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ABSTRACT 

The high energy-demanding process of nitrogen fixation in 

symbiotic root nodulea ie gene3:ally supported by a eupply of 

carbon compo~nds derived from current photosynthate oi the 

host plant. However, in Arachis hypogaee L (peanut) nodulss, 

whichhave oleosms Ilipidbadieal in the infected cslle, the 

lipid catabolism may supplement the energy supply in case of 

photosynrhare stress. The present investigationwas undertaken 

to further study oleosomic lnetabolim inlVachis hypogaoa and 

four other legumes: A. pintoi L., A. duranenais L.. A. 

batirocai L. and Lathyrus maritinus L. (nigel) lbeieh ~ s a l  

nodules where oleoeonas are present. 

  he oleoames or A. hypogaee root nodules contained 

diacylglycerol IDX), triacylglycerol (TAW. phospholipids 

(PL) end oleosine. o he oleoswes varied in size, electron 

density and in the width of a less electron-dense peripheral 

layer.  our oleoein bands having molecular weights 66.0 KD. 

61.1 KD, 56.3 KD and 10.0 XD could be resolved by 

p~lyacrylamide gel electrophoresie. 
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The development of symbiosie and oleosome distribution 

wae studied in three wild speciee of Aracbis i.e. A. pintoi, 

A. dvrenensis end A. batiaocoi. Oleoamss were present in the 

infected cells of A. pintai during the infection process and 

before establishment of symbiosis. In A. duranensie and A. 

batizocoi oleosame persiered during symbiosie in mature 

nodules. A.pintoi m*ture nodules were devoid of oleoaomes in 

infected cells. but reappeared during senescence. Another 

interesting feature in this spscses was the reversion of 

~pherical baateroids into rod-forna within the confines of the 

seneecent nodule tissue. 

Studies on the distributional pattern of oleoeomee in tha 

root nodules of naturally growing L. maritimus (beach pea) 

revealed that the pre-winter nodules were filled with large 

numbers of oleosomes and amyloplasts in uninfscted 

interstitial and parenchyma cells. These etorage organelles 

could not be seen in the cells of nodule sampled during post- 

winter periods before aerial shoots emerged. The results 

indicate that either ths olebsomes are catFibolized slowly 

during the vintac months, to allow the nodules to survive the 

extreme cold temperatures or they are rapidly mcbilizad just 

before the growing seaeon. The olasemes in beach pea nodules 

8.- to S B N B  ae storage organelles in the uninfectsd and 

parenchyma cells andnot directly related to nitrogen fixation 



per se. The overvintercd nodules are Eapable of resming 

nitrogen fixation due to the presence of persistent infection 

threads with rhiozobia and many rod-shaped Rhirobium among the 

seneeccnt ineected ce1I.a. 
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I INTRODUCTION 

I. 1 General i n t r o d u c t i o n  

N i t r w e n  IN,), i n  i t a  elemental gaseous form, constitutes 

almost  four - f i f ths  o f  the world '= atnosphere (Allen and Allen,  

19811. This i a  v i r t u a l l y  an inexavs t ib le  supply,  y e t  p l a n t s  

a n d  animals can n o t  a s s i m i l a t e  nitrogen i n  i t s  frss £om. 

Becavee n i t rogen  is an  e e s e n t i a l  component o f  the p r o t e i n s  and 

n u c l e i =  acids necessary f o r  c e l l  protoplaem, a l l  organisms are 

dependent on having i t  a v a i l a b l e  i n  a form which t h y  can 

u t i l i z e .  The t e l a t i v a  s t a b i l i t y  and  i n e r t n e s s  make it 

unava i l ab le  t o  Bukaryotic organisms. Nitrogen i s  combined with 

o t h e r  elements l i k e  hydrogen and oxygen b y  an endergonic 

r e a c t i o n  a a l l e d  n i t rogen  E ixa t ion  (Gallon and  Chaplin, 1987).  

F ixa t ion ,  including i n d u s t r i a l  n i t r o g e n  f i x a t i o n  m y  be 

e i t h e r  b io log ica l  or non-b io log ica l .  B io log ica l  n i t rogsn  

f i x a t i o n  involves the reduc t ion  of n i t rogen  t o  ammonia 

c a t a l y n e d  by the  enzyme complex. niteogenase i n  p r o h r y o t i c  

o r g a n i s m .  Diazotrophic bao t s r i a  can f i x  n i t r o g e n  a t  

a h a p h e r i c  temperaturee and pressurem, wheeeatr t h e  Kaber- 

s o s c h  p rocess  fo r  i n d u s t r i a l  p r ~ d u c t i o n  of ammnia requ i res  

p r e e e u r e  of 2 0 0  atm and 800DC - da ta  the' p rov ide  eloquent 

t e s t imony  t o  the ex t raord ina ry  na tu re  of n i t r o g e n a s s  (Glenn 

a n d  Dilworth, 1991) . The n e t  r e s u l t  of these  p rocesses  i a  tha t  
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nitrogen compounds are added t o  eoil o r  water; these are then 

assimilated by p l a t e  and microorganisms. Thie assimilated 

nitragan i e  returned to ths s o i l  on fha death and decay oE 

these orpaniams. Within the s o i l ,  -onia and n i t r a t s  ara 

revereibly intarchangeable by t h e  as t ion  o f  varioum 

nicroorganiems. Animal. ara able  t o  uti1i.e only nitrogan 

compounds which have been previously aaaimilated by plant.. 

r i m r e  1 depict. the  simpleat Lorn of nitrogen cycls i n  which 

combined fom of nitrogen can be l o s t  to the  atmosphers by a 

process LnOm as deni t r i f iea t ion  (Gallon and Chaplin, 1 9 8 7 ) .  

N,-fixation 

procesaea 

Dead organic xmttsr 

Pig. 1. The nitrogen cycle Imodif i~d from Gallon and Chaplin. 

1987). 



1.2  Biological nitrogen fixation 

Biological  n i t rogen  f i x a t i o n  involves t h e  reduc t ion  of 

nitrogen t o  ammonia b y  the enzyme complex, n i t rogenase .  The 

o v e r e l l  r e a c t i o n  aan be represen ted  as: 

The s t andard  f r e e  energy change of t h e  r e a c t i o n  i# ' 

pos i t ive ,  ind ica t ing  t h a t  t h e  reac t ion  r e w i r e s  t h e  inpu t  of 

energy. T h i s  muat be u l t i m a t e l y  derived from t h e  o x i d a t i o n  of 

carbohydrates which have been  produced e i t h e r  d i r e c t l y  or 

i n d i r e c t l y  by photoeynthesia.  ~ i a z o t r o p h i o  organisma are a b l e  

to  covple the  ox ida t ion  of carhohydrats to t h e  r e d v a t i o n  of 

the n i t rogen  (Gallon and Chaplin, 19811.  There a r e  no 

ni t rogen  f i x i n g  h igher  p l a n t s  n o r  indeed any eukaryo t i c  

microorganisms tha t  call f i x  n i t rogen .  Where p l a n t e  are 

involved i n  the ni t rogen- f ix ing  proaess,  i t  is as p a r t n e r s  i n  

a s.ymbiotic a s soc ia t ion  w i t h  d iaza t roph ic  prokaryotes,  the 

l a t t e r  be ing  respons ib le  foe nitrogen f i x a t i o n .  I n  f ac t ,  the 

a b i l i t y  t o  f in  n i t r o g e n  s e e m  t o  b e  exc lus ive ly  t h e  property 

of a l i m i t e d  number o f  p rokaryo t i c  spscies,  aome of which are 

f r e e  l i v i n g  (asynbiotial  while o the r s  f i x  n i t r o g e n  i n  

aynb io t i c  a s soc ia t ion  with p l a n t s .  



1.2 -1 Asynbiotic nitrogen fixation 

Aawlbiotic  ni trogen f i x a t i o n  inc ludes  t h e  d i v e r s e  g roup  

of p roka ryo tes ,  such as a t r i c t  anaerobes,  ~ l o a t ~ i d i - ;  

f a c u l t a t i v e  anaerabes/microaeraba.. K l e b s l e l l e ,  ~ l r o e p i r i l l - ;  

o b l i g a t e  aerobe-,  Arotobacter ,  B e i j o r i n c k i a ;  and some cf t h e  

chemoautotrophs and pho tosyn the t i c  b a c t e r i a .  The n i t r o g e n  

f i x a t i o n  r a t e s  of  f r e e  l i v i n g  d iazo t raphe  are vaua l ly  v e r y  

low, ranging from 0 . 1  t o  loo  kg N ha.' yr-' (Baring e t  al., 

198Sr Knowlee. 1977; Waughman st  a l . ,  1981)as  compared to the  

s w l b i o t i c  a s soc ia t ion  wi th  legumes. 30-300 kg  N ha-' yr- '  as 

t h e  requirement of p l a n t  growth (La Rue and Pa t t e r son ,  19811. 

The major f a c t o r  l i m i t i n g  a s p b i o t i c  ni trogenane i s  ca rbon  

energy supply.  

Of t h e s e  free l i v i n g  d iazo t rophs  Anotabactsrs  were t h e  

f i r a t  n i t rogen- f ix ing  organisma found t o  oontain more than one 

t y p e  of n i t rogenase  snzyme l e i shop  et a l . ,  19801. The w e l l  

known nolybdenvm n i t rogenase  is eynthasieed i f  t h e  me ta l  i s  

p reaen t  i n  the  emrironment. If molybdenum concen t ra t ions  are 

l e e s  than  about  10 n ~ ,  a vanadium-based enzyme i s  a v a i l a b l e  

t o r  n i t rogen  f i x a t i o n  i n  b o t h  A. ch roosoccm and a. v i n e l a n d i i  

(Ha les  e t  a l . ,  1986 and Robson a t  al.. 1986).  The l a t t e r  
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~ p s c i s a  may synthesize a t h i r d  nitrogenasa under these 

conditions (Jacobson e t  e l . ,  1986). Tho other important and 

unique fea ture  of Azotabacter is  thei r  extreme tolerance to 

oxygen while fixing nitrogen; nechanisns foe protecting 

nitrogenaee againet O, damage e x i s t  alongside a dependence on 

aerobic motabolisn f o r  energy and growth. Additionally, t h e  R, 

evolved during nitrogen f ixa t ion  can be cataboliaed by the 

enzyme hydrogenaee (Kennedy and Toukdrian, 1987) . 

I. 2.2 Symbiotic nitrogen fixation 

Nitrogen fixing symbioses f a l l  i n t o  two main types. One 

involvae interactions between legumes and bacteria of the 

genus nhisobim.  only one non-legume plant. Parasponla, a 

m d e r  of  family Dlmaceae has been found t o  form symbiotic 

root nodules with Rhizobim (Trinick, 1973). The eecond type 

i n v o l v ~ ~  a880~ia t ions  between non-leguminous angiosperms and 

the a c t i n o q c e t e  Prankia sp. (Baker end Mullin. 1992 and 

~imonel  et al., 1990). C-M t o  both le-e and non-legume 

s p h i o s e s  i e  the fact tha t  t h e  bacteria are housed in  

epscialieed structures called nodules. Although tha vast 

majority nodules occur on t h e  roots  of the host p lant .  

cer ta in  and wetar to lerant  species of legumes develop 

nodvles on t h e i r  etems i n  association with rhizobia. These 
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nodules have  been s h a m  t o  ha capab le  of h igh  rates of 

n i t rogen  f i x a t i o n  (lubba Rao and Yatazawa, 1984) . 

1.2 .3  Rhieobium - legume symbiosis 

Rhieobiun, b a c t e r i a  s t imula te  leguminous p lan t s  to  develop 

roo t  nodules.  which the b a c t e r i a  i n f e c t  and inhab i t .  

U l t i m t e l y ,  the two o r s m i m n  r s t ~ b l i s h m o t a b o l i s  cooperation. 

The b a c t e r i a  reduce ( f i x )  molecular ni trogen i n t o  ammonia, 

which they export  t o  t h e  p l a n t  f o r  a s s imi la t ion ;  t h e  p l a n t  

reduces carbon dioxide i n t o  sugars dur ing  photosynthesis  a n d  

t r a n s l o c a t e s  these  t o  t h e  roo t  where the b a c t e r i a  uae them a s  

i v s l  iLong.1989) and t h e  breakdown product., i . e .  o rgan ic  

ac ids ,  as metabo l i t e s  t h a t  combine wi th  amnonia. 

m e  p l a n t  family Lermminoseae (lebaceee) i a  t h e  t h i r d  

l a r g e s t  f ami ly  i n  the  Angiosperns, with sub-families 

Caesalpinaideae,  Mimosoideae and Papil ionoideae.  The family 

Pabaceae o o n a i s t s  of about 750 genera wi th  16.000- 19.000 

spec ies  (Al len  and Allen, 1981).    he legumes ere economically 

impor tan t  and vniqve i n  having symbiotic associations w i t h  

n i t rogen- f ix ing  rhieohis.  mere i s  a l so  oonsiderable 

s p e c i f i c i t y  of ind iv idua l  s t r a i n s  o r  apsciea of Rhilobiu.  f o r  

p a r t i a u l a r  grovps of planta,  as shown i n  Table 1. 



During a complex s e r i e s  of developmental ste!ys, t h e  

bac te r i a  and t h e  p lan t s  each i n f l u e n c e  each fundamental 

e c t i v i t i e ~  as c e l l  d iv ie ion ,  g e n e  e x p r e ~ s i o n ,  me tabo l i c  

fvnction a n d  c e l l  nrolphogenesis. a n a l y s e s  of t h e  b a c t e r i a l  

in f luence  o n  t h e s e  processes have l s d  to  the i d e n t i f i c a t i o n  of 

o t h e w i e e  s 1 v s i v s  cmponenta tha t  a r e  p a r t s  of t h e  ind igsnovs  

p l a n t  systems f o r  s igna l  traneduction,  gene regu la t ion ,  c e l l  

d iv i s ion  and o e l l  wall fo rna t ion .  Tha  d r iv ing  fo roes  o f  r e c e n t  

s tudy  or Rhizob im - legume aymhiosen include b a c t e r i a l  

gcncticm, p l a n t  molecular biology and  d e t a i l e d  m i c r o a c ~  o f  

the b a c t e r i a  - p l a n t  in te rac t ion  (Long, 1989). 

