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ABSTRACT 

The regulation of cholesterol homeostatsis is of considerable interest because of 

the host of studies that show a clear positive relationship between plasma cholesterol 

levels and the risk of coronary heart disease. It has become apparent that plasma 

cholesterol levels are affected by a number of life style factors including the amount 

and type of fat in the diet. However, the mechanisms whereby dietary fat affects 

plasma cholesterol remain unclear. In this study we have investigated the effects of 

the levels and types of dietary fat on the cholesterol homeostasis. We used the FIB 

strain of hamster as a model as this strain has been shown to be sensitive to dietary fat 

induced atherosclerosis. We propose that this sensitivity reflects differences in the 

regulation of lipid metabolism between the FlB and the parent strain ofhamsters. 

Cholesterol homeostasis in the liver is tightly regulated by several sterol-sensitive 

regulatory proteins and receptors, including LDL receptor, HMG-CoA reductase, 

ACAT, CYP7, and SREBPs. It is postulated that the ER cholesterol is the cholesterol 

regulatory pool plays a major role in the regulation of these enzymes of the whole cell. 

We examined the effect of different dietary fats on the activity or expression of 

these proteins and observed that the activities of these enzymes are not directly 

regulated by the fats and cholesterol in the diet; instead, they appear more responsive 

to changes in the lipid environment of the microsome in the FlB hamster liver. Both 
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the HMG-CoA reductase and the ACAT activity are positively correlated with the level 

ofn-3 fatty acids in the microsome, andACAT activity also depend on the content of 

microsomal cholesterol. 

We suggested that the levels ofn-3 fatty acids and cholesterol in the diets may 

change the lipid composition microsomal membranes. This might alter membrane 

fluidity or the distribution of the key enzymes and regulatory proteins in the membrane 

of the ER. We suggest that the formation ofmicrodomains (rafts) may sequester 

much of the cholesterol into pools that are separate from the cholesterol regulatory 

pool in the ER. However, further studies on the lipid composition of these 

microdomains are needed for clarify our hypothesis. 
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Chapter 1. Introduction 



1.1 Lipoproteins and Coronary Heart Disease 

Despite extensive research for over five decades, coronary heart disease (CHD) 

remains a major cause of death and disability in Western countries. About 13 million 

Americans have CHD, 1.5 million have a myocardial infraction (MI) each year, and 

about 450,000 die of CHD each year (American Heart Association, 2004). For several 

decades there has been mounting evidence that the levels of cholesterol in the plasma can 

impact on the risk of developing CHD. 

CHD is caused by atherosclerosis, a process characterized by endothelial 

dysfunction and cholesterol deposition in macrophages and smooth muscle cells in the 

arterial wall as a result of elevated low density lipoproteins (LDL), increased 

lipoprotein( a), increased remnant lipoproteins, reduced LDL receptors and decreased 

high density lipoproteins (HDL). During this process, proliferation, inflammation and 

calcification of smooth muscle and thrombosis can occur resulting in narrowing of the 

arteries leading to myocardial infarction or death of heart muscle (Schaefer, 2002). 

Hypercholesterolemia is critical in the development of atherosclerosis. An 

investigation of over 356,000 healthy males for 10 years by the National Heart, Lung, 

and Blood Institute (NHLBI) showed a strong correlation between the rate of CHD death 

and the plasma total cholesterol (TC) concentration (Figure 1.1) (1988;Stamler eta/., 

1986). These data suggest that there is a direct relationship between the serum TC and 

the rate of death from CHD.It is clear from these data that death due to CHD is very 

uncommon in individuals with a serum TC < 3.6 mM (140mg/dl) (Dietschy, 1998). 

Major risk factors associated with atherosclerosis are elevated levels of plasma 

cholesterol, decreased levels ofHDL, elevated levels of very low density lipoproteins 
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Figure 1.1. Mortality rates from coronary heart disease (CHD) as a function of 

serum total cholesterol (TC) concentrations. 

These curves were constructed after recalculating data from two sources and show 

the number of deaths per 1000 patients per 10 years. The dashed curve comes from an 

analysis of nearly 356,000 men (1988;Stamler et al., 1986). The four data points in the 

lower solid curve were recalculated from a more recent study in urban Chinese 

populations (Chen et al., 1991). 
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(VLDL) plus LDL, elevated levels oftriacylglycerols, and hypertension. 

Since lipids, including cholesterol, are insoluble in the blood, they are transported in 

the plasma in particles known as lipoproteins. Among the lipoproteins, the LDL 

represents the major cholesterol carrying lipoprotein in human plasma and its uptake by 

the cells is carefully regulated (Havel, 1997). However, when LDL becomes oxidized in 

the arterial wall, a separate receptor pathway leads to its uncontrolled uptake by 

macrophages and the formation of foam cells (Krieger and Herz, 1994). In contrast, 

HDL appears to protect the arterial wall from the development of atherosclerosis by 

removing cholesterol from the intima through its role in the reverse cholesterol transport 

pathway (Fielding and Fielding, 1995) and by preventing the oxidation ofLDL. 

1.2 Dietary Fats and Plasma Lipoproteins 

Over the past 25 years, epidemiological studies have shown that the level of dietary 

fat is positively correlated with the serum TC value and mortality from CHD (Epstein, 

1989). Early studies also established that isocaloric substitution of unsaturated fats 

derived mostly from vegetable oil, for saturated fats from animal sources decreased the 

serum TC concentration in humans (Aharens, Jr., 1957; Keys eta!., 1957; Kinsell eta!., 

1952). Moreover, early studies by Bang and Dyerberg demonstrated that diets rich in 

omega-3 polyunsaturated fatty acids (n-3 PUFA) appear to be especially effective at 

reducing atherogenesis (Bang eta!., 1971). 

Initial studies suggested that the lipoprotein fraction most affected by the levels and 

types of dietary fats was the LDL (Aharens, Jr., 1957; Keys eta!., 1957; Kinsell eta!., 

1952). However, later it was found that the levels of both atherogenic LDL-cholesterol 
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(LDL-C) and the anti-atherogenic HDL- cholesterol (HDL-C) are affected by dietary 

lipids, but the changes in HDL were modest (Lewis, 1990). Many controlled feeding 

studies on the effects of different dietary fatty acids on plasma cholesterol have been 

summarized in several meta-analyses (Hegsted et al., 1965; Hegsted eta!., 1993; Hu and 

Willett, 2002; Keys and Parlin, 1966; Mensink and Katan, 1992;Yu et al., 1995). They 

reported that saturated fatty acids increased, and polyunsaturated fatty acids decreased 

TC and LDL-C. When saturated, monounsaturated, and polyunsaturated fatty acids 

replaced carbohydrates in the diet, they all increased HDL-C and saturated fatty acids had 

a slightly greater effect than the other two. Since the substitution of saturated fats with 

carbohydrates of the diet decreased both LDL-C and HDL-C proportionally, it had little 

effect on the LDL-HDL ratio. Thus substitution would be expected to have less benefit 

on CHD risk. The monounsaturated and polyunsaturated fatty acids, on the other hand, 

markedly decreased the LDL-HDL ratio and could decrease CHD risk. 

1.3 Liver's Role on The Regulation of Serum Cholesterol at Cellular Level 

The plasma LDL-C concentration is determined by the balance between the rate of 

production and clearance of this lipoprotein from circulation (Brown et al., 1981 ). The 

VLDL is synthesized in the liver and serves to transfer triacylglycerol from the liver to 

peripheral tissue for storage or utilization as a metabolic fuel. As the VLDL 

triacylglycerol is hydrolyzed, the size ofVLDL is reduced. Some of the VLDL 

remnants, now called Intermediate Density Lipoproteins (IDL), are taken up directly by 

the LDL-receptor (LDL-r) back into the liver. The rest is converted to LDL and 

subsequently cleared by the liver though the same mechanism (Dietschy et al., 1993). 

6 



Because the liver may play an important role in changing the plasma LDL-C levels, it is 

suggested that variation of dietary fats may affect LDL-C levels through effects on the 

liver. However, it is not clear if this involves effects on LDL clearance, cholesterol 

production, or both. 

Cholesterol homeostasis in the liver is regulated by several sterol-sensitive 

regulatory proteins and receptors, which are primarily associated with the endoplasmic 

reticulum (ER) and, in some cases, they are associated with plasma or outer nuclear 

membrane. These include a) cholesterol uptake via LDL and other protein receptors 

(Borchardt and Davis, 1987;Dietschy, 1998); b) HMG-CoA reductase (HMG-R), the 

rate-limiting step in the cholesterol biosynthesis pathway (Orci et al., 1984); c) CYP7Al 

and CYP27, the initial enzymes in the classic and alternative pathways ofbile acid 

synthesis, respectively (Russell and Setchell, 1992); d) acyl-coenzyme A:cholesterol 

acyltransferase (ACAT) (Chang eta/., 1997;Lange eta/., 1993) and neutral cholesterol 

ester hydrolase (CEH), the enzymes that regulate the pool sizes of free and esterifed 

cholesterol compartments in the liver; e) the precursor forms of regulators of 

transcription (SREPBs) (Horton et a/., 2002), and f) pro teases that modulate some of 

these factors (SCAP, SIP, S2P) (Edwards eta/., 2000). All of these proteins respond to 

changes in cell cholesterol. In particular, a regulated pool of cholesterol in the ER might 

serve as a control element in cholesterol homeostasis (Lange eta/., 1993). 

The existence of a putative ER cholesterol regulatory pool involved in determining 

the activity of key enzymes just mentioned in cholesterol homeostasis has been 

postulated for many years (Edwards and Ericsson, 1999). In human fibroblasts, 85% of 

free cholesterol is in the plasma membrane (Lange et a/., 1989) and perhaps 10% is in the 
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(Lange, 1991). One measure of the ER cholesterol suggests that it contains ~0.5% ofthe 

total unesterified cholesterol in the cell (Lange and Steck, 1997). The level of the ER 

pool is set by a brisk circulation of cholesterol to and from plasma membrane and a small 

change in plasma membrane cholesterol near the physiologic set point induces large 

responses in ER cholesterol (Lange et al., 1999). The ER sterol-sensitive proteins then 

induce cholesterol esterification, decrease its biosynthesis, and suppress transcription 

factor precursors that activate genes promoting cholesterol accretion. These responses 

complete a feedback mechanism that maintains the plasma membrane cholesterol pool at 

the physiological level (Lange et al., 2004). 

1.4 The FlB Hamster as a CHD Model 

A major challenge in our efforts to completely understand the molecular basis for 

the initiation and development of CHD is the insidious nature of the disease. A number 

of animal models have been used including rodents, rabbits, miniature swine and 

hamsters. Some of these have been more useful than others. The hamster has proved to 

be a good model to study lipoprotein metabolism since the concentration of serum LDL­

cholesterol responds to changes in dietary lipids in a similar manner to that seen in 

human serum (Spady and Dietschy, 1985; Spady and Dietschy, 1988). 

These changes in hamster include similarities to the human: a) cholesterol and bile 

acid metabolism (Spady and Dietschy, 1983); b) non-high density lipoprotein (LDL) 

cholesterol and triglyceride response to an atherogenic diet (Spady and Dietschy, 1988); 

c) development of atherosclerotic lesions similar to those found in early stages of disease 

(Nistor et al., 1987); d) exclusive hepatic production of apolipoprotein ( apo) B-1 00 
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(Arbeeny et al., I992). Thus, the hamster has been used extensively as a model for 

investigation of the effects of dietary fats on cholesterol regulation and atherogenesis 

(Parker eta/. I995; Kahion eta/., 1996; Nicolosi eta/. 1998; Margiapane eta/., I999). 

The normal Golden Syrian hamster, however, is somewhat resistant to dietary 

cholesterol-induced atherosclerosis (Nistor et al., I987; Margiapane et al., I999. In 

contrast, a hybrid strain (FIB hamster), has been shown to develop atherosclerotic lesions 

fairly quickly when fed with low levels of cholesterol (Kowala et al., I99I ). Moreover, 

the FIB hamster develops lesions that are histologically similar to those in humans 

(McAteer et al., 2003). This has made the FIB hamster an excellent model for study of 

the effects of dietary fats on the molecular mechanisms involved in atherogenesis. 

1.5 Previous Study and Present Focus 

This work is a follow up from a previous study in our laboratory carried out by 

P. de Silva. The previous study was designed to examine the effects of dietary lipids 

(PUFA and cholesterol) on the regulation of lipoprotein metabolism in the FIB hamster. 

The animals were fed with 8 different diets rich in n-3 (n-3/n-6=10/1; fish oil diet) or n-6 

fatty acids (n-3/n-6=I/IO; mix diet) at low (5%, w/w) or high (20%, w/w) fat levels with 

O.I or 0.25% (w/w) cholesterol. 

Those results were the first to demonstrate that fish oil caused hyperlipidemia in 

FIB hamsters. Other key findings from that study were: 

a) serum total cholesterol, VLDL- and LDL-cholesterol concentration 

were significantly higher with lower HDL-cholesterol in hamsters fed 

with fish oil diets compared to animals fed with mix diets, 
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b) higher amount of fats in the diets increased plasma lipids in all groups 

but fish oil groups showed higher serum lipid levels especially in high 

fat groups, 

c) the hepatic cholesterol content was not significantly different between 

groups, 

d) the LDL-receptor mRNA was lower in the animals fed with fish oil 

diets, and may contradict the well known hypolipidemic and 

hyperlipidemic effects of dietary n-3 fatty acids and cholesterol; 

respectively. 

In the present study, our goal is to explore cholesterol metabolism in the FIB 

hamster caused by dietary PUF A and cholesterol at the hepatic cellular level. We looked 

at the expression levels of several microsomal proteins, including HMG-CoA reductase, 

ACATAl, CYP7, and transcription factors (SREBPs), involved in the cellular cholesterol 

homeostasis in hamster liver. 

