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Abstract 

An m-cycle system of order n is a partition of the edges of the complete graph Kn 

into m-cycles. This thesis explores two aspects of cycle systems: colouring of cycle 

systems and invariants for cycle systems. 

A weak k-colouring of an m-cycle system of order n is a partition of the vertices 

of Kn into k colour classes such that the vertices of no m-cycle are all of the same 

colour. The smallest value of k for which a cycle systemS admits a weak k-colouring 

is called the chromatic number of S. We study weak colourings of even cycle systems, 

and show that for any integers k 2 2 and r 2 2, there is a k-chromatic (2r )-cycle 

system. 

An invariant for an m-cycle system is a function I such that I(S) = I(S') for any 

m-cycle systems S and S' which are isomorphic. We examine the utility of various 

invariants in distinguishing nonisomorphic cycle systems and enumerate all pairwise 

nonisomorphic 11-cycle systems of order 11. 
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Chapter 1 

Introduction 

An m-cycle system of order n is a partition of the edges of the complete graph Kn into 

m-cycles. Where it is convenient to specify the vertex set and cycle set, we Vo{ill denote 

by (X, C) a cycle system with vertex set X and cycle set C. Necessary and sufficient 

conditions for the existence of an m-cycle system of order n > 1 are that n is odd, 

m divides n(n
2
-l), and n > m. For a given m, any integer n for which there exists an 

m-cycle system of order n will be said to be m-admissible (or simply admissible if the 

value of m is unambiguous). In the case m = 3, 3-cycle systems are also called Steiner 

triple systems, and have been widely studied as a type of block design. In this thesis, 

we will investigate two aspects of cycle systems, namely colouring of cycle systems 

and invariants for cycle systems. For basic definitions of concepts in graph theory 

and combinatorial design theory, the reader is referred to [3, 51]; other definitions will 

appear in later chapters as needed. 
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1.1 History 

Interest in cycle systems dates back to the mid-19th century, with the proof that a 

3-cycle system of order n exists if and only if n _ 1 or 3 (mod 6) [33]. Since that 

time, one of the most significant problems regarding cycle systems was to prove that 

the obvious necessary conditions for the existence of an m-cycle system of order n are 

sufficient for m > 3. The final solution to the existence problem would not appear 

until approximately a century and a half after the publication of [33]. We will review 

some of the major results leading to this solution; for a complete survey, the reader 

is referred to [35] , followed by [1, 46] for the final solution. 

By the end of the 19th century, it had been proven by Walecki [50] that ann-cycle 

system of order n, i.e. a Hamilton decomposition of Kn, exists for any odd n > 3. 
I 

Approximately 70 years later, it was shown that for m even and n = 1 (mod 2m), 

there is an m-cycle system of order n [34, 44]. In the case that m is odd, it was 

proven by Jackson [31] that there is an m-cycle system of order n for any n 1 or m 

(mod 2m), implying that the obvious necessary conditions are sufficent when m = p 01 

for any prime p and positive integer a. If m = 2p01 for some prime p and positive 

integer a, the obvious necessary conditions for the existence of an m-cycle system 

of order n were shown to be sufficient by Alspach and Varma [2]. That the obvious 

necessary conditions are sufficient for all m was finally shown by Alspach and Gavlas 

[1] in the case that m is odd and by Sajna [46] in the case that m is even. 

1.2 Outline of thesis 

In this thesis, we will discuss two aspects of cycle systems. Chapter 2 deals with 

weak colourings of cycle systems. The main result proven in this chapter is that for 
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any integers k 2': 2 and r 2': 2, there is a k-chromatic (2r )-cycle system. We also 

discuss the spectra of k-chromatic 4-cycle systems, and show that for any k 2': 2, 

there is a k-chromatic 4-cycle system of any admissible order n > n4 (k), where n4 (k) 

is the smallest order for which there is a k-chromatic 4-cycle system. The results 

of Sections 2.2.1, 2.2.2 and 2.2.3, dealing with colouring 4-cycle systems, have been 

accepted for publication; see [8]. 

Chapter 3 discusses invariants for cycle systems and their uses in the 

enumeration of cycle systems of small order. Our study of invariants and 

enumeration arose from our study of colouring cycle systems, as we wished to 

generate cycle systems of small order to test for properties that could potentially be 

exploited in the construction of cycle systems with desired colouring 

properties. Nevertheless, this topic is of interest on its own. In Chapter 3, we begin by 

discussing some known invariants for cycle systems. A deterministic search 

algorithm to enumerate pairwise nonisomorphic cycle systems of small order is 

described, whereby cycle system invariants are employed in the rejection of 

isomorphic copies of cycle systems. Finally, we present the results of our 

application of this algorithm, including a complete enumeration of pairwise 

nonisomorphic 11-cycle systems of order 11, and we comment on the effectiveness 

of cycle system invariants in distinguishing nonisomorphic systems. 

In Chapter 4, we summarize the results presented in the thesis and pose some 

open questions which arise from our work. 
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Chapter 2 

Colouring of Cycle Systems 

In this chapter, some results regarding weak colouring of cycle systems are presented. 

We begin by defining the relevant terms. We then review the history of th~ study of 

cycle system colouring, and follow with a discussion of weak colouring of even cycle 

systems. 

Let k be a positive integer. A cycle system is said to be weakly k-colourable if its 

vertex set may be partitioned into k sets, called colour classes, such that no cycle is 

monochromatic, i.e. no cycle has all of its vertices the same colour; such a partition 

is referred to as a weak k-colouring. (Other types of cycle system colourings which 

have been studied include colourings in which every cycle has each of its vertices a 

different colour (called strong colourings) , colourings in which each cycle must have 

at least two vertices of the same colour, and colourings in which each cycle must 

have at least two vertices coloured differently and at least two vertices of the same 

colour. A survey of various types of colourings for triple systems may be found in 

[11 , Chapter 18]; for further information on these and other types of colourings, see 

also (10, 21 , 27, 38, 43].) In this thesis , all of the colourings that we consider are 
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weak colourings. Therefore, we hereafter omit the descriptors "weak" and "weakly"; 

weak colourings will simply be called colourings, and a weakly k-colourable system 

will be said to be k-colourable. For a given cycle system, it is a natural question to 

ask what is the smallest value of k for which the system has a k-colouring. This value 

is called the system's chromatic number; a cycle system has chromatic number k, or 

is k-chromatic, if it is k-colourable but not (k- 1)-colourable. 

2.1 History of cycle system colouring 

Most of the focus on colouring cycle systems has been in the colouring of 3-cycle 

systems, or Steiner triple systems. It is trivial that any STS(3) is 2-chromatic, but 

it was proven by Rosa [45] and independently by Pelikan [41] that any Ste!ner triple 

system of order n > 7 has chromatic number at least 3. Indeed, any Steiner triple 

system of order n, where 7 < n < 15, is 3-chromatic [36]. Furthermore, for any 

admissible n > 7, there is a 3-chromatic STS(n) [45]. 

Although the results just mentioned all involve 3-chromatic Steiner triple systems, 

higher chromatic numbers are indeed attained. This observation was first made by 

Rosa [45], who noted that for any positive integer k, there is a Steiner triple system 

whose chromatic number is at least k; this result stems from the facts that for any 

k, there is a partial Steiner triple system with chromatic number at least k [22], and 

that any partial Steiner triple system can be embedded in a Steiner triple system [49]. 

In fact, de Brandes, Phelps and Rodl [17] proved in 1982 that any integer k > 3 is the 

chromatic number of some Steiner triple system, and moreover, for any integer k > 3, 

there is an integer vk such that for any admissible v > vk, there is a k-chromatic 

STS(v). Let n 3 (k) denote the smallest such vk which is an admissible order of a 
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Steiner triple system. It is known that n3(3) = 7 [45], while 19 :::; n3(4) :::; 21 [28], 

27:::; n3(5) < 127 [23, 24, 25, 30], and 27:::; n3(6) :::; 487 [5 , 23, 24, 30]. The question 

of whether, for a given order v, the set C ( v) of integers k which are the chromatic 

number of some STS( v) is an interval was posed by de Brandes, Phelps and Rodl [17]; 

this question has been answered in the affirmative for v :::; 25 [23, 24, 30, 36] , but 

is unsolved in general. Another natural question is whether n3 ( k) is the smallest 

order for which there exists a k-chromatic 3-cycle system. Fork= 3 and k = 4, this 

question has also been answered in the affirmative. (See [45] and [28].) However, for 

k ~ 5, the question is unsettled [17, 25]. 

Weak colourings of m-cycle systems for m > 3 have been less widely studied than 

triple system colourings. It is evident from the definition that any m-cycle system 

of order n > 1 must have chromatic number at least 2. Milici and Tuza [40] showed 

that every m-cycle system of order 2m + 1 is 2-colourable for any m > 3, while 

each m-cycle system of order 4m + 1 is 2-colourable if m ~ 10, thus proving the 

existence of 2-chromatic m-cycle systems for any m > 3. It was also proven in [40] 

that no m-cycle system of order n :::; ..;:rn2ffi + ~ or n < ;: has chromatic number 

greater than 2. Nevertheless, in a previous paper, Milici and Tuza [39] showed that 

for any m > 3, there exists an m-cycle system which is not 2-colourable; they did 

not, however, determine the chromatic number of the non-2-colourable cycle systems 

that they constructed. 

2.2 Colouring 4-cycle systems 

In this section, we give some results about colouring of 4-cycle systems. The main 

result of this section is an analogue for 4-cycle systems of a theorem of 
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de Brandes, Phelps and Rodl (17] regarding 3-cycle systems. In particular , we 

prove, by constructive methods, that for any integer k > 2, there is an admissible 

integer n4 (k) such that for every admissible n > n4 (k), there is a k-chromatic 4-cycle 

system of order n. As many of our constructions require the following theorem of 

Sotteau, we state it here. 

Theorem 2.2.1. (47] Necessary and sufficient conditions for the decomposition of 

the complete bipartite graph Km,n into (2r)-cycles are that m and n are even, m 2': r , 

n > r , and mn is divisible by 2r. 

Our preliminary investigation into the colouring of 4-cycle systems led us to 

consider systems with special properties. A cycle system is called uniquely k-colourable 

if every k-colouring represents the same partition of the vertex set into colour classes, 

that is , the system has only one k-colouring up to permutation of colour classes. 

We begin by briefly discussing some implications of the existence of a uniquely 

k-colourable cycle system. 

Lemma 2.2.2. Let (X, C) be a k-chromatic m-cycle system of order n. If this system 

is uniquely k-colourable, then in a k-colouring of (X, C), each colour class must have 

size at least m - 1. 

Proof. Give (X, C) a k-colouring with colour classes C1 , ... , Ck, where for each 

i E { 1, ... , k} , the elements of Ci have colour i. Suppose there is some colour class 

ci which has size at most m - 2. Let cj be another colour class, and let X E cj. 

Re-colour x with colour i. Then no cycle can be monochromatically coloured with 

colour i since at most m - 1 vertices have this colour. Clearly, no cycle can be 

monochromatically coloured with colour j or with any other colour, since the original 

colouring had no monochromatic cycle. So we have created a k-colouring of (X, C) 
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which yields a different partition into colour classes than the original colouring, thus 

contradicting that (X, C) is uniquely k-colourable. 0 

While the next lemma does not deal directly with unique colourings, we will 

subsequently employ it in a construction requiring a uniquely colourable 4-cycle 

system as an ingredient. 

Lemma 2.2.3. Let (X, C) be a k-chromatic 4-cycle system of order n, and consider 

a fixed k-colouring of (X, C). Let X = { oo} U { xb ... , Xn-d where oo is in a colour 

class of smallest size. Then {xb x2, ... , Xn-d can be partitioned into pairs, such that 

at least one pair is contained in a largest colour class, Ck, and no pair not contained 

ck is monochromatic. 

Proof. Let the colour classes, with the element oo removed, be C1 , C2 , ... , Ck, where 

IC1I < IC2I and IC2I < IC3I < · · · < ICkl· 

Note that we may assume, without loss of generality, that each Ci is of even 

cardinality. Otherwise, noting that there must be an even number of sets Ci of odd 

cardinality, choose an element from each such set, and partition these elements into 

pairs. None of these pairs is monochromatic, and we are left with k sets of even 

cardinality to partition into pairs in the required way. As well, if ICkl is odd, then 

this pairing removes an element y of Ck, and an element of each other class of size 

I C k I (if such classes exist), so C k - { y} is a set of largest size among the remaining 

sets. 

For each element v E C1 , choose a distinct element u E C2 and form the pair 

{ u, v }. Then, if k > 2 and any elements v E C2 remain, for each such element, choose 

a distinct element u E C3 and form the pair { u, v}. We proceed inductively. For 

i = 3, ... ' k - 1, having previously paired any remaining elements of ci-1 with 
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elements of Ci, for any unpaired elements u E Ci, choose a distinct element v E Ci+I 

and form the pair { u, v }. Such pairing is always possible, since for each i E {1, ... , k-

1}, ICil < ICi+II· 

Now, if at least two elements of Ck remain, we can partition the remaining elements 

of Ck into pairs, and we are then finished. Otherwise, no elements of Ck remain; we 

note in this case that ICk-II = ICkl and k > 3 (since ICII < IC2). Choose two elements 

ui, u2 E ck-I which have been placed in pairs { ub vi}, { u2, v2}, where VI, v2 E Ck. 

Choose a pair { w, z} which has already been formed, where w E Ci for some i < k- 2. 

Note that z rj. Ck-ll since all elements of Ck-I have been used in forming the pairs 

among elements of C k-I and elements of C k. Replace the pairs { u 11 VI}, { u2, v2} 

and { w, z} with { ui, w}, { u2, z} and { vll v2}. We have now partitioned the elements 

{xi, ... , Xn-d into pairs as required, in which exactly one pair, namely {vll v2}, is 

contained in the colour class Ck and no other pair is monochromatic. D 

The following theorem constructs a (k + 1 )-chromatic 4-cycle system of order 

2n - 1, given a uniquely k-colourable, k-chromatic 4-cycle system of order n. 

Theorem 2.2.4. If there exists a k-chromatic, uniquely k-colourable 4-cycle system 

of order n, then there exists a (k +!)-chromatic 4-cycle system of order 2n- 1. 

Proof Let (Xb CI) and (X2, C2) be uniquely k-colourable 4-cycle systems of 

order n (possibly XI = x2 and CI = C2), where XI = { oo, XI,I , X2,b ... 'Xn-I,I}, 

X2 = { oo, XI,2, x2,2, ... , Xn-I,2}, and oo is in a colour class of smallest size in each 

of (XI, CI) and (X2 , C2). We will form a decomposition of the Kn-I ,n-I between 

{xi,ll ... , Xn-I,I} and {xi,2, ... , Xn-I,2} into 4-cycles, which, combined with the 

cycles of CI and C2, will form a 4-cycle system of order 2n - 1 on vertex set X I U X 2. 

By Lemma 2.2.3, {x1,1, ... , Xn-I,I} can be partitioned into pairs such that at least 
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one pair is contained in a colour class of (Xt, CI) of largest size, and no pair not 

contained in this colour class is monochromatic. Let {VI, v2} be a pair contained in 

this largest colour class. For each colour class Ci ( i E { 1, ... , k}) of (X 2 , C2 ), choose 

two elements Ui,I, Ui,2 E Ci- { 00} and form the 4-cycle (vb Ui,b V2, Ui,2)· (The vertices 

Ui,b Ui,2 E ci - { 00} exist by Lemma 2.2.2.) Form the remaining cycles between 

{vi,v2} and ((X2- Uf=I{ui,bui,2})- {oo}) using any decomposition of K2,n-I-2k 

into 4-cycles. (Such a decomposition exists by Theorem 2.2.1.) 

For each of the remaining pairs {WI, w2} -=1 {VI, v2} in the pairing of X I - { oo}, 

form all cycles containing WI and w2 by using any decomposition of K2,n-I into 

4-cycles. (Such a decomposition exists by Theorem 2.2.1.) This step completes the 

decomposition of the Kn-I,n-I between {xi,I, ... , Xn-I,I} and {xi,2, ... , Xn-I,2} into 

4-cycles, and so we have constructed a 4-cycle system S of order 2n - 1. 

Suppose S is k-colourable, and assign a k-colouring. Then (X11 C1 ) and (X2, C2) 

have both been given k-colourings. Since (X11 CI) and (X2, C2) are uniquely 

k-colourable, then for some j E { 1, ... , k}, vi and v2 both have colour j. Also, 

for each i E { 1, ... , k}, there exists ji E { 1, . .. , k} such that ui, 1 and ui,2 must have 

the same colour ji, and if i 1 -=1 i 2 , then ji1 -=1 ji2 • Choose i E { 1, ... , k} such that 

ji = j. The cycle (vi, Uji,b v2, uii,2 ) is monochromatic, which is a contradiction. 

However, S can be (k + I)-coloured, as follows. In the pairing of the elements of 

xl- { 00} formed by Lemma 2.2.3, let the monochromatic pairs (including {VI, v2}) 

be { w1,I, w1,2}, { w2,11 w2,2}, ... , { Wq,I, Wq,2}· Give each of (Xb C1) and (X2, C2) a k­

colouring, and then re-colour each of w1,2, w2,2, ... , Wq, 2 with a (k+l)st colour. Clearly 

no 4-cycle in S which does not contain any of the vertices in { w1,2, w2,2, ... , Wq,2} is 

monochromatic. Also, no 4-cycle in C1 or C2 is monochromatic. Any other 4-cycle of 

S has the form ( Wi,b Yb Wi,2, Y2) where i E {1, ... , q} and Yb Y2 E X2 - { oo }, and is 
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not monochromatic since wi 1 and wi 2 have different colours. 
' ' 

Thus no 4-cycle in S is monochromatic, and so we have produced a 

( k + 1 )-chromatic 4-cycle system. D 

Theorem 2.2.4 provides a nice construction of a (k + 1)-chromatic 4-cycle system, 

in essence of double the order of the k-chromatic, uniquely k-colourable system used 

to construct it. Nevertheless, we are unaware of whether a uniquely k-colourable, 

k-chromatic 4-cycle system actually exists for any k ~ 2. Thus, to prove that 

k-chromatic 4-cycle systems do indeed exist, we turn our attention to a different 

approach, which is presented in subsequent sections. 

2.2.1 3-chromatic 4-cycle systems 

In this section, we construct a 3-chromatic 4-cycle system S of order 49. 

We begin our construction by taking six sets Si 

i E {1, 2, ... , 6}, and adding a vertex oo. For each i E {1, 2, ... , 6}, we create the 

following 4-cycles: 

(xs,i, x6,i, xs,i, X7,i), (x3,i, x1,i, x4,i, xs,i)· Note that for each i E {1, ... , 6}, we have 

formed a 4-cycle system of order 9 with vertex set Si U { oo }, with oo being a vertex 

shared by each system. 

To complete the 4-cycle system S, we will define a 4-cycle decomposition of the 

copy of K 8,8 between Si and Si for each pair { i, j} c {1, 2, ... , 6}. We will use the 

following two decompositions, D and D'. The decomposition D, which is illustrated 

in Figure 2.1, has the following 4-cycles: 
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(xl,i, X1,j, X3,i, X3,j), (x2,i, X2,j, X4,i, X4,j), (x5,i, X5,j, X7,i, X7,j), (x6,i, X6,j, Xs,i, Xs,j), 

(x1,i, X2,j, X3,i, X4,j), (x2,i, XI,j, X4,i, X3,j), (x5,i 1 X6,j, X7,i, Xs,j), (x6,i, X5,j 1 Xs,i, X7,j), 

(xl,i, X5,j, X2,i, X6,j), (x3,i, X7,j, X4,i, Xs,j), (x5,i, XI,j, X6,i, X2,j), (x7,i, X3,j, Xs,i, X4,j), 

(x1,i, X7,j, X2,i, Xs,j), (x3,i, X5,j, X4,i, X6,j), (x5,i, X3,j, X6,i, X4,j), (x7,i, XI,j, Xs,i, X2,j)· 

The decomposition D', which is illustrated in Figure 2.2, has the following 4-cycles: 

(xl,i, X1,j, X4,i, X4,j), (x2,i, X2,j, X3,i, X3,j), (x5,i, X5,j, Xs,i, Xs,j), (x6,i, X6,j, X7,i, X7,j), 

(xl,i, X2,j, X4,i, X3,j), (x2,i, XI,j, X3,i, X4,j), (x5,i, X6,j, Xs,i, X7,j), (x6,i, X5,j, X7,i, Xs,j), 

(xl,i, X5,j, X4,i, Xs,j), (x2,i, X6,j, X3,i, X7,j), (x5,i, XI,j, Xs,i, X4,j), (x6,i, X2,j, X7,i, X3,j), 

(xl,i, X6,j, X4,i, X7,j), (x2,i, X5,j, X3,i, Xs,j), (x5,i, X2,j, Xs,i, X3,j), (x6,i, XI,j, X7,i, X4,j). 

Let i, j E {1,2, ... ,6}, i =I j. If {i,j} ~ {1,2,3} or {i,j} ~ {4,5,6}, we put 

decomposition D between Si and Si. Otherwise, we put decomposition D' between 

Si and Si. We have now constructed a 4-cycle systemS of order 49. 

Lemma 2.2.5. The 4-cycle systemS which we have constructed is not 2-colourable. 

Proof. Assume that S is 2-colourable, and assign an arbitrary 2-colouring. For each 

i E {1, 2, ... '6}, let xi = (xl,i, X2,i, X3,i) X4,i) and let Yi = (x5,i, X6,i, X7,i, Xs,i)· Let 

A1 = {Xb X2, X3}, A2 = {Y1, Y2, Y3}, B1 = {X4, X5, X6} and B2 = {Y4, Y5, Y5}. 

Note that each of A1 , A 2 , B1 and B 2 can have at most one 4-tuple coloured 

in either pattern 1*1* or *1*1 (where * is a placeholder for an arbitrary colour); 

otherwise, there would be a monochromatic cycle in D. Also, each can have at most 

one 4-tuple coloured in either pattern 2*2* or *2*2. Since each of A1, A2 , B1 and 

B 2 contains three 4-tuples, it follows that each must contain a 4-tuple coloured with 

none of these patterns. Say Xi1 E A1, Yi2 E A2, Xil E B1 and }'j2 E B2 are each 

coloured with patterns different from those given above. The possible patterns for 

these four 4-tuples are as follows: 1122, 2211, 1221 and 2112. 
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Xl,i X2,i X3,i X4,i X5,i X6,i xs,i 

.0 0, 
I ' 

/ 
/ 

/ 

0 (J 
Xl,j X2,j X3,j X4,j X5,j X6,j X7,j xs,j 

Xl,i X2,i X3,i X4,i X6,i X7,i xs,i 

·o ··o 
Xl,j X2,j X3,j X4,j X5,j X6,j X7,j xs,j 

Xl,i X2,i X3,i X4,i X5,i X7,i xs,i 

0 . 0 .. 

.. 
0 

Xl,j X2,j x 3,j X4,j X5,j X6,j X7,j Xs,j 

Figure 2.1: The decomposition D. 
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X1,i X2,i X3,i X4,i X5,i X6,i X7,i XB,i 

Q J) 

I \ 
I/ 

cf 
' \ 

'o 
Xl,j X2,j X3,j X4,j X5,j X6,j X7,j xs,j 

Xl,i X2,i X3,i X4,i X5,i X6,i X7,i xs,i 

Xl,j X2,j X3,j X4,j X5,j X6,j X7,j xs,j 

Xl,i X2,i X3,i X4,i X5,i X6,i X7,i XB,i 

0 .. 

Xl,j X2,j x 3,j X4,j x 5,j X 6,j X7,j XB,j 

Figure 2.2: The decomposition D'. 
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Consider the effects of colouring Xi1 with either 1122 or 2211. If i1 =I i2, then Si1 

and Si2 have decomposition D between them, which means that having }i2 coloured 

with either 1122 or 2211 would guarantee a monochromatic cycle. If i 1 = i 2 , then 

S contains the 4-cycles ( x1,i1 , xs,i1 , x2,i1 , x6,i1 ) and ( x1,i1 , X7,i1 , x2,i1 , Xs,i1 ), which again 

would guarantee a monchromatic cycle were }i2 coloured by either 1122 or 2211. It 

follows that if Xi1 is not coloured in either of patterns 1221 or 2112, then }i2 must 

be coloured in one of these patterns. 

Hence, at least one of Xi1 and }i2 is coloured in one of the patterns 1221 and 

2112. Let Z1 E {Xill }i2 } be one such 4-tuple. Similarly, at least one of Xh and 0 2 

is coloured in one of the patterns 1221 and 2112. Let Z2 E {Xh, 0 2 } be one such 

4-tuple. Now, the set Si which contains Z1 and the set Si which contains Z2 have 

decomposition D' between them, which implies that there is a monochromatic cycle 

between zl and z2· 0 

Lemma 2.2.6. The 4-cycle systemS which we have constructed is 3-colourable. 

Proof. We exhibit a specific 3-colouring. Give oo colour 1. For each i E {1, 2, ... , 6}, 

we colour the vertices in the set Si as follows. 

Vertex XI,i X2,i X3,i X4,i xs,i X6,i X7,i Xs,i 
Colour 1 1 2 3 1 2 3 3 

It is easy to verify that no 4-cycle in any of the 4-cycle systems that were created 

with vertex set Si U { oo} has a monochromatic cycle. The remaining 4-cycles of S 

occur in the decompositions D and D' placed between sets of the form Si and Si. 

It is also readily verified that neither decomposition between any two sets Si and Si 

yields a monochromatic cycle. 0 
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2.2.2 k-chromatic 4-cycle systems 

In the preceding section, we proved the existence of a 3-chromatic 4-cycle system. We 

now extend this result with the following theorem. 

Theorem 2.2.7. For any integer k ~ 2, there exists a 4-cycle system which 'lS 

k-chromatic. 

For k = 2, it is easily verified that any of the eight pairwise nonisomorphic 4-cycle 

systems of order 9 is 2-chromatic. (For a list of these systems, refer to [19].) The 

results of Section 2.2.1 guarantee the existence of a 3-chromatic 4-cycle system. We 

now consider the case where k ~ 4. 

Given k ~ 4, we wish to construct a 4-cycle system which is not (k-1)-colourable, 

but is k-colourable. Let f. be the least even integer greater than or equal to k, and 

let h be the least multiple of 8 greater than or equal to f. To construct the required 

system, we will take t sets of vertices Si = {x1,i, x2,i , ... , xh,i}, i E {1, 2, ... , t}, where 

the value oft will be determined later. Each set Si will be joined to a common vertex 

oo to form a 4-cycle system of order h + 1. By placing 4-cycle decompositions of 

K h,h between any two distinct sets Si and Si, we will create a 4-cycle system of order 

ht + 1. 

For each i E {1, 2, .. . 't}, let xi = { X!,i, X2,i, ... 'Xe,i} · We will now define 4-cycle 

decompositions of Ke,e to be placed between distinct sets Xi and Xi. We begin by 

forming a decomposition D 1 of Ke,e consisting of the 4-cycles (x2u-l,i, x2v-l,j, x2u,i, x2v,j ), 

1 ~ u, v ~ f/2. Observe that if (x,B,i, x1 ,j, x.s,i, X~;,j) is a cycle in D1 , then so is 

(x,B,j, x,,i, X.s,j, X~;,i)· Hence, in placing decomposition Dl between xi and Xj, the 

order of i and j is irrelevant. 

