energy charge transfer band in the UV-Vis spectrum. When TIF is oxidized, the

coulombic repulsion between the TTF cation and CBPQT4+ ring moves the ring

away from the TTF and relocates it to the other stationary site. This process is

accompanied by a high energy charge transfer band. When TTF is reduced, the

system returns to its original state. Despite the straightforward mechanism, in real

molecular designs there are still many other factors that need to be considered. The

first factor is the rigidity of the molecular structure. Although a rigid system can

reduce the complex conformers arising from flexible structures, 57 it may also prevent

the movement of the ring component. 59,60 If such is the case, the machine will fail to

19



function properly. Another factor that should be considered is the relative strengths

of possible interactions within the system. Sometimes an undesired interaction could

overwhelm the interaction between the TTF and the ring component. 61 Secondary

and tertiary structures of the systems also impose critical effects. For example,

the molecular machine 36 with power systems installed failed to work. 62 Although

porphyrin-C6o was supposed to generate oxidized TTF species via charge transfer

upon photoexcitation, complete oxidation of TTF was hindered presumably due to

the shielding by surrounding units. Molecular machines with electrical bistability

have also been reported in the recent literature. 63 Representative examples are given

in Figure 1.13.
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Figure 1.12: Examples of TTF-based molecular machines.
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Figure 1.13: TTF molecular machines with electrical bistability.
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1.1.3.6 Applications of TTFs in Other Fields

In addition to the applications discussed above, TTFs have also been used in

other fields of materials science, such as magnetic materials,64,65 nonlinear optical

materials,66,67 liquid crystals,68,69 metal ligands,7O-72 MALDI matrix,73 and so on.

In order to meet the different requirements for various applications, the molecular

structures of TTFs have to be tailored and modified flexibly and diversely. Thanks

to the great effort of synthetic chemists over the past decades, a large number of

synthetic methods have become available for the preparation of various TTF-based

molecular and macromolecular structures.

1.2 Synthesis Methods for TTF and TTF Derivatives

Briefly speaking, the synthesis of TTFs falls into two catagories: (i) the synthesis

of simple TTFs and exTTFs with conjugated extension on the side chain position of

dithiole rings, and (ii) the synthesis of exTTFs with conjugated spacers between two

dithiole rings. For the first type of synthesis, the construction of the TTF moiety

is the key. This topic has been reviewed in several articles,74-76 while the general

synthetic routes for the TTF skeleton and the two important precursors, thione and

dithiolium salt, are summarized in Schemes 1.2 and 1.3.
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Scheme 1.2: Synthetic methods for preparing the TTF skeleton (adapted from

reference 65).
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Scheme 1.3: Synthetic methods for (a) thione and (b) dithiolium salt (adapted from

reference 65).
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Among the numerous synthetic routes for the construction of simple TTF core ,

three methods are most popular as summarized in Scheme 1.4: (a) ,hosphate-

promoted coupling of thiones 44, (b) base-catalyzed coupling of dithiolium salts

45, and (c) coupling reaction between a dithiolium salt 45 and ylide 46 or

phosphonate 47 in the presence of a strong base. In general, methods (a) and (b) are

suitable for preparing symmetrical TTFs, while method (c) is particularly efficient

in synthesizing unsymmetrical TTFs. It is worth noting that cross coupling of a

mixture of 1,3-dithiole-2-thiones and 1,3-dithiole-2-ones with different substituents in

neat triethylphosphate can afford the unsymmetrical product in good yields, such as

those demonstrated in Scheme 1.5. 77

(a) RXSFS
R S

44

(b) RXS}-H
R 4~

(e) RXSFPR3
R 4~

P(ORh

~
NR3 RXS>==<SJ(R

R S S R

48

Scheme 1.4: Three important synthetic routes to TTF.

Scheme 1.5: Asymmetrical coupling in neat triethylphosphate.
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The precursor thione 44 can be prepared on a large scale from readily available

CS2 and alkali metals such as K or Na (Scheme 1.6) This method was developed

by Hoyer's group in 1979. 78 Reduction of CS2 with K or Na produced 1,3-dithiole-

2-thione-4,5-dithiolate (dimercaptoisotrithione, dmit), the proposed mechanism of

which is outlined in Scheme 1.7. 79 The resulting dithiolate was separated from Na2CS3

as the tetraethylammonium salts of its zinc chelate. Subsequent reaction of the

zinc complex with suitable electrophilic agents would afford thione products with

desired substituents. The commonly used electrophiles for such reactions include

alkyl halides, vinyl halides, propargyl bromides, acyl chlorides, and alike.

[

8 88 8 ]2-

(Et.Wn 8=\ X f{ JC )=8
8 88 8

~u~celone

Scheme 1.6: Preparation of thione 44 by reduction of CS2 with a.

2C82+2Na

8X8>=8 _2_Na_ -8X8>=8

8 8 -8 8

Scheme 1.7: Mechanism of the reduction of CS2 with Na.
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With thione 44 in hand, another important precursor, dithiolium salt 45, can be

readily prepared via an addition-reduction-elimination sequence as shown in Scheme

1.8. Although alkylation of the thione is favored by aromatization of the dithiole

ring, methyl iodide is not reactive enough to effect such a reaction. The preferable

choices of alkylating reagents are methyl fluorosulfate, methyl tirfluorosulfonate,

triethyloxonium tetrafluoroborate and others. Alkylation of thione 44 can also be

done by heating with dimethyl sulfate at 100 cC. The corresponding dithiolium

tetrafluoroborate 52 can be obtained smoothly as a precipitate after addition of HBF4

(Scheme 1.9).80 Subsequent reduction of 52 with NaBH4 , followed by elimination

under acidic conditions furnishes the desired product, dithiolium salt 45.

R)CS>=S RX R)CS}-SR NaBH4 R)CS><':R W RyS}-H

R S R S R S R~S
44 52 53 45

Scheme 1.8: Synthesis of dithiolium salts 45.

RyS>=s 1. OMS, 100 DC RyS}-SR

R~S 2.HBFfEI20 R~S

44 52

Scheme 1.9: Methylation of thione 44 by dimethyl sulfate.

Dithiolium salt 45 can be further converted into Wittig reagent 46 or phosphonate

47 by reacting with either phosphine or phosphite (Scheme 1.10). Compound 46 and

47 can then be used for the preparation of simple TTFs by coupling reaction with

dithiolium salt 45, or they can be used as precursors for the Horner-Wadsworth-

Emmons (HWE) reaction to generate exTTF with large conjugated structure.
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Scheme 1.10: Preparation of Wittig reagent 46 or phosphonate 47 from dithiolium

salt 45.

Under highly dilution, 4,5-bis(alkylthio)-1,3-dithiole-2-thione 44 can react with

excess trialkyl phosphites to yield phosphonate 47 as the major product (Scheme

1.11). Meanwhile, a trace amount of tetrathiafulvalene resulting from a coupling

reaction is also produced in the synthesis. 79 ,81 In comparison to the multistep route

outlined in Scheme 1.10, this one-step approach is more economical; however, the use

of excess P(OEth generates problems in purification and prevents its execution on

large scale.

P(OEth (large excess)

RSTfS>=S~
RS)!....S 62-75%

Scheme 1.11: Direct preparation of phosphonate 47 from thione 44.

Another synthetic method for construction of simple TTF is the reaction of an

electrophilic alkyne, such as dimethyl acetylenedicarboxylate (DMAD), with a 1,3-

dipole 54 which is the adduct of BU3P and CS2 (Scheme 1.12). The reaction affords

the ylide intermediate 55, which can be directly dimerized into TTF product 56.

However, the direct transformation from 55 to TTF 56 suffers from very low yields.

To avert this problem, ylide intermediate 55 is usually trapped by addition of HBF4

to form a stable phosphonium salt 57,82 which has been proven to be a good precursor
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for olefination reaction with various carbonyl compounds.

[ )[:r~BU3]
55

jHBF4

R))z+R S PBU3
57 BF;

Scheme 1.12: Synthesis of phosphonium salt 57 by l,3-dipolar cycloaddition.

Once the TTF skeleton is formed, it can be further modified through a numb l'

of well-established methodologies to create functionalized TTFs and exTTFs. An

important route is by lithiation of TTF with an organolithium reagent such as LDA at

-78°C, followed by reactions with various available electrophiles (Scheme 1.13). The

various products shown in the scheme are useful for further synthetic elaboration. The

aldehyde TTF derivatives are especially suitable for preparing 7T-extended systems via

Wittig reactions, while the alcohol and acid derivatized TTFs can be readily linked

to other functional groups via esterification reactions. When there is an electron

donating substituent (e.g. Me) attached to one of the dithiole rings, the acidity of

the adjacent proton on the very same dithiole ring decreases. This drives lithiation to

occur preferentially on the other dithiole ring. In contrast, an electron withdrawing

group will direct the lithiation on the same dithiole ring. Such directing effects by

substituents bring regioselectively to this methodology, enabling the preparation of

multisubstituted TTFs. 83

Another important methodology for TTF functionalization is based on the use of

a ,B-cyanoethyl protecting group. 81,84,85 The ,B-cyanoethyl group can be introduced via
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Scheme 1.13: Lithiation of TTF and further reactions with different electrophiles

(adapted from reference 72).

the reaction of dmit (1,3-dithiole-2-thione-4,5-dithiolate) with 3-bromopropionitrile. 81

The removal of the ,B-cyanoethyl group occurs smoothly in the presence of a base such

as MeO a. 84 The resulting thiolate reacts with suitable electrophiles to yield various

TTF derivatives (Scheme 1.14).85 In addition, monodeprotection of a bisprotected

precursor can be easily achieved by using one equiv of CsOH-H20 in MeOHjCHCI3 .

The cesium thiolate is stable and precipitates out of the reaction mixture. 84

Scheme 1.14: Removal of ,B-cyanoethyl group and further reaction with electrophiles.

For the preparation of various annulated exTTFs, Diels-Alder reactions have been

widely used (Scheme 1.15).82 The highly reactive diene intermediate 61 was generated
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in situ to stereoselectively react with a dienophile. However, the relatively high

temperature for the diene generation may cause problems in cases where thermal

stability of the product is an issue.

RSS:cQ°)L>=< I: I
R S S

o

Scheme 1.15: Synthesis of an annulated TTF via the Diels-Alder reaction.

For the synthesis of exTTFs with large 7r-conjugated spacers between the two

dithiole rings, two major synthetic methodologies are frequently adopted. The

first one is to prepare a diketone or dialdehyde with extended conjugation, which

is then converted to the exTTF by Wittig olefination or coupling with thione.

Wittig olefination of the ketone or aldehyde using phosphonium salts proceeds under

relatively mild conditions, and normally affords clean products. However, this

reaction may not be suitable for compounds which are not compatible with basic

conditions, and the preparation of phosphonate is time-consuming and costly. In the

meantime, direct coupling of the ketone or aldehyde with thione in the presence of a

large excess of trialkyl phosphite requires high temperatures. This method is fast and

economical, but may not be suitable for the synthesis of products with relatively low

thermal stability. Also, the use of large amounts of phosphite may cause problems

in purifications. Scheme 1.16 illustrates these two routes for the synthesis of TTFAQ

starting from anthraquinone. 86

Another methodology for the synthesis of exTTFs is to prepare monomers

with dithiole rings, which then undergo further reactions to extend its conjugated
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Scheme 1.16: Two synthetic routes to exTTFs with antraquinoid structures.

framework. For example, an extended TTFV derivative 67 with two triple bonds

between two dithiole rings was synthesized from monomer 66 using the Hay coupling

reaction (Scheme 1.17).87

Scheme 1.17: Synthesis of exTTF 67 by Hay coupling of alkynyl dithiofulvalene.

Besides these conventional routes to TTF and exTTF, other synthetic methods

are available for making novel exTTF structures. For example, a TTF-TCNE

(TCNE, tetracyanoethylene) push-and-pull chromophore 69 was prepared by a one-

pot reaction involving successive additions of TTF and TC E to a polyyne precursor

68 (Scheme 1.18). The first mechanistic step is the addition ofTC E to the electron-
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rich C::=C triple bond immediately next to the electron-rich dimethylaminobenzene

moiety. The resulting intermediate features an electron-deficient triple bond adjacent

to the TCNE adduct, which then directs a subsequent addition of TTF onto it. After

the second addition, the electron density on adjacent triple bond becomes enriched to

favor another iteration of TCNE addition. This cycle is repeated until all the triple

bonds of the polyyne segment are reacted. 88

Scheme 1.18: Synthesis of novel TTF-TCNQ push-and-pull chromophore.

1.3 TTFAQs: exTTFs Bearing an Anthraquinoid

7f-Spacer

TTFAQ is an important class of exTTFs with an anthraquinoid conjugated 7f-linkage

located between the two dithiole rings. Compared to simple TTFs and other types

of exTTFs, TTFAQs feature dramatic conformational changes during redox processes

and their dications have significantly enhanced stability (see Figure 1.14). In the

neutral state, TTFAQs adopt a saddle-like molecular shape to minimize the repulsions

between sulfur atoms in the dithiole rings and the adjacent hydrogens on the central

anthraquinoid moiety. Upon oxidation to dication species, the central part becomes

planar, and the dithiole rings rotate to be perpendicular to the central plane. The
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aromaticity gained in the central moiety further tabilizes the TTFAQ dicatioll.

making TTFAQ favor simultaneous rathel~ than tepwise two-electron transfer.

Figure 1.14: Conformations of TTFAQ in neutral (top) an I dication (bottom) slale

(adapted from reference 65).

Like other exTTFs, TTFAQs can be prepared by the olefination strategy as

discussed in the previous section. Commonly. an anthraquinone derivative i . cho en

as the starting material to be subjected to an HWE reaction with corresponding

pho phonate, or heated with thione in the presence of excess trialkyl phosphite. These

syllthetic routes usually aI-Iord TTFAQs with good yields alld scarcely ncounters

problems. Because of their low oxidation potentials and tabilized dication state ,

TTFAQs can serve as good electron donors in various donor-acceptor molecular

ensembles to facilitate the generation of long-lived charge-separated states upon

photoexcitation. For this reason, TTFAQs have been widely used in preparing

photoinduced charge-transfer donor-acceptor (D-A) systems and solar cells. In the

recent literature. a plethora of TTFAQ-C60 dyads and triads have been reported.
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which showed promising photovoltaic and charge-transfer properties. 37 For example,

two multi-donor-acceptor systems TTFAQ-TTFAQ-C60 70 and TTF-TTFAQ-C60 71

were reported in 2009 (Figure 1.15).89 These systems give lifetimes of charge-separate

states on the J.lS scale. The remarkable stability of the charge-separated state is due

to the excellent electronic properties of TTFAQ and delicately designed molecular

structure. First, the pyrrolidine ring not only acts as the linkage between C60 and

the 7r-conjugated system, but also exerts some effects to enhance the stability of the

charge-separated state. Second, the p-phenyleneethynylene bridge, in addition to its

facile synthesis, allowed reasonable electronic communication between electroactive

moieties. Third, the incorporation of multiple donor groups enabled further charg

transfer from the adjacent radical ion pair state (D-D+'A-') to the remote radical

ion pair state (D+'-D-A-'), which further stabilized the charge-transfer state.

Recently, it has been demonstrated that the concave shapes of anthraquinoid­

type structures provide suitable binding sites for the convex surface of C60 . 90,91 For

example, a TTFAQ-based crown ether 72 (Figure 1.16) was reported to show 1:1

binding with ammonium-functionalized C60 derivative 73 with a large association

constant K a = 106 M-1 . 92 The strong binding was attributed to the preorganization

of TTFAQ and C60 through H-bonding between the crown ether moiety and the

ammonium group, which facilitated the interaction between TTFAQ and C60 .

The favored TTFAQ-C60 binding offers a useful approach for the design of organic

photovoltaic materials. For example, a type of TTFAQ-based tweezers 74 and 75

was reported to show affinity for C60 in aromatic solvents (Figure 1.17).92 Upon

photoexcitation, these complexes generate charge-separated states. Although the

lifetimes were measured to be on the ps scale in the solution phase, the solid state
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Figure 1.15: Structures of TTFAQ-C6o donor-acceptor systems.
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properties were proposed to be very different and useful for photovoltaic devices.
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Figure 1.17: TTFAQ tweezers binding to e60 .

Our group has recently been interested in the construction ofTTFAQ-based donor-

acceptor systems and exploration of their potential applications as advanced organic

optoelectronic materials. 93-96 For example, TTFAQ-boronic acid derivative 76 was
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synthesized as an electrochemical sugar sensor (Figure 1.18).94 In this compound,

the boronic acid moieties were designed to bind with sugars and the binding led to

altered electrochemical redox potentials of the TTFAQ core. Indeed, compound 76

has shown preferential binding to fructose and ribose, and significant anodic shifts

in the oxidation potentials were observed. As another example, TTFAQ-crown ether

77 (Figure 1.18) was prepared and found to be a sensitive fluorescent probe for BaH

ion. 96 The crown ether moieties on the side chain of dithiole rings created a cavity for

metal ion binding. The electron donating ability of TTFAQ core was decreased after

the molecule was bound to metal ions. In this way, photoinduced electron transfer

from TTFAQ to anthracene was effectively quenched to restore the fluorescence of

the anthracene groups.

Figure 1.18: TTFAQ-based molecular sensors prepared by our group.
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1.4 Tetrathiafulvalene Vinylogues (TTFV)

Tetrathiafulvalene vinylogues refers to exTTFs with two C=C bonds between the

dithiole rings. Figure 1.19 lists some representatives of TTFV derivatives. 97
- 99

Like other TTFs, TTFVs are good electron donors, which can undergo substantial

conformational changes upon oxidation (Figure 1.20). In the neutral state, TTFVs

adopt non-planar conformations to lower the repulsion between the dithiole rings

and substituents congested around the vinyl position. The dihedral angles increase

with the sizes of the substituents, while monosubstituted TTFVs are nearly planar

in shape. Upon oxidation, the molecules rotate to make the TTFV skeleton planar.

The substituents are now orthogonal to the plane with a dihedral angle close to 90°.

The reduced steric interactions favor the formation of dications, thus simultaneous

two-electron oxidation is frequently observed for TTFVs. 99

Figure 1.19: Structures of tetrathiafulvalene vinylogues.

TTFVs can be prepared by synthetic protocols different from other exTTFs.

The synthesis usually begins with an oxidative dimerizatioll of dithiafulvene (DTF),
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Figure 1.20: Structures of TTFV in the neutral and oxidiz d states (adapted from

reference 94).

followed by reduction. This process can be done chemically or electrochemically. The

mechanism of the dimerization reaction is described in Schem~ 1.19. Th~ first st~p

is the oxidation of DTF to generate a radical cation, which then dimerizes to form

a protonated dicationic TTFV. After deprotonation, neutral TTFV is formed and

immediately oxidized to the dication in situ, due to the lower oxidation potential of

TTFV relative to DTF. Hence, to finalize the synthesis a reduction step is used to

afford neutral TTFV. Common oxidants for the dimerization include AgBF4, Br2' an I

12, while in some cases sunlight can also initiate the dimerization. JOO Besides these

chelllica,] methods, bulk electrolysis provides another efficient method to produce

TTFVs from respective DTF precursors.101.102 The dimerization usually proceeds

smoothly to furnish products in moderate to good yields. However, in the absence

of substituents that could greatly stabilize the radical cation of DTF, dimerization

either did not occur 103 or required the assistance of a metal template, such as the case

for compound 89 (Figure 1.21).104 \iVhen a monomer containing two DTF groups was

subjected to dimerization, TTFV macrocycles or polymers were formed. 101,105
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Scheme 1.19: Mechanism for oxidative DTF dimerization.

Figure 1.21: DTF that requires template for dimerization.
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TTFVs can also be made in a stepwise manner from DTFs. As shown in Scheme

1.20, compound 90 reacted with phosphorous oxycWoride in DMF, leading to the

formation of compound 91, which was then subjected to an HWE reaction with

phosphonate to give TTFV 92. 103

Scheme 1.20: Stepwise synthesis of TTFV 92 from monomer 90.

The applications of TTFVs are somewhat limited, because in many cases TTFVs in

both the neutral and oxidized state are nonplanar in structure. This feature disfavors

efficient intermolecular interactions in the solid state, resulting in poor conductivity.

However, like other TTFs, TTFVs are very good electron donors, and the ease

of preparation, and more importantly, the substituent-dependant conformational

changes upon oxidation make them good building blocks for the construction of redox-

active chemosensors. In 2003, a series of cyclic TTFVs 35 with alkyl linkers on the side

chain of dithiole rings were synthesized and proposed for use as molecular clips (Figure

43



1.22).106 It was found that the linkers barely changed the electron donating ability of

TTFV. A short linker indeed prevented the stretching of molecules upon oxidation

to dications, resulting in a clip movement. In addition, this movement seemed to be

insensitive to the electronic nature and steric hindrance of the substituents on the

central spacer. Based on these results, a TTFV derivative 94 with thiolepicoline side

chains was prepared and investigated (Scheme 1.21). When binding with Zn2+, the

conformational change during oxidation was constrained. In this situation, it was

proposed a clip motion would occur instead of normal stretch motion, which was

supported by the positive shift of oxidation potentials and coalescence of two one-

electron oxidations to a two-electron oxidation in the cyclic voltammetric analysis. 107

S,<CH2~S

H3C~SS~CH3
s}-ts

R R

93

Figure 1.22: TTFV clips with linkage connecting two dithiole rings at side chain

position.

94 (ZZlEE/ZE)

ZnCI2

MeCN

Scheme 1.21: Binding of thiolepicoline-appended TTFV 94 with Zn2+.
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Another series of cyclic TTFVs 95a-c with crown ether linkers in the substituent

positions were synthesized and studied in 2007 (Figure 1.23). It was found that a

crown ether chain with six oxygens was necessary to maintain the stretch motion.

The crown ether unit provided the binding site for Pd2+ ion. 108

95a,n=2
95b,n=3
95c,n=4

Figure 1.23: Structures of crown ether-type TTFVs 95.

Recently a TTFV-metal coordination macrocycle 96 was synthesized (Figure

1.24).107 The pyridyl substituents attached to TTFV provided the binding sites to

Mo. Upon complexation, the electron density of TTFV was decreased and the first

oxidation potential of TTFV was shifted negatively. The Mo(O) center gained electron

density to show a lower oxidation potential.
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Figure 1.24: Structure of a TTFV-Mo coordination macrocyc1e.
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1.5 Outline of this Thesis

This PhD dissertation has accomplished two major projects in the development of

exTTF-based organic conjugated materials. A brief overview on TTFs and exTTFs

is given in Chapter 1 with emphasis on two themes: (i) the recent applications

and synthetic methodologies of various TTF-based organic materials, and (ii) the

relationship between molecular structure and electronic/photonic properties.

Chapter 2 describes the synthesis and characterization of two series of 7r-extended

TTFAQ analogues. Large conjugated systems in these TTFAQ analogu s are

expected to maintain their high stability and alter their electronic properties as

well as solid state packing. The synthetic routes involved the use of a one-pot, 4­

fold Sonogashira macrocyclization as the key step to construct large shape-persistent

macrocylic conjugated systems between two dithiole rings. The structures of these

TTFAQ analogues were clearly determined by X-ray crystallographic analysis. Their

electronic properties were studied by UV-Vis, fluorescence, cyclic voltammetry, and

spectroelectrochemistry. Comparison of these two series of TTFAQ analogues with

corresponding dithiofulvalene monomers and TTFAQ were made.

Chapter 3 focuses on the synthesis and characterization of a series of TTF­

oligoynes and TTFV derivatives including macrocyclic TTFVs, TTFV tweezers and

a crown ether-tethered TTFV. The development of suitable synthetic methodologies

and understanding of essential structure-property relationships for these TTFV

ananlogues will contribute to further design of TTFV materials and molecular devices.

The syntheses employed Sonogashira coupling, Hay coupling, and click chemistry.

The electronic properties were studied by UV-Vis, fluorescence, cyclic voltammetry,
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and spectroelectrochemistry. Electropolymerization and solid-state polymerization of

TTFV-oligoyne based macromolecules were also investigated.

In Chapter 4, a summary and conclusions of this thesis work are given. Based on

the results acquired, potential solutions to the difficulties and problems encountered

in the current work are suggested. In addition, perspective remarks are provided in

this chapter to foresee some appealing directions worth pursuing in the future work.

48



Chapter 2

Synthesis and Characterization of

Jr-Extended TTFAQ Anologues

2.1 Introduction

Anthraquinoid-type TTF analogues (i.e. TTFAQs) constitute an important branch

in the family of exTTFs owing to their intriguing electronic, redox, and photophysical

properties. As discussed in Section 1.2.1, the unique molecular properties ofTTFAQs

are primarily associated with their central anthraquinone 1r-core. In the recent TTF

literature, the strategy of incorporating large 1r-conjugated structures in between

the two dithiole rings of TTF has been frequently used and proven to be fruitful in

generating novel optoelectronic organic materials. Indeed, the insertion of 1r-units

bestows two major benefits in terms of material design at the molecular level. First,

the extended 1r-conjugation improves the stability of cationic species, which in turn

enhances the donor ability of the TTF and enriches its redox activity. Second, the
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intrinsic electronic properties of inserted 7r- spacers may be coupled with the TTF

unit to bring about new optoelectronic properties to the hybrid systems. For example,

a truxene-TTF hybrid 97 was recently reported, the structure of which comprises

a truxene core and three dithialfulvene units (Figure 2.1). This exTTF showed a

significant redshift of its long-wavelength absorption in the UV-vis spectrum, and

afforded non-planm' aromatic 7r-surface to favor binding with [60]fullerene through

non-covalent forces. 109

R\S

R=H,SMe,(SCH2)2

97

Figure 2.1: Chemical structure of truxene-TTF hybrid 97.

One of the objectives of this thesis work was to develop new TTFAQ analogues

with highly 7r-extended structures. To this end, two types of TTFAQ anologues

were designed as illustrated in Figure 2.2. The structures of these TTFAQ analogues

contain a conjugated bisbenzo-enyne macrocycle central unit between the two dithiole

rings. Novel molecular properties were anticipated from the highly conjugated

systems, while a systematic survey of structure-property relationships should deliver

knowledge beneficial to the future design of new TTF derivatives that m'e of

both theoretical and practical values to supramoleculm' and materials sciences.

The following sections describe the synthetic methods for these TTFAQ analogues
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and electronic and electrochemical redox properties characterized by UV-Vis

absorption and fluorescence spectroscopic, voltammetric, and spectroelectrochemi try

analyses.llO,lll

>=Z
H3CS SCH3

99a,R:H
99b,R:OClOH21

98a,R:CH3
98b,R:C10H21

Figure 2.2: Structures of target 1T-extended TTFAQ analogues 98a,b and 99a,b.

2.2 Results and Discussion

2.2.1 Synthesis and Characterization of TTFAQ Analogue 98

2.2.1.1 Retrosynthetic Analysis

The retrosynthetic analysis of TTFAQ analogue 98 is outlined in Scheme 2.1.

The core structure of the target compound 98 contains a shape-persistent enyne

macrocycle that can be disconnected into two synthons through the Sonogashira

reaction, o-diiodobenzene and desilylated 100. This step can be performed by either
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a one-pot or a stepwise approach. Precursor 100 can be generated from dibromo

compound 101 from Sonogashira coupling of dibromo compound 101 with TMSA.

