
CENTRE FOR NEWFOUNDLAND STUDIES 

TOTAL OF 10 PAGES ONLY 
MAY BE XEROXED 

(Without Author's Permission) 







Analysing Longitudinal Data in the Presence of 
Missing Responses with Application to SLID Data 

St. John's 

by 

@Adebola Braimoh 

A practicum submitted to the School of Graduate Studies 

in partial fulfillment of the requirement for the Degree of 

Master of Applied Statistics 

Department of Mathematics and Statistics 

Memorial University of Newfoundland 

January 16, 2004 

Newfoundland and Labrador Canada 



Abstract 

In longitudinal studies, outcomes that are repeatedly measured over time may be 

correlated and some may be missing. In this practicum, we empirically examine the 

performance of a recently proposed generalized quasi-likelihood (GQL) approach for 

the analysis of longitudinal data that includes observation that are missing completely 

at random (MCAR) or missing at random (MAR). This GQL approach is also illus­

trated by reanalyzing the Survey of Labour and Income Dynamics (SLID) data from 

Statistics Canada. 
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Chapter 1 

Introduction 

1.1 Motivation of the Problem 

In many socio-economic research fields, it is common to collect observations succes­

sively over time on a large number of individuals. Also, a set of multidimensional 

covariates is often collected for each of these individuals. As the responses are col­

lected repeatedly, it is likely that they will be correlated. In this type of longitudinal 

set up, it is of interest to find the effects of the covariates after taking the longitudinal 

correlations of the responses into account. This is, however, not easy as in practice 

the joint distribution of the correlated responses is not available. 

Liang and Zeger (1986) have bypassed the joint distribution and used a 'working' 

correlation approach for the analysis of longitudinal data. This approach, however, 

has many pitfalls as shown by Crowder (1995) and Sutradhar and Das (1999). As 

a remedy, Sutradhar and Das (1999) [see also Jowaheer and Sutradhar (2002)] have 

suggested a true robust autocorrelation structure-based generalized quasilikelihood 

( GQL) approach to construct consistent as well as efficient regression estimates. 

Note that in practice, it may happen that some of the repeated data collected 

over time may be missing for some individuals. The analysis of such longitudinal 

data subject to non-response is naturally more complicated. Some authors such as 

Paik (1997), Xie and Paik (1997), Robins, Rotnitzky, and Zhao (1995) (hereafter called 
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RRZ (1995)) [see also Robins and Rotnitzky (1995)) have extended the 'working' cor­

relation based generalized estimating equation (GEE) approach of Liang and Zeger 

(1986) to analyze such longitudinal data subject to non-response. More specifically, 

Paik (1997) has used the 'working' independence approach as a special case of the 

'working' GEE approach. Note however that even though the independence approach 

may be efficient in some cases, it follows from Sutradhar and Das (1999) that it may 

be inefficient in some cases, specially when longitudinal data follow an AR(1) cor­

relation structure. Consequently, these 'working' independence or general 'working' 

correlations based approaches run into difficulties in estimating the regression effects 

efficiently. Sutradhar and Kovacevic (2003) recently proposed an extension of the 

GQL approach of Sutradhar and Das (1999) and analyzed longitudinal data subject 

to non-response when responses occur either MCAR (missing completely at random) 

or MAR (missing at random). It is not known however, how the efficiency of such 

an extended GQL method will vary depending on the missingness structure espe­

cially when responses are MAR. This motivated us to undertake an empirical study 

to examine the efficiency of the GQL approach for various missing value structures. 

1.2 Objective of the Practicum 

As mentioned in the previous section, the main objective of this practicum is to ex­

amine the efficiencies of the GQL approach used by Sutradhar and Kovacevic (2003) 

in estimating the effects of the covariates in the longitudinal set up when the longitu­

dinal response may be subject to non-response. We also apply the GQL approach for 

MAR models to the SLID (Survey of Labour and Income Dynamics) data collected 

by Statistics Canada for the period 1993 to 1998. The specific plan of the practicum 

is as follows. 

In Chapter 2, we discuss the MCAR (Missing Completely at Random) and MAR 

(missing at random) models and summarize the GQL estimation approach for longi­

tudinal data that follow either MCAR or MAR models. Note that both monotonic 
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and non-monotonic missing cases are discussed. 

In Chapter 3, we conduct a rigorous simulation study to examine the rela.tive 

performance of the GQL approach under complete and various incomplete (subject 

to missing) longitudinal models. Once again, both monotonic and non-monotonic 

cases are considered. 

In Chapter 4, we introduce the SLID data subject to non-response. We then apply 

the GQL methodology discussed in Chapters 2 and 3 to the SLID data. 

We provide some concluding remarks in Chapter 5. 
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Chapter 2 

Generalized Quasilikelihood 

Approach for Longitudinal Data 

Either MCAR or MAR 

2.1 Background 

In the longitudinal set up, a number of responses are collected repeatedly from a 

large number of individuals. Also, a set of covariates is collected from each of the 

individuals. Let 

(2.1) 

denote the T x 1 complete outcome vector and T x p covariate matrix respectively 

for the ith(i = 1, ... , K) individual. Further let {3 be the effect of Xit on Yit for all 

i = 1, ... , K and t = 1, ... , T. It is of interest to compute this {3 consistently and 

efficiently. Under the assumption that 

E(Yit) = a'(Bit) =f-lit and Var(Yit) = a"(Bit) (2.2) 

with a(Bit) as a known function of Bit = x~tf3 and a'(Bit) and a"(Bit) are the first and 

second derivatives of a( Bit) with respect to Bit, one may obtain a consistent estimator 
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of f3 by solving the so-called independence estimating equation 

K 

I: xt (yf - MD = o (2.3) 
i=I 

where Xi'= (xii, ... ,Xir), and f-li = (1-lii,···,f-lir)'. Note that to construct (2.3), 

it was assumed that Var(~c) = Af = diag[a"(Bii), ... , a"(Bit), ... , a"(Bir)]. Let rJr 
be the solution of (2.3), which is known to be consistent. As the repeated data 

Yii, ... , Yit, ... , YiT are likely to be correlated, rJr obtained from (2.3) may not be 

efficient in all cases. 

To obtain a consistent and efficient estimator, one may follow Jowaheer and Su­

tradhar (2002)[see also Sutradhar and Das(1999)] and solve the estimating equation 

K 
""xc'Ac"c- 1 

( c c) ~ i i ui Yi - 1-li = 0 (2.4) 
i=I 

where I:f = Var(~c) = Af12 C(p)Af12
, with C(p) as aT x T general auto-correlation 

matrix given by 

1 PI P2 PT-I 

PI 1 PI PT-2 
C(pi, ... 'PT-1) = (2.5) 

PT-I PT-2 PT-3 1 

Pi being the fth lag autocorrelation which can be calculated as 

A l:~I i:f:::Ii YitYi , t+i/ K (T - .e) 
Pi= K T -2/KT l:i i:t=I Yit 

(2.6) 

with standardized residuals Yit = (Yit - /-lit)/ {a" (Bit) p12 

Let /!Jc be the solution of (2.4), which is consistent as well as highly efficient. 

In the above discussion, it was assumed that all K individuals had responses for 

all T occasions. In practice, it may however happen that some of the repeated re­

sponses of an individual are missing. 
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Let Tit be an indicator variable, such that 

{ 
1 if Yit is observed 

Tit= 
0 if Yit is missing 

Suppose that for the ith individual "Lf=1 Tit = Ti < T. 

Let Yi = (Yil, ... , Yit, ... , YirJ' be the response vector for the ith individual, and 

Xi = (xil, ... , Xit, ... , xirJ' be the corresponding covariate matrix. Clearly T- Ti 

responses are missing. Note that these T- Ti missing responses may be monotonic 

or non-monotonic. To be specific, the missing responses will be monotonic if 

(2.7) 

otherwise the responses will be non-monotonically missing. For example, ril = ri2 = 

ri3 = 1, ri4 = 0, Tis = 1 ... rir = 0 indicate that the missing responses are non­

monotonic. Further note that if the data contain missing responses, then one cannot 

use the estimating equations (2.3) or (2.4) as they are constructed for the estima­

tion of the parameters based on complete data. Some authors, such as Paik (1997) 

consequently modified the estimating equations (2.3) and (2.4) to obtain consistent 

estimates for the parameters based on incomplete data. These modifications however 

require the knowledge of missing patterns such as whether missingness is monotonic 

(such as in (2.7)) or not. Second, these modifications also require a probability model 

for Tit(t = 1, ... , T) in order to determine the weights for respective Yit· 

We now define certain non-response mechanisms (probability models for non­

responses) that have been widely used in the literature. These non-response mecha­

nisms are classified into three (3) categories (Little and Rubin,1987): MCAR (Missing 

Completely At Random), MAR (Missing At Random) and Non-Ignorable . 

To elaborate, let ri = (ri1, ... , rit, ... , rirJ' be a vector of indicator variables for 

the ith subject, where as before, Tit = 1 if Yit is observed and Tit = 0 if Yit is missing. 
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Given ri, the complete-data vector Yf can be partitioned as Yf = (Yoi, Y mi), where 

Yoi are the values of Yf that are observed and Y mi denotes the components of Yf 

that are missing. Next let "'( denote the vector of parameters of the nonresponse 

model so that f(riiYf, xf, "f) denotes the joint distribution of ri given Yf and 'Y· In 

this notation the responses are missing completely at random (MCAR) if: 

(2.8) 

(missingness does not depend on the values of the data Yf) and they are missing at random 

(MAR) if: 

(2.9) 

(missingness depends only on the components Yoi of Yf that are observed, and not on 

the component that are missing). Finally, the missing data mechanism is non ignorable 

if: 

(2.10) 

that is, the probability of nonresponse depends on the missing values Y mi, so that 

f(Yoi, rilxi, 'Y) = L f(riiYi, Xi, 'Y)f(Yilxi), 
Ymi 

where summation is over all possible values of Y mi. 

As examples, recently Paik (1997) has considered the following MAR and nonig­

norable mechanisms in a longitudinal study with monotonic missing responses. 

M3: Pr(rit = 11Yf, xi, rit-1 = 1) = Pr(rit = 11Yi1, ... , Yit, xi, rit-1 = 1) respectively. 

M1 and M2 are MAR (Rubin 1976), and M3 is nonignorable (Laird 1988; Little 

and Rubin 1987). 
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2.2 GQL Approach for Longitudinal Data MCAR 

In this sub-section, we concentrate our discussion on the analysis of incomplete data 

when missing values occur completely at random. To be specific, the missingness does 

not depend on the data (see eq.(2.8)). This implies that E{rit(Yit- f-lit)}= 0 under 

this mechanism. Note that in practice, the missingness may occur monotonically or 

arbitrarily. In the next subsections, we deal with the estimating of the regression 

parameters for these two cases. 

2. 2.1 Monotonic Missing Case 

For this type of longitudinal data MCAR, RRZ (1995) and Paik (1997, Section 2, p. 

1320) suggest using the 'working' correlation matrix based estimating equation 

(2.11) 

for the estimation of the regression parameter vector f3, where ~i = [Af]l12 R*(a)[Af] 112 

with Ai = diag[var(Yi1 ), ... ,var(Yir)], and R*(a) is a suitable TxT 'working' cor­

relation matrix. Furthermore, in (2.11), Ri = diag[ri1 , ... , rit, ... , rir] with ri1 > 

ri2 > ... > rit . .. > riTi ... > riT . This 'working' correlation matrix based approach 

has, however, many pitfalls. See Sutradhar and Das (1999) and Crowder (1995) with 

regard to this problem. In particular, this approach may produce inefficient esti­

mates as compared to the 'working' independence approach. As a remedy, in order 

to obtain consistent and efficient estimator of j3 for the cases when longitudinal data 

are complete, Sutradhar and Kovacevic (2002) [ see also Sutradhar and Das (1999)], 

have proposed a true correlation structure GQL structure based approach. This GQL 

approach based estimating equation for f3 is given by 

(2.12) 

for the longitudinal responses MCAR with monotonic missing pattern. In (2.12) I 
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is the TxT identity matrix, and ~i({J,p) = [Af]l12C(p)[Af]l12
, where C(p) is the 

true correlation matrix of the data as defined in (2.5). Remark that unlike in RRZ 

(1995) and Paik (1997), we are now required to estimate this correlation matrix C(p). 

In estimating the longitudinal correlation matrix C(p), we note that when the data 

contain missing values in a monotonic pattern, the observed data form clusters with 

unequal sizes. This unbalanced situation was accommodated in the construction of 

the GQL type estimating equations (2.12). To estimate the correlation under this 

unbalanced situation, we use a modified formula 

(2.13) 

which reduces to the estimating formula (2.6) when the data is complete. As before, 

rit = 1 or 0 , and Zit = (Yit - Mit)/ { var(Yit) p12
, Yit being observed or unobserved 

responses for t = 2, ... , ~ < T. Note that Pl computed by (2.13) is consistent for Pl 

provided ~~1 riT is reasonably large. This is because if ~~1 riT is large, ~~1 rit for 

t = 1, ... , T -1, for example, would be much larger because of the monotonic missing 

pattern, leading to the consistency of Pl for all .e = 1, ... , T - 1. 

Once Pi is computed by (2.13), these are used in (2.12) to obtain the estimate of 

the regression parameter vector {3. The solution of (2.12), denoted by /JaQL,MCAR , is 

obtained iteratively by using the iterative equation 

{JGQL,MCAR(m + 1) = 

K I -1 

/JcQL,MCAR(m) + [~ a:J { (J- J4) + J4E~({3, ,ii)R;} -l J4 ~:] m 

x [f; a;f3i' {(I-~)+ Ri~f(f3, ,O)Ra - 1 Ri(~c- t-tD] (2.14) 
~1 m 

where [.]m denotes that the expression within the brackets is evaluated at /JaQL,MCAR(m), 

the value of /JaQL,MCAR at the mth iteration. Under some mild conditions, /JaQL,MCAR 

is asymptotically distributed as normal with mean {3 and covariance matrix, cov(/JaQL,MCAR), 
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given by 

Cov(fJcQL,MCAR) = [t, 8/:J' {(I- R;) + R;EHf3, ,O)R;} -1 R; ~:]-I 

x [t, 8!:J' {(I - R;) + R;E1(f3, p)R;} -
1 
R.;E,R;{ (I - R;) + R;EHf3, p)R;} - 1 ~:] 

[ 

K a/-lc' a el-l 
X ~ ao {(I- Ri) + RiL-Hf3, p)Ra -l ~a;~ (2.15) 

2.2.2 Non Monotonic Missing Case 

Using the indicator variable Tit, a matrix ~ is generated first, reflecting the present 

non-monotonic pattern. For example, consider a longitudinal case with T= 4. Sup­

pose that for the ith individual, a response was missing at timet= 3 (ri1 = 1 , ri2 = 1 

, ri3 = 0 , and ri4 = 1). We then generate the Ri matrix for the ith individual follow­

ing these non-monotonic ( r i l = ri2 > ri3 < ri4) pattern. That is Ri = diag[1, 1, 0, 1). 