Table 1 R h i r o b i m  - plan t  a s soa ia t ion  

-. - - - -. . - - - . . - - - - -. . - - - - -. - -. . -. . . - - - -. - - - - - -. - - - - - - - - - - - -. - - - 
Rhiaobim P lan t  

Rhizobim m s l i l o t i  A l f a l f a  (Medicago) 

Rhieobim 1 s g m i n o s a r u .  

b i o v a r  v ic iae  Pea (Pisum) 

b i w a r  t r i f o l i i  Clover ( h i f o l i u m )  

b i o v a r  phaseo l i  Bean (Phaeeolue) 

Rhimobim f r e d i i  la. j a p n i c m )  soybean (Glycine) 

B r a d y r h i ~ o b i m  j e p o n i c a  soybean (Glycine) 

Rh i rob im l o t i  Loturn ILotum) 



Anorhi~obiu. caulinodena 

Rhisobim NOR234 

Bradyrhirobium sp. 

8 

Sesbenia (Sesbania) 

S i r a t r o  (Macroptiliml 

Peanut (Arachis), 

cowpea (viyma). 

Parasponia (Parasponia.a 

non- legume1 

( R o t h  and stacey, 19911 

1.2.4 Rhizobium - the nitrogen fixing bacteria 

Rhizobia are grm negative, rod shaped bacteria (0 .5  - 

0.9 pm x 1.2 - 3.0 lm),  occur s ingly  or i n  paire and are 

generally motile.  The flagella are e i t h e r  peritrichoua, polar 

o r  aub-polar (Jordan and Allen, 1974). ~ h i z o b i a  usually ggrov 

over a wide range of temperatures under low oxygen tension. 

They do not produce endospores. Glycogen and poly-8- 

hydroxybutyric ac id  are formed as storage granules. Moat 

speciss of Rhfzobium are specific i n  chair assodat ion  with 

legumes. Rhizobia have been taxonomically grouped and 

deeignated par t icu lar  specisa based on a croes-inoculation 

concept proposed by  red, ~aldwin  and ~ c c o y  (1932) similar t o  

those i n  Table 1. 

Merabolically, the genvs ~ h i r o b i m  can b e  divided i n t o  two 
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broad groups. There are fast growe;a and slow growers (Allen 

and Allen. 1950, Elkan. 1981) . Rhizo. ium ieolated from lsgumes 

of temperate origin such as R . t r i f o l i i ,  R. logtminorram, R .  

pheseoli and R. n e l i l o t i  are deeignated fast growers, having 

generation times of lees than six hours. whereas eloxgr-rs, 

such as R. japonicm and R. lvpini isolated from legumes of 

tropical origin, have generation time exceeding mix houra. 

Differences in carbohydrate nutrition have been reported by 

several grovpe IChaLrabarti st a l . ,  1981; Martinez-Deets and 

Aviae, 1974: Parke and Orneton. 1984; Skotnicki and Rolte, 

1977; Stoners and Egleshan, 19831. Enzymatic distinctions have 

also beenmade (Rernendaz and Pocht, 1984). Enzymatic criteria 

have recently been used to establish the taxonomic 

relationship of new Rhiaobim germ plaam such as the stem- 

nodulating Rhiaobim (Stowers and Eagleaham, 19831 and fast 

grawingn. japonicwn. Distinct biochemical properties of fest- 

and slow-growing rhizobia has led Jordan 119821 to propose 

that alow growing rhizobia represent a separatm genus, 

Bradyrhiaobim. 

rurizobim genetics has been greatly advanced by 

trenspoaon mutagenesie. reaombinant cloning and plasmid 

transfer experiments (Denaeie et al., 19811 Kondorosi and 

Johnston. 1981: and Long 1984). The fast growing Rhirob im 

species typically have large plesmide, one or more of whiah 

carry symbiotic genes and are designated pSym. These vary from 
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R. legumin~sarm plasmids of about 200-300 kilobaesa Ikb) to 

the large "megaplasmids" (1200-1500 kb) of R. meliloti. In 

some other symbionta, such as Bradyrhizobium, symbiotic genes 

are apparently not locatsd on plasnids. Several groups of 

symbiotic genes -nod,exo,nif and fix- have been defined ILong, 

1989). 

1.2.5 Nodule initiation and development 

Establishment of a nitrogen firing symbiosis between 

rhizobia and legmes is a complex developmental process that 

involves constant communication between the partnsra. A aeries 

of steps involved in these process have been studied by using 

bacterial genetiss, microecopy and molecular biology to aasay 

the auccess of interaction. 

Nodule development oan be divided into atages of pre- 

infection, nodule initiation end differentiation. The pre- 

infection stages commence even hefare the hoar plant end its 

compatible ~hieobium strain recognize each other as pote~tial 

partners on a cellular basie. Flavonoids released by the plant 

serve as chemoattractants and also induce Rhirobium nod genes 

product which associate with the cytoplaemic rnsmbranea of 

rhiaohia and appears to interact with the specific flavonoido 

in roo+ exudates IYawall and Phillips, 1990). After 
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chemotaxie, rhirobia aerach to the responsive root hairs 

(ahvvaneswari et al.,l98U). The rhizobia attach to sueceptible 

root haire via a two step actacbment procsse (Daezo st a1.. 

1984; smit et a1.,1987). ~irat, they loosely attach to a plant 

receptor via a protein on the bacterial surface known as 

rhicadeein. Rhicadssin is a ca1civm binding protein that 

appears to be common among Rhizohiaceae. Then, tighter 

adherence occurs either by means of cellulose fhhrils (Smit 

et el., 1987) or firnbriae (Vesper andBauer, 1986). Oftsn, the 

rhizobia are eeen to attach to tho root hair in a polar or. end 

on faahion (nsrech, 19921. Lectins of tho legme root hair 

have also been implicated at these stagea of infection. 

However, lectins ere more likely to be involved in invasion 

rather than attachment of rhizobia (Kijnc,199ai Roth and 

Stacey.1991). Entry of bacteria appeare to occur at the root 

hair tip, probably because the oell a l l  is thinner and lssa 

E~OSB-linked there than eleewhere. Susceptible root hairs 

deform into a number of unusual shapes after inoculation with 

rhizobia, including corkscrews, branches, twiate, and spirals. 

A few of the deformed root hairs .oil 360' and form disgnoetic 

our11 known as ,ehepherd3e crooks'. Root hair deformation is 

dependsnt on the presence of functional Rhizobim nod genes 

(Hereoh. 1992). 

A sulphated end acylated tetraglucosamine glycolipid 

called ~ o d ~ n - 1  was identified as the secreted product of the 
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nod gene activity in R. meliloti (~srouge ee el.. 19901. 

No%-1 elicits root hair deformations when added in nanmolar 

concentrations to asceptically grown seedlings of alfalfa. 

This E O ~ P O U ~ ~  also stimulates cortical =ell divieions (Roshs 

et a l . ,  1991) which establish the nodule primordim (Noi; 

nodule initiation). In the fast growing Rhiaobivn ap.. the nod 

genes are located on a plasmid whereas in the slow growing 

Bredphizobiun, they are ohemoaomally horns (Oyorgypal et 

el.. 19911. 

After inducing 'shepherd's crook' farnation. the rhieobia 

penstrate the root haie oell by means of an infection thread. 

an slectron microscopic study (Callaham and Torrey, 19811 has 

shown that rhieobia cause the dissolution of the plant cell 

well at a ~peciiic point, while others (Nutman. 1956) proposed 

earlier that the infection thread fo- via a process of cell 

wall invagination (Pueppke, 1986). ~esent studies by Bakhuizen 

(1988) support callahara and ~orrey'e observations. Pollowing 

dissolution of cell wall, the plasma membrane of root hair 

invaginatee, and cell wall material is deposited around it and 

the rhirohie within. The host cell nucleus ia attached by 

microtubules to the infection thread as it paeaea through the 

root haie cell (~akhuizen, 1988; ~loyd et al., 1987). The 

bacteria travel from hoet cell to hoet cell via the infection 

thread and it. branches. xwevar, some tropical legumes such 

as ~raobis (peanut) and Btyloeanthoe, rather promiscuous host 
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plants, do not form infection threads in the root hairs, 

instead they ere nodulated from sites of lateral root 

emergence where epidermal cracks are the paints of entry into 

the intercellular space; call divieiona are indvoed in the 

cortex of emerging lateral root (Chandler, 1978 and Chandler 

et a l . .  1982). After the preinfection stages, cortical cell 

division- take place several cells distant from the infection 

thread. Cell divisions occur either in the outer or inner 

cortex of the root. The type of nodule that develops depends 

on the host plant, not an the rhizobiel strain (Dart, 1977; 

Newconl 19811. h o  m j o r  types of nodules are found on the 

roots of legmes. The indeteminate type is chaea~terized by 

a persistent apical nodule meristm, while the determinate 

type ham diffvse merietematic activity which may csasa after 

a certain period. The persistsnt apical meristem cause* 

indeteminate nodules to be elongated and club-ahaped because 

new cells are constantly being added to the distal snd of 

nodule. All atages of nodule development ere represented in 

one nodule because an age gradient occure from the distal 

nleristem to the proximal point of the attaahment to the parent 

root. Plants having indeterminate nodulea include clover, 

alfalfa and pea. In contrast, deterninate nodules are 

spherical. Cell divisions aeaae early during nodule 

development and the final form of tho nodule reaults from cell 

enlargement rather than =ell division. Nodules of soybean, 
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mungbean and peanut are examples of determinate nodules 

(Hersch 19921. 

During symbiosis, the host plant expresses a certain 

number of proteins specific to nodule development and nitrogen 

fixation called nodulins (Legocki and Verma, 19BO). Many early 

nodvlin genes are expressed sequentially during nodule 

differentiation. end s m e  of these genes can be induced in 

nodules devoid of bacteria (Nap and Bisseling, 19901. These 

atudiea ehowed that some of the early nnduliio are involved in 

the early infection process, whereas others partioipate in 

root nodule mrphogenesie. The late nodvlin genes are 

expreseed concomitant with or fallowing the release of 

bacteria f r m  the infection thread but prior to the induction 

of nitrogenass and the cononencement of nitrogen fixation 

( v e m  and ~elaunsy. 1988). One late nodulin, leghemoglobin, 

is largely reponsible for transporting oxygen throughout the 

infested region of the nodule (Appleby. 19841. 

1.2.6 Internal ccmpartmentalization 

  he formation of a subcellular compartment houeing the 

bacteria inside the infeated cell is tha final atage of 

succee~ful infection. m e  failure to form thia membrane 

compartment or ite diaintegeation renders the association 
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pathogenic (Werner et al., 19851. Infection by rhizobia 

triggers the proliferation of the membrane system thet 

generatee components of the peribacteroid membrane (PBMI. 

Continued proliferation of this membrane is essential to 

enclose rhizobia ao thet direct contact of the bacteria with 

the host cytoplasm ie avoided. In eoybean root nodules, almoat 

30 times more membrane is generated in the form of PBM than in 

the form of plasma membrane lverma et el., 1978). b-aau~e the 

rhizobia are endosed whithin the P m ,  the space between the 

bacteria and the PBM, which is known ae the peribacteroid 

space, must be equilibrated with certain metabolites. 

including dicarboxylic acids (used as carbon sources by 

bacteroide), to eliminate the concentration gredient between 

the host end the rhizohia. In a sense, this internalizes the 

organiem and brings it into the closeet association possible 

with the host. Equilibration of the peeibacteroid space is 

apparently accmpliehed by opening erne epecific ch-ele in 

the P m  (Verne. 19921. The PBM is relatively impermeable to 

vari(~us sugare and amino acids that have been tested (Udvardi 

et al., 1988a; ndvardi et al., 19901 but n dicarboxylate 

oarrier in the PBM facilitatea rapid transport of dicarbaxylic 

ecids to the bacteroide (ou Yang st al., 1990; ndvardi et el., 

1988bl. Nodulin-26 is probably the PBK peotsin responsible *or 

disarboxylate transport IOU Yang et al., 1991) . Protein 

phoaphorylation stimulates tho rate of malate uptake across 
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the PBM of soybean nodules and this nay be important in 

c~nteolling the bllcteroid carbon supply during sywbiotic 

nitrogen fixation 10" ~ a n g  et al, 1991).   here is also an 

alectrogenic r -ATPase in the PBM that could be involved in 

metabolite transport aorose this membrane Iudvardi and Day 

1989: Udvardi et al., 1991). It ie becoming clear that the PBM 

defines a cellular compartment where Rhirobiwn can function ee 

an "organellel' (Ye- and Long. 1983). A term 'symbiosome' has 

been intraduoed to describe the bacteroid in the PBX including 

the peribacteroid space (Mellor, 1989). 

1.2.7 The bacteroid 

The term bacteroid has baen used to desceihe a variety of 

structures, including ewollen forms of Rhisobiwn in cultures 

and aome or ell the cells present in legume nodules. According 

to Sutton et a1.11981) "bacteroide" refer to all Rhieobim 

cells found within the central tiesue cslle of legume root 

nodules, without regardtomorphal~gy orphysiology. Rhizobivnr 

cells located in infection threads or nodule intercellular 

space8 are regarded as extracellular end are therefore 

referred to as bacteria. l'he sire and shape of bacteroide and 

the number enclosed in each ~eribacteroid membrane are largely 

determined by the plant, eince bacteroids of differsnt 
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~hizobim etzains in effective nodulee of a given host nearly 

always take 0" the sane morphology. In some cases it has been 

shown that a single Rhisobim strain £0- hacteroide of 

differing morphology in different hoats. The most dramatic 

example being rod-ehapsdbacleroids inperibactasoidmenbranes 

in cowpea eoclt nodule as contrasted with large, spherical 

bacteroids enclosed singly in peribacteroid membranes in 

peanut  art, 19771 sen et el., 1986). The surfaae structure 

of ~hieabim is similar to other gramnegative bacteria in 

having a complex outer membrane ar0-d the cell membrane 

Ivinaent, 1977). Inside the nodule calla of the host, the 

rhiaobia undergo transformation into nitrogan-firing 

baotaroids with a modffications in their outer m d e a n e  

Isergerson, 1974: Bruseel et al., 19771. Such modifications of 

the outer membrane of Rhiaoblm bacteroida are reflected in 

their response to osmotic shock and chemical composition 

 ruseel el et al., 1977). Bal and co-workrrrs 11980, 1982 and 

1985) have eh- that the rhirobia shed their outer membranes 

which are then replaced by a new outer m d r a n e  soon after 

their into host cells. Bacteroids from Rhizobim as 

well from wradyrhieobim etrains can reaifferentinte to free 

living viabls calls (Button et al.. 1977 and 19811. 