Dibromo compound 101 contains two key functional groups, a dithiole ring and a

dibromovinylidene unit. The dibromo functionality can be installed via a Corey-

Fuchs reaction on ketone 102 which carries a dithiole ring, while ketone 102 can

be obtained from a selective olefination reaction on anthraquinone 103, either by a

phosphite-mediated coupling reaction with thione 104, or by an HWE reaction with

one molar equiv of phosphonate 105. Both thione 104 and phosphonate 105 are

readily accessible through well-established procedures reported in the literature.

:1

:1

I:

I:

=CC",I +
.60

1

>=Z
RS SR

98

RS S

RsXs1rOMehor
o

105

RSl=<SR

*~o
102

Scheme 2.1: Retrosynthesis of TTFAQ analogue 98.
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2.2.1.2 Synthesis of S-Methyl Thione 104a and S-Decyl Thione 104b

S-Methyl thione 104a and S-decyl thione 104b were first prepared using known

procedures. 78,112 As shown in Scheme 2.2, the synthesis of S-Decyl thione 104a

started with a reaction between a and CS2 using DMF as the solvent. The

resulting dithiolate was chelated with Zn2+ upon addition of ZnCl2 and NH3 ·H20,

and precipitated out as a stable red colored salt 106 in the presence of

tetraethylammonium bromide. The overall yield of this sequence of reactions was

88%. Salt 106 was then dissociated into free dithiolate in refluxing acetone, and the

resulting intermediate was subsequently alkylated with Mel to afford S-methyl thione

104a in 74% yield, or with decyl bromide to afford S-decyl thione 104b in 60% yield.

Mel,acetone
reflux,2h

106---

74%

C'OH2,Br, acetone
reflux,2h

Scheme 2.2: Synthesis of S-decyl thione 104a and S-methyl thione 104b.
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2.2.1.3 Synthesis of S-Decyl Phosphonate l05a and S-Methyl Phospho-

nate l05b

Phosphonates l05a,b were synthesized according to known procedures as outlined in

Scheme 2.3. 112 Thiones l04a,b were first alkylated with dimethyl sulfate (DMS) at 90

ac. The resulting products were then treated with HBF4'Et20, and precipitated out as

salts 107a,b respectively upon addition of diethyl ether. A these salts were moisture-

sensitive, they were immediately subjected to reduction with NaBH4 in EtOH to

afford thiols l08a,b as stable solids. Thiols l08a,b were converted to salts l09a,b

by treatment with first AC20 then HBF4·Et20. The products l09a,b were again

unstable and directly converted to phosphonates l05a,b by reaction with P(OMeh

in the presence of NaI in MeCN. The lower yields of S-decyl derivatives compared to

S-methyl ones were the result of increased solubilities that resulted in more product

losses in the filtration steps. Phosphonates l05a,b are important precursors and were

frequently used for the synthesis of TTFs in this work.

107a.R=CH3.quanl
107b.R=ClOH21 .98%

i) DMS.90oC.1h

RS S ii)HBF4'EI20.OoC RS

)C)=s~ )CS1-SCH3~
RS S RS S BF;

104a.R=CH3
104b.R=C,oH21

108a.R= CH3. 88%
108b.R=C,0H21 .78%

i)Ac20.0oC.5min

Ii)3~B~~EI20. 0 °C RS)CS)t-H Nal. MeCN. P(OMeh

RS S BF~

109a.R= CH3. 83%
109b.R=ClOH21 .70%

105a.R= CH3. 69%
105b,R=ClOH2,.70%

Scheme 2.3: Synthesis of S-decyl phosphonate l05a and S-methyl phosphonate l05b.
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2.2.1.4 Synthesis of Dibromo Precursor 101

The synthesis of compound 101 can be carried out using anthraquinone as the starting

material, with two direct functional group interconversions: (1) the dithiole ring

formation and (2) the introduction of dibromovinylidene functionality. Two synthetic

routes can be used with different sequences of reactions as outlined in Scheme 2.4.

o /o¢oll""
::,... ,-:;

~03 ~

Scheme 2.4: Two synthetic routes to DTF dibromo compound 101.

In the synthetic work, the route that begins with the incorporation of the

dibromovinylidene group followed by olefination to install DTF was attempted fiTst.

The addition of one dibromovinylidene group to anthraquinone was presumably

achievable via a Corey-Fuchs reaction using excess antlrraquinone 103. Nevertheless,

the reaction yielded only disubustituted product (see Scheme 2.5), despite the fact

that small amounts of CBr4 (as low as 0.1 equiv) were used. 1l3 Obviously, the

Corey-Fuchs reaction could not be stopped at the mono-substituted stage, since

dibromovinylidene is so good an electron-withdrawing group that, once formed,
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it further increases the electrophilicity of the keto group at its para-position and

speeds up the second Corey-Fuchs reaction. The enhanced reactivity hence thwarted

the attempt to obtain mono-dibromovinylidene anthraquinone from anthraquinone

directly.

o

«0'" CBr4,PPh3,CH2CI2.rt

::,...IIA~

o
103

~0y0
o

110

Scheme 2.5: Corey-Fuchs reaction of anthraquinone 103.

Alternatively, route 2 as proposed in Scheme 2.4 was explored. In this synthetic

route, DTF ketone 102 was planned to be made first and then converted to DTF

dibromo compound 101. In a previous study by our group, mono-substituted DTF-

anthraquinone 113 was obtained as a minor product in 20% yield in an HWE

reaction in which diethynylated anthraquinone 112 was reacted with 2 equiv of

phosphonate 105a in the presence of base (Scheme 2.6).114 Based on this result,

it was assumed that a similar HWE reaction between anthraquinone 103 and only

1 equiv of phosphonate 105a should yield mono-DTF substituted product 102 in

an acceptable yield. However, as shown in Scheme 2.7, contrary to the reaction in

Scheme 2.6 this reaction only gave di-olefinated product, TTFAQ 114, even when only

0.6 equiv of phosphonate 105a was used. This result was unexpected and seemingly
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counterintuitive, since the intermediate of this reaction, l02a, should be less reactive

than anthraquinone due to the electron-donating nature of the DTF group.

H3CS ~oTMS

XS)<H 1.t-BuLi,THF,-780C '? "" 1P
S P(OMen "" I 1 0

H3CS 0 0 TMS 1P
105a 2.~ TMS >=Z
~ H3CSSCH3

TMS 0 113

112

Scheme 2.6: Formation of mono-DTF anthraquinone 113 in an HWE reaction.

H3CSF=<SCH3

~+~
~~

>=Z M
H3CS SCH3 H3CS SCH3

114

Scheme 2.7: Attempted synthesis of mono-DTF anthraquinone l02a via an HWE

reaction.
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To circumvent the problems encountered in the above two synthetic routes, a

phosphite-mediated coupling strategy was investigated as depicted in Scheme 2.8. 79 In

the presence of triethyl phosphite, thiones l04a,b reacted with excess anthraquinone

at high temperature to give DTF ketones l02a,b. Although the purification step

was somewhat tedious due to the presence of a large amount of triethyl phosphite,

ketones l02a,b were successfully produced by this reaction in moderate to good

yields. Compounds l02a,b were then readily converted to DTF dibromides lOla,b

by Corey-Fuchs reactions. It is worth noting that the reagents and glassware used for

these reactions must be thoroughly dried to ensure high yields.

~
~

RS S 0

RS}/=S P(OEt:~~500C

104a,R=CH3
104b,R=ClOH21

102a,R=CH3,15%
102b,R=C10H21,49%

101a,R=CH3,63%
101b,R=ClOH21,91%

Scheme 2.8: Synthesis of DTF-dibromides 101a,b.

2.2.1.5 Synthesis of Dialkynes 115a,b and Macrocyclic TTFAQ Analogue

98b

With compounds 101a,b in hand, the syntheses of dialkynes 115a,b were

straightforward. Sonogashira coupling reactions between compounds lOla,b and

TMSA at 60°C afforded diethynylated products lOOa,b in good to excellent yields

(Scheme 2.9). The successful synthesis of compounds lOOa,b enabled the construction
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of macrocyclic TTFAQ analogues 98a,b and other related acyclic exTTFs.

101a,R=CH3
101b,R=C,oH2' 100a,R=CH3,47%

100b,R=C,oH2,,93%

Scheme 2.9: Synthesis of DTF diethynylated compound lOOa,b.

Removal of the TMS groups of lOOa,b by K2C03 in THF/MeOH furnished

free dialkynes 115a,b. On account of their relatively low stability, the desilylated

intermediates were immediately subjected to macrocyclization reactions without

extended storage. The macrocyclic enyne frameworks of the target TTFAQ analogues

were planned to be constructed by Sonogashira couplings. S-decyl sub tituted

macrocyclic TTFAQ analogue 98b was chosen as the first target, considering its

good solubility and the observation that Sonogashira couplings involving related S-

decyl substituted TTFAQs tended to give higher yields than did S-methyl substituted

TTFAQs. In principle, the target compound 98b could be prepared by a two-fold

Sonogashira reaction between dialkyne 115b and a pre-made aryldihalide counterpart

116b, or by a one-pot 4-fold Sonogashira reaction between two molecules of dialkyne

115b and two molecules of aryldihalide 117 (see Scheme 2.10). Each of the strategies

has pros and cons. While the first macrocyclization strategy, owing to its lower

entropic demand, is expected to afford a better yield, the second one-pot strategy

features superior synthetic conciseness.
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Scheme 2.10: Two strategies for the synthesis of macrocyclic exTTF 98b.

To explore the first route, I-bromo-2-iodobenzene was selected as the aryldihalide

building block, as the the iodo group of I-bromo-2-iodobenzene was expected

to undergo selective Sonogashira coupling due to its higher reactivity than the

bromo group. As outlined in Scheme 2.11, dialkyne 115b generated in situ from

desilylation of compound 100b was reacted with I-bromo-2-iodobenzene in Et3

using Pd(PPh3hCb/CuI as catalyst. After 100b was consumed as verified by

TLC analysis, the mixture was purified by flash column chromatography. The

crude products from different chromatographic fractions were then subjected to

MALDI-TOF MS analysis. According to the MS data, the reaction yielded no

cyclic product 98b but two acylic products, dihalide 118b and dimer 119b (see

Scheme 2.11). By conducting the reaction at different temperatures (0 to 60°C),

a trend was found that the yield of dimer 119 increased with increasing reaction
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temperatures. Cyclized products, however, were not observed in the temperature

range investigated. To test the reactivity of 11Sb for Sonogashira coupling, a model

reaction between TMSA and 11Sb was tried under typical Sonogashira conditions

at 60°C overnight. Unfortunately, no coupling reaction was observed to take place.

The test reaction revealed the inertness of 11Sb to Sonagashira coupling, and the

1-bromo-2-iodobenzene strategy for macrocyclization was therefore abandoned.

s S

>=Z
C,oH2,S SC lOH2,

118b

: 1 1 :

Br 9"

""I
~

>=Z
ClOH2,S SC ,0H2,

11gb

Scheme 2.11: Sonogashira reaction of desilylated 100b with 1-bromo-2-iodo benzene.

The unsuccessful outcome of the first stepwise macrocyclization route justified the

need for a more reactive arylhalide precursor. l,2-Diiodobenzene was then selected

to cross couple with desilylated 100b. The reaction was done at rt with other

conditions the same as those for the reaction described in Scheme 2.11. The outcome

was promising as MALDI-TOF MS analysis of one of the fractions from column

chromatographic separation clearly showed the formation of TTFAQ macrocycle

9Sb. Although the crude product contained some inextricable byproducts and the

yield of 9Sb was rather low, the result of this reaction was promising. Further
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optimization of the reaction conditions indeed led to satisfactory results. As shown

in Scheme 2.12, when a Et20 solution of desilylated 100b was slowly added into

a mixture containing 1,2-diiodobenzene, Et3 ,and catalyst CuI/Pd(PPh3)4 at 60

°C, pure product 98b was obtained in 27% yield from crystallization after column

chromatographic separation.

~ 1f3- TMS

C,oH2'SKSClOH2'

~

1 I ""
~ 0

:1
1f3- ~

:1
~ 1f3-

~

1 1 ""
~ 0

>=Z
C,oH2,S SC'OH2'

Scheme 2.12: Synthesis of macrocyclic exTTF 98b by Sonagashira reaction with

1,2-diiodobenzene.

Optimization of the one-pot macrocyclization reaction is not a short story and

worth some comments here. Theoretically, there are a number of side reactions in

competition with the cyclization. Two major rivalries included: (1) linear chain

elongation versus cyclization, and (2) cross-coupling versus homo-coupling rea tions.

Thus effort was focused on maximizing cyclization and minimizing homocoupling.

First, different solvent/base systems were tested. It was found that only in pure
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Et3 was the cyclic product formed. In other solvent systems, such as Et3N/THF

(1:2,1:4,1:8) and DBU/benzene, diyne 115b (desilylated 100b) quickly polymerized

to form a black-red solution which was composed of mostly homo-coupling products

as evidenced by a fragmentation ion at m/z 639 in the MALDI-TOF MS. Second,

the concentration effect of starting materials was examined. With a fixed diyne

concentration, the amount of diiodobenzene was varied from 0.7 to 1.3 equiv, but

the reaction gave no observable difference in the yield of cyclic product. This was

unexpected because the amount of diiodo benzene for an ideal reaction should be less

than 1.0 equiv due to the slight loss of diyne in the desilylation step. When more

than 1.0 equiv of diiodobenzene was added, the yield of dihalide 116b increased as

expected. It is known that high dilution favor cyclization over polymerization. Thus, a

solution of diyne 115b and 1,2-diiodobenzene was added dropwise into a Et3N mixture

containing the catalysts. Surprisingly, only homo-coupling products were formed. It

is not clear why homo-coupling became so much faster than cross-coupling under high

dilution. Third, the temperature effect was investigated. At low temperatures (0 °C, ­

15°C) mainly homo-coupling products were produced, whereas at a high temperature

(60°C) a complicated mixture of oligomers was formed, resulting from both cross­

coupling and homo-coupling reactions. 0 significant difference was observed in the

yield of cyclic product between reactions conducted at rt and 60°C. This observation

can be explained as follows. On the one hand, the molecule requires a certain

temperature to overcome the energy barrier in the cyclization stage. On the another

hand, high temperature accelerates homo-coupling reactions, which in turn lowers the

yield of the cyclization, because the activation energy of the cyclization is higher than

the linear oligomerization. According to these arguments, the key to improving the
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yield of cyclization is to lower the activation energy barrier for cross coupling by using

a more efficient catalyst. As such, the cyclization reaction can efficiently proceed at a

low temperature that does not greatly increase unwanted homo-coupling. In addition,

because the reaction rate of cyclization is more sensitive to the diyne concentration

than the linear oligomerization, it is possible to minimize homo-coupling by using a

low concentration of diyne during the reaction. On this consideration, a solution of

diyne 115b was added slowly into a mixture containing 1,2-diiodobenzene and a more

reactive catalyst, Pd(PPh3)4, at 60 ac. The yield of product increased significantly

as indicated by TLC. According to MALDI-TOF MS, other byproducts were mainly

oligomers formed by cross-coupling. It should be noted that slow addition of diyne

to the reaction mixture was critical to achieving improved yields. In fact, yield

of cyclization was not significantly improved when Pd(PPh3)4 was added in one

portion at rt. Moreover, improvement of yield was observed for the reaction using

PdCI2 (PPh3h where diyne was slowly added at 60 ac.
Based on the experimental results, it was proposed that the reaction proceeds

through three major stages as described in Scheme 2.13. Stage 1: cross-coupling of

diyne 115b with the large excess of diiodobenzene to form 116b through compound

120b. Homo-coupling of 100b and 120b took place in a diminutive degree due to

their low concentrations. During the process, the concentration of 116b increases

and the concentration of diiodobenzene decreases. Stage 2: once the concentration

of 116b increases to a comparable level to diiodobenzene, diyne 115b starts to react

with 116b to form 122b. In the meantime, 120b could react with 116b to form

121b. Stage 3: 122b cyclizes to form 98b, or undergoes cross-coupling with alkynes

or iodo compounds to afford acyclic oligomers. The chance for 122b to undergo
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homo-coupling is small due to its low concentration during this process.
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Scheme 2.13: Proposed steps for the formation of macrocyc1ic exTTF 98b.
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The pmification of the macrocyclic TTFAQ product 98b was achieved by flash

column chromatography with a long column length and slow elution rate due to the

complex composition of the crude product. One major difficulty encountered was

that the macrocycle product had a very similar R f value to one of the byproducts as

revealed by TLC. Based on MALDI-TOF MS analysis, this troublesome byproduct

was identified to be diiodo oligomer 121b (Figure 2.3). To solve this problem,

TMSA was added to the reaction mixtme in the presence of Pd/Cu catalyst to

convert this byproduct into a cross-coupled compound that was more easily separable

from the cyclic product by column chromatography. Later, it was found that the

byproduct could be simply removed by recrystallization of the crude product from a

1:1 CHCh/MeOH solution.

Figure 2.3: Structme of byproduct 121b formed in the macrocyclization reaction.

2.2.1.6 Attempted Synthesis of Macrocyclic TTFAQ Analogues 98a,c

After the successful synthesis of macrocyclic exTTF 98b, two analogous macrocylic

TTFAQ derivatives 98a,c (Figure 2.4) were then pursued. However, the synthesis of

these two targets was not successful for the reasons given below. For compound 98a,
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the short side chains, methyl groups, on the dithiole rings were designed to enhance

intermolecular 7f-stacking in the solid state. Unfortunately, the incorporation

of methyl groups was found to significantly decrease the solubility of relevant

intermediates and the product in organic solvents, which in tmn substantially lowered

the yields of certain synthetic steps; in particular, the Sonogashira macrocyclization

reaction. If one cross-coupling step is assumed to have a moderate yield of 40%,

then the overall yield of the macrocyclization which involves fom successive steps

of cross couplings will be only 2.6%. This accounts for the unsuccessful attempted

synthesis of 98a. In TTFAQ derivative 98c, a diiodobenzene building block bearing

two decyloxy groups was used for constructing the macrocycle. The decyl side chains

were expected to increase the solubility of the product and improve the yield. The

macrocyclization reaction intended to make 98c was tried, but failed to produce any

desired cyclic product as evidenced by MALDI-TOF MS analysis.

Figure 2.4: Structure of macrocyclic exTTF d rivatives 98a,c.

68



2.2.1.7 Synthesis of Related Acyclic 7T-Extended TTF and DTF

Analogues

After the synthesis of macrocyclic TTFAQ analogues, related acyclic exTTF 123 and

monomer 124 were synthesized for the purpose of a comparative study. The synthesis

was done by a Sonogashira reaction of desilylated 100b with 1 equiv of iodobenzene,

yielding both 123 and 124 in reasonable yields (Scheme 2.14). The formation of

123 resulted from a cross coupling between diyne 115b and 1 equiv of iodobenzene,

followed by a homo-coupling. Likely, the rate of homo-coupling was comparable to

that of cross-coupling in this synthetic case. The use of only 1 equiv of iodobenzene

was based on the known conditions for a homo-cross-coupling reaction. 114

>=Z
ClOH2'S SC'OH2'

123

>=Z
C'OH2'S SC'OH2'

124

Scheme 2.14: Synthesis of acyclic 7T-extended TTFAQ 123 and DTF 124.
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2.2.1.8 Synthetic Strategies for 7r-Extended TTFAQ Analogues with

Endcapping Functionality

Compound 123 shown in Scheme 2.14 can be regarded as a TTFAQ analogue

expanded by an anthracene-diyne-anthracene 7r-spacer. Conceivably, attachment

of various substituents to the terminal positions of 123 should lead to a variety of

intriguing donor/acceptor polyads that may find application in charge-transfer and

electroactive organic materials. To further explore this synthetic potential, a target

compound 126 was investigated using the same synthetic strategy as Scheme 2.14.

As shown in Scheme 2.15, iodoarene 125 was used in lieu of iodobenzene in order

to get ex-TTFAQ 126. If this reaction was successful, donor/acceptor endcapping

groups would be easily introduced via a desilylation-Sonogashira coupling sequence.

However, this reaction afforded the two-fold cross-coupling product as the major

one, whereas the rate of homo-coupling reaction appeared to be much slower in this

case. Since the homo-cross-coupling reaction appears to be substrate dependant and

somewhat unpredictable, it is therefore believed to be an unsuitable approach for the

synthesis of the endcapped ex-TTFAQ derivativtives.

During the synthesis of compound 100b by a Sonagashira reaction of dibromo

compound 101b with TMSA (Scheme 2.9), it was noticed that the reaction did not

go to completion after 2 days at rt. Besides 100b and starting materials, an unknown

compound was separated as a minor product. Although its instability prevented

further characterization, MALDI-TOF MS analysis suggested it could be a mono­

substituted product 127 (see Figure 2.5). If this byproduct was indeed 127, it would

serve as a facile starting material for the synthe is of endcapped ex-TTFAQs taJ'geted
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Scheme 2.15: Attempted synthesis of ex-TTFAQ 126 via cross-homo-coupling

reaction.

herein.

Figure 2.5: Structure of compound 127.

To seek the possibility of enhancing the stability by employing different alkynyl

substituents, two Sonogashira reactions were tested on dibromide 101b using

phenylacetylene or 4-ethynylbenzonitrile as the alkyne counterpart. In these

two reactions, significant amounts of mono cross-coupling products were not

isolated. It was thus concluded that the monoalkynyl-substituted product was
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unstable and should be converted to a more stable form in situ. Following this

rationalization, a Sonogashira cross coupling between lOlb and a 1:1 mixture of

TMSA/phenylacetylene was next attempted. Surprisingly, this reaction afforded

compound 124 as the only product (see Scheme 2.16). This result suggested

that phenylacetylene reacted much faster than TMSA in Sonogashira coupling with

dibromide 101b.

>=Z
ClOH21S SClOH21

124

Scheme 2.16: Sonogashira coupling reaction of 101b with 1:1

TMSA/phenylacetylene.

When phenylacetylene was added after TMSA had reacted with the alkyne at rt

for 1 day, the desired product 128 was separated in 14% yield as shown in Scheme

2.17. Further modification of the reaction conditions was made by adding a mixture

of 1 equiv of phenylacetylene and excess TMSA to 10lb at once. The best result

attained so far was using 1:6 phenylacetylene/TMSA (see Scheme 2.18). Under these

conditions, the yield of product 128 was improved to 30%. Although such a yield was

not high, it was still reckoned as acceptable since another product of the reaction,

dialkyne 114b, could also serve as a useful precursor for the synthesis of ex-TTFAQs.

With 128 in hand, a trimeric ex-TTFAQ was envisaged to be accessible through

72



a Sonogashira coupling reaction between desilylated 128 and a dihalide compound.

Different donor/acceptor endcapping groups, theoretically, could be introduced as

substituents on phenylacetylene. However, the reactivity of alkynes with endgroups

should be comparable to TMSA to afford acceptable yields. At this stage, this

synthetic strategy has been demonstrated to be very promising, but further efforts

are required to streamline it.

+ : I 1 :

>=Z >=Z
C'OH21S SC1QH21 C,0H2,S SC'OH21

128

Scheme 2.17: Synthesis of mono-TMSA substituted compound 128.

:1 I:

Scheme 2.18: Modified synthesis of mono-substituted compound 128.
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2.2.1.9 An Unknown Product Formed in the Sonogashira Coupling

Reaction of 101b and Phenylacetylene

During the synthesis of 124 via a Sonogashira coupling reaction of dibromo compound

101b with phenylacetylene, a purple substance was obtained in a quantity nearly the

same as 124. MALDI-TOF MS analysis indicated that this unknown product has the

same molecular mass as 124. However, its IH NMR spectrum showed a complicated

set of proton signals in the aromatic region, pointing to an unsymmetrical molecular

structure that is more complex than 124. It is known that the Pd catalyst can induce

hydroarylations of alkynes, and the cyclizations of compounds with similar structures

to 124 are well documented. 115-117 If the reaction occurred in a way similar to the

reported ones, the structure of the unknown compound could be 130 (see Scheme

2.19). The 13C MR spectrum of 130 did not provide sufficient information for

structural elucidation of the unknown due to limited solubility. Thus, the proposed

cyclization is uncertain and awaits further study. It should be noted that there are two

observations contradicting the cyclization reaction. First, when compound 124 was

subjected to the same reaction conditions for 1 day, no reaction occurred. Second,

when diyne 1I5b reacted with iodobenzene to form 124, the unknown compound

was not formed. Mostly likely, the unknown substance was formed by a competing

reaction to the Sonogashira coupling, rather than a follow-up reaction.

To better understand the reaction leading to the unknown product, the structure

of the unknown needs to be clearly confirmed. One difficulty preventing structural

identification of the unknown is the complex 1H NMR spectral pattern in the aromatic

region. To acquire a better resolved 1H MR spectrum, reducing the number of
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Scheme 2.19: Sonogashira reaction of 101b with phenylacetylene.

aromatic protons on the phenylacetylene substituents would be beneficial. Upon

this consideration, Sonogashira reactions of 101b with 4-methoxyphenylacetylene/4-

nitrophenyleacetylene were performed. The use of these substituents was expected to

simplify the signals of the phenyl protons and to make the spectral assignment easier.

Interestingly, only the cross coupling reaction of 101b with 4-methoxyphenylacetylene

yielded a blue substance as a byproduct in a comparable yield to the cross-

coupling product (Scheme 2.20), whereas the cross coupling of 101b with 4-

nitrophenylacetylene ended with mainly cross-coupling product. This result suggested

that the side reaction is substituent sensitive. The signals of aromatic protons for

the unknown product 132 in Scheme 2.20 were better resolved, but still not good

enough to allow clear structure identification. Because the crude product of the

blue substance contained some inseparable impurities, no further characterization

was done. Understanding of this unexpected side reaction will require further

experimental efforts; in particular, it will be of great value if single crystals of the

unknown suitable for X-ray stucture analysis can be obtained.
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Scheme 2.20: Sonogashira reaction of 101b with 4-methoxyphenylacetylene.

2.2.1.10 Structural Properties of Macrocyclic TTFAQ Analogue 98b

Single crystals of 98b were obtained by slow diffusion of MeOH into a CHCl3 solution

of 98b at 4°C. The structure of 98b was then investigated by single crystall X-ray

diffraction. Two structurally similar polymorphs were observed in the single crystal

of 98b. Figure 2.6(a) shows the ORTEP plot highlighting the geometric features

of the conjugated molecular skeletons for one of the polymorphs. Compound 98b

displays a substantially bent S-shaped structure, in which the central macrocyclic

enyne core assumes a planar conformation, while the two dithiole rings are in a nearly

perpendicular orientation versus the central cyclic enyne plane. The interplanar angle

between the two planes of adjacent dithiole and anthracene units is 15.5°, while the

angle between the dithiole ring and central cyclic enyne plane is at 79.3°. These

angles are in line with the bend parameters observed in the crystal structures of

quinonedimethane-type exTTFs reported in the literature. 118,119

The nonplanarity of the central structure between the two dithiole rings could arise

mainly from the significant steric interactions among the anthryl units and macrocylic

enyne moieties. Interestingly, to release the steric hindrance, the two anthryl units
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Figure 2.6: (a) ORTEP drawing of compound 98b at the 50% probability level (n­

decyl chains were removed for clarity). (b) Solid-state packing of two molecules of 98b

in the unit cell. Note that solvent CHCl3 molecules are present in the ORTEP plots.