Next, for the sake of using this information in an estimating equation, we construct a 

new but monotonic type response indicator matrix~ defined as ~ = diag[1, 1, 1, 0). 

Note that because of this change, the position of the 3rd and 4th responses in the 

longitudinal sequence have been interchanged. To make it much clearer , the non­

response positions indicated by 0 in the ~ matrix are shifted to the end in the new 

sequence i.e forming the ~ matrix. 

We now construct new correlation and covariance matrices following the above 

'shifting' technique. Recall that C (p) and 'L-f are the original correlation and covari­

ance matrices , whereas we will refer to the new 'shifting' matrices by C(p) and t[ 

respectively. 

To be specific, rewrite C (p) and 'L-f matrices as follows for T=4 ; 
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1 P1 P2 P3 

C(p) = 
P1 1 P1 P2 

P2 P1 1 P1 

P3 P2 P1 1 

and 
a-u 0"12 0"13 0"14 

Ef = 
0"21 0"22 0"23 0"24 

0"31 0"32 0"33 0"34 

0"41 0"42 0"43 0"44 

As the Ri matrix was constructed by bringing the non-missing responses together 

(at the beginning of the sequence), we reflect this shifting on the above correlation 

and covariance matrices by bringing together the rows and columns of these matrices 

corresponding to the non-missing responses. That is , the rows and columns of these 

matrices corresponding to the missing responses are shifted to the end. Suppose that 

the new matrices are denoted by C*(p) and Et respectively. For the above example, 

these matrices are constructed as 

1 P1 P3 P2 

C*(p) = 
P1 1 P2 P1 

P3 P2 1 P1 

P2 P1 P1 1 

and 

a-u 0"12 0"14 0"13 

E~c = 0"21 0"22 0"24 0"23 
z 

0"41 0"42 0"44 0"43 

0"31 0"32 0"34 0"33 

following the position of responses and nonresponses in the Ri· As it is impossible 

(without imputation ) to calculate correlations corresponding to the missing values, 
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without any loss of generality, we can put zero in the last column and last row of 

C* (p) and L;r matrices, as these rows and columns reflect the missing responses. 

Thus, we construct the final correlation and covariance matrices as 

1 P1 P3 0 

C(p) = P1 1 P2 0 

P3 P2 1 0 

0 0 0 0 

and 

o-n 0"12 0"14 0 

tf = 
0"21 0"22 0"24 0 

0"41 0"42 0"44 0 

0 0 0 0 

where ti can be calculated using ti = [Af]l1 2C(p)[AiJll2 provided Xi is known. 

Consequently, for the non-monotonic case, the GQL approach based estimating equa­

tion for f3 is now given by 

K a c' - P, · - - - - 1 -
U(/3, p) = ~ a~ [(I-~)+ ~L;f(f3, p)R~t Ri(~c- p,f) = 0, (2.16) 

for the longitudinal responses MCAR with nonmonotonic missing pattern. 

For the computation of the C(p) matrix involved in the ti matrix , we can still 

use the lag correlation estimating equation (2.13). Once Pt is computed by (2.13), 

these are used in (2.16) to obtain the estimate of the regression parameter vector f3 

. The solution of (2.16), denoted by /JcQL,MCAR is obtained iteratively by using the 

equation 

/JcQL,MCAR(m + 1) 

(2.17) 
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where [.]m denotes that the expression within the brackets is evaluated at /JcQL,MCAR(m), 

the value of /JcQL,MCAR at the mth iteration. Under some mild conditions, /!JcQL ,MCAR 

is asymptotically distributed as normal with mean {3 and covariance matrix, cov( /!JcQL,MCAR) 

given by 

K I -1 

cov(/JaQL,MCAR) = [~ G:J {(I- fl.)+ fl.f:H/1, p)R;} - 1 fl.~~:] 

x [~ 8:J' {(I- fl.) + R.f:H/3, p)R;} - 1 R;E,R;{(I- fl.) + R.f:H/3, p)k;} - 1 ~~:] 

[
../!-.. oJ-lC:' - - - - 1 - OJ-lc:l-1 

x ~ 
0

{3 {(I- Ri) + Ri~f({J, p)Ra- Ri o{J: (2.18) 

2.3 GQL approach for Longitudinal Data MAR 

Recall from (2.9) that if the data are MAR, then the probability of missingness, 

that is the probability of Tit depends on the past outcomes Yi1 , ... , Yi,t- 1 . Under this 

scenario, E{rit(Yit- /-lit)} =1- 0, and the root of the GQL (2.12) 

(2.19) 

is a biased estimate of {3. To remove this bias, RRZ (1995, Section 3, p.109) proposed 

a weighted generalized estimating equation (WGEE) approach which is a modification 

of the GEE given in (2.11). To be specific, RRZ's (1995) WGEE is given by 

(2.20) 

for obtaining unbiased GEE estimates under MAR, where .6.i = diag[6i1 , ... , 6it, ... , 6ir], 
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with 

t 

bit = ritf Pr{ (IT rij) = 11Hi, t-1, 'Y} (2.21) 
j=1 

Hit being the history of the data for the ith individual up to time t; that is, Hit = 
(Xi, Yi1 , ... , Yit), and 'Y is, a q-dimensional (say) vector of additional parameters used 

to model the conditional mean relationship of rit as a function of Yi1, ... , Yi,t-1· RRZ 

(1995) showed that if .6.i is estimated consistently, the root of WGEE (2.20) is consis­

tent and asymptotically normal under MAR and monotonic missing patterns. Remark 

that similar to Liang and Zeger (1986), as the 'working' covariance matrix 'L/f(/3, a) in 

(2.20) is chosen by the investigator, this WGEE approach also has the same efficiency 

related pitfalls as that of the original GEE approach (Sutradhar and Das (1999)). 

Now to obtain a consistent and efficient estimator of f3 for the case when longi­

tudinal data are monotonically MAR, one may modify the GQL estimating equation 

(2.19) for the MCAR data, and write a WGQL estimating equation given by 

where .6.i = diag[bil, ... , biti' 1, ... , 1] is a T x T diagonal matrix with the first ti 

diagonal elements same as the non-zero ti diagonal elements of the .6.i matrix, and 

the remaining T - ti diagonal elements are 1. 

For modelling bit in (2.21), that is, the non-zero diagonal elements of the .6.i 

matrix, we refer to RRZ (1995) and Paik (1997) among others. More specifically to 

compute bit by (2.22), one is required to model ).it= Pr(rit = 1lri(t-1) = 1, Hit). RRZ 

(1995, eqn (8), (9)), for example, have modelled this non-response probability as 

_ e'Y' h( Wit) 

).it('Y) = Pr(rit = 1lri(t-1) = 1, Hit) = 'h( . ) 1 + e'Y w,t 
(2.23) 

where 'Y is a q x 1 vector of unknown parameter as mentioned before, and h( Wit) is a 

known function of Wit with Wit (Xi, Yi1, ... , Yi, t-1) explained by Hit· Note that 'Yin 
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(2.23) may be estimated by using the partial maximum likelihood (ML) estimation 

method (RRZ (1995)). Let :Y be the partial Maximum Likelihood estimator (MLE) 

of ry. To be specific, :Y maximizes the partial likelihood 

II Li( 'Y) (2.24) 

II II [{-"'it('Y)Yit{1- ""it('Yn1-Titri(t-l) 
i t 

Once 'Y is estimated by :y, we calculate <5it as <5it = rr Tj{·T). 
j=l 'J 'Y 

Similar to RRZ (1995), Paik (1997) has also used a model for the MAR nonre-

sponse mechanism. For example, in Paik's simulation study, a logistic MAR model, 

namely, logit { Pr(ri2 = 1jri1 = 1, Yil)} = Yi1 was used. 

In our simulation study in chapter 3, we will consider two MAR mechanisms. In 

one, the missingness probability will depend on the outcome obtained at time point 

t = 1, for the longitudinal case with T = 4. In the other mechanism, the missingness 

at time t will depend on the outcomes obtained at time points t = 1 and t = 2, for 

the case with T = 4. These two models are denoted by 

Ml logit {Pr(rit = 1)} = Yi1 with ri1 = ri2 = 1, and t = 3, 4 

M2 logit { Pr(rit = 1)} = 'Y1Yi1 + 'Y2Yi2 with ril = ri2 = 1, and t = 3, 4 

Given that ~i is known, we may solve the WGEE (2.20) for {3 by using the iterative 

equation 

K I -1 

/3cQL,MAR(m + 1) = /3cQL,MAR(m) + [~ a:J ~a(~: - ~i) + ~iEf({J, p, 'Y)~a - 1 ~i ~~~] 
~-1 m 

X [t f):J' L'>.: {( L'>.: - L'>.;) + L'>.;L;~ (,8, p, 'Y) L'>.;} -l L'>.; (Y,c - p,~)l ( 2. 25) 
~-1 m 

where [.]m denotes that the expression within the brackets is evaluated at /3cQL,MAR(m), 

the value of /3cQL,MAR at the mth iteration. Note that the computation of the 

Ei({J, p, 'Y) requires the estimation of p = (p1 , ... , p1, ••• , Pr-d', which we obtain 
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as 

(2.26) 

following (2.13). In (2.26), Zit = (Yit - J.lit) / { var(Yit) p12
, Yit being observed or un­

observed responses for t = 2, ... , Ti < T. Let /JcQL,MAR denote the WGEE based 

estimator of f3 obtained by (2.25). Under some mild conditions, it may be shown 

that /JcQL,MAR is asymptotically distributed as normal with mean f3 and covariance 

matrix, cov(/JcQL,MAR), given by 

Cov(/JcQL,MAR) 
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Chapter 3 

Performance Of the GQL 

Approach Under Complete and 

Various Incomplete Longitudinal 

Models: A Simulation Study 

Recall that to analyze missing longitudinal data, Paik (1997) proposed to use a 'work­

ing' independence approach. But, as Sutradhar and Das (1999) have shown in the 

context of complete longitudinal data analysis that the 'working' independence ap­

proach may not be uniformly efficient as compared to the GEE approach discussed 

in the previous chapter. This mainly happens when the longitudinal data follow an 

AR(1) model. Further, to obtain a uniformly more efficient estimator for the re­

gression parameter, Sutradhar and Das (1999) suggested the GQL approach ( also 

discussed in the previous chapter) where the correlation structure is assumed to be 

known. In this chapter, we examine the performance of the GQL approach of Sutrad­

har and Das (1999), first for the complete AR(1) longitudinal data. More specifically 

in Section 3.1, we examine the performance of the GQL approach as compared to 

the 'working' independence approach in estimating (3. This GQL method definitely 
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appears to perform better as compared to the 'working' independence approach, as it 

appears to give nearly unbiased estimates of (3 with smallest mean square error. As 

the GQL approach performs better than GEE approach, we continue to examine its 

performance for the case when longitudinal data may be subject to non-response. In 

Section 3.2, we examine the performance of the GQL approach when the longitudinal 

data are MCAR. This is done monotonically in estimating f3 for various values of 

non-missing probabilities (NMP) for a response. Both monotonic and non-monotonic 

missing cases are discussed under MCAR models. By the same token, in Section 3.3, 

we examine the performance of the GQL approach when the longitudinal data are 

MAR. Here also we have incorporated both monotonic and non-monotonic missing 

cases. Note that the result of the simulation study presented in Section 3.1-3.3 should 

reveal the loss of efficiency because of missingness. 

3.1 Performance Of the GQL Approach for Com­

plete Longitudinal Data Analysis: Efficiency 

Comparison Between GQL and GEE(I) Ap­

proaches 

Recall from Section 2.1 that in the GQL approach, one solves the estimating equation 

K 
~ xc'Ac"'c- 1 

( c c) ~ i i ui Yi - f-li = 0 (3.1) 
i=l 

for the regression parameter f3. Let rJc denote this estimate. 

This estimator with regard to the formula for covariance of /-Jc, is consistent as the 

left hand side of (3.1) is an unbiased function of zero. Furthermore, this /-Jc is highly 

efficient as the estimating equation (3.1), similar to the traditional quasilikelihood 

approach, uses the true mean vector f-Li and the true covariance matrix :Ef to construct 

the estimating equation. Nevertheless, Paik (1997) has used a 'working' independence 

assumption based GEE approach. In this section, we conducted a simulation study 
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to compare the performance of the independence based GEE approach as compared 

to the GQL approach proposed by Sutradhar and Das (1999). For this purpose, 

we need to derive the formulas for this covariance of /Jc and /31 , where /31 is the 

'working' independence based GEE estimator for {3. With regard to the formula for 

the covariance of /3c, it can be shown that under mild regularity conditions, /Jc has 

the asymptotically covariance matrix given by 

(3.2) 

If we, however, use the 'working' independence approach to estimate {3, we then 

obtain the asymptotic covariance matrix of the estimator /31 , given by 

(3.3) 

This is because under the independence assumption, the estimating equation (3.1) 

reduces to 

K 
"'""' c' ( c c) L.J xi Yi - J-Li = o (3.4) 
i=l 

Now to compare the variances of /Jc and /31 , we conduct a simulation study as fol­

lows: We consider K = 100 individuals and obtain T = 6 binary responses from 

each of the individuals following an AR(1) scheme. More specifically, to generate 

Yil, ... , Yit, ... , Yir, we follow a stationary AR(1) scheme for binary data as follows: 

1. Generate binary Yil with probability J-Li., where J-Li. = e'<·: 
l+e i . 

2. if Yi1=0, then generate binary Yi2 with probability J-Li.(1- p); if Yi1=1, then 

generate Yi2 with probability J-Li.+ p(1- p) 

3. Continue this to get Yi3 depending only on Yi2 , and so on. 

The above generating procedure ensures that the fth lag f (£=1, ... ,T-1) auto­

correlation between Yit and Yi,t-e is l 

19 



As far as the covariates are concerned, we considered p = 2 time independent covari­

ates. Also we follow two different designs D 1 and D 2 for this study. To be specific, 

under D 1 we consider 

-1.0 fori= 1, ~ 

0.0 for i = ~ + 1, ~ 

0.0 fori= ~ + 1, ( ~) * 3 

1.0 fori= ( ~) * 3 + 1, K 

and Xit2 = zi, where zi(i = 1, ... , K) are generated independently from a normal 

distribution with mean zero and variance one. Under D 2 , we consider the same 

Xitl but use X i t 2 = t/6 allowing certain time dependence. The component of /3 are 

denoted by /31 and /32 respectively. We consider the generation of the data for various 

large values of p, namely, p= 0.5, 0.8 and 0.9. Next, we compute /3c as a solution of 

'2:~ 1 X{ AfEf 1 
(yf- J.li) = 0 and {3I as a solution of 2:~1 Xi' (yf- J.-Li) = 0 respectively. 