1.2.8 Nitrogenase and nitrogen fixation 

Nitrogenase ie the unique enzyme involved in reduction of 

nitrogen. In rhirobia. this enzyme is expressed during 

symbiotic nitrogen fixation. The nitrogsnase is also expressed 

in certain free living bacteria svch as mzotobacter, 

Klebeiella, Clastridiu. and Cyanabacteria. Nitrogenase ie 

o=qrieed of two easily aepaeable proteins designated the ison 

protein (le protein) end the molybdenum-iron protein (Mope 

proteinl. The iron protein (encoded by the nif X gens1 is a 

homodirner with a native molecular weight of 60-80 m and 

subunit molsaular weight of 30-32 m (Burgees. 19841. The 

larger (100 KD) subunit is a MoFe protein whish binds the 

reducible substrate (Hagernan and Bureie, 19781 and the 

amaller (so m )  the Pe-protein, intaraata with i\TP and ~ g "  in 

a hydrolytic reaction. Both proteins are irrevsraibly 

inaativated by oxygen, the Fe protein most rapidly in vitro. 

Protection of these proteina from damage by oxygen is one of 

the overriding challenges in the phyeiology of nitrogen 

fixation (Postgate. 1971). 

Thoeneley and L m  I19851 proposed a model which attempts 

to describe the mechanism of nitrogenaae action in the 

Eixation of nitrogen and production of hydrogen. This model 
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coneisfa of two oyc1ea. I" the Pe protein cycle, e1ectrone 

are paeeed first to the Be protein, and then from the Po 

protein to the nope protein. ~xperimentel evidence suggests 

that two MgATP muat be bound to ths reduaed Pe protein before 

thie molecule can farm a reversible complex with the Mole 

pz-tein. Once c-lexed, the reduced Pe protein can tcanefar 

the electron to the Mose protein. Thie oxidation-reduction 

step is coupled to the MgATP hydrolysis, and is effectively 

irrevereihls. The Ps protein:Mgm:reduced Mope protein 

complex canundergo a reversible dissolution. The oxidized Fe 

peotein:MgnoP complex can be reduced and the ADP exchanged for 

ATP, while the reduced Hose protein can return to acquire 

additional elestrons from the Pe protein through the Pa 

protein cycle. In total.8 electron transfers to the More 

protein are required to reduae N, and produce Hz. and betwoen 

each electron transfer the ~e proteintnape protein complex 

diseooiatea completely. This cycle of 8 electron transfore he- 

been called the More protein cycle (Layzell. 1990). 

1.3 Nitrogen assimilation and traneportation 

asrgersen, (1965) and Kennedy 11966) demonstrated that NH,' 

ie the aeahle product of nitrogen fixation in legume noduleli. 

NH.' prodused ie excreted by bacteroids Isergeraon and 
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Turner. 1967) into the host cell cytoplasm where it is 

assimilatsd and used in the synthesi~ of organic nitrogsn for 

transport. 

Meeka et a1. (1978) showed by using ["NIN,, a short-lived 

radioactive isotope of N, that NH,' is firat incorporated into 

the amide position of glutmine in the reaction catalyeed by 

glutamine synthetase. The aide group ie subaeqently 

transferred to the 2-carbon of oxoglutarate in the reductive 

amination reaction carried out by glutamate synthase. Both 

enzymes have been isolated and purified from legume nodules 

(soland and Benny 1911; Cullhore et al; 1983; McPaeland et 

al., 19761. Glutamins syntheteee is localised totally in the 

cytoplaemvhile glutamate synthase exists in the cytoplasln end 

in the plastid (Amaike st al.. 1981; Boland st al; 1982; 

Shelp s atkins 19848 Shelp st al; 1983). Both enzpes are 

induced during nodule development (Atkins et ali 1984; Boland 

et al.. 1978: Groat and Vance, 1981; Reynolds o t  al., 1982; 

~ohertaon et a l . ,  1975; sehubert et sl., 19811. 

~itrogen-fixing plants can bs olaseifisd as mide 

exporter. or ureide exporters haaed on the composition of the 

xylem fluid collectad from excised nodules or nodulated r w t  

eyeteme.   he amide exportera transport asparegine, glutamin. 

or 4-methyleneglutamin while ueeide exportera transport 

sither allantoin and allantoic acid or citrullina. L w e e  of 

trihee vicieae, ~enisteae, and ~rifolieas are generally amid- 
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exportere. These tribes of mare temperate origin include pze, 

lupin, broad bean, alfalfa and clover. Based on reeults of 

"N,-labelling studies, asparagine is synthseieed from the 

prodvct of recent nitrogen fixation in nodulee oE amide- 

exporting symbioses lAp=ison et el., 1954, Kennedy, 1966; 

Leaf st al., 1959). 

Powden (1954) reported an unusual nonprotein d n o  acid 

amide 4-methyleneglutamine in peanuts. Tropical legumes of the 

tribe Phaseolsae synthesize and transport the ursids allantoin 

and allantoic acid from recently fixed nitrogen. These txo 

compounds aacount for 60 to 90 % of the total nitrogen in the 

xylem sap of soybeans IMcClure and Israel, 19791, cowpeas 

(Pate et al., 1980). garden beans (Pate, 1973) and other 

legumes (Pate et al., 1980). One tropical legume, peanut 

(draohis hypogaeal, is reportedly an amide exporter. 

1.4  Symbiotic nitrogen fixation by Peanut and 

Beach Pea 

1.4.1 Peanut 

The genus Arechia belongs to the family labaceas 

Ibeguminosae) and aub-family Papilionoideae. It is f-d in 

tropioal and the subtropical regions. Baeed on morphology and 

cmas-compatibility the genus Arschis has been divided into 

several section. lwpne and Ralvard. 1989). They arm native to 
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South America but have been introduced into many other areas. 

A. hypogaea, calledby different popular m e s  such as peanut. 

groundnut, goober eta, is the only species in cultivation. 

Peanut plants are annual or perennial herbs and have a well- 

developed taproot syetm with many lateral1 roots emerging from 

the hypocotyl and aerial branches. The roots are soft, 

cylindrical end lack root hairs, but root hair-like etructures 

were found by Nambiar et a1. (1983). The depth of primary roots 

can be 90-120 cm with extensiva lateral roots. ~eanuts are 

warn seaeon plants, preferring 50-100 cm of rainfalllyear, and 

are best auited to well drained, friable loamy soil containing 

adequate amounts of phosphates, potaeh end ccelcium. 

Propagation by cuttings is possible, but the plant is vsuelly 

grown from the aeeda. 

Peanuts are important to humans as a source of nutrition. 

Its frenh foliage ia fed to hogs and cattre, produces high 

quality bay and has valum aa a green manure far soil 

improvement. The flarere furnish rich nector for bees. The 

seeds are e rich source of vitamin B complex, especially 

thiamine, riboflavin and nicotinic acida, and are a source of 

and oil (&ed and Young, 19821. Peanuts rank aecond 

to soybeen in cmercia1 iqortance aa a source of high 

quality oil characterized by the presence of areehidic snd 

legnocerio acids as well as glycerides of rleic and linoleic 

acida.  he crop yield varies from 742 to 4400 kglha (Duke and 
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Heneon, 19851. 

The genus Arachfs has long been known t o  nadu la te  w i t h  

rhizobia from d ive r s -  spec ies  of p l a n t  haa te  b u t  r e l a t i v e l y  

few s t r a i n s  of r h i z a b i a  are capable o f  h i g h  l e v e l s  of f i x a t i o n  

(Allen and  Al len  1940: 1981).  I n  s p i t e  o f  these  e a r l y  

abaervarione Arachis has heen considered b y  some aa a 

promiacuourr and an e f f e c t i v e  n i t rogen  f i x e r   ate, 1917; 

Peoples eC el., 19B9). Maording t o  Grahanc and Hubbell  (1975) 

and Dace l19711, the s p e c i e s  rill nodu la t s  e f f e c t i v e l y  w i t h  

a range of r h i r o h i a  from many d i f f e r e n t  l e p e e .  nowever, a s  

pointed o u t  by G i l l a r  and Wileon I19911 and S ing le ton  et a l .  

(19921, t h e  c l e a s i f i c a l i o r ~  o f  t r o p i c a l  legumes end e a p e o i a l l y  

forage l e g m a s ,  as prcoliscuous e f f e c t i v e ,  promiscuous 

i n e f f s c t i v e  or s p e c i f i c  as def ined  by (19771, tends t o  l o s s  

i t s  ues fu lness  a s  g r e a t e r  ranges of r h i z o h i a l  e t r a i n s  are 

t e s t e d  a n d  i n c r e a s i n g  numbers of exceptions t o  t h o  

c l e s n i f i c e t i o n  scheme a r e  repor ted  (rnomae, 1993) .  

The mode o f  i n f e c t i o n  of  Arech i s  i s ,  l i k e  t h a t  o f  

seyloaanthea, r a t h e c  unueual as e n t r y  of rh izob ia  i n t o  the 

p l a n t  i e  v i a  wound o r  crack in feo t iona  a t  t h e  junc t ion  o f  

l a t e r a l  r o o t s  r a t h e r  than v i a  t h e  c l a s s i c a l  mode o f  e n t r y  

through r o o t  h e i r e  (Chandler, 1978: Spren t  and Sprent 1990).  

In s t o l o n i f s r o u e  epec iea  such as A.p in to i ,  a p e r e n n i a l  fo rage ,  

nodules c a n  be abssrved f r e q u e n t l y  i n  the a x i l s  of r o o t #  

m e r g i n g  from e to lone  (Thomaa, 1993).  
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The nodules of Arachis are further distinguiehsd from 

those of other legvmss in that they have an unusually low 

number of viable rhiaabial cells per unit biomass of no#a.ule 

ti~eue. In these nodules and those of ~.erecta, ~.nambguaraa, 

and A.villoeulicarpa, ths bacteroids appear to take on the 

unusual appearance of spheroplast-like elructures (staphorat 

and Striidom, 19721. These structures wars later found to have 

a distinct cell wall or outer membrane (Bal er  el.. 1985). 

Peanut also shows dietinctly different patterna of lectin 

accumulation during symbiotic interactions with homologous 

straine of Ibredy)rhizobia than do other legumes (VaodenBosch 

et a l .  19941. Preaencs of lipid bodiee. more rppropriatly 

called oleosomes, have also bean reported in peanut nodules 

(Jayaram and Bal, 19911 and their role in providing 

supplementary nource of energy for nitrogen fixation dwing 

photosynthate utress has been auggeeted (siddique and Bal. 

1992). 

Raese of nitrogen fixation for peanut nodulea (Arachia 

hypogaosj range from 68-206 kg/ha nitrogen with the proportion 

of the plant's nitrogen obtained from fixation ranging from 

47-92% (Gillar and Wilson, 1991). The literature on the wild 

species of Arachis, which were used in thia study, ia very 

1: ~itsd. ~ecent smphaeis has bean on the use of wild Arachis 

species for genetic improvement of cvltivated or forage peanut 

because some of them poesae superior characters. The preeent 
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investigation is an attempt to underatand the Rhizobim-peanut 

symbiosis with special reference to oleosomea. 

1 . 4 . 2  Beach P e a  

Lathyrurr meritimus (L.) Bigel, conmonly known as beach 

pea, grows along the shorelines of arctic and subarctic 

regions from oresnland to Siberia and Japan (Perneld, 19501. 

In Canada, it ie found in Newfoundland, Nova Sootia and quebea 

IHitchcock 1952; Lanourex and Grandtner 1977, Scoggan 1950). 

There are about 130 apeoiee in the ganus Lathyrus consisting 

of climbing and herbaceous perenniale. Thim genus belongs to 

the tribe Vicieae of the eubfamily Papilionoideae end the 

family Leguminoseee Ilebaceaal. Lethyrus belongs to the so- 

called pee ceoss-inoaulation -up. The work of Carrol (1934) 

and Wilacln (19391 confirmad the mutual relatedness of 

Lathyrue. Pis"., vicia and Lena and their rhimobia. 

According to Allen and Allen (1981). ccmparatively few 

members of the gcnuti have been studied. The literature on the 

species L.msritirnus, which ie used in these studies, is very 

limited. Most oi the work done on this genus has been 

concentrated on those species that aause lethyriam. Symptonvl 

of lathyrism in m a n  usually appear after eating aaeds of the 

plant, commonly occueing as a paralyeis of the musoles below 
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the knee, pains in the back followed by weakness and stiffness 

of the legs and progressive locomotive incoordination (Kuo et 

al., 1994). Priliminary assay has show the neurotoxin to he 

extremely low in the seeds of 6. mariciaus seeps (Shahidi 

1995, peraanal comunication) . 
Reoently the s.lnnbiotis association of Rbizobim atrains 

and L. maritimus inhabitant of subarctic region has been 

reported by Barimah-Asare and Bal (1994). The isolate of 

L.maritimua ia reported to heve a fast-growing Rhisobim 

leguminosam biovae visia, which has a wide range of pH and 

malt tolerance, and could infect only Viaia craaca but not 

Vicia fabe (faba bean) or Pism a a t i m  (pea). Nitrogenase 

activity in L. maritimva M 8  found to be highest at 20°C but 

could he maintained with lower level= of activity at 5 'C 

(Barid-Asare. 1991). 

