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Abstract

As technology advances and more and more person-specific data like health informa-

tion becomes publicly available, much attention is being giv~n to confidentiality and
4

privacy protection. On one hand, increased availability of ;information can lead to

advantageous knowledge discovery; on the other hand, this information belongs to

individuals and their identities must not be disclosed without consent. A recently

proposed concept called k-Anonymity addresses this conflict between doctor-patient

confidentiality and society-beneficial research.

Several k-Anonymity-based problems have been proposed in the literature; how-

ever, these problems do not adequately address preserving utility for the researcher

and their algorithms are not computationally efficient. This thesis highlights these in-

adequacies through a comprehensive overview of previous research, where it is shown

that previous solutions lack sufficient ability to meet specific researcher needs. To

this end, new utility-preserving problems are proposed and their computational com-

plexities are analyzed. Many results for k-Anonymity-based problems are system-

atically derived through this analysis, including two of particular interest: (1) the

first known polynomial-time solvable k-Anonymity-based problem and (2) the first

known algorithm-independent polynomial-time approximation intractability results

for k-Anonymity-based problems.

ii



/.'

Acknowledgments

First and foremost I would like to thank Drs. Todd Wareham, Ph.D., and Gerard

Farrell, M.D., for taking me on as a graduate student and ~haring invaluable com­
4

putational complexity and medical knowledge. The time an~ effort spent helping me

with my program, course work, proposals, applications, presentations, etc., is beyond

what is expected.

I also appreciate the suggestions and further insight I have received from my thesis

reviewers, Drs. Cao An Wang and Staal Vinterbo, and from members of MUN Med-

ical Informatics Interest Group (MIG) and Computational Privacy Interest Group

(CPIG). Besides computational and medical aspects of information privacy, I have

also had the opportunity to discuss the legal aspects of my problem with one member

of both interest groups, Dr. Edward Brown, Ph.D., LL.B.

I would also like to thank NSERC for scholarship funding and faculty members of

the Computer Science department for writing reference letters for various applications:

Drs. Banzhaf, Vidyasankar, and Zuberek. I need to thank the administrative and

technical staff who have always been there to answer my questions or fix something

that was broken - Elaine, Sharon, Darlene, Regina, Dwayne, Paul, Mike, Nolan, and

Marian. These people genuinely care about the students in this department.

I would like to thank my family and friends for understanding my decision to

pursue a graduate degree and why visits home are shorter and less frequent.

Finally, I would like to thank Mark, Gretta, and Gabe, for their constant love,

support, and patience during the writeup of this thesis.

iii



Contents

Abstract

Acknowledgments

List of Tables

List of Figures

List of Notation

1 Introduction

2 Background

2.1 Complexity Theory .

2.1.1 Computational Problems .

2.1.2 Algorithms .

2.1.3 Classes and Reductions.

2.1.3.1 Classes ..

2.1.3.2 Reductions

2.1.4 Analyzing Problem Complexity

iv

ii

iii

vii

viii

x

8

10

10

14

18

18

20

25



2.1.4.1 Analyzing a Single Problem .

2.1.4.2 Analyzing a Family of Problems.

2.2 k-Anonymity

2.2.1 Fundamentals

2.2.2 Previous Work

2.2.3 Related Work .

~ .

25

28

34

34

39

43

3 Utility-Preserving k-Anonymity

3.1 Motivation............

3.2 Previous Work: Summary and Critique

3.3 A New Family of Utility-Preserving k-Anonymous Problems

3.3.1 Preliminaries .. . . . . . . . . . . . . . . .

3.3.1.1 Definitions: Groups and Partitions

3.3.1.2 Definitions: Importance Preservation

3.3.1.3 Useful Lemmas

3.3.2 Problems

47

47

49

53

54

54

55

56

58

4 Optimal Solutions

4.1 Reductions. . .

4.1.1 Template Reductions

4.1.2 Reduction Web ...

4.1.3 Supplementary Reductions.

4.2 Intractability Results

4.3 Algorithms.

4.4 Discussion .

62

63

63

74

80

91

92

99



5 Approximate Solutions

5.1 Reductions. ..

5.1.1 Template Reductions

5.1.2 Reduction Web . . '4 •

5.1.3 Supplementary Reductions .

5.2 Intractability Results

5.3 Algorithms.

5.4 Discussion

6 Conclusions

Bibliography

A. Utility-Preserving k-Anonymity Problem Definitions

vi

101

101

102

103

109

116

118

121

124

126

133



List of Tables

4.1 Summary of Type 1 Many-One Reductions .

4.2 Summary of Type 2 Many-One Reductions.

4.3 Summary of Type 3 Many-One Reductions .

4.4 Summary of Type 4 Many-One Reductions .

5.1 Summary of Type 1 L-reductions

5.2 Summary of Type 2 L-reductions

5.3 Summary of Type 3 L-reductions

5.4 Summary of Type 4 L-reductions

vii

76

76

78

81

104

105

106

107



List of Figures

1.1 Example of Data Linkage After De-identification.

2.1 Reductions Between Different Problem Types 21

2.2 Flow of (In)Tractability Along a Reduction. . 22

2.3 The Relationship Between Hardness and Completeness Results. 27

2.4 A Reduction Web. . . . . . . . . . . . . . 31

2.5 A Reduction Web Viewed as a Road Map 33

2.6 Example of a Person-Specific Database Table. 35

2.7 Domain Generalization Hierarchy for Area Code 36

2.8 A Person-Specific Dataset Represented by n x m Matrix 37

2.9 Solving SOL-k-ANONYMITY ON ENTRIES . . 38

2.10 Solving SOL-k-ANONYMITY ON ATTRIBUTES 39

2.11 Suppression Domain Generalization Hierarchy for Area Code 41

2.12 Solving SOL-e-SUPPRESSION 42

2.13 Solving SOL-c-DELETION . 43

2.14 Solving SOL-k-AMBIGUITY 46

3.1 Solving a Utility-Preserving k-Anonymity Problem

viii

48



1.'

3.2 Injecting Utility into k-Anonymity Using Marginals 51

3.3 A Lattice of Possible Rows for k-Ambiguity .... 52

3.4 A Family of Utility-Preserving k-Anonymity Problems 61

4.1 Abstract View of Template Reductions 64

4.2 Many-One Reduction Web 82

4.3 x3c ::;m e-SUP . 84

4.4 RPT ::;m c'-sup 89

4.5 Splitting Suppression Schemes to Analyze Time Complexity 94

5.1 L-reduction Web ...... 108

5.2 MAX 3sp-B ::;m MIN-c-DEL . 112

ix



List of Notations

Set Theory

E

tf­

JR

Q

N

IAI

~

c

u

n

x

is an element of 11

is not an element of 41

the set of real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11

the set of rational numbers 17

the set of natural numbers 23

the cardinality or size of a set A 13

is a subset of 34

is a proper subset of 20

union 37

intersection 121

Cartesian product 11

set difference 35

Graph Theory

G = (V, E) G is a graph with vertex set V and edge set E 11

e = {u, v} e is an edge that joins the two vertices u and v 83

x



w(e) weight of edge e 118

complete graph on n vertices 9

Complexity Theory

A, B, C computational problems !. j' ••••••••••••••••••• 11

encoding scheme 11

n

I;

I;*

DTM

NDTM

O(g(n))

logn

PTAS

FPTAS

OPTA

P

NP

instance length 11

alphabet 11

set of all finite strings of symbols from alphabet I; 11

deterministic Turing machine 14

nondeterministic Turing machine 18

asymptotic upper bound (Big Oh) 15

logarithm to the base 2 20

polynomial-time approximation scheme 17

fully polynomial-time approximation scheme 17

cost of any optimal solution for a given instance of optimization

problem A 15

cost of an arbitrary feasible solution for a given instance of optimiza-

tion problem A 15

class of decision problems that are solvable in deterministic polyno-

mial time 18

class of decision problems that are solvable in nondeterministic poly-

nomial time 18

xi



EXPTIME

OptP

class of decision problems that are solvable in exponential time .. 19

class of optimal-cost evaluation problems that are solvable in non-

deterministic polynomial tirr;e 19

OptP[O(logn)] subclass of OptP problems that hav~ solutions which are

polynomially-bounded by their instance len'gths 19

PO class of optimization problems that are solvable in deterministic

polynomial time 19

NPO

APX

log-APX

poly-APX

exp-APX

ex:

RHS

LHS

class of optimization problems that are solvable in nondeterministic

polynomial time 19

class of NPO problems that are approximable within a constant fac-

tor 19

class of NPO problems that are approximable within a logarithmic

factor 20

class of NPO problems that are approximable within a polynomial

factor 20

class of NPO problems that are approximable within an exponential

factor 20

reduces to 20

many-one reduces to 22

L-reduces to 23

right-hand side 31

left-hand side 31

xii



k-Anonymity

k

T

n

m

T

c'

r'

p

~c*

G

x

A

number of identical people required to satisfy k-Anonymity 35

n x m database table 34

number of rows in database table T 4••••••••••••••••••••• 34

number of columns in database table T 1. j .•••••••..........• 34

the ph attribute of person i in database table T 34

alphabet, Le., all possible values for entry eij' 34

all possible values for database table T 34

suppressed entry 41

indiscernible entry 45

number of entries of T which may be suppressed 41

number of columns of T which may be modified 42

number of rows of T which may be modified 59

number of entries per column of T which may be suppressed 59

number of entries per row of T which may be suppressed 59

the empty string 63

partition of database table T either into rows or columns 55

total order on column partition P 55

k-partition 54

k-group from k-partition G 54

the jth k-segment of k-group gi 54

set of rows (people) in database table T 34

member from set of people X 34

set of columns (attributes) in database table T 34

xiii



Q

DGH

j.'

member from set of attributes A 34

quasi-identifier 35

attribute from the quasi-identifier 35

domain generalization hierarchy ~' 35

alphabet of permissible generalizations for l1t~ribute qi 37

alphabet of permissible generalizations for a value y from the domain

of attribute qi 37

xiv



Chapter 1

Introduction

One of the most important promises a physician makes to a patient is that of con­

fidentiality. Therefore, whether on paper or recorded electronically, patients expect

their personal health information remain confidential. At the same time, there is

a conflicting need to release this information for health research and surveillance.

However, today in our growing digital society, guaranteeing patient privacy while

providing researchers with worthwhile data has become increasingly difficult.

Figure 1.1(a) is a simplified example of a set of digitized patient records for a

particular region. Suppose it is desirable to make a public release of these records for

clinical, epidemiological, and health administration research purposes. The original

data set cannot be publicly released without consent, since in doing so, patient pri­

vacy is compromised. In the past, it was believed that removing obvious identifiers

like social security number and name would be sufficient in the protection of pa­

tient privacy. Figure 1.1 (b) illustrates this de-identification process. Recent studies,

however, indicate that it is possible to re-identify individuals, even if the data set is



(a) (c)

St.john's Female

First
Name

john

judy

10/07/1960 Gander

Wells 10/23/1979 Goose Bay

(b)

First Last Birth
Name Name nat

+
~Ity/ Gender Cancer

St.john's

02/20/1955

Figure 1.1: Example of Data Linkage After De-identification. (a) A simplified example
of a set of digitized patient records for a particular region. (b) The resulting set of
records after removing obvious identifiers (de-identification). (c) Another information
source (e.g., voter registries, insurance policies, and telemarketing profiles).



de-identified. Sweeney's research, for example, shows the ease with which a medical

record can be linked to an individual using little more then a zip code, date of birth,

and gender [40]. Sweeney was able to pinpoint the governor of Massachusetts' medi­

cal record using publicly available medical records and a vot~r registry (six people in

the state share his birth date, only three of them are male, ah~ he is the only one in

his 5-digit ZIP code). Figure 1.1(b)-(c) shows how re-identification is accomplished

by linking records containing unique data values to another information source (e.g.,

voter registries, insurance policies, and telemarketing profiles). Because John Smith

is the only male from St. John's born on July 2nd , 1985, his patient record can be

re-identified and his private medical information consequently violated.

To understand the serious consequences of personal information collection and

linkage, consider a recent shocking story told by UK journalist Steve Boggan [9]. He

picked an airline boarding-pass stub out of a garbage bin near Heathrow and was able

to commit a serious breach of privacy. From that small piece of paper, Boggan knew

the passenger's name, flight plan, boarding date and time, flight number, seat number,

and his gold member frequent-flyer number. The frequent-flyer number alone provided

access to all the man's personal details, including his passport number, the date it

expired, his nationality, and his date of birth. Using the frequent-flyer information,

within 15 minutes of looking at publicly available databases, Boggan found out where

the man lived, who lived there with him, where he worked, which universities he had

attended and even how much his house was worth when he bought it two years ago.

As more and more reports are relayed regarding identity theft and the misuse of

personal information, such as the one above, people are becoming increasingly para-

noid and angry. They demand a solution. One such solution might be to determine



which identifiers are possible linking agents and remove those identifiers in the de­

identification process as well. However, this solution is not viable; there would be no

data left for research, which was the reason for releasing the data in the first place.

Researchers agree that some other privacy protection techni(~.Ie is required. There is

active research in privacy-preserving data mining, where dataty~lues are perturbed by

methods like adding noise and swapping values, while ensuring the statistical prop­

erties of the data remain intact (e.g., [4]). Other data mining researchers attack the

problem from a different angle; they privately compute the sought-after statistical

measure without releasing the data at all (e.g., [10]). Solutions such as these work

very well in certain contexts, but fail in others. For example, researchers may want to

perform correlational data analysis to explore relationships between patient age, gen­

der, and disease. In this case, the validity of the resulting data values is mandatory

and it may not be known in advance which statistics are required.

When a release of data, not a single aggregate value, is required, the approach

adopted is to make an individual patient anonymous with respect to the entire release,

thereby ensuring that no information is distinctive to a particular individual. A

technique has recently been proposed called k-Anonymity [39], in which released

data is made less specific, yet remains truthful (unlike the data releases from privacy­

preserving data mining). k-Anonymity is not a perfect concept, making it ideal to

study. In particular, current k-Anonymity-based problems are N P-hard [3, 31] and

they lack sufficient ability to meet specific researcher needs (see Section 3.2).

The following is a summary of the contributions of this thesis:

• Section 2.2 summarizes previous and related k-Anonymity work. It can be
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difficult in this work to distinguish between the original proposed problem and

easier-to-solve versions. This thesis uses Sweeney's [39] problem definitions for

k-Anonymity as benchmarks and gives a unified presentation of all versions of

k-Anonymity research. In this way, the summaries of pr~vious and related work

found herein use a universal set of notation and definiti?ns, so that they may

be used as concrete references for future work.

• Chapter 3 proposes new utility-preserving k-Anonymity-based problems. Fol­

lowing existing complexity-theoretic analyses (e.g., [31, 3]), we define our prob­

lems using suppression only, rather than suppression and generalization (see

Section 2.2.2 for details). Moreover, our conception of utility differs from all

previous conceptions in that we believe researchers should be allowed to specify

what portions of the data have the greatest utility in their research and hence

cannot be altered during the anonymization process. For example, gender might

be crucial to a researcher's study, and any release of data that deletes gender

values in order to satisfy k-anonymity would not be useful to this researcher.

Several approaches to preserving utility under k-anonymity have been pro­

posed [39, 23,42,35,20]; however, all of these proposals are inadequate, because

they either cannot tailor output to the full range of researcher needs (e.g., [39])

or are too complicated for practical application (e.g., [42]). To overcome inad­

equacies in previous work, the proposed utility-preserving k-Anonymity-based

problems better capture the trade off between ensuring patient privacy and pro­

viding researchers with worthwhile data. These problems form a related set of

problems called a family (see Section 2.1.4.2 for details).
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• Chapters 4 and 5 summarize computational complexity results derived for the

utility-preserving k-Anonymity family of problems mentioned above. Two re­

sults of particular interest are the first kllown polynomial-time solvable k­

Anonymity-based problem (Section 4.3) and the first known algorithm-independent
~

polynomial-time approximation intractability results fpr k-Anonymity-based

problems (Section 5.2).

These results are all derived within a new familY-oriented systematic analysis frame­

work. Our analysis involves identifying basic problems, creating template reductions,

and forming a web of reductions. This web is structured to permit multiple types

of complexity results for selected problems to proPagate through the family, allowing

new results to be obtained with minimal additional effort.

This thesis is organized as follows. Chapter 2, Background, consists of two sec­

tions that provide overviews of the main themes of this thesis: Complexity Theory

and k-Anonymity. This chapter also proposes a framework for analyzing a family of

problems and reviews useful mathematical definitions for sets and graphs. Chapter 3,

Utility-Preserving k-Anonymity, marks the beginning of new material. First, the

motivation for studying utility-preservation is given and previous work on utility is

summarized and critiqued. The last section of this chapter then defines a new family

of utility-preserving k-Anonymity problems (individual problem definitions are given

in Appendix A). Chapter 4, Optimal Solutions, llses material from Chapters 2 and

3to explore the computational complexity of finding optimal solutions for these newly

defined problems. The content in Chapter 4 is Organized in the following sequence:

problems, reductions, classes, tractabilityjintractability. Notice how this differs from
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traditional procedure for analyzing complexity, i. e., problems, tractability, classes,

reductions, and intractability; the apparent backwards nature of Chapter 4 is due the

proposed framework for analyzing problem families, mentioned above. Chapter 5,

Approximate Solutions, contains results for the computational complexity of ap­

proximate solutions. The reusability of the previously menti6~ed analysis framework

becomes apparent in this chapter, as the majority of results are by-products of those

derived in Chapter 4. Chapters 4 and 5 both conclude with brief discussions of the

implications of the acquired results and directions for future research. Finally, Chap­

ter 6, Conclusions, summarizes the major contributions of this work and suggests

several additional directions for future research.



Chapter 2

Background

This chapter reviews the two major themes of this thesis: Computational Complexity

and k-Anonymity. Section 2.1 gives a side-by-side summary of concepts from tradi­

tional complexity theory and approximation complexity theory, and provides a new

framework for analyzing the computational complexity of a family of related prob­

lems. The fundamentals of k-Anonymity, as well as previous and related work on the

topic, are discussed in Section 2.2.

Standard mathematical notations used in this thesis are included in the List of

Notations on pages x to xiv. Basic definitions pertaining to sets and graphs (see [18])

are reviewed below.

• Sets: Set A = {aI, a2, . .. , an} is a collection of n objects called elements

or members. If sets A and B have no common elements, then A and Bare

disjoint. A partition of a set A is a collection of disjoint nonempty subsets of

A whose union is A. A partial order on a set A is a reflexive, antisymmetric,

transitive relation on A (see [18, Section 2.5] for a more detailed definition). A



partially ordered set is a pair (A, :::S), where ~ is a partial order on a set

A. The symbol :::S is similar to ::;, and as such, the expression "ai is less than

or equal to a/ is used whenever ai ~ ~j' If (A,~) is a partially ordered set,

elements ai and aj of A are said to be comparable if a£d only if either ai ~ aj

or aj ~ ai. If:::s is a partial order on a set A and evejry two elements of A

are comparable, then ~ is called a total order and the pair (A,~) is called a

totally ordered set .

• Graphs: A graph G l is a subgraph of another graph G if and only if the

vertex and edge sets of G l are, respectively, subsets of the vertex and edge sets

of G. If there is an edge between every pair of vertices in Gil then G l is a

clique, i.e., a complete graph on n vertices K n .

A directed graph is essentially a graph in which each edge has a direction

assigned to it, i. e., {u, v} is an edge which is directed away from vertex u and

towards vertex v. These directed edges are called arcs. The number of arcs

directed towards a vertex is called the indegree and the number of arcs directed

away from a vertex is called the outdegree.

Vertices u and v are said to be incident to the edge/arc {u, v}. Two edges are

incident if they share a common vertex. Two arcs are incident if they share a

common vertex and orientation is respected, i. e., one arc is directed towards

the common vertex and the other arc is directed away from the common vertex.

A walk is an alternating sequence of vertices and edges/arcs, beginning and

ending with a vertex, in which each vertex (except the last) is incident with



the edge/arc which follows and the last edge/arc is incident with the edge/arc

which precedes it. A path is a walk in which all vertices are distinct. A cycle is

a walk in which all edges/arcs are distinct, the first vertex appears exactly twice

(at the beginning and the end), and no other vertex appi~ars more than once. A

graph is connected if and only if there exists a walk bEJtween any two vertices.

A component is a maximal connected subgraph of a graph, i. e., a connected

subgraph which is properly contained in no other connected subgraph that has

more vertices or edges/arcs. A connected graph which contains no cycles is

called a tree and the disjoint union of a set of trees is called a forest.

2.1 Complexity Theory

The majority of complexity theory found herein is from [16, 34], while specific material

on approximation theory comes from [7]. The content is organized in the usual

sequence: problems, algorithms, tractability, classes, reductions, and intractability.

The curious reader should observe that this sequence is not adhered to in Chapters 4

and 5. The apparent backwards nature of those chapters is justified in Section 2.1.4.2.

2.1.1 Computational Problems

Computational problems [16, Section 1.2] are essentially questions possessing sev­

eral aspects, whose values are left unspecified. Depending on how the question is

asked, there are different types of answers, e.g., logical, numeric, mathematical struc-

ture, and hence different types of problems (see below). A problem definition

includes a general description of all the problem's aspects (the input) and a state-

10



ment of what the solution is required to satisfy (the output). A particular problem

instance is obtained by specifying values for the problem's aspects.

