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ABSTRACT

The combustion of hydrocarbon fuels generates a considerable amount of reaction

byproduets., some of which. are mutagenic and DNA-reactive nitro-polyaromatic

hydrocarbons. This mutagenic action is generally indirect, such that the compounds require

metabolic activation for the exertion of their toxic effect.

Used motor oil extracts prove more mutagenic than crude oil extracts in the Ames

Salmonella assay for mutagenicity. This mutagenic effect is enhanced by the presence ofa

rat liver microsomal and cytosolic protein preparation, as well as by the use of a bacterial

strain enriched in 0 -acetylase activity. The mutagenic response is diminished in a bacterial

strain that is deficient in bacterial nitroreduetase. These data implicate nitrocompounds as

principal agents in the overall mutagenicity ofcrankcase oil extracts.

Crankcase oil extracts prove to be good substrates for nitroreduetase enzyme activity

in wrro. The effectiveness as a substrate ofnitrorcducwe enzyme(s) also seems to correlate

with the mutagenicity as measured in the Ames Salmonella assay. The measured

nitroreductase activity ~bits 00 appreciable ditfcrencc when NAnH or NADPH is used as

the reaction cofactor.

The activity ofnitroreduaase enzymes caD produce reactive oxygen species such: as

hydroxyl radicals (OH), which c:an generate single sttaDd nicks in DNA. This effect can be

initiated by the Inl:tIbotism ofaiumd polyooclear .-omatic hydrocarbons by mammalian liver

enzymes. t-nitropyrene and cranicc:ue oil extracts are shown here to be capable of producing



such nicks in the DNA ofthe plasmid pBRJ22.

iii



In Memory of

H. Roy Taylor (1916 - 1996)
and

Cecil B. Pritchett (1908 • 1999)

iv



ACKNOWLEDGEMENTS

I wish to express my gratitude to my program supervisor Dr. A.D. Rahimtula for his

guidance and support during my project. as well as for providing me with the opportUnity to

do this work. I also wish to thank the other members of my supervisorycomminee. Dr- D.H.

Heeley and Dr. J.R. Robinson. for their assistance and advice. Thanks to Donna Jackman

Thotben Bieger, and Vietor Drover for guiding me in my struggles with DNA. Also thanks

to Drs. S. Ray and 1. Payne ofFisheries and Oceans. for aUowing me to use their labs and

materials, I am indebted to Marie Codner for the coundess occasions when she pulled me out

of the proverbial fire, and failing that, for making the lab a fun and interesting place to be

The help orall my lab-mates over the past two and a half years is yeatly appreciated, as is

the companionship and entertainment offered by the other members of the Biochemistry

Department. I also wish to thank my family for aU their suppon throughout the period of my

university studies. Finally, I would like to thank my girlfticndltianceelwife Paula for her

constant love and suppon throughout the course of my work; her evolving title serves as a

testamem to both the length army programme and the depth ofher commitment.



ABSTRACT

ACIC'OWLEDGEMENTS

TABLE OF CONTENTS

LIST OFTABLES

LIST OF FlGURES

LIST OF ABBREVIATIONS

INTRODUCTION

TABLE OF CONTENTS

xi

xii

xvii

t. I Hydrocarbon combustion

\.1.1 Formation of nitrated polyaromatic hydrocarbon

t.2 Metabolismlactivation of nitroarenes

1.2.\ The role of free radicals

1.2.2 Free radicals and nongenotoxic olridative damase

1.3 Nitro.PAHDNAadduetioD

1.4 The etfectsofmetaboljc routes on nitro-PAHtoxicity 12

l.5 Nitro--PAM and tumorigenesis IJ

1.6 Mixtures ofN~-PAH 14

1.6.1 The use ofnp.post1abelling for identification of

DNA addu<:ts pnaa!ed by NO,.PAH mixtures IS

vi



1.7 TheAmes-Sa/~11a assayandnitro-PAH

1.8 Rationale and objecti"es oftbis study

11

19

MATERIALS AL'll> METIfODS

2.1 Materials

2.1. I Chemicals

2.2 Methods

20

20

20

21

2.2. I Animal treatment 21

2.2.2 Suceinoytation ofcytochrome c 22

2.2.2.1 Determination ofcytocltrome c

concentration 23

2.2.3 E:rtraetion of crude oils and used crankcase oils 23

2.2.4 Nitroreduewe acti\'ity assay

2.2.4.1 Testing of inhibitory action

ofDMSOextraet5

2.2.3.1 Extraction of soots 2S

2S

26

27

26

2.2.5.2

2.2.5.3

2.2.S AmesSa/motttIJa mutagmicity usay

2.2.S.1 Preparation ofru trm- post·mitocbondriaJ

fraction and NADPH-regeoeming system 26

Preparation ofbacterial lester stnin cuJtures 27

vii



2.2.6 J~P.PostlabeUing ofONAadducts 2'

2.2.6.1 Isolation ofONA 2'

2.2.6.2 Digestion ofONA 30

2.2.6.3 Nuclease PI enrichment and detennination

ofnucleotide levels 30

2.2.6.4 Preparation of standards and blanks 31

2.2.6.5 np.postlabelling reaction 31

2.2.6.6 PEI..(eUulose thin layer chromatography

ofnucleotides 32

2.2.6.7 Standard, blank and sample residue analysis J4

2.2.6.8 Analysis of test samples 35

2.2.7 Plasmid DNA strand cleavage experiments 35

2.2.7.1 Preparation of solutions 36

2.2.7.2 Preparation ofrat liver tractions 36

2.2.7.3 Generation of pBRJ22 plasmid 36

2.2.7.4 Incubation and analysis of plasmid DNA

suandclea~ 3.

2.2.7.5 Statistical Analysis ofScanning

Densitometer Data 3"

RESULTS 40

3.! Nitroreductue ~vity 40

viii



3.1.1 Crude oil elrtraets as rutroreductase substrates 40

3. L2 Crankcase oil extnIctS as ruuoreduetase substrates 45

3.1.3 Soot extracts as nitroreductase substrates 51

3.1 Ames Salmonella detennination of extract mutagenicity 54

3.2.1 Mutagenicity of crude oil elCtraets 54

3.2.2 Mutagenicityofsootextraets 54

3.2.3 Mutagenicity of crankcase oil extracts 68

3.3 np·postlabelling studies 75

3.3.1 In vivo crankcase oil exposure 75

3.4 pBR322 plasmid nicking studies 81

3.4.1 DNA strand breaks with I-nitropyrene exposure 81

3.4.2 DNA strand breaks with crankcase oil extract exposure 86

3.4.2.1 DNA strand breaks with crankcase oil

3.4.2.2

and 1-nitropyrene exposure

DNA strand breaks with crankcase oil

and DMSO exposure

91

91

4. mSCUSSION

4. 1 Nitroreduetase activity stUdies

4.1.1 Crudeoilstudies

4.1.2 Industrial SlaCk soot studies

ix

101

101

101

102



4.1.3 Crankcase oil studies 103

4.1.4 Identity of the nitroreduetase 104

4.2 Ames Salmonella mutagenicity studies 105

4.2.1 Crude oil studies 105

4.2.2 Industrial stack soot studies (05

4.2.3 Crankcase oil studies (07

4.3 J%p.postlabelling studies 108

4.4 pBR322 plasmid nicking studies 109

5. CONCLUSlONS 112

5.1 Conclusions 112

6. REFERENCES 114



LIST OF TABLES

Table}.l

DNA adduct levels generated by crankcase oil administration

xi

76



LIST OF nGURES

Fig. 1.1 Metabolism (activation) ofnitrated-PAH

Fig. 1.2 Generation ofa hydroxyl radical by nitroreduetion reaction

in the presence of iron

Fig, 1.3 Alternative DNA-reactive pathway ofnitroarenes 11

Fig. 2.[ Schematic ofl2p·postIabeUing TLC plates 33

Fig. 3.1.1 Nitroreduewe activity generated with DMSO

extract ofPrudhoe Bay crude oil as enzyme substrate 42

Fig, 3.1.2 Nitroreductase activity generated with DMSO

extract of Alberta sweet mix crude oil as enzyme substrate 42

Fig. ).1.3 Nitroreduetase activity generated with DMSO

extruet ofHibernia crude oil as enzyme substrate 44

Fig.3.IA N'"rtroreduetase activity generated with DMSO

extract ofVcnezueJ.an crude oil as enzyme substrate 44

Fig. 3.2.1 Nitroreduewe activity generated with DMSO

extract ofcraDkcase oil /lIas enzyme substmc 41

Fig. 3.2.2 N"ttroreduetase activity generated with DMSO

extract ofcrankcase oillf2 as enzyme: substrate 41

Fig. 3.3.1 Response ofnitroreduewe activity (generated with DMSO

extract ofcrankcase oil #1 as ertzyrbC substrate) to varying

xii



levels of cytosolic protein 50

Fig. 3.3.2 Response of nitroreduetase activity (generated with DMSO

extract ofcrankcase oil #2 as enzyme substnte) to varying

levels ofcytosolic protein 50

Fig. 3.4.1 Nitroreductase activity generated with DMSO

e:<t.ract of industrial Slack soot #1 as enzyme substrate 53

Fig. 3.4.2 Nitroreductase activity generated with DMSO

e:<t.ract of industrial stack soot #2 as enzyme substrate 53

Fig. 3.5.1 Salmonella typhinrurlum TA98NR revenants produced

by incubation with Prudhoe Bay crude oil DMSO e:<t.ract 56

Fig. 3.5.2 Salmonella typhimurium TA98 revenants produced

by incubation with Prudhoe Bay crude oil DMSO e:<t.ract 56

Fig. 3.5.3 Salmonella typhimurium YGl024 revertants produced

by incubation with Prudhoe Bay crude oil DMSO extract 56

Fig. 3.6.1 Salmonella typhi"""ium TA98NR revenants produced

by incubation with Hjbemia etUde oil DMSO e:<t.ract 58

Fig. 3.6.2 Salmonella typhinnuilJm TA98 revertants produced

by incubation with Hjbemia crude oil DMSO extract 58

Fig. 3.6.3 Salmonella typhintllrium YGI024 revenants produced

by incubation with Hibernia. crude oil DMSO extract. 58

Fig. 3.1.1 Salmonella typhintllriu", TA98NR revertants produced

xiii



by incubation with Alberta sweet mi.'C crude oil DMSO extract 60

Fig. 37.2 Salmondla typhimurium TA98 revenants produced

by incubation with Alberta sweet mix crude oil DMSO extract 60

Fig. 3.7.3 Salmonella ryphirnurium YG1024 revenants produced

by incubation with Alberta sweet mix crude oil DMSO extract 60

Fig. 3.8.1 Salmonella typhimurium TA98NR revertants produced

by incubation with Venezuelan crude oil DMSO extract 62

Fig. 3.8.2 Salmonella ryphimurium TA98 revertants produced

by incubation with Venezuelan crude oil DMSO extract 62

Fig. 3.8.3 Salmonella typhimurium YGl024 revertants produced

by incubation with Venezuelan crude oil DMSO extract 62

Fig. 3.9 Salmonell4 typhimurium YGI024 revenants produced

by incubation with industrial stack soot #1 DMSO extract 64

Fig.3.I0.! Sa/mOllf!IJa typhimurium TA98NR revertants produced

by incubation with industrial stack soot #2 DMSO extract 67

Fig. 3.10.2 Sa/monelJa ryphimurium TA98 revertants produced

by incubation with industrial stack soot 1#2 DMSO extract 67

Fig. 3.10.3 Sa/monelJa ryphimuriJmt YGl024 revertants produced

by incubation with inciusuW stack soot 112 DMSO extract 67

Fig. 3.11 Sabnonella ryphimurium TA98m. revertants produced

by incubation with crankcase oil #1 DMSO cxtrII:t 70

xiv



Fig. 3.12 Salmonella ryphimurium TA98 revenants produced

by incubation with crankcase oil # I DMSO extract 72

Fig. 3.13 Salmonella ryphimurium YOI024 revertants produced

by incubation with crankcase oil #1 DMSO extract 7.

