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ABSTRACT 

A large number of cells from the lateral aspect of the supramammillary 

nucleus (SUML) and the medial septum complex (MSC) innervate the dentate 

gyrus of the hippocampus. It has been demonstrated that electrical 

prestimulation of the SUML or the MSC enhances perforant path-dentate 

gyrus evoked field potentials. Considering the large number of fibres that 

pass through these regions, the effects glutamatergic stimulation of these 

regions had on dentate gyrus field potentials in urethane-anaesthetized rats 

was investigated. The perforant path was stimulated at a rate of 0.1 Hz, 

evoking an EPSP and a population spike in the dentate gyrus granule cell 

layer. L-glutamate was delivered by pressure injection (500 mM, 100-1 50 

nl). In a second experiment, concomitant measures of hippocampal EEG, 

spontaneous unit activity, and the evoked potential recorded at the molecular 

layer were also taken. As well, the effects of glutamatergic activation of 

these areas on paired-pulse inhibition was investigated. 

Glutamate ejection to the SUML and MSC produced a significant 

enhancement of the population spike. The duration of enhancement ranged 

from 2 to 54 min ex= 18.4 min) and from 1 to 49 min (X= 10.5 min) after 

SUML and MSC activation respectively. A consistent, but relatively short 

increase in the EPSP slope was demonstrated after MSC activation but not 



after SUML activation. No consistent effects were found on the 2 latency 

measures. 

SUML and MSC activation induced theta in 4 of 7 (duration= 10-45 s) and 

7 of 10 animals (duration= 20-112 s), respectively. Theta induction preceded 

spike enhancement and occurred for a shorter duration than the 

enhancement. 

After either SUML or MSC activation the effects on spontaneous unit 

activity were mixed. However, all changes in firing rate preceded spike 

enhancement, and their duration rarely coincided with the duration of the 

spike enhancement. 

Results of paired-pulses (lSI= 20-30 ms) given during SUML activation 

demonstrated evidence of reduced feed-back inhibition, despite an absence 

of the enhancement of the first spike of the pair. MSC activation produced 

a reduction of feed-back inhibition in one of three animals where the first 

spike of the pair was enhanced. 
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CHAPTER 1: INTRODUCTION 

A great deal is known about the anatomical connections that make up the 

neural circuitry of the brain. Only recently, however, have neuroscientists 

turned their attention towards the integration and modulation of impulse flow 

in any given circuit, properties that define the functional activity of the 

system. 

The two cortical systems that have received the greatest attention in this 

regard are the visual cortical system (neocortex) of the cat and the 

hippocampus (allocortex) of the rat. The latter represents a structurally 

simple cortex that serves as a model for cortical organisation and cell 

physiology. It's structure is relatively uncomplicated, because the principal 

neurons, the pyramidal and granule cells, are each arranged in separate, 

compact layers, with dendrites emanating in a parallel manner. Excitatory 

cortical inputs are directed towards specific dendritic regions, allowing one 

to directly test the consequences of activation of these fibres to determine 

the excitability, or "state" of the principal cells. 

Attention has also been drawn to the hippocampus because of its apparent 

role in learning and memory, and a large literature has accumulated in an 

attempt to determine its precise role. While researchers disagree on detail, 
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they agree that the hippocampus is important for the acquisition of certain 

categories of new information. 

The role of the hippocampus in learning and memory has received a great 

deal of attention since H.M. developed severe anterograde amnesia as a 

result of the surgical removal of the medial portion of both his temporal 

lobes, which included the hippocampus (Scoville and Milner, 1957). Animal 

studies have identified several areas in which the hippocampus appears to 

play an important role. Special forms of conditioning, such as trace 

conditioning and discrimination reversal, appear to depend on the 

hippocampus (Lavond et. al., 1981; Berger and Orr, 1982), especially 

whenever a conditioned response needs to be unlearned or inhibited (Kimble, 

1968). Recordings show that individual neurons in the hippocampus become 

active only when the animal is in a specific place in the environment, leading 

to the theory that the task of the hippocampus is to store all spatial 

memories tied together into a cognitive map of the animal's environment 

{O'Keefe and Nadel, 1978). If one distinguishes between working memory, 

a rapidly fading set of engrams that stores just recent events, and reference 

memory, all the relatively unchangeable facts that have been learned, the 

hippocampus appears to be critical for working memory (Olton, 1983). 

The role of the hippocampus in sensory information processing is supported 

by an expanding knowledge of cortical circuitry. The connectivity of the 



3 

cortex suggests that each modality is processed through a sequence of 

connections, from unimodal areas, towards multimodal associational areas 

increasing the complexity of the information en route. It has been proposed 

that since these multimodal areas funnel their information into the 

hippocampal formation through the entorhinal cortex, it constitutes a final 

cascade of cortical sensory information processing - a supramodal 

associational cortex where cortical channels converge (Witter et al., 1989b). 

Any model of learning and memory would require an accounting of the 

animal's behavioural condition, which would influence the state of 

information processing. The hippocampus receives widespread projections 

from relatively small groups of neurons in the basal forebrain and brainstem. 

Most of these systems are associated with a single neurotransmitter, such 

as the cholinergic basal forebrain system, the noradrenergic locus coeruleus, 

the serotonergic raphe system, and the dopaminergic ventral tegmental area. 

Each of these neurotransmitters appears to affect target neurons in a manner 

distinct from classical excitation or inhibition, and each has been implicated 

in the modulation of global behavioural states such as vigilance, mood, 

motivation, and arousal. 

The intent of this thesis is to advance our knowledge of the effects of 

putative "arousal" systems on hippocampal physiology in the dentate gyrus. 

Two systems were of interest: the lateral supramammillary nucleus of the 
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hypothalamus, which, despite a large projection to the hippocampus and 

other cortical areas, has received little attention from neuroscientists, and 

the medial septum/diagonal band, which has received a great deal of 

attention. 

This chapter will review the anatomy and physiology of the rat 

hippocampus, with emphasis on the portion of the hippocampus under 

investigation, the dentate gyrus. 

1. 1 The Hippocampus 

The hippocampal formation can be divided into three major subdivisions: 

the dentate gyrus, Ammon's horn (Cornus ammonis, or CA), and the 

subiculum complex, which in turn can be subdivided into the subiculum, 

presubiculum, and parasubiculum. Some choose to add the entorhinal cortex 

as a fourth subdivision of the hippocampal formation (Amaral and Witter, 

1989), whereas others group the subiculum complex and the entorhinal 

cortex together as the parahippocampus (or retrohippocampus), and the 

dentate gyrus and Ammon's Horn as the hippocampal formation (Lothman 

et al., 1991). The latter organization will be used here. Extensive reviews of 

the anatomy of the hippocampal formation and the parahippocampus have 

recently been published (Amaral and Witter, 1989; Lopes da Silva et 

al., 1990; Witter et al., 1989b; Swanson et al., 1987) 
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1 . 1 . 1 Gross Anatomy 

In the rat, the hippocampal formation is located between the thalamus and 

the neocortex. It is shaped like a cashew, its anterior pole starting just 

caudal to the septum, curving along its length laterally and ventrally to end 

in the lowermost aspect of the forebrain, just caudal and medial to the 

amygdala. 

The hippocampal circuitry is traditionally viewed in a transverse plane 

(perpendicular to the longitudinal axis), as presented in Fig. 1-1. Two 

interlocking cell layers are easily distinguished in this section. The principal 

cells of the dentate gyrus, the granule cells, form a horizontal V shape 

whose tip points to the contralateral hippocampus. The principal cells of 

Ammon's Horn, the pyramidal cells, form an interlocking C shape, where the 

lower blade originates between the two blades of the dentate gyrus and 

subsequently curves out and above the dentate gyrus to end distally at the 

subiculum. 

The basic arrangement of the hippocampal subfields are similar, for their 

apical dendrites arise from the principal cells and project in a parallel 

arrangement into a cell-poor region, the molecular layer in the dentate gyrus, 

and the stratum lacunosum-moleculare and stratum radiatum in Ammon's 

horn. Underneath the principal cell layers, the granule cell layer and the 

pyramidal cell layer, is a polymorph zone where cells of a variety of shapes 
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FIG. 1-1. Transverse view of the hippocampus. Shaded areas represent the 
principal cell layers with examples of each principal cell and a basket cell of 
the dentate gyrus. 
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lie scattered. The polymorph zone of the dentate gyrus lies between the 

blades of the granule cell layers and is called the hilar region or hilus. 

The pyramidal cell layer of Ammon's horn was originally subdivided into four 

subfields, CA 1 to CA4. CA 1 starts at the subicular end of Ammon's horn 

and is characterized morphologically by smaller pyramidal cell bodies packed 

at a greater density than the other subfields. CA2 and CA3 pyramidal cells 

are greater in size and more loosely packed, and found along the back and 

lower blade of Ammon's horn. CA2 pyramidal cells can further be 

distinguished by a lack of dendritic spines on their proximal apical dendrites. 

In subfield CA4 the pyramidal cells become more scattered, and are mixed 

with a wider variety of cell types than in other CA subfields. Due to an 

apparent structural and functional relationship with the dentate gyrus 

(Amaral, 1978; Schwartzkroin et al., 1990), this area will be referred to as 

the dentate hilar region as opposed to Ammon's horn. The CA3 field can be 

further subdivided into three regions. The large pyramidal cells adjacent to 

the dentate hilus are called CA3c, while the approximate middle of the CA3 

layer and the curved layer of CA3 cells adjacent to CA2 are called CA3b and 

CA3a, respectively. 

1 . 1 . 2 Cells of the Dentate Gyrus 

Granule cells have small cell bodies and few primary dendrites that arborize 

extensively into the molecular layer, forming a cone with the cell body at the 
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apex. Granule cells located deep in the granule cell layer give off a main 

apical shaft that branches immediately after entering the molecular layer 

(Frotscher and Leranth, 1986). Unlike pyramidal cells, they lack basal 

dendrites. All dendrites become densely covered with spines upon entering 

the molecular layer. Small spines and larger complex spines have been seen 

to emanate from the same dendrites, with larger complex spines being more 

numerous at the proximal portion (Frotscher and Zimmer, 1983). A single 

fine axon leaves the cell at the hilar end to join other "mossy fibres" which 

course through the hilus into Ammon's horn. Characteristic giant boutons on 

these unmyelinated axons give rise to the term "mossy fibres". 

Approximately 1 ,000,000 granule cells are found in the dentate gyrus of one 

hemisphere of the rat (Amaral et at., 1990). 

The less numerous non-granule cells of the dentate gyrus are quite 

heterogeneous when characterized morphologically. They are sparsely 

distributed in the molecular layer, but are more numerous deep within the 

granule cell layer and in the underlying hilar region. Twenty-one different cell 

types have been identified in the polymorph or hilar region and they vary 

from medium sized stellate and pyramidal shaped cells to very large mossy 

cells (Amaral, 1978). The most numerous and best characterized non-granule 

cells are the basket cells, which are closely associated with the granule cell 

layer, and the mossy cells which are usually found in the deep hilus. 
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The mossy cells are one of the most distinctive and numerous of the hilar 

cell types (Ribak et al., 1985; Amaral, 1978), and derive their name from the 

fact that their proximal dendrites are covered with a dense coating of spines 

and "thorny excrescences" (Amaral, 1978). They have large multipolar cell 

bodies, and a very large dendritic tree that spans the hilus in all directions 

and extends into the dentate molecular layer (Amaral, 1978; Frotscher et 

al., 1991), where some will reach the outer zone (Scharfman, 1991 ). 

The basket cells, have been subdivided into five different types that vary 

in regard to their somal location, their somal shape, and their dendritic 

arborization (Ribak and Seress, 1983). They all have smooth dendritic 

surfaces due to the lack of spines and their axons arborize within the granule 

cell layer to form a basket plexus (Amaral, 1978; Ribak and Seress, 1983), 

hence their name. Basket cells are found most often embedded in, or directly 

beneath, the granule cell layer. Their basal dendrites run parallel to this layer 

or descend into the hilar region. A single or branching dendrite ascends into 

the molecular layer. These cells are noticeably larger then granule cells and 

have a ratio of about one basket cell for every 180 granule cells (Amaral et 

al., 1990). It is not known whether a portion of deep hilar neurons participate 

in the "baskets" around granule cells (Ribak and Seress, 1983). 

Basket cells have been classified as pyramidal, fusiform, horizontal, inverted 

fusiform or molecular layer basket cells (Ribak and Seress, 1983). The first 



10 

four category titles are indicative of their shape, and they are found 

predominantly in the granular or subgranular layers. The last category 

specifies cells of multipolar shape found in the molecular layer adjacent to 

the granule cell layer. 

Immunocytochemical studies employing antibodies against the gamma

aminobutyric acid (GABA) synthesizing enzyme glutamate decarboxylase 

(GAD), suggests that all basket cells and 60o/o of the hilar cells are 

GABAergic (Ribak et al., 1978; Seress and Ribak, 1983; Gamrani et 

al., 1986). A subset of the basket cells are also immunoreactive for 

parvalbumin (Katsumaru et al., 1988; Nitsch et al., 1990; Soriano and 

Frotscher, 1989) or calretinin (Gulyas et al., 1992; Miettinen et al., 1992), 

two calcium-binding proteins. Furthermore, a subset of the basket cells are 

also positive for cholecystokinin (CCK) or vasoactive intestinal peptide (VIP) 

(Sioviter and Nilaver, 1987b). 

Many somatostatin-positive cells surrounded by a plexus of GABA-, CCK-, 

and VIP- positive fibres have been identified in the hilus (Sioviter and Nilaver, 

1987b). These cells are aspinous, often multipolar or spindle-shaped, and 

innervate the outer two-thirds of the dentate molecular layer (Bakst et 

al., 1986; Van der Zee et al., 1991). The majority of these cells (about 90%) 

contain the inhibitory neurotransmitter GABA or its synthesizing enzyme 

glutamate decarboxylase (GAD) (Kosaka et al., 1988; Schmechel et 
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at., 1984}. Furthermore, a number of the somatostatin cells are 

immunoreactive for neuropeptide Y as well (Kohler et at., 1987}. A set of 

cells that were generally small in soma size and number, were VIP-positive 

and found scattered throughout the dentate gyrus (Sioviter and Nilaver, 

1987b}. 

On the basis of cell morphology, axonal targets, and resident 

neurotransmitters, it was postulated that three main populations of dentate 

interneurons exist (Sioviter and Nilaver, 1987b}. One consists of GABA cells 

which are primarily basket cells with subsets containing VIP or CCK. The 

second population consists of the somatostatin aspinous cells, and the third 

are the hilar mossy cells, which are apparently GABA and peptide-negative. 

An additional subpopulation of hilar cells has recently been characterized 

enough to warrant mention. These cells are immunoreactive to calretinin, a 

calcium-binding protein of the calmodulin family, and were found to form 

two distinct cell groups, spiny and spine-free cells (Gulyas et at., 1992; 

Miettinen et al., 1992}. The majority of spine-free cells were immunoreactive 

for GABA, while few spiny cells ( 11 %} were considered GABA positive. 

Many of the spine-free cells were characteristic of the basket cells of the 

dentate gyrus. The spiny cells can be compared to the long-spined multipolar 

hilar cells described by Amaral (Amaral, 1978}. Their dendrites were 

restricted to the hilus. 
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1. 1 .3 Connections 

1.1.3.1 The Entorhinal Connection 

The entorhinal cortex plays a strategic role in relation to the hippocampal 

formation, since it provides the major extrinsic input to this area and serves 

as one of the primary targets of hippocampal output. The entorhinal cortex 

receives direct projections from the olfactory bulb and from other cortical 

areas that the olfactory bulb contacts, as well as from multimodal 

association areas of the temporal, prefrontal, cingulate, and insular regions 

(Swanson et a1.,1987). 

Within the entorhinal cortex six cortical layers are distinguished that are 

described as the superficial (layers 1-111) and deep (layers IV-VI) layers. The 

entorhinal cortex is further subdivided into a lateral (LEC) or medial (MEC) 

entorhinal cortex based on differences in cytoarchitecture and projection 

sites (Hjorth-Simonsen, 1972; Steward, 1976; Ruth et al., 1982; Germroth 

et al., 1991). Layer II neurons of LEC are very densely packed and tend to be 

clustered in patches whereas in the MEC their distribution is more uniform, 

they are slightly larger, and less densely packed. A differential distribution 

of sensory modality inputs also distinguishes the two regions, as the 

olfactory input to the entorhinal cortex is denser in the LEC than in the MEC 

(Kosel et al., 1981; Haberly and Price, 1978). 
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As implied earlier, the entorhinal cortex gives rise to a massive projection 

to the hippocampal formation, whose trajectory is called the perforant path, 

which terminates predominantly in the dentate gyrus (Hjorth-Simonsen, 

1972; Steward, 1976; Wyss, 1981; Ruth et al., 1982; Ruth et al., 1988). 

These axons arise from neurons of layers II and Ill, with the latter originating 

from predominantly pyramidal cells to contact Ammon's horn and the former 

from predominantly stellate cells to contact the dentate gyrus (Steward and 

Scoville, 1976; Eberhard et al., 1989; Germroth et al., 1991; Lingenhohl and 

Finch, 1991 ). A few neurons from the deep layers also innervate the 

hippocampal formation (Kohler, 1985b). Individual neurons within the 

entorhinal cortex may send collaterals to other sites, as well as the 

hippocampus (Lingenhohl and Finch, 1991). 

To enter the hippocampal formation, the perforant path traverses the 

subiculum, and divides into two distinct branches (Witter, 1989a). One 

enters the dentate gyrus after "perforating" the hippocampal fissure, while 

the second stays within Ammon's Horn to synapse with pyramidal cells in 

CA3 and CA1. 

The perforant path fibres have been shown to form asymmetric synapses 

on dendrites in the molecular layer of the dentate gyrus, and in fields CA 1 

and CA3 of Ammon's Horn, and these fibres use glutamate as their 

neurotransmitter (Hjorth-Simonsen, 1972; White et al., 1977; Bramham et 
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al., 1990; Grandes and Streit, 1991 ). The perforant path fibres make synaptic 

contact with granule cell dendrites, where virtually all excitatory contacts are 

found on spines (Andersen et al., 1966b). Entorhinallesions produce electron

dense, degenerating terminals which synapse with characteristic spine 

formations (Matthews et al., 1976) that have been found to arise from 

identified granule cell dendrites (Frotscher and Zimmer, 1983; Lubbers and 

Frotscher, 1987). It has been estimated that each granule cell receives 

approximately 5,000 (Amaral et al., 1990) to 10,000 (West and Andersen, 

1980) synapses, most of which are excitatory. A small population of 

GABAergic neurons also participates in the entorhino-hippocampal projection 

(Germroth et al., 1989). Since degeneration of perforant path fibres following 

entorhinal or perforant path lesions only involves asymmetric synapses on 

granule and pyramidal cells (Fifkova, 1975; Nafstad, 1967), it has been 

hypothesized that the perforant path fibres utilizing GABA terminate on local 

inhibitory neurons (Germroth et al., 1991). 

The entorhinal fibres in the dentate gyrus show a laminated termination. 

Fibres arising from the MEC project to the middle third of the molecular layer 

and fibres arising from the LEC terminate in the outer third of the molecular 

layer. Within the MEC-middle zone projection, lateral parts of the MEC 

project to the outer part of the middle zone whereas medial parts of the MEC 

project to the inner portion of the middle zone (Witter, 1989a). Fibres of the 
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perforant path account for approximately 85% of the synapses in the outer 

two-thirds of the molecular layer (Hoff et al., 1982; Matthews et al., 1976). 

The impetus to divide the molecular layer into thirds is supported by other 

evidence. The middle zone stains densely for cholecystokinin (CCK) whereas 

the outer zone is characterized by a strong enkephalin fibre plexus (Chavkin 

et al., 1985; Fredens et al., 1984; Gall et al., 1981; S~engaard-Pedersen et 

al., 1983). As well, immunostaining for different cell surface glycoproteins 

divides the three zones of the molecular layer on the basis of the segregated 

distribution of individual glycoproteins (Woodhams et al., 1992; Woodhams 

et al., 1991). Finally, immunocytochemical staining for the cellular and 

subcellular distribution of glutamate in the hippocampus demonstrates higher 

nerve terminal concentrations of glutamate in the outer zone of the molecular 

layer as opposed to the other two zones (Bramham et al., 1990). The 

functional significance of these zone distinctions has yet to be determined. 

Entorhinal input to the dentate gyrus is not limited to the granule cells. 

Some perforant path fibres establish asymmetric (presumably excitatory) 

synapses on smooth dendritic shafts of inhibitory (GABAergic) neurons 

whose cell bodies are found in the hilar region (Zipp et al., 1989). As well, 

light projections from both the MEC and the LEC have been found in the hilar 

region (Wyss, 1981) where a subset give rise to fibre plexuses in the 

subgranular layer (Kohler, 1985a), which is populated mainly by basket cells. 
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1.1.3.2 The Trisynaptic Circuit 

The perforant path-dentate connection gives rise to the first synapse of 

what is traditionally known as the trisynaptic circuit. The granule cells, in 

turn, send mossy fibres to synapse at the proximal dendrites of CA3 

pyramidal cells, which in turn, send "Schaffer collaterals" to CA 1 pyramidal 

cells to form the third synapse. All members of this chain probably use the 

neurotransmitter glutamate (Bramham et al., 1990). CA 1 pyramidal cell 

fibres, according to this organizational concept, were seen as the major 

output pathway from the hippocampal formation. While this functional 

organization is essentially correct today, more studies are required to 

determine the contribution of the direct entorhinal inputs to both CA3 and 

CA1 [cf. (Yeckel and Berger, 1990)]. 

The early anatomical and physiological studies lead to the "lamellar" 

hypothesis to describe the three-dimensional organization of the major 

intrinsic hippocampal connections that make up the trisynaptic pathway 

(Andersen et al., 1971 b; Rawlins and Green, 1977). They concluded that the 

four pathways of this circuit are all oriented in the same direction, 

transversely to the longitudinal axis. Stimulating a small area of the 

entorhinal cortex, according to this hypothesis, would lead to a small slice, 

or lamella, of tissue being activated by the four projections in rapid 

succession. They went on to suggest that small strips of the hippocampus 
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may then operate as independent functional sectors, noting that 

interconnections between neighbouring lamella may have a modulating 

influence. Indeed, this lamellar plan provided a catalyst for hippocampal slice 

studies which involved placing a transverse section of the hippocampal 

formation into a bath in order to study its intrinsic, and presumably intact, 

circuitry. 

The advent and use of more sophisticated tract tracing techniques has 

demonstrated that this plan is oversimplified {Amaral and Witter, 1989; 

Witter et al., 1989b). The concept of lamellar organization holds true only for 

the mossy fibre projection to CA3. The perforant pathway, the Schaffer 

collaterals, and the CA 1 axons form a relatively widespread terminal area 

along the longitudinal axis of the hippocampus. 

1.1.3.3 Local Circuitry of the Dentate Gyrus 

Hilar cells and the granular layer basket cells do not contribute to the 

trisynaptic circuit, but instead terminate in the dentate gyrus either ipsilateral 

or contralateral to the cell of origin. For this reason, the term "local circuit" 

or interneuron will be used for these cells, even though their axons may 

project out of the immediate vicinity. The fibres are called either 

associational, if they terminate ipsilaterally, or commissural, if they terminate 

contralaterally. The commissural fibres arise from the hilus only {Berger et 

al., 1980; Laurberg and Sorensen, 1981), mainly from the mossy cells 
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(laurberg and Sorensen, 1981), and terminate in the inner third of the 

molecular layer and throughout the contralateral hilus of the dentate gyrus 

(Hjorth-Simonsen and Laurberg, 1977). Commissural and associational 

projections to the dentate gyrus can arise from the same neurons (laurberg 

and Sorensen, 1981 ). Many of these local circuit cells send dendrites into 

the molecular layer to receive perforant path input and they also receive 

mossy fibre input from the granule cells. The local circuit neurons, in turn, 

feed back onto the principle cells to control the "gating" of information 

through the trisynaptic circuit. These neurons receive a number of 

subcortical inputs, many of which send a large portion of their fibres to these 

local circuit neurons, rather than to other hippocampal subfields. Therefore, 

understanding the local circuitry of the dentate gyrus is critical in 

understanding the mechanism by which subcortical inputs control the flow 

of information through the hippocampus. 

In order to build a functional model of the local dentate circuitry, details 

about the connections of each cell type with the granule cells, the perforant 

path input, and each other are necessary. Furthermore, their 

neurotransmitters and mode of termination will also give clues about their 

role in this model. 

1.1.3.3.1 Somatostatin-immunoreactive Aspiny Cells 
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Dendrites of somatostatin-immunoreactive aspiny cells have been observed 

in the molecular layer of the dentate gyrus (leranth et al., 1990), which 

confirms earlier reports that some aspiny hilar cells send dendrites to the 

molecular layer (Amaral, 1978). These same dendrites are postsynaptic to 

perforant path fibres (Leranth et al., 1990), confirming a direct input from the 

entorhinal cortex. 

Electrophysiologically, somatostatin-immunoreactive neurons have been 

shown to receive extremely powerful, monosynaptic short-latency inputs 

from the perforant path (Sioviter, 1987a). The dendrites of somatostatin

immunoreactive cells that are restricted to the hilus receive mossy fibre 

collaterals (Leranth and Frotscher, 1987; Leranth et al., 1990). The outer 

two-thirds of the molecular layer contain a plexus of somatostatin

immunoreactive fibres, whereas the inner third and the granule cell layers 

show only scarce fibres (Bakst et al., 1986). Neuropeptide Y fibres innervate 

the same area (Deller and Leranth, 1990) and are likely to arise from the 

same cells. These fibres originate from cells in the hilus, rather than from 

cells outside the hippocampus (Kohler et al., 1986; Bakst et al., 1986). Since 

90% of somatostatin-immunoreactive cells apparently contain the inhibitory 

neurotransmitter GABA (Kosaka et al., 1988; Schmechel et al., 1984), and 

their synapses onto granule cell dendrites are symmetrical (Leranth et 

al., 1990), it is likely that these cells modulate the entorhinal input through 
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inhibition, although there is no physiological evidence that these cells are 

inhibitory. Preliminary evidence has been reported to demonstrate that 

somatostatin does depress perforant path excitatory postsynaptic potentials 

(EPSP) in granule cells when somatostatin is ejected in the outer molecular 

layer (Schwartzkroin et al., 1990). Somatostatin-immunoreactive terminals 

frequently form synapses with the base of the same spines that putatively 

receive entorhinal asymmetric synapses (Leranth et al., 1990), placing them 

in an ideal situation for controlling the amount of excitation generated by 

perforant path fibres. A small portion of somatostatin and neuropeptide Y 

cells ( < 5 %) send contralateral fibres to the dentate gyrus (Leranth and 

Frotscher, 1987; Bakst et al., 1986; Deller and Leranth, 1990; Kohler et 

al., 1986). These commissural fibres appear to terminate very lightly in the 

outer half of the molecular layer (Bakst et al., 1986), rather than the inner 

third which is normally the target of commissural fibres. 

Somatostatin/neuropeptide Y neurons form symmetrical (putative inhibitory) 

synapses on other hilar neurons (Deller and Leranth, 1990; Leranth et 

al., 1990) as well. Symmetrical synapses are commonly found on 

somatostatin-immunoreactive hilar cells, and they are therefore under 

inhibitory influences themselves. 

1.1.3.3.2 Basket Cells 



21 

As discussed earlier, the unifying characteristic of basket cells is the 

distribution of their axons into a basket plexus on the soma and inner 

molecular layer of the granule cells (Ribak and Seress, 1983), and since 

most, if not all basket cells, are GABAergic, they likely produce a strong 

inhibitory effect upon granule cells. Basket cell axons usually branch close 

to the cell body and give rise to collaterals that innervate granule cells for 

relatively long distances on either side of the parent cell body (Ribak et 

al., 1978; Seress and Ribak, 1983). Their axons may extend for up to one 

millimetre in the longitudinal axis and may synapse with as many as 500 

granule cells (Struble et al., 1978). There is no evidence that these granule 

layer basket cells innervate neurons in the hilus (Ribak and Seress, 1983). 

Entorhinal projections have been found to make direct synaptic contact 

with the smooth dendrites of basket cells found in the molecular layer (Zipp 

et al., 1989), and basket cells may also receive sparse entorhinal input in the 

subgranular zone where most of their cell bodies are located (Kohler, 1985a). 

Furthermore, typical basket cells were shown to receive asymmetric synaptic 

contacts with recurrent mossy fibre collaterals (Lubbers and Frotscher, 

1987; Ribak and Seress, 1983) and with commissural afferents from the 

contralateral hilus (Seress and Ribak, 1984). 

1.1.3.3.3 Calretinin-immunoreactive Spiny Cells 
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The dendrites of calretinin-immunoreactive spiny cells never leave the hilus, 

running horizontally to the granule cell layer (Gulyas et al., 1992), therefore 

it is unlikely that they receive direct input from the entorhinal cortex. 

Calretinin-immunoreactive spiny cells are almost completely covered by 

asymmetrical synapses, an unusual property for hilar cells. It was estimated 

that 9,000 to 27,000 mossy fibres synapse onto a single calretinin

immunoreactive spiny cell, whereas symmetrical synapses were rarely found 

(Gulyas et al., 1992), another unusual feature for hilar cells. The lack of 

symmetric (putative inhibitory) synapses and the abundance of mossy fibre 

connections explains why spiny hilar cells, a broader category which includes 

mossy cells and calretinin-immunoreactive spiny cells, have been reported to 

be extremely sensitive to afferent excitation, and inhibitory postsynaptic 

potentials were rarely recorded (Scharfman and Schwartzkroin, 1988; 

Scharfman and Schwartzkroin, 1990; Scharfman, 1991). Calretinin

immunoreactive cells and mossy cells both contribute to the commissural 

projection to the contralateral dentate gyrus. (Miettinen et al., 1992) . 

The primary neurotransmitter for calretinin-immunoreactive cells has yet to 

be determined, but, a small number of these spiny cells ( 11 %) were found 

to be immunoreactive to GABA (Miettinen et al., 1992). Their mode of 

termination onto granule cells may be restricted to the supragranular layer, 

which receives a significant input from calretinin-immunoreactive fibres. 
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However, since calretinin-immunoreactive cells in the supramammillary area 

of the hypothalamus also terminate in the supragranular layer, their site of 

termination remains speculative. 