Every instance of a problem A can be formally mapped into a string x describing

that instance using an encoding scheme e over some fixed a~habet ~. This encod­

ing scheme should be reasonable, i.e., it should be compact afl~ easily decodable [16,

page 21]. For example, a graph G = (V, E) can be represented by a structured string

(x, y), where x is a structured string representing the set V and y is a structured string

representing the set E. The total number n of symbols in the string representation

of x is called the instance length of x.

As mentioned briefly above, different types of problems exist, depending on the

nature of their required solutions. To define the four types of related problems in this

thesis, let S be a relation S : ~* X ~* on pairs of objects that underlies the related

problems, e.g., graphs x cliques, let P be the stem of the name of problem A, let b

be a valuation function b : S ---+ JR., and let the symbol I><l be an operator from the

set {=,::;, 2:}. Computational problems can be viewed as functions defined on the

projection of S onto a given element x. Four constraint-type problems are formally

described here using Wagner and Wechsung's framework [43, pages 100-101]:

Definition 2.1.1 (Decision Problem) The solution to decision problem k-P is

defined as the boolean result of evaluating the formula ~ y { (x, y) E S 1\ b(x, y) I><l k}.

Definition 2.1.2 (Solution Problem) The solution set to solution problem SOL-

k-P is defined as {y I (x,y) E S 1\ b(x,y) I><l k}.

Definition 2.1.3 (Optimal-Cost Evaluation Problem) An optimal-cost eval-

uation problem can either be min-cost evaluation problem MIN-COST-k-P,

11



whose solution is defined as

{ b(x, y) I (x, y) E S 1\ V (p, q) E S {b(x, y) = min b(p, q)}}

or max-cost evaluation problem MAX-COST-k-P, whose 90lution is defined as
4

{ b(x, y) I (x, y) E S 1\ V (p, q) E S {b(x, y) = m'af b(p, q)}}.

Definition 2.1.4 (Optimization Problem) An optimization problem can ei-

ther be minimization problem MIN-k-P whose solution set is defined as

{y I (x,y) E S 1\ V (p,q) E S {b(x,y) = min b(p,q)}}

or maximization problem MAX-k-P whose solution set is defined as

{ y I (x, y) E S 1\ V (p, q) E S {b(x, y) = max b(p, q)}}.

Simply stated, a decision problem asks a question that requires either a "yes" or "no"

answer based on some constraint, a solution problem asks for solutions that satisfy a

constraint, an optimal-cost evaluation problem asks for the best cost for solutions that

satisfy a constraint (i. e., the highest or lowest cost), and an optimization problem

asks for the best solutions that satisfy a constraint (i. e., those solutions that have the

lowest or highest cost).

For example, consider the related problems generated from S : graphs x cliques.

Let aspect k be the size of a clique, problem name P be CLIQUE, instance x be a

graph, output y be a clique, valuation function b count the number of vertices in a

clique, and comparison operator [><] be greater than or equal to (2:). This generates

the following well-known decision problem from graph theory:

12
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k-CLIQU'E ([16, GT19])

Instance: An undirected graph G = (V, E) and positive integer k ~ IVI.

Question: Is there a clique in G, which has size ~ k?

The associated solution (SOL), maximal-cost evaluation(MAx~COST),and maximiza-
I

tion (MAX) problems are as follows:

SOL-k-CLIQUE

Instance: An undirected graph G = (V, E) and positive integer k ~ IVI.

Solution: Any clique in G, which has size ~ k.

MAX-COST-k-CLIQUE

Instance: An undirected graph G = (V, E).

Solution: The size of the largest clique in G.

MAX-k-CLIQUE

Instance: An undirected graph G = (V, E).

Solution: The largest sized clique in G.

The naming conventions introduced here will be used throughout this thesis. It is

not a mistake that k is a part of the name of the optimal-cost and optimization

problems above; in this thesis, the variable which appears directly after MAX-COST,

MIN-COST, MAX, or MIN in the associated problem name implicitly specifies the cost

being optimized, since it is the value that valuation function b is being compared

against. This is useful notation for Chapter 5, where optimal-cost evaluation and

optimization problems can have have more than one related solution problem.
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2.1.2 Algorithms

An algorithm is a finite sequence of instructions that computes the appropriate solu-

tion for any instance of a problem. The computational model of an algorithm adopted

in this thesis is the deterministic Turing machine (DTM:) (see [16, Section 2.2]
I

for an explanation of the operation of a DTM). Essentially, given an instance x of a

problem A, the DTM's tape prior to computation corresponds to the string encoding

for x. If A is a decision problem and the DTM halts, then the solution for x is "yes";

otherwise the solution is "no". If, on the other hand, A is a solution or optimization

problem, then the solution for x is the tape contents after the DTM halts.

As there are many possible algorithms for a particular problem, some method of

comparison is required to choose the "best" algorithm for a particular problem. One

commonly-used comparison measure is the amount of time it takes the algorithm to

solve the problem.

Given a problem A, an instance x of A that has a particular length n, and an

algorithm r for A, the simplest way to measure the running time T(x) is to count the

number of instructions r executes to solve A. Note that this is an abstract view of the

exact running time, since in practice not all instructions take the same amount of time

to execute. It is possible that some algorithm b may run faster than r for x, yet it

may run slower for some other instance y, even if Ixl = Iyl. Therefore, the comparison

of running times has to be general enough to cover all possible problem instances of

a particular length n. To accomplish this, one can choose to compare algorithms

based on their fastest, average, or slowest (i. e., worst) running time T (n) over all

instances of length n, which further diminishes run time exactness. Furthermore,

14
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the time complexities of algorithms are compared in this thesis using asymptotic

worst-case time complexity O(g(n)), which is an upper bound on the worst-case

running time for any instance length n to within a constant factor as n goes to

infinity. For example, given an algorithm with running tim~' T(n) = 2n2 + 3n + 1,

as the multiplicative constants and lower order terms are dotn~nated by the highest­

order term for large instance lengths, the algorithm's asymptotic worst-case time

complexity is O(n2
).

Given an asymptotic bounding function 9 on the running time T(n) for some

instance length n, an efficient algorithm is one whose asymptotic worst-case time

complexity is O(g(n)), such that g(n) is a polynomial (i.e., an algorithm that runs

in polynomial time). A decision problem is said to be tractable if it has an efficient

algorithm; otherwise it is intractable. If an efficient algorithm that returns an

optimal solution for an optimization problem does not exist, it may be acceptable

to settle for an efficient algorithm that returns an approximate solution instead.

To express the quality of such a solution for comparison purposes, there are several

distance-from-optimality measures (see [7, Section 3.1]). In this thesis, we focus on

the following two more commonly-used measure:

Definition 2.1.5 (Absolute Error) [7) Adapted from Definition 3.2} Given an

optimization problem A) any instance x of A) and any feasible solution y for x) let

OPTA be the cost of any optimal solution for x and let CA be the cost of y. The

absolute error of y with respect to x is defined as:

D(x,y) = IOPTA - cAl
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Definition 2.1.6 (Performance Ratio) (7, Adapted from Definition 3.6) Given

an optimization problem A, any instance x of A, and any feasible solution y for x,

let OPTA be the cost of any optimal solution for x and let CA be the cost of y. The

performance ratio of y with respect to x is defined as:

(
CA OPTA) I

R(x,y) = max OPTA'~

Approximation algorithms that are of particular interest are those which have these

quality measures bounded by constants for all input instances.

Definition 2.1.7 (absolute approximation algorithm) (7, Definition 3.3) Given

an optimization problem A and an approximation algorithm r for A, r is an abso-

lute approximation algorithm for A if, given any instance x of A, the absolute

error of the approximate solution y of x is bounded by a constant k, that is:

D(x,y) ::; k

Definition 2.1.8 (r-approximate algorithm) (7, Definition 3.7) Given an opti-

mization problem A and an approximation algorithm r for A, r is an r-approximate

algorithm for A if, given any instance x of A, the performance ratio of the approx-

imate solution y of x is bounded by r, that is:

R(x,y) ::; r

For example, a 2-approximate algorithm for a maximization (minimization) problem

will always provide a solution whose cost is at least one half of (double) the optimal

cost.
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When analyzing computational complexity, it is convenient to have some notion

of intractability. Recall that an intractable decision problem is simply one that does

not have an efficient algorithm. Given that quality also plays a role in approxima­

tion complexity analysis, this single criterion is no longer seeqis adequate. To further

complicate matters, there are varying degrees of quality (e.g. l, absolute error, perfor­

mance ratio). In this thesis, we consider a range of tractable problems, from those

with absolute approximation algorithms to those which have one of the two approxi­

mation schemes defined below. If an optimization problem is not tractable, then it is

considered to be intractable. The scheme defined below encompasses r-approximate

algorithms that have the ability to sacrifice computation time for better performance

guarantees. Note that problems which allow this type of approximation are extremely

useful in practice.

Definition 2.1.9 (Polynomial-Time Approximation Scheme) (7) Definition 3.10}

Given an optimization problem A) whose associated decision problem is intractable) an

algorithm, is said to have a polynomial-time approximation scheme (PTAS)

for A if for any instance x of A and any r E Q) r > 1) , with input (x, r) returns an

r-approximate solution of x in time polynomial in the instance length Ixl.

The next scheme is even better as its running time is not only polynomial in the

instance size, but also in the inverse of the performance ratio.

Definition 2.1.10 (Fully Polynomial-Time Approximation Scheme) (7) Def­

inition 3.12} Given an optimization problem A) whose associated decision problem is

intractable) an algorithm, is said to have a fully polynomial-time approxima­

tion scheme (FPTAS) for A if for any instance x of A and any rational value

17



r > 1, '"Y with input (x, r) returns an r-approximate solution of x in time polynomial

both in the instance length Ixl and in 1/(r - 1).

2.1.3 Classes and Reductions

In the last section it was implicitly stated that the eXistente, of an algorithm with

certain properties proves that a particular problem is tractable. A proof of intractabil­

ity, on the other hand, is more involved and first requires a discussion of complexity

classes and reductions.

2.1.3.1 Classes

Computational complexity theory involves classifying problems in terms of their al­

gorithms. Complexity classes of interest in this thesis are sets of problems having a

particular time complexity, such as the following three standard complexity classes

for decision problems:

• P: All decision problems solvable in polynomial time by an algorithm running

on a DTM.

• NP: All decision problems verifiable in polynomial time, i.e., for a given in­

stance x and candidate solution for x, it is possible to check if this candidate

solution is in fact a solution for x in polynomial time by an algorithm running

on a DTM. The verification and generation of all candidate solutions can be

implemented using a nondeterministic Turing machine (NDTM) (see [16,

Section 2.3] for an explanation of the operation of a NDTM).
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• EXPTIME: All decision problems solvable in O(2P(n)) time, for some polyno­

mial p of instance length n, by an algorithm running on a DTM.

The complexity classes of interest for optimal-c(')st evaluation problems (due to Krentel [24])

are:

• OptP: All optimal-cost evaluation problems whose associated decision problems

are in NP.

• OptP[O(1ogn)]: All problems in OptP that have solutions which are polynomially­

bounded by their instance lengths.

Also of interest are the following standard complexity classes for optimization prob­

lems:

• PO: All optimization problems whose associated decision problems are in P.

• NPO: All optimization problems whose associated decision problems are in

NP.

• FPTAS: All NPO optimization problems that admit fully polynomial-time

approximation schemes.

• PTAS: All NPO optimization problems that admit polynomial-time approxi­

mation schemes.

• APX: All NPO optimization problems solvable in polynomial time by an r­

approximate algorithm, where r E (Q, r > 1.

• F-APX: All NPO optimization problems solvable in polynomial time by an

r-approximate algorithm, where for some polynomial p of instance length n,
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F-APX is either log-APX (r = O(logn)), poly-APX (r = O(p(n))), or exp­

APX (r = O(2P(n))).

The following are known inclusion relationships between the classes above: (1) P ~

NP ~ EXPTIME [16, page 32], (2) OptP[O(1ogn)] ~ OptP [24, page 490], and

(3) PO ~ FPTAS ~ PTAS ~ APX ~ log-APX ~ poiy-APX ~ exp-APX

~ NPO [7, page 112 (FPTAS ~ PTAS) and Equation 8.1(remainder)]. The only

proper inclusion above is P c EXPTIME; however, it is strongly conjectured that

P#NP, i. e., P c NP. This widely accepted conjecture can be used to show that all

the inclusions from (2) and (3) above are proper as well (see [17, page 488] for (2)

and [7, Exercise 8.1] for (3)).

In Section 2.1.4.1, as part of analyzing the complexity of a particular problem, it

is explained how to isolate the hardest problems in a class. The above class inclusions

and the notion of a reductions, discussed next, are crucial in that process.

2.1.3.2 Reductions

This section is divided into three main parts: (1) informal introduction to reducibility,

(2) formal definitions of two particular types of reducibility, and (3) several specific

properties exploited in later chapters.

A reduction from a problem A to a problem B, denoted as A ex: B, is an algorithm

that can use an algorithm for B to solve A. A reduction can be viewed as an algorithm

for A calling an algorithm for B as a subroutine; A reduces to B if for any given

instance x of A, solving x only requires solving one or more constructed instances of

B. For example, consider again the CLIQUE problems from Section 2.1.1. Reductions

are used to describe several of the relationships between these problems in Figure 2.1.
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k-CLIQUE «G, k»

[V,E] = SOL-k-CLIQUE«G,k»

If IVI >= k Then

return (True)

Else

return (False)

End If

(a)

SOL-k-CLIQUE «G,k»

[V,E] = MAJ{-k-CLIQUE«G»

If IVI >= k Then

return([V,E] )

Else

return(False)

End If

(b)

Figure 2.1: Reductions Between Different Problem Types. These reductions are
essentially the following subroutine calls: (a) decision problem k-CLIQUE calling so­
lution problem sOL-k-CLIQUE and (b) sOL-k-CLIQUE calling optimization problem
MAX-k-CLIQUE. Refer to Section 2.1.1 for problem descriptions.

Reductions can be classified into sets based on their interrelational properties. A

reducibility is a set of reductions that preserve the following two properties:

1. Transitivity: For all problems A, B, and C, if A ex: Band B ex: C, then A ex: C.

2. Tractability Preservation: For all problems A, B, if A ex: Band B is

tractable, then A is tractable.

Another property, Intractability Preservation, is implicit from (2) above: For all

problems A, B, if A ex: B and A is intractable, then so is B. This flow of tractability

and intractability along a reduction is shown in Figure 2.2.

This collection of properties is extremely useful for complexity analysis, especially

within the framework proposed in Section 2.1.4.2, where reductions playa central role.

As a preview, suppose the reductions in Figure 2.1, namely k-CLIQUE ex: sOL-k-CLIQUE

and sOL-k-CLIQUE ex: MAX-k-CLIQUE, are members of a polynomial-time reducibility.

From Property (1), k-CLIQUE ex: MAX-k-CLIQUE, which means that if a polynomial-

time algorithm can be designed for MAX-k-CLIQUE, then one also must exist for
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Tractability

+--o reducesto

~
Intractability

Figure 2.2: Flow of (In)Tractability Along a Reduction. Labeled boxes represent
problems A and B.

k-CLIQUE (Property (2)). Moreover, if proof exists that k-CLIQUE is intractable,

then time need not be wasted on trying to design a polynomial-time algorithm for

MAX-k-CLIQUE, since it is implicit from Property (2) that one cannot exist.

In Chapter 4, when decision problems are analyzed, polynomial time many-

one reducibility is used; however, in Chapter 5 when optimization problems are an-

alyzed, metric reducibility and L-reducibility are used instead. These reducibil-

ities are defined as follows:

Definition 2.1.11 (many-one reduction) [7, Definition 1.10] A decision problem

A is said to be many-one reducible to a decision problem B if there exists a polynomial-

time algorithm R which given any instance x of A transforms it into an instance R(x)

of B in such a way that the solution to A = "yes" if and only if the solution to B =

"yes". In such a case, R is said to be a many-one reduction from A to B, denoted

A~mB.
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Definition 2.1.12 (metric reduction) [24, page 493} Let f, g : ~* ---7 N (i.e., two

optimal-cost evaluation problems A and B, respectively). A function f is said to be

metric reducible to a function g if two polynomial-time functions T1 : ~* ---7 ~* (i.e.,

algorithm R from Definition 2.1.11) and T2 : ~* x N ---7 ~* /i. e., transformation of

one optimal-cQst evaluation solution into another optimal-ClJst e;aluation solution)

exist, such that f(x) = T2 (x, g(T1(x))) for all x E ~* (i.e., for all instances of A).

Definition 2.1.13 (L-reduction) [1, Adapted from Definition 8.4} Let A and B

be two optimization problems in the class NPO. A is L-reducible to B (A ~L B) if

two functions f and g and two positive constants a and (3 exist such that:

1. For any instance x of A, f(x) is computable in polynomial time.

2. For any instance x of A, if a feasible solution exists for x then a feasible solution

exists for instance f(x) of B.

3. For any instance x of A and any feasible solution y for instance f(x) of B,

g(x, y) is a feasible solution for instance x of A and is computable in polynomial

time.

4· For any instance x of A, any feasible solution y for instance f(x) of B, and any

feasible solution g(x, y) for x, if OPTA and OPTs are the costs of any optimal

solution for x and f(x), respectively, and CA and Cs are the costs of solutions

g(x, y) and y, respectively, then:

(2.1)

(2.2)
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Lemma 2.1.14 Polynomial-time many-one reductions satisfy transitivity and tractabil-

ity preservation [16, Lemmas 2.1 and 2.2].

Lemma 2.1.15 Metric reductions satisfy transitivity preservftion [24, page 493].

Lemma 2.1.16 L-reductions satisfy transitivity and tractability preservation [33, Propo­

sitions 1 and 2].

There are many reduction techniques (see [16, Section 3.2]), but one stands out

in this thesis due to the its potential for reusability. A reduction by restriction, or

just restriction reduction, R from a decision problem A to a decision problem B

transforms an instance x of A into instance R(x) of B using a simple restriction so

that x and R(x) are identical. This is possible when B contains A as a special case. A

quasi-restriction reduction transforms x into R(x) so that x and R(x) are almost

identical, except R(x) has additional structures that have to be artificially constructed

in such a way that forces A to be a special case of B. The next lemma states how

applying these reduction techniques to polynomial-time many-one reductions allows

easy derivation of corresponding metric reductions and L-reductions.

Lemma 2.1.17 Any restriction or quasi-restriction polynomial-time many-one re­

duction is also a metric reduction between their associated optimal-cost evaluation

problems and a L-reduction between their associated optimization problems.

Proof: Consider two optimal-cost evaluation problems A and B and suppose R is

either a restriction or a quasi-restriction many-one reduction between their associated

decision problems A' and B' . From the definitions of restriction and quasi-restriction

24



reductions above, the given instance x of problem A' and the constructed instance

R(x) of problem B' are identical. Therefore, their costs (and hence the costs of

their optimal solutions) must also be identical. Observe that OPTA, = OPTs' is by

definition a metric reduction such that T1 is the reduction~'R above and T2 is the

trivial function which maps an optimal-cost evaluation prol:fl~m to itself. Following

from this same logic, in the L-reduction definition (Definition 2.1.13), OPTA can be

substituted into Equation 2.1 for OPTs, making a = 1. Similarly, OPTA can be

substituted for OPTs and CA for Cs in Equation 2.2, making (3 = 1.

As the majority of polynomial-time many-one reductions in Chapter 4 are either

restriction or quasi-restriction reductions, this lemma will prove to be quite useful in

Chapter 5.

2.1.4 Analyzing Problem Complexity

In this section, first the traditional sequence of tasks is described for analyzing a single

computational problem (Section 2.1.4.1). This works well for one problem; however,

it is shown how a reordering of these tasks turns out to be ideal when analyzing a

family of related problems (Section 2.1.4.2).

2.1.4.1 Analyzing a Single Problem

Given a single problem A, the first task involves designing an efficient algorithm for

A, e.g., one that has an asymptotic worst-case time complexity that is polynomial in

the instance length. Failing that, so as to not waste any more time, the next tasks to

prove that no efficient algorithm for A exists. To establish intractability in general,
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one must define the following, e.g., [46, page 14]:

1. A universe U of problems.

2. A class T c U of tractable problems.

3. A reducibility ex: between pairs of problems in U.

4. One or more classes of problems C C U such that T C C.

Given a class of problems K C U, a problem B is K-hard if for all problems A E K,

A ex: B. If B is also in K, then B is K-complete. K-complete problems are the

most computationally difficult problems in K and K-hard problems are at least as

difficult at the most difficult problems in K. Hence, given that a problem B is C­

hard relative to ex: for any class C, B cannot be in T and therefore does not have an

efficient algorithm. These concepts are illustrated in Figure 2.3, where a reducibility

from a problem A to a problem B is depicted as an arrow from A to B.