This we do for 1000 simulations. We then compute the averages and standard errors 

of the 1000 simulated values of ric and {31 . 

The simulated means (SM) and simulated standard errors (SSE) are reported in 

Table A.l. We also compute simulated mean square error (SMSE), where MSE= 

(bias) 2+ SE2
. This is also reported in Table 3.1. Further we compute the estimated 

standard error (ESE) by using the covariance matrices of /Jc given in (3.2) and of 

/31 given in (3.3). We then take the average of the 1000 estimated standard errors 

and refer to them as ESE. These ESE are also reported in the same Table A.l. It is 

clear from Table A.1 that the GQL approach performs much better in estimating f3 
parameters, as compared to the GEE(I) approach. 

It is also clear from Table A.1 that the robust estimating formula (2.6) performs 

very well in estimating the correlation parameter. For example, for T = 6, p=0.8 

under D 1 , the estimates of p1 , . .. , p5 are found to be 0.7951, 0.6314, 0.5010, 0.3959 

and 0.3155 , which appears to agree with Pi = / · with p= 0.8, and .e = 1, ... , 5. For 

the estimation of /3, both /Jc and /31 are unbiased. For example, for T = 6, p=0.8, 

the SMs of /Ju and /Ju are found to be 1.0263 and 1.0320 respectively, and the SMs 
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of {31c and /J2c are found to be 1.0284 and 1.0390 respectively. Thus, these regression 

estimates are unbiased with reference to the true value values of {3, which are {31 = 1 

and /32 = 1 respectively. 

Next, the mean square error of /Jc appears to be smaller than that of /31 irrespective 

of the values ofT and p. The SMSE of /Jc appears to be much smaller than that of 

/31 under design D 2 . For example for T = 6, p=0.9 under D 1 , the SMSE of {32c is 

0.2494, while the SMSE of /321 is 0.9108. Thus, /J2c is 3.8 times more efficient than 

/Ju. 
In summary, /Jc performs better in the sense that the SSE of f3c as well as the 

absolute values of their estimates of bias are smaller as compared to /31 for all times 

T = 6, 10 and 15 under both designs. 

As in practice, one computes the estimated variance of the regression estimates, 

we have also computed the estimates of the variances of /Jc and /31 by (3.2) and (3.3) 

respectively. These estimated standard errors are compared with the SSE given in 

the same Table 3.1. 

The comparison of the SSE and ESE for /Jc and /31 shows that the SSE for /Jc is 

closer to its ESE, while the SSE of /31 is far away from its ESE. For example, using 

T = 6, p=0.9 under D 1 , we have obtained the SSEs for /Jll and /321 as 0.3378 and 

0.3139 respectively, while the ESE are found to be 0.1841 and 0.1640 respectively. 

With regard to the performance of f3c, we found the SSEs to be 0.3375 and 0.3092 

for /J1c and /J2c respectively, while the ESE for /J1c and /J2c are found to be 0.3184 

and 0.2864 respectively. 

Thus, the GQL approach performs better as compared to GEE(I) in estimation. 

This result also holds for other time occasions T = 10 and 15. 
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3.2 Performance Of The GQL Approach For Lon­

gitudinal Data MCAR 

Note that it is known from Sutradhar and Das (1999) that fh is not uniformly better 

than the 'working' correlation based GEE estimators. In Section 3.1, as opposed 

to GEE, we have used the GQL approach suggested by Sutradhar and Das (1999, 

Section 3). It was demonstrated that when the data comes from an AR(1) process, 

for example, the GEE(I) performs worse as compared to the GQL approach. In 

view of these results, in this section, we use only the GQL approach and examine its 

performance for the cases when the data are MCAR. 

We consider two cases for the MCAR model with various values of non-missing 

probabilities (NMP) for a response. Under the first case, we assume that data are 

monotonically missing completely at random, whereas, in the second case, data are 

assumed to be non-monotonically missing completely at random. The simulation 

studies for these cases are explained in Sections 3.2.1 and 3.2.2 respectively. 

3.2.1 GQL Approach for Longitudinal Data Monotonically 

MCAR 

Recall from Section 2.1 that when responses are missing in a monotonic pattern, then 

(3.5) 

where rit is the response indicator for the tth (t = 1, ... , T) observation of the ith 

(i = 1, ... , K) individual. Now, in order to know whether rit=1 or 0, one requires 

a probability model for rit(t = 1, ... , T). For convenience, we refer to P(rit = 1) 

as the non-missing probability (NMP). Under MCAR mechanism, this NMP does 

not depend on the outcomes. Consequently, one can consider an independent binary 

distribution for the selection of this probability. In the simulation study, we consider 

a wide variety of NMP such as N M P - 0.80, 0.90 and 0.95. 
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Under MCAR, to generate Yit(i = 1, ... , K; t = 1, ... , Ti), we first generate Tit for 

all i = 1, ... , K and t = 1, ... , T following the monotone pattern; that is once a 

subject leaves the study, return is not possible, or equivalently, Tit=O implies that 

Ti(t+l) = ... Tir=O. To be specific, under the present model, we consider Ti1 = Ti2 = 1 

for all i. Now to generate Ti3 , we generate this with binary probability NMP=PT(Ti3 = 

1)=0.95, say. If Ti3 = 1, we then generate Ti4 with the same probability. If Ti3 = 0, 

however, we put Ti3 = Ti4 = ... =TiT= 0. Based on this MCAR mechanism, we now 

have the Ti (Ti = 3, ... , T) of non-missing response indicator for the ith individual. 

Consequently, we generate Yil, ... , YiTi for the ith individual following the procedure 

as in Section 3.1 for both design 1 (D1 ) and design 2 (D2 ). This means we use the 

covariate information Xitu ( t = 1, ... , Ti; u = 1, ... , p) and the longitudinal correlation 

structure for generating Yil, ... , YiTi for all i = 1, ... , K. 

For the regression parameters, we use the true value of f3 parameters, namely 

/31 = /32 = 1 . Using the logistic model, we solve for the probabilities 

(3.6) 

for (i = 1, ... , K; t = 1, ... , Ti). Using the Pit results, we then compute the ~i, Ai 

and Ri matrices following their definition in Chapter 2, and estimate the regression 

parameter f3 and also compute the estimated covariance of the estimate of /3, as in 

the previous chapter. 

It is clear from Table A.2 that the correlation estimates obtained by using the 

unbalanced data under the present MCAR case appear to be highly satisfactory ir­

respective of the designs D 1 and D 2 , values ofT, and the non-missing probabilities. 

For example, under D 1 , for T=6 and NMP=0.8, the correlation estimates are 0.89 

,0.79 ,0.70 , 0.63 and 0.56 whereas the true correlations, based on Pi=/, for p=0.9, 

are 0.9, 0.81, 0.72, 0.63 and 0.57 respectively. The standard errors of the correlation 

estimates appear to be reasonably small always. Similarly, for the same correlation 

parameter p=0.9, under D 2 , and for T=10 and NMP=0.95, the first five correlation 

23 



estimates are 0.90, 0.81, 0.73, 0.66 and 0.59 respectively, which are extremely close 

to the corresponding true values. 

With regard to the estimation performance of the GQL approach in estimating 

/3, it performs well in estimating both /31 and /32 under design 1 (DI) especially when 

the NMP is large, as expected. For example, for T=6, NMP=0.95 and p=0.9, the 

simulated mean square errors (SMSEs) for /31 and /32 estimates are 0.12 and 0.11, 

whereas for NMP=0.8, the corresponding SMSEs are 0.16 and 0.13 respectively. 

Similar results hold under D 2 . This is because in general, the SMSEs are smaller 

when NMP is large. For example, for T=6, p=0.5 under D 2 , the SMSEs for /31 and /32 

estimates are 0.05 and 0.17 when NMP=0.95, but the SMSEs are 0.06 and 0.30 when 

NMP=0.80. We must also note that for a given NMP, say, NMP=0.95, the SMSEs 

for /32 estimates under D 2 differs from that of D 1 considerably. This is because under 

D 2 , the covariates were chosen to be time dependent i.e xit2=t/T. 

It is then clear that the GQL approach under MCAR model with high NMP does 

not perform well when the covariates are time dependent. This raises an issue of 

finding a better way to analyze the non-stationary missing data, which is, however, 

beyond the scope of the present practicum. 

Remark that when the performance of the GQL approach under the MCAR model 

is compared with the non-missing case, the GQL performs better in the latter case, as 

expected. For example, when there were no missing values for the case with T=6, for 

p=0.9 under D 1 , the SMSEs were found to be 0.12 and 0.10 (see Table 3.1), whereas 

for low NMP=0.8, the SMSEs for {31 and /32 estimates were 0.16 and 0.13 respectively. 

3.2.2 GQL Approach For Longitudinal Data Non-Monotonically 

MCAR 

Recall that when responses are non-monotonic in nature, for a given t(t = 1, ... , T), 

rit can take the value zero or one at random. Suppose that for an individual i(i = 

1, ... , K), the T responses are: ri1 = ri2 = ri3 = 1 , ri4 = 0, ri5 = 1 ... rir = 0. Here, 

unlike in Section 3.2.1, ri5 can be 1 even if ri4=0. This demonstrates an example for 
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a non-monotonic missing case. 

Under non-monotonic MCAR, to generate Yit(i = 1, ... , K; t = 1, ... , Ti), we first 

consider Til = Ti2 = 1 for all i. The remaining Tit for t = 3, ... , T are generated 

randomly from a binary distribution with probability P(Tit = 1)=0.80, 0.90 and 0.95. 

Suppose that 7i values of Tit(t = 1, ... , T) including for t=1 and t=2 are 1. 

We now turn back to generate Yit corresponding to Tit=l. To do this, we first 

generate all y values, i.e, Yil, ... , YiT following the AR(1) longitudinal correlation 

structure as discussed in Section 3.1. In the next step, we omit the values of Yit for 

which Tit=O. This generates Yit values in a non-monotonic fashion. 

For the estimation of f3 by this GQL approach, we can follow the construction of 

the estimating equation as discussed in Section 2.2.2. The mean estimates also with 

the mean square error are reported in Table A.3 under both designs D 1 and D 2 . 

Unlike in the last section, here we consider T=4. This is because, unlike in the 

monotonic MCAR case, to construct the shifted covariance matrix gets complicated 

for large T. We however retain the same correlation values p=0.5, 0.8 and 0.9. 

It is clear from Table A.3 that the correlation estimates appear to be highly 

satisfactory irrespective of the designs and the non-missing probabilities. For example, 

under D 1 with NMP=0.90, the correlation estimates are 0.89 , 0.80 , 0.72 whereas 

the true correlations based on Pt = l for p=0.9 are 0.9, 0.81 and 0.72 respectively. 

The estimates approximately appear to satisfy the AR(1) relationship pe = pe. The 

standard errors of the correlation appear to be reasonably small always. Similarly, 

for the same correlation parameter p=0.9, under D 2 with NMP=0.95, the first three 

correlation estimates are 0.9, 0.81 and 0.72 respectively, which are extremely close to 

the corresponding true values. 

The estimation of the parameter f3 appears to perform well under D 1 , for both 

NMP=0.90 and 0.95. For example, for p=0.9, the simulated means of /31 and /32 are 

1.045 and 1.062 for NMP=0.90 and 1.045 and 1.064 for NMP=0.95. The SMSE for 

these two cases are found to be 0.116 and 0.112 under NMP=0.90 and 0.117 and 

0.106 under NMP=0.95. The performance of the GQL approach is, however, not 
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quite satisfactory under the time dependent design D 2 . For example, for the same 

parameter values under D 2 , i.e, p=0.9, the SMSE for /31 and /32 are found to be 0.112 

and 0.203 when NMP=0.90 and 0.096 and 0.205 when NMP=0.95. Thus, it is clear 

that the SMSE of ;32 is much larger under D 2 than under D 1. 
A comparison of the SSE and the ESE for the two non-missing probabilities shows 

that they are approximately close to each other. For example, using NMP=0.90, D 1 

with p=0.8, the SSEs for ;31 and ;32 are found to be 0.25 and 0.23 respectively, while 

the ESEs are found to be 0.25 and 0.22 respectively. Likewise, for NMP=0.95 , D 2 

with p=0.8, the SSEs for ;31 and ;32 are found to be 0.30 and 0.31 respectively, while 

the ESEs are found to be 0.28 and 0.22 respectively. 

Furthermore, a comparison of this non-monotonic MCAR with the monotonic 

M CAR shows that the estimates of the parameter under monotonic M CAR are ap­

proximately equal to the MCAR non-monotonic estimates under the two designs, 

with same p values. For example, for monotonic T=4, NMP=0.95, D 1 with p=0.8, 

the SMSEs for ;31 and ;32 are found to be 0.10 and 0.09 respectively, whereas, for the 

non-monotonic case T=4, NMP=0.95, D 1 and p=0.8, the SMSEs for ;31 and ;32 are 

estimated as 0.09 and 0.09 respectively. Similar results also hold under D 2 . For ex­

ample, for monotonic case T=4, NMP=0.95, D 2, p=0.8, the SMSEs for ;31 and ;32 are 

found to be 0.09 and 0.15 respectively, while for non-monotonic case T=4, NMP=0.95, 

D 2 , p=0.8, the SMSEs for ;31 and {32 are found to be 0.09 and 0.13 respectively. This 

shows that the efficiency performances of the GQL approach under monotonic and 

non-monotonic MCAR cases remain the same. The difference between the two ap­

proaches is that the estimation is more complicated under the non-monotonic case as 

compared to the monotonic case. 
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3.3 Performance Of The GQL Approach For Lon­

gitudinal Data MAR 

Recall from (2.9) that if the data are MAR, then the probability of missingness, that 

is the probability of Tit depends on the past outcomes Yil, ... , Yi,t-1 , where Tit is the 

response indicator for the tth (t = 1, ... , T) observation of the ith (i = 1, ... , K) 

individual. 

Now, in order to know whether Tit=1 or 0, one requires a probability model for 

Tit(t = 1, ... , T). One can consider an independent binary distribution for the se­

lection of this probability. We will illustrate this procedure for the cases when the 

MAR mechanism is monotonic and non-monotonic. As indicated in Section 2.3, the 

two MAR models M1 and M2 with probability logit {PT(Tit = 1)} = Yil and logit 

{PT(Tit = 1)} = ry1yi1 + ry2yi2 respectively, will be considered in the simulation study. 

More specifically, we will consider ry1 and ry2 to have values 0.3 and 0. 7 respectively. 

For M1, the missingness probability will depend on the outcome obtained at time 

point t = 1, and for M2, the missingness probability at time t will depend on the 

outcomes obtained at timet= 1 and t = 2. 