1.1.3.3.4 Mossy Cells 

Isolated dendrites of mossy cells have been seen to enter the molecular 

layer and reach as far as the outer molecular layer (Scharfman, 1991), 

however, a majority of their dendrites remain in the hilus. Mossy cells likely 

use glutamate as their neurotransmitter (Storm-Mathisen et al., 1983; Fischer 

et al., 1986). Mossy cells give rise to a large portion of the commissural 

projections (Ribak et al., 1985; Frotscher et al., 1991). Numerous mossy 

fibres make synaptic contact with mossy cells which, in turn, send their 

fibres to make asymmetric synapses on other local circuit neurons in the 

hilus (Ribak et al., 1985; Scharfman et al., 1990), and on the inner molecular 

regions of the dentate gyrus (Laurberg and Sorensen, 1981; Frotscher et 

al., 1991). Mossy cell axons travel several millimetres along the longitudinal 

axis of the hippocampus before they terminate in the inner molecular zone 

(Amaral and Witter, 1989), thus avoiding contact with granule cells in the 

same transverse hippocampal segment. Symmetric synapses are also 

commonly found on mossy cells (Ribak et al., 1985), a significant portion of 

which are likely to be GABA-immunoreactive terminals (Sioviter and Nilaver, 

1987b). 
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Despite the existence of symmetrical synapses onto mossy cells, like other 

spiny hilar cells, excitatory input dominates as a result of perforant path 

excitation (Scharfman, 1992). Perforant path stimulation currents that are 

subthreshold for granule cell activation will produce action potentials in 

identified mossy cells (Scharfman, 1991). Surprisingly, a study using 

combined intracellular recording from granule cells and mossy cells in the 

hippocampal slice found no evidence of synaptic connections in either 

direction despite slice orientations ranging from transverse to longitudinal 

(Scharfman et al., 1990). The authors concluded that it is unlikely that the 

relatively long axons were spared transection in the slice preparation before 

contacting granule cells. In another study, the burst activity of mossy cells 

(and other hilar cells) in the guinea pig slice was found to be associated with 

granule cell inhibition (Misgeld et al., 1992a). 

1.1.3.3.5 Conclusion 

Non-mossy cell local circuit neurons seem to share a number of important 

characteristics, regardless of their shape or position. Most appear to be 

inhibitory and have activation thresholds lower than granule cells 

(Scharfman, 1991). This makes them likely candidates for the role of feed

forward inhibition observed to be a factor in granule cell excitability (Buzsaki, 

1984; Sloviter, 1991 ). The somatostatin-immunoreactive cells and basket 
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cells appear to fall into this category, since their dendrites have been shown 

to receive direct innervation by perforant path fibres. 

All non-mossy local circuit cells are also likely candidates for feedback 

inhibition, since they receive mossy fibre input, and in turn project back to 

the granule cells. The calretinin-immunoreactive spiny cells may mediate 

feedback inhibition alone, since there is no evidence of a direct input to them 

arising from the entorhinal cortex, or they may mediate feedback excitation, 

since their neurotransmitter has not been identified, and the existence of an 

excitatory hilar interneuron other than a mossy cell has been described 

{Scharfman et al., 1990). 

The circuitry of mossy cells implies a role in feed-back and feed-forward 

excitation of granule cells, however this modulation is likely to occur at some 

distance from the parent cell. Mossy cells innervate other local circuit 

neurons, thus if the preferential effect of mossy cell output were activation 

of inhibitory local circuit neurons, than the net effect upon granule cells 

would be inhibitory. A preferential inhibitory effect gains some support by 

the fact that the loss of mossy cells (and somatostatin-immunoreactive cells) 

correlates with the induction of granule cell seizure activity and a reduction 

in feedback inhibition (Sioviter, 1987a). The inhibition of granule cells 

associated with mossy cell bursts in the guinea pig slice (Misgeld et 

al., 1992a) also supports this hypothesis. 
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1 . 1.4 Electrophysiology of the Hippocampus 

Most of the data arising from studies on the electrophysiology of the 

dentate gyrus have been obtained by means of field recordings of 

spontaneous slow activity, evoked potentials, and single unit activity. The 

following section will give a brief review of the data obtained from the first 

two methods whereas single units will be discussed in detail later. 

1 . 1 .4. 1 Evoked Field Potentials 

Stimulation of the perforant path to the dentate gyrus produces field 

potentials that can be recorded by means of extracellular electrodes. By field 

potential analysis of these evoked responses it is possible to determine the 

excitability changes of a population of granule cells (Andersen et at., 1966a; 

Lorna, 1971 ). 

1 . 1 .4. 1. 1 Single Evoked Field Potentials 

Single stimulation of the perforant path evokes a glutamate-mediated 

monosynaptic field potential with at least two major components, the 

population EPSP and the population spike. 

The population EPSP is mainly a recording of the current flow into the 

dendrites (sink) of the granule cells subsequent to their synaptic activation 

by perforant path fibres synapsing at the outer two-thirds of the molecular 

layer. At any location, the field potential depends on the linear sum of 

potentials from each of the current sources and sinks, weighted according 
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to distance and the extracellular conductivity (ct. Leung, 1990). If measured 

at the dendrites, this potential is seen as a negative deflection. As the 

electrode descends to the cell body the field potential "flips" at a reversal 

point, and the population EPSP is now seen as a positive wave. 

The population spike is mainly a recording of the current flow into the axon 

hillock as a result of granule cell action potentials generated by a sufficient 

accumulation of dendritic EPSPs. Measured at the granule cell layer, this 

wave is seen as a negative deflection superimposed onto the positive wave 

generated by the dendritic EPSPs (Figure 2-1). The population spike reflects 

an averaged potential change of neurons in the vicinity of the recording 

electrode, the amplitude of which is dependent on the number of granule 

cells that discharge in synchrony (Andersen et at., 1971 c; Lomo, 1971). 

Similarly, the amplitude or slope of the population EPSP reflects the number 

of perforant path fibres activated by the stimulus, and the efficacy of the 

synaptic process involving such determinants as the amount of 

neurotransmitter release and the sensitivity of postsynaptic receptors (lomo, 

1971). 

It has been suggested that a third component contributes to the shape of 

the perforant path-evoked field potential (Andersen et at., 1966a). Adding to 

the second positive wave that follows a population spike, it reflects an 

outward current across the soma membrane as a result of inhibitory synaptic 
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activity that has been recorded intracellularly in granule cells (Andersen et 

al., 1966a). These IPSPs presumably arise from feed-forward and/or feed

back activation of inhibitory local circuit neurons, the majority of which 

contain GABA. Inward movement of chloride ions as a result of GABA 

receptor activation would represent an outward current, that, when 

measured at the granule cell layer, should add a positive deflection to the 

field potential. A significant contribution of soma inhibitory postsynaptic 

potentials (IPSPs) to the shape of an evoked field potential is, however, 

equivocal. Bicuculline, a GABA receptor antagonist, has been found to either 

abolish (Aivarez-Leefmans, 1976), or have no effect upon (Sioviter, 1991), 

the size and shape of the second positive wave. 

1.1.4.1.2 Paired-pulse Evoked Potentials 

Evoking two field potentials in quick succession can yield a series of 

changes in granule cell responses to the second stimulus. The impetus for 

such a paradigm is that the first input of any pair of stimuli in the train 

activates the local network, and the second input tests the modulatory 

influence of the network excited by the initial input. The use of this classic 

paired-pulse technique has led to the identification of three distinct phases 

identified by the interstimulus interval. While most of this work has been 

performed on anaesthetized animals, it has been found that their 
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manifestation in unrestrained animals is dependent on the animal's 

behavioural state (Austin et al., 1989). 

Short perforant path stimulus intervals (approximately 10-40 ms) produce 

an early period of inhibition (Andersen et al., 1971 a), where both the 

population EPSP and the population spike of the second field potential are 

depressed (Adamec et al., 1981; Sundstrom and Mellanby, 1990). Early 

inhibition can be demonstrated most clearly at a low interpair stimulus 

frequency of 0.1 Hz (Sioviter, 1991). While both the first and second field 

potential pairs will contain a measure of feed-forward inhibition, the second 

field potential is further reduced because of the addition of feedback 

inhibition, where recurrent mossy fibre collaterals activated by the first pulse 

have activated inhibitory local circuit neurons, which then feedback onto the 

granule cells. 

Early inhibition is thought to be mediated by GABA, since during this phase 

inhibition can be enhanced by GABA-uptake blockers (Albertson and Joy, 

1987) and reduced by picrotoxin and bicuculline (Tuff et al., 1983). Two 

GABA receptor types have been identified, the GABA-A receptor, which 

predominantly mediates increases in chloride conductance (Schofield et 

al., 1987), and the GABA-8 receptor, which mediates an increase in 

potassium conductance (Gahwiler and Brown, 1985) and/or a decrease in 

the conductance of voltage-dependent calcium channels (Dolphin and Scott, 
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1974). As stated, picrotoxin and bicuculline, which are GABA-A receptor 

antagonists, reduce inhibition during the early inhibition phase, presumably 

by blocking postsynaptic receptors in the granule cells. 

More recently it been shown that a GABA-B agonist, baclofen, reduces 

inhibition (Harris and Cotman, 1985; Burgard and Sarvey, 1991; Steffensen 

and Henriksen, 1991), and a GABA-B antagonist, CGP-35348, increases 

inhibition (Brucato et al., 1992) during the early phase. These results led the 

researchers to speculate that the critical GABA-B receptors are found on 

presynaptic GABA terminals, where it has been demonstrated that GABA-B 

receptor-activation on GABA terminals inhibits the release of GABA (Yoon 

and Rothman, 1991; Bowery et al., 1980; Potashner, 1978), and hence 

would produce disinhibition. The second phase is characterized by a 

facilitation of the second spike, and occurs with perforant path stimulus 

intervals of approximately 30 to 200 ms (Racine and Milgram, 1983). The 

final, or late inhibitory phase, is characterized by a marked depression of 

granule cell excitability if the second pulse is given approximately 200-1000 

ms behind the first. Early studies suggested that late inhibition is not GABA 

mediated since it was not blocked by bicuculline or enhanced by diazepam 

(Tuff et al., 1983), which facilitates GABA binding to GABA-A receptors. 

More recent work suggests that the inhibition observed during the late phase 

is similar to that produced during the early phase (Steffensen and Henriksen, 
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1991). Not only did bicuculline reduce the paired-pulse inhibition, but 

baclofen increased it, leading the researchers to suggest that the early and 

late phases of paired-pulse inhibition represent one prolonged GABA

dependent process that is superimposed on an independent facilitatory 

process. The NMDA glutamate receptor (described in the next section) plays 

a dominant role in this facilitatory phase. Paired-pulse facilitation of the 

population spike is attenuated or blocked by the administration of NMDA 

receptor-ion channel blockers (Joy and Albertson, 1993). 

1. 1 .4. 1 .3 Long-term Potentiation 

Since the discovery that a brief high-frequency train of stimuli to the 

perforant path produces a lasting increase in the population EPSP and spike 

(Bliss and Lomo, 1973; Bliss and Gardner-Medwin, 1973), a phenomenon 

called long-term potentiation (L TP), an intense interest has developed in L TP 

largely because of its qualification for being a synaptic mechanism for 

memory (Aikon et al., 1991; Laroche et al., 1988; Jerusalinsky et al., 1992; 

Matthies et al., 1990; Watanabe et al., 1992; deToledo-Morrell et al., 1988; 

Krug et al., 1989; Eccles, 1988; Krug et al., 1991 b; Kitajima and Hara, 1991; 

Krug et al., 1991 a; Ruth rich et al., 1987; Ramirez et al., 1988; Laroche et 

al., 1991). The following represents a brief introduction to L TP. A number of 

reviews have recently been published (Kuba and Kumamoto, 1990; Sarvey 

et al., 1989; Eccles, 1988; Massicotte and Baudry, 1991). 
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L TP can be generated by applying a brief, high frequency repetitive stimulus 

train to any one of the fibre tracts that make up the trisynaptic circuit. The 

stimulus parameters used to generate LTP in the dentate gyrus are 

commonly one tetanus of 100 pulses or 5-8 tetani of 8 pulses at 100-400 

Hz to the perforant path. Apparently the brief, patterned trains of stimulation 

are more efficacious than a single larger train, especially if the brief trains are 

separated by an interval of approximately 200 ms {Larson and Lynch, 1986; 

Larson et al., 1986; Larson and Lynch, 1988; Greenstein et al., 1988; Larson 

and Lynch, 1989), which matches the frequency of the spontaneously

occurring hippocampal theta rhythm {see next section). 

The resulting potentiation can last for hours to days in vivo. L TP of either 

the population EPSP or population spike in the dentate gyrus has been 

observed to last for 80 days following the requisite tetanus to the perforant 

path {Racine et al., 1983). The intensity of the stimulus must exceed the 

intensity of a stimulus which produces a minimum postsynaptic response, 

suggesting a threshold determined by the number of afferents that must be 

coactivated {Bliss and Lomo, 1973; McNaughton et al., 1978). The threshold 

appears to be below the intensity required to produce a detectable population 

spike {McNaughton et al., 1978). The amount of postsynaptic depolarization 

is critical to the induction of L TP and achieved when the frequency of the 

stimulus train allows postsynaptic EPSPs to overlap and summate over time 
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(Gamble and Koch, 1987). Postsynaptic depolarization alone, however, does 

not produce L TP, for only at synapses in which depolarization is paired with 

activation of the synapse does L TP occur (Gustafsson et at., 1987; Wigstrom 

et at., 1986). 

Another essential requirement for the induction of L TP involves an elevation 

of calcium levels in the postsynaptic cell. Injection of calcium chelators such 

as EGTA into postsynaptic neurons prevent the induction of L TP in those 

neurons (Lynch et at., 1983). Furthermore, increased release of calcium into 

postsynaptic neurons produces a potentiation of synaptic transmission 

(Malenka et at., 1988). More recent evidence suggests that the magnitude of 

postsynaptic calcium increase is a critical variable controlling the duration of 

synaptic enhancement (Malenka, 1991 ). 

Possible sources for this calcium increase include voltage-dependent 

calcium channels, release from intracellular stores, and an influx through a 

glutamate receptor ionophore. The latter possibility has been shown to be 

critical for L TP at synapses that possess the NMDA receptor. Glutamate can 

bind to at least four receptors [see (Gasic and Hollmann, 1992) for a review], 

three of which are coupled to transmembrane ion channels and are identified 

by the selective agonists active at each type; N-methyi-D-aspartate (NMDA), 

quisqualate or AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole 

propionate), and kainate. The latter two are often called non-NMDA 
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receptors and are the principal receptor-ion channels that generate the EPSP 

at resting potential in all principal neurons of the hippocampus (Crunelli et 

al., 1983; Collingridge et al., 1983). The non-NMDA receptors are largely 

chemical-dependent, meaning their activation is dependent on the amount 

of glutamate that reaches the postsynaptic site. The NMDA receptors, 

however, are chemical- and voltage-dependent, for the presence of 

glutamate alone is not enough to allow ion passage through its ionophore. 

NMDA receptors are associated with an ion channel that is blocked by 

magnesium at the resting membrane potential (Mayer et al., 1984; Nowak et 

al., 1984). Hence, the temporal summation of EPSPs as a result of a tetanus 

brings the membrane potential to a level where magnesium ions no longer 

block the NMDA receptor channels, thereby allowing their functional 

activation. This explains the concomitant requirement of synaptic activity 

and postsynaptic depolarization for L TP to occur, at least at those excitatory 

synapses where NMDA receptors are involved. 

This activation of the NMDA receptor-channel results in a considerable 

amount of calcium influx into the region of the cytoplasm beneath the 

activated synapses (Dingledine, 1983; Kudo and Ogura, 1986; Mody and 

Heinemann, 1986). The hypothesized role of NMDA receptors in the 

generation of L TP is confirmed by observations that NMDA receptor 

antagonists block the induction of L TP, but do not reverse L TP once it is 
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established (Errington et al., 1987; Morris et al., 1986). Therefore, four 

factors are important in the induction of L TP: (1) the amount and pattern of 

afferent stimulation, (2) postsynaptic activation of sufficient depolarization, 

(3) NMDA receptor activation, and (4) calcium influx. 

The highest concentrations of NMDA receptors in the brain are found in the 

stratum radiatum of field CA 1 and the molecular layer of the dentate gyrus 

(Cotman et al., 1987). The mossy fibre terminal zone on CA3 pyramidal cells 

is devoid of NMDA receptors (Monaghan and Cotman, 1985), which explains 

the inability of NMDA antagonists to block L TP induction at this site (Harris 

and Cotman, 1986). While some other sites in the brain are able to exhibit 

non-NMDA mediated L TP (Johnston et al., 1992), the receptor is critical for 

most aspects of L TP induction in the hippocampus. 

In the dentate gyrus, the NMDA receptor may not mediate all aspects of 

L TP. Curiously, in the urethane-anaesthetized rat, NMDA receptor blockers 

have been shown to block the enhancement of the population spike when 

the tetanus is applied to the lateral perforant path, without blocking the 

enhancement of the population EPSP (Bramham et al., 1991). NMDA blockers 

successfully blocked both components of L TP in the medial path. In the 

guinea pig hippocampal slice, however, NMDA antagonists blocked both 

aspects of L TP in both pathways (Hanse and Gustafsson, 1992b). Either a 
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species difference or a preparation difference may underlie these 

contradictory results. 

Since depolarization of the postsynaptic membrane is critical to the 

induction of L TP, it follows that interneuron-mediated inhibition, which limits 

postsynaptic depolarization during a stimulus train, may determine the 

threshold at which L TP can be induced. When inhibition is blocked with 

picrotoxin, a GABA-A receptor antagonist, depolarization during a stimulus 

train is enhanced, facilitating L TP induction (Wigstrom and Gustafsson, 

1983). More recently, it was reported that GABA-8 receptor-mediated 

disinhibition is required for L TP induction with stimulation in the frequency 

range of the theta rhythm (Matt and Lewis, 1991 ). 

The mechanisms of expression or maintenance of L TP are less well 

understood, including whether it is predominantly a pre- or postsynaptic 

phenomenon. Since the induction of L TP is calcium-dependent, this second 

messenger may trigger the subsequent cascade of biochemical events 

responsible for sustaining L TP [for a review see (Abraham and Otani, 1991; 

Massicotte and Baudry, 1991; Kuba and Kumamoto, 1990)]. A fourth class 

of glutamate receptors, the metabotropic receptor (or family of metabotropic 

receptors (Tanabe et al., 1992)), has recently been reported [for review see 

(Baskys, 1992; Schoepp, 1993)] and may also be important for the induction 

of L TP (Stanton et al., 1991; Otani and Ben-Ari, 1991; Bartolotta and 
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Collingridge, 1992; Aniksztejn et al., 1992; Zheng and Gallagher, 1992; 

McGuinness et al., 1991), however its role in L TP induction is less clearly 

understood and awaits further clarification. The metabotropic receptor is not 

directly coupled to ion channels. Its activation generates diacylglycerol and 

inositol triphosphate, leading to the activation of protein kinase C and the 

release of calcium from intracellular stores (Schoepp et al., 1990). 

1.1.4.2 Hippocampal Theta 

The electroencephalographic (EEG) patterns produced by the hippocampus 

likely reflect different types of neural processing. The majority of studies 

have concentrated on one particular waveform, hippocampal rhythmic slow 

wave activity or theta. In addition to theta, it is also possible to record large 

irregular amplitude (LIA) activity at the same sites. Often the EEG patterns 

cycle between these two states. The following represents a very brief 

introduction to hippocampal theta, which has been extensively reviewed 

recently (Bland, 1986; Vanderwolf, 1988). 

The theta rhythm is a 3-12 Hz, approximately sinusoidal, waveform. It is 

recorded maximally at two distinct sites within the hippocampus: the stratum 

oriens of CA 1 and the molecular layer of the dentate gyrus (Bland and 

Wishaw, 1976; Buzsaki et al., 1986). Theta recorded at these two sites is 

approximately 180° out of phase, and evidence suggests that these two 
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sites represent separate and independent theta generators {Konopacki et 

a1.,1987). 

Two types of theta have been distinguished based on their behavioural 

correlates and pharmacological profiles. Type 1 theta occurs when the 

animal is walking, running, swimming, rearing, jumping, manipulating objects 

with forelimbs, shifts in posture, etc., all of which been described as 

instances of voluntary movement. In rats type 1 theta has a frequency range 

of approximately 7-12 Hz, it cannot be abolished by large doses of atropine 

sulfate, but is abolished by anaesthetics such as urethane and sodium 

pentobarbital. Type 2 theta is defined as theta that occurs in the absence of 

movement. In rats, type 2 theta has a relatively lower overall frequency of 

4-9 Hz and is resistant to most anaesthetics but sensitive to large doses of 

muscarinic cholinergic receptor antagonists such as atropine sulfate and 

scopolamine {Kramis et al., 1975). 

1.2 This Study 

It has been demonstrated that subcortical deafferentation of the 

hippocampus induces severe learning impairments {Sutherland and 

Rodriguez, 1989; Wible et al., 1992; Li et al., 1992; Witter, 1989a; Sara et 

al., 1992; Matsuoka et al., 1991; Aggleton et al., 1990), and completely 

blocks or impairs the induction of L TP in the dentate gyrus {Buzsaki and 

Gage, 1989; Valjakka et al., 1991; Abe et al., 1992). Efforts to explore the 
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obviously critical influence of various subcortical inputs to the hippocampus 

have largely relied on electrical stimulation of the subcortical structure in 

question [see (Harley and Milway, 1986; Shin et al., 1987) for exceptions]. 

The two regions supplying the greatest subcortical inputs, the medial septum 

complex and the lateral supramammillary nucleus, have a large number of 

axons of passage, some of which also project to the hippocampus (Swanson 

et al., 1987). For this reason, glutamatergic stimulation of these two regions 

was employed to investigate the selective influence of cellular activation 

within these regions on the physiology of the dentate gyrus. Glutamate is an 

ubiquitous excitatory neurotransmitter in the mammalian brain and it has 

been demonstrated that injections of minute volumes of 0.5 M glutamate 

into selected sites within the medulla or midbrain of anaesthetized or 

conscious animals, respectively, elicited marked autonomic, somatomotor or 

behavioural responses, depending on the injection site (Goodchild et 

al., 1982). In contrast, glutamate microinjection into fibre tracts failed to elicit 

any response, whereas electrical stimulation applied to the same sites elicited 

marked responses (Goodchild et al., 1982). In this study, efforts were 

primarily directed at examining the effects of glutamate activation of cell 

groups on evoked potentials generated by perforant path stimulation. In an 

attempt to elucidate the mechanisms underlying the observed modulation, 
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data are presented on changes in dentate EEG and spontaneous activity of 

dentate units that accompanied changes in the evoked potential. 
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CHAPTER 2: THE LATERAL SUPRAMAMMILLARY NUCLEUS 

2.1 Introduction 

The supramammillary nucleus, more specifically the lateral portion of the 

supramammillary nucleus (SUML), and the smaller submammillothalamic 

nucleus (SMT), have been shown to have diffuse cortical projections (Saper, 

1985; Haglund et al., 1984), and on that basis it has been hypothesized that 

they, along with other basal forebrain and brainstem groups which have 

diffuse cortical projections, function to selectively modify specific sensory, 

emotional, or behavioural patterns in a modulatory fashion (Saper, 1988). 

Recently, the lateral hypothalamic portion of the medial forebrain bundle 

has been carefully parcellated into several cytoarchitectonically distinct 

cellular groups and subgroups (Geeraedts et al., 1990). The SUML consists 

of a heterogeneous group of cells that is caudally bounded by the ventral 

tegmental area and rostrally by the lateral hypothalamic nucleus. The SMT 

is a dense collection of medium-sized to large neurons that lie within the 

rostrodorsal portion of the SUML, surrounding the caudal surface of the 

mammillothalamic tract (see Fig. 2-3}. 

The dentate gyrus receives a large number of extrinsic inputs, most notably 

from the entorhinal cortex and the medial septum. A large input from the 

SUML, and the smaller SMT, has also been described. Using the retrograde 
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HRP method in the rat, a direct projection to the hippocampus has been 

observed (Sakanaka et al., 1980; Pasquier and Reinoso-Suarez, 1976; 

Pasquier and Rei nasa-Suarez, 1978; Riley and Moore, 1981; Segal and 

Landis, 1974; Wyss et al., 1979a). Combined retrograde transport

histochemical studies have demonstrated that most supramammillary area 

neurons projecting to the dentate gyrus contain acetylcholinesterase (Harley 

et al., 1983), while retrograde transport-immunohistochemical studies have 

revealed only small percentages of cells containing various peptides (Haglund 

et al., 1984). In the guinea pig and cat, the majority of SUML afferents to the 

hippocampus are immunoreactive for substance P (Gall and Selawski, 1984; 

Ina et al., 1988; Yanagihara and Niimi, 1989), however a similar constitution 

in the rat has not been seen (Davies and Kohler, 1985; Haglund et al., 1984). 

Therefore no principal neurotransmitter(s) have been identified in the SUML 

of the rat to date. 

Anterograde transport studies have revealed that the supragranular layer of 

the dentate gyrus receives the largest proportion of supramammillary fibres 

(Haglund et al., 1984; Wyss et al., 1979b; Vertes, 1992) and electron 

microscope data indicate that the terminals contain small spheroidal vesicles 

and make direct asymmetric contact with granule cell bodies and their 

proximal dendrites (Dent et al., 1983). A more recent study using anterograde 

PHAL from the SUM found that the labelled terminals established asymmetric 
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synapses with a wide range of postsynaptic elements, including apical 

dendritic shafts and dendritic spines of granule cells, smooth, interneuron-like 

dendritic shafts, and, rarely, the somata of granule cells and local circuit 

neurons (Magloczky et al., 1991). 

Electrical stimulation of the supramammillary area inhibits the activity of 

cells in the dentate gyrus (Mizumori et al., 1989; Segal, 1979) identified 

putatively as inhibitory cells (Mizumori et al., 1989), while enhancing the size 

of the population spike produced by electrical stimulation of the perforant 

path (Mizumori et al., 1989). Single pulse, low voltage (3-5 V, 0.2 ms), 

stimulation of the supramammillary nucleus in urethane-anaesthetized rats 

produced a short latency (3-5 ms) and temporally discrete (30-50 ms) 

inhibition of dentate cells located in the region of the granule cell layer 

(Segal, 1979). No field potentials were observed in the dentate gyrus in 

response to the supramammillary stimulation. 

More recently, electrical stimulation of the supramammillary nucleus using 

twin pulses (2.5 ms apart, 0.1 ms duration) to the SUML, and not to the 

medial supramammillary nucleus, in the pentobarbital-anaesthetized rat was 

found to enhance the population spike if the pulses were given within 100 

ms of, and prior to, the perforant path stimulus (Mizumori et al., 1989). The 

optimal interstimulus interval for enhancement was 10-15 ms, resulting in 
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a 75% increase to the population spike. No significant change was found in 

the EPSP amplitude or population spike peak latency. 

Unit activity was also monitored, and units were identified as granule cells 

or basket cells according to several physiological criteria: the probability of 

activation with a stimulus intensity set just below population spike threshold, 

the likelihood of a driven cell firing to a second perforant path stimulus 

delivered during the early inhibition stage induced by the first stimulus 

{paired-pulse activation), mean spontaneous firing rate, and the latency to 

activation with a stimulus sufficient to elicit a population spike. Putative 

basket cells had significantly higher spontaneous discharge rates, fired in 

response to a stimulus that didn't evoke a population spike, fired at short 

latencies {usually before the population spike), and fired in response to a 

second stimulus given during the early inhibition stage. Putative granule cells 

had low spontaneous rates, did not fire in response to low stimulus 

intensities, did not fire in response to a second stimulus given during the 

early inhibitory stage induced by the first stimulus, and fired in response to 

a strong stimulus with a latency within the range of the population spike 

time window. The spontaneous activity of putative basket cells was inhibited 

by SUML stimulation for typically 15 ms whereas putative granule cells were 

either excited {15o/o) for the same time period or not affected at all. These 

investigators postulated that SUML stimulation produced population spike 
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enhancement through disinhibition of granule cells (i.e. inhibition of local 

circuit inhibitory neurons). 

The above description of granule cell physiology does not concur with other 

studies done in awake or anaesthetized rats where putative granule cells 

identified by less rigorous criteria were found to exhibit relatively high 

discharge rates, above 10 Hz (Assaf and Miller, 1978; Bland et al., 1980; 

Buzsaki et al., 1983; Rose et al., 1983). However, electrophysiological 

recording of granule cells in the hippocampal slice, conclusively identified by 

lucifer yellow staining, have been found to have unusually high resting 

membrane potentials and a low spontaneous rate of firing (Scharfman et 

al., 1990; Scharfman, 1992), a finding consistent with Mizumori et. al. 

(1989) [but see (Buzsaki and Czeh, 1992)]. Further, they found that spiny 

hilar cells and many aspiny hilar cells were more sensitive to perforant path 

stimulation. Granule cells identified morphologically in the slice preparation 

differ from other dentate cells by the absence of burst firing (Scharfman, 

1992), even during pharmacological manipulation which causes spiny and 

aspiny hilar cells to burst (Misgeld et al., 1992a). 

To avoid activating the large number of fibres passing through the SUML, 

the present work investigates the effects glutamatergic stimulation of the 

SUML has upon perforant path induced field potentials in the rat dentate 

gyrus. A portion of this work has appeared in abstract form (Carre and 
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Harley, 1990) and as a paper (Carre and Harley, 1991). In a second 

experiment, possible changes in dentate unit activity and in the EEG 

accompanying population spike enhancement were also investigated. 

Preliminary data on paired-pulse inhibition and changes in the molecular layer 

EPSP, following glutamate ejection to the SUML, are also reported. 

2.2 Methods 

2.2.1 Experiment 1: 

Subjects were 20 adult female Sprague-Dawley rats (Charles River Canada 

Inc, Montreal) weighing from 200 to 300 grams at the time of recording. 

Each rat was anaesthetized with urethane (1.5g/kg, i.p.), placed in a 

stereotaxic frame with skull flat, and maintained at a rectal temperature of 

36.8-38°C with a circulating water blanket. 

A coaxial stimulating electrode (Rhodes model NE-200) was aimed at the 

perforant path (7 .1 mm posterior to bregma, 4.1 mm lateral to midline, and 

3.5 mm below brain surface). A glass micropipette (tip size 10-15 pm) 

recording electrode filled with 2% pontamine sky blue in 0.5 M sodium 

acetate ( 1-5 M ohms), was aimed at the dentate gyrus (3. 5 mm posterior to 

bregma, 2.0 mm lateral to midline, 3.5 mm below the brain surface). The 

depths for the stimulating and recording electrodes were determined by 

monitoring the perforant path-evoked population spike amplitude. A 0.2 ms 

monophasic square wave pulse, 5-25 V, delivered at 0.1 Hz served as the 
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perforant path stimulus. The field potentials were differentially amplified at 

a bandwidth of 1 Hz-3 KHz and displayed on a cathode ray storage 

oscilloscope. 

A glass micropipette (tip size 10-35 pm) or a 30-gauge stainless steel 

cannula was filled with 0. 5 M !-glutamic acid and aimed at the lateral 

supra mammillary nucleus (4.2 mm posterior to bregma, 2.1 mm lateral to the 

midline angled at 21 a from the vertical plane towards the midline). The 

pipette or cannula was positioned 7.0-8.5 mm ventral to the brain surface. 

In a majority of animals, glutamate was delivered at more than one site. 

When using a glass pipette, a Neurophore BH II pressure ejection unit 

coupled to the glutamate filled pipette typically delivered a 300 ms, 30 psi 

nitrogen pulse to eject the glutamate solution. Ejection volumes were 

calibrated by measuring the spherical drop diameter. Volumes varied 

between 40-250 nl. The actual volume of glutamate injected intracerebrally 

under similar conditions has been reported to be approximately 68% of the 

volume estimated by drop diameter (Welzl et al., 1985). 

