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ABSTRACT 

The female skeleton loses a substantial amount of mineral content during lactation 

but then is fully restored after weaning. Very little is known about how this is regulated 

or accomplished. We studied calcium and bone metabolism during pregnancy and 

lactation in normal mice and in mutants that lack the gene encoding parathyroid hormone 

(PTH) to determine if PTH is required for the normal accretion of mineral during early 

pregnancy and the restoration of mineral after weaning. 

We demonstrated that Pth null mothers were hypocalcemic and 

hyperphosphatemic as compared to normal. Some Pth null mothers had trouble lactating 

or died under anesthesia; both factors may have been due to hypocalcemia. To address 

this issue, midway through the project, all mice were placed on a 2% calcium chow 

instead ofthe standard 1% calcium chow. All genotypes (wild-type [WT], heterozygous 

[HET] and Pth null [HOM]) experienced similar gains in bone mineral content (BMC) 

during pregnancy and lost a comparable amount during lactation regardless of the chow 

they were fed. For the mice fed the standard chow, all genotypes showed a complete 

recovery in BMC within three weeks of weaning. 

In summary, these preliminary results suggest that PTH is required for some 

aspect of normal calcium homeostasis during pregnancy and especially lactation but not 

to maintain mineral homeostasis and in particular, not to restore skeletal mineral content 

that was lost during lactation. 
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I Introduction 

1.1 Calcium and Bone Homeostasis 

In humans and other mammals, normal calcium and bone homeostasis includes 

the mechanisms whereby the concentration of calcium is tightly regulated in blood and 

extracellular fluid to control various biochemical processes (including muscle 

contraction, blood coagulation, nerve conduction), and whereby a sturdy and fully 

mineralized skeleton is maintained (1). In the adult, calcium and bone homeostasis is 

regulated in large part by parathyroid hormone (PTH), 1,25-dihydroxyvitamin D (the 

active form of vitamin D), calcitonin, and the sex steroids. 

At the heart of calcium homeostasis is the need to control the blood calcium 

level, and this is regulated in large part by the calcium-sensing receptor (CaSR). This 

seven transmembrane-spanning, G protein-coupled receptor acts as the extracellular fluid 

compartment's thermostat for calcium and in particular regulates ionized calcium, which 

is the fraction of plasma calcium that is important for physiological processes (2). The 

CaSR does this through its presence in the chief cells of the parathyroid gland, the 

thyroidal C-cells, and the cells along the kidney tubules that are involved in calcium 

exchange (2). In response to an increase in ionized calcium, the CaSR modulates a 

decrease in the synthesis and secretion of PTH, an increase in the synthesis and secretion 

of calcitonin, and a reduction in urinary calcium reabsorption (2). This all occurs in an 

attempt to restore normocalcemia (2). On the other hand, in response to a decrease in 

ionized calcium, the CaSR is less activated by calcium ions. As a result, PTH synthesis 

and release escapes from inhibition, calcitonin synthesis and release is decreased, and 
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urinary calcium reabsorption is increased (2). These actions of the CaSR allow it to act 

as an effective moment-to-moment regulator of ionized calcium (2). 

PTH is a major regulator of calcium homeostasis in the adult and it has several 

sites of action (3). It binds to its receptor on osteoblasts (bone forming cells) and 

osteoblast precursors; activation of the PTH receptor induces proliferation and 

differentiation, and reduces apoptosis of osteoblasts. In turn, activated osteoblasts 

stimulate the osteoclasts (bone resorbing cells) and osteoclast precursors to resorb bone 

and thereby release calcium and phosphate into the circulation. Thus, PTH indirectly 

stimulates bone resorption by acting on osteoblasts. PTH also acts on the kidney tubules 

to stimulate the reabsorption of calcium in the proximal tubules and to inhibit the 

reabsorption of phosphate in the distal tubules. It also enhances the synthesis of 1 ,25-

dihydroxyvitamin D through stimulation of the enzyme 1-a-hydroxylase in the renal 

tubules of the kidneys, which converts 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D 

(calcitriol) (3). 

The mechanism by which PTH indirectly stimulates osteoclasts is not 

completely understood. If PTH stimulation of osteoblasts is sustained, osteoblasts in turn 

increase the secretion of receptor activator ofNF-KB ligand (RANKL) and decrease the 

secretion of osteoprotegerin (OPG). RANKL is a type II membrane protein containing a 

cytoplasmic N-terminus and extracellular C-terminus. It is expressed in mature 

osteoblasts and has two known receptors; receptor activator ofNF-KB (RANK) and OPG 

which are both members ofthe tumor necrosis factor receptor (TNFR) superfamily (4). 

RANK is a type I transmembrane protein while OPG lacks a transmembrane domain and 
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as a result is secreted. OPG functions as a decoy receptor to remove RANKL, whereas 

the absence of OPG permits RANKL to bind to RANK on osteoclasts. Thus, a net 

increase in RANKL/OPG enables RANKL to bind to its receptor on osteoclasts and 

osteoclast precursors, thereby stimulating osteoclastogenesis and osteoclast function 

leading to bone resorption (3,4). Short pulses ofPTH increase the number of osteoblast 

cells by increasing the number of osteoprogenitor cells, decreasing the apoptosis of 

preosteoblasts and osteoblasts, increasing osteoblast proliferation, and possibly by 

converting the inactive bone lining cells to active osteoblasts (3). In turn, with a 

sustained PTH signal, there is an increase in osteoclast cell number and activity and these 

cells appear to take an active role, leading to bone loss (3). Factors including the dose of 

PTH, the mode of administration and the animal species determine whether the hormone 

is catabolic (net decrease in bone mass) or anabolic (net increase in bone mass) (3). 

1 ,25-dihydroxyvitamin D plays a role in calcium homeostasis by increasing 

calcium absorption in the intestine through interaction with its nuclear vitamin D receptor 

(3,5). It also induces several proteins in the small intestine, including calcium binding 

protein calbindin-D9K, alkaline phosphatase, Ca2+-ATPase, calmodulin and others, 

which facilitate calcium movement in the cytoplasm and transfer calcium from the basal 

lateral membrane into the circulation (5). Much of the calcium absorbed from the diet is 

actively absorbed through means that are dependent upon 1,25-dihydroxyvitamin D. 

Calcitonin is another factor that influences calcium homeostasis. It is a peptide 

secreted primarily by the thyroidal C-cells but also by cells of the neuroendocrine system, 

mammary tissue, and placenta ( 6). Calcitonin acts on the skeleton by inhibiting the 
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activity of the osteoclasts so that less bone resorption takes place and, thereby, less 

calcium is released into the circulation (6). It also acts on the kidney by increasing the 

amount of calcium that is excreted in the urine (6). Although originally thought to be an 

important calcium regulatory hormone when first discovered, work in the past 20 years 

has indicated that it is largely vestigial in higher mammals, but can certainly have 

physiological effects in humans at pharmacological doses. Other effects of calcitonin 

have been observed including, anti-inflammatory actions, fracture and wound healing 

actions and antihypertensive actions, however the importance of these pharmacological 

aspects is yet to be determined physiologically (6). 

Parathyroid hormone-related protein (PTHrP) is a second member of the PTH 

family. It is not likely to have a major role in the day-to-day maintenance of calcium 

homeostasis because of the fact that it is normally absent from the adult circulation (7). 

This hormone acts in many tissues to regulate development and function and as will be 

discussed in Section 1.3.2, it is an important factor during lactation. 

PTHrP is widely expressed in fetal tissues, many epithelial surfaces, skeletal 

and heart muscle, distal renal tubules, hair follicles, brain and placenta (7). PTHrP and 

PTH share a common receptor (PTHIPTHrP receptor) and both have similar ranges of 

biological activities as they produce hypercalcemia, hypophosphatemia and cause an 

increase in 1 ,25-dihydroxyvitamin D production by the kidney (7). 
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1.2 Bone Mass Changes with Age 

In trying to understand calcium and bone homeostasis during pregnancy and 

lactation, it is important to know how the skeleton adapts to age and other physiological 

stimuli. Despite common belief, the skeleton is not a static tissue but is a dynamic living 

organ that undergoes a continuous remodeling process such that bone is constantly being 

broken down while an equal amount of new bone is formed to replace it. It is through 

this constant remodeling process that bone strength is maintained; without remodeling, 

bone accumulates microdamage and becomes fragile over time. Childhood and early 

adolescence is a period characterized by longitudinal growth along with changes in 

skeletal size and shape (8). As shown in figure 1.1, when children grow, their bones are 

in a state of net bone gain in which bone formation exceeds bone resorption. Bone mass 

increases dramatically during growth and the amount of bone accumulated during this 

time may be important for the resistance to fractures in later life (8). When humans reach 

the approximate age of 20, they have attained their peak bone mass, and there is no 

further increase afterward. This level is maintained until menopause in women or older 

ages in men, after which there is a loss in bone mass due to decreases in various hormone 

levels. 

Bone loss can also occur in adults as a result of such factors as prolonged 

inactivity or illness, estrogen withdrawal, weightlessness or corticosteroid treatment 

(4,9,10). In particular, when patients take doses of corticosteroids that exceed the 

equivalent of physiological amounts, at the molecular level, they experience an increase 
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Figure 1.1: Relative changes in bone mass with age. As depicted, men and women 

experience slightly different changes in their bone mass as they age. In later life, the 

decrease in bone mass is more extreme for women (menopause) than men. 

(Reproduced from: Kassem J, Melton LJ, Riggs BL 1996 The type 1/type II mode for 

involutional osteoporosis. Osteoporosis pp. 691-702). 

6 



in the number of apoptotic osteoblasts and osteocytes and bone biopsies have shown a 

decrease in trabecular bone mean wall thickness along with a decrease in bone volume 

(10). Parameters of bone resorption such as osteoclast-covered surface and osteoclast 

number have also been shown to be increased, meaning that bone resorption is occurring 

at a rate that exceeds bone formation and therefore, more bone is being broken down than 

new bone is being formed (1 0). As an example, bone loss as a result of steroid treatment 

occurs primarily in the trabecular bone ( 1 0). People taking steroids often have a low 

mineral apposition rate, a reduction in the trabecular wall thickness and a decrease in the 

number of osteoid seams leading to a decrease in bone volume (10). Any losses 

experienced by an adult due to steroid treatment are largely permanent, or are only 

partially recovered from. 

1.3 Pregnancy and Lactation 

For women, skeletal metabolism is significantly altered during pregnancy and 

lactation. This particular time period demonstrates how the skeleton can be used as a 

storehouse of mineral in order to provide to the fetus and neonate. Although pregnant 

and lactating women both experience similar demands in the amount of calcium needed 

to supply the fetus or neonate, the adjustments that must be made in each of these 

reproductive periods differs significantly from each other, as well as from the non­

pregnant state. As explained in the next section, pregnant women meet the extra calcium 

requirements to provide to the developing fetus mainly by increasing the absorption of 

calcium from the diet (figure 1.2) (11). On the other hand, during lactation, nursing 
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Figure 1.2: Schematic illustration of calcium homeostasis in human pregnancy and 

lactation, as compared to normal. The arrow thickness indicates a relative increase or 

decrease with respect to the normal and non-pregnant state. (Adapted from: Kovacs CS, 

Kronenberg HM 1997 Maternal-Fetal Calcium and Bone Metabolism During Pregnancy, 

Puerperium, and Lactation. Endocrine Reviews pp.832-872). 
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women markedly increase the rate of bone resorption and avidly reabsorb calcium in the 

kidneys to provide calcium for the milk and, thereby, to the nursing infant (11). 

1.3.1 Pregnancy 

During human pregnancy, calcium and other minerals are borrowed from the 

mother to mineralize the fetal skeleton (12). This places a potential strain on the 

mother's skeleton and her calcium homeostatic mechanisms, with the developing fetus 

gaining an average 30 g of calcium by term, but 80% of that during the third trimester 

(13,14). The fetal skeleton accretes about 250-300 mg of calcium daily during the final 

trimester (13). 

Mothers experience changes during pregnancy in the levels of various minerals 

and calcitropic hormones including calcitonin, PTH, 1 ,25-dihydroxyvitamin D, and 

PTHrP (14). Total calcium levels are decreased significantly as pregnancy progresses, 

while ionized calcium (the physiologically important fraction) is observed to be constant 

throughout pregnancy. From early in pregnancy, serum phosphate levels are normal, 

calcitonin levels are increased and PTH levels fall to the low-normal range. This latter 

change may imply that PTH does not play a profound role during pregnancy because of 

these low levels or it may suggest that only low levels of PTH are required during this 

time while the mother prepares for the losses that occur later in pregnancy (14). Total 

1 ,25-dihydroxyvitamin D levels are doubled during pregnancy and maintain this increase 

until term (13,14). Urinary calcium excretion is increased during pregnancy as compared 

to non-pregnancy. 
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In several studies, PTHrP has been observed at increased levels especially 

during late pregnancy (13). The exact source of production ofPTHrP cannot be 

determined easily due to the fact that many fetal and maternal tissues produce the 

hormone (13). As a prohormone, it is quite possible that PTHrP may play diverse roles in 

the mother during pregnancy. The amino-terminal portion can stimulate skeletal calcium 

resorption and the renalla-hydroxylase enzyme; the midmolecular portions of the 

hormone stimulate placental calcium transfer, and the carboxy-terminal portion can 

inhibit osteoclastic bone resorption and could theoretically help in protecting the 

mother's skeleton from excessive resorption (13,15). 