Selected bond lengths (A): C23-C24 1.361(5), C24-C37 1.474(6), C32-C37 1.410(5),

C31-C32 1.478(7), C31-C38 1.374(7), C38-C40 1.431(5), C40-C41 1.189(5), C41-C42

1.439(5), C42-C47 1.429(7). Selected bond angles (deg): C25-C24-C37 114.9(3),

C30-C31-C32 113.8(4), C39-C38-C40 113.9(4), C38-C40-C41 117.3(6), C40-C41-C42

175.2(5), C41-C42-C47 121.1(4). CCDC 680314.
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bend to the opposite sides of the central cyclic enyne plane. This is different from the

scenario observed on the anthraquinone central plane, that is, the steric hindrance is

released when the dithiole ring and macrocyclic enyne core bend to the same side of

the antraquinone plane. A possible explanation is that this avoids steric interactions

between alkyl chains and maximizes the 1T-alkyl interactions.

In the crystal lattice, two molecules of 98b are closely positioned in the manner

depicted in Figure 2.6(b). The long n-decyl chains and the central bisbenzo-cyclic

enyne moiety adopt a 1T-alkyl-alkyl-1T intermolecular stacking, interlocking the two

molecules orthogonally with respect to one another.

2.2.1.11 Electronic Properties of Macrocyclic TTFAQ Analogue 98b and

Related Compounds

UV-Vis absorption spectra of macrocycle exTTF 98b, acyclic exTTF dimer 123,

monomer 124 and TTFAQ derivative 133 were measured (Figure 2.8). Compound

98b exhibits three significant absorption bands at 528, 419 and 387 nm, while its

"half structure", monomer 124, shows only two bands at 464 and 367 nm. An acyclic

counterpart to 98b, exTTF 123, also shows two bands at 510 and 367 nm. The

broad absorption of 98b between 370-420 nm may arise from interactions between

the dithiole rings and the central macrocycle. Compared to monomer 124, the

longest wavelength absorptions of exTTF 98b and 123 are significantly redshifted,

as a result of their further extended conjugated pathways between the two dithiole

rings. Interestingly, the longest wavelength absorption of monomer 124 is redshifted

compared to TTFAQ derivative 133, probably due to a push and pull effect.
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Figure 2.7: Structures of macrocycle exTTF 98b, acyclic exTTF 123. monomer 124,

and TTFAQ derivative 133.
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Figure 2.8: UV-vis spectra of compounds 98b, 123, 124, and 133 measured in

79



The fluorescent properties of 98b and monomer 124 are delineated in Figure

2.9. The maximum emission peak (Ae111 ) of 98b appears at 628 nm, a wavelength

redshifted by 44 nm versus that of 124. This observation is consistent with the UV-

vis results, suggesting that 98b has a smaller HOMO-LUMO gap than does 124. The

fluorescence quantum yield of 98b (¢ = 0.13) is about double that of its half-structure

124 (¢ = 0.064), which can be due to the rigid central enyne core.

I gabl
1.4x106 -124

1.2x106

1.0x106

~
8.0x10·

() 6.0x10·

4.0x10·

2.0x10·

Figure 2.9: Fluorescence spectra of 98b (Aex = 531 nm) and monomer 124 (Aex -

447 nm) measured in CHCI3 .

2.2.1.12 Electrochemical Redox Properties of 98b and 124

Cyclic voltammetric analyses were performed on macrocycle 98b and monomer

124. and their cyclic voltammograms are shown in Figure 2.10. As can be seen,

both compounds showed an irreversible reduction and two irreversible oxidation
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processes. The similar redox behaviors of macrocycle 98b and compound 124 suggest

insignificant electronic communications between the two dithiole rings through the

1r-conjugated macrocyclic bridge in compound 98b. The irreversible reductions of

98b and 124 occur at similar potentials, about -0.2 V. The exact origin of this

reduction is not clear and waits for further investigation. At this juncture, it is

tentatively assigned to the reduction of the exocyclic alkene on the anthracene units

based on two rationales. First, the exocylic alkenes are expected to show electron­

withdrawing ability facilitated by the C=C bonds of the central enyne macrocycle.

Second, the reduced species may be stabilized by the aromatic structure of the

anthraquinoid moiety. It is noted that the reduction potential of macrocycle 98b is

slightly lower than that of 124. This observation agrees with the empirical estimation

that the macrocyclic enyne core has a better electron withdrawing ability than the

acyclic enyne framework in 124.

2.2.1.13 Oxidative Titration and Spectroelectrochemistry of TTFAQ

Analogue 98b

To further investigate the electronic properties of macrocyle 98b in both neutral and

oxidized states, an oxidative titration experiment using PhI(OAch/CF3S03H as the

oxidant was carried out. The progress of the titration was monitored by UV-vis

absorption spectroscopy.120,121 As shown in Figure 2.11, four isosbestic points are

clearly seen in the titration process, indicating clean oxidations of 98b to cationic

species. With increasing addition of the oxidant, the intensity of the absorption

peaks at 370 and 530 nm decreased and the absorption at 450 nm increased. Unlike

the oxidative titration of TTFAQ derivatives reported in the literature,122,123 no
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Figure 2.10: Cyclic voltammograms of 98b and 124 measured in CHCl3 /ClhCN (4:1,

v/v) at room temperature. Bu4 NBF4 (0.1 M) as the supporting electrolyte, glassy

carbon as the working electrode, Pt wire as the counter electrode, and AgiAgCl as

the reference. Scan rate: 100 mV S-l.

distinctive new low-energy band significantly emerged as a result of the formation of

cationic 98b. Possibly, the absorption of the cationic species resulting from oxidative

titration is weak in intensity and merged with the broad featureless absorption profile

in the rang of 500-600 nm. Nonetheless, a long absorption tail above 600 nm is still

discernible and can be associated with the oxidized species.

Spectroelectrochemistry of 98b was also studied (see Figure 2.12). In the

experiments, UV-vis absorption spectra of 98b were determined at various applied

potentials in the range from +300 to + 1500 mV. The spectral variations are es 'entially

the same as those in oxidative titration. The drifting of spectral baselines at high

potentials is likely due to system error caused by the evaporation or electrolysis of

solvent.
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Figure 2.11: UV-vis spectra of macrocycle 98b upon addition of oxidant ( 0 to 1

equiv.) measured in CHCI3 ·
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Figure 2.12: UV-Vis spectra of 98b determined at potentials from +0.3 to +1.5 V.

Experimental conditions: supporting electrolyte: Bu4NBF" (0.1 M); solvent: CHC13 ;

working electrode: Pt mesh; counter electrode: Pt; reference electrode: Ag/AgCl.
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2.2.1.14 Summary

A new synthetic methodology has been developed and applied to the synthesis of a

class of highly 7r-extended TTFAQ analogues containing a macrocyclic enyne core.

Insertion of the macrocyclic enyne 7r-spacer into TTFAQ has brought about some

interesting solid-state packing and electronic absorption/emission properties to 98b.

However, as indicated by the CV data 98b is a weaker electron-donor than TTFAQ

as a result of its prolonged 7r-spacer length and highly bent molecular shape.
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2.2.2 Synthesis and Characterization of TTFAQ Analogue 99

2.2.2.1 Retrosynthetic Analysis

Following the synthesis of TTFAQ analogue 98b, a planar macrocyclic enyne bridged

TTFAQ analogue 99 was targeted. The retrosynthetic analysis of 99 is shown in

2.21. By a strategy similar to TTFAQ analogue 98b, disconnection of the central

macrocyclic enyne structure led to two precursors 134 and 135. Similar to the

successful macrocyclization reaction in the synthesis of 98b, a four-fold Sonogashira

reaction of desilylated 134 and diiodo 135 was envisaged to afford the desired

product. Precursor 134 could be prepared from ketone 136. An HWE reaction

of ketone 136 and phosphonate 105 or phosphonium salt 137 would then furnish

134. The synthesis of diiodide 135, ketone 136, phosphonate 105, phosphonium

137 are all well-documented in the literature.

R~~R1

-r- +

~
TMS TMS

134

Rl(Y1
R~I

Scheme 2.21: Retrosynthetic analysis of TTFAQ analogue 99.
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2.2.2.2 Synthesis of Ketone 136

Ketone 136 was synthesized according to known procedures. 124- 127 The detailed

steps are described in Scheme 2.22. The synthesis started with treatment of

propargyl alcohol 138 with n-BuLi in THF cooled in a dry ice-acetone bath.

The lithium acetylide generated in situ was then treated with TMSCl, followed

by aqueous workup, to give compound 139 in 75% yield. PCC oxidation of

alcohol 139 afforded aldehyde 140, which was then subjected to nucleophilic

attack by lithium trimethylsilylacetylide to afford alcohol 141. In addition to

this stepwise manner, alcohol 141 could also be prepared by one-pot addition of

lithium trimethylsilylacetylide to methyl formate. PCC oxidation of alcohol 141

then furnished ketone 136 in 35% yield.

1.n-BuLi, THF,-78°e

~OH ~: :~~~; -78 °e_ rt~MS~OH pee, eH~~~:,' 0 °e

138 75% 139 0

o

rt. /H

TMS 140

OH 0
TMSA 1.n-BULi'oTHF,-78oe,30mi~ pee~:~2eI2 ~

2.140, 0 ~5% rt. TMS 141 TMS TMS 136 TMS

Scheme 2.22: Synthesis of ketone 136.

With ketone 136 in hand, two routes could be possibly employed to construct

TTFAQ analogue 99. The first route is depicted in the retrosynthetic analysis in

Scheme 2.21, while the second one starts from a Sonogashira coupling between a

diiodide and ketone 136 to form a macrocyclic diketone, which is next subjected to

a two-fold Wittig-type olefination. In this thesis work, both synthetic routes were

investigated. The second route was soon abandoned, since desilylation of ketone 136
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with K2C03 in THF/MeOH or TBAF ended up with only decomposed substances,

indicating very poor stability of desilylated 136.

2.2.2.3 Synthesis of Dithiafulvenes 134a,b

Using ketone 136 as the precursor, compounds 134a,b were prepared by the HWE

or Wittig reactions depicted in Scheme 2.23. In the synthesis, phosphonate 105a

and phosphonium salt 137128 were first deprotonated by t-BuLi. The resulting

ylides were reacted with ketone 136 to afford compounds 134a,b 87 respectively in

moderate yields. It is worth noting that ketone 136 showed limited stability in

some organic solvents. For instance, after dissolving ketone 136 in dry THF, the

solution became dark brown with 5 min. TLC analysis indicated the presence of

several new compounds, likely stemming from some decomposition reactions. When

ketone 136 was dissolved in CH2C!z, however, it afforded a stable pale yellow solution.

Apparently, the stability of 136 in solution is solvent dependent.

H3CS SCH3

H3CSyS 1.I-BuLi,THF,-78°C,15min K
)Ls~~Men2.136, -78 °C_ rt. -ir

H3
CS 0 50% ~

105a TMS 134a TMS

Me02C C02Me

Me02Cys\- 1. I-BuLi,THF,-78°C, 15min K
)Ls pH 2. 136,-78°C-rt. A

Me02C ttl BU3

137 BF~ 48% TMS -:P 134b~ TMS

Scheme 2,23: Synthesis of DTF precursor 134a,b.
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2.2.2.4 Synthesis of Diiodoarenes 135b,c

To construct the target macrocyles through the Sonogashira strategy, 1,2-

diiodobenzenes were chosen as the building blocks. In addition to 1,2-diiodobenzene

(135a) which is commercially available, alkyloxy and crown ether-appended

diiodobenzenes 135b,c were also prepared so as to impart better solubility or more

functionality to the target compounds. The syntheses of 135b,c were performed

according to known procedures. As shown in Scheme 2.24 diiodobenzene 135b was

prepared from catechol by a two-step synthesis involving an alkylation of catechol

followed by an iodination with I2/Hg(OAch. 129

Scheme 2.24: Synthesis of diiodobenzene 135b.

Crown ether-annulated diiodobenzene 135c was prepared by two different routes.

In route 1 (Scheme 2.25), catechol was protected with acetone to form acetal 146 in

the presence of P205' Iodination of 146 with h/Hg(OAch, followed by deprotection

of the resulting diiodo compound 147 in a refluxing, acidic, aqueous solution,

furnished diiodonated catechol 148. Compound 148 was then cleanly converted

to diiodo crown ether 135c by a reaction with ditosylate 145 in the presence of

NaOH and a phase transfer cataly t, BU4NBr. 130,131 Ditosylate 145 was prepared

by a reaction of tetraethyleneglycol with TsCl in THF using Et3N as base. 132 In

route 2 (Scheme 2.25), catehol was reacted with ditosylate 145 in the presence of

NaOH and BU4NBr. The resulting crown ether 149 was iodinated with H5I06 /I2 in
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acidic conditions to afford 135c which was purified by recrystallization from hexanes.

Iodination of 149 under other conditions such as using IdHg(OAch or ICl was tried,

but these reactions afforded mixtures of substituted benzenes, making purification of

the desired product unsuccessful. Overall, route 2 has been found to be more concise

and productive.

Ho0o~~H TSCI~:t, THF Tso0o~~TS

144 145

(XIOH~ ~o>< 12,Hg(OAch,CH2CI2 I~O><

"" OH reftux Y-o 62% IA)l-.O
142 71% 146 147

Scheme 2.25: Synthesis of crown ether-annulated diiodobenzene 135c.

2.2.2.5 Synthesis of TTFAQ Analogues 99a-c

The synthesis of macrocyclic TTFAQ analogues 99a-c is described in Scheme 2.26.

Compound 134a was first desilylated with K2C03 in THF/MeOH, Since the resulting

terminal alkyne was not stable in the solid state, it was directly used in the

following cyclization reactions without further purification, The cyclization used
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a one-pot coupling strategy as in the synthesis of TTFAQ analogue 98b. As

shown in Scheme 2.26, desilylated 134a was reacted with diiodobenzenes 135a-

c respectively to give cyclic products 99a in 20% yield, 99b in 7% yield, and

99c only in a trace amount. In all the three reactions, the formation of acyclic

oligomers was prominent. In the reaction for 99c, deiodination and decomposition

of the catalyst were also observed. Electron-donating subsitituents could slow down

Sonogashira reactions, which partially accounts for the extremely low yield of 99c.

Addition of NaCl to the synthesis of 99c was tried with the hope that the electron-

donating ability of the crown ether could be reduced by coordinating Na+ with

the crown ether. Nevertheless, this method did not lead to significantly improved

yields. Deiodination and decomposition of the catalyst became trivial under these

conditions. Furthermore, other solvent/base systems, such as THF/Et3 (1:1), and

toluene/DBU, have been investigated, but they did not give any better results.

>=Z
H3CS SCH3

99a,R=H,20%
99b,R=OC10H21 ,7%
99c, R = -O-(-C2H.O-k, trace

Scheme 2.26: Synthesis of TTFAQ analogues 99a-c by a one-pot macrocyclization.

Aside from 134a, compound 134b (for structure, see Scheme 2.23) was also

tested as a building block for making macrocylic TTFAQ analogues similar to 99,
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but carrying ester pendant groups instead of SCHa groups on the dithiole rings. In

the synthesis, desilylation of 134b with K2COa in THF/MeOH failed, but the use

of TBAF was able to accomplish the task successfully. The resulting diyne was

then subjected to a four-fold Sonogashira reaction with 1,2-diiodobenzene using the

conditions described above. Although the desired macrocycle product was detected by

MALDI-TOF MS analysis, separation of it from byproducts, mostly acyclic oligomers,

was unsuccessful. At this juncture, the applicability of 134b as a building block for

constructing macrocyclic TTFAQs did not appeare to be promising.

Parallel with the one-pot cyclization strategy, a step-wise ring closure approach

was also pursued in the hope of obtaining higher yields. As shown in Scheme

2.27, the syntheses started with the Sonogashira reactions of desilylated 134a with

excess diiodo compounds 135a,b respectively. Cyclization of intermediates 150a,b

to form the final macrocylic products is theoretically a favorable choice due to the less

entropic penalty than that of the one-pot strategy. Experimentally, the syntheses of

150a,b ended with very poor yields, making this strategy not so promising. The low

yields could come from the inherent instability of desilylated 134a under Sonogashira

reaction conditions, which would also explain the extremely low yield in the formation

of macrocycle TTFAQ analogue 99.

2.2.2.6 Single Crystal Structural Properties of Macrocyclic TTFAQ

Analogue 99b

Attempts to grow single crystals of TTFAQ analogue 99a in various organic solvents

were not very successful. However, high-quality crystals of 99b were formed

accidentally when a solution of 99b in CHCla/CHaC (4:1, v/v) in the presence

91



1~

2.4equiv.135a
Pd(PPh3)4,Cul
El3N

1.K2C03,THF/MeOH
2.4 equiv. 135b

Pd(PPh3)4,Cul
Et3N,60oC

C,oH2,O -r ~ ~

""I
ClOH2,O I 150b I

'<:: OC'OH21

lfi
OC'OH2'

Scheme 2.27: Synthesis of compounds 150a and 150b.

of BU4NBF was stored at ca. 4 ce. Originally, the mixture was prepared for cyclic

voltammetry study. After storing in a fridge for more than one month, single crystals

grew slowly at the bottom of the sample vial. X-ray diffraction analysis on one of

these crystals was carried out, and the single crystal structural properties of 99b are

illustrated in Figure 2.13.

As can be seen in Figure 2.13(A) and (B), the single crystal structure of 99b

adopts a planar conformation. The central enyne macrocycle is coplanar with adjacent

phenyls and dithiole rings, as a result of the removal of steric hindrance caused

by the anthraquinone moiety in TTFAQ analogue 98b. A closer comparison of

crystallographic data of 99b to 98b shows that the bond length alternation (BLA)

index (bBLA ) of 99b (0.155 A) is slightly shorter than that of TTFAQ analogue 98b

(bBLA = 0.165 A). The variation in BLA suggests that the cyclic enyne segment

in 99b possesses a higher degree of 7r-delocalization than TTFAQ 98b, resulting
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Figure 2.13: Single-crystal structure of TTFAQ analogue 99b: (A) front view of

ORTEP plots. (B) side view of ORTEP plot. (C) side view of crystal packing

diagram. and (D) front view of crystal packing diagram. Ellipsolid probability at

30% level. Note that solvent CHCl3 molecules are present in the ORTEP plots.

CCDC 726951.
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from stronger electronic interactions between the dithiole rings and the central enyne

macrocylce.

As shown in Figme 2.13(C) and (D), the molecules of 99b pack in a columnar

fashion in the crystal lattice where the electron-rich dithiole rings directly overlap

with the relatively electron-deficient macrocyclic enyne core, affording a slipped face­

to-face stacking. This solid-state packing feature is markedly different from the

crystal packing of non-planar TTFAQ analogue 98b. The distance between the mean

planes of two adjacent molecules is measmed at 3.73 A, and the close proximity

between the donor (dithiole) and acceptor (enyne ring) is suggestive of intermolecular

charge-transfer interactions. The planar framework of 99b is important to the

formation of efficient 7r-stacking in the solid state, which could benefit its electronic

and optoelectronic applications.

2.2.2.7 Electronic Properties of Macrocydic TTFAQ Analogues 99a,b

and Related Compounds

The UV-Vis absorption and fluorescence emission properties of 99a,b were studied

and the results are shown in Figmes 2.14 and 2.16.

In Figme 2.14, compound 99a shows two characteristic low-energy absorption

bands at 480 and 453 nm, which are nearly identical to those of 99b at 483

and 457 nm. These absorptions are substantially redshifted in comparison to the

maximum absorption band (Amax ) of dithiole precmsor 134a at 380 nm, indicating the

presence of significant electronic interactions between the dithiole rings and the central

macrocyclic enyne units in 99a,b. The slight but noticeable redshift of absorption

bands in the spectra of 99b to 99a does not follow the expectation, since decyloxy
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-99b
-134

400 500 600

Wavelength (nm)

FigUl'e 2.14: UV-Vis absorption spectra of compounds 134a and 99a,b measUl'ed in

chains are supposed to increase the electron density of the central 1r-chromophore

and cause a blueshift to the longest-wavelength absorption if it is a 1r-1r* transition.

The UV-Vis absorption of 99b shows interesting solvent-dependant behavior (Figure

2.15), where the solvatochromic effect is particularly significant in oxygen-containing

solvents, such as EtOAc and THF.

The fluorescence spectra for 99a,b are shown in FigUl'e 2.16. in which both

compounds exhibit a similar broad and structureless emission profile. The maximum

emission wavelength (A e711 ) of 99b bearing decyloxy chain appears at 510 nm, which

is slightly blueshifted relative to that of 99a at 522 nm.
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Figure 2.15: UV-Vis absorption spectra of 99b measured in different
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Figure 2.16: Fluorescence spectra of 99a,b measured in CHCl3 (A ex
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2.2.2.8 Electrochemical Redox Properties of 98b, 134a and 150b

The electrochemical redox behavior of compound 99b was studied by cyclic

voltammetry while efforts to characterize 99a by the same technique failed due to

its limited solubility. The cyclic voltammograms of 99b shown in Figure 2.18 were

determined over varied ranges of potential scans at 0 °C. The lower potential limit

was chosen at -0.5 V just in case reduction of the oxidized species might occur at low

potentials due to the energy requirement for conformational change. In the scan range

of -0.5 to +0.72 V, the voltammogram shows a pair ofredox waves at Epa1 = +0.67 V

and EpC1 = +0.53 V. Given the fact that the separation between the two peaks is +0.14

V and the peak positions are scan rate dependant, this redox wave pair is considered

as quasi-reversible and its origin is tentatively assigned to a simultaneous two-electron

oxidation at the dithiole rings of 99b. The value of the first oxidation potential is

similar to those reported for TTFAQ (+0.44 V vs SCE in CH2CI2 ) 133 but much lower

than that of non-planar TTFAQ analogue 98b (+0.98 V). This result suggests that

the acetylene expanded macrocyclic spacer in 99b mediates electronic communication

between the two dithiole rings to an extent that is comparable to the anthraquinoid

spacer in a typical TTFAQ. When scanned from -0.5 to +0.9 V, a second anodic

current peak emerged at Epa2 = +0.76 V, which is associated with a relatively sharp

cathodic current peak at Epc2 = +0.65 V. When the switching potentials are from -0.5

to +1.2 V, two anodic peaks at +0.64 and +0.76 V along with one broad cathodic

peak at +0.62 V were observed in the voltammogram. In the range of -0.5 to +1.5 V,

a third anodic peak at + 1.32 V appeared, while there is no noticeable cathodic ClUTent

observed in the voltammogram. The irreversible pattern here may be rationalized by
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an EC mechanism, where an electrochemically promoted reaction swiftly follows up

the oxidation of 99b. Different pulse voltammetric analysis (see the inset of Figure

2.13) also corroborates that 99b undergoes three distinct oxidation steps at +0.59,

+0.71, and +1.13 V, respectively.

MeSl=<SMe

;(
TMS 134. TMS

""=: OC1oH21

J..(~.' AOO":::""O~OO""'
99b ClOH2'O I I OC'OH2'

150b

Figure 2.17: Structures of compounds 99b, 134a, and 150b.

Compared with 99b, monomer 134a displays relatively simple redox properties.

As shown in Figure 2.19, the CV profile gives an irreversible oxidation with a large

anodic peak current and a small cathodic peak cmrent. Since a blue film was observed

on the electrode surface after scanning, the irreversible behavior is likely correlated to

a deposition process. The oxidation occurs at about +0.95 V, which is much higher

than both 1st and 2nd oxidation potentials of 99b. In other words, the electron-

donating ability of 99b is much higher than monomer 134a, which is consistent with

the general expectation for TTF. It also serves as evidence that this macrocyclic core

allows significant electron communication between two dithiole rings. The oxidation

profile of 134a is similar to the first oxidation of non-planar TTF 98b bearing an

extra anthraquinoid structure. This observation indicates the anthraquinoid structure
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Figure 2.18: Cyclic voltammograms of TTFAQ analogue 99b measured in varied

potential scan windows at 0 ac. Experimental conditions: solvent: CH2 CI2 ;

electrolyte: Bu4 NBF4 (0.1 M); working electrode: glassy carbon; counter electrode:

Pt; reference electrode: AgiAgCI; scan rate: 500 mV Is. Inset: diJ'ferelllial pulse

voltammogram of 99b measured at 0 ac.
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in 98b, in fact, has little influence on the electron-donating ability of dithiole rings.

0.02

:;(
-0.02

.s -0.04

~
()

-0.08

-0.10

-0.12

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

Potential (V)

Figure 2.19: Cyclic voltammogram of compound 134a. Experimental conditions:

solvent: CH2 CI2 ; electrolyte: BU4 BF4 (0.1 M); working electrode: glassy carbon;

counter electrode: Pt; reference electrode: Ag/AgCI; scan rate: 200 mVIs.

The redox behavior of 150b is relative complex. As shown in Figure 2.20, the

voltammogram displays three oxidations at +0.83, +1.19 and +1.38 V, respectively.

The first oxidation is similar to that of 134a, thus it is ascribed to the oxidation of

dithiole rings. The first oxidation potential of 150b is lower than 134a, corresponding

to an enhanced electron-donating ability. An explanation for this can be that either

the electron density on dithiole ring is increased or the oxidized product is stabilized

by the substituent effect. Compared with 99b, the first oxidation potential of

150b is much higher, suggesting that the macrocyclic core in 99b provides further

stabilization to the resulting cations. The second oxidation potential of 150b is
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similar to the third oxidation peak of 99b, and hence they may be of the same origin;

that is, the oxidation of ethynylated benzo units. The oxidation of 150b shows

reversible character but 99b does not. The different behavior may be rationalized

by a possible following chemical reaction when 99b is oxidized at the electrode

surface. The reaction might involve the whole macrocylic unit; however, the detailed

transformation is not clear at the moment. The third oxidation of 150b is barely

recognizable due to significant overlap with the oxidation peak of solvent. Its origin

may be attributed to the oxidation of the iodobenzo units, which normally requires

a high potential to take place. No characteristic reduction processes of 150b are

ob erved in the voltammogram. By comparing the structural differences between

150b and 98b, the reduction features of non-planar 98b (see Figure 2.10) can be

reasonably correlated to the antraquinoid structure, which is absent in the structure

of 150b.