For example, if U is the universe of decision problems, then T is the class P

of tractable decision problems, the reducibility is :Sm, and C is the class NP of

problems, which includes the class P. Note that we only know P ~ NP and P

C NP is only true assuming that P =J NP, which has never been proven (but is

nonetheless widely accepted) [16, page 33]. Given a problem B, the usual process

then, is attempt to prove tractability by designing an efficient algorithm and failing

that, prove intractability by finding a C-complete problem A (the appendices of [7,

16, 17] are good places to start), and proving A ex: B. As shown next, this order may

not be ideal when studying the complexity of a family of related problems.
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Figure 2.3: The Relationship Between Hardness and Completeness Results. See main
text for explanation of symbols (Adapted from [46, Figure 2.2]).
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2.1.4.2 Analyzing a Family of Problems

This section proposes a framework for systematically analyzing the complexity of a

related set of problems called a family. Every. family has a core (usually intractable)

problem of interest. Constraints which exist in practice are added to this core problem

to create new problems which mayor may not be tractable. Th~se constraints may be

simple restrictions on the core problem's allowable instances, or brand new features.

For example, instances of a problem involving a database table could be restricted

to those which have a limited number of columns, or they could have an additional

feature like a partition of the columns based on some criteria. Ultimately, the aim is

to find versions of a core problem of interest which are polynomial-time solvable and

thus useful in practice.

Studying a set of related problems is not a new concept. Garey and Johnson [16,

Section 4.1] point out that analyzing the complexity of a problem should not end with

a proof of P-completeness; subproblems of an NP-complete problem, which appear

as special cases in practice, may be solvable in polynomial time. To take advantage

of this phenomenon, they propose placing restrictions on the allowable instances of

a known NP-complete problem until the frontier of tractability is located. Although

locating tractable subproblems is worthwhile, Garey and Johnson's framework does

not have a precise method for generating these subproblems. Wareham [46, Section

2.1.3]' on the other hand, generates all related problems systematically. His sys­

tematic parameterized complexity analysis framework is more desirable than the one

proposed by Garey and Johnson because, in examining all possible restrictions of a

core intractable problem relative to a specified set of aspects, it can provide a par-
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tial characterization of the set of non-polynomial time algorithms for that problem;

Garey and Johnson generate individual problems haphazardly and cannot point to

which aspect-subsets make a problem (in)trac~able. Our new family-oriented system­

atic analysis framework is inspired by Wareham's analysis fr~mework; however, it is

superior for the following reasons:

• Our framework, by explicitly building all inter-family reductions first, generates

and analyzes problems systematically, permitting complexity results for selected

problems to propagate through the family so that new results may be obtained

with minimal additional effort; Wareham's analysis investigates all generated

problems individually.

• Our framework is applicable to multiple types of complexity analysis and results

may be transfered between types; Wareham's analysis is only applicable within

the realm of parameterized complexity [12].

Our framework for analyzing the complexity of a family of problems is made up

of the following set of tasks:

1. Characterize reduction types.

2. Prove the correctness of the template reductions.

3. Systematically acquire all reductions.

4. Create a web of selected reductions.

5. Find (in)tractability results, focusing efforts on roots of (in) tractability.
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The first task characterizes reduction types, exploiting the fact that reductions in a

problem family may be similar. Recognizing and formally stating the differences and

commonalities between reductions will drastically cut down on the effort of acquiring

!
all reductions. For example, suppose two problems A and f3 would be identical if

aspect r of B was set to zero. Then the reduction A ex: B ant1 jits associated proof of

correctness (discussed below), could serve as a template reduction for any other pair

of problems that shares this characteristic.

The second task in analyzing a family of problems is proving the correctness

for each basic type of reduction so that in the third task, a complete summary of

reductions can be obtained systematically to cover all possibilities. This involves

stating how the proofs in the second task may be modified to become proofs of

correctness for reductions between other pairs of problems.

In the fourth task, selected reductions from the third task are chosen to build

a reduction web. In general, a reduction web looks like Figure 2.4. The circles

represent all members of a family of problems and an arrow from problem A to

problem B in the web signifies reduction A ex: B. In Figure 2.4, certain problems

are singled out: the problems on the right-hand side (RHS) are called tractability

roots because if tractable algorithms are found there, given the flow of tractability,

other tractability results will propagate back through the reduction web; similarly,

problems on the left-hand side (LHS) are named intractability roots. Note that

these roots only locate ideal places in the web, i.e., places from which results could

propagate the furthest (other problems may be the actual roots of (in)tractability

(see below)). Furthermore, it is not necessary to include all reductions from the third

task in the reduction web; in order to complete this fourth task, (a) all problems
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Figure 2.4: A Reduction Web. A circle represents one problem from a family of
problems and an arrow represents the reduction from one problem to another (the
bigger arrows show the flow of (in)tractability). The problems circled on the right­
hand side (RHS) and left-hand side (LHS) are potential tractability and intractability
roots, respectively. The dotted arrows are supplementary reductions.
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must appear in the web and (b) enough reductions must appear in the web so that

the numbers of (in)tractability roots are minimized.

The fifth task involves deriving results for these (in)tractability roots. For a

tractability root, the idea is to design an efficient algorith~' for it; however, if this

appears to be too difficult, then one should iteratively move 6~e reduction to the left

in the web until an efficient algorithm is found. For an intractability root, the idea

is to reduce a known C-complete problem to it. This reduction from a C-complete

problem outside the reduction web is called a supplementary reduction (dotted

arrow in Figure 2.4). Note that both of these result-finding processes may overlap.

Therefore, depending on results obtained, the web may have to be rebuilt so that the

number of (in)tractability roots is kept to a minimum. This is another reason why

systematically acquiring all reductions in the third task is important.

This new framework may seem backwards when compared to the traditional way of

analyzing the complexity of a problem B (Section 2.1.4.1), i.e., designing an algorithm

for B, searching for a C-complete problem A, and then proving A ex: B; however, there

are benefits to systematically acquiring all reductions between problems in a family

first, namely:

• for a particular complexity theory, (in)tractability results for selected problems

will propagate through the reduction web so that new results may be obtained

with minimal additional effort (e.g., Lemmas 2.1.14 and 2.1.16) and

• reduction proof mechanisms from one complexity theory can sometimes be

reused in another theory (e.g., Lemma 2.1.17).

For example, Chapter 4 creates a many-one reduction web and uses it to derive
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results for decision problems in the family described in the next chapter. Although

the complexity analysis changes from traditional in Chapter 4 to approximation in

Chapter 5, given Lemma 2.1.17, this same many-one reduction web is reused to lay the

foundations for a metric reduction web and an L-reduction w~b. These webs are then

used to derive the first known approximation intractability restl~ts for the optimization

problems in the family. Hence, if it is designed carefully, a reduction web is analogous

to a road map (see Figure 2.5); goods (complexity results) can be transported from

place to place (problem to problem) along the same roads (reductions) using a various

modes of transportation (multiple complexity theories).

Figure 2.5: A Reduction Web Viewed as a Road Map. This is an analogue of Fig­
ure 2.4; (in)tractability results may transported along the reduction road system from
problem to problem. Several modes of transportation symbolize different complexity
theories sharing one reduction web.

33



The basis for the utility-preserving k-Anonymity family of problems analyzed

in this thesis are two related benchmark problems from the literature. The next

section describes these problems in detail, and.summarizes work on these and related

problems to date.

2.2 k-Anonymity

This section serves two purposes: (1) it describes two basic benchmark problems,

from which the rest of the problems in this thesis are derived (Section 2.2.1), and (2)

it organizes the previous (Section 2.2.2) and related (Section 2.2.3) work to facilitate

future work.

2.2.1 Fundamentals

General k-anonymity concepts in this section are adapted I from Sweeney [39], using

newly defined terminology, as well as existing notation from Meyerson and Williams [31].

Let a person-specific table be an n x m database table T. The n rows represent

a set X = {Xl, X2, .. . , xn } of people and the m columns correspond to a set A =

{aI, a2, ... , am} of human attributes2
. Let entry eij be the the lh attribute of person

Xi in T. Each entry comes from a finite alphabet of all possible attribute values E and

since a row Xi is made up of m values from E, T can formally be defined as a subset

T ~ Em (in general, E could be infinite, e.g., real numbers, and could differ for each

attribute). In Figure 2.6, T is a 7 x 5 table with X = {Xl, X2, X3, X4, XS, X6, X7}, A =

1Notation had to be adapted and simplified from [39] because the original notation is unclear
and potentially erroneous.

2The terms attribute and column are used interchangeably throughout this thesis.
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{Age, Gender, Area Code, Cancer}, and to exemplify what an entry is, e34 =804.

Age Cancer

x,

x2 No,

X.

x.

x.

x.

x7

Figure 2.6: Example of a Person-Specific Database Table. Row Xi is an individual's
health record and each column is a specific attribute. The unshaded attributes are
considered personal information, while the shaded attribute is private information.

A user-defined quasi-identifier, Q = {ql' q2, ... , qh} ~ A, h :::; m specifies the

personal information. To achieve k-anonymity, either the entries or attributes

of the quasi-identifier are generalized (i. e., made less specific) so that groups of

at least k people look identical in terms of their personal information. The other

A\Q attributes (i.e., private information like Cancer from Figure 2.6) remain

unmodified.

Sweeney [39] explains how this generalization can be accomplished using quasi-

identifier domain generalization hierarchies (DGH's). In essence, a DGH is a

user-defined structure which imposes a total order on the set of possible general-

izations for domain values of a particular attribute. The generalized values in this

structure are partitioned into levels such that the bottom level consists of domain
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values and each consecutive level contains increasingly more general values. To illus-

trate how they are used, consider the Area Code DGH from Figure 2.7. The domain

for this attribute is {204, 250, 306, 403, 418, 506, 705, 709, 780,804,807,819,867, 902}.

At the bottom of the Area Code DGH no generalization is jtPplied; however, as we

traverse up the hierarchy levels, we notice that the area code becomes increasingly

more general by using the symbol * to replace numbers. At the top of the DGH, we

see total suppression. For example, the Area Code 804 can be generalized to 80*, or

can be further generalized to 8 * *, or even further to * * *. The generalization at the

top of the DGH, where no information is revealed, is called suppression.

/\

I I I

/\ /\

/\

~I

/\ I I I

Figure 2.7: Domain Generalization Hierarchy for Area Code. Usage explained in text.

Observe that T can also be represented by a matrix (as illustrated in Figure 2.8); it

is sometimes convenient to refer to T as a set of n m-dimensional vectors {Xl, X2, ... , X n },

where entry eij is the lh entry in vector Xi (i. e., Xi [j]).
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Figure 2.8: A Person-Specific Dataset Represented by n x m Matrix.

Two formulations of k-Anonymity have been considered in the literature, which

only differ in DGH usage. Two more definitions are necessary before those problems

are stated formally. For the first definition, let E DGHi denote the alphabet of permis­

sible generalizations for an attribute qi according to the DGH for qi and for the

second definition, let E DGHi (y) denote the alphabet of permissible generalizations

for a particular value y from the domain of attribute qi. To clarify, refer back to

Figure 2.7; if Area Code is the fourth attribute in quasi-identifier Q, then E DGH4 is

the set of all values pictured in Figure 2.7, i. e., {204, 250, ... , 20*, 25*, ... ,2* *,3 *

*, ... ,9 * *, * * *} and E DGH4 (804) = {804, 80*, 8 * *, * * *}. Next define g to be the

function g : T ---+ (EDGH1 U E DGH2 U ... U EDGH,J h , such that every quasi-identifier

entry eij in g(T) is E EDGHj(eij).

The first problem definition can now be stated as (adapted from Sweeney [39,

Definition 6: k-MINIMAL DISTORTION)):
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SOL-k-ANONYMITY ON ENTRIES

Instance: An n x m table T over an alphabet ~, a quasi-identifier Q, DGH's for

each attribute in Q, and a positive integer k.

Solution: Any k-anonymous table g(T).

1--I----!----+---+----+---4 Apply 2-ANONYMITY

ON*

Figure 2.9: Solving SOL-k-ANONYMITY ON ENTRIES.

The transformation of a person-specific table into a 2-anonymous table satisfying

SOL-k-ANONYMITY ON ENTRIES is depicted in Figure 2.9. Before stating the second

(subtly different) problem, define g to be another function that is the same as g, with

the added stipulation that every eij E qj must be generalized up to the same level in

DGHj . The solution version of the problem (adapted from Sweeney [39, Definition

4: k-MINIMAL GENERALIZATION]) is as follows:

SOL-k-ANONYMITY ON ATTRIBUTES

Instance: An n x m table T over an alphabet ~, a quasi-identifier Q, DGH's for

each attribute in Q, and a positive integer k ..

Solution: Any k-anonymous table g(T).
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1--1--+----1----1----+---1 Apply 2·A ONYMITY I--t--+---t---+---j--------JONAIf

Figure 2.10: Solving SOL-k-ANONYMITY ON ATTItIBUTES.

Figure 2.10 shows how a person-specific table is transformed into a 2-anonymous table

satisfying SOL-k-ANONYMITY ON ATTRIBUTES.

The historical evolution of these problems seems to have arisen from Sweeney's

need to formalize the problem solved by the heuristic algorithm [37] she developed in

1997. A year later Samarati and Sweeney gave the first definition of k-Anonymity [36].

While Samarati is still working in the area of data security, she has only published one

k-Anonymity paper [35] since working with Sweeney; however, Sweeney (considered

to be the founder of k-Anonymity) wrote her Ph.D. thesis [38] on this topic and has

contributed several papers (e.g., [40,39]). This work and other k-Anonymity research

is discussed next.

2.2.2 Previous Work

As the research in this area is relatively new and there has been a recent explosion

of new contributions, it can be difficult to distinguish between the original problems

stated by Sweeney [39] and recently proposed easier-to-solve versions. This section

gives a unified presentation of all versions of k-Anonymity research, using a common
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set of notations and definitions, so that it may be used as concrete reference for future

work. Note that a clear distinction has been made between previous and related work.

The only optimal solutions in the literatu~e for SOL-k-ANONYMITY ON ENTRIES

are Sweeney's Preferred Minimal Generalization (MinGen) ~39] and k-Similar [38]

algorithms, while the only optimal solution proposed for SOL~~-ANONYMITY ON AT-

TRIBUTES is Samarati's k-Minimal Generalization algorithm [35]. one of these

algorithms are efficient, since in the worst case, they require checking all possible

generalization schemes of an n x m database table T. Suppose h is the maximum

number of levels in any of the m DGH's and all DGH's have this number of levels.

As each of the m entries in a row can be one of h values in a generalization scheme

for SOL-k-ANONYMITY ON ENTRIES, and there are n rows in a table, each of which

can adopt a different scheme, there are O(n~=l hm ) = O(hnm ) possible schemes to

check. Since in SOL-k-ANONYMITY ON ATTRIBUTES, the generalization of any value

in a column predetermines the generalization level for all other values in that column,

there are O(hm ) possible generalization schemes to check. otice for both problems,

if DGH's were constrained so that at each level (except the last), at least two values

generalize to the same value in the next level, then h is bounded by ~.

The computational complexity has been examined for simplified versions of SOL­

k-ANONYMITY ON ENTRIES and SOL-k-ANONYMITY ON ATTRIBUTES by Meyerson

and Williams [31] and SOL-k-ANONYMITY ON ENTRIES by G. Aggarwal et al. [3].

These simplifications are as follows:

• The quasi-identifier concept is dropped.

• Each domain generalization hierarchy has only two levels.
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204 250 306 403 418 506 705 709 780 804 807 ~19

Figure 2.11: Suppression Domain Generalization Hierarchy for Area Code.

Consider the Area Code DGH in Figure 2.11; it is similar to the Area Code DGH

from Figure 2.7, except there is only two levels (no generalization and suppression).

The majority of the remaining content of this thesis will only discuss this special case

of generalization, since any generalization problems will be at least as hard to solve

as their purely suppression counterparts.

A suppressed entry in T is represented by the symbol *, where * tf- E. De­

fine function f to be a suppression function on T, f : T ---+ (E U {*})m,such

that V(Xi E T)V(j E {I, 2, ... , m} ){f(xdj]) E {xdj], *n. Furthermore, f(T) =

{f(Xl)' f(X2), . .. , f(x n )} is a k-anonymous table if V(Xi E T){3(i 1 , i 2 , ... , i k - 1 E

{I, 2, ... , n}) I f(XiJ = f(Xi2) = ... = f(Xik_J = f(Xi)}' Informally, a k-anonymous

table is the same as the original table, except some entries are suppressed so that

each row becomes identical to at least k -1 other rows. It is important to note that f

does not permute, add, or delete any of the rows or columns of T. Also, the number

of suppressed entries in any k-anonymous table cannot exceed n x m.

The suppression versions of sOL-k-ANONYMITY ON ENTRIES and SOL-k-ANONYMITY

ON ATTRIBUTES are as follows (see Figures 2.12 and 2.13, respectively):
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SOL-e-SUPPRESSION (SOL-e-SUp)

Instance: An n x m table T over an alphabet ~ and positive integers e and k.

Solution: Any k-anonymous table f(T) tha.t has at most e suppressed entries.

SOL-C-DELETION (SOL-C-DEL)

Instance: An n x m table T over an alphabet ~ and positives integers Cand k.

Solution: Any k-anonymous table f(T) that has at most Cdeleted columns.

Apply

..SUPPRESSION

withk=2

Figure 2.12: Solving SOL-e-SUPPRESSION. e 2: 8.

Using these simplified versions, Meyerson and Williams [31] prove that both e-SuP

(k 2: 3 and I~I 2: n) and c-DEL (k 2: 3 and I~I 2: 2) are N P-hard by reductions

from EXACT COVER BY 3-SETS [16, SP2], which they call 3-DIMENSIONAL PERFECT

MATCHING. Given that polynomial-time algorithms thus seem unlikely, they give a

polynomial-time O(mlogk)-approximate algorithm for MIN-e-SUP. Improving upon

these results, G. Aggarwal et al. [3] prove that e-SUP (k 2: 3 and I~I 2: 3) is N P-hard
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Apply

<-DELETION

withk:2

~-

Figure 2.13: Solving SOL-c-DELETION. c "2
1

3.

by a reduction from EDGE PARTITION INTO TRIANGLES [21, Problem 1] and give

a polynomial-time O(k)-approximate algorithm [3] for MIN-e-SUP. They also prove

that using the graph representation required by this O(k)-approximate algorithm, one

cannot achieve a better than O(k)-approximation factor. This proof involves giving

two instances of MIN-e-SUP that have identical graphs and have costs which differ by

a factor of O(k).

The only other research directly related to the original formulations are the greedy

heuristics Datafly [38] and GreedyRelease [5], which offer no performance guarantees

(not even that these algorithms run in polynomial time). All other research on k-

Anonymity is considered to be related work in the context of this thesis and is discussed

separately in the next section.

2.2.3 Related Work

Perhaps due to the inherent difficulty of the problem as it was first phrased, re-

searchers are attacking k-Anonymity from many angles. This research either (1)

uses different cost metrics to exploit techniques from Data Mining like Classification,
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Clustering, and Association Rule Mining (for a good introductions see [19]), or (2)

uses a different suppression function. This section describes these two groups of re­

search, and gives brief summaries of work related to possible inference attacks on

k-Anonymity and how algorithms for k-Anonymity are bein~'used in other contexts.

The original problem has been rephrased several times alfejady to take advantage

of known algorithms for decision trees, which are used for classification. Decision

trees [19, Figure 7.4] segment the original dataset so that records within each seg­

mentation are similar to each other based on an attribute selection measure called

Information Gain [19, Equation 7.4]. Iyengar [20] incorporates this measure into k­

ANONYMITY ON ATTRIBUTES, automatically produces the generalization hierarchies,

and assumes a total order on attributes and domains. His solution is a genetic algo­

rithm and he gives an experimental analysis only. Since Iyengar published his paper

in 2002, others have adopted his framework [8, 15, 44, 47] - Bayardo and Agrawal [8]

use a set representation and implement a systematic search strategy using set enu­

meration; Winkler [47] proposes another genetic algorithm using simulated annealing;

Wang et al. offers a greedy heuristic bottom-up approach [44]; and Fung et al. [15]

gives a greedy heuristic top-down approach that improves upon the bottom-up ap­

proach, which only handled categorical attributes.

Other researchers have noticed similarities between k-Anonymity and clustering.

Clustering is the process of grouping data into clusters in such a way that objects

within a cluster are very similar to one another and are not similar to objects in other

clusters (e.g., [19, Figure 8.2]). The similarity is calculated based on a distance metric

(e.g., [19, Equation 8.18]). G. Aggarwal et al. [2] give a constant-factor approximation

algorithm for their clustering version of k-Anonymity.
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Other data mining concepts like On-Line Analytic Processing (OLAP) have been

used in recent research. Lefevre et al. [25] use OLAP operations in the multidimen­

sional data model like rollup (see [19, Figure 2.10]). They also incorporate ideas

like the Apriori property from another data mining technique~calledAssociation Rule

Mining [19, Chapter 6]. Like Iyengar, LeFevre et al. modify k-ANONYMITY ON

ATTRIBUTES, provide an algorithm, and perform an experimental analysis. Most

recently, LeFevre et al. [26] are working on what they call OPTIMAL STRICT k­

ANONYMOUS MULTIDIMENSIONAL PARTITIONING; they prove it is N P-hard, provide

a greedy 0 (n log n)-approximate algorithm, as well as experimental results.

Unlike the other research in this section so far, Vinterbo's [41] work is not related

to data mining. He defines a slightly different suppression function and calls the

problem k-AMBIGUITY, which he proves is N P-hard. Recall that in all other work

on k-anonymity the suppressed entry symbol * acts as an extra unknown value and a

particular entry is the same as another entry if and only if both entries have the same

value (including *). Vinterbo's suppressed entry symbol, T, is indiscernible from all

possible values. That means a particular entry is the same as another entry if both

entries have the same value (including T) or one of the entries is T (see Figure 2.14).