When using a cannula, a Dynatech Precision Sampling 1 pi microsyringe 

was coupled to a 30 gauge stainless steel cannula with calibrated Micro-Line 

tubing. Using a bubble as a marker, 100-150 nl of glutamate was infused 

over a 1 0 s period. 

To mark a glass pipette ejection site, the glutamate solution was aspirated 
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and replaced with a 2o/o solution of pontamine sky blue in 0.5 M sodium 

acetate and subsequently pressure ejected. For marking a cannula ejection 

site, dye had been placed in the tubing prior to glutamate loading, and was 

flushed out at the end of the experiment. The brain was removed and frozen. 

Forty pm coronal sections were taken through the region of the SUM. 

Sections were investigated for the ·dye ejection site before and after a 

metachromatic Nissl stain of 1% cresyl violet. 

The perforant path was stimulated once every 10 s for 10 to 30 min prior 

to each glutamate ejection. The 10 min immediately preceding glutamate 

ejection constituted a control period. Each perforant path-evoked potential 

was displayed on an oscilloscope and digitized on an IBM-PC compatible 

computer ( 1 point/1 0 ps). Programs for acquisition and analysis were written 

in Asyst, a commercial package based on the language Forth (see appendix 

I and II for examples of an acquisition and an analysis program). The 

dependent variables extracted online for each evoked potential were EPSP 

slope, latencies for both the start and peak of the spike, and spike size 

measured as the area under a tangent drawn across the first two positive 

peaks, or the difference in amplitude between the first positive peak and the 

negative peak, or the difference in amplitude between the negative peak and 

the tangent (Fig. 2-1 ). Mean values for the six events were compared to 

two-tailed 95 °/o confidence intervals based on the control period of ten 
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1ms 

FIG. 2-1. Parameters measured for an evoked potential recorded in the 
granule cell layer/hilar region: population EPSP slope (difference in amplitude 
between points a and b divided by their difference in time}, population spike 
onset latency (time at point c) I population spike latency (time at point d) I 
population spike height (difference in amplitude between points c and d) I and 
population spike area (area under a tangent drawn between the 2 positive 
peaks -f), and population spike height to the tangent (difference in amplitude 
between points d and e). 



means ( 10 means of six responses each, 10 min). 

2 .2.2 Experiment 2: 
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Thirteen female Sprague Dawley rats were prepared for evoked potentials 

as above except for the following differences. Two fine tungsten recording 

electrodes of approximately one megohm resistance and separated by about 

one mm were inserted into the dentate gyrus. Using a threaded microdrive 

(Biela), which allowed for the movement of one electrode with respect to the 

other, one electrode was placed in the molecular layer and the other in the 

granule cell layer or hilus. Placement was determined by monitoring the 

perforant path evoked potentials for characteristic waveforms, and the 

presence of a theta rhythm or unit activity. Using this arrangement, it was 

possible to record up to four parameters at one time as illustrated in Fig. 2-2. 

EEG waveforms and units were collected using the BrainWave Discovery 

software package. The EEG channel was amplified at a bandwidth of 1-100 

Hz and the unit channel at a bandwidth of 600-3,000 or 10,000 Hz. Only 

units exceeding an experimenter-adjusted threshold were stored (at a rate of 

31 KHz) for later off-line analysis. Unit and EEG data (the latter sampled at 

300 Hz) were collected continuously beginning at 2 min prior to, and 5 to 25 

min after, glutamate ejection into the SUML. The glutamate ejection event 

was entered into the computer by manually hitting a key, therefore the 

accuracy of the event in time is limited and precludes any discussion in 
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FIG. 2-2. Diagram illustrating how up to 4 parameters were recorded in the 
dentate gyrus during the same session. EEG and an evoked potential could 
be recorded from the same electrode placed in the molecular layer. A second 
electrode was placed in the granule cell layer/hilus to record both units and 
the evoked potential. 
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terms of milliseconds. Furthermore, it is not possible to know exactly when 

the SUML cells are activated using this approach without recording at the 

ejection site. 

Evoked potentials recorded in the granule cell layer/hilus were analyzed as 

in experiment 1. EPSP responses recorded from the dentate molecular layer 

were assessed by measuring the negative-going slope of the population EPSP 

and its peak latency. The EEG and unit data was analyzed offline using 

BrainWave's analysis software package. The EEG samples were subjected 

to fast-Fourier analysis and 5 s averages of the frequency of maximum 

power was computed and plotted vs time to assess the possible influence 

of SUML-glutamate ejection. 

For offline unit analysis using BrainWave software, units were scanned for 

the times and magnitudes of peaks and valleys. The following waveform 

parameters were calculated: peak magnitude, valley magnitude, spike height 

(peak- valley), spike width (time of peak- time of valley), time of valley, and 

time of peak. Individual units were than plotted using any 2 of the 

parameters involved. Distinct clusters of units could be identified and tagged 

by drawing a box around each cluster. Examples of this cluster cutting can 

be found in Fig. 2-9. Individual waveforms from each cluster were played 

back to ensure adequate cluster cutting. Autocorrelation, interspike interval, 

and perievent time histograms were then generated for each cluster. 
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In addition, after completion of the multiple parameter experiment 5 animals 

were subjected to paired-pulse stimulations, with pulse pairs delivered every 

10 s. The paired-pulse interpulse interval (between 20 and 30 ms) was 

adjusted until a significant amount of inhibition was apparent in the second 

spike, but not enough to suppress the second spike totally. After 10 to 15 

minutes, the stimulus intensity was reduced and glutamate was injected 10 

min later. The first spikes of the pair were analyzed for evidence of 

enhancement as a result of glutamate ejection. Paired-pulse indexes (size of 

second spike/size of first spike) were calculated for all stimulus pairs as an 

index of the amount of inhibition. The initial period of higher-stimulus 

amplitude ensured comparison of paired-pulse indexes of any enhanced first 

spikes (as a result of glutamate) with other paired-pulse indexes with first 

spike sizes of equal magnitude. 

2.3 Results 

2.3. 1 Experiment 1: 

A total of 12 ejection sites were associated with a significant increase in 

the population spike. These sites are shown in Fig. 2-3 (filled stars) and are 

collectively called the INC group. Eleven ejection sites did not produce a 

significant enhancement (filled squares). All but 2 sites in the INC group 

were within the SUML whereas all of the control sites were scattered well 

outside of the SUML. The 2 effective sites that were outside the SUML 
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FIG. 2-3. Stars represent glutamate 
micropipette placements for sites 
which exhibited significant 
facilitation of the perforant path 
population spike amplitude. Filled 
squares represent ineffective 
glutamate placements. 
Representative sections are taken 
from Geeraedts et al ( 1990) and are 
spaced 300 pm apart. Abbreviations: 
cp; cerebral peduncle, DPM; dorsal 
premammillary nucleus, FF; fields of 
Forel, fr; fasciculus retroflexus, fx; 
fornix, LHN; lateral hypothalamic 
nucleus, MML; medial mammillary 
nucleus (lateral division), MMM; 
medial mammillary nucleus (medial 
division), mp; mammillary peduncle, 
mtg; mammillotegmental tract, mtt; 
mammillothalamic tract, PHA; 
posterior hypothalamic area, PSUT; 
pre-subthalamic nucleus, RSUT; 
retro-subthalamic nucleus, SMT; 
submammillothalamic nucleus, 
SUML; lateral supramammillary 
nucleus, SUMM; medial 
supramammillary nucleus, TEGM; 
mesencephalic tegmentum, TUL; 
lateral tuberal nucleus, TUM; medial 
tuberal nucleus, viii; third ventricle, 
VPM; ventral premammillary nucleus, 
Zl; zona incerta. 
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(illustrated in Fig. 2-38) were within 200 pm of the SUML border. 

The data in the INC group were pooled after conversion to a percentage of 

the control mean and plotted (Fig. 2-4). The area under the tangent was 

used as a measure of spike amplitude. The average maximal increase was 

129% (range: 118-150%). The average time to termination of a significant 

enhancement was 18.4 min after glutamate ejection (range: 2 to 54 min). 

Thirty-three % of the INC group had enhancement durations exceeding 20 

minutes (see Fig. 2-5 for an example). 

To assess the latency to initial population spike enhancement, individual 

spike amplitudes were scrutinized. Enhancement of the first spike was 

observed in 4 (33%) of the INC group following glutamate to the SUML, 

whereas the rest varied from 2-5 ex= 2.3) spikes before an enhancement 

was observed. In half the cases, enhancement was not seen until at least the 

third evoked potential. 

Spike onset latency was significantly reduced in 5 out of 12 of the INC 

group (2-3% decrease) for an average duration of 8.8 min (range: 5-12 min). 

The significant reduction in onset latency rarely coincided in duration with 

that of the accompanying spike enhancement, ranging from half to twice the 

latter's length in time. The population EPSP slope was unchanged after 

glutamate at 11 of the 12 ejection sites, with a significant enhancement at 

one ( 1 06% of control for 2 min). Spike peak latency was marginally but 
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FIG. 2-4. Mean percent changes in population spike amplitude (area), EPSP 
slope, spike onset latency, and spike peak latency for the 12 sites exhibiting 
spike amplitude facilitation after glutamate ejection to the SUML. Each point 
represents a 1 min average. 
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FIG. 2-5. Percent change in population spike amplitude (area) for an animal 
exhibiting an enhanced population spike for at least 20 min. Dashed lines 
represent 95% confidence limits based on the control period (first 10 
minutes). 
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significantly increased (by 1 %) in 25o/o of the INC group with an average 

duration of 1 .3 min (range: 1-2 min), well below the duration of the 

enhanced population spike. 

Unexpectedly, in addition to the 12 sites associated with the SUML, 8 sites 

in the thalamus also produced a significant enhancement in population spike 

size as a result of glutamate ejection ex= 165 %) . These sites are illustrated 

in Fig. 2-6 and are not clearly associated with any one nucleus. Average 

duration of spike enhancement was 15.9 min (range: 3-60 min) of which one 

exceeded 20 min in duration. A composite graph of 4 parameters for the 8 

glutamate ejections is shown in Fig. 2-7. 

Enhancement induced by glutamate ejections at thalamic sites never 

occurred by the first spike but took an average of 5.6 evoked potentials 

before enhancement was observed (range 3-8). Five of the 8 exhibited an 

increase in the EPSP slope ex= 112 %; range: 1 09-116%) that usually lasted 

(3 of 5) for a shorter period of time than the spike enhancement. A 

significant reduction in spike onset latency was observed in half of the 

ejection sites ex= 97 .3%; range: 96-98%) always lasting for a shorter period 

in time than the spike enhancement (X= 3 min). Spike peak latency was 

marginally, but significantly, reduced in 3 and lengthened in 2 of the 8 spike 

enhancement studies, always for a relatively shorter period of time than the 

spike enhancement. 
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Bregma -4.1 6 Bregma -4.3 0 Bregma -4.5 2 Bregma -4.8 0 

-1 mm 

FIG. 2-6. Stars represent glutamate micropipette placements for sites which 
exhibited significant facilitation of the perforant path population spike 
amplitude in the thalamus. Representative sections are taken from Paxinos 
and Watson ( 1986}. Abbreviations: 3V; third ventricle, ctg; central tegmental 
tract, Dk; nucleus Darkschewitsch, dlf; dorsal longtitudinal fasciculus, Eth; 
ethmoid thalamic nucleus, fr; fasciculus retroflexus, Gu gustatory thalamic 
nucleus, MC; magnocellular nucleus of the posterior commissure, mt; 
mammillothalamic tract, mtg; mammillotegmental tract, pc; posterior 
commissure, PF; parafascicular thalamic nucleus, PR; prerubral field, pv; 
periventricular fiber system, PVP; posterior paraventricular thalamic nucleus, 
Rl; rostral interstitial nucleus, SPF; subparafiscicular thalamic nucleus, VPM; 
ventral posteromedial thalamic nucleus. 
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FIG. 2-7. Mean percent changes in population spike amplitude (area}, EPSP 
slope, spike onset latency, and spike peak latency for the 8 sites exhibiting 
spike amplitude facilitation after glutamate ejection to the medial thalamus. 
Each point represents a 1 min average. 
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2.3.2 Experiment 2: 

Ejection sites for animals experiencing population spike enhancement were 

similar to those shown in figure 2-3, being either in, or within 200 urn, of the 

SUML. Dentate EEG was recorded in 9 animals during population spike 

enhancement induced by glutamate ejection to the SUML. A theta rhythm 

was observed to occur spontaneously at each of these recording sites. Of 

the 9 animals, 2 were in theta at the time of ejection and neither exhibited 

a change in theta frequency as a result. Glutamate ejection in 4 of the 

remaining 7 induced theta (see fig. 2-8 for an example) while EEG 

frequencies were unchanged in the other 3. Therefore, in all situations where 

theta was absent, a SUML glutamate pulse produced theta in 57%. The 

longest latency to theta induction was 5 s (range 0-5 s) and the longest 

duration 45 s (range 10-45 s). Induced theta never lasted as long as the 

induced increase in the population spike. 

Twenty-two units were recorded in 10 animals during population spike 

enhancement induced by glutamate ejection to the SUML. The results for 

two units are included after a second glutamate ejection. Units were 

considered repeats if the recording electrode was not moved between the 

two ejections and the spontaneous firing rates and bursting characteristics 

were similar. The characteristics of each unit are summarized in Table 2-1 

(at end of Results section). Fig. 2-9 (a-c) illustrates 3 units and the method 
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FIG. 2-8. Two examples of theta rhythm induction as a result of glutamate 
injected into the SUML. Arrows indicate the time of glutamate ejection. The 
frequency at maximum power is plotted against time. Each point represents 
a 5 s bin. Theta occurs at a frequency of 2.5 to 6 Hz in urethane
anaesthetized rats. 



FIG. 2-9.(a-c) Three examples of units isolated by cluster-cutting (top left) 
and characterized by software analysis. The top right picture shows the 
"noise" and waveforms of each isolated unit bounded by its standard 
deviation. The two centre graphs are examples of autocorrelation functions 
(cross-correlation on the same cell) and interspike interval histograms (ISIH) 
for one of the units isolated by cluster cutting. A bimodal ISIH (Fig. 2-9c) 
with a short latency first peak is indicative of cells that fire in bursts. This 
burst pattern is also demonstrated by a centre peak arising from the 
autocorrelation histogram. Cells that do not have a tendency to fire in bursts 
have a unimodal ISIH and no centre peak in the autocorrelation (Fig. 2-9a). 
If a cell was rhythmically modulated due to the presence of theta, the 
autocorrelation is not flat but contains repeating peaks oscillating at about 
3-4 Hz (Fig. 2-9b). The peri event time histogram (PETH) at the bottom 
shows the spontaneous firing of the unit before and after glutamate ejection 
to the SUML given at time 0. The first unit (Fig. 2-9a) was excited whereas 
the second and third units were inhibited. 
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by which cells were characterized using the BrainWave Discovery program. 

With respect to table 2-1, if the peak at the centre of a units autocorrelation 

histogram (representing a short interspike interval) exceeded that of the other 

intervals, it was categorized as a bursting cell (fires repeatedly with an 

inters pike interval of less then 6 ms). If bursting was indicated by the 

autocorrelation histogram but did not dominate, the cell was designated as 

a mild burster. 

Eight of the units were inhibited, 13 excited, 2 exhibited a mixed response, 

and 1 showed no response to glutamate ejected in the SUML. Most of the 

unit effects were dramatic, as evidenced by the magnitude of the glutamate

induced effects given in column 5. A comparison of the magnitude of the 

unit effect and the magnitude of the population spike enhancement is also 

included in Table 2-1. There is no correlation between the two magnitudes 

(i.e. the magnitude of the unit effect did not predict the magnitude of the 

population spike enhancement). 

The time course of the unit and population spike modulation as a result of 

glutamate ejection are presented in Table 2-2. If theta was recorded 

concurrently, the time course of its modulation is given as well. All but one 

unit (SUM 15-2a) responded within 5 s of the glutamate pulse, and 

maintained their new level of activity for an average of 145 s (range 5-400 

s). See Fig. 2-10 for a graphical representation of the time course for each 
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FIG. 2-10. Time course and effect of glutamate ejection to the SUML on 
units and population spike. Each rectangle delineates the results from one 
glutamate ejection. Shaded bars represent time course of population spike 
enhancement. Black bars represent excited units and white bars the inhibited 
units. 
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unit and the concurrent population spike changes as a result of glutamate 

ejection to the SUML. Regardless of whether the units were inhibited or 

excited, the period of change did not collectively predict the time period of 

population spike enhancement. Of the inhibited cells, unit SUM03-4a was 

inhibited for approximately the length of the population spike enhancement, 

but other units returned to baseline prior to spike enhancement (e.g. SUM18-

2a) and others did not return until well after spike enhancement (e.g. 

SUM 14-3a). The same is true of the excited cells with some returning to 

baseline prior to population spike enhancement (eg SUM09-3a) and others 

not returning until well after population spike enhancement (eg SUM05-6a). 

Bursting cells were scrutinized for evidence of complex bursting, where 

each successive spike in a burst decreases in amplitude. A burst was defined 

as 2 or more action potentials with interspike intervals of less then 6 ms. 

Complex bursts are indicative of pyramidal cells (Fox and Ranck, 1975; Fox 

and Ranck, 1981), although CA3 pyramidal cells may burst in a non-complex 

manner as well (Scharfman, 1992). Complex bursting was only observed in 

unit SUM 18-2b. Bursting cells that were excited by glutamate ejection to the 

SUML were scrutinized for a possible increase in bursting above that 

indicated by an increase in frequency. While bursting did increase, it was 

never above the proportional increase in frequency. There was no evidence 
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that the number of action potentials within a burst increased in number as 

a result of SUML activation as well. 

All of the 6 non-bursting, low frequency ( < 5 Hz) units were excited. On 

the basis of only these two criteria, these cells may be granule cells 

(Mizumori et al., 1989; Scharfman, 1992), as outlined in the introduction. 

The bursting cells, putative spiny hilar (e.g. mossy cells), aspiny hilar or 

CA3c pyramidal cells demonstrated mixed effects with 7 inhibited and 7 

excited. 

The molecular layer EPSP was recorded in two animals that exhibited 

population spike enhancement as a result of three different SUML 

stimulations. No significant change in the EPSP slope and latency to peak 

occurred measured concurrently at the cell layer and molecular layer. 

Of the five animals subjected to paired-pulse stimuli following the 

multiparameter investigation, results from only one demonstrated a 

significant population enhancement due to glutamate ejection to the SUML, 

perhaps as a consequence of a reduced responsiveness to repeated ejections 

to the same site. In single spike experiments, repeated glutamate ejections 

were made at 4 sites that produced enhancement of the population spike on 

the first ejection. Two of the 4 ejections failed to reproduce the 

enhancement. 



FIG. 2-11. A. Population spike size is plotted for each paired-pulse pair and 
a line connects the two points. Paired-pulse inhibition is evidenced by the 
reduced size of the second population spike. Arrows indicate the time of 
glutamate ejection to SUML. B. The ratio of the size of the second 
population spike to that of the first (paired-pulse index) is plotted against the 
size of the first. The data is taken from first glutamate ejection shown in 2-
11 A. The paired-pulse index for spike pairs immediately following glutamate 
injection (glutamate group) often fall well above those pairs with equivalent 
first spike sizes, indicating a reduction in feedback inhibition. C. The data are 
taken from the second glutamate ejection shown in 2-11 A. In this case the 
'glutamate' group was broken into a pre-enhancement and an enhanced 
category. Clearly, the pre-enhanced group had reduced feedback inhibition 
since their paired-pulse indexes were higher than those pairs with equivalent 
first spike sizes. Since the enhanced group had first spike sizes above any 
of those in the control group, clear evidence of a reduction of feedback 
inhibition is lacking. Numbers in the legends of 8 and C represent spike pairs 
numbered in A. 
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The results from the 'enhanced' animal are shown in Fig. 2-11. Two SUML 

glutamate ejections were given during the course of the experiment as 

indicated by the arrows in Fig. 2-11 A. While only the second ejection 

produced a statistically significant enhancement of the first population spike, 

a reduction in feedback inhibition is apparent after both ejections, as 

evidenced by the increase in the size of the second or test population spike 

shown in Fig. 2-11 A, and in the paired-pulse index plots in Figs. 2-118 and 

C. The mean paired-pulse index for the "glutamate" group in Fig. 2-118 is 

0.69 ( ± .23) while the mean for the control group (using only those pairs 

with first spike sizes that fall within the range of those of the glutamate 

group) is 0.31 ( ± .07). 

Even the first 6 spikes following glutamate ejection that were not enhanced 

in the second case (a delay consistent with the results given in experiment 

1), show a reduction in feedback inhibition. This can be seen in Fig. 2-11 A 

and C (the pre-enhanced group, paired-pulse index X = 0.53 ± 0.19). In this 

instance, the enhanced (first) population spikes were larger than most of the 

control (first) spikes therefore making it impossible to determine whether 

feedback inhibition was reduced. If the paired pulse indexes continued to 

decline in a linear fashion with an increase in first spike size, then it is likely 

that the enhanced pairs also exhibited a reduction in feedback inhibition. 
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Of the four paired-pulse experiments where no statistically significant 

enhancement of the first population spike of the pair was induced, three 

showed a reduction in feedback inhibition. An example is given in figure 2-

12. When the perforant path stimulus intensity was turned down at spike 

pair number 84 (see Fig. 2-12A), the resultant feedback inhibition was weak 

as evidenced by a second spike of almost equal size with the first. When 

glutamate was ejected, the size of the first spike was not enhanced but 

clearly the second spike of the pair was, becoming almost three times the 

size of the first. The mean paired-pulse index for the "glutamate" group in 

Fig. 2-128 is 1.93 ( ± 0.57) while the mean for the control group (using only 

those pairs with first spike sizes that fall within the range of those of the 

glutamate group) is 0.68 ( ± .27). 
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FIG. 2-12. See Fig. 2-11 for explanation of graphs. A. Without enhancing the 
size of the first spike, glutamate to the SUML induced paired-pulse 
facilitation, as evidenced by a second spike of the pair being larger than the 
first. B. The data are taken from the first glutamate ejection illustrated in 2-
12A. Paired-pulse indexes for the glutamate group are much larger than 
those of the control group, once again indicating a reduction in feedback 
inhibition. 
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Table 2-1. Listing of each unit recorded, its spontaneous firing rate, whether 
it fires in bursts or not, whether it fired rhythmically in the theta frequency, 
the effects of glutamate ejection in the SUML, and the magnitude of the 
accompanying population spike facilitation. 

Cell ID Freq. Burst Rhyth- Effect Spike 
(Hz) mic (factor) (%of 

control) 

SUM18 16.0 mild yes Inhibition 145 
2a (complete) 

SUM18 2.0 yes no inhibition 145 
2b (complete) 

SUM03 2.0 mild no inhibition 152 
4a (complete) 

SUM04 3.8 yes no excitation 120 
3a (x8) 

SUM04 4.0 yes no excitation 126 
4a (x1 0) 

repeat 

SUM05 2.0 mild no excitation 118 
5a (x2.5) 

SUM05 4.4 mild yes excitation 118 
5b (x2.4) 

SUM05 5.0 no yes excitation 118 
5c (x1.8) 

SUM05 1.0 mild no excitation 110 
6a (x1 0) 

SUM05 .02 no no excitation 110 
6b (x500) 

SUM09 .40 mild no excitation 120 
3a (x3) 

SUM09 .53 yes no none 133 
2a 
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Cell ID Freq. Burst Rhyth- Effect Spike 
(Hz) mic (factor) (%of 

control) 

SUM10 2.0 yes no excitation 174 
6a (x4) 

SUM10 4.2 no no excitation 174 
6b (x6) 

SUM10 0.8 no no excitation 174 
6c (x27) 

SUM14 14.3 yes no inhibition 125 
3a (complete) 

SUM14 9.0 yes yes inhibition 125 
3b (complete) 

SUM14 12.0 no no excitation 125 
3c (x4.6) 

inhibition 
(x0.25) 

SUM15 1.5 no no excitation 123 
2a (x5) 

SUM15 0.4 no no excitation 123 
2b (x15) 

SUM16 7.6 yes no inhibition 129 
1a (x0.2) 

SUM16 6.0 yes no excitation 181 
2a (x2.6) 

repeat inhibition 
(x.25) 

SUM17 6.0 no yes inhibition 1 1 1 
2b (complete) 

SUM17 1.2 yes no inhibition 111 
2a {complete) 
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Table 2-2. Listing of each unit recorded and its relationship in time to the 
population spike enhancement and EEG (if it was recorded, - indicates no 
recording). 

CeiiiD Time of Time of Spike Time of Time of 
Unit max. Enhance. max. EEG effect 

Effect effect time effect (s) 
(s) (s) (s) (s) 

SUM18 5-80 5-30 90-600 120-180 no effect 
2a 

SUM18 0-80 0-35 90-600 120-180 no effect 
2b 

SUM03 0-400 0-100 25-420 60-120 no effect 
4a 

SUM04 0-40 15-20 45-240 180-240 no effect 
3a 

SUM04 0-50 10-15 45-240 180-240 no effect 
4a 

repeat 

SUM05 0-100 20-25 5-120 10-60 no effect 
5a -in theta 

SUM05 0-70 35-40 5-120 10-60 no effect 
5b -in theta 

SUM05 0-40 0-35 5-120 10-60 no effect 
5c -in theta 

SUM05 0-400 0-400 10-50 10-50 no effect 
6a -in theta 

SUM05 0-120 20-25 10-50 10-50 no effect 
6b -in theta 

SUM09 0-5 0-5 50-120 60-120 5-25 
3a 

SUM09 60-120 60-120 
2a 
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Cell 10 Time of Time of Spike Time of Time of 
Unit max. Enhance. max. EEG effect 

Effect effect time effect (s) 
(s) (s) (s) (s) 

SUM10 0-100 75-80 25-120 25-120 0-40 
6a 

SUM10 0-100 25-30 25-120 25-120 0-40 
6b 

SUM10 0-100 25-30 25-120 25-120 0-40 
6c 

SUM14 5-330 30-100 35-120 35-120 
3a 

SUM14 5-340 30-100 35-120 35-120 
3b 

SUM14 0-30 5-10 35-120 35-120 
3c 40-360 50-100 

SUM15 20-35 25-30 35-120 35-120 
2a 

SUM15 0-5 0-5 35-120 35-120 
2b 

SUM16 0-80 0-5 15-120 15-120 0-44 
1a 

SUM16 0-25 15-20 15-120 15-120 0-30 
2a 45-120 

repeat 

SUM17 5-65 5-20 45-110 45-110 0-10 
2a 

SUM17 5-65 5-45 45-110 45-110 0-10 
2b 
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2.4 Conclusions 

Theoretical mechanisms by which SUML activation may enhance the 

physiology of the dentate gyrus will be explored in chapter 4. The following 

represents a summary of the experimental findings. 

Glutamate ejection in or immediately adjacent to the SUML invariably 

produced a significant increase in amplitude of the perforant path-evoked 

population spike in the dentate gyrus, without affecting the EPSP. A similar 

finding was reported using electrical stimulation of the SUML (Mizumori et 

al., 1989). The lack of effect on the population EPSP slope, combined with 

a decrease in spike onset latency in approximately half of the SUML group, 

indicates that SUML afferents are increasing granule cell excitability rather 

than acting on perforant path fibres or their synapse with granule cells. 

Synaptic current flow recorded from the major current source in or below 

the granule cell layer and from the site of activation in the molecular layer 

(the current sink) are generally assumed to parallel each other. Recent 

observations indicate that the two measures may not covary in a uniform 

manner under certain conditions (Dahl and Winson, 1985; Pavlides et 

al., 1988b). In the three cases where molecular layer EPSP slope changes 

were monitored concurrently with the evoked potential measured at or below 

the granule cell layer, no changes in both EPSP slopes were observed during 

population spike enhancement induced by glutamate ejection to the SUML. 
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Two ejection sites falling outside of the SUML, as cytoarchitectonically 

defined by Geeraedts et. al. ( 1990), produced increased population spikes. 

It is quite possible that the glutamate injected at these sites diffused to the 

SUML to stimulate a sufficient number of cells. Another explanation is that 

these sites near the mtt include cells projecting to the dentate gyrus. Evans 

Blue administered to the dentate gyrus labelled hypothalamic cells that 

capped the mtt at the level of Fig. 2-38 (Harley et al., 1983). 

The duration of neurotransmitter release from the SUML afferents as a 

result of glutamate stimulation cannot be ascertained.lt is unlikely, however, 

that the duration of neurotransmitter release due to glutamate-induced SUML 

cell activation matches the duration of population spike facilitation, which 

was over 20 min in one third of the experiments. Concurrent monitoring of 

SUML cell activity would be of interest. Glutamate excitation of locus 

coeruleus cells using comparable volumes and concentrations lasts for less 

than 1 s (Harley and Sara, 1992). Therefore, SUML afferents probably 

produce excitability changes in the granule cells of the dentate gyrus which 

exceed the duration of SUML activation. 

Glutamate activation differs from electrical stimulation of the SUML in the 

time course of its effects on evoked potentials in the dentate gyrus. 

Electrical stimulation only produces an enhancement if given within 100 ms 

prior to the perforant path stimulus, optimally 10-15 ms prior to the stimulus 
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(Mizumori et al., 1989). Units recorded in the dentate gyrus during SUML 

electrical stimulation were affected for typically 10-15 ms (Mizumori et 

al., 1989). Both units and evoked potentials were modulated for minutes in 

this experiment, as a result of a brief pulse of glutamate to the SUML. 

Furthermore, a 30 s delay between the glutamate pulse and increases in 

spike amplitude was common in these experiments. 

Glutamatergic stimulation of the SUML inhibited 36o/o and excited 59°/o of 

the cells recorded in the dentate gyrus for an average of 145s. Most 

responded immediately, prior to the spike amplitude enhancement. The time 

course of unit modulation rarely correlated with the time course of the spike 

enhancement. While this implies that changes in the spontaneous activity of 

the units recorded do not reflect the critical events that lead to an enhanced 

population spike, only a few cells were sampled from a large population. It 

is quite possible that the unit population response would reflect a mixture of 

unit responses in time, and hence their combined average may directly 

underlie the changes in the population spike amplitude. 

SUML electrical stimulation prior to perforant path stimulation resulted in 

a decrease in putative inhibitory local-circuit neuron activity in the dentate 

gyrus and an increase in putative granule cell activity (Mizumori et al., 1989). 

This effect suggests a disinhibition mechanism mediates the population spike 

facilitation produced by SUML stimulation (Mizumori et al., 1989). Units 
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recorded in this experiment were not identified by the rigorous response 

properties employed by Mizumori et. al. ( 1989). However, assuming that 

granule cells, in relation to non-granule cells found in the dentate gyrus, fire 

at low rates (Mizumori et al., 1989; Scharfman, 1992), and are characterized 

by an absence of burst firing (Misgeld et al., 1992a; Scharfman, 1992), then 

it is noteworthy that all non-bursting cells that fired at a frequency of less 

than 5 Hz were excited by SUML activation. An excitatory action on granule 

cells by SUML afferents is indicated by the asymmetric, putative excitatory, 

synapses they make on granule cells (Dent et al., 1983). It is difficult to 

identify other cell types solely by their firing rates and burst propensity. A 

larger number of units sampled, coupled with the rigorous response 

properties employed by Mizumori et. al. ( 1989), would be more informative. 