1.6 Feedback Regulation ofHMG-CoA Reductase Activity 

Feedback regulation of cholesterol biosynthesis was first recognized nearly 50 years 

ago by Gould and his colleagues (Gould et al., 1953). It takes place primarily in the liver 

and is exerted mainly on HMG-CoA reductase and plays a critical role in overall 

cholesterol homeostasis. Many studies have focused on transcription, translation, protein 

turnover and regulation of catalytic efficiency by phosphorylation/dephosphorylation 
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regulated at multiple levels (Brown and Goldstein, 1980). However, recent studies on rats 

showed that a cholesterol-supplemented diet significantly decreased both HMG-CoA 

reductase activity and protein levels (Chambers and Ness, 1998;Ness et al., 1994), and 

thus suggested that feedback regulation of hepatic HMG-CoA reductase by dietary 

cholesterol occurs mainly by decreasing the amount ofHMG-CoA protein rather than 

inactivating the enzyme by phosphorylation. 

1.6.2 Different HMG-CoA Reductase Activity Among Various Species 

Feeding rats diets containing 2% cholesterol markedly reduced hepatic HMG-CoA 

reductase activity but had little effect on HMG-CoA reductase mRNA levels (Ness et al., 

1991). Rats fed with cholesterol or the bile salt, cholate, showed a marked reduction in 

the rate of hepatic cholesterol synthesis (by approximately 75% with bile salt, 90% with 

cholesterol), but only moderate reductions were observed in HMG-CoA reductase mRNA 

level (40% reduction) (Spady and Cuthbert, 1992). This suggested that dietary 

cholesterol feedback in rat liver is exerted primarily at the posttranscriptionallevel. 

In contrast to the studies in rats, experiments on cholesterol feedback regulation of 

hepatic HMG-CoA reductase in both hamsters and mice have revealed an apparent 

transcriptional regulation. Feeding mice with cholesterol reduced HMG-CoA reductase 

mRNA level to only 25% of the control in the liver (Rudling, 1992). Similar results are 

also seen in a hamster model with a decrease of 85% in mRNA level when the diet was 

supplemented with cholesterol (Gil et al., 1986). These results indicated that dietary 

cholesterol exerted feedback regulation primarily at transcriptional level in mice and 

hamsters. Thus the different animal experiments indicate that transcriptional regulation 
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as a mechanism for feedback regulation of HMG-CoA reductase may be more important 

in mice and hamsters which are cholesterol-sensitive animals; but it plays a minor role in 

rats that are relatively dietary resistant to cholesterol. 

1.6.3 Regulatory Mechanisms of HMG-CoA Reductase 

Recently the transcriptional regulation of HMG-CoA reductase has been shown to 

involve the binding of sterol regulatory element binding proteins (SREBPs) to sterol 

regulatory elements (SREs) within the promoter region of the HMG-CoA reductase gene 

(Brown and Goldstein, 1997;Vallett et al., 1996). This concept of transcriptional control 

is supported by the observation that treatment with Cholestyramine (a bile acid 

sequestrant) and Mevinolin (a HMG-CoA reductase inhibitor) increased the amount of 

HMG-CoA reductase protein in rat liver by elevating the amount of its mRNA. In 

addition, feeding cholesterol to rats treated with these agents lowered the amount of 

hepatic HMG-CoA reductase protein by decreasing the level of its mRNA (Liscum et al., 

1983). Similar results have been observed using cultured tumor cells (Brown and 

Goldstein, 1997). The role of SREBPs and their regulation will be discussed later. 

1.6.4 Dietary Polyunsaturated Fatty Acids Inhibit HMG-CoA Reductase Activity 

The effects of polyunsaturated fatty acids (PUF A) on HMG-CoA reductase have 

been intensively studied in rats since the 1980's. An early study showed that rat hepatic 

HMG-CoA reductase activity was inversely correlated with levels of dietary 

polyunsaturated fatty acids (Ide et al., 1978). Later studies showed that diets 

supplemented with both n-3 PUF A (fish oil) and n-6 PUF A (safflower seed oil) lower 
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HMG-CoA reductase activity, but that n-3 fatty acids were much more effective than n-

6 fatty acids at reducing the activity (Choi et al., 1989;Mitropoulos et al., 1980). Similar 

results were also seen when rats were intravenously infused for two weeks with a fat 

emulsion containing 20% oftriacylglycerol in which either n-6 or n-3 fatty acids 

predominated (al Shurbaji et al., 1991). 

Similar studies have also been done with rabbits, that have a much lower hepatic 

HMG-CoA reductase activity than rats (Shapiro and Rodwell, 1971). The hepatic HMG­

CoA reductase activity was further reduced when rabbits were fed for two days with a 

1% cholesterol and 5% com oil mix diet compared to the cholesterol diet without com 

oil. This suggests that rabbit HMG-CoA reductase has kinetic properties similar to the 

rat HMG-CoA reductase (Stange et al., 1981). Another study showed that dietary n-3 

fatty acids decreased HMG-CoA reductase activity by 76% compared to normal rabbit 

chow, and additional cholesterol (1 %) further reduced the activity to 10% of the control 

(Field et al., 1987). The effects of dietary unsaturated fatty acids on hepatic HMG-CoA 

reductase found in mice are similar to those seen in rats and rabbits. Compared to n -6 

PUF A, supplementation for one week with dietary n-3 fatty acids further reduced the 

specific activity of the HMG-CoA reductase. These differences were due, at least in 

part, to differences in the amount of HMG-CoA reductase protein (El Sohemy and 

Archer, 1999). These results have been confirmed in a recent long-term feeding study 

(Du et al., 2003 ). 

A long-term feeding experiment on mice indicated that the hypocholesterolemic 

activity of dietary polyunsaturated fatty acids is exerted by n-3 fatty acid-rich oils by 
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suppressing hepatic HMG-CoA reductase activity compared with animal fats and high­

linoleic (n-6) oil (Duet al., 2003). 

In conclusion, dietary n-3 fatty acids were a major factor in the dietary unsaturated 

fatty acid mediated regulation of cholesterol biosynthesis and they exerted their effect by 

suppressing hepatic HMG-CoA reductase activity. Additional dietary cholesterol further 

reduced the HMG-CoA reductase activity. 

1.7 Cholesterol 7 alpha-hydroxylase (CYP7Al hydroxylase) 

Bile acid synthesis from cholesterol is a major pathway for elimination of cholesterol 

from the body, occurring either via the classic (also called "natural") or alternative (also 

called "acid") bile acid synthesis pathways (Vlahcevic et al., 1999). Bile acids represent 

the terminal end products of cholesterol catabolism, and their synthesis takes place 

exclusively in the liver (Vlahcevic et al., 1999). The pathway of bile acid synthesis in the 

enterohepatic circulation is controlled by a microsomal enzyme known as cholesterol-7a­

hydroxylase (CYP7 Al ). The activity of CYP7 AI is regulated by a variety of nutritional 

and hormonal factors involving both feedback and feedforward mechanisms. The 

regulatory control appears to be exerted mainly at the level of gene transcription, because 

CYP7Al activity is highly correlated with its mRNA level. 

1.7.1 Regulation ofCYP7Al Activity 

Many experiments on rodents showed that CYP7Al gene expression is suppressed 

by bile acids and stimulated by cholesterol. The stimulation ofCYP7Al gene expression 

by cholesterol is mediated through liver X receptor (LXRa), an oxysterol-activated 
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nuclear receptor that binds to the CYP7 A1 gene promoter as a heterodimer with another 

nuclear receptor known as retinoid X receptor (RXR) (Lehmann eta/., 1997;Peet eta/., 

1998). Different species vary widely in their response to dietary cholesterol. The rat 

responds to cholesterol feeding with induction ofCYP7A1 and bile acid synthesis, is 

relatively resistant to development of hypercholesterolemia. In contrast, increased 

dietary cholesterol fails to induce CYP7 A 1 in rabbits (Xu et a/., 1996), green monkey 

(Rudel eta/., 1994), and hamsters (Horton eta/., 1995). In these species, excess 

cholesterol results in the development of hypercholesterolemia and atherosclerosis. The 

ability of most humans to respond to excess dietary cholesterol is probably more like the 

hamster. In humans, the active LXR site is absent in the CYP7 A1 promoter. This region 

of the human CYP7 A 1 promoter contains a hepatocyte nuclear factor-1 (HNF 1) binding 

site (Chen eta/., 1999;Molowa eta/., 1992). Differences in LXRa activation sites in the 

CYP7 A 1 promoter may explain the species-specific difference in response to dietary 

cholesterol. 

The inhibition ofCYP7A1 gene expression by bile acids is mediated through an 

indirect mechanism. Previous studies identified the nuclear receptor FXRa as the major 

hepatic bile acid sensor that governs bile acid synthesis and transport (Clifford eta/., 

1976;Mortara eta/., 1976;Wang eta/., 1999). Bile acids are potent ligands ofFXRa, 

which induces the expression of SHP (small heterodimer partner). Elevated levels of 

SHP in tum lead to transcriptional repression of the CYP7A1 gene, by inhibiting the 

activity of nuclear receptor LRH-1 on the CYP7A1 promoter (Goodwin eta/., 2000;Lu et 

a/., 2000). SHP is an atypical nuclear receptor lacking a DNA-binding domain (Seol et 

a/., 1996). It contains anN-terminal receptor dimerization domain, which mediates its 
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recruitment to promoter via interaction with various nuclear receptors. SHP is expressed 

at low levels in the liver (Goodwin et al., 2000;Lu et al., 2000). 

1.7.2 Effects ofPUFA on Bile Acid Synthesis 

Recently, the liver X receptors (LXRa and LXR~) were identified as targets for fatty 

acid regulation (Ou et al., 2001 ). Unsaturated fatty acids antagonize oxysterol activation 

by LXRa in Hek 293 and hepatoma cell lines by interfering with oxysterol binding. 

Although such studies suggest that changes in hepatic PUF A levels might affect bile acid 

synthesis in vivo, feeding studies with mice have yet to support this view. Interestingly, 

hepatic 7o:,-hydroxylase (CYP7Al) activity and its mRNA levels are not suppressed in 

mice fed diets supplemented with unsaturated fatty acids (Cheema et al., 1997;Cheema 

and Agellon, 1999). 

1.8 Acyl-CoA:cholesterol acyltransferase (ACAT) 

Acyl-CoA:cholesterol acyltransferase (ACAT) is an integral enzyme present in the 

rough ER that catalyzes the esterification of cholesterol from free cholesterol and fatty 

acyl coenzyme A. This mechanism is apparently in response to an increased ER 

cholesterol pool and believed to be activated as a means to remove excess cholesterol, 

and the esters are deposited in the cytosolic lipid droplets (Simons and Ikonen, 2000). 

Under pathological conditions, cholesterol esters produced by the ACAT reaction 

accumulate as lipid droplets in macrophages and eventually cause foam cell formation in 

the early stage in the formation of atherosclerotic plaques (Chang et al., 2006). Due to 

the technical difficulties of directly tracing the cholesterol movement in the cell, the level 
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of cholesterol esterification has become the standard method for monitoring the 

cholesterol transport to the ER and is assumed to reflect the ER cholesterol pool (Debry 

et al., 1997; Lange and Steck, 1997). 

Two isoforms of ACAT (ACAT-1, ACAT-2) were found in several species 

including mice (Cases et al., 1998), humans (Oelkers et al., 1998) and other primates. 

ACAT -1 is ubiquitously expressed with its active site oriented toward the cytosol, and 

mainly served to protect cell membranes from the toxicity of excess free cholesterol. 

ACAT-2, however, is expressed primarily in the liver and intestine with the active site 

faced towards the lumen of the ER, suggesting that ACAT -2 may play an important role 

in the synthesis and secretion ofhepatic lipoproteins, and the cholesterol absorption from 

small intestine (Carr et al., 1995). While the structure and general function of ACAT are 

well defined, less is known of the factors that regulate ACAT activity. 

1.8.1 Regulation of ACATAl Activity 

ACATA1 appears to be regulated mainly by post-translational mechanisms (Chang 

et al., 1997). Cholesterol esterification is elevated in cholesterol-loaded cells without 

changes in ACATAl mRNA (Matsuda et al., 1996; Rea et al., 1996; Wang et al., 1996) 

or protein expression levels (Chang et al., 1994; Wang eta!., 1996; Yu et al., 1999). The 

in vitro studies using purified ACATAl support the hypothesis that ACATAl is 

allosterically activated by binding to cholesterol or oxysterol (Chang et al., 1998). 

ACAT may also be regulated at the transcriptional level. The ACATAl mRNA level 

increased after feeding a cholesterol-rich diet to mice (Uelmen et al., 1995) or rabbit 

(Pape et al., 1995). The significant increase ofmRNA was also found in human 
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macrophages during the differentiation ofmonocytes into macrophages (Wang et al., 

1996). 

1.8.2 Effect ofPUFA on ACATAl Activity 

Early in vivo studies have shown that, compared with saturated fat diets, diets high 

in unsaturated fatty acids increase liver ACAT activity (Field et al., 1987;Spector et al., 

1980). In vitro studies suggested that unsaturated fatty acids also directly induce cellular 

ACAT activity (Rumsey et al., 1995). However recent in vitro studies showed that 

different unsaturated fatty acids induce ACATA1 mRNA levels in cell specific (HepG2) 

manner; this does not appear to correlate with the ACAT activity (Seo et al., 2001). 

Interestingly hepatic ACAT activity was lower in hamsters fed dietary fats containing 

acyl groups with 18:1c and 18:2c fatty acids compared with those fed diets containing 

16:0 (Bhatty eta/., 2001). 

1.9 Sterol Regulatory Element Binding Proteins (SREBPs) 

With the recent discovery of the sterol regulatory elements (SREs) in the promoter 

region of genes, a family of transcription factors, called sterol regulatory element binding 

proteins (SREBPs ), has been suggested to regulate more than 30 genes involved in the 

cellular homeostasis of cholesterol and fatty acids (Brown and Goldstein, 1997 ;Edwards 

eta/., 2000;Horton and Shimomura, 1999;Sakakura et al., 2001). In cholesterol 

metabolism, SREBPs activate target genes encoding HMG-CoA synthase (Smith et al., 

1988), HMG-CoA reductase (Vallett eta/., 1996), farnesyl diphosphate synthase 

(Ericsson et al., 1996) and squalene synthase (Guan et al., 1997), and LDL-receptor 
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which mediates the cellular uptake of cholesterol from plasma (Brown and Goldstein, 

1986). 