3.3.1 Generation of the Data under MAR Ml and M2 

As in the last section, we assume that Til = Ti2 = 1. Consequently, Yil and Yi2 

can be generated immediately. To be specific, we now generate Yil and Yi2 for the 

ith individual under D 1 and D 2 following the AR(1) scheme with correlation p as 

explained in Section 3.1. 

Next, we generate Ti3 with probability logit { PT(Ti3 = 1)} = Yil under M1 and 

with logit {PT(Ti3 = 1)} = 'YlYil + 'Y2Yi2 under M2. If Ti3=0, use Ti3 = Ti4 = ... = 

Tir=O under the monotonic approach. If however, Ti3=1, then generate Yi3 following 

the AR(1) scheme by relating yi3 with Yi2 and Yil based on the mean and longitudinal 

correlation structures of the binary responses. Also, we continue to generate Ti4 

following M1 and M2 models. If Ti4 =1 , we generate Yi4 in the manner similar to the 
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generation of Yi3 . We continue this process until all Yit(i = 1, ... , K; t = 1, ... , Ti) 

are generated for the ith individual. 

We now explain how to generate the data in the non-monotonic case under models 

M1 and M2. Here, we first generate all Yit(i = 1, ... , K; t = 1, ... , T) for the ith 

individual following the procedure as in Section 3.1 for both design 1 (D1 ) and design 

2 (D2). All these Yit's however will not be included in the data. In order to create a 

valid set of responses, we generate rit for all i = 1, ... , Kandt= 3, ... , T following the 

MAR models M1 and M2. That is, under M1 model, we generate rit(t = 3, ... , T) 

based on the probability modellogit {Pr(rit = 1)} = Yil and under model M2 with 

probability logit {Pr(rit = 1)} = l'lYil + !'2Yi2· We now retain those values of Yit for 

which rit=l. 

Next, we follow Section 2.2.2 to re-organize this response indicator vector as well 

as the response vector itself. This allows for use of the estimating equations (2.25), 

(2.26) and (2.27) for the estimation of /3, the autocorrelations and the variance of the 

regression estimates, respectively. 

3.3.2 Simulation Results under MAR Models 1 and 2 

For the estimation of the parameters, the data generated in the last sub-section along 

with covariates are now used in (2.25), (2.26) and (2.27) to estimate the regression 

parameter /3, autocorrelations and the covariance matrix of the regression estimates, 

respectively. 

Note that for the non-monotonic case, it was necessary to re-organize data as in 

Section 2.2.2. The whole estimation procedure was repeated for 1,000 simulated runs. 

The estimates of the parameters and the statistics (SM, SSE, SMSE and ESE) under 

different p values using D 1 and D 2 under Ml and M2 are reported in Tables A.4 

and A.5 for the monotonic and non-monotonic cases respectively. 

Note that under the monotonic case we have considered T=6 for Ml and M2. 

This is done to compare the estimates obtained under MCAR models discussed in 

the last section. For the non-monotonic case, we have considered T=4 only. This 
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is because the computation of the shifted vectors and matrices gets complicated for 

larger T . These results are comparable with MCAR cases with T=4 . 

(a) Monotonic Case 

It is clear from Table A.4 for the monotonic cases that, as expected, the estimates 

of the components of the f3 vector perform well for both models Ml and M2 under 

D 1 as compared to D 2 . This is because D 2 contains time dependent covariates. For 

example, for true parameter values /31 =/32 =1, the estimates of the components of the 

f3 vector under Ml are found to be 1.0371 and 1.0294 for D1 , with p=0.5, and 1.0451 

and 1.0277 under M2, whereas, with the same p=0.5 for D 2 , the estimates of the 

components of the f3 vector are found to be 0.9254 and 1.9805 under Ml, and 0.9142 

and 1.9901 under M2. We note that the /32 estimate under D 2 also differs from that 

of D 1 considerably. This is due to the use of the time dependent covariate. Also as 

the p value increases, irrespective of the models (Ml or M2), the estimates of the 

components of the f3 vector under D 1 appear to be unbiased, whereas the estimates 

under D 2 become slightly less biased. 

Also, Table A.4 reveals that the correlation estimates approximately satisfy the 

AR(1) relationship. For example, under D 1 , the correlation estimates are 0.79, 0.62, 

0.48, 0.38 and 0.30, whereas the true correlation based on Pe = / for p=0.8 are 0.8, 

0.64, 0.51, 0.41 and 0.33 respectively. 

We now provide a comparison of various estimates under Ml and M2 for D 1 only. 

The SSE and ESE values under both Ml and M2 are close to each other. For 

example, under Ml with p=0.5, the SSEs of the estimates of /31 and /32 are found 

to be 0.28 and 0.25 respectively, while their ESEs are found to be 0.27 and 0.24 

respectively. Similarly, under M2, the SSEs of the estimates of /31 and /32 are found 

to be 0.29 and 0.26 respectively, while their ESEs are found to be 0.27 and 0.24 

respectively. The SMSEs for /31 and /32 estimates increase as the value of p becomes 

larger. This is true under both models Ml and M2. Also, the SMSEs under Ml 

is smaller than that of M2 as expected. For example with p=0.5 , the SMSEs for 
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(31 and /32 estimates are found to be 0.0806 and 0.0620 under Ml, and 0.0876 and 

0.0679 under M2 respectively. Similarly, for p=0.9, the SMSEs of the estimates of /31 

and /32 are found to be 0.1804 and 0.1400 under Ml, and 0.1853 and 0.1457 under 

M2. This shows that the SMSEs are smaller under Ml than M2 in general. This 

also shows that the SMSEs increase for each f3 parameter as p value increases. 

Note that when the MAR models (Table A.4) are compared with the MCAR 

models (Table A.2) under the monotonic case, the GQL approach performs better in 

(3 estimation under the MCAR model. This is because the values of the SMSEs are 

smaller under the MCAR case as compared to the MAR case. For example consider 

the MCAR model with T = 6, p=0.5, NMP=0.95 , the values of /31c and /J2c were 

found to be 1.0207 and 1.0197 under D 1 , while the SMSEs of the estimates of the f3 
components were found to be 0.0500 and 0.0388 respectively. For similar parameter 

values under the same design, the estimates of /31 and /32 were found to be 1.0371 and 

1.0294 respectively, while their SMSEs are 0.0806 and 0.0620 under the MAR model 

1. Similarly, the SMSEs appear to be smaller under the MCAR models than under 

the MAR models for other values of p . 

(b) Non-Monotonic Case 

We now look at the results in Table A.5 which were computed under the non­

monotonic pattern. As mentioned before, we consider T=4 only. Similar to the 

monotonic case, the estimation appears to work better under D 1 as compared to D 2 . 

Here, for convenience, we discuss some of the estimation results under D 1 only. 

It is clear from Table A.5 that the estimates of the components of the (3 vector 

perform well under models Ml and M2. For example, with p=0.5, the estimates of 

the components of the (3 vector were found to be 1.0340 and 1.0108 under Ml and 

1.0353 and 1.0117 under M2, whereas the true values are 1.00 for both (3 parameters. 

Thus, the estimates are found to be unbiased. 

Also Table A.5 reveals that the correlation estimates approximately satisfy the 

AR(1) relationship. For example, when the true value of p=0.8, the true three lag 
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correlation estimates are 0. 79, 0.65 and 0.54, whereas the actual lag correlations based 

on Pi = / are 0.8, 0.64, 0.51 respectively. 

The values of SSE and ESE under both Ml and M2 are approximately close to 

each other. For example, under Ml with p=0.5, the SSEs are found to be 0.2694 

and 0.2476 for the two f3 components, while the corresponding ESEs are 0.2731 and 

0.2419. Similarly, under M2, the SSEs of the estimates of /31 and /32 are found to 

be 0.2661 and 0.2470, while their ESEs are 0.2731 and 0.2421 respectively. Thus 

the formulas for variance estimates work quite well. It was however observed that 

the SMSE under M2 for the estimates of the components of the f3 vector appear 

to be smaller than that of under MI. For example, with p=0.8, the SMSEs of the 

estimates of the f3 components are found to be 0.1352 and 0.1033 under Ml, and 

0.1163 and 0.0925 under M2. But as the p value becomes larger, the SMSE under 

Ml becomes smaller than that of M2. Note that when the MAR model (Table A.5) 

is compared with the MCAR model (Table A.3) under the non-monotonic case, the 

MCAR performs better in /3 estimation as expected. This is because SMSE values are 

smaller for the MCAR case as compared to the MAR case. For example, consider the 

non-monotonic MCAR model with T = 4, p=0.5 and NMP=0.95 under D 1 , the values 

of /110 and /120 are 1.0201 and 1.0320 respectively, while their SMSEs are found to be 

0.0637 and 0.0545 respectively. For similar parameter values under the same design, 

the estimates of the f3 components are found to be 1.0340 and 1.0108 respectively, 

and the corresponding SMSEs are found to be 0.0737 and 0.0614 under the MAR Ml 

model. This shows that the SMSEs are smaller under the MCAR model as compared 

to the Ml based MAR model. 

(c) Overall Comparison 

The GQL approach was applied to three different sets of data for the estimation of 

regression parameters. To be specific, we have generated longitudinal data under a 

complete model as well as under two longitudinal missing models, namely, MCAR 

and MAR models, and the GQL approach was subsequently applied to all three sets 
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of data to estimate the same f3 parameter. 

A comparison for the performance of the GQL approach in estimating {3 based on 

complete longitudinal data and the data generated under MCAR and MAR models 

indicates that the GQL approach performs better when it is applied to the complete 

data as expected. For example, under the complete model and under design DI, 

the SM values for /JIG and /32G are 1.0221 and 1.0207 with their corresponding SSEs 

as 0.2113 and 0.1941 for the case T=6 and p=0.5 respectively, the ESEs are found 

to be 0.2114 and 0.1863, and the corresponding SMSEs are found to be 0.0451 and 

0.0384. For the monotonic MCAR case with NMP=0.95, using the same design and 

p as in the complete case, the SM values for /JIG and /32G are found to be 1.0270 

and 1.0197 respectively, their SSEs are 0.2225 and 0.1960, the ESEs are found to 

be 0.2133 and 0.1905, while the corresponding SMSEs are found to be 0.0500 and 

0.0388 respectively. Under the monotonic MAR model 1 (Ml), the SM values are 

1.0371 and 1.0294 for /JIG and /32G respectively, their SSEs are found to be 0.2815 and 

0.2473, the ESEs are found to be 0.2702 and 0.2396, while the corresponding SMSEs 

are found to be 0.0806 and 0.0620 respectively. Next, for the monotonic MAR model 

2 (M2) with /'I = 0.3 and ')'2 = 0.7, the SM values are 1.0451 and 1.0277 for /JIG and 

/32G respectively, their SSEs are found to be 0.2925 and 0.2591, the ESE are found 

to be 0.2709 and 0.2402, while the corresponding SMSEs are found to be 0.0876 and 

0.0679 respectively. 

In summary, for the parameters described above, the complete data based GQL 

approach is found to be 1.1 times more efficient than the MCAR model based esti­

mation in estimating the same parameter. Similarly, the complete data based GQL 

approach is found to be 1.4 times more efficient than the MAR (Ml) based estima­

tion, and 1.5 times more efficient than the MAR (M2) based estimation in estimating 

{32 . This provides a clear idea about the loss of efficiency of the GQL approach for 

the analysis of the missing data as compared to the complete data. More specifically, 

the GQL approach does not appear to lose any efficiency if the data is MCAR with 

high non-missing probability (NMP). The GQL approach however can be inefficient 
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if the missing data follow MAR models, especially the MAR M2 models. 
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Chapter 4 

Analysis of the SLID (Survey of 

Labour and Income Dynamics) 

Data in the Presence of Missing 

Responses 

4.1 Introduction to the SLID Data 

In this section, we revisit the SLID data that was analyzed earlier by Sutradhar 

and Kovacevic (2003). To be specific, we consider a subset of the SLID data that 

was collected by Statistics Canada for the period from 1995-1998. Sutradhar and 

Kovacevic (2003) considered a longitudinal binary response data set for these six 

years. The binary variable was 'unemployed all year', derived from a variable 'labour 

force status for the year', assigns value 1 to those who were unemployed for the entire 

year, and 0 to those who were employed for the full year or a part of year employed 

and part unemployed. A missing response for a person who contributed a response 

for at least one year was considered as a missing value of the response variable, 

although a person could have left the labour force. Sutradhar and Kovacevic (2003) 
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have identified 18,077 respondents in the domain of interest. Among them 15,731 

individuals were found to have complete data for all six years, and the remaining 

2,346 individuals had missing responses in a monotonic pattern. These authors have 

however analyzed this longitudinal data set under the assumption that the missingness 

occurred completely at random. In this section, unlike these authors, we assume that 

the missing responses occurred at random. Thus we analyze the same data set as in 

Sutradhar and Kovacevic (2003) but under a MAR mechanism. 

For convenience, we describe the data set before we undertake the confirmatory 

analysis. As far as the pattern of the missing data is concerned, we consider a mono­

tonic mechanism only since the study gives rise to missing data in this fashion. 

The SLID response data in monotonic missing form is reported in Table 4.1. More 

specifically, the first block (year 1993) was recorded for all individuals at the start of 

the study, and hence it is completely observed. The second block (year 1994) consists 

of responses from 17576 individuals with 97.23% observed in the follow-up study, the 

3rd block (1995) consist of response from 17000 individuals with 94.04% observed. 

Block 1 contains more observations than block 2. Similarly, block 2 contains more 

observations that block 3, and so on. Thus, the blocks form a monotone pattern of 

missing data. 

As Table 4.1 shows, the number of individuals with 1, 2, 3, 4, and 5 missing 

values were found to be 413, 460, 396, 576, and 501 respectively. The number of 

unemployed individuals appear to increase to 408 in 1994 from 359 in 1993. The 

unemployed number however has decreased since 1995. The purpose of this study is 

to examine the effects of the associated characteristics or covariates on employment 

status by taking the longitudinal correlation of the response as well as the missing 

pattern of the response into account. Some common characteristics that may be re­

lated to the longitudinal all-year unemployment data are: gender, age, geographical 

location, education level, and marital status of the individual. Note that the binary 

responses collected over six years are longitudinally correlated. Also, some of them 

are missing. To address the purpose of this study, we find the effects of the 5 main 
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Table 4.1: Sample counts of 'unemployed' and distribution of missing values over time 

Year 

Response Status Unemployment Status 1993 1994 1995 1996 1997 1998 

& Missing frequency 

Complete Employed( =0) 17718 17168 16623 16235 15824 15455 

Unemployed(=!) 359 408 377 369 320 276 

Percent of Complete 100 97.23 94.04 91.85 89.31 87.02 

Missing Once 501 576 396 460 413 

Twice 501 576 396 460 

Three times 501 576 396 

Four times 501 576 

Five times 501 

Total Missing 0 501 1077 1473 1933 2346 

Percent of Missing 0 2.77 5.96 8.15 10.69 12.98 

Total Individuals 18,077 18,077 18,077 18,077 18,077 18,077 
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covariates (characteristics) on all-year unemployment after taking the longitudinal 

and missingness nature of the responses into account. 