The mechanism by which the SUML influences hippocampal throughput 

was explored in this study using paired-pulse stimulation with interpulse 

intervals of 20-30 ms. While the threshold for a significant population spike 

amplitude enhancement appears to increase as a result of repeated glutamate 

ejections to the same site, as witnessed by the failure to reproduce spike 

amplitude enhancements in the paired-pulse paradigm, evidence for reduced 

inhibition was apparent nonetheless. A reduction in paired-pulse inhibition, 

without a concomitant increase in the amplitude of the first spike, implies 



84 

that feed-forward inhibition was not affected whereas feed-back inhibition 

was reduced. 

The SUML projects to a number of sites (Behzadi et al., 1990; Vertes, 

1992) that have previously shown to enhance perforant path-evoked 

potentials in the dentate gyrus including the medial septum complex 

(Mizumori et at., 1989) and the raphe nucleus (Kiancnik and Phillips, 1991). 

For this reason, it is possible that SUML activation enhances dentate 

population spikes in a disynaptic manner, however this seems unlikely given 

its direct and massive innervation of the dentate gyrus. Since the primary 

neurotransmitter of SUML cells is yet to be determined, direct 

pharmacological intervention cannot be carried out. 

Glutamatergic activation of the SUML induced a brief (range= 1 0-45s) theta 

rhythm recorded at the molecular layer of the dentate gyrus in 57o/o of the 

experiments associated with a concomitant enhancement of the population 

spike. Enhancement of the perforant path-dentate evoked potential has been 

correlated with the induction of theta through sensory stimulation (Herreras 

et al., 1988) and the theta rhythm may play a modulating role in the 

induction of L TP in the dentate gyrus (Pavlides et al., 1988a; Ford et 

al., 1989). The production of theta is not necessary for the enhancement of 

the population spike here, given that the theta rhythm was not induced in 

43o/o of the experiments. When induced, the theta rhythm lasted for a brief 
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period in time (1 0-45 s), therefore if it did play a role in spike enhancement, 

it was restricted to the induction of the event alone, and not the 

maintenance of the spike enhancement. 

It is well established that the medial septum complex plays a critical role in 

the generation of hippocampal theta and that stimulation of the brainstem 

reticular formation can generate septal or hippocampal rhythms in the theta 

frequency range (Bland, 1986; Smythe et al., 1992; Vertes, 1986). Since 

critical brainstem sites do not directly innervate the medial septum complex, 

it has been postulated that the supramammillary nucleus acts as a relay 

station for hippocampal theta modulation originating from the brainstem 

(Vertes, 1986). Both SUML and the medial supramammillary nucleus 

(SUMM) project to the medial septal complex whereas only the SUML sends 

fibres to the hippocampus (Vertes, 1992). Recently, supramammillary cells 

more closely associated with the SUMM have been found to discharge 

synchronously in phase with hippocampal theta rhythm (Kirk and 

McNaughton, 1991). Reviewing their placements, it appears that they did 

not sample cells from the SUML region stimulated in this experiment. 

Alternately, the SUML placements that induced theta in this study were not 

clustered near the SUMM, therefore, a SUMM-mediated theta induction is 

unlikely. The induction of theta by SUML activation demonstrated here could 

be mediated by the medial septum complex or through its direct projections 
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to the dentate gyrus. The ability of GABA agonists ejected into the medial 

septum complex to block SUML activation-induced hippocampal theta would 

be of interest. Application of GABA agonists into the MSC, prior to SUML 

activation, should block SUML messages to the hippocampus relayed 

through the MSC, while leaving the direct route intact. 

The results demonstrating the enhancement of population spikes by 

glutamate ejection into the thalamus were serendipitous and hence not 

systematically studied. The marking of sites in the thalamus that fail to 

produce population spike enhancements would help to identify the critical 

areas involved. The largest known projection from the thalamus to the 

hippocampus arises from the nucleus reunions (anterior to the glutamate 

ejection sites) where the projections are restricted to Ammon's Horn, 

avoiding the dentate gyrus (Herkenham, 1978; Pakhomova, 1992; Su and 

Bentivoglio, 1990; Wyss et al., 1979a; Sakanaka et al., 1980; Wouterlood et 

al., 1990). The parataenial and paraventricular nuclei of the thalamus also 

project to the hippocampus, however, unlike the nucleus reuniens, they 

innervate the dentate gyrus, particularly the hilus (Swanson et al., 1987). The 

rostral/caudal extent of the paraventricular nucleus contributes to the 

hippocampal projection (Wyss et al., 1979a) and therefore, as can be seen 

in Fig. 2-6, is the only thalamic site within the vicinity of the glutamate 

ejection sites that is known to project to the hippocampus. Since the ejection 
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sites range from 0.1 to 1 .2 mm from the paraventricular nucleus, it is 

unlikely that stimulation of the paraventricular nucleus underlies all 

enhancement effects. It is possible that the critical site provides a 

multisynaptic input to the dentate gyrus. 

Thalamic activation by glutamate stimulation shares many characteristics 

of SUML activation-induced modulation of dentate evoked potentials. The 

enhancement of the population spike lasted minutes and took time to 

develop. However, over 50% produced an enhancement in the slope of the 

population EPSP, differing from SUML effects, and suggesting that thalamic 

input may be modulating the perforant path synapse. 
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CHAPTER 3: THE MEDIAL SEPTUM COMPLEX 

3.1 Introduction 

The medial septum/diagonal band contains neurons which innervate several 

structures in the central nervous system, most notably the hippocampal 

formation, where it apparently serves a critical role in learning and memory 

[e.g. (Kesner, 1988; Bond et al., 1989; Mesulam, 1988)]. Relatively few 

pathways in the brain have been as extensively studied anatomically, 

histochemically and functionally as the projection from the medial 

septum/diagonal band to the hippocampus. A review of its anatomy, as well 

as its modulation of evoked potentials recorded in the dentate gyrus, follows. 

3.1.1 Anatomy 

On the basis of cytoarchitecture and connections, the septal region, which 

lies anterior to the hippocampus, is usually parcellated into 4 divisions; 

lateral, medial (which consists of the medial septal nucleus and the diagonal 

band nucleus), posterior, and ventral (Swanson et al., 1987). Since there is 

no clear cytoarchitectonic boundary between the medial septum nucleus and 

the nucleus of the diagonal band, they will be considered together as the 

medial septum complex (MSC) (Swanson et al., 1987). 

Neurons in the MSC innervate all fields of the hippocampus, but the inputs 

to the dentate gyrus are particularly dense. Early work suggested that 
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projections from the MSC were cholinergic in nature and innervated both the 

hilus and molecular layer of the dentate gyrus. Combined silver-stained 

degeneration and acetylcholinesterase staining suggested cholinergic 

afferents innervated the dentate molecular layer and, more densely, the hilus 

(Mosko et al., 1973; Mellgren and Srebro, 1973). More sophisticated 

techniques have overcome limitations inherent in earlier studies, e.g., 

degeneration studies also characterize fibres of passage and 

acetylcholinesterase is not a selective indicator of cholinergic systems. 

Anterograde transport of tritiated leucine or horseradish peroxidase (HAP) 

confirmed a medial septal projection to the dentate molecular layer and hilus, 

the projection to the former being more modest (Rose et al., 1976; Crutcher 

et al., 1981). Electron microscopic examination of anterograde HAP detected 

inputs to hilar cell dendrites and somata as well as to granule cell somata 

(Chandler and Crutcher, 1983). Using the more sensitive method involving 

the anterograde transport of the lectin Phaseolus vulgaris leucoagglutinin 

(PHAL) after injection into the MSC, one study confirmed a prominent 

projection to the hilus and a small projection to the molecular and 

supragranular layers of the dentate gyrus (Yoshida and Oka, 1990). Another 

study revealed that in the dentate gyrus, thick axons, with few boutons 

(type 1) were found to terminate in the hilus, while finer axons (type 2), with 

many en passant terminals, were found to terminate most densely in the 
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supragranular layer and in the middle third of the molecular layer (Nyakas et 

a1.,1987). 

PHAL anterograde studies have demonstrated that MSC afferents innervate 

calbindin-, parvalbumin-, and CCK-immunoreactive cells (Miettinen and 

Freund, 1992a), as well as somatostatin-immunoreactive cells (Yamano and 

Luiten, 1989), in the hilus. 

Are the afferents arising from the MSC cholinergic, or are other 

neurotransmitters involved? The results of combined acetylcholinesterase 

staining and retrograde tracing experiments (Swanson, 1982; Baisden et 

al., 1984) and combined choline acetyltransferase (ChAT) immunoreactive 

staining and retrograde transport experiments (Rye et al., 1984; Wainer et 

al., 1985; Amaral and Kurz, 1985) have revealed that a substantial portion 

of MSC cells that project to the hippocampus are not cholinergic. At least 

30% are immunoreactive to glutamic acid decarboxylase (GAD) (Kohler et 

al., 1984), a synthesizing enzyme for GABA, and are thus presumably 

GABAergic. There is virtually no colocalization of GAD with ChAT (Brashear 

et al., 1986). 

As well, a subpopulation of ChAT immunoreactive cells in the MSC (over 

50o/o) was found to be immunoreactive for the peptide galanin (Melander et 

al., 1985; Pasqualotto and Vincent, 1991), and these cells participated in the 

septohippocampal projections (Melander et al., 1985). Furthermore, a 
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subpopulation of GABAergic cells contains the calcium-binding protein 

parvalbumin (Freund, 1989). The fine structure of MSC cells participating in 

the septohippocampal projection is heterogeneous and the existence of 

ChAT- or parvalbumin-immunoreactivity did not differentiate between cell 

types based on their fine structure (Naumann et al., 1992). 

The fact that the proportion of cells projecting to the hippocampus 

containing ChAT or GABA is well short of 100% prompted one laboratory 

to investigate the contribution of a wide variety of peptides to this pathway 

(Senut et al., 1989). Using a combination of retrograde transport and 

immunohistochemistry, they found that of the neurons projecting to the 

hippocampus, 42% were immunoreactive for ChAT, 22% for galanin (of 

which 26-52o/o double-labelled for ChAT), and 0.5% for the peptides 

luteinizing hormone-releasing hormone, calcitonin gene related peptide, and 

met-en kephalin. They concluded that other, unknown neurotransmitters likely 

participate in the septohippocampal projection. 

What is the general distribution of cholinergic versus GABAergic 

septohippocampal terminals in the dentate gyrus? ChAT immunoreactive 

fibres were seen to predominantly innervate the supragranular layer and the 

portion of the hilus nearest the granule cell layer (Clarke, 1985; Houser et 

al., 1983; Matthews et al., 1987). These bands of staining were abolished by 

electrical lesions of the MSC. Combining ChAT immunocytochemistry with 
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electron microscopic examination of Golgi impregnated granule cells, both 

the soma and dendrites of the granule cells were found to receive ChAT

positive terminals (Frotscher and Leranth, 1986; Frotscher, 1992). 

Somatostatin- and GAD-immunoreactive cells in the hilus were also found 

to receive ChAT immunoreactive terminals (leranth and Frotscher, 1987; 

Lubbers and Frotscher, 1987). Half of the somatostatin-immunoreactive cells 

were recently shown to be immunoreactive for the muscarinic receptor 

protein, making up approximately one-third of the muscarinic-immunoreactive 

population in the hilus (Van der Zee et al., 1991). In general, ChAT 

immunoreactive terminals made symmetric synaptic contacts on dendritic 

shafts and cell bodies and mainly asymmetric contacts on dendritic spines 

(Clarke, 1985; Frotscher and Leranth, 1986; Leranth and Frotscher, 1987). 

To demonstrate the specific distribution of septohippocampal GABA fibres, 

a number of recent studies have combined GABA immunohistochemistry 

with anterograde tracing of the lectin PHAL, allowing the researcher to 

differentiate extrinsic GABA projections from GABA terminals arising from 

cells intrinsic to the dentate gyrus. GABAergic axons arising from the MSC 

had type 1 fibres (thick axons with large spherical or oval boutons) and 

formed multiple basket-like contacts around cell bodies and proximal 

dendrites, predominantly in the hilus and granule cell layer (Freund and Antal, 

1988). Hilar neurons immunoreactive for GABA (Freund and Antal, 1988), 
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neuropeptide Y (Miettinen and Freund, 1992b), CCK, somatostatin, and VIP 

(Gulyas et al., 1990) have all been found to receive the type 1, GABAergic, 

septohippocampal afferents. Calbindin-immunoreactive granule cells were 

never found to receive multiple synaptic input from GABAergic 

septohippocampal axons (Freund and Antal, 1988). 

In summary, septohippocampal GABAergic fibres have been shown to 

innervate all dentate local circuit neurons tested so far and there is no 

evidence for a significant innervation of the granule cells as yet. The 

septohippocampal cholinergic fibres, however, have been found to be less 

selective, innervating both hilar and granular cells. ChAT fibres are 

distributed throughout the dentate gyrus but predominantly innervate the 

supragranular and subgranular layers. Studies involving combined ChAT 

immunocytochemistry with anterograde tracing need to be performed on 

tissue selectively stained to define select cell groups, to better characterize 

the cholinergic distribution. 

3.1.2 Influence of the MSC on Hippocampal Evoked Potentials 

It was first reported in anaesthetized rabbits that the size of the population 

spike evoked in the dentate gyrus can be altered by stimulating the MSC 

{Aivarez-Leefmans and Gardner-Medwin, 1975). Since then, several studies 

have explored the effects of electrical stimulation of the MSC on evoked 
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potentials in the dentate gyrus of the anaesthetized rat. This section reviews 

their findings. 

Applying a single pulse to the MSC 10 ms prior to perforant path 

stimulation was found to augment the size of the population spike without 

altering the population EPSP in barbiturate-anaesthetized rats (Fantie and 

Goddard, 1982). Using interstimulus times ranging from 200 ms prior to, and 

5 ms after perforant path stimulation, maximal spike augmentation was 

found to occur at 5 ms prior to perforant path stimulation. Augmentation 

occurred in a range of approximately 100 ms before, and 1 ms after 

perforant path stimulation. Muscarinic and nicotinic antagonists failed to 

block the effect. 

In a follow up study, the influence of MSC stimulation on dentate evoked 

potentials was investigated using the paired-pulse paradigm or the presence 

of a GABA antagonist (Silkey and Goddard, 1985). The infusion of picrotoxin 

into the dentate gyrus enhanced the population spike (without affecting the 

population EPSP slope), presumably due to a general decrease in GABA

mediated tonic or feed-forward inhibition, and blocked the enhancement of 

the population spike that normally occurs with a preceding (5 ms) septal 

stimulus. In the second portion of the experiment, the perforant path paired

pulse interstimulus time was adjusted to provide a measure of early 

inhibition, and a septal conditioning pulse was applied at an interval varying 
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from 8 ms before to 11 ms after the first perforant path stimulus. They 

found, for both barbiturate- and urethane-anaesthetized rats, that the 

inhibition apparent in the second evoked potential was reduced only if the 

septal conditioning pulse occurred within 3-4 ms before or 1-2 ms after the 

population spike of the first evoked potential. Since septal facilitation was 

blocked by a GABA antagonist, and since it reduced feed-back inhibition, 

they concluded that septohippocampal projections inhibit the inhibitory 

interneurons in the dentate gyrus, thus reducing feed-forward or tonic 

inhibition of granule cells seen in the single perforant path stimulus paradigm. 

The results of the paired-pulse study require a closer look, because at first 

glance one would have to question why a septal pulse would not 

demonstrate disinhibition if it preceded the second pulse by zero to 100 ms, 

as seen in the single pulse studies. Since this study did not employ paired

pulse ratios in their analysis of the data, the size of the first spike was not 

accounted for. In other words, a septal pulse that precedes the first spike by 

more than 4 ms would have enhanced the first spike and subsequently 

produced feed-back inhibition of a greater magnitude, thereby reducing the 

size of the second spike further. On the other hand, a direct facilitation of 

the second spike might also be predicted, since all septal pulses preceded 

the second perforant path pulse by less than 100 ms. If both a disinhibitory 

and facilitatory process were operating, complex outcomes might follow. In 
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this way, a partial disinhibitory effect by the septal pulse may have been 

masked. At the time period where a septal pulse produced disinhibition, 

ranging from 4 ms before to 2 ms after the first population spike, the first 

spike was not enhanced and disinhibition was observed. This still does not 

explain why disinhibition was not observed when the septal pulse followed 

the first population spike by more than 2 ms. Furthermore, it is significant 

that the critical septal pulse time window was tied to the timing of the first 

spike and not the second, since the paired-pulse interstimulus intervals 

varied. The authors argued that this restricted time window could be 

accounted for by the requirement of the MSC input to arrive almost 

concurrently with the mossy fibre excitation on the inhibitory interneurons 

(feed-back circuit). 

Using urethane-anaesthetized rats, Robinson and Racine ( 1986) reported 

that a septal conditioning pulse (1.2 rnA) produced maximal population spike 

enhancement when it preceded the perforant path pulse by 20 ms (range 

tested was 20-1000 ms) Facilitation occurred at all interstimulus intervals 

including 1000 ms. In their paired-pulse paradigm, they found that neither 

a septal pulse delivered 6-10 ms prior to the first population spike, or 

immediately prior to the first spike (3-5 ms after the first pulse), had any 

effect on the size of the population spike produced by a second perforant 

path stimulus 20 or 30 ms after the first (Robinson and Racine, 1986b). 
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These results contradict those of Silkey and Goddard (1985), since the 

septal pulse given immediately prior to the first spike would have occurred 

in the time window critical for the disinhibition found in their study. The 

Robinson and Racine results of no change in feed-back inhibition may be 

explained by invoking an interaction of both disinhibition and facilitatory 

processes. Again, paired pulse ratios were not evaluated in order to account 

for the size of the first spike of a pair. Robinson and Racine ( 1986) did 

however find an enhanced depression of the second pulse following septal 

stimulation immediately prior to the first population spike if the second pulse 

was given during the time window of the late inhibitory phase. 

More recently, the application of twin pulses (2.5 ms apart, 0.1 ms 

duration) to the MSC in barbiturate-anaesthetized rats was also reported to 

produced an enhancement of perforant path-induced population spikes in the 

dentate gyrus (Mizumori et al., 1989), with no clear effect on the population 

EPSP, confirming the results presented above. Furthermore, the interstimulus 

interval of maximum enhancement proved to be 5 ms (range studied was 3-

3000 ms), and the enhancement was not seen at intervals of 100 ms or 

greater. Putative basket cells were inhibited as a result of MSC stimulation, 

while 15o/o of the putative granule cells were excited, prompting the authors 

to conclude that the septohippocampal projection suppresses inhibitory 

interneurons thereby enhancing population spike size. 



98 

In summary, electrical stimulation of the MSC induces population spike 

facilitation. In all but one study, the stimulus time window required to 

produce the facilitation was 0-100 ms prior to perforant path stimulation, 

and there was evidence of disinhibition. Robinson and Racine (1986) found 

enhancement at septal-perforant path pulse intervals longer then 100 ms, 

and no evidence of disinhibition. These discrepancies may be explained by 

the larger stimulus intensity used by Robinson and Racine ( 1986) to activate 

the MSC which was strong enough to elicit an evoked potential in the 

dentate gyrus, a result which was rarely observed in the other studies. Their 

longer time window for enhancement (20-1 000 ms) and the lack of observed 

changes in paired-pulse early inhibition may be accounted for by the 

activation of additional cells in the MSC that have a high threshold of 

activation, and hence were not activated in the other studies. The response 

of neurons to electrical stimulation has been shown to vary as a result of 

such cell characteristics as membrane resistance, axonal conduction 

velocities, and other variables (Ranck, 1975). 

These four studies all utilized electrical stimulation of the MSC and 

therefore cannot rule out the possibility that their effects were due to 

stimulation of fibres of passage arising from other subcortical areas that pass 

through this region. Enhancement of the population spike induced in the 

dentate gyrus has been obtained after stimulation of the locus coeruleus 
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(Harley et at., 1989; Harley and Milway, 1986), raphe nucleus (Winson, 

1980; Assaf and Miller, 1978), and the supramammillary nucleus [(Mizumori 

et at., 1989), present paper]. All of the projections arising from these areas, 

and targeting the hippocampus, pass through the MSC, at least in part 

(Swanson et at., 1987). However, 6-hydroxydopamine treatment of the 

dorsal noradrenergic bundle that destroyed the noradrenergic fibres of the 

locus coeruleus failed to block the enhancement produced by MSC 

stimulation (Fantie and Goddard, 1982). Furthermore, lesions of the MSC 

failed to block the enhancement produced by stimulation of the SUML 

(Mizumori et at., 1989). Therefore, enhancement of population spikes 

produced by electrical stimulation of the MSC may not involve fibres arising 

from the locus coeruleus or the SUML, but may involve fibres arising from 

the raphe nucleus, or other regions. 

To avoid stimulation of axons of passage, glutamate was injected into the 

MSC during a period of low frequency stimulation to the perforant path with 

the concomitant recording of the evoked potentials in the dentate gyrus, in 

or below the granule cell layer. Results on the effects of septal activation on 

evoked potentials recorded in the molecular layer, dentate EEG, and on 

paired-pulse potentials are also presented, as well as preliminary data on unit 

responses. 



100 

3.2 Methods 

3.2.1 Experiment 1: 

Subjects were 16 adult female Sprague-Dawley rats (Charles River Canada 

Inc, Montreal) weighing from 225 to 325 grams at the time of recording. 

Each rat was anaesthetized with urethane ( 1 .5g/kg, i.p.), placed in a 

stereotaxic frame with skull flat, and maintained at 36.8-38°C with a 

circulating water blanket. 

The methods were the same as those outlined in chapter 2 except that 

glutamate was always pressure ejected using the glass micropipette 

technique. The pipette was filled with 0.5 M !-glutamic acid and aimed at the 

MSC (0.3 mm anterior to bregma and 0.1 mm lateral to the midline. The 

pipette was positioned 4.5-6.5 mm ventral to the brain surface. In a majority 

of animals, glutamate was delivered at more than one site. 

Following a successful enhancement of the population spike after glutamate 

ejected in the MSC, a subset of animals were injected with scopolamine 

(scopolamine bromohydrate in 0.9% saline, 1 mg/kg, ip.) and glutamate was 

ejected again at the same site 25-45 min later. 

3.2.2 Experiment 2: 

Fifteen female Sprague Dawley rats were prepared for multiparameter 

investigation as in chapter 2, experiment 2. In addition, after completion of 
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the multiple parameter experiment 5 animals were subjected to paired-pulse 

stimulations. 

3.3 Results 

3.3.1 Experiment 1: 

A total of 19 ejection sites were associated with a significant increase in 

the population spike. These sites are shown in Fig. 3-1 (filled stars). All were 

found to be in, or immediately adjacent to, the MSC. Four ejection sites did 

not produce a significant enhancement (filled squares), and were found well 

outside the complex. 

The data from the 19 ejection sites were pooled after conversion to a 

percentage of the control mean and plotted (Fig. 3-2). Glutamate ejection in 

the MSC consistently produced an enhancement of the population spike 

reflected in all 3 measures of spike size. The population spike height, 

averaged over 1 min., was significantly enhanced from 113 to 169% 

(:X= 132%) of the control mean. The period of the enhancement ranged from 

1 to 49 min CX = 1 0. 5 min). The number of post-glutamate spikes until 

enhancement ranged from 1 to 4 (X= 2.32). Three of the ejections ( 16%) 

produced a spike enhancement exceeding 20 min. in duration. 

The amplitude of the EPSP slope was also significantly increased 

(range= 105-141 o/o of control, X= 112) for typically 1-2 min (range= 1-3 

min., X= 1.31 min.) following MSC activation at 16 of the 19 sites that 



FIG 3-1. Ejection sites directed at the medial septum complex. Stars 
represent glutamate micropipette placements for sites which exhibited 
significant facilitation of the perforant path population spike amplitude. Filled 
squares represent ineffective glutamate placements. Representative sections 
are taken from Paxinos and Watson (1986). Abbreviations: aca; anterior 
commissure (anterior), ac; anterior commissure, cc; corpus callosum, BST; 
bed nucleus of the stria terminalis, f; fornix, gee; genu corpus callosum, Ld; 
lamboid septal zone, LSI; lateral septal nucleus (intermediate), LSV; lateral 
septal nucleus (ventral), LV; lateral ventricle, MSC; medial septum complex, 
MnPO; median preoptic nucleus, Pld; paralamboid septal nucleus, SHi; 
septohippocampal nucleus, SHy; septohypothalamic nucleus. 
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FIG. 3-2. Mean percent changes in population spike amplitude (area), EPSP 
slope, spike onset latency, and spike peak latency for the 19 sites exhibiting 
spike amplitude facilitation. Both the spike amplitude and EPSP slope were 
significantly -enhanced. Each point represents a 1 min average. 
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FIG. 3-3. An example of long-lasting perforant path-dentate gyrus spike 
facilitation by ejection of L-glutamate into the medial septum complex. EPSP 
slope changes were short lived. Mean values for six events (1 min. of data) 
were compared to 95% confidence intervals (dashed lines) based on the ten 
means prior to injection (time 0). 
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produced spike enhancement. The latency to an EPSP slope increase was 

shorter, on average, than the latency to produce a spike enhancement 

(range= 1-3 spikes, X= 1. 5). Fifty percent exhibited a significant increase 

by the first evoked potential following glutamate ejection. The EPSP slope 

increase was always shorter in duration than the spike amplitude increase 

unless the latter was for 2 min. or less. Fig. 3-3 illustrates a long-lasting 

(defined as 20 min. or greater) spike amplitude enhancement accompanied 

by a short-lasting EPSP slope amplitude enhancement. 

Spike onset and spike peak latencies were marginally but significantly 

changed at 5 of the 19 MSC sites that produced spike enhancement. Four 

of 5 exhibited a reduction in onset latencies ex= 98%) and 1 exhibited an 

increase ( 1 03 %) . Of the 4 that exhibited an onset latency decrease, 3 

exhibited a spike peak latency increase ex= 102 %) and one exhibited a 

decrease (98 %). 

Six animals were subjected to scopolamine injections after glutamate to the 

MSC induced a spike enhancement. A second ejection of glutamate to the 

same site produced an enhancement in the population spike in 5 of the 6 

animals for a reduced duration when compared to the duration of the first 

ejection (X= 18% of duration as a result of the 1st ejection). To ensure that 

the reduced duration was not due to a normal loss of potency as a result of 

a second ejection, these data were compared to data where a second 
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glutamate ejection was made to the same site without the intervening 

scopolamine injection. Six animals received a second ejection at the same 

site. All six repeated ejections produced a second population spike 

enhancement, and the mean duration of the second effect when compared 

to the first was 57%. While this data suggests that scopolamine attenuated 

the duration of spike enhancement, a 2-way analysis of variance indicated 

no interaction between the scopolamine versus control group and first versus 

second glutamate ejection on the duration of the spike enhancement (F1•20 

= 1.86, p > .05). More data will be needed before the absence of a 

significant attenuation by scopolamine can be concluded. 

3.3.2 Experiment 2: 

Injection sites for animals experiencing population spike enhancement were 

similar to those shown in figure 3-1, being in the MSC. Dentate EEG was 

recorded in 13 animals during population spike enhancement induced by 

glutamate ejection to the MSC. Of these, 3 were in theta at the time of 

ejection of which 2 exhibited an increase in theta frequency (see Fig. 3-4 for 

an example). Glutamate ejection to 7 of the remaining 10 induced theta (see 

fig. 3-4 for an example) and had no effect in the other 3. Therefore, in 

situations where theta was absent, a glutamate pulse to the MSC produced 

theta in 70%. The longest latency to theta induction was 12 s (range 0-12 

s) and the longest duration 112 s (range 20-112 s). 
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FIG. 3-4. Representative examples of theta induction (A) or frequency 
elevation (B) as a result of medial septum complex activation by glutamate. 
Four second bins were analyzed using FFT and power spectrum analysis and 
the frequency of maximum power for each bin plotted over time. 
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Twenty-five units were recorded in 10 animals during population spike 

enhancement induced by glutamate ejection to the MSC. The characteristics 

of each unit are summarized in Table 3-1. These units were characterized 

using the BrainWave Discovery program as illustrated in chapter 2. Thirteen 

of the units were inhibited, 8 excited, and 3 showed no response to 

glutamate ejected in the MSC. One unit was recorded during a repeat 

glutamate ejection to the complex and the results were similar to the first 

(marked repeat in table 3-1). Most of the unit effects were dramatic, as 

evidenced by the magnitude of the glutamate-induced effects given in 

column 5. A comparison of the magnitude of the unit effect and the 

magnitude of the population spike enhancement is included in Table 3-1. 

There is no correlation between the two magnitudes (i.e. the magnitude of 

the unit effect did not predict the magnitude of the population spike 

enhancement). 

The time course of the unit and population spike modulation as a result of 

glutamate ejection are presented in Table 3-2 and illustrated in Fig. 3-5. If 

theta was recorded concurrently, the time course of its modulation is given 

in Table 3-2 as well. Most of the units responded within 5 s of the glutamate 

pulse, and maintained their new level of activity for an average of 125 s 

(range 5-600 s). Regardless of whether the units were inhibited or excited, 

the period of change did not collectively predict the time period of population 
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FIG. 3-5. Time course and effect of glutamate ejection to the medial septum 
complex on units and population spike. Each rectangle delineates the results 
from one glutamate ejection. Shaded bars represent time course of 
population spike enhancement. Black bars represent excited units and white 
bars the inhibited units. 
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spike enhancement. Of the inhibited cells, some units returned to baseline 

prior to spike enhancement (e.g. MS0805-1 c) and others did not return until 

well after spike enhancement (e.g. MS02-2a). The same is true of the 

excited cells with some returning to baseline prior to population spike 

enhancement (e.g. MS2507-3b) and others not returning until well after 

population spike enhancement (e.g. MS02-5a). One unit (MS1204-1 Oa) 

displayed an increase in firing rate that matched the time course of 

population spike enhancement. 

Bursting cells were scrutinized for evidence of complex bursting, where 

each successive spike in a burst decreases in amplitude. A burst was defined 

as 2 or more action potentials with interspike intervals of less then 6 ms. 

Complex bursts are indicative of pyramidal cells (Fox and Ranck, 1975; Fox 

and Ranck, 1981), although CA3 pyramidal cells may burst in a non-complex 

manner as well (Scharfman, 1992). Complex bursting was only observed in 

units MS 1510-1 a and MS011 0-6c. Bursting cells that were excited by 

glutamate ejection to the MSC were scrutinized for a possible increase in 

bursting above that indicated by an increase in frequency. While bursting did 

increase, it was never above the proportional increase in frequency. There 

was no evidence that the number of spikes within a burst increased in 

number as a result of MSC activation as well. 
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The 5 non-bursting, low frequency ( < 5 Hz) units, putatively identified as 

granule cells in chapter 2, were either excited (2) or inhibited (3). The rest 

of the cells, putative non-granule cells demonstrated mixed effects with 8 

inhibited 6 excited, and 4 not responding. 