Fig. 3.14 Adduct profile of crankcase oil extract treated rat livers 78

Fig. 3.[5 Adduct profile of control rat livers 80

Fig. 3.16.1 Formation of relaxed coil pBR322 plasmid with

exposure to l-nitropyrene (agarose gel) 83

Fig. 3.16.2 Formation of relaxed coil pBR322 plasmid with exposure

to I-nitropyrene 85

Fig. 3.17.1 Formation of relaxed coil pBRJ22 plasmid with exposure

to crankcase oil extract (agarose gel) 88

Fig. 3.17.2 Fonnalion of relaxed coil pBR322 plasmid with exposure

to crankcase oil extract 90

Fig. 3.18,1 Formation ofrelaxed coil pBRJ22 plasmid with exposure

to l-nitr0p)Tme and cranlccase oil extract (agarose gel) 93

Fig. 3.18.2 Formation ofrelued coil pBRJ22 plasmid with exposure

to l-nitropyrene and crankcase oil extract 95

Fig, 3.19.1 Formation ofre:laxed coil pBR322 plasmid with exposure to

crankcase oil extract in tbc: presence ofDMSO (agarose gel) 97

Fig. 3.19.2 Formation ofreJaxed coil pBRJ22 plasmid with exposure



10 crankcase oil extract in the presence ofOMSO

xvi

99



Am,

ATP

B[a)P

cc oil

ddH,O

DMSO

DNA

EDTA

HPLC

KP

3·MC

<Nn

NADH

NADP·

NADPH

NaP

J-NP

PAH

PEl

LIST OF ABBIU:VIAnONS

ampicillin

adenosine triphosphate

benzo[a]pyrene

aanl<case

distilled and deionized water

dimethyl sulfoxide

deolC)'ribonucleic acid

ethylenediamine tetra acetic acid ~ di.sowum salt

high performance liquid chromatography

potassium phosphate buffer

)-methyltholantbrene

minutes

nicotinamide adenine diDudeotide, reduced Conn

nicotinamide adenine dimJdcotide phosphate

nicotinamide adeftiDc: dioocleotide phosphate, reduced form

sodium phosphate buffer

t-nitropyrene

polynuclear aromatic hydrocarbons

polyethy_ imJlf'!lllOled

xvii



R.l\IA ribonucleic acid

ROS reactive Olcygen species

TLC lhin layer chromatography

xviii



CHAPTER 1

1. IN'TRODUcnON

1.1 Hydrocarbon c:ombllstion

The use ofhydrocarbon mixtures as fuel has become a staple in this industrial age of

humankind. Hydrocarbons are used to power motorized vehicles. beating systems, and even

electricity generating systems. as is done here in Newfoundland. A conventional, and

oversimplified, view of the process of hydrocarbon combustion has been that their burning

leads to the production ofeamon diolcide and water. While this theoretical picture is quite

sanitary, the actual business ofbuming tlydtocarbons, especially fossil fuels. is vastly different.

In reality. the combustion ofhydtocarbons produces a plethora ofcompounds, some

of which are quite toxic. The reason for this lies in the fact that incomplete combustion is

often the rule when comlidering the use of these compounds in modem society. For example,

the intense heat and pressure geoenued inside the modem automobile engine leads to the

presence of many partial combustion products in the petroleum oil lubricant, as compounds

which are fonned from fuel. combustion dissolve in the: crankcase oil. Improper disposal of

this used oil can then contaminate both the soil and aquatic environments.

The deleterious effects ofexposure to combustion byproducts had been seen IS far

back as 200 years ago, but were poorly undcrszood until recently. The eighteenth century

British physician Percival Pott noticed an abnormal incidence of scrotal cancer in young

chimney sweeps. which t.e corm;dy attributed to the bonendous work environments to which



these boys were e:cposed. Since tfw time there have been countless similar discoveries. some

of which involve the formation ofcancers, m:I many oc:bm which relate genetic rruwion and

gcnoloxicity [0 hydrocarbon combusrion byproduct exposure.

l.I.1 Formation ofnitnted poly..,..tit hydrocarbellls

Considerable research has been focussed on such compounds as benzo[a]pYTene

(B[a]P), which has been shown to interact with DNA both in vitro (Nishimoto and Varanasi,

1985) and in vivo (Culp and Beland., 1994), and other polynuclear aromatic hydrocarbons

(PA.H), which are commonly formed in combustion reactions. While many of these

compounds are quite [oxic m:I often rrutagenic, there is a class ofcompounds fooned which

are even l'f)(n reactive and poterIiaUy more genoloxic than PAH. The:se compounds are the

nimued derivatives ofPAH which include among them some of the most DNA·reac:rive and

mutagenic compouoc1s yet discovered (Rosenknnz aDd Mermelstein. 1983).

Nitrated pcXycydic a:rommc hydrocarbons we tbrmed, in the mreme temperatUre and

pressure conditions ofcombustion reactions, by the reICtion ofcombustion byproducu with

atmospheric nitrogcn dioxide(NOJ and nitric acid (HN'OJ(Pins et aI., 1918). One example

of this phenomenon would be the formation of mutagenic nitrar:ed 8[aJP molecules, which

can occur in combustion reactions where 8[a]P itseU'is fonned (Fu et. al., 1994). Similar

examples of NOl·PAH can be found in many combusr:ion residual mixtures including

petro1ewn.-ba.sed fuel exhaust (Newton et aI., 1982; Moller. 1994), cigarette smoke (Jones



et aI.. 1993), industrial emissions (Khesina et at, 1994) and grilled food (Feilon et ai., 1994)

The environmental burden ofnitro-PAH is considerable. In the early 1980's. it was

estimated that passenger cars in the United States would annually generate 15,000 kg of 1

nitropyrene by the tum of the decade (Rosenkranz, 1982). This ominous prediction portrays

only part of the story, as there are much more mutagenic forms of nitro-PAH than 1

nitropyrene (McCoy et al., 1983a). h also does not reflect the lion's share of nitro-PAH,

which comes from industry. [n the United States, a 1980 estimate placed the total mass of

N01·PAH produced for commercial use at greater than 800 million kg annually (Hartler,

1985). This large scale manufacturing is principally directed toward pesticide production.

with minimal contributions from explosives and phannaceuticals. lndustrial activities also

produce copious amounts of nitro-PAH in the form ofemissions (White, 1985), the total of

which is virtually impossible to quantify.

1.2 The metabolism/.cautio. of Ditro-PAD

Nitroarenes must undergo metabolic activation to produce the ultimate

mutagenicIDNA reactive species. This is iIlustnted by nitroreductase-knockout bacterial

strains which are resistant to nitro compound toxicity (Mason and Iosephy, 1985). Williams

and Weisburger (1991) illustrlle the process ofnitro-PAH activation as shown in Figure 1.1.

This scheme shows the conversion of the Ditro group 10 the N.bydroxy form. via a nitroso

intermediate. Amine groups can also undergo conversion. to the N-bydroxy moiety,
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which in either case can be enzymatically conjugated ....ith a suitable functiooal group (i.e. a

sulphale or acetyl group). The sulphate or acetyl group can then nonenzymatically remove

itself from the nitrogen &tom. under slightly acidic conditions., resulting in the fonnarion of

a rtitrenium ion. It is the nitn:niwn ion wbicb 5IJbsequendy reacts with cellular macromolecules

and can cause mutagenic responses in affected cdls. This conclusion was also reached by

Wild (1990). who suggested that the rate limiting step in the ninoarene-induced mutagenesis

in Salmonella Iyphimurillm is the reaction of the nitrenium ion with DNA.

1.2.1 The Role or Free Radiuls

In addition to the formation of DNA·teac:tWe efcarophilic compounds.

nitroaromalic compounds can also~e toxic n:sponses via free radical production (as

shown in Figure 1.2. below). The initial Slep tn nitroreduction is 1be two dectron reduction

of the niuo functionality 10 yield a niuo50 group. Electrons are removed from NADH or

NADPH and transferred to the nitro group, via 1be flavin eomponcm of the nitroreducwe

(Oma and Mason, 1989). When this reduction 0CQ1tS with only one dectron, a nitro radical

is formed, which can fonn~ (O!-) moo radicals in the presence of molecular oxygen

(Mason and Josepby, 198.5). The superoxide radical is not in itself a major toxic threat. but

it can react with other ~ecu.les to fonn. potentially I!az.ardous compounds

(HailiweU and Gutteridge, 1989). AlternatM:ty, superolOde can be harmlessly removed via

amino thiols such as g1uwbione (Eyer, 1994).
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R.N~ + Ie" ----> R- "NO:.

R- ·No,- + 0, --> R·No, + .0,

·O!- + 00.:. -> BlO: +01

RIO: + Fe1° --> Olf + '08 + F~

Figure 1.2 GeDeraDH. 01 • ~dnJ:Jl I'8dicaI by .itrwedllClioa racdu ia _

prt:HDct .r iro..



Two superoxide radicals can dismute (combine to produce a more inert molecule) to

fonn hydrogen peroxide (H10J and molecular oxygen (OJ, either enzymatically. via

superoxide dismutase, or nonenzymatically. [n the presence of metal ions such as iron(II),

copper(I), manganese<m. chromium(V) or nickel (III), hydrogen peroxide can then be

cleaved to fonn one hydroxide anion and one hydroxyl radical (OH) (Gregus and Klaassen.

1996). The hydroxyl radical itself is a highly reactive molecule which can readily attack

cellular macromoleaJ.ies and, in the case ofONA, can produce strand scission (Rahman et aI.,

1989).

The effect of DNA strand scission can be easily illustrated in a system of analysis

involving plasmid DNA This technique involves the incubation of plasmid DNA with various

chemical or biological preparalions. Circular plasmids occur in a supercoiled form which have

consistent mobilities when Nn on an agarose gel. The breakage of a DNA strand results in

the relaxing of this supercoil formation, with the: result being a circular piece of DNA in a

conformation known as a relaxed coil. The relaxed coil DNA is less compact than the

supercoiled fonn and therefore does not run u &sf: through an agarose gel. This mobiliry shift

can serve as an index of the degree of strand scission levels. In extreme cases., excessive

strand scission can produce linear ftagmcnts ofONA ofvarying sizes, and the appearance of

these fragments would be indicative of very high rates of hydroxyl radical production

(Kukielka and Cederbaum, 1994).



In addition to the obvious DNA reactive and genoloxic mechanisms for nitroarene

toxicity, a nongen-atoxic mechanism has also been identified. The root of this theofy is that

ONA binding and other senoloxic events cannot e:~plain the specificity seen in terms of

species variation and target organs for given carcinogens. Assuming that DNA adduction is

the critical event in' initiation. the nongenaloxic effects may occur as promotion steps,

whereby the growth and conversion to malignancy of an initiated cell is encouraged.

Neumann et al. (1994) investigated the known complete carcinogen 2·acetylaminolluorene

in comparison with two rdated compounds which W1:R known to be incomplete carcinogens.

They observed only one significant difference, that being the propensity of the cortq)lete

~ for the st:izwIation of redox cycling in the rritochondria. possibly as a consequence

of disruption of the electron rrans:pon: chain. 11tiJ redolt cycling created a sinwion of

oxidative stress in affected cells and was presumed to play. via! role in the promotion of

liver cancers.

The oxidative scressIrespirabon ittterference could promote cancen in any nwOOcr of

ways, as the reduction ofATP formation couJd reduce the activity of many dift"erem enzymes.

These enzymes would not necessarily be Iimiled to metabolic functions; they migl:a be

responsible for detoxification processes or couJd be involved in the excision and repair of

adductedldamaged ooc!cotides.



l.J Nitro-PAR DNA adduction

The binding of lCenobiotic or endogenous electrophiles to DNA has long been

associated with mutagenicity. This adduction of DNA can therefore lead 10 countless

deleterious health conditions for the affiieted organism, including various forms of cancer

(Pitot and Dragan, 1996). For this reason, the study oflhe propensity ofcompounds to form

DNA adduets is of considerable value.

Various species of nitro-PAH have been shown to be potent DNA addueting

compounds. I-Nitropyrene. a commonly occuning nitro-PAli, has been shown to fonn DNA

adducts in Sprague·Dawley rats, CD-I mice and NJ mice. when injected into the intra

peritoneal (i.p.) cavity in tumorigenic doses (Smith et a1., 1990). The same effect has also

been observed in 844 rats (El-Bayoumy et at., 1994) and Salmonella typhinrurium bacteria

(Messier et al.• 198 t). 1,6-Dinitropyrene, a disubstituted relative of I.nitropyrene, has also

been identified as a DNA adduct fOmUng compound when administered via the i.p. route to

Wistar and Sprague-Dawley rats (Diurie et at .• 1993; Wolff eI aI., 1993). F344 rats also

exhibit DNA adducts in lung tissue upon pulmonary exposure of 1,6-dinitropyrenc (Beland

et aI .• 1994).

The capability of nitro-PAH to fonn DNA adduets is not limited to the nitrated

pyrenes, though these are some of the more potent Species. 2·Nitroiluorene and 2,7

nitroiluorene have been shown to form bepatic DNA adduets in male Wistar rats. This effect

can be seen with either oral or intra peritoneal administration (MoUer et aI., 1993).
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As discussed in section \.2, the nitrenium ion is the usual ultimate fe:actM species in

niuoarene DNA adduction. It is. however. nO! the only means by which DNA binding can

occur. The presence of a nitro substituent can result in the formation of an e1ectrophilic

intermediate as portrayed in Figure U. as described by Fu et aI. (1994). In this mechanism.

a nitro group at the third carbon ofB(a}P can be hydroxy\aled, and a nitreruum ion generated.

This nitrenium ion. through electron rearrangancnt, leads to a cubocation at the six position.

which can readily react wilt! nucleophilic molecules such as DNA. TIUs mechanism., which

leads to a DNA adduct with & free amino group, could be the means by which N--acetyiaJed

adducts are fonned by nitroarenes.

As alluded to above, it has been determined that two distinct types orONA adducu,

N-acetylated and nonacetytaled. can result from in vivo exposure to nitro-PAH (Meerman

and van de Pou. 1994). The same work: also i1Iusuated the differential dcas of the two types

ofadducts. The N.-acety\aled adducts formed at the C8 position ofdcoxyguanosine residues

are capable of blocking DNA replication. The N-acetyl metabolites ofaitroatellCS are also

associated with the promotional capacity ofvariou.s can:inogcns. This couJd occur because

the suppression of DNA syalhesis prevents the DNA editing IDIChinay lfom CCln'tCting

mutated adduC'tS while aI the same time drcwnvenu the normal process ofceUular mitosis.