There is a doubling of intestinal calcium absorption during pregnancy in 

humans due to an increase in total1,25-dihydroxyvitamin D. This occurs as the mother 

copes with the changes that normally occur during pregnancy. In fact, the mother's bone 

physiology adapts, presumably to meet the calcium requirements ofthe fetus while 

minimizing the danger of overwhelming her own needs. This finding was confirmed 

when investigators performed mineral balance and calcium kinetic studies using stable 

isotopes of calcium (48Ca, 44Ca, 42Ca) in pregnant and non-pregnant women (16-18). 

Pregnant rats also experience a similar increase in absorption (19). It is thought that the 

increase in calcium absorption during pregnancy occurs not only because of the doubling 

of 1 ,25-dihydroxyvitamin D levels but also because of other hormones and factors which 

may influence intestinal calcium absorption. This appears to be the main way by which 

the mother adapts to the calcium demand of the fetus. In fact, it may be that the mother 

stores the excess calcium in preparation for the huge demand of the fetus during the third 
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trimester. This seems likely especially considering that intestinal calcium absorption 

increases in the first trimester, but that fetal demand for calcium is not present until well 

into the third trimester (13,19). 

In humans, there are some data to show that increased bone resorption is present 

from early in pregnancy. In one particular study, 15 women had bone biopsies taken 

after they had terminated their pregnancies in the first trimester (20). It appeared as 

though there was increased bone resorption (including increased resorption surface), 

increased number of resorption cavities, and decreased osteoid. These findings were not 

observed in biopsies from non-pregnant controls or in biopsies from women at term who 

had cesarean-sections (20). 

Human bone density data differ slightly from the data just mentioned in that 

there is very little or no loss in bone density observed during gestation. There are few 

studies which have examined changes in maternal bone mass during pregnancy due to the 

risks associated with fetal radiation exposure and of the studies conducted, the techniques 

used were far less precise or reproducible than dual x-ray absorptiometry (DXA) which is 

the current standard (19). DXA machines are used in measuring bone mass and bone 

density and provide rapid and precise measures of bone density. Of the outdated 

techniques, four human studies examined bone density during pregnancy using serial 

measurements by single photon absorptiometry (SPA) and/or dual photon absorptiometry 

(DPA) and found that there was no significant change in cortical or trabecular bone 

density (19). Presently, there are no human studies that have used DXA during 

pregnancy, however, several studies have used the modem technique before conception 
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and after delivery (12). Of the studies conducted, one found no change in bone density 

measurements in the lumbar spine at pre-conception or after 1-2 weeks post-delivery, 

while the other studies reported 4-5% decreases in bone density of the same region (post­

partum measurement taken 1-6 weeks after delivery) (21-27). Normal bone density 

losses in women during lactation are around 1-3% per month and as such, it is extremely 

important that post-delivery measurements be taken as soon as possible (12). Also, these 

studies used baseline measurements that were taken from several to 18 months prior to 

pregnancy, which significantly affects the ability of these studies to detect true changes in 

bone density during pregnancy. 

In studying changes in calcium metabolism in the skeleton it is often quite 

useful to examine bone turnover markers in both serum and urine to complement the 

static data collected from bone mineral content/density (BMC/BMD) measurements (28). 

Bone markers are proteins that are released during the process of bone formation or 

resorption, and hence measurement of serum or urine levels of these proteins reflects the 

relative activity of bone formation or resorption, respectively. These measurements are 

noninvasive, relatively inexpensive, can measure bone turnover changes over short 

intervals of time and can be assessed repetitively (28). In humans, the data on bone 

turnover markers is not consistent with the previously mentioned data from bone 

biopsies. Changes in bone turnover markers have shown that some of the resorption 

markers are low at the start of pregnancy but increase to values that are twice normal by 

the end of the third trimester (19). These markers include deoxypridinoline, pyridinoline, 

hydroxyproline. With regards to bone formation markers, osteocalcin in particular is low 
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during early pregnancy and often rises to normal levels by term ( 19). Procollagen I 

carboxypeptides and bone-specific alkaline phosphatase are other bone formation 

markers which are low at the beginning of pregnancy and remain at that level or rise to 

normal or above in the third trimester ( 19). Thus, the pattern of changes in bone markers 

suggests low turnover early in pregnancy and modestly increased turnover in late 

pregnancy. Although changes in bone markers indicate that bone turnover may be 

increased in humans in the third trimester, it appears that there are only minor changes in 

BMC during pregnancy (19). Numerous epidemiological studies have found that 

pregnancy has no long-term effect on the mineral content or fragility of the maternal 

skeleton (19). 

Studies conducted on animals during pregnancy have shown that in rats, the 

parameters of bone formation and resorption are increased, thus indicating that bone is 

being remodeled (19). Ewes experience a 20% decrease in skeletal calcium and based 

on research from our lab, normal mice attain 10-20% increments in BMC during 

pregnancy (19,29). 

Using data from both human and rats, it appears that bone turnover may be low 

during the first part of pregnancy but may be increased in the final trimester ( 19). The 

increase in bone turnover observed in late pregnancy correlates with the fetus 

accumulating a bulk amount of calcium from the mother ( 13, 14, 19). It may be possible 

that at the start of pregnancy, the maternal skeleton prepares itself through the decrease in 

bone turnover, for the transfer of calcium that is needed later in pregnancy for the 
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developing fetus. This is certainly the pattern observed in mice which gain a significant 

amount of BMC during pregnancy. 

1.3.2 Lactation 

During lactation, the maternal skeleton is rapidly resorbed in order to provide 

calcium and other minerals to create the calcium content of the milk to feed her nursing 

newborn (12). During this period, the mother may experience calcium losses of about 

280-400 mg a day (13,14). Losses occur in both humans and animals. Women lose 5-

10% of their BMC during six months oflactation, rats lose approximately 35% oftheir 

BMC during a three week period of lactation and normal mice experience a 30% decrease 

over the same three week interval (4,12,13,19,29). The rapid loss ofBMC is mediated by 

PTHrP derived from the mammary glands in combination with low estrogen levels 

(13,30). 

Minerals and calcitrophic hormones change during lactation and may be 

contributing in large part to the skeletal demineralization that occurs during this period. 

Ionized calcium is increased but remains within the normal range, serum phosphate is 

also increased and may even exceed the normal range (13). PTH on the other hand, has 

been observed to be reduced by 50% or more at the start of lactation and remains there 

until the time of weaning when it rises to normal and often even above normal 

postweaning (13). 1,25-dihydroxyvitamin D levels fall from the high levels of pregnancy 

to normal shortly after delivery and stay at that level during lactation (13). 
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With respect to calcium metabolism during lactation, calcium absorption in the 

intestine is equal to that of the non-pregnant state but decreased from that observed 

during pregnancy. This coincides with the decrease in 1,25-dihydroxyvitamin D levels 

from the high levels of pregnancy. During lactation, the amount of calcium lost in the 

urine is also reduced compared to the non-pregnant state (13). 

The mechanisms responsible for the rapid loss of skeletal calcium content are 

not completely understood. Reduced estrogen levels are clearly important but are not 

likely to be the only factor responsible (12). Obviously, the intensity and duration of 

lactation are factors that influence the extent ofbone loss (19). As an example, early 

resumption of menses (a marker for restoration of normal estradiol levels) or the use of 

an oral contraceptive during lactation can reduce skeletal losses, however, decreases in 

bone density will still occur if lactation is extended even after menses has resumed ( 19). 

To determine how much of the increased bone resorption of lactation is 

attributed to low estradiol, one can consider what happens to calcium and bone 

metabolism in women who are at the reproductive age and are rendered severely estrogen 

deficient due to gonadotropin releasing hormone ( GnRH) therapy for endometriosis and 

other conditions (12). Although irregular pulses of GnRH cause the pituitary gland to 

stimulate the ovaries, sustained administration of GnRH inhibits the pituitary and ovaries, 

leading to less estrogen being produced. After a woman has taken GnRH and been 

estrogen deficient for six months, she may experience trabecular bone losses of 1-4%, 

increased urinary calcium excretion and suppression of 1 ,25-dihydroxyvitamin D and 

PTH levels (19). In contrast, a woman who lactates exclusively for six months is not as 
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estrogen deficient, will lose more ( 5-l 0%) bone mineral density at trabecular and cortical 

sites and will have normal 1 ,25-dihydroxyvitamin D levels and reduced urinary calcium 

excretion. In looking at bone density changes alone, a women who lactates will 

completely restore all that she has lost post-weaning at a rate of 0.5-2% per month ( 12). 

On the other hand, women experiencing reduced estrogen levels due to GnRH analogue 

treatment will not completely recover from bone density losses after the treatment is 

stopped and normal estradiol levels have been restored (19). Observed differences that 

exist between a women who is estrogen deficient and one who is lactating may be due 

other factors such as PTHrP which acts synergistically with low estrogen levels to 

enhance bone resorption and by itself to stimulate reabsorption of calcium by the kidneys 

(12). One study examined the role of estrogen in mice during lactation and found that 

low estrogen and high PTHrP levels contributed to accelerated bone resorption during 

lactation (31 ). The researchers conducting the study also discovered that treating the 

lactating mice with high-dose estrogen (ie, 4-5 fold normal) lowered parameters of bone 

resorption and reduced the amount of bone lost by about 50-60% (31 ). 

PTHrP is thought to play a significant role during lactation in regulating the 

demineralization of the skeleton (32). In response to suckling and signaling from the 

CaSR expressed in the lactating mammary tissue, PTHrP reaches the maternal circulation 

and stimulates resorption of calcium from the maternal skeleton, renal tubular 

reabsorption of calcium, and it may indirectly suppress PTH. PTHrP levels are 

significantly higher in the blood of lactating women than in nonpregnant controls, and are 

higher than the simultaneous PTH levels (30,33). The breast appears to be the main 
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source of the circulating PTHrP based on several lines of evidence. Levels have been 

observed in breast milk at concentrations 10,000 times the level observed in the blood of 

patients with hypercalcemia of malignancy and in normal human controls (14,33). Also, 

small increases in PTHrP have been observed as a result of suckling, a response mediated 

by prolactin (19). Other data exists supporting the role ofPTHrP during lactation 

including a study involving conditional knockout mice which eliminated the PTHrP gene 

from mammary tissue at the onset of lactation. These mice displayed reduced levels of 

circulating PTHrP, 1,25-dihydroxyvitamin D, urinary cyclic adenosine monophosphate 

(cAMP) and bone turnover markers, and less BMC was lost during lactation (30). The 

researchers concluded the mammary-specific ablation of the PTHrP gene demonstrated 

that PTHrP is normally secreted into the maternal circulation from mammary tissue 

during lactation, and that it is required to stimulate osteoclastic bone resorption to induce 

the normal loss of bone mineral (30). 

Calcitonin levels are elevated during the first six weeks of lactation and then fall 

to normal. Calcitonin appears to play a role during lactation because mice lacking the 

calcitonin gene lose approximately 50% or more of their BMC during three weeks of 

lactation, about twice that of their normallittermate sisters (34). This finding indicates 

that calcitonin does regulate lactational skeletal losses in some manner, and that in its 

absence the losses will more than double. 

Calcium absorption in the intestine decreases during lactation to the non­

pregnant rate from the increased rate of pregnancy and this corresponds to the fall in 

1,25-dihydroxyvitamin D levels to normal (12). 
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Bone histomorphometry data collected from animals have shown that bone 

turnover is increased during lactation (19). Again, data are lacking for humans, but bone 

formation and resorption markers have been used to examine bone turnover (19). 

Markers for resorption ( deoxypridinoline, pyridinoline, hydroxyproline and tartrate­

resistant acid phosphatase) are elevated during lactation and are higher than the levels 

observed during the third trimester of pregnancy (19). Most studies involving bone 

formation markers have shown the levels to be higher during lactation than that observed 

during the final trimester. Overall, the changes in bone markers indicate that there is an 

increase in bone turnover during lactation, with the pattern (resorption>> formation) 

being consistent with the bone density data which show that there is a net loss of bone 

mass occurring (19). 

Decreases in bone mass occur as a result of an increase in the rate of bone 

turnover accompanied by an imbalance between osteoclast and osteoblast activity (35). 

If there is an increase in the number and function of osteoclasts but not a corresponding 

increase in osteoblast number and function, then there is an increase in bone resorption. 

As a result, the normal "coupling" of bone resorption followed by bone formation is 

disrupted such that bone break-down occurs at a rate exceeding bone formation, and as a 

result, bone is lost (35). 