SREBPs belong to the basic helix-loop-helix-leucine zipper (bHLH-Zip) family of 

transcription factors. They are first synthesized as inactive precursors, bound to rough 

endoplasmic reticulum (ER), containing approximately 1150 amino acids organized into 

three domains: (i) an NH2-terminal of about 500 amino acids containing bHLH-Zip 

region for DNA binding; (ii) a middle hydrophobic region of about 80 amino acids 

containing two hydrophobic transmembrane-spanning segments interrupted by a short 

loop of about 30 amino acids that projects into the lumen ofER; and (iii) the COOH­

terminal regulatory domain of about 590 amino acids. Both NH2-and COOH- terminals 

project into the cytosol of cells (Brown and Goldstein, 1997). 

To date, three SREBP isoforms have been identified in mammalian cells. SREBP-la 

and SREBP-1 c are derived from a single gene by use of alternative promoters and 

splicing, resulting in different forms of exon-1. The SREBP-2 is encoded by a separate 

gene. In growing cultured cells, the SREBP-la and SREBP-2 are predominant; but in 

most animal tissues, the SREBP-lc and SREBP-2 are predominant. SREBP-1 has been 

shown to preferentially activate genes required for fatty acid synthesis; in contrast, 

SREBP-2 preferentially activates genes involved in cholesterol homeostasis (Shimomura 

eta!., 1997). 
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1.9.1 Regulation of SREBP by Cholesterol 

In order to enter the nucleus and activate target genes, theN-terminal bHLH-Zip 

domain, often referred to as the nuclear form of SREBPs (nSREBPs) must be released 

from the ER membrane by a two-step proteolysis. Initially SREBP precursor (pSREBP) 

and SCAP are both inserted into the membrane of roughER with a protein-protein 

interaction which is required for SCAP to control the processing of SREBP (Sakai et al., 

1997; Sakai et al., 1998). When cells need cholesterol, SCAP senses this need through 

its membranous sterol-sensing domain and escorts the SREBP from the ER to the Golgi 

apparatus where site-1 (SIP) and site-2 (S2P) proteases await. In the Golgi, a membrane­

bound serine protease, SIP, cleaves the SREBP in the luminal loop dividing the precursor 

in half. Then S2P, a membrane-bound zinc metalloproteinase, cleaves SREBP in the first 

transmembrane domain releasing theN-terminal domain, nSREBP, from the ER 

membrane. The nSREBP then enters the nucleus and binds to SRE in the promoter 

regions of target genes, including HMG-CoA reductase and LRL-receptor, for 

transcriptional activation. When cholesterol is abundant in the cells, the SREBP/SCAP 

complex is retained in the rough ER and no cleavage occurs. Therefore the nSREBP can 

not enter the nucleus to activate SER-related genes. The mechanism by which SCAP 

senses the cellular sterol level and escorts the SREBP/SCAP complex from ER to Golgi 

is still unknown (Horton et al., 2002). 

Recently other integral-membrane proteins, insulin-induced gene-1 (Insig-1) and 

Insig-2 have been found in the ER, which may bind to the SCAP and cause the ER 

retention ofSCAP/SREBP complex (Yabe et al., 2002; Yang et al., 2002). In Drosophila 

cells, sterols block transport of the mammalian SCAP/SREBP-2 complex only when 
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Insig-1 or Insig-2 is co-expressed (Dobrosotskaya et al., 2003). The addition of 

cholesterol to the ER membranes causes a conformational change in the cytoplasmic loop 

of SCAP, and the amount of cholesterol required for this conformational change is 

decreased in the presence of Insig proteins, therefore facilitating the retention of 

SCAP/SREBP complex in the ER (Adams et al., 2003). In addition, Insig-1 has been 

shown to enhance the degradation ofHMG-CoA reductase by binding to its sterol­

sensitive domain when cholesterol levels are high (Sever et al., 2003), suggesting a dual 

role for Insigs in the SCAP/SREBP pathway and the regulation of cholesterol 

metabolism. 

1.9.2 Effects of Unsaturated Fatty Acids on SREBPs 

Dietary polyunsaturated fatty acids have been well established as negative regulators 

of hepatic lipogenesis. Thus, several laboratories have investigated whether the 

unsaturated fatty acids have feedback effects of SREBPs. Briefly, these reports all 

indicated that PUF A suppress the expression of SREBPs, but the mechanism is different 

in cell culture and in animals. Xu et al. (Xu et al., 1999) found that dietary (n-3) and (n-6) 

PUF A, but not saturated or (n-9) unsaturated fatty acids unequally reduce the hepatic 

abundance of SREBP-1 mRNA and both the precursor and nuclear form of SREBP-1. 

This inhibition is paralleled by significant reduction in the transcription of hepatic fatty 

acid synthesis. A later study showed that PUF A decrease the hepatic SREBP-1 by 

accelerating the rate ofmRNA decay (Xu et al., 2001). Kim et al. (Kim et al., 1999) 

found that long-term feeding of mice with a fish oil diet enriched in n-3 PUPA decreased 

nuclear form ofboth SREBP-1 and -2 in the liver. The mRNA ofSREBP-1 was reduced 
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significantly, but SREBP-2 was only partially reduced. Recently, Hannah et al. (Hannah 

et al., 2001) suggested that not only the unsaturated fatty acids reduce the nSREBP-1 in 

HEK-293 cells by suppressing the proteolytic release ofnSREBP-1, but they found that 

16:1(n-9) and 18:1(n-9) were as effective as n-3 and n-6 PUFA at suppressing the 

processing of SREBP-1. Therefore fatty acids may exert their effects on SREBPs 

differently in animals and cell lines. 

1.10 Hypothesis and objectives 

Based on the current understanding of the regulation of cholesterol metabolism by 

dietary fatty acids and cholesterol we proposed that the hyperlipidemic effects of dietary 

fat observed in the FIB hamster reflects abnormalities in the regulatory mechanisms in 

the liver of this atherosclerosis prone animal model, including the SREBP mediated 

control of cholesterol biosynthesis. 

The objective of this study was to investigate the biochemical regulation of 

cholesterol metabolism in the liver ofF1B hamsters caused by different dietary PUF A 

and cholesterol. We looked at the expression of several microsomal enzymes that play 

key roles in cholesterol metabolism in liver including, HMG-CoA reductase, CYP7, 

ACAT, a corresponding transcription factor, SREBP-2,. We also examined the lipid 

composition in the microsomal membrane in the animals fed different diets. 
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Chapter 2. Methodology 
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2.1 Animals and Diets. 

The F1B hamsters (male, 7 weeks of age) were purchased from Bio Breeder Inc. 

(Water Town, MA) and fed a chow diet for a one week equilibration period. This was 

reported to be sufficient time to allow the animals to recover from shipping and 

acclimatize to new housing (Landi et al., 1982; Dymsza et al., 1963). This also allowed 

the animals to become adjusted to the 12h light/12h dark conditions as the plasma lipid 

response in the FIB hamster has been reported to be sensitive to both photoperiod and 

caging (Smith et al., 2001 ). The animals were separated into 8 groups and fed with one of 

the experimental diets. The contents of the diet included fat free semi-purified diet (ICN 

Biomedical INC., Cleveland, OH, catalog# 960241) and either fish oil (menhaden oil) or 

a mixture of lard and safflower oil in 1.5:1 ratio (mix diet). Lard and safflower oils were 

obtained from a local supermarket. The components ofthe diets are shown in Table 2.1. 

Diets were prepared with two levels of fat, 5% (w/w) (low fat) and 20% (w/w) (high fat). 

Due to the presence of small amounts of cholesterol in the fish oil, a similar amount of 

cholesterol (98% pure, Sigma-Aldrich, St. Louis, MO) was added to the MIX diets to 

make the cholesterol levels similar to the fish oil diets. In order to elevate the cholesterol 

level to a concentration of0.25% (w/w) in both fish oil and MIX diets, additional 

cholesterol was added to both diets. The fatty acid composition of the diets is given in 

Table 2.2. 

The animals were housed in a controlled environment with a 12hr (lights on from 

07.00 to 19.00 hours) light/dark cycle and were given free access to water and diets. The 

temperature was maintained at 21° C, with humidity kept at 3 5±5 %. After two weeks on 

the specific diets, some of the animals started to lose weight, thus for this pilot project we 

24 



Table 2.1 Components of the Experimental Diets at Low (5%) and High (20%) Fat 

Level. (%, w/w) 

LowFatDiee 
Fish Oil Diet Mix Diet< 

Componentsd Low High Low 
Chol Chol Chol 

Sucrose 50 50 50 
Casein 20 20 20 
Maize starch 14.6 14.6 14.6 
DL-Methionine 0.03 0.03 0.03 
Mineral mix• 4 4 4 
Vitamin mix• 1.1 1.1 1.1 
Fiber' 5 5 5 
Fat 5 5 5 
Cholesterol 0.1 0.25 0.1 

chol, cholesterol 
•semi-purified diet designed for 5% fat level. 
bSemi-purified diet designed for 20% fat level. 

High 
Chol 

50 
20 

14.6 
0.03 

4 
1.1 
5 
5 

0.25 

Hi!!h Fat Dietb 
Fish Oil Diet Mix Diet< 

Low High Low High 
Chol Chol Chol Chol 

30.5 30.5 30.5 30.5 
20 20 20 20 
19 19 19 19 

0.03 0.03 0.03 0.03 
4 4 4 4 

1.1 1.1 1.1 1.1 
5 5 5 5 

20 20 20 20 
0.1 0.25 0.1 0.25 

cMix diet, semi-purified diet (MP Biomedicals # 960241) supplemented with lard and safflower-seed oil. 
dComponents were from MP Biomedicals, Solon, OH, USA. 
•supplied in adequate amounts to meet requirement (National Research Council, 1995). AIN-76 Mineral 
mix ;Vitamin mix (MP Biomedicals # 904654). 
rCellulose was supplied as Alphacel non-nutritive bulk (MP Biomedicals, Solon, OH, USA). 
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Table 2.2 Fatty Acid Composition of the Diets (%, w/w). 

Lipids were extracted from the diets and the fatty acid composition of the diets was 

determined by gas-liquid chromatography (GLC) using a Hewlett Packard 5890 

instrument equipped with a flame ionization detector (FID). Methyl esters were prepared 

as described in Keough et al. (1979). 

Fatty acids Fish oil 
14:0 9.6 
16:0 19.3 
16:1 n7 13.1 
18:0 3.8 
18:1 n9 13.8 
18:2 n6 2.7 
18:3 n3 4.5 
18:4 n3 3.4 
20:1 n9 1.6 
20:4 n6 1.0 
20:5 n3 12.9 
22:5 n3 2.4 
22:6 n3 12.0 
L:SFA 32.0 
L:MUFA 28.0 
L:PUFA 38.0 
L:n-3 PUFA 35.0 
L:n-6 PUFA 3.0 

I: SF A, sum of saturated fatty acids. 
L:MUF A, sum of monounsaturated fatty acids. 
L:PUF A, sum of polyunsaturated fatty acids. 
ND, not detected. 
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1.0 

19.3 
2.0 

10.0 
31.0 
34.0 
3.0 

ND 
ND 
ND 
ND 
ND 
ND 
30.0 
32.0 
37.0 
3.0 

34.0 



decided to terminate the experiments at two weeks of feeding. All animals were 

sacrificed after 14 hours fasting (9:00am). The livers were removed and quick frozen in 

the liquid nitrogen and stored at -70°C until further use. 

2.2 Preparation of Microsomes from Hamster Livers. 

Approximately 300mg of hamster liver was homogenized with 3ml ice-cold buffer I 

(50mM KCl, 1mM EDTA, 100mM K2HP04 (pH 7.4), 50mM KF, 5mM Dithiothreitol 

(DTT), 300mM sucrose) and centrifuged at 9,000rpm (9,800g) at 4°C for 20 minutes 

(Beckman JA-20 rotor). The fat on the top of the supernatant was removed. The 

supernatant was then centrifuged at 35,000rpm (150,000g) at 4°C for 70 minutes 

(Beckman SW 55 Ti rotor). The microsomal pellets were resuspended with 500Jll of 

buffer II (50mM KCl, 1mM EDTA, lOOmM K2HP04 (pH 7.4), 50mM KF and 50mM 

DTT). All procedures were performed at 4°C. 

2.3 HMG-CoA Reductase Activity Assay. 

The HMG-CoA reductase activity was determined to be linear from 0-400ug of 

protein. The hamster liver microsomes with 0.3mg of protein were first mixed with 0.5 

mM DTT and 2X CYP7 assay buffer (200mM K2HP04, pH 7.4, 2mM EDTA-K2, 100mM 

KF) to bring the volume to 100Jll and preheated to 37°C for 5 minutes. Incubations were 

carried out by adding 50 ,ul of a substrate mixture containing 0.1 ,uCi of3-Hydroxy-3-

methyl [3-14C] glutaryl-coenzyme A (50-62mCi/mmol), 50 nmol ofDL-3-Hydroxy-3-

methylglutaryl coenzyme A, 0.4 ,umol NADP, 0.6U ofGlucose-6-Phosphate 

Dehydrogenase, 5.3 ,umol ofP-D-Glucose 6-phosphate, 0.09M EDTA-K2, 0.15M 
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K2HP04, pH 7.4, 0.068M KF, and incubated in a 37°C water bath. After 25 minutes, the 

reaction was stopped by adding 20 ,ul of 5N HCl and kept at 37°C for another 30 minutes 

to assure lactonization of the mevalonate (Panini et al., 1984). The denatured proteins are 

then removed by centrifugation (12,000g /5min). 150,ul of supernatant was transferedto a 

micro tube containing lO,ul of0.77M mevalonic acid lactone. The supernatants were 

spotted at one inch from the bottom on Whatman glass TLC plates (K6 Cilica Gel). The 

plates were developed in acetone-benzene (1: 1) until the solvent front was within 1 em of 

the top edge of the plate. After the lipids were visualized using iodine vapor, the C14
-

mevalonic acid lactone was identified by comparision with a mevalonic acid lactone 

standard. After complete removal of iodine the mevalonic acid lactone band was scraped 

from the plate and counted in a liquid scintillation counter (LKB Model1214 Rackbeta). 