We will say that a set Xi is coloured with a pattern c1 c2 ... ce if, for each 
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(3 E {1, 2, ... , t'}, Xf3,i has colour c13. Given a colour c, no two sets Xi and Xi with 

D1 between them can both have one of the following colour patterns: cc**** · · · **, 

**CC**** · · · **, ****CC** · · · **, ... , **** · · · **CC. If Xi1 , Xi2 , ••• , Xin pairwise 

have D1 between them, then at most one of them can have one of the t'/2 colouring 

patterns listed above. Let Pc,1 denote this set of t'/2 colouring patterns for the colour 

c. In a (k- 1)-colouring, there are k- 1 such sets: P1,b P2,b ... , Pk-1,1· 

We now form additional 4-cycle decompositions of Ke,e as follows. Let CJ be a 

permutation of {1, 2, ... , t'}. Consider the decomposition 

If this decomposition does not contain the 4-cycle (x1,i, x 1,j, x2,i, x2,j), then we will 

call a an acceptable permutation. The number of permutations of {1, 2, ... , t'} which 

are not acceptable is 2 (~) (t'- 2)!, and so there are t'!- 2 (~) (t'- 2)! = t'(t'- 2)(t'- 2)! 

acceptable permutations. Letting p = t'(t' - 2)(t' - 2)! + 1, denote the accept-

able permutations by a 2 , a3 , ... , CJp, and let the corresponding decompositions be 

D 2 , D3 , ... , Dp, respectively. Note that, for any a E {2, ... ,p}, Da has the property 

also has this property. 

For each a E { 2, ... , p}, and each colour c, let Pc,a be the set of colour patterns 

obtained by applying the permutation CTa to the colour positions of each pattern in 

Pc,l· So Pc,a consists of t'/2 patterns, each of which has two positions that require 

colour c and t'- 2 positions that are unrestricted. Note that whenever Xi and Xi 

have the decomposition Da between them, at most one of Xi and Xj can be coloured 

with a pattern from Pc,a· Also, in a (k - 1)-colouring, there are k - 1 such sets 
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Lemma 2.2.8. For any given i E {1, 2, ... , t}, and any (k- 1)-colouring of Xi, this 

colouring matches a pattern in Pc,o. for some c E {1, ... , k- 1}, a E {1, ... ,p}. 

Proof. Since Xi has f. > k - 1 elements, in any (k - 1)-colouring of Xi, two 

elements must have the same colour. Say Xv1 ,i and Xv2 ,i both have colour c, where 

v1 < v2. If {v1,v2} = {2r -1,2r} for some r E {1, ... ,.ej2}, then the colouring 

matches a pattern in Pc,1. Otherwise, if v1 =I= 2, consider the permutation 0"01 of 

{1, ... , £},where 0"01 (1) = v1, 0"01 (2) = v2, 0"01 (v1) = 1, 0"01 (v2) = 2 and 0"01 (y) = y if 

y E {1, ... , £} \ {1, 2, vb v2}. Then the colouring is in Pc,01 • Next, if v1 = 2 and v2 is 

odd, consider the permutation 0"02 defined by 0"02 (2) = v2 + 1, a02 (v2 + 1) = 2 and 

0"02 (y) = y if y E {1, ... , £} \ {2, v2+ 1 }; the colouring is in Pc,o.2 . Finally, if v1 = 2 and 

v2 is even, consider the permutation 0"03 defined by 0"03 (2) = v2- 1, a 03 (v2- 1) = 2 

and a 03 (y) = y if y E { 1, ... , £} \ { 2, v2 - 1}. Then the colouring is in Pc,o.3 . 0 

Now, let t = kP. We will take t sets si = {x1,i, ... 'Xh,i}, 1 :::; i :::; t, and use 

the p decompositions Db D2 , ... , Dp to form a 4-cycle decomposition of the copy of 

K h,h between each pair of sets Si and Si. We proceed in p steps to form the required 

4-cycle decompositions. 

Step 1. Take k sets 8 1 , 8 2, ... , Sk of vertices, each of size h, and place D1 between 

Xi and Xi, 1 :::; i, j :::; k. Using Sotteau's result (Theorem 2.2.1), form the remaining 

4-cycles in the 4-cycle decomposition of the Kh,h between Si and Si using any 4-cycle 

decompositions of Kh-e,e between Si- Xi and Xj and between Sj- Xj and Xi, and 

any 4-cycle decomposition of Kh-e,h-e between Si- Xi and Si- Xi. Let R 1 denote 

the resulting configuration. 

Step n (2 < n < p). Having previously completed Step (n- 1) to obtain R,_1 , 

we complete Step n as follows. Take k copies of R,_1 , so that we now have kn 
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sets of vertices, with sets s(i-1)kn-1+b s(i-1)kn-1+2' 0 0 
0 ' s(i-1)kn-1+kn-1 = sikn-1 be­

ing in the ith copy of Rn-1 for i = 1, 2, ... , k. The 4-cycle decomposition of Kh,h 

between S(i-1)kn-1+d1 and S(i-1)kn-1+d2, where i E {1, ... ,k}, d11d2 E {1, ... ,kn-1
} 

and d1 =f d2 , is inherited from Rn-1 and therefore makes use of one of the 

decompositions D1, ... , Dn_1 . Place Dn between any pair of sets X(i-1)kn-1+d1 and 

X(j-1)kn-1+d2, where i, j E {1, ... , k} such that i =f j, and db d2 E {1, ... , kn-1}. For 

any pair S(i-1)kn-1+d1 and S(j-1)kn-1+d2, where i,j E {1, ... , k} such that i =f j, and 

d1 , d2 E {1, ... , kn-1 }, complete the 4-cycle decomposition of Kh,h between 

S(i-1)kn-1+d1 and S(j-1)kn-1+d2 using any 4-cycle decomposition of Kh-e,e between 

s(i-1)kn-1+d1-x(i-1)kn-1+d1 and x(j-1)kn-1+d2 and between s(j-1)kn-1+d2-x(j-1)kn-1+d2 

and X(i-1)kn-1+d1, and also by using any 4-cycle decomposition of Kh-i,h-e between 

S(i-1)kn-1+d1 - X(i-1)kn-1+d1 and S(j-1)kn-1+d2 - X(j-1)kn-1+d2· Let Rn denote the 

configuration obtained as the result of Step n. 

Lastly, we add a vertex oo, and for each i E {1, ... , t}, form a 4-cycle 

decomposition of the copy of Kh+1 with vertex set Si U { oo }. We have now 

constructed a 4-cycle system S of order hkP + 1. 

Lemma 2.2.9. The 4-cycle system S which we have constructed is not (k - 1)­

colourable. 

Proof. Assume that S is indeed (k - 1)-colourable, and assign an arbitrary 

( k - 1 )-colouring. 

For each i, j E {1, ... , k} such that i =f j, and for each d1 , d2 E {1, ... , kP-1 }, 

x(i- 1)kP-1+d1 and x(j- 1)kP-1+d2 have decomposition Dp between them. Thus, for any 

given c E {1, ... , k-1}, there can be at most one i E {1, ... , k} such that X(i-1)kv-1+d 

is coloured in a pattern contained in Pc,p for some d E {1, ... , kP-1 }. It follows that 
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there exists an ip E { 1, ... , k} such that for any d E { 1, ... , kP-1 }, the colouring of 

x(ip-1)kP-l+d matches no pattern in Pc,p for any c E {1, 2, ... 'k- 1 }. Without loss of 

generality, it may be assumed that ip = 1. 

Continue in an inductive fashion. Suppose that, for some n E {3, 4, ... ,p}, for 

any d E {1, 2, ... , kn-1
}, the colouring of Xd matches no pattern in Pc,q for any 

c E {1, ... , k- 1}, q E {n, n + 1, ... ,p}. Note that for each i,j E {1, ... , k} such 

that i =J j, and for each d1, d2 E {1, ... , kn-2}, X(i-1)kn-2+d1 and X(j-1)kn-2+d2 have 

decomposition Dn_1 between them. Thus, for any given c E {1, ... , k- 1}, there can 

be at most one i E {1, ... , k} such that X(i-1)kn-2+d is coloured in a pattern in Pc,n- 1 

for some d E {1, ... , kn-2}. It follows that there exists an in_1 E {1, ... , k} such 

that for each d E {1, ... , kn-2}, the colouring of X(in-l-1)kn-2+d matches no pattern 

in Pc,n-1 for any c E {1, ... , k- 1}. Without loss of generality, it may be assumed 

that in_1 = 1. Thus, ford E {1, 2, ... , kn-2}, the colouring of Xd matches no pattern 

in Pc,q for any c E { 1, ... , k - 1}, q E { n - 1, n, ... , p}. 

We continue in this manner, until we have determined that for any d E { 1, ... , k}, 

the colouring of Xd matches no pattern in Pc,q for any c E {1, ... , k - 1}, 

q E {2,3, ... ,p}. Now, for any i,j E {1, ... ,k} such that i =J j, Xi and Xi have 

decomposition D 1 between them. Given c E {1, ... , k- 1}, there can be at most 

one i E {1, 2, ... , k} such that Xi is coloured in a pattern in Pc,1. So there must 

be some i 1 E {1, ... , k} such that the colouring of Xi1 matches no pattern m Pc,1 

for any c E { 1, ... , k - 1}. Hence the ( k - 1 )-colouring of Xi1 is contained in none 

of the pattern sets Pc,q where c E { 1, ... , k - 1}, q E { 1, ... , p}, which contradicts 

Lemma 2.2.8. 0 

Lemma 2.2.10. The 4-cycle systemS which we have constructed is k-colourable. 

Proof. We consider the following cases. 
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Case 1. k is even. 

Colour the vertex oo with colour 1. Given any constituent set Si, colour the 

.e = k vertices of its Xi with a distinct colour so that each of the k colours is used 

exactly once, and colour the vertices of Si- Xi with colours 1, 2, ... , h- .e, so that 

no two elements of Si -Xi have the same colour. Note that for any even k 2: 4, 

h- .e = h- k ~ k, so this colouring can be done using k colours. 

Then no 4-cycle contained within one of the 4-cycle systems with vertex set 

Si U { oo} has a monochromatic cycle for any i E { 1, ... , t}, since no four vertices 

of Si U { oo} all have the same colour. Also, no cycle contained in a copy of Da: 

between Xi and Xi (1 ~ i, j ~ t) is monochromatic, since no two elements of Xi have 

the same colour. Finally, no other 4-cycle in S is monochromatic, since any such cycle 

must contain two elements of Si - Xi for some i E { 1, ... , t}; these two elements do 

not have the same colour. 

So we have given S a k-colouring in which no 4-cycle of S is monochromatic. 

Case 2. k is odd. 

We will revisit the construction of S to k-colour the sets Si. At the end of Step 1, 

we have k sets Si, any two of which have decomposition D1 between them. We 

k-colour the corresponding sets Xi such that all k colours are used in Xi, xl,i and x2,i 

have the same colour, and if i # j, then x1,i and x1,j have different colours. 

At this point, there are no monochromatic cycles involving the cycles in 

decomposition D 1 , since given Xi and Xi, no four vertices in Xi U Xi have the same 

colour. 

Colour the h- .e vertices in each set Si- Xi with colours 2, 3, ... , h- .e + 1 so that 

no two have the same colour. Note that for any odd k 2: 5, h- .e + 1 = h- k ~ k, so 

this colouring is possible using k colours. 
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In the remainder of the construction, when we take a copy of a configuration, we 

give the copy the same colouring as the original. 

All that remains to be coloured is the vertex oo. Give oo colour 1. Note that 

no cycle in a constituent 4-cycle system with vertex set Si U { oo} for some i is 

monochromatic, since no four vertices of Si U { oo} have the same colour. 

Now, consider the cycles between sets Xi and Xi (i.e. the cycles of the 

decompositions Do., a E {1, ... ,p} ). Recall that, after Step 1, no such cycle was 

monochromatic. In the completed cycle system S, any two sets Si and Si with D 1 

between them occur in a single copy of the results of Step 1, which has the same 

colouring as the original, and hence no cycle in a copy of D 1 is monochromatic. If 

two sets Xi and Xi have decomposition Do. between them for some a =/:. 1, then 

there can be no monochromatic cycle between Xi and Xi, as follows. Recalling that 

CJo. is an acceptable permutation, Do. cannot contain the 4-cycle (x1,i, x 1,j, x2,i, x2,j)· 

Choose any 4-cycle in the copy of Do. between Xi and Xi. If x1,i and x2,i are both 

vertices in this cycle, then x 1,j and X2,j cannot both be vertices in this cycle. So the 

two vertices in this cycle contained in Xi do not have the same colour. Otherwise, 

x1,i and x2,i are not both in the cycle, so the two vertices of the cycle contained in Xi 

do not have the same colour. In either case, the cycle is not monochromatic. 

Finally, any remaining cycle in S contains two vertices in Si - Xi for some 

i E { 1, ... , t}; these two vertices do not have the same colour. 

Hence, we have given S a k-colouring in which no 4-cycle of S is monochromatic. 

0 
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2.2.3 Spectra of k-chromatic 4-cycle systems 

In 1982, de Brandes, Phelps and Rodl [17] showed that for any k > 3, there is an 

integer vk such that for any v 2: vk such that v = 1 or 3 (mod 6), there 

is a k-chromatic STS ( v). Let n3 ( k) denote the smallest such vk which is an 

admissible order of a Steiner triple system. Recall from Section 2.1 that n3 (3) = 7 [45], 

19 < n3 ( 4) < 21 [28], 27 :::; n 3 (5) < 127 [23, 24, 25, 30] and 27 :::; n3 (6) :::; 487 

[5, 23, 24, 30]. 

We now consider a similar concept for 4-cycle systems. Let n4 ( k) denote the least 

value wk for which there exists a k-chromatic 4-cycle system of order wk. That there 

exists a k-chromatic 4-cycle system of order n for every admissible n > n4 (k) easily 

follows from Theorem 2.2.7 and repeated application of the following lemma: 

Lemma 2.2.11. If there exists a k-chromatic 4-cycle system of order n, then there 

exists a k-chromatic 4-cycle system of order n + 8. 

Proof. We present an iterative construction similar to one found in [35] , accompanied 

by information about colouring. Let S denote a fixed k-chromatic 4-cycle system of 

order n, and letS have vertex set {y1, y2, ... , Yn}· We add eight vertices x 11 x2, ... , Xg. 

To create a 4-cycle system of order n + 8, we will decompose the copy of Kg with 

vertex set {y11 x1, x2, ... , x8} and the copy of Ks,n-l with bipartition (A, B), where 

A= {xb x2, ... , xs}, B = {y2, y3, ... , Yn}, into 4-cycles. 

First, we form a 4-cycle decomposition of Kg with vertex set {y11 x1, x2, ... , x8} 

by taking the following nine 4-cycles: (Yb xb x2, x3), (Yb x2, xs, x4), (Yb xs, x1, x6), 

(Yb X7, X1, Xg), (xl, X3, X6, X4), (x2, X4, X7, X6), (x2, X7, X3, Xg), (x3, X4, Xg, Xs), 

(x5 , x6, x8 , x7 ). These nine 4-cycles form a 4-cycle system of order 9, which we will 

denote by T. 
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Next, we form the required 4-cycle decomposition of Ks,n-1 as follows. For each 

i E {1, 2, 3, 4}, using Theorem 2.2.1, create a 4-cycle decomposition of K 2,n-1 between 

{x2i-b x2i} and {YI. Y2, ... , Yn}· Combined, these decompositions form a 4-cycle 

decomposition of Ks,n-1· 

We have now formed a 4-cycle system S' of order n + 8. Note that S' contains 

the original system S. Hence, since S is k-chromatic, clearly the chromatic number 

of S' is at least k. To prove that S' is indeed k-chromatic, we will exhibit a specific 

k-colouring of S'. 

First, colour the vertices Yb y2 , ... , Yn, using k colours, such that y1 has colour 

1 and no 4-cycle in S is monochromatic. Next, for i E {1, 2, ... , 8}, colour Xi with 

colour 1 if i is even, and with colour 2 otherwise. Note that none of the nine 4-cycles 

of T is monochromatic, since each contains a pair of vertices Xi and Xj where i and 

j have different parity. Any remaining 4-cycle of S' must contain two vertices x2i_1 

and x2i for some i E {1, 2, 3, 4}; these two vertices are coloured differently. 

So we have given S' a k-colouring in which no 4-cycle of S' is monochromatic, and 

hence S' is k-chromatic. D 

As previously mentioned, each 4-cycle system of order 9 is 2-chromatic, so that 

n 4 (2) = 9. Furthermore, based on the k-chromatic cycle systems for k 2: 3 that we 

have constructed, we have the following bounds: 17 < n 4 (3) < 49, and for k > 4, 

17 < n 4 (k) < hkP + 1, where hand pare as defined in the proof of Theorem 2.2.7. 

We note that the value of p that we have provided could likely be lowered, thereby 

reducing the order of the system constructed, as some of the decompositions 

D 2 , ••• , Dp may have the same set of cycles. The problem of finding the exact value 

of n4 ( k) for k > 3 remains open. 
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2.3 Colouring even cycle systems 

We now consider colourings of even cycle systems in general. In this section, the 

results of Section 2.2.2 will be extended, to prove that for any r > 3 and k > 2, 

there exists a k-chromatic (2r)-cycle system. We will begin, however, by considering 

(2r )-cycle decompositions of the complete bipartite graph K 2r,2r , which will be used 

in later constructions of (2r )-cycle systems. 

2.3.1 Decomposition of K 2r, 2r into (2r)-cycles 

That K 2r ,2r admits a (2r )-cycle decomposition for any integer r > 2 can be 

readily seen from Theorem 2.2.1. In Section 2.3.2, however, we will require a (2r)-cycle 

decomposition which satisfies an additional property, which we will discuss in 

Lemma 2.3.4. We begin by stating some results regarding Hamilton decompositions, 

or decompositions into Hamiltonian cycles, of the complete bipartite graph Kr,r and 

related graphs. 

Theorem 2.3.1. [50) If r ~s a positive even integer, then Kr,r has a Hamilton 

decomposition. 

Theorem 2.3.2. [20) Let r be a positive odd integer. For any !-factor I of Kr,n 

Kr,r- I has a Hamilton decomposition. 

In [7), it is proved in two ways that if r is odd, then for any 2-factor U of Kr,n 

there is a 1-factor F of Kr,r - E(U) such that (Kr,r- E(U)) - F has a Hamilton 

decomposition. The following theorem follows naturally from the second proof. 

Theorem 2.3.3. [7) Let r be a positive odd integer and let G ""' Kr,r be the 

complete bipartite graph with bipartition ( { w1 , w2 , ... , Wr}, {y11 y2 , ... , Yr}). For each 
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edge { wi, Yi}, consider the difference value (j - i) (mod r), and let H denote the set 

of edges of difference 0, 1 orr- 1. Then G- H has a Hamilton decomposition. 

We are now able to find the desired (2r )-cycle decomposition of K 2r,2r for any 

integer r > 2. 

Lemma 2.3.4. Let r > 2 be an integer, and let G rv K 2r,2r be the complete bipartite 

graph with bipartition (W, Y), where W = { w1, w2, ... , w2r} and Y = { Yb Y2, ... , Y2r} . 

Then G has a decomposition into (2r)-cycles with the property that for any cycle C in 

this decomposition, if v (C) n w = { Wii' Wi2' ... ' Wir} where il < i2 < . . . < ir) il ::::; r 

and ir > r, then V(C) n Y =/= {Yip Yh, ... , YiJ· Furthermore, this decomposition 

contains at least one cycle on vertex set { w1 , . . . , Wr, y1 , ... , Yr} and at least one cycle 

on vertex set {wr+l, ... ,W2r,Yr+l, ... ,Y2r}· 

Proof. We begin by noting that the edge set of G consists exactly of the edges of the 

following four copies of Kr,r: the Kr,r between { w1, . .. , Wr} and {Yb ... , Yr} (which 

we will denote by G1), the Kr,r between { Wr+b .. . , W2r} and {Yr+b . .. , Y2r} (which 

we will denote by G2), the Kr,r between { Wr+b ... , W2r} and {Yb . .. , Yr} (which we 

will denote by G3), and the Kr,r between {WI, . .. , Wr} and {Yr+b ... , Y2r} (which we 

will denote by G 4). 

If r is even, then by Theorem 2.3.1, each of Gb G2, G3 and G4 has a 

(2r )-cycle decomposition. Combined, these four (2r )-cycle decompositions form a 

(2r )-cycle decomposition of the K 2r, 2r with bipartition (W, Y), which is easily seen to 

have the desired properties. 

We now suppose r is odd. Let I denote an arbitrary 1-factor of Kr,r· By 

Theorem 2.3.2, G1 -I, G2-I and G3-I each have (2r)-cycle decompositions, and by 

Lemma 2.3.3, G4 - H has a decomposition into (2r)-cycles, where H 
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consists of the edges { wi, Yi} E E(G4 ) such that j- i _ 0, 1, orr -1 (mod r). Thus, 

it need only be proved that the graph G' induced by edges h U I 2 U hUH can be 

decomposed into (2r)-cycles, where Ib hand I3 are 1-factors (to be determined later) 

of G1 , G2 and G3 , respectively, such that for any cycle C in the decomposition of G' , 

We will consider separately the four cases r - 1, 3, 5 or 7 (mod 8); in each 

case, the three cycles which make up the decomposition of G' will be defined. As an 

explanation of the notation used , 'wi : Y/ (similarly, 'yi : wi') indicates that between 

wi and Yi we will use a path consisting of three edges, one each from I 1 , I 2 and h. For 

example, (y4, w2 : y5, w3) denotes a 6-cycle containing the edges {y4, w2}, {Ys, w3}, 

{ w3 , y4 } and three edges (one from each of h, hand h) which form a 3-path between 

w 2 and y5 ; such a 6-cycle is illustrated in Figure 2.3. Since the three edges indicated 

by 'wi: Y/ or 'Yi : wi' constitute the unique 3-path between wi and Yi in G[h UI2UI3], 

they do not need to be explicitly stated. As Kr,r- I has a Hamilton decomposition 

for any 1-factor I, it will follow that the required 1-factors I 1 , I 2 and h exist provided 

each vertex wi (1 < i < r) and Yi (r + 1 < j ::; 2r) is incident with such an edge 

exactly once. 

wl 
0 

0 
Y6 

0 
..- ..- I 

I 
....., I 

...... 

'0 

0 0 

0 0 

Figure 2.3: A 6-cycle represented by (y4, w2 : Ys, w3). 
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Case 1. r 1 (mod 8) 

In the case r = 9, the three 18-cycles (wi, Y10 : w2, Yn : w3, YI2 : w4, YI3 : Wg, Yis), 

(w1, Yn, w3 , YI3 , w5 , YI4 : w6 , Yl5 : W7, Y16, Ws, YI7 :) and (yiO , w2, Y12, w4, Y14, w5, YI6 : 

wa , Yis : w5, YI5, w7 , YI7 , wg) form the required decomposition, so we will hereafter 

assume r ~ 17. Writer= 8s + 1, and consider the following three (2r)-cycles, where 

the use of underbracing in a cycle is intended to clarify the patterns which form the 

cycle. 

/ 

Note that 0 1 has 4(4s) + 2 = 8s + 2 = 2r edges, 0 2 has (4s) + 4(2s) + 2(2s) + 2 = 

8s+2 = 2r edges, and 0 3 has (6s+1)+2+(2s+2)+2+4(2s-3)+7 = 16s+2 = 2r 

edges, as required. 

To see that this decomposition of H has the desired property, note that the 

(2r )-cycle 0 1 contains 4s + 1 vertices of { w~, w2 , ... , Wr} and 4s + 1 vertices of 

{Yr+I, Yr+2 , ... , Y2r }, hence 4s vertices of {y~, Y2, ... , Yr }. The (2r)-cycle 02 

contains 6s vertices of {WI, w2 , ... , Wr} and 2s + 1 of {y1 , ... , Yr}. The (2r )-cycle 0 3 

contains 6s + 1 vertices of {WI , w2 , ... , Wr} and 2s of {y1 , ... , Yr}. Thus, 

choosing 0 E {0~,02,03} , and letting V(O) n {w~, ... ,w2r} = {wipWi2 , ••• ,wir} 
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where i1 < i2 < ··· < ir, it follows that V(C) n {yl,··· , Y2r} =/= {YiuYi2 , ••• ,yiJ, 

since IV(C) n {wl, ... ,wr}l =I= IV(C) n {Yb ... ,yr}l. 

Case 2. r _ 5 (mod 8) 

In the case r = 5, the three 10-cycles (wb Y6 : w2, Y1 : ws, Yw) , (w1, Y1, W3, Ys : 

w4, yg :), (y6, w2, Ys, w4, Yw : w3, yg, w5) form the required decomposition. Now 

suppose that r > 13, and write r = 8s + 5. Consider the following three (2r )-cycles. 

, 

Note that C1 has 4(4s+2)+2 = 16s+10 = 2r edges, C2 has (4s+2)+4(2s+1)+ 

2(2s+1)+2 = 16s+10 = 2r edges, and c3 has (6s+5)+2+(2s+2)+2+4(2s-2)+7 = 

16s + 10 = 2r· edges, as required. 

To see that this decomposition of H has the desired property, note that C1 

contains 4s + 3 vertices of { w1, w2, ... , Wr} but 4s + 2 vertices of {Yb Y2, ... , Yr }, 

C2 contains 6s + 3 vertices of { w1, w2, ... , Wr} but 2s + 2 vertices of {y1, Y2, . .. , Yr} 

and C3 contains 6s+4 vertices of { wb w2, ... , Wr} but 2s+ 1 vertices of {y1, Y2, ... , Yr }. 

Thus, for any c E { cb c2, C3}, IV(C) n {WI, ... ' Wr }I =I= IV(C) n {Yl, ... 'Yr }I , and so 
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if V(O)n{ w1, ... , W2r} = { Wi 1 , ••• , wiJ, it cannot be true that V(O)n{y1, ... , Y2r} = 

{Yip · · · , YiJ · 

Case 3. r 3 (mod 8) 

If r = 3, then the three 6-cycles (w1, YB, W3 : Y4), (w1 : Y6, w2, y5) and 

(y4, w2 : y5, w3) give the required decomposition. We now suppose r > 11, and 

write r = 8s + 3. Consider the following three (2r )-cycles. 

/ 

Note that 0 1 has 4(4s + 1) + 2 = 16s + 6 = 2r edges, 0 2 has (4s + 1) + 4(2s + 1) + 

2(2s) + 1 = 16s + 6 = 2r edges and 0 3 has (6s + 4) + 2 + (2s + 2) + 2 + 4(2s- 1) = 

16s + 6 = 2r edges, as required. 