~arimah-Aeare and Bal 11994) recently reported that the 

nodule anatomy and the fine structure of beach pea is similar 

to e t h ~ e  perennial. indeterminate forma and further suggested 

that the oleoaomes present in the ""infected parenahyma cells 

01 thee8 nodules may serve as e food reserve, to be mobilized 

during activation of the nodule nerietem at tha beginning of 

growing aeaeon. 



Plant seeds s tore  triacylglycerola (TAG1 as food reaervse 

for gollnination and poetgerminative growth of t h e  ssedlinga 

(Ching, 1970). The TAGS are preesnt i n  amall d iss re te  

in t race l lu laroeganel les  c a l l e d o i l  bodies (Euang, 1985; ~ u a n g  

e t  a l . ,  1991; Yatsu and Jacks, 1972), l i p i d  bodies (ching, 

1972; Lin and Huang, 19831, o r  oleoacmes (Yeteu e t  e l ,  19711. 

In  t h i s  text  the  term oleosome has been used. rsolated 

oleosomea have a spherical shops and possess diemeters ranging 

from 0.5 t o  2.5 m. They contain w s t l y  TAG and small mounts 

of phospholipids (PL) and proteins. Electron microscopy of the  

oleo~omes shown that  the  organelle has an electron-apaque 

matrix of  TAG s u ~ . r ~ u n d e d  by one alectron-dense layer, e half- 

uni t  membrane of one phospholipid layer IYatau and Jack, 19721 

with unique proteins termed oleosins. Theee oleosaaee are 

remarkably etahle e i t h e r  inside the Eel1 or in  i so la ted  

preparations. The physiological significance of maintaining 

the population of emall deacrete oleoaomes i s  t o  provide ample 

surface areaa f o r  the attachment of l ipase  to t h e  organelles 

during postgerminative gmwth eo tha t  the reserve TAG can hm 

mobilized rapidly. now the oleosomea maintain t h e i r  w a l l  

s i r e s  without coalescing i e  unknown (Tren and Huang, 19921. 

Oleos-a are abundant in plant seeda, end are among the 
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simplest organelles in  e u k a w t e s .  similar organellee can be 

found i n  the pollen (Stanley and Linskens. 1974). and the 

peanut root nodule (Jayarm and Bal, 1991) of angiospama aa 

well as in tissues of more primitive plants,  such as the 

mesagametophytee of gynvlosperms (Ching, 1970) and the  spores 

of ferns  loenoarich. 1981). ~ n t r a c a l l v l a r  storage l i p i d  

organelles of similar structure are alao present i n  tiesuee of 

nonplant species, including the h e m  adipoee(Qurr. 1980) and 

o ther  tieauea of nannala (lawcett, 1966). eggs of soma 

nmatodee and other nonroanrmals (Rubin and Trelease. 1976). and 

unicell.ular organisms euch ae y s a ~ t  (Cleueen e t  a1.,19741, 

Euglena (osafune ot a l . ,  19801 and algae (Roessler 1988) . 
Oltraatructural investigatione of maturing emhryoe of 

d i f f e r e n t  o i l  producing p lants  and oi anise cell-auapeneion 

cultuzes indicatsd that l i p i d  bodies originate from the 

endoplasmic r c t i c u l m  (ER) by insertion of TAG- in to  the 

hydrophobic space of the phoepholipid bilayer (Werner a t  al., 

1985). 1n contrast,  othsr studies have ah- tha t  aleoswee 

develop in  the cytoplasm without contact with the ER (Bergfsld 

ee a l . ,  1978). The hiosynthesie of TAG has been analysed in 

d i f f e r e n t  plant c e l l  (out ta  and Appelviet,  1989; x le in ig  e t  

a l . ,  1978) and d r y 0  cultures (Dutta a t  e l . ,  19911. Several 

breeding progemes focus on the  development of o i l  plante 

produ~ing TAGS with an a l t e r e d  aomposition of acyl  noi t i sa  

l m t t a  and Appelpie t ,  1989; Ellenbrecht e t  al . ,  19801 Pence 
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e t  a1 ., 1981; Weber and Taylor. 1990). 

There i s  evidence t h a t  TaGs a n d  oleoeinm a rm synthesized 

~ ~ n c o m i t a n t l y  i n  the  ER. from whish a naecent, mature o l e o s w e  

i e  forned by budding (Losr and Hernan, 1993, Teen e t  el., 

1993).  Other inves t iga t ions ,  however, show t h a t  t h e  

accumvlstion of o l e o s i n s  l a g s  temporally behind t h a t  of TAD 

(Cumins a n d  Marphy, 19901 H i l l s  et e l . ,  1991) . 

1 . 4  - 4  Oleosomes in nitrogen fixation 

Carbon compounds derived from t h e  h o s t  c e l l s  a r e  

e s s e n t i a l  for symbiotia n i t r o g e n  f ixa t ion .  carbohydrate 

metabolism provide. ATP for t h e  high-energy r e w i r i n g  procsaa 

of n i t r o s e n  f ixa t ion ,  electrons for  the r e d v c t i o n  proceea, and  

=arbon ska le ton  f o r  t h e  incorporation and  t r anspor t  o f  f i x e d  

nitrogen (Dilwoeth and Glenn, 1984). 

Bal and  coworkers (see below), r e c e n t l y  reported t h e  

presence o f  oleoemes i n  temperate and t r o p i c a l  r o o t  nodules 

and t h e i r  poae ib le  imvolvment in nodule f u n c t i o n  and ni t rogen  

f i x a t i o n  is being invee t iga ted .  

I n  t r o p i c a l  legumes such  as peanut, the r o o t  nodule 

01~0a0ne8 were found t o  be d i f f e r e n t  than  seed oleosonas w i t h  

r88peot t o  the presence  of an e lec t ron-dense  rim, sha r ing  

l i p o l y t i c  a c t i v i t y  and h igher  anovnta of s a t u r a t e d  f a t t y  a c i d s  
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(Jayarm and Bal, 19911. In nodules induced by fir' etrein of 

Bradyrhizobim, olsoemee accumulate in the order of two to 

three times higher than in the nodules induced by effective 

wild-type strains (Bal and Siddiyme. 1991).  result^ from 

experiments done in dark treated and detopped peanut plants, 

where nitrogenass activity was maintained for prolonged 

periods. the number of olsoeomee was found to decreaee. The 

aorreletion between nitrogen fixation (acetylene reduction) 

and oleosome degradation in the absence of photosynthata has 

been clearly demonetratad (Siddiyme and Bal. 1992). These and 

other results (Bal et al.. 1989; Hameed and Bal, 1985) support 

the hypothesis that oleosomse serve as a supplamentary eource 

of energy in peanut root nodules during photoeynthate streas. 

In temperate legmas auch as bsach pea and Oxytmpis 

arctobia tho oleosomea disappear in the eywbiotic stage from 

infected calls, but remain in the nodule parenchyma. It has 

been suggeeted that in arctic l e v e e ,  lipide m y  be involved 

in protecting tho host tissues from low teaparature streea 

(~ewcomb and Wood, 1986) end also for membrane proliferation. 

growth end development of aymbiosomes 1Baeimh-Asare and Bal, 

1994) Prevoet end Bal, 19941. 



I .  5 Objectives 

TO study the o leosmic  metabolism i n  syxhiotio nitrogen- 

f ix ing rook nodules. 

Oleos~me~ have been involved as a supplementary sourcs of 

energy and oarbon i n  the root nodules of Arechis hypogaea. 

m e i r  meta:~oliar during aylrbiosia provides an additional 

advantage for the snargy demanding procesa of nitrogen 

f ixa t ion .  I t  ie therefore necessary t o  evaluate o ther  legume 

nodulsa for thie t r a i t  and t o  underetand in  d e t a i l  the 

f ~ n ~ t i o n s  of oleoscrme a t  d i f ferent  stagaa of developant  and 

i n  different tissues. The following a r s  the  speci f ic  

objec t ives  tor  thie investigation. 

- t o  ieola te  t h e  oleosomes and characterize neut ra l  

l ip ids ,  phospholipida and oleosins from nitrogen-£ ixing 

root  n d u l e e  of A. hrpogaea. 
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- to study the oleosoma diacribvaion Sn wild species 
of ~ ~ a c h i s  1.e.. A. pintoi, A. duranansis and 

a. batizocai root nodule in relation to nodule 

development. 

- to study the oleosme distribution in the perennial 

root nodvles of L. maritimus. 



11. MATERIALS AND BlETHODS 

11. 1 Seed source and planting 

Seeds o f  the diploid perennial peanut (Arechis p i n t o i  L 

EY No. 17434). reoently developed a t  Centro International de 

Agricultura Tropical (CULT), Cal i ,  Colmnbia were donated by 

D r .  R.J. Thomaa. Seeda of other diploid annual peanuts (A. 

batieocoi and A. duraneneis L.)were obtained through the 

courtesy of ~ r .  H. ~homas s ta lker  a t  ~ o r t h  carolina s t a t e  

University, USA, and seeds of the teeraploid cul t iva ted  A. 

bypogaea, cv. Jvlnbo Virginia were purchased from W. Atlec 

Burpee co.. warninater, PA., USA (Table 21. peanut sseda were 

ei ther  geminated f i r s t  or d i r e c t l y  planted i n  s t e r i l e  

v e m i c u l i t c  and inoculated with Bradyrhizobium sp. from a 

broth cul ture  as desaribed by Sen and Weaver (1980). The 

planted pots (6" 8TD) were kept i n  an environment chamber with 

approximately 700 plnole m-' s-' PPm (photosynthetic photon 

f l u x  density) under day /night ~ o n d i t i o n s  of 16h/Bh, 27'C/2Z°C 

and 70%/50% re la t ive  humidity and i r r iga ted  with nitrogen tree 

n u t r i e n t  solution (Elfolk, 1960). 

11. 2.  Bradphi zobium culturee 

Bradyrhizobiu. s t r a i n  32x1 wae obtained from Nitragin. 

Milwaukee and 7091 (Nod' Pix-) m e  obtained £ram D r .  P.T.C.  

N d i a r ,  International Crop Research Institute for  semi-arid 

Tropics IICRISAT), Patancheru, India. The other ef fec t ive  
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s t r a i n  of Bradyrhirobim sp. CIAT 3101 recommended f o r  

A.pintoi (Thomas, 1993) was donated by Dr. R . J .  Th-e. CIAT, 

C a l i ,  Colvmbia (Table 21. Al l  t h e  rh izob ia l  s t r a i n s  were 

maintained on yeaat  e x t r a c t  mannitol  I Y ~ )  bro th  rnadivm 

containing,  0.5 g of K,APO., 0.2 g of Mgso., 770 ;  0.1 g o f  

NaCl, 0.4 g of yoant ex t rac t ,  1 0  g mannitol  and 1 L o f  

d i e t i l l e d  water a t  pH 6.8- 7.0. (Vincent,  1970) with cons tan t  

shaking (140- 150 rpnl a t  30% i n  an Urbit  Enviranahaker. Lab- 

l i n e  Instrument Inc. 

Table 2 Source and relevant c h a r a c t e r i s t i c s  of the 

l o g m e  speaiee and Bradyrh izob im s t r a i n s .  

...................................................... 
S p e c i e ~ /  Genotypic/ Source 

S t r a i n  Phenotypic oharactera 

a1 Legme 

A. hypogaea 4n. seasonal ,  c u l t i v a t e d  W.Atlee Burpee 

Co.,PA..USA 

A. dyranensis an, annual, wild H. Sta lke r  

A. hrrt izocai  2% annual, wild H. Sta lke r  

A. p i n t o i  zn, perennial ,  w i l d  R. ~holnas 

L. marit imus In,  perennial ,  w i l d  This study 



b) Bradyrhinobium 

32 H 1  nod' f ix '  f o r  A. hypogaca Nitragin 

CIAT 3101 nod' f ix '  f o r  A. p i n t o i  R. Thomas 

7091 nod' f i x '  for  Arachia P.Nambitir 

- - - - - -. - - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - -. - - - - - -. - - - - - - - - - - - - 
11.3 Isolation of oleosome8 from A. hypogaea root 

nodule and seed. 

Arachie hypopea (Jumbo Virginia) planta,  inoculated w i t h  

Bradyrhisobium effective s t r a i n  32H1 were g r a m  as mentioned 

i n  Section 11.1. a l l  the planta were uprooted a t  35 DAI and 

nodules were co l lec ted  and frozen s t  -70% u n t i l  use .  

The msthod q l o y s d  f o r  i s o l a t i o n  of the oleoaomes was 

eeaent ia l ly  of Tmen and Eumg (19921 wi th  d n o r  modification. 

The nodule and seed material waa homogenized a t  4% i n  

grinding medium (109 of nadules/aO mL, and 29 of peanut 

seed120 m ~ l  wi th  pes te l  and mortar. m e  grinding msdivm 

contailled 0.6 M sucrose, 1 M WTA, 10 mM KC1, 1 mid MgC1,. 2 M  

DTT. and 0.15 M TRICINE adjusted to pH 7.5 with KOR. The 

homosanate was f i l t e r e d  through cheesecloth. After f i l t r a t i o n ,  

sash  a0 m~ of the homogenate was placed a t  t h e  bottom 

of a 40 m~ centrifuge tube, and 1 0  mL of f loa ta t ion  medium 

(grinding medium containing 0.4 ins tead  of 0 .6  M sucroae) was 
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layered on top .  The tubes were centrifuged a t  10,OOOg f o r  30 

rnin i n  a S o n a l l  SA-600 rotor.  The oleoeomes floating a. a 

thin white layer on top were collected, and resuspended i n  10 

mG of grinding r e d i m  containing an addi t ional  ZM of Nacl.   he 

reauspension was placed a t  the bottoln of a 40 mL centrifuge 

tube, and 10 nul of flcating medium (grinding medium containing 

2 M NaCl and 0.25 M instead of 0.6 M sucrose1 was layered on 

top. The tubea wrrre centrifuged again ae abova. The fa t  pad on 

t-p was oolleoted, and resuspendad i n  10 mL grinding medium. 