The nOnaceryWed adducts fonned at the C8 position ofdeoxyguanosine and the N6 position

ofdeoxyadenosine have been corrciued with the initiation of preneoplastic: c:dls. This may

be the result of the activarion ofaD onc:osene or some otherdefcterious efJ'u:t of routIgt:DeSis.

Toe rdative inability ofnoQlCCt)'lued adduas to block DNA reptication may be the result
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FiB_ 1.3: Aher..tivc DNA·ractiYc pamway.r.iIroaftDa

The genention ofa DNA-ractive e1ectrophiJc from 3-NO).B[a]P. without

dina reaction: oftbe mtro SlbstitucnI: group. (Tum fh:m: Fu et 11., 1994)
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of the elttfa bulkiness of the aceylated adduct. which may restrict the action of DNA

replication machinery

LA The effect! or metabolic routts on nitro-PAD toskity

MaUer (1994) found differential effects in the metabolism of nitroarenes administered

by different routes. When 2-nitroBuorene is administered via the pulmonary route, the N

hydroxyl derivative is produced, and it in tum is conjugated to a glucuronide moiety. The

relatively harmless glucuronide conjugate can then be excreted in the bile. Cytochrome P450

metabolism is responsible for this pathway, as it metabolizes the nitro group to the N

hydroxyl fonn. Hence this metabolic pathway is dominant when the lung; is the organ of

administration, as would often be the case in terms ofenvironmental exposure 10 industrial

emissions. With this route of de:livery the liver can modify the xenobiotic during first pass

metabolism.

In cases where large amounts of the glucuronide conjugate are presertt in the bile,

however, significant amountS oftoldcanl can be liberated in the intestine by the enzyme 13

glucuronidase. thus leading to the scenario seen with oral administration. Oral ingestion of

2-rntrofluorene results in its reduction to 2·aminofluorene by the intestinal microflora. 2

Aminofluorene can be Slbsequently acetyiated to form 2-acetylaminot1uorene. a very potent

mutagen These results clarify earlier work: by the same group where it was determined that

2-rntrofluorene and 2,7-dinitrofluorene exhibited more potency 11 forming DNA adducts
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when administered orally, as opposed to ip. (Moller et at. 1993). The eumple of 2·

nitrofluorene is useful as it illustl'1lte5 how both the dose and route of administtuion of

nitroarenes must be considered in the analysis of nitrOlt'efle toxicity.

1.5 Nitro-PAD ..d C".oncnais

The reactivity and DNA-binding capacity ofN02-PAH can, in the worst case scenario.

lead to the folTl1ation of tumours. This has been iIlustraled with 1,6-dinirropyrene which can

produce lung tumours in f344 rats with it single 0.1 rng pulmonary dosage (fokiwa et &1.•

1990). The same srudy found similar effects with the one rime pulmonary administrations of

3,7. and J,9-dinitrofluoranthene, which produced significant levels of lung tumours upon

exposure to 0.2 mg oCtile respective nitro-PAR The tumorigenicity of 1,6-dinitropyrene

(with pulmonary administration) has also been shown to correfatt well with DNA adduct

formation (Beland et aI., 1994), where the pereattIIe of tumour incidence within an

experimental group of animals increased from 0-4 to 80'4 with a contOmium: incR:ase in

adduct levels from zero to two 6noI addUClsl~8 DNA. Tbesc data suggest that nitro-PAH

DNA reactivity (and hence mutagenicity) can transWc into the formation oflung tulIlOUn.

Although nitro-PAH are often. airtlome pollutants. malring pulmonary exposure quitt

common, the lungs are not the only target organ in terms ofcarcinogenicity. Hepatic tumoun

have been produced in newborn mice 15 the result of inb'a peritoneal. exposure to I·

nitropyrene. I-nitrosopyrene., and 6-ritrochrysene (W"1SIocki et al., 1986). Interestingly, 1-
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nitropyrcne was only marginally more potent than pyrene in generatin9: twnoun, wtule 1

nitrosopyrene was substantially more nunorigenic than either pyrene or I·nitropyrene. This

is in keeping with the scheme of nitro metabolism outlined in section t.2. whereby reduction

of the nitro group to a nitroso intermediate is an essential Step in nitro-PAH activation.

The establishment of tumorigenic activity of nitro·PAH serves as the culmination of

mutagenicity and DNA binding srudies. The existence of tumours in treated animals strongly

suggests that this is the ultimate lalOe manifestation oCtbe deleterious effects of nitro-PAM

e:tposure.

1.6 Mi.J:tuns ofNO:.PAH

Nitrated polyaromaric hydrocarbons ace rarely seen in isolation in the environment

but. instead. are preserf in comp(cx mi'ttUreS ofcombustion byproducts. For this reason, the

investigation of pure samples ofthese compounds, while sriU a valid scicntik undertaking.

does oot neccssariJ.y examine any interaction between the constituents of the mixrurc.

CombinatiON of compounds could Kt synergistically to enhance the toxic: dfea.

Alternatively, the combined effects of mixture constituents could act antagonistically and

diminish the toxic effects produced by the individual compounds. For this reason, the study

of these mixtures is imperati..-c in the investigation of the true effects of environmental

exposure to nitfO..PAH..

Some combustion byproduc:t mixlurcs have been shown to be genotOlcic. Tobacco
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smoke has been linked to DNA adduct formation in human lymphocytes (Jahnke et: aI.• 1990)

and oral tissue (Jones et aL. 19(3). The feeding ofcoal tar to B60F I mice has been shown

to form DNA adduets in the liver, lung and forestomach (Culp and Beland. 1994). Diesel

emissions. in addition to being bacterial mutagens (Rosenkranz. 1982a; Rosenkranz. 1982b).

have also been shovm 00 be DNA reactive. both in m>o and in wrro (Gallagher et aI.• 19(3).

These findings.. although they are likely not entirdy due to the action of nitro-PAR. cmainly

mimic the action of various isolated nitro-PAH.

In addition to direct DNA reactivity, combustion byproducts are also capable of

generating the reactive oxygen spec;ies (ROS) supcroJcide anion. This has btcn clearly

illustrated with diesel exhaust (Sap et aI.• 19(3). The same stUdy also found that diesel

particulale-induced mortality could be diminished by the elevation ofavailable superoxide

dismuta:ie. The potentia! for oxidative stress, in combination with the DNA-reectivity of

combustion byproduct mixtures, lay the foundation for substantial toxicity with in vWo

exposures.

1.6.1 The use or .AP-posdabeIIiq for idntiRaltiH ... DNA addllCU .,eMnted by

N~-PAB ..m.ra

The np-postlabellirlg method for the identification ofONA adducu is wdlsuited for

monnoring_",""""""mixlwes. Monysw<tieoofDNA-.et _ in_

lhe binding of radioaaivdy IIbeDed c:ompounds to DNA. It woukI be impossible to undertake
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such a srudy using a mixture ofunknown composition. It would also be practically impossible

to accurately reconstruct a complex mixture with radioactively labelled constituents. The np.

postlabelling assay circumvents this problem by selectively labelling addueted nucleotides by

a process known as enrichment.

Enrichment can be performed by one of two different methods. BUlanol can be used

[0 extract hydrophillic adducted nucleorides from a digested DNA sample, while at the same

time selectively leaving behind oonna! nucleotides (Gupta, 1985). When this step is performed

prior to the labelling reaction. only the addueted nudeotides need be radioactively labeUed.

Nuclease PI enrichment achieves tlte same goal via a different mechanism (Reddy and

Randerath, 1986). In this system. DNA is digested to J'-nucleotides. The DNA digest is then

subjected to treatment with nuclease PI. This enzyme cleaves the 3'.phospbate from each

non-addueted nucleotide. The presence of a large hydrophobic molecule bound to a

nucleotide Slerically inhibits the nuclease's activity and leaves the j' -phosphate group intact.

Since the polynucleotide kinase required for the tabeUing reaction only recognizes RUcleotides

with a 3' -phosphate group. it selectively labels those oocleotides whose hydrophobic

attachment prevented the nuclease PI activity. The end result is again the selective radio·

labeUing of addueted nucleotides.

By utilizing sdcc:tivc proccdURS ofenrichment. invcstiguon are able to resolve two

daunting problems: (1) the incredible number ofcompounds present in combustion residual

mixtures; and (2) the enormous amount of nonnal DNA compared to the relativefy few

nucleotides which form adducts with reactive compounds.
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1.7 TbelulJ~"'JucI.itro-PAB

There is aCCll'lSiderabic body ofpubisbcd worton the mutagenicity ofni!:nrPAH and

like compounds, using the Ames SaJmone/la-mammaIian microsome assay (Ames et al. 1915.

Maron and Ames. 1983). The Ames usay uses SU'IiDs of the bacteria $t:zJmo,w/Ja

ryphimllri"m thu arc incapable of produciog b:istidiDe and. biotin. The smiDt have been

genetically engineered to bKk IDJwe to the wild type bKtcria which can produc:e both of

these essential components for growth. Tbis bKk auwioft could be in the form of a

fRmeshift ID.ltation, IS in the TA98 .strain, or a bue-subsbtution rmnatioa. IS in the cue of

the TAtOO StI'liD (McCoy et aI., 1983b). Since the assay is done on apr plales with limiting

quamities of biotin and histidine, only the IJlUWlIS will produce viable colonies. Thus the

number of colonies on an apr plait is dircc:tly proportional to the nI.Itqenicity of the test

compound. The assay alsO allows for the detection of~ mutagens; by

adding a preparatioll of IDIImloI1ian liver mzymc:s. tompOUDds wbieb art DOt dRaty

!IlJtagaK but are COIIYatcd to • ttmageDic: meW:Jotitc ill IDIlDDIJs CMI be assayed..

Experi.-.I evidmce bas _ thot the TA9I ...... aCSaboone/iQ1JfI/O-ri

is geneaDy more rapoasive to various Ditroarares lad nitntcd polyaromatic bydroca.rboas

than the TAloo SIRin (McCoy et aL 1983.). impDcatiDl the process of &ame-sbift

mutagenesis. These data also show • pattieu1ariy Sb'OD8 rnut.lFic respo_ of TA98

bacteria to l,8-diDitropyrene, with 272,000~ produced per micropml of I,&

di,'utropyrene. This peper (1983.) also illuslrates the ute of III S.~ sttIiD
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dcSgncd specifically for work wilh ailro<ompouDds. The srnm TA98NR. ~. derivative of

the parent TA98 SInin that is de:ficicrj in the classical bKterial aitrorafuctae respoftSlble for

the metabolism, and ICtivItioa., ofmaoy *oarcDcs (ca. nitrofin:ns aod airidazo&e). The

TA98NR strain is however partially respocsive to otber nitroaraIes such as IIIOIIl). and di

nitropyrenes (Rosenkranz et aI., 1911, Djuric et aL. 1986).

Another spec:iaJty modified wnioa ofTA98 S. typNlJIIIIiur is the YQ1024 strain.

which is enriched in O-aoerylrnnsfaue ICtivity (WataDIbe et aI., 1990). This strain has been

shown to be much more teDSitive to~ ecposute thin its parent strain. TA98 (Tokiwi

et aI., 1994) due to the impol'tlnCe of O-acetyWion ill the productioa of the presumed

ultimate reactive species. the nitreaium iOG, as outliDed in section 1.2.

Ila<terial saains lUCh as TA98NR aod YGI024 gmdy Ollllance the capoIImty of the

Ames assay for diIgnosbc work, espec:Wly in terms ofux for complex: mixIures wbicb ba¥e

mutagenic potential. "I'be5ie mixIures c:oaain Ill. IbuDda:Dce ofdif&tmt c:ompwDds, wbic:b

makes the assignment of the species rapoasibIe for the a.zt.ageaic poteatiII (If any is

exhibited) quite difficult. By utiDg bKurial SIrIiDs wbicb are dcficicmIeDbIDccd ill. c:auin

area ofxcnobioOc mer.boliIDt, more can be daamiDed as to wbic:b class ofcompouDds are

the primary mutagens in • mixture.
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1.& Rationale.1td objKliva of'thbstlldy

Considerable research has been directed at the metabo6sm.. DNA·reactivity, and

subsequent mutagenicity of nitrated polyaromaric hydrocarbons. Considerably less

information is available on these characteristics with respect to their normal environmental

occurrence in complex mixtures of hydrocarbon combustion byproduet5. The goal of this

thesis is to associate nitroreducI:ase activity, bactcrial mutagenicity and DNA damage u pan:

of the overall toxicity seen with exposure to nitroarenes as constituents ofcomplex mixtures.
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CHAl'TERl

2. MATERIALS AND METHODS

2.1 Malerials

PEl-Cellulose TLC plates were purdwcd from Fisher Scientific (Onawa. ON.

Canada).

The S. typ#rimurirtnf strain TA98 was obtained as it gift from Dr. Bruce Ames,

University ofCa1ifomia at Bcn:dey. Berkeley, CA. USA. The S. lyphitrlllrium strain YGI024

was obtained as it gift from Dr. M Watanabe. National tnstinne ofHygiene Sciences. Tokyo,

Japan. The TA98NR strain of S. typhimurium was a gift from Dr. Elena ~cCoY. Case

Western Reserve University, Cleveland. Off. USA.