To see that this decomposition of H has the desired property, note that 01 

contains 4s + 2 vertices of {w1,w2, ... ,wr} but 4s + 1 vertices of {y1,y2, ... ,yr}, 

02 contains 6s + 2 vertices of {w1,w2, ... ,wr} but 2s + 1 vertices of {y1,y2, ... ,Yr } 

and 03 contains 6s+2 vertices of { w1, w2, ... , Wr} but 2s+ 1 vertices of {y1, y2, ... , Yr }. 

Thus, for any 0 E {01, 02, 03}, IV(O) n{wb ... 'Wr }I =J IV(O) n{yb ... 'Yr }I, and so 

ifV(O)n{wl, ... ,w2r} = {wi1 , •. . ,wir}, it cannot be true that V(O)n{yb ... ,Y2r} = 

{Yip···, YiJ· 
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Case 4. r 7 (mod 8) 

If r = 7, then the three 14-cycles (wb Ys : w2, yg : w3, Y10: w7, Y14), (ys, w2, Y10, W4, 

Yn : w5, y12 : w6, y13, W7) and (w11 yg, w3, Yn, w5, y13 : w4, Y12, w6, y14 :) form the 

required decomposition. We now suppose r 2::: 15, and writer= 8s + 7. Consider the 

following three (2r )-cycles. 

Note that C1 has 4(4s+3)+2 = 16s+14 = 2r edges, C2 has (4s+3)+4(2s+2)+ 

2(2s + 1) + 1 = 16s + 14 = 2r edges and c3 has (6s + 6) + 2 + (2s + 4) + 2 + 4(2s) = 

16s + 14 = 2r edges, as required. 

To see that this decomposition of H has the desired property, note that C1 

contains 4s + 4 vertices of { w 11 w2, ... , Wr} but 4s + 3 vertices of {y11 y2, ... , Yr }, 

C2 contains 6s + 5 vertices of { w1, w2, ... , Wr} but 2s + 2 vertices of {y1, y2, ... , Yr} 

and C3 contains 6s+5 vertices of { w11 w2, ... , Wr} but 2s+2 vertices of {y1, y2, ... , Yr }. 

Thus, for any c E {Cb c2, C3}, IV( C) n{wl, ... 'Wr }I =IIV(C) n{yb ... 'Yr }I, and so 

ifV(C)n{wb ... ,w2r} = {wi1 , .•• ,wir}, it cannot be true that V(C)n{y1 , ... ,y2r} = 

{Yiu · · · 'Yir}. D 
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2.3.2 Colouring (2r )-cycle systems 

In this section, we will prove the following generalization of Theorem 2.2. 7 to even 

cycle systems. 

Theorem 2.3.5. For any integers k > 2 and r > 2, there exists a k-chromatic 

(2r )-cycle system. 

In the case k = 2, Milici and Thza have shown that any m-cycle system of order 

2m+ 1 is 2-colourable for any integer m > 4 (40]. Furthermore, in the case r = 2, 

it is proven in Section 2.2 that for any k :::: 2, there is a k-chromatic 4-cycle system. 

We therefore need only consider the case r > 3 and k :::: 3. 

Let k :::: 3 and r :::: 3 be integers. We wish to construct a (2r )-cycle system which 

is k-chromatic. Let f be the least multiple of 2r greater than (r- 1)(k- 1). Write 

f = (r -1)k + s. Note that 2- r < s :S r + 1. Let c; = 2 f~l be the least even integer 

greater than or equal to s, and let h denote the least multiple of 4r greater than or 

equal to f (so h- f E {0, 2r} ). 

To construct a k-chromatic (2r )-cycle system, we will take t sets of vertices 

Si = {xl,i, ... , Xh,i}, i E {1, ... , t}, where the value oft will be determined later. 

Each set Si will be joined to a common vertex oo to form a (2r )-cycle system of order 

h + 1. By also placing (2r)-cycle decompositions of Kh,h between any two distinct 

sets si and sj, we will create a (2r)-cycle systems of order ht + 1. 

For each q E { 0, 1, ... , 2ir - 1}, observe that between the vertices in Wq = 

{x2rq+l,i, X2rq+2,i , ... ) X2rq+2r,d ~ si and Yq = {x2rq+l,j, X2rq+2,j, ... ) X2rq+2r,j} ~ sj 

is an instance rq of K 2r ,2r. rq admits a (2r)-cycle decomposition Dq that satisfies 

the properties given in Lemma 2.3.4 (with Wq and Yq substituted for W and Y, 

respectively, so that Wf3 = x 2rq+f3 ,i and Yf3 = x2rq+f3,j for each f3 E {1, 2, ... , 2r} ). By 
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interchanging vertices X2rq+r,i and X2rq+(r+l),i (i.e. Wr and Wr+I) and vertices X2rq+r,j 

and X2rq+(r+l),j (i.e. Yr and Yr+l) in r q, the decomposition Dq is transformed into 

another (2r )-cycle decomposition D~ of r q· Observe that D~ has no (2r )-cycle 

on vertex set {x2rq+I,i, X2rq+I,j, X2rq+2,i, X2rq+2,j, ... , X2rq+r,i, X2rq+r,j} or on vertex set 

{x2rq+(r+l),i, X2rq+(r+l),j, X2rq+(r+2),i, X2rq+(r+2),j, · · ·, X2rq+2r,i, X2rq+2r,j}· The decompo­

sitions Dq and D~ will be used when we construct decompositions of Ke,e, which will 

subsequently be used in the construction of S. 

For each i E {1, ... 't}, let xi = { XI,i, ... 'Xe,i}· For each i, j E {1, 2, ... 't} 

such that 2 < j, between Xi and Xi is an instance ri,j of Ke,e· Consider the 

(2r )-cycle decomposition vi,j admitted by ri,j which is formed in the following 

manner. For any q E {0, 1, ... , ~-1 }, placeD~ between { X2rq+I,i, X2rq+2,i, ... , X2rq+2r,i} 

and {x2rq+I,j, X2rq+2,j, ... , X2rq+2r,j}· (If ( :::; 0, then {0, 1, . . . , ~ - 1} = 0, so no 

(2r)-cycles are placed in this step.) For any q E {max{O, ~}, . .. , fr - 1}, place 

Dq between {x2rq+l,i, X2rq+2,i, ... 'X2rq+2r,i} and {x2rq+l,j, X2rq+2,j, ... 'X2rq+2r,j}· If 

qi,q2 E {0,1, ... , 2er- 1} where ql # q2, place an arbitrary (2r)-cycle 

decomposition of K2r,2r between {x2rq1 +I,i, ... , X2rq1 +2r,J and {x2rq2 +I,j, ... , X2rq2 +2r,j}· 

Note that for each r-su bset A = { ab ... , ar} ~ { 1, ... , f}, there exists a ( 2r )-cycle 

in Vi,j on vertex set {xa1 ,i,Xa!,j,Xa2 ,i,Xa2 ,j,···,xar,i,xar,j} if and only if A is one of 

the following sets: {2rq + 1, ... , 2rq + (r + 1)} - {2rq + r} where 0 :::; q :::; ~ - 1, 

{2rq + r, ... , 2rq + 2r}- {2rq + (r + 1)} where 0:::; q:::; ~- 1, or {rq + 1, ... , rq + r} 

where max{O, (} < q:::; ~- 1. 

Since the subscripts used on Vi,i correspond naturally to those of Xi and Xi, 

we hereafter omit the subscripts on Vi,j· However, instead of writing V for Vi,j, 

we instead write V 1 (because additional (2r )-cycle decompositions (to be named 

V2 , ••. , Vp) between Xi and Xi will also be introduced). 
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For an integer q > 1 and non-negative integers (}1 , (}2 , ... , (}q such that 

(}1 + (}2 + ... + (}q = e, let cl91 c2(h ... c/q denote the colouring of xi in which vertices 

x1,i, x 2,i, ... , Xo1 ,i have colour c1 , and, for each j E {2, ... , q}, vertices xo1 +02 + ··+9i-I+l,i, 

colouring c1
91cl2 • • • c/q are not necessarily all distinct. We will use the symbol * to 

denote that the colour choice for the corresponding vertex is unrestricted. 

Let c E {1, 2, ... , k- 1}. For a given q E {0, 1, ... , ~- 1}, consider the patterns 

PJ.V = *2rqcr-l*C*e-(2rq+r+l) and PJ.~ = *2rq+r-lc*cr-l*i-(2rq+2r), and for a given 

q E {max{O,c;}, ... ,~ -1}, consider the pattern PJ.~ = *rqcr*e-(rq+r). If Xi and Xj 

have decomposition vl between them, at most one of xi and xj can be coloured in 

a pattern matching PJ.V for a fixed q E {0, 1, ... , ~- 1}, for otherwise there would 

be a monochromatic (2r)-cycle in the decomposition V1 between Xi and Xj· Also, 

at most one of Xi and Xj can be coloured in a pattern matching PJ.~ for a fixed 

q E {0, 1, ... , ~- 1}, and at most one of Xi and Xj can be coloured in a pattern 

matching PJ.~ for a fixed q E {max{O, c;}, ... , ~- 1}, as colouring both Xi and Xj 

both with a colouring matching PJ.~) for some A E {1, 2} and q E {0, 1, ... , ~- 1}, or 

both with a colouring matching PJ.~ for some q E {max{ 0, c;}, . .. , ~ - 1} would result 

in a monochromatic cycle. Let 

P 1 = {P(l) p(2) : 0 < q < ~- 1} U {P(3) : max{O r} < q < ~- 1}. 
c, c,q ' c,q - - 2 c,q ' .., - - r 

Note that IPc,ll = f. 
We now form additional (2r )-cycle decompositions admitted by ri,j f'J Ke,e as 

follows. Let cr be a permutation of { 1, 2, ... , f}, and consider the decomposition 
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We will say that a is acceptable if its corresponding decomposition a(V1 ) contains 

no (2r)-cycle on vertex set {xrq+l,i, Xrq+l,j, Xrq+2,i, Xrq+2,j, ... , Xrq+r,i, Xrq+r,j} for any 

q E {0, 1, ... , <;- 1}. Supposing there are p acceptable permutations, denote them 

by a11 a 2 , ... , ap (where a 1 is the identity permutation), and let the decompositions 

corresponding to a2, ... , ap be 'D2 , ... , 'Dp, respectively, so that 'D0 = a0 ('D1 ) for 

each o E {2, ... ,p}. 

For each a E {2, ... ,p} and each colour c E {1, 2, ... , k- 1}, let Pc,a denote the 

set of colour patterns obtained by applying the permutation a 0 to the colour positions 

in each pattern in Pc,l· Note that, for any given pattern Pin Pc,a, if Xi and Xi have 

decomposition 'Da between them, then at most one of Xi and Xi can be coloured in 

a pattern that satisfies P; otherwise there would be a monochromatic cycle between 

Xi and Xi. Note that Xi and Xi might each be coloured in a pattern matching some 

pattern in Pc,a, but the colouring of Xi and that of Xi do not match the same pattern 

in Pc a· , 

Lemma 2.3.6. Let {a1,a2, ... ,ar} ~ {1,2, ... ,.€}, where a1 < a2 < ··· < ar, such 

that {a11 a2, ... , ar} =I {rq + 1, rq + 2, ... , rq + r} for any q E {0, 1, ... , <;- 1}. Then 

for any colour c E { 1, 2, ... , k - 1}, the colouring pattern 

is in Pc,a for some a E {1, 2, ... ,p}. 

Proof. Note that if <; < 0, then any permutation of {1, 2, ... , .€} is acceptable. In 

this case, let a a be a permutation of {1, 2, ... , .€} such that a a( {1, 2, ... , r}) 

{ a1, a2, ... , ar }. The colouring P is in Pc,a· 

We now assume that c; > 0. For each q E {0, 1, ... , ~ - 1}, let Aq = 

{2rq+ 1, ... , 2rq+ (r+ 1)}- {2rq+r} and let Bq = {2rq+r, ... , 2rq+2r}- {2rq+ (r+ 1)}. 

35 



If {a1,a2, ... ,ar} = Aq or {a1,a2, ... ,ar} = Bq for some q E {0,1, ... ,~ -1}, then 

the colouring P is in Pc,l· 

Otherwise, let M = max {IAq n {ab···,ar}I,IBq n {al, ... ,ar}l}. Let 
o::;q::;,;2-l 

R E {Aq, Bq 0 ~ q ~ ~ - 1} such that IR n {a1, ... , ar }I M. Suppose 

and let b1, b2, ... , br-M E R- {ai1 , ••. , aiM} such that b1 < b2 < · · · < br-M· 

We now define three permutations acq, aa2 and aa3 of {1, 2, ... , £}. It will be 

shown that for some a E { a 1 , a 2 , a 3 }, a a is acceptable and the colouring P is in 

Pc,a· Define aa 1 by aa1 (aj6 ) = ba and aa1 (ba) = aj6 for each 0 E {1, 2, ... , r- M}, 

and aa1 (y) = y for any y E {1,2, ... ,£}- {ai 1 ,ai2 , ••• ,air-M,bbb2, ... ,br-M}· Also, 

if M < r- 1, define aa2 by aa2 (a]I) = br-M, aa2 (bl) = aJr-M' aa2 (aJr-M) = b1, 

aa2 (br-M) = a)I, aa2 (aj6 ) = ba and aa2 (ba) = aj6 if 0 E {2, ... ,r- M- 1}, and 

aa2 (y) = y for any y E {1, ... ,£}- {ajpa)2, ... ,aJr-M,bbb2,···,br-M}· Finally, 

if M = 0, define aa3 by aa3 (0) = a0 and aa3 (a0 ) = 0 if 0 E {1,2, ... ,r- 1}, 

aa3 (r + 1) = ar, aa3 (ar) = r + 1, and aa3 (y) = y for any y E {1, 2, ... ,£}­

({1,2, ... ,r-1,r+1}U{a1,a2,···,ar}). Note that since<;> 0, if M = 0, then 

a0 ~ a1 > 2r ~ r + 1 for any o E {1, ... , r }, and it follows that aa3 is well-defined. 

Now, suppose M = r - 1. If a a 1 is not acceptable, then for some 

q E {0, 1, ... , ~-1}, either a]I = 2rq+r and b1 = 2rq+(r+1) (so that {aip ... , air_J = 

{2rq + 1, 2rq + 2, ... , 2rq + (r- 1)} ), or else a]I = 2rq + (r + 1) and b1 = 2rq + r 

(so that { aip ... , air-l} = {2rq + (r + 2), 2rq + (r + 3), ... , 2rq + 2r} ). In either case, 

{a1, a2, ... , ar} = {rq + 1, rq + 2, ... , rq + r} for some q E {0, 1, ... , <;- 1}, which is 

a contradiction to the hypothesis of the lemma. So aa 1 is acceptable. Furthermore, 

there exists a colouring pattern Q E Pc,l such that position z of Q has symbol c if 
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and only if z E R. Since O"a1 (R) = {all ... , ar }, then O"a 1 maps those positions of Q 

that contain c onto the positions of P that contain c, and hence P E Pc,a1 • 

Next, suppose 1 < M < r- 1 and that, for some q E {0, 1, ... , ~ - 1}, both 

br-M = 2rq + (r + 1) and aJr-M = 2rq + r, or both b1 = 2rq + r and 

ah = 2rq + (r + 1). Consider the permutation O"a2 • The definition of this 

permutation ensures that for this q, O"a2 (2rq+r) =/:- 2rq+(r+1) and O"a2 (2rq+(r+1)) =/:-

2rq + r. We first suppose br-M = 2rq + (r + 1) and aJr-M = 2rq + r for some 

q E {0, 1, ... , ~- 1}, and assume that O"a2 is not acceptable. We note that R = Aq 

and aj
5 

:::; 2rq whenever 1 :::; 6 :::; r-M -1. If the (2r )-cycle decomposition O"a2 ('D1 ) has 

a (2r)-cycle On vertex set {X2rq+l,i, X2rq+l,j, X2rq+2,i, X2rq+2,j, ... , X2rq+r,i, X2rq+r,j}, then 

since O"a2 fixes some element of {2rq + 1, ... , 2rq + (r - 1)} (because 

M ~ 2), it must be that O"a2 maps 2rq + (r + 1) into {2rq + 1, ... , 2rq + r }, 

necessitating O"a2 (2rq + (r + 1)) = 2rq + r, which is a contradiction. If O"a2 ('D1 ) has 

a (2r )-cycle On { X2rq+(r+l),i, X2rq+(r+l),j, X2rq+(r+2),i, X2rq+(r+2),j, · · · , X2rq+2r,i, X2rq+2r,j}, 

then since O"a2 fixes each element of {2rq + (r + 2), ... , 2rq + 2r }, it must be that 

O"a2 maps 2rq + r to 2rq + (r + 1), which is a contradiction. The permutation 

O"a2 fixes 6 whenever 6 > 2rq + 2r, and so O"a2 ('Dl), like 'D1, has no (2r)-cycle on 

any of the sets { Xrq+l,i, Xrq+l,j, Xrq+2,i, Xrq+2,j . .. , Xrq+r,i, Xrq+r,j} for any 

ij E {2q + 2, ... ,~ -1}. So, for some q E {0, ... , 2q -1}, O"a2 ('D1 ) must contain a (2r)-

cycle Con vertex set {xrq+l,i, Xrq+l,j, Xrq+2,i, Xrq+2,j, ... , Xrq+r,i, Xrq+r,j}· Necessarily, 

there exists an element ¢ E {1, ... , r - M} such that ajq, E {rq + 1, ... , rq + r }. 

Moreover, {rq + 1, ... , rq + r} contains at least one element, J, which is fixed 

by O" a 2 • Since 0";;
2
1 = O" a 2 , O" a 2 (C) is a ( 2r )-cycle of 'D1 such that O" a 2 (C) con­

tains both x f,i and Xua
2

(aiq,) ,i = Xb,p,i for some 'ljJ E {1, ... , r - M}, which is a 

contradiction because 'D1 has no (2r )-cycle containing both vertices x f,i and Xb,p,i 
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(since f E {rq + 1, ... , rq + r }, and either bl/J E {r(2q) + 1, ... , r(2q) + r} or else 

bl/J = 2rq + (r + 1) E {r(2q + 1) + 1, ... , r(2q + 1) + r} ). Hence <7a2 is acceptable. 

In the case that b1 = 2rq+r and aj1 = 2rq+ (r+ 1) for some q E {0, 1, ... , ~ -1}, 

we note that R = Bq and aj6 2: 2rq + 2r whenever 2 ~ 8 ~ r- M; that <7a2 is 

acceptable may be shown in a similar manner to the case that br-M = 2rq + (r + 1) 

and ajr-M = 2rq + r. Now, in either of these cases, there exists a colouring pattern 

Q E Pc,l such that position z of Q has symbol c if and only if z E R. Since <7a2 (R) = 

{ a 1 , ... , ar}, then <J a 2 maps those positions of Q that contain c onto the positions of 

P that contain c, and hence P E Pc,a2 • 

We next suppose that 1 < M < r- 1, and that for all q E {0, 1, .. . , ~- 1}, 

it is not true that both br-M 2rq + (r + 1) and ajr-M = 2rq + r, and it is 

not true that both b1 - 2rq + r and ail 2rq + ( r + 1). Let 

q E {0, 1, ... , ~ -1} such that R E {Aq, Bq}· We note that <7a1 (2rq+r) =/= 2rq+ (r+ 1) 

and <7a1 (2rq + (r + 1)) =/= 2rq + r (as this would imply that both aj1 = 2qr + r and 

b1 = 2qr + (r + 1) or both ajr-M = 2rq + (r + 1) and br-M = 2rq + r, either of 

which yields that M = 1). Assume that the permutation <7a1 is not acceptable. 

We first consider the case that R = Aq. If the (2r)-cycle decomposition <7a1 (1:\) 

has a (2r)-cycle On vertex set {x2rq+l,i, X2rq+l,j, X2rq+2,i, X2rq+2,j, ... , X2rq+r,i, X2rq+r,j}, 

then since <7a1 fixes some element of {2rq + 1, ... , 2rq + (r- 1)} (because M 2: 2), 

it must be that <7a1 maps 2rq + (r + 1) into {2rq + 1, ... , 2rq + r }, necessitating 

<7a1 (2rq + (r + 1)) = 2rq + r, which is a contradiction. If <7aJD1 ) has a (2r)-cycle 

On {X2rq+(r+l),i, X2rq+(r+l),j, X2rq+(r+2),i, X2rq+(r+2),j, · · ·, X2rq+2r,i, X2rq+2r,j}, then Since 

<7a1 fixes some element of {2rq + (r + 2), ... , 2rq + 2r }, it must be that <7a1 maps 

2rq + r into {2rq + (r + 1), ... , 2rq + 2r }, necessitating <7a1 (2rq + r) = 2rq + (r + 1), 

which is a contradiction. So, for some q E {0, 1, ... , 2q- 1} U {2q + 2, ... , <;- 1 }, 
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Necessarily, there exists an element¢ E {1, ... , r-M} such that ajq, E {rq+l, ... , rq+r }. 

Moreover, {rq + 1, ... , rq + r} contains at least one element, J, fixed by 0"01 • Since 

0";;
1
1 = 0"01 , 0"01 (0) is a (2r)-cycle of V1 which contains Xf,i and Xu011 (a;q,),i = Xb..p,i 

for some '1/J E {1, ... , r - M}, which is a contradiction, because V1 has no (2r)­

cycle containing both vertices x f,i and Xb..p ,i (since f E { rq + 1, ... , rq + r}, and either 

bVJ E {r(2q) + 1, ... , r(2q) +r} or bVJ = 2rq+ (r+ 1) E {r(2q+ 1) + 1, ... , r(2q+ 1) +r} ). 

Hence 0"01 is acceptable. In the case that R = Bq, that 0"01 is acceptable may be shown 

in a similar manner. Now, in either case, there exists a colouring pattern Q E Pc,l such 

that position z of Q has symbol c if and only if z E R. Since 0"01 (R) = { a1, ... , ar }, 

then 0"01 maps those positions of Q which contain symbol c onto the positions of P 

that contain c, and hence P E Pc,a1 • 

Now, suppose that M = 1 and that, for some q E {0, 1, ... , ~- 1}, both br-M = 

2rq + (r + 1) and air-M = 2rq + r, or both b1 = 2rq + r and aj1 = 2rq + (r + 1). 

Consider the permutation 0"02 . The definition of this permutation ensures that for 

this q, 0"02 (2rq + r) =I 2rq + (r + 1) and 0"02 (2rq + (r + 1)) =I 2rq + r. We first 

suppose that br-M = 2rq + (r + 1) and air-M = 2rq + r for some q E {0, ... , ~- 1}. 

We note that R = Aq and aj6 < 2rq whenever 1 < 6 ::; r - M - 1. 

Furthermore, since br-M = 2rq + (r + 1) is not fixed by 0"02 , 0"02 fixes an element of 

R- {2rq + (r + 1)} = {2rq + 1, ... , 2rq + (r- 1)}. That 0"02 is acceptable is similar 

to the case that 1 < M < r- 1, br-M = 2rq + (r + 1) and air-M = 2rq + r. If 

b1 = 2rq +rand ail = 2rq + (r + 1), 0"02 is similarly acceptable. In either case, there 

exists a colouring pattern Q E Pc,l such that position z of Q has symbol c if and 

only if z E R. Since O" 02 ( R) = { a1 , ... , ar}, then O" 02 maps those positions of Q which 

contain symbol c onto the positions of P that contain c, and hence P E Pc,a2 • 
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Next, suppose M = 1 and for each q E {0, 1, ... , ~- 1}, it is not true that both 

br-M = 2rq + (r + 1) and air-M = 2rq + r, and it is not true that both b1 = 2rq + r 

and aj1 = 2rq + (r + 1). Let q E {0, 1, ... , ~- 1} such that R E {Aq, Bq}· We note 

that o-01 (2rq + r) =/: 2rq + (r + 1) and 0"01 (2rq + (r + 1)) = 2rq + r. First, consider 

the case that R = Aq. Assume that the permutation 0"01 is not acceptable. 

As the first of three subcases, suppose that o-01 (V1) has a (2r)-cycle on vertex 

set {X2rq+l,i, X2rq+l,j, X2rq+2,i, X2rq+2,j, ... , X2rq+r,i, X2rq+r,j}· If 0"01 fixes some element 

of {2rq + 1, ... , 2rq + (r- 1)}, then it must be that 0"01 maps 2rq + (r + 1) into 

{2rq + 1, ... ,2rq + r}, necessitating 0"01 (2rq + (r + 1)) = 2rq + r, which is a 

contradiction. If o-01 fixes no element of {2rq + 1, ... , 2rq + (r - 1)}, then 

2rq + (r + 1) must be fixed by 0"01 , and we must have ai1 = 2rq + (r + 1). 

Furthermore, 2rq+r cannot be mapped into {2rq+1, ... , 2rq+(r-1)} since this would 

imply that a-;;
1

1 ( 2rq + r) E { 2rq + 1, ... , 2rq + ( r- 1)}, which would mean that a-01 ( V 1 ) 

COUld have no (2r)-cycle on {X2rq+l,i, X2rq+l,j, X2rq+2,i, X2rq+2,j, . .. , X2rq+r,i, X2rq+r,j} (as 

'D1 contains no (2r)-cycle On vertex set {XJ.L1 ,i, XJ.L 1 ,j, XJ.L 2 ,i, XJ.L2 ,j, ... , XJ.Lr,i' XJ.Lr,j} where 

2qr + r, o--1 (2qr + r) E {J.L1 , ... , J.Lr} in such a case). Thus, 2rq + r must be fixed by 

o-01 , and it must be that 0"01 ( {2rq+ (r+2), ... , 2rq+2r}) = {2rq+ 1, ... , 2rq+(r-1)} 

and hence that {a11 ... , ar} = {2rq + (r + 1), 2rq + (r + 2), ... , 2rq + 2r }, which is a 

contradiction to the hypothesis of the lemma. 

Now suppose that the (2r)-cycle decomposition o-01 (V1 ) has a (2r)-cycle on vertex 

set {x2rq+(r+l),i, X2rq+(r+l),j, X2rq+(r+2),i, X2rq+(r+2),j, · · ·, X2rq+2r,i, X2rq+2r,j}· If O"a1 fixes 

some element of {2rq + (r + 2), ... , 2rq + 2r }, it must be that o-01 maps 2rq + r 

into {2rq + (r + 1), ... , 2rq + 2r }, necessitating 0"01 (2rq + r) = 2rq + (r + 1), which 

is a contradiction. If 0"01 fixes no element of {2rq + (r + 2), ... , 2rq + 2r }, then 

2rq + r must be fixed by 0"01 , and it must be that {2rq + (r + 2), ... , 2rq + 2r} = 
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Furthermore, 2rq + ( r + 1) cannot be mapped into 

{2rq + (r + 2), ... , 2rq + 2r} since this would imply that 0';;
1
1(2rq + (r + 1)) E 

{2rq+ (r+2), ... , 2rq+2r }, which would mean that 0'01 ('D1) could have no (2r)-cycle 

ai 1 = 2rq + (r + 1), and hence that { a1 , ... , ar} = {2rq + (r + 1), ... , 2rq + 2r }, 

which is a contradiction to the hypothesis of the lemma. 