The resuspension was placed a t  t h e  bottom of a 40 mL 

centrifuge tube, and 10 mG of f loa t ing  medium (grinding medim 

~ o n t a i n i n g  0.4 instead of 0.6 M sucrose) was layered on top. 

The contents wae centrifuged as above. The f a t  pad on top was 

collected, and resuspended with grinding medium. 

11.3.1 Separation of neutral lipids, phospholipids 

and proteins from isolated oleosomes of 

A. hwgaea root nodule and seed. 

The method w l o ~ e d  for  t h i s  experiment was 

a l s ~  essent ia l ly  that of Tzen and Huang (19921 with 

modifications as below. All the ateps were oarried a t  4%. A 

500 p l  preparation of ieolated oleosome was eiltracesd with 150 

pl diethyl ether i n  a 1.5 nL Eppendoef tube. After 

~ e n t r i f u g a t i o n  a t  13,600g for 4 min, the upper ether layer was 
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collected. The lower aqueous layer and the interfacial 

materials were extracted with 150 pl diethyl ether two 

additional times. The ether fractions (which contained neutral 

lipids1 were pooled 12.25 mL1, and the cthor was evaporated 

under nitrogen gas. The aqueous layer, together with the 

intarfacia) materials, was placed "rider nitrogen in order to 

evaporate the remaining ether. A volume of 500 pl 

chlarofom/methanol 12:l v/vl was added. Afler gentle shaking, 

the tuba was centrifuged at 13,000g for 4 min the lower 

chloroform layer (which contained PL) , the upper 

msth.nol/water layer, and the interfacial materials (which 

contained oleoein proteins) were collected individually. 

The chloroform fraction (which contained PL) was washed 

two times each with 1 mL methmol/water (1:l vlvl tollowed by 

centrifugation. 

The interfacial materials were washed three times by the 

following procedure. The interfacial fraction from root nodule 

(150 pL) and mixed with 300 pL chlorofom/methol (1:l vlv). 

The interfacial fraction of aeed (250 pL) was mixed with 500 

p~ chlorofoem/methanol 12:l v/v). These mixtures were then 

centrifuged at 4.C. The interfacial materiala were collected 

and resuspended in 150 pL of water in case of nodule and 250 

p~ of water in oaee of seed. Final interfacial matertal 

remained in aggregates: it was vigovrovsly vortexed for 

dissolution. 
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11.3.2 Analyses of oleosme constituents isolated 

from A. hyposaea root ndule and seed. 

m e  lipid and protein contente in the above ether 

fraction, the chloroform fraction, the msthanol/water 

fraction, end the interfacial frackion were analysed by thin 

layer chromatography (TLCI and SDS-PAGE. respectively. The 

molecular weight of purified protein was determined by using 

Bio-Rad low molecvlar weight standards. Lipid etandarda 

obtained from a i m  for neutral lipide and 

phosphetidylethanolamine or phosphatidylecholine for PL ware 

run along with the sample for TLC. The TLC plate ISilica Gel 

60A from whatman) was developed in hexane/diethyl etherlacetic 

acid (80:20:2;v/vlvl for the separation of neutral lipids. 

~ f t e r  drying, the plate was further developed briefly in 

chloroformlacetic ecid/methanol/water (70:25:5:2; v/v/v/v) in 

order to allow the separation of PL f r m  the osi.gin. The plate 

was allowed to react with iodine ITzen e t  al., 1992). 

lor SDS-PAGE, the separating gel and the stasking 

gel coneistsd of 12.5 and 4.75% palyacrylmide respectively. 

lifter electrophoresie, the gel was stained with Coomaasie blue 

R-250 and desrained according to L a e m l i  11970). 
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Tha neutral lipids in the ether fraction were weighed 

gravimetrically. The quantity PL wae not determined. The 

proteins in the oleoaome fractions after ether extraction were 

quantitated by the Lowry method .y et el, 19511 using BSA 

as a standard. 

11. 4 Peanut root nodule samples for microscopy 

Based on general morphological ohservaeione two similar 

plants were selected tor nodvls sampling at weekly intervals 

up to the 10" week post-inoculation. From thsee plants, two 

nadvlea at three different locations on the tap root xere 

eelected for microscopical analysis. These three losations 

were at the collar region (about 2 cn. below the vermiculite), 

middle o f  the tap root (about 5 cm below the vsrmiaulitel end 

at the growing and of the tap root. Thie eelaction of nodule 

eamples wae done because at any given time nodules at 

different atagss of development may be present in the root 

ayatem. 

=he root nodules were classified in three different 

developmental growth stages based on the oolor and size of the 

nodule as : (11 hature/small/white: 1.D - 1.5 m in dia.. 
(2) meture/mediumlpink: 1.5 - 2.0 nr. in dia. end ( 3 )  

mature/large/red : s 2.0 m in dia. 
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11.4.1 Light, scanning and transmission electron 

microscopy (M, SEX and TEM) 

Thin slices of nodules of different stages of developmnt 

were filed in a mixture of glutaraldehyde 15%) and 

parafo-ldshyde 14%) in 0.1 M phosphate buffer, pa 7.2 for 2h 

(Karnovsky. 1965), washed in tha buffar and poet-fired in 1% 

osmium tetroxide (OaO.) in the same buffer for 1 h at 4". The 

samples were then washsd three times with buffer and 

dehydrated through an ethanol series up to 100% and enbedded 

in Spurr'e embedding medium Ispurr, 19691. For lipid 

prsaervation, nodule samples were en bloc stained with 1% P- 

phsnylenediemine (pPD1 in 70% ethanol for I h during 

dehydration (Bal. 19901. Control eamples were treated with 

hexana for 45 minutes after fixation in the eldehyds mixture 

and aubsermenaly dehydrated in ethanol series prior to OSO, 

treatment. The samples were then rehydrated. treated with 0-0, 

and 1 % ~ P D  and processed as described above. 

=one of the nodule aamplas were also sliaed and fixed ao 

above for scanning electron microecopy. After dshydretion the 

samples were dried at critical point and gold coated in a 

eputter coating unit. The observations were made ueing an 

~itechi 6570 eeanning electron microscope. 

=he aemi-thin sectiane (1.5 p) of ~PD-stained eamples 

were viewed with P light microscope without further staining. 
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ultrathin aectiona were post-atained with vranyl acetate and 

lead cirrate and viewed with a Zciss EM 1 0 9  transmieeion 

electron microscope. The area occupied by oleoaomce in the 

cells in mgnifiedphotomicragraphs was measured using a Zeiss 

MOP-3. For oleomme counts, two slides of each block of each 

tretments with several B E E ~ ~ O ~ S  W e r e  Uaed. 

The oleosome fraction (fat pad) (section 11.3) isolated 

from peanut root nodules wee also processed for electron 

microscopic studies as described earlier. 

11.4.2 Induced senescence in A. pintoi 

The naturally occurring senescence was observed in 7 0  DAI 

plant nodules with LM, SEM and TEM. Ieolation of the viable 

celle of araayrhieobim frola the sanesaent and effective 

nodules were made and viability count. were enumerated by 

dilution plate technicme. The awash preparations were ale0 

performed from the same nodulee. 

To induce premature senescence, 5 plants at 4 1  DAI (day 

after inoculation) were subjected to detopping by outting the 

shoot 5 cm above *oil level end after two days nodules were 

fixed formicroacopiaal studies (section 11.3). Control plants 

were left Intect. In another treatment plante were irrigated 

with 2 0  mn KNO, added to Elldolk nutriant aolution I 5 0 0  
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a/potI ( ~ e  Lorenzo et a l ,  19941 at 12 DAI and then the plants 

were irrigated with nitrogen free Ellfolk nutrient solution 

upto 42 DAI: nodulea were sampled for microscopy (section 

11.31. Control plant8 received no added combined nitrogen. 

11 .5  Seasonal effect on storage organelles in  

naturally g r m  L. maritimus root nodule. 

We studied the ssaaonal effect on oleosomes and alee on 

amyloplasts in L. maritimue root nodules from ~ew~oundland 

under natural environmental conditions. Bellevve beach in 

Newfoundland, on the shoreline of the Atlantic ocean (Trinity 

~ay), provided an ideal site for naturally growing beach pea 

plants; the substratum consiats mainly of gravel. The site ie 

easily acsesaible by the Trana Canada Aighway. 

Nodules were collested by gently removing the gravel and 

exposing the underground rhizomatous stem which had 

adventitious roots with niteogen-fixing nodulea. Trips wers 

made to the eite in the beginning of the spring session before 

the aerial shoote oL plante were visible. Planra were eslscted 

from three to four differerent spots end vere marked by wooden 

sticks whioh made it possible to sample nodvlea from the meme 

plante eaah time. 

m samples taken in May 30, 1993, April 30, 1994 and May 

22, 1995 the nodules vere collected from the underground froet 
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in the gravel, the air temperature being -1% to 4%. sanplee 

were alee taken on October 16. 1993, October 2. 1994 and 

October 6.  1996, when the plants were preparing for 

overwintering, after chs fruiting season. Nodules were sampled 

in June, July and A"g"St as -11. 

Nodules were sliced longitudinally with a eharp raaar 

blade and inmediately fixed in a mixture of paeaformaldehyde 

and glutsiraldehyde in phosphate buffer, PH 7.0 (Rarnovsky, 

1965) and w e r e  brought back to the laboratory for subsequent 

processing for light and elsatron microscopy as decribed in 

section ~1.3. En bloc staining foe oleosomee was achivsd by 

uaing p-Phenylendiamine (Bal, 1990). 



I11 RESULTS 

111.1 Neutral lipids, phospholipids and oleosins 

in root nodule and seed oleosome 

fractions of Arachis hypogasa. 

Isolated oleoscrmea EromA.hypogaea root nodules and seed 

were fractionated into neutral lipids (TAG h DAQ), PL and 

oleosins as mentioned in section 11.1.1,  he total lipid8 and 

proteins obtained are presented in Table 3. The different 

fraotions i.e., ether fraction (neutral lipids), chloroform 

fraction (PL), methanollwater fraction and intterfaial 

Erection loleosina), ware analysed by SDS-PAGE and TLc (~ig. 

2 and 3 ) .  In SDS-PAGE analysis the oleosoma ehowod four 

protein bands loleoains) in the interfacial fraction and ale0 

eimiler three bands inmethanol/water fraction frmhoth root 

nodule and seed olsosme fractionations. The eub-molecular 

weight of nodule oleosins vere 10.0 W.56.3 KD. 61.1 M and 

66.0 W in weight (Fig.2). whereas seed oleosins were as 25.5 

KD. 35.2 W, 40.0 W and 59.5 KD in weight (Pig. 3). The TLC 

analyeis shoved three PL bands f r m  nodule oleosmes and two 

from seed oleosomas in ether fractions. Sons of the PL hands 

could also be seen in chloroform fraction. PL bende vere not 
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ohserved in interfacial fraction. Further TLC showed hro bande 

of neutral lipids (TAG L DAD) in nodule and seed oleoeones 

only in the ether frastion and none in any other fractions 

(Fig. 41.  

Table 3 Yield of total protein (oleosine) and neutral lipida 

frmn interfacial fraction and diathyl ether of 

isolated oleosomes of peanut root nodules end seeds. 

oluo~ome nodule eeed 

fraction oleosmnea' oleosomesr. 

Interfacial fraction 60 pg/& 240 rg/m 

(oleosine) 

Ether fraction 0.05 g/mL 0.7 g/mL 

(neutral lipids1 

* from 10 g nodule lw/w) 

** from 2 g soeked peanut seed for ah. 



Ilig.2 SDS-PAGE of fractions obtained in a fractionation 

ai A. hrpogasa root nodule oleosome preparation. ~ o t e  

the four prot-in bands (oleosine: 66.0 KD, 61.1 M. 

56.3 KD and 10.0 KD)in interfacial fraation. Thrae 

similar bands can also be Been in methenollH,O 

frection. Gel was loaded with 3.0 fig of protein. 

Gel elestrophoreaie lpolyacrylamide 12.5 $1 

was performed as described in Material and Methods. 

Fig.3 SDS-PAGE of frastione obtained in a fractionation 

of A. hrpogaee seed oleoswe preparation. Note the 

four protein bands (olsosins: 59.5 KD. 40.0 KO, 

35.2 KD and 25.5 MI in interfaoial fraotion. Similar 

protein bands could also he sesn in methanollH,O 

fraction. Gel was loaded with 24 pg of protein. 

Gel electrophoresis (12.5 % polyacrylamide) was 

performed as described in Material and Methode. 





Pig.4 Thin layer ahrmatography of the fractions 

of a A. hypogee root nodule and seed oleosms 

preparations. Note the presence of TAG and DAG 

in only other fraction (neutral lipiddot: 

root nodule and in seed olsaaomea. 

PL b m d e oould be seen in sthar and 

ohlorofom fraction. 





111.2 Horphology of root nodule oleosomes from 

Aracbis brposaea. 

The oleosomes in the isolated fractions of the nodules 

showed coneiderable size differences and variation in their 

electron density (Fig. 5 and Fig. 6). The eleetronmicrographa 

revealed three distinct forms with respect to size (Table 3 )  

and in many cases a peripheral layer of less electron density 

was apparent. An iirrggular periphery around a large oleosome 

show in Pig. 5 ale0 showed the leas electron-dense layer. 

Such a layer (asrow) *as preaent in many of the oleosomes 

(Fig. 5). In some oaecs there aeemad to be an out-growth of 

t h i ~  layer (arrowhead) as shorn in Pig. 5. There were 

electron-denes deposits (d) and localised scouring of the 

oleo~ome evrfece which made the oleosomee pointed in some 

placea (~ig.5). Blectron transparent furraring (arraws) could 

be seen in some oleoaomea (Pig. 6). The larger oleoeomea 

(asterix) seemed to have lees elsctron-deneity. 