To shed some light on the nature of the longitudinal relationship between the 

binary responses 'unemployed all year' and the 5 covariates, we construct appropri­

ate 3-way tables for the 5 covariates and the binary response variable 'unemployed 

all-year' for the duration from 1993 to 1998. At each level of the selected covariates, 

we also exhibit the number of missing values over time, that is, the number of indi­

viduals having no response. These results are reported in Tables 4.2 to 4.6, for the 

age, gender, region of residence, education level, and marital status respectively. 

Based on the complete data, it is clear from Table 4.2 that there are more unem­

ployed individuals in the age group of 25 to 55 which is obvious as this group has 

the largest range. The proportions of unemployed individuals are however also larger 

for this group followed by the 16 to 25 age group. The older age group 55 to 65 

has the smallest proportions of unemployment from 1994 to 1998. The proportion 

unemployed appears to decrease over time in all three groups since 1994. With re­

gard to the frequency of missing responses, the youngest age group has the largest 

nonresponse rate among the 3 age groups. 

Table 4.3 shows that the proportion of unemployed females is generally more 

than that of males. Specifically, over the years 1994-98, there were more unemployed 

females than males. As far as the missing values are concerned, the number of non­

respondent male is seen to be larger as compared to the females. This is true for all 

5 years from 1994 to 1998. 

Table 4.4 shows that the proportion unemployed is the highest in Atlantic region 

followed by Quebec, Ontario, BC & Alberta, and Prairies. Note that the propor­

tion unemployed in BC & Alberta is only slightly higher than Prairies. Similarly the 

proportions unemployed in the Atlantic region is slightly higher than Quebec except 
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Table 4.2: Sample counts cross-classified according to 'unemployed' and 'age' group 

in 1993 

Year 

Age group Unemployment Status 1993 1994 1995 1996 1997 1998 

16 :::; Age in 1993< 25 Employed( =0) 2978 2816 2667 2543 2412 2316 

Unemployed( =1) 51 69 68 62 46 37 

Missing 0 144 294 424 571 676 

25 :::; Age in 1993< 55 Employed(=O) 12385 12037 11690 11449 11199 10960 

Unemployed(=l) 250 290 271 273 247 216 

Missing 0 308 674 913 1189 1459 

55 :::; Age in 1993< 65 Employed(=O) 2355 2315 2266 2243 2213 2179 

Unemployed(=l) 58 49 38 34 27 23 

Missing 0 49 109 136 173 211 

Table 4.3: Sample counts cross-classified according to 'unemployment status' and 

'sex' 

Year 

Sex Unemployment Status 1993 1994 1995 1996 1997 1998 

Male Employed( =0) 8547 8286 7996 7769 7559 7373 

Unemployed( =1) 175 177 168 175 151 123 

Missing 0 259 558 778 1012 1226 

Female Employed( =0) 9171 8882 8627 8466 8265 8082 

Unemployed(=1) 184 231 209 194 169 153 

Missing 0 242 519 695 921 1120 
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Table 4.4: Sample counts cross-classified by 'Region of residence' and 'Unemployed' 

Year 

Region of residence Unemployment status 1993 1994 1995 1996 1997 1998 

Atlantic Employed( =0) 3878 3752 3652 3548 3445 3366 

Unemployed(=!) 113 124 117 131 109 93 

Missing 0 80 167 236 330 385 

Quebec Employed( =0) 3596 3493 3407 3367 3309 3233 

Unemployed ( = 1) 94 119 121 107 88 79 

Missing 0 79 159 209 284 358 

Ontario Employed( =0) 4444 4284 4180 4069 3941 3862 

Unemployed(=!) 91 87 73 81 76 59 

Missing 0 181 309 429 568 703 

Prairies Employed ( =0) 4260 4122 3893 3785 3700 3603 

Unemployed(=!) 44 58 50 36 33 27 

Missing 0 107 343 453 574 690 

BC & Alberta Employed( =0) 1540 1517 1491 1466 1429 1391 

Unemployed( =1) 17 20 16 14 14 18 

Missing 0 54 99 146 177 210 

for 1994 and 1995, Ontario appears to have middle place in the country with regard 

to the unemployment status of the individuals. With regard to the proportion of 

nonresponse, the province of Ontario appears to have the largest non-response rate 

of 2190 (29.9%) followed by Prairies with 2167(29.6%). 

Table 4.5 helps us to understand the effect of education on unemployment over the 

years. It is clear from the above table that the 'high education' group has the small­

est unemployment rate followed by the 'medium education' group, as expected. The 
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Table 4.5: Sample counts cross-classified according to 'Education level' and 'Unem­

ployed' 

Year 

Education level Unemployment status 1993 1994 1995 1996 1997 1998 

Low education Employed(=O) 3708 3320 3121 3002 2896 2821 

Unemployed(=!) 140 133 132 121 115 96 

Missing 0 102 203 278 341 405 

Medium education Employed(=O) 11731 11521 11136 10836 10488 10151 

Unemployed(=!) 203 251 229 231 185 168 

Missing 0 344 750 1018 1349 1627 

High education Employed( =0) 2279 2327 2366 2397 2440 2483 

Unemployment(=!) 16 24 16 17 20 12 

Missing 0 55 123 176 241 311 

unemployment proportions are quite high over the years in the 'low education' group. 

Once again, similar to other covariates, the unemployment rates corresponding to this 

'education level' also appear to increase in 1994 from 1993 but start decreasing slowly 

beginning from 1995. The 'high education' group has the smallest nonresponse rate 

which is also expected. 

Table 4.6 shows that the proportion of unemployed individuals is smaller over 

the years in the 'married/common law' group, followed by 'widowed' , 'single' and 

'separated/ divorce' groups. More specifically, the proportions are closer between the 

'married/common law' and 'widowed' groups, and also between the 'single' and the 

'separated/divorced' groups. But when the 'married/common law' or 'widowed' group 

is compared with 'single' or 'separated/divorced' group, their proportions appear to 

be quite different. Both of the 'separated/divorced' and 'single' groups also appear 

to have higher nonresponse rates all throughout the years. 
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Table 4.6: Sample counts cross-classification by 'Marital status' and 'Unemployed' 

Year 

Marital status Unemployment status 1993 1994 1995 1996 1997 1998 

Married/ common law Employed( =0) 12020 11800 11607 11566 11430 11305 

Unemployed(=1) 214 246 198 199 176 143 

Missing 0 266 593 810 1069 1342 

Separated/divorced Employed( =0) 1188 1281 1321 1384 1393 1426 

Unemployed(=1) 44 41 65 56 57 48 

Missing 0 38 129 187 263 342 

Widowed Employed(=O) 330 365 393 410 437 465 

Unemployed(=1) 7 6 8 10 5 6 

Missing 0 4 21 33 42 54 

Single Employed(=O) 4180 3722 3302 2875 2564 2259 

Unemployed(=1) 94 115 106 104 82 79 

Missing 0 193 334 443 559 608 
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4.2 Notation for the SLID Data Analysis 

In this section, we denote the response and the covariates of the SLID data by using 

our notation provided in Chapter 2, for example. To be specific, we denote the binary 

response variable 'unemployed all year' by Yit for i = 1, ... , 18077 and t = 1, ... , Ti, 

where Ti denotes the number of response available for the ith individual with its range 

Ti < T=6. 

As far as the covariates are concerned, as they are independent of time, we rename 

the 5 covariates discussed in section 4.1 as follows: First, gender is represented by 

x 1 which is 0 for female and 1 for male. The second covariate 'age' is represented 

by x2 in general. To be specific, we consider 3 age groups based on their ages at 

1993: group 1 consists of individuals between 16 and 24 inclusive , group 2 consists 

of individuals between 25 and 54, and group 3 from 55 to 65. Now by considering 

the younger age group 1 as the referenced group, we represent the above 3 groups by 

x21 and x22, so that x21 =0 , x 22=0 stands for the individual of the group 1, x 21 =1, 

x 22 =0 represent the individual of the group 2, and x 21 =0, x 22 =1 would identify the 

individual belonging to group 3. 

The third covariate 'education level' is represented by x 3 . To be specific, we 

consider x 31 and x 32 to represent 3 levels (low, medium and high) of education, lower 

level being the reference level, say. Thus, x 31 =0 and x 32 =1 will represent an individual 

with high education level. 

The fourth covariate 'marital status' is denoted by x 4 . As the marital status can 

be married & common law spouse, separated & divorce, widow, or single (never mar­

ried), we use 3 covariates x 41 , x42 , and x 43 respectively to represent them , married 

and common law spouse group being the reference group. Finally, we consider x 5 to 

represent geographical location, where x 51 , x 52 , x 53 , and x 54 are covariates used to 

identify an individual from any of the Atlantic, Quebec, Ontario, Praries, or British 

columbia & Alberta regions. Here we consider the Atlantic region as the reference 

region with all 4 covariates as 0; x 51 =1, x 52 = x 53 = x 54=0 will represent the individ­

ual from Quebec, and so on. 

42 



Note that altogether there are 12 covariates. In Sections 4.3 and 4.4, we compute 

the effects of these covariates on the binary all-year unemployment variable after 

taking the longitudinal correlations of the data as well as the missingness pattern 

into account. 

Although interaction may be possible within the covariates, but in this practicum, 

we only consider the simple linear case. 

4.3 Incomplete SLID Data Analysis When Some 

Longitudinal Responses are monotonically MAR 

Following Ml or M2 

Sutradhar and Kovacevic (2003) analyzed the same data under the complete and 

MCAR cases, therefore, we do not compute the effects of the covariates under these 

complete and MCAR models as the results are available in their paper. 

In this section, we compute the effects of all 12 covariates under the assumption 

that missing indicators follow either Ml or M2 models. Recall that under the Ml 

model , we consider logit {Pr(rit = 1)} = Yil, and similarly, under the M2 model, 

we consider logit {Pr(rit = 1)} = 'YlYil + r2Yi2· These non-response probability 

structures then help us to write the formula for t5it given by 

t 

t5it = ritf Pr{ (IT TiJ) = 11Hi, t-1, r} 
j=l 

as in ( 2. 21). Next, we re-express the mean of the binary response as 

E(yit) =f-lit= a'((}it) = exp((}it)/[1 + exp((}it)] 

where (}it = x~tf3, x~t (=x~ . for all t) being the 1 x 12 vector representing all 12 

covariates generated from the 5 original covariates as discussed. 
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The above expression for Oit and /-lit are then used in (2.26) to compute the longi­

tudinal correlations Pi for .e = 1, ... , 5. Note that Yit values involved in Zit for (2.26) 

are observed responses for all i = 1, ... , 18077, and t = 1, ... , Ti < 6. 

The correlation estimates along with the longitudinal weights Oit are then used 

in (2.25) to compute the regression estimates under the Ml or M2 models. Note 

that the estimates of f3 and Pt(l! = 1, ... , 5) are obtained iteratively. The estimates of 

these parameters are reported in Table 4. 7 under MAR Ml model and in Table 4.8 

under MAR M2 model. Note that to compute the non-response probability under 

the MAR M2 model, we have considered 'Yl =0.3 and f'2=0.7, so that more weights 

are given on the recent observation between Yil and Yi2 · This selection is however, 

subjective, which could be avoided by estimating these parameters from the data. 

This is however beyond the scope of the present practicum. 

In order to be able to construct the confidence intervals for the estimates of the 

regression effects, we have also computed their standard errors by using the formula 

(2.27) for the covariance matrix of /3cQL· These results are also reported in Table 4.7 

under the Ml model and in Table 4.8 under the M2 model. 

For the analysis of the SLID data under Ml model, we deal with all 18,077 in­

dividuals, as the response Yil is available for them. From the result of Table 4.7, 

the longitudinal correlations appear to be moderate and decay as the time lag in­

creases. With regard to the interpretation of the regression effects, the negative value 

- 0.1324 for the gender effects indicates that a male has lower probability of an all-year 

unemployment as compare to the female. The negative values -1.1492 and -1.8152 

of /32 and /33 indicate that the younger group has higher probability of an all-year 

unemployment and the probability decreases for older age groups. 

As far as the effect of geographic location on the all-year unemployment is con­

cerned, it appears that Quebec had the smallest probability of an all-year unemploy­

ment during 1993 to 1998 followed by BC & Alberta, Praries, Ontario and Atlantic 

provinces. This follows from the fact that the regression estimates for Quebec, On­

tario, BC & Alberta, and Praries are found to be -0.5897 , -0.0353 , -0.4384 and 
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-0.0864 respectively. 

The larger negative value -1.0749 for (35 as compared to (34 = -0.7140 indicates 

that as the education level gets higher, the probability of an all-year unemployment 

gets smaller. Finally, with regard to marital status, the positive value 0.1405 for 

(36 means that the separated and divorced individuals have higher probability of all­

year unemployment as compared to the married and common law spouse group. 

Similarly, a widow had less probability of all-year unemployment as compared to a 

single individual. 

We can also interpret the result by using the odds ratios. For example, the odds 

ratio for Quebec is found to be 0.55, this implies that the odds of observing an 

unemployed individual from Quebec is less likely as compared to the odds of observing 

an unemployed individual in the Atlantic region, given that all other covariates remain 

fixed. 

For the analysis of the SLID data under M2 model, we assume that the first 

two responses of an individual must be available in order to include the individual in 

the study. This is because under M2 model the response indicator variable rit(t = 

3, ... , 6) is dependent on Yil and Yi2 for the ith individual. The regression estimates 

along with their standard errors, and also the values of the longitudinal correlations, 

are reported in Table 4.8. The longitudinal correlation estimates under both Ml and 

M2 models appear to be quite similar. As for the estimation of the main parameters, 

the GQL approach in general produces similar estimates under both Ml and M2 

models, except for example, x42 ( marital status 3 vs 1) is found to be -0.22 under 

M2 model but 0.08 under M2 model. This means under Ml model, a widow has 

better chance of being employed whereas M2 model increases the probability for 

unemployment. The standard errors of the regression estimates under Ml model were 

however found to be smaller than that of M2 model. This pattern is also supported 

by our simulation studies, where it was found that Ml model produces estimates 

with smaller standard error. As the regression estimates are generally similar and 

standard errors under Ml model are smaller, we recommend the use of Ml models 
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between Ml and M2 models, for the analysis of the SLID data. 