2.4 CYP-7 Activity Assay 

Cpy-7 enzyme activity in purified microsomes was assayed using a modification of 

previously described method using isotope incorporation into 7a-hydroxy cholesterol 

(Martinet al., 1993). In the assay, [14C] cholesterol (53.10mCi/mmol) (0.04mCi/ml) 

encapsulated in 2-hydroxypropyl-B-cyclodextrin (Sigma) was used as a substrate. In a 

total volume of250ul, each assay tube contained 100mM K2P04, PH 7.4, 1mM EDTA­

K2, 50mM KF, 1mM NADPH, [14C] cholesterol (0.0612 uCi), 4.5 ug cholesterol, 

2.205mg cyclodextrin, 300ug microsome protein. Before adding NADPH, the assay tubes 

containing all components were preincubated on ice. The tubes were prewarmed in a 

37°C water bath for 3min, and the assay started with addition ofNADPH and incubated 

at 37°C for 15min. The reaction was stopped with 20ul of 5M NaOH. The final product, 
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7a-hydroxycholesterol, was extracted with ethyl acetate and separated from the reaction 

mixture by thin-layer chromatography using an ethyl acetate-toluene (3:2 v/v) solvent 

system. The product spot was visualized by iodine vapor and scraped from the plate. The 

amount of radioactivity in the spots corresponding to [14C] 7a-hydroxycholesterol was 

counted using scintillation counter (LKB Model1214 Rackbeta). Calculation of enzyme 

activity took into account the dilution (C14-Chol/Chol=6.22dpm/pmol) of the exogenous 

labeled cholesterol by the endogenous cholesterol in the microsome. 

2.5 ACAT Activity Assay 

ACAT activity in microsome fractions was determined using the modified isotope 

method as described previously (Stahlberg et al., 1989). Each ACA T assay reaction 

mixture contains 0.1 mg microsomal protein, 1.0 mg bovine serum albumin (Sigma), and 

cholesterol emulsion with 23 ug (59 nmol) cholesterol (Sigma) and 230ug 

phosphatidylcholine, 2mM DTT, O.lM K2HP04 in a total volume of 50ul. The mixture 

was incubated in a 37°C water bath for 30 min. The reaction was started with additional 

C14-oleoyl CoA plus 0.2mg cold oleoyl CoA in a 2 ul volume into the mixture and 

incubated at 37°C for 20 min. After terminating the reaction with additional200ul of 

chloroform/methanol (2:1) mixture, the final product, cholesteryl-C14-oleate, was 

extracted with chloroform/methanol mixture (2:1). The C14-cholesterol ester was 

separated by thin-layer chromatography (peteroleum ether: diethyl ether: acetic acid= 

90:10:1 ). After the lipids were visualized using iodine vapor, and the cholesteryl ester 

was identified by comparision with a cholesteryl ester standard. After complete removal 

of iodine the cholesteryl-ester bands were scraped from the plate and counted. 
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2.6 RT -PCR Assay for HMG-CoA Reductase mRNA Level. 

The total RNA was isolated from hamster liver by using FastRNA kit, and the 

FastPrep FP120 instrument, following the kit's protocol (Qbiogene, Carlsbad, CA). 

The purity of the RNA was checked by running the samples on a 1% agarose gel in 

borate buffer. The mRNA level ofHMG-CoA reductase was determined by reverse 

transcription and amplified by PCR. The complementary DNA was synthesized from the 

liver RNA (2J.Lg) using Superscript™ reverse transcriptase (from Invitrogen) and was 

used as the template for PCR amplification. The primers for HMG-CoA reductase were 

purchased from Sigma-Aldrich and were as follows: sense 5'­

CCTCTCCACAAAGCTTCCAG-3 ', and antisense 5'­

CAGAATCACAAGCACGAGGA-3' (accession#: M12705). The HMG-CoA reductase 

mRNA levels were normalized to P-actin mRNA levels. The primers used for P-actin 

were: sense 5'-CATCGTACTCCTGCTTGCTG-3', and antisense 5'­

GCTACAGCTTCAC-CACCACA-3'. After PCR amplification, the products were 

resolved on a 1.5% agarose gel. The bands were quantified using the Chemilmager™ 

4400 gel documentation system (Alpha Inotech Corporation, San Leandro, CA). 

2.7 The Western Blot Assay for SREBP-2. 

The frozen liver samples were first homogenized in SDS sample buffer (62.5mM 

Tris-base, 2% SDS, 10% glycerol and 50mM DTT), and amount of protein in the liver 

lysate was quantified by Lowry assay after TCA precipitation. The samples (60J.Lg) were 

boiled and loaded on a 1 0% SDS-polyacrylamide gel. The separated proteins were 

transferred to a nitrocellulose membrane (0.2um) (Bio-Rad Laboratories, Inc., Hercules, 
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CA). The primary antibody, goat polyclonal IgG, SREBP-2 (N-19), and the secondary 

antibody, bovine anti-goat IgG-HRP, were used to detect theN-terminal of SREBP-2. 

SREBP-2 (1C6), the mouse monoclonal IgGI, and bovine anti-mouse IgG-HRP were 

used to detect the C-terminal of SREBP-2. All antibodies were purchased from Santa 

Cruz Biology Inc (Santa Cruz, CA). Protein mobilities were compared with molecular 

weight standards (New England BioLab Inc., Ipswich, MA). The protein bands were then 

visualized through the chemiluminescent method (Bio-Rad Laboratories, Hercules, CA) 

2.8 Quantitation of Microsomal Cholesterol 

The microsomal free cholesterol concentration was determined by a previous method 

(Rudel and Morris, 1973). Briefly, an appropriate amount of microsome (50ul, ~250-

400ug protein) was extracted with 220 ul chloroform: methanol mixture (1: 1, v/v) and 

back washed with 50 ul of water. After the extract was centrifuged at 12,000g for 2min, 

the top layer water was taken off, and the bottom layer solvent was dried with nitrogen. 

The assay started with adding 900 ul o-phthalaldehyde (0.5mg/ml acetic acid) and 

450 ul concentrated H2S04, to the dried cholesterol and mixed well. After 30min, the 

absorbance was measure at 550nm. A series of cholesterol standard (0-50nmol) was used 

and produced a linear relationship between cholesterol concentration and the absorbance 

at 550nm. 
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2.9 Quantitation of Microsomal Phospholipid and Fatty Acids 

The method used for fatty acid extraction and analysis was previously described 

(Keough and Davis, 1979). Briefly, the microsomal lipids were extracted as described for 

cholesterol and transmethylated with 6 % H2S04 in methanol. After heating samples at 

90°C for 5 hours, the fatty acid methyl esters (FAME) were extracted twice with hexane 

and wash with water. The extracts were dried with nitrogen and ~ 1 Oul CS2 was added 

before injection onto a supelcowax 10 capillary column in an HIP 5890 gas 

chromatograph. The column program was set at 170°C for 2 minutes and heating from 

172°C to 220°C at a rate of2°C per minute for 27 minutes. The FAME were detected 

using a FID and identified by retention time. 

The method used for phospholipids analysis was previously described (Parrish, 1999). 

Briefly, an appropriate amount of lipid extract (~7ul) was spotted on chromarods (quartz 

rod coated with a thin layer of silica) and developed in acetone 5 min for focusing the 

sample spots, dried and developed for another 7 min to separate the phospholipids from 

neutrolipids, which were removed by burning in a hydrogen flame. After condition for 2 

min, the remaining phospholipids were focused and developed in a polar solvent mixture 

(chloroform: methanol: water= 70: 35: 3.5). The rods were scanned in an Iatroscan Mark 

V analyzer (latron Laboratories, Tokyo, Japan) and the three chromatograms were 

combined using T -data scan software (RSS, Bemis, TN). The signal was quantified using 

lipid standards (Sigma Chemical Company, St. Louis, MO). 

32 



2.10 Statistical Analysis 

Data are presented as group means± SD, where n=6 unless otherwise noted. 

Differences due to the dietary fat amount, fat types, cholesterol, and interactions were 

determined by three-way analysis of variance (ANOV A) via using the software, 

Sigmaplot-1 0. Linear regression was used to assess significant correlations between 

variables. A P-value ofless than 0.05 was considered significant. 
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3.1 Food Consumption and Hamster Body Weight 

Food consumption measurements indicated no change in food intake in hamsters 

fed the various diets (de Silva, 2003). There was no significant effect of dietary fat levels 

or diet types on body weight gain in the two week period. However there was a 

significant increase in liver weight in hamsters fed the high fat diet compared to hamsters 

fed the low fat diet irrespective of the diet types. 

This work forms part of a pilot study and two weeks was selected as an initial 

feeding period. It has already been reported that the plasma lipid concentrations 

dramatically increased in the fish-oil-fed hamsters after two weeks of feeding. Moreover, 

red blood cells from fish oil diet-fed hamsters showed increased levels ofEPA and DHA 

at the expense oflinoleic acid (18:2 n-6) and arachidonic acid (20:4 n-6) compared to 

MIX diet-fed hamsters. Thus, the length of the experimental feeding period was sufficient 

to induce significant changes in the fatty acid composition of the tissues and these 

changes reflected dietary lipid intake (de Silva, 2003). 

3.2 HMG-CoA Reductase Activity 

Figure 3.1 shows the activity ofHMG-CoA reductase in the livers of hamsters fed 

varying amounts of either a fish oil diet or a MIX diet, in the presence of 0.1% or 0.25% 

cholesterol for two weeks. The additional cholesterol supplement had a significant effect 

(P<0.05) on suppressing the hepatic activity in FIB hamsters, regardless of the types or 

amount of the fat in the diets. However the difference in activity in the microsomes of 

animals fed different diets was very modest, especially in those fed high fat fish oil diets. 
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Figure 3.1 The Dietary Effects on Hepatic HMG-CoA Reductase Activity in FIB 

Hamsters. 

The activity ofHMG-CoA reductase was affected significantly by dietary cholesterol 

treatment only. Hamsters were fed either a fish oil supplemented diet or a control diet 

supplemented with a mixture oflard and safflower-seed oil (MIX diet), at low fat (5%, 

w/w) or high fat (20%) levels, in the presence of0.1% (Grey bars) or 0.25% (Black bars) 

(w/w) cholesterol respectively for two weeks. Mean values are shown, with standard 

deviations indicated by vertical bars (n=6 in low fat diets, n=5 in high fat diets). 

Differences between groups were evaluated using 3 way ANOV A analysis with Holm-

Sidak method. 

Three-way analysis of variance (ANOVA) on HMG-CoA reductase Activity 

Source of Variation DF ss MS F p 

Amount of fat (A) 1 138.2 138.2 2.931 0.096 
Type of fat (B) 1 3.285 3.285 0.0697 0.793 
-/+ Cholesterol (C) 1 201.933 201.933 4.282 0.046 
AXB 1 72.409 72.409 1.536 0.224 
AXC 1 122.929 122.929 2.607 0.116 
BXC 1 25.494 25.494 0.541 0.467 
AXBXC 1 33.663 33.663 0.714 0.404 
Residual 34 1603.239 47.154 
Total 41 2253.123 54.954 

DF- Degrees of Freedom F - F Distribution 

SS- Sum ofthe Squares P -p value 

MS - Mean Squares 
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3.3 mRNA Level of HMG-CoA Reductase 

Figure 3.2 shows the mRNA levels ofHMG-CoA reductase in the livers of FIB 

hamsters fed the designed diets for two weeks. Although the mRNA slightly increased 

when dietary cholesterol is added, the difference was not statistically significant; thus, the 

dietary interaction had no effect on the mRNA expression. 

3.4 CYP7 Activity 

Figure 3.3 shows the activity of hepatic CYP7 in FIB hamsters fed various diets for 

two weeks. The activity was significantly reduced (P<0.05) when the proportion of the 

dietary fat was increased from 5% to 20%, but the types of the polyunsaturated fatty acids, 

n-3 and n-6, in the diet, and the additional dietary cholesterol had no effect on the CYP7 

activity. 

3.5 Dietary Effects on Hepatic ACAT Activity 

The effects of diet on the levels of Acyl Coenzyme A: Cholesterol Acyltransferase 

(ACAT) activity in the microsome from FIB hamsters is shown in Figure 3.4. The results 

revealed that addition of cholesterol to the diet of the animals had a significant effect on 

ACAT activity (P<0.05). The effect was most pronounced in the animals fed a high fat 

diet where increasing the dietary cholesterol from 0.1% to 0.25% resulted in a marked 

increase in ACAT activity by 2.5 fold and 1. 7 fold for hamsters fed the fish oil and MIX 

diets respectively. This is reflected in the results from low and high fat diets that shows a 

significant interaction of dietary fat level and cholesterol content (P<O.OOI ). Interestingly 

the effect of dietary cholesterol on ACA T activity in hamsters fed high 
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Figure 3.2 The Dietary Effects on The Expression of Hepatic HMG-CoA mRNA in 

Fl B Hamsters. 

Diet composition had no significant impact on the mRNA expression of hepatic 

HMG-CoA reductase in FIB hamsters. The animals were fed either a fish oil 

supplemented diet or a control diet supplemented with a mixture of lard and MIX diet, at 

low fat (5%, w/w) or high fat (20%) levels, in the presence ofO.l% (Grey bars) or 0.25% 

(w/w) (Black bars) cholesterol for two weeks. Total hepatic RNA was extracted, then 

reverse transcribed and then the eDNA templates of the reductase and 13-actin were 

amplified. The amount of amplified templates were quantified and the abundance of 

HMG-CoA reductase mRNA was expressed relative to 13-actin mRNA. Mean values are 

shown, with standard deviations indicated by vertical bars (n=3). The lack of the error 

bars is due to insufficient data (n=2). Effects ofthe diets were evaluated using 3 way 

ANOV A analysis with Holm-Sidak method. 