2.2.2.9 Spectroelectrochemistry of TTFAQ Analogue 99b and Monomer

134a

Spectroelectrochemistry of 99b and monomer 134a were determined using the same

methods as for TTFAQ analogue 98b. Figures 2.21 and 2.22 show the detailed

spectroelectrochemical data. The UV-Vis absorption bands of 99b at 4 3 and

457 nm decrease as the compound is gradually oxidized. In the meantime, an

absorption tail emerges, starting from 500 nm and extending to 800 nm, which can

be associated with the formation of cationic species resulting from electrochemical

oxidation. Importantly, isosbestic points are observed for absorptions at low

potentials, indicating clean reversible oxidation. However, at high potentials, the
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Figure 2.20: Cyclic voltammogram of compound 150b. Experimental conditions:

solvent: CH2 C12 ; electrolyte: BU4 BF4 (0.1 M); working electrode: glassy carbon;

counter electrode: Pt; reference electrode: AgiAgCl; scan rate: 200 mYIs.
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isosbestic points disappear possibly due to the formation of complex oxidized species

by follow-up chemical reactions. This observation is consistent with the cyclic

voltamll1etric data in that once the third oxidation occurs, cathodic peaks are no

longer observed. In contrast the spectroelectrochemical data for 99b, the absorption

spectra of 134a give two isosbestic points throughout the whole range of applied

potentials, which is indicative of a clean oxidation. Based 011 this observation, the

irreversible behavior of 134a is ascribed to a partial deposition of insoluble oxidized

species on the electrode instead of a follow-up reaction. This assignmeJlt is also

supported by the fact that a blue film of low solubility was observed on the electrode

surface after measurements.

0.4
1

~ 0.2

0.1

600

Wavelength (nm)

Figure 2.21: UV-Vis spectra of macrocycle 99b determined at potentials from +0.3 to

+1.5 V. Experimental conditions: supporting electrolyte: Bu4 NBF4 (0.1 M); solvent:

CH2CI2; working electrode: Pt mesh; counter electrode: Pt; reference electrode:

AgjAgCI.
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Figure 2.22: UV-Vis spectra of monomer 134a determined at potentials from +0.3 to

+1.5 V. Experimental conditions: supporting electrolyte: Bu4 NBF4 (0.1 M); solvent:

CH2CI 2 ; working electrode: Pt mesh; counter electrode: Pt; reference electrode:

Ag/AgCI.

2.2.2.10 Summary

The first examples of planar acetylene-expanded TTFAQ analogues have been

synthesized and characterized. Success in the synthesis proves the efficiency of one-pot

Sonogashira cyclization protocol in constructing shape-persistent macrocyclic enyne

structures. The simplified planar structures compared to the previously lesigned

TTFAQ analogue 98 indeed improve the electron communication between two dithiole

rings and thus increase its electron-donating ability. In addition, the solid-state

packing is significantly changed as a result of the planar molecular shape. Based on
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their efficient solid-state packing and electrochemical activities, the planar TTFAQ

analogues are envisioned to be potentially useful materials for organic electronic

devices.

2.3 Experimental

General Procedures

Chemicals were purchased from commercial suppliers and used directly without

purification. CH2Cl2 was distilled from CaH2 before its use in Corey-Fuchs reactions.

Et3N was distilled from LiH prior to use in Sonogashira couplings. THF was distilled

from benzophenonej a before its use in HWE reactions. All reactions were conducted

in standard, dry glassware and under an inert atmosphere of nitrogen unless otherwise

noted. Evaporation and concentration were carried out with a water-aspirator.

Flash column chromatography was performed using 240-400 mesh silica gel obtained

from VWR International. Thin-layer chromatography (TLC) was carried out with

silica gel 60 F254 covered on plastic sheets and visualized by UV light. Melting

points (m.p.) were measured with a Fisher-Jones melting point apparatus and are

uncorrected. 1H NMR and 13C NMR spectra were measured on a Bruker Avance 500

MHz spectrometer. Chemical shifts are reported in ppm downfield from the signal

of the internal reference SiMe4' Coupling constants (J) are given in Hz. Infrared

spectra (IR) were recorded on a Bruker Tensor 27 spectrometer equipped with a

ZnSe ATR module. APCI mass spectra (MS) were measured on an Agilent 1100

series LCMSD spectrometer, and MALDI-TOF MS were measured on an Applied

Biosystems Voyager instrument using dithranol as the matrix. Positive-mode high-
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resolution mass spectra (HRMS) were measured on a Waters GCT premier instrument

equipped with an electron ionization (EI) ion source and a QSTAR XL hybrid

quadrupole/TOF mass spectrometer equipped with an o-MALDI ion source (Applied

Biosystems). Single crystal X-ray diffraction data were collected on a Rigaku Satum

CCD area detector equipped with a SRI! E optic with MoI{" radiation (A = 0.71075

A). UV-Vis spectra were measured on a Cary 6000i UV-Vis- IR spectrophotometer,

and fluorescence spectra were measured on a Photon Technology International (PTI)

Quantamaster spectrofluorometer. Cyclic voltammetric (CV) and differential pulse

voltammetric (DPV) experiments were carried out in a standard three-electrode setup

controlled by a BASi epsilon workstation. Spectroelectrochemistry was investigated

through the following protocol: In a 1 mm quartz cuvette were placed a Pt mesh as

working electrode, Ag/AgCl as reference electrode, and Pt wire as counter electrode.

The applied potential (V) was increased in steps through controlled potential

electrolysis (CPE). In each potential step, the electrolysis was first performed for

ca. 1.5 min until the electrical current remained constant then a UV-Vis spectrum

was obtained.

Decyl Macrocycle TTFAQ analogue (98b).
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Compound 100b (133 mg, 0.160 mmol) was dissolved in THF/MeOH (20 mL,

1:1). K2C03 (200 mg, 1.45 mmol) was added and the mixture was stirred for 30

min. The mixture was diluted with Et20, washed with H20, dried over MgS04 , and

concentrated in vacuo to about 10 mL. 1,2-Diiodobenzene (50 mg, 0.16 mmol) and

CuI (12 mg, 0.063 mmol) were mixed in a 100 mL rbf, and Et3 (40 mL) was added.

The mixture was degassed and then Pd(PPh3)4 (20 mg, 0.017 mmol) was added. The

mixture was heated to 65°C. The solution of desilylated 114b was purged with N2 for

5 min and added dropwise in the reaction mixture over 3 h (5 mL of the solution was

added over 0.5 h, and then the mixture was allowed to stir for 1.5 h before another

5 mL of the solution was added over 1h.) The mixture was stirred overnight. Then

it was diluted with CH2C12, washed with NH4 Cl and H20, dried over MgS04 , and

chromatographed with 10% CH2C12 in hexanes to afford crude product 98b, which

was further purified by recrystallization from 1:1 MeOH/CHCh as a black-red solid

(32 mg, 0.021 mmol, 27%). M.p. 140-142 °C; IH NMR (500 MHz, CDC13): fJ =

8.50-8.40 (m, 4H), 7.71 (d, J = 6.4 Hz, 4H), 7.47-7.36 (m, 12H), 7.31-7.27 (m, 4H),

2.90-2.72 (m, 8H), 1.65-1.56 (m, 8H), 1.45-1.33 (m, H), 1.30-1.15 (m, 48H), 0.90­

0.80 (m, 12H); I3C NMR (125 MHz, CDCh): fJ = 136.1, 133.4, 132.1, 128.3, 128.1,

126.9, 125.73, 125.68, 125.3 (five Sp2 carbon peaks not observed due to coincidental

overlap), 99.8, 91.9, 36.7, 32.1, 29.9, 29.74, 29.72, 29.5, 29.3, 28.7, 22.9, 14.3; FTIR

(neat) 3060, 2958, 2927, 2853, 1572, 1531, 1485 em-I; MS (MALDI-TOF) m/z calcd

for C96HlOSSS' 1516.62 found 1518.82 [M + H]+).

TTFAQ analogue (99a).

To a solution of dithiafulvene monomer 134a (47 mg, 0.12 mmol) in THF/MeOH

(10 mL, 1:1) was added K2C03 (200 mg, 1.45 mmol). The mixture was stirred for
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30 min at rt and then diluted with Et20, washed with H20, dried over MgS04 , and

concentrated in vacuo to about 5 mL. Pd(PPh3)4 (32 mg, 0.028 mmol), CuI (10 mg,

0.053 mmol), o-diiodobenzene (30 mg, 0.091 mmol), and Et3N (15 mL) were mixed

and deoxygenated. The mixture was heated to 60 ac. The solution of desilylated

134a was purged with N2 for 5 min and added into the reaction mixture over 1 h.

The mixture was stirred overnight. Then it was diluted with Et20, washed with

H4Cl and H20, dried over MgS04 , and purified by column chromatography (40%

CH2C12 in hexanes) to afford 99a as an orange solid (6 mg, 0.009 mmol, 20%). M.p.

208-210 ac; IH MR (500 MHz, CDC13/CS2): b = 7.36 (dd, J = 5.8,3.3 Hz, 4H),

7.18 (dd, J = 5.8, 3.3 Hz, 4H), 2.48 (s, 12H); Meaningful I3 C MR was not obtained

due to limited solubility; FTIR (neat) 2956, 2924, 2854, 1733, 1462, 1261, 1080,967

cm-I; MS (MALDI-TOF) m/z calcd for C32H20SS 659.93, found 661.53 [M + H]+;

EI-HRMS calcd for C32H20SS 659.9331, found 659.9339 [M]+.

TTFAQ analogue 99b.

To solution of dithiafulvene monomer 134a (51 mg, 0.13 mmol) in THF/MeOH

(10 mL, 1:1) was added K2C03 (200 mg, 1.45 mmol). The mixture was stirred for

30 min at rt and then diluted with Et20, washed with H20, dried over MgS04 , and
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concentrated in vacuo to about 5 mL. Pd(PPh3)4 (31 mg, 0.027 mmol), CuI (10

mg, 0.053 mmol), diiodo compound 39b (68 mg, 0.11 mmol), and Et3N (30 mL)

were mixed and deoxygenated. The mixture was heated to 60°C. The solution of

desilylated l34a was purged with 2 for 5 min and added into the reaction mixture

over 1 h. The mixture was stirred overnight, and then diluted with Et20, washed with

NH4Cl and H20, dried over MgS04 , and purified by column chromatography (40%

CH2Cl2 in hexanes) to afford 99b as an orange solid (5 mg, 0.004 mmol, 7%). M.p.

180°C (dec.); IH NMR (500 MHz, CDCl3): {) = 6.90 (s, 4H), 4.02 (t, J = 6.6 Hz,

8H), 2.49 (s, 12H), 1.86-1.78 (m, 8H), 1.53-1.44 (m, 8H), 1.40-1.22 (m, 48H), 0.88 (t,

J = 6.9 Hz, 12H); 13C MR (125 MHz, CDCl3): {) = 150.8, 149.4, 129.7, 118.0, 115.5,

99.8, 96.2, 88.8, 69.6, 32.2, 29.86, 29.82, 29.7, 29.6, 29.5, 26.3, 22.9, 19.5, 14.3; FTIR

(neat) 2956, 2924, 2852,1597,1510,1468,1404,1251 em-I; MS (MALDI-TOF) m/z

calcd for CnHlOo04SS 1284.54, found 1285.60 [M + H]+.

(3-(10-(4,5-Bis(methylthio)-1,3-dithiol-2-ylidene)anthracen-9(10H)-yli­

dene)penta-l,4-diyne-l,5-diyl)bis(trimethylsilane) (100a).

Dibromo compound lOla (210 mg, 0.387 mmol), Pd(PPh3)4 (45 mg, 0.039 mmol),

and CuI (22 mg, 0.074 mmol) were mixed in a 100 mL rbf. Et3N (100 mL) was added
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100a

and the mixture was deoxygenated. TMSA (6.0 mL, 42 mmol)) was added and the

mixture was heated to 60°C and stirred for 2 days. The mixture was diluted with

CH2Cl2, washed with NH4Cl and H20, dried over MgS04, and ehromatographed with

5% CH2Cl2 in hexanes to afford 100a as a red-brown oil (105 mg, 0.182 mmol, 47%).

M.p. 165-167 °C; 1H NMR (500 MHz, CDCh): 8 = 8.29 (d, J = 7.8 Hz, 2H), 7.61 (d,

J = 7.7 Hz, 2H), 7.36 (td, J = 7.7, 0.8 Hz, 2H), 7.24 (td, J = 7.8, 0.7 Hz, 2H), 2.43

(s, 6H), 0.23 (s, 18H); 13C NMR (125 MHz, CDCl3): 8 = 148.3, 135.7, 132.9, 132.8,

128.1, 128.0, 126.4, 125.7, 125.1, 123.3, 103.9, 99.8, 99.7, 19.5, 0.16; FTIR (neat)

2958, 2127, 1573, 1525, 1494, 1449, 1249, 1211, 956, 842, 767, 720, 671 em-I; MS

(APCI) m/z ealed for C30H32S4Si2 576.1, found 577.0 (100, [M + H]+).

(3-(10-(4,5-Bis(deeylthio)-1,3-dithiol-2-ylidene)anthracen-9(10H)-ylid­

dene)penta-l,4-diyne-l,5-diyl)bis(trimethylsilane) (100b).

~ 19 TMS

: I I :
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Dibromo compound 101b (400 mg, 0.503 mmol), PdCI2(PPh3h (18 mg, 0.026

mmol), and CuI (14 mg, 0.074 mmol) were mixed in a 50 mL rbf. Et3 (30 mL) was

added and the mixture was deoxygenated. TMSA (2.0 mL, 14 mmol) was added and

the mixture was heated to 60°C and stirred for 2 days. The mixture was diluted

with CH2CI2, washed with H4CI and H20, dried over MgS04, and chromatographed

with 5% CH2Cl2 in hexanes to afford 100b as a red-brown oil (400 mg, 0.482 mmol,

96%). IH NMR (500 MHz, CDCI3): 8 = 8.27 (d, J = 7.8 Hz, 2H), 7.62 (d, J = 7.7

Hz, 2H), 7.34 (t, J = 7.8 Hz, 2H), 7.21 (t, J = 7.7 Hz, 2H), 2.88-2.73 (m, 4H), 1.67­

1.60 (m, 4H), 1.45-1.35 (m, 4H), 1.34-1.18 (m, 24H), 0.89-0.84 (t, J = 6.8 Hz, 6H),

0.22 (s, 18H); 13C NMR (125 MHz, CDCI3): 8 = 148.4, 135.8, 133.3, 132.9, 128.1,

128.0, 126.8, 125.6, 125.1, 122.4, 104.0,99.8,99.5,36.6,32.1,30.0,29.77,29.76,29.5,

29.4, 28.8, 22.9, 14.3, 0.1; FTIR (neat) 3060, 2924, 2853, 1491, 1458, 1446, 770, 754,

690 cm-I; MS (MALDI-TOF) m/z calcd for C4sH6sS4Si2 828.37, found 829.40 ([M +

4,5-Bis (methylthio)-2- (10- (dibromomethylene)anthracen-9(10H)-ylid­

ene)-1,3-dithiol (lOla).

Dithiafulvalene ketone 102a (282 mg, 0.731 mmol) and CBr4 (987 mg, 2.98 mmol)

were mixed in a 100 mL oven-dried rbf. The mixture was flame-dried under vacuum
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for 5 min before dry CH2Cl2 (20 mL) was added. Then a solution of PPh3 (1.60 g,

6.10 mmol) in CH2Cl2 was added and the mixture was stirred overnight. The mixture

was then loaded on a 40 cm silica column and eluted with hexanes to afford product

lOla as an orange crystalline solid (248 mg, 0.458 mmol, 63%). M.p. 140°C (dec.);

IH MR (500 MHz, CDCI3): 8 = 7.87 (d, J = 7.6 Hz, 2H), 7.60 (d, J = 7.6 Hz, 2H),

7.32 (td, J = 7.6, 1.0 Hz, 2H), 7.25 (td, J = 7.6, 1.0 Hz, 2H), 2.42 (s, 6H); I3C NMR

(125 MHz, CDCI3): 8 = 139.9, 136.2, 134.0, 132.6, 128.1, 127.6, 126.2, 126.1, 125.2,

122.5, 90.0, 19.3; FTIR (neat) 3059, 2919, 1682, 1534, 1499, 1448, 1428, 1313, 1328,

773, 736, 675 cm-I; MS (APCI) m/z calcd for C2oHI/9Br2S4 539.8, found 539.8 (34,

4,5-Bis(decylthio)-2-(lO-(dibromomethylene)anthracen-9(lOH)-ylid-

ene)-1,3-dithiol (lOlb).

({O
sr Sr

~ "'"
"" I I"""

~
ClOH2'S SC,oH2,

101b

Dithiafulvalene ketone l02b (1.21 g, 1.89 mmol) and CBr4 (2.7 g, 8.2 mmol) were

mixed in a 100 mL oven-dried rbf. The mixture was flame-dried under vacuum for

10 min before dry CH2Cl2 (30 mL) was added. A solution of PPh3 (4.2 g, 16 mmol)

in CH2Cl2 was added. The mixture was stirred overnight. The mixture was then

filtered through a short silica plug and then concentrated in vacuo. The residue was

purified by column chromatography using 10% CH2Cl2 in hexanes as eluent to afford

112



101b as a yellow oil (1.36 g, 1.71 mmol, 91%). IH MR (500 MHz, CDCla): 8 =

7.87 (dd, J = 7.7, 0.8 Hz, 2H), 7.62 (d, J = 7.6 Hz, 2H), 7.33-7.28 (m, 2H), 7.26-7.21

(m, 2H), 2.88-2.77 (m, 4H), 1.67-1.61 (m, 4H), 1.43-1.35 (m, 4H), 1.34-1.20 (m, 24H),

0.87 (t, J = 6.8 Hz, 6H); laC NMR (125 MHz, CDCla): 8 = 139.9, 136.3, 134.0, 133.1,

128.1, 127.6, 126.6, 125.9, 125.1, 121.5, 89.8, 36.5, 32.1, 29.9, 29.76, 29.74, 29.5, 29.4,

28.8, 22.9, 14.3; FTIR (neat) 3061, 2924, 2852, 1951, 153 , 1496, 1449, 1282, 1051,

770,747,674 em-I; MS (APCI) m/z ealcd for CasH5079Br2S4 794.1, found 794.2 (38,

10-(4,5-Bis(methylthio)-1,3-dithiol-2-ylidene)anthracen-9(10H)-one

(102a).

~
~

>=Z
H3CS SCH3

102a

P(OEt)a (20 mL) was deoxygenated and heated to 155°C before anthraquinone

(1.2 g, 5.6 mmol) was added. A solution of methyl thione 104a (3.0 g, 6.3 mmol) in

xylenes (10 mL) was added over 40 min. After the addition of thione 104a started

for 20 min, a second portion of anthraquinone (0.80 g, 3.8 mmol) was added. The

mixture was stirred for 1 h and then concentrated in vacuo at 95°C to about 6 mL.

The residue was purified by column chromatography (25 cm column) with gradient

elution (30% CH2Cl2 in hexanes, and then 80% CH2Cl2 in hexanes) to afford product

102a as a red solid (320 mg, 0.83 mmol, 13%). M.p. 209-210 °C; IH MR (500 MHz,
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CDCI3 ): 8 = 8.27 (dd, J = 7.8, 0.9 Hz, 2H), 7.78 (d, J = 7.8 Hz, 2H), 7.65 (td,

J = 7.8,1.2 Hz, 2H), 7.45 (t, J = 7.8 Hz, 2H), 2.42 (s, 6H); 13C NMR (125 MHz,

CDCh): 8 = 183.7, 140.3, 138.9, 132.1, 130.9, 127.5, 127.2, 127.1, 126.4, 119.6, 19.5;

FTIR (neat) 2918, 1647, 1593, 1484, 1466, 1426, 1334, 1311, 1169,771,688 cm- I; MS

(APCI) m/z calcd for CI9HI40S4 386.0, found 387.0 (100, [M + Hj+), 298.0 (15).

10- (4,5-Bis(decylthio)-1,3-dithiol-2-ylidene)anthracen-9(10H)-one

(102b).

~
~

>=Z
ClOH2,S SC lOH2'

102b

P(OEth (25 mL) was deoxygenated and heated to 155°C before anthraquinone

(1.5 g, 6.7 mmol) was added. A solution of decyl thione 104b (3.0 g, 6.3 mmol) in

xylenes (2.5 ml) was added over 2 h. After the addition of thione started for 1 h,

a second portion of anthraquinone (0.50 g, 3.3 mmol) was added. The mixture was

allowed to stir for 0.5 h and then filtered through a silica plug (30 cm) and washed

with CH2CI2 . The filtrate was concentrated in vacuo and subjected to distillation

at reduced pressure. The residue was chromatographed with gradient elution (20%

CH2 Cl2 in hexanes, and then 40% CH2Cl2 in hexanes) to afford product 102b as a

red oil, which solidified to a red solid under vacuum (2.0 g, 3.1 mmol, 50%). M.p.

48-50 °C; IH NMR (500 MHz, CDCI3 ): 8 = 8.28 (dd, J = 7.8, 1.1 Hz, 2H), 7.79 (d,

J = 7.8 Hz, 2H), 7.65 (td, J = 7.8, 1.4 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 2.81 (t, J
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= 7.4 Hz, 4H), 1.63-1.54 (m, 4H), 1.42-1.35 (m, 4H), 1.32-1.20 (m, 24H), 0. 7 (t, J

= 7.1 Hz, 6H); 13C MR (125 MHz, CDCI3): 8 = 183.7, 140.9, 139.0, 132.0, 130.9,

127.6, 127.5, 127.0, 126.4, 119.0, 36.7, 32.1, 29.9, 29.8, 29.7, 29.5, 29.3, 28.7, 22.9,

14.3; FTIR (neat) 2924, 2853,1658,1596,1485,1466,1298,1170,932,772,689 cm-1;

MS (APCI) m/z calcd for C37HsoOS4 638.3, found 639.2 (100, [M + Hj+), 640.3 (45),

641.3 (28).

4,5-Bis(methylthio)-1,3-dithiol-2-thione (104a).

To a solution of 106 (0.52 g, 0.72 mmol) in acetone (40 mL) was added Mel

(0.200 mL, 3.21 mmol). The mixture was refluxed for 2 h and filtered. The residue

was washed with acetone. The filtrate was evaporated and the residue was quenched

with H20 (80 mL). The mixture was extracted with CH2CI2. The organic layer was

washed with H20, dried over MgS04, and evaporated under vacuum. The residue

was recrystallized from MeOH (33 mL) to afford 104a as an orange crystalline solid

(0.24 g, 1.1 mmol, 74%). 1H MR (500 MHz, CDC13): 8 = 2.49 (s, 6H). The data

are consistent with the literature report. 134

4,5-Bis (decylthio)-1 ,3-dithiol-2-thione (104b).
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To a solution of compound 106 (2.00 g, 2.78 mmol) in acetone (80 mL) was added

ClOH21 Br (2.80 g, 12.7 mmol). The mixture was refluxed for 2 h and then filtered.

The solid residue was washed with acetone (5 mL x 3). To the resulting filtrate,

acetonitrile (100 mL) was added. The mixture was then cooled with an ice-water

bath. A precipitate was formed and collected by vacuum filtration. The solid was

washed with acetonitrile to afford l04b as a yellow flake-like solid (1.60 g, 3.34 mmol,

60%). 1H MR (500 MHz, CDC13): 0 = 2.87 (t, J = 7.5 Hz, 4H), 1.71-1.61 (m, 4H),

1.45-1.15 (m, 28H), 0.91-0.85 (t, J = 7.0 Hz, 6H). The data are consistent with the

literature report. 134

S-Methyl phosphonate (105a).

To a solution of l09a (6.1 g, 22 mmol) in MeCN (50 mL) was added aI (4.0

g, 27 mmol) under 2. P(OMeh (3.3 mL, 28 mmol) was added. The mixture was

stirred for 3 h and then evaporated in vacuo. To the residue were added H20 and

CH2C12. The organic layer was washed with H20, dried over MgS04, and evaporated

in vacuo to afford a dark red liquid l05a (4.6 g, 15 mmol, 69 %). (In some cases the

product was not pure enough and it was chromatographed with EtOAc/hexanes.) 1H

NMR (500 MHz, CDC13): 04.73 (d, J = 5.6 Hz, lH), 3.89 (d, J = 10.7 Hz, 6H), 2.42

(s, 6H). The data are consistent with the literature report. 134

S-Decyl phosphonate (105b).

To a solution of l09b (200 mg, 0.385 mmol) in MeCN (20 mL) was added aI
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(110 mg, 0.733 mmol), followed by P(OMeh (0.1 mL, 0.6 mmol). The mixture was

stirred for 2.5 h and then evaporated in vacuo. To the residue were added H20 and

CH2Cl2. The organic layer was washed with H20, dried over MgS04, and evaporated

in vacuo to afford 105b as a pale brown liquid (146 mg, 0.269 mmol, 70%). 1H NMR

(500 MHz, CDCl3): 8 = 4.75 (d, J = 5.4 Hz, lH), 3.88 (d, J = 10.6 Hz, 6H), 2.90-2.81

(m, 2H) 2.79-2.71 (m, 2H), 1.71-1.61 (m, 4H), 1.45-1.35 (m, 4H), 1.35-1.16 (m, 24H),

0.88 (t, J = 7.1 Hz, 6H). The data are consistent with the literature report. 134

Bis( tetraethylammonium) bi8(1,3-dithiole-4,5-dithiolate)zincate (106).

[

8 88 8 ]2-
(E~N+n s=< J( J{ X )=8

8 S S S

A mixture of Na (6.80 g, 0.300 mol) and CS2 (60 mL, 1.0 mol) was refluxed for

20 min under 2 protection. Dried DMF (20 mL) was added dropwise over a period

of 20 min. The mixture was refluxed for 2 h and then concentrated under vacuum

at 30°C. MeOH (40 mL) was added to the residue under cooling in an ice-water

bath. After filtration, a solution of ZnCh (7.00 g, 51.3 mmol) in 1:1 MeOH/NH3'H20

(120 mL) was added carefully to the filtrate. To the resulting mixture, Et4NBr (20

g, 95 mmol) in H20 (80 mL) was then added. Then the mixture was left standing

overnight. After filtration the residue was sequentially washed with H20 and Et20

to yield 106 as a red-colored solid (24 g, 33 mmol, 88%). M.p. 203-204 °C. M.p. is
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consistent with reported data. 78

4,5-Bis(methylthio)-1,3-dithiol-2-ium tetrafluoroborate (107a).

A mixture of thione 104a (6.75 g, 29.8 mmol) and DMS (15.0 mL, 158 mmol)

was heated to 100°C and stirred for 1.5 h. The mixture was cooled in an ice bath,

and HBF4Et20 (0.30 mL, 2.5 mmol) was added. AcOH (15 mL, 342 mmol) was

then added. After 10 min, Et20 (100 mL) was added. The product was collected by

filtration and washed with Et20 to afford 107a as a light brown solid (9.80 g, 29.2

mmol, 100%). lH NMR (300 MHz, CDCh): fJ = 3.23 (s, 3H), 2.76 (s, 6H). The data

are consistent with the literature report. 134

4,5-Bis (decylthiol)-1 ,3-dithiol-2-iurn tetrafl.uoroborate (!07b).

C10H21SXS>'-SCH3

ClOH21 S S SF;

107b

A mixture of DMS (1.5 mL, 15 mmol) and thione 104b (1.01 g, 2.11 mmol) was

heated to 100°C and stirred for 2 h under N2. The resulting solution was cooled

in an ice-water bath and HBF4 Et20 (1.0 mL, 8.0 mmol) was added. Et20 (3 mL)

was added and the mixture was stirred for another 20 min. More Et20 (20 mL) was

added afterwards, which resulted in a precipitate immediately. The solid formed was

collected by filtration and washed with ice-cooled Et20 to afford 107b as a white
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solid (1.20 g, 2.07 mmol, 98%). 1H MR (300 MHz, CDCh): 8 = 3.23 (s, 3H), 3.17

(t, J = 7.3 Hz, 4H), 1.80-1.67 (m, 4H), 1.53-1.38 (m, 4H), 1.37-1.16 (m, 24H), 0.88

(t, J = 6.8 Hz, 6H). The data are consistent with the literature report. 134

4,5-Bis (methylthio)-2- (methylthio)-1 ,3-dithiole (108a).