Another stream of related work investigates potential inference attacks on k­

Anonymity. Even in the beginning, Sweeney [40, Section 4] recognized at least three

of these attacks, namely an unsorted matching attack, a complementary release at­

tack, and a temporal attack. ew research by Machanavajjhala et al. [27] point out

other possible inference attacks and proposes a new privacy model, l-diversity, which

avoids such an attack by ensuring all the individuals in a group do not have the same

private information; however, Xiao and Tau [48] demonstrate why l-diversity still
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Apply

2-Ambiguity..
Figure 2.14: Solving SOL-k-AMBIGUITY.

does not work and introduces a new concept to fix it. Related to this same sort of

inference attack, C. Aggarwal [1] shows why k-Anonymity does not work on tables

which have a high number of attributes.

Some researchers are not attempting to alter k-Anonymity, rather they are using

k-Anonymity in other fields of research. For example, Yao et ai. [49] implement a

procedure that checks for k-anonymity violation when there are multiple views of the

information. The authors prove that when functional dependencies are considered,

their problem is N P-hard, but is checkable in polynomial-time if functional depen-

dencies are ignored. Zhong et ai. [50] study k-anonymity in a distributed setting and

Atzori et al. [6] use k-Anonymity to block inference opportunities in association rule

mining. Most recently, Malin [28] shows that when an individual?s personal informa-

tion is spread over multiple locations, it leaves an identity trail. Given this trail, he

offers a method for limiting the risk of re-identification using k-Anonymity.

Finally, another vein of related work is that of utility-preservation. Given that this

is a major theme of this thesis, previous work on utility-preservation is scrutinized in

the next chapter.
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Chapter 3

Utility-Preserving k-Anonyrnity

Several k-Anonymity-based problems have been proposed in the literature; however,

these problems do not adequately address preserving utility for the researcher and

their algorithms are not computationally efficient. This chapter highlights these in­

adequacies through a comprehensive overview of previous research, where it is shown

that previous solutions lack sufficient ability to meet specific researcher needs. To

this end, new utility-preserving problems are proposed.

3.1 Motivation

Consider again the 2-anonymous data set satisfying SOL-e-SUPPRESSION in Figure 2.12.

Two entire rows are deleted, leaving researchers with data that could be biased, as

the entire population is not included. Furthermore, if a particular attribute is crucial

for the researcher's study, such as Age, using SOL-e-SUPPRESSION would not allow a

cause-and-effect analysis to be 100% accurate. Even more inadequate than SOL-e­

SUPPRESSION is the solution to SOL-c-DELETION given in Figure 2.13, where all data
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except the Age attribute is suppressed.

Notice that in both of these problems, the focus is on protecting privacy; re-

searchers do not have the ability to specify what portions of the data set are most

crucial to their research, and hence should not be modified:during the anonymiza-

tion process. In these two example solutions, entire rows of itl~ormation or nearly all

information is deleted, resulting in a data set that may be biased and may not even

be relevant to the researcher's study. If k-anonymity problems could be reformulated

such that the privacy of each individual is still protected and researchers receive the

information they actually need, then the obtained solutions would truly be optimal.

For example, if the researcher was mainly interested in Age, but also wanted to receive

as much information on Gender as possible, a utility-preserving solution such as the

one in Figure 3.1 might be preferable.

Figure 3.1: Solving a Utility-Preserving k-Anonymity Problem. The data set shown
on the right is a possible solution to a particular utility-preserving k-anonymity prob­
lem called SOL-c'-PARTITION, where a researcher specifies which columns are impor­
tant as input and individual entries are deleted accordingly. In this case, Age is the
most important, followed by Gender, Married, and Area Code, in that sequence. At
most c' (in this case c' 2': 5) individual entries are deleted in the least important
column (Area Code) and each other column in the importance sequence can have no
more deleted entries than the one after it.
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These examples illustrate that counting the total number of entries suppressed [3,

31] or columns deleted [31] to achieve k-Anonymity are substandard formulations of

the problem; if the problem was formulated in such a way that the privacy of each

individual is protected and researchers receive the informat~on they need, then the

problem's solution would truly be optimal.

3.2 Previous Work: Summary and Critique

The first researcher to attempt utility-preservation within the k-anonymity framework

was Sweeney [39, 38]. Sweeney acknowledges in [38, Section 5.4] that the most useful

solution is application specific and relies on user-specific preferences. On the surface,

it appears as though her work benefits the end-user, but they do not; when she refers

to user input, she means the data holder's input (not the researcher's). Sweeneyactu­

ally discourages utility for researchers. For example, to use her Datafiy II System [38,

Section 6.1J, the data holder assigns a number from 0 to 1 to each quasi-identifier

attribute based the likelihood that the researcher will link that attribute to outside

data (0 means not likely and 1 means highly probable). The algorithm never asks for

the researcher's input. Even if Sweeny's weighted scheme accepted input from the

researcher, the idea of requiring the assignment of numbers from 0 to 1 is unreason­

able. Typically human preference can be partitioned into two groups: important and

not important, or a fixed range of no more than maybe five choices, like on a survey

questionnaire.

More recently, Kifer and Gehrke [23] acknowledge that utility has not been well

studied for k-Anonymity (e.g., [39]) or i-diversity (e.g., [27]). In addition to the
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anonymized data set, they propose to release frequency information. This extra in­

formation is in the form of a marginal, such as those pictured in Figure 3.2 (c)-(f).

Obviously, all four marginals in Figure 3.2 cannot be released, since the unique com­

binations of data values in the marginals may be linked together to reconstruct the

original database table. For example, as patient X4 in Fig~J;e 3.2 (a) is the only

unmarried forty year old male in area code 807, that information is generalized in

Figure 3.2 (b); however, given that his data values have Count = 1 in marginals

Figure 3.2 (d)-(f), there can be no confidentiality guarantees for his private medi­

cal condition. Kifer and Gehrke's framework only releases a selection of marginals

whose combination does not lead to this sort of inference attack. This framework

decides which marginals to release based on an entropy measure, rather than based

on marginals a researcher may actually need. Therefore, while this approach has its

merits, from a utility-preserving point of view, this framework is not much better

than Sweeney's [39].

Other researchers (e.g., Samarati [35] and Iyengar [20)), on the other hand, dis­

cuss utility in a context that could accommodate specific research needs and propose

new cost functions that do more than just count the number of suppressed entries

or attributes deleted. These cost functions may prefer solutions which contain the

greatest number of distinct tuples, those that suppress the least number of rows [35],

or those which are used for specific purposes like the data mining technique of classi­

fication [20]. Although exploring new cost functions is a step in the right direction, in

order to eliminate domain-specific solutions, a wider variety of these functions have

to be incorporated into a more general model of k-Anonymity.

In contrast to the work described previously, Vinterbo [42] has arguably taken
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(B) ...

(c)

~
.Count

25 3

40 4

(d)

(b)

(e)

Yes 1

No 3

l

1.lo

(f)

C8ftc.r ArellCocI. Count
709 1

Yes 807 1

902 2

709 1
No 804 1

902 1

Figure 3.2: Injecting Utility into k-Anonymity Using Marginals. This figure depicts
(a) A digitized set of records, (b) a k-anonymized version of (a) after applying e-Sup
with k = 2, (c) the Age marginal, (d) the Age / Area Code marginal, (d) the Age /
Married marginal, and (f) the Gender / Area Code marginal.

utility to the other extreme, making it too general. Recall from Section 2.2.3 that

Vinterbo uses a slightly different suppression function than other researchers called

k-Ambiguity. In general, given the domains for each column, he organizes all possible

rows that could possibly occur in the table into a lattice. For example, Figure 3.3

illustrates the 3-tier lattice generated from a table with only two columns A and B,

where the domain of A = {O, I} and the domain of B = {a, b}. He then uses the

tiers of the lattice to compute information loss and utility; the further up the lattice,

the more information loss, so the less utility. To incorporate the concept of providing

researchers with pertinent data, Vinterbo defines a utility-encoding scheme that is

applied to this lattice. In this overly general scheme, it is not obvious how one goes

about encoding specific research needs and it is even less obvious how these encodings
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are superimposed on the lattice. To date, Vinterbo's work has only been cited (but

not pursued) by one other k-Anonymity researcher; there is one sentence in Malin's

Ph.D. thesis referring to the N P-hardness of _~-Ambiguity [28, page 88]. Given that

Vinterbo's mathematically rigorous formalization of k-Ambi~~ity may be difficult to

follow, this lack of interest in his work is perhaps not surprishw.

Figure 3.3: A Lattice of Possible Rows for k-Ambiguity. A 3-tier lattice is generated
from a table with only two columns A and B, where the domain of A = {O, I} and
the domain of B = {a, b}.

To summarize, a major problem with almost all current implementations of k-

anonymity is that they do not allow researchers to specify what portions of the data

have the greatest utility in their research and hence cannot be altered during the

anonymization process. For example, gender might be crucial to a researcher's study,

and any release of data that deletes or generalizes gender values in order to satisfy

k-anonymity would not be useful to this researcher. Several approaches to preserving

utility under k-anonymity have been proposed [39, 23, 42, 35, 20]; however, all of

these proposals are inadequate, because they

1. cannot tailor output to the full range of researcher needs (e.g., [39]), or
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2. are too complicated for practical application (e.g., [42]).

These two deficiencies are addressed in the new model of k-Anonymity proposed in

the next section.

3.3 A New Family ofUtility-Preservihg k-Anonymous

Problems

Although current definitions for k-Anonymity are inadequate, the underlying idea of

guaranteeing anonymity by making groups of patients indistinguishable is still effec­

tive. While one ambition of this thesis is finding computationally feasible solutions,

first and foremost, k-Anonymity must be made useful for researchers. The new family

of Utility-Preserving k-Anonymous Problems presented next is superior to previous

utility work because these problem formulations:

1. tailor output to suit specific research needs (by specifying both where and the

manner in which table-entry suppression can occur during the anonymization

process), and

2. are defined in a way that is clear, concise, and easy to understand.

This is done by building suppression-location and suppression-quantity vari­

ables into their definitions as constraints. Furthermore, each definition also has a

problem-type variable built in; a problem may be a deletion, suppression, or

partition problem. Of particular interest here is the partition problem-type, as it

provides a realistic way of allowing researchers to specify the relative importance of
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particular types of data in the table (and hence the degrees to which they must be

preserved during anonymization).

Before the new family of utility-preserving problems can be described in Sec­

tion 3.3.2, several definitions are required. Section 3.3.1 provides definitions and

lemmas which are essential for the remainder of this thesis. t

3.3.1 Preliminaries

3.3.1.1 Definitions: Groups and Partitions

The definitions in this section are useful when describing precise regions of a k­

anonymous table, such as groups of identical rows and deleted rows or columns.

Definition 3.3.1 (k-partition) Given an n x m k-anonymous table f(T), G

{gI' g2,' .. , gl} is a k-partition of f(T) ¢:> G is a partition of the rows of f(T) and

V(g E G){k ::; Igl ::; 2k - 1/\ V(J(Xi), f(xj) E g){f(Xi) = f(xj)}}'

Definition 3.3.2 (k-group) (31, page 224) Given a k-partition G = {gI' g2,' .. 1 gl}

of an n x m k-anonymous table f(T), gi is the ith k-group of G.

Definition 3.3.3 (k-segment) Given a k-partition G = {gIl g2, . .. , gl} of an n x

m table f(T), let k-segment Sij be a Igil-dimensional column vector, with entries

corresponding to the lh entry of each row in k-group gi.

Note that all entries in Sij are the same and for convenience, Sij is sometimes referred

to as a single value.

Definition 3.3.4 (deleted column) Given an n x m table T = {XI,X2,'" ,xn }

with attributes A = {all a2,'" lam}, aj is a deleted column ifV(xi E T){Xi[j] = *}.
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Definition 3.3.5 (deleted row) Given an n x m table T = {Xl,X2,'" ,Xn }, Xi is

a deleted row ifV(j E {I, 2, ... , m} ){xdj] = *}.

3.3.1.2 Definitions: Importance Preservation

The definitions in this section are useful when describing a partition of the database

table based on importance. All definitions in this section are only phrased in terms

of columns; however, similar definitions exist for their row counterparts.

Definition 3.3.6 (column partition) Given an n x m table T and a unique set

of column identifiers S = {I, 2, ... ,m} corresponding to the columns in T, P =

{Pl,P2,'" ,Pi}, l ~ 2, is a column partition ofT ¢:> P is a partition of S.

Definition 3.3.7 (:~c*) Given a column partition P = {Pl,P2, ... ,Pi} of table T,

:::Sc* is a total order on P, where Pi :::Sc* Pj means that each column ofT identified in

Pi has no more suppressed entries than any column of T identified in Pj.

Definition 3.3.8 (column utility-partition) Given a k-anonymous table f(T), P =

{Pl,P2, .. . ,Pi} is a column utility-partition of f(T) if P is a column partition of

f(T) and V(Pi,Pi+l E P){Pi :::Sc* pi+d·

Informally, (P, :::Sc*) is a totally ordered set based upon some notion of preserving

importance; given two sets of column identifiers, Pi and Pj, if columns identified in

Pi are more important than columns identified in Pj, then each column identified in

Pi has no more suppressed entries than any column identified in Pj. Thus, columns

identified in the last set in P are the least important, columns identified in the first

set in P are the most important, and for any pEP, all columns identified in pare
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equally important. For convenience, in this thesis columns identified in Pi will be

shortened to columns in Pi.

3.3.1.3 Useful Lemmas

This section contains four lemmas which help prove the corr~c~ness of several reduc­

tions in Chapter 4. Each lemma involves modifying a k-anonymous table in such a

way that k-Anonymity is preserved.

Lemma 3.3.9 Given an n x m k-anonymous table f(T), if f(T) is transformed into

f (T)' by adding a column c, such that all the entries in c are identical, then f (T)' is

also k-anonymous.

Proof: Suppose f(T) is a k-anonymous nxm table f(T), for a particular k. Because

f(T) is k-anonymous, it can be k-partitioned, where each k-group gi can be further

partitioned into m k-segments. Recall that all entries in a k-segment are necessarily

identical. Now, transform f(T) into an n x (m + 1) table f(T)' by adding column c,

i.e., make all entries a symbol <> =1= * in the (m + 1)th k-segment of each gi. Notice

that f(T)' is partitioned into the same k-groups as f(T), except there is one extra

k-segment in each k-group. The existence of a k-partition of f(T)' implies that f(T),

is k-anonymous.

Lemma 3.3.10 Given an n x m k-anonymous table f(T), if f(T) is transformed

into f(T), by adding a k-group, then f(T), is also k-anonymous.

Proof: Suppose f(T) is a k-anonymous nxm table f(T), for a particular k. Because
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f(T) is k-anonymous, it can be k-partitioned. Let G be the k-partition of f(T). ow,

transform f(T) into f(T), by adding a new k-group g. Notice that G' = G u {g} is

a valid k-partition of f(T), and the existence of a k-partition of f(T)' implies that

f (T)' is k-anonymous.

Lemma 3.3.11 Given an n x m k-anonymous table f(T), if f(T) is transformed

into f(T)' by deleting all columns where suppressed entries occur, then f(T)' is also

k-anonymous.

Proof: Let B be the set of columns from f(T) where suppressed entries occur and

let bl be a particular, but arbitrary, column from B. Since f(T) is k-anonymous,

it can be k-partitioned, such that each k-group gi consists of m k-segments. Recall

from Definition 3.3.3 that all entries in a k-segment are necessarily identical. ow,

transform f (T) into f (T)' by deleting column bl (i. e., suppress all entries in the lth

k-segment of each gi). Notice that f(T)' is partitioned into the same k-groups as f(T)

because there are still m k-segments in each k-group. This implies that there exists

a k-partition of f(T)', hence f(T), is k-anonymous. Continue in the same manner

until all columns in B are deleted.

Lemma 3.3.12 Given an n x m k-anonymous table f(T), if f(T) is transformed

into f (T)' by deleting all rows where suppressed entries occur, then f (T)' is also

k-anonymous.

Proof: Suppose f(T) is a k-anonymous n x m table f(T), for a particular k. Let

G = {gI' g2, ... ,gl} be a k-partition of f(T). It is necessary to delete all k-groups from
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G that have suppressed entries. Because f(T) is k-anonymous, it can be k-partitioned,

such that each k-group gi consists of m k-segments. Recall from Definition 3.3.3 that

all entries in a k-segment are necessarily identi~al. Now, transform f(T) into f(T), by

deleting all k-groups gi from G that have suppressed entries (~.e., suppress all entries

in each k-segment of gi)' Notice that deleting gi trivially rA~kes all the rows in gi

identical. Notice also that f(T)' is partitioned into the same k-groups as f(T). The

existence of a k-partition of f(T)' implies that f(T)' is k-anonymous.

3.3.2 Problems

In this section, a new family of Utility-Preserving k-Anonymous Problems is pro­

posed to overcome deficiencies of the current state of utility-related research (see

Section 3.2). Recall from the introduction of Section 3.3 that these problem formu­

lations are superior to previous utility work because they:

1. tailor output to suit specific research needs, and

2. are defined in a way that is clear, concise, and easy to understand.

The aim is to define problems, which are not only useful for researchers, but are

tractable as well. ote that we have not mathematically defined utility; however it

is treated as the researcher's intuition of utility. Figure 3.4 gives a general abstract

overview of solution versions of the family of problems, which are formally defined in

Appendix A.

Each member of the family is named following the convention SOL-X-y-z, where x,

y, and z are the suppression-location, suppression-quantity, and problem-type vari-
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ables, respectively. These problems can be broadly categorized by their problem-type

variables, such that each problem is either a

• deletion (z =DEL),

• suppression (z =suP), or

• partition (z =PART) problem.

The region where suppressions may occur in the table is limited by a suppression­

location variable, which can restrict the region to a

• number of rows (x = r),

• number of columns (x = c),

• union of a number of rows and a number of columns (x = r-c), or

• the region may be left unrestricted (x- is omitted).

As problems involving intersections of r rows and c columns are just smaller instances

of other problems already in the family, they are not considered here. Within each

specified region, the amount of suppression is limited by a suppression-quantity vari­

able, which restrict the

• number of suppressed entries (y = e),

• number of suppressed entries per row (y = r'),

• number of suppressed entries per column (y = c'), or

• in the case of a deletion problem, all entries may be suppressed (y- is omitted).
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Furthermore, each of these problems can also be broadly categorized by their orien­

tation, such that each problem either has a

• row orientation (x = rand/or y = r'),

• column orientation (x = e and/or y = e'), or

• the orientation may be unspecified (x tJ. {r, e} and y tJ. {r', e'} ).

Several of these problems have already been discussed in this thesis. SOL-e-SUP and

SOL-e-DEL appeared in Section 2.2.2 as the two basic suppression problems cited in

the literature. SOL-r-DEL was implicitly introduced in Section 3.2 as the problem

Samarati [35] refers to as having a cost function which prefers a solution that sup­

presses the least number of rows. SOL-c'-PART was the problem applied in Figure 3.1

with k = 2 and P = {{ Age }, { Gender }, { Married }, { Area Code}}.

As solution problems are related to both decision and optimization problems (see

Figure 2.1) solution versions of this family of problems are formally defined in Ap­

pendix A. Decision versions of these problems will be analyzed in the next chapter

and a similar analysis of optimization versions of these problems will be analyzed in

Chapter 5.
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Figure 3.4: A Family of Utility-Preserving k-Anonymity Problems. This is a complete
cover of all problems discussed in this thesis. Each problem is named following the
convention SOL-X-y-z, where x, y, and z are the suppression-location, suppression­
quantity, and problem-type variables, respectively. The problem of interest is SOL­

r-c-c'-PART, i.e., satisfy k-anonymity and allow researchers to specify the number
of rows (study subjects) required for their study, the number of columns (subject
characteristics) of interest required for their study, and/or the relative importance of
certain columns/characteristics to the study. All other sub-problems are included in
order to facilitate systematic analysis (see Section 2.1.4.2).
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Chapter 4

Optill1al Solutions

This chapter derives optimal tractability and intractability results for the family of

problems defined in the previous chapter. Recall that the new framework for analyzing

a family of problems proposed in Section 2.1.4.2 involves completing the following set

of tasks:

1. Characterize reduction types.

2. Prove the correctness of the template reductions.

3. Systematically acquire all reductions.

4. Create a web of selected reductions.

5. Find (in)tractability results, focusing efforts on roots of (in)tractability.

At this point, some readers may still be skeptical of this new analysis framework, as it

is completely backwards from the traditional way of analyzing complexity. However,

the framework's inherent reusability, which is apparent in this chapter and the next,

justifies its use.
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4.1 Reductions

By the end of this section, the first four tasks of analyzing a family of problems will

be complete. In Section 4.1.1 the template reductions and the}r proofs of correctness

4
are given. In Section 4.1.2 all other family reductions are systematically acquired,

I

some of which are selected to form a web of reductions. Finally, in Section 4.1.3,

supplementary reductions and their proofs of correctness are given.

4.1.1 Template Reductions

This section will describe four basic types of reductions. For each type, the following

details are provided: (1) a characterization of the reduction with respect to applicable

problems, (2) a general discussion of how the type of reduction works (see Figure 4.1),

(3) a template reduction, and (4) the template reduction's proof of correctness.