Table  4 variation i n  s i r e  and peripheral l a y e r  Of i .o lrhed 

o l e o ~ m e s  from peaalut root nodule.  

o le~eome oloosome width of peripheral 

class s i = e  lpml" l a y e r  (nml * 



rig.5 Ultrathin section of the isolated oleaacrme fraction of 

A. hrpogaee root nodule showing the sire differences in 

the oleosome population. Variation in electron density is 

also notable alongwith the less electron-dense layer 

(arrow) around same of the oleoemss. ~ o t e  the irregular 

out-growth of the layer (errowhead) 

Pig.6 Ultrathin section of the isolated fat pad of A. hypogaea 

root nodule showing a large oleoeome (.) with n less 

eleotron-dense matrix indicating possible lipolytic 

activity. Note the oleosonee that show furrowing 

(arrows). 
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111.3 Distribution of oleosmes in A. pintoi, 

A. duraaensis and A. batieocoi 

mring the eerly stages of deuelopnt in i-ture/small 

lwhitenodules, oleoeomes were observed in the infected cella, 

where rhizobia were released and proliferation of both host 

and rhizobia. were underway (Fig.?). Olsoaomes ales occurred in 

some nodulsparenchyna celle. Aexane solubiliration in control 

preparations confirmed the presence of oleosomes. AS the 

rhizobia differentiated into spherical forms of bacteroids in 

mature/ medium/pink nodules, oleoeomea disappeared from the 

infectsd cells (Fig.8). but covld be seen in the nodule 

parenchyma. The lack of oleosomes in infected cella continued 

throughout the symbiotic phase of the n~dulee up to 

mature/large/red ones sampled 60 DAI (daye after inoculetionl 

lFig.9). Ln 70-day old nodules undergoing maenescence, 

oleosomes reappeared in the infected cella. The spherical 

hacteroids at this stage seemed to have dieappeared and large 

vacuoles were found in the infected cells, which contained 

rod-shaped rhizobia IFig.lO.ll.12 and 13). The sensscing cells 

showed disruption of the tonaplasts. Both transmission and 

scanning electron microscopic observations confirm the 

presence of rod-shaped rhizobia during sencacence (Fig.11.12 

and 13).  he light microscopic obaeevations in squash 

preparation of senescing nodules ale0 revealed both rod and 
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spherical € o m s  with soma forms intermsdiate bstwasn spheres 

and rode. tlenescing nodules af A.hmogaea did not rsveal suoh 

change in bactaroid forms. 

The infected cella of d. duranensis and A. batieocoi 

showed the presence of oleosomas, when the nodulee were 

induced with the .am= atrain of Bradyrhirobiu lPig.141. when 

the nodules of d.pintoi were inducsd by the ineffective 

strain, nod'dir', nodulaa of thia speciae showed acovmulation 

of oleosomss Pig. 15). 

The percent area of infected cells ocoupied by oleoamss 

at different stages of development is sunmarired in Pig.16, 

which also shows accumulation and inoreaee of the olsosome 

population in nod' fix- ineffective nodules of A.pintoi. 

Nodules from the two other diploid species, A. duranensis and 

A. batiaocoi showed preaence of olsosomee in the infseted 

cella throughout their developmental atages (Pig.171. Percent 

areas of oleoaomes in nodule parenchyma cells of 1. pintoi are 

plotted in figure 18.  he mature/medikm/pink nodvlss aharad 

more olsosomaa than any other stages. 

Although in A. pintoi aleoaomes were abeent from mature 

nodulem. their presence was noted in the nodule parenchyma 

cells mainly 2-3 layers around the infeated zone. Thsse cells 

show decrsa~ed oleosome populations when  omp pared to A. 

duranensis and A. batirocoi nodules at 42 DAI lPig.191. 
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lig.7 Photomicrograph of p-phenylenediamine IpPD) -stained 

semi-thin section of imature/small/white (1.0-1.5 m) 

nodvle of A. plntoi (21 3AIl showing olaoeomes 

(arrowa) in the undifferentiated infected cells 

(lower right) and also in the adjacent layers 

of nodule parenchyma cells. Nucleoli (n) 

within nuc1eue are densely stained. 

Pig.8 Photomicrograph of pPD-stained semi-thin section 

of nature/medium/pink 11.5-2.0 -1 nodule of A. pinto1 

( 35  DAI) showing nucleus (nl, hacteroids (b) in infected 

cells and olsosomee (large arrowe) in parenchyma cells 

only. Infected fells are devoid of oleoaomea. Note the 

three layere of parenchyma cells adjacent to the 

infected zone containing many and large oleoarnee. me 

anal1 arrows indicate amyloplaats in infected cells 

(confirmed by transmission electron microscopy). 

Pi9.9 Photomicrograph Of pPD-stained semi-thin secLion of 

mture/large/red 1.2.0 mm) nodule of A. pinto1 

(49  DAI) showing nucleus In), bactsroida lb) in 

infected cells. Note the inf-fted zone is devoid ot 

oleosomes and the parenohma sella adjacent to the 

infected zone ehow fewer and smaller oleosomes. 





aig.10 Photomicrograph of semi-thin section of eensscing 

nodule I 7 0  DAI) of  A. pintoi showing rod-fame (R) 

in the vacuolae space of the infected cells. 

The characteristic spherical forms i s )  of  bacteroide 

are in the periphecy of the cells. 

Note the intact uninfectsd nodule parenchyma 

and the dark-stained oleoemes ( 0 )  in both the 

infected and nodule parenchyma cells. 

aig.ll ~ransmission electron micrograph of ultrathin 

section of the eeneacing nodule o f  A. pintoi. 

~ o t e  both longitudinal and crose sectional profiles 

of rad-fome of rhizobia (Rl in the vacuolar space. 

disruption of the tonaplast, oleosornes lo) and the 

ephorical f o m s  ( S l  of bacteroids. 





Fig.12 scanning e lec tron  micrograph o f  mature 

infected c e l l s  of mature/large/red noduls 

(41 DAI) o f  A.  pinto i  showing spherical 

bacteroids (S) only.  x 3500. 

Fig.13 scanning electron micrograph shoving seaneecent 

infected a e l l e  o f  maturejlargelred (old) nodule 

(70 DAT) o f  A. pintoi  wi th  reverted rod-foms 

O€ rhizobia (R) along wi th  spherical  bacteroids 

(01. x 7000. 





l i g . 1 4  Photomicrograph of pPD-stained s a i - t h i n  section of 

matnre/big/red nodule of d. duranenais (a) and 

A.batiaocoi (bl at  42 DAI. Note the presencs of 

DleOBOmes (arrowe) in  the infected c e l l s  of h e h  

the epeciss.  There are fewer amyloplaat~ lam) in  

parenshyma ce l la  of A. batiaocoi . 





Big. 15 Photomicrograph of pPD-stained semi-thin section 

of ineffective nodule of d . p i n ~ o i  induced 

by Nod'fix' strain of Bredy=hieobiun, l10911. 

Note the presence of oleosonea (arrows) 

and undifferentiated infected cells. 





119.16 Percent area oi oleoeomee in the infected 

cells of A. pintai nodules at different stages 

of development. Note the complete lack of o1eosomes 

in  the aymbioric stages (maturetpink and red nodules). 

oleosomes appear mnly in the asymbiotic stages 

oi the nodule L.e. in immaturetwhiao. 

seneacing and ineffeckive (nod' fix) nodules. 

Note the increasing acomu1ation of o1eosmes 

in the ineffe0Ci"e nodvles in absence of nitrogen 

fixation. Bars represent the * se. n=BO 
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16 Percent area of alsosomes i n  infected cells of 

A.pintoi nodules at different stage. of 

development. 



Fig.17 Percent eras of oleoeomes in infected celle of 

nodules from A.pintoi. A. batizocoi and A.duranenais. 

Note the complete lack of oleoeomea in 

infected oolls of A. pineoi noduleo as compared 

with two other diploid Arachis nodulee at the 

sy&iotic stage (42 MI). Note the 

decreasing trend of oleoemee in pink and 

red nodules. Bars represent the t SE. n-80 
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17 percent area oa oleosuvlee in infected cells of 

,,od~tlea from A.pintoi, A.batirocei and 

~.duraneneI~. 



Pig.18 Pattern of oleosome distribution in hhe 

nodule parenchyma cells of A. pintof at 

different atages of dsvelopment.0leoeone 

content is higher in maurelpink nodules 

carnpared to imturelwhite and rnaturelred nodulse. 

Note increasing oleosane population in 

the parenchyma c e l l a  of ineffective 

(nod* fix-) nodules. Bare reprssent the * SE. n=BD 
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aig.19 Distribution pattern o t  oleoeomea in the 

nodvle parenchyma cells of three diploid 

species during the symbiotic stage I42 DAII 

OleOeOme content is significantly lwer 

in the nodule parenchyma of A. p i n t o i .  

Bars represent the t SE. n=BO 



whie ncdule 
41 . pink nodule 

f=A, pinto;. 24. balizmo; a A, dumnensis (42 DAI). 



111.4 Induced senescence in A-pintoi 

It was obserrel. that A. pintoi showed the presence of 

oleoames alongwithredifferentiation of spherical bacteroids 

to viable rod-fome in the vacuole during natural senescence 

which occured in plants at 70 DAI. A short experiment was 

therefore conducted to sea the effect of artificially induced 

Benescence on the reappearance of rad-tome end the oleosomes. 

The reaults depicted in Table 5, indeed showed the cella 

undergoing senescence in m, (20 ml and detapping 12"' day) 

trcatmcnte with the presence of oleosomes and rod-forms of 

bacteria (Pig.2Oa and 20b). The percent area occupied by 

o1eoeomes in caner01 and other treatments is given in Table 5. 

However, such redifferentiation of bactsroids waa not found in 

the aenescing cells of A. hypogaee. The viable counl: from such 

nodule- did not show any significant difference in viability 

of bacteroids from non-senescent end senescent nodules (Table 

6 ) .  
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Table 5 Percent area of oleosomes in senescsntlinfected 

cells of A.pintoi root nodvles induced by 

KN03 (20 mM) and detopping. 

Treatments % area of ahaps of 

(nodule describtionl oleosomes* bacteria/bactsroid 

1 m 0 3  spherical and rod- 

~imature/mediura/pink) 2.8t0.81 forms. 

2 Detopping land day) spherical end rod- 

(mature/big/redl 2.3f0.63 forms. 

3 Control O.OfO.0 only epherical 

(maturelbiglrcdl 
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Table 6 Enumeration of rhicobia (cslle/Rtl by the plate 

count method, cultured from mature 

and ssnescing nodules of A.pintoi. 

mature nodule senescing nodvle 

35 DAI' 120 DAI'* 

containing only spherical bacteroida 

e* containing a mixed population of spherical, 

intermediate-forms and rad-forms. Verified in 

smear preparation in both cases. 

IS8 * 5 plates). 



Eig.20 Photomicrograph of PPD-stained semi-khin 

seation of prematurely induced eaneecence 

in A. pintoi root nodvles by KNO, (-1 and 

dstopping lbl. Note the presence of aleosomea (01, 

Bpherical Is1 bacteroids and rod-€om. (rl 

bacterie in both the treatment. 





66 

111.5 Seasonal effect on storage organelles in 

L. maritimus root nodule. 

Nodules of L. rneritimus are of the indeteminaee type. 

They were mostly elongate, sonetimee branched but very young 

nodvles were spherical and different types of nodules could be 

seen at any given time (Pig. 21). In senescent nodules the 

pink/red colovr of the eymbiotic zone had a blaskish green 

tint. As complete degeneration of internal tiasuee took place 

the nodules became black in color. some of the nodules ahowed 

notchee. In our observations we have noticed only one notch. 

The indeterminate Mdules of beach pea in sunoaer months were 

diffsrentiated into distinct zones as shown in Fig. 22. 

The samples taken in early October, when the pods had 

matured and opened up for seed dispersal, were from the plants 

peeparing for ovewintering. The nodulee at this stags were 

undsrgaing senescence. Histological anaiyria showed arreet of 

cell divieion in the m ~ r i s t ~ m  Wg. a3). the lack of infection 

threads in the invaaive sons (pig. a4 and 25). the 

disappearance of tha presymbiotic zone and seneecence of the 

syrbiotic cells (pig. 2 6 ) .  The senescence was characterized 
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n~aceoecopically by a change in leghemoglobin color to green 

and microscopically by filling of the bacteroida with poly 8-  

hydroxyhutyric acid granules making them opaque (Pig. 26). 

This ia tollowed by degeneration of bacteroide and cell 

contents. At the same time an increase in the accumulation of 

amyloplasta with atarch grains in the interstitial uninfected 

cells of the symbiotic zone and nodule parenchyma became 

apparent (Fig. 23,24,25 and 261. The nodule parenchyma (outer 

and inner cortex) also became haavily filled with amyloplaet 

starch grains. Oleosomes became abundant in all the 

parznchyma cells (Pig.27 end 281, including those in the 

vascular parenchyma. The vascvlar tissue also showed the 

presence of protein bodies which reaieted solubiliration in 

hexene treatment. The obeervatione of samples from year to 

year did not show any significant variation. 

post-winter nodules 

In samples taken during March end April, bcfoec thn 

shoots appeared above ground, striking changes in the 

histology o f  the nodules were evident. The starch grains and 

oleoamaa had disappeared (Fig.29,30,31 and 32) and the 

provascular ti~aue had become active (Fig. 32). Dleosmee 

could be seen only in chs vascular parenchyma (Fig. 2 9 ) .  The 

prwascullr tissue at the distal part of the nodule shoved 
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merietirnatic a c t i v i t y  i n  oe l l s  with .:aneiderable cytoplasmic 

content and very small vacuoles (Fig. 32).  some of the 

o1eoeomee could be seon i n  the endoaeml  cells around the 

vascular t i ssue  (Fig. 331 end protein bodies pers i s ted  i n  the 

vascular parenchyma c e l l s  (Fig. 34). The c e l l s  of the 

senescent zone had clumped and degenerated bacteroids,  but 

some of the cells contained rod-shaped bacteria,  which d id  not 

show any morphological s ign  of degeneration lFig.35 and 361. 

Scrmepereistentin€ection threads couldbe dctectsdaontaining 

rhizabia i n  the invaaive zone (Fig. 371. No s igni f icant  

var ia t ion  oooldbs  observer' i n  the samples taken i n  d i f fe rent  

years. 