Crude oiI5 and used crankcase oils were obtained from Dr. Jeremiah Payne, Fisheries

and Oceans Canada, St. lohn's., NF. Canada..

2.1.1 CMlIliWs

APl"UC,1i<me, calfthyrrw DNA, ~ochrome. (type VI, from honehart), OMSO,

OTT, EDTA, J-met!lylchoIanl (Mq miae<:OCC41...,l..... NADH, NADP', NADPH,

nuclease PI, pBr322 plasmid DNA. sodium dithioDite. spermidine aDd succUDc anhydride

were purchased from Sigma CbemicaJ Co., SL Louis, MO, USA. The enzymes II-amylase.
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proteinase k. Ri'lase A. RL'lase T, and spleen phosphodiesterase were obtained from

Boehnn.... Mann.1riem, Laval, PQ. Canada. [y-"PJ-ATP (specific activity 6000 C~nunoI)

wu pu<chascd _ Amenham c.n.da ltd. • Oakville, ON.• Conada. AnaIytigI grade KC~

KH!PO~. K~~ and KOH were purchased from BDH Ltd.• Toronto, ON Canada.

Polynucleotide kinase was purchased from US Biochemical Co.• Cleveland. Of{, USA.

Chelex 100 resin was purchased from Bio-Rad, Mississauga. ON, Canada. Aroclor 1254 was

purchased from Chern Services. West Chester, PA, USA All other chemicals were of the

highest grade commerciaily available.

2.2 Metbocb

2.2.1 Animal Trat'lDnt

Male Sprague--Dawtey rus (2()()'2SO g) were obtained from Memorial Univenity

Animal Care Services.

For Araclor 1254 pretreat:mem. rau were dosed once with Soo mg per leg body

weight of the polychlorinated biphenyl (PCB) mixture, ArocIor 1254, suspended in com oil

(250 mglmL). Maclor pretreated rats were given chow and water ad libitum for four days

prior [0 sacrificing. In the case of 3-methyt cholanthrene {J-MC) pretreatment., rats were

dnsed wM 20 ms ofJ-MC in axn oil (10 mglmL) per kg body weigh~ daily. for three clays.

The 3-MC pR!b1:I1ed 1'IlS were gjvm chow and wale- ad lib;""" for the tint two days. After
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the prescribed time, the fOod. but not me walel'", was rerncM:d. The rats were f.a.sltd overnight

and sacrificed (by cervical d.is1oation) the rouowing; morning. Control rats., except where

otherwise noted, received no pretreatment. but were subjected to the same dietary regimen

and saaificing proceOJre as the ecperimenul animals. [Eartier experi.mc:ntarion in this lab has

illustrated that rats treated with the com oil vehicle only have exhibited no response.]

For the purposes of J:p.postlabelling analysis, four male rats were administered, by

gavage, 0.5 mL ofOMSO crankcase oil extract per kilogram ofbody weight on alternate days

over a thiny-one day period. Three control rats were kept for the same time period. but were

not given crankcase oil treatment. For all but the last day of this trealfnent regimen. the rats

were provided with chow and'wuertz/libitum, then fasted overnight prior and sacrificed the

rouowing moming. The brains. hearts, livers. kidneys and stomachs of the: rats were excised

and subjected to the np.postlabelling procedure.

Partial $Llccinoylarion of cytochrome l: was perfonncd as described by Kuthan er aI.

(1982). 100 mg ofcytochrome c. (horse heart; type VI) was dissolved in 40 mL of ice cold

)0 mM KP butTer, pH 7.6. The stirring solution wu left on ice and 0.42 mmoJ of finely

ground succinic anhydride was added. slowly, over a period of 30 minutes, with COnslant

stirring. The pH ofthe solution was closely mooitored and maintained at 7.6 by the periodic

addition of 2 M KQH. FoBowing the compietion of the suc:cinic anhydride addition, the
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solution was stirred on ice for a further 20 minutes.

The succinoylated cytochrome, solution was transferred to a dialysis bag and dialysed

for [6 hours against 2 L 0.1 mM EDTA. The dialysis bag was placed in 2 L of deionized

water for 4 hours, after which the solution was concentrated using a Diaflo ultrafiltration

apparatus, used under nitrogen gas with a PM 10 filter.

2.2.2.1 Detcmlination orq-tocbrome, (ollcentratiOd.

The linaI preparation ofsuccinoylaled cytochrome Ii was assayed 10 determine its true

concentration. Two viSl.ble light range cuvettes were identically prepared with SO mM KP

buffer, pH 7.6. and a known volume ofsuccinoylated cytochrome Ii. The two cuvettes were

simultaneously monitored at 550 nm, and the spectrophotometer zeroed. The reference

cuvette was lett unchanged while the sample cuvene received a 5 mg quantity of sodium

dithionite to completely reduce the cytochrome Ii. The relative absorbance of the sample

cuvette was converted to a concentration value for the preparation wine an extinction

coefficient of2t mM·l.cm:l .

2.2.3 [nrutiOR or l:rude oils ••d used craak tue oils

ExtBcts were made offour differem aude oils (Prudhoe Bay crude. Hibernia crude,

Alberta sweet mix crude, and Venezudan crude) and two separate pools ofused crankcase
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oils Oils [0 be extracted were combined with equal volumes of DMSO in plastic tubes.

[DMSO was chosen because is dissolves many hydrophobic compounds, is miscible with

water, and does not appear to affected the bacteria used in the rnU[agenicity stUdies (Ames

et aI., 1975).] The tubes were gently mixed by inversion., for 10 minutes., then centrifuged at

2000 rpm (3000 x: 8) in a benchtop centrifuge. The DMSO phase was retovered by

puncturing the bottom of the tube and draining otTilie bottom layer. The recovered extract

was then combined with analtler equal volume portion of the oil and the process repeated.

The bottom layer of the second cmacOon was retained for future experimentation.

The above procedure was found to be inadequate for the production ofa crankcase

oil e:ttract for plasmid DNA strand breakage studies. As the hydroxyl radical is essential to

this process, steps were required to remove DMSO. a hydroxyl radical scavenger, from the

extract. For this preparation the DMSO extract was prepared with a triple extraction

procedure, producing a final volume of 90 mL. The final extract was then distilled under
r

vacuum [0 eliminate the bulk oftbc DMSO from the preparation. This condensed extract, 20

mL in volume, was combined with 150 mL water in a separatory funnel and extracted with

chloroform (2 )( 100 mI.), dicbJoromethane (2 x 75 mL) and toluene (2 )( 75 mL). The

organic extracts were pooled and reduced in volume using a rolary evaporator. The

remaining 17.5 mL oforganic cxnct wasaliquoted into three S mL portions and one 2.5 mL

portion, each into a capped test tube. Prior to use, the extracts were evaporued 10 dryness

under nitrogen and then resuspended in tbe original volume ofacetone.
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2.2.3.1 [:Ktnction of soots

DMSO extracts of two industrial stack soots (A.T. Cameron and Gulf Star) were

prepared. For these extracts, DMSO and the raw soot were combined in a I: 1 weight ratio.

These e~raets were then prepared as per section 2.2.3.

2.2.4 Nitroreduttase activity usay

Nittoreductase activity was determined as described by Djuric et aI. (1986). The assay

was carried out in SO mM KP buffer (pH 7.6), with JJ j.lM succinoylated cytochrome k. and

atotalvo{umeof3.0mL \.IS,uLofDMSOoiVsootextraet and32-480j.lgofcytosolic

protein (from 3-MC pretreated nus) were added to the sample and reference euveues. 100

JoIL ofeither 10 mM NADH or 10 mM NADPH (330.uM Iinal concentration) was added to

stan the reaction. The zero oil extrId. and zero protein levels of enzyme aaivity were

determined by replacingtbc oil extract with 10 j.lL DMSO, and the protein with 10 JoIL of 50

mM KP buff... (pH 1.6), respe<rively

The reduction ofthc strecinoyiatcd cytcchrome k was monitored at 550 om. All

assays were perfonned in duplicate, and the average afme two rates rUen.

AJI nitrortduetioD assays were performed using a common rat liver cytosol
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preparation

2.2.4.1 Tenias oriallibitory actioa of DMSO tnrKb

To evalua1e any nitroceducwe inhibitory action of various extracts, nitroreduction of

l·nitropyr~was assayed with the presence and absence ofoil extrKt. using the method

outlined in section 2.2.4. Assays were done in aipljcate and the results aatistica1ly compared

to determine ifany change in enzyme activity occurred.

2.2.5 Ames-SallffOM/la DUIUlftlicity UNY

This assay was pcrfonncd as described by Maron and Ames (1983).

system.

Aroclor 1254 pretreated rus were kiIJcd by ccMcaJ dislocation and pilced on their

backs. The fur on the aruerior side ofeach an:imaI was thoroughly swabbed with 95% ethanol.

and pointed scissors were used to o,zt through the skiD without damaging the undertyins

muscle layer. The skiD was pulled bKk ilIId the exposed rrusde tissue swabbed with 95%

ethanol. before it was ad. open with SlCriJe scissors. The rat livers were excised. weighed., and



27

placed in a volume oficcCXlld 100 mM KP buffer equalling three times the wet weight aCme

livers. This mixture was then komogemzed using a Polytron homogenizer and the homogenate

centrifuged at 9000 x g for 30 nUlutesat 4'C. Tbesupemwnt wustored at .10·e in 3 mL

aliquots for future use in the Ames assay.

On the day ofthe experiment, an aliquot of the frozen supernatant (59) was used to

prepare an NADPH-resencrating system This solution was a I in 10 dilution of the 59. w;lh

a final composition ofB mM KCI; amM MgC~ 0.1 M KP. pH 7.4; 4 mM NADP-; and 5

mM g1ucose-6-phospbal:c. The regenerating system was sterilized by $trairing lhtough a

sterileOA5,urn filter.

2.2.5.2 Preparation of .aerial tester strain adt...a.

Master cultures ofTA9B, TA98NRand YGt024 were 5I.0l'edat -70'C with ~Io of the

culture volwne ofDMSO Idded for Slor1gC. The nigbt before an experiment. approximately

0.1 mL of the frozen masurcultJ.R was used to iDocuJIle 10 mL ofOxoid o.aItlR media. The

inoculated culture was left at 37'C overnight (16 bouts) in a.sbaJcing water bath after wtUch

cultures were left on ice for the cbabon aCme sampie preparation
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59-based NADPH-regenerating system. The test compound (dissolved in acelOne or DMSO)

was added to a sterile glass culture tube. followed by 2 mL top agar (0.6% DifeD agar; 0.5%

NaCl), and the appropriate bacterial tester strain

The combined mixture was briefly voncxcd, then aseptically transferred to an agar

plate (1.5% Difea agar and 2% glucose in Vogel-Bonner medium E [Vogel and BOMer.

1956]). The plares were left to solidify in the dark at 25°C, then inverted and kept at 31'C for

48 hours After the 48 hour incubation period the bacterial colonies on each plale were

counted

2.2.6 uP-Poltl.bdliuc or DNA .dducb

l~P.Postiabellingexperiments were perfonned using the methods of Reddy and

Randerath (1986), with modifications.

2.2.6.1 Isollrioa or DNA

ApprolCimatdy 250 mg oftissue were excised from test organs and placed in 1.5 mL

plastic tubes. In the case of in vitro incubations. the entire volume was used for extraction.

To each sample, 0.5 mL ofSETfSDS solution (100mM NaCl; 20mM EDTA; 50mM Tris

base; 0.5% 50S; lmglml proteinase K) was added. The tubes were incubated at 3~C for

three haws with gentle mixing by a tube rotator. 0.5 mL tris-saturated phenol was then added
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to the mixture and each tube was agitated for 5 minutes in a horizontal position. The tubes

were then centrifuged at 14,000 rpm (12,800 1C g) for 5 minutes to separate the two phases.

The bottom phenol layer was pipette<! away, the tubes recentifuged at 14,000 rpm for I

minute. and the top aqueous layer removed 10 a clean labelled tube.

The aqueous layer was extracted twice more as descnoed above. with different

organic solvents. The second and third extractions were performed with phenol: chlorofonn:

isoamyl alcohol (50:48:2), and chloroform: isoamyl alcohol (24: I), respectively. The final

aqueous extracts were combined with 2 volumes of cold edloxycthanol. and gently mixed.

The samples were then placed at .20·C for at [east 2 hours to precipitate the DNA, and

centrifuged for 5 minutes at t4.000 rpm. The supernatant was discarded. the pellet washed

with I m.L 70% ethanol and resuspended in 0.5 m1 SET buffer (100 mM NaCl; 20 mM

EDTA; 50 mMTris base) with RNaseA(O.1 !n&'ml). RNase T l (1000 UlmJ) and "'·amytase

(1 mgtml). These mixtures were incubated at 37°C for t hour.

10 J,lL of SET buffer with proteinase K (10 mg/mL) was added to each tube. after

which all were incubated at 37'C for a further t bour. The samples were then extracted as

before. with pheno~ phenol: chloroform: isoamyl a1coho~ and ch.lorofonn: isoamyl alcohol.

The remaining aqueous fraction was combined. with 2 volumes of cold etho"Yetbano~

incubated at -20'C for at least 2 hours.. and centrifuged at 14,000 rpm for 5 minutes to yieid

aDNApeUet.