So it must be true that for some ij E {0, ... , 2q- 1} U {2q + 2, ... , (- 1}, 

Necessarily, there exists an element ¢ E {1, ... , r - 1} such that 

aj., E { rij + 1, ... , rij + r}. Moreover, { rij + 1, ... , rij + r} contains at least one 

element, f, which is fixed by 0' 01 . Since 0';;
1

1 = 0' op 0' 01 (C) is a (2r )-cycle of 'D1 

which contains both x f,i and Xu
01 

(aiq, ),i = Xb"' ,i for some '1/J E { 1, ... , r - 1}, which 

is a contradiction because 'D1 has no (2r )-cycle containing both vertices x f,i and 

xb"',i (since f E {rij + 1, ... , rij + r }, and either bl/J E {r(2q) + 1, .. . , r(2q) + r} or 

bl/J = 2rq + (r + 1) E {r(2q + 1) + 1, ... , r(2q + 1) + r} ). Hence 0'01 is acceptable. 

In the case that R = Bq, that 0'01 is acceptable may be shown in a similar manner. 

In either case, there exists a colouring pattern Q E Pc,l such that position z of Q 

has symbol c if and only if z E R. Since 0' 01 ( R) = {all ... , ar}, then 0' 01 maps those 

positions of Q which contain symbol c onto the positions of P that contain c, and 

hence P E Pc,o1 • 

Finally, suppose M = 0, and consider the permutation 0'03 • Note that 0'03 

fixes 0 whenever 2r + 1 < 0 < (r, and so 0'03 ('D1), like 'Db contains no (2r)-cycle 

on vertex set for any 

ij E { 2, 3, ... , ( - 1}. Furthermore, V 03 contains no ( 2r )-cycle on vertex set 

{xr+l,i, Xr+l,j, Xr+2,i, Xr+2,j, ... , X2r,i, X2r,j} (since V1 has no (2r)-cycle on vertex set 
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{Xar,i' Xar,j, Xr+2,i, Xr+2,j, Xr+3,i, Xr+3,j, ... , X2r,i, X2r,j} ), and no (2r)-cycle on vertex set 

{x1,i, x1,j, x 2,i, x2,j, ... , Xr,i, Xr,j} (since V1 has no (2r)-cycle on vertex set 

Thus, CJa:3 is acceptable. 

Consider the pattern Q = cr-l*C*£-(r+l) E Pc,l· The permutation CJa:
3 

maps those 

positions of Q which contain symbol c onto the positions of P that contain c, and 

hence P E Pc,a:3 • D 

Lemma 2.3.7. Let i E {1, 2, ... , t}. Any (k- !)-colouring of Xi matches a pattern 

in Pc,a: for some c E {1, 2, ... , k- 1}, a E {1, 2, ... ,p}. 

Proof. Consider a fixed (k- I)-colouring of Xi. As a consequence of Lemma 2.3.6, 

it need only be shown that r vertices Xa1 ,i, Xa 2 ,i, ... , Xar,i have the same colour, where 

{a1 , a2, ... , ar} =I {rq + 1, rq + 2, ... , rq + r} for each q E {0, 1, ... , ~- 1}. 

Since f > (r- l)(k- 1), in any (k- I)-colouring of Xi, there must be at least r 

vertices of the same colour. As a first case, suppose that for some c E { 1, 2, ... , k- 1}, 

there are r + 1 vertices, say Xa1 ,i, Xa 2 ,i, . .. , Xar+ 1 ,i, which all have colour c. If, for each 

q E {0, 1, ... ,~-1}, {a1,a2, . . . ,ar} =I {rq+ l,rq+2, ... ,rq+r}, then we are done. 

If, on the other hand, {a1 , ... , ar} = {rq+ 1, ... , rq+r} for some q E {0, 1, ... , ~-1}, 

then {a1, a2, ... , ar-l, ar+l} =I {rq + 1, ... , rq + r} for each q E {0, 1, ... , ~- 1}. 

Next, suppose that no r + 1 vertices all have the same colour. Considering 

the case ~ ::::; 0, let vertices Xa 1 ,i, Xa2 ,i, . .. , Xar,i all have the same colour. Since 

~ ::::; 0, Lemma 2.3.6 is satisfied vacuously. In the case that ~ > 0, we note that 

f = (r- l)(k- 1) + (r- 1 + s ), so there are at least r -1 + s disjoint sets of r vertices 

of the same colour. But I { {rq + 1, ... , rq + r} : 0 ::::; q ::::; ~- 1} I = ~ < r- 1 + s, 

so since r 2: 3, there must exist r vertices Xa 1 ,i, Xa2 ,i, . .. , Xar,i of the same colour such 

that for any q E {0, 1, ... , ~- 1}, {a1, ... , ar} =I {rq + 1, rq + 2, ... , rq + r }. D 
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Now lett= (~(k- 1) + 1)P. We will take t sets 8i, i E {1, 2, ... , t}, and use the p 

decompositions Db V 2 , •.• , VP to place a (2r)-cycle decomposition of Kh,h between 

each pair of sets 8i and 8i. We proceed in p steps to form the required (2r)-cycle 

decompositions. 

Step 1. We take 'Y = ~(k-1) + 1 sets 8 1 , 8 2 , ... , 8-y- For any 1 < i < j :::; ,, place V1 

between Xi and Xi. If h > f, complete the decomposition of the Kh,h between 8i and 

8i by using any (2r )-cycle decomposition of K 2r,2r between 8i - Xi and 8i - Xi and 

any (2r)-cycle decomposition of K 2r,e between Xi and 8i- Xi and between Xi and 

8i- Xi. (Such decompositions exist by Theorem 2.2.1.) Let R1 denote the resulting 

configuration. 

Step n (2 < n < p) . Suppose we have completed Step (n- 1). We now take 

'Y copies of Rn-1 , so that we now have 'Yn sets of vertices, with sets 8(i-1)1n-1+1, 

8(i-1)1n-1+2, ... , 8(i-1)1n-1+-yn-1 being in the ith copy of Rn-b i E {1, 2, ... , 'Y }. 

The (2r)-cycle decomposition of Kh,h between 8(i-1hn-1+d1 and 8(i-1)1n-1+d2 , where 

i E {1,2, ... ,,}, d 1,d2 E {1,2, .. . ,,n-1} and d1 -=/= d2, is inherited from Rn-1 and 

therefore makes use of one of the decompositions V 1 , V2, ... , Dn_ 1 . Place Dn 

between any pair of sets X(i-1)1n-1+d1 and X(j-1)1n-1+d2 , where i, j E {1, 2, . .. , 'Y} such 

that i < j and db d2 E {1, 2, ... , 'Yn- 1 
}. If h > f, then for any pair 8(i-1)1n-1+d1 and 

8(j-1)1n-1+d2 where i,j E {1,2, ... ,,} such that i-=/= j and dbd2 E {1,2, . .. ,,n-1}, 

complete the (2r)-cycle decomposition of Kh,h between 8(i-1)1n-1+d1 and 8u-1hn-1+d2 

using any (2r)-cycle decomposition of K2r,2r between 8(i-1)1n-1+d1 - X(i-1)1n-l+d1 

and 8u_1hn-l+d2 - Xu_1hn-l+d2 , and any (2r )-cycle decomposition of K 2r,e between 

8(i-1hn-l+d1 -X(i-1hn-l+d1 and Xu-1hn-l+d2 and between 8u-1hn-l+d2 -X(j-1)1n-l+d2 

and x(i-1)1n-l+dl· 
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After completing Step p, we now have t sets Si, i E {1, 2, ... , t}, and for any 

1 :::; i < j :::; t, the copy of Kh,h between Si and Sj has been given a (2r )-cycle 

decomposition. Finally, to complete the (2r)-cycle system, for any i E {1, 2, ... , t}, 

we place on { oo} U Si any (2r )-cycle system of order h + 1. (Such a system exists 

by [34, 44].) 

Lemma 2.3.8. The (2r)-cycle system S which we have constructed is not 

(k- 1)-colourable. 

Proof. Assume that Sis (k -1)-colourable, and assign an arbitrary (k -1)-colouring. 

For each i, j E {1, ... , r} such that i < j, and for each db d2 E {1, 2, ... , .,P-1 }, 

x(i-1)-yP-l+dl and x(j-1)-yP-l+d2 have decomposition Vp between them. Thus, for 

any given colour c E {1, 2, ... , k- 1}, and any given pattern P in Pc,p, there is 

at most one i E {1, ... , r} such that the colouring of X(i-1)-yP-l+d matches P for some 

dE {1, 2, ... , ,P-
1 
}. It follows, since r = IPc,pi(k- 1) + 1 for each c E {1, ... , k- 1}, 

that there exists an ip E {1, 2, ... , r} such that for every d E {1, 2, ... , .,P-1 }, the 

colouring of x(ip-1)-yP-l+d matches no pattern in Pc,p for any c E {1, 2, ... 'k- 1}. 

Without loss of generality, it may be assumed that ip = 1. 

Continue in an inductive fashion. Suppose that, for some n E {3,4, ... ,p}, we 

have determined that for any d E { 1, 2, ... , ,n-1}, the colouring of X d matches 

no pattern in Pc,q for any c E {1,2, ... ,k -1}, q E {n,n+ 1, ... ,p}. Note that 

for each i,j E {1,2, ... ,f'} such that i < j, and any d1,d2 E {1,2, ... ,,n-2}, 

X(i-1)1n-2+d1 and Xu-1hn-2+d2 have decomposition Vn- 1 between them. Thus, for 

any given colour c E {1, ... , k - 1} and any given pattern P in Pc,n-1 , there is at 

most one i E {1, ... , r} such that the colouring of X(i-1)1n-2+d matches P for some 

d E {1, 2, ... , .,n-2}. It follows that there exists an in_1 E {1, 2, ... , r} such that 

for every dE {1, 2, ... , .,n-2}, the colouring of X(in_ 1 _ 1)-yn-2+d matches no pattern in 
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Pc,n- 1 for any c E {1, 2, ... , k - 1}, and hence no pattern in Pc,q for any 

c E {1, 2, ... , k- 1}, q E {n- 1, n, n + 1, ... ,p}. Without loss of generality, it 

may be assumed that in-1 = 1. 

We continue until we have determined that for any d E { 1, 2, ... , r}, the colouring 

of Xd matches no pattern in Pc,q for any c E {1, 2, ... , k- 1}, q E {2, 3, ... ,p}. Note 

that for each i, j E {1, 2, ... , r} such that i < j, Xi and Xi have decomposition 

V 1 between them. Thus, for any given colour c E {1, 2, ... , k - 1} and any given 

pattern P in Pc,1 , there is at most one i E {1, ... , r} such that the colouring of Xi 

matches the pattern P. It follows that there exists an i 1 E { 1, 2, ... , r} such that 

the colouring of Xi1 matches no pattern in Pc,1 for any colour c E {1, 2, ... , k- 1}, 

and hence no pattern in Pc,q for any c E {1, 2, ... , k- 1}, q E {1, 2, ... ,p}, which 

contradicts Lemma 2.3. 7. D 

Lemma 2.3.9. The (2r)-cycle systemS which we have constructed is k-colourable. 

Proof. We consider the following cases. 

Case 1. s < 0. 

Give oo colour 1. For each i E {1, 2, ... , t}, give vertices x1,i, x2,i, ... , Xr-1,i colour 

1. Note that e- (r- 1) = (r- 1)k + s- (r- 1) < (r- 1)(k- 1), so thee- (r- 1) 

vertices Xr,i, Xr+1,i, ... , Xt,i may be coloured with colours 2, 3, ... , k such that no r of 

them have the same colour. Finally, if h > f, give vertices Xf+ 1,i and Xf+ 2,i colour 

1, and colour the remaining vertices Xf+ 3,i, Xt+4,i' ... , xh,i with colours 2 and 3, each 

used exactly ( r - 1) times. 

Note that for each i E {1, 2, ... , t}, no (2r) vertices in Si U {oo} have the same 

colour, as r > 3 and there are at most r + 2 vertices of colour 1, at most 2r- 2 vertices 

of colour 2, at most 2r - 2 vertices of colour 3 and at most r - 1 vertices of any other 
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colour. Thus, no ( 2r )-cycle in the ( 2r )-cycle system on Si U { oo} has a monochromatic 

cycle. Let i,j E {1, 2, ... , t}, i < j. Nor vertices in Xi have the same colour, so no 

(2r)-cycle in the decomposition Vex between Xi and Xi is monochromatic. If h > f, 

then no (2r )-cycle of the (2r )-cycle decomposition between xi and sj - xj' the 

(2r )-cycle decomposition between xj and si - xi or the (2r )-cycle decomposition 

between si - xi and sj - xj is monochromatic, as no r vertices in si - xi have the 

same colour, and nor vertices in Si- Xi have the same colour. Thus no (2r)-cycle 

in S is monochromatic. 

Case 2. s > 0. 

We note that if k ::; r, then k must be even; otherwise, if k ::; r and k is odd, then 

3::; k::; r implies r(k-1)-2r < r(k-1)+(1-r)::; r(k-1)+(1-k) = (r-1)(k-1)::; 

r(k-1)-2 < r(k-1) and so f = r(k-1) and s = k-r::; 0. Furthermore, if 3::; k::; r, 

we have that rk-2r < rk-2r+1::; rk-r-k+1 = (r-1)(k-1)::; rk-r-2 < rk, 

and so f = rk and s = k. Also, if k > r, then k 2: r + 1 2: s. So, in any event, we 

have k 2: s. 

For each i E {1, 2, ... , t}, we colour the vertices of Si in the following way. For 

each q E {0, 1, ... , s -1 }, colour vertices Xrq+l,i, Xrq+2,i, ... , Xrq+r,i with colour (q+ 1). 

Colour the remaining (k- s)(r- 1) vertices of Xi with colours s + 1, s + 2, ... , k 

such that each colour is assigned to exactly (r - 1) vertices. If h > f, give vertices 

Xf+I,i and X£+2,i colour 1, and colour the remaining vertices X£+3,i, xe+4,i, ... , xh,i with 

colours 2 and 3, each used exactly (r- 1) times. 

Let i,j E {1, 2, ... , t}, i < j. The existence of a monochromatic (2r)-cycle in the 

decomposition Vex of the Ke,e between Xi and Xi would imply that Vex contains a 

(2r )-cycle on the vertex set { Xrq+I,i, Xrq+I,j, Xrq+2,i, Xrq+2,j, . .. , Xrq+r,i, Xrq+r,j} for some 

q E {0, 1, ... , s- 1}, which would contradict that the permutation aex is acceptable. 
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If h > .e, no (2r)-cycle of the (2r)-cycle decomposition of K 2r,t between Si- Xi and 

X 1, the (2r)-cycle decomposition of K 2r,l between S1 - X 1 and Xi, or the (2r)-cycle 

decomposition of K 2r,2r between Si - Xi and S1 - X 1 is monochromatic, as no r 

vertices of si - xi have the same colour' and no r vertices of sj - xj have the same 

colour. 

It only remains to colour vertex oo and to show that, for each i E {1, 2, ... , t}, 

no (2r )-cycle in the (2r )-cycle system on vertex set Si U { oo} is monochromatic. We 

consider separately the cases r = 3 and r =/= 3. First, suppose r = 3. We note that 

k =/= 3 (since if r = k = 3, then s = 0). If k = 4, then .e = h = 12 and s = 4. In this 

case, we give oo colour 1. For any i E {1, ... , t}, Si U { oo} has 4 vertices of colour 1 

and 3 vertices of each of colours 2, 3 and 4. Hence no 2r = 6 vertices of Si U { oo} have 

the same colour, and so no ( 2r )-cycle in the ( 2r )-cycle system on Si U { oo} can be 

monchromatic. If r = 3 and k > 4, we give oo colour k, so that for each i E {1, ... , t}, 

Si U { oo} has at most 5 vertices of each of colours 1, 2 and 3, and at most 4 vertices 

of any other colour. Again, no 2r = 6 vertices of Si U { oo} have the same colour. 

Now, suppose r > 3, and give oo colour 1. There are at most r + 3 vertices of 

colour 1, at most 2r- 1 vertices of colour 2, at most 2r- 1 vertices of colour 3 and 

at most r vertices of any other colour. Again, no 2r vertices in Si U { oo} have the 

same colour. 0 

Lemmas 2.3.8 and 2.3.9 show that the (2r)-cycle system S which we have 

constructed is indeed k-chromatic. 

Theorem 2.3.5. 

We have thus completed the proof of 

We finish this section by proving an extension of Lemma 2.2.11 form-cycle systems 

for which m is a multiple of 4. We first require the following result, due to Milici and 

Thza. 
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Lemma 2.3.10. [40] Let m > 3 be even. There exists a 2-chromatic m-cycle system 

of order 2m+ 1 which admits a 2-colouring with colour classes of sizes m and m + 1. 

Lemma 2.3.11. Suppose m _ 0 (mod 4). If there exists a k-chromatic m-cycle 

system of order n , then there exists a k-chromatic m-cycle system of order n + 2m. 

Proof. Let S denote a k-chromatic m-cycle system of order n on vertex set 

{y1, Y2, ... , Yn}· We add 2m vertices X1, ... , X2m· We will decompose the copy of 

K2m+l with vertex set {y1, x1, x2, ... , X2m} and the copy of K2m,n-l between 

{x1 , ... x2m} and {y2 , ... , Yn} into m-cycles; together with the m-cycles of S, the 

m-cycles in these decompositions will form an m-cycle system of order n + 2m. 

First, using Lemma 2.3.10, we form an m-cycle system, T, on vertex set 

{y1, x 1, x 2, ... , x2m} which admits a 2-colouring with colour classes 

cl = {yl, Xl, Xa, ... 'X2m-d and c2 = {x2, X4, ... 'X2m}· Next, we form the 

required m-cycle decomposition of K2m,n-l between {x1, ... , X2m} and {y2, ... , Yn} 

as follows. For each i E {0, 1, 2, 3}, we form an m-cycle decomposition of the 

K!!!
2

,n-l between {x '""+l,x'""+2, ... ,X•""+!!!} and {y2 , ... ,yn} (such an m-cycle 
2 2 2 2 

decomposition exists by Theorem 2.2.1); these four decompositions together form 

an m-cycle decomposition of the K2m,n-1 between {xb ... , X2m} and {y2, ... , Yn}· 

By creating these decompositions, we have now constructed an m-cycle system S' of 

order n +2m. 

Noting that S' contains the k-chromatic systemS, it is clear that S' has chromatic 

number at least k. To complete the proof that S' is indeed k-chromatic, we will assign 

a k-colouring, as follows. Colour the vertices y1 , y2 , ... , Yn with k colours such that 

y1 has colour 1 and no m-cycle in S is monochromatic. For i E { 1, ... , 2m}, colour 

xi with colour 1 if i is odd, and with colour 2 if i is even. Then no m-cycle in T is 

monochromatic. Any other m-cycle in S' occurs the m-cycle decomposition between 
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{Xim+l,Xim+2, ... ,Xim+!!!} and {y2, ... ,yn} for some i E {0,1,2,3}; any such cycle 
2 2 2 2 

contains two vertices xh and xh such that j 1 and ]2 have different parity, and thus 

cannot be monochromatic. D 

/ 
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Chapter 3 

Invariants and Enumeration 

Two cycle systems 81 = (X1 , C1 ) and 82 = (X2, C2) are said to be isomorphic if there 

is a bijection j : X 1 -----+ X 2 such that f maps each cycle in C1 to a cycle in C2 . An 

invariant for a cycle system S is a function I such that I(S') = I(S) for any cycle 

system S' which is isomorphic to S. A simple example of an invariant for a cycle 

system is the number of cycles in the system; any m-cycle system of order n has 

n(;~l) cycles, so clearly any two isomorphic cycle systems have the same number of 

cycles. Another example of a cycle system invariant is its chromatic number, which 

is defined in Chapter 2. Any two isomorphic cycle systems have the same chromatic 

number; however, as the results of Chapter 2 show, there may exist m-cycle systems 

of order n which have different chromatic numbers. 

Invariants for cycle systems can be useful tools for distinguishing nonisomorphic 

systems; if the value of an invariant evaluated on two cycle systems is different for 

each, they cannot be isomorphic. One measure of an invariant's effectiveness in 

this regard, proposed in [42], is its sensitivity, defined by the number of different 

values of an invariant over a sample of cycle systems divided by the total number of 
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nonisomorphic systems in the sample. Typically, the sample would be all pairwise 

nonisomorphic m-cycle systems of a given order n; we will assume this to be the 

case unless otherwise specified. An invariant's sensitivity is thus a rational number 

in the interval (0, 1]; the closer the value is to 1, the more effective the invariant. 

An invariant I that has the property that two m-cycle systems 8 1 and 8 2 of order 

n are isomorphic if and only if J(S1 ) = I(S2 ) is called a complete invariant; such 

an invariant clearly has sensitivity 1. In this chapter, we review some known results 

regarding the number of pairwise nonisomorphic m-cycle systems of a given order, 

and discuss the use of invariants in distinguishing nonisomorphic cycle systems. We 

also present some new enumerative results. 

3.1 Invariants for cycle systems 

In this section, we describe some known invariants for cycle systems and introduce a 

new invariant. Many of these invariants will be revisited in Section 3.2 with respect 

to their use in enumeration. 

3.1.1 Bicolour vectors and sum-bicolour sequences 

Dejter, Rivera-Vega and Rosa (19] proposed several invariants for 2-factorizations 

and cycle systems of the complete graph, which they employed 111 the 

enumeration of the 4-cycle systems and 6-cycle systems of order 9. Among these are 

bicolour vectors and sum-bicolour sequences, which we describe here. Let (X, C) be an 

m-cycle system of order n, and let C = { C1 , C2 , ... , Cn(n-l)/(2m) }. Fori E {3, 4, ... , n} 

and a, b E {1, 2, ... , n(;~l)} such that a =f b, let a[a, b]i be the number of i-cycles in 

Kn which have exactly one edge inCa and i- 1 edges in Cb. 
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Based on this concept, several invariants can be formed. First , if i E {1, 2, . .. , n} , 

then for each j E { 0, 1, ... , m}, let ti ,j denote the number of ordered pairs of intgers 

(a, b) for which a[a, b]i = j. The vector Ti = (ti,o, ti,b ... , ti,m), called the bicolour 

vector of rank i for the cycle system S, is an invariant for S . 

Consider any 4-cycle systemS= (X, C) of order n, where C = {C1, ... , Cn(n-l)js}­

A 3-cycle C in Kn is of type a[ a, bh if and only if two of its edges are in Cb and 

the other, in Ca, is a diagonal of Cb; since the two diagonals of Cb cannot both 

be contained in the same 4-cycle in C, it follows that t 3,2 = n(n4-l) and t 3,j = 0 if 

j E {1 , 3, 4}. Thus any two 4-cycle systems of order n have the same bicolour vector 

of rank 3. Furthermore, any two 4-cycle systems have the same bicolour vector of 

rank i > 4, as a[a, b]i = 0 for any ordered pair (a, b). Thus, the bicolour vector is 

ineffective in distinguishing nonisomorphic 4-cycle systems. Nevertheless, it can have 

nonzero sensitivity form-cycle systems where m > 4 (see [19] for a discussion of this 

invariant with respect to 6-cycle systems of order 9 and 9-cycle systems of order 9). 

Rather than the bicolour vector, we will employ in Section 3.2 a related 

invariant for cycle systems, also proposed in [19]. For each i E {1, 2, ... , n} and a E 

{1, 2, ... ' n(2n-l)}, let Sa,i = L: E{l2 n{n-1)} _J_ a[a, x]i. For a fixed i E {1, 2, ... 'n}, m x , , .. . , 2771 ,xra 

the sum-bicolour sequence of rank i for the cycle system Sis defined as the sequence 

Si of numbers sa,i, a E {1, 2, ... , n(;~l) }, arranged in nondecreasing order, and is also 

an invariant for S. 

3.1.2 Neighbourhood graphs and related invariants 

In their investigation of the 4-cycle systems of order 9, Dejter, Rivera-Vega and 

Rosa [19] employed an invariant based on the neighbourhood graphs of vertices. In 

this section we describe this invariant and then propose a relaxation of it, which is 
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generalized to an invariant for even cycle systems. 

First, let S be a 4-cycle system of order n, and let a be any of its vertices. Any 

cycle (a, b, c, d) of S which contains a induces a 2-path through vertices b, c and d, as 

illustrated in Figure 3.1. 

Figure 3.1: Induced path for vertex a in cycle (a, b, c, d) 

For a given vertex a, there are n~l such induced 2-paths. Taking the union of these 

n~l paths yields a subgraph of Kn, called the neighbourhood graph of a inS, and de­

noted N(a, S). Supposing there are t possible nonisomorphic neighbourhood graphs, 

N1 , N2 , ... , Nt, let ni denote the number of vertices of S whose neighbourhood graph 

is isomorphic toNi. The vector (nb n 2 , ... , nt) is an invariant for the cycle system S. 

Dejter, Rivera-Vega and Rosa (19] found that for n = 9, there are exactly three 

nonisomorphic neighbourhood graphs, N1, N2 and N3 , which are shown in Figure 3.2. 

Figure 3.2: Possible neighbourhood graphs in a 4-cycle system of order 9 
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Example 3.1.1. Consider the 4-cycle system S of order 9 with 4-cycles 

(1, 2, 3, 4), (1, 3, 6, 5), (1, 6, 2, 7), (1, 8, 2, 9), (2, 4, 7, 5), (3, 5, 8, 7), (3, 8, 6, 9), (4, 5, 9, 8) 

and (4, 6, 7, 9). If a E {3, 4, 5, 7}, N(a, S) = N1 , if a E {1, 2, 8, 9}, N(a, S) = N2 and 

N(6, S) = N 3 ; thus S has neighbourhood graph invariant (4, 4, 1). 

The neighbourhood graph invariant was used in (19] as a means of distinguishing 

nonisomorphic 4-cycle systems of order 9. There are eight such systems, and this 

invariant has sensitivity ~. 

To successfully use the neighbourhood graph invariant on 4-cycle systems of order 

n > 9 would require that the possible nonisomorphic neighbourhood graphs of vertices 

in a 4-cycle system of order n be determined. Rather than undertaking this task, we 

instead focus on the degree of each vertex in the neighbourhood graphs. Consider a 

4-cycle system S of order n 2: 9, and let a be any vertex in S. Any vertex b =/= a is 

adjacent to a in exactly one 4-cycle of S; the edges of this cycle (call it (a, b, c, d)) 

contribute 1 to the degree of bin N(a, S), as the edge {b, c} is in N(a, S), while {a, b} 

is not. Now, consider the cycles containing b other than (a, b, c, d). Any 4-cycle of 

S containing b but not a does not affect N(a, S); any 4-cycle of S containing both 

a and b, but in which a and b are not adjacent, has b diagonally opposite to a, and 

contributes 2 to the degree of bin N(a, S). It follows that the degree of bin N(a, S) 

corresponds with the number of times b is diagonally opposite a in a 4-cycle of S; 

more specifically, b is diagonally opposite a in a 4-cycle of S q times if and only if b 

has degree 2q + 1 in N(a, S). 