1.4 Skeletal Recovery Post Weaning 

Perhaps the most intriguing question regarding skeletal metabolism is how 

BMC lost during lactation is completely restored post-weaning. Lactation is the only 
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situation where an adult can lose a considerable amount of bone density and completely 

regain all that has been lost with no long-term consequences to the skeleton (12,13). If an 

adult were to experience a loss due to any of the factors mentioned earlier (prolonged 

inactivity or illness, estrogen withdrawal, weightlessness, steroids etc.) such a loss would 

largely be permanent and the individual would experience at most a partial regain in bone 

mass ( 4,9). Once lactation has ceased, the maternal skeleton is completely restored to its 

original mass within a few months by mechanisms that have remained unelucidated. 

Knowing that the adult skeleton has the ability to build bone mass after lactation, this 

mechanism (if understood) could potentially be adapted to treat people with osteoporosis 

or other disorders of low bone mass. 

Among the few clinical studies that have examined the post-weaning phase, one 

study in particular looked at lactating women and compared them to non-lactating 

postpartum controls over the first year postpartum (36). During the first six months after 

delivery, serum PTH levels decreased, rose to normal at weaning and rose above normal 

after weaning (36). Whether this modest increase in circulating PTH means that the 

hormone is required for restoration of BMC remains unknown (36). A second study by 

Dobnig et a/. stated that PTH was suppressed to 50% of control values immediately 

postpartum, but returned to normal values within 3-6 months postpartum, however the 

study did not extend past weaning (3 7). This increase may be a mechanism to stimulate 

calcium reabsorption by the kidneys as well as to stimulate osteoblasts to remineralize the 

skeleton (38). It is not clear as to how this increase in PTH is stimulated, however, one 

possible suggestion is that estrogen stimulates osteoblast activity and calcium uptake by 
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bone which leads to a decrease in serum calcium and in turn, an increase in serum PTH 

levels (38). However, this observation ofPTH playing a role post-weaning remains 

suggestive but not conclusive. 

Estrogen is known to play an important role in maintaining bone mass and its 

absence leads to bone loss during lactation and to osteoporosis after menopause. 

Therefore, it is a logical candidate to play a role during weaning when estrogen levels 

rebound to normal and bone is being restored (39). Trying to determine the contribution 

of estrogen is difficult due to the fact that no human or animal studies have manipulated 

the estrogen level independently of whether the female is lactating or weaning. The main 

effect of estrogen is to inhibit osteoclasts and thus it is unlikely to explain the full 

recovery of BMC that is achieved after weaning. With all of this in mind, it seems 

logical that estrogen may contribute to skeletal recovery post-weaning by inhibiting bone 

resorption but the hormone itself cannot explain recovery in full. Other factors likely act 

in concert with estrogen during this period. 

PTHrP regulates skeletal demineralization during lactation but it is also possible 

that it is required for skeletal recovery post-weaning (30). Like PTH, pulses ofPTHrP 

will stimulate bone formation whereas sustained high levels of PTH or PTHrP will 

stimulate bone resorption. Therefore, a change in the secretion pattern ofPTHrP would 

enable it to play some role in BMC restoration. There are two main sources ofPTHrP, 

the breast and the osteoblast, which could be involved in BMC restoration after weaning. 

The breast is a potent source of PTHrP during lactation and might remain so during 

recovery; however, since mammary tissue involutes quickly after lactation, it may be that 
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this is not a likely explanation. There are reports in humans showing that PTHrP levels 

are still increased after weaning and rat studies have shown PTHrP levels to be highest at 

the end of lactation and it may be that the elevated levels continue into weaning and 

contribute to skeletal recovery (19,40). Osteoblasts have been shown to produce PTHrP 

and an osteoblast-specific knockout of the PTHrP gene has shown that osteoblast-derived 

PTHrP is required to maintain bone mass in adult mice ( 41 ). Therefore, it is possible that 

PTHrP produced by osteoblasts may be required to stimulate the recovery after weaning 

and perhaps it is stimulated by loss of the hormonal milieu of lactation (high prolactin, 

high PTHrP and low estradiol in circulation) ( 42). 

Calcitonin is also a potential suspect for contributing to skeletal recovery. It is a 

known inhibitor of osteoclastic bone resorption and research in our lab has confirmed the 

previously hypothesized role of calcitonin to protect the mother's skeleton from 

excessive resorption during lactation (4,34). We have shown that the calcitonin null mice 

completely restore their BMC to normal after weaning, even after experiencing a severe 

loss in BMC and as such, these observations confirm that calcitonin is not required for 

skeletal recovery after weaning. The studies do show, however, that the maternal 

skeleton has the ability to restore itself rapidly even when more than half of its mineral 

content has been lost (34). 

It is obvious that there must be other factors which play a role during recovery 

after weaning. Given that PTH is a dominant hormone in regulating calcium and bone 

homeostasis in the adult and that it stimulates bone formation, it is an obvious candidate 

to examine to see if it is required for skeletal recovery after lactation. 
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1.5 Literature Concerning Absence of PTH During Pregnancy and Lactation 

In planning to examine the role of PTH in skeletal recovery after weaning, it 

was realized that the model used would lack PTH during pregnancy and lactation. 

Therefore, it is important to briefly review the literature concerning the absence of PTH 

during the non-pregnant state as well as during pregnancy and lactation in both humans 

and animals. 

Hypoparathyroidism is a disorder which occurs when PTH produced from the 

parathyroid gland is insufficient to maintain extracellular fluid calcium in the normal 

range or when adequate circulating concentrations of PTH are unable to function in 

tissues to maintain normal extracellular fluid calcium levels (43). A person suffering 

from hypoparathyroidism will have low blood calcium, high blood phosphorus and high 

urine calcium excretion (43). Some of the symptoms of hypoparathyroidism include, 

muscle cramps, tetany, seizures and the low blood calcium can be severe enough to lead 

to fatal arrhythmias ( 43). 

When treating someone with hypoparathyroidism, the major goal is to restore 

serum calcium and phosphorus as close to normal as possible. The main pharmacological 

agents used are calcium supplements plus calcitriol to enhance intestinal absorption of 

calcium. One major drawback is that in the absence ofPTH, the kidneys cannot avidly 

reclaim calcium and therefore, much of the supplemented calcium is lost in the urine. 

There is also a risk that the individual will develop kidney stones and possibly kidney 

failure from nephrocalcinosis ( 43). It is often a compromise in that the individual is 

treated with the minimum amount of calcium and calcitriol required so that the symptoms 
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of hypoparathyroidism are reduced but not eliminated and at the same time, the 

worsening ofurinary calcium excretion is minimized (43). 

There is a limited role for PTH during human pregnancy and it appears as 

though increases in 1 ,25-dihydroxyvitamin D and calcium absorption in the kidneys, both 

of which normally occur during pregnancy, will take place even ifPTH is absent (14,19). 

There are two possibilities as to what a hypoparathyroid female may experience during 

pregnancy, in that the condition will either become worse or that it will improve. Both 

possibilities have been reported in the literature. During pregnancy, when there is such a 

significant loss of calcium from the mother to the fetus, it is possible that this may further 

impair the mother's ability to maintain a normal blood calcium and lead to more frequent 

and severe hypocalcemia unless the dose of calcium and calcitriol were increased to 

mimic the normal rise in calcitriol that occurs during pregnancy (12,14,19). Other case 

reports have shown that hypoparathyroid women had fewer symptoms ofhypocalcemia 

and required less calcitriol and that the mother's condition improved during pregnancy. 

With the rise in 1,25-dihydroxyvitamin D, PTHrP and intestinal calcium absorption, the 

mother may be able to compensate for the low calcium associated with 

hypoparathyroidism through calcium supplementation. Thus, a hypoparathyroid woman 

who becomes pregnant, may have less hypocalcemia and require less supplemental 

calcium or calcitriol. In any case, any requirements that a hypoparathyroid woman may 

have for calcitriol during pregnancy, decrease substantially shortly after delivery when 

the mother breastfeeds because there is the possibility that hypercalcemia will occur 

unless the calcitriol dosage is reduced or discontinued (12,14). Thus, while the human 
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data leave uncertainty as to whether absence of PTH is clinically worsened or improved 

during pregnancy, it is very clear that PTH is not required for lactation. 

Parathyroidectomized pregnant rats often exhibit signs of tetany at the end of 

pregnancy, during the time when the fetus obtains the bulk of maternal calcium it 

requires and in many situations, maternal death has occurred during the birthing process 

(19). In these animals, dietary intake and weight gain decline and serum 1,25-

dihydroxyvitamin D decreases. These abnormalities, which are calcium related, can be 

prevented if the animals are fed a high-calcium, low-phosphorus diet (19). This data 

seems to suggest that rats develop secondary hyperparathyroidism at the end of gestation 

due to the decrease in maternal calcium and they may be more dependent on bone 

resorption and I a-hydroxylase up-regulation both mediated by PTH (19). In the absence 

of parathyroid tissue, rats lose bone mineral during lactation ( 44). A group of 

investigators looked at parathyroidectomized rats and compared them to their siblings 

who had parathyroid glands and found that these animals still lost a comparable amount 

of bone mineral during lactation. The researchers stressed that PTH does not act alone in 

stimulating bone loss and that it must act in concert with other factors but that the 

hormone does play an important role in the process of skeletal loss during lactation ( 44 ). 

1.6 PTH Knockout Mouse Model 

In this project, I wished to explore the role of PTH in regulating calcium and 

bone metabolism during pregnancy, lactation and especially recovery post-weaning. 

Considering that the exact role of PTH during pregnancy and lactation in calcium and 

24 



bone metabolism is still not known, it seemed appropriate to study this using a knockout 

model with PTH absent. 

The ideal model might have been to ablate the PTH gene at the time of weaning, 

but such a model was not feasible at the time this project started. A group of researchers 

at McGill University in Montreal generated a PTH knockout mouse model using 

homologous recombination in embryonic stem cells (42). This was a useful model for 

determining the precise role of PTH in calcium and bone metabolism. Mice deficient in 

PTH were created by replacing the entire coding sequence of PTH on ex on 3 with the 

gene encoding neomycin resistance, however, due to the fact that these mice were not 

generated in our laboratory the details of the creation will not be discussed ( 42). Pth 

null mice are born normally, are fertile and live normallifespans, however, they are 

hypocalcemic, hyperphosphatemic and show diminished cartilage matrix mineralization, 

decreased neovascularization, reduced expression of angiopoietin-1, and reduced 

metaphyseal osteoblasts and trabecular bone (42). Compared to their WT sisters, the null 

mice displayed abnormal vertebral column and skull formation and mineralization of 

both the skull and the bones were enhanced. Evidence suggests that the vertebral bodies 

were smaller and mineralization of the metacarpal and metatarsal bones were shorter 

( 42). Additionally, and consistent with long standing hypoparathyroidism in humans, the 

BMC is higher in the mature adult null versus WT. This finding had the potential to 

confound our study since the Pth null mice would start out with a higher BMC and a 

normal absolute loss ofBMC would be proportionately smaller as compared to WT. 
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1. 7 Project Description, Purpose and Hypothesis 

In starting this project, the hypothesis was that PTH is required for normal 

mineral homeostasis during pregnancy and lactation and for restoration of the maternal 

skeleton after weaning. 

I examined this hypothesis by studying Pth null mothers compared to WT 

sisters. Any disturbance in calcium and bone metabolism seen in the null mice could be 

attributed to a direct or indirect consequence of PTH. Wild-type (WT) mice have both 

copies of the PTH gene while heterozygous (HET) mice have one copy of the PTH gene 

and one copy of the neomycin resistant gene. 

After mating heterozygous males and females together we were able to obtain 

WT, HET and Pth null offspring. At the start of the project we chose WT, HET and null 

sisters for subsequent study to compare them physiologically to determine if loss of PTH 

had any effect in the response to pregnancy, lactation and weaning. However, midway 

through the project, we focused solely on WT and null females for reasons that will be 

discussed in the Results section (Section III). The mice were studied through full cycles 

of pregnancy, lactation and weaning with monitoring of BMC, as well as various 

minerals in the serum and urine. 

These studies were anticipated to provide definitive evidence about the role of 

PTH during lactation and post-weaning in mice, which in turn could lead to confirmatory 

studies in humans that lack PTH. Understanding how the skeleton restores itself may 

lead to new approaches to treating osteoporosis and other bone and mineral disorders. 
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II Materials and Methods 

Specific details regarding protocols used for the experiments can be found in the 

Appendix. 

2.1 Animal Husbandry 

2.1.1 Pth null mice 

The Pth gene knockout mice used in this study were obtained from Dr. Andrew 

Karaplis (McGill University, Montreal, Quebec, Canada) and were generated using 

homologous recombination in embryonic stem cells, as previously described ( 42). 