The DNApeUetWlSwuhed with 70'10 ethanol dissolved in 0.5 mL SET buffer and

combined with 2 volumes of cold ethoxyethanol to precipitate any remaining small RNA
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fragments. The mixture was again left at -20'e. cerurifuged at 14,000 rpm, and the peDet

washed with 70"/, ethanol as before. The final pellet was resuspended in distilled waler. and

t~ absorbance aCme solution measured 11260 nm and 280 nm. The absorbance at 260 run

was used to dttemiDe the c:.ooc:entratioofONA. and theAbs@26OiAbs@280ratiowastJSCd

as an index orONA purity.

2.2.6.2 DigrsUoo orDNA

From the purified DNA samples.. the voIwne com:sponding to 2.5 ~g DNA was added

to 1.5 mL Eppendorfcc:m:rifuge tubes, and the sample evaporated to dryness under vacuum.

S 1Jg; (0.60 U) miaococcal rlJdease and SJol!J spleen phosphodiesterase were added. and each

was sample made up to 12.0 J.lL toW vo(wne (20 mM succinate, 10 mM COlO.). The DNA

digestion reaction was carried OUf at 3rc for J houn.

Each DNA digestion mixture was combined with 3 ,ul 0.25 M sodium acetate., 1.8

.uL 0.3 mM ZnCI2> and 1.2,uL S.uWJ.lL nuclease PI. The enrichment reaction was allowed

to occur for 1 hour u 37-C. To neutralize the enrichmcm reeaion, 2.4 JolL 0.5 M Tris buffer

(pH 9.0) wasaddcd to ad\ tube. 2.0.ul ofeach solution was transferred to a sepaRlc tube

containing 18.0,uL ddH)O. This mixture was retained for future HPLC anaiysis. whUc the
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original enrichment mixture was used for the postJabelling fuction.

HPLC analysis of J'-tlJCleotide content was done w;th if. solvent system of 5%

melhanoV9S% to mM NaP buffer. pH 7.5. The dcoxycytidine·)'·phosphate peak was

compared [0 if. 2 nmoI~3' 'i'hosphaIe standard to determine J '-nucleotide Ievel:s.

2.2.6." Preparatio. or ,taad.rds ud bl..ks

For each set ofexperiments. two blank reactions and four nucleotide standards were

prepared. The blanks were 18.0 ~L ddH~O. and the standards were 18.0,u.L ofa I :t 10.1 M

deoxyadenosine.J'-phosphate solution. The standards and blanks were treated in the same

fashion in the postlabeUing reaaion IS were the test samples.

2.2.6.5 np-posdabdliaa racticHI

A kinase nix dJIion was prepared by the combination of41 ,u.L ddH!O. 100 Jl.L y

np_ATP solution (I mCi). 3,] ,u.L (S Wlits) polynudeotide kinase., and 56,u.L Icinue buffer

(0.2 Mbicine.. 0.1 MMA 0.1 MDTI, 10 mM spermjdinc). Tcn,uL oflhis kinase mixture

was added to each sample and incubated at 37°e for 45 minutes. To these tubes. 4,u.L ofa

bicine (20 mM, pH 9.5) and apyrue (20 U/mL) rn:ixtuR was added and the samples li.arther

inalbared at J70e for 30 trirucs. All additions were made to one blank and two standards.

then to the lest samples. aDd finally to the remaitUlg standards and blank. This step is taken
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10 ensure that any diJrinishing oflcina.se activity over the course of the sample preparation can

be detected.

2.2.6.6 PEl-Cehbt lbi. lIyu thnuaatop-aplly of DUdeoridts

PEl-Cellulose nc plales were washed with 100% methanol and ddH10. then air

dried prior to use.

The entire test sample volumes. approximately 33 .uL, were spotted onto a PEl

Cellulose TLC plate at the origin as indicated in Figure 2.1. The plates were developed

overnight in I.OM NaH~•• pH6.S. in theDI direction (towards the top of Figure 2.1). The

next morning the fiherpaper wicks and top third aCme TLe plates were removed (CUt along

the line marked 01- in Figure 2.1) and discarded. The remainder oCtile plates were rinsed

twice with ddH10 and air dried.

The dry p1mcs were then developed in S.3 M lithium formate, &.5 M urea. pH 3.5, in

[he 03 direction (towanb the bottom of Figure 2.1). The plate was devdoped until the

solvent front rcached the edge aCme plate. The lOp I em wu removed (cut along the line

marked 03· in Figure 2.1) and discarded. The cut and developed pWcs were rinsed with

ddH~O and then soaked for 10 minutes in 10mM Tris-HCI. The plates were then furthcr

rinsed with d~O. and air dried.

The plates wen: then developed, in the .D4 direction (towards the left ofFigure 2.1),

again 10 the ed~ofthepWe. in 1.2 M UCl. O.S MTris-baseand 8.S Murea. pH 8.0. The
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Fig. 2.1 TLC plale markings and areas of removal in mullidimensional

chromalOCnlphy
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plates were twice rinsed in ddH~O and air dried.

Filter paper ....ic:ks were anached to the top oflhc plates prior to their final, overnight.

de...eIopmem.in 1.1M~~~. pH 6.0. intbe 05 direction (towards the tap ofFigure 2.1).

The wiele. and the area of attachment to the Tl.C plate were removed (cut along the line

marked OS·). and the residual plates rinsed with ddH10 air dried.

2.2.6.7 Staddard. blaak and sample midH aaalysd

'~OlJOwing the apyrase:bicine incubation. 970 ~I ddH10 was added to each of the

standards and blanks. Ten~orthese~werethen sponed ontO PEI-CeUulose plates.

The tubes which. had contained lhe test samples received 100 ~I ddH~O. and 10 JJ.L ofeach

of these residual solutions were spotted onto PEI-CeUulose plates (six sample residues per

plale) and the platts were devdopcd in 0.3 M ammonium sulphate.

The devdoped plalcs were dried and tbcn IabdJed with • Ouorcscem: marker. The

labelled TLC plates were exposed for 1U100000ography \ISing x-ray p1ucs at -70'C for one

hOUf. The x-ray 6lms were developed and the adenosine nucleotide standard radioactive

spots marl:cd on the Iilm. The areas in the sample blank \.anes with Rr values colTesponding

to the adenosine spots were also marked. The areas on the TLC plales which corresponded

to the marked. spots on the autoradiogram were excised and scintillation counted. The

relationship between standard nucleotide added and radioactivity counted was used to

establish the specific activity of the IabeI1ing reaction.
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2.2.6.8 Analy5ls of test samples

FoUowing the final chromatography step, the plates were labelled with a fluorescent

marker and placed in autoradiography cassettes with x-ray film for 16 hours at .700C.

The x-ray films were developed after exposure and any visible radioactive spots were

marked. In addition to the visible spots, a I cm~ ponion ofeach film was marked in an area

where no radioactivity was detected. This spot was used to calculate the background levels

ofradioaetivity per square centimetre ofTLC plate.

The areas on the TLC plates which COlTesponded to the marked spots on the film were

excised and weighed 10 detennine their area as compared to a standard sample The

radioactivity blanks as well as sample spots were then scintillation counted.

The radioactive counts detected in the test samples were converted to a measure of

the addueted nucleotides present using the previously established specific activity oflabelling.

This number was then expressed as a molar ratio of the total 3'-nucleotides present in the

sample. The means (+I- S.D.) oftriplieate samples were compared using a 2-way AJ.'4'OVA

test

2.2.7 Plasmid DNA mud dtavap "perillllnilS

The investigation of piasnUd DNA nick production was done according to the

methods outlined by Kukieika and Cederbaum (1994). with modificatioDS.



2.2.7.1 Preparation ofsoiutions

The solutions used in preparation of rat liver fractions and in plasmid nicking

incubations were prepared with deionized water (filtered through Chelex 100 resin) and

analytical grade reagents- so as to minimize the presence offree metal ions in the solutions.

2.2.7.2 Preparario. of rat liver fractions

Aroelor 12$4 pretreated and control rals were killed via cervical dislocation. The

outer skin and the muscle layers were cut to expose the internal organs and the ponal vein

was used to perfuse the livers with 0.9% KCI. FoUowing the perfusion. the livers were

excised. weighed, and combined with a volume equalling three times the liver weight ofsterile

50 mM KP buffer (pH 7.4). The livers were minced with clean scissors and the mixture

homogenized using a Polytron homogenizer. The resulting homogenate was centrifuged at

9000 J( gravity, the petiet cliscarded and the supernatant retained as the post.mitochondrial

fraction.

2.2.7oJ Generation of pBR312 plasaid

Ftfty ,uL Escherichia coli competent ceUs (DID« strain) was diluted with 450 ,ilL

0.1 M sterile caC~. One,us pBr322 plasmid DNA was combined with 50,uL ofme diluted
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£. coli cells, The mixture was kept on ice for 30 minutes and then heat shocked for 90

seconds at 42'C. One mL sterile LB broth was added to the plasmidlbaeteria mixture and the

reaction tube was incubated at 31'C for I hour. The resultant culture was centrifuged at

14,000 rpm for I minute to pellet the ceUs. the supernatant discarded., and the pellet spread

on an LSI ampicillin plate. which was incubated at 37'C for 16 hours.

Colony scrapings from the overnight plate were used to inoculate 15 mL sterile LB

broth (with ampicillin), and the cultures were grown at 3TC in a gyratory incubator for 24

hours The 15 mL cultures were used to inoc:uIate 500 mL sterile LBIAmp broth preparations.

which were also incubated at 31°C in a gyratory incubator for 24 hours.

The 500 mL cultures were centrifuged at 4500 rpm for 15 minutes [0 pellet the

transfonned cells. Each culture pellet was resuspended in 20 mL sterile GTE solution (SO

m.M:g1ucose, 25 mMTris, IOmM EDTA, pHS.O), containing lOO,uglmL RNase A, to which

40 mL sterile NaOH·SDS (0.2 N NaOH, 1% SOS) was added. This solution was gently

mixed and left on ice for 5 minutes. after which 30 mL sterile K.AcF (5 M potassium acetate,

6.7% ronnie acid) was added, the mixture swirled, and left on ice for a lUnher 10 minutes.

The resulting slurry was strained through 2 thicknesses ofcheesecloth into sterile centrifuge

rubes. The contents of each tube were combined with 0.6 x volume of isopropanol and

centrifuged at 10,000 lC g for 10 minutes. The resulting supernatant was discarded and the

pellets resuspended in4 mL sterile TE solution (10 mMTril, 1 mM EDTA. pH 8.0).

The TE solution was combined with 2 x volume of Tris-saturated phenol and

thoroughly mixed. The mixture was centrifuged for 5 minutes at 2500 rpm (3000 x g) in a
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benchtop centrifuge to separate the organic and aqueous phases., and the top aqueous layer

was pipened into a clean glass tube. The extraction procedure was repeated twice: once with

Tris-sarura!ed phenol and once with chloroform:isoamyl alcohol (24:1). The final aqueous

extract was combined with 7.5 M sterile ammonium acetate and incubated on ice for 15

minutes. The solution was centrifuged at 10,000 x g for 5 minutes and the pellet discarded

The supernatant was combined with 2 x volume of 100-10 ethanol and kept at ·20°C for 90

minutes. This suspension was centrifuged at 10,000)( gravity and the supernatant discarded.

The pellet was dried under N2 gas and resuspended in 0.5 mL TE buffer.

The DNA content and purity was checked by recording the absorbance of the solution

at 260 and 280 nm and cak:u1ating the AbS@260/AbS@280 ratio. The DNA was also run on

a 0.5% agarose gel to verifY both the absence oCRNA and the purity afme plasmid.

2.2.7.4 Incubation and aulysis .r plasmid DNA Itnod cleavage

The test compounds (dissolved in an organic solvent) were added to 1.5 mL plastic

tubes which were left at J7°C to cvapotat:e the sample to dryness. Sterile 50 mM KP buffer,

pH 7.4, was added to each Nbe in. quantity sufficicot to make the total reaction volume 50

;iL. 2.5.uL of 2.5.uM FeSO. (final concentration'" 0.125 .uM) was added to each reaction

tube.. foUowed by I .u8 ofpWmid.. 0 - 5 .uS postmitocl\ondrial fraction protein, and 5 .uL 10

mM NADPH (an saerile 50 mM KP buffer, pH 7.4) to start the reaction. Capped sample tubes

were incubated at 37'"C for I • 24 boors.
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Following the incubation, samples were removed from the incubator and briefly

centrifuged to remove condensation from the cap and sides afthe tube. S,uL of6 x ttaeking

dye was added to each tube, foUawe'd by 5 ,uL of a solution I mstmL in protease and RNase

T l . This sample was carefuUy mixed and incubated again at 37°C for a further 45 minutes.

The samples were t!len loaded onto a 0.5% agarose gel (in 0.5 x TBE buffer. with

ethidium bromide) with the incubation samples flanked on the gel, to the extreme right and

lcft, by a molecular weight marker ofHind DlIEcoRI digested 1 phage DNA The gels were

run at 20· 100 V for 4 to 16 hours. or sufficient time such that clear plasmid separation

became visible on the gel. Gels were viewed under u.v. light in a darkroom. and

photographed. The negative from the gel photograph was scanned using an LKB scanning

laser densitometer. to reveal the relative intensities of the plasmid fonns evident on the gel.