We thus propose the following invariant for even cycle systems, which we will 

refer to as the cycle diagonal invariant. Let S = (X, C) be a (2r)-cycle system 

of order n. For each vertex a E X, form a vector Va = ( v1 , v2 , ... , v n-1 ) , where 
2 

vi is the number of vertices which are diagonally opposite a in exactly i of the 
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(2r)-cycles in C. Note that any vector that we obtain in this manner has entries 

satisfying VI + 2v2 + · · · + n~Ivn2 1 = n~I, as a occurs in n~I cycles in C and 

each vertex diagonally opposite a exactly i times accounts for i of these cycles. 

We can thus find a superset of the set of vectors {Va : a E X} by solving the 

equation XI+ 2x2 + · · · + n;-Ixn21 = n~I, where Xj is a nonnegative integer for each 

j E {1, 2, ... , n~l }; this is just an integer partitioning problem. Supposing there are 

t solution vectors, W1 , W2 , ... , Wt, we form an invariant vector I = (i1 , i2 , ... , it), 

where ii is the number of vertices a such that Va = Wi. 

We expect that this invariant will have somewhat lower sensitivity among 4-cycle 

systems than the neighbourhood graph invariant. As previously alluded to, for a 

4-cycle system S and vertex a, the vector Va corresponds with the degree sequence of 

the neighbourhood graph N(a, S), yet among the 4-cycle systems of order 9, two of 

the three nonisomorphic neighbourhood graphs have the same degree sequence. We 

found among the eight pairwise nonisomorphic 4-cycle systems of order 9 that the 

cycle diagonal invariant has sensitivity 0.5, compared with 0.875 for the 

neighbourhood graph invariant. However, in practice, computation of the cycle 

diagonal invariant for 4-cycle systems of order n > 9 involves the solution of an 

integer partitioning problem and does not require computing in advance the possible 

pairwise nonisomorphic neighbourhood graphs. It is this property which makes the 

cycle diagonal invariant attractive, as the solution of the integer partitioning problem 

is easily computable. 

Example 3.1.2. Consider a 4-cycle system (X, C) of order 9. The nonnegative 

integer solutions to the equation xl + 2x2 + 3x3 + 4x4 = 4 are wl = ( 4, 0, 0, 0) J 

W2 = (2, 1, 0, 0), W3 = (1, 0, 1, 0), W4 = (0, 2, 0, 0) and W 5 = (0, 0, 0, 1). Of these 

five vectors, we know that only two of them could be obtained as a vector Va for some 
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a E X, as there are only two distinct neighbourhood graph degree sequences; these 

two are W1 {which corresponds to the degree sequence of N1 and N3} and W2 {which 

corresponds with the degree sequence of N 2}. 

The 4-cycle system of order 9 with 4-cycles (1, 2, 3, 4), (1, 3, 6, 5), (1, 6, 2, 7), 

(1,8,2,9), (2,4,7,5), (3,5,8,7), (3,8,6,9), (4,5,9,8) and (4,6,7,9) has cycle 

diagonal invariant (5, 4, 0, 0, 0), as V3 = V4 = Vs = V6 = V1 = W1 and V1 = V2 = 

Vs = Vg = W2. 

3.1.3 Cycle structure 

The cycle structure invariant was proposed for Steiner triple systems by Cole [14] 

and Cummings (16], and has since been employed by other authors to distinguish 

nonisomorphic triple systems (12, 29, 42]. The cycle structure invariant has been 

generalized for the Steiner system S(t, t + 1, n) (see (13]); we present a generalization 

of this invariant for cycle systems. 

Let (X, C) be an m-cycle system of order n, where m ~ 3. For each x E X, let 

Gx be the graph induced by the set of edges {y, z} such that xis adjacent to both y 

and z in some cycle C E C. Since every element of X- {x} is adjacent to x exactly 

once in the cycles of C, the edges of Gx form a 1-factor of Kn_ 1 defined on vertex set 

X- {x}. 

Given x, y EX, we identify the vertex yin Gx (respectively x in Gy) with a new 

element oo. The edges of Gx and Gy now form two 1-factors of Kn_ 1 on vertex set 

(X- {x,y}) U {oo}. Taking their union, and allowing multiple edges, we obtain a 

graph Gx,y on vertex set (X- {x,y}) U {oo}. Every vertex in Gx,y has degree 2, 

and the connected components of Gx,y are all even-length cycles of length at least 2, 

where we view two vertices joined by a pair of edges as a cycle of length 2. 
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Recording the length of each cycle in Gx,y, we form a vector Vx,y, called a cycle 

list, consisting of the cycle lengths in Gx,y in nondecreasing order (where i occurs 

in Vx ,y exactly the number of times Gx,y contains ani-cycle). Each such vect or Vx ,y 

corresponds with a partition of the integer n - 1 into nonnegative even integers. We 

form an invariant vector, each coordinate of which corresponds with exactly one of 

the vectors which is obtained in this manner. The value of the V-coordinate of the 

invariant vector is the number of times V is obtained as a vector Vx,y for some pair 

{x,y}~X. 

As an invariant for triple systems, Gibbons [26] suggested the fragment vector, 

whereby only 4-cycles in each cycle list are considered. This invariant , which reduces 

the space required in computation, is a complete invariant for Steiner triple systems 

of order at most 15 [26, 48]. 

3.1.4 Automorphism group order 

Let S = (X, C) be an m-cycle system of order n. An isomorphism ¢ : X ---+ X 

which maps each cycle of C to a cycle of C is called an automorphism. The set of 

automorphisms of S, with the operation of set composition, forms a group called the 

automorphism group of S , denoted Aut(S). The order of this group is a well-known 

invariant for S. 

3.2 Enumeration of cycle systems of small order 

Let Nm(n) denote the number of pairwise nonisomorphic m-cycle systems of order 

n. Known nontrivial values of Nm(n) are summarized in Table 3.1. In this section, 

we describe the algorithm that we have employed to generate pairwise nonisomorphic 
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m n Nm(n) Reference 
7 1 
9 1 

3 13 2 [53, 18, 6, 14] 
15 80 [15, 52, 29] 
19 11,084,874,829 [32] 

4 9 8 [19] 
17 ~ 22,727,480 Section 3.2.2 

5 11 > 12,482,276 Section 3.2.3 
6 9 640 [19] 

13 > 27,834,268 Section 3.2.4 
7 7 2 [9] 
9 9 122 [9] 
11 11 22,691,203 Section 3.2.5 

Table 3.1: Number of nonisomorphic m-cycle systems of order n 

cycle systems, and report on our results. In particular, we have used this algorithm 

to determine the value of N11 (11), which we discuss in Section 3.2.5. 

3.2.1 A method for enumeration 

We employ a backtracking algorithm in the generation of nonisomorphic cycle 

systems. We exhaustively search for m-cycle systems of a given order 

containing the cycle (1, 2, ... , m), pruning the search tree by eliminating partial 

m-cycle systems of order n isomorphic to any partial system that has been 

previously encountered. Once we have found a complete cycle system, we compute 

its invariant. (The invariant used may be a single invariant or a compound invariant 

created by combining two or more invariants, and is dependent on the value of m.) If 

the value computed for the system's invariant has not previously been encountered, 

we know that the cycle system is not isomorphic to any found previously. Otherwise, 

we test among the cycle systems which have been already found to have the same 
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invariant to determine if the newly found system is isomorphic to any of them; if so, we 

discard the system, while if not, it is stored. A program used to implement this search 

heuristic for Hamilton cycle systems may be found in Appendix 1. 

To test isomorphism of cycle systems with the same invariant, we employ a related 

graph, inspired by the incidence graph of a design, which is described 

in [4, Section 5]. If D = (V, B) is a balanced incomplete block design, its incidence 

graph In(D) has vertex set V U Band edge set { {x, B}: x E V, BE B, x E B}. Two 

designs DI and D 2 are isomorphic if and only if their respective incidence graphs 

are isomorphic [37]. If we were to define an incidence graph for a cycle system 

S = (X, C) in a similar manner, that is, a graph with vertex set XU C and edge set 

{ {x, C} : x E X, C E C, x E V(C)}, the same property would not necessarily hold. 

(It is easy to see, for example, that any two n-cycle systems of order n would have the 

same incidence graph.) We thus modify the definition for cycle systems, producing a 

graph which we will refer to as a cycle incidence graph. 

LetS= (X, C) be an m-cycle system of order n, where X= {xi, ... , Xn} and C = 

{CI, ... 'Cn<;~l) }, and for each i E { 1, 2, ... ' n(;~l) }, suppose ci = (xi,i, X2,i, ... 'Xm,i)· 

We define the cycle incidence graph CI(S) as follows. Let V(CI(S)) -

{ v~, v2, ... , vn+ n(n2-I)}. Vertices vi, ... , Vn will correspond with the vertices of S, so 

that xi= vi for each i E {1, ... , n}, while vertices Vn+b ... , v +n(n-1) will correspond 
n 2 

with the cycles of S, with m vertices for each cycle. We define the edges of Cl(S) as 

follows. For each j E { 0, 1, ... , n(;~l) - 1}, let Vn+jm+i be adjacent to Vn+im+(i+l) for 

each i E {1, 2, ... , m-1}, and let Vn+jm+m be adjacent to Vn+jm+l · If i E {1, 2, ... , n} 

and j E { 0, 1, ... , n(;~I)- 1 }, k E {1, 2, ... , m} then let vi be adjacent to Vn+jm+k if 

and only if Xk,j+I =Xi· Observe that in CI(S), deg(vi) = n2I if i E {1, ... , n} (since 

Xi occurs in exactly n21 cycles in C), and deg(vi) = 3 if i E {n + 1, ... , n + n(n2-I)}. 
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An example of the cycle incidence graph for a cycle system is illustrated in 

Figure 3.3, which shows the cycle incidence graph of a 3-cycle system of order 7. 

Let CJ be a permutation of { 1, 2, ... , n(;;::I)}, and consider the effects of forming 

the graph defined above based on the new ordering Cu(I), Cu(2), ... , Cucn<;~1> r The 

graph obtained is clearly isomorphic to that defined above; that is, the order of cycles 

Cb C2, ... , Cn<n-1) is irrelevant. Furthermore, for any cycle Ci, writing the cycle with 
2m 

a different starting vertex or in the opposite orientation produces an isomorphic graph. 

Thus, for a given cycle system S, the corresponding graph CI(S) is well-defined. 

Theorem 3.2.1. Let SI = (X, C) and S2 = (Y, V) be m-cycle systems of order n. 

Then SI "'S2 if and only if CI(SI) "'CI(S2). 

Proof. Suppose X {Cb ... , Cn{n-1) }, where 
2m 

C. - ( · · ·) f h · {1 2 n(n-I)} t - XI,t, x2,t, ... , Xm,t or eac 'l E , , ... , 2m . Let Y = {Yb ... , Yn}, and 

let V(CI(SI)) = {VI, ... ' v +n(n-1)} and V(CI(S2)) = {WI, ... ' w +n(n-1) }. 
n 2 n 2 

( ===}) Suppose the cycle systems SI and S2 are isomorphic. It is not difficult to 

observe that CI(SI) "' CI(S2). 

( ¢=) Let 'lj; : V ( CI ( S I)) ---+ V ( CI ( S2)) be a graph isomorphism. Recall that 

each of then vertices VI, v2, ... , Vn of CI(SI) (respectively, wb w2, ... , Wn of CI(S2)) 

has degree n;-I, and each other vertex has degree 3. We note that if n = 7, then 

there exists an m-cycle system of order 7 if and only if m E { 3, 7}. If SI and 

s2 are 3-cycle systems of order 7' then SI "' s2' since any two 3-cycle systems of 

order 7 are isomorphic. Considering the case m = n = 7, a computer program 

employing nauty [37] verified that the two nonisomorphic 7-cycle systems of order 7 

have nonisomorphic cycle incidence graphs, and so if CI(SI) "'CI(S2), then SI "'S2. 

We now suppose n =f:. 7, so that n;-I =f:. 3. It follows that 'lj; maps { vb v2, ... , vn} 

onto {WI, W2, ... , Wn} and { Vn+I, Vn+2, ... , V +n(n-1)} onto { Wn+b Wn+2, ... , W +n(n-1) }. 
n 2 n 2 
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Vs 

Figure 3.3: Cycle incidence graph for the 3-cycle system of order 7 with cycles 

(x1, x2, x4), (x2, xa, xs), (xa, X4, x6), (x4, Xs, X7 ), (xs, x6, x1), (x6, X7, x2), (x7, x1, xa) 
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Consider the function ¢ : X ~ Y defined by ¢(xi) = Yi , where Wj = '1/J(vi), for 

each i E {1,2, ... ,n}. Observing that¢ is the restriction of '1/J to {vb···,vn}, it 

is clear that ¢ is a bijection between the sets X and Y. It remains to be shown 

that ¢ maps any m-cycle in C to an m-cycle in V. Let Cr = (x1,n ... , Xm,r) E C, 

where r E {1, ... , n(~;;: 1)}. Let Xti = Xi,r for each i E {1, ... ,m}, and hence Vti = Xi,r 

for each i E {1, ... , m}. There exists j E {0 1 n(n-1) 
' '· · ·' 2m 

1} 

such that for each i E { 1, ... , m}, Vti is adjacent to Vn+ im+i. Since '1/J is an 

isomorphism, the m-cycle ( Vn+jm+b Vn+im+2, ... , Vn+jm+m) is mapped by '1/J to an 

m-cycle of CI(S2). E { Wn+b Wn+2, ... 'w +n(n-1)} for each 
n 2 

i E {1, 2, ... , m}, it follows that the m-cycle (vn+jm+l! Vn+jm+2, ... , Vn+jm+m) is 

mapped under '1/J to an m-cycle (wn+km+b Wn+km+2, ... , Wn+km+m) in CI(S2) for some 

k E {0, 1, ... , n(~;;:l) - 1 }. Since Vti is adjacent in CI(S1) to Vn+im+i for each 

i E {1,2, ... ,m}, it follows that '1/J(vtJ is adjacent to '1/J(vn+jm+i) for each 

i E {1,2, ... ,m}. 

m-cycle in V, in other words, (¢(xt1 ), ¢(xt2 ), ••• , ¢(xtm)) ED. D 

To determine if two cycle systems are isomorphic, we determine if their respective 

cycle incidence graphs are isomorphic, by making use of the nauty software package 

[37], which calculates the automorphism group of a vertex-coloured graph; nauty 

is also able to determine a canonical labelling of a graph, which may be used for 

isomorphism testing. To determine isomorphism of partial triple systems, we build 

a partial cycle incidence graph, colouring the vertices corresponding to the vertices 

of the cycle system with one colour, and those corresponding to the cycles another 

colour; the coloured graphs are compared for isomorphism. 

In addition to their use in determining whether two cycle systems are isomorphic, 
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cycle incidence graphs can also be used to determine properties of the automorphism 

groups of the cycle systems from which they are formed. So that we can explore 

the connection between the automorphism groups of cycle systems and their cycle 

incidence graphs, we first require some preliminary definitions. 

LetS= (X, C) be an m-cycle system of order n. Suppose X= {x1, ... ,xn} and 

C = {Cb···,Cn(n-1>}, where for each i E {1, ... , n(;~ 1)}, Ci = (xl,i,x2,i,···,Xm,i)· 
2m 

Let G = CI(S) denote the cycle incidence graph of S. Consider an automorphism 

¢ of S. For each i E {1, ... ' n(;~l) }, let c<Pi = (xl,</>i' ... 'Xm,<t>J be the cycle in c to 

which¢ maps Ci· Note that if i =f j, then ¢i =f ¢i· If i E {1, ... , n(;~l) }, then let O'<f>,i 

be the permutation of {1, ... , m} such that if ¢(xp,i) = Xq,<f>i, then O'<f>,i(P) = q. 

Given an automorphism¢ of S, we now define a function 

as follows. First, for each i E {1, ... , n}, let '1/J<t>(vi) = Vj, where Xj = ¢(xi)· Next, 

let i E {n+1, ... , n+n(n
2
-

1)}, and write i = n+rm+s where r E {0, ... , n(;~l) -1}, s E 

{1, ... , m} (so vi corresponds to Xs,r+l, recalling that Cr+l = (xl,r+b X2,r+l, ... , Xm,r+l)). 

Let '1/J<t>(vi) = Vn+(<Pr+ 1 -l)m+a-q,,r+1 (s)· Note that '1/J<t> maps {vb ... , Vn} onto {v1, ... , Vn} 

and { Vn+l' ... 'v + n(n-1)} onto { Vn+l' ... 'v + n(n-1)}. Furthermore, note that the 
n 2 n 2 

restriction of '1/J<t> to { v1, ... , Vn} is just the function ¢. 

Lemma 3.2.2. The function '1/J<t> is an automorphism of G. 

Proof. Suppose that '1/J<t>(vi) = '1/J<t>(vj) for some i,j E {1, ... , n + n(n2-
1)}. Then either 

i and j are both in {1, ... ,n} or i and j are both in {n + 1, ... ,n + n(n2-
1)}. If 

i,j E {1, ... ,n}, then ¢(xi)= ¢(xj) which implies Xi= Xj, and so vi= Vj. Next, 

suppose i,j E {n+ 1, ... ,n+ n(n2-
1)}, and write i = n+rm+ sand j = n+tm+u, 

where r, t E {0, ... , n(;~l) - 1 }, s, u E {1, ... , m }. So '1/J<t>( vi) = '1/J<t>( Vj) means that 
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n + (<Pt+ 1 - 1)m + a<P,t+1(u). But since a<P,r+1(s), a<P,t+1(u) E {1, ... , m}, it must be 

that a<P,r+I(s) = a<P,t+1(u) and also ¢r+1 = <Pt+I· Recalling that if i # j, then <Pi# </Ji, 

we see that r + 1 = t + 1, i.e. r = t. Now, a<P,r+I(s) = a<P,t+1(u) = a<P,r+1(u), so that 

s = u. Thus, n + rm + s = n + tm + u, and so vi = vi. Hence, 'lj;<P is injective. 

To show that 'lj;<P is surjective, let i E {1, ... , n + n(n
2
-

1) }. If i E {1, ... , n }, then 

there exists j E {1, ... , n} such that Xi = ¢(xi); for the same j, vi = 'lj;<P(vi)· Now 

suppose i E { 1 n(n-1)} d 't · n + , ... ,n + - 2- an wn e 't = n + rm + s where 

r E {0, ... , n(;~ 1) - 1}, s E {1, ... , m}. Since ¢ is a cycle system automorphism, 

there exists t E {1, ... , n(;~ 1)} such that¢ maps Ct onto Cr+l· So <Pt = r + 1. Choose 

u E {1, ... , m} such that </J(xu,t) = Xs,r+b so a<P,t(u) = s. Then Vi = Vn+rm+s -

Vn+(<Pt-1)m+u¢,t(u) = 7f;<P(vn+(t-1)m+u)· Hence 'lj;<P is surjective. 

To show that 'lj;<P is an automorphism, let {vi, Vj} E E( G); it must be shown that 

{7f;<P(vi),7j;<P(vi)} E E(G). Note that i and j cannot both be in {1, ... ,n}, so there 

are two cases to consider: 

Case 1. i and j are not both in { n + 1, ... , n + n(n
2
-

1) }. 

Without loss of generality, assume that i E {1, ... , n} and 

. { 1 n(n-1)} d 't . - h {0 n(n-1) 1} J E n + , ... , n + - 2- , an wn e J - n + rm + s, w ere r E , ... , ~ -

and s E {1, ... , m}. Since vi and Vj are adjacent in G, Xi= Xs,r+b so that 'lj;<P(vi) = 

¢(xi)= <P(xs,r+I) = Xu<P,r+l(s),<Pr+l' Observe also that 'lj;<P(vj) = Vn+(<Pr+l-1)m+u¢,r+l(s)· 

Therefore, 'lj;<P(vi) is adjacent to 'lj;<P(vi)· 

64 



Case 2. i,j E {n+1, ... ,n+ n(n
2
-

1
)}. 

Write i = n + rm + s and j = n + rm + u where r E {0, ... , n(;~l) - 1} and 

s, u E {1, ... , m}. Since vi and Vj are adjacent in G, it must be that Xs,r+l and Xu,r+l 

are adjacent in Cr+l· Since¢ is a cycle system automorphism, ¢(xs,r+l) and ¢ (xu,r+l) 

Vn+(<Pr+I-l)m+a,p,r+I(s) and Vn+(<Pr+I-l)m+a,p,r+I(u) must be adjacent in G, in other words, 

E( G), and hence '1/J<t> is an automorphism. D 

Theorem 3.2.3. Let S = (X, C) be an m-cycle system of order n =J 7. Then the 

automorphism group of S is isomorphic to the automorphism group of its cycle 

incidence graph CI(S). 

Proof. Let X = {x1 , ... ,xn} and C = {Cb··-,Cncn-ll}, where, for each 
2m 

i E {1, ... ' n(;~l) }, ci = (xl,i, ... 'Xm,i)· Also, let G = CI(S). 

Define f : Aut(S) -----+ Aut(G) by f(¢) = '1/J<t>· It will be shown that f is an 

isomorphism. 

First, suppose that f(¢) = f(p) for some automorphisms ¢and p of S, so that 

'1/J<t> = '1/Jp· Since ¢ = 'I/J<t>l{v
1

, .. . ,vn} and p = 'I/Jpl{v
1

, ... ,vn}' it is clear that ¢ = p. So f is 

injective. 

Now, let 'lj; E Aut( G), and define ¢ : {xb ... , Xn} -----+ {x1 , ... , Xn} by the rule 

that for each i E {1, ... , n}, ¢(xi) = Xj where Vj = 'lj;(vi)· It will be shown that 

¢ E Aut(S) and 'lj; = f(¢). 

First, recalling that deg(vi) = 3 if i E {1, ... , n} and deg(vi) = n~l if 

i E { n + 1, ... , n + n(n
2
-l) }, note that 'lj; maps { v1 , ... , vn} onto { V1, ... , vn}; it follows 
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that ¢maps {x1 , ... , Xn} onto {xb ... , Xn}, i.e. ¢is surjective. Also, ¢is injective 

since 'lj; is injective. 

Now, let i E {1, ... , n(~~l)} and consider the m-cycle Ci· The corresponding 

m-cycle (vn+(i-l)m+l, Vn+(i-l)m+2, ... , Vn+(i-l)m+m) in G is mapped by '1/J to an 

m-cycle C in G. Since '1/J maps { Vn+b ... , v +n(n-1)} onto { Vn+l, ... , v +n(n-1) }, 
n 2 n 2 

C must be of the form (vn+(j-l)m+l, ... ,vn+(j-l)m+m) for some j E {1, ... , n(~~ 1)}. It 

will be shown that ¢ maps the m-cycle Ci onto the m-cycle Ci. For each 

k E {1, ... , m}, let ki E {1, ... , n} such that Xki = xk,i· In G, vki is adjacent 

to Vn+(i-l)m+k and '1/J(xk,i) 'lj;(vkJ is adjacent to '1/J(vn+(i-l)m+k)· Since 

('1/J(vn+(i-l)m+I), · · ·, '1/J(vn+(i-l)m+m)) = (vn+(j-l)m+b ... , Vn+(j-l)m+m), it must be that 

(¢(xi,i), ... , ¢(xm,i)) = Ci. So¢ is an automorphism of S. 

It remains to be shown that 'lj; =!(¢),i.e. that'¢= '1/Jc~>· Clearly 'lj;(vi) = '1/Jc~>(vi) for 

each i E {1, ... , n }, so now suppose i E { n+ 1, ... , n+ n(n2-l) }, and write i = n+rm+s, 

where r E {0, ... , n(~~l) - 1}, s E {1, ... , m}. For each u E {1, ... , m}, Vn+rm+u is 

adjacent to Vur+ 1, where Xur+ 1 = Xu,r+l, and so '1/J(vn+rm+u) is adjacent to '1/J(vur+I) = 

¢(xu,r+l) = Xu4>,r+1(u),4>r+1" It must be that {'1/J(vn+rm+I), ... ,'Ij;(vn+rm+m)} = 

adjacent to V(u¢,r+1(s))¢r+1 = Xu4>,r+I(s),cf>r+1, it follOWS that '1/J( Vi) = Vn+(cf>r+1-l)m+u¢r+1 (s) = 

'1/Jc~>(vi)· Therefore, 'lj; = '¢4> = !(¢). Hence f is surjective. 

Now, let ¢ and p be automorphisms of S. It must be shown that f(¢ o p) 

f(¢) o f(p). Let i E {1, ... ,n}. Then (f(¢ o p))(vi) = '¢cf>op(vi) = (¢ o p)(xi) -

('1/Jc~>o'I/Jp)(vi) = (!(¢) of(p))(vi)· Now, suppose i E {n+ 1, ... ,n+ n(n2-
1
)} and write 

i = n + rm + s where r E {0, ... , n(~~l) - 1} and s E {1, ... , m}. Then 

Hence j is a homomorphism, and so Aut(S) rv Aut( G). D 
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The following sections detail the results of our investigation into the number 

of pairwise nonisomorphic cycle systems of small order. We have completed the 

enumeration of the 11-cycle systems of order 11. We have also generated large 

numbers of 4-cycle systems of order 17, 5-cycle systems of order 11 and 6-cycle systems 

of order 13, although the enumeration for these cycle systems is not yet complete. 

We will report on the sensitivity of various invariants for the cycle systems that we 

have generated. 

3.2.2 4-cycle systems 

The eight 4-cycle systems of order 9 were first enumerated in [19]. In this paper, the 

neighbourhood graph invariant and automorphism group order were 

examined. On these eight systems, we investigated combinations of the following 

four invariants: the cycle diagonal invariant, the sum-bicolour vector s3 of rank 3, the 

automorphism group size and the cycle structure. Of these four invariants 

employed individually, none are complete; the one with greatest sensitivity is the cycle 

structure, with sensitivity 0.75. When combined to form a compound invariant, S3 

together with either the automorphism group size or the cycle structure forms a 

complete invariant. Only one combination of three invariants fails to be complete, 

namely the cycle diagonal invariant together with the automorphism group size and 

the cycle structure. For details on the effectiveness of each combination of invariants, 

refer to Table 3.2. 