Fig.ZI LsChyrvs rnaritimue L (beach peal nodules at different 

etagas of development found during all times from late 

March to middle of October. (a)Spherical young nodules, 

(b) end ( c )  mature elongate and branched nodules, (dl 

notched (arrow) nodule. (el notched (arrow1 but decaying 

noduls. (51 decayed nodule and (gl decayed branched 

nodule. 





Fig.22 A diagram ehowing longitudinal eection ol 

L. maritimua nodule. Note the meristem (m) 

et the distal end, invasion zone (iv), early 

eymbiotic zone (ee) ,  late symbiotic zone (1s)and 

senescent zone (an). There ere five vascular tisave 

strands (vt) of whish one ia ahown in longitudinal 

plan- and the other in cross section. Provaeoular 

cells are cloae to the meristem. A distinct 

exodermis (eitlis present. The uninfe~ted cella 

of the symbiotic zone are called interstitial cella 

(not shown in diagram).vascular tissue is 

svrr-ded by an endodemis (not shorn in diagram). 





Fig. 23, 24. 25, 26. 27 and 28 

 hotm micrographs o f  pre-winter nodule aamplee of 

L. maritiraus. 

Pig.23 Meristem lml of khe nodule showing non-dividsng 

cells surrounded by cells containing starch 

(small arrows1 end alsosomes (large arrows). 

aig.24 Nodule parenchyma (inner and outer cortex1 

end interstitial vnintected calls showing heavy deposits 

of starch grains (small areowel and oleosames 

(large arrows). Note the exodannis (Bxl, end the 

infectad cells showing opaqve banteraide due to 

po1y 8-hydroxyhueyric acid granules. 

1.ig.25 1nnner cortex of nodule shcwing the endodermal 

layer ( ~ n )  around the tangentially cut vascular 

tissue (Vtl and the invesive rono livl 

lacking any infection threads. 

aig.26 Mature symbiotic infected cells ('1 and 

seneecent infacted cells (Snl. Note the 

change in appearance of basteroide. 





Fig.27 Electron micrograph of a parenchyma cell 

ehowing etarah grain (Sg) and oleosomee 

(large arrow) in prs-winter 

nodvle of L. m a r i t i r n u s .  

Fig.as Electron micrograph showing associations 

of eterch grains (sg) , mitochondria (Mt1 , 
aleoeomes (arrow) and rough endoplasmie 

ceticulvn ler)  in pra-winter 

nodule o f  L. m a r i t i r o n s .  
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lig.29, 30, 31 and 32 

Photomicrographs of poet-winter nodule samples of 

I. maritimus 

Pig.29 Photomicrograph showing the vascular tiaaue.Note 

the vascular parenchy: a showing oleosomes (arrow) 

an.endodsrmie. 

lig.30 A view of the eenescent zone (Snz). 

Pig.31 The invasive zone (ivl, showing no starch grains 

or O ~ ~ O B M ~ B .  ~ o t e  very clear presenoe of infection 

threade (arrow). 

Pig.32 Provascular parenchyma showing a dividing cell 

(arrow), and the other cells of the merietem im). 

~ o t e  the laok of storage granules in the 

parenchyma surrounding the meristam. 





~ig.33 Electron micrograph of the endodermal layer showing 

the presence of oleosomee (arrow1 in post-winter 

nodule of 5. marieirnus. Note the charachsrietic 

thickening of the cell wall. 

Fig.34 Electron micrograph of a xylem parechyma cell 

showing protein bod'ee IPb) in poat-winter nodule 

of L. m a r i  t i m u s .  





Pig.35 Electron micrograph of the senescent sane cell 

showing some rod-shaped bacteria lr) in 

post-winter nodule of L. m e r i t i m u s .  

~ig.36   ha to micrograph of the seneecent tissue from where tho 

Fig. 35 ia taken. 

~ig.37 ~lectron micrograph showing persistent infection 

thread 11t) in the invasive zone of post-winter 

nodule of 6. m.ritimus. 





IV DISCUSSION 

IV. 1 Oleosomea and oleosins in A. llypogaea 

The recent studias on the composition, structure, 

synthesis and degradation of oleosomea have been made on seeds 

or germinating embryos (Xuang, 1992). Most seed oils are TAQ: 

the sole well known exception is in jojoba, which stores wax 

esters instead. xn general, ehe oieoaomss aontain about 9a.98% 

Iw/w) neutral lipids, and 1-4% proteins. Moat of tho neutral 

lipids are TAG; the minor neutral lipid components include 

diacylglycerole and free fatty acids. 

The compositi~n of the TAB, including their acyl 

constitusnte and the acyl positional specificity, are highly 

species-specifia and have been analysed extensively owing to 

the importance of seed ails in nutrition and industry. The 

majar PL ir: the oil bodies is phosphatidylcholine, and the 

minor PL include phospharidylsarine, phoaphatidylethanolaminc 

and phosphatidylinositol ( ~ z e n  and nuang. m a ) .  

  he oleosome proteins, termed olsosine, have speaial 

characteristics and ere vniqve to the organelles. Oleosomes in 

seeds are degraded during gednation end post-geeminative 

growth. TAG in oleoeomee are hydrolysed to glycerol and fatty 
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acide. which are then converted t o  carbohydratee f o r  the 

growth of the  seedling. The subcellular location of the l ipase  

var ies  according t o  species (Huang et a l . ,  19871. 1n  nost 

epecies. t h e  glyoxyamnes, which 6-oxidize the TAO derived 

f a t t y  acids for gluconsogenesia. oontain a l ipase  i n  the i r  

mrmbrane. 

The oleosome associated proteins, 'oleosins. are uaually 

a c l a a s  of low-molecular weight proteins and it has been 

suggested t h s t  e t rvc tura l  f-ction of the ~ l e o s i n e  i e  t o  

prevent contaat with cytaaolic enzymes and the coalsscsncs of 

l i p i d  hodies. A putative lipaae-attachment a i t e  on the 

oleosins implicated t h e i r  involvement in the  process of l ip id  

degradation (Vanse and Huang, 1987; Murphy e t  al., 1991) . The 

m a t  extensively etadied oleoeins from maize ehoved four major 

polypeptides are being associated with oleos-s, one of 

higher molecular weight (45 RDI aal led  H protein and three  of 

lower molecular weight (15.5. 18.0. and 19.5 KDI cal led  

L3,LP.Ll proteins respectively (Vance and Huang, 19811 . The 

amino a d d  seqvmcsa of IS and 18 KD from the maize embryo 

oleosins from thei r  gene or =DNA nucleotide esquencelr reveal 

miaue secondary structurse i n  the protein IQu and Huang, 

1990; Vance and Huang. 1987). Each olaaein molecule contains 

a re la t ive ly  hydrophilic N-terminal domain, a central t o t a l l y  

hydrophobic donain and amphipathic r -he l ica l  domain a t  o r  near 

the 0-terminus. Although both maize oleosine contain these 
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t h r e e  s t r u c t v r a l  d m i n e ,  t h e i r  amino a c i d  sequences as w e l l  

as g e n s  nuc leo t ide  sequencee a r e  s imi la r  only i n  the c e n t r a l  

hydrophobic domain. The m i z e  a leoa in  1 6  W a n d  18 KD have  

been cosidered as i a o f o m  enaoded by two d i f f e r e n t  genes 

de r ived  from a c-on ances to r  gene (Qu a n d  Buang, 1990) .  Tzen 

e t  a l .  (19901 suggested t h a t  the re  are a t  l e a s t  two  

immunologically d i e t i n c t  i s o f o m s  of o l e o a i n s  p resen t  i n  

d i v ~ r e e  s e e d  species,  one o f  lower molecular weight a n d  

ano the r  one of higher molecular weight. 

The r e s u l t e  of TLC from peanut r o o t  nodules ahov  t h e  

presence o f  one TAa band, o n e  DAC band, three PL bands a n d  

SDS-PAGE shows f o u r  o leos ins .  Amever,  t h i e  p a t t e r n  was  found 

to  b e  d i f f e r e n t  when compared with the  s e e d  oleosonea of t h e  

~ a n e  s p e c i e s .  The root  nodule o l e a s i n s  (10.0 XD, 56.3 KD, 61.1 

KD L 66.0 KD) are of h i g h  no lecv la r  weight than seed o l e o a i n s  

(as.5 W ,  35.a KD. 40.0 RI) and 59.5 WI. 

It i s  a l s o  i n t e r e s t i n g  t h a t  t h e s e  h i g h  no leou la r  weight 

o l e o s i n s  a r e  p resen t  i n  t h e  h igh ly  metabo l i ca l ly  a c t i v e  t i e s u e  

of t h e  root  nodule. The func t ion  of eusb h i g h  m l e o u l a r  weight 

o l e o s i n s  i n  the r o o t  noduls remain- to  b e  slucidated.  One o f  

the p o s s i b l e  functions could be t o  r egu la te  t h e  c o n s t a n t  

supp ly  of carbon/energy i n  t h e  process of n i t rogen  f i x a t i o n ,  

through the oleosome degradation.  Lipase has beon 

cytochemically l o c a l i z e d  i n  nodule o leosmea ,  where t h e  

r e a c t i o n  product could h e  s e e n  on t h e  pe r iphery ,  w h i l e  s e e d  
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oleosomes showed ac t iv i ty  only i n  glyoxyeomes (Jayaram and 

Bal, 1991). These oleoains may have l ipoly t io  ea t iv i fy ,  which 

remains t o  be determined. 

IV.2 Morphology of root nodule oleosomes from 

A. hypogaea. 

The major constraint i n  t h i s  stvdy was acquiring gram 

quantities of nodules. The f a t  pad MB more l i k e  a f i lm on ths 

f l o t a t i o n  medium aa aornpared to the ones obtained from seed, 

the ~ l e o a o n e  mounts being low 5 . e .  only above 4 - 5  % of the 

t o t a l  c e l l  area i n  the nodule (Jayaram and Bal. 1991). An 

reported by Atlang 11992), i f  a seed contains 4 0  % o i l  and 30 

% proteins,  it w i l l  have 0.4 to 1 . 6  % olaoains; 2 - 8  % of the 

seed pro te in  i e  composed of oleoains. So, i f  we consider 4 % 

0 1 a o ~ m e s  of the nodule oe l l ,  then t h e  oleoeine would bs 

approximately 0.1 % only. 

Oloosomos from diverse species a r e  0.2 - 2.5  pm in 

diameter: the avsrage s ize  i s  r~pecies dependent and i s  l i k e l y  

a f fec ted  by nut r i t iona l  and environmental factore (Huang, 

1992). r t  has bean reported t h a t ,  within the saw seed, 

01eosomee i n  d i f fe rent  t iesves may be of different eirss. For 

example, i n  maize embryo, the oleosmss i n  seutellum are  

larger than i n  the embryonic axis   release, 1969). s imi lar ly  
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t h e  o l e o s m s  s i z e  hae a l s o  been obeerved t o  be d i f f e r e n t  i n  

d i f f e r e n t  t ieauea o f  the peanut root  nodulea,  as s h m  i n  the 

parenchyma c e l l s  and in fec ted  c e l l e  by Jayeram and Bal (1991).  

The oleosones of t h e  nodule f a t  p a d  a r e  hateroganous; some ere 

der ived  from the in fes ted  n i t rogen- f ix ing  c e l l s  whi le  o t h e r s ,  

mostly t h e  l a r g e r  ones a r e  f rom the  v n i n f e ~ t e d  parenchyma 

cel1.8. The  l e e s  electron-dense o u t e r  l a y e r  i n  ths  oleosome i s  

most  l i k e l y  proteinaoeous.  Th i s  pe r iphera l  l a y e r  has ehom 

l i p o l y t i c  a c t i v i t y  (Jayaeam and Bal, 1991).  This i e  poaa ib ly  

t h e  s i t e  for l i p a s e  r e c e p t o r  proheins.  Signs showing furrowing 

o f  the oleoaomea (Pig.  61 i e  i n d i c a t i v e  o f  t h e i r  ca tabo l i c  

proeees and it i s  assumed t h a t  w i t h  t h e  progress o f  l i p o l y e i s  

t h e  oleoeones become l e s s  e l c t ron-danee  and p o s s i b l y  appear  to  

b e  swollen i n t o  l a r g e r  e n t i t i e s  as seen i n  t h e  e l e c t r o n  

misrographs.  

IV.3 Oleosome distribution in A pintof 

Recently the  s ign i f i cance  o f  oleoemee i n  r o o t  nodule of 

A .  hypogaea (peanut)  ( ~ a l  ct al.. 1989; Jayaran and Bal, 1991) 

a n d  t h e i r  poeaible involvement a s  a supplimentary source  of 

carbon h a v e  been  doavaented (Siddiqus and  Bal,  1991 and 1991) .  

The r e s u l t s  p reean ted  h e r e  (Pig.  8, 9 and 16 revea l  the 

vomplete Bbsenos o f  o leoames  i n  t h e  in fec ted  c e l l s  of 

e t r e c t i v e ,  m t u r a / r e d  and pink at ail t h e  e tagee  of 
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growth i n  A.p in to i .  The lack of oleasolnes i n  t h e  i n f e c t e d  

c e l l s  of e f f e c t i v e  nodvle suggeats t h e  i n e h i l i t y  of t h e  h o e t  

t o  p rov ide  any addit ional  energy a n d  carbon source 

(oleosomes) , which may a f f e c t  n i t rogen  f ixa t ion  and e)nnbiotic 

i n t e r a c t i o n  under pho tosyn the t i c  ~ t r e a a  condit ione.  