Note however that when the regression estimates along with their standard errors 

provided in Table 4.7 and 4.8 are compared with corresponding values under the 

MCAR and complete models as given in Sutradhar and Kovacevic (2003), the latter 

models produce estimates with smaller standard errors, which is expected. 
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Table 4. 7: Estimates of regression and their Estimated Standard Errors, as well as 

estimates of autocorrelations for the SLID data with MAR Ml type nonresponse 

Parameters 

Male vs Female(xi) 

Age group 2 vs 1(x21) 

Age group 3 vs 1(x22 ) 

Education Med. vs low(x31 ) 

Education high vs Low(x32 ) 

Marital Status 2 vs 1(x4I) 

Marital Status 3 vs 1(x42 ) 

Marital status 4 vs 1(x43) 

Quebec vs Atlantic (xsl) 

Ontario vs Atlantic (x52 ) 

Praries vs Atlantic (x 53 ) 

BC & Alberta vs Atlantic (x54 ) 

PI 

P2 

P3 

P4 

Ps 
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Estimate 

-0.1324 

-1.1492 

-1.8152 

-0.7140 

-1.0749 

0.1405 

-0.2241 

0.1101 

-0.5897 

-0.0353 

-0.0864 

-0.4384 

0.6802 

0.5599 

0.4058 

0.2334 

0.0073 

Standard Error 

0.0387 

0.0412 

0.0775 

0.0387 

0.0768 

0.0678 

0.1673 

0.0447 

0.06 

0.0529 

0.0529 

0.0831 



Table 4.8: Estimates of regression and their Estimated Standard Errors, as well as 

estimates of autocorrelations for the SLID data with MAR M2 type nonresponse 

with /'l =0.3 and 1'2=0. 7 

Parameters Estimate Standard Error 

Male vs Female(x1) -0.0407 0.0424 

Age group 2 vs 1(x2I) -1.2377 0.0447 

Age group 3 vs 1(x22) -1.8240 0.0794 

Education Med. vs low(x31 ) -0.9224 0.0412 

Education high vs Low(x32) -1.3900 0.0866 

Marital Status 2 vs 1(x41) 0.1709 0.0721 

Marital Status 3 vs 1(x42) 0.0839 0.1559 

Marital status 4 vs 1 (x43) -0.2842 0.0510 

Quebec vs Atlantic (xsl) -0.6223 0.0640 

Ontario vs Atlantic (x52 ) -0.0969 0.0557 

Praries vs Atlantic (x53 ) -0.2367 0.0574 

BC & Alberta vs Atlantic (x54) -0.6255 0.0949 

P1 0.6655 

P2 0.4915 

P3 0.2362 

P4 0.028 

Ps 0.072 
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Chapter 5 

Conclusion 

RRZ (1995) and Paik (1997) have extended the GEE approach of Liang and Zeger 

(1986) to accommodate the longitudinal data analysis with outcomes subject to non­

response. As these approaches use the so-called 'working' correlations chosen by the 

investigator, they may not always yield efficient estimates for regression parameters. 

This raised an issue of using a robust correlation structure for the longitudinal data 

in order to construct estimating equations for the purpose of obtaining consistent and 

efficient regression estimates. Following Sutradhar and Das (1999) [ see also Jowaheer 

and Sutradhar (2002) ], Sutradhar and Kovacevic (2003) have developed a general cor­

relation structure based GQL (generalized quasi-likelihood) approach to analyse the 

longitudinal missing data subject to MCAR and weighted GQL (WGQL) approach to 

analyze longitudinal missing data subject to MAR. These authors then have applied 

their estimation methodology to analyze SLID data under the assumption that the 

missing longitudinal responses are subject to MCAR only. 

In this practicum, we have examined the performance of the GQL and WGQL 

approaches of Sutradhar and Kovacevic (2003) through a simulation study. More 

specifically, to begin with, we have found that the GQL approach is more efficient 

than the 'working' independence approach in estimating regression coefficients under 

a complete model. This was examined by considering an AR(1) correlation model for 

the complete longitudinal data. Next it was found that the GQL approach performs 
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well in estimating the regression effects under the MCAR model provided the non­

response probabilities are not too low. Similarly, the WGQL approach was found to 

work well under a less restricted MAR (Ml) model. 

When performance of the WGQL approach for the MAR models was compared 

with the GQL approach for the MCAR model, the latter was found to be more 

efficient (in the sense of lower mean squared error), as expected. The MAR model 

based estimation methodology was also applied to reanalyze the SLID data that was 

earlier analyzed by Sutradhar and Kovacevic (2003) under the MCAR model. Remark 

that as the true longitudinal response of the SLID data is not known, it would be more 

appealing to develop some statistical tests to detect the non-response mechanism in 

order to provide an improved estimation methodology. This however appears to be a 

difficult problem and beyond the scope of the present practicum. 
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Appendix A 

Simulation Result 
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Table A.1: Non-Missing Case: Simulated means (SM), simulated standard errors 

(SSE), simulated mean square error (SMSE), and estimated standard error (ESE) 

of the regression estimators based on GQL and GEE(I) approaches; SM and SSE of 

moment estimates for longitudinal correlation parameter under binary AR(1) process 

with T=6,10 and 15, K=100, {31 = {32 = 1; based on 1000 simulations. 

T=6 Design: D1 

p Statistic (3~1 f3;I f3;a f3;a rh rh p3 P4 rfs 
0.5 SM 1.0306 1.0286 1.0221 1.0207 0.4924 0.2414 0.1207 0.0602 0.0298 

SSE 0.2684 0.2443 0.2113 0.1941 0.0504 0.0670 0.0725 0.0836 0.1047 

ESE 0.1249 0.1105 0.2114 0.1863 

SMSE 0.0730 0.0605 0.0451 0.0384 

0.8 SM 1.0263 1.0320 1.0284 1.0390 0.7951 0.6314 0.5010 0.3959 0.3155 

SSE 0.3161 0.2862 0.2964 0.2676 0.0404 0.0679 0.0862 0.1011 0.1159 

ESE 0.1655 0.1473 0.2784 0.2478 

SMSE 0.1006 0.0829 0.0887 0.0731 

0.9 SM 1.0358 1.0440 1.0487 1.0605 0.8964 0.8034 0.7195 0.6449 0.5772 

SSE 0.3378 0.3139 0.3375 0.3092 0.0284 0.0522 0.0729 0.09085 0.1069 

ESE 0.1841 0.1640 0.3184 0.2864 

SMSE 0.1154 0.1005 0.1163 0.0993 
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T=6 Design: D2 

p Statistic f3~I f3;I f3;c f3;c pl. ti2 P3 P4 P5 
0.5 SM 0.9995 1.8804 0.9583 1.2908 0.4993 0.2455 0.1113 0.0353 -0.0128 

SSE 0.2578 0.3273 0.2042 0.2496 0.0479 0.0639 0.0755 0.0867 0.1125 

ESE 0.1204 0.0742 0.2030 0.2173 

SMSE 0.0665 0.8822 0.0434 0.1469 

0.8 SM 1.0076 1.8802 0.9535 0.9233 0.7984 0.6377 0.5077 0.4029 0.3195 

SSE 0.3017 0.3688 0.2660 0.2898 0.0369 0.0643 0.0870 0.1043 0.1225 

ESE 0.1597 0.0980 0.2553 0.2170 

SMSE 0.0911 0.9108 0.0729 0.0899 

0.9 SM 1.0076 1.8802 0.9257 0.5684 0.9036 0.8179 0.7399 0.6699 0.6068 

SSE 0.3017 0.3688 0.2913 0.2512 0.0251 0.0479 0.06944 0.08782 0.1047 

ESE 0.1597 0.0980 0.2775 0.1780 

SMSE 0.0911 0.9108 0.0904 0.2494 
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T = 10 Design: D1 

p Statistic /3~1 /3;1 /3;a /3;a rh rh P3 P4 tis 
0.5 SM 1.0073 1.0179 1.0041 1.0109 0.4965 0.2458 0.1221 0.0583 0.0264 

SSE 0.2461 0.2304 0.1675 0.1562 0.0403 0.0496 0.0523 0.0530 0.0569 

ESE 0.0768 0.0678 0.1709 0.1517 

SMSE 0.0606 0.0534 0.0281 0.0245 

0.8 SM 1.0148 1.0221 1.0149 1.0185 0.7965 0.6338 0.5044 0.3993 0.3156 

SSE 0.2838 0.2629 0.2467 0.2288 0.0317 0.0524 0.0666 0.0768 0.0837 

ESE 0.1122 0.1005 0.2421 0.2156 

SMSE 0.0808 0.0696 0.0611 0.0527 

0.9 SM 1.0234 1.0327 1.0319 1.0443 0.8964 0.8026 0.7187 0.6436 0.5772 

SSE 0.3104 0.2942 0.2955 0.2825 0.0238 0.0435 0.0584 0.0714 0.0823 

ESE 0.1319 0.1175 0.2913 0.2617 

SMSE 0.0969 0.0876 0.0883 0.0818 

T = 10 Design: D2 

p Statistic /3~1 /3;1 /3;a /3;a tf1 tf2 P3 P4 tis 

0.5 SM 0.8661 1.7719 0.9443 1.3745 0.5070 0.2588 0.1316 0.0626 0.0218 

SSE 0.2183 0.1875 0.1647 0.2079 0.0363 0.0468 0.0493 0.0533 0.0583 

ESE 0.0707 0.0346 0.1667 0.1910 

SMSE 0.0656 0.6310 0.0302 0.1835 

0.8 SM 0.8703 1. 7712 0.9259 1.0776 0.8007 0.6409 0.5131 0.4088 0.3242 

SSE 0.2498 0.1998 0.2380 0.2808 0.0268 0.0460 0.0607 0.0730 0.0826 

ESE 0.1000 0.0480 0.2274 0.2223 

SMSE 0.0792 0.6347 0.0621 0.0849 

0.9 SM 0.8680 1.7792 0.9124 0.7608 0.9023 0.8145 0.7357 0.6654 0.6021 

SSE 0.2712 0.2137 0.2689 0.2709 0.0194 0.0364 0.0561 0.0648 0.0765 

ESE 0.1153 0.0557 0.2592 0.1987 

SMSE 0.0910 0.6528 0.0800 0.1306 
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T = 15 Design: D1 

p Statistic {3~1 {3;1 f3;G f3;G p"l tf2 P3 p4 tfs 

0.5 SM 1.1502 1.003 0.9989 1.0146 0.4967 0.2455 0.1192 0.0557 0.0256 

SSE 0.6849 0.4680 0.1476 0.1276 0.0316 0.0398 0.0410 0.0406 0.0415 

ESE 0.0224 0.0283 0.1435 0.1265 

SMSE 0.4916 0.2190 0.0218 0.0165 

0.8 SM 1.1132 0.9988 1.0035 1.0166 0.7972 0.6352 0.5052 0.4015 0.3186 

SSE 0.6734 0.2005 0.2320 0.2005 0.0237 0.0393 0.0498 0.0568 0.0616 

ESE 0.0469 0.0490 0.2135 0.1884 

SMSE 0.4663 0.0402 0.0538 0.0405 

0.9 SM 1.1049 1.0055 1.0297 1.0418 0.8967 0.8037 0.7200 0.6447 0.5772 

SSE 0.4790 0.3583 0.2773 0.2483 0.0190 0.0340 0.0468 0.0581 0.0674 

ESE 0.0735 0.0632 0.2701 0.2487 

SMSE 0.2404 0.1284 0.0778 0.0634 

T = 15 Design: D2 

p Statistic {3~1 {3;1 f3;G f3;G pl. tf2 P3 P4 tfs 

0.5 SM 1.0483 0.7308 0.9387 1.4339 0.5128 0.2670 0.1408 0.0751 0.0392 

SSE 0.2432 0.5623 0.1352 0.1798 0.0287 0.0359 0.0384 0.0399 0.0403 

ESE 0.0436 0.0265 0.1418 0.1685 

SMSE 0.0615 0.3886 0.0220 0.2206 

0.8 SM 1.0439 0.7275 0.9250 1.2068 0.8016 0.6425 0.5147 0.4119 0.3296 

SSE 0.2421 0.5004 0.2039 0.2670 0.0215 0.0367 0.0476 0.0562 0.0631 

ESE 0.0548 0.0316 0.2035 0.2173 

SMSE 0.0605 0.3247 0.0472 0.1141 

0.9 SM 1.0443 0.7502 0.9286 0.9271 0.9008 0.8114 0.7308 0.6585 0.5934 

SSE 0.2379 0.4339 0.2500 0.2842 0.0155 0.0285 0.0405 0.0517 0.0619 

ESE 0.0663 0.0346 0.2415 0.2126 

SMSE 0.0586 0.2507 0.0676 0.0861 
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Table A.2: Monotonic MCAR Case: Simulated means (SM), simulated standard 

errors (SSE), simulated mean square error (SMSE), and estimated standard error 

(ESE) of the regression estimators based on GQL approach; SM and SSE of moment 

estimates for longitudinal correlation parameter under binary AR(1) process for the 

case with T= 4 ; and non-missing probabilities (NMP) 0.80, 0.90 and 0.95 for T=6,10 

and 15 ; K=100, {31 = {32 = 1 ; based on 1000 simulations. 