The evoked potential at the molecular layer was recorded in 4 animals that 

exhibited population spike enhancement as a result of 8 different glutamate 

ejections to the MSC. Of the 8, 6 exhibited a brief (X= 2 min) but significant 

enhancement of the EPSP slope measured at the cell layer and 7 showed a 

brief (X= 2 min) but significant increase in the negative slope measured at 

the molecular layer (X= 1 06%). Therefore, for one ejection, the molecular 

layer slope was significantly increased, when the granule cell layer EPSP 

exhibited no significant increase. 

Of the five animals subjected to paired-pulse stimuli following the 

multiparameter investigation, results from 3 demonstrated a significant 

population enhancement due to glutamate ejection to the MSC, and 2 did 

not, perhaps as a consequence of repeated ejections to the same site. 

Repeated ejections in animals given only single pulses however reliably 

reproduced an enhancement, although of shorter duration. This suggests a 

possible interaction between paired-pulse stimulation and the ability of MSC 

activation to induce population spike enhancement. Only one of the 

'enhanced' studies showed evidence of a reduction in feed-back inhibition. 



FIG. 3-6 A. Population spike size is plotted for each paired-pulse pair and a 
line connects the two points , Paired-pulse inhibition is evidenced by the 
reduced size of the second population spike. Arrows indicate the time of 
glutamate ejection to the medial septum complex. B. The ratio of the size of 
the second population spike to that of the first {paired-pulse index) is plotted 
against the size of the first. The data are taken from first glutamate ejection 
shown in 3-6A. C. The data are taken from the second glutamate ejection 
shown in 3-6A. Numbers in the legends of B and C represent spike pairs 
numbered in A. 
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FIG. 3-7. See Fig. 3-6 for explanation of graphs. A. One glutamate ejection 
to the medial septal complex is indicated by the arrow in A. B. The data are 
taken from the glutamate ejection illustrated in 3-7 A. Paired-pulse indexes 
for the enhanced group fall within those of the control group, indicating no 
reduction in feed-back inhibition. 
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FIG. 3-8. Population spike height is plotted for each paired-pulse pair and a 
line connects the two points. Glutamate ejection to the medial septum 
complex, indicated by the arrow, did not induce an enhancement of the 
amplitude of the first spike and did not affect the magnitude of paired-pulse 
inhibition. 
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The results from this animal are shown in Fig. 3-6. Three MSC glutamate 

ejections were given during the course of the experiment as indicated by the 

arrows in Fig. 3-6A. In each instance a statistically significant enhancement 

of the first spike occurred. Paired-pulse ratio plots are shown in Fig. 3-68 

and 3-6C for ejections 1 and 3 illustrated in Fig. 3-6A. The first ejection 

elicited an equivocally marginal reduction in feed-back inhibition with two 

ratios falling above those with equivalent first spike sizes (paired-pulse index: 

control X=0.30±0.14; enhanced X=0.47±0.21). Results from the third 

ejection (Fig. 3-6C) found almost half of the ratios falling above those from 

the control group with an equivalent range in first spike sizes (paired-pulse 

index: control X =0.44±0.26; enhanced X =0.55 ± .18). Fig. 3-7 shows the 

results from another experiment where an enhancement of the first spike 

occurred, but there was no evidence of disinhibition (paired-pulse index: 

control X= 0.88 ± 0.09; enhanced X= 0. 79 ± .15). Of the 2 paired-pulse 

experiments where no statistically significant enhancement of the first 

population spike of the pair was induced, there was no evidence of 

disinhibition. Fig. 3-8 shows the results from one of these experiments. 



118 

Table 3-1. Listing of each unit recorded, its spontaneous firing rate, whether 
it fired in bursts, whether it fired rhythmically in the theta frequency, the 
effects of glutamate ejection in the medial septum complex, and the 
magnitude of the accompanying population spike facilitation. 

Cell ID Freq. Burst Rhythmic Effect Spike 
(Hz) (maximum (magnitude) 

magnitude) 

MS2507 0.50 mild no excitation 136 
3a (x4) 

MS2507 14.4 no no excitation 136 
3b (x2) 

MS2507 .70 no no excitation 160 
2a (x20) 

MS2811 5.0 mild no none 1 1 1 
3a 

MS02 2.4 yes no excitation 164 
5a (x2) 

MS02 9.2 yes no excitation 156 
6a (x2) 

MS02 9.5 mild no none 137 
7a 

MS02 5.9 mild no inhibition 176 
2a (complete) 

MS04 3.1 yes no inhibition 160 
5a (x0.1) 

MS05 0.6 no no inhibition 185 
1a (complete) 

MS1204 0.6 no no excitation 152 
10a (x2) 

MS0105 8.4 no yes inhibition 129 
1a (x0.5) 

MS0105 1.5 mild no inhibition 162 
2a (x0.3) 
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Cell ID Freq. Burst Rhythmic Effect Spike 
(Hz) (maximum (magnitude) 

magnitude) 

MS0105 13.5 no yes excitation 162 
2b (x1.5) 

MS0105 0.9 no no inhibition 162 
2c (complete) 

MS0105 9.8 mild no excitation 173 
3a (x2) 

MS0105 8.3 mild yes inhibition 173 
3b (x0.3) 

MS0105 8.8 yes no inhibition 123 
4a (x0.3) 

MS0105 5.5 mild no inhibition 138 
5a (x0.1) 

MS0105 3.3 mild no inhibition 120 
6a (x0.1) 

(repeat) 

MS0105 0.6 yes no inhibition 120 
6b (complete) 

MS0805 2.4 no no inhibition 135 
1c (x0.3) 

MS1510 2.0 yes no none 112 
1a 

MS011 0 6.7 mild no none 143 
6a 

MS0110 12.2 yes no inhibition 143 
6b (x0.5) 

MS0110 3.1 yes no inhibition 143 
6c (x0.5) 
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Table 3-2. Listing of each unit recorded and its relationship in time to the 
population spike enhancement and EEG (if it was recorded, - indicates no 
recording). 

Cell ID Time of Time of Spike Time of Time of 
Unit max. enhance. max. EEG effect 

effect effect time effect (sec) 
(sec) (sec) (sec) (sec) 

MS2S07 0-S 0-S 2S-600 180-240 
3a 

MS2S07 0-1S 0-S 2S-600 180-240 
3b 

MS2S07 0-130 0-1S 1S-480 60-120 
2a 

MS2811 1S(s)- 60-120 no effect 
3a S8(min) 

MS02 30- SS-60 1S-180 1S-60 S-8S 
Sa SOO+ 

MS02 10S- 170-17S 2S-120 2S-60 no effect 
6a SOO+ 

MS02 2S-120 60-120 
7a 

MS02 S-600+ S-4SO 2S-480 120-180 
2a 

MS04 0-30 10-2S 2S-60 2S-60 10-3S 
Sa 

MSOS S-400 S-60 60-600 60-120 no effect 
1a 

MS1204 1S-70 1S-20 1S-70 1S-60 
10a 

MS010S 0-260+ 0-SO 2S-120 60-120 
1a 

MS010S 0-40 0-40 4S-1S60 60-120 
2a 
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Cell ID Time of Time of Spike Time of Time of 
Unit max. enhance. max. EEG effect 

effect effect time effect (sec) 
(sec) {sec) {sec) {sec) 

MS0105 30-100 40-85 45-1560 60-120 
2b 

MS0105 5-25 5-10 45-1560 60-120 
2c 

MS0105 0-80 0-10 35-2940 240-300 
3a 

MS0105 0-45 0-15 35-2940 240-300 
3b 

MS0105 0-50 10-15 45-720 240-300 
4a 

MS0105 0-45 20-30 5-2280 60-120 
5a 

MS0105 5-35 20-25 35-420 60-120 
6a 

{repeat) 

MS0105 5-40 5-40 35-420 60-120 
6b 

MS0805 5-25 10-25 60-1980 180-240 
1c 

MS1510 25-180 60-120 no effect 
1a 

MS011 0 35-60 35-60 0-25 
6a 

MS0110 0-80 5-20 35-60 35-60 0-25 
6b 

MS011 0 0-80 0-15 35-60 35-60 0-25 
6c 
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3.4 Conclusion 

Theoretical mechanisms by which activation of the MSC may enhance the 

physiology of the dentate gyrus will be explored in chapter 4. The following 

represents a summary of the experimental findings. 

Glutamate ejection in or immediately adjacent to the MSC produced a 

significant increase in amplitude of the perforant path-evoked population 

spike in the dentate gyrus. A similar finding was reported using electrical 

stimulation of the MSC (Fantie and Goddard, 1982; Silkey and Goddard, 

1985; Robinson and Racine, 1986b; Mizumori et at., 1989). A brief (2 min. 

or less) enhancement of the population EPSP slope in over 80% of the 

experiments associated with a population spike enhancement indicates that 

MSC activation increases the synaptic drive at the perforant path synapse. 

Recording from the molecular layer confirmed the existence of an EPSP 

increase indicated by the increase in EPSP slope measured at the granule cell 

layer. The fact that the increase in synaptic drive was relatively short lived, 

compared to population spike enhancement, indicates that a growth in 

synaptic drive may play a role in the induction of this heterosynaptic short

lasting (2-20 min) or long-lasting ( > 20 min.) potentiation, but does not 

underlie its maintenance. 

Electrical stimulation of the MSC produces an increased population spike 

without an increase in the amplitude of the EPSP (Fantie and Goddard, 1982; 
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Silkey and Goddard, 1985; Robinson and Racine, 1986b; Mizumori et 

al., 1989). The discrepancy between this study and the electrical stimulation 

studies indicates that glutamate activation might stimulate the neural 

elements of the MSC differently, perhaps because of its avoidance of fibres 

of passage, through an unknown preference for a chemically distinct subset 

of neurons, or by inducing a sustained burst pattern. These possibilities will 

be explored further in chapter 4. 

Scopolamine (1 mg/kg, ip) failed to block MSC activation-induced 

population spike enhancement and did not statistically attenuate its duration, 

although a larger sample size and higher doses will be necessary to rule out 

the participation of acetylcholine. High doses of scopolamine (4 to 40 mg/kg, 

iv) were needed to abolish the medial septum stimulation produced 

enhancement of population spikes evoked in area CA 1 by commissural path 

stimulation (Krnjevic and Ropert, 1982). However, scopolamine, at the dose 

used here, has been observed to suppress LTP in the hippocampus (Ito et al., 

1988) and impair learning on a varity of tasks (Berz et al., 1992; Bianchi and 

Panerai, 1993; Bresnahan et al., 1992; File et al., 1990; Fishkin et al., 1993; 

Lukaszewska, 1993; Matsuoka et al., 1992; McNamara and Skelton, 1992; 

Riekkinen et al., 1991). Fan tie and Goddard ( 1982) found that cholinergic 

antagonists failed to block the population spike enhancement produced by 

electrical stimulation of the MSC. 
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The duration of neurotransmitter release from the MSC afferents as a result 

of glutamate stimulation cannot be ascertained. It is unlikely, however, that 

the duration of neurotransmitter release due to glutamate-induced MSC cell 

activation matches the duration of population spike facilitation, as discussed 

in chapter 2. Concurrent monitoring of MSC cell activity would be of 

interest. 

Glutamate activation differs from electrical stimulation of the MSC, as it 

does with electrical stimulation of the SUML, in the time course of their 

effects on evoked potentials in the dentate gyrus. Electrical stimulation only 

produces an enhancement if given within 100 to 1000 ms prior to the 

perforant path stimulus, optimally 5 ms prior to the stimulus (Fantie and 

Goddard, 1982; Robinson and Racine, 1986b; Mizumori et al., 1989). Units 

recorded in the dentate gyrus during MSC electrical stimulation were 

affected for typically 10-15 ms (Mizumori et al., 1989). Both units and 

evoked potentials were modulated for minutes in this experiment, as a result 

of a brief pulse of glutamate to the MSC. Furthermore, a 30 s delay between 

the glutamate pulse and the increase in spike amplitude was common in the 

present experiments. 

Glutamatergic stimulation of the MSC inhibited 52% and excited 32% of 

the cells recorded in the dentate gyrus for an average of 125s. Most 

responded immediately, prior to the spike amplitude enhancement. As in the 



125 

SUML study, the time course of unit modulation rarely correlated with the 

time course of the spike enhancement. While this implies that changes in the 

spontaneous activity of the units recorded do not reflect the critical events 

that underlie the enhanced population spike, only a few cells were sampled 

from a large population. It is possible that the unit population response 

would reflect a mixture of unit responses in time, and hence their combined 

average may directly underlie the changes in the population spike amplitude. 

Electrical stimulation of the MSC prior to perforant path stimulation resulted 

in a decrease in putative inhibitory local-circuit neuron activity in the dentate 

gyrus and an increase in putative granule cell activity (Mizumori et al., 1989). 

This effect suggests a disinhibition mechanism mediates the population spike 

facilitation produced by MSC stimulation (Mizumori et al., 1989). Stimulation 

of the MSC during a narrow time window associated with the first 

population spike elicited by the first pulse in a paired-pulse stimulation 

disinhibited the second population spike (Silkey and Goddard, 1985), 

supporting the disinhibition theory. Units recorded in this experiment were 

not identified by the rigorous response properties employed by Mizumori et. 

al. ( 1989). As suggested in chapter 2, we may assume that granule cells, in 

relation to non-granule cells found in the dentate gyrus, fire spontaneously 

at low rates (Mizumori et al., 1989; Scharfman, 1992), and are characterized 

by an absence of burst firing (Misgeld et al., 1992a; Scharfman, 1992). Of 
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the 5 non-bursting cells that fired at a frequency of less than 5 Hz, 3 were 

inhibited and 2 were excited by MSC activation, suggesting mixed effects 

on putative granule cells. A larger number of units sampled, coupled with 

the rigorous response properties employed by Mizumori et. al. ( 1989), would 

be more informative. 

The mechanism by which the MSC influences hippocampal throughput was 

explored in this study using paired-pulse stimulation with interpulse intervals 

of 20-30 ms. Evidence for a disinhibition mechanism associated with MSC 

activation was variable, and may be indicative of two prominent 

neurotransmitter systems (acetylcholine and GABA) being activated in 

different proportions with each glutamate ejection. 

Glutamatergic activation of the MSC induced a brief theta rhythm recorded 

at the molecular layer of the dentate gyrus in 70% of the experiments 

associated with a concomitant enhancement of the population spike. As 

pointed out in chapter 2, enhancement of the perforant path-dentate evoked 

potential has been correlated with the induction of theta through sensory 

stimulation (Herreras et al., 1988) and the theta rhythm may play a 

modulating role in the induction of L TP in the dentate gyrus (Pavlides et 

al., 1988a; Ford et al., 1989). The production of theta is not necessary for the 

enhancement of the population spike here, given that the theta rhythm was 

not induced in 30o/o of the experiments. When induced, the theta rhythm 
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lasted for a brief period in time (20-112 s) relative to population spike 

enhancement, therefore if it did play a role in spike enhancement, it was 

restricted to the induction of the event alone, and not the maintenance of 

the spike enhancement. 

It is well established that the MSC plays a critical role in the generation of 

hippocampal theta, specifically the type 2 theta that is left intact in urethane 

anaesthetized animals (Bland, 1986; Smythe et al., 1992; Vertes, 1986). 

Electrical stimulation of the MSC induces theta (Bland, 1986) and electrolytic 

lesions of the MSC disrupts theta activity in the hippocampus (Sainsbury and 

Bland, 1981 ). More importantly, in confirmation that type 2 theta is 

controlled by the MSC and not axons of passage, Type 2 theta is abolished 

by the cholinergic antagonist, atropine sulfate (Kramis et al., 1975). The 

induction of hippocampal theta by glutamatergic activation of the MSC 

reported here confirms the ability of the MSC, and not axons of passage, to 

generate type 2 theta production. More recently it has been proposed that 

the activities of both the GABAergic and cholinergic systems of the MSC are 

required to generate hippocampal theta (Smythe et al., 1992). Direct 

microinfusions of the cholinergic agonist, carbachol, into the hippocampus 

can induce theta (Malisch and Ott, 1982; Rowntree and Bland, 1986) but 

inactivation of the MSC by local infusion of procaine hydrochloride blocks 

carbachol-induced theta (Smythe et al., 1992). 
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While the MSC projects directly to neurons within the dentate gyrus, one 

cannot rule out the possibility that the modulatory effects on hippocampal 

physiology produced here were mediated through a multisynaptic pathway 

or through other indirect means. Stimulation of the septal complex by 

glutamate has been shown to increase the blood flow in the hippocampus 

(Cao et al., 1989). The response started about 1 min after glutamate ejection, 

peaked at about 3-5 min, and gradually returned within 30-60 min. The 

increase in blood flow induced by MSC activation was completely abolished 

by the nicotinic receptor blocker, mecamylamine. The concurrent monitoring 

of local blood flow in the hippocampus, and a test of the ability of a nicotinic 

receptor blocker to block MSC activation effects on the dentate gyrus 

population spike, are indicated for future experiments. 
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CHAPTER 4: DISCUSSION 

These experiments were initially concerned with whether or not cell

selective glutamate activation would give similar results to those seen 

previously with electrical stimulation preceding the dentate gyrus-perforant 

path evoked potential. Further experiments attempted to address the 

relationship between different indices of electrophysiological or functional 

change following such activation, i.e. possible contemporaneous effects on 

EEG responses, cellular activity and evoked potentials. In addition, 

experiments were initiated to probe suggested mechanisms by looking at 

alterations in local circuit inhibition through an assessment of paired-pulse 

inhibition change following glutamate ejection. 

The results of this research demonstrate that glutamate ejection in the 

SUML or MSC (and at medial thalamic sites) can significantly influence 

hippocampal physiology in the urethane-anaesthetized rat. Short- and long

lasting potentiation of the population spike were the most consistent results. 

A relatively brief increase in the population EPSP was seen after MSC (and 

medial thalamic) stimulation but not after SUML stimulation. Other putative 

modulatory systems enhance the population spike generated in the dentate 

gyrus as a result of perforant path stimulation. 
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Enhancement of the population spike has been obtained after stimulation 

of the locus coeruleus (Harley et al., 1989; Harley and Milway, 1986), the 

raphe nucleus (Winson, 1980; Assaf and Miller, 1978) and the substantia 

nigra (Shin et al., 1987). Glutamatergic activation of the locus coeruleus can 

produce a similar long-lasting potentiation of the population spike (Harley and 

Milway, 1986) as observed with MSC and SUML glutamatergic activation 

here. 

The population spike enhancement produced by electrical stimulation of the 

midbrain raphe nucleus is not affected by prior depletion of brain serotonin 

(Srebro et al., 1982), the raphe system's primary neurotransmitter. The 

population spike enhancement produced by locus coeruleus electrical 

stimulation is not blocked by a noradrenergic beta receptor blocker (Harley 

et al., 1989), which has been shown to prevent population spike 

enhancements produced by glutamatergic activation of the locus coeruleus 

(Harley and Milway, 1986) and by norepinephrine applied to the slice 

(lacaille and Harley, 1985). These two examples suggest electrical 

stimulation may not be particularly selective to the modulatory system 

targeted, and emphasize the need to evaluate the effects of a more cell

selective mode of activation as stated in the introduction. 

There are clear differences between the results produced by electrical 

activation and glutamate activation of these structures. Electrical activation 
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of the MSC and SUML must be given within a narrow time window prior to 

the perforant path-induced population spike, and will only enhance the 

population spike associated with this time window (Fantie and Goddard, 

1982; Mizumori et al., 1989; Robinson and Racine, 198Gb). Glutamate 

activation of these structures was not temporally paired with perforant-path 

stimulation, since it was pressure-ejected randomly in time between the 

perforant path stimuli given every 10 s, and produced short and long-lasting 

enhancement of the population spike that often took 30 s to develop. 

Electrical stimulation of the MSC does not produce an enhancement of the 

field EPSP (Fantie and Goddard, 1982; Mizumori et al., 1989), whereas 

glutamate activation of the MSC consistently produced a brief ( 1-2 min) 

enhancement. Electrical stimulation of the MSC and SUML produces changes 

in the unit activity of dentate gyrus cells that can only be measured in ms 

(Mizumori et al., 1989; Segal, 1979), whereas the changes in spontaneous 

unit activity produced by glutamate activation in this study often lasted 

minutes. Some of these differences may be a result of the possibly 

nonselective nature of electrical stimulation mentioned above. 

Pharmacological investigations of the specificity of these effects would be 

impossible, in the case of the SUML studies, given a primary 

neurotransmitter has not been identified to date. Pharmacological study of 

the MSC is problematic since at least 2 primary neurotransmitters have been 
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identified, acetylcholine and GABA, the latter also occurring in abundance 

intrinsically in the hippocampus. Hence, any attempt to block the GABAergic 

septohippocampal projection pharmacologically in the hippocampus would 

also severely disrupt the local inhibitory network. The ability of MSC 

electrical stimulation to enhance the dentate population spikes is resistant to 

the effects of both nicotinic and muscarinic cholinergic antagonists (Fantie 

and Goddard, 1982), suggesting that acetylcholine does not play a role in 

this facilitation. Preliminary results given here show that the enhancement 

of the population spike by glutamate activation of the MSC was not blocked 

by a relatively low dose of the muscarinic antagonist scopolamine. 

The temporal relationship between population spike potentiation produced 

by glutamate activation of these structures and the other parameters 

measured is puzzling, and cannot be explained by simple network properties. 

When a theta rhythm is induced it is usually immediate and short-lived when 

compared to the population spike enhancement. The lack of temporal 

correspondence between the induction of a theta rhythm and the 

enhancement of the population spike suggests that these two manifestations 

arising from SUML or MSC activation reflect independent events. This 

interpretation is supported by the fact that a spike enhancement can occur 

in the absence of theta induction. The brief induction of a theta rhythm may 

be indicative of the length of time that the respective synaptic components 
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are active, and indicate that the spike enhancement outlasts synaptic activity 

arising from the SUML or MSC. The spontaneous unit activity, not just the 

evoked responses, were affected by SUML and MSC activation. 

Spontaneous unit activity is immediately affected by glutamate activation of 

these structures despite the delayed enhancement of the population spike. 

The duration of individual unit rate changes does not covary with population 

spike enhancement but may be just as long lasting. A closer look at unit 

changes will be necessary before possible changes in subsets of the local 

network can be elucidated. The rigorous response properties evaluated by 

Mizumori et. al. ( 1989) would help to differentiate between granule cells and 

nongranule cells. 

Another puzzling finding is the effect glutamate activation of these 

structures had on paired-pulse inhibition. MSC activation could produce 

evidence of disinhibition, but this finding was not consistent. In other words, 

MSC activation-induced population spike enhancement may, or may not, be 

accompanied by evidence of a reduction in feed-back inhibition. In the SUML 

study, the reproduction of the population spike enhancement following a 

repeat ejection of glutamate to the SUML was difficult to produce when 

paired-pulses were given, and yet evidence for a reduction of feed-back 

inhibition was demonstrated despite this lack of a population spike 

enhancement. 
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The transient potentiation produced by electrical stimulation of the SUML 

(Mizumori et al., 1989) and the MSC (Fantie and Goddard, 1982; Mizumori 

et al., 1989; Robinson and Racine, 1986b) coupled with the short interpulse 

interval of 10-15 ms in the SUML study (Mizumori et al., 1989) and 5 ms in 

the MSC studies (Fantie and Goddard, 1982; Mizumori et al., 1989) required 

for maximal population spike facilitation, suggests an immediate ionotropic 

mechanism initiated by the release of each structure's respective 

neurotransmitter(s). Since the primary neurotransmitter of the SUML neurons 

has not been identified, speculation as to the possible ionotropic events 

underlying the SUML-activation-induced population spike enhancement is 

impossible. 

Activation of the MSC would release acetylcholine and GABA at their 

respective synapses in the dentate gyrus. As reviewed in the introduction of 

chapter 3, cholinergic innervation of the dentate gyrus involves both 

symmetric and asymmetric synapses onto both local-circuit neurons and 

granule cells. Therefore activation of this system is likely to produce a 

complex mixture of events. The physiological mechanisms of acetylcholine 

in the hippocampus have recently been reviewed (Halliwell, 1990). In the rat 

hippocampus, acetylcholine and cholinergic agonists have produced various 

effects such as slow depolarization and a reduction of the slow 

afterhyperpolarization [e.g. (Misgeld and Muller, 1988)], effects that could 
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lead to increased cell excitability. However, Fantie and Goddard (1982) 

demonstrated that population spike enhancement induced by electrical 

stimulation of the MSC was not blocked by various muscarinic and nicotinic 

receptor antagonists. Their results suggest that population spike 

enhancement induced by electrical stimulation of the MSC is mediated by the 

GABAergic component of the septohippocampal projection. 

A reduction in feed-back inhibition (Silkey and Goddard, 1985), the 

blockade of MSC effects by the GABA antagonist picrotoxin (Fantie and 

Goddard, 1982), and the inhibition of putative local-circuit neurons (Mizumori 

et al., 1989), together suggest that electrical stimulation of the MSC 

enhances population spike amplitude by reducing the feed-forward inhibition 

elicited by perforant path stimulation. The MSC-GABA projection to the 

dentate gyrus preferentially innervates non-granule cells, many of which are 

immunoreactive for GABA (Freund and Antal, 1988), providing an anatomical 

basis for this disinhibition theory. The failure to reduce paired-pulse inhibition 

by MSC electrical stimulation in the study by Robinson and Racine ( 1986), 

however, needs to be reconciled. Since electrical stimulation of the SUML 

also inhibits putative local-circuit neurons, Mizumori et. al. ( 1989) 

hypothesize a similar disinhibition mechanism for SUML-induced population 

spike enhancement. 
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The long-lasting enhancement of the population spike produced by 

glutamate activation of the SUML and MSC, in contrast to the transient 

enhancement produced by electrical stimulation, could be most easily 

explained by a long-lasting activation of the SUML or MSC neurons that 

correlates with the length of population spike enhancement. This scenario is 

unlikely, although the recording from neurons near the glutamate ejection 

site should be undertaken in order to determine the length of activation. 

Glutamate is rapidly taken up by glutamatergic neurons and astrocytes in the 

CNS (Schousboe et al., 1990). In one study, where cells were recorded at the 

ejection site in the rat locus coeruleus, glutamate ejections of similar volume 

and concentrations to those used here, elicited a 250-450 ms burst of cell 

activity, followed by a depression of unit activity lasting 4.6 min on average 

(Harley and Sara, 1992). Ejections of similar volume and concentration into 

the nucleus retroambigualis of the cat and rabbit produced an increase in the 

firing rate of neurons within 0.2 mm of the ejection site, lasting for an 

average of 12 s, followed by a reduction in activity lasting 11.5 min on 

average (Lipski et al., 1988). The results from these two studies suggest that 

glutamate activation of neurons of the SUML and MSC should be short lived 

in comparison to the duration of population spike enhancement found in the 

dentate gyrus. The short burst activity generated by glutamatergic activation 

of the locus coeruleus elicited an enhancement of the evoked population 
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spike recorded in the dentate gyrus after stimulation of the perforant path 

that lasted minutes, and occasionally hours (Harley and Sara, 1992). 

Intravenous injections of clonidine produced silence or a depression of locus 

coeruleus cell firing lasting 3-5 min with no accompanying change in the 

dentate population spike. These results suggest that the glutamatergic burst 

of cell activity was responsible for the population spike enhancement, rather 

then the depression of unit activity that followed. It is therefore likely that 

activation of the two systems studied here produce an increase in the 

response of granule cells to perforant path stimulation that lasts well beyond 

the duration of probable glutamate-induced activation of the input cells. 

One mechanism, that would distinguish electrical stimulation from 

glutamate activation, is the finding that peptide cotransmitters and 

"classical" transmitters found in the same neurons are released differentially 

based on the pattern of the induced action potentials (lundberg et al., 1986). 

It is possible that glutamate activation of the MSC or SUML releases a 

greater amount of peptide cotransmitters, which have been found to produce 

slow postsynaptic potentials that can last as long as 30 min [for a review 

see (Libet, 1986)]. The existence of peptide neurotransmitters in SUML and 

MSC neurons have been demonstrated, as reviewed in the introduction to 

chapters 2 and 3. 
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The long-lasting potentiation produced here share some characteristics with 

L TP, briefly reviewed in chapter 1. There is a delay between the initiating 

event and its manifestation in both L TP and the potentiation seen here. L TP 

in the dentate gyrus does not start to manifest itself until a few seconds 

after the induction event, and thereafter grows approximately linearly for 

about 30 s (Hanse and Gustafsson, 1992a). Furthermore, a weak 

tetanization intensity produces a potentiation that falls short of long-term 

(defined by most researchers as lasting > 60 min), and may decay 

completely within 5-30 min (Hanse and Gustafsson, 1992a), potentiation 

durations that fall within the duration of long-lasting effects produced here. 

Cholinergic agonists in the slice (Burgard and Sarvey, 1990) and electrical 

stimulation of the MSC in vivo (Robinson, 1986a; Robinson and Racine, 

1986b) enhance L TP generated in the dentate gyrus by perforant path 

tetanization. 

The well characterized role that NMDA receptors play in synaptic plasticity 

make them tempting targets when trying to elucidate possible mechanisms 

of long-lasting enhancements seen here. The long-lasting effects of 

norepinephrine on perforant path-dentate gyrus evoked population spikes is 

blocked by NMDA antagonists in the hippocampal slice (Burgard et al., 1989; 

Stanton et al., 1989). A possible link between the amplification of NMDA 

currents and SUML activation was seen in the paired-pulse data in chapter 
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2. The size of the second spike in a pair is a reflection of the lingering 

influence from the generation of the first spike. In review, short perforant 

path stimulus intervals (approximately 10-40 ms) produce an early period of 

inhibition (Andersen et al., 1971 a), where both the population EPSP and the 

population spike of the second field potential are depressed (Adamec et 

al., 1981; Sundstrom and Mellanby, 1990). The second phase is 

characterized by a facilitation of the second spike, and occurs with perforant 

path stimulus intervals of approximately 30 to 200 ms (Racine and Milgram, 

1983). The results shown in Fig. 2-12 clearly demonstrate an overlap 

between the feed-back, early inhibition phase, and the facilitation phase. 