Using the algorithm described in Section 3.2.1, we have generated 22,727,480 

pairwise nonisomorphic 4-cycle systems of order 17; the enumeration of the 4-cycle 

systems of order 17 is not yet complete. Refer to Table 3.3 for information on the 

sensitivity of invariants (rounded to six decimal places) on these 22,727,480 systems. 
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Maximum 
Invariant number of 

Sensitivity systems per 
Cycle diagonal Sa Automorphism Cycle structure invariant 

invariant group order invariant value 
X 0.5 4 

X 0.5 3 
X 0.625 3 

X 0.75 2 
X X 0.625 2 
X X 0.875 2 
X X 0.75 2 

X X 1 1 
X X 1 1 

X X 0.875 2 
X X X 1 1 
X X X 1 1 
X X X 0.875 2 

X X X 1 1 
X X X X 1 1 

Table 3.2: Sensitivity of invariants for 4-cycle systems of order 9 

Maximum 
Invariant number of 

Sensitivity systems per 
Cycle diagonal Sa Automorphism Cycle structure invariant 

invariant group order invariant value 
X 0.001553 86,314 

X 0.000379 229,490 
X 0.000000 22,722,851 

X 0.984499 54 
X X X X 0.994913 8 

Table 3.3: Sensitivity of invariants for 22,727,480 pairwise nonisomorphic 4-cycle 
systems of order 17 

68 



Maximum 
Invariant number of 

Sensitivity systems per 
53 Cycle structure Automorphism invariant 

invariant group order value 
X 0.000405 245,391 

X 0.002898 24,672 
X 0.000000 12,482,211 

X X X 0.253192 599 

Table 3.4: Sensitivity of invariants for 12,482,276 pairwise nonisomorphic 5-cycle 
systems of order 11 

3.2.3 5-cycle systems 

We have generated 12,482,276 pairwise nonisomorphic 5-cycle systems of order 11, 

although this enumeration is incomplete. Table 3.4 contains information on the 

sensitivity of invariants on these systems, rounded to six decimal places. 

3.2.4 6-cycle systems 

The 6-cycle systems of order 9, like the 4-cycle systems of order 9, were first 

enumerated in [19]; there are 640 pairwise nonisomorphic 6-cycle systems of 

order 9. In [19], bicolour vectors and sum-bicolour sequences for 6-cycle systems were 

considered, along with the automorphism group. We recalculated the automorphism 

group order1 and sum-bicolour sequences 53 and 54 , and considered them along 

with the cycle diagonal invariant and cycle structure. The effectiveness of various 

combinations of these invariants for 6-cycle systems of order 9 is summarized in 

1 In [19], three of the 6-cycle systems of order 9 with automorphism group order 1 were re­
ported as having automorphism group order 2. These are: the system with 6-cycles (1, 2, 3, 4, 5, 6), 
(1, 3, 5, 2, 7, 4), (1, 5, 8, 2, 4, 9), (1, 7, 6, 3, 9, 8), (2, 6, 8, 3, 7, 9), (4, 6, 9, 5, 7, 8); the system with 6-cycles 
(1, 2, 3, 4, 5, 6), (1, 3, 5, 2, 6, 7), (1, 4, 7, 2, 8, 9), (1, 5, 9, 6, 3, 8), (2, 4, 8, 5, 7, 9), (3, 7, 8, 6, 4, 9); and the 
system with 6-cycles (1, 2, 3, 4, 5, 6), (1, 3, 5, 2, 6, 7), (1, 4, 8, 5, 7, 9), (1, 5, 9, 6, 3, 8), (2, 4, 7, 3, 9, 8), 
(2, 7, 8, 6, 4, 9). 
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Table 3.5. Of the five invariants applied alone, the cycle structure invariant, with 

sensitivity of approximately 34.5%, has the highest sensitivity. Combined with the 

sum-bicolour vector of rank 3, the sensitivity of cycle structure increases to over 88%, 

while the compound invariant consisting of cycle structure and both the sum-bicolour 

vectors of ranks 3 and 4 has sensitivity over 98%. 

We have generated 27,834,268 pairwise nonisomorphic 6-cycle systems of order 13, 

but the enumeration is not yet complete. 

3.2.5 11-cycle systems 

Colbourn [9] studied Hamilton decompositions of the complete graph, and 

enumerated the 7-cycle systems of order 7 and 9-cycle systems of order 9. Although 

the complete enumeration of pairwise nonisomorphic 11-cycle systems of order 11 was 

not completed in [9], the number of pairwise nonisomorphic 11-cycle systems of order 

11 with nontrivial automorphism group was shown to be 3,140, and the number of 

11-cycle systems of order 11 with each of the four automorphism group orders greater 

than 1 was determined. Using the algorithm described in Section 3.2.1, we have 

determined that there are precisely 22,691,203 pairwise nonisomorphic 11-cycle 

systems of order 11. The computer program with which we implemented our search 

can be found in Appendix 1, and a complete list of these systems may be found online 

athttp://www.math.mun.ca/-burgess/11cs.html. 

Table 3.6 shows the sensitivity of combinations of six invariants (cycle 

structure, the sum-bicolour sequences of ranks 3, 4, 5 and 6, and the 

automorphism group order) on the 11-cycle systems of order 11, rounded to six 

decimal places. Of these, cycle structure is the most effective, with a sensitivity of 

approximately 0.005390, while the automorphism group order is the least. (As there 
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Maximum 
Invariants number of 

Sensitivity systems per 
Cycle diagonal Sg s4 Automorphism Cycle structure invariant 

invariant group order invariant value 
X 0.0390625 155 

X 0.0828125 80 
X 0.0765625 110 

X 0.009375 594 
X 0.3453125 13 

X X 0.365625 9 
X X 0.296875 32 
X X 0.0640625 147 
X X 0.75625 6 

X X 0.5015625 26 
X X 0.10625 80 
X X 0.884375 3 

X X 0.0984375 106 
X X 0.85 6 

X X 0.3796875 13 
X X X 0.7375 8 
X X X 0.3921875 29 
X X X 0.9640625 3 
X X X 0.3203125 32 
X X X 0.95 3 
X X X 0.7703125 6 

X X X 0.515625 25 
X X X 0.9828125 2 
X X X 0.8890625 3 

X X X 0.85625 6 
X X X X 0.74375 b 
X X X X 0.990625 2 
X X X X 0.9640625 3 
X X X X 0.95 3 

X X X X 0.9828125 2 
X X X X X 0.990625 2 

Table 3.5: Invariants for 6-cycle systems of order 9 
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are only five different automorphism group orders, and given the relatively small 

number of systems whose automorphism group is nontrivial, the inefficiency of the 

automorphism group order as an invariant for these systems is not unexpected.) 

Combining with any one of the sum-bicolour sequences increases the cycle 

structure's sensitivity to approximately 0.25, while a compound invariant formed from 

the cycle structure along with any two of the sum-bicolour sequences has 

sensitivity over 0.9. The compound invariant formed from cycle structure and each of 

the four sum-bicolour vectors has extremely high sensitivity (approximately 0.999979); 

adding the automorphism group order yields no improvement in this case. 
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Maximum 
Invariant number of 

Sensitivity systems per 
Cycle s3 s4 s5 s6 Automorphism invariant 

structure group order value 
X 0.005390 15,877 

X 0.000077 747,788 
X 0.000097 928,627 

X 0.000086 930,781 
X 0.000089 791,489 

X 0.000000 22,688,063 
X X 0.258462 596 
X X 0.241241 657 
X X 0.240530 641 
X X 0.256611 655 
X X 0.005473 15,877 

X X 0.018661 32,863 
X X 0.019870 36,084 
X X 0.021666 31,315 
X X 0.000083 747,788 

X X 0.019669 42,349 
X X 0.020840 36,740 
X X 0.000129 928,593 

X X 0.020081 36,696 
X X 0.000116 930,747 

X X 0.000116 791,456 
X X X 0.917995 35 
X X X 0.915508 33 
X X X 0.921727 31 
X X X 0.258505 596 
X X X 0.909062 32 
X X X 0.914863 35 
X X X 0.241293 657 
X X X 0.916101 33 
X X X 0.240587 641 
X X X 0.256675 655 

X X X 0.400021 1,882 
X X X 0.416152 1,847 
X X X 0.018759 32,863 
X X X 0.415646 1,883 
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Maximum 
Invariant number of 

Sensitivity systems per 
Cycle 83 84 8s 86 Automorphism invariant 

structure group order value 
X X X 0.019967 36,084 
X X X 0.021770 31,315 

X X X 0.393614 2,016 
X X X 0.019780 42,348 
X X X 0.020960 36,740 

X X X 0.020200 36,696 
X X X X 0.998752 4 
X X X X 0.998819 5 
X X X X 0.917996 35 
X X X X 0.998786 5 
X X X X 0.915509 33 
X X X X 0.921728 31 
X X X X 0.998695 6 
X X X X 0.909064 32 
X X X X 0.914866 35 
X X X X 0.916103 33 

X X X X 0.927703 240 
X X X X 0.400048 1,882 
X X X X 0.416180 1,847 
X X X X 0.415678 1,883 

X X X X 0.393649 2,016 
X X X X X 0.999979 4 
X X X X X 0.998752 4 
X X X X X 0.998819 4 
X X X X X 0.998786 5 
X X X X X 0.998695 6 

X X X X X 0.927705 240 
X X X X X X 0.999979 4 

Table 3.6: Invariants for 11-cycle systems of order 11 
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Chapter 4 

Summary and Open Problems 

This thesis has examined two aspects of cycle systems: colourings of cycle systems 

and invariants for cycle systems. We now summarize the main results presented in 

this thesis and state some open problems which arise from them. 

In Chapter 2, we explored vertex colourings of cycle systems in which no 

cycle is monochromatic. Our focus in this chapter was on even cycle systems. Most 

of the previous work on weak colouring of cycle systems has focussed on 3-cycle 

systems. The best known result prior to the writing of this thesis on the existence 

of m-cycle systems with chromatic number k > 2, where m > 3, was that there 

exists a non-2-chromatic m-cycle system for any integer m > 3 [39]. The systems 

considered in [39] had large orders, and the exact value of their 

chromatic numbers was not determined. In the case of 4-cycle systems, we have 

constructed a 3-chromatic 4-cycle system of order 49; this result dramatically lowers 

the order of a known 4-cycle system with chromatic number greater than 2, as each 

non-2-chromatic 4-cycle system constructed in [39] has order at least 1 +8 · 25728
. Our 

major result regarding 4-cycle systems is an analogue of a theorem of de Brandes, 

Phelps and Rodl [17] for 3-cycle systems; we have proven that for any integer k > 2, 

there is an integer wk such that for any admissible n 2: n4 ( k), there is a k-chromatic 
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4-cycle system of order n. Furthermore, letting n4 ( k) represent the smallest 

admissible such wk, n4(k) is the smallest integer for which there exists a k-chromatic 

4-cycle system. Thrning our attention to even cycle systems in general, we have 

proven by constructive methods that for any integers r 2:: 2 and k 2: 3, there is a 

k-chromatic (2r )-cycle system. 

The results presented in Chapter 2 lead to some natural questions, which we now 

state. 

Open Problem 1. For integers k 2: 2 and m > 3, does there exist a k-chromatic, 

uniquely k-colourable m-cycle system? 

Open Problem 2. In Section 2.2.2, it was determined that n4 (2) = 9, 

17 :::; n4(3) < 49 and 17 < n4(k) < hkl(l-2)(£-2)!+l + 1 for any k > 3, where e is 

the least even integer greater than or equal to k and h is the least multiple of 8 

greater than or equal to f. What is the exact value of n4 (k) fork 2:: 3? 

Open Problem 3. Let r 2: 3 be an integer. For an integer k 2: 2, is there an 

admissible order n2r(k) such that for any admissible n > n2r(k) there is a k-chromatic 

(2r)-cycle system of order n? 

Open Problem 4. For each integer k 2: 3 and each integer r 2:: 2, does there exist 

a k-chromatic (2r + 1)-cycle system? 

Chapter 3 dealt with invariants for cycle systems and their application in the 

enumeration of pairwise nonisomorphic cycle systems of small order. We began 

by describing some invariants for cycle systems. We then discussed a method by 

which invariants assist in the generation of pairwise nonisomorphic cycle systems. In 

subsequent sections, we presented the results of our application of this algorithm 
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and discussed the sensitivity of invariants among various groups of cycle systems as a 

measure of their effectiveness in distinguishing nonisomorphic systems. In 

particular, we determined the exact number of pairwise nonisomorphic 11-cycle 

systems of order 11; this value was previously unknown. We finish by stating an 

open problem which arises from the results of Chapter 3. 

Open Problem 5. Recall from Section 3.2 that Nm(n) denotes the number of 

pairwise nonisomorphic m-cycle systems of order n. We have generated large numbers 

of 4-cycle systems of order 17, 5-cycle systems of order 11 and 6-cycle systems of 

order 13. What are the exact values of N4 (17), N5 (11) and N6 (13)? 
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Appendix 1 

A program for generation of n-cycle systems of 
order n 

I* 
* This program, given an odd integer n>=5, finds all non-isomorphic 
* n-cycle systems of order n. 

* 
* Authors: A.C. Burgess and D.A. Pike 

* 
* Compiled using: gee -lm ham_c_s.c nauty.c nautil.c naugraph.c 

* 
*I 

#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
#include <string.h> 

#define WK_SP_SZ 1000 
#include "nauty.h" 
#define Pseudo_Byte_Length 6 

typedef struct path_node 
{ 

int vertex; 
struct path_node *next; 
} path_node; 

typedef struct cycle_sys 
{ 

char *cycle; 
} cycle_sys; 

typedef struct cycle_node 

II Structure used to find Hamiltonian paths. 

II An array of arrays to store cycle systems. 

II A tree of cycle systems. 
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{ 

struct cycle_sys *system; 
struct cycle_node *left; 
struct cycle_node *right; 
} cycle_node; 

typedef struct vector_node 
{ 

int *vect; 
struct vector_node *next; 
} vector_node; 

typedef struct inv_tree_node II Used to form the invariant tree. 
{ 

int *inv; 
int groupsize; 
int *S_3; 
int *S_4; 
int *S_5; 
int *S_6; 
struct cycle_node *cycle_systems; 
struct inv_tree_node *left; 
struct inv_tree_node *right; 
} inv_tree_node; 

typedef struct vector_array 
{ 

int *vee; 
} vector_array; 

typedef struct partial_system_tree 

{ 

struct cycle_sys *partial_system; 
struct partial_system_tree *left; 
struct partial_system_tree *right; 
} partial_system_tree; 

I* Global variables *I 

int cycle_number; 

II 
II 
II 
II 
II 
II 
II 

The cycle structure invariant. 
The automorphism group order. 
Sum-bicolour vector of rank 3. 
Sum-bicolour vector of rank 4. 
Sum-bicolour vector of rank 5. 
Sum-bicolour vector of rank 6. 
Systems with a given invariant. 

II Stores vectors. 

II Stores partial systems of 
II cycle systems, used to discard 
II isomorphic partial systems. 

int total_cycles; 
cycle_sys *cycle_system; 
int cycle_system_count; 

II Number of cycles in the system. 
II The cycle system. 

int vector_count; 
int B_n; 
int id_length; 

II The number of nonisomorphic systems. 
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char *id; 
char *id2; 
int invariant_count; 
int sum_vertices; 

double groupsize_dbl; 
int groupsize_int; 

II Identifier for a cycl e system. 

II The number of distinct invariants. 
II Used in finding cycle structure. 

II Subroutines to find and store the possible vectors which will be used 
II to form the invariant for a cycle system. 

void generate_vectors(vector_node **• vector_node **• int, int); 
void store_vector(vector_node **• vector_node **• int *• int); 
void print_vectors(vector_node *• int); 

II Subroutines used in finding the cycle systems. 

char what_is (char *• int, int, int); 
void set_bit (char *• int, int, int, char); 
void build_Ham_path (char *• int, int, int, path_node **• int *); 
void retreat_Ham_path (char *• int, int, int, path_node **• int *• int *); 

void is_decomposable(char *• int, vector_array *• inv_tree_node **• 
inv_tree_node **• cycle_node **• int *• char *• partial_system_tree **• 
char *• int *• int *• int *• int *• int *• int *); 

II Subroutines used in finding the cycle structure once a cycle system has been 
II found . 

void find_invariant(cycle_sys *• int *• char *• int *• int, vector_array *); 
int find_vector(int *• vector_array *• int); 

int find_cycle_length(char, char, char, cycle_sys *• char *• int); 
void put_in_order(int *• int); 
int find_edge(char, char, cycle_sys *• int); 

II Subroutines used for finding the sum-bicolour sequences(s). 

void find_S_3(cycle_sys *• int *· int); 
void find_S_4(cycle_sys *· int *· int); 
void find_S_5(cycle_sys *· int *· int); 
void find_S_6(cycle_sys *· int *· int); 
void order_array(int *); 
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II Subroutines to find and compare the automorphism group size. 

void find_group_size(cycle_sys *, int, char*); 
int compare_integers(int, int); 

II Subroutines for comparing invariants and storing the invariants, along 
II with their associated cycle systems, in a tree. 

int compare_invariant(int, int *, int *, int *, int *, int *, int *, int *, 
int *, int *, int *, int); 

int compare_integer_array(int *, int *, int); 
int is_new_CS(cycle_sys *, int *, inv_tree_node **, inv_tree_node **, int, 

char*, int *, int *, int *, int *); 

II Subroutines for determining isomorphism and storing nonisomorphic 
II cycle systems. 

int is_new_graph(char *, int *, cycle_sys *, int, inv_tree_node **, 
inv_tree_node **, int, int *, int *, int *, int *); 

void get_id(char *, int, char*, int); 
int insert_system(int *, cycle_sys *, int, char *, char *, 

inv_tree_node **, inv_tree_node **, int, char *, int *, int *, 
int *, int *); 

II Subroutines used to analyse the invariant. 

int analyse_inv_tree(inv_tree_node *, int, int, int *); 
int find_max(int *, int); 
int count_cycle_systems(cycle_node *); 

II Subroutines for testing partial system isomorphism. 

int is_new_partial_system(cycle_sys *, int, char*, partial_system_tree **, int); 
int insert_partial_system(partial_system_tree **, char *, cycle_sys *, int, char 

*, int, int); 

int main (argc, argv) 
int argc; 
char *argv[]; 
{ 
char *A; 
inti, j; 
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int n; II The order of the system, and 
II the length of cycles in the 
II system. 

partial_system_tree **partial_system_trees; II Stores partial systems for 
II isomorphism comparison. 

char *B; II Adjacency matrix for 
II the graph associated 
II with a cycle system. 

vector_node *vector_list; 
vector_node *vector_list_current; 

inv_tree_node *inv_tree; 

inv_tree_node *tree_current; 

cycle_node *cycle_current; 

II Used to store vectors, once found. 

II A tree which stores the cycle 
II systems with their invariants. 

int *invariant; II Used to find the invariant of a 
II given cycle system. 

vector_array *vector_list_array; II A list of vectors used in finding 
I I invariants 

vector_node *temp_node; 

int *c_s_cnt_by_inv; 

int max; 

int inv_number; 

char *Vertices; 
int *cycle_lengths; 

int *vertices_used_in_path; 

int *S_3; 
int *S_4; 
int *S_5; 
int *S_6; 

vector_count o· . 

II An array to be used to keep track 
II of the number of cycle systems 
II associated with each invariant. 

II The maximum number of cycle systems 
II associated with a given invariant. 

II Used to find the number of 
II invariants that have a particular 
II number of systems. 

II Arrays used in finding the 
II cycle structure invariant. 

II An array used in finding 
II Hamilton paths. 
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cycle_system_count 

if (argc ! =2) 
{ 

O· 
' 

printf("\nUsage: %s n\n", argv[O]); 
exit(O); 
} 

n = atoi (argv[1]); 

if((n%2==0) I 1Cn<5)) 
{ 

printf("Please enter an odd integer greater than 4.\n"); 
exit(O); 
} 

printf("%d\n", n); 

II Initialize lists and trees. 

vector_list=NULL; 
if ((vector_list_current = (vector_node *) malloc (1 * sizeof 

(vector_node))) ==NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(l); 
} 

inv_tree=NULL; 

II Find the vectors which will be used to find invariants and count 
II them. 

generate_vectors(&vector_list, &vector_list_current, n, (n-1)12); 

II Store the vectors in an array, so they will not have to be all gone 
II through when finding the invariant. 

if((vector_list_array = (vector_array *) malloc (vector_count * sizeof 
(vector_array))) == NULL) 

{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

temp_node = vector_list; 

for(i=O;i<vector_count;i++) 
{ 
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if(( (vector_list_array[i]).vec = (int *) malloc ( ((n-1)12) * 
sizeof (int))) ==NULL) 

{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

for(j=O;j<(n-1)12;j++) 
((vector_list_array[i]).vec)[j] 

free(temp_node->vect); 
temp_node = temp_node->next; 
free(vector_list); 
vector_list = temp_node; 
} 

(temp_node->vect)[j]; 

II We know how much memory to set aside for the invariant vector. 

if((invariant = (int *) malloc (vector_count * sizeof (int))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

for(i=O;i<vector_count;i++) 
invariant [i] =0; 

II Initialize the vertices and cycle_lengths arrays, which will be 
II used in finding the cycle structure invariant. 

if((vertices = (char *) malloc (n * sizeof (char))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit (1); 
} 

if((cycle_lengths = (int *) malloc (((n-1)12) * sizeof(int))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

II Initialize the adjacency matrices. 

if ((A = (char *) malloc ( (n*(n-1))12 * sizeof (char))) == NULL) 
{ 

printf ("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit (1); 
} 
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for(i=O; i<(n*(n-1))12; i++) 
A[i]=1; 

B_n = n + ((n*(n-1))12); 

if( (B 
{ 

(char *) malloc ( ((B_n*B_n-B_n)l2) * sizeof(char))) == NULL) 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit (1); 
} 

for(i=O;i<((B_n*B_n-B_n)l2);i++) 
B [i] =0; 

II Find id length and allocate memory for ids. 

id_length= (B_n*(B_n-1))12 I Pseudo_Byte_Length; 
if (( (B_n*(B_n-1)12) % Pseudo_Byte_Length)>O) 

id_length++; 
id_length++; 

if((id = (char *) malloc (id_length * sizeof(char)))==NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

for(i=O;i<id_length;i++) 
id[i]=O; 

if((id2 = (char *) malloc (id_length * sizeof(char)))==NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

for(i=O;i<id_length;i++) 
id2[i]=O; 

II Find the number of n-cycles in the system. 

total_cycles = (n*(n-1))1(2*n); 

II Allocate memory for the partial id trees and the cycle system. 

if (((partial_system_trees) = (partial_system_tree **) malloc (total_cycles * 
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sizeof(partial_system_tree *))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

for(i=O;i<total_cycles;i++) 
{ 

partial_system_trees[i]=NULL; 
} 

if ((cycle_system = (cycle_sys *) malloc (total_cycles * sizeof 
(cycle_sys))) == NULL) 
{ 

printf ( "\n \nAllocation of memory failed ... line %d\n", __ LINE __ ) ; 
exit(1); 
} 

for(i=O;i<total_cycles;i++) 
{ 

if (( ((cycle_system[i]).cycle) 
(char))) == NULL) 
{ 

(char *) malloc (n * sizeof 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

for(j=O;j<n;j++) 
((cycle_system[i]).cycle)[j] 0; 

} 

II Without loss of generality, we may assume that the first cycle in 
II the system is (1,2, ... ,n). 

for(i=O;i<n;i++) 
((cycle_system[O]).cycle)[i] i+1; 

for(i=1;i<n;i++) 
set_bit(A,n,i,i+1,0); 

set_bit(A,n,1,n,O); 

II Allocate memory for the 8_3, 8_4, 8_5 and 8_6 invariant vectors. 

if ((8_3 = (int *) malloc (total_cycles * sizeof (int))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 
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for(i=O;i<total_cycles;i++) 
S_3 [i] =0; 

if ((S_4 = (int *) malloc (total_cycles * sizeof (int))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

for(i=O;i<total_cycles;i++) 
S_4[i]=O; 

if ((S_5 = (int *) malloc (total_cycles * sizeof (int))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

for(i=O;i<total_cycles;i++) 
S_5[i]=O; 

if ((S_6 = (int *) malloc (total_cycles * sizeof (int))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit (1); 
} 

for(i=O;i<total_cycles;i++) 
S_6[i]=O; 

cycle_number=2; 
invariant_count = 0; 

II Initialize the vertices_used_in_path array, to be used in finding 
II Hamilton cycles. 

if (( vertices_used_in_path = (int *) malloc (n * sizeof (int))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

II Find then-cycle decompositions of K_n. 

is_decomposable(A, n, vector_list_array, &inv_tree, 
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&tree_current, &cycle_current, invariant, B, partial_system_trees, 
vertices, cycle_lengths, vertices_used_in_path, 8_3, 8_4, 8_5 , 8_6); 

printf("\nFound /.d non-isomorphic cycle systems.\n", 
cycle_system_count); 

fflush(stdout); 

if((c_s_cnt_by_inv 
== NULL) 

{ 

(int *) malloc (invariant_count * sizeof (int))) 

printf("\n\nAllocation of memory failed ... line /.d\n", __ LINE __ ); 
exit(!); 
} 

analyse_inv_tree(inv_tree, n, 0, c_s_cnt_by_inv); 
printf("\n"); 

II Find the maximum number of systems per invariant. 

max= find_max (c_s_cnt_by_inv, invariant_count); 

II Output the number of invariants with i cycle system, 
II for each i between 1 and max. 

for(i=1; i<=max; i++) 
{ 

inv_number=O; 
for(j=O;j<invariant_count;j++) 

{ 

if(c_s_cnt_by_inv[j]==i) 
inv_number++; 

} 

printf("There are /.d invariants with exactly /.d cycle systems.\n", 
inv_number, i); 

} 

printf("\nFound /.d non-isomorphic cycle_systems.\n", 
cycle_system_count); 

printf("There are /.d different invariants . \n", invariant_count); 
printf("The maximum number of systems per invariant is /.d\n", max); 

free(cycle_system); 
free(A); 
free(vector_list_array); 
free(id); 
free(id2); 
free(B); 
free(invariant); 
free(vertices); 
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free(cycle_lengths); 
free(vertices_used_in_path); 

return(O); 
} 

II This subroutine finds then-cycle systems of order n. 

void is_decomposable (A, n, vector_list_array, inv_tree, tree_current, 
cycle_current, invariant, B, partial_system_trees, vertices, cycle_lengths, 
vertices_used_in_path, 8_3, 8_4, 8_5, 8_6) 

char *A; 
int n; 
vector_array *vector_list_array; 
inv_tree_node **inv_tree; 
inv_tree_node **tree_current; 
cycle_node **cycle_current; 
int *invariant; 
char *B; 
partial_system_tree **partial_system_trees; 
char *vertices; 
int *cycle_lengths; 
int *vertices_used_in_path; 
int *8_3; 
int *8_4; 
int *8_5; 
int *8_6; 
{ 
char decomposable = 0; 
path_node *Ham_path, *temp1, *temp2; 
int index1, i, j; 
int neighbour= 0; 
int neighbour_cnt = 0; 

I* For each vertex adjacent to vertex 1, we search for 
* a Hamilton path from vertex 1 to its neighbour in the hopes that 
* such a cycle will enable us to decompose the graph ... actually 
* it is only necessary to check 1 or 2 neighbours, depending upon 
* whether the graph has even or odd degree, for if we find that 
* the edge (1, neighbour) for some neighbour is not in a Hamilton 
* cycle, then either there is no Hamilton decomposition or this 
* edge must be in the 1-factor that remains when we remove all 
* Hamilton cycles from a graph of odd degree. 
*I 

for (index1 2 ((index1 <= n) && (!decomposable) 
&& (neighbour_cnt < 1)) 

index1 ++) 

if (what_is (A, n, 1, index1)) 
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{ 
neighbour_cnt ++; 
neighbour = index!; 
Ham_path = NULL; 