To a solution of compound 107a (9.8 g, 30 mmol) in EtOH (80 mL) was added

NaBH4 (2.8 g, 74 mmol) in an ice-water bath. After 15 min the mixture was warmed

up to rt and kept stirring for another 3 h. The mixture was then evaporated under

vacuum. H20 (20 mL) was added to the residue. The product was collected by

filtration to yield 107a as a pale orange solid (6.4 g, 26.4 mmol, 88%). (In most

cases, the product found at this stage was solid. However, it could be a liquid. If

that was the case, the product could be extracted with CH2CI2 , dried over MgS04 ,

and evaporated under vacuum to afford 108a as a dark-red liquid, which solidified in

a fridge.) 1H MR (500 MHz, CDCh): 8 = 5.80 (s, lH), 2.42 (s, 6H), 2.27 (s, 3H).

The data are consistent with the literature report. 134

4,5-Bis(decylthio)-2-(methylthio)-1,3-dithiole (108b).

C10H21SXS;SCH3

C,0H2, S S

108b

To a solution of compound 107b (1.20 g, 2.07 mmol) in EtOH (25 mL) cooled
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with an ice-water bath was added aBH4 (200 mg, 5.29 mmol). The mixture was

stirred for 2.5 h and then evaporated under vacuum. To the residue H20 and CH2Cl2

were added. The organic layer was washed with H20, dried over MgS04, and then

evaporated under vacuum to afford 108b as a yellow liquid (0.80 g, 1.6 mmol, 78%).

1H MR (300 MHz, CDCI3): 8 = 5.73 (s, lH), 2.98-2.88 (m, 2H), 2.75-2.63 (m, 2H),

2.25 (s, 3H), 1.72-1.58(m, 4H), 1.45-1.1 (m, 28H), 0.88 (t, J = 6.8 Hz, 6H). The data

are consistent with the literature report. 134

S-Methyl dithiolium salt (109a).

AC20 (50 mL, 0.53 mol) was mixed with thiol 108a (6.4 g, 26 mmol) in an ice­

water bath under N2. After 10 min, HBF4'Et20 (5.0 mL, 40 mmol) was added. After

another 30 min, Et20 (100 mL) was added. The product was collected by filtration

and washed with Et20 to afford 109a as a yellow solid (6.1 g, 22 mmol, 83%). 1H

NMR (300 MHz, CDCI3): 8 = 11.30 (s, 1H), 2.83 (s, 6H).1H NMR data are consistent

with those reported. 134

S-Decyl dithiolium salt (109b).

To thiol108b (1.00 g, 2.02 mmol) that was cooled in an ice-water bath was added
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AC20 (8.0 mL, 85 mmol). After 5 min, HBF4Et20 (1.0 mL, 8.0 mmol) was added.

After another 15 min, Et20 (20 mL) was added. The formed slurry was filtered, and

the solid residue was washed with Et20. The filtrate was cooled in a freezer overnight.

The resulting yellow crystalline solids were filtered and washed with ice-cooled Et20

to afford pure product 109b (0.748 g, 1.40 mmol, 70%). lH MR (300 MHz, CDCl3):

8 = 11.36 (s, lH), 3.21 (t, J = 7.2 Hz, 4H), 1.83-1.68 (m, 4H), 1.53-1.40 (m, 4H), 1.37-

1.13 (m, 24H), 0.88 (t, J = 6.5 Hz, 6H). The data are consistent with the literature

report. 134

Acyclic exTTF 123 and monomer 124.

: I I :

: I I :

>=Z
C,0H2,S SC,oH2,

123

Compound 100b (38 mg, 0.046 mmol) was dissolved in THF/MeOH (15 mL,

1:1). K2C03 (200 mg, 1.45 mmol) was added and the mixture was stirred for 30

min. The mixture was diluted with Et20, washed with H20, dried over MgS04, and

concentrated in vacuo to about 5 mL. Iodobenzene (9.5 mg, 0.047 mmol), and CuI

(3 mg, 0.016 mmol) were mixed in a 50 mL rbf, and Et3N (15 mL) was added. The
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mixture was deoxygenated and then Pd(PPh3 )4 (5 mg, 0.004 mmol) was added. To

the mixture was added a N2-purged desilylated 100b solution in Et20. The mixture

was stirred overnight. Then it was diluted with CH2Cl2, washed with aq. NH4Cl

solution and H20, dried over MgS04, and chromatographed with 5% CH2Cl2 in

hexanes to afford 124 as an orange oil monomer (10 mg, 0.017 mmol, 51%), and

123 as a red oil (14 mg, 0.0092 mmol, 39%).

123. lH NMR (500 MHz, CDCl3): 0 = 8.38 (d, J = 7.8 Hz, 2H), 8.32-8.23 (m,

2H), 7.68 (t, J = 7.8 Hz, 4H), 7.51-7.46 (m, 4H), 7.45-7.37 (m, 4H), 7.36-7.30 (m,

10H), 2.91-2.73 (m, 8H), 1.67-1.56 (m, 8H), 1.44-1.33 (m, 8H), 1.30-1.18 (m, 48H),

0.90-0.78 (m, 12H); 13C NMR (125 MHz, CDCh): 0 = 149.3, 135.84, 135.76, 134.2,

133.00, 132.95, 132.92, 131.8, 128.8, 128.6, 128.3, 127.8, 126.91, 126.88, 126.3, 125.8,

125.3, 123.2, 122.1, 99.8, 98.8, 94.1, 88.4, 83.4, 78.8, 78.6, 36.66, 36.65, 32.1, 29.93,

29.92,29.90,29.79,29.76,29.74,29.59,29.54, 29.53, 29.40, 29.36, 28.76, 28.74, 22.9,

14.3; FTIR (neat) 3060, 2924, 2853, 1572, 1525, 1492, 1457, 782, 754, 690 cm-1; MS

(MALDI-TOF) m/z calcd for C96HuoSs 1518.64, found 1520.33 ([M + H]+).

124. lH NMR (500 MHz, CDCl3): 0 = 8.40 (dd, J = 7.8,1.2 Hz, 2H), 7.68-7.65

(m, 2H), 7.51-7.48 (m, 4H), 7.41-7.31 (m, 10H), 2.90-2.73 (m, 4H), 1.66-1.58 (m, 4H),

1.43-.133 (m, 4H), 1.32-1.18 (m, 24H), 0.86 (t, J = 7.0 Hz, 6H); 13C MR (125 MHz,

CDCh): 0 = 146.6, 136.0, 133.5, 133.4, 131.8, 128.7, 128.6, 128.0, 127.9, 126.8, 125.9,

125.3, 123.4, 122.4, 99.8, 93.3, 89.5, 36.6, 32.1, 29.9, 29.76, 29.74, 29.5, 29.4, 28.8,

22.9, 14.3; FTIR (neat) 3060, 2924, 2853, 1574, 1531, 1496, 1448, 1284,957,842, 762,

693 cm-1; MS (MALDI-TOF) m/z calcd for C54H60S4 836.36, found 837.54 ([M +

H]+).

Mono-substituted compound 128.
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Dibromo compound 101b (51 mg, 0.064 mmol) , Pd(PPh3)4 (10 mg, 0.0086 mmol),

CuI (8 mg, 0.042 mmol) , and Et3N (20 mL) were mixed in a 50 mL rbf under 2.

Phenylacetylene (0.010 mL, 0.069 mmol) and TMSA (0.050 mL, 0.40 mmol)) was

added and the mixture was heated to 60°C and stirred overnight. The mixture

was diluted with CH2CI2 , washed with H4Cl and H20, dried over MgS04, and

chromatographed with 5% CH2 Cl2 in hexanes to afford 128 as a red-brown oil (16

mg, 0.019 mmol, 30%). IH NMR (500 MHz, CDCI3): 8 = 8.34 (t, J = 8.0 Hz, 2H),

7.67-7.60 (m, 2H), 7.48-7.44 (m, 2H), 7.38-7.24 (m, 7H), 2.89-2.72 (m, 4H), 1.70-1.55

(m, 4H), 1.42-1.35 (m, 4H), 1.30-1.21 (m, 24H), 0.92-0.80 (m, 6H), 0.25 (s, 9H); 13C

NMR (125 MHz, CDCI3): 8 = 147.5, 136.0, 135.9, 133.4, 133.3, 133.0, 131.7, 131.5,

128.6, 128.5, 128.0, 127.95, 127.93, 126.9, 126.7, 125.8, 125.6, 125.2, 125.1, 123.5,

122.4, 104.0, 99.7, 99.6, 93.3, 89.4, 36.6, 32.12, 32.11, 29.96, 29.93, 29.91 ,29.78,

29.76, 29.74, 29.54, 29.52, 29.38, 29.37, 28.79, 28.76, 22.9, 14.3, 0.2; FTIR (neat)

3060, 2955, 2924, 2853, 1573, 1530, 1493, 1448, 1250, 943, 845, 768, 755, 689 cm-1;

MS (MALDI-TOF) m/z calcd for C51H64S4Si 832.37, found 833.06 ([M + H]+).

Unknown substance 130. Dibromo compound 101b (46 mg, 0.058 mmol) ,

Pd(PPh3)4 (8 mg, 0.007 mmol), CuI (4 mg, 0.02 mmol), phenylacetylene (0.60 mL,

4.2 mmol) , and Et3 (20 mL) were mixed and deoxygenated. The mixtme was
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heated to 60 °C and stirred overnight. Then it was diluted with CH2CI2 , washed

with aq. H4CI solution and H20, dried over MgS04, and purified with column

chromatography (5% CH2Cl2 in hexanes) to afford 130 as a purple solid (16 mg,

0.019 mmol, 33%). 1H NMR (500 MHz, CDCb): 0 = 8.08-8.05 (m, HI), 8.01-7.98

(m, lH), 7.93 (d, J = 7.4 Hz, 2H), 7.69-7.60 (m, 4H), 7.47-7.38 (m, 8H), 7.33 (t,

J = 7.3 Hz, 2H), 2.81-2.75 (m, 4H), 1.62-1.55 (m, 4H), 1.39-1.33 (m, 4H), 1.31-1.18

(m, 24H), 0.89-0.83 (m, 6H); 13C NMR (125 MHz, CDCI3): 0 = 150.1, 139.2, 137.5,

135.4, 134.68, 134.64, 132.71, 132.67, 131.8, 128.88, 128.85, 128.7, 128.3, 128.0, 127.9,

127.8, 127.5, 127.3, 127.21, 127.18, 127.1, 126.5, 126.4, 125.1, 123.6, 122.2, 118.9,

101.8, 98.7, 89.1, 36.7, 32.1, 29.93, 29.91, 29.8, 29.7, 29.5, 29.3, 28.73, 28.72, 22.9,

14.3; FTIR (neat) 3063, 2954, 2924, 2853, 2018, 1733, 1598, 1517, 1487, 1463, 1442,

1279, 1159 cm-1; MS (MALDI-TOF) m/z calcd for C54H60S4 36.36, found 838.00

([M +HJ+).

Dithiafulvene monomer 134a.

To a solution of phosphonate 105a (0.192 g, 0.631 mmol) in THF (20 mL) cooled

under a dry ice bath was added t-BuLi (0.42 mL, 1.7 M, 0.71 mmol). The mixture

was stirred for 15 min. Ketone 136 (140 mg, 0.631 mmol) in THF (10 mL) was

added. The mixture was warmed to rt and stirred overnight. The resulting black

brown solution was evaporated in vacuo. To the black residue were added CH2Cl2
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and H20. The organic layer was separated, washed with H20, dried over MgS04. It

was puriefied by column chromatography (20% CH2Cl2 in hexanes) to afford 134a as

a light yellow liquid, which solidified in a fridge to a yellow solid (125 mg, 0.313 mmol,

50%). M.p. 72-73 °C; lH MR (500 MHz, CDCI3 ): 0 = 2.44 (s, 6H), 0.22 (s, 18H);

13C MR (125 MHz, CDCI3): 0 = 157.8, 129.5, 103.3, 100.2, 87.9, 19.3, 0.2; FTIR

(neat) 2959, 2923, 2138, 2132, 1509, 1461, 1428, 1248, 1215, 963, 839, 755 cm-l; MS

(APCI) m/z (%) 401 [M+H]+ (100); EI-HRMS calcd for Cl6H24S4Si2 400.0299, found

400.0295 [M]+.

Dithiafulvene monomer 134b.

To a solution of phosphonium salt 137 (248 mg, 0.503 mmol) in THF (20 mL)

cooled in a dry ice bath was added n-BuLi (0.25 mL, 2.5 M, 0.63 mmol). The

mixture was stirred for 0.5 h. A solution of ketone 40 (110 mg, 0.498 mmol) in

THF (10 mL) was added dropwise over 5 min. The mixture was stirred overnight. It

was evaporated in vacuo. To the residue were added H20 and CH2CI2. The organic

layer was separated, washed with H20, dried over MgS04, and purified by column

chromatography (30% CH2Cl2 in hexanes) to afford 134b as a yellow solid (101 mg,

0.238 mmol, 48%). lH NMR (500 MHz, CDCh): 0 = 3.87 (s, 6H), 0.23 (s, 18H); 13C

NMR (125 MHz, CDCI3 ): 0 = 159.8, 154.9, 132.7, 104.3, 99.6, 89.1, 53.68, 0.08; MS

(APCI) m/z (%) 514 (100),425 [M+H]+ (98). The data are consistent with the the
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literature report. 8

1,2-Bis(decyloxy)-4,5-diiodobenzene 135b.

Compound 143 (1.50 g, 3.84 mmol), 12 (2.17 g, 8.54 mmol) , Hg(OAch (2.56 g, 8.03

mmol), and CH2Cl2 (60 mL) were mixed. The mixture was stirred at rt overnight. It

was filtered through a 1 cm diatomaceous earth plug and washed with CH2CI2. The

filtrate was washed with N~S203 (aq), NaHC03 (aq), H20, brine, and dried over

MgS04. It was evaporated in vacuo. The residue was recrystallized from EtOH to

afford 135b as a white solid (1.40 g, 2.17 mmol, 57%). 1H NMR (500 MHz, CDCI3):

0= 7.25 (s, 2H), 3.92 (t, J = 6.6 Hz, 4H), 1.82-1.73 (m, 4H), 1.46-1.40 (m, 4H), 1.37-

1.22 (m, 12H), 0.88 (t, J = 6.9 Hz, 6H). The data are consistent with the literature

report. 129

Diiodo crown ether 135c.

Method 1: Compound 148 (0.481 g, 1.33 mmol), BU4NBr (0.206 g, 0.638 mmol) ,

toluene (15 mL), and NaOH (50%, 5 mL) were mixed and stirred at 50°C for 0.5

h. To the mixture was added a solution of ditosylate 145 (0.419 g, 1.35 mmol) in

toluene (15 mL). The mixture was heated to no °C and stirred overnight. The
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resulting mixture was diluted with toluene. The organic layer was separated, washed

with H20, dried over MgS04 , and evaporated in vacuo. The residue was extracted

with hot hexanes (15 mL x 3). The resulting solution of extract was evaporated to

afford 135c as a white solid (0.210 g, 0.404 mmol, 30%).

Method 2: Crown ether 149 (1.210 g, 4.515 mmol) , h (1.010 g, 3.976 mmol),

H5I06 (0.384 g, 1.68 mmol), AcOH (12 mL), H2S04 (0.4 mL), and H20 (4 mL)

were mixed and heated to 70°C. The mixture was stirred overnight. The resulting

mixture was poured into an aq. NaHS03 solution. The residue was dissolved in

CH2CI2/EtOAc. The combined mixture was extracted with CH2CI2 , dried over

MgS04 and then filtered through a short silica plug (4 cm) using CH2 Cl2 as eluent.

The filtrate, a light yellow solution, was evaporated. The brown residue was extracted

with hot hexanes (30 mL x 2). After cooling, pure 135c was crystallized as a white

crystal (0.973 g, 1.87 mmol, 41%). 1H NMR (500 MHz, CDCI3): 8 = 7.26 (s, 2H),

4.09-4.05 (m, 4H), 3.89-3.85 (m, 4H), 3.75-3.70 (m, 8H); MS (APCI) m/z (%) 520.8

(78) [M+H]+, 537.8 (100) [M+H2 0]+. The data are consistent with the literature

report. 135,136

1,5-Bis( trimethylsilyI)penta-1 ,4-diyn-3-one 136.

o

~
TMS 136 TMS

To a cooled solution of PCC (1.60 g, 7.40 mmol) in CH2Cl2 (30 mL) was added

a solution of alcohol 141 (1.24 g, 5.56 mmol) in CH2Cl2 (10 mL). The mixture was

allowed to warm to rt and stirred for 5 h. It was purified by column chromatography
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(CH2CI2) to yield 136 as a yellow liquid (1.13 g, 5.11 mmol, 92%). 1H MR (500

MHz, CDCI3): 8 = 0.27 (s, 18H). The data are consistent with the literature report. 137

3-(Trimethylsilyl)prop-2-yn-1-o1 139.

~OH
TMS

139

To a solution of propargyl alcohol (5.00 mL, 85.0 mmol) in THF (80 mL) cooled

in a dry ice bath was added n-BuLi (75.0 mL, 2.5 M, 190 mmol) over 30 min. The

mixture was stirred at this temperature for 1 h. TMSCI (33.0 mL, 260 mmol) was

added over 15 min. The mixture was stirred for 5 h. HCI (100 mL, 2M) was added

and the mixture was stirred for 1 h. The aqueous layer was extracted with Et20.

The combined organic layer was washed with H20, dried over MgS04, concentrat d

in vacuo and purified by column chromatography (using hexanes as eluent until the

product came out, then 80% CH2Cl2 in hexanes) to afford 139 as a clear colorless

liquid (8.30 g, 62.9 mmol, 74%). 1H MR (500 MHz, CDCI3): 8 = 4.27 (d, J =

4.7 Hz, 2H), 1.57 (s, lH), 0.18 (s, 9H). The data are consistent with the literature

report. 138

3- (Trimethylsilyl)propiolaldehyde 140.

Alcohol 139 (3.38 g, 25.6 mmol) in CH2Cl2 (20 mL) was added over 8 min into

a mixture of PCC (6.10 g, 28.2 mmol) and CH2Cl2 cooled under an ice-water bath.
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The mixture was stirred for 8 h. It was then filtered though a short silica plug and

washed with CH2Cl2 to 140 as a light yellow liquid (3.03 g, 23.3 mmol, 91%). 1H

NMR (500 MHz, CDCI3): 8 = 9.17 (s, lH), 0.27 (s, 9H). The data are consistent with

the literature report. 138

1,5-Bis( trimethylsilyI)penta-1 ,4-diyn-3-ol 141.

OH

~
TMS 141 TMS

To a solution of TMSA (3.10 mL, 23.0 mmol) in THF (70 mL) cooled in a dry ice

bath was added n-BuLi (10,0 ml, 2.5 M, 25.0 mmol) over 10 min. The mixture was

stirred for 40 min. A solution of aldehyde 140 (3.00 g, 23.0 mmol) in THF (10 mL)

was added over 10 min. The mixture was stirred for 4 h. To the resulting solution was

added an aq. NH4 Cl (50 mL) solution. The mixture was stirred for 10 min. Then it

was extracted with Et20 (30 mL x2). The combined organic layer was washed with

H20, brine, dried over MgS04, and purified by column chromatography (40% CH2Cl2

in hexanes) to afford 141 as a brown liquid (2.82 g, 12.8 mmol, 55%). 1H MR (500

MHz, CDCI3): 8 = 5.10 (d, J = 7.5 Hz, lH), 2.17 (d, J= 7.4 Hz, 1H), 0.17 (s, 18H).

The data are consistent with the literature report. 137

1,2-Bis(decyloxy)benzene 143.

Catechol (5.06 g, 46.0 mmol)', KOH (6.50 g, 116 mmol), EtOH (100 mL), and
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ClOH21 Br (25 mL) were mixed. The resulting grey mixture was heated to 90°C

and refluxed overnight. It was then diluted with CH2CI2, washed with aq. H4 CI

solution, H20, brine, and dried over MgS04 . It was filtered through a short silica plug

and washed with hexanes. The filtrate was concentrated in vacuo. To the re idue

was added EtOH (150 mL) and white crystals formed. The mixture was chilled for

30 min then filtered. The resulting white crystals were washed with EtOH to afford

pure product 143 (12.3 g, 31.5 mmol, 69%). 1H NMR (500 MHz, CDCh): 8 = 6.88

(m, 4H), 3.99 (t, J = 6.7 Hz, 4H), 1.85-1.76 (m, 4H), 1.50-1.43 (m, 4H), 1.37-1.23 (m,

28H), 0.88 (t, J = 7.0 Hz, 6H). The data are consistent with the literature report. 129

Ditosylate 145.

To a solution of TsCI (19.00 g, 100.0 mmol) in THF (50 mL) was added

tetraethylene glycol (8.00 ml, 46.0 mmol) , and Et3 (15.00 ml, 107.7 mmol). The

mixture was stirred for 1 day. It was then evaporated in vacuo. The residue was

diluted with EtOAc, washed with H20, dried over MgS04 , and purified with column

chromatography (with CH2Cl2 until all TsCI was removed and then with EtOAc as

eluents) to afford product 145 as a colorless liquid (12.80 g, 41.2 mmol, 89%). 1H

NMR (500 MHz, CDCh): 8 = 7.79 (d, J = 8.2 Hz, 4H), 7.34 (d, J = 8.1 Hz, 4H),

4.17-4.13 (m, 4H), 3.69-3.65 (m, 4H), 3.58-3.54 (m, 8H), 2.44 (s, 6H). The data are

consistent with the literature report. 132

2,2-Dimethylbenzo[d][1,3Jdioxole 146.
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Catechol (11.07 g, 100.1 mmol) , P205 (14.40 g, 101.0 mol), acetone (7.50 mL,

0.100 mol) and toluene (100 ml) were mixed and heated to 65 cC. The mixture was

stirred overnight. The solution was poured into aq. NaHC03 solution under an ice-

water bath. The organic layer was separated, washed with aq. NaHC03 solution until

aqueous layer was clear colorless. Then it was washed with H20, brine, dried over

MgS04 . The resulting mixture was filtered through a short silica plug, and washed

with CH2CI2. The filtrate was evaporated to give 146 as a light yellow liquid (10.7 g,

71.3 mmol, 71%). 1H NMR (500 MHz, CDCI3): 0 = 6.79-6.72 (m, 4H), 1.67 (s, 6H).

The data are consistent with the literature report. 135

5,6-Diiodo-2,2-dimethylbenzo[d][1,3]dioxole 147.

::0::><
147

Compound 146 (2.01 g, 13.4 mmol), 12 (7.45 g, 29.0 mol), Hg(OAch (9.35 g, 29.0

mmol) , and CH2Cl2 (150 mL) were mixed and stirred for 2 days. The mixture was

filtered, washed with aq. a2S03 solution, H20, dried over MgS04 , and evaporated

in vacuo. The residue was recrystalized from EtOH to give 147 as a pale yellow solid

(3.60 g, 8.96 mmol, 67%). 1H NMR (500 MHz, CDCI3): 0 = 7.21 (s, 2H), 1.65 (s,

6H). The data are consistent with the literature report. 135

4,5-Diiodocatechol 148.

Compound 147 (1.63 g, 4.05 mmol), AcOH (100 mL), H20 (45 mL), and aq. HCI
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(50%, 15 mL) were mixed and refiuxed for 3 h. The resulting yellow solution was

extracted with CH2 Cl2 , washed with H20, filtered through a short silica plug, and

washed with EtOAc. The filtrate was purified by column chromatography (CH2Cl2 )

to give 148 as a pale brown solid (1.12 g, 3.09 mmol, 76%). 1H NMR (500 MHz,

CDCh): 8 = 7.35 (s, 2H), 1.78 (s, 2H). 1H MR data are consistent with those

reported. 135

Crown ether 149.

/"O~ceo J
I .b 0 0\

~oJ

To a mixture of catechol (1.833 g, 16.65 mmol), Bu4 NBF4 (2.743 g, 8.508 mmol)

and toluene (100 mL) was added aq. aOH solution (35 mL, 50%). The mixture was

heated to 50°C and tirred for 30 min. A solution of dito ylate 145 (5.150 g, 16.61

mmol) in toluene (100 mL) was added. The resulting mixture was refiuxed overnight.

It was then washed with H20, dried over MgS04 , and evaporated in vacuo. The

residue was extracted with hot hexanes (100 mL). Upon cooling, white crystals were

formed and collected by filtration as pure product 149 (1.210 g, 4.515 mmol, 27%).

1H NMR (500 MHz, CDCl3): 8 = 6.93-6.86 (m, 4H), 4.16-4.12 (m, 4H), 3.94-3.90 (m,

4H), 3.78-3.76 (m, 8H). The data are consistent with the literature report. 139

Diiodo compound 150a.
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To solution of compound 135a (45 mg, 0.11 mmol) in THF/MeOH (10 mL, 1:1

v/v) was added K2C03. The mixture was stirred for 30 min. The mixture was diluted

with Et20, washed with H20, dried over MgS04, and concentrated in vacuo to ca. 5

mL. PdCI2(PPh3)2 (12 mg, 0.018 mmol), CuI (10 mg, 0.053 mmol), 1,2-diiodobenzene

(150 mg, 0.465 mmol), and Et3N (20 mL) were mixed, deoxygenated, and heated to

60°C. The solution of desilylated 135a was purged with N2 for 5 min and added

into the reaction mixture over 1 h. The mixture was stirred overnight. Then it was

diluted with Et20, washed with NH4Cl and H20, dried over MgS04, and purified

with column chromatography (30% CH2CI2:hexane) to afford a yellow oil 150a (10

mg, 0.016 mmol, 15%). IH MR (500 MHz, CDCI3): 5 = 7.86 (d, J = 8.0 Hz, 2H),

7.50 (dd, J = 7.7, 1.4 Hz, 2H), 7.31 (t, J = 8.0 Hz, 2H), 6.99 (td, J = 7.5, 1.9 Hz,

2H), 2.47 (s, 6H); 13C MR (125 MHz, CDCI3): 5 = 157.1, 139.0, 132.6, 130.0, 129.5,

129.3, 128.0, 100.2, 99.1, 89.2, 87.2, 19.4; FTIR (neat) 3058, 2957, 2921, 2854, 2362,

2337, 2180, 1579, 1510, 1467, 1448, 1427, 1259, 1015 cm-1; HR MALDI-TOF MS

m/z calcd for C22H1412S4 659.8068, found 659.8059 [M]+.

Diiodo compound 150b.

