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ABSTRACT

The high gy-d ding of nitrogen fixation in

symbiotic root nodules is generally supported by a supply of
carbon compounds derived from current photosynthate of the
host plant. However, in Arachis hypogaea L (peanut) nodules,
which have oleosomes (lipid bodies) in the infected cells, the
lipid catabolism may supplement the energy supply in case of
photosynthate stress. The present investigation was undertaken
to further study oleosomic metabolism in Arachis hypogaea and
four other legumes: A. pintoi L., A. duranensis L., A.
batizocoi L. and Lathyrus maritimus L. (Bigel) (beach pea)
nodules where oleosomes are present.

The oleosomes of A. hypogaea root nodules contained
diacylglycerol (DAG), triacylglycerol (TAG), phospholipids
(PL) and oleosins. The oleosomes varied in size, electron
density and in the width of a less electron-dense peripheral
layer. Four oleosin bands having molecular weights 66.0 KD,
61.1 KD, 56.3 KD and 10.0 KD could be resolved by

polyacrylamide gel electrophoresis.
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The development of symbiosis and oleosome distribution

was studied in three wild species of Arachis i.e. A. pintoi,
A. duranensis and A. batizocoi. Oleosomes were present in the
infected cells of A. pintoi during the infection process and
before establishment of symbiosis. In A. duranensis and A.
batizocoi oleosomes persisted during symbiosis in mature
nodules. A.pintoi mature nodules were devoid of oleosomes in

infected cells, but during .

interesting feature in this species was the reversion of
spherical bacteroids into rod-forms within the confines of the
senescent nodule tissue.

Studies on the distributional pattern of oleosomes in the
root nodules of naturally growing L. maritimus (beach pea)
revealed that the pre-winter nodules were filled with large
numbers of oleosomes and amyloplasts in uninfected
interstitial and parenchyma cells. These storage organelles
could not be seen in the cells of nodule sampled during post-
winter periods before aerial shoots emerged. The results
indicate that either the oleosomes are catabolized slowly
during the winter months, to allow the nodules to survive the
extreme cold temperatures or they are rapidly mobilized just
before the growing season. The olesomes in beach pea nodules
seem to serve as storage organelles in the uninfected and

parenchyma cells and not directly related to nitrogen fixation



per se. The overwintered nodules are capable of resuming

nitrogen fixation due to the presence of persistent infection

threads with rhiozobia and many rod-shaped Rhizobium among the

senescent infected cells.
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I INTRODUCTION

I.1 General introduction

Nitrogen (N,), in its elemental gaseous form, constitutes
almost four-fifths of the world’s atmosphere (Allen and Allen,
1981). This is virtually an inexaustible supply, yet plants
and animals can not assimilate nitrogen in its free form.
Because nitrogen is an essential component of the proteins and
nucleic acids necessary for cell protoplasm, all organisms are
dependent on having it available in a form which they can
utilize. The relative stability and inertness make it
unavailable to eukaryotic organisms. Nitrogen is combined with
other elements like hydrogen and oxygen by an endergonic
reaction called nitrogen £ixation (Gallon and Chaplin, 1987).

Fixation, including industrial nitrogen fixation may be
either biological or non-biological. Biological nitrogen
fixation involves the reduction of nitrogen to ammonia
catalysed by the enzyme complex, nitrogenase in prokaryotic
organisms. Diazotrophic bacteria can £ix nitrogem at

atmospheric temperatures and pressures, whereas the Haber-

Bosch for i ial pr ion of ammonia requires
pressure of 200 atm and 800°C - data tha’ provide eloquent
testimony to the extraordinary nature of nitrogenase (Glenn

and Dilworth, 1991) . The net result of these processes is that
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nitrogen compounds are added to soil or water; these are then
assimilated by plants and microorganisms. This assimilated
nitrogen is returned to the soil on the death and decay of

these organisms. Within the soil, ammonia and nitrate are

rsibly inter le by the action of various
microorganisms. Animals are able to utilize only nitrogen
compounds which have been previously assimilated by plants.
Figure 1 depicts the simplest form of nitrogen cycle in which
combined form of nitrogen can be lost to the atmosphere by a

process known as denitrification (Gallon and Chaplin, 1987).

A ie N,

lightning

A ic

NH,, NO, NO,, N,0

Denitrification Rainfall Biological/industrial

N,-fixation

Non-Biological

processes

Plants/Animals round Symbiotic/free living
diazotrophs

Dead organic matter

L<—NO,” «—> NO,” «— NH,
Fig. 1. The nitrogen cycle (modified from Gallon and Chaplin,
1987) .



I.2 Biological nitrogen fixation
Biological nitrogen fixation involves the reduction of
nitrogen to ammonia by the enzyme complex, nitrogenase. The

overall reaction can be represented as:

N, + 3H0 ------ > 2NH, + 3/2 0, A G° = +340 kJ mol™? NH,

The standard free energy change of the reaction is
positive, indicating that the reaction requires the input of
energy. This must be ultimately derived from the oxidationm of
carbohydrates which have been produced either directly or

indirectly by ph thesis. Di ic organisms are able

to couple the oxidation of carbohydrate to the reduction of
the nitrogen (Gallon and Chaplin, 1987). There are no
nitrogen fixing higher plants nor indeed any eukaryotic
microorganisms that can £ix nitrogen. Where plants are
involved in the nitrogen-fixing process, it is as partners in
a symbiotic association with diazotrophic prokaryotes, the
latter being responsible for nitrogen fixation. In fact, the
ability to fix nitrogen seems to be exclusively the property
of a limited number of prokaryotic species, some of which are
free 1living (asymbiotic) while others fix nitrogen in

symbiotic association with plants.



I.2.1 Asymbiotic nitrogen fixation

Asymbiotic nitrogen fixation includes the diverse group
of prokaryotes, such as strict anaerobes, Clostridium;

facultative anaerobes/microaerobes, Klebsiella, Azospirillum;

obligate bes, bacter, Beijerinckia; and some cE the

trophs and pl Y tic bacteria. The nitrogen
fixation rates of free living diazotrophs are usually very
low, ranging from 0.1 to 100 kg N ha™ yr' (Boring et al.,
1988; Knowles, 1977; Waughman et al., 1981)as compared to the
symbiotic association with legumes, 30-300 kg N ha yr'* as
the requirement of plant growth (La Rue and Patterson, 1981).
The major factor limiting asymbiotic nitrogenase is carbon
energy supply.
0f these free living diazotrophs Azotobacters were the
first nitrogen- £ixing organisms found to contain more than one
type of nitrogenase enzyme (Bishop et al., 1980). The well

known mol: ni is hesized if the metal is

present in the envi. . If mol tions are
less than about 10 nM, a vanadium-based enzyme is available
for nitrogen fixation in both A. chroococcum and A. vinelandii

(Hales et al., 1986 and Robson et al., 1986). The latter
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species may synthesize a third nitrogenase under these
conditions (Jacobson et al., 1986). The other important and
unique feature of Azotobacter is their extreme tolerance to
oxygen while fixing nitrogen; mechanisms for protecting
nitrogenase against O, damage exist alongside a dependence on
aerobic metabolism for energy and growth. Additionally, the H,

evolved during nitrogen fixation can be catabolised by the

enzyme hy ( and ian, 1987).

I.2.2 Symbiotic nitrogen fixation

Nitrogen fixing symbioses fall into two main types. One
involves interactions between legumes and bacteria of the
genus Rhizobium. Only one non-legume plant, Paraspomia, a
member of family Ulmaceae has been found to form symbiotic

root nodules with Rhizobium (Trinick, 1973). The second type

involves associations non-leg angi and
the actinomycete Frankia sp. (Baker and Mullin, 1992 and
Simonet et al., 1990). Common to both legume and non-legume
symbioses is the fact that the bacteria are housed in
specialised structures called nodules. Although the wvast
majority of nodules occur on the roots of the host plant,
certain aquatic and water tolerant species of legumes develop

nodules on their stems in association with rhizobia. These
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nodules have been shown to be capable of high rates of

nitrogen fixation (Subba Rao and Yatazawa, 1984).

I.2.3 Rhizobium - legume symbiosis

Rhizobium bacteria stimulate leguminous plants to develop
root nodules, which the bacteria infect and inhabit.
Ultimately, the two organisms establish metabolic cooperation.
The bacteria reduce (fix) molecular nitrogen into ammonia,
which they export to the plant for assimilation; the plant
reduces carbon dioxide into sugars during photosynthesis and
translocates these to the root where the bacteria use them as
fuel (Long,1989) and the breakdown products, i.e. organic
acids, as metabolites that combine with ammonia.

The plant family Leguminoseae (Fabaceae) is the third
largest f£amily in the Angiosperms, with sub-families
Caesalpinoideae, Mimosoideae and Papilionoideae. The family
Fabaceae consists of about 750 genera with 16,000~ 19,000
species (Allen and Allen, 1981). The legumes are economically
important and unigue in having symbiotic associations with
nitrogen-fixing rhizobia. There is also considerable
specificity of individual strains or species of Rhizobium for

particular groups of plants, as shown in Table 1.



During a complex series of developmental steps, the
bacteria and the plants each influence such fundamental
activities as cell division, gene expression, metabolic
function and cell morphogenesis. Analyses of the bacterial

influence on these processes have led to the identification of

ise elusive that are parts of the indigenous
plant systems for signal transduction, gene regulation, cell
division and cell wall formation. The driving forces of recent
study of Rhizobium - legume symbioses include bacterial
genetics, plant molecular biology and detailed microscopy of
the bacteria - plant interaction (Long, 1989).

Table 1 Rhizobium - plant association

Rhizobium meliloti Alfalfa (Medicago)

Rhizobium leguminosarum

biovar viciae Pea (Pisum)

biovar trifolii Clover (Trifolium)

biovar phaseoli Bean (Phaseolus)
Rhizobium fredii (R. japonicum) soybean (Glycine)
Bradyrhizobium japonicum soybean (Glycine)

Rhizobium loti Lotus (Lvl:lus)



Azorhizobium caulinodans Sesbania (Sesbania)
Rhizobium NGR234 Siratro (Macroptilium)
Bradyrhizobium sp. Peanut: (Arachis),

Cowpea (Vigna),

Parasponia (Parasponia,a

non-legume)

(Roth and Stacey, 1991)
I.2.4 Rhizobium - the nitrogen fixing bacteria

Rhizobia are gram negative, rod shaped bacteria (0.5 -
0.9 ym x 1.2 - 3.0 pm), occur singly or in pairs and are
generally motile. The flagella are either peritrichous, polar
or sub-polar (Jordan and Allen, 1974). Rhizobia usually grow
over a wide range of temperatures under low oxygen tension.
They do not produce endospores. Glycogen and poly-§-
hydroxybutyric acid are formed as storage granules. Most
species of Rhizobium are specific in their association with
legumes. Rhizobia have been taxonomically grouped and
designated particular species based on a cross-inoculation
concept proposed by Fred, Baldwin and McCoy (1932) similar to
those in Table 1.