These mice have been shown to be hypocalcemic from birth, but live apparently 

normal life spans, and are fertile ( 42). Pth mice were then back crossed into the outbred 

Black Swiss strain for at least four generations in order to be comparable to other 

knockout strains studied in our lab. The studies involved looking at the effects of 

pregnancy and lactation in these mice that lack PTH versus their WT sisters. 

Colonies were maintained by mating heterozygous-deleted Pth males and females 

to produce wild-type (WT), heterozygous (HET), and Pth null mice. Genotypes were 

confirmed by polymerase chain reaction (PCR) of genomic DNA for detection of the 

native PTH allele versus the mutated allele. Animals were maintained in facilities 

operated by Animal Care Services ofMemorial University ofNewfoundland, in 

accordance with the Canadian Council on Animal Care (CCAC). All experimental 

procedures performed were approved by the Institutional Animal Care Committee 

(IACC) ofMemorial University ofNewfoundland. 
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2.1.2 Timed Matings 

WT, HET and Pth null females were mated overnight with HET males. The 

presence of a vaginal seminal plug in the morning, after mating indicated gestational day 

0.5. The length of the gestation period for mice is nineteen days. Adult mice were used 

for studies of pregnancy and lactation when they reached the age of twelve weeks, at 

which time they had reached sexual maturity and attained their peak bone mass. 

2.2 Genotype Determination 

2.2.1 Tagging Mice 

For identification purposes, at weaning, mice were anaesthetized using 

Isoflurane™ (CDMV), and ears were tagged with a unique identifier. 

2.2.2 Tail Clipping 

At the time oftagging, at three weeks of age, tails were cut and placed in 1.5mL 

microcentrifuge tubes (Fisher Scientific) containing 500 ~llysis buffer (lOOmM 

Tris•HCl, pH 8.0 I 500 mM EDTA [ethylenediaminetetraacetic acid], pH 8.0 I 0.2% 

SDS [sodium dodecyl sulfate] I 200 mM NaCl) containing 100 ~glmL proteinase K 

[Invitrogen]). The tubes were incubated at 55°C overnight in an isotherm oven (Fisher 

Scientific). 
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2.2.3 DNA Extraction 

Following incubation of tails in an isotherm oven, the tubes were shaken and then 

centrifuged for 10 minutes at 13,000 rpm. The supernatant was transferred to fresh 

microcentrifuge tubes containing 0.5mL isopropanol and inverted to precipitate the DNA. 

Using small pipette tips the DNA precipitate was removed from each tube, placed into 

clean microcentrifuge tubes containing 0.5mL and shaken to dissolve the DNA. In the 

fumehood, 0.5mL of phenol/chloroform/isoamyl alcohol (100:100:1) was added to tubes 

which were then shaken. Next, the tubes were centrifuged for 2 minutes, the aqueous 

layer was removed and placed in fresh microcentrifuge tubes. Cold 0.12M sodium 

acetate (NaOAc) in ethanol (EtOH) was added, the tubes were inverted several times, and 

centrifuged for 10 minutes to pellet the DNA. The supernatant was decanted, pellets 

were washed with 70% EtOH and again centrifuged. Following this, the EtOH was 

removed and the pellets were air dried, resuspended in TE (Tris EDT A buffer) and stored 

at 4°C. 

2.2.4 Conventional PCR (Polymerase Chain Reaction) 

PCR was performed on mouse tail DNA to determine the presence of the gene of 

interest. The presence of the normal Pth gene was determined through amplification of a 

520 base pair portion of exon 3 ofPTH using sequence specific primers: 

PTHl (forward): 5'-GAG OCT TTG TAG TOG OTT TT 
PTH2 (reverse): 5'-AGA GAA GTG GAA ATG AGT AG 

(Unpublished data) 
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The presence of the Pth null gene was determined using primers specific for the 300 base 

pair portion of the neomycin resistant gene: 

(46). 

Nl (forward): 5'-GGAGAGGCT ATTCGGCTA TGAC 
N2 (reverse): 5'-CGC ATT CGA TCA GCC ATG ATG G 

The validity of the PCR technique was confirmed by Southern blotting using the 

originally described probe ( 43). 

The PCR cocktail was composed of 1 OX PCR buffer (20mM Tris-HCl, pH8.4, 

50mM KCl), dNTPs (0.2mM of each dATP, dCTP, dGTP, dTTP), primers (PTHrorward, 

PTHreverse, Nrorward and Nreverse), 50mM MgCh, Taq DNA polymerase (0.02U/~-tL) and 

deionized water. 1.5~-tL (approximately SOOng) ofthe collected DNA samples were 

added to PCR tubes containing 49~-tL of the prepared cocktail. These tubes were then 

placed in the Peltier Thermal Cycler-Dual Alpha Blocks (PT-200 DNA Engine Thermal 

Cycler). 

The following program conditions were applied for the conventional PCR for the 

PTH primers: denaturation at 94 oc for 45 seconds, 40 seconds of annealing at 59°C, 

followed by one minute of elongation at 72°C. These steps were repeated 35 times, 

followed by 72°C for 7 minutes. 

2.2.5 Gel Electrophoresis 

PCR products were electrophoresed on a 1.2% agarose gel (2g agarose 

[Invitrogen], 10 ml of lOX TAE [pH 8.0, 0.12M EDTA, 0.40M Tris, 11.5% Glacial 

Acetic Acid] and 90 ml deionized water, 0.06% Ethidium Bromide [Invitrogen]). The 
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electrophoresis buffer consisted ofT AE and deionized water. One microliter of Orange 

G (lOmL lOX TAE, 500mg Orange G powder, 50mL glycerol) was added to each ofthe 

DNA samples in the PCR tubes as a loading dye. 1 0~-tL was transferred from each tube 

into the wells of the gel which was then run at 200V for approximately thirty minutes. 

Following this time, the gel was exposed to UV light and a picture was taken using 

Chemi-Imager Software and printed on Mitsubish Thermal paper (Perkin Elymer). The 

presence of a single 520 base pair (bp) band indicated that the mouse was wild-type (WT) 

for PTH, a band at 300 bp indicated that the mouse was null (homozygous [HOM]) for 

PTH while the presence of both bands indicated that the mouse was heterozygous (HET) 

for ablation ofPTH (Figure 2.1). 

2.3 Data Collection 

2.3.1 Bone Densitometry 

Total body bone mineral content (BMC) was measured using the PIXImus bone 

densitometer (Lunar). Mice were anaesthetized with Pentothal or a combination of 

Xylazine (Bayer)/Ketamine Hydrochloride (Bimeda-MTC) via an intraperitoneal 

injection. The mice were then placed on a slightly sticky specimen tray that immobilizes 

them for the 3-5 minutes required for the measurement to be completed. Following this, 

the mice awaken and are returned to their litters. Mice were scanned throughout full 

reproductive cycles for approximately 70-80 days. The entire reproductive period 

included pregnancy baseline (7-9 days), pregnancy (19 days), lactation (21 days), and 

post weaning (after 21 days post weaning). The pre-pregnancy baseline value was 
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WT HET HOM 

-520 bp 

-300 bp 

Figure 2.1: Genotyping by polymerase chain reaction (PCR). The PCR 
product is shown electrophoresed on an agarose gel, to demonstrate the typical 
results of a genotyping experiment. PTH 1 and PTH2 are used to detect the 
wild-type allele; the PCR product is approximately 520 base pairs in length. 
N 1 and N2 primers are used to detect the knockout (homozygous) allele; the 
PCR product is approximately 300 base pairs. Wild-type= WT, 
hetereozygous = HET and homozygous = HOM. 
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obtained by averaging the readings from the week prior to successful mating. Sample 

scans are shown in Figure 2.2. 

Experiments in our lab have shown that when using DXA to take total body 

scans, the calcium dense head region is variable and cannot be fit completely on the 

scanner as pregnancy progresses. For these reasons, the head was not included in the 

scans. We were able to do this using a function in the computer program that excluded 

the head from the measurements. As a result, all body scans excluded the head region as 

an attempt to ensure that the values obtained were as accurate from mouse to mouse as 

they can possibly be. Regional measurements (spine, leg, tail) could be obtained after the 

total body scan was done. Using the computer, we are able to adjust the region of interest 

such that instead of looking at the whole body BMC, we could focus on the spine, tail or 

the hind limb. Other research in our lab has also shown that the fetal skeletons contribute 

a negligible amount to the mother's total body BMC at the end of pregnancy (29). The 

exact contribution of the fetuses was determined by obtaining readings before and after 

removal of fetuses by C-section. The entire litter accounted for 1.9 ± 0.4% ofthe total 

BMC (29). Therefore, when analyzing a mother's BMC during pregnancy we are 

confident that the values obtained reflect true changes in maternal BMC and are not 

significantly affected by the presence of the fetuses. 

2.3.2 Ionized Calcium 

Maternal whole blood was collected from the tail vein at baseline, day 18 of 

gestation, one week post-partum, three weeks post-partum and one and three weeks post-
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Figure 2.2: Representative scan of total body BMC. Measured at three weeks post­

weaning in a mouse on the standard 1% calcium chow. 
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weaning. Samples were collected in 50 ~-tl heparinized capillary tubes (Bayer) and 

analyzed immediately using a Chiron 634 Calcium/pH analyzer (Bayer) to measure the 

physiologically important fraction of calcium in blood. 

2.3.3 Serum Collection 

Maternal blood was collected from the tail vein at baseline, day 18 of gestation, 

one week post-partum, three weeks post-partum and one and three weeks post-weaning. 

Blood was collected using capillary tubes (Fisher Scientific), placed in 0.6mL 

microcentrifuge tubes (Fisher Scientific), centrifuged and the serum (top layer) was 

removed and stored at -20°C for later analysis. 

2.3.4 Urine Collection 

Upon first removal from the cage, mice usually promptly voided. Occasionally it 

was necessary to leave the mice in a clean cage to allow them to void. Maternal urine 

was collected at baseline, day 18 of gestation, one week post-partum, three weeks post­

partum and three weeks post-weaning. The urine was collected using capillary tubes 

(Fisherbrand), placed in 0.6mL microcentrifuge tubes (Fisher Scientific) and stored at-

20°C for later analysis. 
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2.4 Mineral Assays 

2.4.1 Serum and Urine Analysis 

Serum was analysed for calcium, magnesium and phosphorus using photometric 

assays (BioPacific Diagnostic Incorporated). Osteocalcin was also measured in serum as 

a marker of bone formation, using an Immunoradiometric Assay (IRMA). 

Urine calcium, phosphorus and deoxypyridinoline (DPD) were also measured 

using photometric assay kits and corrected for with Creatinine-S (Diagnostic Chemicals 

Limited). Creatinine was measured on each urine sample and each calcium, phosphorus 

or DPD value was expressed relative to the concentration of creatinine in the sample, in 

order to correct for differences due to urine volume or concentration. 

2.5 Ash Weight Analysis and Flame Atomic Absorption Spectroscopy 

Following weaning and genotyping, three-week old pups were weighed, 

asphyxiated, placed into covered crucibles, and reduced to ash in a furnace for 48 hours 

at 500°C. The ash was then weighed, transferred to acid-washed vials, and dissolved in 

nitric acid. After five days, deionized water was added to each vial to form a 3% nitric 

acid solution. Samples were assayed on a Perkin-Elmer Corp. 2380 atomic absorption 

flame spectrophotometer to determine the absolute amount of calcium and magnesium. 

The ash residue is made up mostly of the heavy skeletal minerals, and hence the calcium 

and magnesium content of the ash is a direct measure of the absolute amount of calcium 

and magnesium within the skeleton. 
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Data for total ash weight, total calcium, magnesium content, and mineral content 

corrected for ash weight were collected. 

2.6 Statistical Analysis 

Data were analyzed using SYSTAT 5.2.1 for Macintosh (SYSTAT, Inc., 

Evanston, IL). ANOVA (analysis of variance) was used for the initial analysis; Tukey's 

test was used to determine which pairs of means differed significantly from each other. 

Two-tailed probabilities are reported and all data are presented as the mean± SE 

(standard error). P<0.05 was considered statistically significant. 
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III Results 

3.1 Success of Pregnancy and Lactation for the Pth null Females 

As this project began, it was unexpectedly discovered that the Pth null had 

difficulties conceiving and often it would take several attempts before a Pth null female 

became pregnant, as compared to a WT female. There were sudden unexpected deaths 

during the 70 day reproductive cycles of Pth null mice with many during pregnancy and 

some during lactation, usually but not always in association with anesthesia (Table 3.1 ). 

After reviewing the literature, we discovered a very recent report indicating that Pth null 

mice have fewer pregnancies and offspring rates, that some appeared not to lactate well, 

and that these problems were attenuated when the mice were fed a calcium enriched 

chow (45). We also noticed that even when the mother did lactate successfully, she 

would cull her litter to a much smaller size by eating pups and in many cases she would 

cull her litters down to 3 or 4 pups compared to the normal6-12 pups that their wild-type 

siblings would nurse. Based on all of this we switched all mice from the standard 1% 

calcium chow (Prolab®, Animal Specialties and Provisions, Quakertown, PA, USA) to 

the 2% calcium enriched chow that was used by other researchers ( 45). 