Samples were compared by relating the percentage of total plasmid DNA present in the

relaxed coil form.

2.2.7.5 Statistical Aaalysis olSta.aia. DeasitomdU Data

Statistical arWysis was performed. using the Sigma Plot computer program. The data

collected with the scanning laser densitometer were subjea.ed to a paired t-test Statistical

analysis. Sample means that: were not different at the level p < 0.05 were rejected as not

significantly different.
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CBAl'TER3

3. RESULTS

3.1 Nitroredue:tase a(twit)'

3.1.1 Crude 0" nlneu as .itroreductue .Mtntes

l-lltroreductase assays showed extremely limited enzyme activity with crude oil

extracts as substrates. The DMSO extract ofPrudhoe Bay crude oil exhibited no effect on

nitroreductase enzyme activity (Figure 3.1.1), as neither tested quantity ofextract, with either

NADH or ~ADPH as a cofactor, produced above control levels of nitroreduetion.

Alberta sweet mix crude oil and Hibernia crude oil extracts both generated less than

[ nmal/min niuoreductase activity, which were both minimally, ifat all, greater than DMSO

comrollevels (Figures 3.1.2 and 3.1.3).

Of the crude oils, the DMSO extract of Venezuelan crude oil exhibited the greatest

potency as anitroreductase substr11e(Figure l.l.4). With 15 ~I aCme oil extract and NADH

as the cofa.ctorin the reactionaMtte. a reaction rate oCO.937 nmollmin. was exhibited. This

was a 5 fold increase over the DMSO control reaction rate orO,188 nmollrnin.
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Fig.3.1.1 Nitrol"flluc:t&$t ac:tivity genenttel with DMSO eJ:tr.lc:t o(Prudhoe Bay

crude oil as enzyme substrate.

Fig. 3.1.2 Nitrortdactase activity generated wilb DMSO utraet or AJberta SWett

mix crude oil as eazyme substrate.

Cuvettescomainedatota!. volumeofJ mL in 50 mM KP buffer, pH 7.6, with

330 JiM succinoylated cytochrome c. Cuvcucs also contained 10,ul cytosol

(320 /.lg protein), either 0 (IO,uL DMSO). 5. or 10.uL oil extract, and 100

.uL of 10 mM NAOlU NADPH to start the reaction. Reactions were carried

out at 37°C. Chart recordings of reactions were monitored for it minimum of

5 minutes per assay.
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Fig. 3.1.3 Nitrortduetast actmty pnenled with DMSO utratt of Hibemia (rude

oil as enzyme substrate.

Fig. 3.1.4 Nitroreductase atti"ity generated witb DMSO tltrac:t or Veaerumn

crude oil U tllZ)'me substrate.

Cuvettes contained a total volume on mL in 50 mM I<P buffer, pH 7.6, with

330 ~M succinoylated cytochrome c. Cuvettes also contained to,ul cytosol

(J20,ug protein), either 0 (IO,uL DMSO). S, or 10,uL oiJ extract. and 100

.uL oflOmM NADHI NADPH to stan the reaction. Reactions were carried

out at 37°C. Chan recordings of reactions were monitored for a minimum of

5 minutes per assay.
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3.1.2 Crankcase oil utncu as .itroredlldaK substrates

The e.xtraCl ofcrankcasc: 00111 exhibited considerable potency as a nitroreducwe

substrate (Figure 3.2.1) and~ seemed to be no marked difference or vigble trend in terms

of the preference for either NADH or NADPH as the reaction co&ctor. The DMSO blank

for crankcase oil #1 ,gave O. 179 nmoVmin and 0.12 ( nmoUmin ofcytochrome lO reduction

with NADH and NAOPH as the respective cofactors. The lowest level of extract addition

to the reaction cuvettes (1/011 in 3 mL total volume) produced marked increases in the rate of

nitroreduction to l.7 nmollmin for the NAnH reaction and U8 for the NAOPH reaction.

The fates increased in a dose dependent manner to relative maximums of 4.96 nmollmin

(NADH) and 5.71 nmollmin (NADPH) in the presence of IS /011 crankcase oil elttT&Ct #1.

The DMSO C'XU'Ia: ofcrankcase 001#2 iDusttated similar proputies to those seen with

the first crankcase oil extrae:t. although the level ofenzyme activity produced by the second

e.'CttaCt was slightly diminished (Figure 3.2.2). As observed with extract iI, neither NAOH

nor NADPH was. visibly superior cofactor in generating nitroreduaion wtth extract 112 as

the substrate. The DMSO reaction blank.1eveI.s ofenzyme activity were identical to those

seen in the first set ofassays. One /011 oftbe second extract produced 1.14 nmollmin (NADH)

and 1.19 nmoVmin (NADPH). again a marked increase above controllevds. As before, the

rate of nitroreduction incra.sed in a dose dcpendertt fashion., reaching maximal activity levds

with the addition of 15 ~I of extract 1#2: 4.47 nmoVrnin (NADH) and 3.87 nmoVmin

(NAnPII).
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Fig. 3.2.1 Nitronduc:we activity Jeneraleel with DMSO nine. 01 Crukc:ue oil

#t 2S enzyme substrate.

Fig. 3.2.2 Nitrortduc:wf: activity centrateel with DMSO estnct or Crankcase oil

#2 as enzyme substrate.

(uvmes contained a lotal volume of] mL in 50 mM KP buffer, pH 7.6, with

330}.lM succinoylaled cytochrome c. Cuvenes also contained 10,uL cytosol

(320 J./g protein), either 0 (IO.uL DMSO), I. 2. 5, 10. or 15 j./L oil extract,

and 100 j./L of 10 mM NAOHI NAOPH 10 SIan the reaction. Reactions were

camed out al 37°C, Chart recordings of reactions wece monitored for a

minimum of 5 minutes per assay
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Nitroreduetase activity was also measured for both crankcase oil eltlracts while

varying the levels of cytosolic protein added and maintaining a constant level ofcrankcase oil

e)(l:filct (Figure 3.3.1 and 3.3.2). Both oil extracts behaved similarly as increases in protein

levels corresponded to increased rates of nitroreduction. As previously seen.. nitroreductase

activity was generated equally well with NAOH and NADPH as the enzyme cofactor.

The cytosol deficient control reactions exhibited very [ow levels of activity, with

values less than 0.140 nmoVmin, while maximal levels ofnitroreduetase activity were seen in

the presence of 480 .uS of rat liver cytosol. For extracts 1# I and #2 the relative maximum

values were 5.33 nmoVmin (NADH), BO nmoVmin (NADPH) and 5.36 nmoVmin (i'JADH),

4.82 nrnoVmin (NADPH), respectively.



49

Fig. 3.3.1 Response of Qitrortdlldase activity (generated with DMSO estract of

Crankcase oil In IS eM)'..e substrate) to uryinl levels 0( tytosolic

protein.

Fig. 3.3.2 Response or nirrortdllCtase activity (~neraled with DMSO tItnet or

Crankcase oil #2 IS emyme substrate) to urying levels of cytosolic

protein.

Cuvenescontaineda total 'iOlwneofJ mL in SO mM KP buffer, pH 7.6, with

330 .uM succinoylated cytochrome c. Cuvettes also contained 10 .uL oil

extract and either 0, 1,2,5, 10. or IS.uL cytosol (0, 32, 64, 160, 320, or 480

.ug protein, respectivdy). and 100.uL of 10 mM NADHI NADPH to stan the

reaction. Reactions were carried out al37°C. Chart rccordingsofreactions

were monitored for a minimum of 5 minutes per assay.
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The nitroreduaase activities generated by the DMSO extnlCt ofGulf Star stack SOOt

are illustrated in Figure 3.4.1. lncreasi.ng levels of tile extract produced rtitrorcductase

activity in a dose-dependent manner with I 111 ofextract generating a level. of activity which

is over 2 times greater than contrallevels. both with NADH and NADPH as the cofactor.

10 ~I ofthe extract produced the highest recorded activities at 1.87 nmoVmin (NADH) and

1.92 nmollmin (NADPH). There was no preference for NADH or NADPH as the electron

donor for the reaction.

The A.T. Cameron SlIde. sooc: earaa etbibited simiiar enzyrnIl:ic responses to the first

extract (Figure 3.4.2). One /oL! ofthc AT. Cameron extract, with either NADH or NADPH

as the cofactor, produced nitroreduction at rates triple that ofcontrols. The tughest levels of

activity were seen with 2 ,Ill of the exttICt: 1.66 nmoVrniD (NADH); 2.18 nmoUmin

(NADPH). The industrial staeksoot extract showed little, ifany, preference for NADH or

NADPH as the electron source.
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Fig. 3"'.1 NitrorechlttaKae:tivity ..cnted with DMSO olnd .rGalfStarstack

SOOI as euyme s.bstrate.

Fig. 304.2 NitrortduetaK activity Iflle....ect willi DMSO otract 01 A.T. C••trOII

stack soot as tuyme ,.bslnlte.

Cuvettescomainedarotal volumeofJ mL in SO mM KP buffer, pH 7.6, with

330,uM succinoyiated cytochrome c. Cuvettes also contained 10.uL cytosol

(320 .ugprotein). eilherO (to,u:L DMSO), 1.2. S. 10 or 15,lolL soot extract,

and IOO,ul of 10 mM NADHI NADPH to start the reaction. Reaction were

carried OUt at )1·C. Chan recordings of reactions were monitored for a

minimum ofS minutes per assay.
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3.2.1 ~(utagenicity of crude oil utncts

~either of the four aude oil extracts tested produced substantial amounts of

revenants. For the Prudhoe Bay (Figures 3.5.1; 3.5.2; 3.5.3), Hibernia (Figures 3.6.1; 3.6.2;

3.6.3), Alberta SWeet mix (Figures 3.7.1; 3.7.2; 3.7.3) and Venezuelan (Figures 3.8.1; 3.8.2;

3.8.3) crude oil e:<tractS. there was a prevailing panem. The TA98 and TA98~"R strains

showed minimal increases beyond control rates of reversion, with no gowth plate displaying

greater than 100 colonies. Incubations with the YGI024 strain aaually produced less

revenants than those seen in experimenta! controls.

3.2.1 ~luUl~akity otsooc ottaets

The DMSO extract (S~) of Gulf Star staCk soot proved ~Ie of~

revertants in Salmotwllll typIIi1JfllTfWfl '*=teria (figure ],9). The TA98NR strain of tbl:

bacteria. a nitroreduetase deficient strain of the parent TA98 produced the least number of

revertants of the three strains tested. The TA98NR sninalooe produced 30 revenants/platt,

while the addition of 59 i:Dcreased the mutation rate to 192~e. Tbe parent

strain, TA9S, produced substamiaUy rnor-e mutations: 496 reverwxslpIalc. Ualike the



55

Fig. 3.5.1 Salmonella typhilflllri"m TA9SNR renrtanlS produc:ed by incubation

with Prudhoe Bay crude oil DMSO tJ:tnct

Fig. 3.5.2 Salmotlena typlrillflUiMm TA9S renrtaab produced by incubation _ilb

PrudhOt: Bay crude oil DMSO el.'rut

Fig. 3.5.3 Sa/monella typhilflllrillm YGIOZ4 revertants produced by incubation

with Prudhoe Bay crude oil DMSO estnct

Samples were prepared in sterile culture tubes. 0-1 S~L of the test compound

was placed in each tube, foUowed by 2 mL liquid (approximately 4s'C) top

agar. 100,uL ofan active culture aCme lester strain was added to each rube.

Every reaction condition was prepared in duplica[e as well as in the presence

and absence of a rat liver S9-NADPH regenerating sySlem. Plates were

incubated at H'C for 48 hours priono counting the colonies.
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Fig. 3.6.1 Salmonella typhi"",ri"". TA9INR rn-trt••ts prodUM by inc.bario.

with Hibtnia cnHlf: oil DMSO btnct

Fig. 3.6.2 Salmonela typb....... TA9I rB'mulS IM"lMhKed by ineubatio. witll

Hibernia crude oil DMSO estnld

Fig. 3.6.3 Sa/mollella typlci"",riJllII YGI02" rntrtlats produced by iauHlio.

with Bibft"oia c.-.de oil DMSO tnrad

Samples were~ in 5lCriJe 0JItlft rubes. 0..1 S#L afme test compound

was placed in each tube, roUowed by 2 mL liquid (approximately 4s'C) top

agar. 100 ~L ofan active culture afme tester strain was added to each tube.

Every reaction condition was prepared in duplicue as weU as in the presence

and absence of a rat liver S9·NADPH regcneruing system. Plues WU"e

incubated at H'C for 48 hours prior to counting the colonies.
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Fig.3.7.l S4I"",MlJiJ typlU"",riM". TA9INR rnn1aab prodllml by ilK.bat'"

with Alberta SWftt _it. cnlIde oil DMSO u.raC1

Fig. 3.7.2 SaintOIIda typllimluillm TA9Irner1.ats produc:ed by incub.ttion with

Albert. sweet mu cruck oil DMSO utnd

Fig. 3.7.3 $41".olleO" typllilrul",,,,. YGI014 rncruats produced by iaubatiH

"i.1II Alberta swett .i1 audt oil DMSO urne!