Metabolically, the genus Rhizobium can be divided into two
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broad groups. There are fast groweis and slow growers (Allen
and Allen, 1950; Elkan, 1981). Rhizo.ium isolated from legumes
of temperate origin such as R.trifolii, R. leguminosarum, R.
phaseoli and R. meliloti are designated fast growers, having
generation times of less than six hours, whereas slow growers,
such as R. japonicum and R. lupini isolated from legumes of

tropical origin, have ion times ing six hours.

Differences in carbohydrate nutrition have been reported by
several groups (Chakrabarti et al., 1981; Martinez-Drets and
Avias, 1974; Parke and Ornston, 1984; Skotnicki and Rolfe,
1977; Stowers and Eglesham, 1983). Enzymatic distinctions have
also been made (Hernandez and Focht, 1984). Enzymatic criteria
have recently been wused to establish the taxonomic
relationship of new Rhizobium germ plasm such as the stem-
nodulating Rhizobium (Stowers and Eaglesham, 1983) and fast
growing R. japonicum. Distinct biochemical properties of fast-
and slow-growing rhizobia has led Jordan (1982) to propose
that slow growing rhizobia represent a separate genus,
Bradyrhizobium.

Rhizobium genetics has been greatly advanced by

is, «r inant cloning and plasmid
transfer experiments (Denarie et al., 1981; Kondorosi and
Johnston, 1981; and Long 1984). The fast growing Rhizobium
species typically have large plasmids, one or more of which

carry symbiotic genes and are designated pSym. These vary £rom
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R. leguminosarum plasmids of about 200-300 kilobases (kb) to
the large "megaplasmids® (1200-1500 kb) of R. meliloti. In
some other symbionts, such as Bradyrhizobium, symbiotic genes
are apparently not located on plasmids. Several groups of
symbiotic genes -nod,exo,nif and f£ix- have been defined (Long,

1989).

I.2.5 Nodule initiation and development

Establishment of a nitrogen fixing symbiosis between

rhizobia and legumes is a complex developmental process that

involves ication the partners. A series
of steps involved in these process have been studied by using
bacterial genetics, microscopy and molecular biology to assay
the success of interaction.

Nodule development can be divided into stages of pre-
infection, nodule initiation and differentiation. The pre-
infection stages commence even before the host plant and its
compatible Rhizobium strain recognize each other as potential
partners on a cellular basis. Flavonoids released by the plant
serve as chemoattractants and also induce Rhizobium nod genes
product which associate with the cytoplasmic membranes of
rhizobia and appears to interact with the specific f£lavonoids

in root exudates (Maxwell and Phillips, 1990). After
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chemotaxis, rhizobia attach to the responsive root hairs
(Bhuvaneswari et al.,1380). The rhizobia attach to susceptible
root hairs via a two step attachment process (Dazzo et al.,
1984; Smit et al.,1987). First, they loosely attach to a plant
receptor via a protein on the bacterial surface known as
rhicadesin. Rhicadesin is a calcium binding protein that
appears to be common among Rhizobiaceae. Then, tighter
adherence occurs either by means of cellulose fimbrils (Smit
et al., 1987) or fimbriae (Vesper and Bauer, 1986). Often, the
rhizobia are seen to attach to the root hair in a polar or end
on favhion (Hersch, 1992). Lectins of the legume root hair
have also been implicated at these stages of infection.
However, lectins are more likely to be involved in invasion
rather than attachment of rhizobia (Kijne,1992; Roth and
Stacey,1991). Entry of bacteria appears to occur at the root
hair tip, probably because the cell wall is thinner and less
cross-linked there than elsewhere. Susceptible root hairs
deform into a number of unusual shapes after inoculation with
rhizobia, including corkscrews, branches, twists, and spirals.
A few of the deformed root hairs coil 360° and form diagnostic
curls known as ‘shepherd’s crooks’. Root hair deformation is
dependent on the presence of functional Rhizobium nod genes
(Hersch, 1992).

A sulphated and acylated tetraglucosamine glycolipid

called NodRm-1 was identified as the secreted product of the
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nod gene activity in R. meliloti (Lerouge et al., 1990).
NodRm-1 elicits root hair deformations when added in nanomolar
concentrations to asceptically grown seedlings of alfalfa.
This compound also stimulates cortical cell divisions (Roche
et al., 1991) which establish the nodule primordium (Noi;
nodule initiation). In the fast growing Rhizobium sp., the nod
genes are located on a plasmid whereas in the slow growing

Bradyrhizobium, they are 11y borne (Gyorgypal et

al., 1991).

After inducing ’shepherd’s crook’ formation, the rhizobia
penetrate the root hair cell by means of an infection thread.
An electron microscopic study (Callaham and Torrey, 1981) has
shown that rhizobia cause the dissolution of the plant cell
wall at a specific point, while others (Nutman, 1956) proposed
earlier that the infection thread forms via a process of cell
wall invagination (Pueppke, 1986) . Recent studies by Bakhuizen
(1988) support Callaham and Torrey’s observations. Following
dissolution of cell wall, the plasma membrane of root hair
invaginates, and cell wall material is deposited around it and
the rhizobia within. The host cell nucleus is attached by
microtubules to the infection thread as it passes through the
root hair cell (Bakhuizen, 1988; Lloyd et al., 1987). The
bacteria travel from host cell to host cell via the infection
thread and ite branches. However, some tropical legumes such

as Arachis (peanut) and Stylosanthes, rather promiscuous host
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plants, do not form infection threads in the root hairs,
instead they are nodulated from sites of lateral root
emergence where epidermal cracks are the points of entry into
the intercellular space; cell divisions are induced in the
cortex of emerging lateral root (Chandler, 1978 and Chandler
et al., 1982). After the preinfection stages, cortical cell
divisions take place several cells distant from the infection
thread. Cell divisions occur either in the outer or inner
cortex of the root. The type of nodule that develops depends
on the host plant, not on the rhizobial strain (Dart, 1977;
Newcomb 1981). Two major types of nodules are found on the
roots of legumes. The indeterminate type is characterized by
a persistent apical nodule meristem, while the determinate
type has diffuse meristematic activity which may cease after
a certain period. The persistent apical meristem causes
indeterminate nodules to be elongated and club-shaped because
new cells are constantly being added to the distal end of
nodule. All stages of nodule development are represented in
one nodule because an age gradient occurs from the distal
meristem to the proximal point of the attachment to the parent
root. Plants having indeterminate nodules include clover,
alfalfa and pea. In contrast, determinate nodules are
spherical. Cell divisions cease early during nodule
devzlopment and the final form of the nodule results from cell

enlargement rather than cell division. Nodules of soybean,
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mungbean and peanut are examples of determinate nodules
(Hersch 1992).

During symbiosis, the host plant expresses a certain
number of proteins specific to nodule development and nitrogen
fixation called nodulins (Legocki and Verma, 1980). Many early
nodulin genes are expressed sequentially during nodule
differentiation, and some of these genes can be induced in
nodules devoid of bacteria (Nap and Bisseling, 1990). These
studies showed that some of the early nodulins are involved in
the early infection process, whereas others participate in
root nodule morphogenesis. The late nodulin genes are
expressed concomitant with or following the release of

bacteria from the infection thread but prior to the induction

of ni and the of nitrogen fixation
(Verma and Delauney, 1988). One late nodulin, leghemoglobin,
is largely reponsible for transporting oxygen throughout the

infected region of the nodule (Appleby, 1984).

I.2.6 Internal compartmentalization

The formation of a subcellular compartment housing the
bacteria inside the infected cell is the final stage of
successful infection. The failure to form this membrane

compartment or its disintegration renders the association
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pathogenic (Werner et al., 1985). Infection by rhizobia
triggers the proliferation of the membrane system that
generates components of the peribacteroid membrane (PBM).
Continued proliferation of this membrane is essential to
enclose rhizobia so that direct contact of the bacteria with
the host cytoplasm is avoided. In soybean root nodules, almost
30 times more membrane is generated in the form of PBM than in
the form of plasma membrane (Verma et al., 1978). because the
rhizobia are enclosed whithin the PBM, the space between the
bacteria and the PBM, which is known as the peribacteroid
space, must be equilibrated with certain metabolites,
including dicarboxylic acids (used as carbon sources by
bacteroids), to eliminate the concentration gradient between
the host and the rhizobia. In a sense, this internalizes the
organism and brings it into the closest association possible
with the host. Equilibration of the peribacteroid space is
apparently accemplished by opening some specific channels in
the PBM (Verma, 1992). The PBM is relatively impermeable to
various sugars and amino acids that have been tested (Udvardi
et al., 1988a; Udvardi et al., 1990) but a dicarboxylate
carrier in the PBM facilitates rapid transport of dicarboxylic
acids to the bacteroids (Ou Yang et al., 1990; Udvardi et al.,
1988b) . Nodulin-26 is probably the PBM protein responsible for
dicarboxylate transport (Ou Yang et al., 1991). Protein

phosphorylation stimulates the rate of malate uptake across
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the PBM of soybean nodules and this may be important in
controlling the bacteroid carbon supply during symbiotic
nitrogen fixation (Ou Yang et al, 1991). There is also an
electrogenic H' -ATPase in the PBM that could be involved in
metabolite transport across this membrane (Udvardi and Day
1989; Udvardi et al., 1991). It is becoming clear that the PBM
defines a cellular compartment where Rhizobium can function ag
an "organelle" (Verma and Long, 1983). A term ‘symbiosome’ has
been introduced to describe the bacteroid in the PBM including

the peribacteroid space (Mellor, 1989).

I.2.7 The bacteroid

The term bacteroid has been used to describe a variety of
structures, including swollen forms of Rhizobium in cultures
and some or all the cells present in legume nodules. According
to Sutton et al.(1981) ‘"bacteroids" refer to all Rhizobium
cells found within the central tissue cells of legume root
nodules, without regard to morphology or physiology. Rhizobium
cells located in infection threads or nodule intercellular

spaces are r ded as llular and are therefore

referred to as bacteria. The size and shape of bacteroids and
the number enclosed in each peribacteroid membraae are largely

determined by the plant, since bacteroids of different
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Rhizobium strains in effective nodules of a given host nearly
always take on the same morphology. In some cases it has been
shown that a single Rhizobium strain forms bacteroids of
differing morphology in different hosts. The most dramatic

example being rod-shaped ds in peribacteroid

in cowpea root nodule as contrasted with large, spherical
bacteroids enclosed singly in peribacteroid membranes in
peanut (Dart, 1977; Sen et al., 1986). The surface structure
of Rhizobium is similar to other gram-negative bacteria in
having a complex outer membrane around the cell membrane
(Vincent, 1977). Inside the nodule cells of the host, the
rhizobia undergo transformation into nitrogen-fixing
bacteroids with a modifications in their outer membrane
(Bergerson, 1974; Brussel et al., 1977). Such modifications of
the outer membrane of Rhizobium bacteroids are reflected in
their response to osmotic shock and chemical composition
(Brussel et al., 1977). Bal and co-workers (1980, 1982 and
1985) have shown that the rhizobia shed their outer membranes
which are then replaced by a new outer membrane soon after
their release into host cells. Bacteroids from Rhizobium as
well from Bradyrhizobium strains can redifferentiate to free

living viable cells (Sutton et al., 1977 and 1981).
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I.2.8 Nitrogenase and nitrogen fixation

Nitrogenase is the unique enzyme involved in reduction of
nitrogen. In rhizobia, this enzyme is expressed during

symbiotic nitrogen fixation. The ni is also

in certain free 1living bacteria such as Azotobacter,

Klebsiella, Clostridium and Cy ia. Ni is

comprised of two easily separable proteins designated the iron
protein (Fe protein) and the molybdenum-iron protein (MoFe
protein). The iron protein (encoded by the nif H gene) is a
homodimer with a native molecular weight of 60-80 KD and
subunit molecular weight of 30-32 KD (Burgess, 1984). The
larger (200 KD) subunit is a MoFe protein which binds the
reducible substrate (Hagerman and Burris, 1978) and the
smaller (60 KD) the Fe-protein, interacts with ATP and Mg* in
a hydrolytic reaction. Both proteins are irreversibly
inactivated by oxygen, the Fe protein most rapidly in vitro.
Protection of these proteins from damage by oxygen is one of
the overriding challenges in the physiology of nitrogen
fixation (Postgate, 1974).