To a solution of compound 134a (40 mg, 0.10 mmol) in THF/MeOH (15 mL, 1:1

v/v) was added K2C03. The mixture was stirred for 30 min. The mixture was diluted

with Et20, washed with H20, dried over MgS04, and concentrated in vacuo to ca.
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5 mL. Pd(PPh3)4 (16 mg, 0.014 mmol), CuI (11 mg, 0.057 mmol), diiodo compound

101b (230 mg, 0.360 mmol), and Et3N (30 mL) were mixed and deoxygenated. The

mixture was heated to 60 °C. The solution of desilylated 134a was purged with N2

for 5 min and added into the reaction mixture over 1.5 h. The mixture was stirred

overnight. Then it was diluted with Et20, washed with aq. NH4CI solution and

H20, dried over MgS04, and purified with column chromatography (30% CH2Cl2 in

hexanes) to afford 150b as a yellow oil (12 mg, 0.0093 mmol, 9%). lH NMR (500

MHz, CDCh): 8 = 7.24 (s, 2H), 6.99 (s, 2H), 3.97 (td, J = 6.5, 1.4 Hz, 8H), 2.46 (s,

6H), 1.85-1.75 (m, 8H), 1.50-1.40 (m, 8H), 1.39-1.20 (m, 48H), 0.92-0.84 (m, 12H) ;

13C NMR (125 MHz, CDC13): 8 = 154.9, 150.1, 149.2, 129.2, 123.2, 122.1, 117.1,99.1,

89.8,87.6,87.5,69.6,32.1,29.84,29.82,29.80, 29.79, 29.61, 29.57, 29.34, 29.29, 26.20,

26.16, 22.9, 19.3, 14.3; FTIR (neat) 3058, 2955, 2920, 2851, 2359, 2180, 1588, 1502,

1461,1333,1257,1198,1047 cm-1; HR MALDI-TOF MS m/z calcd for C62H94I204S4

1284.4119, found 1284.4162 [M]+
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Chapter 3

Oligoyne Centered 7[-Extended

Tetrathiafulvalenes and

Tetrathialfulvalene Vinylogues

3.1 Introduction

Oligoynes are linearly conjugated carbon chains composed of alternating single and

triple carbon-carbon bonds. The incorporation of an oligoyne unit in between the

two dithiole rings of TTF generates a class of interesting 7r-extended TTFs. As

shown in Figure 3.1, the bis(dithiafulvenyl)-endcapped conjugated 1,3-butadiyne 151,

reported in 1990 by Gorgues and co-workers, presents the first example of a butadiyne

centered exTTF in the literature. 140,141 Synthetically, compound 151 was acquired by

a Wittig-Horner reaction using phosphonates and acetylenecarbodialdehydes as the

precursors. Later in 2007, a longer homolog, namely 1,3,5,7-octatetrayne centered
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exTTF 152 (see Figure 3.1), was successfully prepared by Nielsen and co-workers

using a eu-catalyzed alkynyl homocoupling reaction as the key step. 142 Besides these

two examples, other similar oligoyne centered exTTFs such as diyne and tetrayne

centered exTTFs 153 and 154 have been prepared and investigated by Diederich

and Nielsen. 8,87 Unlike 151 and 152, exTTFs 153 and 154 bear acetylenic units

outside the central 7f-moiety to form a cross-conjugated motif. In addition to

diyne and tetrayne units, Nielsen and co-workers also successfully synthesized a

hexayne centered exTTF 155 in good yield via the Hay coupling. 142 Owing to its

bulky triisopropylsilyl (TIPS) endcapping groups, exTTF 155 showed satisfactory

chemical stability that is in contrast to many unstable hexayne species. Note that

methyl ester groups are commonly used substituents on the dithiole rings in making

oligyne centered exTTFs, because of their easy accessibility in synthesis and electron­

withdrawing effect that stabilizes the exTTF products.

The combination of oligoynes with TTF units can produce two major benefits

in terms of material design. First, the oligoyne moieties can provide stabilization

to oxidized TTF species as a result of extended 7f-conjugation. Second and more

importantly, this design strategy can lead to materials with novel optoelectronic

properties and unique solid-state reactivities. Especially, oligoyne compounds as a

class of fascinating one-dimensional carbon building blocks have attracted growing

attention in the development of carbon-rich functional nanomaterials in recent

years. For instance, the nonlinear optical susceptibilities of oligoynes were found

to increase exponentially with increasing number of acetylenic repeat units, 143,144

while topochemical polymerization of oligoynes tended to result in highly conjugated

polymer networks l45-148 and ordered carbon-based nanomaterials.149-152 Moreover,
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Figure 3.1: Structures of oligoyne centered exTTFs 151-155.
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the "wire-like" sp carbon chains of conjugated oligoynes are the substructures of

an intriguing carbon allotrope, carbyne, whose mystical structural and electronic

properties have been under debate for a long time.

Oligoyne-centered exTTFs have been synthesized and studied for nearly two

decades; however, they still remain a quite small group in the vast family of exTTF

derivatives. Given the limited number of oligoyne centerd exTTFs in the present

literature, continued synthesis and characterization of new oligoyne-exTTFs are

indispensable and beneficial from both fundamental and practical aspects. Upon this

consideration, a series of unprecedented oligoyne-centered exTTFs 156 was targeted

in this thesis. As shown in Scheme 3.1, the basic structure of 156 is akin to those

of exTTFs 151 and 152; however, the insertion of a benzene ring between the

dithiafulvalene (DTF) and alkynyl groups not only elongates 71'-conjugation, but also

adds valuable reactivity. DTF molecules monosubstituted with aryl groups, regardless

of the electronic nature of the substituents on the aryl groups, have been known

to undergo oxidative dimerizations to form tetrathiafulvalene vinylogues (TTFVs).

The details of this kind of dimerization are discussed in Section 1.3. In view of

this reactivity, it is conceivable that the two phenyl-DTF units in oligoyne exTTF

156 may serve useful synthetic handles for construction of intriguing conjugated

polymer materials, such as 158. Also of interest is alkynyl-TTFV 157, which is a

structural isomer of 156. Complementary to the oxidative polymerization approach,

157 undergoing alkynyl homocoupling would also lead to poly[157] that structurally

resembles polymer 158. Detailed synthesis and properties characterization of these

new exTTF derivatives are discussed in the first part of this chapter.

As with many TTFV derivatives, diphenyl-substituted TTFV 157 possesses
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Scheme 3.1: Structures of oligoyne TTF 156, TTFV 157, polymer 158, and

poly[157].
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interesting conformational switching properties. As shown in Scheme 3.2, in the

neutral state the two phenyl groups are oriented in a cis, V-shaped conformation

governed by steric crowding, whereas upon oxidation the dication of phenyl-TTF

assumes a trans conformation where the two phenyl groups point outward in a

linear fashion as a result of the on-site Coulombic repulsion between the two

cationic dithiolium rings. Taking advantage of the conformational switching behavior,

this thesis covers the synthesis and characterization of a number of TTFV based

donor/acceptor derivatives 159.153-155 The design of these compounds was aimed at

chemical sensing applications, while the detailed results are described in the second

part of this chapter.

Scheme 3.2: Conformational switching of TTFV derivatives 159 upon oxidation.
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3.2 Results and Discussion

3.2.1 Synthesis and Characterization of Oligoyne Centered

TTF 156 and Related TTFV Derivatives

3.2.1.1 Retrosynthetic Analysis

Scheme 3.3 outlines the retrosynthetic analysis of the target TTFV compounds. A

straightforward bond disconnection at the central oligoyne units of 156a-c and TTFV

157a-b leads to handy synthons, acetylenic phenyl-DTF 160a-c. Alternatively,

a retro-oxidative dimerization at the TTFV moieties of 157a,b readily unveils

DTF precursors 160a,b. DTF 160a-c can be prepared from aldehyde 161 and

phosphonate 105a according to the synthetic method mentioned in Section 2.2.1.3.

While the dithiole ring can be made by an HWE reaction between aldehyde 161 and

phosphonate 105a, extension of alkynyl bonds can be accomplished by Hay coupling

of desilylated DTF with excess TMSA.

In planning the synthesis of oligoyne-TTFV analogues, the redox-controlled cis-to­

trans conformational switching of the TTFV moiety was taken as an important factor

that determins the structures of polymeric derivatives associated with the oligoyne­

TTFVs. In particular, structural extension based on synthon 160a-c was anticipated

to generate macromolecules of different conformations, depending on the detailed

synthetic sequences and conditions. Taking into account the V-shape of neutral

diphenyl-TTFV and the linear shape of oligoyne and dicationic [phenyl-TTFVj2+

units, three major synthetic consequences are readily perceived as illustrated in Figure

3.2, namely linear cationic polymer chains 162n+, helical foldamers 162, and shape-
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Scheme 3.3: Retrosynthetic analysis of oligoyne TTFs 156a-c and TTFVs 157a,b.

persistent macrocycles 163. These oligoyne-TTFV related macromolecules were not

known in the literature prior to this work.
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Figure 3.2: Various macromolecular systems possibly derived from acetylenic phenyl-

DTF 160.
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3.2.1.2 Synthesis of Oligoyne exTTFs 156a-c

The synthesis of DTFs 160a-c and 156a-c is described in Scheme 3.4. The synthetic

route followed the methods developed by a former group member, Ilias Mahmud,156

with modifications of some reaction conditions. The synthesis started with a

Sonogashira reaction of 4-bromobenzaldehyde with TMSA using PdCl2 (PPh3h/CuI

as catalyst in Et3 . The isolated yield of aldehyde 161 was 93%, which was slightly

higher than the yield attained in benzene/DBU (88%). ext, aldehyde 161 was

subjected to an HWE reaction with phosphonate 105a to afford DTF alkyne 160a

in 80% yield as a yellow liquid, which solidified upon storage in a fridge. DTF 160a

was desilylated with K2C03 to afford a free terminal alkyne intermediate, which was

subjected to Hay coupling with excess TMSA (ca. 14 equiv mol) to form diyne­

attached phenyl-DTF 160b in 82% yield. ote that the Hay coupling reactions were

catalyzed by CuI/TMEDA in CH2 Cl2 , instead of the commonly reported catalytic

conditions of CuCl/TMEDA in acetone/CH2Cl2 (1:1). The yields obtained under

the two catalytic conditions were, however, quite comparable. Repetition of the same

desilylation/Hay coupling sequence on 160b led to the formation of triyne-substituted

phenyl-DTF 160c. In this Hay coupling reaction, because of the fast homocoupling

reaction of desilylated diyne 160b, a considerably large excess of TMSA (ca. 38 equiv

mol) was added to ensure a satisfactory yield of 160c, 60%.
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Scheme 3.4: Synthesis of DTFs 160a-c and oligoyne TTFs 156a-c.
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With the acetylenic DTF precursors 160a-c in hand, a straightforward oxidative

homocoupling strategy was then implemented to produce the desired oligoyne­

centered exTTFs. As shown in Scheme 3.4, desilylation of DTF 160a with K2C03

followed by oxidative homocoupling in the presence of CuI/TMEDA afforded diyne­

centered exTTF 156a in 60% yield. Under the same conditions, homocoupling of

desilylated diyne-DTF 160b proceeded more rapidly and efficiently, resulting in

tetrayne-centered exTTF 156b in a quantitative yield. Tetrayne-centered exTTF

156b has solubility significantly lower than that of 156a, and it precipitated out from

the reaction solution. Homocoupling of desilylated triyne-DTF 160c also proceeded

smoothly to form hexayne-exTTF 156c in dilute solution as evident by TLC. MALDI­

TOF MS analysis clearly showed the molecular ion at m/z = 709.9461 corresponding

to [156c]+ (709.9487 calcd for C36H22SS)' validating the ~ormation of hexayne-exTTF

156c. The isolation of hexayne-exTTF 156c was, however, unsuccessful due to its

extremely poor chemical stability in the solid state. Actually, upon evaporation of

the solvent under vacuum, the orange solution of 156c was instantaneously changed

into a purplish substance insoluble in any organic solvents. The insolubility of the

solid products hampered meaningful structural characterization. Nonetheless, it is

reasonable to assume that topochemical polymerization of the hexayne moiety of

156c accounts for the solid-state reactivity. Previously, Tykwinski and co-workers

synthesized a diphenyl-endcapped hexayne which was separated as a relatively stable

orange solid. 143 In hexayne-exTTF 156c, the dramatically reduced stability can be

ascribed to the endcapping DTF groups that may induce optimal solid-state packing

geometry via strong S-S contact to facilitate topochemical polymerization.
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3.2.1.3 Synthesis of TTFV 157a,b

Phenyl-DTFs 160a,b were respectively subjected to an iodine-promoted oxidative

dimerization reaction, yielding cationic dimerized products which were subsequently

treated with ~S203 to afford neutral acetylenic phenyl-TTFVs 165a,b in the

same yield of 60% (see Scheme 3.5). Although 12 was reported as a cheap but less

efficient oxidant for the dimerization of DTF with common yields 8J'ound 40%, it gave

promising yields under optimized conditions for the synthesis of 165a,b. Although

in the dimerization process 1 equiv of h is theoretically sufficient to oxidize DTF

and the resulting TTFV in situ, the use of 3 equiv of h was found to result in

the best yield. It is likely that the reduction potential of 12 is comp8J'able to the

oxidation potential of DTF, thus an excess amount of 12 can maintain a suitable

concentration of h in solution to ensure efficient oxidative power. The equilibrium in

the first oxidation step was evidenced by the recovery of some DTF starting material

after workup. The addition of a large excess of 12 did not further improve the

yield, since such conditions would trigger some undesireable side reactions such as

addition of h to unsaturated carbon-carbon bonds. Besides the amount of h, reaction

times for the two steps were also found to be crucial factors to reaction yields. A

longer reaction time of the oxidation step was necessary for the dimerization to go to

completion, while the reaction time for the reduction step had to be relatively shorter.

Otherwise, unidentified side products could be observed by TLC analysis. It should

be noted that TTFVs 165a,b 8J'e not very stable when adsorbed on silica. This was

evidenced by the observation that the yellow-colored spot of TTFVs 165a,b loaded

on TLC plates turned to a green-bluish color in less than 1 min. For this reason,
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column chromatographic separation was conducted as rapidly as possible to prevent

decomposition. According to the color change, it was speculated that the TTFV

compounds, on contact with the acidic surface of silica gel and air, could be readily

oxidized into cationic species.

SMe SMe
Mes~ss"'ySMe

S '. S

I~

165a.n=1 60';.' TMS
165b,n=260%

Scheme 3.5: Synthesis of TTFVs 165a,b.

3.2.1.4 Synthesis of Shape Persistent Macrocyles 163a,b by Alkynyl

Coupling of TTFV Precursors

The synthesis of TTFV shape persistent macrocycles is outlined in Scheme

3.6. Desilylation of TTFV 165a with K2C03 followed by a Pd/Cu-catalyzed

homocoupling reaction under dilute conditions (ca. 2.8 mM) in refluxing acetone

resulted in a series of cyclic oligomers ranging from trimer to pentamer, as manifested

by MALDI-TOF MS analysis (Figure 3.3). By flash column chromatography, trimeric

macrocycle 163a was isolated as the major product in 18% yield, while other

byproducts were not readily separable due to their low amounts. The addition

of PdCI2 (PPh3h was crucial to the formation of macrocycles, because the use of

CuI/TMEDA as catalyst only resulted in some unidentified products which appeared
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only on the baseline of TLC. A plausible rationalization is that the two adjacent

dithiole rings of TTFV bind to Pd through S-Pd interactions, which pre-organize

the TTFV in a conformation that requires little structural change to form the

macrocyc1e products, in particular, trimeric macrocyc1e 163a. Unlike TTFV 165a,

macrocyc1e 163a did not change its yellow color when loaded on TLC plate, indicating

a better chemical stability. The stability can be accounted for by the relatively

higher oxidation potential of 163a than TTFV 165a, owing to the relative rigid

conformation of macrocyc1e. In the 1H-NMR spectrum, the S-methyl groups of 163a

gave two singlet signals at 2.44 and 2.45 ppm with different integration value. In

the 13C NMR spectrum of 163a the S-methyl gave rise to only one signal at 19.1

ppm. Close inspection of the 13C NMR of 163a also revealed a signal assigned to two

alkenyl carbons in the 5-membered ring overlapping at 138.1 ppm. This observation

may suggest a high degree of symmetry existing in the macrocylic core as well as the

dithiole rings.
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Figure 3.3: MALDI-TOF MS analysis on the macrocylization crude products showing

the presence of macrocyc1e 163a and other higher macrocyles.
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Scheme 3.6: Synthesis of shape persistent macrocycles 163a,b.
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In a similar manner, TTFV 165b was desilylated and then sui jected to

macrocyclization reactions under the catalysis of Pd/eu in refluxing acetone (Scheme

3.6). MALDI-TOF MS analysis clearly indicated the formation of macrocycle 163b

as the major product of the macrocyclization (Figure 3.4). However, efforts to isolate

pure 163b by flash column chromatography failed because of the very similar R f

value of 163b to some intractable byproducts.

1500

rnIz

Figure 3.4: MALDI-TOF MS analysis on the macrocyclization products showing the

presence of macrocycle 163b.

3.2.1.5 Synthesis of TTF Polymers from 156a,b by Chemical and

Electrochemical Methods

The two phenyl-DTF units in oligoyne-exTTFs 156a,b upon oxidative dimerization

were experted to cross link into "chain-like" oligomer and polymer wires. The

oxidative coupling of DTF groups could be conducted by either chemical or
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electrochemical means. As shown in Scheme 3.7, chemical polymerization w~

performed by treating the solution of 156a,b with 12 in CH2Cl2 at ambient

temperature for ca. 12 h. Afterwards, the resulting polymers were reduced by

~S203 to afford neutral polymer products 158a,b respectively. Both 158a,b were

orange solids and readily soluble in non-polar organic solvents such as CH2Cl2 and

chloroform. MALDI-TOF MS analysis on the samples of 158a,b revealed the presence

of oligomers of short chain lengths (m = 2-8 for 158a and m = 2-4 for 158b). The

relative low degrees of oligomerization observed are not surprising for two reasons.

First, they are the results of the moderate yields of the DTF coupling in the solution

phase using 12 as the oxidant. Second, the oxidation potentials of the DTF should

increase as the chain length of the oligomer increases, because the formed TTFV

moieties in the reaction solution are dicationic and electron-withdrawing in nature.

With a weak oxidant like h, the DTF units in longer oligomers may not be readily

oxidized. As such, the reaction rate slows down with increasing polymer chain length

and eventually stops at a certain degree of polymerization.
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3.2.1.6 X-Ray Single Crystal Structure of Oligoyne exTTFs 156a,b

Single crystals of diyne-exTTF 156a and tetrayne-exTTF 156b were grown by

slow evaporation of their solutions in CH2Cl2 at low temperature (4°C), and their

detailed molecular and solid-state structures were characterized by single crystal

X-ray diffraction. As can bee seen from Figure 3.5, both diyne-exTTF 156a and

tetrayne-exTTF 156b show nearly planar 7l"-conjugated backbones in the molecular

structures (Figure 3.5A,B), with the DTF rings slightly deviated from the planes of

phenyl rings by ca. 15-20°, presumably due to steric hindrance between the sulfur

atoms and adjacent phenyl protons.

In the crystal lattice, molecules of diyne-exTTF 156a are closely packed at a

distance of d = 5.35 A with an inclination angle iJ> = 57.2° between the axes

of molecules and the packing axis (Figure 3.5C,E), while the distances between

the alkynyl carbons in adjacent molecules (C1'-C2 4.779 A, C1'-C4 4.574 A) are

beyond the range of van del' Waals contact (ca. 3.4 A). Such packing geometries are

moderately deviated from the optimal arrangements for diacetylene l,4-addition (d

= 4.9 A, iJ> = 45°) polymerization and therefore suggest a low probability for diyne

156a to undergo topochemically controlled polymerization in the solid state. The

single crystals of tetrayne-exTTF 156b show a packing distance d = 5.34 A similar

to that of diyne 156a, but a relatively smaller inclination angle iJ> = 48.8°. Of note is

that the C1' to C4 distance (4.30 A) is considerably shorter than those of C1' to C2

and C1' to C6, which implies a higher probability for topochemical polymerization

in a l,4-addition fashion. In addition to the ordered alignment of oligoyne moieties,

intimate S-S interactions give another notable feature in the solid-state structure.
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Figure 3.5: ORTEP drawing of (A) diyne-exTTF 156a, and (B) tetrayne-exTTF

156b (30% probability thcrmal ellipsoids). Crystal packing of (C) diync-exTTF

156a, and (D) tetrayne-exTTF 156b, viewed perpendicular to the b-axis. Packing

geometries of (E) diyne-exTTF 156a, and (F) tetrayne-exTTF 156b in the solid

state. CCDC 749087 (diyne-exTTF 156a), 804971 (tetrayne-exTTF 156b).
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In the crystal of diyne-exTTF 156a, the shortest S-S distances between adjacent

molecules are 3.51 A, while for tetrayne-exTTF 156b the close S-S contacts are 3.99

and 4.04 A. The weak S-S interaction in 156b can be viewed as one of the driving

force for the topochemical polymerization. Clearly, the DTF rings play an important

role in dictating the solid-state packing properties of oligoyne-exTTFs, which in turn

affect their solid-state reactivity. Indeed, the close S-S interactions are believed to

be responsible for the extremely poor stability of hexayne-exTTF 156c in the solid

state.

3.2.1.7 Solid-State Reactivities of Oligoyne-exTTF 156a,b

To further explore the solid-state reactivities of oligoyne-exTTFs 156a,b differential

scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were undertaken.

As shown in Figure 3.6A, the DSC trace of diyne 156a shows a sharp endothermic

peak at 206.8 °C (t:>.H = -40.3 kJ/mol) which is attributed to melting. A prominent

exothermic peak emerges at 244.5 °C (t:>.H = 171.4 kJ/mol), and TGA measurement

shows no significant weight loss below 275°C. The thermal analysis suggests that the

exothermic peak is due to thermally induced diacetylene cross-linking reaction. Given

the relatively broad peak width and moderate reaction heat, the thermal cross-linking

may have occurred in a random and disordered manner rather than topochemical

polymerization. The DSC trace of tetrayne 156b (Figure 3.6B) shows a noticeable

endothermic transition at 137°C and an intense sharp exothermic peak at 226.9

°C (t:>.H = 249.7 kJ/mol). TGA data reveals a slight weight loss (ca. 10%) at this

temperature. Collectively, the thermal data suggests that tetrayne 156b might have

undergone a much ordered cross-linking reaction in the solid state. According to the
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crystallographic data. the solid-state reaction i' mostly like through a lA-addition

pathway (Scheme 3. ).
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Figure 3.6: DSC of (A) diyne-exTTF 156a, (B) tctrayne-exTTF 156b.

3.2.1.8 Electronic Properties of Oligoyne exTTFs 156a-c and DTFs 160a-c

The electronic absorption propertie of oligoyne-exTTFs 156a-c were investigated

by UV-Vis spectroscopy. For comparison purposes. the UV-Vis spectra of acetylenic

DTF precursors 160a-c were also determined. Detailed spectroscopic results arc
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Scheme 3.8: Proposed pathway for a topochemical1,4-addition.

given in Figure 3.7 and summarized in Table 3.1. The UV-Vis absorption spectrum

of diyne-exTTF 156a (Figure 3.7A) features a strong low-energy absorption band at

423 nm and a relatively weak band at 332 nm, which can be assigned to the 7r -t 7r*

transitions at the phenyl-DTF moiety. In the spectrum of tetrayne-exTTF 156b, the

lowest-energy absorption band (Amax = 467 nm) is notably redshifted by ca. 40 nm

compared to that of diyne 156a, as a result of extended 7r-conjugation. Additionally,

a relatively strong high-energy absorption peak emerges at 307 nm in the spectrum of

156b, the origin of which is likely due to transitions at the phenyl-butadiyne-phenyl

framework. The UV-Vis absorption spectrum of hexayne-exTTF 156c was measured

from the solution obtained after a brief aqueous workup of the reaction solution.

Since TLC analysis showed that the crude product solution contained only small

amounts of impurities, the spectrum was deemed acceptable in offering a qualitative

characterization of the electronic absorption properties of hexayne-exTTF 156c. In

contrast to the structureless low-energy profiles observed in the spectra of diyne 156a

and tetrayne 156b, the absorption of hexayne 156c gives rise to spectral patterns

with more distinctive fine structures. In the low-energy region, three sharp absorption

peaks can be seen along with a shoulder at 431, 458, 467, and 506 nm. The intensities
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Table 3.1: Summary of electronic properties of oligoyne-exTTFs 156a-c. Optical

energy gap (Eg ) obtained from the intersection between the tangential line and the

base line of the lowest-energy absorption profile.

Entry Jlab." nm (e, 104 M- I em-I) E,,(eV)

156a 423 (6.69), 332 (2.23) 2.61

156b 467 (8.39), 307 (658) 2.39

156c 506,467,458,431,346,326,303, 283(sh), 264(sh) 2.25

of these are relatively weak in comparison to the bands in the high-energy range. The

spacings of the three low-energy peaks are determined to be 2371 and 1778 em I.

The significant difference in these spacing values implies that the sharp absorption

bands mostly likely originate from various electronic transitions rather than a vibronie

progression. In the high-energy region, three sharp absorption peaks are clearly seen

at 303,326, and 346 nm, respectively. The spacings of these peaks (1827 and 1884

em-I) are nearly identiea.l and consistent with the characteristic vibronic progressions

observed in other conjugated hexaynes and longer polyyne systems. 157

3.2.1.9 Electronic Properties of Macrocycle 163a, TTFV 165a, and

Polymers 158a,b

The UV-Vis absorption properties ofTTFV-based macrocycle 163a, TTFV precursor

165a, and polymers 158a,b are compared in Figure 3.8. The absorption spectrum of

macrocycle 163a shows three rr -+ rr* transition bands at 400, 335, and 260 nm. The

lowest-energy band is redshifted by ca. 20 nm relative to that of TTFV precursor

165a (Jl7IlaT = 380 nm) as a result of extended rr-conjugation The spectrum of
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Figure 3.7: Normalized UV-Vis spectra of (A) oligyne-exTTFs I56a-c, (B) DTFs

I60a-c measured in CHC13 .
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polymer 158a, which is structurally the acyclic analogue of macrocycle 163a, shows

three absorption bands at 422, 331, and 298 nm. The lowest-energy absorption

peak of 158a is redshifted by 22 nm in comparison with macrocycle 163a. It is

interesting to note that the low-energy cutoff edges of 163a and 158a are nearly

superimposable, which is indicative of the same optical band gap energies for the

two species. This observation suggests rather insignificant electronic delocalization

across the 1T-framework of 158a. It is reasonable to assume that the TTFV units of

158a take cis conformation in the neutral state to form foldamers. Such a helical

orientation hence attenuates the electronic communication between each conj ugated

r peat segments in the polymer backbone. The UV-Vis spectrum of 158b shows

three absorption bands at 444, 348, and 304 nm, respectively. Compared with 158a,

the Amax value of 158b is redshifted by 22 nm as a result of further extended oligyne

length in the repeat unit. In addition to the significant 1T -+ 1T* features, the spectra

of 158a,b both show a weak long-wavelength hump in the Vis-NIR region, peaking

at 566 nm for 158a and 738 nm for 158b. The origins of these peaks can be

ascribed to trace amounts of cationic TTFV moieties due to incomplete reduction

during the polymer preparation process. This assignment is evidenced by UV-Vis

spectroelectrochemical studies (vide infra).