T=4 

Design 

D1 

NMP = 0.90 

p Statistic 

0.5 SM 

SSE 

ESE 

SMSE 

0.8 SM 

SSE 

ESE 

SMSE 

0.9 SM 

SSE 

ESE 

SMSE 

f3~c f3;c P1 P2 P3 
1.0284 1.0278 0.4914 0.2361 0.1097 

0.2575 0.2236 0.0689 0.0928 0.1186 

0.2484 0.2241 

0.0671 0.0508 

1.0500 1.0449 0. 7917 0.6235 0.4908 

0.3168 0.2923 0.0555 0.0957 0.1248 

0.3084 0.2782 

0.1029 0.0875 

1.0526 1.0467 0.8930 0.7948 0.7131 

0.3402 0.3126 0.0417 0.0822 0.1096 

0.3370 0.3018 

0.1185 0.0999 
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Design p Statistic f3~c f3;c P1 P2 P3 
D2 0.5 SM 0.9804 1.2108 0.4921 0.2316 0.0854 

SSE 0.2474 0.2804 0.0661 0.0959 0.1274 

ESE 0.2392 0.2415 

SMSE 0.0616 0.1231 

0.8 SM 0.9380 0.7435 0.8012 0.6420 0.5116 

SSE 0.2899 0.3383 0.0506 0.0926 0.1288 

ESE 0.2832 0.2349 

SMSE 0.0879 0.1802 

0.9 SM 0.9410 0.5824 0.8922 0.7928 0.7051 

SSE 0.3074 0.2345 0.0316 0.0629 0.0906 

ESE 0.2982 0.2152 

SMSE 0.0980 0.2294 
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T=4 NMP = 0.95 

Design p Statistic f3;a f3;a P1 p2 P3 
D1 0.5 SM 1.0253 1.0346 0.4900 0.2339 0.1053 

SSE 0.2423 0.2279 0.0662 0.0871 0.1116 

ESE 0.2458 0.2216 

SMSE 0.0593 0.0531 

0.8 SM 1.0500 1.0522 0.7926 0.6252 0.4925 

SSE 0.3053 0.2891 0.0520 0.0860 0.1182 

ESE 0.3058 0.2760 

SMSE 0.0957 0.0863 

0.9 SM 1.0616 1.0697 0.8945 0.7979 0.7132 

SSE 0.3260 0.3197 0.0385 0.0691 0.0992 

ESE 0.3324 0.3023 

SMSE 0.1100 0.1071 

Design p Statistic f3;a f3;a P1 P2 P3 

D2 0.5 SM 0.9784 1.2105 0.4918 0.2323 0.0841 

SSE 0.2505 0.2686 0.0647 0.0915 0.1212 

ESE 0.2379 0.2358 

SMSE 0.0632 0.1165 

0.8 SM 0.9407 0.7702 0.8008 0.6408 0.5095 

SSE 0.2949 0.3062 0.0483 0.0872 0.1220 

ESE 0.2827 0.2263 

SMSE 0.0904 0.1466 

0.9 SM 0.9347 0.5585 0.8964 0.8026 0.7210 

SSE 0.2895 0.2075 0.0309 0.0609 0.0854 

ESE 0.2970 0.1980 

SMSE 0.0881 0.2380 
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T =6 NMP=0.80 

Design p Statistic f3;G f3;G P1 P2 P3 P4 pf, 

D1 0.5 SM 1.0162 1.0230 0.4933 0.2410 0.1194 0.0544 0.0222 

SSE 0.2491 0.2174 0.0615 0.0823 0.0947 0.1116 0.1448 

ESE 0.2345 0.2163 

SMSE 0.0623 0.0478 

0.8 SM 1.0485 1.0475 0.7894 0.6215 0.4915 0.3884 0.3096 

SSE 0.3096 0.2842 0.0540 0.0904 0.1153 0.1379 0.1659 

ESE 0.3065 0.2791 

SMSE 0.0982 0.0830 

0.9 SM 1.0928 1.0776 0.8899 0.7886 0.7022 0.6260 0.5637 

SSE 0.3844 0.3451 0.04471 0.0870 0.1168 0.1467 0.1731 

ESE 0.3770 0.3344 

SMSE 0.1564 0.1251 

Design p Statistic f3;G f3;c P1 P2 p3 P4 ris 
D2 0.5 SM 0.9516 1.4206 0.5033 0.2485 0.1098 0.0240 -0.0390 

SSE 0.2333 0.3531 0.0603 0.0845 0.1047 0.1310 0.1767 

ESE 0.2254 0.2804 

SMSE 0.0568 0.3016 

0.8 SM 0.9400 0.9707 0.7932 0.6223 0.4822 0.3631 0.2615 

SSE 0.2781 0.4273 0.0449 0.0803 0.1111 0.1385 0.1762 

ESE 0.2773 0.3234 

SMSE 0.0809 0.1834 

0.9 SM 0.9564 0.7218 0.8842 0.7695 0.6645 0.5617 0.4783 

SSE 0.3116 0.3393 0.0298 0.0640 0.0951 0.1192 0.1423 

ESE 0.2994 0.3597 

SMSE 0.0990 0.1925 
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T =6 NMP=0.90 

Design p Statistic f3;a f3;a PI P2 P3 P4 P5 
D1 0.5 SM 1.0187 1.0252 0.4934 0.2403 0.1156 0.0543 0.0245 

SSE 0.2287 0.1986 0.0578 0.0748 0.0841 0.0941 0.1178 

ESE 0.2205 0.1972 

SMSE 0.0527 0.0401 

0.8 SM 1.0374 1.0520 0.7937 0.6281 0.4963 0.3883 0.3064 

SSE 0.2941 0.2824 0.0457 0.0770 0.1003 0.1118 0.1323 

ESE 0.2895 0.2610 

SMSE 0.0879 0.0825 

0.9 SM 1.0533 1.0768 0.8939 0.7978 0.7134 0.6368 0.5691 

SSE 0.3424 0.3787 0.0345 0.0643 0.0890 0.1072 0.1285 

ESE 0.3297 0.3000 

SMSE 0.1201 0.1493 

Design p Statistic f3;a f3;a P1 P2 P3 P4 P5 
D2 0.5 SM 0.9591 1.3397 0.4988 0.2431 0.1092 0.0319 -0.0182 

SSE 0.2152 0.2829 0.0571 0.0727 0.0845 0.1030 0.1316 

ESE 0.2124 0.2385 

SMSE 0.0480 0.1954 

0.8 SM 0.9276 0.8751 0.8007 0.6392 0.5105 0.4054 0.3199 

SSE 0.2740 0.3790 0.0425 0.0758 0.1044 0.1295 0.1550 

ESE 0.2680 0.2567 

SMSE 0.0803 0.1592 

0.9 SM 0.9350 0.6313 0.8954 0.7995 0.7126 0.6365 0.5655 

SSE 0.2953 0.2770 0.0282 0.0533 0.0767 0.0957 0.1168 

ESE 0.2902 0.2449 

SMSE 0.0914 0.2127 
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T =6 NMP=0.95 

Design p Statistic f3;a f3;a PI P2 P3 P4 Ps 
DI 0.5 SM 1.0207 1.0197 0.4915 0.2391 0.1151 0.0521 0.0231 

SSE 0.2225 0.1960 0.0549 0.0703 0.0768 0.0868 0.1066 

ESE 0.2133 0.1905 

SMSE 0.0500 0.0388 

0.8 SM 1.0457 1.0500 0.7930 0.6264 0.4943 0.3910 0.3080 

SSE 0.2983 0.2752 0.0430 0.0742 0.0939 0.1068 0.1237 

ESE 0.2827 0.2542 

SMSE 0.0911 0.0782 

0.9 SM 1.0558 1.0619 0.8943 0.7998 0.7144 0.6399 0.5746 

SSE 0.3392 0.3201 0.03347 0.0592 0.0806 0.1005 0.1172 

ESE 0.3162 0.2855 

SMSE 0.1182 0.1063 

Design p Statistic f3;a f3;a PI P2 P3 P4 Ps 
D2 0.5 SM 0.6230 1.3170 0.4986 0.2445 0.1100 0.0323 -0.0153 

SSE 0.2177 0.2600 0.0503 0.0686 0.0784 0.0909 0.1209 

ESE 0.2069 0.2238 

SMSE 0.0488 0.1681 

0.8 SM 0.9466 0.9269 0.7967 0.6340 0.5048 0.4005 0.3145 

SSE 0.2817 0.3287 0.0388 0.0689 0.0918 0.1099 0.1308 

ESE 0.2653 0.2398 

SMSE 0.0822 0.1134 

0.9 SM 0.9292 0.6362 0.8976 0.8045 0.7220 0.6496 0.5843 

SSE 0.3130 0.2593 0.0270 0.0505 0.0723 0.0893 0.1052 

ESE 0.2892 0.2161 

SMSE 0.1030 0.1996 
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T=10 NMP=0.80 

Design p Statistic f3;a f3;a P1 P2 P3 p4 P5 
D1 0.5 SM 1.0000 1.0281 0.4936 0.2398 0.1159 0.0574 0.0291 

SSE 0.6511 0.3171 0.0532 0.0685 0.0748 0.0818 0.0955 

ESE 0.2200 0.1957 

SMSE 0.4239 0.1013 

0.8 SM 1.0541 1.0628 0.7934 0.6276 0.4973 0.3936 0.3083 

SSE 0.3227 0.3116 0.0453 0.0788 0.0997 0.1181 0.1347 

ESE 0.3226 0.2882 

SMSE 0.1071 0.1010 

0.9 SM 1.1114 1.1031 0.8927 0.7934 0.7056 0.6255 0.5554 

SSE 0.4297 0.4004 0.0368 0.0752 0.1012 0.1260 0.1509 

ESE 0.4252 0.3379 

SMSE 0.1976 0.1709 

Design p Statistic f3;a f3;a P1 P2 P3 P4 P5 
D2 0.5 SM 0.9198 1.8046 0.5113 0.2602 0.1283 0.0525 0.0030 

SSE 0.2105 0.4847 0.0528 0.0691 0.0784 0.0878 0.1058 

ESE 0.2125 0.3612 

SMSE 0.0507 0.8823 

0.8 SM 0.9087 1.4686 0.7908 0.6182 0.4789 0.3639 0.2660 

SSE 0.2820 0.6403 0.0391 0.0672 0.0894 0.1094 0.1311 

ESE 0.2811 0.4981 

SMSE 0.0879 0.6296 

0.9 SM 0.9340 1.3114 0.8815 0.7679 0.6644 0.5654 0.4742 

SSE 0.3959 0.6454 0.0294 0.0569 0.0822 0.1060 0.1308 

ESE 0.3192 0.8196 

SMSE 0.1611 0.5133 
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T=10 NMP=0.90 

Design p Statistic f3;G f3;G PI P2 p3 P4 P5 
DI 0.5 SM 1.0173 1.0120 0.4939 0.2446 0.1208 0.0569 0.0252 

SSE 0.2045 0.1698 0.0448 0.0569 0.0610 0.0648 0.0696 

ESE 0.1972 0.1726 

SMSE 0.0421 0.0290 

0.8 SM 1.0324 1.0423 0.7942 0.6307 0.5011 0.3976 0.3153 

SSE 0.2996 0.2540 0.0366 0.0622 0.0789 0.0915 0.1023 

ESE 0.2766 0.2437 

SMSE 0.0908 0.0663 

0.9 SM 1.0697 1.0607 0.8950 0.8003 0.7154 0.6407 0.5736 

SSE 0.3437 0.3179 0.0277 0.0528 0.0738 0.0911 0.1061 

ESE 0.3626 0.3226 

SMSE 0.1230 0.1047 

Design p Statistic f3;a f3;G PI P2 P3 P4 P5 
D2 0.5 SM 0.9433 1.5038 0.5101 0.2626 0.1339 0.0608 0.0155 

SSE 0.1842 0.2949 0.0424 0.0540 0.0610 0.0683 0.0767 

ESE 0.1908 0.2415 

SMSE 0.0371 0.3408 

0.8 SM 0.9212 1.1266 0.8012 0.6409 0.5116 0.4054 0.3184 

SSE 0.2447 0.4061 0.0322 0.0556 0.0749 0.0908 0.1054 

ESE 0.2533 0.2963 

SMSE 0.0661 0.1809 

0.9 SM 0.9191 0.7928 0.8966 0.8015 0.7155 0.6375 0.5663 

SSE 0.2868 0.3661 0.0218 0.0415 0.0615 0.0794 0.0963 

ESE 0.2850 0.3128 

SMSE 0.0888 0.1770 
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T=10 NMP=0.95 

Design p Statistic f3;c f3;c P1 P2 p3 P4 P5 
D1 0.5 SM 1.0086 1.0164 0.4959 0.2448 0.1188 0.0547 0.0234 

SSE 0.1885 0.1708 0.0406 0.0493 0.0549 0.0582 0.0604 

ESE 0.1847 0.1603 

SMSE 0.0356 0.0294 

0.8 SM 1.0224 1.0234 0.7948 0.6310 0.5008 0.3970 0.3139 

SSE 0.2602 0.2372 0.0331 0.0546 0.0693 0.0809 0.0912 

ESE 0.2604 0.2271 

SMSE 0.0682 0.0568 

0.9 SM 1.0504 1.0490 0.8961 0.8024 0.7185 0.6438 0.5774 

SSE 0.3216 0.3039 0.0258 0.0483 0.0667 0.0815 0.0949 

ESE 0.3077 0.2692 

SMSE 0.1060 0.0948 

Design p Statistic f3;c f3;c P1 P2 P3 p4 P5 
D2 0.5 SM 0.9415 1.4414 0.5075 0.2598 0.1328 0.0611 0.0180 

SSE 0.1736 0.2374 0.0390 0.0493 0.0547 0.0589 0.0647 

ESE 0.1775 0.2093 

SMSE 0.0336 0.2512 

0.8 SM 0.9370 1.0863 0.8003 0.6402 0.5115 0.4083 0.3248 

SSE 0.2373 0.3483 0.0296 0.0512 0.0680 0.0830 0.0968 

ESE 0.2431 0.2536 

SMSE 0.0603 0.1288 

0.9 SM 0.9342 0.7529 0.9009 0.8114 0.7298 0.6564 0.5901 

SSE 0.2708 0.3051 0.0206 0.0392 0.0567 0.0738 0.0906 

ESE 0.2759 0.2475 

SMSE 0.0777 0.1541 
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T=15 NMP=0.80 

Design p Statistic f3;c f3;c rh P2 P3 P4 p5 

D1 0.5 SM 1.0185 1.0188 0.4954 0.2449 0.1206 0.0554 0.0219 

SSE 0.2370 0.1979 0.0496 0.0657 0.0728 0.0778 0.0835 

ESE 0.2263 0.2010 

SMSE 0.0565 0.0395 

0.8 SM 1.0533 1.0634 0.7944 0.6308 0.5007 0.3976 0.3152 

SSE 0.3597 0.3237 0.0421 0.0744 0.0968 0.1121 0.1266 

ESE 0.3818 0.3517 

SMSE 0.1322 0.1088 

0.9 SM 1.0914 1.0780 0.8918 0.7941 0.7081 0.6310 0.5649 

SSE 0.4131 0.3923 0.0368 0.0712 0.0962 0.1198 0.1413 

ESE 0.4914 0.4449 

SMSE 0.1790 0.1600 

Design p Statistic f3;c f3;c PI P2 P3 P4 r5s 
D2 0.5 SM 0.9052 2.2492 0.5260 0.2822 0.1529 0.0800 0.0328 

SSE 0.2431 0.6630 0.0486 0.0651 0.0732 0.0817 0.0921 

ESE 0.2315 0.6333 

SMSE 0.0681 2.0000 

0.8 SM 0.9246 1.983 0.7998 0.6381 0.5065 0.3975 0.3058 

SSE 0.2987 0.8125 0.0378 0.0642 0.0861 0.1042 0.1263 

ESE 0.3641 1.2519 

SMSE 0.0949 1.6264 

0.9 SM 0.9675 1.8141 0.8934 0.7965 0.7051 0.6192 0.5436 

SSE 0.3427 0.7990 0.0293 0.0551 0.0809 0.1069 0.1335 

ESE 0.4308 1.1240 

SMSE 0.1185 1.3012 
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T=15 NMP=0.90 

Design p Statistic f3;a f3;a P1 P2 P3 P4 P5 
D1 0.5 SM 1.0082 1.0089 0.4954 0.2442 0.1202 0.0592 0.0266 