II Find a Hamilton path from 1 to neighbour. 

build_Ham_path (A, n, 1, neighbour, &Ham_path, 
vertices_used_in_path); 

while (Ham_path != NULL) 
{ 
II Remove the edges in the Hamilton cycle from A. 

set_bit (A, n, 1, neighbour, 0); 
for (tempi = Ham_path ; temp1->next != NULL ; tempi = temp1->next) 

set_bit (A, n, temp1->vertex, temp1->next->vertex, 0); 

temp2 = Ham_path; 
for(i=O;i<n;i++) 

{ 
((cycle_system[cycle_number-1]).cycle)[i] 
temp2 = temp2->next; 
} 

if(cycle_number==total_cycles) 
{ 

(temp2->vertex); 

II We have a complete cycle system. Determine if it is 
II indeed a new system. 

decomposable= 1; 

find_invariant(cycle_system, invariant, vertices, 
cycle_lengths, n, vector_list_array); 

find_group_size(cycle_system, n, B); 

find_8_3(cycle_system, 8_3, n); 

if(n>=7) 
find_8_4(cycle_system, 8_4, n); 

if(n>=9) 
find_8_5(cycle_system, 8_5, n); 

if(n>=11) 
find_8_6(cycle_system, 8_6, n); 

if(is_new_C8(cycle_system, invariant, inv_tree, 
tree_current, n, B, 8_3, 8_4, 8_5, 8_6)) 

{ 
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} 

} 

cycle_system_count++; 
for(i=O;i<total_cycles;i++) 

{ 
for(j=O;j<n;j++) 

{ 
printf("%d" ((cycle_system[i]).cycle[j]) ); 
} 

} 
printf("\n"); 
fflush(stdout); 
} 

II If we have added a cycle, but the system is not complete, 
II determine if the resulting partial system is new. 

else if (is_new_partial_system (cycle_system, n, B, 
partial_system_trees, cycle_number)) 

{ 
cycle_number++; 

II Try to decompose what remains of the graph. 

is_decomposable(A, n, vector_list_array, 
inv_tree, tree_current, cycle_current, invariant, B, 
partial_system_trees, vertices, cycle_lengths, 
vertices_used_in_path, 8_3, 8_4, 8_5, 8_6); 

cycle_number--; 
} 

I* put the cycle back in A *I 
set_bit (A, n, i, neighbour, i); 
for (tempi = Ham_path ; tempi->next != NULL ; tempi = tempi->next) 

set_bit (A, n, tempi->vertex, tempi->next->vertex, i); 

build_Ham_path (A, n, i, neighbour, &Ham_path, 
vertices_used_in_path); 

} I* end while *I 

I* free up any memory used by the last path *I 
while (Ham_path != NULL) 

{ 
tempi = Ham_path; 
Ham_path = Ham_path->next; 
free (tempi); 
} 

return; 
} 
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II This subroutine tests to see whether the edge between vertices i and j 
II remains, returning 1 if i and j are adjacent and 1 otherwise. 

char what_is (A, n, i, j) 
char *A; 
int n; 
int i· 

' 
int j; 
{ 

if (i > j) 
return what_is (A, n, j, i); 

else if (i == j) 
return 0; 

else 
return A [ (i-1)*n - (i*(i-1))12 + (j-i) - 1 ] ; 

} 

II This subroutine takes away or puts back an edge in the adjacency 
II matrix, as required. 

void set_bit (A, n, i, j, value) 
char *A; 
int n; 
int i; 
int j; 
char value; 
{ 

if (i > j) 
set_bit (A, n, j, i, value); 

else if (i j) 
{ 

if (value) 
{ 

printf ("\n\nTrying to set A [/.d, /.d]\n\n", i, j); 
exit (1); 
} 

} 

else 
A [ (i-1)*n - (i*(i-1))12 + (j-i) - 1 ] value; 

} 

II This subroutine, given two vertices x andy, builds a Hamilton path, 
II if possible, from x toy. 

void build_Ham_path (A, n, x, y, Ham_path, vertices_used_in_path) 
char *A; 
int n; 
int x; 
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int y; 
path_node **Ham_path; 
int *vertices_used_in_path; 
{ 

int path_length; 
path_node *temp; 
int index; 
int have_added; 

if (*Ham_path == NULL) 
{ 

if ((*Ham_path = (path_node *) malloc (sizeof (path_node))) == NULL) 
{ 

printf ("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit (1); 
} 

(*Ham_path)->vertex = x; 
(*Ham_path)->next = NULL; 
path_length = 1; 
} 

else 
{ 

II Find the path length. 

path_length = 0; 
for (temp = *Ham_path 

path_length ++; 
temp != NULL temp temp->next) 

} 

if (path_length == n) 
retreat_Ham_path (A, n, x, y, &(*Ham_path), &path_length, 
vertices_used_in_path); 

while ((path_length < n) && (*Ham_path != NULL)) 
{ 

for (index = 1 ; index <= n ; index ++) 
vertices_used_in_path [index - 1] = 0; 

for (temp = *Ham_path ; temp->next != NULL ; temp 
vertices_used_in_path [temp->vertex- 1] = 1; 

have_added = 0; 

temp->next) 

II Try to find a vertex that can be added to the path. 

for (index = 1 
{ 

((index <= n) && (!have_added)) index ++) 

I* make sure vertex index is adjacent to vertex temp->vertex *I 
if (what_is (A, n, temp->vertex, index)) 

{ 

I* make sure vertex index isn't already used in the path *I 
if (!(vertices_used_in_path [index- 1])) 

{ 
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I* if index == y, we can only add it if it is to be the last 
* vertex in the path 
*I 

if ((index != y) I I ((index== y) && (path_length 
{ 

I* add the vertex to the path *I 
if ((temp->next (path_node *) 

(n-1)))) 

malloc (sizeof (path_node))) == NULL) 
{ 

printf ("\n\nAllocation of memory failed ... line /.d\n", 
__ LINE __ ); 

} 
} 

} 

exit (1); 
} 

temp->next->vertex = index; 
temp->next->next NULL; 
have_ added = 1; 
path_length ++; 
} 

if (!have_added) 
retreat_Ham_path (A, n, x, y, &(*Ham_path), &path_length, 

vertices_used_in_path); 
} I* end while *I 

} 

void retreat_Ham_path (A, n, x, y, Ham_path, path_length, 
vertices_used_in_path) 

char *A; 
int n; 
int x; 
int y; 
path_node **Ham_path; 
int *path_length; 
int *vertices_used_in_path; 
{ 

path_node *temp; 
int dropped_vertex; 
int index; 
char have_retreated = 0; 

for (temp = *Ham_path ; temp->next != NULL 
dropped_vertex = temp->vertex; 

if (dropped_vertex == x) 

temp temp->next); 

I* we are completely unable to proceed to a next valid path, 
* so return a NULL path 
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*I 
{ 
free (*Ham_path); 
*Ham_path = NULL; 
*path_length = 0; 
} 

else 

} 

{ 
for (index = 1 ; index <= n ; index ++) 

vertices_used_in_path [index - 1] = 0; 

for (temp = *Ham_path ; temp->next->vertex != dropped_vertex 
; temp = temp->next) 

vertices_used_in_path [temp->vertex - 1] = 1; 

for (index = dropped_vertex + 1 ((index<= n) && (!have_retreated)) 
index ++) 

{ 
I* is vertex index is adjacent to vertex temp->vertex ? *I 
if (what_is (A, n, temp->vertex, index)) 

} 

{ 
I* make sure vertex index isn't already used in the path ? *I 
if (!(vertices_used_in_path [index- 1])) 

} 

{ 
I* if index== y, we can't add it as a vertex here *I 
if (index != y) 

} 

{ 
I* add the vertex to the path *I 
temp->next->vertex = index; 
have_retreated = 1; 
} 

if (!have_retreated) 
{ 

} 

I* we were unable to replace the last vertex with a new vertex, 
* so we must delete the last vertex in the path and attempt to 
* replace the 2nd last vertex. 
*I 

free (temp->next); 
temp->next = NULL; 
(*path_length) --; 
retreat_Ham_path (A, n, x, y, &(*Ham_path), &(*path_length), 

vertices_used_in_path); 
} 
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II This subroutine generates the possible vectors to be used for finding 
II the invariant of a cycle system, each representing a partition of n-1 
II into nonnegative even integers. 

void generate_vectors(vector_list, vector_list_current, n , length) 
vector_node **vector_list; 
vector_node **vector_list_current; 
int n; 
int length; 
{ 

int i,j; 
int sum; 
int store; 
int *vector; 

II Allocate memory for the vector. 

if((vector = (int *) malloc ((length) * sizeof (int))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line /.d\n", __ LINE __ ); 
exit(1); 
} 

II Initialize the vector. The first solution is (n-1, 0, ... ,0). 
II Store this vector. 

vector[O]=n-1; 
for(i=1;i<length;i++) 

vector[i]=O; 

store_vector((vector_list), (vector_list_current), vector, 
length); 

vector_count=1; 

II Find and store the other vectors. Each vector will have entries in 
II nonincreasing order. 

while(vector[length-1]==0) 
{ 

for(i=length-2;i>=O;i--) 
{ 

if (vector [i] >2) 
{ 

vector[i]-=2; 
sum=O; 
for(j=O;j<=i;j++) 

{ 

sum+=vector[j]; 
} 

vector[i+i]=n-1-sum; 
for(j=i+2;j<length;j++) 
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vector[j]=O; 

store=1; 
for(j=O;j<length-1;j++) 

{ 

if(vector[j]<vector[j+1]) 
{ 

} 

store=O; 
break; 
} 

if (store==1) 
{ 

store_vector((vector_list), (vector_list_current), 
vector, length); 

} 
} 

return; 
} 

vector_count++; 
} 

break; 
} 

II This subroutine stores each vector, once found, in an ordered list. 

void store_vector(vector_list, vector_list_current, vector, length) 
vector_node **vector_list; 
vector_node **vector_list_current; 
int *vector; 
int length; 
{ 

int i; 

if(*vector_list==NULL) 
{ 

if (( ((*vector_list_current)->vect) 
sizeof (int))) == NULL) 

{ 

(int *) malloc (length * 

printf("\n\nAllocation of memory failed ... line /.d\n", __ LINE __ ); 
exit (1); 
} 

for(i=O;i<length;i++) 
{ 

((*vector_list_current)->vect)[i]=vector[i]; 
} 

(*vector_list_current) -> next=NULL; 
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*vector_list=*vector_list_current; 
} 

else 

} 

{ 

if(( (*vector_list_current)->next = (vector_node *) malloc (1 * 
sizeof (vector_node))) == NULL) 

{ 

printf("\n\nAllocation of memory failed ... line /.d\n", __ LINE __ ); 
exit(!) ; 
} 

(*vector_list_current)=(*vector_list_current)->next; 

if(( (*vector_list_current)->vect = (int *) malloc (length * sizeof 
(int))) == NULL) 

{ 

printf("\n\nAllocation of memory failed ... line /.d\n", __ LINE __ ); 
exit(!); 
} 

for(i=O;i<length;i++) 
((*vector_list_current)->vect)[i]=vector[i]; 

(*vector_list_current) -> next=NULL; 
} 

II This subroutine, given a cycle system and the vector list found above, 
II finds the cycle system's invariant. 

void find_invariant(cycle_system, cycle_structure, vertices, 
cycle_lengths, n, vector_list_array) 

cycle_sys *cycle_system; 
int *cycle_structure; 
char *vertices; 
int *cycle_lengths; 
int n; 
vector_array *vector_list_array; 
{ 

int i,j,k; 
int cycle_length; 
char next_vertex; 

int cycle_lengths_count=O; 

int coordinate; 

II The length of a given cycle. 
II The next vertex in the cycle. 

II A counter to record the 
II position in cycle_lengths to 
II store the next entry. 

II The coordinate of the 
II cycle_structure vector to be 
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sum_vertices=n; 

II Initialize the arrays. 

for(i=O;i<vector_count;i++) 
{ 
cycle_structure[i]=O; 
} 

for(i=O;i<n;i++) 
vertices[i]=l; 

for(i=O;i<(n-1)12;i++) 
cycle_lengths[i]=O; 

II incremented. 

II For each pair {i,j} of vertices, find the lengths of the cycles in 
II the double neighbourhood. An edge {x,y} which occurs in both G i 
II and G_j will be thought of as a cycle of length 2. 

for(i=l;i<n;i++) 
{ 
for(j=i+l;j<=n;j++) 

{ 
II First find the length of the cycle containing the element 
II corresponding to i and j. 

next_vertex=j; 

cycle_length = find_cycle_length(i, j, next_vertex, 
cycle_system, vertices, n); 

cycle_lengths[O]=cycle_length; 
cycle_lengths_count++; 

II Find the lengths of all other cycles. Each time a vertex is 
II used in a cycle, its entry in the array vertices is set to 0. 
II Thus, when no vertices remain, every entry in this array will 
II be o. 

while(sum_vertices>O) 
{ 
II Find the next unused vertex. 

for(k=O;k<n;k++) 
{ 
if(vertices[k]==l) 

{ 
next_vertex=k+l; 
break; 
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} 

} 

} 
} 

II Find and record the length of the cycle containing this 
II vertex. 

cycle_length = find_cycle_length(i, j, 
next_vertex, cycle_system, vertices, n); 

cycle_lengths[cycle_lengths_count] = cycle_length; 
cycle_lengths_count++; 
} II end while 

II Now that all lengths have been found, arrange them in 
II nonincreasing order. 

put_in_order(cycle_lengths, (n-1)12); 

II Increment the coordinate of cycle_structure corresponding to 
II the cycle_lengths array. 

coordinate= find_vector(cycle_lengths, vector_list_array, 
(n-1)12); 

cycle_structure[coordinate]++; 

II Reset values. 
for(k=O;k<n;k++) 

vertices[k]=1; 
sum_vertices=n; 
for(k=O;k<(n-1)12;k++) 

cycle_lengths[k]=O; 
cycle_lengths_count=O; 
} 

II This subroutine finds the length of the cycle containing vertex 
II next_vertex in the double neighbourhood of vertices nbhd_vertex and 
II other_vertex. 

int find_cycle_length(nbhd_vertex, other_vertex, next_vertex, 
cycle_system, vertices, n) 

char nbhd_vertex; 
char other_vertex; 
char next_vertex; 
cycle_sys *cycle_system; 
char *vertices; 
int n; 
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{ 
int i; 
int temp; 
int current_cycle; 
int cycle_length=O; 

II The current cycle in the cycle system. 

II If this is the cycle containing the element corresponding to i and 
II j, we must ensure that both of these values will be set to 0 in 
II the array vertices. 

if(next_vertex==other_vertex) 
{ 
vertices[nbhd_vertex-1]=0; 
sum_ vertices--; 
} 

II We traverse the cycle until we find a repeated vertex, keeping 
II track of the length along the way. 

while(vertices[next_vertex-1] !=0) 
{ 
II Find which cycle in the cycle system contains the edge 
II {nbhd_vertex, next_vertex}. The other vertex in this cycle 
II adjacent to nbhd_vertex is the next vertex in the double 
II neighbourhood cycle. 

current_cycle = find_edge(nbhd_vertex, next_vertex, cycle_system, n); 

vertices[next_vertex-1]=0; 
sum_ vertices--; 

II Find the next vertex in the double neighbourhood cycle. 

if( ((cycle_system[current_cycle]).cycle)[O] == nbhd_vertex) 
{ 
if( ((cycle_system[current_cycle]).cycle)[1] == next_vertex) 

next_vertex ((cycle_system[current_cycle]).cycle)[n-1]; 
else 

next vertex ((cycle_system[current_cycle]).cycle)[1]; 
} 

else if ( ((cycle_system[current_cycle]) .cycle)[n-1] == nbhd_vertex) 
{ 
if( ((cycle_system[current_cycle]).cycle)[O] == next_vertex) 

next_vertex ((cycle_system[current_cycle]).cycle) [n-2]; 
else 

next_ vertex ((cycle_system[current_cycle]).cycle) [0]; 
} 

else 
{ 
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for(i=1;i<n-1;i++) 
{ 

} 

if( ((cycle_system[current_cycle]).cycle)[i] == nbhd_vertex) 
{ 

} 

if ( ((cycle_system[current_cycle]).cycle)[i+1] == next_vertex) 
next vertex ((cycle_system[current_cycle]).cycle)[i-1]; 

else 
next vertex ((cycle_system[current_cycle]).cycle)[i+1]; 

} 

cycle_length++; 

II The next vertex in the cycle will be in the cycle (in the 
II cycle system) containing the edge {next_vertex, other_vertex}. 
II Switch the values of nbhd_vertex and other_vertex. 

temp = nbhd_vertex; 
nbhd_vertex = other_vertex; 
other_vertex = temp; 

} 

return(cycle_length); 
} 

II This subroutine, given an integer array and its length, puts the 
II entries of the array in nonincreasing order. 

void put_in_order(array, length) 
int •array; 
int length; 
{ 
int i,j,temp; 

for(i=length-1;i>=O;i--) 
{ 
for(j=i-1;j>=O;j--) 

} 

{ 
if(array[j]<array[i]) 

{ 

} 

temp=array[j]; 
array[j]=array[i]; 
array[i]=temp; 
} 

return; 
} 
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II Find the vector in the vector list that is equal to a given vector and 
II return the appropriate coordinate value. 

int find_vector(vector, vector_list_array, length) 
int *vector; 
vector_array *vector_list_array; 
int length; 
{ 

int compare; 

int mid; 

int left,right; 

left=O; 
right=vector_count-1; 

while(right-left>O) 
{ 

mid=(left+right)l2; 

II Value will be set as 1, 0, or 2, 
II respectively, depending on whether the 
II vector to be tested is greater than, 
II equal to, or less than the middle one 
II in the vector array. 

II The coordinate of the middle vector in 
II the section of the array where the vector 
II is located. 

II The left and right coordinates, 
II respectively, of the section of the array 
II in which the vector is located. 

compare = compare_integer_array(vector, 
(vector_list_array[mid]).vec, length); 

if ( compare==O) 
{ 

left=mid; 
right=mid; 
} 

else if(compare==1) 
{ 

right=mid-1; 
} 

else 

} 

{ 

left=mid+1; 
} 

return(left); 
} 
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II Compare componentwise two given integer arrays. 
II Return 0 if they are equal, 1 if arr1 ">" arr2, or 2 if arr1 "<" arr2. 

int compare_integer_array(arr1, arr2, length) 
int *arr1; 
int *arr2; 
int length; 
{ 

int i; 
int return_value=O; 

for(i=O;i<length;i++) 
{ 

if(arr1[i]>arr2[i]) 
{ 

return_value=1; 
break; 
} 

else if(arr1[i]<arr2[i]) 
{ 

} 

return_value=2; 
break; 
} 

return(return_value); 
} 

II Check to see if the cycle system which has just been found is a new 
II system, first by comparing invariants. If the invariant is not yet in 
II the tree, the system is new, so store it. If the invariant is in the 
II tree, test among the known systems with that invariant to see if the 
II new system is isomorphic to any of them. 

int is_new_C8(cycle_system, invariant, inv_tree, tree, n, B, 8_3, 8_4, 
8_5, 8_6) 

cycle_sys *cycle_system; 
int *invariant; 
inv_tree_node **inv_tree; 
inv_tree_node **tree; 
int n; 
char *B; 
int *8_3; 
int *8_4; 
int *8_5; 
int *8_6; 
{ 

int return_value=1; 
int compare_value=O; 
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II If there are no entries yet in the tree, the system is the first 
II found. Store it . 

if(*inv_tree==NULL) 
{ 
invariant_count++; 
return_value = is_new_graph(B, invariant, cycle_system, n, 

&(*inv_tree), &(*tree), compare_value, 8_3, 8_4, 
8_5, 8_6); 

} 

II Otherwise, compare the system's invariant with those in the tree. 

else 
{ 
*tree = *inv_tree; 
while(1) 

{ 
compare_value = compare_invariant (n, invariant, (*tree)->inv, 

8_3, (*tree)->8_3, 8_4, (*tree)->8_4, 8_5, (*tree)->8_5, 
8_6, (*tree)->8_6, (*tree)->groupsize); 

if(compare_value == 0) 
{ 
return_value = is_new_graph(B, invariant, cycle_system, n, 

&(*inv_tree), &(*tree), compare_value, 8_3, 8_4, 8_5, 
8_6); 

break; 
} 

else if(compare_value==1) 
{ 
if( ((*tree)->right) != NULL) 

{ 
*tree = (*tree)->right; 
} 

else 
{ 
invariant_count++; 
return_value = is_new_graph (B, invariant, cycle_system, n, 

&(*inv_tree), &(*tree), compare_value, 8_3, 8_4, 8_5, 
8_6); 

break; 
} 

} 

else if(compare_value==2) 
{ 
if( ((*tree)->left) != NULL) 
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} 
} 

{ 
*tree (*tree)->left; 
} 

else 

} 

{ 
invariant_count++; 
return_value = is_new_graph (8, invariant, cycle_system, n, 

&(*inv_tree), &(*tree), compare_value, 8_3, 8_4, 8_5, 
8_6); 

break; 
} 

return(return_value); 
} 

II A subroutine which prints the invariants along with their associated 
II cycle systems . In addition, the number of cycle systems associated 
II with each invariant is counted and the number is stored in the array 1 
II c_s_cnt_by_inv. 

int analyse_inv_tree(inv_tree, n, posn, c_s_cnt_by_inv) 
inv_tree_node *inv_tree; 
int n; 
int posn; II Keeps track of the position in the 

II c_s_cnt_by_inv vector to be updated. 
int *c_s_cnt_by_inv; 
{ 
int c_s_count=O; II Counts the number of cycle systems 

II associated with a particular 
II invariant . 

if(inv_tree!=NULL) 
{ 
posn=analyse_inv_tree((inv_tree)->left,n,posn,c_s_cnt_by_inv); 

II Count the number of systems associated with the current 
II invariant and store it in the vector. 

c_s_count=count_cycle_systems((inv_tree)->cycle_systems); 

c_s_cnt_by_inv[posn]=c_s_count; 
posn++; 

posn=analyse_inv_tree((inv_tree)->right,n,posn,c_s_cnt_by_inv); 
} 
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return(posn); 
} 

II This subroutine tests to see if a cycle system is isomorphic to any 
II already found, by forming a unique identifier based on the canonical 
II labelling of the system's associated graph. 

int is_new_graph(B, invariant, cycle_system, n, inv_tree, curr_inv_node, 
compare_value, 8_3 , 8_4, 8_5, 8_6) 

char *B; 
int *invariant; 
cycle_sys *cycle_system; 
int n; 
inv_tree_node **inv_tree; 
inv_tree_node **Curr_inv_node; 
int compare_value; 
int *S_3; 
int *S_4; 
int *S_5; 
int *S_6; 
{ 

int is_new; 
int i; 
int cycle_number; 

II Get the adjacency matrix of the graph associated with the cycle 
II system. 

for(i=O;i<(B_n*B_n-B_n)l2;i++) 
B [i] =0; 

for(cycle_number=O; cycle_number<total_cycles; cycle_number++) 
{ 

for(i=1;i<n;i++) 
set_bit(B,B_n,n+n*cycle_number+i,n+n*cycle_number+(i+1),1); 

set_bit(B,B_n,n+n*cycle_number+n,n+n*cycle_number+1,1); 

for(i=O;i<n;i++) 
set_bit(B, B_n, n+n*cycle_number+(i+1), 

((cycle_system[cycle_number]).cycle)[i], 1); 
} 

for(i=O;i<id_length;i++) 
id[i] =0; 

II Find the system's identifier. 

get_id(B,n,id,B_n); 

II If the system is new, insert it and its id into the invariant tree. 
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is_new insert_system (invariant, cycle_system, n, id, id2, 
&(*inv_tree), &(*curr_inv_node), 
compare_value, B, S_3, S_4, S_5, S_6); 

return(is_new); 
} 

II This subroutine uses nauty to find the canonical labelling of the graph 
II associated with a given cycle system and then builds the system's id. 

void get_id(B,n,id,number_of_vertices) 
char *B; 
int n; 
char *id; 
int number_of_vertices; II Number of vertices in the graph. 
{ 

int i,j,m; 
int u,v; 
int bit_cnt; 

DYNALLSTAT(graph,g,g_sz); 
DYNALLSTAT(graph,canong,canong_sz); 
DYNALLSTAT(int,lab,lab_sz); 
DYNALLSTAT(int,ptn,ptn_sz); 
DYNALLSTAT(int,orbits,orbits_sz); 

static DEFAULTOPTIONS(options); 
statsblk(stats); 
setword workspace[WK_SP_SZ]; 
set *gv; 

m = (number_of_vertices+WORDSIZE-1)1WORDSIZE; 
nauty_check (WORDSIZE, m, number_of_vertices, NAUTYVERSIONID); 

if(WK_SP_SZ < 50 * m) 
{ 

printf("WK_SP_SZ=%d is smaller than 50*m=%d\n", WK_SP_SZ, 50*m); 
exit (1); 
} 

DYNALLOC2(graph,g,g_sz,m,number_of_vertices,"malloc"); 
DYNALLOC2(graph,canong,canong_sz,m,number_of_vertices,"malloc"); 
DYNALLOC1(int,lab,lab_sz,number_of_vertices,"malloc"); 
DYNALLOC1(int,ptn,ptn_sz,number_of_vertices,"malloc"); 
DYNALLOC1(int,orbits,orbits_sz,number_of_vertices,"malloc"); 

options.writeautoms = FALSE; 
options.writemarkers = FALSE; 
options.digraph =FALSE; 
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options.defaultptn=FALSE; 
options.tc_level=O; 
options.getcanon=TRUE; 

for(i=1;i<=number_of_vertices;i++) 
{ 

gv = GRAPHROW(g,i-1,m); 
EMPTYSET(gv,m); 
for(j=1;j<=number_of_vertices;j++) 

} 

{ 

if(what_is (B,B_n,i,j)) 
{ 

ADDELEMENT(gv,j-1); 
} 

} 

for(i=O;i<number_of_vertices;i++) 
{ 

lab[i]=i; 
ptn[i]=1; 
} 

ptn[n-1]=0; 
ptn[number_of_vertices-1]=0; 

II Get the canonical labelling. 

nauty (g, lab, ptn, NILSET, orbits, &options, &stats, workspace, 
WK_SP_SZ, m, number_of_vertices, canong); 

II Use the canonical labelling to form the id. 

i=O; 
bit_cnt=O; 
for(u=1;u<number_of_vertices;u++) 

for(v=u+1;v<=number_of_vertices;v++) 

} 

{ 

id[i]+= (what_is (B, B_n, 1+lab[u-1], 1+lab[v-1])) 
<< (Pseudo_Byte_Length- bit_cnt); 

bit_cnt++; 
if(bit_cnt==Pseudo_Byte_Length) 

{ 

id [i] +=1; 
i++; 
bit_cnt=O; 
} 

return; 
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} 

II If the system is new, this subroutine inserts the system and its id in 
II the appropriate place in the invariant tree. 

int insert_system(invariant, cycle_system, n, id1, id2, inv_tree, 
curr_inv_node, compare_value, B, 8_3, 8_4, 8_5, 8_6) 

int *invariant; 
cycle_sys *cycle_system; 
int n; 
char *id1; 
char *id2; 
inv_tree_node **inv_tree; 
inv_tree_node **curr_inv_node; 
int compare_value; 
char *B; 
int *8_3; 
int *8_4; 
int *8_5; 
int *8_6; 
{ 
inv_tree node *temp_inv_node; 
cycle_node *temp_node, *curr_cycle_node; 
char found_duplicate=O; 
int insert=O; 
int compare_ids; 
int i,j; 

if( (compare_value==O) && (*inv_tree!=NULL) ) 
II Check among other systems with the same invariant to see if an 
II isomorphic copy has already been found. 