For clarity and consistency, two naming conventions are introduced. First, in

a reduction characterization, x is a suppression-location variable from a subset of

{c, r, e, r-e}, y is a suppression-quantity variable from a subset of {c, e, r' ,e'l, and X

is a problem-type variable from a subset of {DEL, SUP, PART}. The major elements in

a reduction's characterization are emphasized in bold text. Second, for each template

reduction A :::;m B, instance variables for problems A and B are subscripted by

the letters A and B, respectively. This subscript notation is used throughout the

remainder of this thesis.

TYPE 1 [x-y-X :::;mr-c-y-X] (x E {r, e}, y E {c, e, r' ,e'l, X E {DEL,SUP,PART}):

This type of reduction occurs when any problem with suppressed entries restricted
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(a) e-DEL r-e-DEL

+-c ...... 4

r[I] '''_00 i_t
1 ~ l~r

(b)

(c)

'-m----+

e'-SUP

Reduces to r

~l
'-m----+

e-SUP

'-m----+

Reduces to r

~l

'-m----+

using the

following table

transformation:

e·e·SUP

+c=m+

e-e·SUP

+-c-+
(d) e-DEL

r[I]+-0 -+ ...,~oo 1
" ~"
1 1
'-m----+ .-m----+

Figure 4.1: Abstract View of Template Reductions. (a) TYPE 1: c-DEL ~m r-C-DEL,

(b) TYPE 2: c'-SUP ~m C'-PART, (c) TYPE 3: e-SUP ~m c-e-sup, (d) c-DEL ~m

c-e-SUP.
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to either c columns or r rows reduces to the same problem, except suppressed entries

are restricted to the union of c columns and r rows. The basic idea of the reduction

is to either set cor r to zero, so that the constructed instance of the union problem is
!

identical to the strictly r-restricted or c-restricted given insta~ce (see Figure 4.1 (a)).

The following is the template reduction and its proof of correctness:

Lemma 4.1.1 c-DEL ~m r-c-DEL

Proof: (Proof by restriction) Given an instance (TA , CA, kA ) of C-DEL, construct the

following instance (TB , rB, CB, kB ) of r-c-DEL:

rB (4.1)

(4.2)

This construction can be done in time polynomial in the size of the given instance of

c-DEL. To prove that this reduction is a many-one reduction, it has to be shown that

the given instance of c-DEL has a solution ¢:> the constructed instance of r-c-DEL has

a solution.

[=}J (If c-DEL = "Yes"! then r-c-DEL = "Yes")

Suppose the given instance of c-DEL has a solution. This implies that there is a table,

f (T) that is k-anonymous and that suppressed entries in f (T) can only occur in

deleted columns. Let Cact be the actual number of deleted columns in f (T). Substitute
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CB from (4.2) into (4.3) to obtain (4.4):

Cact :S CA

Cact :S ~B

(4.3)

(4.4)

otice that there are no deleted rows. As there exists at table f (T) that is k­

anonymous, the number of deleted rows is at most (actually is equal to) rB (4.1),

and there are up to CB deleted columns (Equation 4.4), the constructed instance of

r-C-DEL has a solution.

[¢=] (If r-c-DEL = "Yes", then C-DEL = "Yes")

Suppose the constructed instance of r-c-DEL has a solution. This implies that there

is a table, f(T) that is k-anonymous. Suppressed entries only occur in at most CB

deleted columns, since there are no deleted rows (Equation 4.1). Let Cact be the actual

number of columns where suppressed entries can occur in f(T). Substitute CA from

(4.2) into (4.5) to obtain (4.6):

Cact :S CB (4.5)

(4.6)

As we have a table f (T) that is k-anonymous and suppressed entries can only occur

in at most CA deleted columns, the given instance of c-DEL has a solution.

TYPE 2 [x-y-suP:S m x-y-PART] (x E {c, r, c}, y E {r' ,c' }): This type of reduction

occurs when any suppression problem reduces to its partition version. The basic idea

of the reduction is to construct a partition P = {PI,P2} so that the entire table from

the suppression problem's instance makes up P2. The other partition member PI will
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always have all entries equal to a new symbol 0 so that no suppressed entries are

required to satisfy k-Anonymity (see Figure 4.1 (b)). The following is the template

reduction and its proof of correctness:

Lemma 4.1.2 c'-sup ~m c'-PART

Proof: (Proof by quasi-restriction) Given an instance (TA , c~, kA ) of c'-sup, con-

struct the following instance (TB , PB, c'e, kB ) of c'-PART:

C'B C'A (4.7)

Let TB be an nA x (rnA + 1) table, where the last rnA columns of TB are the rnA

columns of TA and every entry in the first column of TB is a new symbol 0 ~ ~.

Now, let PB = {PI,P2} be a column partition of TB , such that P2 contains the last

rnA columns of TB and PI contains the first column of TB. This construction can

be done in time polynomial in the size of the given instance of c'-suP. To see that

this reduction is a many-one reduction, it has to be shown that the given instance of

c'-sup has a solution ¢:;> the constructed instance of c'-PART has a solution.

[:::;.] (If c'-sup = "Yes") then c'-PART = "Yes")

Suppose the given instance of c'-sup has a solution. This implies that there is a

k-anonymous table, f(TA ), such that the number of suppressed entries per column in

f(TA) is at most c~. Transform f(TA) into f(TB) by adding a new column to f(TA),

where all entries are o. According to Lemma 3.3.9, f(TB ) is also k-anonymous. Let
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c~ax be the maximum number of suppressed entries per column in f(TA ). Substitute

c~ from (4.7) into (4.8) to obtain (4.9):

(4.8)

(4.9)

Now consider column partition PB = {PI,P2}; the maximum number of suppressed

entries in any column in P2 has to be c~ (Equation 4.9). Furthermore, since all the

entries in PI'S column are identical, there are no suppressed entries in PI'S column. As

there exists a k-anonymous table f(TB), a partition PB = {PI,P2} that is a column

utility-partition of f(TB ), and the total number of suppressed entries in any of P2'S

columns is at most c~, the constructed instance of c'-PART has a solution.

[~] (If C' -PART = "Yes", then c' -sup = "Yes")

Suppose the constructed instance of c'-PART has a solution. This implies that there is

a k-anonymous table f(TB ) and a column utility-partition of f(TB ), P = {PI,P2}. As

P is a column utility-partition, PI'S column has no more than the minimum number

of suppressed entries per column in P2, and the number of suppressed entries in any

of P2'S columns is at most c~, the number of suppressed entries in any column of TB

is at most c~. Let c~ax be the maximum number of suppressed entries per column in

f(TB ). Substitute c~ from (4.7) into (4.10) to obtain (4.11):

(4.10)

(4.11)

As there exists a k-anonymous table f(TA ) and the total number of suppressed entries
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in any column of f(TA ) is at most c~ (Equation 4.11), the given instance of c'-sup

has a solution.

Observe that this is a quasi-restriction reduction because the~ instance of c'-suP is

constructed in such a way that the two instances in the reduction are essentially

identical (see Section 2.1.3.2); the constructed instance is exactly the same as the

given instance, except TB = TA+(one additional column). We will see in the next

section that similar constructions (and hence quasi-restriction reductions) exist when

non-partition problems reduce to partition problems. Notice that this is the case for

all Type 2 reductions and for several Type 4 reductions.

TYPE 3 [y-X :Smx-y-X] (x E {r,c,r-c},y E {e,r',c'},X E {SUP,PART}): This type

of reduction occurs when any problem that has no restriction on the location of sup­

pressed entries reduces to location-restricted version. The basic idea of the reduction

is to either set c = m or r = n, so that the constructed instance of the location­

restricted problem is identical to the unrestricted given instance (see Figure 4.1 (c)).

The following is the template reduction and its proof of correctness:

Lemma 4.1.3 e-SUP :Sm c-e-SuP

Proof: (Proof by restriction) Given an instance (TA, eA, kA) of e-SuP, construct the

following instance (TB , CB, eB, kB ) of c-e-SuP:

(4.12)
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(4.13)

This construction can be done in time polynomial in the size 'of the given instance of

e-SUP. To see that this reduction is a many-one reduction, it has to be shown that

the given instance of e-SUP has a solution ¢:> the constructed instance of c-e-SUP has

a solution.

[=;.J (If e-SUP = ((Yes"! then c-e-SUP = ((Yes")

Suppose the given instance of e-SUP has a solution. This implies that there is a table,

f (T) that is k-anonymous and the total number of suppressed entries in f (T) is at

most eA. Let eact be the actual number of suppressed entries in f(T) and Cact be

the actual number of columns where suppressed entries occur in f(T). Substitute eB

from (4.13) into (4.14) to obtain (4.15):

eact ::; eA

eact ::; eB

and substitute CB from (4.12) into (4.16) to obtain (4.17):

Cact ::; CB

(4.14)

(4.15)

(4.16)

(4.17)

As there exists a table f (T) that is k-anonymous, the total number of suppressed en­

tries in f(T) is at most eB (Equation 4.15), and suppressed entries can only occur in at

70



most CB columns (Equation 4.17), the constructed instance of c-e-SuP has a solution.

[¢::] (If c-e-SuP = "Yes", then e-SUP = "Yes") '.

Suppose the constructed instance of c-e-SUP has a solution. Thi~ implies that there is

a table, f(T) that is k-anonymous and the total number of suppressed entries in f(T)

is at most eB. Let eact be the actual number of suppressed entries in f(T). Substitute

eA from (4.13) into (4.18) to obtain (4.19):

eact ::; eB

eact ::; eA

(4.18)

(4.19)

As there exists a table f (T) that is k-anonymous and the total number of suppressed

entries is at most eA (Equation 4.19), the given instance of e-SUP has a solution.

TYPE 4 [X-DEL::;m x-y-X] (x E {r,c,r-c},y E {e,r',c'},X E {SUP,PART}): This

type of reduction occurs when any deletion problem reduces to its suppression or

partition counterparts. The basic idea of the reduction is to either set e, r', or c' to

be the maximum number of suppressed entries allowed within the specified restricted

location, so that this constructed instance is identical to deleting rows and/or columns

in the given instance (see Figure 4.1 (d)). The following is the template reduction

and its proof of correctness:

Lemma 4.1.4 c-DEL ::;m c-e-SUP

Proof: (Proof by restriction) Given an instance (TA, CA, kA) of C-DEL, construct the
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following instance (TB CB, eB, kB ) of c-e-SUP:

(4.20)

(4.21)

This construction can be done in time polynomial in the size of the given instance of

c-DEL. To see that this reduction is a many-one reduction, it has to be shown that

the given instance of c-DEL has a solution {:} the constructed instance of c-e-SUP has

a solution.

[=:>] (If c-DEL = "Yes JJ then c-e-SUP = "Yes")

Suppose the given instance of c-DEL has a solution. This implies that there is a table,

f(T) that is k-anonymous and suppressed entries in f(T) can only occur in deleted

columns. Let Caet be the actual number of deleted columns in f(T). Substitute CB

from (4.20) into (4.22) to obtain (4.23):

Caet ~ CB

(4.22)

(4.23)

Now, take (4.24) below and multiply both sides by nA to get (4.25). Substitute eB

from (4.21) into (4.25) to obtain (4.26):

(4.24)

(4.25)

(4.26)
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As there exists a table f (T) that is k-anonymous, the total number of suppressed en-

tries in f(T) is at most eB (Equation 4.26), and suppressed entries can only occur in at

most CB columns (Equation 4.23), the constructed instance of c-e-8UP has a solution.

[<=] (If c-e-8UP = "Yes", then c-DEL = "Yes")

Suppose the constructed instance of c-e-8UP has a solution. This implies that there is

a table, f(T) that is k-anonymous, the total number of suppressed entries in f(T) is

at most eB, and suppressed entries can only occur in at most CB columns. Let Cact be

the actual number of columns where suppressed entries can occur in f (T). Substitute

CA from (4.20) into (4.27) to obtain (4.28):

(4.27)

(4.28)

Therefore, there exists a table f (T) that is k-anonymous and suppressed entries can

only occur in at most CA columns. Using the construction in Lemma 3.3.11, if f(T)

is transformed into f(T), by deleting a subset of CA columns, then f(T), is also k­

anonymous. As there exists a table f(T), that is k-anonymous, suppressed entries

only occur in at most CA columns (Equation 4.28), and the CA columns are deleted

columns (Lemma 3.3.11), the given instance of c-DEL has a solution.

Observe that all template reductions are either by restriction (Lemmas 4.1.1, 4.1.3,

and 4.1.4) or quasi-restriction (Lemma 4.1.2). This is an important fact that will be

exploited later in Section 5.1.1.
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4.1.2 Reduction Web

Recall from Section 2.1.4.2 that the fourth task in analyzing a family of problems is

to create a reduction web. To accomplish this' task, this section first performs the
~

third task by systematically acquiring all reductions between I?roblems in the family

through modification of the template reductions from Section 4.1.1. For each type

of reduction, it is explained how to modify the instance construction and proof of

correctness (see Lemmas 4.1.1, 4.1.2, 4.1.3, and 4.1.4) to obtain new reductions and

their proofs of correctness. Each modification is listed in point-form and is either

a substitution (keyword change) or addition (keyword add) to the template proof.

Notice that the modifications follow the same subscript naming convention as was

described in the last section. In most cases, the modification is simply a substitution

or addition to the instance construction and consequent obvious wording changes in

the associated proof of correctness are omitted. The only modifications for correctness

proofs that are explicitly stated involve specific equations and lemmas.

The rest of this section is outlined as follows: for each reduction type described in

the last section, a list of modification items is given, as well as a table that summarizes

the related reductions and their required modifications. The resulting reduction web

is discussed thereafter.

TYPE 1: Modifications (Summary in Table 4.1)

• A: This modification has two parts: (1) change rB = 0 from Equation 4.1 to

rB = r A, and (2) change Equation 4.2 from CB = CA to CB = O. This is necessary

because the orientation is changed from columns to rows.
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• B: Because there is a need to suppress up to e entries instead of suppressing all

entries, add eB = eA.

• C: Because there is a need to suppress up to r' entries per row instead of

suppressing all entries, add r~ = r~.

• D: Because there is a need to suppress up to c' entries per column instead of

suppressing all entries, add c~ = c~.

• E: Because these are partition problems instead of deletion problems, add PB =

PA ·

TYPE 2: Modifications (Summary in Table 4.2)

• F: Because the suppressed entries are now restricted to c columns, add CB = CA.

• G: Because the suppressed entries are now restricted to r rows, add rB = r A.

• H: This modification has four parts: (1) change Equation 4.7 from c~ = c~ to

r~ = r~, (2) change the construction of TB to be an (nA + kA ) x rnA table,

where the last nA rows of TB is table TA and every entry in the first kA rows

of TB is a new symbol <> rt ~, (3) change PB = {PI,P2} so that PI contains

the first kA rows of TB and P2 contains the last nA rows of TB , and (4) change

Lemma 3.3.9 to Lemma 3.3.10. This is necessary because the orientation is

changed from columns to rows.
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Table 4.1: Summary of Type 1 Many-One Reductions

Template Type Reduction Modifications

C-DEL :::;m r-c-DEL

.

r-DEL :::;m r-c-DEL ! A

c-e-SUP :::;m r-c-e-SuP B

r-e-SuP :::;m r-c-e-SuP A, B

c-r'-SUp :::;m r-c-r'-Sup C

r-r'-Sup :::;m r-c-r'-SuP A, C

c-c'-sup :::;m r-c-c'-suP D

r-c'-sup :::;m r-c-c'-suP A, D

c-r'-PART :::;m r-c-r'-PART C, E

r-r'-PART :::;m r-c-r'-PART A, C, E

c-c'-PART :::;m r-c-c'-PART D, E

r-c'-PART :::;m r-c-c'-PART A, D, E

Table 4.2: Summary of Type 2 Many-One Reductions

Template Type Reduction Modifications

c'-sup :::;m c'-PART c-c'-suP :::;m c-c'-PART F

r-c'-Sup :::;m r-c'-PART G

r-c-c'-SuP :::;m r-c-c'-PART F, G

r'-Sup :::;m r'-PART H

c-r'-Sup :::;m c-r'-PART F, H

r-r'-Sup :::;m r-r'-PART G, H

r-c-r'-Sup :::;m r-c-r'-PART F, G, H
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TYPE 3: Modifications (Summary in Table 4.3)

• I: Because the orientation is changed from columns to rows, change Equa-

tion 4.12 from Cs = rnA to rs = nA·

• J: Because the suppressed entries are now restricted to the union of r rows and
j

c columns instead of just c columns, add rs = nA.

• K: This modification has two parts: (1) change Equation 4.13 from es = eA

to c's = c~ and (2) change Equation 4.14 from eact :S eA to c~ax :S c~' This is

necessary because there is a need to suppress up to c' entries per column instead

of suppressing up to e entries anywhere.

• L: This modification has two parts: (1) change Equation 4.13 fromes = eA to

r's = r~ and (2) change Equation 4.14 from eact :S eA to r~ax :S r~. This is

necessary because there is a need to suppress up to r' entries per row instead

of suppressing up to e entries anywhere.

• M: Because these are partition problems instead of deletion problems, add

TYPE 4: Modifications (Summary in Table 4.4)

• N: Because there is a need to suppress up to c' entries per column instead of

suppressing up to e entries anywhere, change Equation 4.21 from es = CA x nA

• 0: This modification has three parts: (1) change the construction of Ts to an

nA x (rnA + 1) table, where the last rnA columns of Ts are the rnA columns of
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Table 4.3: Summary of Type 3 Many-One Re'd~ctions

Template Type Reduction Modifications

e-SUP ~m c-e-SUP e-SUP ~m r-e-SUP

e-SuP ~m r-c-e-SuP

c'-SUP ~m c-c'-sup K

c'-SUP ~m r-c'-sup I, K

c'-SUP ~m r-c-c'-suP J, K

r'-Sup ~m c-r'-Sup L

r'-Sup ~m r-r'-Sup I, L

r'-Sup ~m r-c-r'-Sup J, L

c'-PART ~m c-c'-PART K, M

c'-PART ~m r-c'-PART I, K, M

c'-PART ~m r-c-c'-PART J, K, M

r'-PART ~m c-r'-PART L, M

r'-PART ~m r-r'-PART I, L, M

r'-PART ~m r-c-r'-PART J, L, M
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TA and every entry in the first column of TB is a new symbol <> tI. E, (2) add

PB = {PI, P2} so that PI contains the first column of TB and P2 contains the

last mA columns of TB , and (3) add Le?1ma 3.3.9. This is necessary because

the reduction is to a partition problem instead of a sUPliPression problem and it

has a column orientation.

• P: This modification has three parts: (1) change the construction of TB to an

(nA + kA ) x mA table, where the last nA rows of TB is table TA and every entry

in the first kA rows of TB is a new symbol <> tI. E, (2) add PB = {PI,P2} so that

PI contains the first kA rows of TB and P2 contains the last nA rows of TB and,

(3) add Lemma 3.3.10. This is necessary because the reduction is to a partition

problem instead of a suppression problem and it has a row orientation.

• Q: Because there is a need to suppress up to r' entries per row instead of

suppressing up to e entries anywhere, change Equation 4.21 from eB = CA x nA

to r's = CA·

• R: This modification has two parts: (1) change Equation 4.12 from CB = CA

to rB = r A and (2) change Lemma 3.3.11 to Lemma 3.3.12. This is necessary

because the orientation is changed from columns to rows.

• S: Because the orientation is changed from columns to rows, change Equa­

tion 4.21 from eB = CA x nA to eB = r A x mAo

• T: Because the orientation is changed from columns to rows and there is a need

to suppress up to c' entries per column instead of suppressing up to e entries

anywhere, change eB = CA x nA from Equation 4.21 to c's = r A.
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• U: Because the orientation is changed from columns to rows and there is a

need to suppress up to r' entries per row instead of suppressing up to e entries

anywhere, change Equation 4.21 from etJ = CA x nA to r~ = mAo

• V: Because the suppressed entries are now restricted to the union of r rows and

C columns instead of just C columns, change Equation 4.21 from es = CA x nA

to es = CA x nA + r A x mA - CA x r A.

• W: This modification has two parts: (1) add rs = r A and (2) add Lemma 3.3.12.

This is necessary because the suppressed entries are now restricted to the union

of r rows and C columns instead of just C columns.

The resulting many-one reduction web is pictured in Figure 4.2. otice that not all

reductions summarized in Tables 4.1,4.2,4.3, and 4.4 are included in the web; recall

from Section 2.1.4.2 that in order to complete the fourth task, it suffices to include

all problems in the web and enough reductions so that the numbers of intractability

and tractability roots are minimized. From the resulting web, e-sup, C-DEL, c'-sup,

r-DEL, and r'-Sup are the intractability roots. In the next section, we reduce known

NP-complete problems to these problems.

4.1.3 Supplementary Reductions

During a back-and-forth analysis within task five, it was discovered that one of the

roots of intractability, namely r-DEL, was actually tractable (see Section 4.3). Before

dealing with algorithms though, this section accomplishes part of the fifth task in

analyzing a family of problems by establishing the supplementary reductions from
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Table 4.4: Summary of Type 4 Many-One Ret1uctions

Template Type Reduction Modifications

c-DEL ~m c-e-SuP c-DEL ~m c-c'-suP N

c-DEL ~m c-c'-PART N, °
c-DEL ~m c-r'-sup Q

C-DEL ~m c-r'-PART P, Q

r-DEL ~m r-e-SuP R, S

r-DEL ~m r-c'-Sup R, T

r-DEL ~m r-c'-PART 0, R, T

r-DEL ~m r-r'-Sup R, U

r-DEL ~m r-r'-PART P, R, U

r-c-DEL ~m r-c-e-SuP N, V

r-c-DEL ~m r-c-c'-SuP V, W

r-c-DEL ~m r-c-c'-PART 0, V, W

r-c-DEL ~m r-c-r'-Sup U, V

r-c-DEL ~m r-c-r'-PART P, U, V
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Figure 4.2: Many-One Reduction Web. Selected reductions.

intractable problems for the left-hand side of the reduction web.