We did not have the opportunity to measure PTH or 1,25-dihydroxyvitamin Din 

these studies. PTH has already been shown to be absent in Pth null mice (42) and 1,25-

dihydroxyvitamin D is expected to be low due to absence of PTH' s effect to stimulate the 

I a.-hydroxylase. Normally during pregnancy 1,25-dihydroxyvitamin Dis nearly doubled 

(13,14) due to mechanisms that appear to be independent ofPTH, since PTH levels are 

normally low throughout pregnancy. Such factors as PTHrP, prolactin, placental 
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WT 
Standard 

Chow 

Number of 
14 

Mice studied 
Deaths 

1 (first 
during trimester) 
Pregnancy 
Anesthetic 
Related 
Deaths 0 
during 
Pre2nancy 
Deaths 
Unrelated to 
Anesthetic 1 
during 
Pregnancy 
Deaths 
during 2 
Lactation 
Anesthetic 
Related 
Deaths 2 
during 
Lactation 
Deaths 
Unrelated to 
Anesthetic N/A 
during 
Lactation 
Mice that did 
not Lactate 

3 
and/or Culled 
their Litters 

Calcium Standard 
Enriched Chow 

Chow 

9 7 

1 (third 1 (first 
trimester) trimester) 

1 1 

0 0 

1 1 

1 1 

N/A N/A 

1 3 

Pth 
null 

Calcium 
Enriched 

Chow 

9 

3 (third 
trimester) 

2 

1 

1 

1 

NIA 

1 

Table 3.1: Maternal Complications and Deaths for WT and Pth null females during 
pregnancy and lactation. Anesthetic related deaths normally occurred within several 
minutes of the mouse being injected (overdose). Deaths unrelated to anesthetic occurred 
randomly and most often on days when the mouse was not injected with anesthetic, and 
therefore the death was not associated with the drug. When the females culled their 
litters it was sometimes to the point where there were no pups left in the litter and when 
the mothers failed to lactate (due to stress) the pups died of starvation. 
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lactogen and others may stimulate the !a-hydroxylase. Whether 1,25-dihydroxyvitamin 

D levels will increase normally during pregnancy in the absence of PTH is unclear 

because such measurements have not been done in pregnant aparathyroid humans nor 

have we yet done them in pregnant Pth null mice. If in fact the normal doubling of 1,25-

dihydroxyvitamin D levels during pregnancy requires the presence ofPTH, then 1,25-

duhydroxyvitamin D levels will be low in Pth null mice and will explain many of the 

calcium related problems that they experience during pregnancy. 

The effect of the 1% versus 2% calcium chow was immediately apparent. Figure 

3.1 shows that when fed the 1% calcium chow diet, 100% of the Pth nulls were lactating 

24-48 hours post-partum while 33% were still lactating with live pups at three weeks 

post-partum. This is compared to the WT and HET siblings, 100% of whom were 

lactating at 24-48 hours post-partum and 62% and 73% of whom were lactating after 

three full weeks, respectively. In contrast, the null females were more successful during 

lactation when fed the 2% calcium chow, 100% of the mothers were lactating 

immediately after delivery while 67% were still lactating after three weeks of lactation. 

For the WT females on the 2% calcium chow 100% were lactating with live pups at 24-

48 hours post-partum while 86% were still lactating three weeks later. Thus, the 2% 

calcium chow prevented the difficulties in initiating and maintaining lactation, also, the 

unexpected maternal deaths during pregnancy and lactation were very infrequent on the 

2% calcium chow. 

The data collected for this project will be presented in two separate sections 

because data obtained from the 1% and 2% calcium diets are not comparable. Neither 
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Figure 3.1: Percentage of mice that successfully lactated after 
delivery when fed the standard (A) or the calcium enriched (B) 
chow. When fed the standard chow, all genotypes lactated 24-48 
hours. Most Wf and HET mice were lactating 21 days postpartum, 
while most Pth null (HOM) mice were not. In some cases the mother 
had died suddenly, while in other cases the mother appeared not to 
lactate well and ate her pups. When fed the calcium enriched chow, 
all Wf and Pth null (HOM) mice lactated 24-48 hours postpartum 
while only 86% of the Wf mice and 67% of the Pth null (HOM) mice 
were lactating 21 days postpartum. The numbers in parentheses 
indicate the numbers of mice studied. 
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section is complete in and of itself and further research is required to confirm the 

findings. 

Results from Mice Fed Standard Chow (1% Calcium, 0. 75% Phosphorus) 

3.2 Bone Densitometry 

As shown in Figure 3.2, the Pth null mothers nursed far fewer pups compared to 

their WT and HET sisters. The Pth null mice aggressively culled their litters to a few 

pups (or none) whereas the WT and HET litters were not culled by us to match these 

numbers. The number of pups nursed during lactation likely had an impact on relative 

bone density changes between WT and Pth null. Figure 3.3 shows that when mice were 

fed the standard 1% calcium chow, all genotypes experienced a similar gain during 

pregnancy of approximately 13% of total body BMC relative to pre-pregnancy values. 

The BMC values fell during lactation to a trough of approximately 86% and all values 

returned to baseline within three weeks, with no significant differences among the time to 

recovery by genotype. The number of pups nursed averaged ten for WT, six for HET and 

four for Pth null mothers. 

Reviewing the numbers in parentheses, one can see that while six Pth null mice 

were studied to the end of pregnancy, only two were studied during lactation and 

weaning. The remaining mice were lost to sudden maternal deaths during lactation, or 

did not lactate. 
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Figure 3.2: Average number of pups nursed by WT, HET and 
Pth null (HOM) mothers when fed the standard 1% calcium 
chow. The Pth null mothers nursed far fewer pups than their wr 
and HET siblings. The numbers in parentheses indicate the 
numbers of mice studied. 
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Figure 3.3: Total Body BMC (mean ± SE) in WT, HET and Pth null 
mothers at day 18 of pregnancy, day 19 of lactation and 21 days 
post-weaning, expressed as a percent from baseline (pre­
pregnancy) BMC. The number of pups nursed averaged ten for wr 
females, six for HET females and four for Pth null (HOM) females. The 
numbers in parentheses indicate the numbers of mice studied. 
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3.3 Whole Blood Ionized Calcium 

As displayed in Figure 3.4, Pth null mice were hypocalcemic at pre-pregnancy 

baseline compared to their WT sisters, however, the ionized calcium levels did not 

change significantly for any of the genotypes at any time point studied. 

Fewer samples were obtained from Pth nulls, in fact, in several cases only one Pth 

null was studied. The low numbers are due to deaths and failure to lactate. In response 

to this, we decided to leave the few remaining Pth nulls alone during lactation so as to not 

disturb them from their pups. 

3.4 Mineral Physiology 

Maternal serum levels of magnesium and phosphorus were measured because 

regulation of calcium metabolism is often linked to phosphorus metabolism, and to a 

lesser extent, magnesium metabolism. 

3.4.1 Serum Magnesium 

Results shown in Figure 3.5 indicate that serum magnesium is slightly decreased 

during pregnancy in each of the genotypes, similar to what we have observed to occur in 

normal mice, although the changes were not statistically significant. 

3.4.2 Serum Phosphorus 

As expected, Pth null mice were hyperphosphatemic at the pre-pregnancy 

baseline compared to their WT sisters, however, results in Figure 3.6 show that serum 
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Figure 3.4: Maternal whole blood ionized calcium (mean ± SE) 
over the entire reproductive period (baseline [pre-pregnancy], 
pregnancy, lactation and weaning). At baseline, the Pth null (HOM) 
females were hypocalcemic compared to their Wf and HET sisters. 
There was no significant change in ionized calcium during pregnancy, 
lactation and weaning in any of the genotypes. The numbers in 
parentheses indicate the number of mice studied. 
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Figure 3.5: Maternal serum magnesium levels (mean ± SE) over the 
entire reproductive period (baseline [pre-pregnancy], pregnancy, 
lactation and weaning). Serum magnesium declined non-significantly 
during pregnancy in all genotypes, however, there was no significant 
difference between any of the genotypes. The numbers in parentheses 
indicate the numbers of mice studied. 
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Figure 3.6: Maternal serum phosphorus (mean ± SE) over the 
entire reproductive period (baseline [pre-pregnancy], pregnancy, 
lactation and weaning). Serum phosphorus was elevated in Pth null 
(HOM) mice, and did not change significantly during pregnancy or 
lactation. The numbers in parentheses indicate the numbers of mice 
studied. 
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phosphorus did not change significantly over the reproductive period for WT, HET of Pth 

null females. 

3.4.3 Serum Osteocalcin 

Results from serum osteocalcin diplayed in Figure 3.7 show that the levels did not 

change significantly over the reproductive period for any of the genotypes. Again, low 

numbers are an issue and further investigation is required to confirm these findings but 

based on what we have found, there was no significant change in the osteocalcin levels 

despite the shift from bone resorptive state of lactation to bone formative state of 

weaning. 

3.4.4 Urinary Deoxypyridinoline (DPD) 

Urinary deoxypyridinoline (DPD) does not change significantly over the 

reproductive period (figure 3.8). DPD was corrected for with creatinine and the units are 

expressed as nmol/L DPD per mmol/L creatinine. This differs from what our lab and 

other labs have previously found, that DPD normally increases during lactation. In this 

case, it may be an issue of low sample numbers and clearly additional studies are needed. 

3.4.5 Ash Weight Analysis and Flame Atomic Absorption Spectroscopy 

We also measured the content of calcium and magnesium in three week old pups 

at the time of weaning, in order to determine if maternal genotype affected the amount of 
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Figure 3. 7: Maternal serum osteocalcin (mean ± SE) over the 
entire reproductive poriod (basolino [pro-pregnancy], pregnancy, 
lactation and weaning). There was no significant change in serum 
osteocalcin during pregnancy, lactation and weaning in any of the 
genotypes. The numbers in parentheses indicate the number of mice 
studied. 
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Figure 3.8: Maternal urinary deoxypyridinoline (DPD) corrected 
for creatinine (mean± SE) over the entire reproductive period 
(baseline [pre-pregnancy], pregnancy, lactation and weaning). 
Urinary calcium was elevated significantly (P=0.0395) in wr mice 
during pregnancy compared to baseline. There was no significant 
difference between any of the stages for the Pth null (HOM) females. 
The numbers in parentheses indicate the numbers of mice studied. 
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mineral accreted by the neonatal skeletons. The ash weights were corrected to account 

for the wet weight of each pup. 

As shown in Figure 3.9, there was no significant difference among the ash 

weights ofWT, HET or HOM pups ofHET dams. For the pups ofHOM dams, as shown 

in the same figure, there was also no significant difference between either of the 

genotypes. Also, by comparing the results from HET dams and Pth null dams, it is 

evident that maternal absence of PTH did not affect the net accretion of mineral by the 

pups. 

As displayed in Figure 3.1 0, there was no significant difference in skeletal 

calcium content in any pups from HET dams nor among pups of Pth null dams. The 

calcium content of the pups was unaffected by whether the mother was Pth null or not. 

Similarly, for skeletal magnesium, there were no significant differences in magnesium 

content among the pups of HET mothers or null mothers and again no differences were 

seen across the maternal genotypes either (Figure 3.11 ). 
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Figure 3.9: Skeletal mineral (mean ± SE) present in pups following 21 
days of lactation (HET and Pth null Dams). Results were calculated as 
pup ash weight (g)/ initial pup wet weight (g). There was no significant 
difference in skeletal mineral between any of the genotypes of either 
mothers. The numbers in parentheses indicate the numbers of pups 
studied. 
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Figure 3.10: Skeletal calcium (mean ± SE) present in pups 
following 21 days of lactation (HET and Pth null Dams). 
Results were calculated as skeletal calcium(J.Jg)/pup wet weight (g). 
There was no significance difference in skeletal calcium for any of 
the genotypes of either mothers. The numbers in parentheses 
indicate the numbers of pups studied. 
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Figure 3.11: Skeletal magnesium (mean ± SE) present in pups 
following 21 days of lactation (HET and Pth null Dams). 
Results were calculated as skeletal magnesium/pup wet weight. 
There was no significance difference in skeletal magnesium for any 
of the genotypes of either mothers. The numbers in parentheses 
indicate the numbers of pups studied. 
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Results from Mice Fed Calcium Enriched Chow (Lactose, 2% Calcium, 1.25% 

Phosphorus) 

Due to time constraints, halfway through my two year Masters program, we 

decided to switch the studies to focus solely on WT and Pth null females all of whom 

were fed a calcium enriched chow, containing lactose, 2% calcium and 1.25% 

phosphorus (Harlan Teklad, Madison, Wisconsin, USA). A drawback with using the 

enriched diet was that the excess calcium would constipate the mice so that when they 

were scanned, we would get an extremely high total body BMC reading due to radio 

opaque, calcium rich feces, as displayed in Figure 3.12. To deal with this situation, we 

initially were limited to using only the hind limb region of the scan to examine changes in 

BMC since this region does not include the bowels. Of course, this is not as ideal as 

using the whole body scan and especially less ideal than using the spine, which is where 

the most profound changes occur during lactation. We later discovered that if the chow 

was removed from the cages for several hours prior to scanning, the intestines would 

become completely free of the excess calcium and a whole body scan could be taken. 