SUML activation changed the response to the second stimulus from a 

reduction of the size of the second spike to an increase. If feed-back 

inhibition did not overlap with the facilitatory process, and SUML activation 

simply abolished feed-back inhibition, then one would expect the second 

population spike amplitude to be equal to the first. It is possible, therefore, 

that any reduction in the size of the second population spike is due to either 

a reduction in feed-back inhibition or an increase in facilitation, or both. The 

net effect would reflect the sum of these competing events. In fact it has 

been suggested that the early and late phases of paired-pulse inhibition 

represent one prolonged GABA-dependent process that is superimposed on 

an independent facilitatory process (Steffensen and Henriksen, 1991). 
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It has recently been demonstrated that the NMDA glutamate receptor plays 

a dominant role in the paired-pulse facilitatory phase. Paired-pulse facilitation 

of the population spike is attenuated or blocked by the administration of 

NMDA receptor-ion channel blockers (Joy and Albertson, 1993). One 

possible interpretation of the SUML results is that SUML activation amplified 

the facilitatory process mediated by NMDA receptors, as seen in the paired

pulse experiments, and that the short- and long-lasting enhancements of the 

population spike demonstrated here are mediated through an NMDA

associated mechanism. The results from the MSC paired-pulse experiments 

were too variable to suggest a similar mechanism, however, acetylcholine 

has been found to enhance an NMDA-evoked calcium rise in pyramidal 

neurons of the hippocampus (Segal, 1992). 

The alternate explanation for the SUML paired-pulse results is that SUML 

activation produces a disinhibition of granule cells (Mizumori et al., 1989). 

Since depolarization of the postsynaptic membrane is critical to the induction 

of L TP, bringing the membrane potential to a level where magnesium ions no 

longer block the NMDA receptor channels, it follows that interneuron

mediated inhibition, which limits postsynaptic depolarization during a 

stimulus train, may determine the threshold at which L TP can be induced. 

When inhibition is blocked with picrotoxin, a GABA-A receptor antagonist, 

depolarization during a stimulus train is enhanced, facilitating L TP induction 
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(Wigstrom and Gustafsson, 1983). Disinhibition produced by SUML 

activation may increase calcium flow through NMDA channels activated by 

the low-frequency stimulation of the perforant path. Further research testing 

the involvement of NMDA receptors in the heterosynaptic potentiation 

observed here needs to be done. Would NMDA receptor or channel blockers 

obstruct the population spike potentiation produced by MSC or SUML 

activation, and would they block the apparent reduction in feed-back 

inhibition observed after SUML activation? 

The heterosynaptic short- and long-lasting potentiation demonstrated here 

may simply reflect a concomitant inhibition of dentate local circuit neurons, 

which inhibit granule cells. This would produce a disinhibition of granule cells 

and subsequently increase their response to perforant path stimulation. The 

inhibition of granule cells by local circuit neurons can occur in a tonic 

fashion, as a result of spontaneous activity, or may occur as a result of 

perforant path stimulation. The evoked response could occur through a 

perforant path-local circuit neuron synapse (feed-forward route) or through 

a granule cell mossy fibre-local circuit neuron synapse (feed-back route). The 

paired-pulse paradigm, using short interpair intervals of about 10-30 ms, only 

measures the inhibition due to the feed-back route, since both tonic and 

feed-forward inhibition should be present during both evoked potentials. It 

is often assumed that a reduction in feed-back inhibition measured by a 
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paired-pulse also reflects a reduction in feed-forward and tonic inhibition. The 

overview of the local circuitry given in chapter 1 supports the view that the 

same neurons are responsible for both feed-forward and feed-back inhibition 

since most of these neurons send dendrites into the molecular layer and 

receive mossy fibre innervation. Hence, a general inhibition of these cells at 

the time of perforant path stimulation should reduce both feed-back and 

feed-forward inhibition. 

Results from this study and others suggest that feed-forward and feed-back 

inhibition may work in a more independent fashion. In the hippocampal slice, 

two types of IPSPs are found in granule cells, fast Cl-dependent IPSPs 

involving the GABA-A receptor, and a slow K-dependent IPSPs likely 

involving the GABA-8 receptor {Misgeld et al., 1992b). These potentials can 

occur independently of each other, suggesting that Cl- and K-dependent 

IPSPs are generated by different sets of neurons {Muller and Misgeld, 1990; 

Misgeld et al., 1992b). It has been proposed that different GABAergic local 

circuit neurons mediate feed-forward and feed-back inhibition to varying 

degrees {Miettinen and Freund, 1992a) and that subcortical inputs to the 

dentate gyrus may selectively influence one form of inhibition over the other 

{Miettinen and Freund, 1992a; Richter-Levin and Segal, 1990). The results 

of the SUML paired-pulse study support this concept, in that SUML 

activation could enhance the size of the second population spike without 
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altering the size of the first population spike. In other words, if SUML 

activation produced a reduction in both feed-forward and feed-back 

inhibition, then both the first and second population spikes should have 

increased. An increase in only the second population spike, where feed-back 

inhibition has been evoked, suggests that SUML activation had selectively 

reduced feed-back inhibition. 

A selective effect upon feed-back inhibition does not explain how SUML

activation enhances the population spike during single, low-frequency 

stimulations to the perforant path. Only a reduction in tonic or feed-forward 

inhibition would enhance the population spike under these conditions. It is 

possible, however, that the threshold for a reduction in feed-forward 

inhibition is higher than that for feed-back inhibition. This might also explain 

similar results found during sensory stimulation of locally-anaesthetized rats 

(Herreras et al., 1988). While sensory stimulation (stroking the animals fur) 

produced an enhancement of the perforant path-evoked population spike in 

the dentate gyrus in 20 of the 33 animals tested, feed-back inhibition 

(measured by the paired-pulse paradigm) was reduced in 30 of the same 33 

animals. In other words, 10 animals showed a reduction in feed-back 

inhibition without experiencing a sensory-evoked increase in the population 

spike. 



144 

The potentiation of population spikes recorded in the dentate gyrus was not 

accompanied by an enhancement of the population EPSP, after SUML 

activation, or was accompanied by a relatively short ( 1-2 min) population 

EPSP enhancement, after MSC activation. The magnitude of the EPSP slope 

reflects the size of the positive inward current generated at the granule cell 

dendrites. An enhancement may be due to such synaptic factors as an 

increase in glutamate release from the perforant path fibres, or an increase 

in the sensitivity of postsynaptic glutamate receptors. However, the resultant 

increase in the positive inward current, and hence the population EPSP, 

should have been observed for the course of the population spike 

enhancement. Since this did not occur, then the reduced firing threshold of 

the granule cells must have been caused by an increase in EPSP-spike 

coupling, where the neuron's ability to generate an action potential is 

enhanced without a change in the synaptic drive. For instance, an increase 

in the resistance of the granule cells dendritic shaft would allow an increased 

amount of synaptic current, generated by perforant path activation, to reach 

the spike generating zone in the soma without concurrently producing a 

detectable alteration of the EPSP. An increase in spike-coupling might also 

occur through the facilitation of voltage-gated ion channels linked to the 

generation of an action potential, as opposed to the chemically-gated ion 

channels on the postsynaptic membrane. 
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A reduction in the tonic or feed-forward inhibition, is a third example where 

an increase in EPSP-spike coupling could occur. An increase in EPSP-spike 

coupling has been observed as a property of L TP, along with the increase in 

the EPSP, and the two components may reflect independent processes (Bliss 

and Gardner-Medwin, 1973). In fact, the high frequency train required to 

produce L TP may produce a disproportionate enhancement of the population 

spike with either no change or a small increase in the EPSP (Bliss and Lomo, 

1973; Abraham et al., 1985), as seen here after SUML or MSC activation. An 

increase in EPSP-spike coupling using a high-frequency train can be produced 

heterosynaptically (Abraham et al., 1985), whereas an enhancement of the 

synaptic component is only observed along the tetanized pathway 

(McNaughton and Barnes, 1977). The increase in EPSP-spike coupling 

observed in dentate L TP appears to be due, at least in part, to a reduction 

in feed-forward inhibition (Chavez-Noriega et al., 1990; Tomasulo et 

al., 1991; Tomasulo and Ramirez, 1993). A reduction in feed-forward 

inhibition would increase the efficiency with which dendritic depolarization 

translates into action potentials following perforant path stimulation. 

While much attention has been focused on the action of glutamate, and its 

role in L TP, as a model system for synaptic plasticity changes that may 
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occur during learning and memory, other systems that mediate nonspecific 

states of "arousal" or "motivation" are likely to be important. An important 

role for such modulating systems on hippocampal plasticity is indicated by 

the significant impairment in the ability of the hippocampus to support long

term potentiation once the subcortical inputs to this structure are severed 

(Buzsaki and Gage, 1989; Valjakka et al.,1991; Abe et al.,1992). 

If the physiological action of subcortical inputs to the hippocampus, such 

as those arising from the MSC and the SUML, were simply increasing the 

granule cell's response to any input during a given time period, then this may 

be likened to an attentional role in information processing. The putative 

sensory input arising from entorhinal afferents would be enhanced, 

presumably increasing the intensity of the experience of, or promoting 

attention to, the input. 

The long-lasting enhancement of the population spike that can occur with 

MSC or SUML activation may simply reflect the length of this "arousal" 

state. Alternately, the arousal state may be of shorter duration, but the 

increased responsiveness of granule cells during this brief period may 

facilitate the induction of other forms of plasticity that would lengthen the 

duration of enhancement. These other synaptic changes may be associated 

with an L TP-Iike mechanism and should only occur at those synapses active 

during the early arousal state. The variability in duration of the induced spike 
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enhancements may reflect whether this second form of synaptic plasticity 

was established, and the strength of this establishment. 

This hypothesis would necessitate a mechanism whereby the 

contemporaneous inputs arising from the entorhinal cortex during the SUML

er MSC-activated "aroused" state could be selectively strengthened by an 

increase in the EPSP-spike coupling observed here. Since the possible 

mechanisms by which such an EPSP-spike coupling could occur would 

presumably enhance all input, such a mechanism remains elusive (see 

discussion of putative mechanisms above). An increase in the resistance of 

the dendritic membrane, or a reduction in the feed-forward or tonic inhibition 

onto the granule cell, would enhance all perforant path input, rather than a 

selective few which may be paired with the SUML or MSC activation. 

Further experiments could shed light on these important issues. The ability 

of NMDA antagonists to block MSC or SUML related population spike 

enhancements would resolve whether the long-lasting enhancements are due 

to an L TP-Iike mechanism. Varying the interval between SUML or MSC 

activation, and perforant path stimulation would shed light on whether long

lasting potentiation requires the contemporaneous activation of the perforant 

path during the early "aroused" state, and test the requirement of a putative 

second synaptic plasticity mechanism. 
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While the results published here clearly indicate that SUML- or MSC-

activation can produce long-lasting increases in granule cell excitability, 

many questions remain about the mechanism of enhancement, and the role 

that these systems may play in hippocampal information processing. 
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APPENDIX 1: ASYST program for evoked potential data acquisition. 

ERROR.TRACE.ON 

ECHO.OFF 
\ written for RC A/D board 
\ uses code.exe as external assembly code for fast read. 
\ therefore code.exe must be in default drive. 
\ program written to analyse dentate population spike. 

7 1 FIX. FORMAT 

: WAIT.FOR.KEY 
KEY 0 = IF KEY DROP THEN ; \loops until any key is pressed 

integer dim[ 2400 1 array a 1 \ to store data from A/D board 
0 a1 : = 

integer dim[ 40 1 array PROGRAM.ARRAY \to store assembly read prog. 
0 PROGRAM.ARRAY: = 

PROGRAM.ARRAY LOAD.EXE c:\ASYST\CODE.EXE \load assembly read program 

integer scalar off .set 
scalar defs 
scalar data.offset 
scalar data.seg 

\ variables for read prog. 

PROGRAM.ARRAY address off.set: = defs : = 

\ * * * * set display windows * * * 

3 4 5 78 WINDOW {HEADER1} 
6 4 13 78 WINDOW {DATA1} 

15 4 15 78 WINDOW {HEADER2} 
16 4 18 78 WINDOW {DATA2} 
20 4 20 78 WINDOW {HEADER3} 
21 4 21 78 WINDOW {DATA3} 
23 4 24 60 WINDOW {MESS} 
23 61 24 78 WINDOW {FLAG} 

\ * * * * setup RC data acquisition board * * * * 

: trigger.setup \ poke a machine language interrupt service 
29931 def.seg \routine into memory at the defined segment 
30 0 poke \ (&h74EB). This routine stores a value of 1 
87 1 poke \into memory address &h74EEO whenever a low 
80 2 poke \to high transition occurs on IR03. 
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184 3 poke 
238 4 poke \new address 74EEO (478,944) for flag check 
116 5 poke 
142 6 poke 
21 6 7 poke \ note, this routine is written in memory at 
191 8 poke \ 478,896 to 478,944, high in the area that 
0 9 poke \ ASYST reserves for the user dictionary, which 
0 10 poke \ is unlikely to fill. Check with "?memory". 
198 11 poke 
5 12 poke 
1 13 poke 
176 14 poke 
32 15 poke 
230 16 poke 
32 17 poke 
88 18 poke 
95 19 poke 
31 20 poke 
207 21 poke 

\ set IRQ3 interrupt vector to &h74EBO 
0 def.seg 
0 44 poke 
0 45 poke 
235 46 poke 
116 47 poke 

\ enable interrupt request IRQ3 
33 port.in dup 8 I integer 
dup 2 I integer 2 * 
< > if 8 - 33 port.out then ; 

: disable.scope 
0 779 port.out ; \ stop acquisition 

: load.mux 
8 0 do 0 784 port. out 1 784 port. out loop ; \ use input #1 &2 

: set. trigger 
205 769 port.out 
8 770 port.out 
9 794 port.out 
0 785 port.out 
1 0 776 port. out ; 

: set.clock 
116 775 port.out 
1 0 773 port. out 
0 773 port.out ; 

\ set trigger threshold to 1 V (LSB,MSB) 

\ select trigger channel 2 
\ internal sample clock select 
\ trigger slope, internal trigger, positive polarity 

\ set internal clock to sample every 1 0 us 
\ LSB 

\ MSB 
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: set.burst 
50 775 port.out \ sample both channels on each clock pulse 
2 772 port.out 
0 772 port.out ; 

: set.post.trigger \ sample 4096 points 
178 775 port.out 
0 774 port.out 
16 774 port.out; 

: set.bank.mem 
0 789 port.out \ select bank B , manual bank switching 
04 795 port.out ; \ select 4K sample size for RC buffer 

: trigger. flag \ put a 0 into memory reserved for trigger flag status 
29934 def.seg 
0 0 poke; 

: start.acquisition \ start reading data from channels 1 & 2 
0 778 port.out 
1 0 msec.delay 
0 780 port.out; 

: trigger.check \ check mem for trigger flag status 
29934 def.seg 
begin 0 peek 0 < > until 
1 0 msec.delay ; 

: new.read 
0 788 port.out call[ defs , off.set , 2400 , a1 ] ; \ read data 

: setup.final \ to initialize board 
trigger. setup 
disable. scope 
load.mux 
set. trigger 
set. clock 
set. burst 
set. post. trigger ; 

\ * * * * remove trigger channel data from data array and place in waveform * * * * 

integer scalar counter 
integer dim[ 1200 ] array waveform 

0.1 SET.CUTOFF.FREQ \for smooth function 

: fill.data \ take info from channel 1 and place into array waveform 
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0 WAVEFORM : = 
a 1 SUB[ 1 , 1200 , 2 1 waveform : = \ place every odd value into array 

:GO 
set.bank.mem 
trigger. flag 
start. acquisition 
trigger. check 
new.read 
fill.data ; 

\ to start aquisition 

\ * * * * routines for spike delineation by user * * * * 

INTEGER SCALAR MARK1 
SCALAR MARK2 
SCALAR MARK3 \ mark2 - mark1 = size of waveform.sub 
SCALAR GAIN 

20 STRING FILENAME 
8 STRING DRIVE 

: INTRO 
NORMAL.DISPLA Y 
SCREEN.CLEAR 
. " Enter the latencies (in us) necessary to calculate field" CR 
. " potential stats. Terminate each entry with < CR >. " CR 
CR; 

: GET.EPSP.START 
CR 
. " EPSP starts at:-->" 
BEGIN 
#INPUT NOT 

WHILE 
CR . " Invalid number, reenter: " 

REPEAT 
MARK1 . -
CR; 

: GET.AMP.GAIN 
CR 
. " The amplifier gain is:-->" 
BEGIN 
#INPUT NOT 

WHILE 
CR . " Invalid number, reenter: " 

REPEAT 
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GAIN:= 
CR; 

: USER.SETUP \ get popspike delineators from user 
INTRO 
GET.EPSP.START 
GET.AMP.GAIN 
CR 
• II EPSP starts at II MARK 1 . CR 
• II Amp gain is II GAIN . CR CR 
. " Are these numbers correct? (N = no, any other key = yes) 11 

KEY \ if user responds with n or N, restart user.setup 
CASE 

78 OF MYSELF ENDOF 
110 OF MYSELF ENDOF 

SCREEN. CLEAR 
ENDCASE; 

\ * * * * create subarray after EPSP-start mark for data analysis * * * * 

TOKEN WAVEFORM.SUB 

: MAKE.SUB 
MARK 1 1 0 I MARK2 : = \ change from time to index 
1200 MARK2 - MARK3 : = 
WAVEFORM SUB[ MARK2, MARK3, 1 1 BECOMES> WAVEFORM.SUB 
WAVEFORM.SUB SMOOTH WAVEFORM.SUB: = 

\ * * * * calculate parameters * * * * 

INTEGER SCALAR POP.START 
SCALAR POP.START.INDEX 
SCALAR POP.PEAK 
SCALAR POP.PEAK.INDEX 
SCALAR POP.LATENCY 
SCALAR PEAK.LA TENCY 
SCALAR POINTER1 
SCALAR POINTER2 
SCALAR POINTER 
SCALAR MARKER 
SCALAR B 

REAL SCALAR POP.TALL 
SCALAR POP.HEIGHT 
SCALAR NUMER 
SCALAR NUMERV 
SCALAR EPSP.SLOPE 
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\ * variables for added parameters including pop size to line between 2 peaks 
INTEGER SCALAR EPSP.PEAK 

SCALAR EPSP.PEAK.INDEX 
INTEGER SCALAR CHECK 
REAL SCALAR PEAK.DIFF 

SCALAR INDEX.DIFF 
SCALAR POINT1.LINE 
SCALAR POINT2.LINE 
SCALAR LINE.INC 
SCALAR START.VALUE.LINE 
SCALAR POP.SIZE.LINE 
SCALAR AREA 

TOKEN PEAK.LINE 
TOKEN RAM.LINE 

REAL SCALAR POP.HEIGHT.LINE 
SCALAR EPSP.HEIGHT 
SCALAR EPSP.LA TENCY 

: CALC. POP\ find max point in pre-pop EPSP (CASE= 1) and store value and index 
\ find min point in pops pike {CASE= 2) and store ... index 
\ find max point in EPSP (CASE= 3) and store ... index 

1 POINTER : = \set flag = 1 so that it looks for max first 
0 POP.START: = \to store max value, 0 so that orig. value never exceeds max 
5000 POP. PEAK:= \to store min, 5000 so orig. value never lower than min 
0 EPSP.PEAK : = 
MARK3 1 DO 
POINTER 
CASE 

1 OF \find max 
WAVEFORM.SUB [I 1 POP.START > = 
IF 

WAVEFORM.SUB [I 1 POP.START: = \if greater than store new value 
I POP.START.INDEX: = 

ELSE \ if not greater, then we have peek 
2 POINTER:= 

THEN 
END OF 

2 OF \ same logic as in CASE= 1 but look now for min instead of max 
WAVEFORM.SUB [I 1 POP.PEAK < = 
IF 
WAVEFORM.SUB [I 1 POP.PEAK: = 
I POP.PEAK.INDEX: = 

ELSE 
3 POINTER:= 
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THEN 
END OF 

3 OF \ find max of post-spike EPSP 
WAVEFORM.SUB [I 1 EPSP.PEAK > = 
IF 

WAVEFORM.SUB [I 1 EPSP.PEAK: = 
I EPSP.PEAK.INDEX: = 

ELSE 
LEAVE \breakout of larger loop, min & max's found 

THEN 
ENDOF 

ENDCASE 
LOOP 

: CALC.EPSP.SLOPE 
POP.START.INDEX 75 - POINTER1 : = 
POP.START.INDEX 45- POINTER2 : = 
POINTER1 1 < 
IF 

1 POINTER1 : = 
30 POINTER2 : = 
{MESS} CR 
INTEN.ON 

." "CR 

\ get pt 750us behind onset 
\ get pt 450us behind onset 

. " Slope narrow, took slope from first pt to 300th." 
INTEN.OFF 

THEN 
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WAVEFORM.SUB [ POINTER2 1 WAVEFORM.SUB [ POINTER1 1- NUMER: = \find diff 
NUMER .001221 * GAIN I 1000000 * NUMERV : = \convert to millivolts 
NUMERV 0.3 I EPSP.SLOPE : = \slope in uvlms 

INTEGER SCALAR POINT1.1NDEX 
SCALAR POINT2.1NDEX 

REAL SCALAR INC1 
SCALAR INC2 
SCALAR MAXV 

\ SCALAR TIME.START 

: FIND.LINE 
POINT2.LINE POINT1.LINE- PEAK.DIFF: = 
POINT2.1NDEX POINT1.1NDEX- INDEX.DIFF : = 
PEAK.DIFF INDEX.DIFF I LINE. INC : = \slope of "tangent" 
POINT1.LINE POINT1.1NDEX LINE.INC * - START.VALUE.LINE : = 
RAM.LINE LINE.INC * START.VALUE.LINE + BECOMES> PEAK.LINE 
1 CHECK:= 



1 MAXV := 
POINT1.1NDEX 50 + POINT1.1NDEX 50 - DO 

WAVEFORM.SUB [I l PEAK.LINE [I l- MAXV > 
IF 
WAVEFORM.SUB [ I l PEAK.LINE [ I l - MAXV : = 
I POINT1.1NDEX : = 
2 CHECK:= 

THEN 
LOOP 
MAXV INC1 : = 
1 MAXV := 
POINT2.1NDEX 50 + POINT2.1NDEX 50 - DO 

WAVEFORM.SUB [I l PEAK.LINE [I l- MAXV > 
IF 
WAVEFORM.SUB [ I l PEAK.LINE [ I l - MAXV : = 

I POINT2.1NDEX : = 
2 CHECK:= 

THEN 
LOOP 
MAXV INC2 := 

\ REL.TIME TIME.START- 5000 > \check in case potential 
\ IF \ has no spike 
\ STACK.CLEAR \ 
\ {MESS} . " Unable to find tangent" CR {DATA 1} \ 
\THEN \ 
2 CHECK = 
IF 
PEAK.LINE [ POINT1.1NDEX] INC1 + POINT1.LINE : = 
PEAK.LINE [ POINT2.1NDEX l INC2 + POINT2.LINE : = 
STACK. CLEAR 
MYSELF 

THEN 

ONERR: {DEF} 

: FIND.AREA 
0 AREA:= 
POINT2.1NDEX POINT1.1NDEX DO 
PEAK.LINE [I l WAVEFORM.SUB [I l- AREA + AREA:= 
LOOP 
PEAK.LINE [ POP.PEAK.INDEX l WAVEFORM.SUB [ POP.PEAK.INDEX l

POP.SIZE.LINE : = 

: CONVERT.PARAMS 
POP.START POP.PEAK- POP.TALL : = 
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POP.TALL .001221 *GAIN I 1000000 * POP.HEIGHT := \convert to microvolts 
POP.START.INDEX 10 * MARK1 + POP.LATENCY: = \convert to microsecs 
POP.PEAK.INDEX 10 * MARK1 + PEAK.LATENCY: = \convert to microsecs 
POP.SIZE.LINE .001221 * GAIN I 1000000 * POP.HEIGHT.LINE: = 

EPSP.PEAK .001221 * GAIN I 1000000 * EPSP.HEIGHT: = 
EPSP.PEAK.INDEX 10 * MARK1 + EPSP.LATENCY: = 
AREA .001221 * GAIN I 1000 * AREA : = ; \ convert to millivolts 

: G02 
MAKE. SUB 
CALC.POP 
CALC.EPSP.SLOPE 
POP.START POINT1.LINE: = 

POP.START.INDEX POINT1.1NDEX: = 

EPSP.PEAK POINT2.LINE : = 

EPSP.PEAK.INDEX POINT2.1NDEX : = 

MARK3 REAL RAMP BECOMES> RAM.LINE \create base array for tangent 
\ REL.TIME TIME.START: = \used for time check in FIND.LINE 

FIND. LINE 
FIND.AREA 
CONVERT.PARAMS ; 

\ * * * * set display up * * * * 

: WINDOWS.SET 
NORMAL. DISPLAY 
{DATA 1} {BORDER} 
{DA TA2} {BORDER} 
{DATA3} {BORDER} 
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{HEADER1} SCREEN.CLEAR . " POP# SLOPE POP 
AREA" CR 

PEAK POP EPSP POP 

" START LATENCY SIZE LATENCY HEIGHT" CR 
uvlms us us uv us uv mv n 

{HEADER2} SCREEN.CLEAR . " mean for 60 spikes prior to last flag ( + 95% conf.limits)" 
{HEADER3} SCREEN.CLEAR ."mean for last 6 spikes" 
INTEN.ON 
{DEF} 
1 1 GOTO.XY." F:flag;" 

." S:stop;" 

. " P:print spike;" 

. " M:mean last 6;" 

. " W:peek wave;" 

. " L:pause;" 

. " D:save prev. wave" 
1 2 GOTO.XY ."Trends:" 

. " ( 1 ) slope n 

. " (2) start n 



{MESS} 

. " (3) peak lat n 

. " (4)/{6) pop size " 

. " (5) late peak " 

. " (7) area" 

. " No message" 
INTEN.OFF 
{DATA1} CR; 

TEXT.BUFFER SCREEN.IMAGE \to allow switching of video pages for peek at wave 

: WAVEFORM.PEEK 
SCREEN.IMAGE STORE.VIDEO \store data screen 
GRAPHICS.DISPLAY \plot present waveform 
WAVEFORM.SUB Y.AUTO.PLOT 
PEAK.LINE Y.DATA.PLOT 
5000 MSEC.DELAY \display for 5 seconds 
NORMAL.DISPLA Y 
SCREEN.IMAGE RESTORE.VIDEO; \restore data page as it was 

INTEGER SCALAR POP# 
SCALAR COUNTER2 
SCALAR FLAG.INDEX 
SCALAR A 
SCALAR FLAG. MARKER 

REAL SCALAR SLOPE.MEAN 
SCALAR POP.SIZE.MEAN 
SCALAR START.POP.MEAN 
SCALAR PEAK.TIME.MEAN 
SCALAR SLOPE.DEV 
SCALAR SLOPE.UPPER.LIMIT 
SCALAR SLOPE.LOWER.LIMIT 
SCALAR START.POP.DEV 
SCALAR START.POP.UPPER.LIMIT 
SCALAR START.POP.LOWER.LIMIT 
SCALAR PEAK.TIME.DEV 
SCALAR PEAK.TIME.UPPER.LIMIT 
SCALAR PEAK.TIME.LOWER.LIMIT 
SCALAR POP.SIZE.DEV 
SCALAR POP.SIZE.UPPER.LIMIT 
SCALAR POP.SIZE.LOWER.LIMIT 

INTEGER DIM[ 2000 l ARRAY START.POP 
INTEGER DIM[ 2000 l ARRAY PEAK.TIME 
REAL DIM[ 2000 1 ARRAY SLOPE 
REAL DIM[ 2000 l ARRAY POP.SIZE 
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INTEGER DIM[ 30 J ARRAY FLAG \ SETS LIMIT OF 30 FLAGS 
REAL DIM[ 10 J ARRAY ARRAY1 
REAL DIM[ 1 0 J ARRAY ARRA Y3 
INTEGER DIM[ 6 J ARRAY ARRAY5 
INTEGER DIM[ 6 J ARRAY ARRAY7 
INTEGER DIM[ 2 1 ARRAY KEEPER 
REAL DIM[ 10 J ARRAY ARRAY2 
REAL DIM[ 10] ARRAY ARRAY4 
REAL DIM[ 6 J ARRAY ARRAY6 
REAL DIM[ 6 J ARRAY ARRA Y8 
0 START.POP : = 
0 PEAK.TIME : = 
0 SLOPE:= 
0 POP.SIZE : = 
0 FLAG:= 
0 KEEPER:= 

\ *variables for added parameters such as pop size to line between two curves 

REAL SCALAR EPSP.PEAK.MEAN 
SCALAR EPSP.PEAK.DEV 
SCALAR EPSP.PEAK.UPPER.LIMIT 
SCALAR EPSP.PEAK.LOWER.LIMIT 
SCALAR EPSP.PEAK.TIME.MEAN 
SCALAR EPSP.PEAK.TIME.DEV 
SCALAR EPSP.PEAK.TIME.UPPER.LIMIT 
SCALAR EPSP.PEAK.TIME.LOWER.LIMIT 
SCALAR POP.SIZE.LINE.MEAN 
SCALAR POP.SIZE.LINE.DEV 
SCALAR POP.SIZE.LINE.UPPER.LIMIT 
SCALAR POP.SIZE.LINE.LOWER.LIMIT 
SCALAR AREA.MEAN 
SCALAR AREA.DEV 
SCALAR AREA.UPPER .LIMIT 
SCALAR AREA.LOWER.LIMIT 

REAL DIM[ 2000 J ARRAY EPSP.LAT 
DIM[ 2000 J ARRAY POP.PERP.SIZE 
DIM[ 2000 J ARRAY AREA.ARRAY 
DIM[ 10 J ARRAY ARRAY1 0 
DIM[ 10] ARRAY ARRAY11 
DIM[ 10 J ARRAY ARRAY15 
DIM[ 6 J ARRAY ARRAY12 
DIM[ 6 J ARRAY ARRAY13 
DIM[ 6 J ARRAY ARRAY14 
DIM[ 6] ARRAY ARRAY16 
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0 EPSP.LAT: = 
0 POP.PERP.SIZE : = 
0 AREA.ARRAY: = 

: WRITE.DATA 
I 1 = 

IF 
OUT>FILE C:\JUNK\DATA.TXT 

ELSE 
OUT> FILE.CONT 

THEN 
{DATA1} 
POP#. 
1 SPACES 
EPSP.SLOPE . 
POP.LATENCY. 
3 SPACES PEAK.LA TENCY . 
2 SPACES POP.HEIGHT . 
2 SPACES EPSP.LATENCY. 
2 SPACES POP.HEIGHT.LINE . 
2 SPACES AREA . CR 
CONSOLE 

: CALC.PRE.MEAN 
1 FLAG.MARKER = \ check to see if at least 1 flag has been set 
IF 
FLAG [ COUNTER2 1 60 - FLAG.INDEX : = 
1 COUNTER:= 
FLAG [ COUNTER2 1 FLAG.INDEX DO \fill array with 60 pts prior to last flag 
START.POP SUB[ I, 6, 1 1 MEAN ARRAY1 [COUNTER 1: = 
SLOPE SUB[ I I 6 I 1 ] MEAN ARRA Y2 [ COUNTER ] : = 
PEAK.TIME SUB[ I I 6 I 1 ] MEAN ARRAY3 [ COUNTER ] : = 
POP.SIZE SUB[ I I 6 I 1 ] MEAN ARRAY4 [COUNTER] : = 
EPSP.LA T SUB[ I I 6 I 1 ] MEAN ARRAY1 0 [ COUNTER ] : = 
POP.PERP.SIZE SUB[ I I 6 I 1 ] MEAN ARRAY11 [COUNTER] : = 
AREA.ARRAY SUB[ I, 6, 1 1 MEAN ARRAY15 [COUNTER] : = 
1 COUNTER + COUNTER : = 