SSE 0.1785 0.1619 0.0405 0.0525 0.0540 0.0552 0.0556 

ESE 0.1715 0.1591 

SMSE 0.0319 0.0263 

0.8 SM 1.0282 1.0354 0.7931 0.6279 0.4961 0.3908 0.3077 

SSE 0.2586 0.2376 0.0327 0.0559 0.0722 0.0829 0.0904 

ESE 0.2511 0.2309 

SMSE 0.0677 0.0577 

0.9 SM 1.0532 1.0691 0.8939 0.7985 0.7132 0.6359 0.5673 

SSE 0.3238 0.3165 0.0269 0.0495 0.0684 0.0847 0.0999 

ESE 0.3197 0.2983 

SMSE 0.1077 0.1049 

Design p Statistic f3;a f3;a P1 P2 P3 p4 P5 
D2 0.5 SM 0.9434 1.7202 0.5159 0.2705 0.1439 0.0758 0.0354 

SSE 0.1743 0.3427 0.0392 0.0497 0.0517 0.0533 0.0550 

ESE 0.1685 0.2592 

SMSE 0.0336 0.6361 

0.8 SM 0.9432 1.3943 0.8008 0.6401 0.5100 0.4040 0.3185 

SSE 0.2278 0.5175 0.0292 0.0500 0.0643 0.0769 0.0877 

ESE 0.2386 0.3544 

SMSE 0.0551 0.4233 

0.9 SM 0.9483 1.0860 0.8951 0.7989 0.7110 0.6318 0.5594 

SSE 0.2946 0.5602 0.0226 0.0420 0.0594 0.0750 0.0903 

ESE 0.2932 0.5045 

SMSE 0.0895 0.3212 
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T=15 NMP=0.95 

Design p Statistic f3;a f3;a p1 riz P3 P4 ris 
D1 0.5 SM 1.0073 1.0072 0.4977 0.2469 0.1208 0.0589 0.0288 

SSE 0.1636 0.1507 0.0374 0.0463 0.0474 0.0472 0.0475 

ESE 0.1606 0.1490 

SMSE 0.0268 0.0228 

0.8 SM 1.0234 1.0286 0.7941 0.6302 0.4995 0.3950 0.3128 

SSE 0.2475 0.2303 0.0272 0.0467 0.0587 0.0683 0.0759 

ESE 0.2366 0.2182 

SMSE 0.0618 0.0539 

0.9 SM 1.0424 1.0453 0.8960 0.8021 0.7182 0.6428 0.5756 

SSE 0.3064 0.3073 0.0219 0.0409 0.0557 0.0678 0.0787 

ESE 0.2894 0.2657 

SMSE 0.0960 0.0965 

Design p Statistic f3;a f3;a P1 p2 P3 P4 ris 
Dz 0.5 SM 0.9381 1.5373 0.5135 0.2687 0.1431 0.0773 0.0404 

SSE 0.1596 0.2479 0.0339 0.0436 0.0446 0.0455 0.0480 

ESE 0.1562 0.2037 

SMSE 0.0293 0.3501 

0.8 SM 0.9278 1.2621 0.8011 0.6416 0.5142 0.4111 0.3290 

SSE 0.2249 0.3804 0.0267 0.0448 0.0575 0.0680 0.0767 

ESE 0.2229 0.2696 

SMSE 0.0558 0.2134 

0.9 SM 0.9235 0.8933 0.9005 0.8112 0.7314 0.6590 0.5946 

SSE 0.2578 0.3604 0.0186 0.0338 0.0474 0.0602 0.0722 

ESE 0.2635 0.2855 

SMSE 0.0723 0.1413 
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Table A.3: Non-Monotonic MCAR Case: Simulated means (SM) , simulated stan­

dard errors (SSE), simulated mean square error (SMSE), and estimated standard error 

(ESE) of the regression estimators based on GQL approach; SM and SSE of moment 

estimates for longitudinal correlation parameter under binary AR(1) process with T= 

4, K=100, (31 = (32 = 1 and non-missing probabilities (NMP) 0.90 and 0.95 ; based 

on 1000 simulations. 

T=4 NMP=0.90 

Design p Statistic fJ;a f3;a P1 tS2 P3 
D1 0.5 SM 1.0209 1.0321 0.4879 0.2490 0.1234 

SSE 0.2526 0.2326 0.0755 0.0923 0.1116 

ESE 0.2484 0.2220 

SMSE 0.0642 0.0551 

0.8 SM 1.0384 1.0559 0.7884 0.6294 0.5007 

SSE 0.3029 0.2934 0.0568 0.0928 0.1186 

ESE 0.3074 0.2766 

SMSE 0.0932 0.0892 

0.9 SM 1.0453 1.0619 0.8906 0.7989 0.7197 

SSE 0.3378 0 .3285 0.0447 0.0780 0.1032 

ESE 0.3350 0.3025 

SMSE 0.1162 0.1117 
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Design p Statistic f3;a f3;a rh p2 P3 
D2 0.5 SM 0.9746 1.2350 0.4874 0.2404 0.0952 

SSE 0.2446 0.2816 0.0664 0.0915 0.1180 

ESE 0.2390 0.2341 

SMSE 0.0605 0.1345 

0.8 SM 0.9543 0.8105 0.7981 0.6417 0.5133 

SSE 0.3012 0.3161 0.0511 0.0876 0.1151 

ESE 0.2835 0.2211 

SMSE 0.0928 0.1358 

0.9 SM 0.9776 0.6222 0.9008 0.8071 0.7209 

SSE 0.3333 0.2452 0.0349 0.0633 0.0858 

ESE 0.2997 0.2088 

SMSE 0.1116 0.2029 
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T=4 NMP=0.95 

Design p Statistic f3;c f3;c P1 P2 P3 
D1 0.5 SM 1.0201 1.0320 0.4884 0.2438 0.1181 

SSE 0.2515 0.2312 0.0733 0.0903 0.1103 

ESE 0.2472 0.2207 

SMSE 0.0637 0.0545 

0.8 SM 1.0360 1.0551 0.7895 0.6268 0.4958 

SSE 0.3003 0.2915 0.0547 0.0909 0.1172 

ESE 0.3058 0.2748 

SMSE 0.0915 0.0880 

0.9 SM 1.0459 1.0636 0.8914 0.7979 0.7156 

SSE 0.3391 0.3195 0.0429 0.0757 0.1013 

ESE 0.3332 0.2990 

SMSE 0.1171 0.1061 

Design p Statistic f3;G f3;G P1 P2 P3 
D2 0.5 SM 0.9740 1.2287 0.4880 0.2355 0.0912 

SSE 0.2434 0.2747 0.0649 0.0894 0.1158 

ESE 0.2379 0.2326 

SMSE 0.0599 0.1278 

0.8 SM 0.9486 0.8103 0.7979 0.6390 0.5087 

SSE 0.2993 0.3057 0.0500 0.0866 0.1147 

ESE 0.2825 0.2205 

SMSE 0.0922 0.1294 

0.9 SM 0.9483 0.6014 0.9006 0.8073 0.7214 

SSE 0.3062 0.2153 0.0341 0.0628 0.0843 

ESE 0.2958 0.1947 

SMSE 0.0964 0.2052 
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Table A.4: Monotonic MAR Models 1 and 2: Simulated means (SM), simulated 

standard errors (SSE), simulated mean square error (SMSE), and estimated standard 

error (ESE) of the regression estimators based on GQL approach; SM and SSE of 

moment estimates for longitudinal correlation parameter under binary AR(1) process 

with T= 6, K=100, /31 = /32 = 1 ; based on 1000 simulations. 

T=6 MODEL:M1 

Design p Statistic f3~a f3;a pl. P2 P3 P4 P5 
D1 0.5 SM 1.0371 1.0294 0.4903 0.2394 0.1109 0.0464 0.0196 

SSE 0.2815 0.2473 0.0769 0.1165 0.1437 0.1822 0.2616 

ESE 0.2702 0.2396 

SMSE 0.0806 0.0620 

0.8 SM 1.0743 1.0793 0.7907 0.6171 0.4836 0.3778 0.3031 

SSE 0.3695 0.3650 0.0625 0.1287 0.1757 0.2227 0.2729 

ESE 0.3755 0.3403 

SMSE 0.1421 0.1395 

0.9 SM 1.0934 1.0706 0.8909 0.7864 0.7020 0.6274 0.5612 

SSE 0.4143 0.3674 0.0515 0.1228 0.1805 0.2393 0.3005 

ESE 0.4322 0.3791 

SMSE 0.1804 0.1400 
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Design p Statistic f3;a f3;a P1 tS2 P3 P4 P5 
D2 0.5 SM 0.9254 1.9805 0.4828 0.2042 0.0366 -0.1067 -0.2591 

SSE 0.2548 0.4511 0.0716 0.0965 0.1253 0.1708 0.2503 

ESE 0.2538 0.4284 

SMSE 0.0705 1.1649 

0.8 SM 0.9416 1.9273 0. 7419 0.5135 0.3154 0.1320 -0.0312 

SSE 0.3163 0.6348 0.0627 0.1106 0.1574 0.2137 0.2850 

ESE 0.3041 0.5340 

SMSE 0.1035 1.2629 

0.9 SM 0.9578 1.8289 0.8287 0.6498 0.4763 0.3138 0.1732 

SSE 0.3442 0.7482 0.0606 0.1167 0.1738 0.2332 0.3072 

ESE 0.3298 0.5976 

SMSE 0.1203 1.2469 
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T=6 MODEL:M2 

Design p Statistic f3~a f3;a PI P2 P3 P4 Ps 
DI 0.5 SM 1.0451 1.0277 0.4913 0.2381 0.1181 0.0526 0.0257 

SSE 0.2925 0.2591 0.0753 0.1090 0.1338 0.1760 0.2399 

ESE 0.2709 0.2402 

SMSE 0.0876 0.0679 

0.8 SM 1.0779 1.0598 0.7858 0.6137 0.4820 0.3813 0.3190 

SSE 0.3752 0.3142 0.0632 0.1193 0.1713 0.2270 0.2875 

ESE 0.3743 0.3231 

SMSE 0.1468 0.1023 

0.9 SM 1.0737 1.0699 0.8900 0.7875 0.7014 0.6311 0.5808 

SSE 0.4241 0.3752 0.0514 0.1163 0.1739 0.2324 0.2945 

ESE 0.4447 0.4019 

SMSE 0.1853 0.1457 

Design p Statistic f3~a f3;a PI P2 P3 P4 Ps 
D2 0.5 SM 0.9142 1.9901 0.4767 0.1931 0.0132 -0.1266 -0.2129 

SSE 0.2454 0.4790 0.0721 0.1006 0.1316 0.1785 0.2667 

ESE 0.2481 0.4141 

SMSE 0.0676 1.2097 

0.8 SM 0.9351 1.9914 0.7311 0.4930 0.2828 0.0999 -0.0351 

SSE 0.2983 0.6483 0.0660 0.1139 0.1640 0.2176 0.2814 

ESE 0.2990 0.5245 

SMSE 0.0932 1.4032 

0.9 SM 0.9685 1.9408 0.8151 0.6265 0.4528 0.2948 0.1706 

SSE 0.3416 0.7432 0.0681 0.1322 0.1878 0.2484 0.3163 

ESE 0.3225 0.6177 

SMSE 0.1177 1.4375 
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Table A.5: Non-Monotonic MAR Models 1 and 2: Simulated means (SM), 

simulated standard errors (SSE), simulated mean square error (SMSE), and estimated 

standard error (ESE) of the regression estimators based on GQL approach; SM and 

SSE of moment estimates for longitudinal correlation parameter under binary AR(1) 

process with T= 4, K=100, /31 = /32 = 1 ; based on 1000 simulations. 

MODEL: M1 

Design p Statistic f3;a f3;a P1 P2 P3 

D1 0.5 SM 1.0340 1.0108 0.4927 0.2839 0.1528 

SSE 0.2694 0.2476 0.0873 0.1114 0.1485 

ESE 0.2731 0.2419 

SMSE 0.0737 0.0614 

0.8 SM 1.0614 1.0306 0.7913 0.6531 0.5366 

SSE 0.3625 0.3200 0.0711 0.1103 0.1549 

ESE 0.3804 0.3323 

SMSE 0.1352 0.1033 

0.9 SM 1.0606 1.0337 0.8918 0.8132 0.7444 

SSE 0.3718 0.3464 0.0621 0.0970 0.1451 

ESE 0.4037 0.3859 

SMSE 0.1419 0.1211 
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Design p Statistic f3;a f3;a P1 P2 P3 
D2 0.5 SM 0.9545 1.3892 0.4696 0.2447 0.0799 

SSE 0.2620 0.3581 0.0772 0.1099 0.1543 

ESE 0.2520 0.2629 

SMSE 0.0707 0.2797 

0.8 SM 0.9727 1.0800 0.7606 0.6066 0.4702 

SSE 0.3205 0.4603 0.0681 0.1154 0.1678 

ESE 0.2938 0.3105 

SMSE 0.1035 0.2183 

0.9 SM 0.9910 0.9000 0.8681 0.7648 0.6687 

SSE 0.3660 0.4481 0.0559 0.0983 0.1427 

ESE 0.3677 0.2661 

SMSE 0.1340 0.2108 
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MODEL:M2 

Design p Statistic f3~a f3;a P1 P2 p3 

D1 0.5 SM 1.0353 1.0117 0.4907 0.2856 0.1510 

SSE 0.2661 0.2470 0.0857 0.1132 0.1450 

ESE 0.2731 0.2421 

SMSE 0.0721 0.0611 

0.8 SM 1.0508 1.0237 0.7904 0.6512 0.5365 

SSE 0.3372 0.3032 0.0694 0.1082 0.1557 

ESE 0.3422 0.3027 

SMSE 0.1163 0.0925 

0.9 SM 1.0612 1.0365 0.8913 0.8126 0.7432 

SSE 0.3744 0.3464 0.0630 0.0966 0.1480 

ESE 0.4020 0.3564 

SMSE 0.1439 0.1213 

Design p Statistic f3~a f3;a til P2 P3 

D2 0.5 SM 0.9540 1.4301 0.4557 0.2393 0.0853 

SSE 0.2609 0.3502 0.0790 0.1117 0.1531 

ESE 0.2508 0.2629 

SMSE 0.0702 0.3076 

0.8 SM 0.9735 1.1008 0.7545 0.6053 0.4741 

SSE 0.3167 0.4601 0.0724 0.1181 0.1647 

ESE 0.2927 0.2694 

SMSE 0.1010 0.2219 

0.9 SM 1.0024 0.9231 0.8640 0.7606 0.6674 

SSE 0.3961 0.4487 0.0579 0.0995 0.1382 

ESE 0.3504 0.2818 

SMSE 0.1569 0.2072 
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