Thorneley and Lowe (1985) proposed a model which attempts
to describe the mechanism of nitrogenase action in the

fixation of nitrogen and production of hydrogen. This model
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consists of two cycles. In the Fe protein cycle, electrons
are passed first to the Fe protein, and then from the Fe

protein to the MoFe protein. 1 evidence sugg

that two MgATP must be bound to the reduced Fe protein before
this molecule can form a reversible complex with the MoFe
protein. Once complexed, the reduced Fe protein can transfer
the electron to the MoFe protein. This oxidation-reduction
step is coupled to the MgATP hydrolysis, and is effectively
irreversible. The Fe protein:MgADP:reduced MoFe protein
complex can undergo a reversible dissolution. The oxidized Fe
protein:MgADP complex can be reduced and the ADP exchanged for
ATP, while the reduced MoFe protein can return to acquire
additional electrons from the Fe protein through the Fe
protein cycle. In total,8 electron transfers to the MoFe
protein are required to reduce N, and produce H,, and between
each electron transfer the Fe protein:MoFe protein complex
dissociates completely. This cycle of 8 electron transfers has

been called the MoFe protein cycle (Layzell, 1990).
I.3 Nitrogen assimilation and transportation

Bergersen (1965) and dy (1966) that NH,'

is the stable product of nitrogen fixation in legume nodules.

The NH," produced is excreted by bacteroids (Bergerson and
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Turner, 1967) into the host cell cytoplasm where it is
assimilated and used in the synthesis of organic nitrogen for
transport.

Meeks et al.(1978) showed by using [“NIN,, a short-lived
radioactive isotope of N, that NH," is first incorporated into
the amide position of glutamine in the reaction catalysed by
glutamine synthetase. The amide group is subsequently

transferred to the 2 b of oxogl in the ive

amination reaction carried out by glutamate synthase. Both
enzymes have been isolated and purified from legume nodules
(Boland and Benny 1977; Cullimore et al; 1983; McParland et
al., 1976). Glutamine synthetase is localised totally in the
cytoplasm while glutamate synthase exists in the cytoplasm and
in the plastid (Awonaike et al., 1981; Boland et al; 1982;
Shelp & Atkins 1984; Shelp et al; 1983). Both enzymes are
induced during nodule development (Atkins et al; 1984; Boland
et al., 1978; Groat and Vance, 1981; Reynolds et al., 1982;
Robertson et al., 1975; Schubert et al., 1981).
Nitrogen-fixing plants can be classified as amide
exporters or ureide exporters based on the composition of the
xylem fluid collected from excised nodules or nodulated root
systems. The amide exporters transport asparagine, glutamine
or 4-methyleneglutamine while ureide exporters transport
either allantoin and allantoic acid or citrulline. Legumes of

tribes Vicieae, Genisteae, and Trifolieae are generally amide
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exporters. These tribes of more temperate origin include p=a,
lupin, broad bean, alfalfa and clover. Based on results of
N,-labelling studies, asparagine is synthesized from the
product of recent nitrogen fixation in nodules of amide-
exporting symbioses (Aprison et al., 1954, Kennedy, 1966;
Leaf et al., 1959).

Fowden (1954) reported an unusual nonprotein amino acid
amide 4-methyleneglutamine in peanuts. Tropical legumes of the
tribe Phaseoleae synthesize and transport the ureids allantoin
and allantoic acid from recently fixed nitrogen. These two
compounds account for 60 to 90 % of the total nitrogen in the
xylem sap of soybeans (McClure and Israel, 1979), cowpeas
(Pate et al., 1980), garden beans (Pate, 1973) and other
legumes (Pate et al., 1980). One tropical legume, peanut

(Arachis hypogaea), is reportedly an amide exporter.

I.4 Symbiotic nitrogen fixation by Peanut and
Beach Pea
I.4.1 Peanut
The genus Arachis belongs to the family Fabaceae
(Leguminosae) and sub-family Papilionoideae. It is found in
tropical and the subtropical regions. Based on morphology and
cross-compatibility the genus Arachis has been divided into

several sections (Wynne and Halward, 1989). They are native to
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South America but have been introduced into many other areas.
A. hypogaea, called by different popular names such as peanut,
groundnut, goober etc, is the only species in cultivation.
Peanut plants are annual or perennial herbs and have a well-
developed taproot system with many lateral roots emerging from
the hypocotyl and aerial branches. The roots are soft,
cylindrical and lack root hairs, but root hair-like structures
were found by Nambiar et al.(1983). The depth of primary roots
can be 90-120 cm with extensive lateral roots. Peanuts are
warm season plants, preferring 50-100 cm of rainfall/year, and
are best suited to well drained, friable loamy soil containing
adequate amounts of phosphates, potash and calcium.
Propagation by cuttings is possible, but the plant is usually
grown from the seeds.
Peanuts are important to humans as a source of nutrition.
Its fresh foliage is fed to hogs and cattie, produces high
quality hay and has value as a green manure for soil
improvement. The flowers furnish rich nector for bees. The
seeds are a rich source of vitamin B complex, especially
thiamine, riboflavin and nicotinic acids, and are a source of
protein and oil (Ahmed and Young, 1982). Peanuts rank second

to

y in al importance as a source of high
quality oil characterized by the presence of arachidic and
legnoceric acids as well as glycerides of cleic and linoleic

acids. The crop yield varies from 742 to 4400 kg/ha (Duke and
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Henson, 1985).

The genus Arachis has long been known to nodulate with
rhizobia from diverse species of plant hosts but relatively
few strains of rhizobia are capable of high levels of fixation
(Allen and Allen 1940; 1981). In spite of these early
observations Arachis has been considered by some as a
promiscuous and an effective nitrogen fixer (Date, 1977;
Peoples et al., 1989). According to Graham and Hubbell (1975)
and Date (1977), the species will nodulate effectively with
a range of rhizobia from many different legumes. However, as
pointed out by Gillar and Wilson (1991) and Singleton et al.
(1992), the classification of tropical legumes and especially
forage legumes, as promiscuous effective, promiscuous
ineffective or specific as defined by (1977), tends to lose
its usefulness as greater ranges of rhizobial strains are
tested and increasing numbers of exceptions to the
classification scheme are reported (Thomas, 1993).

The mode of infection of Arachis is, 1like that of
Stylosanthes, rather unusual as entry of rhizobia into the
plant is via wound or crack infections at the junction of
lateral roots rather than via the classical mode of entry
through root hairs (Chandler, 1978; Sprent and Sprent 1990).
In stoloniferous species such as A.pintoi, a peremnial forage,
nodules can be observed frequently in the axils of roots

emerging from stolons (Thomas, 1993).
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The nodules of Arachis are further distinguished from
those of other legumes in that they have an unusually low
number of viable rhizobial cells per unit biomass of nedule
tissue. In these nodules and those of A.erecta, A.nambyquarae,

and A.villosulicarpa, the ids appear to take on the

unusual appearance of spheroplast-like structures (Staphorst
and Strijdom, 1972). These structures were later found to have
a distinct cell wall or outer membrane (Bal et al., 1985).
Peanut also shows distinctly different patterns of lectin
accumulation during symbiotic interactions with homologous
strains of (brady)rhizobia than do other legumes (VandenBosch
et al, 1994). Presence of lipid bodies, more appropriatly
called oleosomes, have also been reported in peanut nodules
(Jayaram and Bal, 1991) and their role in providing
supplementary source of energy for nitrogen fixation during
photosynthate stress has been suggested (Siddique and Bal,
1992) .

Rates of nitrogen fixation for peanut nodules (Arachis
hypogaea) range from 68-206 kg/ha nitrogen with the proportion
of the plant’s nitrogen obtained from fixation ranging £rom
47-92% (Gillar and Wilson, 1991). The literature on the wild
species of Arachis, which were used in this study, is very
1:nited. Recent emphasis has been on the use of wild Arachis
species for genetic improvement of cultivated or forage peanut

because some of them posses superior characters. The present
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investigation ig an attempt to understand the Rhizobium-peanut

symbiosis with special reference to oleosomes.

I.4.2 Beach Pea

Lathyrus maritimus (L.) Bigel, commonly known as beach
pea, grows along the shorelines of arctic and subarctic
regions from Greenland to Siberia and Japan (Fernald, 1950).
In Canada, it is found in Newfoundland, Nova Scotia and Quebec
(Hitchcock 1952; Lamourex and Grandtner 1977, Scoggan 1950).
There are about 130 species in the genus Lathyrus consisting
of climbing and herbaceous perennials. This genus belongs to
the tribe Vicieae of the subfamily Papilionoideae and the
family Leguminoseae (Fabaceae). Lathyrus belongs to the so-
called pea cross-inoculation group. The work of Carrol (1934)
and Wilson (1939) confirmed the mutual relatedness of
Lathyrus, Pisum, Vicia and Lens and their rhizobia.

According to Allen and Allen (1981), comparatively few
members of the genus have been studied. The literature on the
species L.maritimus, which is used in these studies, is very
limited. Most of the work done on this genus has been
concentrated on those species that cause lathyrism. Symptoms
of lathyrism in man usually appear after eating seeds of the

plant, commonly occuring as a paralysis of the muscles below
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the knee, pains in the back followed by weakness and stiffness
of the legs and progressive locomotive incoordination (Kuo et
al., 1994). Priliminary assay has shown the neurotoxin to be
extremely low in the seeds of L. maritimus seems (Shahidi
1995, personal communication) .

Recently the symbiotic association of Rhizobium strains
and L. maritimus inhabitant of subarctic region has been
reported by Barimah-Asare and Bal (1994). The isolate of
L.maritimus is reported to have a fast-growing Rhizobium
leguminosarum biovar vicia, which has a wide range of pH and
salt tolerance, and could infect only Vicia cracca but not
Vicia faba (faba bean) or Pisum sativum (pea). Nitrogenase
activity in L. maritimus was found to be highest at 20°C but
could be maintained with lower levels of activity at 5 °C
(Barimah-Asare, 1991).