6 +LOOP 
ARRAY1 MEAN START.POP.MEAN: = \calculate means for each variable 
ARRAY2 MEAN SLOPE.MEAN: = 
ARRAY3 MEAN PEAK.TIME.MEAN: = 
ARRAY4 MEAN POP.SIZE.MEAN: = 
ARRAY1 0 MEAN EPSP.PEAK.TIME.MEAN : = 
ARRAY11 MEAN POP.SIZE.LINE.MEAN: = 
ARRAY15 MEAN AREA.MEAN: = 
ARRAY1 SAMPLE. VARIANCE SORT START.POP.DEV: = 
ARRAY2 SAMPLE. VARIANCE SORT SLOPE.DEV: = 
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ARRAY3 SAMPLE. VARIANCE SORT PEAK.TIME.DEV: = 
ARRAY4 SAMPLE. VARIANCE SORT POP.SIZE.DEV: = 
ARRAY10 SAMPLE.VARIANCE SORT EPSP.PEAK.TIME.DEV := 
ARRAY11 SAMPLE. VARIANCE SORT POP.SIZE.LINE.DEV: = 

ARRAY15 SAMPLE.VARIANCE SORT AREA.DEV: = 
\ calc upper confidence limit for .95, two-tailed 

SLOPE.DEV 5 SORT I 2.57 * SLOPE.MEAN + 
SLOPE.UPPER.LIMIT: = 

SLOPE.DEV 5 SORT I 2.57 * SLOPE.MEAN -
ABS SLOPE.LOWER.LIMIT : = 

POP.SIZE.DEV 5 SORT I 2.57 * POP.SIZE.MEAN + 
POP.SIZE.UPPER.LIMIT: = 

POP.SIZE.DEV 5 SORT I 2.57 * POP.SIZE.MEAN
ABS POP.SIZE.LOWER.LIMIT : = 

START.POP.DEV 5 SORT I 2.57 * START.POP.MEAN + 
START.POP.UPPER.LIMIT: = 

START.POP.DEV 5 SORT I 2.57 * START.POP.MEAN
ABS START.POP.LOWER.LIMIT: = 

PEAK.TIME.DEV 5 SORT I 2.57 * PEAK.TIME.MEAN + 
PEAK.TIME.UPPER.LIMIT: = 

PEAK.TIME.DEV 5 SORT I 2.57 * PEAK.TIME.MEAN
ABS PEAK.TIME.LOWER.LIMIT: = 

EPSP.PEAK.TIME.DEV 5 SORT I 2.57 * EPSP.PEAK.TIME.MEAN + 
EPSP.PEAK.TIME.UPPER.LIMIT: = 

POP.SIZE.LINE.DEV 5 SORT I 2.57 * POP.SIZE.LINE.MEAN + 
POP.SIZE.LINE.UPPER.LIMIT: = 

AREA.DEV 5 SORT I 2.57 * AREA.MEAN + AREA.UPPER.LIMIT: = 
EPSP.PEAK.TIME.DEV 5 SORT I 2.57 * EPSP.PEAK.TIME.MEAN

ABS EPSP.PEAK.TIME.LOWER.LIMIT: = 
POP.SIZE.LINE.DEV 5 SORT I 2.57 * POP.SIZE.LINE.MEAN -

ABS POP.SIZE.LINE.LOWER.LIMIT: = 
AREA.DEV 5 SORT I 2.57 * AREA.MEAN - ABS AREA.LOWER.LIMIT : = 

{DATA2} SCREEN.CLEAR \set window 

." UPPER " SLOPE.UPPER.LIMIT. START.POP.UPPER.LIMIT. 3 SPACES 
PEAK.TIME.UPPER.LIMIT. 2 SPACES POP.SIZE.UPPER.LIMIT. 
2 SPACES EPSP.PEAK.TIME.UPPER.LIMIT. 2 SPACES 
POP.SIZE.LINE.UPPER.LIMIT. 
2 SPACES AREA.UPPER.LIMIT. CR 

. " MEAN " SLOPE. MEAN . START.POP.MEAN . 3 SPACES PEAK.TIME.MEAN. 
2 SPACES POP.SIZE.MEAN . 
2 SPACES EPSP.PEAK.TIME.MEAN . 2 SPACES 
POP.SIZE.LINE.MEAN . 
2 SPACES AREA.MEAN . CR 

."LOWER "SLOPE.LOWER.LIMIT. START.POP.LOWER.LIMIT. 3 SPACES 
PEAK.TIME.LOWER.LIMIT. 2 SPACES POP.SIZE.LOWER.LIMIT . 
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2 SPACES EPSP.PEAK.TIME.LOWER.LIMIT. 2 SPACES 
POP.SIZE.LINE.LOWER.LIMIT. 
2 SPACES AREA.LOWER.LIMIT . 

ELSE 
{MESS} CR \ if no flags have been set print message 
INTEN.ON 
. " NO FLAG HAS BEEN SET YET " 
INTEN.OFF 
BELL 

THEN; 

: CALC.LAST.MEAN \same as above but calc mean of last six 
POP# 6- A:= 
1 COUNTER:= 
POP# A DO 
START.POP [I] ARRAY5 [COUNTER l : = 
SLOPE [ I l ARRA Y6 [ COUNTER l : = 
PEAK.TIME [I] ARRAY7 [COUNTER] : = 
POP.SIZE [I l ARRAYS [COUNTER] : = 
EPSP.LAT [I] ARRAY13 [COUNTER l: = 
POP.PERP.SIZE [ I ] ARRAY14 [ COUNTER ] : = 
AREA.ARRA Y [ I l ARRA Y16 [ COUNTER l : = 
1 COUNTER + COUNTER : = 

LOOP 
ARRAY5 MEAN START.POP.MEAN: = 
ARRAY6 MEAN SLOPE.MEAN: = 
ARRAY7 MEAN PEAK.TIME.MEAN: = 
ARRAYS MEAN POP.SIZE.MEAN : = 
ARRAY13 MEAN EPSP.PEAK.TIME.MEAN : = 
ARRAY14 MEAN POP.SIZE.LINE.MEAN : = 
ARRAY16 MEAN AREA.MEAN : = 
{DATA3} SCREEN.CLEAR \set window 
7 SPACES SLOPE.MEAN . 
START.POP.MEAN . 3 SPACES 
PEAK.TIME.MEAN . 2 SPACES 
POP.SIZE.MEAN . 
2 SPACES EPSP.PEAK.TIME.MEAN . 
2 SPACES POP.SIZE.LINE.MEAN . 
2 SPACES AREA.MEAN . ; 

: SET.FLAG 
160 < 
IF 

{MESS} CR 
INTEN.ON 

. " YOU DON'T HAVE 60 POPSPIKES! 
INTEN.OFF 

BELL 
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ELSE 
COUNTER2 1 + COUNTER2 : = \if "F" pressed save pop spike# 
I FLAG [ COUNTER2 l : = 
1 FLAG. MARKER : = \ put 1 into var to denote flag placed 
4 1 FIX. FORMAT 
{FLAG} CR INTEN.ON . " FLAG#" COUNTER2 .. " POP#" I . INTEN.OFF 
7 1 FIX.FORMAT 
CALC. PRE. MEAN 
THEN; 

: PRINT.SCREEN 
SCREEN. PRINT 

ONERR: NORMAL.DISPLAY 
. " PRINTER ERROR!!!!" 
. " PRESS ANY KEY TO RETURN TO AOUISITION" 
BELL PCKEY DROP 

: PRINT.POP 
SCREEN.IMAGE STORE.VIDEO 
NORMAL. DISPLAY 
."MAKE SURE THAT TOSHIBA IS IN PROPRINTER EMULATION" CR 
."AND HIT ANY KEY" 
GRAPHICS.DISPLA Y 
WAVEFORM Y.AUTO.PLOT 
5 23 GOTO.XY 
."Date: " .DATE." Pop#:" POP#. 
PRINT.SCREEN \ word to print the screen with error routine to protect 

\ data accumulated. 
NORMAL.DISPLA Y 
SCREEN.IMAGE RESTORE.VIDEO; 

REAL DIM[ 2000] ARRAY VAR 
INTEGER SCALAR U 
65 STRING TITLE 

: SHOW.TREND \ added 9/90 
SCREEN.IMAGE STORE.VIDEO 
GRAPHICS. DISPLAY 
I 200 < IF 

1 u: = 
ELSE 
I 200- U: = 

THEN 
" +"SYMBOL 
VAR SUB[ u I 200 I 1 ] Y.AUTO.PLOT 
NORMAL.COORDS 
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.20 .96 POSITION TITLE LABEL 
WAIT.FOR.KEY 
NORMAL.DISPLA Y 
SCREEN .IMAGE RESTORE. VIDEO 

16 STRING FILENAME2 
INTEGER DIM[ 1200 1 ARRAY WAVEFORM.2ND 

: WAVE.TO.DISK \ save previous popspike to disk -added 10/90 
LOAD.OVERLAY DATAFILE.SOV 
" C:\JUNK\POP#" 
I 1 - 100 < 
IF 
"00" "CAT 
2 0 FIX.FORMAT 

ELSE 
I 1 - 1000 < 
IF 
"0" "CAT 
3 0 FIX.FORMAT 

ELSE 
4 0 FIX.FORMAT 

THEN 
THEN 
POP#"." "CAT FILENAME2 ":=\note: saves to subdirJUNK 
FILE. TEMPLATE 
1 COMMENTS 
WAVEFORM.2ND []FORM.SUBFILE 

END 
FILENAME2 DEFER> FILE.CREATE 
FILENAME2 DEFER> FILE.OPEN 
1 SUBFILE WAVEFORM.2ND ARRAY> FILE 
FILE.CLOSE 
7 1 FIX.FORMAT; 

:MECHANICS 
SETUP.FINAL 
USER.SETUP 
WINDOWS.SET 
0 FLAG. MARKER:= 
0 COUNTER2: = 

\ puts 0 into variable signifying no flag set yet 
\ keeps track of # of flags 

2000 1 DO \ note: sets upper limit of 2000 pop spikes 
GO 
G02 
POP.LATENCY START.POP [I 1 : = 
EPSP.SLOPE SLOPE [ I 1 : = 

\ fill data arrays 
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PEAK.LATENCY PEAK.TIME [ I l : = 
POP.HEIGHT POP.SIZE [ I l : = 
EPSP.LATENCY EPSP.LAT [I l : = 
POP.HEIGHT.LINE POP.PERP.SIZE [ I l : = 
AREA AREA.ARRA Y [ I ] : = 
I POP# : = \ keep track of popspike # 
?KEY IF \ check to see if a key was pressed 
KEY \ if yes get the key's ASCII # 
CASE \ check # with user "function" keys 

70 OF SET.FLAG ENDOF 
102 OF SET.FLAG ENDOF 
83 OF I KEEPER [ 1 l : = COUNTER2 KEEPER [ 2 l : = \if "S" leave word and 

EXIT ENDOF \store# of pops and 
11 5 OF I KEEPER [ 1 l : = COUNTER2 KEEPER [ 2 l : = \ flags 

EXIT ENDOF 
80 OF PRINT.POP ENDOF \ if "P" calc and display preflag mean 
112 OF PRINT.POP ENDOF 
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76 OF {MESS} SCREEN.CLEAR . " Pause on, strike any key" WAIT.FOR.KEY 
SCREEN.CLEAR 

. " Pause off" ENDOF \ if L then pause collection of data 
108 OF {MESS} SCREEN.CLEAR . " Pause on, strike any key" WAIT.FOR.KEY 

SCREEN.CLEAR 
. " Pause off" ENDOF 

77 OF CALC.LAST.MEAN ENDOF \ if "M" calc and display mean of last 6 
109 OF CALC.LAST.MEAN ENDOF 
87 OF WAVEFORM.PEEK ENDOF \if "W" show waveform 
119 OF WAVEFORM.PEEK ENDOF 
68 OF WAVE.TO.DISK ENDOF \if "D" save previous wave to disk 
100 OF WAVE.TO.DISK ENDOF 

\ following choices allow glancing at trend (last 200 points) 
49 OF SLOPE VAR : = 

" LAST 200 POINTS FOR SLOPE" TITLE":= 
SHOW.TREND ENDOF 

50 OF START.POP VAR : = 
" LAST 200 POINTS FOR POP START" TITLE ": = 
SHOW.TREND ENDOF 

51 OF PEAK.TIME VAR : = 
" LAST 200 POINTS FOR PEAK LATENCY" TITLE ": = 
SHOW.TREND ENDOF 

52 OF POP.SIZE VAR : = 
" LAST 200 POINTS FOR SPIKE SIZE" TITLE ": = 
SHOW.TREND ENDOF 

53 OF EPSP.LAT VAR: = 
" LAST 200 POINTS FOR ADP PEAK TIME" TITLE":= 
SHOW.TREND ENDOF 

54 OF POP.PERP.SIZE VAR : = 
" LAST 200 POINTS FOR SPIKE SIZE TO TANGENT" TITLE ": = 
SHOW.TREND ENDOF 



55 OF AREA.ARRAY VAR: = 
" LAST 200 POINTS FOR AREA" TITLE":= 
SHOW.TREND ENDOF 

{MESS} CR \ if key pressed but does not match 
INTEN.ON 
. " KEY PRESSED HAS NO FUNCTION " 
INTEN.OFF 
BELL 

ENDCASE 
THEN 
WRITE.DATA \write data to screen 
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WAVEFORM WAVEFORM.2ND : = \ place wave in buffer in case prev wave needed 
LOOP; 

: GET.DRIVE \to limit places to save data 
NORMAL.DISPLA Y 
{DEF} SCREEN.CLEAR 
. " CHOOSE DRIVE:" CR 
" 1 FOR A:" CR 

." 2 FOR 8:" CR 

. " 3 FOR C:\JUNK" CR 
KEY 
CASE 
49 OF " A:" DRIVE ": = ENDOF 
50 OF" 8:" DRIVE":= ENDOF 
51 OF" C:\JUNK\" DRIVE ": = ENDOF 
MYSELF 

ENDCASE; 

: CREATE.DATA.FILE 
LOAD.OVERLAY DATAFILE.SOV 
{DEF} SCREEN.CLEAR 
GET.DRIVE 
."Enter a name for your data file (filename.ext). -->" 

"INPUT FILENAME":= 
DRIVE FILENAME "CAT FILENAME":= 
FILE. TEMPLATE 
4 COMMENTS 
START.POP []FORM.SUBFILE 
SLOPE []FORM.SUBFILE 
PEAK.TIME []FORM.SUBFILE 
POP.SIZE []FORM.SUBFILE 
FLAG []FORM.SUBFILE 
KEEPER []FORM.SUBFILE 
EPSP.LAT []FORM.SUBFILE 
POP.PERP.SIZE []FORM.SUBFILE 



AREA.ARRAY []FORM.SUBFILE 
END 
{DEF} CR 
CR." SAVING DATA ... " 
FILENAME DEFER> FILE.CREATE 
FILENAME DEFER> FILE.OPEN 
" 7 Arrays of 2000 " 1 >COMMENT 
" 1 Array of 30 storing POP# for each flag" 2 >COMMENT 
" 1 Array of 2 storing pop total # and # of flags" 3 >COMMENT 
1 SUBFILE START.POP ARRAY> FILE \save time of pop start for all spikes 
2 SUBFILE SLOPE ARRAY> FILE \ save slope for each epsp 
3 SUBFILE PEAK.TIME ARRAY> FILE \save latencies for each spike 
4 SUBFILE POP.SIZE ARRAY> FILE \save size of each spike 
5 SUBFILE FLAG ARRAY> FILE \ save flag indexes for each flag 
6 SUBFILE KEEPER ARRAY> FILE \save# of spikes and flags 
7 SUBFILE EPSP.LAT ARRAY>FILE 
8 SUBFILE POP.PERP.SIZE ARRAY> FILE 
9 SUBFILE AREA.ARRA Y ARRAY> FILE 

FILE. CLOSE 

ON ERR: CR . " Error occurred, likely no disk, or full disk in drive specified" 
CR." Type CREATE.DATA.FILE to try again." 

?FILE.OPEN IF FILE.CLOSE THEN 
ABORT 

REAL SCALAR DEEP 

: LABEL. PRINT 
5 22 GOTO.XY 
." Date: " .DATE CR 
."Depth:" CR 

PRINT.SCREEN \ word to print the screen with error routine to protect 
\ data accumulated. 

: PROFILE \ stand alone word to print out waveforms at various depths 
SCREEN. CLEAR 
SETUP.FINAL 
2000 1 DO 
GO 
GRAPHICS.DISPLA Y 
WAVEFORM .001221 * 100 I 1000000 * \convert to uv 
SUB[ 1 , 1199 , 1 ] Y.AUTO.PLOT \ plot 
?KEY IF 
KEY 
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CASE 
80 OF LABEL.PRINT ENDOF 
112 OF LABEL.PRINT ENDOF 
76 OF 5 22 GOTO.XY . " Pause on, strike any key" 

WAIT.FOR.KEY SCREEN.CLEAR 
5 22 GOTO.XY ." " 
ENDOF \ if L then pause collection of data 

108 OF 5 22 GOTO.XY ."Pause on, strike any key" 
WAIT.FOR.KEY SCREEN.CLEAR 
5 22 GOTO.XY ." n 

ENDOF \ if L then pause collection of data 
83 OF EXIT DISABLE.SCOPE ENDOF 
115 OF EXIT DISABLE.SCOPE ENDOF 

ENDCASE 
THEN 
LOOP 

:RUN 
{DEF} SCREEN.CLEAR 
MECHANICS 
CREATE.DATA.FILE \ file.dump routine 
{DEF} CR 
INTEN.ON 
." DATA SAVED, TYPE BYE TO SIGN OFF 
INTEN.OFF 
BELL 
ABORT; 

BELL 200 MSEC.DELAY BELL 

NORMAL.DISPLAY SCREEN.CLEAR ECHO.ON 
\ PROGRAM: POP.PRG 

n 

\ DESCRIPTION: This program acquires the results of an evoked potential and 
\ stores the EPSP slope, the time the population spike starts and 
\ peaks, the size of the pop spike (taken from start to peak), 
\ the area under the tangent of the two positive going curves, 
\ the height of the pop spike from peak to tangent, and the time 
\ the EPSP peaks. 
\ The data is stored at the end of acquisition onto a disk in drive 
\ A:. Sampling rate is at 1 00 KHz (every 1 0 us). 
\ REQUIREMENTS: Asyst module must have "basic statistics" overlay (spfn.sov) 
\ installed. User must have 5 1/4 inch floppy disk to store data. 
\ The trigger should feed into channel 2 and the recording 
\ electrode into channel 1. Gain should be about 1 00. 
\LIMITATIONS: The program will not handle more than 2,000 pop spikes and 
\ 30 flags. The EPSP should start 750 us before the pop spike 
\ starts. 
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\TO BEGIN PROGRAM, TYPE: RUN (or PROFILE to print any waveform) 
\ 
\ NOTE: If program "crashes" during acquisition and you want to save the data, 
\ type CREATE.DATA.FILE, leave ASYST (BYE) and start over. 
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APPENDIX II: ASYST program for data analysis of evoked potential data 
acquired using program in Appendix I. 

ECHO.OFF 

ERROR. TRACE. ON 

8 2 FIX. FORMAT 

LOAD.OVERLAY DATAFILE.SOV 

INTEGER SCALAR A 
SCALAR 8 
SCALAR COUNTER 

INTEGER DIM[ 2000 J ARRAY START.POP \to store pop start times (us) 
INTEGER DIM[ 2000 ] ARRAY PEAK.TIME \to store pop peak times (us) 
REAL DIM[ 2000 J ARRAY SLOPE \ to store slope values (uv/ms) 
REAL DIM[ 2000 J ARRAY POP.SIZE \to store pop size (uv) 
REAL DIM[ 2000 l ARRAY EPSP.LAT \to store epsp peak latency 
REAL DIM[ 2000 J ARRAY POP.PERP.SIZE \to store pop size from tangent 
REAL DIM[ 2000 J ARRAY AREA.ARRAY \ area under tangent 
REAL DIM[ 2000 J ARRAY VAR \to store one of above for calcs 
REAL DIM[ 1000 J ARRAY VAR2 \to store second pulse in prdpulse exp. 
REAL DIM[ 1 000 J ARRAY VAR3 \ to store 2nd pulse/ 1st in prdpulse exp. 
INTEGER DIM[ 30 J ARRAY FLAG \ stores pop # for each flag 
INTEGER DIM[ 30 J ARRAY FLAG.INDEX \stores flag #s minus control period 
INTEGER DIM[ 2 ] ARRAY KEEPER \ temp storage of pop# and flag# 
INTEGER SCALAR POP# \total #of pop spikes 
INTEGER SCALAR FLAG# \total number of flags 
INTEGER SCALAR MEAN.SIZE \stores size of sample means 
INTEGER SCALAR MEAN.SIZE# \stores number of samples in control 
INTEGER SCALAR CONTROL.WIDTH \stores length of control period 
0 A:= 
0 8 := 
0 COUNTER:= 
0 START.POP: = 
0 PEAK.TIME : = 
0 SLOPE:= 
0 POP.SIZE : = 
0 FLAG:= 
0 FLAG.INDEX : = 
0 KEEPER:= 
0 POP#:= 
0 FLAG#:= 
6 MEAN.SIZE: = \set default sample size to 6 
0 MEAN.SIZE# : = 
60 CONTROL. WIDTH : = \ set default control period to 60 points 



64 STRING COMMENT1 
64 STRING COMMENT2 
64 STRING COMMENT3 
64 STRING COMMENT4 
20 STRING FILENAME 
20 STRING FILENAMEO 
20 STRING FILENAME3 
65 STRING TITLE 
8 STRING DRIVE 

35 STRING VARIABLENAME 
20 STRING Y AXIS 

20 2 24 78 WINDOW {WINDOW1} 
0 2 15 14 WINDOW {WINDOW2} 
7 20 18 70 WINDOW {WINDOW3} 
2 03 23 15 WINDOW {WINDOW4} 
24 2 24 78 WINDOW {WINDOW5} 

: WAIT.FOR.KEY 
KEY 0 = IF KEY DROP THEN ; \ loops until any key is pressed 

:INPUT.# 
BEGIN 
#INPUT NOT 

WHILE 
CR . " Invalid number, reenter: " 

REPEAT 

: RESET.FLAGS \to change flag values from those 
4 0 FIX. FORMAT \ entered during experiment 
{WINDOW4} SCREEN.CLEAR 
{WINDOW4} {BORDER} 
. " CURRENT FLAGS" CR 
31 1 DO 

0 FLAG [I l < > 
IF 2 SPACES I . 2 SPACES FLAG [ I l . CR THEN 

LOOP 
." POP#= "POP#. 
{WINDOW3} SCREEN.CLEAR 
{WINDOW3} {BORDER} 
."INPUT FLAG# TO CHANGE -->" 
INPUT.# 
A:= 
CR 
."INPUT POP# FOR FLAG#" A .. " -->" 
8 2 FIX. FORMAT 
INPUT.# 
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FLAG [A 1: = 
0 FLAG# : = \to reset number of flags 
31 1 DO 
FLAG [ I 1 0 < > \ if pop # for flag I does not equal zero, 

IF \ then increment flag # by 1, until a zero 
FLAG# 1 + FLAG#:= \ is found, then leave loop. 

ELSE LEAVE 
THEN 

LOOP; 

: CHANGE.SIZE 
NORMAL. DISPLAY 
{WINDOW3} {BORDER} 
{WINDOW3} SCREEN.CLEAR 

\ to allow the user to set the length of 
\ the control period, and the sample size. 

CR . " Enter # of points for preflag control. -- > " 
INPUT.# 
CONTROL. WIDTH : = 
CR . " Enter size of mean clusters. -- >" 
INPUT.# 
MEAN.SIZE : = ; 

: GET.DRIVE 
NORMAL. DISPLAY 
{WINDOW3} {BORDER} 
{WINDOW3} SCREEN.CLEAR 
. " CHOOSE DRIVE:" CR 

1 FOR A:" CR 
." 2 FORB:" CR 
. " 3 FOR C:\JUNK" CR 
KEY 
CASE 
49 OF" A:" DRIVE":= ENDOF 
50 OF" B:" DRIVE":= ENDOF 
51 OF" C:\JUNK\" DRIVE":= ENDOF 
MYSELF 

ENDCASE; 

INTEGER SCALAR PRDPULSE.OR.NOT 

: CONVERT.FLAGS \in case of paired pulse experiment, flags must be 
\ converted to reflect only first spike of pair 

FLAG 1 + 2 I FLAG : = 
CR . " Flags converted to single pulse equivalent" CR 
FLAG# 1 + 1 DO 
FLAG [I 1 .. " " 

LOOP 
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: GET.PARAMS \to get file to be analyzed 
NORMAL. DISPLAY 
{WINDOW3} {BORDER} 
{WINDOW3} SCREEN.CLEAR 
. " Enter the name for the file (filename.ext)." CR 
• 11 --> n 

"INPUT FILENAMEO 11
: = CR 

DRIVE FILENAMEO "CAT 
. " Is this data single ( 1 ) or paired (2) pulse? -- > " 

INPUT.#; 

: READ.DATA.FILE \read scores from data file 
LOAD.OVERLA Y C:\ASYST\DATAFILE.SOV 
FILE.TEMPLATE \note: template rigid, cannot be 
4 COMMENTS \ changed unless change acquisition 
START.POP []FORM.SUBFILE \ program. 
SLOPE []FORM.SUBFILE 
PEAK.TIME []FORM.SUBFILE 
POP.SIZE []FORM.SUBFILE 
FLAG []FORM.SUBFILE 
KEEPER []FORM.SUBFILE 
EPSP.LAT []FORM.SUBFILE 
POP.PERP.SIZE []FORM.SUBFILE 
AREA.ARRAY []FORM.SUBFILE 

END 
FILENAME DEFER> FILE. OPEN 
1 SUBFILE START.POP FILE>ARRAY \time of pop start for all spikes 
2 SUBFILE SLOPE FILE> ARRAY \ slope for each epsp 
3 SUBFILE PEAK.TIME FILE>ARRAY \latencies for each spike 
4 SUBFILE POP.SIZE FILE>ARRAY \size of each spike 
5 SUBFILE FLAG FILE> ARRAY \ flag indexes for each flag 
6 SUBFILE KEEPER FILE> ARRAY \ # of spikes and flags 
7 SUBFILE EPSP.LAT FILE>ARRAY \ epsp peak latencies 
8 SUBFILE POP.PERP.SIZE FILE>ARRAY \spike size to tangent 
9 SUBFILE AREA.ARRA Y FILE> ARRAY \ area under tangent 

FILE. CLOSE 
KEEPER [ 1 l POP# : = 
KEEPER [ 2 l FLAG# : = 

ON ERR: CR . 11 Error occurred, likely a nonexistent file. " 
CR . " Type GO to restart." 