In this section, there are four supplementary reductions, accompanied by illustra-

tive examples for the first and fourth reductions (Figures 4.3 and 4.4, respectively).

The first reduction below is due to Meyerson and Williams [31]; however, it is restated

here for a couple of reasons:

1. There is a mistake (see footnote on page 85) in the conference proceedings [31].

2. The restatement is cleaner and more amenable to reuse in subsequent reduc-

tions. For example, a simple modification to the instance construction of the

first reduction provides the second and third reductions in this section. Actu-
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ally, the second reduction is also due to Meyerson and Williams [31]; however

they give an unnecessarily complicated proof sketch. The simplicity of both

their proofs of correctness is illustrated in their conference presentation [30],

where it is also obvious that the problem they call k-q'IMENSIONAL PERFECT

MATCHING is actually the following NP-complete problem used in this section.

EXACT COVER BY 3-SETS (x3c) [16, SP2]

Instance: A set X with IXI = 3q and a collection G of 3-element subsets of X.

Question: Does G contain an exact cover for X, i. e., a subcollection G' ~ G such

that every element of X occurs in exactly one member of G'?

The fourth supplementary reduction could not avail of previous work and instead

uses the following restricted version of PARTITION INTO TRIANGLES [16, GTll] (The

N P-completeness of this restricted problem is noted on Page 2 of [21]):

RESTRICTED PARTITION INTO TRIANGLES (RPT)

Instance: A graph G = (V, E) that has no cliques of size ~ 4, with IVI = 3q for

a positive integer q.

Question: Can the vertices of G be partitioned into q disjoint sets VI, V2 , • .. , Vq ,

each containing exactly 3 vertices, such that for each Vi = {Ui, Vi, wd,

1 ::; i ::; q, all three of the edges {Ui, Vi}, {Ui, Wi}, {Vi, Wi} belong to E?
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Constructed Instance of e-SUP

Transform 11
2 ·0

• "Ixi t--t----t-------It--+----t

1
+------m=ICI -----.

____Apply e-SUPT withk=3

Instance of X3C

X={1,2,3,4,5,6}

C={{1,2,3},

{1,4,5},

{4,5,6},

{2,3,6}}

X3Chas~
a solution-.-

e-SUPhas
a solution ..

e=IXI<ICI-l)

{1,2,3}

{1,2,3}

{1,4,5}

{1,4,5}

{4,5.6}

{4,5,6}

{2,3,6}

{2,3,6}

Figure 4.3: 3c ~m e-SUP. Adapted from Meyerson and Williams' conference pre­
sentation [30].

Lemma 4.1.5 x3c ~m e-SuP [31, Theorem 3.1}

Proof: Given an instance (X, C) of x3c, construct the following instance (T, e, k)

of e-SUP:

k

IXI(ICI-l) (4.29)

(4.30)

Construct T as follows. Let the rows of T correspond to the elements of X and let
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the columns of T correspond to the elements of C. Entry eij is defined1 as:

{

0 ifi E j

eij = i othe;wise ~

Without loss of generality, assume that there are no repeated ~-sets in C. This con-

struction can be done in time polynomial in the size of the given instance of x3c. To

see that this reduction is a many-one reduction, it has to be shown that the given

instance of x3c has a solution ¢:> the constructed instance of e-SUP has a solution.

[~] (If x3c = ((Yes") then e-SUP = ((Yes")

Suppose the given instance of x3c has a solution. This implies that there is a col-

lection C' of 3-sets such that every element of X occurs in exactly one member of

C'. Transform T into f(T) as follows: for each of the IXI rows, keep the zero entry

corresponding to the element in C' that contains the row and make all other C - 1

entries of that row suppressed entries, resulting in exactly IXI(ICI - 1) suppressed

entries in total (i.e., the number of rows multiplied by exactly ICI - 1 suppressed

entries per row). Furthermore, notice that X (and therefore the rows of f (T)) can

be partitioned into groups of size 3 corresponding to the elements of C'. In f (T),

each 3-set is a k-group according to Definition 3.3.2, since each of the rows belong-

ing to a 3-set are identical: zeros in the column corresponding to the 3-set in C'

and suppressed entries everywhere else. As k = 3 (Equation 4.30), there exists a

table f(T) that is k-anonymous and the total number of suppressed entries in f(T)

is at most e (Equation 4.29); hence, the constructed instance of e-SUP has a solution.

1Meyerson and Williams incorrectly stated "1 otherwise" instead of "i otherwise" in their con­
ference paper [31]; the proof as stated in the original technical report was correct [29].
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[¢=] (If e-SUP = aYes") then x3c = aYes")

Suppose the constructed instance of e-SuP has..a solution. This implies that there is a

table, f(T) that is 3-anonymous (Equation 4.30) and the total number of suppressed

entries in f(T) is at most IXI(ICI - 1) (Equation 4.29). Ob erve, however, that a

group of 3 rows must have at least (ICI - 1) suppressed entries per row in order for

the group to become identical (follows from ei,j = i if i tf. j and the fact that there

are no repeated 3-sets in C). This implies that e must equal exactly IXI(ICI - 1)

and each row in f(T) must have exactly (ICI - 1) suppressed entries and therefore

one zero. As each row's zero entry corresponds to the 3-set which contains it, the

k-partition of f(T) is a partition of X into 3-sets from ICI; hence, the given instance

of x3c has a solution.

Corollary 4.1.6 x3c ::::m c-DEL [31) Theorem 3.2}

Proof: Given an instance (X, C) of x3c, construct the following instance (T, c, k)

of c-DEL:

ICI-~
3

(4.31)

(4.32)

Construct T the same way it was constructed in the proof of Lemma 4.1.5, except

define entry eij as:

eij = {
if i E j

otherwise
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Without loss of generality, again assume that there are no repeated 3-sets in C. This

construction can be done in time polynomial in the size of the given instance of x3c.

To see that this reduction is a many-one reduct~on, it has to be shown that the given

instance of x3c has a solution ¢::> the constructed instance of ~-DEL has a solution.

[=>J (If x3c = "Yes", then c-DEL = "Yes")

Suppose the given instance of x3c has a solution. This implies that there is a collec­

tion C' of 3-sets such that every element of X occurs in exactly one member of C'.

Transform T into f(T) as follows: for each of the ICI columns, delete the column if

it is not an element of C'. Notice that X (and therefore the rows of f (T)) can be

partitioned into groups of size 3 corresponding to the elements of C'. In f(T), each

3-set is a k-group according to Definition 3.3.2, since each of the rows belonging to

a 3-set are identical: O's in the column corresponding to the row's 3-set in C', 1's in

the column corresponding to another 3-set in C', and suppressed entries everywhere

else. As k = 3 (Equation 4.32), there exists a table f(T) that is k-anonymous after

deleting columns; hence, the constructed instance of c-DEL has a solution.

[¢::J (If c-DEL = "Yes", then x3c = "Yes")

Suppose the constructed instance of c-DEL has a solution. This implies that there is

a table, f(T) that is 3-anonymous (Equation 4.32) and the total number of deleted

columns in f(T) is at most ICI-lfl (Equation 4.31). Observe, however, that columns

not deleted in f(T) must be those which have O's corresponding to the row's 3-set

in C' and 1's corresponding to other 3-sets in C' (follows from the definition of ei,j

and the fact that there are no repeated 3-sets in C). As a k-partition of f(T) is a
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partition of X into 3-sets from IGI, the given instance of x3c has a solution.

Corollary 4.1.7 x3c ~m r'-sup

4

Proof: Given an instance (X, G) of x3c, construct the follo';ing instance (T, r', k)

of r'-Sup:

r' IGI-1

Construct T the same way it was constructed in the proof of Lemma 4.1.5. Observe

that in this proof, the constructed instance of e-SUP has a solution if and only if there

are exactly (IGI - 1) = r' suppressed entries per row. As the constraint on r' is thus

implicit in the proof of correctness of Lemma 4.1.5, the reduction here is correct as

well.

Lemma 4.1.8 RPT ~m e'-Sup

Proof: Given an instance (G, q) of RPT, G = (V, E), construct the following instance

(T, e', k) of c'-suP:

e' IVI-3 (4.33)

ote that by definition, G is simple and has no complete subgraph with 4 vertices.

We construct T as follows. Let both the rows and the columns of T correspond to

the 3q vertices of G. Entry eij is defined as:
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Instance of RPT

RPThas.
a solution

c'-SUPhas
a solution

Constructed Instance of c'-SUP

.------m=IVI -----..

___APPlY c'-SUPT withk=3

..
c'=IVI-3

Figure 4.4: RPT ~m c'-SUP.
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eij = { 0 if (edge {i,j} exists) or (i = j)

i otherwise

Notice that T is effectively an adjacency matrix [18, Section·10.3] for G in which
~

an entry has value i instead of 1 when an edge exists betwe~n two vertices. This

construction can be done in time polynomial in the size of the given instance of RPT.

To see that this reduction is a many-one reduction, it has to be shown that the given

instance of RPT has a solution ¢:} the constructed instance of c'-sup has a solution.

[=>] (If RPT = "Yes", then c'-sup = "Yes")

Suppose the given instance of RPT has a solution. This implies that there is a collec-

tion of q disjoint triangles. Consider any triangle (with a, b, and c as the vertices).

Transform T into f(T) by making each entry in row Xi and column ai, i E {a, b, c}, a

suppressed entry, except the following block of 9 entries: eaa,eab,eac,eba,ebb,ebc,eca,ecb,ecc'

f(T) then has IVI - 3 suppressed entries in each column and all other entries are ze-

ros; that is, q groups of k = 3 rows are identical. As we have a table f(T) that is

k-anonymous and the total number of suppressed entries per column in f(T) is at

most c' (Equation 4.33), the constructed instance of c'-suP has a solution.

[<=] (If c'-sup = "Yes", then RPT = "Yes")

Suppose the constructed instance of c'-suP has a solution. This implies that there

is a table, f (T) that is 3-anonymous and the total number of suppressed entries per

column in f(T) is at most IVI - 3. Because f(T) is 3-anonymous, the size of any

k-group is at least k = 3 and at most 2k - 1 = 5. As T is constructed so that
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entry values other than zero in each row are different, entry values in at least 3 rows

can only match if they are equal to zero. Since there can be at most c' = IVI - 3

suppressed entries per column, it follows that t:Q.ere must be at least 3 zeros in every

column and hence 3 zeros in every row (rows and columns have tIDe same set oflabels).

Therefore, each k-group has a block of at least 3 x 3 = 9 zero~'1 Notice that as T is

essentially an adjacency matrix, a block of 9 zeros in T defines a triangle in G. For

example, a k-group containing rows a, b, and c would have zeros for entries eaa,eab,

and eac in column a, eba,ebb, and ebc in column b, and eca,ecb, and ecc in column c.

As a larger block of zeros would imply that G must contain a subgraph which is a

complete graph on 4 vertices, the number of suppressed entries in each column must

be exactly IVI - 3 and the size of each k-group must be exactly 3. Therefore, the

rows of f(T) (and hence the rows of T) are necessarily partitioned into n/3 k-groups.

As this implies that V is partitioned into !V!/3 = q triangles, the given instance of

RPT has a solution.

4.2 Intractability Results

Contrary to what one would expect, this section is very short and sums up all in­

tractability results in one theorem:

Theorem 4.2.1 All k-Anonymity-based decision problems defined in this thesis, ex­

cept r-DEL, are NP-complete.

Proof: Proofs of N P-hardness follow from the the polynomial-time many-one re­

ductions from Section 4.1.2, the reducibility properties of Lemma 2.1.14, the N P-
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completeness of x3c [16, SP2] and RPT [21, Page 2], and the supplementary reductions

given in Lemmas 4.1.5,4.1.8 and Corollaries 4.1.6,4.1.7. Note that given a suppres-

sion scheme and a set of constraints for any ?f these problems, the solution can be

verified in polynomial-time. As all problems are therefore in NP, this completes the

proof.

Corollary 4.2.2 r-DEL is the only k-Anonymity-based decision problem defined in

this thesis that has a polynomial-time algorithm, unless P=NP.

Proof: Follows Theorem 4.2.1, the fact that PcNP unless P=NP [16, page 33],

and the fact that a problem that is hard for one class cannot have a polynomial-time

algorithm from a lower class unless P=NP [46, page 14].

4.3 Algorithms

The fifth and final task in the analysis of a family of problems is to find tractable and

intractable problems. Given the intractability results from the previous section, i.e.,

all problems (except r-DEL) are intractable, a polynomial-time algorithm for r-DEL

is described. Unfortunately, as r-DEL is not a tractability root (see Figure 4.2), this

does not propagate tractability results to any other problems in the web. In fact,

given that all other problems are NP-complete, the best exact algorithms one could

hope for (except r-DEL) run in exponential-time2
. The exponential-time algorithms

for each of the reduction web's three tractable roots (i.e., r-c-e-SuP, r-c-r'-PART, and

2We know that such exponential-time algorithms exist because for any problem A E NP, there
exists a polynomial p such that A can be solved by a deterministic algorithm having time complexity
O(2P(n)) [16, Theorem 2.1].
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r-c-c'-PART) and their time complexities are also described in this section. In doing

so, a tighter upper bound is established on the exponential nature of the family of

problems.

Lemma 4.3.1 r-DEL is solvable in O(nmlogn) time.

Proof: Consider the following algorithm: Given an n x m table T, sort T, scan T

row-wise to look for at least k - 1 other rows that are identical to the current row,

backtrack and mark a total of at most k - 1 rows if a group of k identical rows is not

found, and scan T again to check if there are at most r marked rows. This process

runs in time = (sort time) + (scan time) + (r-check time) = O(nmlogn) +O(nm) +

O(nm) = O(nmlogn).

This algorithm is essentially a checking routine. Observe that there is only one possi-

ble suppression scheme for any particular instance of r-DEL. This is the distinguishing

characteristic that makes r-DEL polynomial-time solvable; the above checking routine

underlies the exponential-time algorithms described below for other k-Anonymity-

based problems, in which all possible suppression schemes are generated and checked.

The asymptotic worst-case time complexity analyses for each of those algorithms use

the following fact from the sum of the elements in the i th row of Pascal's triangle:

Therefore, when h ::; i:
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Due to the complicated nature of problems involving unions of rows and columns,

when analyzing the complexity of these problems, we split each suppression scheme

over a union-selection into two pieces, ensuring that any given suppression scheme is

not generated and hence counted in the analysis more than o~e. Figure 4.5 gives an

abstract view of how suppression schemes are split for each arl.~lyses.

(a)

(b)

r-c-e-SUP

t

~= x

.. m-c ...

t
~ e-x

(c)

t

~=

t

~= x

.. m-c ...

{~

Figure 4.5: Splitting Suppression Schemes to Analyze Time Complexity. This figure
demonstates how to reorder and split suppression schemes into two parts in order to
simplify the task of determining the total number of possible suppression schemes for
(a) r-c-e-sup, (b) r-c-r'-PART, and (c) r-c-c'-PART.
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Lemma 4.3.2 r-c-e-SuP is solvable in O(n2m23nm ) time.

Proof: Consider the following algorithm: Given an n x m table T, generate all

the possible ways to select a union of r rows and c columns fr<jm T. For each union-

selection, split it into two pieces as shown in Figure 4.5 (a). G~~erate all the possible

ways to suppress up to x = min(nc, e) entries from the first piece and for each of these

suppression schemes, generate all the possible ways to suppress up to x' = min(r(m-

c), e-x):S e-x entries from the second piece. Notice that nc+r(m-c):s e:S nm.

Sort each of the above suppression schemes over the combination of both pieces, and

scan each sorted scheme to see if it satisfies k-Anonymity. This process runs in time

= (# possible rows) (# possible columns) (# possible suppression schemes) (sort fj

scan time), which is

(;) (~) C~") (:cr
n<1t'-x ("(mx~c))) O(nmlogn)

S (;) (~) (~(:c)'~:) (r(~~ c
J) ) O(nmlogn)

:S (nT)(mC)(2nc2T(m-c))O(nmlogn)

:S 2nm+n+mO(nmlogn)

O(n2m23nm )
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Lemma 4.3.3 r-c-r'-PART is solvable in O(n2m23nm ) time.

Proof: Consider the following algorithm: Given an n x m table T and a row

partition P = {Pl,P2," . ,Pi}, add two new columns al and a2 to T. Column al will
4

contain the number of suppressed entries in each row and cohlmn a2 will contain the

index of the partition member from P that each row belongs to. Generate all the

possible ways to select a union of r rows and c columns from T. For each union-

selection, split it into two pieces as shown in Figure 4.5 (b). For each row Xi in the

first piece, select up to r' entries out of m possible entries and record the number of

suppressed entries for row Xi in entry eil' Similarly, given each of these first-piece

selections, for each row in the second piece, select min(c, r') possible entries and

record the number of suppressed entries for row Xi in entry eil' Sort each of the

above suppression schemes over the combination of both pieces, and scan each sorted

scheme to see if it satisfies k-Anonymity. If this scheme does satisfy k-Anonymity,

then for each row Xi, scan P and record the index of the partition member from P

that Xi belongs to in entry ei2. Sort a2 and use it with al to see if the maximum

number of suppressed entries for any row in partition member Pj is no more than

the minimum number of suppressed entries for any row in partition member Pj+l.

Notice that IPI ~ n, r ~ n, and c ~ m. As checking for a utility-partition takes

time O(nIPI) + O(nlogn) + O(n) ~ O(n2
), this process runs in time = (# possible

rows) (# possible columns) (# possible suppression schemes) [(sort & scan time) +

96



(utility-partition check time)], which is

G) (~) ((~ (7))' c~r'~~) r-') [O(nmlogn)+O(n')]

S (;) (~) ((~ (7))' (t G) f}o(nm;ogn)+o(n')]

::; (nr)(mC
) (2mr 2c(n-r)) [O(nmlogn) + O(n2)]

::; (2n)(2m) (2nm2nm) [O(nm log n) + O(n2
)]

::; 22nm+n+m[O(m(nlogn)) + O(n2)]

::; 23nm [O(mn2
) + O(n2

)]

o(n2m23nm )

Lemma 4.3.4 r-c-c'-PART is solvable in O(n2m223nm) time.

Proof: Consider the following algorithm: Given an n x m table T and a column

partition P = {PI,P2,'" ,PI}, add two new rows Xl and X2 to T. Row Xl will contain

the number of suppressed entries in each column and row X2 will contain the index of

the partition member from P that each column belongs to. Generate all the possible

ways to select a union of r rows and c columns from T. For each union-selection, split

it into two pieces as shown in Figure 4.5 (c). For each column ai in the first piece,

select up to c' entries out of n possible entries and record the number of suppressed

entries for column ai in entry eli. Similarly, given each of these first-piece selections,

for each column in the second piece, select min(r, c') possible entries and record

the number of suppressed entries for column ai in entry eli. Sort each of the above
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suppression schemes over the combination of both pieces, and scan each sorted scheme

to see if it satisfies k-Anonymity. If this scheme does satisfy k-Anonymity, then for

each column ai, scan P and record the index pf the partition member from P that

ai belongs to in entry e2i. Sort X2 and use it with Xl to see if4the maximum number

of suppressed entries for any column in partition member p~ is no more than the

minimum number of suppressed entries for any column in partition member Pj+l.

Notice that IPI :S m, r :S n, and c :S m. As checking for a utility-partition takes

time O(mIPI) +O(mlogm) +O(m) :S O(m2), this process runs in time = (# possible

rows) (# possible columns) (# possible suppression schemes) [(sort f3 scan time) +

(utility-partition check time)], which is

(;) (7) ((~(7)rC~d G))m-,) [O(nmlogn) + O(m')]

~ (;) (7) ((~(7)r(~G) r-}o(nm log n) + O(m')]

:S (nT)(mC
) (2nc2T(m-c)) [O(nmlogn) + O(m2)]

:S (2n)(2m) (2nm2nm ) [O(nmlogn) + O(m2)]

Theorem 4.3.5 All NP-complete k-Anonymity-based decision problems have asymp-

totic worst-case time complexity O(n2m2212nm).

Proof: Observe that a reduction in the Utility-Preserving k-Anonymity family of
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problems is either by restriction or quasi-restriction. For each restriction reduction

A ~m B, the nB xmB table TB in the constructed instance of problem B is identical to

the nA x mA table TA from the given instance ?f problem A. If the asymptotic worst­

case time complexity of B is only in terms of nB and mB, A hits the same asymptotic

worst-case time complexity. Recall from Section 4.1.1 that q"}lasi-restriction reduc­

tions are required when non-partition problems reduce to partition problems, which is

the case for all Type 2 reductions and for several Type 4 reductions. For each quasi-

restriction reduction A ~m B, if A and B are column-oriented, then mB = mA + 1,

and if A and B are row-oriented, then nB = nA + kA, where kA is the k-Anonymity

factor for the given instance of A. These quasi-restrictions only occur when suppres-

sion or deletion problems reduce to partition problems. Furthermore, only one such

reduction appears on any path from a tractability root to an intractability root in

the polynomial-time many-one reduction web (Figure 4.2). Given the above restric-

tion and quasi-restriction properties and the asymptotic worst-case time complexity

for tractability roots from Lemmas 4.3.2, 4.3.3, and 4.3.4, and k ~ n, all Utility­

Preserving k-Anonymity problems are solvable in O((n + k)2(m + 1)223(n+k)(m+l)) =

O(n2m 223(2n)(m+l)) = O(n2m226nm+6m)) = O(n2m2212nm).