Barimah-Asare and Bal (1994) recently reported that the

nodule anatomy and the fine structure of beach pea is similar

to othar p al i inate forms and further suggested
that the oleosomes present in the uninfected parenchyma cells
of these nodules may serve as a food reserve, to be mobilized
during activation of the nodule meristem at the beginning of

growing season.
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I.4.3 Oleosomes

Plant seeds store triacylglycerols (TAG) as food reserves
for germination and postgerminative growth of the seedlings
(Ching, 1970). The TAGs are present in small discrete
intracellular organelles called oil bodies (Huang, 1985; Huang
et al., 1991; Yatsu and Jacks, 1972), lipid bodies (Ching,
1972; Lin and Huang, 1983), or oleosomes (Yatsu et al, 1971).
In this text the term oleosome has been used. Isolated
oleosomes have a spherical shape and possess diameters ranging
from 0.5 to 2.5 um. They contain mostly TAG and small amounts
of phospholipids (PL) and proteins. Electron microscopy of the
oleosomes shows that the organelle has an electron-opaque

matrix of TAG su by one electron-d layer, a half-

unit of one lipid layer (Yatsu and Jack, 1972)

with unique proteins termed oleosins. These oleosomes are
remarkably stable either inside the cell or in isolated
preparations. The physiological significance of maintaining
the population of small descrete oleosomes is to provide ample
surface areas for the attachment of lipase to the organelles
during postgerminative growth so that the reserve TAG can be
mobilized rapidly. How the oleosomes maintain their small
sizes without coalescing is unknown (Tzen and Huang, 1992).

Oleosomes are abundant in plant seeds, and are among the
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simplest organelles in eukaryotes. Similar organelles can be
found in the pollen (Stamley and Linskens, 1974), and the
peanut root nodule (Jayaram and Bal, 1991) of angiosperms as

well as in tissues of more primitive plants, such as the

tophytes of g (Ching, 1970) and the spores
of ferns (Gemmrich, 1981). Intracellular storage 1lipid
organelles of similar structure are also present in tissues of
nonplant species, including the brown adipose (Gurr, 1980) and
other tissues of mammals (Fawcett, 1966), eggs of some
nematodes and other nonmammals (Rubin and Trelease, 13876), and
unicellular organisms such as yeast (Clausen et al.,1974),
Euglena (Osafune et al., 1980) and algae (Roessler 1988).
Ultrastructural investigations of maturing embryos of
different oil producing plants and of anise cell-suspension
cultures indicated that 1ipid bodies originate from the
endoplasmic reticulum (ER) by insertion of TAGs into the

hydrophobic space of the phospholipid bilayer (W et al.,

1985). In contrast, other studies have shown that oleosomes
develop in the cytoplasm without contact with the ER (Bergfeld
et al., 1978). The biosynthesis of TAG has been analysed in
different plant cell (Dutta and Appelavist, 1989; Kleinig et
al., 1978) and embryo cultures (Dutta et al., 1991) . Several
breeding programmes focus on the development of oil plants
producing TAGs with an altered composition of acyl moities

(Dutta and Appelqvist, 1989; Ellenbracht et al., 1980; Pence
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et al., 1981; Weber and Taylor, 1990).

There is evidence that TAGs and oleosins are synthesized
concomitantly in the ER, from which a nascent, mature oleosome
is formed by budding (Loer and Herman,1993; Tzen et al.,
1993) . Other investigations, however, show that the
accumulation of oleosins lags temporally behind that of TAG

(Cumming and Murphy, 1990; Hills et al., 1991).

I.4.4 Oleosomes in nitrogen fixation

Carbon compounds derived from the host cells are

essential for symbiotic nitrogen fixation. Carbohydrate

metabolism provides ATP for the high-energy requiring process

of nitrogen fixation, el for the ion and

carbon skeleton for the i ion and t of fixed

nitrogen (Dilworth and Glenn, 1984).

Bal and coworkers (see below), recently reported the

of ol in and tropical root nodules

and their possible involvement in nodule function and nitrogen
fixation is being investigated.

In tropical legumes such as peanut, the root nodule

oleosomes were found to be different than seed oleosomes with

respect to the presence of an electron-dense rim, showing

lipolytic activity and higher amounts of saturated fatty acids
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(Jayaram and Bal, 1991). In nodules induced by £ix  strain of
Bradyrhizobium, oleosomes accumulate in the order of two to
three times higher than in the nodules induced by effective
wild-type strains (Bal and Siddique, 1991). Results from
experiments done in dark treated and detopped peanut plants,
where nitrogenase activity was maintained for prolonged
periods, the number of oleosomes was found to decrease. The
correlation between nitrogen fixation (acetylene reduction)

and oleosome d dation in the of

12 has
been clearly demonstrated (Siddique and Bal, 1992). These and
other results (Bal et al., 1989; Hameed and Bal, 1985) support
the hypothesis that oleosomes serve as a supplementary source
of energy in peanut root nodules during photosynthate stress.

In temperate legumes such as beach pea and Oxytropis
arctobia the oleosomes disappear in the symbiotic stage from
infected cells, but remain in the nodule parenchyma. It has
been suggested that in arctic legumes, lipids may be involved
in protecting the host tissues from low temperature stress
(Newcomb and Wood, 1986) and also for membrane proliferationm,
growth and development of symbiosomes (Barimah-Asare and Bal,

1994; Prevost and Bal, 1994).
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I.5 Objectives

To study the oleosomic metabolism in symbiotic nitrogen-

fixing root nodules.

Oleosomes have been involved as a supplementary source of
energy and carbon in the root modules of Arachis hypogaea.
Their metabolism during symbiosis provides an additional
advantage for the energy demanding process of nitrogen
fixation. It is therefore necessary to evaluate other legume
nodules for this trait and to understand in detail the
functions of oleosome at different stages of development and
in different tissues. The following are the specific

objectives for this investigation.

- to isolate the oleosomes and characterize neutral
lipids, phospholipids and oleosins from nitrogen-fixing

root nodules of A. hypogaea.
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- to study the oleosome distribution in wild species
of Arachis i.e., A. pintoi, A. duranensis and
A. batizocoi root nodule in relation to nodule

development.

- to study the oleosome distribution in the perennial

root nodules of L. maritimus.



II. MATERIALS AND METHODS

II. 1 Seed source and planting

Seeds of the diploid perennial peanut (Arachis pintoi L
cv. No. 17434), recently developed at Centro Internacional de
Agricultura Tropical (CIAT), Cali, Colombia were donated by
Dr. R.J. Thomas. Seeds of other diploid annual peanuts (A.
batizocoi and A. duranensis L.)were obtained through the
courtesy of Dr. H. Thomas Stalker at North Carolina State
University, USA, and seeds of the tetraploid cultivated A.
hypogaea, cv. Jumbo Virginia were purchased from W. Atlee
Burpee Co., Warminster, PA., USA (Table 2). Peanut seeds were
either germinated first or directly planted in sterile
vermiculite and inoculated with Bradyrhizobium sp. from a
broth culture as described by Sen and Weaver (1980). The
planted pots (6" STD) were kept in an environment chamber with
approximately 700 pmole m? s* PPFD (photosynthetic photon
flux density) under day /night conditions of 16h/8h, 27°C/22°C
and 70%/50% relative humidity and irrigated with nitrogen free
nutrient solution (Elfolk, 1960).
IX. 2. Bradyrhizobium cultures

Bradyrhizobium strain 32H1 was obtained from Nitragin,
Milwaukee and 7091 (Nod' Fix’) was obtained from Dr. P.T.C.

Nambiar, I ional Crop h Institute for Semi-arid

Tropics (ICRISAT), Patancheru, India. The other effective
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strain of Bradyrhizobium sp. CIAT 3101 recommended for
A.pintoi (Thomas, 1993) was donated by Dr. R.J. Thomas, CIAT,
Cali, Columbia (Table 2). All the rhizobial strains were
maintained on yeast extract mannitol (YEM) broth medium
containing, 0.5 g of KHPO,, 0.2 g of Mgso, 7H,0; 0.1 g of
NaCl, 0.4 g of yeast extract, 10 g mannitol and 1 L of
distilled water at pH 6.8- 7.0. (Vincent, 1970) with constant
shaking (140- 150 rpm) at 30°C in an Orbit Environshaker, Lab-

line Instrument Inc.

Table 2 Source and relevant characteristics of the

legume species and Bradyrhizobium strains.
Species/ Genotypic/ Source
Strain Phenotypic characters

a) Legume
A. hypogaea 4n, seasonal, cultivated W.Atlee Burpee

Co.,PA.,USA

A. duranensis 2n, annual, wild H. Stalker
A. batizocoi 2n, annual, wild H. stalker
A. pintoi 2n, perennial, wild R. Thomas

L. maritimus 2n, perennial, wild This study
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b) Bradyrhizobium

32 H1 nod' £ix' for A. hypogaea Nitragin
CIAT 3101 nod' £ix' for A. pintoi R. Thomas
7091 nod' fix" for Arachis P.Nambiar

II.3 Isolation of oleosomes from A. hypogaea root

nodule and seed.

Arachis hypogaea (Jumbo Virginia) plants, inoculated with
Bradyrhizobium effective strain 32H1 were grown as mentioned
in Section II.1. all the plants were uprooted at 35 DAI and
nodules were collected and frozen at -70°C until use.

The method employed for isolation of the oleosomes was
essentially of Tzen and Huang (1992) with minor modification.
The nodule and seed material was homogenized at 4°C in
grinding medium (10g of nodules/20 mL, and 2g of peanut
seed/20 mL) with pestal and mortar. The grinding medium
contained 0.6 M sucrose, 1 mM EDTA, 10 mM KC1, 1 mM MgCl,, 2mM
DTT, and 0.15 M TRICINE adjusted to pH 7.5 with KOH. The
homogenate was £iltered through cheesecloth. After filtration,
each 20 mL portion of the homogenate was placed at the bottom
of a 40 mL centrifuge tube, and 10 mL of floatation medium

(grinding medium containing 0.4 instead of 0.6 M sucrose) was
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layered on top. The tubes were centrifuged at 10,000g for 30
min in a Sorvall SA-600 rotor. The oleosomes floating as a
thin white layer on top were collected, and resuspended in 10
mbL of grinding medium containing an additional 2M of NaCl. The
resuspension was placed at the bottom of a 40 mL centrifuge
tube, and 10 mL of flcating medium (grinding medium containing
2 M NaCl and 0.25 M instead of 0.6 M sucrose) was layered on
top. The tubes were centrifuged again as above. The fat pad on
top was collected, and resuspended in 10 mL grinding medium.
The resuspension was placed at the bottom of a 40 mL
centrifuge tube, and 10 mL of floating medium (grinding medium
containing 0.4 instead of 0.6 M sucrose) was layered on top.
The contents was centrifuged as above. The fat pad on top was

collected, and resuspended with grinding medium.

II.3.1 Separation of neutral lipids, phospholipids
and proteins from isolated oleosomes of
A. hypogaea root nodule and seed.