{ 
curr_cycle_node=(*curr_inv_node)->cycle_systems; 
while ( (!found_duplicate) && (!insert) ) 

{ 
for(i=O;i<(B_n*B_n-B_n)l2;i++) 

B[i]=O; 

for(i=O; i<total_cycles; i++) 
{ 
for(j=1;j<n;j++) 

set_bit(B, B_n, n+n*i+j, n+n*i+(j+1), 1); 
set_bit(B, B_n, n+n*i+n, n+n*i+1, 1); 

for(j=O;j<n;j++) 
set_bit(B, B_n, n+n*i+(j+1), 

(((curr_cycle_node->system)[i]).cycle)[j], 1); 
} 

for(i=O;i<id_length;i++) 
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} 

else 

id2[i]=O; 

get_id(B,n,id2,B_n); 

compare_ids=strcmp(id,id2); 

if (compare_ids==O) 
found_duplicate=l; 

else if (compare_ids<O) 
{ 

if(curr_cycle_node->left!=NULL) 
curr_cycle_node = curr_cycle_node->left; 

else 
insert=!; 

} 

else 

} 

{ 

if(curr_cycle_node->right!=NULL) 
curr_cycle_node = curr_cycle_node->right; 

else 
insert=2; 

} 

II This is either the first system, or the first with its invariant. 
II Allocate memory for a new invariant node in the appropriate place 
II in the tree. 

{ 

if(*inv_tree==NULL) 
{ 

if((temp_inv_node = (inv_tree_node *) malloc (1 * 
sizeof(inv_tree_node)))==NULL) 
{ 

printf("\n\nAllocation of memory failed ... line /.d\n", 
__ LINE __ ); 

exit(l); 
} 

temp_inv_node->cycle_systems=NULL; 
temp_inv_node->left=NULL; 
temp_inv_node->right=NULL; 
*inv_tree=temp_inv_node; 
*curr_inv_node=*inv_tree; 
} 

else if (compare_value==l) 
{ 

if(( (*curr_inv_node)->right = (inv_tree_node *) malloc (1 * 
sizeof(inv_tree_node)))==NULL) 
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{ 

printf("\n\nAllocation of memory failed ... line /.d\n", 
__ LINE __ ); 

exit (1); 
} 

*curr_inv_node = (*curr_inv_node)->right; 
(*curr_inv_node)->left = NULL; 
(*curr_inv_node)->right = NULL; 
(*curr_inv_node)->cycle_systems NULL; 
} 

else if (compare_value==2) 
{ 

if(( (*curr_inv_node)->left = (inv_tree_node *) malloc (1 * 
sizeof(inv_tree_node)))==NULL) 

{ 

printf("\n\nAllocation of memory failed ... line /.d\n", 
__ LINE __ ); 

exit(1); 
} 

*curr_inv_node = (*curr_inv_node)->left; 
(*curr_inv_node)->left = NULL; 
(*curr_inv_node)->right = NULL; 
(*curr_inv_node)->cycle_systems NULL; 
} 

if(( (*curr_inv_node)->inv = (int *) malloc (vector_count * 
sizeof(int))) == NULL) 

{ 
printf ("\n\nAllocation of memory failed ... line /,d\n", __ LINE __ ); 
exit(!); 
} 

for(i=O;i<vector_count;i++) 
{ 

((*curr_inv_node)->inv)[i]=invariant[i]; 
} 

if(( (*curr_inv_node)->8_3 = (int *) malloc (total_cycles * sizeof 
(int))) == NULL) 

{ 

printf("\n\nAllocation of memory failed ... line /.d\n", __ LINE __ ); 
exit(!); 
} 

for(i=O;i<total_cycles;i++) 
{ 

((*curr_inv_node)->8_3)[i] 
} 

8_3 [i]; 
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if (n>=7) 
{ 

if(( (*curr_inv_node)->8_4 = (int *) malloc (total_cycles * sizeof 
(int))) == NULL) 

{ 

printf("\n\nAllocation of memory failed ... line Y.d\n", __ LINE __ ); 
exit(!); 
} 

for(i=O;i<total_cycles;i++) 

} 

{ 

((*curr_inv_node)->8_4)[i] 
} 

8_4[i]; 

if(n>=9) 
{ 

if(( (*curr_inv_node)->8_5 = (int *) malloc (total_cycles * sizeof 
(int))) == NULL) 

{ 

printf("\n\nAllocation of memory failed ... line Y,d\n", __ LINE __ ); 
exit(1); 
} 

for(i=O;i<total_cycles;i++) 

} 

{ 

((*curr_inv_node)->8_5)[i] 
} 

8_5 [i] ; 

if (n>=11) 
{ 

if(( (*curr_inv_node)->8_6 = (int *) malloc (total_cycles * sizeof 
(int))) == NULL) 

{ 

printf("\n\nAllocation of memory failed ... line Y,d\n", __ LINE __ ); 
exit(1); 
} 

for(i=O;i<total_cycles;i++) 

} 

{ 

((*curr_inv_node)->8_6)[i] 
} 

8_6 [i]; 

(*curr_inv_node)->groupsize = groupsize_int; 

} 
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II If the system is indeed new, store it in the invariant tree. 

if(!found_duplicate) 
{ 

if((temp_node = (cycle_node *) malloc (1 * sizeof(cycle_node))) 
NULL) 

{ 

printf("\n\nAllocation of memory failed ... line /.d\n", __ LINE __ ); 
exit(1) ; 
} 

if(( (temp_node)->system = (cycle_sys *) malloc (total_cycles * 
sizeof(cycle_sys))) == NULL) 

{ 

printf("\n\nAllocation of memory failed ... line /.d\n", __ LINE __ ); 
exit(1); 
} 

for(i=O;i<total_cycles;i++) 
{ 

if (( (((temp_node)->system)[i]).cycle 
sizeof (char))) ==NULL) 

{ 

(char *) malloc (n * 

printf("\n\nAllocation of memory failed ... line /.d\n", __ LINE __ ); 
exit(1); 
} 

for(j=O;j<n;j++) 
((((temp_node)->system)[i]).cycle)[j] 

((cycle_system[i]).cycle)[j]; 
} 

temp_node->left=NULL; 
temp_node->right=NULL; 

if(insert==1) II which means we came from the case where 

{ 

II compare_value=O, inv_tree wasn't null upon entry 
II to subroutine, and the system must be stored in 
II the left cycle system subtree 

curr_cycle_node->left=temp_node; 
} 

else if(insert==2) II the system must be stored in the right 
II subtree. 

{ 

curr_cycle_node->right=temp_node; 
} 

else 
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II This is the first system to be stored attached to its invariant node. 
{ 

(*curr_inv_node)->cycle_systems = temp_node; 
insert=1; 
} 

} 

return(insert); 
} 

II This subroutine finds the maximum value of those stored in an integer 
II array. It is used to find the maximum number of cycle systems 
II associated with an invariant. 

int find_max(array, length) 
int *array; 
int length; 
{ 

int i; 
int max = array[O]; 

for(i=1;i<length;i++) 
{ 

if(array[i]>max) 
max= array[i]; 

} 

return(max); 
} 

II This subroutine determines if a partial system of a cycle system is isomorphic 
II to one which has already been tested. 

int is_new_partial_system(cycle_system, n, B, partial_system_trees, cycle_number) 
cycle_sys *cycle_system; 
int n; 
char *B; 
partial_system_tree **partial_system_trees; 
int cycle_number; 
{ 

int i,j; 
int number_of_vertices=n+n*cycle_number; 
int is_new; 

II let's try to reduce the amount of memory needed, by not 
II checking for isomorphisms at every level . 
if (cycle_number > total_cycles - 2) 

return 1; 
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II Set the values for the adjacency matrix of the graph associated 
II with the partial system. 

for(i=O;i<(B_n*B_n-B_n)l2;i++) 
B[i]=O; 

for(i=O; i<cycle_number; i++) 
{ 
for(j=1;j<n;j++) 

set_bit(B, B_n,n+n*i+j, n+n*i+(j+1), 1); 
set_bit(B, B_n, n+n*i+n, n+n*i+1, 1); 

for(j=O;j<n;j++) 
set_bit(B, B_n, n+n*i+(j+1), ((cycle_system[i]).cycle)[j], 1); 

} 

II Find the partial system's identifier. 

for(i=O;i<id_length;i++) 
id(i]=O; 

get_id(B,n,id,number_of_vertices); 

II If the partial system is new, insert its id into the appropriate tree 
II in the partial system_trees array. 

is_new insert_partial_system (&(partial_system_trees[cycle_number]), id, 
cycle_system, cycle_number, B, n, number_of_vertices); 

return(is_new); 
} 

II This subroutine tests to see if a partial cycle system is 
II isomorphic to any already tested. If not, the partial system 
II is stored in an appropriate tree. 

int insert_partial_system (tree, id, cycle_system, cycle_number, B, n, 
number_of_vertices) 

partial_system_tree **tree; 
char *id; 
cycle_sys *cycle_system; 
int cycle_number; 
char *B; 
int n; 
int number_of_vertices; 
{ 
partial_system_tree *temp_tree, *tree_curr; 
int inserted=O; 
char found_duplicate=O; 
int compare_id; 
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int i,j; 

if(*tree==NULL) 
II The partial system is new; store it. 

{ 

if(( temp_tree = (partial_system_tree *) malloc (1 * sizeof 
(partial_system_tree))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

if(( temp_tree->partial_system = (cycle_sys *) malloc (cycle_number * 
sizeof(cycle_sys))) == NULL) 

{ 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

for(i=O;i<cycle_number;i++) 
{ 

if(( ((temp_tree->partial_system)[i]).cycle 
sizeof(char))) == NULL) 

{ 

(char *) malloc (n * 

printf("\n\nAllocation of memory failed ... line %d\n", __ LINE __ ); 
exit(1); 
} 

for(j=O;j<n;j++) 
{ 

(((temp_tree->partial_system)[i]).cycle)[j] 
((cycle_system[i]).cycle)[j]; 

} 
} 

temp_tree->left=NULL; 
temp_tree->right=NULL; 

*tree = temp_tree; 
inserted=!; 
} 

else 
II Go through the tree to see if the partial system has already been entered. 
II If not, insert it in the appropriate position in the tree. 

{ 

tree_curr = *tree; 

while ((!inserted) && (!found_duplicate)) 
{ 

II Form the adjacency matrix for the graph associated with the 
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II partial system and get the partial system's id. 

for(i=O;i<(B_n*B_n-B_n)l2;i++) 
B [i] =0; 

for(i=O; i<cycle_number; i++) 
{ 

for(j=1;j<n;j++) 
set_bit(B, B_n, n+n*1+J, n+n*i+(j+1), 1); 

set_bit(B, B_n, n+n*i+n, n+n*i+1, 1); 

for(j=O;j<n;j++) 

} 

set_bit(B, B_n, n+n*i+(j+1), 
(((tree_curr->partial_system)[i]).cycle)[j], 1); 

for(i=O;i<id_length;i++) 
id2 [i) =0; 

get_id(B,n,id2,number_of_vertices); 

II Compare the partial system's identifier (id) with that of the 
II partial system in the current tree node (id2). If they are 
II equal, the partial systems are isomorphic. If id < id2, search 
II the left subtree, if possible. Otherwise, search the right 
II subtree, if possible. 

compare_id = strcmp (id, id2); 
if(compare_id==O) 

found_duplicate = 1; 
else if (compare_id < 0) 

{ 

if(tree_curr->left !=NULL) 
tree_curr = tree_curr->left; 

else 
{ 

if((temp_tree = (partial_system_tree *) malloc (1 * 
sizeof(partial_system_tree))) == NULL) 

{ 

printf( 11 \n\nAllocation of memory failed ... line %d\n 11
, 

__ LINE __ ); 
exit(1); 
} 

if((temp_tree->partial_system = (cycle_sys *) malloc 
(cycle_number * sizeof (cycle_sys))) == NULL) 
{ 

printf ( 11 \n \nAllocation of memory failed ... line %d\n 11 
, 

__ LINE __ ); 
exit(1); 
} 

for(i=O;i<cycle_number;i++) 
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{ 

if (( (((temp_tree)->partial_system)[i]).cycle =(char*) 
malloc (n * sizeof (char))) == NULL) 

{ 

printf("\n\nAllocation of memory failed . .. line %d\n", 
__ LINE __ ); 

exit(!); 
} 

for(j=O;j<n;j++) 
((((temp_tree)->partial_system)[i]).cycle) [j] 

((cycle_system[i]).cycle)[j]; 
} 

temp_tree->left=NULL; 
temp_tree->right=NULL; 

tree_curr->left = temp_tree; 

inserted=!; 
} // end else 

} // end else 

else 
{ 

if(tree_curr->right !=NULL) 
tree_curr = tree_curr->right; 

else 
{ 

if((temp_tree = (partial_system_tree *) malloc (1 * 
sizeof(partial_system_tree))) == NULL) 

{ 

printf("\n\nAllocation of memory failed ... line %d\n", 
__ LINE __ ); 

exit(1); 
} 

if((temp_tree->partial_system = (cycle_sys *) malloc 
(cycle_number * sizeof (cycle_sys))) == NULL) 
{ 

printf("\n\nAllocation of memory failed ... line %d\n", 
__ LINE __ ); 

exit(!); 
} 

for(i=O;i<cycle_number;i++) 
{ 

if (( (((temp_tree)->partial_system)[i]).cycle =(char*) 
malloc (n * sizeof (char))) ==NULL) 

{ 

printf("\n\nAllocation of memory failed ... line %d\n", 
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__ LINE __ ); 
exit (1); 
} 

for(j=O;j<n;j++) 
((((temp_tree)->partial_system)[i]).cycle) [j] 

((cycle_system[i]).cycle) [j]; 
} 

temp_tree->left=NULL; 
temp_tree->right=NULL; 

tree_curr->right = temp_tree; 

inserted=!; 
} II end else 

} II end else 

} I I end while 
} II end else 

return(inserted); 
} 

II This subroutine counts the number of cycle systems in a tree. It 
II is used to count the number of cycle systems associated with a 
II particular invariant. 

int count_cycle_systems (cycle_system_tree) 
cycle_node •cycle_system_tree; 
{ 

int count=O; 

if(cycle_system_tree!=NULL) 
{ 

count+=count_cycle_systems(cycle_system_tree->left); 
count++; 
count+=count_cycle_systems(cycle_system_tree->right); 
} 

return(count); 
} 

II This subroutine, given two vertices v1 and v2 of ann-cycle system of 
II order n, finds the cycle which contains the edge {v1,v2}. 

int find_edge(v1,v2,cycle_system,n) 
char v1; 
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char v2; 
cycle_sys *cycle_system; 
int n; 
{ 

int i,j; 
int return_value; 

II Find the cycle with edge {v1,v2}. 

for(i=O;i<total_cycles;i++) 
{ 

if( ((cycle_system[i]).cycle)[O]==v1 
{ 

if( (((cycle_system[i]).cycle)[1]==v2) I I 

} 

(((cycle_system[i]).cycle)[n-1]==v2)) 
{ 

return_value=i; 
break; 
} 

else if( ((cycle_system[i]).cycle)[n-1]==v1) 
{ 

if( (((cycle_system[i]).cycle)[n-2]==v2) I I 

} 

(((cycle_system[i)).cycle)[O]==v2)) 
{ 

return_value=i; 
break; 
} 

else 

} 

{ 

for(j=1;j<n-1;j++) 
{ 

} 

if ( ((cycle_system[i]).cycle)[j]==v1) 
{ 

} 

if( (((cycle_system[i]).cycle)[j-1]==v2) I I 

} 

(((cycle_system[i]).cycle)[j+1]==v2)) 
{ 

return_value=i; 
break; 
} 

return(return_value); 
} 
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II This subroutine compares the invariants of two cycle systems. 

int compare_invariant(n, cycle_structure1, cycle_structure2, 8_3_1, 
8_3_2, 8_4_1, 8_4_2, 8_5_1, 8_5_2, 8_6_1, 8_6_2, group2) 

int n· 
' int *cycle_structure1; 

int *cycle_structure2; 
int *8_3_1; 
int *8_3_2; 
int *8_4_1; 
int *8_4_2; 
int *8_5_1; 
int *8_5_2; 
int *8_6_1; 
int *8_6_2; 
int group2; 
{ 

int compare_ value; 

compare_value = compare_integer_array(cycle_structure1, 
cycle_structure2, vector_count); 

if(compare_value!=O) 
return(compare_value); 

compare_value = compare_integer_array(8_3_1, 8_3_2, total_cycles); 
if(compare_value!=O) 

return(compare_value); 

if (n>=7) 
{ 

compare_value = compare_integer_array(8_4_1, 8_4_2, total_cycles); 
if(compare_value!=O) 

return(compare_value); 
} 

if (n>=9) 
{ 

compare_value = compare_integer_array(8_5_1, 8_5_2, total_cycles); 
if(compare_value!=O) 

return(compare_value); 
} 

if (n>=11) 
{ 

compare_value = compare_integer_array(8_6_1, 8_6_2, total_cycles); 
if(compare_value!=O) 

return(compare_value); 
} 
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compare_value = compare_integers(groupsize_int, group2); 
if(compare_value!=O) 

return(compare_value); 

return(O); 
} 

II This subroutine finds the sum-bicolour vector of rank 3 for the cycle system. 

void find_8_3(cycle_system, 8_3, n) 
cycle_sys *cycle_system; 
int *8_3; 
int n· 

' 
{ 

int i ,j; 
int y; 

for(i=O;i<total_cycles;i++) 
8_3[i]=O; 

for(i=O;i<total_cycles;i++) 
{ 

for(j=O;j<n-2;j++) 
{ 

y = find_edge( ((cycle_system[i]).cycle)[j], 
((cycle_system[i]).cycle)[j+2], cycle_system, n); 

8_3[y]++; 
} 

y = find_edge( ((cycle_system[i]).cycle)[n-2], 
((cycle_system[i]).cycle)[O], cycle_system, n); 

8_3[y]++; 

y = find_edge( ((cycle_system[i]).cycle)[n-1], 
((cycle_system[i]).cycle)[1], cycle_system, n); 

8_3[y]++; 
} 

printf("8_3: "); 
for(i=O;i<total_cycles;i++) 

printf("%d ", 8_3[i]); 
printf("\n"); 

order_array(8_3); 

return; 
} 
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II This subroutine finds the sum-bicolour vector of rank 4 for the system . 

void find_8_4(cycle_system, 8_4, n) 
cycle_sys *cycle_system; 
int *8_4; 
int n· 

' 
{ 

int i' j; 
int y; 

for(i=O;i<total_cycles;i++) 
8_4[i]=O; 

for(i=O;i<total_cycles;i++) 
{ 

for(j=O;j<n-3;j++) 
{ 

y = find_edge( ((cycle_system[i]).cycle)[j], 
((cycle_system[i]).cycle)[j+3], cycle_system, n); 

8_4[y]++; 
} 

y = find_edge( ((cycle_system[i]).cycle)[n-3], 
((cycle_system[i]) . cycle)[O], cycle_system, n); 

8_4[y]++; 

y = find_edge( ((cycle_system[i]).cycle) [n-2], 
((cycle_system[i]).cycle)[1], cycle_system, n); 

8_4[y]++; 

y = find_edge( ((cycle_system[i]) . cycle)[n-1], 
((cycle_system[i]).cycle)[2], cycle_system, n); 

8_4[y]++; 
} 

printf("8_4: "); 
for(i=O;i<total_cycles;i++) 

printf("/.d ", 8_4[i]); 
printf("\n"); 

order_array(8_4); 
} 

II This subroutine finds the sum-bicolour vector of rank 5 for the system . 

void find_8_5(cycle_system, 8_5, n) 
cycle_sys *cycle_system; 
int *8_5; 
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int n· , 
{ 

int i ,j; 
int y; 

for(i=O;i<total_cycles;i++) 
8_5[i]=O; 

for(i=O;i<total_cycles;i++) 
{ 

for(j=O;j<n-4;j++) 
{ 

y = find_edge( ((cycle_system[i]).cycle)[j], 
((cycle_system[i]).cycle)[j+4], cycle_system, n); 

8_5[y]++; 
} 

y = find_edge( ((cycle_system[i]).cycle) [n-4], 
((cycle_system[i]).cycle)[O], cycle_system, n); 

S_5[y]++; 

y = find_edge( ((cycle_system[i]).cycle)[n-3], 
((cycle_system[i]).cycle)[1], cycle_system, n); 

8_5 [y] ++; 

y = find_edge( ((cycle_system[i]).cycle)[n-2], 
((cycle_system[i]).cycle)[2], cycle_system, n); 

8_5[y]++; 

y = find_edge( ((cycle_system[i]).cycle)[n-1], 
((cycle_system[i]) . cycle)[3], cycle_system, n); 

8_5 [y] ++; 
} 

printf("8_5: "); 
for(i=O;i<total_cycles;i++) 

printf("%d ", 8_5[i]); 
printf("\n"); 

order_array(8_5); 
} 

II This subroutine finds the sum-bicolour vector of rank 6 for the system. 

void find_8_6(cycle_system, 8_6, n) 
cycle_sys *cycle_system; 
int *8_6; 
int n; 

131 



{ 

int i,j; 
int y; 

for(i=O;i<total_cycles;i++) 
S_6[i] = 0; 

for(i=O;i<total_cycles;i++) 
{ 

for(j=O;j<n-5;j++) 
{ 

y = find_edge( ((cycle_system[i]).cycle)[j], 
((cycle_system[i]).cycle)[j+5], cycle_system, n); 

S_6[y]++; 
} 

y = find_edge( ((cycle_system[i]).cycle) [n-5], 
((cycle_system[i]).cycle)[O], cycle_system, n); 

S_6 [y] ++; 

y = find_edge( ((cycle_system[i]).cycle)[n-4], 
((cycle_system[i]).cycle)[1], cycle_system, n); 

S_6[y]++; 

y = find_edge( ((cycle_system[i]).cycle)[n-3], 
((cycle_system[i]).cycle)[2], cycle_system, n); 

S_6[y]++; 

y = find_edge( ((cycle_system[i]).cycle)[n-2], 
((cycle_system[i]).cycle)[3], cycle_system, n); 

S_6[y]++; 

y = find_edge( ((cycle_system[i]).cycle)[n-1], 
((cycle_system[i]).cycle)[4], cycle_system, n); 

S_6 [y] ++; 
} 

order_array(S_6); 

printf("S_6: "); 
for(i=O;i<total_cycles;i++) 

printf("%d ", S_6[i]); 
printf("\n"); 

} 

II This subroutine, given the integer arrayS of length total_cycles, 
II puts the elements of S in nondecreasing order. 
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void order_array(S) 
int *S; 
{ 

int i ,j; 
int temp; 

for(i=O;i<total_cycles;i++) 
{ 

for(j=i+1;j<total_cycles;j++) 
{ 

} 

if (S [j] <S [i]) 
{ 

temp=S[j]; 
S [j] =S [i]; 
S[i]=temp; 
} 

} 

return; 
} 

II A subroutine to compare the value of two integers. 

int compare_integers(int1, int2) 
int inti; 
int int2; 
{ 

int return_value=O; 

if (int1>int2) 
return_value=1; 

else if (int1<int2) 
return_value=2; 

return(return_value); 
} 

II This subroutine finds the automorphism group order of a cycle system. 

void find_group_size(cycle_system, n, B) 
cycle_sys *cycle_system; 
int n; 
char *B; 
{ 

int m; 
int i,j; 
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DYNALLSTAT(graph,g,g_sz); 
DYNALLSTAT(graph,canong,canong_sz); 
DYNALLSTAT(int,lab,lab_sz); 
DYNALLSTAT(int,ptn,ptn_sz); 
DYNALLSTAT(int,orbits,orbits_sz); 

static DEFAULTOPTIONS(options); 
statsblk(stats); 
setword workspace[WK_SP_SZ]; 
set *gv; 

m = (B_n+WDRDSIZE-1)IWDRDSIZE; 
nauty_check (WDRDSIZE, m, B_n, NAUTYVERSIONID); 

if(WK_SP_SZ < 50 * m) 
{ 

printf("WK_SP_SZ=%d is smaller than 50*m=%d\n", WK_SP_SZ, 50*m); 
exit(1); 
} 

DYNALLOC2(graph,g,g_sz,m,B_n,"malloc"); 
DYNALLOC2(graph,canong,canong_sz,m,B_n,"malloc"); 
DYNALLOC1(int,lab,lab_sz,B_n,"malloc"); 
DYNALLOC1(int,ptn,ptn_sz,B_n,"malloc"); 
DYNALLOC1(int,orbits,orbits_sz,B_n,"malloc"); 

options.writeautoms = FALSE; 
options.writemarkers = FALSE; 
options.digraph =FALSE; 
options.defaultptn=FALSE; 
options.tc_level=O; 
options.getcanon=TRUE; 

II Find the adjacency matrix. 

for(i=O;i<(B_n*B_n-B_n)l2;i++) 
B [i] =0; 

for(i=O; i<total_cycles; i++) 
{ 

for(j=O;j<n-1;j++) 
set_bit(B,B_n,n+n*i+(j+1),n+n*i+(j+2),1); 

set_bit(B,B_n,n+n*i+n,n+n*i+1,1); 

for(j=O;j<n;j++) 
set_bit(B, B_n, n+n*i+(j+1),((cycle_system[i]).cycle)[j] ,1); 

} 

for(i=1;i<=B_n;i++) 
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{ 

gv = GRAPHROW(g,i-1,m); 
EMPTYSET(gv,m); 
for(j=1;j<=B_n;j++) 

} 

{ 

if(what_is (B,B_n,i,j)) 
{ 

ADDELEMENT(gv,j-1); 
} 

} 

for(i=O;i<B_n;i++) 
{ 

lab [i] =i; 
ptn[i] =1; 
} 

ptn[n-1]=0; 
ptn[B_n-1]=0; 

nauty (g, lab, ptn, NILSET, orbits, &options, &stats, workspace, 
WK_SP_SZ, m, B_n, canong); 

groupsize_dbl stats.grpsize1 * pow(10,stats .grpsize2); 

groupsize_int groupsize_dbl; 
if( (groupsize_dbl-groupsize_int) > 0.1) 

{ 

groupsize_int++; 
} 

if(groupsize_int!=1) 
printf("Groupsize=/.d\n", groupsize_int); 

return; 
} 
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