4.4 Discussion

This chapter was devoted to systematically proving reductions and summarizing tra-

ditional complexity results for the family of problems defined in Chapter 3. As these

results are specific to suppression (special case of generalization; see Section 2.2.2), the

most natural direction for future research is to extend these results to generalization.
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The following is a list of other possible future research:

• Section 4.3 identifies the only existing polynomial-time solvable k-Anonymity-

based problem, namely r-DEL. Recall that the solution for an instance of this

problem is derived by deleting patient records which ttre not identical to at
I

least k - 1 other records. As this solution provides a dataset that may not be

representative of the entire patient population, it may not be useful for all types

of research; however, given that all proposed k-Anonymity-based problems are

NP-complete, the existence of this polynomial-time solvable problem provides

insight into how one might refine the frontier of intractability.

• Theorem 4.3.5 states that all NP-complete k-Anonymity-based decision prob-

lems have asymptotic worst-case time complexity O(n2m2212nm). Note that if

aspects nand m are small in practice, then these algorithms would run nearly in

polynomial-time. As n is the number of patient records in a table, it is unlikely

that this aspect is small; however, the number of released attributes, m, is very

likely to be small in practice. Futhermore, the time complexity expression for

any particular problem may not need to be exponential purely in nand m; it

may be exponential in other aspects that are small in practice. For example,

it may be exponential in k, which is usually a small constant (around 5 or

6) [31, Section 4]. Such research would most naturally fit into the framework of

Parameterized Complexity (see [12, 14, 32] for good overviews).

While the reductions in this section were relatively simple, as a collection, they prove

to be a powerful tool. This will be substantiated in the next chapter, where approxi-

mate solutions for Utility-Preserving k-Anonymity are analyzed.
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Chapter 5

Approximate Solutions

This chapter analyzes the approximation complexity of optimization versions of the

problems defined in Chapter 3 using the family-analysis framework proposed in Sec­

tion 2.1.4.2. The power of this new family-analysis framework becomes apparent

here; as the many-one reduction web from the last chapter was structured to permit

multiple types of complexity results for selected problems to propagate through the

family, many of the following results were obtained with minimal additional effort.

Section 5.1 addresses the first four family-analysis tasks, Sections 5.2 and 5.3 address

the fifth family-analysis task, and Section 5.4 discusses the results obtained and future

research.

5.1 Reductions

Adhering to the same process as Chapter 4, by the end of this section, the first

four tasks of analyzing a family of problems will be complete. The family-analysis

framework proposed in Section 2.1.4.2 allows the many-one reduction types from
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Section 4.1.1 to be reused in Section 5.1.1 and the many-one reduction web from

Section 4.1.2 to be reused to lay the foundation for a metric reduction web and an L­

reduction web in Section 5.1.2. In Section 5.1.~, supplementary reductions and their

proofs of correctness are given for intractability roots of th~se two new reduction

webs.

5.1.1 Template Reductions

This section uses the same four basic types of reductions previously described in

Chapter 4 (see Section 4.1.1 for details and naming conventions):

• TYPE 1 [x-y-X :Smr-c-y-X] (x E {r, c}, y E {e, r', c'}U¢, X E {DEL,SUP,PART})

• TYPE 2 [x-y-SUP:Sm x-y-PART] (x E {r,c} U ¢,y E {r',c'})

• TYPE 3 [y-X :Smx-y-X] (x E {r,c,r-c},y E {e,r',c'},X E {SUP,PART})

• TYPE 4 [X-DEL:Sm x-y-X] (x E {r,c,r-c},y E {e,r',c'},X E {SUP,PART})

Given that the template many-one reductions from Section 4.1.1 are either by restric-

tion or quasi-restriction, the following is true:

Lemma 5.1.1 The following metric reductions and L-reductions are correct:

• TYPE 1: MIN-COST-C-DEL = r-MIN-COST-C-DEL, MIN-c-DEL :SL r-MIN-c-DEL

• TYPE 2: MIN-COST-c'-SUP = MIN-COST-C'-PART, MIN-C'-SUP:SL MIN-c'-PART

• TYPE 3: MIN-COST-e-SUP = C-MIN-cosT-e-sup, MIN-e-SUP :SL c-MIN-e-SUP

• TYPE 4: MIN-COST-C-DEL = e-MIN-COST-C-SUP, MIN-c-DEL :SL e-MIN-c-SUP
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Proof: Follows from the many-one restriction or quasi-restriction reductions (Lem­

mas 4.1.1, 4.1.2, 4.1.3, and 4.1.4), and the f~ct that these reductions are trivially

metric reductions and L-reductions (Lemma 2.1.17).

Note that to preserve the correctness of these reductions, the costs which are being

minimized in both problems must be the same, i. e., the variables immediately to the

right of MIN or MIN-COST in each problem's name must be the same. To see why,

take MIN-c-DEL ~L e-MIN-C-SUP as an example. Even though a proof of correctness

may exist for MIN-c-DEL ~L e-MIN-c-SUP, a proof of correctness may not necessarily

exist for MIN-c-DEL ~m c-MIN-e-SUP.

5.1.2 Reduction Web

Recall from Section 4.1.2 that the fourth task in the family-analysis framework is to

create a reduction web. To accomplish this task, we first perform the third task

by systematically acquiring all L-reductions between pairs of minimization prob­

lems belonging to the problem family, which correspond to the many-one reduc­

tions (all by either restriction or quasi-restriction) summarized in Section 4.1.2. In

this way, L-reductions with a = f3 = 1 are easily derived and their proofs of cor­

rectness follow from Lemma 2.1.17. Summaries of these L-reductions are given in

Tables 5.1, 5.2, 5.3, 5.4 and the resulting L-reduction web is shown in Figure 5.1.

All possible minimization problems are included in the web; however, only enough

L-reductions are included so that the number of (in)tractability roots are minimized.
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Table 5.1: Summary of Type 1 L-reductions

Template Type Reduction

MIN-C-DEL 5:L r-MIN-c-DEL MIN-r-DEL 5:L C-NfIN-r-DEL

4
C-MIN-e-SUP 5:L r-c-MIN-e-SUP

r-MIN-e-SUP 5:L r-C-MIN-e-SUP

C-MIN-r'-SUp 5:L r-C-MIN-r'-SUp

r-MIN-r'-SUP 5:L r-C-MIN-r'-SUp

C-MIN-c'-SUP 5:L r-C-MIN-C'-SUP

r-MIN-C'-SUP 5:L r-C-MIN-c'-SUP

C-MIN-r'-PART 5:L r-C-MIN-r'-PART

r-MIN-r'-PART 5:L r-C-MIN-r'-PART

C-MIN-C'-PART 5:L r-C-MIN-c'-PART

r-MIN-C'-PART 5:L r-C-MIN-c'-PART

e-MIN-c-SUP 5:L r-e-MIN-c-SUP

e-MIN-r-SUP 5:L c-e-MIN-r-SUP

r'-MIN-C-SUP 5:L r-r'-MIN-C-SUP

r'-MIN-r-SUP 5:L c-r'-MIN-r-SUP

r'-MIN-C-PART 5:L r-r'-MIN-C-PART

r'-MIN-r-PART 5:L c-r'-MIN-r-PART

C'-MIN-C-SUP 5:L r-C'-MIN-C-SUP

C'-MIN-r-SUP 5:L c-c'-MIN-r-SUP

C'-MIN-C-PART 5:L r-C'-MIN-C-PART

C'-MIN-r-PART 5:L c-c'-MIN-r-PART
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Table 5.2: Summary of Type 2 L-reductio~s

Type Reduction

MIN-c'-SUP 5:.£ MIN-c'-PART C-MIN-C'-SUP 5:.£ C-MIN-C'-PART

r-MIN-C'-SUP 5:.£ r-MIN-c'-PART

r-C-MIN-c'-SUP 5:.£ r-c-MIN-c'-PART

MIN-r'-SUp 5:.£ MIN-r'-PART

C-MIN-r'-SUp 5:.£ c-MIN-r'-PART

r-MIN-r'-SUp 5:.£ r-MIN-r'-PART

r-C-MIN-r'-SUp 5:.£ r-c-MIN-r'-PART

C'-MIN-C-SUP 5:.£ C'-MIN-C-PART

c'-MIN-r-SUP 5:.£ c'-MIN-r-PART

r-C'-MIN-C-SUP 5:.£ r-c'-MIN-C-PART

r'-MIN-c-SUP 5:.£ r'-MIN-C-PART

r'-MIN-r-SUP 5:.£ r'-MIN-r-PART

r-r'-MIN-C-SUP 5:.£ r-r'-MIN-C-PART

C-C'-MIN-r-SUP 5:.£ C-C'-MIN-r-PART

c-r'-MIN-r-SUP 5:.£ c-r'-MIN-r-PART
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Table 5.3: Summary of Type 3 L-reductio:h~

Template Type Reduction

MIN-e-SUP ~L c-MIN-e-SUP
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MIN-e-SUP ~L r-MIN-e-SUP

MIN-e-SUP ~L r-c-MIN-e-SUP

MIN-c'-SUP ~L C-MIN-c'-SUP

MIN-c'-SUP ~L r-MIN-c'-SUP

MIN-c'-SUP ~L r-c-MIN-c'-SUP

MIN-r'-SUp ~L c-MIN-r'-Sup

MIN-r'-sup ~L r-MIN-r'-SUp

MIN-r'-SUp ~L r-c-MIN-r'-SuP

MIN-c'-PART ~L C-MIN-c'-PART

MIN-C'-PART ~L r-MIN-c'-PART

MIN-c'-PART ~L r-c-MIN-c'-PART

MIN-r'-PART ~L c-MIN-r'-PART

MIN-r'-PART ~L r-MIN-r'-PART

MIN-r'-PART ~L r-c-MIN-r'-PART
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Table 5.4: Summary of Type 4 L-reductions

Type Reduction

MIN-C-DEL 5:£ e-MIN-C-SUP
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MIN-C-DEL 5:£ C'-}\1IN-C-SUP

MIN-c-DEL 5:£ c'-MIN-C-PART

MIN-C-DEL 5:£ r'-MIN-C-SUP

MIN-C-DEL 5:£ r'-MIN-C-PART

MIN-r-DEL 5:£ e-MIN-r-SUP

MIN-r-DEL 5:£ c'-MIN-r-SUP

MIN-r-DEL 5:£ C'-MIN-r-PART

MIN-r-DEL 5:£ r'-MIN-r-SUP

MIN-r-DEL 5:£ r'-MIN-r-PART

r-MIN-c-DEL 5:£ r-e-MIN-C-SUP

r-MIN-c-DEL 5:£ r-c'-MIN-C-SUP

r-MIN-c-DEL 5:£ r-c'-MIN-C-PART

r-MIN-c-DEL 5:£ r-r'-MIN-C-SUP

r-MIN-c-DEL 5:£ r-r'-MIN-C-PART

C-MIN-r-DEL 5:£ c-e-MIN-r-SUP

c-MIN-r-DEL 5:£ C-C'-MIN-r-SuP

C-MIN-r-DEL 5:£ C-C'-MIN-r-PART

c-MIN-r-DEL 5:£ c-r'-MIN-r-SUP

C-MIN-r-DEL 5:£ c-r'-MIN-r-PART
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Figure 5.1: L-reduction Web. Selected reductions.

108



"

Note that there are many more problems (and hence, reductions) in this web

than there were in the many-one reduction web. This is because a decision problem

like r-c-e-SUP actually has three correspondin.g minimization problems, namely r­

cMIN-e-sup, r-eMIN-C-SUP, and c-eMIN-r-SUP. Similarly, thiS4 decision problem has

three corresponding optimal-cost evaluation problems. The/~-reductions between

pairs of minimization problems above also apply to similarly-named metric reductions

between pairs of optimal-cost evaluation problems (i.e., replace MIN with MIN-COST).

As the metric reduction web can be easily derived from the L-reduction web by name

replacment, it is not explicitly given here.

In order to complete the fourth task, it suffices to include all problems in the

web and enough reductions so that the numbers of intractability and tractability

roots are minimized. From the resulting web, MIN-e-sup, MIN-C-DEL, MIN-c'-SUP, and

MIN-r'-SUp are the intractability roots l
. In the next section, we give three sets of

polynomial-time approximation intractability results for these roots.

5.1.3 Supplementary Reductions

This section accomplishes part of the fifth task in the family-analysis framework

by establishing supplementary reductions into the left-hand side of the metric re-

duction and L-reduction webs. Recall the NP-complete decision problems used in

the supplementary many-one reductions of the previous chapter, namely EXACT

COVER BY 3-SETS (x3c) and RESTRICTED PARTITION INTO TRIANGLES (RPT).

We use the following optimization problem counterparts for these decision problems:

1Although MIN-r-DEL is in the position of a root, minor changes to the polynomial-time algorithm
for its associated decision problem, r-DEL, gives an efficient optimal-solution algorithm for MIN-r-DEL

(see Lemma 4.3.1).
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BOUNDED MAXIMUM 3-SET PACKING (MAX 3sp-B) [22]

Instance: A set X with IXI = 3q and a collection C of 3-element subsets of X

and every element x E X is contained in at most B subsets in C.

Solution: The largest packing of X, i.e., a subcollection of ~utually disjoint sets

C'~C.

BOUNDED MAXIMUM TRIANGLE PACKING (MAX TP-B) [22]

Instance: A graph G = (V, E) that has no cliques of size 2: 4, with IVI = 3q for

a positive integer q.

Solution: The largest triangle packing of G, i.e., a subcollection of mutually dis­

joint sets V' ~ V, each set containing exactly 3 vertices, such that for

each Vi = {Ui, Vi, Wi}, 1 ::; i ::; q, all three of the edges {Ui, vd, {Ui, Wi},

{Vi, Wi} belong to E.

Johnson [21, Section 2] describes in more detail how partitioning, covering, and pack­

ing problems are often closely related. In fact, Kann [22] originally called the above

packing problems (MAX 3sp-B and MAX TP-B) covering problems.

Lemma 5.1.2 The following are metric reductions:

1. MAX-COST 3sp-B = 3(~_1)MIN-COST-e-sup

2. MAX-COST 3sp-B = 3(:-1) MIN-COST-r'-SUP

3. MAX-COST 3sp-B = m-MIN-COST-c-DEL

4. MAX-COST 3sp-B = 1 - 3m + ~MIN-COST-C'-SUP
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Proof: For any k-Anonymity-based problems, let nand m be the rows and columns

of a table, respectively.

Proof of (1): For any given instance x of MAX 3sp-B, construct instance R(x) of

MIN-e-SUP the same way as in Lemma 4.1.5. The cost of an~ $olution y of R(x) is

the total number of possible entries to suppress minus the entries corresponding to

3-sets packed into G', i.e., cesup = nm - 3Cmax3sp-B. The metric reduction follows

from this equation and optimal solutions OPTmax3sp-B = 1and 0 PTesup = n(m - 1)

(i. e., when all elements in set X of instance x are packed into G').

Proof of (2): For any given instance x of MAX 3sP-B, construct instance R(x) of MIN­

r'-sup the same way as in Corallary 4.1.7. The cost of any solution y of R(x) is the

total number of possible entries to suppress per row minus the entries corresponding to

3-setspacked into G', such that for the optimal case Cr'sup = m-1 when Cmax3sp-B = l'

The metric reduction follows from these optimal solutions (i.e., when all elements in

set X of instance x are packed into G').

Proof of (3): For any given instance x of MAX 3sp-B, construct instance R(x) of

MIN-c-DEL the same way as in Corallary 4.1.6. The cost of any solution y of R(x)

is the total number of possible columns to suppress, which corresponds to 3-sets not

packed into G', i.e., Ccdel = m - Cmax3sp-B. The metric reduction follows directly from

this equation (optimal solutions OPTmax3sp-B = 1and OPTesup = m-1 occur when

all elements in set X of instance x are packed into G').

Proof of (4): For any given instance x of MAX TP-B, construct instance R(x) of

MIN-c'-SUP the same way as in Lemma 4.1.8. The cost of any solution y of R(x) is
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the total number of possible entries to suppress per column minus the entries corre-

sponding to triangles packed into G, such that for the optimal case Ce' sup = n - 3

when cmaxtp-B = ~, i.e., the following metric r.eduction is correct MAX-COST TP-B

= (MIN-COST-C'-SUP +3)/3. Substituting this into the metricueduction MAX-COST

sp3-B = MAX-COST TP-B-3m [16, page 68] completes the prbof.

Figure 5.2 gives an abstract view of the proof of correctness for the next reduction.

Constructed Instance of MIN-c-DEL

Instance of MAX 3SP-B

X={l,2,3A,S,6}

C={{l,2,3},
{lA,S},
{4,S,6},
{2,3,6}}

Solutionfor..
MAX3SP-B

C'={{1,2,3},
{4,5,6}}

{l,Z,3} {l,4,S} {4,S,I} {2,3,1}

f··c••·f 1 1

• o~IXI t---t-----t----t---+----------I

1
...------m=lq-----+

•

Apply
MIN-c-DEL

with k=3

{l,Z,3} {l,4,S} {4,S,I} {2,3,1}

functiong

Figure 5.2: MAX 3sp-B ~m MIN-c-DEL.
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Lemma 5.1.3 MAX 3sp-B 5:£ MIN-c-DEL with a = (B - 1) and {3 = 1.

Proof: Given an instance x = (X, C) of MAX 3sP-B, let function f transform x

into an instance f(x) = (T, k) of c-DEL in the following way:

k = 3 (5.1)

Construct T as follows: let the n rows of T correspond to the elements of X =

{Xl, X2,"" x n } (n = IXI) and let the m columns of T correspond to the elements of

C= {CI' C2,"" cm} (m = ICI). Entry eij is defined as:

{

0 if Xi E Cj

eij = 1 otherwise

Without loss of generality, assume that there are no repeated 3-sets in C. Now it

must be shown that if the given instance of MAX 3sp-B has a solution, then a solution

also exists for the constructed instance of MIN-c-DEL.

Suppose the given instance of MAX 3sp-B has a solution. This implies that there is a

collection C' of 3-sets such that every element of X occurs in exactly one member of

C'. Transform T into f(T) as follows: for each of the ICI columns, delete the column

if it is not an element of C'. otice that X (and therefore the rows of f(T)) can be

partitioned into groups of size 3 corresponding to the elements of C'. In f (T), each

3-set is a k-group according to Definition 3.3.2, since each of the rows belonging to

a 3-set are identical: O's in the column corresponding to the row's 3-set in C', 1's in

the column corresponding to another 3-set in C', and suppressed entries everywhere
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else. As k = 3 (Equation 5.1), there exists a table f(T) that is k-anonymous after

deleting columns, hence the constructed instance of MIN-c-DEL has a solution.

For any instance x of MAX 3sp-B and for any" solution y for lnstance f (x) of MIN­

~

C-DEL, let 9 be a function which transforms y into a solution ~(x, y) for MAX 3sp-B

by setting 0' to be the collection of labels for columns not deleted in y. Clearly

the transformations f and 9 can be done in time polynomial in the size of the given

instance of MAX 3sp-B.

To complete this proof, the following must be shown:

1. OPT3sp- B :S a(OPTedel )

2. IOPTcdel - cedell :S (3(IOPT3sp- B - C3sp-B!)

Since MAX 3sp-B is a maximization problem and MIN-c-DEL is a minimization prob-

lem, (2) can be rewritten as: OPT3sp- B - C3sp-B :S (3(Cedel - OPTedel ). Note the

following facts that will be useful in the proofs of (1) and (2) below:

• n= IXI.

• m= 101.

• The optimal solution for MAX 3sp-B is when all elements of X are packed into.

0', i.e., OPT3sp- B = ~.

• Given instance f(x), the optimal solution for MIN-C-DEL is also when all elements

of X are packed into 0', i. e., °PTedel = m - ~.

• 101 :S B(OPT3sp- B) [22, Proof of Corollary 5].
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• C3sp-B = m - Ccdel is always true since the cost for any given instance of 3sp-

B corresponds to the number of columns not deleted and the cost for any

constructed instance of c-DEL correspon~s to the number of deleted columns

out of a total of m columns.