The method employed for this experiment was
also essentially that of Tzen and Huang (1992) with
modifications as below. All the steps were carried at 4°C. A
500 pl preparation of isolated oleosome was extracted with 750
pl diethyl ether in a 1.5 nL Eppendorf tube. After

centrifugation at 13,600g for 4 min, the upper ether layer was
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collected. The lower aqueous layer and the interfacial
materials were extracted with 750 pl diethyl ether two
additional times. The ether fractions (which contained neutral
lipids) were pooled (2.25 mL), and the ether was evaporated
under nitrogen gas. The aqueous layer, together with the
interfacial materials, was placed under nitrogen in order to
evaporate the remaining ether. A volume of 500 pul
chloroform/methanol (2:1 v/v) was added. After gentle shaking,
the tube was centrifuged at 13,000 for 4 min the lower
chloroform layer (which contained PL), the upper
methanol/water layer, and the interfacial materials (which
contained oleosin proteins) were collected individually.

The chloroform fraction (which contained PL) was washed
two times each with 1 mL methanol/water (1:1 v/v) followed by
centrifugation.

The interfacial materials were washed three times by.the
following procedure. The interfacial fraction from zoot nodule
(150 pL) and mixed with 300 uL chloroform/methanol (2:1 v/v).
The interfacial fraction of seed (250 pL) was mixed with 500
ML chloroform/methanocl (2:1 v/v). These mixtures were then
centrifuged at 4°C. The interfacial materials were collected
and resuspended in 150 pL of water in case of nodule and 250
uL of water in case of seed. Final interfacial material
remained in aggregates; it was vigourously vortexed for

dissolution.
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II.3.2 Analyses of oleosome constituents isolated

from A. hypogaea root nodule and seed.

The lipid and protein contents in the above ether
fraction, the chloroform fraction, the methanol/water
fraction, and the interfacial fraction were analysed by thin
layer chromatography (TLC) and SDS-PAGE, respectively. The
molecular weight of purified protein was determined by using

Bio-Rad low molecular weight . Lipid

obtained  from  Sigma  for  neutral  lipids  and
phosphatidylethanolamine or phosphatidylecholine for PL were
run along with the sample for TLC. The TLC plate (Silica Gel
60A from Whatman) was developed in hexane/diethyl ether/acetic
acid (80:20:2;v/v/v) for the separation of neutral lipids.
After drying, the plate was further developed briefly in

chl acetic acid/ 1/water (70:25:5:2; v/v/v/v) in

order to allow the separation of PL from the origin. The plate
was allowed to react with iodine (Tzen et al., 1992).

For SDS-PAGE, the separating gel and the stacking
gel consisted of 12.5 and 4.75% polyacrylamide respectively.
After electrophoresis, the gel was stained with Coomassie blue

R-250 and destained according to Laemmali (1970).
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The neutral lipids in the ether fraction were weighed
gravimetrically. The quantity PL was not determined. The
proteins in the oleosome fractions after ether extraction were
quantitated by the Lowry method :y et al, 1951) using BSA

as a standard.

II. 4 Peanut root nodule samples for microscopy

Based on general morphological observations two similar
plants were selected for nodule sampling at weekly intervals
up to the 10*" week post-inoculation. From these plants, two
nodules at three different locations on the tap root were
selected for microscopical analysis. These three locations
were at the collar region (about 2 cm. below the vermiculite),
middle of the tap root (about 5 cm below the vermiculite) and
at the growing end of the tap root. This selection of nodule
samples was done because at any given time nodules at
different stages of development may be present in the root
system.

The root nodules were classified in three different
developmental growth stages based on the color and size of the
nodule as : (1) immature/small/white: 1.0 - 1.5 mm in dia.,
(2) mature/medium/pink: 1.5 - 2.0 mm in dia. and (3)

mature/large/red : > 2.0 mm in dia.
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II.4.1 Light, scanning and transmission electron
microscopy (LM,SEM and TEM)

Thin slices of nodules of different stages of development
were fixed in a mixture of glutaraldehyde (5%) and
paraformaldehyde (4%) in 0.1 M phosphate buffer, pH 7.2 for 2h
(Rarnovsky, 1965), washed in the buffer and post-fixed in 1%
osmium tetroxide (0s0,) in the same buffer for 1 h at 4°C. The
samples were then washed three times with buffer and
dehydrated through an ethanol series up to 100% and embedded
in Spurr’s embedding medium (Spurr, 1969). For lipid
preservation, nodule samples were en bloc stained with 1% P-
phenylenediamine (pPD) in 70% ethanol for 1 h during
dehydration (Bal, 1990). Control samples were treated with
hexane for 45 minutes after fixation in the aldehyde mixture
and subsequently dehydrated in ethanol series prior to 080,
treatment. The samples were then rehydrated, treated with 080,
and 1 % pPD and processed as described above.

Some of the nodule samples were also sliced and fixed as

above for scanning electron mi . After dehy on the
samples were dried at critical point and gold coated in a
sputter coating unit. The observations were made using an
Hitachi $570 scanning electron microscope.

The semi-thin sections (1.5 um) of pPD-stained samples

were viewed with a light microscope without further staining.
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Ultrathin sections were post-stained with uranyl acetate and
lead citrate and viewed with a Zeiss EM 109 transmission
electron microscope. The area occupied by oleosomes in the
cells in magnified photomicrographs was measured using a Zeiss
MOP-3. For oleosome counts, two slides of each block of each
tretments with several sections were used.
The olecsome fraction (fat pad) (section II.3) isolated
from peanut root nodules was also processed for electron

microscopic studies as described earlier.

II.4.2 Induced senescence in A. pintoi

The naturally occurring senescence was observed in 70 DAL
plant nodules with LM, SEM and TEM. Isolation of the viable
cells of Bradyrhizobium from the senescent and effective
nodules were made and viability counts were enumerated by
dilution plate technique. The squash preparations were also
performed from the same nodules.

Tc induce premature senescence, 5 plants at 42 DAI (day
after inoculation) were subjected to detopping by cutting the
shoot 5 cm above soil level and after two days nodules were
fixed for microscopical studies (section II.3). Control plants
were left intact. In another treatment plants were irrigated

with 20 mM KNO, added to Ellfolk nutrient solution (500
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mL/pot) (De Lorenzo et al, 1994) at 12 DAI and then the plants
were irrigated with nitrogen free Ellfolk nutrient selution
upto 42 DAI; nodules were sampled for microscopy (section

II.3). Control plants received no added combined nitrogen.

IX.5 Seasonal effect on storage organelles in
naturally grown L. maritimus root nodule.

We studied the 1 effect on ol and also on

amyloplasts in L. maritimus root nodules from Newfoundland
under natural environmental conditions. Bellevue beach in
Newfoundland, on the shoreline of the Atlantic Ocean (Trinity
Bay), provided an ideal site for naturally growing beach pea
plants; the substratum consists mainly of gravel. The site is
easily accessible by the Trans Canada Highway.

Nodules were collected by gently removing the gravel and
exposing the underground rhizomatous stem which had
adventitious roots with nitrogen-fixing nodules. Trips were
made to the site in the beginning of the spring session before
the aerial shoots of plants were visible. Plants were selected
from three to four differerent spots and were marked by wooden
sticks which made it possible to sample nodules from the same
plants each time.

In samples taken in May 30, 1993, April 30, 1994 and May

22, 1995 the nodules were collected from the underground frost
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in the gravel, the air temperature being -1°C to 4°C. Samples
were also taken on October 16, 1993, October 2, 1994 and
October 6, 1996, when the plants were preparing for
overwintering, after the fruiting season. Nodules were sampled
in June, July and August as well.

Nodules were sliced longitudinally with a sharp razar
blade and immediately fixed in a mixture of paraformaldehyde
and glutaraldehyde in phosphate buffer, PH 7.0 (Karnovsky,
1965) and were brought back to the laboratory for subsequent
processing for light and electron microscopy as decribed in
Section II.3. En bloc staining for oleosomes was achived by

using p-Phenylendiamine (Bal, 1990).
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III RESULTS

IXII.1 Neutral lipids, phospholipids and oleosins
in root nodule and seed oleosome

fractions of Arachis hypogaea.

Isolated oleosomes from A.hypogaea root nodules and seed
were fractionated into neutral lipids (TAG & DAG), PL and
oleosins as mentioned in section II.1.1. The total lipids and
proteins obtained are presented in Table 3. The different
fractions i.e., ether fraction (neutral lipids), chloroform
fraction (PL), methanol/water fraction and interfacial
fraction (oleosins), were analysed by SDS-PAGE and TLC (Fig.
2 and 3). In SDS-PAGE analysis the oleosomes showed four
protein bands (oleosins) in the interfacial fraction and also
similar three bands in methanol/water fraction from both root
nodule and seed oleosome fractionations. The sub-molecular
weight of nodule oleosins were 10.0 KD,56.3 KD, 61.1 KD and
66.0 KD in weight (Fig.2), whereas seed oleosins were as 25.5
KD, 35.2 KD, 40.0 KD and 59.5 KD in weight (Fig. 3). The TLC
analysis showed three PL bands from nodule oleosomes and two
from seed oleosomes in ether fracticns. Some of the PL bands

could also be seen in chloroform fraction. PL bands were not



45
observed in interfacial fraction. Further TLC showed two bands
of neutral lipids (TAG & DAG) in nodule and seed oleosomes
only in the ether fraction and none in any other fractions

(Fig. 4).

Table 3 Yield of total protein (oleosins) and neutral lipids
from interfacial fraction and diethyl ether of

isolated oleosomes of peanut root nodules and seeds.

oleosome nodule seed
fraction 1 1
Interfacial fraction 60 pug/mL 240 pg/mL
(oleosins)

Ether fraction 0.05 g/mL 0.7 g/mL

(neutral lipids)
* from 10 g nodule (w/w)

** from 2 g soaked peanut seed for 2h.



Fig.2
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SDS-PAGE of fractions obtained in a fractionation
of A. hypogaea root nodule oleosome preparation. Note
the four protein bands (oleosins: 66.0 KD, 61.1 KD,
56.3 XD and 10.0 KD)in interfacial fraction. Three
similar bands can also be seen in methanol/H,0
fraction. Gel was loaded with 3.0 ug of protein.

Gel electrophoresis (polyacrylamide 12.5 %)

was performed as described in Material and Methods.

Fig.3 SDS-PAGE of fractions obtained in a fractionation

of A. hypogaea seed oleosome preparation. Note the
four protein bands (oleosins: 59.5 KD, 40.0 KD,
35.2 KD and 25.5 KD) in interfacial fraction. Similar
protein bands could also be seen in methanol/H,0
fraction. Gel was loaded with 24 ug of protein.
Gel electirophoresis (12.5 % polyacrylamide) was

performed as described in Material and Methods.
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Fig.4 Thin layer chromatography of the fractions
of a A. hypogaea root nodule and seed oleosome
preparations. Note the presence of TAG and DAG
in only ether fraction (neutral lipids)of
root nodule and in seed oleosomes.
PL bands could be seen in ether and

chloroform fraction.
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IXII.2 Morphology of root nodule oleosomes from

Arachis hypogaea.