Samples were prepared in SlCrilecukure tubes. 0-15 J,olL of the test compound

was placed in each tube. followed by 2 mL liquid (approlcimately 4S"C) top

agar. 100 J.l.L oran active aUture of the tester strain was added to each tube.

Every reaction condition was prepared in duplicate as weD as in the presence

and absence of a rat liver S9-NADPH regenerating system. Plates were

incubated at 31'C for 48 boon prior to counting the colonies.
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Fig. 3.8.1 Salmollella typlei"",ri"", TA9INR revertants produced by incubation

with Venezuelan crude oll DMSO ulract

Fig. 3.8.2 SaimotleOatyphi"",,;,,m TA9lI revertants produced by mcubalioa "i••

Venezuelan crude oil DMSO nln.e'

Fig. 3.8.3 SalmoNella typlli_riIl", YGI024 revertaau produced by iDCUbalio.

with Venezuelan crude oil DMSO urnc.

Samples were prepared in steriJecuiturt: tubes. 0-15,ul afme test compound

was placed in each tube. followed by 2 mL liquid (approximately 45 'C) top

agar. 100,uL ofan active culture afme tester strain was added [0 each tube.

Every reaction condition was prepared in duplicate as well as in the presence

and absence of a rat liver S9-NADPH regenerating system. Plates were

incubated at 37'C for 48 hours prior to counting the colonies.
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Fig. 3.9 Sa/mondla typlli"..ri"". TA9INR. TA9S, .ad YGt024 revertants

produced by incubatio. wit" Gulf' Star stack soot DMSO elI.tnd

Samples were prepared in sterile culture tubes. 0-15 ,Ill of the test compound

was placed in each tube. foUowed by 2 mL liquid (approximately 4S'C) top

agar. tOO~ofanactiveculn1teofthe tester strain wasaddcd to each tube.

Every reaction condition was prepared in duplicate as well as in the presence

and absence of a rat liver S9-NADPH regenerating system. Plates were

incubated at 37 'c for 48 hours plior to counting the colonies.
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TA98NR strain. the TA98 strain exhibited less mutations in the presence of rat liver 59, at

a rate ofDO revenants/plate.

By far the highest level of mutations were seen with the YG1024 strain. Again the

mutation rate was higher in the absence 0£59. Without the mammalian enzyme supplement.

1820 revertants/plate were generated. while the presence 0(59 dropped the mutation level

to 920 revertants/platt.

The A.T. Cameron Slack soot extract gentrated very high ou.mbcrs of revenants

(Figures 3.10.1; 3.10.2; 3.10.3). With the bacteria! strain TA98NR. minimal mutations

occurred in the absence of rat liver 59. In the presence: of 59, these levels rose to 192

revenants/plate and 295 revenanulpbJ:e., with:5 and 15 ~I ofextraet, respectively. The TA98

strain proved much more susceptible to muwion as 15 ~I extract produced 1443

revenants/plate. The presence of 59 had littfe effect on this lotal, as 1306 revertants/plate

were observed.

By far the highest reversion levefs were seen with the YGI024 wain. Five JlI aCme

extract increased the rv.unber ofcolonies from a COft~ level of2S revaunulpble to 2390

revertants/plate. The addition of 15 III extract further iDc::reased the revatant total to 6OS2

per plate. As with the Gulf Star extm:t. the addition 0(59 diminished the tnlJtagalic effects

of extract #2. Five ~I and IS ~I of the extract produced 893 revertants/plue and 3767

revertants/plate, respcctivdy; a considerable reduction in mutagaleSis.
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Fig. 3.10.1 Salmonella typhiMMriM", TA9INR rtVertuts produced by incubacion

with A.T. Camero. stack 5001 DMSO utnct

Fig. ].10.2 SaJmotlelIatyplUlftlUiMtn TA98 revertants produced by incubation with

A.T. Cameron stack soot DMSO uncI

Fig. J.10.3 SalmoNella typhilfUlril".. YGI014 reverta_ts produced by incubaoo..

with A.T. Cameroll stack soot DMSO extl'Kt

Samples were prepared in Sl:criJe a.LIture rubes. 0.15 ~L afthe test compound

was placed in each tube. foUowed by 2 mL liquid (approximately 45 'C) top

agar. lOO,uL cran acriveculture afthe tester strain was added to each rube.

Every reaction condition was prepared in duplicate as well as in the presence

and absence of a rat liver S9-NADPH regenerating system. Plates were

incubated at H'C for 48 hours prior to counting the colonies.
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3.2.3 :\1utagenicity of c:rankcuc oil tstracts

Tests of the DMSO extract of crankcase oil #1 with the bacterial strain TA98NR

indicated a limited mutagenic capability under the reaction conditions (Figure 3.11). [n the

absence of rat liver 59, the maximal level afmutation was 44 revenants/plate (with IS,u.J

extract) as compared to a control (no addition) level onl revertants/plate. The presence of

the rat liver 59 preparation increased the mutation rate to a maximum of295 revenants/plate

with the addition of 15,1.11 aCme crankcase oil extract. [n the presence of the 59 preparation.

there was also a dose-dependent increase in the rate of mutation as more extract was added

to the reaction.

The 1A98 bacteria (Figure 3. I2) produced elevated levels of mutations relative to the

TA98}.l"R strain. .-\5 was the case with the nitroreduetase deficient strain, there was a

negligIble mutation rate in the absence oflhc $9 preparation. IS,u.1 ofextraet only increased

the level from a control vaNe 000 revertants/plate to 98 revertants/plate. In the presence of

the $9 preparation, the mutation frequency increased substantially, in a dose dependent

fashion. to the maximum level. of888 revenants/plate with the addition of I5 ~I oil extract.

The nighest levels of mutation W~ seen in the YGI024 strain (Figure 3.13). All

tested doses of the extract, in the absence of the 59, produced at least ten times the 21

revertants/plate seen in the control reaction. The maximal value observed was 587

revertants/plate, wbm 5 ~I extract were administered.
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Fig. J.lt Salmonella typlri"",,"u,, TA9SNR revenants produced by incubarioa

with crankcaK oil Nl DMSO txtnct

Samples were prepared in sterile culture tubes. Q..l 5 .uL of the test compound

was placed in each tube, followed by 2 mL liquid (approximately 4S'C) top

agar. 100 J.lL ofan active ailiure of the tester strain was added to each lube.

Every reaction condition was prepared in duplicate as well as in the presence

and absence of a rat liver S9·NADPH regenerating system. Plates were

incubated at 31'C for 48 hours prior to counting the colonies.
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Fig.J.12 SlliIf'lON!la 'YPltillfllriM," TAM r'ft"trIaJIts prod.«d by ilKabariotl ",it"

crankcase oillifl DMSO utrad

Samples were prepmd in sterile wttuR tubes. o-IS~L oflhe test compound

was placed in each tube, foUowed by 2 mL liquid (approximately 4s'C) tOP

agar. 100 J.Ll. ofan ICtiveculture of tile tester strain was added to each tube.

Every reaction condition was prepared in duplicate as well as in the presence

and absence of a rat liver $9-NAOPH regenerating system. Plates were

incubated at 31'C for 48 hours prior 10 counting the colonies.
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Fig. l.U Sabno,.d1. ryplUMMriM". YGt024 mrnuau prodttad by iacubatioa

witll craakcaH oilllll DMSO utnd:

Samples werep~inSl:crieaJlturetubes. 0-15,/.o1L ofme rest compound

was placed in uch rube. fodowed by 2 mL liquid (apprOlcimately 4S'C) top

agar. 100 Jd. ofan .etive culture of the lester strain was added to each tube.

Every reaction condition wu prepared in duplicate as weU as in the presence

and absence of a rat liver S9-NADPH regenerating system. Plates were

incubated II 37'C for 48 hours prior to counting the colonies.
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When the 59~ was present., the results wa-c druticaUy different. ~Iutation

frequency increased from & control value of 130 revertants/plate to a owtimum of 3250

revertants/pluc, with IS #<II oCme oil extract. This increase occurred in a dose dependent

fashion over the range oftreatrnenu.

3.3.1 In vivo c.n.akc.ase oil u ....re

The male Sprague-Dawley rats that had been orally adminiSiered a DMSO extract of

crankcase oil exhibited detectable levels orONA adducts in the liver. kidney, heart. stomach

and brain. However, control animals exhibited similar levels of adducts in the five tissues

analyzed. The DNA adduct values for all of these assays are shown in Table 3.1. Samples of

autoradiography films Cor treated tiYer and control liver are shown in Fisurcs J. 14 and 3.15

respectively.

There was no sigrJific:ant diframce between DNA.:Iduet \evds ofcontrol and treated

rats for any of the organs assayed. There also were 00 adduct spou which appeared

exclusively or in distinctly elevated levels, in either set of animals.

The general trend in adduct Icvds was liver> stomach> kidney:> bc:ut > brain,



Table 3.1

DNA adduct ~ds .lIft'Ited by cn.kcut ... admillinratiolll

Total DNA Adduct levds (nmoVmol normal nucleotide)

RAT' Trcummt LIVER KIDNEY HEART STOMACH BRAIN

T 132.5 94.6 23.1 266.9 22.2

196.5 168.3 29.4 15.3 27.5

T 211.8 37.0 24.6 136.6 25.2

T 160.2 50.9 199.2 132.5 32.5

U 144.4 59.3 21.6 154.8 29.0

U 163.0 18.0 20.1 63.8 30.2

U 212.5 124.7 42.8 131.4 28.0

T denotes animals thai received crankcase oil dosage.

U denotes control animal!.

76



77

Fig. 3.14 Adduct pror. orcnalu:ae oi e:ltnd tructel rat liven

Contact print of 32P-posdabeIJing autoradiogram for two crankcase oil

treated rat liven. Rats were orally administered & DMSO extract ofcrankcase

oil f:IIerY otha' day for J 1 days. (soIIlcd, enriched and radiolabdlcd DNA was

subjected to multidi.mensional thin layer chromatography and the resulting

TLC plate developed in autoradiography. Distinct regions ofradioaetivity are

labelled here and were analyzed separately.
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Fig. J.IS Adduct prom~of COIItroi rat linn

Contact print of 32P-postlabeUing autoradiogram for rwo control rat livers.

Isolated, enriched and radic:lbbeUed DNA was subjected to multi~ona1

thin layer chrOmal~by and the resulting nc plale developed in

autoradiography. Distina regions of radioactivity are Iabdled here and were

analyzed separately.
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although individual variability was quite high, and only one of the tested animals fit the

general uend exacdy. The extreme values seeu in the various organ sets did not appear in the

same animaJ(s).

3... pBRJ22 plulDid aickial sn.dia

3....1 DNA straDd breaks witlll-aitl"Opfftae uponrt

Four separate 20 hour reactions. each done in triplicate. were used 10 test the DNA

strand breakage pocential of I-NP. The agarosc: gd is pictured in Figure 3.16.1. Percentage

of relaxed coil fonnation for each type ofreactiOD is represaJted in Figure 3.16.2. The first

reaction combination was the pBR322 plasmid DNA with the reaction buffer only (control

sample). This combination resulted in an avcrageof22.3 :0.51% of toW DNA oc:curring

in the relaxed coil form. When the plasmid was incubated with the buffer and S ~g I-NP,

24.7 ± 1.7?-1o of the pBR.122 DNAappeIftd in the rebxc:d coil form. The dif&rcnce between

the control SIIq)Ies and tbecorttrol + l-nitropyrenc:sampk::s was DOt sw:isticalty significant.

The complete reaction !»"SUm (pamWi, buffe-, 11l1iva- 59, NADPH). in the absence of INP,

resulted in the conversion of 51.1 ± 0.60% of the pBR322 plumid to the relaxed coil

configuration. Thebi~ rll:e ofconvcrsioo was seeD with the tOmpiete reaction system



82

fig. 3.16.1 Agarose gel orpBRJ12 plas_ wit. upos_re to l-aitropyme

The test compounds were added:o 1.5 mL plastic tubes and cVilporatcd to

dryness. The reactions were canied out in sterile SO mM KP butTer, pH 7.4,

with a [otal volume of SO,lolL. Each reaction tube contained FeSO I (0.125

,104M), I ~g of plasmid, and O-S.£l8 postnUlochondrial &action protein. F"IVC

,l.4L 10 mM NADPH was used to swt each reaction. Samples were incubated

at J7°C for I • 24 hours. Followiag the intubation. S,l.4L of6 :< tneking dye

was added to each tube, foUowut by 5 ,uL ora soIutioa I ms'mL in protease

and RNase T l . These samples were incubated at J7°C for a. further 4$

minutes, and then loaded onto a0.5% agarose gel. The gels were run at 20·

lOOV for 4 to 16 hours. Gels were viewed under U.v. light, in a darkroom.

and photographed. Lanes 1. 2 and 3 art control samples.l.ane$ 4, 5 and 6 an:

control samples with l-niuopyn:oe added. Lanes 7, 8 and 9 are complete

reaction systems in the absence: of l-nitropyrene. Lanes 10, 11 and 12 are

complete reaction systems in the pn::sence of l-nitropyrmc.
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Fig. 3.16.2 Formation orrdntd (oil pBRJ22 plasmid witb 6poMrt

to I-nitropyrtne

The test compounds were added to LS mL plastic tubes and evaporated to

dryness. The reactions were carried OUt in sterile 50 mM KP buffer, pH 7.4,

with a total volume of 50 .uL. Each reaction tube contained FeSO~ (0.125

.uM). I .ug ofplasmid and ~S 11-8 postmitochondrial fraction protein. Five.uL

j 0 mM NADPH was used to start each reaction. Samples were incubated at

j7°C for I - 24 hours. FoUowmg the incubation, SJ,iL of6 x tracking dye was

added to each tube, foUowed by 5 .uL ofa solution 1 mglmL in protease and

RNase TI' These samples were incubated at 31°C for a further 4S minutes.

and then loaded onto a 0.5% agarose get The gcIs were run at 20· lOOV for

4 to 16 hours. Gels were viewed under u.v. light, in a darkroom, and

photographed. The negatives were scanned using an UCB scanning laser

densitometer to reveal the relative intensities of tile plasmid forms evident on

the geL Samples were compared by rdating the percenta8e of total plasmid

DNA present in the relaxed coil fonn (0"'3; +/- S.D.; P < O.OS).
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plus 5:J.g t-NP. with 83.9::: 3.96% of the plasmid DNA present in the modified stale. The

complete reaction system plus I-NP coaversion was signific:andy different from the levels

e..dtibiled in each afme three other sets ofconditions (p<O.OOS).