Three-way analysis of variance (ANOV A) on HMG-CoA reductase mRNA level 

Source ofVariation DF ss MS F p 

Amount of fat (A) 1 0.0375 0.0375 0.375 0.55 
Type of fat (B) 1 0.0173 0.0173 0.173 0.683 
-/+ Cholesterol (C) 1 0.202 0.202 2.019 0.176 
AXB 1 0.156 0.156 1.564 0.23 
AXC 1 0.0221 0.0221 0.222 0.645 
BXC 1 0.0476 0.0476 0.476 0.501 
AXBXC 1 0.0513 0.0513 0.513 0.485 
Residual 15 1.499 0.0999 
Total 22 2.143 0.0974 
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Figure 3.3 The Dietary Effects on The Expression of Hepatic CYP7 Activity in FlB 

Hamsters. 

The hepatic CYP7 activity in FIB hamsters fed various diets was suppressed by the 

increased amount of fat in the diets. The types of the dietary fats and cholesterol 

supplement had no effect on the activity. The animals were fed either a fish oil 

supplemented diet or a control diet supplemented with a mixture oflard and MIX diet, at 

low fat (5%, w/w) or high fat (20%) levels, in the presence of 0.1% (Grey bars) or 0.25 % 

(Black bars) (w/w) cholesterol, respectively, for two weeks. Mean values are shown, with 

standard deviations indicated by vertical bars (n=6 at low fat diet, n=5 at high fat diets). 

Effects of the diets were evaluated using 3 way ANOV A analysis with Holm-Sidak 

method. 

Three-way analysis of variance (ANOV A) on CYP7 activity 

Source ofVariation DF ss MS F p 

Amount of fat (A) 1 2722.766 2722.766 9.894 0.003 
Type of fat (B) 1 442.726 442.726 1.609 0.213 
-/+ Cholesterol (C) 1 616.885 616.885 2.242 0.143 
AXB 1 862.389 862.389 3.134 0.085 
AXC 1 5.81 5.81 0.0211 0.885 
BXC 1 162.183 162.183 0.589 0.448 
AXBXC 1 3.636 3.636 0.0132 0.909 
Residual 35 9631.645 275.19 
Total 42 14458.421 344.248 
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Figure 3.4 The Dietary Effects on The Hepatic ACAT Activity in F1B Hamster 

Overall, dietary cholesterol induced a significant increase on the hepatic ACAT 

activity (P<0.05). Moreover, this regulation of dietary cholesterol has a combination 

effect with the proportion and types of the dietary fats respectively (P<0.001 and P<0.05 

respectively). The animals were fed either a fish oil supplemented diet or a control diet 

supplemented with a mixture oflard and safflower-seed oil (MIX) diet, at low fat (5%, 

w/w) or high fat (20%) levels, in the presence of0.1% (Grey bars) or 0.25% (Black bars) 

(w/w) cholesterol respectively for two weeks. Mean values are shown, with standard 

deviations indicated by vertical bars (n=6 at low fat diet, n=5 at high fat diets). 

Differences between groups were evaluated using 3 way ANOV A analysis with Holm-

Sidak method. 

Three-way analysis ofvariance (ANOVA) on ACAT activity 

Source of Variation DF ss MS F p 
Amount of fat (A) 1 15397.76 15397.76 1.2 0.283 
Type of fat (B) 1 17380.372 17380.372 1.354 0.255 
-/+ Cholesterol (C) 1 56267.971 56267.971 4.385 0.046 
AXB 1 14342.023 14342.023 1.118 0.3 
AXC 1 307650.603 307650.603 23.975 <0.001 
BXC 1 90094.272 90094.272 7.021 0.014 
AXBXC 1 217.173 217.173 0.0169 0.897 
Residual 26 333640.038 12832.309 
Total 33 839526.738 25440.204 
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diets appeared to be regulated differently when the animals were fed low fat diets, 

resulting in reduction of the activity, especially in animals fed MIX diets. 

The analysis also shows a significant interaction between dietary cholesterol and the 

types of the dietary fat (P<0.05). In the presence of additional cholesterol, the ACAT 

activity was higher when the hamsters were fed fish oil diets (n-3 rich), compared to 

animals fed MIX diets (n-6 rich). Without additional dietary cholesterol, the MIX diets 

appeared to raise the activity slightly higher than animals fed fish oil diets. It is also 

interesting that the ACAT activity in microsomes from hamsters fed a chow diet 

approximates that for animals fed the low fat fish oil diet. 

3.6 The Dietary Effects on The Expression of Hepatic SREBP-2 in FlB Hamsters 

Here we used two antibodies N-19 and 1C6, which are against the N-and C-terminal 

respectively of the SREBP-2, to evaluate the expression of the mature and precursor 

forms of the protein. The band's intensity was normalized with the band of low fat fish 

oil diet in the same Western gel. Figure 3.5 shows the Western picture of the hamster 

liver lysate running in the same gel, but using antibodies N-19 (left) and 1C6 (right) 

respectively. Interestingly we found that the 1 C6 might cross-react with the mature form 

of the SREBP-2, because the right picture also has a series ofbands with molecular 

weight (~70 KDa) very close to the bands of mature form ofSREBP-2 using antibody 

N-19. Therefore, we also quantitated those bands as mature SREBP-2. In Figure 3.6 and 

Figure 3. 7, the variations of the diets had no significant influence on the expression of 

either the precursor or mature forms of the hepatic SREBP-2 in F1B hamsters. However, 

in Figure 3.7, the precursor forms are significantly reduced when the animals were fed 
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Figure 3.5 The Cross-Reaction of Antibody 1C6 on The Mature SREBP-2 

This figure shows that the antibody 1C6 might cross-react with the mature form of the 

SREBP-2 by showing bands very close to the position (68 KDa) where the N-19 attached 

to the mature form, when the proteins were running in the same gel but developed 

separately. 
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Figure 3.6 The Dietary Effects on the Expression ofSREBP-2 Using Antibody N-19 

The diets had no significant effect on the expression of either the precursor or mature 

forms ofSREBP-2 using antibodyN-19. The animals were fed either a fish oil 

supplemented diet or a control diet supplemented with a mixture of lard and safflower-

seed oil (MIX) diet, at low fat (5%, w/w) or high fat (20%) levels, in the presence of 

0.1% or 0.25 % (w/w) cholesterol respectively for two weeks. The black and grey bars 

represent the precursor and mature forms of SREBP-2. The lack of the error bar is due to 

n=2 of the precursor data, but n=3 in mature form data. Mean values are shown, with 

standard deviations indicated by vertical bars (n=3). Differences between groups were 

evaluated using 3 way ANOV A analysis with Holm-Sidak method. 

Three-way analysis of variance (ANOVA) on SREBP-2 using N-19 

Source ofVariation DF ss MS F p 

Amount of fat (A) 1 4443.696 4443.696 1.367 0.259 
Type of fat (B) 1 1922.643 1922.643 0.592 0.453 
-/+ Cholesterol (C) 1 4388.068 4388.068 1.35 0.262 
AXB 1 2374.316 2374.316 0.731 0.405 
AXC 1 3047.673 3047.673 0.938 0.347 
BXC 1 3214.988 3214.988 0.989 0.335 
AXBXC 1 4.659 4.659 0.00143 0.97 
Residual 16 52000.158 3250.01 
Total 23 71396.201 3104.183 
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Figure 3.7 The Dietary Effects on the Expression of The SREBP-2 Using Antibody 

1C6 

The diets had no significant effect on the expression of mature forms of SREBP-2 

using antibody 1 C6, however the precursors were significantly reduced when the animals 

were fed MIX diets as compared to the FO diet groups. The animals were fed either a fish 

oil supplemented diet or a control diet supplemented with a mixture of lard and 

safflower-seed oil (MIX) diet, at low fat (5%, w/w) or high fat (20%) levels, in the 

presence of 0.1% or 0.25 % (w/w) cholesterol respectively for two weeks. Mean values 

are shown, with standard deviations indicated by vertical bars (n=3). Effects of the diets 

were evaluated using 3 way ANOV A analysis with Holm-Sidak method. 

Three-way analysis ofvariance (ANOVA) on SREBP-2 using 1C6 

Source of Variation DF ss MS F p 
Amount of fat (A) 1 218.844 218.844 0.332 0.572 
Type of fat (B) 1 391.806 391.806 0.594 0.452 
-/+ Cholesterol (C) 1 229.467 229.467 0.348 0.563 
AXB 1 21.346 21.346 0.0324 0.859 
AXC 1 137.277 137.277 0.208 0.654 
BXC 1 39.344 39.344 0.0597 0.81 
AXBXC 1 45.941 45.941 0.0697 0.795 
Residual 16 10546.212 659.138 
Total 23 11630.238 505.663 
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the MIX diets compared to those fed the FO diets. The reason why different antibodies 

showed different expression of the precursor is not clear. 

Due to the insufficient data number, the data were pooled together in three ways, 

FO versus MIX diet, low fat versus high fat diets, without versus with dietary cholesterol, 

and analyzed by one way Anova. The analysis results show that the variations of the diets 

had no significant effect on the SREBP-2 expression. 

3. 7 The Dietary Effect on The Hepatic Microsome Cholesterol Concentration in 

FlB Hamster 

Figure 3.8 shows the cholesterol concentration in the liver microsome ofFlB 

hamsters fed various diets for two weeks. The additional cholesterol supplement alone 

had no impact on the microsomal cholesterol concentration. On the other hand, the types 

and the amount of the dietary fats individually had a significant effect (P<0.05 and 

P<O.Ol respectively) on the cholesterol levels in this organelle. The results show that the 

high fat or the fish oil (n-3 rich) diets increased the cholesterol concentration in the 

hepatic micro somes of the hamsters. 

The statistical analysis also shows a significant interaction between the dietary 

cholesterol and the amount of the dietary fats (P<0.05), resulting in an elevated 

concentration of cholesterol when hamsters were fed cholesterol and high fat diets, 

compared to animals fed high fat diets without dietary cholesterol. However, when 

hamsters were fed with low fat diets, the effect of dietary cholesterol on the levels of 

microsomal cholesterol was not as great as that seen in high fat groups, and was even 

lower in animals fed low fat MIX diet. 
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Fig 3.8 The Dietary Effects on The Microsome Cholesterol Concentration in FlB 

Hamsters 

The high fat and the n-3 rich diets individually induced a significant increase of the 

concentration of microsomal cholesterol in F1B hamsters. The dietary cholesterol had no 

significant effect on the microsomal cholesterol. The statistical analysis also showed a 

significant interaction between dietary cholesterol and high fat diets, resulting in 

increased microsomal cholesterol in the hamsters. The animals were fed either a fish oil 

supplemented diet or a control diet supplemented with a mixture of lard and safflower-

seed oil (MIX) diet, at low fat (5%, w/w) or high fat (20%) levels, in the presence of 

0.1% (Grey bars) or 0.25 %(Black bars) (w/w) cholesterol respectively for two weeks. 

Mean values are shown, with standard deviations indicated by vertical bars (n=6 at low 

fat diet, n=5 at high fat diets). Effects of the diets were evaluated using 3 way ANOV A 

analysis with Holm-Sidak method. 

Three-way analysis of variance (ANOV A) on microsomal cholesterol level 

Source ofVariation DF ss MS F p 

Amount of fat (A) 1 558.653 558.653 7.945 0.012 
Type of fat (B) 1 631.057 631.057 8.974 0.009 
-/+ Cholesterol (C) 1 176.911 176.911 2.516 0.132 
AXB 1 25.922 25.922 0.369 0.552 
AXC 1 347.383 347.383 4.94 0.041 
BXC 1 16.781 16.781 0.239 0.632 
AXBXC 1 259.524 259.524 3.691 0.073 
Residual 16 1125.091 70.318 
Total 23 3141.321 136.579 
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Figure 3.9 shows a regression analysis between the microsomal cholesterol and the 

activities of the three microsomal enzymes, HMG-CoA reductase, CYP7, and ACAT, in 

FlB hamsters fed different diets for two weeks. The data for the activities and the 

concentration of microsomal cholesterol were obtained within the same animals. The 

activities ofHMG-CoA reductase and the CYP7 had no correlation with the microsomal 

cholesterol (R2 
:::::; 0). The ACAT activity, on the other hand, showed a significant 

correlation with the concentration of the microsomal cholesterol (P<0.05; R2 
= 0.31). 

When comparing Figure 3.4 and Figure 3.8, we found that the variations ofthe diets 

had a similar impact on both the ACAT activity and the concentration of the microsomal 

cholesterol in FlB hamster liver, which showed a greater influence on ACAT activity 

than on cholesterol concentration. This may suggest that the increased cholesterol 

concentration, caused by the dietary variation, in the hepatic microsome of the hamsters 

greatly promotes the ACAT activity, which results in only a slight increase of cholesterol 

in the hepatic microsome ofFlB hamsters. 
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Figure 3.9 The Effect of Microsomal Cholesterol Concentration on The Hepatic 

Enzyme Activities in FlB Hamster. 

The concentration of the microsomal cholesterol was significantly correlated (P<0.05, 

R2 ~ 0.31) with the microsomal ACAT activity, but not with HMG-CoA reductase and 

CYP7, in FIB hamster liver. A regression analysis was performed to evaluate the 

correlation between the microsomal cholesterol concentration and the activities ofthe 

enzymes, HMG-CoA reductase, CYP7, and ACAT. The data of the activity and the 

concentration of microsomal cholesterol were obtained within the identical animals. The 

black dot, white dot, and the triangle represent the specific activity ofHMG-CoA 

reductase, CYP7, and ACAT, respectively, of the same animal with corresponding 

cholesterol concentration in the hepatic microsome. 