This discovery was made late in the project and up to that point only hind limb scans had 

been taken, and therefore, only hind limb data are available to be shown in this section. 

With the mice on the calcium enriched diet we also began culling WT litters to 

ensure that the numbers of pups nursed equaled that of the null mice. However, none of 

the mice fed the standard chow had had their litters culled. 
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A B 

Figure 3.12: Representative scans of total body BMC. Measured at three weeks post­

weaning in a mouse on the standard 1% calcium chow (A) and at four weeks post­

weaning in a mouse on the 2% calcium enriched chow (B). As shown in B, when mice 

are fed the calcium enriched diet, the excess calcium constipates the animals and results 

in radio opaque feces that artifactually inflate the BMC reading. On the other hand, if the 

mouse is switched back to the 1% calcium diet for several hours prior to the scan being 

taken, the image looks indistinguishable from A because the radioopaque feces have 

cleared the abdomen (data not shown). 
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3.5 Bone Densitometry 

As shown in Figure 3.13, there was an increase in hind limb BMC during 

pregnancy to a peak of approximately 11% in WT females and 6% in Pth nulls relative to 

pre-pregnancy baseline. The BMC values fell approximately 3.5% below pre-pregnancy 

baseline during lactation in both genotypes. Preliminary results indicate that the WT 

females recover to their pre-pregnancy baseline hind limb BMC within three weeks post­

weaning. Due to the fact that no Pth null females survived after reaching their trough 

point, there is no post-weaning data available. It is important to keep in mind that these 

results are based upon hind limb BMC readings and that whole body but especially spine 

BMC readings are required to be certain what excursions in BMC occur during lactation 

and recovery in mice. 

3.6 Whole Blood Ionized Calcium 

Figure 3.14 shows that at pre-pregnancy baseline, Pth null mice were 

hypocalcemic compared to their WT sisters. However, there was no significant change in 

ionized calcium for either of the genotypes at any time point. When data from the mice 

fed the 1% calcium chow (Figure 3.4) was compared to data from the mice fed the 2% 

calcium chow (Figure 3 .14), the Pth null females on the standard 1% calcium chow had 

slightly lower ionized calcium at the peak of pregnancy, trough of lactation as well as 

during late weaning. 
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Figure 3.13: Hind Limb BMC (mean± SE) in WT and Pth null 
(HOM) mothers at day 18 of gestation and day 19 of lactation, 
and 21 days post weaning, expressed as a percent from pre­
pregnancy baseline BMC. The numbers in parentheses indicate 
the number of mice studied. 
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Figure 3.14: Maternal whole blood ionized calcium (mean ± SE) 
over the entire reproductive period (baseline [pre-pregnancy], 
pregnancy, lactation and weaning). At baseline, the Pth null (HOM) 
mice were hypocalcemic compared to their WT sisters. There was no 
significant change in ionized calcium during pregnancy, lactation and 
weaning in either of the genotypes. The numbers in parentheses 
indicate the number of mice studied. 
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3. 7 Mineral Physiology 

Maternal serum levels of magnesium and phosphorus were measured and ash of 

three week old pups was analysed to measure the content of calcium and magnesium in 

the skeleton. 

3.7.1 Serum Magnesium 

Results from Figure 3.15 indicate that serum magnesium was decreased non­

significantly during late weaning in Pth nulls, however, there was no obvious change in 

serum magnesium for either of the genotypes at any of the stages studied. 

3.7.2 Serum Phosphorus 

Pth null females were hyperphosphatemic compared to their WT sisters, however, 

results show that serum phosphorus did not change significantly over the reproductive 

period in either the WT or Pth null females (Figure 3.16). 

3.7.3 Urine Calcium 

Figure 3.17 shows that urine calcium was elevated significantly (P=0.0395) in 

WT mice during pregnancy compared to baseline however, there was no significant 

difference for the HOM females at any of the stages. 
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Figure 3.15: Maternal serum magnesium levels (mean± SE) over 
the entire reproductive period (baseline [pre-pregnancy], 
pregnancy, lactation and weaning). Serum magnesium declined 
non-significantly during late weaning in the Pth null (HOM) females, 
however, there was no significant difference between either of the 
genotypes at any stage. The numbers in parentheses indicate the 
numbers of mice studied. 
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Figure 3.16: Maternal serum phosphorus levels (mean± SE) over 
the entire reproductive period (baseline [pre-pregnancy], 
pregnancy, lactation and weaning). Serum phosphorus was elevated 
in the Pth null (HOM) females and did not change significantly during 
pregnancy, lactation or weaning. There was no significant difference 
between the genotypes at any stage. The numbers in parentheses 
indicate the numbers of mice studied. 
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Figure 3.17: Maternal urinary calcium corrected for creatinine 
(mean ± SE) over the entire reproductive period (baseline [pre­
pregnancy], pregnancy, lactation and weaning). Urinary calcium 
was elevated significantly (P=0.0395) in wr mice during pregnancy 
compared to baseline. There was no significant difference between 
any of the stages for the Pth null (HOM) females nor was there a 
significant difference between the genotypes. The numbers in 
parentheses indicate the numbers of mice studied. 
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3.7.4 Urine Phosphorus 

As displayed in Figure 3.18, urinary phosphorus was non-significantly elevated in 

both WT and Pth null females during pregnancy compared to baseline, however, there 

was no significant difference between the genotypes at any other stage. 

3.7.5 Ash Weight Analysis and Flame Atomic Absorption Spectroscopy 

As shown in Figure 3.19, there was a small but significant difference between the 

ash weights of the WT pups compared to HET pups ofWT dams (P=0.0022) but there 

was no significant difference between HET and Pth null pups of Pth null dams. There 

was also no obvious difference in total skeletal calcium (Figure 3.20) or magnesium 

(Figure 3.21) in pups of WT of Pth null dams. 
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Figure 3.18: Maternal urinary phosphorus corrected for 
creatinine (mean ± SE) over the entire reproductive period 
(baseline [pre-pregnancy], pregnancy, lactation and weaning). 
Urinary phosphporus was non-significantly elevated in both wr and 
Pth null (HOM) females during pregnancy compared to baseline, 
however, there was no significant difference between the genotypes 
at any stage. The numbers in parentheses indicate the numbers of 
mice studied. 
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Figure 3.19: Skeletal mineral (mean± SE) present in pups following 21 
days of lactation (WT and Pth null Dams). Results were calculated as 
pup ash weight (g)/initial pup wet weight (g). There was a significant 
difference in skeletal mineral between WT and HET pups (P=0.0022) of WT 
dams but no significant difference between HET and Pth null pups of Pth 
null dams. The numbers in parentheses indicate the numbers of pups 
studied. 
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Figure 3.20: Skeletal calcium (mean ± SE) present in pups 
following 21 days of lactation (WT and Pth null Dams). Results 
were calculated as skeletal calcium/pup wet weight. There was no 
significant difference in skeletal calcium between pups of either 
mothers. The numbers in parentheses indicate the numbers of mice 
studied. 
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Figure 3.21: Skeletal magnesium (mean ± SE) present in pups 
following 21 days of lactation (WT and Pth null Dams). Results 
were calculated as skeletal magnesium/pup wet weight. There was 
no significance difference in skeletal magnesium between pups of 
either mothers. The numbers in parentheses indicate the numbers 
of mice studied. 
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IV Discussion 

These studies involved measuring several parameters of calcium and bone 

metabolism to determine whether PTH is required for regulating mineral homeostasis 

during pregnancy and lactation and whether PTH is needed for remineralization of the 

skeleton post-weaning. We examined the maternal effects ofPTH deletion through 

measuring BMC changes, ionized calcium and various calciotropic hormones in both 

serum and urine. We also measured skeletal development of three week old pups after 

they had been weaned. 

4.1 Trouble-shooting Problems Encountered During the Course of the Project 

Any research project can and usually does have unexpected problems, perhaps 

especially when working with animals. This project was no exception. We dealt with 

every obstacle encountered to the best of our abilities within the limited amount of time 

available for a Masters project. 

One major obstacle that we faced during the first year of the project was the fact 

that there were some sudden maternal deaths during pregnancy or at the start of lactation, 

many of which may have been due to hypocalcemia, with or without exposure to 

anesthesia. These deaths were more commonly observed during pregnancy rather than 

lactation regardless of the chow the mice were fed and most deaths were anesthetic 

related however there were deaths unrelated to anesthesia as well (Table 3.1). In most 

cases, the animals died within minutes of being given anesthetic, while in few cases, the 

mice were found dead several hours after they had been injected. In the first instance, 
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one simple explanation is that the mice were given too large a dose of anesthetic and that 

this led to their death by stopping respiration. In the latter instance, death may have 

resulted due to late complications of anesthesia. The fact that the mice were 

hypocalcemic to begin with and then were given anesthesia may have increased the risk 

of hypothermia and cardiac arrhythmias. 

A related issue with this project was that originally we scanned the mice every 

other day over a full 70 day reproductive period, including pre-pregnancy baseline, 

pregnancy, lactation and weaning/recovery. If the Pth nulls are more susceptible to 

sudden death due to anesthesia, the frequent scanning and anesthesia meant that the mice 

were too frequently exposed to the risk of sudden death. To deal with these issues, all 

mice were placed a 2% calcium chow instead of the standard 1% calcium chow to reduce 

the effects of severe hypocalcemia. The original anesthetic used in our lab for this 

protocol was methohexital sodium which gave 10-15 minutes of anesthesia; however, this 

anesthetic was discontinued by the manufacturer just prior to the start of my project. 

Therefore, at the start of this project, the anesthetic used to anaesthetize the mice prior to 

scanning was Penthothal® (Abbott Laboratories, Vaughan, Ontario, Canada) which was 

eventually changed to a combination of Ketamine Hydrochloride (Pfizer Canada Inc. 

Kirkland, Quebec, Canada) and Xylazine (Bayer Inc. Toronto, Ontario, Canada). 

Penthothal® caused more prolonged anesthesia which in turn, may have caused maternal 

deaths. Ketamine Hydrochloride/Xylazine proved to be better in that it was faster acting 

and in most cases, mice recovered within 1-2 hours and there were also fewer maternal 

deaths while using this anesthetic. Unfortunately, since the diet was also changed at the 
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same time, it is difficult to know how much of the improvement in maternal mortality 

was due to the change in anesthetic. In addition, we also started to scan the mice less 

frequently and only scanned them at the significant time-points (pre-pregnancy baseline, 

peak of pregnancy, trough of lactation and weaning/recovery) and not every other day. 

In any case, when using anesthetic, these problems and in particular the deaths are 

not surprising and are often unavoidable. The change in anesthetic and in the scanning 

schedule did appear to reduce the number of maternal deaths previously encountered. In 

addition, we did try several things to reduce the number of deaths, including placing the 

animal under a heat lamp while monitoring the temperature to ensure that they did not 

become hypothermic or overheated. We also tried to avoid returning the mice to Animal 

Care (cooler environment) until they had fully recoyered from the anesthetic. 

The apparent improvement on the 2% calcium chow may have resulted from 

several factors. We speculate that the extra calcium ingested by the Pth null mice from 

the 2% calcium chow may reduce or eliminate the problems caused by low 1,25-

dihydroxyvitamin D levels. This in tum may improve calcium absorption in the 

intestines as more calcium is available. 1 ,25-dihydroxyvitamin D normally doubles 

during pregnancy (13,14) and even hypoparathyroid individuals may experience some 

increase because of effects ofPTHrP, prolactin and placental lactogen to stimulate the 

!a-hydroxylase (19). However, despite all of this 1,25-dihydroxyvitamin D could still be 

low in Pth nulls and this would cause reduced intestinal calcium absorption. 1,25-

dihydroxyvitamin D mediated absorption is active and not affected by dietary calcium 

content. On the other hand, passive absorption of calcium will be increased by a higher 
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calcium content in the diet. Therefore, the 2% calcium diet should increase the passive 

absorption of calcium and this in turn would reduce the likelihood of hypocalcemia and 

maternal deaths in the Pth nulls. 

Another problem which arose early in the course of the project was that many Pth 

null females experienced other problems during lactation. It appeared as though either 

the Pth null mothers simply could not lactate or that they would reject their pups and cull 

their litters to zero. It may be that because the Pth null mothers are hypocalcemic they 

simply cannot mobilize sufficient calcium to produce milk, and their pups die of 

starvation. Another possibility is that the mother cannot cope with the calcemic stress of 

nursing a large number of pups and to deal with this stress she culls her litter. However, 

it is also possible that the female simply rejects and eats her pups, something commonly 

observed in mice and other rodents as a way to deal with non-specific stress. A similar 

issue is that in many cases, when returning a lactating mother to her pups after she had 

recovered from anesthetic, she would neglect her young and they would die or she would 

sometimes eat them. In order for the data collected to be comparable, steps were taken in 

the latter half of this project to ensure that all mice were nursing the same number of 

pups. Twenty-four hours after delivery all litters were culled down to 3-4 pups, which 

was the average number of pups Pth null females nursed. Culling the litters would make 

the results more comparable between females of different genotypes by eliminating 

variability due to mothers nursing different numbers of pups. 