Proof of (1):

Proof of (2):

OPTcdel
n

m- 3
ICI-~

3
IXI

::; B(OPT3sp- B ) - 3

::; B(OPT3sp- B ) - OPT3sp- B

::; (B - 1)(OPT3sp- B ) (5.2)

oPT3sp- B - C3sp-B ::; j3( Ccdel - 0 PTcdel )

C3sp-B 2:: 0 PT3sp- B - j3(Ccdel - 0 PTcdel )

m-ccdel 2:: oPT3sp- B - j3( Ccdel - 0 PTcdel )

2::
IXI

m- Ccdel 3 - j3(Ccdel - OPTcdel )

n
m-ccdel 2:: 3 - j3(Ccdel - OPTcdel )

m- Ccdel 2:: ~ - j3(Ccdel- (m - ~))

n n
m - Ccdel- 3 2:: -j3(Ccdel - m + 3)

n n
- (Ccdel - m + 3) 2:: -j3(Ccdel - m + 3)

By the above, ex = (B - 1) and j3 = 1, completing the proof.
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We speculate that L-reductions MAX 3sP-B::;mMIN-e-sup and MAX 3sp-B::;mMIN-

r'-Sup do not exist because their associated supplementary metric reductions in

Lemma 5.1.2 have non-constant multiplicative. terms. For example, consider MAX

3sp-B::;mMIN-e-sup and its associated metric reduction MAX-C~ST 3sp-B = 3(~-1) MIN-

I

COST-e-SUP. In the proof of correctness for this L-reduction, the ,equation OPTesup ::;

a (OPTmax3sp-B) , would require that constant a = 3(~-1)' We could substitute

B(OPT3sp- B) in for m, but that would result in a squared term. As L-reduction

MAX TP-B::;mMIN-C'-Sup has an associated metric reduction with a constant multi-

plicative term, it may be correct; however, as the cost Ctp-B cannot not be stated in

terms of cc'sup, the equation IOPTtp- B - ctp-BI ::; ,6(IOPTc'sup - cc'suPI) is difficult to

solve for ,6.

5.2 Intractability Results

Theorems and corollaries in this section give the first algorithm-independent polynomial-

time approximation intractability results for k-Anonymity-based problems.

Theorem 5.2.1 All k-Anonymity-based NP-hard optimal-cost evaluation problems

are OptP[O(logn)]-hard.

Proof: Follows from the polynomial-time metric reductions in Section 5.1.2, the re-

ducibility property of Lemma 2.1.15, the OptP[O(logn)]-completeness of MAX 3sp [45,

page 88], and the supplementary reductions given in Lemma 5.1.2.

Corollary 5.2.2 No k-Anonymity-based N P-hard optimization problem has a polynomial-

bounded absolute approximation algorithm unless P=NP.

116



I·'

Proof: Follows Theorem 5.2.1 and the fact that no OptP[O(logn)]-hard optimal-

cost evaluation problem can have a polynomial-bounded absolute approximation al­

gorithm unless P=NP [45, Theorem 39].

Theorem 5.2.3 No k-Anonymity-based N P-hard optimization problem can have an

FPTAS algorithm unless P=NP.

Proof: Follows from the fact that all these k-Anonymity-based optimization prob-

lems are polynomially bounded (i.e., given instance x, which includes an n x m table

T, no solution for x that minimizes e, r', c, or c' can have a cost greater than nm, m,

m, n, respectively) and the fact that no N P-hard polynomially bounded optimization

problem belongs to the class FPTAS unless P=NP [7, Theorem 3.15].

We can can find an even better lower bound on possible approximation algorithms

for several k-Anonymity-based problems in the following theorem:

Theorem 5.2.4 All k-Anonymity-based.NP-hard optimization problems branching

out from MIN-c-DEL (including MIN-C-DEL) in the L-reduction web (Figure 5.1) are

APX-hard.

Proof: Follows from the polynomial-time L-reduction in Section 5.1.2, the reducibil-

ity properties of Lemma 2.1.16, the APX-completeness of MAX 3sp-B (the actual

statement of APX-completeness for this problem is dispersed throughout the Com-
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ment section of Ausiello et al. [7, SP2]), and the supplementary reduction given in

Lemma 5.1.3.

Corollary 5.2.5 No k-Anonymity-based N P-hard optimization problem branching

out from MIN-c-DEL (including MIN-C-DEL) in the L-reductiorll web (Figure 5.1), has

a PTAS algorithm unless P=NP.

Proof: Follows Theorem 5.2.4, the fact that PTAScAPX unless P=NP [11,

Theorem 6], and the fact that a problem that is hard for one class cannot have an

approximation algorithm from a lower class unless P=NP [46, page 14].

5.3 Algorithms

The last task in the analysis of a family of problems is to find tractability results,

focusing efforts on tractability roots of tractability. At present, we have only been

able to establish polynomial-time approximation algorithms for the problems on the

left-hand side of the L..:reduction web, i.e., the intractability roots. These algorithms

either directly use or modify the best known approximation result for MIN-e-SuP,

namely the O(k)-approximate algorithm due to G. Aggarwal et al. [3].

Essentially, G. Aggarwal et al.'s algorithm is as follows (see [3, Section 6] for more

details): given a table T of MIN-e-SuP, create a weighted complete graph G = (V, E),

such that each Vi E V represents a row Xi E T and each weight w(e) of an edge

e = {u, v} is the number of attributes not in common between the rows represented

by u and v. The charge of a vertex is the number of suppressed entries in the

row which it represents. The FOREST algorithm [3, Section 6.1] produces a forest
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F = {TI , T2 , . .. , Tr } such that each tree 7i is a directed connected graph which

contains no cycles. Ti has at least k vertices and the outdegree of each vertex is

:S 1. The DECOMPOSE-COMPONENT algoritlup. [3, Section 6.2] breaks any 7i with

17i1 > 3k - 3 into two components of size 2 k. The resulting forest is a (3k - 3)­

approximate algorithm for MIN-e-SUP.

Lemma 5.3.1 [3, Theorem 3j MIN-e-SUP has a polynomial-time O(k)-approximate

algorithm.

Proof: As details are relevant for subsequent corollaries and lemmas, a proof

sketch (see [3, Theorem 3] for a complete proof) is stated here. Let E(7i), V(7i)

respectively denote the set of arcs and vertices in tree 7i. The charge on any vertex

v E V(7i) is at most the total weight of the tree, i.e., W(7i) = 2:eEE(TI) w(e).

This upper bound is correct since any attribute for which two rows differ appears

on the path between the two vertices that represent those rows. This means that

cesup:S 2:i(I7iIW(Ti)). Since the size of the largest 7i in F is no more than 3k - 3,

cesup :S 2:i((3k - 3)W(7i)) = (3k - 3)(2:i W(Ti)). By construction of the forest,

the cost of any feasible forest divided by the total weight of the forest can be no

more than the largest tree in the forest, i.e., cesup/ 2:i W(7i) :S OPTesup; hence,

2:i W(Ti) :S OPTesup and therefore cesup :S (3k - 3)(OPTesup ). As this proves that

the cost will always be at most 3k - 3 times the optimal solution's cost, this is a

o(k )-approximate algorithm.
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Corollary 5.3.2 MIN-r'-Sup has a polynomial-time O(n)-approximate algorithm.

Proof: Given the algorithm in [3, Section 6] and that Li W(7i) ::; OPTesup from

Lemma 5.3.1, let OP~esup be the average number of suppressed fntries per row, which

is less than or equal to the maximum number of suppressed entries per row. Therefore

OPTesup ::; n(OPTr ,sup ) and Li W(7i) ::; n(OPTr ,sup ). The cost for any instance of

MIN-r'-SUp is the maximum number of suppressed entries per row in that solution,

which must be ::; max(W(7i)) ::; Li W(7i); hence, cr /sup ::; (n)(OPTr ,sup ). As this

proves that the cost will always be at most n times the optimal solution's cost, this

is a O(n)-approximate algorithm.

Corollary 5.3.3 MIN-c' -sup has a polynomial-time O(mk)-approximate algorithm.

Proof: Given the algorithm in [3, Section 6] and that cesup ::; (3k-3)(OPTesup ) from

Lemma 5.3.1, let oP;;sup be the average number of suppressed entries per column,

which is less than or equal to the maximum number of suppressed entries per column.

Therefore OPTesup ::; m(OPTc' sup ). The cost for any instance of MIN-c'-SUP is the

maximum number of suppressed entries per column in that solution, which cannot

be more than the total number of suppressed entries, i.e., cc/sup ::; cesup ::; (3k­

3) (OPTesup ); hence, cc/sup ::; m(3k - 3) (OPTc' sup ). As this proves that the cost will

always be at most mk times the optimal solution's cost, this is a O(mk)-approximate

algorithm.
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Corollary 5.3.4 MIN-C-DEL has a polynomial-time O(n)-approximate algorithm.

Proof: Given the algorithm in [3, Section 6], make the following modification: on

I

each edge e = {u, v} E E, along with w(e), record the set~· of attributes Suv that

vertices u and v have in common. For example, if u and v Ihjave attributes al, a2,

and as in common from the set of all m attributes A = {al' a2, a3, a4, as}, then

all common attributes of tree Ti . Notice that as the cost of any solution to MIN-

C-DEL Cedel = m - Ini S(Ti)l, w(e) = m - Suv, and m - Ini S(7i)1 :s; Li W(7i),

Cedel :s; Li W(7i). Because a deleted column is a column with suppressed entries

in all n entries, the optimal solution for MIN-e-SUP OPTesup :s; n(OPTedel ). Recall

from [3, Section 6] that Li W(Ti) :s; OPTesup:S; n(OPTedel ). Given this equation and

the one above, Cedel :s; n(OPTedel ). As this proves that the cost will always be at most

n times the optimal solution's cost, this is a O(n)-approximate algorithm.

5.4 Discussion

This chapter was devoted to systematically proving reductions and summarizing ap-

proximation complexity results for the family of problems defined in Chapter 3. Find-

ing approximation algorithms for problems on the right-hand of the L-reduction web

and extending results to generalization problems are the most natural directions for

future research. The following is a list of other possible future research:

• Section 5.2 reveals the sort of heuristic approaches to k-Anonymity to stay away

from. Recall from Section 2.2.2 that MIN-C-DEL is the optimization-suppression
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counterpart to one of the basic k-Anonymity problems studied in the literature,

namely SOL-k-ANONYMITY ON ATTRIBUTES [39]. As MIN-c-DEL does not have

a PTAS and is a special case of (and henGe, reduces to) MIN-k-ANONYMITY ON

ATTRIBUTES, MIN-k-ANONYMITY ON ATTRIBUTES does riot have a PTAS either.

I

This may have implications for the heuristic algorithms p oposed in the litera-

ture for k-Anonymity-based problems (e.g., [8, 15,20,44,47]). These heuristics

need closer examination and more work is required to prove APX-hardness

for the other intractability roots, starting with MIN-e-SuP, to investigate if any

work proposed so far for k-Anonymity has a PTAS.

• Corollary 5.3.4 gives a O(n)-approximate solution for MIN-c-DEL. As n is very

large in practice and Meyerson and Williams [30, page 19] conjecture that there

is an O(k)-approximate solution for this problem, a better algorithmic approach

than the one taken in this corollar may exist .

• Section 5.3 provides algorithms that put their associated optimization problems

in poly-APX; however, the APX-hardness result from Section 5.2 only classifies

the problem as not being in PTAS. A future task is to close this gap for all

k-Anonymity-based problems (i. e., for each of these problems, either prove poly-

APX-hardness, or give an approximation algorithm that will always provide a

solution whose cost is at least a constant factor of the optimal cost, thereby

placing the associated optimization problem in APX).

In the literature, the focus has been minimizing the number of suppressed entries

e. Figure 5.1 displays many open optimization problems that have not been ana-

lyzed. Although it has been shown for k-Anonymity-based problems that minimizing
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the number of columns e is not a viable option, perhaps problems which minimize

other aspects, such as the number of suppressed entries per row r' or the number

of suppressed entries per column e' , may be good alternatives. Moreover, to date,

optimization problems which maximize k have not been consfdered at all.
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Chapter 6

ConcIusions

In this thesis, the problem of preserving personal health information privacy in our

growing digital society has been discussed. The concept of a k-anonymous release of

this information has been proposed in the literature as a privacy-preserving solution.

All known k-Anonymity reseach to date has been unified, so that this thesis may

be used as a concrete reference for future research. This thesis shows that previous

k-Anonymity-based solutions lack sufficient ability to meet specific researcher needs.

To this end, new Utility-Preserving k-Anonymity-based problems have been defined,

which better capture the tradeoff between ensuring patient privacy and providing

researchers with worthwhile data.

Also, a framework for systematically analyzing the complexity of a family of re­

lated problems has been proposed. Many results for k-Anonymity-based problems

are systematically derived through this analysis, including two of particular interest:

(1) the first known polynomial-time solvable k-Anonymity-based problem and (2)

the first known algorithm-independent polynomial-time approximation intractability

124



results for k-Anonymity-based problems.

There are many open k-Anonymity-based problems. Future research particular

to traditional and approximation complexity theory has already been described in

Sections 4.4 and 5.4, respectively. The following is a list of otper potential avenues

of research.

• Investigate alternate formulations of k-Anonymity-based problems related to

clustering problems on strings (see [13] for a good overview of the area), using

some concept of distance between rows in a database table (e.g., Hamming

distance) .

• Investigate new utility-preserving k-Anonymity heuristics. Heuristics that may

be of particular interest are those which only compute the cost. For example,

a problem whose solution answers the question "What is the k-level?" may

be solvable in polynomial time. Results for optimal-cost evaluation problems

would have real implications for privacy advisor technologies; perhaps optimal

solutions are not even required (e.g., research by Krentel [24]).

Finally, it must be remembered that all complexity results derived here are for

suppression-only versions of Utility-Preserving k-Anonymity problems. As suppres­

sion is a special case of generalization (see Section 2.2.2), all hardness results also

apply for their corresponding generalization versions; however, it is very unlikely that

the optimal- and approximate-solution algorithms given in Sections 4.3 and 5.3 apply

directly in a similar fashion. Hence, another direction for future research is estab­

lishing the precise degree of approximate-solution tractability of the generalization

versions of the problems treated in this thesis.
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Appendix A

Utility-Preserving k-Anonymity

Problem Definitions

This appendix gives the definitions for the new family of solution problems described

in Section 3.3.2. An abstract overview of these problems is illustrated in Figure 3.4.

SOL-e-SUPPRESSION (soL-e-sup)

Instance: An n x m table T over an alphabet ~ and positive integers e and k.

Solution: Any k-anonymous table f(T) that has at most e suppressed entries.

SOL-r'-SUPPRESSION (soL-r'-sup)

Instance: An n x m table T over an alphabet ~ and positive integers r', k.

Solution: Any k-anonymous table f(T) that has at most r' suppressed entries per

row.
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SOL-r'-PARTITION (SOL-r'-PART)

Instance: An n x m table T over an alphabet ~, a row partition P

{Pl,P2, ... ,Pl} of T, and positive ·ntegers r', k.

Solution: Any k-anonymous table f(T) having a row uti1ity-partition f(P)
I

{Pl,P2, ... ,Pl} (generated by applying P to f(T)) such that there are

at most r' suppressed entries per row in Pl.

SOL-e'-SUPPRESSION (SOL-e'-SUp)

Instance: An n x m table T over an alphabet ~ and positive integers e', k.

Solution: Any k-anonymous table f(T) that has at most e' suppressed entries per

column.

SOL-c'-PARTITION (SOL-c'-PART)

Instance: An n x m table T over an alphabet ~, a column partition P

{Pl,P2, ... ,Pl} of T, and positive integers e', k.

Solution: Any k-anonymous table f(T) having a column utility-partition f(P) =

{Pl,P2, ... ,Pl} (generated by applying P to f(T)) such that there are

at most e' suppressed entries per column in Pl.
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SOL-r-DELETION (soL-r-DEL)

Instance: An n x m table T over an alphabet ~ and positive integers r, k.

Solution: Any k-anonymous table f (T) such that suppressed entries only occur

in at most r deleted rows.

SOL-r-e-SUPPRESSION (SoL-r-e-sup)

Instance: An n x m table T over an alphabet ~ and positive integers r, e, k.

Solution: Any k-anonymous table f(T) that has at most e suppressed entries

such that the suppressed entries only occur in at most r rows.

SOL-r-r'-SUPPRESSION (SOL-r-r'-SUp)

Instance: An n x m table T over an alphabet ~ and positive integers r, r', k.

Solution: Any k-anonymous table f(T) that has at most r' suppressed entries per

row such that the suppressed entries only occur in at most r rows.

SOL-r-r'-PARTITION (soL-r-r'-PART)

Instance: An n x m table T over an alphabet ~, a row partition P

{Pl,P2, ... ,PI} of T, and positive integers r, r', k.

Solution: Any k-anonymous table f(T) having a row utility-partition f(P)

{Pl,P2, ... ,PI} (generated by applying P to f(T)) such that there are

at most r' suppressed entries per row in PI and the suppressed entries

only occur in at most r rows.
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SOL-r-e'-SUPPRESSION (soL-r-e'-sup)

Instance: An n x m table T over an alphabet'2:: and positive !integers r, e', k.
4

Solution: Any k-anonymous table f(T) that has at most e' suppressed entries per

column such that the suppressed entries only occur in at most r rows.

SOL-r-e'-PARTITION (soL-r-e'-PART)

Instance: An n x m table T over an alphabet 2::, a column partition P

{Pl,P2, ... ,pz} of T, and positive integers r, e', k.

Solution: Any k-anonymous table f(T) having a column utility-partition f(P) =

{Pl,P2, ... ,pz} (generated by applying P to f(T)) such that there are at

most e' suppressed entries per column in pz and the suppressed entries

only occur in at most r rows.

SOL-e-DELETION (soL-e-DEL)

Instance: An n x m table T over an alphabet 2:: and positives integers e and k.

Solution: Any k-anonymous table f (T) that has at most e deleted columns1 .

SOL-e-e-SUPPRESSION (SOL-e-e-sup)

Instance: An n x m table T over an alphabet 2:: and positive integers e, e, k.

Solution: Any k-anonymous table f(T) that has at most e suppressed entries

such that the suppressed entries only occur in at most e columns.
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SOL-c-r'-SUPPRESSION (soL-c-r'-sup)

Instance: An n x m table T over an alphabet ~ and positive,integers c, r', k.

Solution: Any k-anonymous table f(T) that has at most r' suppressed entries per

row such that the suppressed entries only occur in at most c columns.

SOL-c-r'-PARTITION (soL-c-r'-PART)

Instance: An n x m table T over an alphabet ~, a row partition P

{PI, P2, ... ,pz} of T, and positive integers c, r', k.

Solution: Any k-anonymous table f(T) having a row utility-partition f(P)

{PI,P2, ... ,Pz} (generated by applying P to f(T)) such that there are

at most r' suppressed entries per row in pz and the suppressed entries

only occur in at most c columns.

SOL-C-c'-SUPPRESSION (SOL-C-c'-SUp)

Instance: An n x m table T over an alphabet ~ and positive integers c, c', k.

Solution: Any k-anonymous table f (T) that has at most c' suppressed entries

per column such that the suppressed entries only occur in at most c

columns.
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SOL-C-c'-PARTITION (SOL-C-c'-PART)

Instance: An n x m table T over an alphabet ~, a column partition P

{Pl,P2, ... ,Pl} ofT, and positive i~tegers c, c' , k.

Solution: Any k-anonymous table f(T) having a column utillity-partition f(P) =

{Pl,P2, ... ,Pl} (generated by applying P to f(T)) Jl\ch that there are at

most c' suppressed entries per column in Pl and the suppressed entries

only occur in at most c columns.

SOL-r-c-DELETION (soL-r-c-DEL)

Instance: An n x m table T over an alphabet ~ and a positive integers r, c, k.

Solution: Any k-anonymous table f (T) such that suppressed entries only occur

in a region defined by the union of at most c deleted columns and at

most r deleted rows.

SOL-r-c-e-SUPPRESSION (soL-r-c-e-sup)

Instance: An n x m table T over an alphabet ~ and positive integers r, c, e, k.

Solution: Any k-anonymous table f(T) that has at most e suppressed entries

such that the suppressed entries only occur in a region defined by the

union of at most c columns and at most r rows.
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SOL-r-c-r'-SUPPRESSION (SOL-r-C-r'-SUp)

Instance: An n x m table T over an alphabet ~ and positive integers r, c, r', k.

Solution: Any k-anonymous table f (T) that ~as at most r' suppressed entries per

row such that the suppressed entries only occur i~ a region defined by

the union of at most c columns and at most r roWs.

SOL-r-c-r'-PARTITION (soL-r-c-r'-PART)

Instance: An n x m table T over an alphabet ~, a row partition P

{PI, P2, ... ,PI} of T, and positive integers r, c, r', k.

Solution: Any k-anonymous table f(T) having a row utility-partition f(P)

{PI,P2, ... ,PI} (generated by applying P to f(T)) such that there are

at most r' suppressed entries per row in PI and the suppressed entries

only occur in a region defined by the union of at most c columns and

at most r rows.

SOL-r-c-c'-SUPPRESSION (SOL-r-c-c'-SUp)

Instance: An n x m table T over an alphabet ~ and positive integers r, c, c', k.

Solution: Any k-anonymous table f(T) that has at most c' suppressed entries per

column such that the suppressed entries only occur in a region defined

by the union of at most c columns and at most r rows.
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SOL-r-e-c'-PARTITION (soL-r-e-c'-PART)

Instance: An n x m table T over an alphabet l::, a column partition P

{Pl,P2,'" ,Pz} of T, and positive i~tegers r, e, e', k.

Solution: Any k-anonymous table f(T) having a column utility-partition f(P) =

{Pl,P2,'" ,Pz} (generated by applying P to f(T)) ~llch that there are at

most e' suppressed entries per column in pz and the suppressed entries

only occur in a region defined by the union of at most e columns and

at most r rows.
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