56 



Effect of Microsomal Cholesterol Levels 
on Hepatic Enzyme Activities 

• HMGwR 
o CYP7 
y ACAT 

Mcrosomal ChOlesterol Levels 
(uglmg protain) 

57 



3.8 The Dietary Effects on The Microsomal Fatty Acids Composition in FlB 

Hamster Liver 

Figure 3.10 shows the fatty acid composition of total microsomal lipids in the livers 

ofF1B hamsters fed different diets for two weeks. The total fatty acids were separated 

into 3 groups, saturated fatty acids (SATs), monounsaturated fatty acids (MUPAs), and 

polyunsaturated fatty acids (PUP As) for simple illustration. The variations of the diets 

had no significant influence on the proportion of the MUP As and PUP As out of total 

fatty acids in the hepatic microsome ofthe hamsters. The high fat diets, however, induced 

a significant increase (P<0.05) in the proportion of the total SATs in the microsome. 

Interestingly, we found that the proportion of the total MUP As and PUP As was much 

lower and higher, respectively, in the hamsters fed the control diet, compared with those 

fed experimental diets, which is not what we had expected. 

Figure 3.11 shows the percentage of only microsomal n-3 and n-6 PUPAs in F1B 

hamster liver. When comparing among the three dietary factors individually, only the n-

3/n-6 ratio in the diet had a significant impact (P<0.05) on the amount of n-3 and n-6 in 

the hepatic microsome of the hamsters. There was an increase ofn-3 PUPAs in the 

microsome when the animals were fed fish oil diets (n-3 rich), and an increased n-6 

PUP As when the animals were fed the MIX (n-6 rich) diets. 

Figure 3.12 shows the ratio ofthe n-3 and n-6 PUPAs in the hepatic microsome of 

F1B hamsters fed various diets for two weeks. Only the dietary n-3/n-6 ratio in the diets 

had a significant influence (P<0.001) on the n-3/n-6 PUPAs ratio in the microsome. The 

ratio is high when the hamsters were fed fish oil diet, and low when feeding hamsters 

with MIX diets, regardless of the amount of the dietary fat and cholesterol in the diets. 
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Figure 3.13 shows a significant interaction between the cholesterol concentration 

and the content ofn-3 PUFAs in the hepatic microsome in FlB hamsters fed various diets 

for two weeks (P<0.05, R2= 0.224). This figure indicates that the content ofn-3 PUFAs 

in the microsome was not only affected by the types of dietary PUF As (shown in Figure 

3.12), but also correlated with the cholesterol levels in the microsome. It is suggested that 

when the cholesterol levels in the microsome increases due to the diet, more n-3 PUF As 

were needed for incorporation with cholesterol in the hepatic microsome ofFlB hamsters. 

This positive correlation may contribute to stabilize the environment of the microsome 

for proper enzyme activation. 

3.9 The Correlation of Microsomal n-3 Fatty Acids and Enzyme Activities 

Both Figure 3.14 and 3.15 show a positive correlstion between the content of 

microsomal n-3 and hepatic HMG-CoA reductase (P<0.05, R2=0.282), and ACAT 

activity (P<0.05; R2= 0.334) in the FlB hamster fed various diets for two weeks. 

Together, these results show that although the activity ofHMG-CoA reductase and 

ACAT were not regulated by the dietary fat directly, both activities are positively 

correlated with the level ofn-3 fatty acids in the hepatic microsome, which suggests that 

the microsomal environment may play a much more important role on cholesterol 

homeostasis rather than the diet in FlB hamster. 
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Figure 3.10 The Dietary Effects on The Microsomal Fatty Acids Composition in FlB 

Hamster Liver 

The diets had no significant influence on the proportion of the MUP As and PUP As as 

a proportion of total fatty acids in the hepatic microsomes of the FlB hamsters. The high 

fat diets, however, induced a significant increase (P<0.05) in the proportion of the total 

SATs in the microsomes. Interestingly, we found that the proportions of the total MUPAs 

and PUP As were much smaller and higher respectively in the hamsters fed the control 

diet, compared to those fed experimental diets. 

The total fatty acids were separated into 3 groups, saturated fatty acids (SATs; black 

bars), monounsaturated fatty acids (MUF As; dark grey bars), and polyunsaturated fatty 

acids (PUP As; light grey bars) for simple illustration. 

The animals were fed either a fish oil supplemented diet or a control diet 

supplemented with a mixture oflard and safflower-seed oil (MIX) diet, at low fat (5%, 

w/w) or high fat (20%) levels, in the presence ofO.l% or 0.25% (w/w) cholesterol 

respectively for two weeks. Mean values are shown, with standard deviations indicated 

by vertical bars (n=3). Effects of the diets were evaluated using 3 way ANOVA analysis 

with Holm-Sidak method. 
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Three-way analysis of variance (ANOVA) on microsomal SAT level 

Source ofVariation DF ss MS F p 

Amount of fat (A) 1 59.945 59.945 1.376 0.255 
Type of fat (B) 1 1.493 1.493 0.0343 0.855 
-/+ Cholesterol (C) 1 0.18 0.18 0.00413 0.949 
AXB 1 29.327 29.327 0.673 0.422 
AXC 1 13.214 13.214 0.303 0.588 
BXC 1 19.289 19.289 0.443 0.513 
AXBXC 1 0.0721 0.0721 0.00166 0.968 
Residual 20 871.11 43.555 
Total 27 990.499 36.685 

Three-way analysis of variance (ANOVA) on microsomal MUFA level 

Source ofVariation DF ss MS F p 

Amount of fat (A) 1 52.5 52.5 0.941 0.344 
Type of fat (B) 1 126.195 126.195 2.263 0.148 
-/+ Cholesterol (C) 1 0.905 0.905 0.0162 0.9 
AXB 1 22.159 22.159 0.397 0.536 
AXC 1 7.845 7.845 0.141 0.712 
BXC 1 8.725 8.725 0.156 0.697 
AXBXC 1 7.895 7.895 0.142 0.711 
Residual 20 1115.399 55.77 
Total 27 1341.257 49.676 

Three-way analysis of variance (ANOVA) on microsomal PUFA level 

Source of Variation DF ss MS F p 

Amount of fat (A) 1 0.141 0.141 0.0014 0.971 
Type of fat (B) 1 120.393 120.393 1.191 0.288 
-/+Cholesterol (C) 1 119.977 119.977 1.187 0.289 
AXB 1 4.355 4.355 0.0431 0.838 
AXC 1 67.881 67.881 0.672 0.422 
BXC 1 186.436 186.436 1.845 0.189 
AXBXC 1 4.26 4.26 0.0422 0.839 
Residual 20 2020.905 101.045 
Total 27 2504.781 92.77 
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Figure 3.11 The Dietary Effects on The n-3 And n-6 PUFAs in the Hepatic 

Microsome of FlB Hamster 

When comparing among the three dietary factors individually, only the type of the 

dietary fats (n-3 or n-6 rich) had a significant impact on the amount ofn-3 and n-6 

(P<0.01) in the hepatic microsomes of the hamsters. It was accompanied by an increase 

in n-3 PUF As in the microsomes when the animals were fed fish oil diets (n-3 rich), and 

an n-6 PUF As increase when the animals were fed the MIX (n-6 rich) diets. The animals 

were fed either a fish oil supplemented diet or a control diet supplemented with a mixture 

oflard and safflower-seed oil (MIX) diet, at low fat (5%, w/w) or high fat (20%) levels, 

in the presence ofO.l% (Grey bars) or 0.25 %(Black bars) (w/w) cholesterol respectively 

for two weeks. Mean values are shown, with standard deviations indicated by vertical 

bars (n=3). Effects of the diets were evaluated using 3 way ANOVA analysis with Holm-

Sidak method. 

Three-way analysis of variance (ANOV A) on microsomal n-3 fatty acids level 

Source ofVariation DF ss MS F p 
Amount of fat (A) 1 0.209 0.209 0.00449 0.947 
Type of fat (B) 1 1168.687 1168.687 25.096 <0.001 
-/+ Cholesterol (C) 1 66.518 66.518 1.428 0.246 
AXB 1 0.0779 0.0779 0.00167 0.968 
AXC 1 46.832 46.832 1.006 0.328 
BXC 1 138.162 138.162 2.967 0.1 
AXBXC 1 19.57 19.57 0.42 0.524 
Residual 20 931.361 46.568 
Total 27 2311.529 85.612 
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Three-way analysis of variance (ANOV A) on microsomal n-6 fatty acids level 

Source ofVariation DF ss MS F p 

Amount of fat (A) 1 1.181 1.181 0.0313 0.861 
Type of fat (B) 1 500.215 500.215 13.253 0.002 
-/+ Cholesterol (C) 1 25.123 25.123 0.666 0.424 
AXB 1 6.999 6.999 0.185 0.671 
AXC 1 0.705 0.705 0.0187 0.893 
BXC 1 0.59 0.59 0.0156 0.902 
AXBXC 1 5.396 5.396 0.143 0.709 
Residual 20 754.844 37.742 
Total 27 1311.781 48.584 
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Figure 3.12 The Dietary Effects on The Ratio ofn-3/n-6 PUFAs in the Hepatic 

Microsome of F1B Hamster 

The ratio of n-3/n-6 PUF As in the hepatic microsomes was significantly increased 

(P<O.OOI) when feeding fish oil diets to the FIB hamsters, regardless of the amount of 

dietary fat or cholesterol. The ratio was reduced when the hamsters were fed the MIX 

diets. 

The animals were fed either a fish oil supplemented diet or a control diet 

supplemented with a mixture oflard and safflower-seed oil (MIX) diet, at low fat (5%, 

w/w) or high fat (20%) levels, in the presence ofO.l% (Grey bars) or 0.25% (Black bars) 

(w/w) cholesterol respectively for two weeks. Mean values are shown, with standard 

deviations indicated by vertical bars (n=3). Effects of the diets were evaluated using 3 

way ANOV A analysis with Holm-Sidak method. 

Three-way analysis of variance (ANOV A) on the ratio of microsomal n-3/n-6 fatty 

acids 

Source of Variation DF ss MS F p 
Amount of fat (A) 1 0.000881 0.000881 0.00599 0.939 
Type of fat (B) 1 6.876 6.876 46.738 <0.001 
-/+ Cholesterol (C) 1 0.0651 0.0651 0.443 0.514 
AXB 1 0.00691 0.00691 0.047 0.831 
AXC 1 0.09 0.09 0.612 0.443 
BXC 1 0.235 0.235 1.599 0.221 
AXBXC 1 0.0731 0.0731 0.497 0.489 
Residual 20 2.942 0.147 
Total 27 10.157 0.376 
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Figure 3.13 The Correlation Between the Cholesterol Concentration And the n-3 

PUFAs in the Hepatic Microsome ofFlB Hamster 

Regression analysis between the cholesterol concentration and the n-3 PUF As in the 

hepatic microsomes ofFlB hamsters indicated a significant positive correlation between 

the cholesterol concentration and the n-3 PUF As in the hepatic microsomes in the 

hamsters fed various diets for two weeks (P<0.05; R2
= 0.224). 
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Figure 3.14 The Correlation Between the HMG-CoA Reductase Activity And then-

3 PUFAs in the Hepatic Microsome ofFlB Hamster 

A regression analysis between the HMG-CoA reductase activity and the n-3 PUF As 

in the hepatic microsomes ofFlB hamsters indicated a significant positive correlation 

between the cholesterol concentration and the n-3 PUFAs in the hepatic microsomes in 

hamsters fed various diets for two weeks (P<0.05; R2
= 0.282). 
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Figure 3.15 The Correlation Between the ACAT Activity And the n-3 PUFAs in the 

Hepatic Microsome of FlB Hamster 

Regression analysis between the ACAT activity and the n-3 PUFAs in the hepatic 

microsomes of FIB hamsters indicated a significant positive correlation between the 

cholesterol concentration and the n-3 PUF As in the hepatic microsomes in the hamsters 

fed various diets for two weeks (P<0.05; R2
= 0.334). 
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3.10 The Dietary Effects on The Hepatic Microsome Phospholipid Composition in 

FlB Hamster 

Figure 3.16 shows the percentage of phospholipid composition out of total 

phospholipids of the hepatic microsome in FlB hamsters. The differences due to diets 

were not significant. 
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Figure 3.16 The Dietary Effects on The Microsomal Phospholipid Composition in 

FlB Hamster Liver 

The effect of diet on the phospholipid composition in the microsome was not 

significant. The phospholipids are separated into three groups, phosphatidylethanolamine 

(PE; black bars), phosphatidylserine (PS; dark grey bars), and phosphatidylcholine plus 

sphingomyelin (PC+SPH; light grey bars). The figure shows the percentage of 

phospholipid composition out of total phospholipids of the hepatic microsome in FlB 

hamsters. 