I n t e r e s t i n g l y  oleosomes (0 .24 and 1.24 percent of t h e  c e l l  

area) are presen t  i n  the in fec ted  c s l l e  of 

i m a t u r e l s m a l l / w h i t e  nodulee a t  2 1  end 28 DAI and aga in  

reappear ah eenescing etage,  when no e f f e c t i v e  symbiosis  

occurs. It can be the re fo re  aaeumed t h a r  oleosomea are 

e s s e n t i a l  f o r  the e a r l y  e tages  of nodule d i f f e r e n t i a t i o n ,  when 

ewe 30 f o l d  inc rease  i n  menbeilnes t ake8  p l a c e  i n  the nodulsa 

(varma e t  al., 1978).  A recen t  s tudy  on Sasbania r o e t r a t a  

nodules a l s o  con i i rns  t r a n s i e n t  appearencs o f  o1eosones i n  t h e  

e a r l y  s t a g e s  of nodvle d i f f e r e n t i a t i o n  (Ba l  and Dendt*luri, 

1396).  There sams  to  b e  no mechanism La maintain a dynamic 

equ i l ib r ium l e v e l  o i  oleosomes a t  a l l  stages of development i n  

t h e  nodules o f  ~ p i n t o i ,  as i n  e f f e c t i v e  nodulsn o f  A.hypogaea 

(peanut)  ( ~ a y a r a m  and 8.1. 1991).  However, i n  A.pintoi ,  nod* 

f ix '  nodules i n d i c a t e  t h a t  the  in fec ted  a e l l e  are capable of 

syntheaieing and acaurmlating oleosomes. This increaae i n  

oleoaomss p o p l a t i o n  suggested tha t  they  a r e  not u t i l i z a e d  i n  

t h e  absence o f  e f fec t ive  nadulation,  a s  hae been -1.0 shown i n  

peanut (Bal and Siddiyme, 1991).  



Lack of oleosomse a t  the ef fea t ive  stages of the nodule 

i n  A. pinto; suggests tha t  these  nodules may he s t  e 

disadvantage i n  terme of having a ready supply of addi t ional  

supplimentary energy. The significance of aleosolnes in t h e  

nodule parenchyma i s  not clear. I n  the uninfected parenchyma 

c e l l s  t h e r e  i s  a decreasing trend in  t h e  mount of oleosomee 

i n  the mature/red nodules, ompared t o  the mature/pink w e e .  

The other two diploids and cultivated sp .  of Arschis showed 

the  presence of oleosmes in infec ted  c e l l s  a t  a l l  t h e  

developmental stages when inoaulated with the same s t ra in  of 

Bradyrhizobiuol, euggeating that i t  i s  a host-speaific 

charac ter is t ic  of the symbiotic in te iac t ions .  

Tha other ohaervations that covld be related t o  support 

the above hyphothesia i s  tha t  la rge  mounts of amyloplaste i n  

parenchyma c e l l s  were obeerved only  in th ia  perennial peanut 

(rig.01 i n  cornpariaon to others. The preeence of increased 

nvnbar of amyloplasts suggest the r e l a t i v e  ineffectiveness of  

the nodule for nitrogen fixation (Beegsrsen. 19571 Chandler et 

a l . ,  1914: Nsrcomb s t  al., 1977). These etorage granules have 

t o  bs mobilized to maintain the equilibrium of the  oarbon 

ekeleton f o r  protein end l ip id  synthesis.  
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1'3.4 Nodule senescence in A. pinto i  

Studies of t h e  A. pintoi nodule have shown charactsrietic 

internal organizatim . the large sphsr ica l  haateroids, in  

contraat wi th  the elongated and branched onee of cowpea, which 

d i f f s r e n t i a t e  from the same s t r a i n  of rhirobia (Sen and 

Weaver. 1984). In th is  perennial wi ld  diploid epeciea, A .  

pinto i ,  a l l  the  bactsroids in  af fec t ive  pink/red nodules were 

found to be typically spherical l ike  the tetraploid 

A.hypogaes. Aowevar. the imature/enall/white nodules show rod 

shaped bacteroids during early developmental stages of grarth 

a s  in  A. hypogeea.. The eeneecing s tage  of the nodule i n  A. 

pinto i  revealsd a revereion of spherical baateroide i n t o  the 

rad-shaped form. It i s  generally believed t h a t  the hacteroids 

of a,wbiotic nitrogen-fixing root nodules rever t  hack to their 

asymbiotic form when released i n  s o i l  or i n  culture, although 

some nodule baateroids lack th is  capabi l i ty  Izhou e t  a l ,  

1 9 8 5 ) .  Careeully controlled etudiea have shown that hacteroids 

became progreaaivsly lese viable wi th  age lsutton e t  a ] . .  

1911). =he l o s e  of viabilty has been a t t r ibuted  to ths degres 

of dedi f ferent ia t ion  as indicated by datergent-aenaftivity 

(suttan and patereon, 1980). mie investigation shows tha t  the 

large spherical bacteroide of A. ~ i " t o i  noduloa revert t o  rod- 

fome during ~enescence wikhin t h e  i n t a c t  nodule. The 



84 

t ranerormation of rhieobia i n t o  s p h e r i c a l  f.ms i n  t h e e  

nodules i s  complete as the nodule matures .  Absence o f  any 

i n f e c t i o n  th reed  a n d  i t s  pe r s i s t ence  i n  the mature nodule does 

no t  a l low any contamination from und i f fe ren t i a t ed  rod-forms i n  

a mature nodule.  The spher ica l  £0- a r e  eo d i a t i n c t  i n  

morphology t h a t  t h e  rod-farm must a r i s e  by  ded i f fa ren t i a t ion  

o f  tha mature ephs r i ca l  bac te ro ids  dvr ing  aensacence. The rod- 

forms were g e n e r a l l y  found i n  the l a r g e  vacuole o f  the 

eeneecing c e l l s .  Th i s  p a r t i c u l a r  spec ies ,  A. p i n t a i ,  a l l o w  

f u l l y  differentiated hacteroida to  revert back wi th in  the 

confine* of irs nodvle t i seus .  This may i n s u r e  su rv ia l  of the 

b a c t e r i a  when they are releaeod i n  t h e  s o i l .  

The A. pintoi root  nodules were subjected t o  premature 

senescence to confirm the r e d s f f a r e n t i a t i o n  o f  bacteroids in to  

rod-forms, e i t h e r  by treatment o f  p l a n t s  w i t h  n i t r a t e  o r  by 

datopping t h e  p l a n t s .  Indeed, t h e  presence of rod-forms and 

a180 ~ p b e r i c a l  bact-roida alongwith t h e  presence of oleosomas 

could b e  confirmed i n  these  nodulas. The senescence induced 

a r t f i c i s l l y  w a s  ai.mil.. t o  tha t  ocsur red  na tu ra l ly  o r  wi th  the 

nod' f i x '  a t r a i n  d t h  the no tab le  preeence of rod-forms and 

oleosamee. T h i e  seneeaing phenomenon i s  i n t e r a s t i n g  i n  A. 

p i n t o i  and needs  t o  bs  i n - a s t i g a t e d  i n  more d e t a i l  because 

t h i s  speciee is recen t ly  becoming introduaed as s forage crop 

( ~ h m a a ,  1993). N t t i n g  o f  the  top^ w i l l  take plaao  d n r i w  

graz ing  the animals. The n i t r a t e  induaod senesconce has 
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recently been reported by De Lorenro et a l .  (19941 i n  root 

nodules of Lupinus  albus;  they have suggested that n i t r a t e  

treatment induces a deareaae i n  the a c t i v i t y  of the main 

enzymes cata lase  and ascorbate peroxidase t h a t  scavenge H,O, 

in  the nodule cytcsol .  

Appearance of oleoacrmes during seneecence i s  poseibly due 

to ooneervation of degraded products oE membrane, which are  

recycled in to  etorage triacylglyferidea. I t  i s  interesting 

tha t  both reversion of  rhizohia and poseible reconversion of 

degraded producte occur during senescance i n  theee nodules. 

Both thsee phenotypic t r a i t s  nay he re la ted  t o  the persnnial 

habi t  of A . p i n t o i .  Sonescing nodules of A. hypogeea (peanut) 

do not exhibit auch characterietics.  

IV.5 Seasonal effect on storage organelles in  

L. maritimus root nodule. 

=he his to logica l  etama ol the noduiee of the perennial 

r a t h m s  mari t imue L.,  before and a f t e r  wintsr throws 

considerable l i g h t  on the i r  survival s t ra tegy during t h e  

winter months. Throughout the growing season nodules develop 

continuously and therefore enter the  overwintering procssa a t  

YBI.~OUB stages o f  developent.  As the  nodulee besane active i n  

spring, new growth takes place resulting i n  a conetriction o r  
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e notch in these nodulse. As more then m s  notch was never 

been seen in this atudy, we suggeat that the nodules peraint 

only for tuo successive years. 

~uring pose-pod filling at tho beginning of the cold 

season the plant vndcrgoes a storage program in preparation 

for the winter. ~ a r g e  quantities of aterch are deposited in 

the amylaplaste along with oleoaones, end the nodule 

essenti~lly becomee a storage organ. The infected cells of the 

zone show eanescing bacteroids, which are at first 

recognizable by the p-hydraxybutyric a d d  granules, and 

finally represent degenereted .lws. nowever, enme bacteria 

remain undifferentiated and protected within infection 

threads, end some bacteroida revort into rad-ahapsd bacteria. 

such reveraion has been reported also in ths aenericing nodules 

of perennial ~peciea of Arachis pintoi L (Khetnalae end Bal, 

1994 end the present study). 

overwintered vaecvlar parenchyma and endodermal cells 

seem t o  retain reasonably good ultreetructunl morphology 

including the storage organelles. The fact that water can 

remain in the eupercooled etate within the xylsm ray 

parenohma (Fujikawa et al., 19941. possibly allows theas 

cells to remain metabolically active over the winter. The 

rsgeneration of the merielem therefore is likely to he 

initiated in the provaacular parenchyma close to the diatal 

part of the nodule.   he supply of cell division - indusing 
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substances i s  l ike ly  t o  be transported through th is  tinsus 

also. 

It can be concluded that i n  the psrennial beach pea plant 

a substantial amount of i t s  energy is allocated i n t o  oleasolnes 

and am:rloplaat vtorage organelles of the nodules a f t e r  pad 

f i l l i n g .  Like the seed, the nodule becomes a atorage organ, i n  

preparation f o r  the winter. Materials in the  storage 

organellee aremobilized for  regenerating the  noduls ac t iv i ty  

even before the a e r i a l  parts of the plant have grown. Pre- 

winter appearance end posf-winter disappearance of olsasoms 

and starch granvlee i s  very s t r ik ing,  hut whether they are 

slowly metabolised during the winter or rapidly metaholieed 

and exhaustedwithin days i n  spring remains t o h a  determined. 



Nitrogen fixation in l a w e  root nodulee ie believed to 

ha supported by the evpply of carhon ccrmpour.de derived from 

the current photosynthats of the host cells. The presence of 

storage organelles such a n  oleosomes in the infected cells may 

seevs as a supplementary source of carbon and e n e m  during 

photosynthate sfresa as has been suggested for Arachie 

h p g a e a  root nodulee IBal, 1990; Bal et al., 1989; Bal and 

Siddiqua, 1991; Siddique and Bal, 1991, 1992). 

=he present inveetigation further shoved that the peanut 

root nodule olsoscrmee has constituents DAD. TAG, PL end 

oleosins similar to those reported from other sources (Euang. 

1992). Peanut root nodule oleoaones revealed four oleosin 

bends.   he molecular weighte were 66 KD, 61.1 KD, 56.3 ED and 

10 KD. =he isolated olsoaomes showed considerable variation in 

size, sle~tron density and in the presence of e less electron- 

dense peripheral layer. 

me development of symbiosis in wild species of legumes 

such ae ~rechis and beach pea in relation to oleosomss and 

&her ultras~rucrural featvrss waa etudied. Uiorosc~ical 

observations at different dovslopmental stages oe nodules of 

u a c h i ~  pintof have revealed that oleoems were praeant only 

during early etagee of tho infeation procees and darslopxnent 
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before the setablishment of symbiosis, and during senescence. 

Oleo~~mse ware absent in the infected cells of effeotive 

nodules of A. pintoi whereas similar fells in the nodule. of 

other wild diploid *paceis of Araehia (A. batizocoi and A. 

duranensis) and tetraploid A. hypogaea showed presence o: 

oleosmes. Another intereeting Feature in this epecies was the 

rsveraian of spherical bacteroids into ead-forne within the 

aonfines of the senescent nodule tiesue. 

The histological and ule~aaeruotural stvdies of Chs root 

nodule8 of naturally growing beach pea revealed considerable 

~easonal variation in the presence of storage organelles, such 

aa anyloplaste and oleoems. After Fruiting (pre-winter) 

large nvnbers of arqloplaeta with starch graine and oleoaomes 

filled the uninfected intselititial felle a d  parenchm cells 

of the nodule tiesuee. These storage organellee could not be 

aeon in the cells of nodules sampled during poet-winter 

perioda before serial .hoots emerged, indicating their 

importance in overwintering. Pereiatentinfaction threads with 

rhirobia ~ould he seen and rod-shaped ehiaobia in eenoacent 

cells were indicative of reversion of bactacoids to rod-Forns 

within the nodule tissue. 
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vi CONCLUSIONS 

  he peanut root nodule oleoacmes are composed of DAO, 

TAG, PL and oleosins as reported in olwsomes from other 

sources tnuang, 1992). This is the first report to demonstrate 

the presence of oleosins in the root nodule olsoaomes, which 

are OE 66 KD, 61.1 KD, 56.3 KD and 10 W molecularweight. Tho 

isolated oleosomea showed considerable variation in nizc. 

electron density and in the presence of a lesa electron-danse 

peripheral layer. 

During the symbiotic stages, one of the spacisa ol 

Araohia, A. pintoi (Zn, perennial) was found co be devoid of 

olsoemee in the mature infmoted 0.11s of their nitrogen- 

fixing nodulea. The appearance oE olsosomes in white/inanatuse 

nodules at the early plant growth stage, naturally and 

premturally eenescing nodules of A. pintoi indicates that the 

infected celle are capable of syntheeieing and accumulating 

oleosomes. 

The reversion of basteroids into viable eod-foraa in the 

eenescing nodules was observed and reported for the fieat 

tine. In the perennial beach pea plant a substantial amount of 

its energy ie allocated into olsoaomes and other storage 

organelles of the nodules alter pod fillingi starch and lipids 

comprise the major storage materials. Like the meed the nodule 

heco~nee a storage tissue which allows it to oveninter. 
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