3.2.1.10 Electrochemical and UV-Vis Spectroelectrochemical Properties

of Oligoyne exTTFs and Related Derivatives

The electrochemical redox properties of oligoyne-exTTFs and related compounds were

investigated by cyclic voltammetric (CV) analysis, and the detailed voltammograms

are illustrated in Figure 3.9. The CV profile of diyne-exTTF 156a (Figure 3.9A)
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Figure 3.8: UV-Vis absorption spectra of macrocycle 163a. TTFV 165a, and

polymers 158a,b measured in CHCh.

shows an anodic peak at Epa = 0.75 V and a cathodic peak at E/JC = +0.55 V on

the first cycle of scan. The anodic wave originates from the oxidation of the DTF

moieties in 156a to IDTFj+·. The cathodic peak, however, is not due to a reversible

reduction process of IDTF]+·. Instead, it is assigned to the simultaneous two-electron

reduction on !TTFVI2+ that results from a rapid dimerization r action of IDTFj+'

on the electrode surface. The assignment is evidenced by the dramatically changed

voltammogram patterns observed on the second cycle of CV scan, in which a new

anodic peak emerges at +0.62 V preceding the anodic peak at +0.75 V. Compar d

I

I·
I

with the cyclic voltammograll1 of TTFV precursor 165a (Figure 3.9C), th reversible

couple at Epa = +0.62 V and E pc = +0.55 V can be reasonably attributed to the

redox processes taking place at TTFV units. In the succeeding scan cycles, the

cathodic peak due to IDTFI+' formation (at ca. +0.75 V) shows a gradual decrease
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in intensity, whereas the redox wave pair related to the TTFV groups are seen to

steadily increase in intensity. This observation is indicative of electropolymerization

of 156a on the surface of the working electrode to form multiple layers of conductive

polymer. Indeed, after a number of CV scans, a smooth and uniform thin film was

deposited on the surface of working electrode. In Figure 3.9A, it is also notable

in that the redox wave pairs associated with TTFV moiety show gradually increased

quasi-reversible behavior with increasing number of CV scans. Tetrayne-exTTF 156b

gives very similar CV patterns (Figure 3.9B) to those of diyne-exTTF 156a, and

affords a high-quality conductive polymer thin film on the working electrode surface

after successive CV scans. The voltammogram of macrocycle 163a shows a quasi­

reversible oxidation at Epa = +0.78 V and Epc = +0.56 V (Figure 3.9D). Compared

with the voltammogram of TTFV 165a, the redox potentials of 163a are shifted

anodically by ca. 0.1 V. The shift is due to the conformation constraint in macrocycle

163a that prohibit the TTFV moiety from stretching into a trans TTFV dication

upon oxidation. Similar effects have been found in a series of poly(ethylene glycol)

tethered TTFV macrocycles reported by Lorey and co-workers. 108
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Figure 3.9: Cyclic voltammograms of: (A) Diyne-exTTF 156a (10-3 !VI), scan rate:

200 mV S-l, working electrode: glassy carbon; (B) Tetrayne-exTTF 1.;i6b (10-3 !VI),

scan rate: 200 mV S-l, working electrode: glassy carbon; (C) TTFV 165a (10-3

IV!), scan rate: 50 mV S-l, working electrode: glassy carbon; (D) IVlacrocycle 163a

(10-3 !VI). scan rate: 50 mV S-I, working electrode: glassy carbon; (E) polyl156al

thin film, scan rate: 50 mV S-l, working electrode: ITO glass; (F) polyl156bl thin

film, scan rate: 50 mV S-l, working electrode: ITO glass. Experimental conditions:

supporting electrolyte: Bu4NBF4 (0.1 !VI); solvent: CH2 CI2 ; counter electrode: Pt;

reference electrode: Ag/AgCI. The arrows indicate the potential scan direction.
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In addition to voltammetric studies, UV-Vis spectroelectrochemical analysis on

the exTTFs and related TTFV macromolecules was also conducted in order to probe

their optical responses to electrochemical redox processes. In the experiments, each

UV-Vis spectral scan was performed after the electrolysis of an analyte at a controlled

voltage for at least 90 seconds to ensure the electric current attained a constant value.

As such, the systems examined by UV-Vis spectroscopy can be deemed as having

arrived at equilibrium. The detailed results of spectroelectrochemistry are given in

Figure 3.10.

Upon increasing oxidation, the lowest-energy absorption band of diyne-exTTF

156a at 423 nm decreases steadily and a new broad band grows at 660 nm with

relatively weak intensity (Figure 3.10A). The new long-wavelength band is assigned to

the characteristic absorption of [TTFVj2+. 108 The trend of UV-Vis spectral changes in

the spectroelectrochemical analysis of 156a is similar to that of TTFV precursor 165a

(Figure 3.10C), hence corroborating the formation of TTFV species in the process

of electrochemical oxidation of diyne-exTTF 156a. For tetrayne-exTTF 156b, a

substantial decrease of the absorption peak at 647 nm along with an increasing broad

band at 668 nm can be observed (Figure 3.10B). The trend is similar to that of diyne

156a, indicating the electrochemical polymerization through the formation of TTFV

units. Unlike the spectroelectrochemical data for diyne 156a, the UV-Vis absorption

profile of tetrayne 156b shows three sharp bands at 347, 377, and 408 nm when

the oxidation arrives at a high degree. The spacings between these bands are 2293

and 2015 cm-1 are consistent with a vibronic progression arising from carbon triple

bond stretching mode. The vibronic spectral pattern is also clearly discernible in the

UV-Vis absorption spectrum of oxidized (cationic) poly[156b] thin film, where three
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sharp bands can be seen at 353, 383, and 415 run, respectively. These spectral results

imply that oxidized (cationic) poly[156bj possess more rigid polymeric backbone than

its neutral form.

The spectroelectrochemical data for macrocycle 163a is shown in Figure 3.9D. As

oxidation progresses, the lowest-energy band at ca. 422 nm drops in intensity along

with a moderate degree of redshift, while the absorption in the high-energy region

(ca. 322 nm) is slightly increased. The most notable spectral feature, however, is

the substantial rise of a broad absorption tail from ca. 500 to 750 nm with a barely

distinguishable peak at 600 nm, which are markedly different from those of acyclic

TTF species 156a,b and 165a. The pronounced low-energy tail in the spectrum of

oxidized macrocycle 163a is correlated to the electronic absorptions of [TTFVj2+.

Given the unique conformation constraint in macrocycle 163a, the TTFV moieties

must retain cis-conformation even after being oxidized into [TTFVj2+ dications. In

this sense, macrocycle 163a offers a convenient model to unravel the unique electronic

absorption properties of cis-[TTFV]2+. 108

The solution-phase UV-Vis studies have revealed that compounds carrying TTFV

groups are electronically transparent in the Vis-NIR region of the spectrum (500 to 00

nm) in the neutral state, and they become quite absorbing in this spectral range after

being oxidized. Also the oxidation and reduction processes on the TTFV moieties

are chemically reversible. Collectively, these spectral and electrochemical prop rties

point to potential applications in electrochromism and electrochromic devices. 158-160

To further investigate the electrochromic properties in the solid state, the UV-Vis

absorption spectra of polymer films prepared by electrodeposition of diyne-exTTF

156a and tetrayneexTTF 156b on ITO glass were characterized in both neutral and
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Figure 3.10: UV-Vis spectroelectrochemistry of (A) diyne-exTTF 156a. (B) tetrayne-

exTTF 156b, (C) TTFV 165a, and (D) macrocycle 163a. Experimental condition:

supporting electrolyte: Bu4NBF4 (0.1 M); solvent: CH2CI2 ; working electrode: Pt

mesh; counter electrode: Pt; reference electrode: AgjAgCI. UV-Vis absorption

spectra of (E) polyl156aj, (F) polyl156bl on ITO glass in the neutral (blue trace)

and cationic (red trace) states.
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oxidized states. As shown in Figure 3.lOE, the thin film of poly[156a] shows a strong

absorption 7r -+ 7r* transition band at 441 nm. In addition, a weak absorption tail is

observed in the range of ca. 500-700 nm, which is likely arising from trace amounts

unreduced [TTFV]2+ moieties (doping) in the polymer film. In charging the polymer

thin films in an electrolysis setup at +0.9 V for 1 min, the color of poly[156a] was

observed to gradually changed from yellow to dark green. The UV-Vis spectrum

of oxidized poly[156a] shows a strong broad low-energy band covering the spectral

range of 500 to 850 nm and peaking at 670 nm, while the absorption peak at 441 nm

is greatly attenuated. In UV-Vis spectrum of neutral poly[156b] thin film (Figure

3.10F), a strong absorption band at 464 nm and a long absorption tail extending from

ca. 550 to 800 nm are observed. Upon oxidation, the peak at 464 nm disappears, while

a broad band appears in the Vis- IR region (ranging from 550 to 900 nm and p aking

at 691 nm) together with three distinctive vibronic bands at 415,383, and 353 nm in

the high-energy region.

169



3.2.1.11 Summary

The redox-controlled conformational switching behavior of phenyl-substituted TTFV

is the key to the versatile synthesis of extended 7T-conjugated molecular and

macromolecular structures with different topologies and dimensions, ranging from

"rod-like" oligoyne-exTTFs to TTFV-containing shape persistent macrocycles and

conducting polymer wires. The optical gaps of oligoyne-exTTFs show a reducing

trend and do not converge as the oligoyne chain length increases from diyne to

hexayne. The oligoyne-exTTFs can be efficiently polymerized through DTF oxidative

coupling reactions and the polymer thin films resulting from electropolymerization

show intriguing conductivity and redox activities. Furthermore, the polymer films

exhibit redox-switchable coloration in the Vis-NIR region of the spectrum, suggesting

potential applications in electrochromic devices. The synthetic access to TTFV

oliogyne shape-persistent macrocycles 163a,b has not only added new members to the

family of phenylacetylene-based cyclophanes, but provided useful models for further

understanding the effect of conformational constraint on the electronic properties of

TTFV-embedded macromolecular systems. It is also envisaged that the nearly fiat

arrangement of the acetylene-rich ring framework of 163a could render it a unique

supramolecular hosts for certain metal ions and aromatic molecular guests. Finally,

solid-state structural and thermal analyses have shown that tetrayne-exTTF 156b

can undergo topochemical polymerization more readily than diyne-exTTF 156a. This

finding hints to a possibility that macrocycle 163b and electrochemically-induced

polymer, poly[156b], if assuming they adopt folding conformation, may be further

cross-linked through solid-state tetrayne cross-linking reactions to form defined and
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organized 3-dimensional polymer networks.

3.2.2 Synthesis and Characterization of TTFV Based Tweez­

ers and Crown Ether Hybrids

3.2.2.1 Synthetic Strategy towards Novel TTFV Derivatives

The synthetic targets to be discussed the section are TTFV based tweezers and

crown ether hybrids derived directly from precursor TTFV 165a. The retrosynthesis

illustrated in Scheme 3.9 clearly reveals the synthetic strategies to such compounds.

Basically, desilylated 165a can afford alkyne-linked TTFV derivatives by Sonogashira

reactions with suitable aryl halides to give a type of tweezer-like TTFV derivatives

159. In addition, taking advantage of the efficient "click" chemistry enabled by

terminal alkynes, TTFV 165a was expected to cyclize with a chain-like diazido tether

to form triazole-linked TTFV-crown ether hybrids such as compound 166.

3.2.2.2 Synthesis of TTFV Tweezers

The construction of a TTFV-dianthraquinone tweezers 159a is described in Scheme

3.10. In the synthesis, TTFV 165a was first desilylated with K2C03 , and then

subjected to Sonogashira cross coupling with 2-iodoanthraquinone 167, to afford

molecular tweezers 159a. Due to the low solubility of 159a in Et3N, the product

precipitated out of the reaction solution and was readily separated by filtration.

The resulting crude product was rinsed with Et3N and purified by silica gel column

chromatography to afford pure product 159a in 66% yield. Note that compound

159a is an acceptor-donor-acceptor triad in electronic structure and hence is referred
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Scheme 3.9: Synthetic strategy for some new TTFV analogues derived from 165a.
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to as AQ-TTFV-AQ in the following discussions.

Scheme 3.10: Synthesis of AQ-TTFV-AQ 159a by a Sonogashira reaction.

With compound 159a in hand, a TTFAQ-tipped molecular tweezer 159b was

considered to be readily accessible through a 4-fold HEW reaction between 159a and

suitable phosphonate precursors. As shown in Scheme 3.11, phosphonate 105a was

first treated with a strong base, n-BuLi, at low temperature to form phosphonate

ylide. AQ-TTFV-AQ 160a was next added to react with the in situ generated

phosphonate ylide, affording the desired molecular tweezers 159b which is a TTFAQ-

TTFV-TTFAQ triad. The HWE reaction produced 160b in reasonable yields;

however, purification of 159b by column chromatography was found tedious and

tricky. Similar to TTFV 165a, compound 159b was unstable in contact with

silica gel. However, the existence of numerous byproducts in the 4-fold HWE

reaction required a slow chromatographic procedure. As such, the isolated yields

of 159b were highly dependent on the silica gel column separation conditions. In

particular, the yield appeared to be significantly influenced by the duration of column

chromatography.
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Scheme 3.11: Synthesis of TTFAQ-TTFV-TTFAQ 159b by an HWE reaction.
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In addition to the HWE strategy, an alternative Sonogashira coupling route

was explored for the synthesis of compound 159b. As shown in Scheme 3.12, a

monoiodinated TTFAQ precursor 168 was first prepared by a P(OEth-promoted

olefination reaction between 2-iodoanthraquinone 167 and thione 104a in toluene

at 100 °C. The reaction gave the desired product 168 in 43% yield, along with the

formation of two incomplete olefination byproducts 169 and 170. A higher yield of

169 than 170 indicated a faster reaction rate of the ketone close to the electron­

withdrawing iodide atom. All these compounds were readily separated and purified

by column chromatography. Cross coupling of 168 with desilylated TTFV 165a

under the catalysis of Pd/Cu afforded compound 159b (see Scheme 3.13), which

precipitated out upon addition of MeOH into the reaction mixture. The precipitated

product could then be easily purified by flushing through a short silica plug with

CHCb, giving pure 159b in a yield of 62%. The short separation time on column

chromatography considerably reduced the undesirable decomposition of 159b in

contact with silica gel, therefore ensuring more consistent and reproducible yields

for the reaction.
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Scheme 3.12: Synthesis of monoiodinated TTFAQ 168 by a phosphate-mediated

coupling.

~\
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Scheme 3.13: Synthesis of TTFAQ-TTFV-TTFAQ 159b by a Sonogashira reaction.
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3.2.2.3 Synthesis of a TTFV Crown Ether Hybrid

The synthesis of a TTFV crown ether hybrid 166 was achiev d by an alkyne-azide

[3+2] cycloaddition (click reaction) between diazide 171 and desilylated 165a in the

presence of CuS04·5H20jsodium ascorbate in DMF (see Scheme 3.14). After aqu ous

workup, the crude product was precipitated out as viscous oil, which was further

purified by column chromatography. The use of MgS04 as drying agent was avoided

as the product was found to be strongly bound to MgS04 through the complexation

of the crown ether moiety with Mg2+ ion. The high yield of this cyclization (73%)

was attributed to a template effect by Na+. The reaction outcome may serve as a

springboard to further synthetic exploration on other TTFV crown ether hybrids in

future work.

TS'tO~OTS NaN3. :::'8r, DMFN3-..../'fo~N3
145 171

Scheme 3.14: Synthesis of TTFV crown ether hybrid 166 by a click reaction.
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3.2.2.4 Electronic Properties of TTFV Tweezers 160a,b and Crown Ether

Hybrid 166

The electronic absorption properties of molecular tweezers 159a,b and crown ether

166 were investigated by UV-Vis absorption spectroscopy. Figure 3.11 compares

the absorption spectra of 159a,b, 166, and 165a. In the spectrum, TTFV 165a

shows an absorption band at 380 nm in the low-energy region. In the spectrum

of AQ-TTFAQ-AQ 159a, a notable absorption shoulder at 460 nm along with a

broad long-wavelength absorption tail extending to ca. 580 nm are observed. To

clarify the origin of the band, UV-Vis spectrum of a 1:2 mixture of TTFV 165a

and anthraquinone 172 was determined and compared with the spectrum of 160a.

The absence of a low-energy absorption band in the UV-Vis profile of the mixture of

165a and 172 confirms that the long-wavelength shoulder and tail in the spectrum

of 159a is due to intramolecular charge transfer (leT). The absorption spectrum of

TTFAQ-TTFV-TTFAQ 159b shows a broad low-energy band peaking at 416 nm, the

origin of the band can be assigned to overlapped 1r -+ 1r* transition bands of TTFV

and TTFAQ. Interestingly, the longest wavelength absorption of crown ether hybrid

166 is blueshifted compared to TTFV 165a. The observation indicates a decrease in

effective 1r-conjugation in changing the 1r-bridge from acytylene to triazole.

3.2.2.5 Electrochemical Redox Properties of TTFV Tweezers 159a,b and

TTFV Crown Ether Hybrid 166

The electrochemical redox properties of TTFV-hinged tweezers 159a,b and crown

ether hybrid 166 were investigated by cyclic voltammetric analysis. Figure 3.12
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Figure 3.11: UV-Vis absorption spectra of TTFV tweezers 159a,b, TTFV crown

ether hybrid 166, TTFV 165a, and a mixture of 165a and 172 (in 1:2 molar ratio).

Spectra were measured in CH2Cl2 .
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shows the detailed cyclic voltammograms of these compounds, and for comparison

purpose the CV profile of TTFV 165a is also included in Figure 3.12.

From Figure 3.12A, it can be seen that TTFV 165a gives a quasi-reversible

redox couple at Epa = +0.67 V and E pc = +0.46 V, which are attributed to a

simultaneous two-electron process. In the CV profile of AQ-TTFV-AQ 159a (Figure

3.12B), the TTFV-originated redox wave pair is also reversible. With Epa at a less

positive potential of +0.61 V and E pc at a more positive potential of +0.54 V,

the peak separation of 159a is much smaller than TTFV 165a. The oxidation

potential of 159a is only slightly higher than that of TTFV 165a, despite the

electron-withdrawing nature of the AQ groups in conjugation with TTFV unit. This

observation is consistent with those reported examples showing little or no change

in the oxidation potentials of TTFV moieties regardless the nature of substituents

on the aryl groups. In fact, it was considered as a merit allowing elaboration on the

aryl moiety without affecting the redox behavior of the TTFV unit. In the negative

potential window, two reversible redox wave pairs are observed, which are typical

of the successive two-step reduction of anthraquinone and indicate no electronic

communication between the two AQ groups. Of interest is the cyclic voltammogram of

TTFAQ-TTFV-TTFAQ 159b (Figure 3.12C). In the anodic scan, only one oxidation

peak is observed at +0.68 V. The current intensity of this peak suggests it arise from

simultaneous oxidation at the central TTFV and the two TTFAQ moieties with total

6 electrons. In the cathodic scan, however, two reduction peaks are seen at +0.55 V

and +0.23 V respectively. The former is assigned to the reduction at the TTFV core

(2 electrons), while the latter is due to the reduction of the two TTFAQ moieti s (4

electrons). The assignment is supported by the current intensities of the two cathodic
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Figure 3.12: Cyclic voltammograms of (A) TTFV 165a, (B) AQ-TTFV-AQ 159a,

(C) TTFAQ-TTFV-TTFAQ 159b, and (D) TTFV crown ether 166. Experimental

conditions: analyte (ca. 10-3 M); Bu4NBF4 (0.1 M) as supporting electrolyte; CH2C12

as solvent; glassy carbon as working electrode; Pt wire as counter electrode; Ag/AgCl

as reference; scan rate 0.1 V S-l
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peaks. The CV patterns of 159b indicate a significant degree of intramolecular

electronic interaction between the TTFV and TTFAQ groups. Also, the large peak

separation of the oxidation of TTFAQ indicates the process is accompanied by a

dramatic conformational change. The redox behavior of crown ether hybrid 166

resembles that of 159a, showing one reversible oxidation with Epa at +0.60 V and

Epc at +0.50 V. With no increase in the oxidation potential, it is assumed that the

crown ether chain is long enough to allow the TTFV unit to undergo conformational

change upon oxidation.
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3.2.2.6 Spectroelectrochemistry of TTFV Tweezers 159a,b

To gain a deeper insight into the redox process, UV-Vis spectroelectrochemical

analyses were performed on TTFV tweezers 159a,b. Detailed experimental results

are given in Figure 3.13. For convenience of dicussion and comparison purpo es,

the spectroelectrochemistry data of 165a is reiterated as follows. With increasing

applied potential the absorption band of TTFV 165a at 380 nm decreases, while a

new long-wavelength absorption band emerges with a peak at 642 nm and a shoulder

at 713 nm. The new bands are assigned to the characteristic absorption of dication

[TTFVj2+ In the spectroelectrochemical measurements of AQ-TTFV-AQ 159a, a

similar long-wavelength band is observed to grow with increasing applied potential,

indicating the formation of [TTFVj2+. The ICT band of 159a at 380 nm steadily

reduces as the oxidation of TTFV progresses, while the absorption due to AQ at ca.

360 nm remains unchanged. For TTFAQ-TTFV-TTFAQ 159b, a broad band peaking

at 650 nm grows with increasing applied potential. Concomitantly, the absorption

band at 416 shows a significant decrease and a band at ca. 330 increases notably.

According to the CV data, these spectral changes are attributed to the simultaneoLi

formation of [TTFVj2+ and [TTFAQj2+ in compound 160b.

3.2.2.7 Preliminary Study on the Sensing Properties of TTFV Tweezers

159a,b and Crown Ether Hybrid 166

It was expected TTFV tweezers 159a,b would show some binding affinity for C60

on the ground of two considerations. First, anthraquinone and TTFAQ have been

known to bind with C60 through 7l'-stacking forces. Second, cis TTFV should bring
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Figure 3.13: UV-Vis spectral changes with increasing applied potential steps during

electrolysis. (A) TTFV 165a. (B) AQ-TTFV-AQ 159a. (C) TTFAQ-TTFV-TTFAQ

159b. Experimental conditions: Bu4NBF4 (0.1 !VI) as supporting electrolyte; CH2Cl2

as solvent; Pt mesh as working electrode; Pt wire as counter electrode; AgjAgCl as

reference.
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the appendant groups on both sides in a close proximity, which may facilitate the

formation of a cavity favoring cooperative binding motifs. Experimentally, no change

was observed in the UV-Vis absorption spectra and cyclic voltammogram upon

titration of C60 into the solutions of 159a,b. Various solvent systems have been

tested, including toluene, benzene, a-dichlorobenzene, CHCI3, and 1:1 CHCI3/CS2,

and 159a,b did not show binding to C60 in any of them. This result suggests that

TTFV tweezers 159a,b do not form binding cavity suitable for C60 as expected. The

binding cavity might be either too small or too big, the latter being more likely, since

it was reported that the bulkiness of aryl group could effect the twisting angle of

the molecule. In addition, the rigid structure of alkynyl linkage could pr vent the

self-fitting of the tweezers to C60 host.

The UV-Vis absorption spectra of 159a,b upon addition of different metal ions

were also determined to test their potential as colorimetric chemosensors. It was

found that Zn2+, Pd2+, Ag+ showed slight binding with both molecules, as evidenced

by a slight decrease in the absorption of TTFV and a barely noticeable increase of

absorption around 700 nm. The active binding sites are proposed to be the TTFV

moiety due to the characteristic color change, which is similar to the oxidation of

TTFV. In fact, TTFV 165a showed, although to a small extent, color change towards

green-yellowish upon addition of Zn2+ ions. It is proposed that the chromic effect

come from the alteration of the twisting angle of the TTFV moiety in binding with

metal ions. The colorimetric responses to metal ions become even more prominent

in the case of TTFV crown ether hybrid 166. After adding ZnCl2 to the organic

solution of 166, a new layer was found to be immediately deposited on the surface

of the insoluble inorganic salt and turned to blue color within seconds. In addition
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to binding with transition metal ions, TTFV crown ether 166 can also bind with

alkaline metal ions through its crown ether receptors. It was observed that 166 in

contact with MgS04 formed a yellow colored complex.

3.2.2.8 Summary

Two TTFV based tweezers and a crown ether hybrid were successfully prepared.

Sonogashira couplings and click reactions have been proven powerful in synthesizing

such type of TTFV derivatives. The electronic properties and redox behaviors of these

TTFV derivatives were studied by UV-Vis spectroscopic and voltammetric methods.

The results suggest that the redox behavior of TTFV core is insensitive to appended

side groups, and this behavior may be useful to the development of electrochemically

actuated molecular switching devices. In addition, the side groups attached to the

TTFV core may affect the orientation of the dithiole rings ofTTFV, affording another

means (input) to exert control over the switching of TTFV at the molecular level.

3.3 Experimental

General Procedures

Chemicals were purchased from commercial suppliers and used directly without

purification. Et3N was distilled from LiH prior to use in Sonogashira couplings.

THF was distilled from benzophenone/Na before its use in HWE reactions. All

reactions were conducted in standard and dry glassware unless otherwise noted.

Evaporation and concentration were carried out with a water-aspirator. Flash column

chromatography was performed using 240-400 mesh silica gel obtained from VWR
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International. Thin-layer chromatography (TLC) was carried out with silica gel 50

F254 covered on plastic sheets and visualized by UV light. Melting points (m.p.)

were measured with a Fisher-Jones melting point apparatus and are uncorrected. 1H

and 13C MR spectra were measured on a Bruker Avance 500 MHz spectrometer.

Chemical shifts are reported in ppm downiield from the signal of the internal

reference SiMe4. Coupling constants (J) are given in Hz. Infrared spectra (IR)

were recorded on a Bruker Tensor 27 spectrometer equipped with a ZnSe ATR

module. Positive-mode high-resolution mass spectra (HRMS) were measured on

a Waters GCT premier instrument equipped with an lectron ionization (EI) ion

source and a QSTAR XL hybrid quadrupole/TOF mass spectrometer equipped with

an o-MALDI ion source (Applied Bio-systems). Single crystal X-ray diffraction data

were collected on a Rigaku Saturn CCD area detector equipped with a SHINE optic

with MoK", radiation (>' = 0.71075 A). UV-Vis absorption spectra were measured

on a Cary 5000i spectrophotometer. Cyclic voltammetric analyses were carried

out in a standard three-electrode setup controlled by a BASi epsilon workstation.