The oleosomes in the isolated fractions of the nodules
showed considerable size differences and variation in their
electron density (Fig. 5 and Fig. 6). The electron micrographs
revealed three distinct forms with respect to size (Table 3)
and in many cases a peripheral layer of less electron density
was apparent. An irregular periphery around a large oleosome
shown in Fig. 5 also showed the less electron-dense layer.
Such a layer (arrow) was present in many of the oleosomes
(Fig. 5). In some cases there seemed to be an out-growth of
this layer (arrowhead) as shown in Fig. 5. There were
electron-dense deposits (d) and localised scouring of the
oleosome surface which made the oleosomes pointed in some
places (Fig.5). Electron transparent furrowing (arrows) could
be seen in some oleosomes (Fig. 6). The larger oleosomes

(asterix) seemed to have less electron-density.
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Table 4 Variation in size and peripheral layer of isolated

oleosomes from peanut root nodule.

oleosome oleosome width of peripheral
class size (um)* layer (mm)*

1) Large 1.8 & 1.0 70 + 18

2) Medium 0.8 + 0.3 42 + 16

3) Small 0.4 3 0.2 18 + 6
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Fig.S5 Ultrathin section of the isolated oleosome fraction of
A. hypogaea root nodule showing the size differences in
the oleosome population. Variation in electron density is
also notable alongwith the less electron-dense layer

(arrow) around some of the oleosomes. Note the irregular

out-growth of the layer (arrowhead)

Fig.6 Ultrathin section of the isolated fat pad of A. hypogaea

root nodule showing a large oleosome (*) with a less
electron-dense matrix indicating possible lipolytic
activity. Note the oleosomes that show furrowing
(arrows) .






III.3 Distribution of oleosomes in A. pintoi,
A. duranmensis and A. batizocoi

During the early stages of development in immature/small
/white nodules, oleosomes were observed in the infected cells,
where rhizobia were released and proliferation of both host
and rhizobia were underway (Fig.7). Oleosomes also occurred in
some nodule parenchyma cells. Hexane solubilization in control
preparations confirmed the presence of oleosomes. As the
rhizobia differentiated into spherical forms of bacteroids in
mature/ medium/pink nodules, oleosomes disappeared from the
infected cells (Fig.8), but could be seen in the nodule

parenchyma. The lack of ol in i cells

throughout the symbiotic phase of the nodules up to
mature/large/red ones sampled 60 DAI (days after inoculation)
(Fig.9). In 70-day old nodules undergoing senescence,
oleosomes reappeared in the infected cells. The spherical
bacteroids at this stage seemed to have disappeared and large
vacuoles were found in the infected cells, which contained
rod-shaped rhizobia (Fig.10,11,12 and 13). The senescing cells
showed disruption of the tonoplasts. Both transmission and
scanning electron microscopic observations confirm the

presence of rod-shaped rhizobia during senescence (Fig.l11,12

and 13). The light microscopic observations in squash

preparation of senescing nodules also revealed both rod and



52

spherical forms with some forms i iate

and rode. Senescing nodules of A.hypogaea did not reveal such
change in bacteroid forms.

The infected cells of A. duranensis and A. batizocoi
showed the presence of oleosomes, when the nodules were
induced with the same strain of Bradyrhizobium (Fig.14). When
the nodules of A.pintoi were induced by the ineffective
strain, nod'fix’, nodules of this species showed accumulation
of oleosomes (Fig. 15).

The percent area of infected cells occupied by oleosomes
at different stages of development is summarized in Fig.16,
which also shows accumulation and increase of the olaosome
population in nod' fix" ineffective nodules of A.pintoi.
Nodules from the two other diploid species, A. duranensis and
A. batizocoi showed presence of oleosomes in the infected

cells their devel 1 stages (Fig.17). Percent

areas of oleosomes in nodule parenchyma cells of A. pintoi are
plotted in figure 18. The mature/medium/pink nodules showed
more oleosomes than any other stages.

Although in A. pintoi oleosomes were absent from mature
nodules, their presence was noted in the nodule parenchyma
cells mainly 2-3 layers around the infected zone. These cells
show decreased oleosome populations when compared to A.

duranensis and A. batizocoi nodules at 42 DAI (Fig.19).
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Fig.7 Photomicrograph of p-phenylenediamine (pPD)-stained
semi-thin section of immature/small/white (1.0-1.5 mm)
nodule of A. pintoi (21 DAI) showing oleosomes
(arrows) in the undifferentiated infected cells
(lower right) and also in the adjacent layers
of nodule parenchyma cells. Nucleoli (n)

within nucleus are densely stained.

Fig.8 Photomicrograph of pPD-stained semi-thin section

of mature/medium/pink (1.5-2.0 mm) nodule of A. pintoi

(35 DAI) showing nucleus (n), bacteroids (b)in infected

cells and oleosomes (large arrows) in parenchyma cells

only. Infected cells are devoid of oleosomes. Note the
three layers of parenchyma cells adjacent to the

infected zone containing many and large oleosomes. The

small arrows indicate amyloplasts in infected cells

(confirmed by ission electron mi ).

Fig.9 Photomicrograph of pPD-stained semi-thin section of
mature/large/red (>2.0 mm) nodule of A. pintoi
(49 DAI) showing nucleus (n), bacteroids (b) in

infected cells. Note the infected zone is devoid of

ol and the pi cells adjacent to the

infected zone show fewer and smaller oleosomes.






Fig.10

Fig.1l
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Photomicrograph of semi-thin section of senescing
nodule (70 DAI) of A. pintoi showing rod-forms (R)
in the vacuolar space of the infected cells.

The characteristic spherical forms (S) of bacteroids
are in the periphery of the cells.

Nota the intact uni nodule

and the dark-stained oleosomes (o) in both the

infected and nodule parenchyma cells.

Transmission electron micrograph of ultrathin
section of the senescing nodule of A. pintoi.
Note both longitudinal and cross sectional profiles
of rod-forms of rhizobia (R) in the vacuolar space,
disruption of the tonoplast, oleosomes (o) and the

spherical forms (S) of bacteroids.
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Fig.12 Scanning electron micrograph of mature
infected cells of mature/large/red nodule
(42 DAI) of A. pintoi showing spherical

bacteroids (S) only. x 3500.

Fig.13 Scanning electron micrograph showing senescent
infected cells of mature/large/red (old) nodule
(70 DAI) of A. pintoi with reverted rod-forms
of rhizobia (R) along with spherical bacteroids

(s). x 7000.






Fig.14 Photomicrograph of pPD-stained semi-thin section of
mature/big/red nodule of A. duranensis (a) and
A.batizocoi (b) at 42 DAI. Note the presence of
oleosomes (arrows) in the infected cells of both
the species. There are fewer amyloplasts (am) in

parenchyma cells of A. batizocoi.






Fig.

15

Photomicrograph of pPD-stained semi-thin section
of ineffective nodule of A.pintoi induced

by Nod'fix" strain of Bradyrhizobium (7091).
Note the presence of oleosomes (arrows)

and undifferentiated infected cells.
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Fig.16 Percent area of oleosomes in the infected
cells of A. pintoi nodules at different stages
of development. Note the complete lack of oleosomes
in the symbiotic stages (mature/pink and red nodules) .
Oleosomes appear only in the asymbiotic stages
of the nodule i.e. in immature/white,
senescing and ineffective (nod' £ix’) nodules.
Note the increasing accumulation of oleosomes
in the ineffective nodules in absence of nitrogen

fixation. Bars represent the i SE. n=80
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Percent area of oleosomes in infected cells of
nodules from A.pintoi, A.batizocoi and A.duranensis.
Note the complete lack of oleosomes in

infected cells of A. pintoi nodules as compared
with two other diploid Arachis nodules at the
symbiotic stage (42 DAI). Note the

decreasing trend of oleosomes in pink and

red nodules. Bars represent the + SE. n=80






Fig.18 Pattern of oleosome distribution in the
nodule parenchyma cells of A. pintoi at
different stages of development.Oleosome
content is higher in mature/pink nodules
compared to immature/white and mature/red nodules.

Note increasing oleosome population in

the cells of i ive

(nod* fix") nodules. Bars represent the + SE. n=80

60
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Fig.19 Distribution pattern of oleosomes in the
nodule parenchyma cells of three diploid
species during the symbiotic stage (42 DAI).
Oleosome content is significantly lower
in the nodule parenchyma of A. pintoi.

Bars represent the i SE. n=80
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III.4 Induced senescence in A.pintoi.

It was observed that A. pintoi showed the presence of
oleosomes along with redifferentiation of spherical bacteroids
to viable rod-forms in the vacuole during natural senescence
which occured in plants at 70 DAI. A short experiment was

therefore conducted to see the effect of artificially induced

on the reapp of rod-forms and the oleosomes.

The results depicted in Table 5, indeed showed the cells
undergoing senescence in KNO, (20 mM) and detopping (2™ day)
treatments with the presence of oleosomes and rod-forms of
bacteria (Fig.20a and 20b). The percent area occupied by

oleosomes in control and other treatments is given in Table 5.

However, such redi iation of ids was not found in
the senescing cells of A. hypogaea. The viable count from such
nodules did not show any significant difference in viability
of bacteroids from non-senescent and senescent nodules (Table

6) .



Table 5 area of ol
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in

t/infected

cells of A.pintoi root nodules induced by

KNO3 (20 mM) and detopping.

Treatments

(nodule describtion)

% area of

oleosomes*

shape of

bacteria/bacteroid

1 KNO3

(immature/medium/pink)

2 Detopping (2nd day)

(mature/big/red)

3 Control

(mature/big/red)

2.8+0.81

2.3+0.63

0.0£0.0

spherical and rod-

forms.

spherical and rod-

forms.

only spherical

n=80 cells
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Table 6 Enumeration of rhizobia (cells/mL) by the plate
count method, cultured from mature

and senescing nodules of A.pintoi.

mature nodule senescing nodule
35 DAI* 120 DAI**
9.0 X 10° 8.0 X 10°
£ 1.7 +2.3

* containing only spherical bacteroids

++ containing a mixed population of spherical,
intermediate-forms and rod-forms. Verified in
smear preparation in both cases.

(SE + 5 plates).



Fig.20

Photomicrograph of pPD-stained semi-thin

section of prematurely induced senescence

in A. pintoi root nodules by KNO; (a) and
detopping (b). Note the presence of oleosomes (o),
spherical (s) bacteroids and rod-forms (r)

bacteria in both the treatment.
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III.5 Seasonal effect on storage organelles in

L. maritimus root nodule.

Nodules of L. maritimus are of the indeterminate type.
They were mostly elongate, sometimes branched but very young
nodules were spherical and different types of nodules could be
seen at any given time (Fig. 21). In senescent nodules the
pink/red colour of the symbiotic zone had a blackish green
tint. As complete degeneration of internal tissues took place
the nodules became black in color. Some of the nodules showed
notches. In our observations we have noticed only one notch.
The indeterminate nodules of beach pea in summer months were

differentiated into distinct zones as shown in Fig. 22.