With regards to the problems experienced by the Pth null mice during lactation, it 

would be interesting to know if the pups contributed to these problems in any way. As 

73 



will be discussed in a little more detail in the Future Directions Section, it would be 

useful to conduct cross-fostering experiments so that the pups of the WT and Pth null 

mothers would be switched shortly after birth. This would examine the possibility that 

the problems during lactation might be due to abnormal fetuses and not actually because 

of the mother or her genotype. 

All of the problems mentioned, including the low reproduction rates and problems 

during lactation for the Pth nulls slowed the progress in the first year of the project and 

led to fewer completed reproductive cycles than expected. By changing the diet, we 

hoped to have more success in obtaining data from mice during the reproductive period. 

Unfortunately, as mentioned earlier in this report, a problem then arose with the 2% 

calcium chow in that it constipated the mice and rendered the spine BMC readings 

invalid because of radio opaque feces. This was initially dealt with by performing scans 

of the hind limb only. Eventually the problem was solved when it was discovered that 

placing the mice on the regular 1% calcium chow overnight would clear the bowels and 

allow the whole body and spine BMC scans. However, this solution was discovered too 

late to impact on the data collection reported here. 

As can be observed in many of the figures, the sample size for the Pth nulls is 

often low due to a combination of the problems discussed. However, because of time 

constraints, we were unable to obtain sufficient or definitive numbers on the 2% calcium 

chow. Any data obtained from mice on the 2% calcium chow were presented separately 

from the data collected from the mice on the 1% calcium chow due to the fact that the 

two sets of data are not comparable. 

74 



4.2 Limitations in Using Knockout Models 

In scientific research today, when looking at genetic diseases, genes and their 

functions, and the many other scientific research questions it is often most practical to use 

a gene knockout model in which all or part of a gene has been removed or inactivated 

through genetic manipulation. Of interest to our lab is that knockout models can be used 

to examine the role of various genes during skeletal development, however, these models 

are not useful in instances where the phenotype is severe enough to lead to fetal or 

neonatal death ( 46). Using animals in experimental research has enabled scientists to go 

beyond what previous years of research allowed them to do. As an example, engineering 

of the mouse genome has changed the way biomedical research is done due to the fact 

that the animal can be used for a wide range of experiments ( 46). 

In spite of the fact that conventional and transgenic knockout models are very 

useful there can also be severe limitations with choosing to use either of these models. 

Altering the genetics of the germline of a mouse or any other animal may answer the 

research questions at hand but there may also be severe developmental consequences, 

which in turn complicate the analysis. One major consequence is that the alteration in the 

genome is present from conception and this prevents studying the role of the gene in 

adults and also, the gene is deleted in one or both of the alleles in the genome ( 46). 

When assessing the phenotype of an animal that has been genetically modified, other 

factors may alter the phenotype, including compensatory effects by one gene upon the 

removal or overexpression of another, toxic effects due to inappropriate gene expression 

etc. (47). 
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The genetic background is an important factor when interpreting data and it is 

crucial to know whether the phenotype observed is due to the targeted mutation or as a 

result of the genetic background ( 46). Also, it is known that bone mineral density (BMD) 

can vary between inbred strains of mice and as a result genetic background can interfere 

with the interpretation of data ( 46). However, this problem can be dealt with by 

backcrossing the mouse lines to a single genetic background for several generations and 

then studying animals from the same litter of the various genotypes (wild-type, 

heterozygous, and homozygous) to account for any influence the genetic background may 

have on the various phenotypes (47). In this project, we focused on comparisons between 

sisters from a predominantly Black Swiss backcrossed background. 

When assessing the results obtained from knockout models and trying to 

extrapolate the results from mouse models to human bone, one has to be aware of the fact 

that there are many important differences between the two species ( 46). There is a 

postural difference between mice and humans and as a result, the biomechanicalloading 

patterns are different. Rodents, unlike humans, rarely experience remodeling in their 

cortical bone, and human adults have fused growth plates with no linear growth, while in 

rats, there is no fusion of growth plates and the bone grows throughout adult life ( 46). In 

spite of the fact that these differences exist between mouse and human bone, mouse 

models are still quite useful and significant knowledge can be gained if the models are 

used appropriately ( 46). 

In the case of studying pregnancy and lactation, there are several similarities and 

differences between humans and mice. As mentioned previously, mice experience a gain 
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in total body BMC during pregnancy, an increase that is not observed in humans. During 

pregnancy, humans provide a considerable amount of calcium to the fetus, in fact, 21 g of 

calcium is transferred to the developing fetus, 80% of which occurs during the third 

trimester ( 19). In mice, 12mg of calcium is delivered to each fetus over the last four to 

five days of pregnancy. The calcium losses occur more abruptly in the mouse and in 

relation to body size, they experience a greater loss compared to humans. During 

lactation, both humans and mice lose BMC from their trabecular bone however, the 

magnitude and speed ofloss differ. Lactating rats lose up to 35% of their BMC during 21 

days of lactation while females only lose 3-8% after 2-6 months of lactation (19). 

Complete recovery in BMC occurs in humans several months after lactation has ceased 

and in approximately three weeks for mice ( 19). 

In doing scientific research and especially in working with knockout models, 

there is always the possibility of confounding factors which could influence the results. 

For this project in particular, there are several such factors, including the fact that the Pth 

null mice have a slightly higher bone mass than their WT sisters to begin with. This in 

itself could effect the bone density findings. The Pth null mice also experienced 

hypocalcemia and hyperphosphatemia both of which were not observed in the WT 

siblings. Both of these factors could potentially influence and conflict the results if they 

are not taken into consideration in data analysis. 

If all of the appropriate considerations are taken into account, using knockout 

models is scientific research is very useful and reliable. It is important however, that one 
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is aware of these limitations so that they did not assume the results obtained are strictly 

due to the alteration to the genome. 

4.3 Project Summary 

The problems encountered with the Pth null females during the first year slowed 

the progress of the project tremendously. With the time constraints, it was decided that 

we would make several changes to the project with the hope that any problems during 

pregnancy and lactation would be avoided. However, as mentioned previously, the 

drawback was that the data obtained from mice on the 1% calcium chow could not be 

compared to the data obtained from mice on the 2% calcium chow and as such the data 

have been kept separate. Overall, the impact of these events is that far fewer Pth null 

females were studied through complete reproductive periods than originally planned, and 

the data set is not conclusive in its present form. 

Results from the mice fed the standard 1% calcium chow indicate that Pth null 

mice experienced changes in total body BMC during pregnancy, lactation and weaning 

that were similar to their WT and HET siblings. For mice fed the 2% calcium chow, 

results indicate that both WT and Pth null mice experience an increase in hind limb BMC 

during pregnancy and a decrease during lactation. WT females recovered to their pre­

pregnancy baseline within three weeks post-weaning and there is no such data regarding 

the Pth null females at this point in time. It is important to keep in mind that this data is 

based on hind limb BMC values and if spine scans were available, the results would be 

more accurate and reliable. 
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After changing the chow, it appeared that mice were more successful during 

pregnancy and lactation and that there was a reduction in the number of maternal deaths. 

It appeared that PTH was required in mice during lactation because in the absence of 

PTH, the animals were prone to sudden death. Pregnant hypoparathyroid rats on a low 

calcium diet or vitamin D deficient often become hypocalcemic, can show signs of tetany 

and often die during late pregnancy and especially lactation. In humans, there does not 

appear to be any obvious problems during late pregnancy and especially lactation because 

PTHrP seems to completely take over as evidenced by hypoparathyroid women who 

often experience improvements in their hypocalcemic symptoms (19). Therefore, a 

difference between rodents and humans is that humans do not need PTH to support 

lactation but rodents do, given that many Pth null mice did not lactate and that there were 

some maternal deaths in late pregnancy and early lactation which were not related to 

anesthetic use. Some possible explanations for this could be the fact that animals 

normally have larger litter sizes (six to twelve fetuses) while humans normally have only 

one fetus. Also, the gestational period in rats and mice is quite short and this requires 

that the animals provide a large bulk of calcium to several fetuses over a few days, 

compared to humans who do this over a full trimester. It may be that lactation 

overwhelms the mice such that they need to use both PTH and PTHrP to break down 

bone, whereas humans only need PTHrP. 

One finding from this project which is of particular importance especially for the 

continuation ofthe work is the fact that when fed the standard 1% calcium chow, mice 

have far more problems during pregnancy and lactation compared to those fed a 2% 
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calcium chow. The supplemented calcium appeared to decrease the presumed 

hypocalcemia-induced sudden deaths and diminished the problems experienced by the 

mice due to absence of PTH. 

Absence of PTH had its expected impact on serum chemistry as the Pth null 

females were both hypocalcemic and hyperphosphatemic. There was no significant 

change in serum chemistries (calcium, magnesium and phosphorus) over pregnancy and 

lactation, whether WT or Pth null. Serum magnesium was slightly decreased during 

pregnancy in mice fed the 1% calcium chow and this is similar to what has been observed 

in normal mice. A possible explanation for this could be that fetal demand for 

magnesium exceeds the mother's ability to maintain the level in her circulation. For mice 

fed the 2% calcium chow, there did not appear to be any decrease in serum magnesium 

during pregnancy as was expected. To account for this, it may be that when the mice fed 

the 2% calcium chow become constipated, this has an effect of allowing more transit time 

to absorb nutrients. It may be that these mice absorb more and excrete less magnesium, 

and therefore there is more in circulation and this is why the levels are not decreased 

during pregnancy. 

Pth null mice had lower urinary calcium excretion during pregnancy compared to 

WT mice. This differs from the normal situation where in hypoparathyroidism is 

associated with an increase in urinary calcium excretion due to loss of the effect of PTH 

to stimulate calcium reabsorption. One possible explanation for the low urinary calcium 

excretion could be that the animals are either not ingesting or not absorbing enough 

calcium and are severely hypocalcemic, to the point that the filtered load of calcium is 
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low. In other words, the Pth null mice had lower urinary calcium excretion because 

pregnancy overwhelms their ability to maintain normocalcemia and normal perfusion of 

the kidneys by calcium. The findings from the ash weight and atomic absorption 

spectroscopy analysis show that the pups are able to get what they need from their 

mothers regardless of the maternal genotype and it does not appear as though the pups are 

at any major disadvantage. There was no significant difference between the ash weights, 

the total skeletal calcium content or the total skeletal magnesium content between pups of 

WT, HET or Pth null dams fed the 1% calcium chow. There was a significantly lower ash 

weight of WT versus HET pups of WT dams fed the 2% calcium chow, although there 

was no significant difference in the calcium or magnesium content of the ash. Although 

statistically significant, the differences appear to be trivial. 

Pth null mice experience an increase in bone density as they age to the point that 

their skeletons become overmineralized. This is interesting considering the fact that 

unpublished data from our lab shows the Pth null fetus to have an undermineralized 

skeleton and compared to WT siblings, in particular, they have lower ash weights as well 

as lower total skeletal calcium and magnesium. Mice lacking both the parathyroids and 

PTH (Hoxa3 null) have an even lower ash weight and calcium and magnesium content 

than their WT and HET siblings (50). This confirms that the Hoxa3 null skeleton is 

undermineralized in the absence of PTH. The combination of this data confirms a role 

for PTH because in its absence, fetal mice experience a lower ash weight and less 

calcium and magnesium in their skeletons. At some point postnatally, the absence of 
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PTH leads to a reversal of this, such that adult Pth null mice have overmineralized 

skeletons. 

Although the results presented are not definitive, it does appear that absence of 

PTH increases the risk of maternal hypocalcemia and death during pregnancy and 

lactation, but that PTH may not be required for the loss of mineral during lactation or for 

its restoration afterward. Experiments must now be continued with mice on the 2% 

calcium chow (removed several hours before scanning) with less frequent scanning and 

anesthesia to obtain conclusive results. 
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V Future Directions 

After dealing with the many obstacles that arose during the course of this project, 

there was very little time to redo many of the experiments. In many cases, the sample 

sizes analyzed were extremely small and more mice have to be studied in order to make 

the results more reliable. The project will be continued taking into account all of the 

discoveries made during the course of this project. All mice will be fed the calcium 

enriched chow, scanned less frequently and taken off the chow several hours prior to 

scanning so that whole body scans can be obtained in addition to regional measurements 

(spine and hind limb). The anesthetic used will be the same as the one used in the latter 

half of this project (Ketamine Hydrochloride/Xylazine) as it appears to be successful in 

keeping the mice under for a very short period of time and there do not appear to be any 

major problems during recovery from the anesthetic. 