Spectroelectrochemistry was investigated through the following protocol: In a 1 mm

quartz cuvette were placed a Pt mesh as working electrode, and Ag/AgCI as reference

electrode, and Pt wire as counter electrode. The applied potential (V) was increased

in steps through controlled potential electrolysis (CPE). In each potential step, the

electrolysis was first performed for ca. 1.5 min until the electrical current remained

constant then a UV-Vis spectrum was then determined. Thermogravimetric analysis

(TGA) was conducted on a TA Instruments Q500 thermogravimetric analyzer, and

differential scanning calorimetric (DSC) analysis was performed on a Mettler Toledo

DSC 1 instrument. All samples were placed under a nitrogen atmosphere during the
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thermal analysis.
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To a solution of DTF I60a (107 mg, 0.283 mmol) in THF/MeOH (1:1, 30 mL)

was added K2C03 (200 mg, 1.45 mmol). The mixture was stirred at rt for 30 min, and

then diluted with CH2CI2 , washed with H20, dried over MgS04 , and concentrated in

vacuo to ca. 2 mL. The residue was redissolved in CH2Cl2 (30 mL) and to the resulting

yellow solution was added a solution of CuI (200 mg, 1.05 mmol) and TMEDA (0.20

mL) in CH2 Cl2 (3 mL). The mixture was stirred at rt under air for 3 h, then washed

with H20, dried over MgS04 , and concentrated in vacuo. The residue was subjected

to silica flash column chromatography (10% CH2Cl2 in hexanes) to give diyne-exTTF

I56a (57 mg, 0.093 mmol, 66%) as a yellow solid. M.p. 170°C (dec.); 1H NMR (500

MHz, CDCh) 67.49 (d, J = 8.1 Hz, 4H), 7.16 (d, J = 8.4 Hz, 4H), 6.46 (s, 2H), 2.47

(s, 6H), 2.46 (s, 6H). The data are consistent with literature report. 156

Tetrayne-exTTF I56b.

SMe

Mes~s
S H

~o = = = = f~
H - S

156b SI'SMe

MeS

188



To a solution of diyne-DTF 160b (71 mg, 0.18 mmol) in THF/MeOH (1:1, 20

mL) was added K2C03 (200 mg, 1.45 mmol). The mixture was stirred at rt for

30 min and then was diluted with Et20, washed with H20, and dried over MgS04 .

After vacuum evaporation, the residue was redissolved in CH2C12 (20 mL). To the

solution was then added a solution of CuI (60 mg, 0.31 mmol) and TMEDA (0.10

mL) in CH2C12 (3 mL). The mixture was stirred at rt under air for 3 h. Then another

portion of CH2C12 (130 mL) was added to dissolve all the solids formed during the

reaction. The solution was washed with H20, dried over MgS04 , and filtered through

a short silica plug to afford pure tetrayne-exTTF 156b (58 mg, 0.88 mmol, 100%) as

a golden flake. M.p. 200°C (dec); 1H NMR (500 MHz, CDC13) b 7.50 (d, J = 8.3

Hz, 4H), 7.15 (d, J = 8.3 Hz, 4H), 6.45 (s, 2H), 2.45 (s, 6H), 2.44 (s, 6H). The data

are consistent with literature report. 156

Poly(diyne-TTFV)s 158a.

To a solution of diyne exTTF 156a (43 mg, 0.070 mmol) in CH2C12 (50 mL)

was added h (46 mg, 0.18 mmol). The mixture was stirred at rt overnight, resulting

in a pale yellow solution with dark green precipitates. To this mixture was added

satd Na2S203 solution (aq. 20 mL), and the content was kept under stirring for 1

h. The resulting yellow organic layer was separated, washed with H20, and dried
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over MgS04 . Filtration followed by evaporation in vacuo afforded 158a as a yellow

solid (39 mg, crude yield 91%). HRMS (MALDI-TOF) m/z found 1225.9014 (n =

2), 1837.8391 (n = 3), 2450.7645 (n = 4), 3063.6956 (n = 5), 3681.4704 (n = 6),

4902.6271 (n = 8).

Poly( tetrayne-TTFV)s 158b.

To a solution of TTF tetrayne 156b (26 mg, 0.040 mmol) in CH2Cl2 (40 mL) was

add 12 (30 mg, 0.12 mmol). The mixture was stirred at rt overnight, and then satd

Na2S2 03 solution was added. The mixture was stirred for another 1.5 h, and then

washed with H20, dried over MgS04 , and evaporated in vacuo to afford 158b (24 mg,

crude yield 80%). HRMS (MALDI-TOF) m/z found 1321.8988 (n = 2), 1983.8686

(n = 3), 2643.7519 (n = 4).

AQ-TTFV-AQ 159a.

To a solution ofTTFV 165a (43 mg, 0.057 mmol) in THF/MeOH (30 mL, 1:1) was

added K2C03. The mixture was stirred for 20 min. It was then diluted with CH2CI2 ,

washed with H2 0, dried over MgS04 , and evaporated in vacuo. To the residue was

added 2-iodoanthraquinone 172 (83 mg, 0.25 mmol) and Et3N (50 mL). The mixture

was purged with N2 for 20 min. Then PdCI2 (PPh3)2 (14 mg, 0.020 mmol) and CuI

(10 mg, 0.052 mmol) were added. The mixture was stirred overnight. During the
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reaction, red precipitate were formed. The mixture was filtered. The residue was

washed with Et3N, redissolved in CH2CI2 , washed with aq. NH4Cl solution, H20,

dried over MgS04, and purified with chromatography using CH2Cl2 as eluent to

afford 159a as a red solid (38 mg, 0.037 mmol, 66%). M.p. 290 °C; IH MR (500

MHz, CDCI3): b = 8.42 (s, 2H), 8.34-8.30 (m, 4H), 8.29 (d, J = 8.1 Hz, 2H), 7.88

(dd, J = 8.1, 0.8 Hz, 2H), 7.83-7.78 (m, 4H), 7.53 (d, J = 8.5 Hz, 4H), 7.45 (d, J =

8.5 Hz, 4H),2.46 (s, 6H), 2.40 (s, 6H); I3C NMR (125 MHz, CDCI3): b = 182.9, 182.7,

139.2, 137.7, 136.6, 134,5, 134.4, 133.8, 133.7, 133.6, 132.51, 132.46, 130.4, 129.9,

129.0, 127.6, 127.55, 127.52, 126.6, 125.6, 123.4, 120.4, 94.8, 89.1, 19.2, 19.1; FTIR

(neat) 2919, 2854, 2209, 1672, 1588, 1516, 1477, 1323, 1282, 974, 929, 850 em-I;

HRMS (MALDI-TOF) m/z calcd for C56H3404SS 1026.0223, found 1026.0163 [M]+.

TTFAQ-TTFV-TTFAQ 159b

Method 1. To a solution of phosphonate 105a (50 mg, 0.16 mmol) in dry THF

(20 mL) cooled by a dry ice bath was added n-BuLi (0.10 mL, 0,25 mmol, 2.5 M

in hexanes). The mixture was stirred for 20 min. Then a solution of AQ-TTFV-

AQ 160a (16 mg, 0.016 mmol) in dry THF (20 mL) was added. The mixture was

allowed to warm to rt and stirred overnight. The resulting mixture was evaporated,
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diluted with CH2CI2 , washed with H20 until the aqueous layer was clear colorless.

The organic layer was dried over MgS04 and purified with chromatography using 70%

CH2Cl2 in hexanes to afford 159b as an orange solid (14 mg, 0.0081 mmol, 51%).

Method 2. To a solution of TTFV 165a (11 mg, 0.015 mmol) in THF/MeOH

(10 mL, 1:1) was added K2C03. The mixture was stirred for 20 min. It was then

diluted with CH2CI2 , washed with H20, dried over MgS04 , and evaporated in vacuo.

To the residue was added mono-iodinated TTFAQ 168 (21 mg, 0.030 mmol) and

Et3 (20 mL). The mixture was purged with N2 for 10 min. Then PdCI2(PPh3)2 (6

mg, 0.009 mmol) and CuI (6 mg, 0.032 mmol) were added. The mixture was heated

to 60°C and stirred overnight. During reaction, brown solid formed. The mixture

was filtered. The residue was washed with Et3N, redissolved in CH2CI2 , concentrated

to ca. 4 mL, and precipitated with MeOH (4 mL). The precipitate was collected by

filtration, washed with MeOH, dissolved in CHCI3, filtered through a short silica plug

to afford product 159b as an orange solid (16 mg, 0.0093 mmol, 62%).

192

I



M.p. 230-231 °C; IH MR (500 MHz, CDCI3): 8 = 7.66 (d, J = 1.5 Hz, 2H),

7.57-7.54 (m, 4H), 7.53 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 8.4 Hz, 4H), 7.45-7.3 (m,

6H), 7.32 (dd, J = 5.6, 3.2 Hz, 4H), 2.46-2.43 (m, 6H) 2.42-2.37 (m 30H); 13C NMR

(125 MHz, CDCI3 ): 8 = 138.2, 137.0, 135.0, 134.69, 134.67, 133.0, 132.23, 132.22,

129.7, 129.1, 128.8, 128.4, 126.7, 126.6, 126.5, 126.43, 126.36, 126.2, 126.0, 125.7,

125.63, 125.57, 125.4, 123.8, 123.4, 123.0, 121.5, 121.4, 90.48, 90.45, 19.3, 19.2, 19.1;

FTIR (neat) 2919, 2854, 1672, 1530, 1492, 1418, 1310, 1215, 964, 891, 837 cm-I;

HRMS (MALDI-TOF) m/z calcd for C76H5SS24 1737.7836, found 1737.7771 [M]+.

Alkyne-DTF 160a.

SMe

Mes~s
s--{ j=\

H~TMS

160a

To a solution of phosphonate 105a (900 mg, 2.96 mmol) in THF (60 mL) cooled

by a dry ice bath was added n-BuLi (1.50 mL, 2.5 M in THF, 3.8 mmol). The mixture

was stirred for 20 min and then 4-(trimethylsilylethynyl)benzaldehyde 161 (530 mg,

2.62 mmol) in THF (20 mL) was added. The mixture was allowed to be slowly

warmed up to rt and stirred overnight. The resulting dark brown yellow solution was

diluted with Et20, washed with H20, and dried over MgS04. After concentration in

vacuo, the residue was subjected to column chromatography (10% CH2Cl2in hexanes)

affording compound 160a (800 mg, 2.12 mmol, 80%) as a light yellow liquid, which

slowly solidified into a yellow solid in a fridge. M.p. 90-91 °C; IH NMR (500 MHz,

CDCI3 ) 8 7.43 (d, J = 8.3 Hz, 2H), 7.12 (d, J = 8.3 Hz, 2H), 6.44 (s, lH), 2.44 (s,
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3H), 2.43 (s, 3H), 0.25 (s, 9H). The data are consistent with literature report. 156

Diyne-DTF 160b.

SMe

Mes~s
s---{ F\
H~TMS

160b

To a solution of DTF 160a (95 mg, 0.25 mmol) in THF/MeOH (1:1, 20 mL)

was added K2C03 (200 mg, 1.45 mmol). The mixture was stirred at rt for 30 min.

Then the mixture was diluted with CH2 CI2 , washed with H20, dried over MgS04 ,

and concentrated in vacuo to ca. 1 mL. The residue was diluted with CH2Cl2 (20

mL), and to this solution was then added TMSA (0.50 mL, 3.4 mmol) and a solution

of CuI (90 mg, 0.47 mmol) and TMEDA (0.10 mL) in CH2Cl2 (3 mL). The mixture

was stirred at rt under air for 3 h. Then it was washed with H20, dried over MgS04 ,

and purified with column chromatography with 10% CH2Cl2 in hexanes to give DTF

160b (0.83 mg, 0.21 mmol, 82%) as a yellow solid. M.p. 85-86 °C; IH NMR (CDCI3 ,

500 MHz) [; 7.45 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.4 Hz, 2H), 6.43 (s, lH), 2.43 (s,

3H), 2.42 (s, 3H), 0.23 (s, 9H). The data are consistent with literature report. 156

Triyne-DFT 160c.

SMe

Mes,(,s _

~TMS

To a solution of diyne-DTF 160b (220 mg, 0.55 mmol) in THF/MeOH (1:1, 30
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mL) was added K2C03 (200 mg, 1.45 mmol). The mixture was stirred at rt for 20

min. Then the mixture was diluted with Et20, washed with H20, and dried over

MgS04 . After vacuum evaporation, the residue was redissolved in CH2Cl2 (20 mL).

In the mean time, a solution of CuI (300 mg, 1.57 mmol) and TMEDA (0.30 mL)

in CH2 Cl2 (27 mL) was prepared. To this mixture was slowly added a pre-mixed

solution of desilylated DTF diyne 160b and TMSA (3.00 mL, 20.7 mmol) at rt under

air over a period of 4 h. Then the reaction mixture was stirred for another 0.5 h,

then washed with H20, dried over MgS04 , and purified by column chromatography

(10% CH2Cl2 in hexanes) to afford triyne-DTF 160c (138 mg, 0.324 mmol, 59%) as

a yellow solid. M.p. 117-118 °C; 1H NMR (500 MHz, CDCh) 87.48 (d, J = 8.4 Hz,

2H), 7.14 (d, J = 8.4 Hz, 2H), 6.44 (s, lH), 2.44 (s, 3H), 2.43 (s, 3H), 0.22 (s, 9H).

The data are consistent with literature report. 156

Macrocycle TTFV 163a.

MeS

MeS····~S
S"

MeS::n:s

MeS S
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Mes~"'S SY'SMe

MeS MeS
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To a solution of TTFV 165a (64 mg, 0.085 mmol) in THF/MeOH (1:1,30 mL)

was added K2C03 (300 mg, 2.17 mmol). The mixture was stirred at rt for 20 min, and

then diluted with CH2CI2, washed with H20, dried over MgS04, and concentrated

in vacuo to ca. 2 mL. The residue was redissolved in CH2Cl2/acetone (1:1, 30 mL).

To the resulting yellow solution was sequentially added a solution of CuI (60 mg,

0.31 mmol) and TMEDA (0.10 mL), and then PdCI2(PPh3)2 (10 mg, 0.015 mmol) in

CH2Cl2 (2 mL). The mixture was refluxed under air for 5 days, and then wa hed with

H20, dried over MgS04, and concentrated in vacuo. The residue was dissolved in CS2

(2 mL) and purified with flash column chromatography (40% CH2Cl2 in hexanes) to

afford compound 163a (9.0 mg, 0.0049 mmol, 18%) as a yellow solid. M.p. 210°C

(dec); IR (neat) 2921, 2253, 1522, 1430,905,730 cm-1; IH NMR (500 MHz, CDCI3) 8

7.34-7.28 (m, 24H), 2.45 (s, 18H), 2.43 (s, 18H); 13C NMR (125 MHz, CDCb) 813 .1,

133.0, 128.4, 126.7, 125.6, 123.8, 120.2, 82.8, 75.3, 19.1 (only one alkenyl signal and

one SCH3 signal were observed due to overlap); HRMS (MALDI-TOF) m/z calcd for

CS4H60S24 1835.7992, found 1835.8222 IM]+

Macrocycle 163b.

To a solution of TTFV 165b (31 mg, 0.039 mmol) in THF/MeOH (1:1, 20 mL)

was added K2C03 (200 mg, 1.45 rnmol). The mixture was stirred at rt for 20 min,

and then diluted with CH2C12 (20 mL), washed with H20, dried over MgS04, and

concentrated in vacuo to ca. 3 mL. The residue was redissolved in CH2C12/acetone

(1:1,40 mL), and to the resulting solution was added a solution of CuI (60 mg, 0.31

mmol) and TMEDA (0.10 mL) in CH2C12 (3 mL). Then PdC12(PPh3)2 (10 mg, 0.15

mmol) was added. The mixture was refluxed under air for 5 days. The mixture was

diluted with CH2CI2, washed with satd NH4Cl (aq) and H20 sequentially, and then
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dried over MgS04 . After vacuum evaporation, the residue was subjected to silica

flash column chromatography (35% CH2Cl2 in hexanes) to afford crude product of

163b. The presence of some inextricable oligomer byproducts thwarted its complete

purification.

TTFV 165a.

I~

To a solution of DTF 160a (107 mg, 0.283 mmol) in CH2Cl2 (20 mL) was added

12 (260 mg, 1.02 mmol). The resulting black greenish mixture, after being stirred at
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rt overnight, was quenched with 8.:lS203 solution (20 mL, aq., satd.). The content

was kept under stirring for another 1 h, then the yellow organic layer was separated,

washed with H20, dried over MgS04, and concentrated in vacuo. The residue was

dissolved in CS2 (2 mL) and then subjected to flash column chromatography (15%

CH2Cl2 in hexanes) to give compound 165a (64 mg, 0.085 mmol, 60%) as a yellow

liquid, which solidified into a yellow solid in fridge. M.p. 180-181 °C; IR (neat) 2919,

2849,2153,1523,1425,1247,839,861 em-I; IH NMR (500 MHz, CDCl3) 67.38 (d, J

= 8.4 Hz, 4H), 7.30 (d, J = 8.4 Hz, 4H), 2.42 (s, 6H), 2.37 (s, 6H), 0.23 (s, 18H); 13C

NMR (125 MHz, CDCl3) 6 138.0, 137.2, 132.5, 128.7, 126.5, 125.4, 123.8, 121.4, 105.3,

95.2, 19.13, 19.07,0.2; HRMS (MALDI-TOF) m/z calcd for C34H3sSsSi2 758.0278,

found 758.0272 [M]+.

TTFV 165b.

SMe SMe

Mes~s S"'ySMe

S '. S

,,lj

II;
II;

I~

To a solution of diyne-DTF 160b (56 mg, 0.14 mmol) in CH2Cl2 (30 mL) was

added h (137 mg, 0.54 mmol). The mixture was stirred at rt under air overnight,

then a Na2S20 3 solution (20 mL, aq., satd.) was added. The mixture was stirred

for another 1 h. The organic layer was separated, washed with H20, dried over

MgS04, and concentrated in vacuo. The residue was subjected to silica column
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chromatography (20% CH2Cl2 in hexanes) to afford compound 165b as a yellow

solid (32 mg, 0.040 mmol, 60%). M.p. 125-127 °C; IR (KEr): 2959,2921, 2200, 2101,

1596,1520,1503 cm-1; IH NMR (500 MHz, CDCl3) 87.41 (d, J = 8.2 Hz, 4H), 7.32

(d, J = 8.2 Hz, 4H), 2.43 (s, 6H), 2.38 (s, 6H), 0.23 (s, 18H); 13C MR (125 MHz,

CDCl3) 8 139.5, 137.7, 133.2, 129.1, 126.4, 125.5, 123.1, 119.4,99.8,91.3,88.2, 75.0,

19.16, 19.05, -0.2; HRMS (MALDI-TOF) m/z calcd for C3sH3sSsSi2 for 806.0278,

found 806.0280 [M]+.

TTFV Crown ether 166.

To a solution of TTFV 165a (27.4 mg, 0.036 mmol) in THF/MeOH (1:1, 30 mL)

was added K2C03 (100 mg, 0.73 mmol). The mixture was stirred at rt for 20 min, and

then diluted with CH2Cl2, washed with H20, dried over MgS04 , and concentrated

in vacuo to ca. 2 mL. The residue was redissolved in DMF (10 mL) and purged with

N2 for 10 min. To the yellow solution was sequentially added CuS045H20 (1 mg,

0.072 mmol), a solution of azide 171 (7.4 mg, 0.030 mmol) in DMF (1 mL), and

sodium ascorbate (26 mg, 0.13 mmol). The mixture was heated to 50°C and stirred

overnight. The mixture was then filtered. The filtrate was diluted with CH2Cl2 (5
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mL), washed with H20 (50 mL x5), and brine (10 mL). To the organic portion was

added MeOH (25 mL). The resulting sticky film deposited on the bottom of glassware

was washed with MeOH, redissolved in CHCI3, and concentrated in vacuo to yield

pure product 166 (19 mg, 0.022 mmol, 73%) as a yellow oil. 1H MR (500 MHz,

CDCh) 67.85 (s, 2H), 7.74 (d, J = 8.4 Hz, 4H), 7.48 (d, J = 8.3 Hz, 4H), 4.44-4.29

(m, 4H), 3.73-3.66 (m, 4H), 3.51-3.42 (m, 8H), 2.44-2.36 (m, 12H); 13C MR (125

MHz, CDCh) 6 147.3, 136.9, 136.8, 129.3, 128.4, 127.2, 126.1, 125.3, 124.2, 121.2,

70.6,70.5,69.5,50.4,19.2,19.1; HRMS (MALDI-TOF) m/z calcd for C35H36N603SS

for 844.0615, found 844.0619 [M]+.

Mono-iodinated TTFAQ 168, byproducts 169 and 170.

A solution of thione 104a (71 mg, 0.314 mmol) and 2-iodoanthraquinone 167

(105 mg, 0.314 mmol) in toluene (10 mL) was purged with 2 for 5 min. P(OEth

was added. The mixture was stirred for 1 h. Then thione 104a (70 mg, 0.310 mmol)

was added. The mixture was stirred for 1.5 h. It was directly loaded on a silica

column (30 cm), and developed with CH2Cl2 to afford pure 168 as a yellow solid (58

mg, 0.084 mmol, 27%) and a fraction of solution containing 168, 189 and 170. The

fraction was evaporated and then subjected to chromatography using 80% CH2Cl2 in
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hexanes as eluent to afford 168 as a yellow solid (36 mg, 0.052 mmol, 17%),169 as a

red solid (9 mg, 0.02 mmol, 6%), and 170 as a red solid (36 mg, 0.070 mmol, 22%).

168. M.p. 190°C (dec); FTIR (neat) 2991, 2919, 2853, 1670, 1574, 1495, 1453,

1423, 1312, 1268, 1215, 968, 889, 821 em-I; IH NMR (500 MHz, CDCI3): 8 = 7.84

(d, J = 1.6 Hz, lH), 7.61 (dd, J = 8.1,1.5 Hz, lH), 7.55-7.51 (m, 2H), 7.31 (dd, J =

5.7,3.2 Hz 2H), 7.28 (d, J = 8.2 Hz, lH), 2.43-2.37 (m, 12H); 13C MR (125 MHz,

CDCh): 8 = 136.8, 135.2, 134.55, 134.45, 134.3, 134.1, 132.8, 132.0, 127.7, 127.1,

126.7, 126.5, 126.1, 125.9, 125.7, 125.6, 122.9, 122.2, 111.2,91.4,19.4,19.32,19.31,

19.30; HRMS (MALDI-TOF) mlz ealed for C24 H19ISS 689.8297, found 689.8253 [M]+.

169. M.p. 224-225 °C; FTIR (neat) 3062, 2920, 2852, 1650, 1595, 1481, 1463,

1397, 1261, 1164,966,827,821 em-I; IH NMR (500 MHz, CDCI3): 8 = 8.59 (d, J

= 1.9 Hz, lH), 8.26 (dd, J = 7.8, 1.0 Hz, lH), 7.94 (dd, J = 8.3,2.0 Hz, lH), 7.77

(d, J = 7.9 Hz lH), 7.67 (td, J = 7.6, 1.4 Hz lH), 7.54 (d, J = 8.3 Hz, lH), 7.45

(td, J = 7.8, 0.9 Hz lH), 2.43 (s, 3H), 2.42 (s, 3H); I3C NMR (125 MHz, CDCI3):

8 = 182.3, 141.6, 140.5, 138.6, 138.0, 136.3, 132.4, 132.2, 130.5, 128.1, 127.6, 127.43,

127.37, 127.2, 126.4, 118.6, 91.8, 19.55, 19.54; HRMS (MALDI-TOF) mlz ealcd for

CI9H13IOS4 511.8894, found 511.8867 [M]+.

170. M.p. 210-212°C; FTIR (neat) 3062, 2994, 2918, 1648, 1540, 1481, 1426, 1294,

1261, 1179, 1099, 967, 931, 840 em-I/H NMR (500 MHz, CDCh): 8 = 8.24 (dd, J

= 7.8,1.0 Hz, lH), 8.11 (d, J = 1.4 Hz, lH), 7.94 (d, J = 8.2 Hz, lH), 7.78 (dd, J =

8.2, 1.5 Hz, lH), 7.74 (dd, J = 7.9, 0.5 Hz lH), 7.66 (td, J = 7.6, 1.5 Hz lH), 7.45

(td, J = 7.8, 1.0 Hz lH), 2.44(s, 3H), 2.42 (s, 3H); I3C NMR (125 MHz, CDCI3):

8 = 183.1, 142.1, 140.0, 138.5, 135.9, 135.1, 132.3, 130.6, 130.0, 128.8, 127.6, 127.5,

127.21,127.19,126.4,117.9,100.2,19.6,19.5; HRMS (MALDI-TOF) mlz ealcd for
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C19H13IOS4 511.8894, found 511.8865 [M]+.

Azide 171.

To a solution of 145 (1.238 g, 3.98 mmol) in DMF (20 mL) was added NaN3 (1.030

g, 15.9 mmol) and TBABr (60 mg). The mixture was heated to 80°C and stirred

overnight. Et20 was added. The mixture was filtered and the filtrate was diluted

with EtOAC, washed thoroughly with H20, dried over MgS04, and concentrated to

azide 171 (685 mg, 3.17 mmol, 80%) as a yellow liquid. 1H NMR (500 MHz, CDC13):

8 = 3.71-3.65 (m, 12H), 3.41-3.37 (m, 4H). The data are consistent with literature

report. 161
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Chapter 4

Conclusions and Future Work

This thesis work aims at the development of new exTTFs with acetylenic conjugated

structures. The synthetic methodologies are expected to benefit relevant research on

the structural tailoring of TTF. The property studies of target molecules may help for

a better understanding of structure-property relationships as well as further designs

of exTTFs to meet the different needs of various device applications.

In the first project, two types of macrocyclic acetylenic TTFAQ analogues were

successfully synthesized. A one-pot, 4-fold Sonogashira coupling strategy has been

proven to be efficient in the construction of shape-persistent macrocyclic enyne

core. Although the methodology failed with heavily substituted precursors, more

complex acetylenic TTFAQ analogues could possibly be derived from simple TTFAQ

analogues, similar to the functionalization of TTFAQs. Both types of TTFAQ

analogues have very different molecular conformations and solid-state ordering. The

second type of TTFAQ analogues adopts a planar conformation owing to the absence

of steric hindrance in the structure. Its columnar 7l"-stacking may render it useful for
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the research on organic conductors/semiconductors. Regarding the electron-donating

ability, extension of conjugated structures has opposite effects on both types of

TTFAQ analogues. For the stabilization of TTF dications, it is crucial that the

conjugated systems achieve plan81' conformation upon oxidaiton, such as those in the

second type of TTFAQ analogues.

In the second project, acetylenic TTFV derivatives, oligoyne-TTFs, were

synthesized. The high efficiency of Hay coupling in the prep81'ation of oligoyne systems

was demonstrated. Also, TTFV oligomers/polymers and macrocyclic TTFVs were

selectively formed by different synthetic routes, taking advantage of the cis to trans

conformational change of TTFV moiety upon oxidation. Oligoyne-TTFs show solid­

state reactivity upon heating. More interestingly, they undergo electropolymerization

to form thin films which display electrochromic behavior. Thus, it is expected these

compounds may find applications in related 8l·eas. Acetylenic TTFV derivatives

show reversible oxidations with substantial conformational changes. In addition,

the acetylenic groups on aryl rings are suitable for further elaborations. Thus,

acetylenic TTFVs may be useful building blocks for the construction of molecular

redox switches, or other complex macromolecular systems. Following this idea, a

side project was st81·ted. A series of TTFV tweezers and a TTFV-crown ether hybrid

were synthesized by Sonogashira coupling and click reactions. The reaction conditions

can be applicable for subsequent preparation of TTFV derivatives. The preliminary

results of spectroscopic responses to metal ion complexation show promising aspects

for the further design of synthetic receptors and chemosensors.
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