The animals were fed either a fish oil supplemented diet or a control diet 

supplemented with a mixture oflard and safflower-seed oil (MIX) diet, at low fat (5%, 

w/w) or high fat (20%) levels, in the presence of 0.1% or 0.25 % (w/w) cholesterol 

respectively for two weeks. Mean values are shown, with standard deviations indicated 

by vertical bars (n=3), and the lack ofthe error bar is due to insufficient data number 

(n=2). Differences between groups were evaluated using 3 way ANOV A analysis with 

Holm-Sidak method. 
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Three-way analysis of variance (ANOV A) on microsomal PE 

Source of Variation DF ss MS F p 

Amount of fat (A) 1 117.813 117.813 4.363 0.055 
Type of fat (B) 1 56.333 56.333 2.086 0.171 
-/+Cholesterol (C) 1 76.339 76.339 2.827 0.115 
AXB 1 86.761 86.761 3.213 0.095 
AXC 1 70.406 70.406 2.607 0.129 
BXC 1 14.52 14.52 0.538 0.475 
AXBXC 1 43.828 43.828 1.623 0.223 
Residual 14 378.067 27.005 
Total 21 747.939 35.616 

Three-way analysis of variance (ANOV A) on microsomal PS 

Source ofVariation DF ss MS F p 

Amount of fat (A) 1 0.188 0.188 0.00248 0.961 
Type of fat (B) 1 35.938 35.938 0.475 0.502 
-/+Cholesterol (C) 1 20.367 20.367 0.269 0.612 
AXB 1 155.28 155.28 2.053 0.174 
AXC 1 108.601 108.601 1.436 0.251 
BXC 1 65.489 65.489 0.866 0.368 
AXBXC 1 29.978 29.978 0.396 0.539 
Residual 14 1059.012 75.644 
Total 21 1451.133 69.102 

Three-way analysis of variance (ANOV A) on microsomal PC+SPH 

Source ofVariation DF ss MS F p 

Amount of fat (A) 1 84.978 84.978 0.897 0.36 
Type of fat (B) 1 7.468 7.468 0.0789 0.783 
-/+ Cholesterol (C) 1 178.384 178.384 1.884 0.192 
AXB 1 3.557 3.557 0.0376 0.849 
AXC 1 3.853 3.853 0.0407 0.843 
BXC 1 18.089 18.089 0.191 0.669 
AXBXC 1 0.963 0.963 0.0102 0.921 
Residual 14 1325.897 94.707 
Total 21 1642.69 78.223 
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Chapter 4 Discussion 
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4.1 Dietary Fat and Cholesterol Homeostatsis 

Since the studies ofBang and Dyerberg on the lipoprotein profile of Greenland 

Eskimos in the 1970's, fish oil and other oils rich in n-3 PUFA have been proposed to 

offer protection against hyperlipidemia and CHD (Bang and Dyerberg, 1972; Dyerberg et 

al., 1975; Dyerberg et al., 1978). However, despite decades of animal studies and large 

scale human trails, the only consistent effect of dietary n-3 PUPAs has been reduced 

triglyceride levels in hypertriglyceridemic subjects (Connor, 1988; Connor et al., 1993; 

Hamazaki et al., 2003). Moreover, there is growing concern that diets rich in n-3 PUPAs 

may have a negative impact on patients with hypercholesterolemia (Failor et al., 1988; 

Hsu et al., 2000). Lin et al. reported recently that in hamsters with a low plasma 

cholesterol level, addition of n-3 PUF A to the diet results in a significant reduction in 

total plasma cholesterol, and in both VLDL and LDL cholesterol compared with animals 

fed an n-6 PUFA diet (Lin et al., 2005). However, when these animals were fed a diet 

containing 0.5% cholesterol (w/w), an n-3 diet group was more hypercholesterolemic 

than an n-6 diet group. This suggested that there was an interaction between the 

cholesterol mediated regulation of cholesterol metabolism and the regulation mediated by 

dietary fatty acids. 

Our laboratory has done similar studies using the inbred F1B hamster strain. This 

animal model has been used extensively because of its susceptibility to diet induced 

hyperlipidemia and atherosclerotic lesions (Kowala et al., 1991). An early study in our 

laboratory showed a clear difference between the response of the normal hamster to 

increased n-3/n-6 ratio in the diet and the response of the FlB strain to a similar change 

in the types of fatty acids in the diet. While Lin et al. (Lin et al., 2005) reported that 
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replacement ofn-6 PUPA in the diet of normal hamsters with n-3 PUPA reduced VLDL­

cholesterol by more than 60%, a similar change in dietary fatty acids in the FIB hamster 

resulted in a 4-5 fold increase in VLDL-cholesterol. 

When 0.5% (w/w) cholesterol was added to the diets ofthe normal hamster, there 

was a marked increase in the VLDL-cholesterollevels in the plasma, but in this case the 

n-3 diet resulted in a more hypercholesterolemic animal than the n-6 diet (Lin eta/., 

2005). In contrast, addition of cholesterol to the diets of the FIB hamsters resulted in a 

very modest change in VLDL-cholesterollevel in the plasma although the n-3 fed 

animals were still much more hypercholesterolemic than those fed n-6 PUP As (de Silva 

et al., 2004). These observations suggested that the regulation of cholesterol metabolism 

in the FIB hamster is different. 

The present study is an extension of our previous study that sought to investigate the 

cholesterol metabolism in the FIB hamster caused by different dietary PUF As and 

cholesterol at the hepatic cellular level. Our objective was to examine the regulation of 

cholesterol metabolism in the liver of FIB hamsters by both dietary cholesterol and the 

types and level of fatty acids in the diet. We looked at the expression of several 

microsome associated enzymes that play key roles in cholesterol metabolism in liver 

including, HMG-CoA reductase, CYP7, ACAT, a corresponding transcription factor, 

SREBP-2, and the lipid composition in the microsomes. 

4.2 Dietary Effects on Microsomal Enzyme Activity 

We found that dietary cholesterol down- and up-regulated the activity ofHMG-CoA 

reductase and ACAT respectively, but had no effect on CYP7 activity. This inducing 
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effect of dietary cholesterol on hepatic ACAT activity was correlated with the amount of 

dietary fat and fat types. (This suggests?) We also found that the cholesterol levels in the 

microsomes were increased when the hamsters were fed high fat and cholesterol 

supplemented diets. Moreover, the n-3 PUFA level was positively correlated with 

elevated cholesterol level in the microsomes. Thus we suggested that the dietary effects 

on enzyme activity and the cellular cholesterol homeostasis may be regulated by the 

fluidity of the microsomal membrane and the theoretical cholesterol pool in FIB hamster. 

4.2.1 Dietary Cholesterol and PUFAs on CYP7 Activity 

The activity of CYP7, the initial enzyme in the classic pathways of bile acid 

synthesis, is tightly regulated at the transcriptional level, since the activity is highly 

correlated with its mRNA levels (Agellon and Torchia, 2000;Russell and Setchell, 1992). 

Many studies have shown that the CYP7 gene expression is suppressed by bile acids and 

induced by cholesterol (Chiang eta/., 1990;Chiang and Stroup, 1994). 

However recent studies on African green monkeys and hyperlipidemic rabbits have 

shown that additional dietary cholesterol does not always stimulate the CYP7 activity as 

expected (Rudel eta/., 1994;Xu eta/., 1995). Studies on normal hamsters showed that the 

dietary unsaturated fats (linoleic acid and oleic acid) and saturated fat (palmitic acid) 

exert an opposite effect on the hepatic CYP7 activity when the hamsters were fed with 

0.1% dietary cholesterol (Kurushima eta/., 1995;Kurushima eta/., 1995). Studies in mice 

showed that, although different types of dietary fatty acids (PUF A, MUF A, SF A) all 

increase the CYP7 activity, the PUFA induced the highest activity among the dietary fats. 

Interestingly, when an additional 1% cholesterol was supplemented in the diets, the 
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dietary cholesterol further induced the CYP7 activity in animals fed the PUF A diets, 

while the activities were suppressed by additional cholesterol in hamsters fed the MUF A, 

SF A diets (Cheema et al., 1997). The results also showed that although the PUF A diets 

without dietary cholesterol induced the highest abundance on CYP7 mRNA, it was not 

associated with the highest activity. This fact implied that the dietary fats may regulate 

differently than at the transcriptional level. 

In our study, the CYP7 activity, surprisingly, was not affected by dietary cholesterol 

when supplemented in the polyunsaturated fat diets. The CYP7 activity was only affected 

by the amount of dietary fat, resulting in a reduction of the activity when the hamsters 

were fed the high fat diets. The reason why dietary cholesterol showed no effect on the 

activity was not clear. 

4.2.2 Dietary Cholesterol and PUF A on HMG-CoA Reductase Activtiy 

The rate limited enzyme of cholesterol biosynthsis, HMG-CoA reductase, and its 

feedback regulation has been studied for many years in different animal models. The 

reductase activity was suggested to be regulated differently depending on the animal's 

susceptibility to dietary cholesterol. Dietary cholesterol exerted feedback regulation 

mainly at the posttranslationallevel in rats that are relatively resistant to dietary 

cholesterol (Ness et al., 1991;Spady and Cuthbert, 1992) and at the transcriptional level 

in rabbits and hamsters that are relatively susceptible to dietary cholesterol (Gil et al., 

1986;Rudling, 1992). In our study, the hepatic HMG-CoA reductase activity was only 

affected by dietary cholesterol, resulting in a slight reduction of the activity when 

cholesterol was added to the diets. Although the extent of the reduction was not as great 
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as we expected and the mRNA levels were not affected by any ofthe dietary variations, 

these results suggested that the dietary cholesterol exerted the regulatory effect on the 

reductase activity at a level other than the transcription level. However, mRNA data 

include n=3, 2, so variability could be an issue. 

Although studies in mice (Duet al., 2003) and rats (Jossic-Corcos et al., 2005) 

showed that n-3 PUFA rich diets suppressed the hepatic HMG-CoA reductase activity 

and mRNA respectively much more than the n-6 PUF A rich diets without dietary 

cholesterol supplement, studies on hamsters showed that addition of dietary unsaturated 

fatty acids (linoleic acid or oleic acid) or saturated fatty acids (palmitic acid) to O.I% 

cholesterol-supplemented diets didn't alter the HMG-CoA reductase activityc in 

hamsters, compared with those fed cholesterol-supplemented diet (Kurushima et al., 

I995;Kurushima et al., I995). The results may suggest that the suppressing effect of 

dietary fat and cholesterol on the reductase activity is mainly due to the presence of 

cholesterol instead of dietary fats in hamsters. 

Our study also showed that the reductase activity in FIB hamster liver was only 

affected by the dietary cholesterol. This resulted in a marginal reduction of the activity 

regardless the types of the fats (n-3 or n-6). However, the mRNA levels of the reductase 

were not affected by the dietary cholesterol, which may suggest a non-transcriptional 

regulation on the hepatic HMG-CoA reductase in FIB hamsters. 

A recent study, in both rats and hamsters, showed that dietary PUF A (n-3, n-6) and 

cholesterol affected the cholesterol homeostasis differently in both serum and liver (Lin 

et al., 2005), clearly indicative of species differences between rat and hamster in response 
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to the interactive effects of dietary n-3 PUF A and cholesterol. This may partly explain 

why our results differ from those reported by others. 

4.2.3 Dietary Cholesterol and PUF As on Sterol Regulatory Element Binding 

Protein-2 

After we found that the dietary variation had no effect on the HMG-CoA reductase 

mRNA, we checked the expression ofthe transcription factor, SREBP-2, to see if it was 

regulated by dietary cholesterol and fats. Surprisingly, the levels of both the precursor 

and the mature form of the SREBP-2 in the livers ofF1B hamsters were not regulated by 

the dietary fat and cholesterol. 

According to the Brown and Goldstein model, the SREBPs are regulated by the 

cellular sterol and fatty acids levels through the SREBP-SCAP cascade (Brown and 

Goldstein, 1997e;Brown and Goldstein, 1999;Horton et al., 2002). The proteolytic 

maturation of the protein stops when the system senses high levels of sterol in the cell. 

However, this fact could not explain why the dietary cholesterol only slightly suppressed 

the HMG-CoA reductase activity without any changes on the reductase mRNA. 

Some studies have shown that the mature form of SREBP-2 can be slightly lower in 

mice fed a sardine oil-rich diet (Y ahagi et al., 1999) or by addition of arachidonic acid to 

rat hepatoma cells (Ou et al., 2001). The mRNA ofSREBP-2 was reduced in mouse 

liver by high fish oil diets. However, Jump et al. suggested that the PUF A only 

suppresses the mature form ofSREBP-1 but not SREBP-2 (Jump, 2002;Jump, 2004). In 

our case, the SREBP-2 was not regulated by the dietary PUF A. In summary, it appears 
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that the SREBP-SCAP cascade, the major regulatory system for cholesterogenesis, was 

not affected by the dietary composition in FlB hamster liver. 

4.2.4 Effect of Dietary Cholesterol and PUFAs on ACAT 

It has been shown that the level of acyl-CoA cholesterol acyltransferase (ACAT) 

activity is mostly controlled by the intracellular availability of sterol (Chang eta/., 

1995;Spady and Dietschy, 1988). Any physiological change that leads to a net increase 

in hepatic cholesterol induces the activity (Spady et a/., 1986), and similarly, any change 

decreasing the cholesterol in the liver suppresses the ACAT activity (Kovanen et a/., 

1981). However, other factors like allosteric regulation (Chang and Chang, 1986;Tabas 

and Boykow, 1987) and post-translational regulation (Matsuda eta/., 1996;Wang eta/., 

1996) have also been suggested to regulate ACAT. 

Although it is generally believed that free cholesterol drives the activity of ACAT, 

fatty acids have also been shown to alter the activity (Rumsey eta/., 1995). Studies in 

rats fed polyunsaturated fat suggested that the animals had more PUF A in the fatty acyl 

chains of the microsomal phospholipids, which was associated with higher hepatic ACAT 

activity compared to the animals fed saturated tristearin (Mitropoulos et a/., 1980). 

However, a study in the FIB hamster showed that the hepatic ACAT activity was slightly 

suppressed by the dietary unsaturated fatty acids, compared to those fed saturated fat 

diets, and with no difference in the activity when animals were fed the linoleic acid or 

oleic acid diets (Lee and Carr, 2004). This study may indicate an opposite effect of 

PUFA on the ACAT activity in F1B hamster that is different from other animal models. 
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A study in normal hamster showed that, in the presence ofO.I% dietary cholesterol, 

menhaden oil enriched diets induced the highest rate of cholesterol esterification 

compared with animals fed the diets rich either in corn oil, or olive oil, or coconut oil. 

This suggested a positive interaction between the dietary fish oil and cholesterol on the 

ACAT activity (Jones et al., I990). A study in mice also suggested that the dietary PUFA 

(safflower oil) further increases hepatic ACAT activity in the presence of I% dietary 

cholesterol. 

Although these studies suggested that dietary PUF A induce ACAT activity and 

additional cholesterol further increases the activity, the suppressing effect ofPUFA in 

FIB hamster may be regulated differently when the cholesterol is added to the diets. 