Pre-winter nodules

The samples taken in early October, when the pods had
matured and opened up for seed dispersal, were from the plants
preparing for overwintering. The nodules at this stage were
undergoing senescence. Histological analyris showed arrest of
cell division in the meristem (Fig. 23), the lack of infection

threads in the invasive zone (Fig. 24 and 25), the

ai ance of the p iotic zone and senescence of the

symbiotic cells (Fig. 26). The senescence was characterized
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macroscopically by a change in leghemoglobin color to green
and microscopically by filling of the bacteroids with poly -
hydroxybutyric acid granules making them opaque (Fig. 26).
This is followed by degeneration of bacteroids and cell
contents. At the same time an increase in the accumulation of
amyloplasts with starch grains in the interstitial uninfected
cells of the symbiotic zone and nodule parenchyma became
apparent (Fig. 23,24,25 and 26). The nodule parenchyma (outer
and inner cortex) also became heavily filled with amyloplast
starch grains. Oleosomes became abundant in all the
parsnchyma cells (Fig.27 and 28), including those in the
vascular parenchyma. The vascular tissue also showed the
presence of protein bodies which resisted solubilization in
hexane treatment. The observations of samples from year to

year did not show any significant variation.

ter nodules

In samples taken during March and April, before the
shoots appeared above ground, striking changes in the
histology of the nodules were evident. The starch grains and
oleosomes had disappeared (Fig.29,30,31 and 32) and the
provascular tissue had become active ({(Fig. 32). Oleosomes
could be seen only in the vascular parenchyma (Fig. 29). The

provascular tissue at the distal part of the nodule showed
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meristimatic activity in cells with :onsiderable cytoplasmic
content and very small vacuoles (Fig. 32). Some of the
oleosomes could be seen in the endodermal cells around the
vascular tissue (Fig. 33) and protein bodies persisted in the
vascular parenchyma cells (Fig. 34). The cells of the
senescent zone had clumped and degenerated bacteroids, but
some of the cells contained rod-shaped bacteria, which did not
show any morphological sign of degeneration (Fig.35 and 36).
Some persistent infection threads could be detected containing
rhizobia in the invasive zone (Fig. 37). No significant
variation could be observec in the samples taken in different

years.
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Fig.21 Lathyrus maritimus L (beach pea) nodules at different
stages of development found during all times from late
March to middle of October.(a)Spherical young nodules,
(b) and (c) mature elongate and branched nodules, (d)
notched (arrow) nodule, (e) notched (arrow) but decaying
nodule, (f) decayed nodule and (g) decayed branched

nodule.
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Fig.22 A diagram showing longitudinal section of
L. maritimus nodule. Note the meristem (m)
at the distal end, invasion zone (iv), early
symbiotic zone (es), late symbiotic zone (ls)and
senescent zone (sn). There are five vascular tissue
strands (vt) of which one is shown in longitudinal
plane and the other in cross section. Provascular
cells are close to the meristem. A distinct
exodermis (ex)is present. The uninfected cells
of the symbiotic zone are called interstitial cells

{not shown in diagram).Vascular tissue is

su by an is (not shown in diagram).



22
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Fig. 23, 24, 25, 26, 27 and 28
Photomicrographs of pre-winter nodule samples of

L. maritimus.

Fig.23 Meristem (m) of fhe nodule showing non-dividing
cells surrounded by cells containing starch

(small arrows) and oleosomes (large arrows).

Fig.24 Nodule parenchyma (inner and outer cortex)
and interstitial uninfected cells showing heavy deposits
of starch grains (small arrows) and oleosomes
(large arrows). Note the exodermis (Ex), and the
infected cells showing opague bacteroids due to

poly B-hydroxybutyric acid granules.

Fig.25 Innner cortex of nodule shewing the endodermal
layer (En) around the tangentially cut vascular
tissue (Vt) and the invasive zone (iv)

lacking any infection threads.

Fig.26 Mature symbiotic infected cells (*) and
senescent infected cells (Sn). Note the

change in appearance of bacteroids.






Fig.27 Electron mi of a pa: cell

showing starch grain (Sg) and oleoscmes
(large arrow) in pre-winter

nodule of L. maritimus.

Fig.28 Electron micrograph showing associations
of starch grains (Sg), mitochondria (Mt),
oleosomes (arrow) and rough endoplasmic
reticulum (er) in pre-winter

nodule of L. maritimus.
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Fig.29, 30, 31 and 32

Photomicrographs of post-winter nodule samples of

L. maritimus

Fig.29 Photomicrograph showing the vascular tissue.Note
the vascular parenchy:.a showing olecsomes (arrow)

en=endoderm:

Fig.30 A view of the senescent zone (Snz).

Fig.31 The invasive zone (iv), showing no starch grains
or oleosomes. Note very clear presence of infection

threads (arrow).

Fig.32 Provascular parenchyma showing a dividing cell
(arrow), and the other cells of the meristem (m).
Note the lack of storage granules in the

parenchyma surrounding the meristem.
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Fig.33 Electron micrograph of the endodermal layer showing

the p: of ol (arrow) in post-winter
nodule of L. maritimus. Note the characteristic

thickening of the cell wall.

Fig.34 Electron micrograph of a xylem parechyma cell
showing protein bodies (Pb) in post-winter nodule

of L. maritimus.
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Fig.35 Electron mi of the t zone cell

showing some rod-shaped bacteria (r) in

post-winter nodule of L. maritimus.

Fig.36 Photomicrograph of the senescent tissue from where the

Fig. 35 is taken.

Fig.37 Electron micrograph showing persistent infection
thread (It) in the invasive zone of post-winter

nodule of L. maritimus.
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IV DISCUSSION

IV. 1 Oleosomes and oleosins in A. hypogaea.

The recent studies on the composition, structure,
synthesis and degradation of oleosomes have been made on seeds
or germinating embryos (Huang, 1992). Most seed oils are TAG;
the sole well known exception is in jojoba, which stores wax
esters instead. In general, the oleosomes contain about 92.98%
(w/w) neutral lipids, and 1-4% proteins. Most of the neutral
lipids are TAG; the minor neutral lipid components include
diacylglycerols and free fatty acids.

The composition of the TAG, including their acyl
constituents and the acyl positional specificity, are highly
species-specific and have been analysed extensively owing to
the importance of seed oils in nutrition and industry. The

major PL in the oil bodies is phosphatidylcholine, and the

minoxr PL include idylserine, dylethanolamine
and phosphatidylinositol (Tzen and Huang, 1992).

The olecsome proteins, termed oleosins, have special
characteristics and are unique to the organelles. Oleosomes in
seeds are degraded during germination and post-germinative

growth. TAG in oleosomes are hydrolysed to glycerol and fatty
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acids, which are then converted to carbohydrates for the
growth of the seedling. The subcellular location of the lipase
varies according to species (Huang et al., 1987). In most
species, the glyoxysomes, which f-oxidize the TAG derived
fatty acids for gluconeogenesis, contain a lipase in their
uembrane.

The oleosome associated proteins, 'oleosins’ are usually
a class of low-molecular weight proteins and it has been
suggested that structural function of the oleosins is to

prevent contact with cytosolic and the coal of

lipid bodies. A putative lipase-attachment site on the
oleosins implicated their involvement in the process of lipid
degradation (Vance and Huang, 1987; Murphy et al., 1991) . The
most extensively studied oleosins from maize showed four major
polypeptides are being associated with oleosomes, one of
higher molecular weight (45 KD) called H protein and three of
lower molecular weight (15.5, 18.0, and 19.5 KD) called
L3,L2,L1 proteins respectively (Vance and Huang, 1987). The
amino acid sequences of 16 and 18 KD from the maize embryo
oleosins from their gene or cDNA nucleotide sequences reveal
unique secondary structures in the protein (Qu and Huang,
1990; Vance and Huang, 1987). Each oleosin molecule contains

a relatively hydrophilic N-terminal domain, a central totally

y bic domain and i ic w-helical domain at or near

the c-terminus. Although both maize oleosins contain these



78
three structural domains, their amino acid sequences as well
as gene nucleotide sequences are similar only in the central
hydrophobic domain. The maize oleosin 16 KD and 18 KD have
been cosidered as isoforms encoded by two different genes
derived from a common ancestor gene (Qu and Huang, 1990). Tzen
et al. (1990) suggested that there are at least two
immunologically distinct isoforms of oleosins present in
diverse seed species, one of lower molecular weight and
another one of higher molecular weight.

The results of TLC from peanut root nodules show the
presence of one TAG band, one DAG band, three PL bands and
SDS-PAGE shows four oleosins. However, this pattern was found
to be different when compared with the seed oleosomes of the
same species. The root nodule oleosins(10.0 KD, 56.3 KD, 61.1
KD & 66.0 KD) are of high molecular weight than seed oleosins
(25.5 KD, 35.2 KD, 40.0 KD and 59.5 KD).

It is also interesting that these high molecular weight
oleosins are present in the highly metabolically active tissue
of the root nodule. The function of such high molecular weight
oleosins in the root nodule remains to be elucidated. One of
the possible functions could be to regulate the constant
supply of carbon/energy in the process of nitrogen fixation,
through the oleosome degradation. Lipase has been
cytochemically localized in nodule oleosomes, where the

reaction product could be seen on the periphery, while seed
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oleosomes showed activity only in glyoxysomes (Jayaram and
Bal, 1991). These oleosins may have lipolytic activity, which

remains to be determined.

IV.2 Morphology of root nodule oleosomes from

A. hypogaea.

The major constraint in this study was acquiring gram
quantities of nodules. The fat pad was more like a £ilm on the
flotation medium as compared to the ones obtained from seed,
the oleosome amounts being low i.e. only about 4-5 % of the
total cell area in the nodule (Jayaram and Bal, 1991). As
reported by Huang (1992), if a seed contains 40 % oil and 30
% proteins, it will have 0.4 to 1.6 % oleosins; 2-8 % of the
seed protein is composed of oleosins. So, if we consider 4 %
oleosomes of the nodule cell, then the oleosins would be
approximately 0.1 % only.

Dleosomes from diverse species are 0.2 - 2.5 pm in
diameter; the average size ir species dependent and is liksely
affected by nutritional and environmental factors (Huang,
1992). It has been reported that, within the same seed,
oleosomes in different tissues may be of different sizes. For
example, in maize embryo, the oleosomes in scutellum are

larger than in the embryonic axis (Trelease, 1969). Similarly
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the oleosome size has also been observed to be different in
different tissues of the peanut root nodules, as shown in the
parenchyma cells and infected cells by Jayaram and Bal (1991).
The oleosomes of the nodule fat pad are heterogenous; some are
derived from the infected nitrogen-fixing cells while others,
mostly the larger ones are from the uninfected parenchyma
cells. The less electron-dense outer layer in the oleosome is
most likely proteinaceous. This peripheral layer has shown
lipolytic activity (Jayaram and Bal, 1991). This is possibly
the site for lipase receptor proteins. Signs showing furrowing
of the oleosomes (Fig. 6) is indicative of their catabolic
process and it is assumed that with the progress of lipolysis
the oleosomes become less elctron-dense and possibly appear to
be swollen into larger entities as seen in the electron

micrographs.