This project can be expanded to look at other aspects of calcium and bone 

metabolism such as other calciotropic hormones including PTHrP, calcitriol, and sex 

steroids such as estradiol in the knockout mice. These hormones have not yet been 

measured simply due to time constraints. 

We are still not certain as to why the Pth null mothers experience so many 

problems during lactation. It is not clear as to whether the mothers cull their litters to 

reduce the calcemic stress of nursing a large number of pups, or whether they simply 

reject their pups and eat them. It would be useful to examine these issues in more detail 

by adjusting the litter size so that the demands on the mother during lactation are varied 

(eg. four, six, eight pups in various experimental groups). This will allow us to examine 
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how litter size affects the mother's skeleton during lactation with regards to the amount 

of bone mineral content she loses. This further experimentation could clarify the 

uncertainties. 

Still related to this issue of maternal problems during lactation, it would be 

interesting to determine if the problems experienced by the Pth nulls could actually be 

due to abnormal fetuses. This can be looked at by performing cross-fostering 

experiments whereby the Pth null mice would nurse WT pups and vice versa. This 

would allow us to determine whether or not it was actually the pups who were causing 

the problems during lactation completely independent of the mother and/or her genotype. 

However, due to the fact that many of the Pth nulls failed to go through full periods of 

lactation, we did not attempt these experiments over the course of my Masters project. 

We felt that it was more beneficial to leave lactating Pth null mothers with their pups 

because of the fact that successful lactation for these mice was rare. However, it would 

be useful to conduct these experiments when the project continues to gain a better 

understanding of whether or not the fetuses contribute in any way to the problems during 

lactation. 

Adjusting the litter size or doing these cross-fostering experiments, presents other 

problems because the Pth null mice often cull their litters early (during the birthing 

process or in the first few hours afterward). Thus, there will be few pups to cross-foster 

and no large litters to cull to lower numbers. 

It would be useful to look at the skeleton of these mice specifically during 

lactation and recovery to gain a better understanding of how the bones are affected by 
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lactation and weaning in terms of the extent of bone loss and regain. The information 

obtained could be included with what we have already observed from bone density data. 

We could examine markers of bone formation and resorption for evidence of what may 

be going on to allow the Pth null mice to lose less BMC during lactation if, in fact, they 

truly do lose less bone. The skeleton could be looked at on a more molecular level to 

determine if there are any major differences between the structure of the bones of the null 

mice compared to their WT siblings. For example, it would be helpful to examine the 

activity of the osteoblasts and osteoclasts to determine what is going on as bone is being 

remodeled and also to determine the extent to which the osteoblasts and osteoclasts 

influence the remodeling process in these mice. The skeleton could be tested for 

mechanical strength using three-point bend equipment to determine whether the femurs 

and vertebra from mice of either genotype are stronger than those ofthe other. Ifthe 

absence of PTH leads to a weaker maternal skeleton during lactation or recovery, it will 

be determined using this technique. Bone tissue can be stored and used for later analysis, 

including, bone histomorphometry where tetracycline can be administered in vivo at 

different stages, after which the animal will be sacrificed and the bone harvested. The 

distance between the bands of tetracycline within the bone will indicate the rate of 

mineralization. Staining techniques are also available that allow for measurement of 

other parameters such as the number of osteoblasts and osteoclasts, the periosteal width 

etc. as well as examination of gene regulation within the skeleton during these key stages. 

In this respect, it will also be useful to look at the neonates at the time of weaning to 
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determine if there is any effect due to absence of maternal PTH on neonatal growth, 

mineral homeostasis and skeletal strength. 

This further analysis would provide definite answers as to what happens to the 

Pth null female during lactation and weaning. The additional experiments would provide 

information to include in the lactation and recovery story as we presently understand it in 

these mice based on bone density data. 

Finally, it would be advantageous to look at conditional knockout mice models 

where PTH can be knocked out of the parathyroids at the start of lactation or the onset of 

recovery. Knocking out PTH at a specific time during reproduction ie, at the start of 

lactation, may also eliminate maternal deaths previously observed due to hypocalcemia. 

In this case, to eliminate PTH from the parathyroids at the start of lactation, one could use 

the reverse tetracycline transactivator system whereby the enzyme Cre (bacterial 

recombinase) is driven to cleave out PTH. Upon administration of tetracycline the 

promoter in turn drives the Cre enzyme to cleave out the gene. Cre does this by binding 

to the lox P sites, cutting the sites in half and then splicing them together and once the 

target DNA is excised, it is degraded. Using this specific targeting strategy would be 

useful because it would disrupt the PTH gene from the parathyroids only. 
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APPENDIX 

DNA Extraction From Tissues 

1. Put tissue (e.g. tail tip) in Eppendorftube containing 0.5mL lysis buffer. Buffer is 
stored at room temperature; proteinase K is added shortly before use. 

2. Incubate overnight at 55°C. 

3. Next morning, shake horizontally by hand for 2 to 3 minutes, and spin in a micro 
centrifuge for 10 minutes to precipitate hair. 

4. Pour supernatant into fresh Eppendorftubes containing 0.5mL isopropanol, and invert 
to precipitate DNA. 

5. Pick DNA up with small pipette tips and put it into Eppendorftubes containing 0.5mL 
water. 

6. Shake by hand for 5 minutes to dissolve DNA into a viscous solution. 

7. Add 0.5mL of phenol/chloroform/isoamyl alcohol (100:100:1) and shake vigorously 
for approximately 1 minute. A turbid, milky solution should result. 

8. Spin for 2 minutes at maximum speed in a micro centrifuge. 

9. Carefully aspirate the supernatant and place it in fresh Eppendorftubes. Add 1mL of 
25:1 EtOH:NaOAC solution. Invert several times until DNA comes out of solution. 

10. Spin for 10 minutes at maximum speed to precipitate DNA. A tiny pellet should be 
seen. 

11. Discard supernatant by pouring it off, then add lmL of 70% EtOH. 

12. Pour off the EtOH and dry the pellet. 

13. Resuspend the DNA pellet in 50-250JlL TE (Tris-EDTA). Store at 4°C. 
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Reagents: 

Calcium Reagent 
Calcium Standard 

Procedure: 

Calcium Assay 
(Diagnostic Chemicals Limited) 

APPENDIX 

1. Into separate test tubes, pipette 20 J.!L of deionized water, standard, or serum to be 
assayed. 
2. Add 2.0 mL of reagent and mix. 
3. Incubate for 30 seconds at 18-26°C. 
4. Determine the absorbance of the standard and of each unknown at 650 nm using the 
deionized water sample as the reagent blank. 

Calculation: 

To determine the concentration of calcium, perform the following calculations: 

Calcium (mmol/L) =AlAs x concentration of the standard 

A= absorbance of the unknown 
As= absorbance of the standard 

Example: 

A= 0.631 
As= 0.496 

Concentration of the standard= 2.5mmol/L (or 10mg/dL) 

Calcium (mmol/L) = 0.631/0.496 x 2.5mmol/L 
= 3.2mmol/L 

Calcium (mg/dL) = 0.631/0.496 x 10mg/dL 
= 12.7mg/dL 

Principle: 

2 Arsenazo III+ Ca++-+ Ca-Arsenazo Complex++ (blue-purple) 

97 



APPENDIX 

Aresenazo III reacts with calcium in an acid solution to form a blue-purple complex. The 
color development has a maximum absorbance at 650nm and is proportional to the 
calcium concentration in the sample. 
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Reagents: 

Magnesium Reagent 
Magnesium Standard 

Procedure: 

Magnesium Assay 
(Diagnostic Chemicals Limited) 

APPENDIX 

1. Into separate test tubes, pipette 20J.1.L of deionized water, standard or serum to be 
assayed. 
2. Add 3.0mL of reagent and mix. 
3. Incubate for 5 minutes at 18-26°C. Determine the absorbance of the standard and each 
of the standard and of each unknown at 520nm using the deionized water sample as the 
reagent blank. 

Calculations: 

To determine the concentration of magnesium, perform the following calculations: 

Magnesium (mmol/L) =AlAs x concentration of the standard 

A= absorbance of the unknown 
As= absorbance of the standard 

To convert to mg/dL, multiply the answer from the above equation by 2.4. 

Example: 

Absorbance of the unknown= 0.448 
Absorbance of the standard= 0.176 
Concentration of the standard= 1.0 mmol/L (or 2.4 mg/dL) 

Magnesium (mmol/L)= 0.448/0.176 x 1.0 mmol/L 
=2.5 mmol/L 

Magnesium (mg/dL) = 2.5 mmol/L x 2.4 
= 6.0 mg/dL 
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APPENDIX 

Background of test: 

Magnesium, along with potassium, is the most abundant intracellular cation. Magnesium 
is a coenzyme required for the metabolism of carbohydrates, lipids, and proteins. The 
method used to measure magnesium is atomic spectrophotometry, employing xylidyl 
blue-1. The technique proceeds as follows: 

Xylidyl blue-1 + Mg ++ -+ Mg-xylidyl blue complex (red) 

The absorbance increase, at 520 nm, of the red complex formed is directly proportional to 
the concentration of magnesium in the serum. 
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Reagents: 

Phosphorus Assay 
(Diagnostic Chemicals Limited) 

Phosphorus Blank Reagent (R1) 
Phosphorus Molybdate Reagent (R2) 
Phosphorus Standard 

Procedure: 

APPENDIX 

1. Into separate test tubes, pipette 10 f..I.L of deionized water, standard, or serum to be 
assayed. 
2. Add 1.0 mL of Blank Reagent (R1) and mix. 
3. Add 200 f..I.L of Molybdate Reagent (R2) and mix. 
4. Incubate for 10 minutes at 18-26°C. 
5. Determine the absorbance of the standard and of each unknown at 340 nm using the 
deionized water sample as the reagent blank. 

Calculation: 

To determine the concentration of inorganic phosphate, perform the following 
calculations: 

Inorganic Phosphorus (mmol/L) =AlAs x concentration of the standard 

A= absorbance of the unknown 
As= absorbance of the standard 

Example: 

A= 0.149 
As= 0.262 
Concentration of the standard= 2.0mmol/L (or 6.2 mg/dL) 

Inorganic Phosphorus (mmol/L) = 0.149/0.262 x 2.0 mmol/L 
= 1.1 mmol/L 

Inorganic Phosphate (mg/dL) = 0.149/0.262 x 6.2 mg/dL 
= 3.5 mg/dL 
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Principle: 

Inorganic Phosphorus + Ammonium Molybdate +H2S04 

"' Unreduced Phosphomolybdate complex 

APPENDIX 

The reaction of inorganic phosphorus with ammonium molybdate in the presence of 
sulfuric acid (H2S04), produces an unreduced phosphomolybdate complex. The 
absorbance of this complex at 340nm is directly proportional to the inorganic phosphorus 
concentration. 
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Reagents: 

Creatinine-S Assay 
(Diagnostic Chemicals Limited) 

Creatinine Base Reagent (Rl) 
Creatinine Picrate Reagent (R2) 
Creatinine Standard 

Procedure: 

APPENDIX 

1. Prepare the required volume of creatinine working reagent (one volume of R2 and four 
volumes of Rl ). Mix well before using. 
2. Into separate test tubes, pipette 100 ~-tL of deionized water, creatinine standard, or 
serum to be assayed. Urine samples require pre-dilution with 0.9% saline. 
3. Add 2.0 mL of creatinine working reagent and incubate for 20 seconds. 
4. Record the absorbance of the standard at 510nm at 20 seconds (Ast) and at 80 or 140 
seconds (As2). Also record the absorbance of each unknown at 51 Onm at 20 seconds 
(Ast) and 80 or 140 seconds (As2). 

Calculation: 

To determine the concentration of creatinine, perform the following calculations: 

Creatinine (f-tmol/L) = A2-At1As2-Ast x concentration ofthe standard 

A2= final absorbance of the unknown 
At= initial absorbance of the unknown 
As2= final absorbance of the standard 
Ast= initial absorbance ofthe standard 

Example: 

A2=0.ll? 
At= 0.057 
Asz= 0.051 
Ast= 0.016 

Concentration ofthe standard= 354f-tmol/L (or 4.0mg/dL) 
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Creatinine (~mol/L) = 0.117-0.057/0.051-0.016 x 354~mol/L 
= 607~mol/L 

Creatinine (mg/dL) = 0.117-0.057/0.051-0.016 x 4.0mg/dL 
= 6.9mg/Dl 

Principle: 

Creatinine + alkaline picrate -+ creatinine-picrate complex 

APPENDIX 

At an alkaline pH, creatinine reacts with picrate to form a complex. The rate of increase 
in absorbance at 51 Onm due to formation of the creatinine-picrate complex is directly 
proportional to the concentration of creatinine in the sample. 

Creatinine measurements are used in the diagnosis and treatment of renal diseases, in 
monitoring renal dialysis, and as a calculation basis for measuring other urine analytes. 
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