However, not many studies were focused on the interaction of the amount of the dietary 

fats, especially between the n-3 and n-6 fatty acids, and dietary cholesterol on the hepatic 

ACAT activity. In our study, the hepatic ACAT activity was induced by dietary 

cholesterol as we expected. Surprisingly, the amount of fat and types of fats (n-3, n-6) 

had no effect on the activity individually, but both factors have a positive interaction with 

dietary cholesterol. The high fat and fish oil rich diets induced the ACAT activity in FIB 

hamster when additional dietary cholesterol was added. However, without dietary 

cholesterol, increasing the amount of fat in both fish oil and MIX diets suppressed the 

ACA T activity compared to hamsters fed the low fat or even the control (chow) diets. 

This suggested that an opposite effect of dietary PUF A on ACAT activity in FIB 

hamster, dependent on the availability of dietary cholesterol. This fact implies that 

supplementation of diets with PUF A and cholesterol in hyperlipidemic subjects may not 

improve the serum lipid profile but rather it may induce higher ACAT activity, resulting 
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cholesterol ester accumulation in the liver and more VLDL-cholesterol ester secretion 

into the circulation and causing a severe hyperlipidaemia. Similar results were observed 

when normal hamsters were fed a diet with PUP As and cholesterol (Lin et al., 2005), and 

some clinical trails on familial hyperlipidemia patients also suggested that dietary n-3 

fatty acids might not benefit the liprotein profile (Failor et al., 1988;Hsu et al., 2000). 

The variation of the hepatic ACAT activity caused by the dietary differences 

therefore led us to expect a corresponding cholesterol ester accumulation in FIB hamster 

liver in a pattern close to the results from the ACAT activity assay. However, results 

from our previous study (de Silva et al., 2004) showed that the levels of cholesterol ester, 

free cholesterol, and total cholesterol were not reflective of the results of the ACAT 

assay. The in vivo ACAT activity is dependent on the availability of free cholesterol in 

cells, but the ACAT activity assay was performed in vitro with excess exogenous 

substrates provided in the form of a cholesterol-lipid emulsion. Thus the activity may not 

represent the ACAT activity that would be present in vivo with only the microsomal 

membrane cholesterol as the substrate. Using endogenous cholesterol as substrate in 

additional of radio labeled cholesterol may be an alternative approach to estimate the real 

activity. 

According to the hypothesis, ACAT activity is in part associated with VLDL 

secretion (Rudel et al., 2001). It is possible that the elevation of ACAT activity by the 

high fat diets with cholesterol may subsequently increase the incorporation of the 

cholesterol ester into VLDL particles, which shifts cholesterol ester from the liver to the 

circulation. Although the results from the previous study showed a greater increase in the 

level ofVLDL-cholesterol esters, the VLDL-CE from other diet groups didn't show a 
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pattern associated with ACAT activity. Therefore whether the ACA T activity is 

regulated by the dietary effect is still unclear. 

In brief, we suggest that CYP7 and HMG-CoA reductase, and the corresponding 

transcription factor, SREBP-2, were not regulated by the variation of dietary 

polyunsaturated fats and cholesterol in FIB hamster. These facts surprised us due to the 

extensive literature that suggests these proteins are all regulated by dietary cholesterol 

and fats. These findings led us to examine whether the mechanisms that normally 

regulate SREBP, HMG-CoA Reductase and CYP7 were present and functional in the 

FIB hamster. In particular we focused on the effects of the lipid composition of the 

microsomal fractions from the FlB hamsters on these activities. 

4.3 Dietary effects on Endoplasmic Reticulum Membrane Lipids 

We observed that the levels of cholesterol in FlB hamster liver microsomes were 

affected by the amount and the type of fat in the diet. The high fat and fish oil diets 

appeared to facilitate more cholesterol incorporation into the microsomes. Surprisingly, 

the dietary cholesterol level showed only a minor impact on the microsomal cholesterol 

content when hamsters were fed fish oil and when the animals were fed different amounts 

of the MIX diet there was no effect on the microsomal cholesterol. We also found a 

positive interaction of dietary cholesterol and amount of dietary fat, with an increase in 

the microsomal cholesterol level when the animals were fed high fat diets with 

cholesterol. 

The microsomes were rich in n-3 or n-6 fatty acids when the hamster was fed a fish 

oil or MIX diet, respectively. In addition, the diets had no effect on the levels of 
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microsomal monounsaturated fatty acids. However, when compared to the animals fed 

chow diet, the MUF As were higher and PUF As were lower in hamsters fed experimented 

diet. This indicated that under the influence of the diet, a portion of PUF As were 

substituted by MUF As. Moreover, the content of the major phospholipids (PE, PS, PC, 

SPH) were unaffected by the dietary variations. Thus the changes in the PUF A content 

of the microsomal membranes were limited to substitution of n-6 PUF A with n-3 PUF A. 

4.4 Regression Analysis Between Microsomal Lipids and Enzyme Activity 

The absence of a strong relationship between the dietary variations and the activities 

of microsome associated enzymes, other than ACAT, led us to perform a series of 

regression analyses between the microsomal cholesterol, n-3, n-6 fatty acids and the 

enzyme activities. We found the following: 

1. A positive correlation between the ACAT activity and the content of microsomal 

cholesterol, and n-3 fatty acids respectively. 

2. A positive correlation between the HMG-CoA reductase activity and the content of 

microsomal n-3 fatty acids. 

3. A positive correlation between the content of microsomal cholesterol and n-3 fatty 

acids. 

These results suggested that the activities of microsome associated enzymes, HMG­

CoA reductase and ACA T directly depend on the changes of the microsomal 

environment in FlB hamster liver, especially the interactions between the cholesterol and 

n-3 fatty acids. However the specific mechanisms behind this were not clear. 
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4.4.1 Effects of Membrane Fluidity 

An in vitro study suggested that unsaturated fatty acids are the preferred fatty acid 

substrate for ACAT (Rumsey et al., 1995). In vivo studies in animals have shown that, 

compared with saturated fat diets, unsaturated fats increase the hepatic ACAT activity, 

probably by mediating changes in the microsomal fatty acid content and possibly the 

physical properties of the membrane environment where ACAT resides (Johnson eta!., 

1983;Mathur et al., 1983;Spector et al., 1980). A study in rats showed that soybean 

lecithin supplementation decreased the liver microsomal cholesterol content, and 

increased the membrane fluidity. This resulted in a profound reduction of ACAT 

activity, a minor reduction on HMG-CoA reductase, and no significant effect on CYP7. 

Their results were closely relevant to ours and may further support the hypothesis that the 

activities of microsomal enzymes may be dependent on the membrane fluidity in the 

endoplasmic reticulum. 

There was an absence of any correlation between the levels of cholesterol in the 

hamster liver microsomal fraction and the levels of either the precursor or mature forms 

ofSREBP, the HMG CoA Reductase activity and the Cyp7 activity. However, it should 

be noted that the membranes of the F 1 B hamsters fed either the fish oil diet or the mix 

diet contained 30-45% of polyunsaturated fatty acids. There is a growing body of 

evidence showing that high levels of these polyunsaturated fatty acids in membranes can 

significantly alter the "fluidity" or micro viscosity of membranes with concomitant effects 

on the activity of integral membrane proteins (Hashimoto et al., 1999;Lutz et al., 

1999;Petrache et al., 2001;Wassall et al., 2004). The activity ofHMG CoA Reductase in 

human fibroblast microsomes was shown to be attenuated by increases in order 

90 



(decreases in fluidity) of the microsomal membranes when the membrane order was 

altered either by changes in free cholesterol content of the membrane or by enrichment of 

the membranes with phospholipids containing saturated fatty acids (Davis and 

Poznansky, 1987). In this study we observed a positive correlation between HMG Co A 

Reductase and the content ofn-3 PUFA in the microsomal membranes. It is possible that 

the ordering effect of cholesterol in the liver microsomes is being offset by the inclusion 

of polyunsaturated fatty acids, especially the high unsaturated n-3 PUFA from fish oil. If 

so, it is interesting that the n-3 PUF A are more effective than the n-6 PUF A as the n-3 

PUF A contain more double bonds that the n-6 PUF A. 

This being said, the fluidity effect would only be expected to impact the post­

translational regulation ofHMG CoA Reductase. It would be unlikely to account for the 

fact that the proteolytic cleavage of the SREBP precursor to the mature form is not 

affected by the different diets. The processing of SREBP is initiated by the 

conformational change of SCAP/SREBP complex when the cholesterol is low in the 

membrane and one would expect a correlation between microsomal cholesterol and the 

level of the mature form of SREBP. However, the levels of mature SREBP did not 

change in the hamster livers. The absence of any effects on SREBP processing might be 

accounted for by differential localization of the protein in the microsomal membrane. 

4.4.2 Membrane Domains 

Wassail et al. have proposed that inclusion of polyunsaturated fatty acids in 

membranes can result in substantial changes in the distribution of both the lipid and 

protein components of the membranes giving rise to cholesterol-rich raft domains and the 
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migration of proteins into cholesterol-poor bulk lipid (non-raft) (Wassail eta!., 2004) as 

illustrated in figure 4.I. This arises from a minimal interaction between cholesterol and 

phospholipids containing polyunsaturated fatty acids, and this is especially true for DHA, 

one ofthe two major n-3 PUF A in fish oil. It is therefore possible that the microsomes 

from the FIB hamsters fed the different diets contain cholesterol-rich domains from 

which much of the SREBP was excluded. The low cholesterol levels in the remaining 

bulk domains would then be insufficient to promote processing of the SREBP precursor 

into the mature form and it's subsequent translocation to the nucleus. This might account 

for the absence of any significant correlation between microsomal cholesterol levels and 

the levels of mature SREBP and concomitant enzyme activities. 

4.5 Summary 

Another student in our lab had discovered that the effects of the amount of dietary fat, 

the types of dietary fat and the amount of dietary cholesterol on the lipoprotein profiles of 

the hypercholesterolemic FIB hamster were different from those reported in other 

species. The original objective of this work was to investigate the effects of these 

changes in dietary lipids in the diet of FIB hamsters on key enzymes involved in 

cholesterol homeostasis. 

The impact ofthe different diets on microsomal enzymes is summarized in table 4.I. 

In our study, we observed that these microsomal enzymes are not especially responsive to 

the type of dietary polyunsaturated fat and cholesterol in the liver of FIB hamster. This 

raised questions about the functionality of the regulatory mechanisms that have been 

shown to account for the effects of dietary fat on cholesterol metabolism in the 
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Figure 4.1 Cartoon depiction of the effect of DHA-containing phospholipids on SM­

/cholesterol-rich raft domains in the outer leaflet of the plasma membrane. 

Wassall et al. proposed a cartoon illustration on how DHA may influence lipid raft size 

and stability. The incorporation of a DHA-containing phospholipid drives cholesterol into 

SM-/cholesterol-rich rafts while DHA accumulates in DHA-rich/cholesterol-poor 

domains, where the proteins reside, within the bulk lipid of the membrane. Steric 

incompatibility between sterol and PUF A is presumed to be responsible (Wassall et al. 

2004). 
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Table 4.1 Summary of the Results 

Source of Microsomal Lopids 
Variation 
Dietary effects Cholesterol n-3 FA 
High fat (A) + 
Fish oil diet (B) + + 
Cholesterol (C) 

AXB 

AXC + 
BXC 

Microsomal 
lipids 
Cholesterol + 
n-3 fatty acid 

+ mdtcates a positive interaction 
- indicates a negative interaction 
Blank cell indicates no interaction 

Hepatic Enzyme Activities 

ACAT CYP7 LDL-R HMG-R SREBP-2 

- -
-

+ -
+ 
+ 

+ 
+ + 
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DSNI hamster and in other species. However, the numbers of animal in each diet group 

that were used in the "pilot" study was small and, in many of our analysis of enzyme 

activity or mRNA levels, n was only 2-3. Thus, the high variability may have precluded 

detection of significant effects of the changes in dietary fat and cholesterol. 

Although we did not see major associations between diet and the activity ofHMG­

CoA reductase, CYP7, and SREBP-2 maturation was also not affected by diet, we were 

able to explore the relationships between the lipid content of the microaomal fractions 

and cholesterol regulations. We did regression analysis of our data and observed positive 

interactions between the microsomal n-3 fatty acids and cholesterol content in the 

microsomal membranes and the activities ofHMG-CoA reductase and ACAT. We 

suggest that the activity of the enzymes may affected by the changes in the physical 

properties of the membrane induced by changes in dietary fat. There is also a possibility 

that the increased levels of phospholipids containing n-3 PUF A in the endoplasmic 

reticulum membrane may have led to changes in the lateral distribution of membrane 

lipids that result in the formation of cholesterol-rich domains (rafts) and cholesterol-poor 

domains. The key enzymes in cholesterol metabolism would likely be partitioned into 

the cholesterol-poor domains and thus be unresponsive to cholesterol content in the 

membranes. 

4.6 Future Study 

In order to find out whether the existence of microdomains plays a role in the 

regulation of the enzyme activity, we could determine if the two domains, the SM­

/cholesterol-rich rafts as well as PUF A-rich/cholesterol-poor microdomains, exist in the 
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microsome using various techniques including Nuclear Magnetic Resonance 

Spectroscopy (NMR) or Atomic Force Microscopy (AFM). Also ifthere is evidence that 

these domains exist, the cholesterol-rich lipid rafts could be isolated and the partition of 

the enzymes and SREBP between the rafts and the bulk lipid domains could be 

examined. 

It is also possible to account for the unusual effects of dietary lipids on the plasma 

lipoprotein levels in the FIB hamster was modulated by the assembly and secretion of 

VLDL by the liver. There is some suggestion that the type of fatty acids in the diet may 

affect the activity of the microsomal triglyceride transfer protein (MTTP). It would by 

interesting to determine if MTTP activity is regulated by the diet or the microsomal 

environment in the FIB hamster liver to determine if this might account for the levels of 

hepatic cholesterol ester and plasma VLDL-cholesterol ester. 
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