IV.3 Oleosome distribution in A pintoi

Recently the significance of oleosomes in root nodule of
A. hypogaea (peanut) (Bal et al., 1989; Jayaram and Bal, 1991)
and their possible involvement as a supplimentary source of
carbon have been documented (Siddique and Bal, 1991 and 1992).
The results presented here (Fig. 8, 9 and 16 ) reveal the

complete b, of ol in the i cells of

effective, mature/red and pink nodules at all the stages of
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growth in A.pintoi. The lack of oleosomes in the infected
cells of effective nodule suggests the inability of the host
to provide any additional energy and carbon source
(oleosomes) , which may affect nitrogen fixation and symbiotic
interaction under photosynthetic stress  conditions.
Interestingly oleosomes (0.24 and 1.24 percent of the cell
area) are present in the infected cells of
immature/small/white nodules at 21 and 28 DAI and again
reappear at senescing stage, when no effective symbiosis
occurs. It can be therefore assumed that oleosomes are
essential for the early stages of nodule differentiation, when
some 30 fold increase in membranes takes place in the nodules
(Verma et al., 1978). A recent study on Sesbania rostrata
nodules also confirms transient appearence of oleosomes in the
early stages of nodule differentiation (Bal and Dendvluri,
1996) . There seems to be no mechanism to maintain a dynamic
equilibrium level of oleosomes at all stages of development in
the nodules of A.pintoi, as in effective nodules of A.hypogaea
(peanut) (Jayaram and Bal, 1991). However, in A.pintoi, nod*
£ix" nodules indicate that the infected cells are capable of
synthesizing and accumulating oleosomes. This increase in
oleosomes population suggested that they are not utilizaed in
the absence of effective nodulation, as has been also shown in

peanut (Bal and Siddique, 1991).
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Lack of oleosomes at the effective stages of the nodule
in A. pintoi suggests that these nodules may be at a
disadvantage in terms of having a ready supply of additional
supplimentary energy. The significance of oleosomes in the
nodule parenchyma is not clear. In the uninfected parenchyma
cells there is a decreasing trend in the amount of oleosomes
in the mature/red nodules, compared to the mature/pink ones.
The other two diploids and cultivated sp. of Arachis showed
the presence of oleosomes in infected cells at all the
developmental stages when inoculated with the same strain of
Bradyrhizobium, suggesting that it is a host-specific
characteristic of the symbiotic interactions.

The other observations that could be related to support
the above hyphothesis is that large amounts of amyloplasts in
parenchyma cells were observed only in this perennial peanut
(Fig.8) in comparison to others. The presence of increased
number of amyloplasts suggest the relative ineffectiveness of
the nodule for nitrogen fixation (Bergersen, 1957; Chandler et
al., 1974; Newcomb et al., 1977). These storage granules have
to be mobilized to maintain the equilibrium of the carbon

skeleton for protein and lipid synthesis.



IV.4 Nodule senescence in A. pintoi

Studies of the A. pintoi nodule have shown characteristic

internal organizatio: . the large spherical bacteroids, in

t with the el and b ones of cowpea, which
differentiate from the same strain of rhizobia (Sen and
Weaver, 1984). In this perennial wild diploid species, A.
pintoi, all the bacteroids in effective pink/red nodules were

found to be typically spherical like the tetraploid
A

. + the i e/small/white nodules show rod
shaped bacteroids during early developmental stages of growth
as in A. hypogaea. ‘The senescing stage of the nodule in A.
pintoi revealed a reversion of spherical bacteroids into the
rod-shaped form. It is generally believed that the bacteroids
of symbiotic nitrogen-fixing root nodules revert back to their
asymbiotic forms when released in soil or in culture, although
some nodule bacteroids lack this capability (Zhou et al,
1985) . Carefully controlled studies have shown that bacteroids
became progressively less viable with age (Sutton et al.,
1977) . The loss of viabilty has been attributed to the degree
of dedifferentiation as indicated by detergent-sensitivity
(Sutton and Paterson, 1980). This investigation shows that the
large spherical bacteroids of A. pintoi nodules revert to rod-

forms during senescence within the intact nodule. The



84
transformation of rhizobia into spherical forms in these
nodules is complete as the nodule matures. Absence of any
infection thread and its persistence in the mature nodule does
not allow any contamination from undifferentiated rod-forms in
a mature nodule. The spherical forms are so distinct in
morphology that the rod-forms must arise by dedifferentiation

of the mature spherical b ids during . The zod-

forms were generally found in the large vacuole of the
senescing cells. This particular species, A. pintoi, allows
fully differentiated bacteroids to revert back within the
confines of its nodule tissue. This may insure survial of the
bacteria when they are released in the soil.

The A, pintoi root nodules were subjected to premature
senescence to confirm the redefferentiation of bacteroids into
rod-forms, either by treatment of plants with nitrate ox by
detopping the plants. Indeed, the presence of rod-forms and
also spherical bacteroids alongwith the presence of oleosomes
could be confirmed in these nodules. The senescence induced
artficially was similar to that occurred naturally or with the

nod' fix" strain with the notable presence of rod-forms and

ol . This ing is i ting in A.
pintoi and needs to be invastigated in more detail because
this species is recently becoming introduced as a forage crop
(Thomas, 1993). Cutting of the tops will take place during

grazing the animals. The nitrate induced senescence has
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recently been reported by De Lorenzo et al. (1994) in root
nodules of Lupinus albus; they have suggested that nitrate
treatment induces a decrease in the activity of the main
enzymes catalase and ascorbate peroxidase that scavenge H,0,

in the nodule cytosol.

of ol during is possibly due
to conservation of degraded products of membrane, which are
recycled into storage triacylglycerides. It is interesting
that both reversion of rhizobia and possible reconversion of
degraded products occur during senescence in these nodules.
Both these phenotypic traits may be related to the perennial
habit of A.pintoi. Senescing nodules of A. hypogaea (peanut)

do not exhibit such characteristics.

IV.5 Seasonal effect on storage organelles in

L. maritimus root nodule.

The histological status of the nodules of the peremnial
Lathyrus maritimus L., before and after winter throws
considerable light on their survival strategy during the
winter months. Throughout the growing season nodules develop
continuously and therefore enter the overwintering process at
various stages of development. As the nodules became active in

spring, new growth takes place resulting in a constriction or
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a notch in these nodules. As more than one notch was never
been seen in this study, we suggest that the nodules persist

only for two successive years.

During post-pod £illing at the beginning of the cold
season the plant undergoes a storage program in preparation
for the winter. Large quantities of sterch are deposited in
the amyloplasts along with oleosomes, and the nodule
essentially becomes a storage organ. The infected cells of the

symbiotic zone show senescing bacteroids, which are at first

recognizable by the @-hydroxybutyric acid granules, and

£inally rep ted clumps. , some b ia
remain undifferentiated and protected within infection
threads, and some bacteroids revert into rod-shaped bacteria.
Such reversion has been reported also in the senescing nodules
of perennial species of Arachis pintoi L (Khetmalas and Bal,
1994 and the present study).

Overwintered vascular parenchyma and endodermal cells

seem to retain ly good ultrastr 1 morphology
including the storage organelles. The fact that water can
remain in the supercooled state within the xylem ray
parenchyma (Fujikawa et al., 1994), possibly allows these
cells to remain metabolically active over the winter. The
regeneration of the meristem therefore is likely to be
initiated in the provascular parenchyma close to the distal

part of the nodule. The supply of cell division - inducing
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substances is likely to be transported through this tissue
also.

It can be concluded that in the perennial beach pea plant
a substantial amount of its energy is allocated into oleosomes
and amyloplast storage organelles of the nodules after pod
£illing. Like the seed, the nodule becomes a storage organ, in
preparation for the winter. Materials in the storage
organelles are mobilized for regenerating the nodule activity
even before the aerial parts of the plant have grown. Pre-
winter appearance and post-winter disappearance of oleocsomes
and starch granules is very striking, but whether they are
slowly metabolised during the winter or rapidly metabolised

and exhausted within days in spring remains to be determined.
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v  SUMMARY

Nitrogen fixation in legume root nodules is believed to
be supported by the supply of carbon compounds derived from
the current photosynthate of the host cells. The presence of
storage organelles such as oleosomes in the infected cells may
serve as a supplementary source of carbon and energy during
photosynthate stress as has been suggested for Arachis
hypogaea root nodules (Bal, 1990; Bal et al., 1989; 8al and
Siddique, 1991; Siddique and Bal, 1991, 1992).

The present investigation further showed that the peanut
root nodule oleosomes has constituents DAG, TAG, PL and
oleosins similar to those reported from other sources (Huang,
1992) . Peanut root nodule oleosomes revealed four oleosin
bands. The molecular weights were 66 KD, 61.1 KD, 56.3 KD and

10 KD. The isolated oleosomes showed considerable variation in

size, electron density and in the p: of a less el
dense peripheral layer.

The development of symbiosis in wild species of legumes
such as Arachis and beach pea in relation to oleosomes and
other ultrastructural features was studied. Microscopical
observations at different developmental stages of nodules of
Arachis pintoi have revealed that oleosomes were present only

during early stages of the infection process and development
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before the establishment of symbiosis, and during senescence.
Oleosomes were absent in the infected cells of effective
nodules of A. pintoi whereas similar cells in the nodules of
other wild diploid speceis of Arachis (A. batizocoi and A.
duranensis) and tetraploid A. hypogaea showed presence of
oleosomes. Another interesting feature in this species was the
reversion of spherical bacteroids into rod-forms within the
confines of the senescent nodule tissue.

The histological and ultrastructural studies of the root
nodules of naturally growing beach pea revealed considerable
seasonal variation in the presence of storage organelles, such
as amyloplasts and oleosomes. After fruiting (pre-winter)
large numbers of amyloplasts with starch grains and oleosomes
filled the uninfected interstitial cells and parenchyma cells
of the nodule tissues. These storage organelles could not be
seen in the cells of nodules sampled during post-winter
periods before aerial shoots emerged, indicating their
importance in overwintering. Persistent infection threads with
rhizobia could be seen and rod-shaped rhizobia in senescent
cells were indicative of reversion of bacteroids to rod-forms

within the nodule tissue.



vi CONCLUSIONS

The peanut root nodule oleosomes are composed of DAG,
TAG, PL and oleosins as reported in oleosomes from other
sources (Huang, 1992). This is the first report to demonstrate
the presence of oleosins in the root nodule oleosomes, which
are of 66 KD, 61.1 KD, 56.3 KD and 10 KD molecular weight. The
isolated oleosomes showed considerable variation in size,
electron density and in the presence of a less electron-dense
peripheral layer.

During the symbiotic stages, ome of the species of
Arachis, A. pintoi (2n, perennial) was found to be deveid of
oleosomes in the mature infected cells of their nitrogen-

fixing nodules. The of ol in white/i

nodules at the early plant growth stage, naturally and
prematurally senescing nodules of A. pintoi indicates that the
infected cells are capable of synthesizing and accumulating
oleosomes.

The reversion of bacteroids into viable rod-forms in the
senescing nodules was observed and reported for the first
time. In the perennial beach pea plant a substantial amount of
its energy is allocated into oleosomes and other storage
organelles of the nodules after pod filling; starch and lipids
comprise the major storage materials. Like the seed the nodule

becomes a storage tissue which allows it to overwinter.
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