?FILE.OPEN IF FILE.CLOSE THEN 
ABORT 

REAL DIM[ 30 l ARRAY VAR.MEAN 
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REAL SCALAR VAR.DEV 
REAL DIM[ 30 l ARRAY VAR.UPPER.LIMIT 
REAL DIM[ 30 1 ARRAY VAR.LOWER.LIMIT 

0 VAR.MEAN : = 
0 VAR.DEV := 
0 VAR.UPPER.LIMIT: = 
0 VAR.LOWER.LIMIT: = 

INTEGER SCALAR POPEND 
INTEGER DIM[ 300 1 ARRAY MEAN# 
REAL DIM[ 30, 300] ARRAY VAR.MEANS 
REAL DIM[ 60 1 ARRAY TEMP.ARRAY 
INTEGER SCALAR 123.0R.NOT 
0 VAR .MEANS: = 
0 TEMP.ARRAY: = 
0 MEAN#:= 
0 POPEND: = 

REAL DIM[ 300 1 ARRAY UPPER.PTS 
DIM[ 300] ARRAY LOWER.PTS 
DIM[ 300 l ARRAY ARRAY.BUFFER 

0 UPPER.PTS : = 
0 LOWER. PTS : = 

: WRITE. QUERY 
LOAD.OVERLA Y C:\ASYST\ 12310.SOV 
NORMAL.DISPLA Y 
{WINDOW3} {BORDER} 
{WINDOW3} SCREEN.CLEAR 
."CHOOSE CREATION OF LOTUS FILE OR NOT:" CR 
. " 1 FOR WRITE MEANS TO 123 FILE" CR 
. " 2 FOR WRITE MEANS IN % OF CONTROL TO 123 FILE:" CR 
. " 3 FOR DO NOT CREATE 123 FILE" CR 
KEY 
CASE 
49 OF 1 123.0R.NOT : = ENDOF 
50 OF 2 123.0R.NOT : = ENDOF 
51 OF 3 123.0R.NOT: = ENDOF 
MYSELF 

ENDCASE 
123.0R.NOT 3 < 
IF 
GET.DRIVE 
GET.PARAMS 
FILENAME3 ": = \ places string from get.params into var 
FILENAME3 DEFER> 123FILE.CREATE 
FILENAME3 DEFER> 123FILE.OPEN 
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THEN 

: WRITE.T0.123FILE 
LOAD.OVERLA Y C:\ASYSn 12310.SOV 
1 FLAG# + 1 DO 
0 ARRAY.BUFFER: = 
1 MEAN# [ I 1 + 1 DO 

VAR.MEANS [ J I I 1 ARRAY.BUFFER [I 1 : = 
LOOP 
123.0R.NOT 2 = 
IF 
ARRAY.BUFFER VAR.MEAN [I 1 1100 * ARRAY.BUFFER: = 
THEN 
1 I 123WRITE.DOWN 
ARRAY.BUFFER ARRAY> 123FILE 

LOOP 
123FILE.CLOSE 

: GET.MEANS \get sample means and store 
WRITE.OUERY \write to 123 file or not 
CONTROL.WIDTH MEAN.SIZE I MEAN.SIZE# : = \#of samples in control 
FLAG CONTROL. WIDTH - FLAG.INDEX : = \start of control period 
1 FLAG# + 1 DO \ get samples for each flag set 

0 MEAN# [ I 1 : = 
1 COUNTER:= 
I FLAG# < \ if not the last flag 
IF 

1 I+ A:= 
FLAG [ A 1 FLAG.INDEX [ I 1 DO \from start of control to next flag 

VAR SUB[ I I MEAN.SIZE I 1 1 MEAN \get mean for each sample and 
VAR.MEANS [ J I COUNTER 1 : = \ store in var.means 

1 COUNTER + COUNTER : = 
1 MEAN# [ J 1 + MEAN# [ J 1 : = \ keep track of number of samples 

MEAN.SIZE +LOOP \add sample size to loop index 
ELSE \when at the last flag set 

300 MEAN.SIZE * FLAG.INDEX [ I 1 \check to make sure no more than 300 
+ POP# MIN POPEND: = \ samples are available 

POPEND 2- POPEND : = \so no sample ends past total pop# 
PRDPULSE.OR.NOT 2 = IF POPEND 2 I POPEND : = THEN \ added fpr prdpulse 
POPEND FLAG.INDEX [ I 1 DO \from control start to last popspike 

VAR SUB[ I I MEAN.SIZE I 1 1 MEAN 
VAR.MEANS [ J I COUNTER 1 : = 

1 COUNTER + COUNTER : = 
1 MEAN# [ J 1 + MEAN# [ J 1 : = 

MEAN.SIZE +LOOP 
THEN 



1 MEAN.SIZE# + 1 DO\ for each flag, place means into a temporary array 
VAR.MEANS [ J I I] TEMP.ARRAY [I]:= 

LOOP 
TEMP.ARRAY SUB[ 1 I MEAN.SIZE# I 1 ] 

MEAN VAR.MEAN [ I 1 : = \get mean of samples in control period 
VAR SUB[ FLAG.INDEX [I] I CONTROL.WIDTH I 1 1 

SAMPLE. VARIANCE SORT VAR.DEV: = \get standard deviation 
VAR.DEV MEAN.SIZE 1 -SORT I \find confidence limits 
.975 MEAN.SIZE 1 - STUDENT-T.FRACTILE * 
VAR.MEAN [I 1 + VAR.UPPER.LIMIT [I 1 : = 

VAR.DEV MEAN.SIZE 1 -SORT I 
.975 MEAN.SIZE 1 - STUDENT-T.FRACTILE * 
VAR.MEAN [I 1- ABS VAR.LOWER.LIMIT [I 1 : = 

LOOP 
123.0R.NOT 3 < 
IF 
WRITE.T0.123FILE 

THEN 

VUPORT RIGHT.HALF 
.30 .30 VUPORT.ORIG 
.70 .70 VUPORT.SIZE 

VUPORT RIGHT.HALF2 
.00 .00 VUPORT.ORIG 
.99 .99 VUPORT.SIZE 

: LABEL.GRAPH 
4 0 FIX. FORMAT 
90 LABEL. DIR 
90 CHAR.DIR 
NORMAL.COORDS 
.02 .35 POSITION YAXIS LABEL 
0 LABEL.DIR 0 CHAR.DIR 
.40 .02 POSITION " SAMPLE NUMBER" LABEL 
1 1 POSITION 
{WINDOW1} SCREEN.CLEAR 
. " FILENAME = " FILENAME "TYPE 10 SPACES 
• II VARIABLE = II VARIABLENAME "TYPE CR 
, 

11 FLAG # = 11 I , 5 SPACES , " POP # = 11 FLAG ( I 1 , CR 
. " CONTROL PERIOD LENGTH =" CONTROL. WIDTH . 
5 SPACES . " SAMPLE SIZE =" MEAN.SIZE. CR 
."CONTROL PERIOD ENDS AT X =" MEAN.SIZE#. CR 
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. " CONFIDENCE LIMITS USE CONTROL PERIOD SAMPLING DISTRIBUTION FOR 95% 
2-TAILED" 

8 2 FIX.FORMAT; 
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: PRINT.MEANS 
."FILENAME = "FILENAME "TYPE." VARIABLE = "VARIABLENAME "TYPE CR 
4 0 FIX.FORMAT 
."FLAG#=" I. 5 SPACES." FLAG POP#=" FLAG [I 1. CR 
. " CONTROL PERIOD LENGTH =" CONTROL. WIDTH . 
5 SPACES . " SAMPLE. SIZE =" MEAN.SIZE . CR 
8 2 FIX.FORMAT 
. " UPPER. LIMIT = " VAR.UPPER.LIMIT [ I 1 . 4 SPACES 
."LOWER LIMIT = "VAR.LOWER.LIMIT [I 1. 4 SPACES 
."MEAN = "VAR.MEAN [I 1. CR CR 
0 COUNTER:= 
0 A:= 
10 SPACES." SAMPLE# SAMPLE PERCENTAGE" CR 
10 SPACES." MEAN OF CONTROL MEAN" CR 
301 1 DO 
11 +A:= 
ARRAY.BUFFER [A 1 0 = 
IF LEAVE THEN 
10 SPACES I . 4 SPACES ARRAY.BUFFER [ I 1 . 6 SPACES 

\ calculate percentage of control mean and print 
ARRAY.BUFFER SUB[ 1 I MEAN.SIZE# I 1 ] MEAN ARRAY.BUFFER [I 1 
SWAP I 100 * . CR 

PAUSE 
LOOP; 

INTEGER SCALAR X 
SCALAR Y 

: PRINT.RAW.SCORES 
NORMAL.DISPLA Y 
OUT> PRINTER 
."FILENAME = "FILENAME "TYPE CR CR 
" POP # EPSP POP POP POP 

SLOPE START PEAK SIZE 
" 

uv/ms 
" 

Y X DO 
0 START.POP [I l = 
IF 

LEAVE 
ELSE 

TIME TIME 
us us uv us 

EPSP POP/TAN AREA " CR 
PEAK SIZE UNDER" CR 

TAN" CR 
uv mv" CR 
-----" CR 

I . 3 SPACES SLOPE [ I l . 1 SPACES START.POP [ I 1 . 
3 SPACES PEAK.TIME [ I 1 . 3 SPACES POP.SIZE [ I 1 . 
3 SPACES EPSP.LAT [ I 1 . 3 SPACES POP.PERP.SIZE [I 1 . 
3 SPACES AREA.ARRA Y [ I 1 . CR 
THEN 
LOOP 



CONSOLE; 

: GET.RANGE 
SCREEN.CLEAR 
."TOTAL# OF SAMPLES TAKEN = "POP#. CR 
. " (note: range must be less than 1600 if graphing)" CR 
CR." SAMPLE# FOR START OF RANGE?" 
INPUT.# 
X:= 
CR . " SAMPLE # FOR END OF RANGE? " 
INPUT.# 
1 + y := 

: RAW.SCORES 
{WINDOW3} 
SCREEN.CLEAR 
. " PRINT (A)LL RAW SCORES, A {R)ANGE OF RAW SCORES, OR (E)XIT? {A/R/E) " 
KEY 
CASE 
65 OF 1 X:= 

POP# 1 + Y: = 

PRINT.RAW.SCORES ENDOF 
97 OF 1 X:= 

POP# 1 + Y: = 
PRINT.RAW.SCORES ENDOF 

82 OF GET.RANGE 
PRINT.RAW.SCORES ENDOF 

114 OF GET.RANGE 
PRINT.RAW.SCORES ENDOF 

69 OF EXIT ENDOF 
101 OF EXIT ENDOF 
MYSELF 

ENDCASE 
MYSELF; 

:CHECK 
."ARE YOU SURE YOU WANT TO PRINT RAW SCORES??? {Y/N)" 
KEY 
CASE 
121 OF PRINT.RAW.SCORES ENDOF 
89 OF PRINT.RAW.SCORES ENDOF 

ENDCASE; 

TEXT.BUFFER SCREEN.IMAGE \to allow switching of video pages to see means 

: PRINT.FORMAT? \print means to screen or to printer 
. " To Screen (1) or to Printer (2)? (1 /2) 
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KEY 
CASE 

49 OF SCREEN.IMAGE STORE.VIDEO NORMAL.DISPLAY 
PRINT.MEANS GRAPHICS.DISPLAY SCREEN.IMAGE 
RESTORE. VIDEO ENDOF 

50 OF OUT> PRINTER PRINT.MEANS CONSOLE ENDOF 
ENDCASE; 

:PRINTOUT 
{WINDOW2} SCREEN.CLEAR 
. " Print graph?" CR . " (Y /N) " 
KEY 
CASE 
121 OF SCREEN.CLEAR SCREEN.PRINT ENDOF 
89 OF SCREEN.CLEAR SCREEN.PRINT ENDOF 

ENDCASE 
CR . " Print means?" CR . " (Y /N) " 
KEY 
CASE 
121 OF PRINT.FORMAT? ENDOF 
89 OF PRINT.FORMAT? ENDOF 

ENDCASE; 

: PLOT.MEANS 
1 FLAG#+ A:= 
A 1 DO 

0 ARRAY.BUFFER: = 
1 MEAN# [ I 1 + B : = 

B 1 DO \ fill 1 dim array so it can be plotted 
VAR.MEANS [ J I I 1 ARRAY.BUFFER [I 1 : = 

LOOP 
GRAPHICS.DISPLA Y 
HORIZONTAL GRID.OFF 
VERTICAL GRID.OFF 
RIGHT.HALF 
" *"SYMBOL 
ARRAY.BUFFER SUB[ 1 I MEAN# [ I 1 I 1 1 Y.AUTO.PLOT 
SOLID 
VAR.UPPER.LIMIT [I 1 UPPER.PTS: = 
VAR.LOWER.LIMIT [ I 1 LOWER.PTS : = 
UPPER.PTS SUB[ 1 I MEAN# [ I 1 I 1 1 Y.DATA.PLOT 
LOWER.PTS SUB[ 1 I MEAN# [I 1 I 1 1 Y.DATA.PLOT 
LABEL. GRAPH 
PRINTOUT 

LOOP; 

INTEGER SCALAR RANGE1 
SCALAR RANGE2 
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SCALAR RANGE3 
SCALAR RANGE4 
SCALAR RANGES 
SCALAR RANGE6 
SCALAR RANGE7 
SCALAR RANGES 
SCALAR RANGES 
SCALAR PAIRED.POP# 

: XYPLOT \ for paired pulse only 
CR . " Remember that pop# represents the sequential # of the" 
CR . " first spike only." CR 
CR . " control start pop# = " INPUT.# RANGE1 : = 
CR . " control end pop# = " INPUT.# RANGE2 : = 
CR . " enhanced start pop# = " INPUT.# RANGE3 : = 
CR." enhanced end pop#= "INPUT.# RANGE4 := 
CR." post enhanced start pop# = " INPUT.# RANGES : = 
CR." post enhanced end pop# = "INPUT.# RANGE6: = 
POP# 2 I PAIRED. POP#:= 
PAIRED.POP# 1 + 1 DO 
V AR2 [ I ] V AR [ I 1 I V AR3 [ I 1 : = 

LOOP 
RANGE2 RANGE1 - RANGE7 : = 
RANGE4 RANGE3 - RANGES : = 
RANGE6 RANGES- RANGES : = 

GRAPHICS.DISPLA Y 
HORIZONTAL GRID.OFF 
VERTICAL GRID.OFF 
RIGHT.HALF2 
{WINDOWS} 
II "SYMBOL 
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VAR SUB[ 1 , PAIRED.POP#, 1 1 VAR3 SUB[ 1 , PAIRED.POP#, 1 1 XY.AUTO.PLOT 
" 1" SYMBOL 
VAR SUB[ RANGE1 , RANGE7, 1 1 VAR3 SUB[ RANGE1 , RANGE7, 1 1 XY.DATA.PLOT 
II 2" SYMBOL 
VAR SUB[ RANGE3, RANGES, 1 1 VAR3 SUB[ RANGE3, RANGES, 1 1 XY.DATA.PLOT 
"3" SYMBOL 
VAR SUB[ RANGES, RANGES, 1 1 VAR3 SUB[ RANGES, RANGES, 1 1 XY.DATA.PLOT 
4 0 FIX. FORMAT 
SO LABEL.DIR SO CHAR.DIR 
NORMAL.COORDS 
.02 .3S POSITION " SIZE OF SPIKE21SPIKE1" LABEL 
0 LABEL.DIR 0 CHAR.DIR 
.40 .08 POSITION " SIZE OF SPIKE 1" LABEL 
.20 .S6 POSITION 
" FILE = " FILENAME "CAT" " "CAT VARIABLENAME "CAT TITLE":= 
TITLE LABEL 
.02 .04 POSITION . " RANGE 1 =" RANGE1 .. " -" RANGE2 . 



. " RANGE 2 =" RANGE3 .. "-" RANGE4 . 

. " RANGE 3 =" RANGE5 .. " -" RANGE6. 
\ CURSOR.OFF 

0 1 POSITION 
8 2 FIX.FORMAT 
KEY 
CASE 

80 OF SCREEN.CLEAR SCREEN.PRINT ENDOF 
112 OF SCREEN.CLEAR SCREEN.PRINT ENDOF 

ENDCASE; 

: XYPLOT? \ for paired pulse only 
PRDPULSE.OR.NOT 2 = 
IF 
NORMAL.DISPLA Y 
CR . " Do you want to plot prdpluse XY plot? (Y /N) " 
KEY 
CASE 
121 OF XYPLOT ENDOF 
89 OF XYPLOT ENDOF 

ENDCASE 
THEN; 

: CHECK.FLAG \ in case program crashed during acquisition and the 
FLAG# 0 = \ number of flags and pops were not saved 
IF 
30 1 DO 

FLAG [I 1 0 < > 
IF 

FLAG# 1 + FLAG#:= 
ELSE LEAVE 
THEN 

LOOP 
THEN 

\ POP# 0 = 
\ IF 

0 POP#:= 
2000 1 DO 

POP.SIZE [ I 1 0 < > 
IF 

POP# 1 + POP# : = 
ELSE LEAVE 
THEN 

LOOP 
\ THEN 

:ANAL 
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NORMAL. DISPLAY 
{WINDOW3} {BORDER} 
{WINDOW3} SCREEN.CLEAR 
GET.DRIVE 
GET.PARAMS 
FILENAME ": = \ places string from get.params into variable 
BELL 
CR . " READING DATA ... " 
READ.DATA.FILE 
CHECK.FLAG 

PRDPULSE.OR.NOT: = 

PRDPULSE.OR.NOT 2 = 
IF 
CONVERT.FLAGS 

THEN 

:RUN 
GET. MEANS 
PLOT.MEANS 
XYPLOT?; 

: SLOPE.FILL 
PRDPULSE.OR.NOT 2 = 
IF 
SLOPE SUB[ 111000 I 2] VAR SUB[ 1 I 1000 I 1] := 
SLOPE SUB[ 2 I 1000 I 2] VAR2: = 

ELSE 
SLOPE VAR: = 

THEN 
" EPSP SLOPE" VARIABLENAME ": = 
" SLOPE uv/ms" YAXIS ": = 
RUN 
EXIT; 

: POP.START.FILL 
PRDPULSE.OR.NOT 2 = 
IF 
START.POP SUB[ 1 I 1000 I 2] VAR SUB[ 1 I 1000 I 1] := 
START.POP SUB[ 2 I 1000 I 2] VAR2: = 

ELSE 
START.POP VAR: = 

THEN 
" START OF POPSPIKE" VARIABLENAME ": = 
"TIME (us)" YAXIS ": = 
RUN 
EXIT; 

216 



: PEAK.TIME.FILL 
PRDPULSE.OR.NOT 2 = 
IF 
PEAK.TIME SUB[ 1 I 1000 I 2] VAR SUB[ 1 I 1000 I 1 ] : = 
PEAK.TIME SUB[ 2 I 1000 I 2] VAR2: = 

ELSE 
PEAK.TIME VAR: = 

THEN 
"TIME OF POP PEAK" VARIABLENAME ": = 
"TIME (us)" YAXIS ": = 
RUN 
EXIT; 

: POP.SIZE.FILL 
PRDPULSE.OR.NOT 2 = 
IF 
POP.SIZE SUB[ 1 I 1000 I 2] VAR SUB[ 1 I 1000 I 1 ] : = 
POP.SIZE SUB[ 2 I 1000 I 2] VAR2 : = 

ELSE 
POP.SIZE VAR : = 

THEN 
" SIZE OF POPSPIKE" VARIABLENAME ": = 
"AMPLITUDE (uv)" YAXIS ": = 

RUN 
EXIT; 

: EPSP.LAT.FILL 
PRDPULSE.OR.NOT 2 = 
IF 
EPSP.LAT SUB[ 1 I 1000 I 2] VAR SUB[ 1 I 1000 I 1] := 
EPSP.LAT SUB[ 2 I 1000 I 2] VAR2 := 

ELSE 
EPSP.LAT VAR: = 

THEN 
"LATENCY OF EPSP PEAK" VARIABLENAME ": = 
"TIME (us)" YAXIS ": = 
RUN 
EXIT; 

: POP.PERP.SIZE.FILL 
PRDPULSE.OR.NOT 2 = 
IF 
POP.PERP.SIZE SUB[ 1 I 1000 I 21 VAR SUB[ 1 I 1000 I 1] := 
POP.PERP.SIZE SUB[ 2 I 1000 I 2] VAR2 : = 

ELSE 
POP.PERP.SIZE VAR: = 

THEN 
" SIZE OF POPSPIKE (TANGENT)" VARIABLENAME ": = 
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"AMPLITUDE (uv)" YAXIS ": = 
RUN 
EXIT; 

: AREA.ARRAY.FILL 
PRDPULSE.OR.NOT 2 = 
IF 
AREA.ARRAY SUB[ 1 I 1000 I 2 1 VAR SUB[ 1 I 1000 I 1 1: = 
AREA.ARRA y SUB[ 2 I 1 000 I 2 1 VAR2 : = 

ELSE 
AREA.ARRA Y VAR : = 

THEN 
"AREA UNDER THE TANGENT" VARIABLENAME ": = 

" AMPLITUDE (mv)" YAXIS ": = 
RUN 
EXIT; 

: CHOOSE. VARIABLE 
NORMAL. DISPLAY 
{DEF} SCREEN.CLEAR 
{WINDOW3} SCREEN.CLEAR 
{WINDOW3} {BORDER} 
."CHOOSE VARIABLE:" CR 
" 1 FOR SLOPE" CR 
" 2 FOR START OF POPSPIKE" CR 
" 3 FOR TIME OF POP PEAK" CR 
" 4 FOR POPSPIKE (PEAK TO PEAK) SIZE" CR 
" 5 FOR EPSP PEAK LATENCY" CR 
" 6 FOR POPSPIKE (PEAK TO TANGENT) SIZE" CR 
" 7 FOR AREA UNDER THE TANGENT" CR 
" 8 FOR EXIT TO MAIN MENU" CR 

KEY 
CASE 
49 OF." CALCULATING MEANS ... " SLOPE.FILL ENDOF 
50 OF." CALCULATING MEANS ... " POP.START.FILL ENDOF 
51 OF." CALCULATING MEANS ... " PEAK.TIME.FILL ENDOF 
52 OF." CALCULATING MEANS ... " POP.SIZE.FILL ENDOF 
53 OF." CALCULATING MEANS ... " EPSP.LAT.FILL ENDOF 
54 OF." CALCULATING MEANS ... " POP.PERP.SIZE.FILL ENDOF 
55 OF." CALCULATING MEANS ... " AREA.ARRAY.FILL ENDOF 
56 OF EXIT ENDOF 
MYSELF 

ENDCASE 
MYSELF; 

20 STRING FILENAME2 

: GET.PARAMS2 
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GET.DRIVE 
NORMAL.DISPLA Y 
{DEF} SCREEN.CLEAR 
."ENTER THE NAME FOR YOUR 123 DATA FILE (add extension .WKS)." 
CR 
"INPUT FILENAME2 ": = 
DRIVE FILENAME2 "CAT FILENAME2 ": = ; 

INTEGER SCALAR PULSES 

: WRITE.T0123 
CR 

. " Paired Pulse or Single Pulse Data? {2/1) " 
INPUT.# 
PULSES:= 
LOAD.OVERLA Y 12310.SOV 
FILENAME2 DEFER> 123FILE.CREATE 
FILENAME2 DEFER> 123FILE.OPEN 
2 PULSES = 
IF 
1 1 1 23WRITE. DOWN 
START.POP SUB[ 1 , 2000, 2 1 ARRAY> 123FILE 
1 2 123WRITE. DOWN 
SLOPE SUB[ 1 , 2000 , 2 1 ARRAY> 123FILE 
1 3 1 23WRITE. DOWN 
PEAK.TIME SUB[ 1 , 2000 , 2 1 ARRAY> 123FILE 
1 4 123WRITE.DOWN 
POP.SIZE SUB[ 1 , 2000 , 2 1 ARRAY> 123FILE 
1 5 1 23WRITE. DOWN 
EPSP.LAT SUB[ 1, 2000,21 ARRAY>123FILE 
1 6 123WRJTE.DOWN 
POP.PERP.SIZE SUB[ 1, 2000,21 ARRAY>123FILE 
1 7 123WRITE.DOWN 
AREA.ARRAY SUB[ 1 , 2000 , 2 1 ARRAY> 123FILE 
1 8 123WRITE. DOWN 
START. POP SUB[ 2 , 2000 , 2 1 ARRAY> 123FILE 
1 9 123WRITE.DOWN 
SLOPE SUB[ 2 , 2000 , 2 1 ARRAY> 123FILE 
1 1 0 123WRJTE. DOWN 
PEAK.TIME SUB[ 2, 2000, 2 1 ARRAY> 123FILE 
1 11 123WRITE.DOWN 
POP.SIZE SUB[ 2, 2000, 21 ARRAY>123FILE 
1 12 123WRITE. DOWN 
EPSP.LAT SUB[ 2, 2000,21 ARRAY>123FILE 
1 13 123WRITE.DOWN 
POP.PERP.SIZE SUB[ 2, 2000,21 ARRAY>123FILE 
1 14 123WRITE.DOWN 
AREA.ARRAY SUB[ 2, 2000, 2 1 ARRAY> 123FILE 
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ELSE 
1 1 123WRITE.DOWN 
START.POP ARRAY> 123FILE 
1 2 123WRITE.DOWN 
SLOPE ARRAY> 123FILE 
1 3 123WRITE.DOWN 
PEAK.TIME ARRAY> 123FILE 
1 4 123WRITE.DOWN 
POP.SIZE ARRAY> 123FILE 
1 5 123WRITE.DOWN 
EPSP.LAT ARRAY> 123FILE 
1 6 123WRITE.DOWN 
POP.PERP.SIZE ARRAY> 123FILE 
1 7 1 23WRITE. DOWN 
AREA.ARRAY ARRAY>123FILE 
THEN 
123FILE.CLOSE 

: 123 
GET.PARAMS2 
WRITE.T0123 

INTEGER SCALAR Z 
INTEGER SCALAR W 
INTEGER SCALAR V 
INTEGER SCALAR U 
INTEGER SCALAR T 
INTEGER DIM[ 2000 1 ARRAY HOLDING 

: GET.SYMBOL 
CASE 

1 OF " 0" SYMBOL ENDOF 
2 OF " 1" SYMBOL ENDOF 
3 OF " 2" SYMBOL ENDOF 
4 OF " 3" SYMBOL ENDOF 
5 OF " 4" SYMBOL ENDOF 
6 OF " 5" SYMBOL ENDOF 
7 OF " 6" SYMBOL ENDOF 
8 OF " 7" SYMBOL ENDOF 
9 OF ., .8" SYMBOL ENDOF 

10 OF " 9" SYMBOL ENDOF 
11 OF " 0" SYMBOL ENDOF 
12 OF " 1" SYMBOL ENDOF 
13 OF " 2" SYMBOL ENDOF 
14 OF " 3" SYMBOL ENDOF 
15 OF" 4" SYMBOL ENDOF 
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16 OF " 5" SYMBOL ENDOF 
17 OF " 6" SYMBOL ENDOF 
18 OF " 7" SYMBOL ENDOF 
19 OF " 8" SYMBOL ENDOF 
20 OF " 9" SYMBOL ENDOF 
21 OF " 0" SYMBOL ENDOF 
22 OF " 1" SYMBOL ENDOF 
23 OF " 2" SYMBOL ENDOF 
24 OF " 3" SYMBOL ENDOF 
25 OF " 4" SYMBOL ENDOF 
26 OF " 5" SYMBOL ENDOF 
27 OF " 6" SYMBOL ENDOF 
28 OF " 7" SYMBOL ENDOF 
29 OF " 8" SYMBOL ENDOF 
30 OF " 9" SYMBOL ENDOF 

ENDCASE 

: PLOT.EACH.POINT 
2000 RAMP HOLDING : = 
FLAG# 1 + 1 DO 

X FLAG [I 1 < 
IF 
IW:= 
LEAVE 
THEN 

LOOP 
FLAG# 1 + 1 DO 

Y FLAG [I 1 > 
IF 
IV:= 

THEN 
LOOP 

V 1 + W DO 
I GET.SYMBOL \leave I on stack and get corresponding symbol 
WI= IF 

FLAG [ I 1 X - U : = 
HOLDING SUB[ X, U , 1 1 VAR SUB[ X, U, 1 1 XY.DATA.PLOT 

ELSE 
VI= IF 
I 1 - T: = 
FLAG [ I 1 FLAG [ T 1 - U : = 
HOLDING SUB[ FLAG [ T 1 , U , 1 1 VAR SUB[ FLAG [ T 1 , U , 1 1 

XY.DATA.PLOT 
I 1 + GET.SYMBOL \leave I + 1 on stack and get corresponding symbol 
Y FLAG [ I 1 - U : = 
HOLDING SUB[ FLAG [ I 1 , U , 1 1 VAR SUB[ FLAG [ I 1 , U , 1 1 

XY.DATA.PLOT 
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ELSE 
I 1 - T: = 
FLAG [ I 1 FLAG [ T 1 - U : = 
HOLDING SUB[ FLAG [ T 1 I u I 1 1 VAR SUB[ FLAG [ T 1 I u I 1 1 XY.DATA.PLOT 

THEN 
THEN 

LOOP 

: PLOT.RAW.SCORES 
GET.RANGE 
Y X - Z : = \ # of points to plot 
GRAPHICS.DISPLA Y 
HORIZONTAL GRID.OFF 
VERTICAL GRID.OFF 
RIGHT.HALF2 
{WINDOWS} 
" "SYMBOL 
2000 INTEGER RAMP X + 1 - SUB[ 1 I Z I 1 1 \ set up x-axis 
VAR SUB[ X I z I 1 1 XY.AUTO.PLOT 
PLOT.EACH.POINT 
4 0 FIX.FORMAT 
90 LABEL. DIR 
90 CHAR.DIR 
NORMAL.COORDS 
.02 .35 POSITION YAXIS LABEL 
0 LABEL. DIR 0 CHAR. DIR 
.40 .08 POSITION " SAMPLE NUMBER" LABEL 
.20 .96 POSITION 
" FILE = " FILENAME "CAT" " "CAT VARIABLENAME "CAT TITLE":= 
TITLE LABEL 
CURSOR.OFF 
0 1 POSITION 
8 2 FIX. FORMAT 
KEY 
CASE 

80 OF SCREEN.CLEAR SCREEN.PRINT ENDOF 
112 OF SCREEN.CLEAR SCREEN.PRINT ENDOF 

ENDCASE 

: GET.RAW.SCORES 
NORMAL. DISPLAY 
{DEF} SCREEN.CLEAR 
{WINDOW3} SCREEN.CLEAR 
{WINDOW3} {BORDER} 
."CHOOSE VARIABLE:" CR 
" 1 FOR SLOPE" CR 



" 2 FOR START OF POPSPIKE" CR 
" 3 FOR TIME OF POP PEAK" CR 
" 4 FOR POPSPIKE (PEAK TO PEAK) SIZE" CR 
" 5 FOR EPSP PEAK LATENCY" CR 
" 6 FOR POPSPIKE (PEAK TO TANGENT) SIZE" CR 
" 7 FOR AREA UNDER THE TANGENT" CR 
" 8 FOR EXIT TO MAIN MENU" CR 

KEY 
CASE 
49 OF " EPSP SLOPE" VARIABLENAME ": = 

" SLOPE uv/ms" YAXIS ": = 
SLOPE VAR: = 
PLOT.RAW.SCORES ENDOF 

50 OF " START OF POPS PIKE" VARIABLENAME ": = 
"TIME (us)" YAXIS ": = 

START.POP VAR : = 

PLOT.RAW.SCORES ENDOF 
51 OF " POPSPIKE PEAK LATENCY" VARIABLENAME ": = 

"TIME (us)" YAXIS ": = 

PEAK.TIME VAR : = 
PLOT.RAW.SCORES ENDOF 

52 OF "SPIKE HEIGHT(PEAK TO PEAK)" VARIABLENAME ": = 
"AMPLITUDE (uv)" YAXIS ": = 
POP.SIZE VAR: = 

PLOT.RAW.SCORES ENDOF 
53 OF " POST-SPIKE PEAK LATENCY" VARIABLENAME ": = 

"TIME (us)" YAXIS ": = 
EPSP.LAT VAR: = 
PLOT.RAW.SCORES ENDOF 

54 OF " SPIKE HEIGHT(PEAK TO TAN)" VARIABLENAME ": = 

"AMPLITUDE (uv)" YAXIS ": = 
POP.PERP.SIZE VAR : = 
PLOT.RAW.SCORES ENDOF 

55 OF "AREA UNDER THE TANGENT" VARIABLENAME ": = 
"AMPLITUDE (mv)" YAXIS ": = 
AREA.ARRA Y VAR : = 

PLOT.RAW.SCORES ENDOF 
56 OF EXIT ENDOF 
MYSELF 

ENDCASE 
MYSELF; 

: CHOOSE.ACTION 
NORMAL.DISPLA Y 
{DEF} SCREEN.CLEAR 
{WINDOW3} {BORDER} 
{WINDOW3} SCREEN.CLEAR 
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. " CHOOSE ACTION:" CR 
1 FOR RESET FLAGS" CR 

" 2 FOR RESET CONTROL AND SAMPLE SIZES" CR 
(default = 60 and 6)" CR 

" 3 FOR PROCEED WITH CHOICE OF VARIABLE" CR 
" 4 FOR PRINT OUT OF RAW SCORES" CR 
" 5 FOR SWITCHING DATA FILES" CR 
" 6 FOR CREATING A 123 .WKS FILE" CR 
" 7 FOR PLOTTING THE RAW SCORES" CR 
" 8 FOR EXIT PROGRAM" CR 

KEY 
CASE 
49 OF RESET.FLAGS ENDOF 
50 OF CHANGE.SIZE ENDOF 
51 OF CHOOSE.VARIABLE ENDOF 
52 OF RAW.SCORES ENDOF 
53 OF STACK.CLEAR ANAL MYSELF ENDOF \same as GO 
54 OF 123 ENDOF 
55 OF GET.RAW.SCORES ENDOF 
56 OF BYE ENDOF 
MYSELF 

ENDCASE 
MYSELF; 

:GO 
STACK. CLEAR 
ANAL 
CHOOSE.ACTION ; 

BELL 200 MSEC.DELA Y BELL 

NORMAL.DISPLAY SCREEN.CLEAR ECHO.ON 

\ PROGRAM: POPANAL.PRG 
\ 
\ DESCRIPTION: Program analyzes data obtained through the "pop.prg" data 
\ acquisition program. Analysis is done around flags entered by the 
\ user during data acquisition. Flags can be altered. Control 
\ period size and sample size can be reset by user. This program 
\ calculates the mean and 95% confidence limits (t statistic) for 
\ each window of data deliniated by the flags (preflag control 
\ period + experimental period from flag to next flag). Analysis 
\ is menu driven. 
\ 
\REQUIREMENTS: Asyst module must have the "basic statistics" 
\ overlay installed (spfn.sov). 
\ 
\TO BEGIN PROGRAM, TYPE: GO 
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