3.4.2 DNA stnad bruks "ith c:raakcue Gil txtnet elpot.re

Over the course ofa 20 hour inaJbarion (at 37°C). the effects of crankcase oil extract

on pBRJ22 DNA were assayed (agarose gel pictured in Figure 3.11.1; results of scanning

data ilIustnned in Figure 3.17.2). with each set of reaction conditions performed in triplicate.

The plasmid. when iJK:uba:l:ed withbuffer only, exhibited aNy 24.7 ± 1.34 % oftOt:al DNA in

the relaxed coil form. When the same reaction was perfonned in the presence ofcnnkcase

oil e:<traet, relaxed coil pIasmjd accounted for 37 ± 7.62 % of the (IX&! DNA. The

combinarion of plasmid.. 0.25,uM Fc1-, S.uS proteinud I mM NADPH(complete system)

resulted in 35.8 ± 1.65 % ofroW DNA appearing as rdIxed cOO. The highest percentage was

seen 'Nith the compler.e system plus crankcase oil extract, with 1ft average of6L7± 3.93 %

conversion. The complete system + aaDkcase oil~ns generued an amount ofrefaxecl

coil plasmid that was ~.listical1y significant from the other three sets of experimental

conditions (p < 0.02).
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Fig. 3.•7.1 AgaroH: &d .r pBRlU plasmid witb upoMft to cnDkcaH oil

The test compounds were added to 1.5 mL pW:tic tubes and evaporated to

dryness. The reactions were arried out in stmlc SO mM KP buffer, pH 7.4.

with a lotal volume of SO~. Each reaction tube contained FeSO. (0.125

,uM). I ~g ofplasmid and o.S.uS posanitocbondrial hction protein. Five,uL

10 mM NADPH was used to start each reaction. Samples were incubated at

HOC for I - 24 hours. Following the incubation. Sj,.I:L of6 x tracking dye was

added to each tube, followed by 5 .uL ofa soIutiQn I m!VmL in protease and

RNase Tt " These samples were incubated 1137·C for a further 45 minutes.,

and then loaded onto a 0.5% agarose gel The gcfs were Nn at 20 - IOOV for

4 to 16 hours. Gels were "iewed, under u.v. light. in a darkroom, and

photographed. Lanes I, 2 and 3 are control samples. Lanes 4, 5 and 6 are

control samples with crankcase 011 added. Lanes 7, 8 aad 9 are complete

reaction systems in the absence of crankcase oil. Lanes la, 11 and 12 are

complete reaction systems in the presence ofancue oil.
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Fig. 3.17.2 Fonnatioll or mufti coil pBRJZZ plasmid willi: nposart

to crankuse oil utrut

The test compounds were added to 1.5 mL plastic tubes and evaporated to

dryness. The reactions were carried out in sterile 50 mM KP buffer, pH 7.4,

with a total volume of 50,uL. Each reaaion tube contained FeSO. (0.125

,uM), 1,ugofplasmid and 0-5 JJ8 posunitochondrial fraction protein. Five,uL

10 mM NADPH was used 10 start each reaction. Samples 'Nere incubated at

37GC for I ·24 houn. FoUowingthe incubation, 5.uL of6 )( tracking dye was

added to each tube, followed by 5 ,uL ofa solution I mgfmL in protease and

Rt"lase T1• These samples were incubated at 37°C for a funhcr 45 minutes,

and then loaded onto aO.S% aprosegel. ThegeiSweR run at 20-IOOYfor

4 to 16 hours. Gels were viewed under u. v. light, in a darkroom, and

photographed. The negatives were scanned using an LKB scanning laser

densitometer to revaI the mative intensities of the plasmid ronns evident on

the gel. Samples were compared by rdating the percentage aftew plasmid

DNA present in the rdaxed coil form (0 - 3; +/. S.D.; P < 0.05).
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3....2.1 DNA stnod breaks ",idl C'l'ukcue 011 ••4 1-.itropytUf: tspesurt

Crankcase oil earaa: wu also incubated with pBR322 plasmid DNA in the prc:sencc

of I-NP (agarose gel shown in Figure 3.18.1; results ofscanning data illustnted in Figure

3.18.2). The reaction control samples (contained neither of I-NP aDd crankcase oil extract)

resulted in 41.3 ± 2.29 % oCthe DNAappcaring in the relaxed coil ronn. When crankcase

oil or J-NP were added, the amount ofONA converted rose to 63.4 ± 2.22 % (p" 0.02) and

72.3 :i:: 0.38 % (p "" 0.003). The totals for the crankcase oil reaction and the I-NP reaction

were significantly different (p - 0.02). When the I-NP and the crankcase oil were added in

combination the conversion level was 70.6 ± 1.71 %. This result was significantJy different

from the reaction control (p-O.OO6) and the ruction with crankcase oil aIooe (p-O.OO7).

There was no significant difference between the I-NP reaction and the I-NP/ce oil reaction.

Plasatid DNA (pBRJ22) was O1cuboled with ennkou< oil ond the hydro><y! rodical

scavenger DMSO (agarose gel shown in Figure 3.19.1; results ofscaMing data illusuued in

Figure 3.19.2 ). The first set of reaction tubes coutaincd plasmid. buffer and crankcase oil

condensate. Under these tonditions, 4$.9:1::2.50% oftbe plasmid appeared in the relaxed coil

form. When the plasmid was iDcubated unda" reaction cootrOl eonditioos. the relaxed coil
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Fig. J.18.1 Alaro~ pi of pBRJ21 plasaid wiu. npos.rt 10 l-ailrOpyrtM a.d

craakQse oil "tract

The test compounds were added to I.S mL pl&stic tubes aDd evaporated to

dryness. The reactions were carried OUt in sterile SO mM ICP buffer, pH 7.4.

with a [OW volume of SO IJL. Each reaction tube contained FeSOt (0.125

.uM), IIJ8 ofplasmid and O-S ,uS postmitochondrial fraction protein. Five J,lL

10 mM NADPH was used to stan each reaction. Samples were incubated al

3rC for I • 241louB. Following the incubation, 5/olL 0(6 x tracking dye was

added 10 each tube., foUowed by S J,lL ofa solution I mglmL in protease and

RJ.'lase T\_ These samples were incubated at 31·C for a further 45 minutes.

andthmloldedOOO)aO.S%agarosegel. ThegdJwcrenmu 2O-100Vfor

4 to 16 bours. Ods wt:re viewed under U.Y. light, in '" darlcroom, and

photographed. Lanes I, 2 and 3 are control samples in the presence of

aankcase oil. Lanes 4, 5 and 6 are complete reaction systems ill the preseoce

of crankcase oil. Lanes 7, 8 and 9 are complete reaction sysaems in the

prc:sc:nceofl~. Lanes 10, 11 md i2are completcreaction systems

in the presence ofboth cnnkcase oil and l-nitropyrtne.
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Fig. 3.18.2 Fo....hoD oCreiaud coil pBR322 plasmid wid! upos.,.e

to cn.kcue oil enract

The test compounds were added to 1.5 m.L plastic rubes and evaporated to

dryness. The reactions were carried out in sterile SO mM KP buffer, pH 7.4,

with a total volume of SO ,£oiL. Each reaction tube contained FcSO~ (0.125

,£,1M), 1 ,ug of plasmid and 0-5.u8 postmitochorxfrialliaction protein. Five.uL

\0 mM NADPH was used to start each reac:rion. Samplcs were incubated at

3rc for I • 24 howl. FolJowing the incubation., S.uL of6 x tracking dye was

added [0 each tube, foUowed by 5 .uL ofa solution 1 mglmL in protease and

Ri'l'ase T,. These samples were incubated at 37-e for a fun.ber 4S minutes.

and lhen loaded orao a 0.5% aprosegc:1. ThegefswcrelUllar: 20-IOOVfor

4 to 16 hours. Gels were viewed under u..v. light, in a darkroom., and

photographed. The rJegarives were scanned using an LKB scanning laser

densitometer to~ the reImve intensities ofthe plasmid forms evident on

the gel. S&mpla ..... """J>U'dbyrdaiingthe_OfIOWpiaSllUd

DNA present in the relaxed coil funn (n "" J; +/- S.D.; p < 0.05).
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Fig. 3.19.1 Agarose cd orpBRJ22 plasmid widl "poturt 10 cruktttt oil umet

and DMSO.

The test compounds were added to 1.5 mL plastic tubes and evaporated to

drync:ss. The reactions were carried out in sterile SO mM KP buffer. pH 7.4,

with a tota.! volume of 50 ~L. Each reaction tube contained FeSO. (0.125

.uM), 1 .ug of plasmid and 0.5.ug postnitocbondrial &action protein. Five.uL

10 mM NADPH was used to stan the reaction. Samples were incubated at

37°C for I ·24 houn. Following the incubation., 5/olL of6 x tracking dye was

added to each tube, fojlowed by 5 .uL ofa solution I rngImL in protease and

RNase Tt, These samples were incubated at J7°C for a further 45 minutes..

and then Ioadecl. onto. 0.5% agarose gel. The scIs weft; run at 20· IOOV for

4 to 16 hours. Gels were viewed under u.v. light. in • darkroom. and

photographed. Lanes I. 2 and 3 are control samples in the presenc;:e of

crankcase oil Lmes 4, 5 and 6 are complete reaction systemS in the absence

of crankcase oil. Lanes 7. 8 and 9 are complete reaction systems in the

presenceof~oll.Lmes 10,11 and 12arecompletc reactionsystert\S

in the presence ofcrankcase oil and DMSO.
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Fig. 3.19.2 Fonnation orrelaud (oil pBRJ22 pWmid witb esposun to cnakcase

oil CItract and DMSO

The test compounds were added to \.5 mL plastic tubes and evaporated to

dryness. The reactiollS were carried out in sterile So mM KP buffer. pH 7.4,

with a total volume of 50 ,uL. Each reaction tube contained FeSO~ (0.125

~M), 1~g ofplasmid and 0.5.ug postmitocbondrial fraction protein. Five JoLL

10 mM NADPH was used to start the reaction. Samples were incubated at

37°C for 1- 24 hours. Following the incubation, 5,uL of6 x: tracking dye was

added to each tube, followed by 5 ,uL ofa solution I mgtmL in protease and

RNase TI" These samples were incubated at HOC for a further 45 minutes.

and then loaded onto a 0.5% agarose gd. The gels were Nn at 20 - IOOV for

4 to 16 hours. Gels were vlewed under u. v. light, in a darkroom. and

photographed. The negatives were scanned using an LKB scanning laser

densitometer to reveal the relative imCtlSities afthe plasmid funns evident on

the gel. Samples were compared by relating the percentage of total plasmid

DNA present in the relaxed coil fonn (n ""]; +/- S.D.; p <: 0.05)
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band accounted for 49.1 ± 1.56"'. aCme detected plasmid. This total was oot significandy

different from that seen from the plasmid, buffer and aWcase oil inaJbabons. When

crankcase 011 was added to the reaction corrtrol mixture., relaxed coil plasmid totals rose to

66.1 ± 3.30"10 aCme total(p< 0.02). When this reaction was repeated in the presence of

DMSO. the perc:cngcoftocalpIasmid~as relaxed coil shrunk to 31.6 ± 1.04o/.(p<

0.02).
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CIIAP1'ER4

•• DISCUSSION

4.1 NicronductaH: activity Itudta

4.1.1 Crude Oil studia

The four aude oil extratU, which were &om ec0ןסgicaiiy diverse Ioc:ations, all proved

to be poor nitroreduc:t.as substrates in vilro. Neither extract could produce as much IS one

sixth of the activity seen in crankcase oil extract assays.

Since little, ifany, nitroreductase activity can be gmeraled with crude oil extractS. it

follows logically that the more potent substrates found in partially~ed oils are not

naturally occurring. but in fact are the result of their mechanical or industrial use. The

altenwe expIanatioo is that nitroreduCla5e iDhibiting compounds are present in the etude oil

extracts. but are DOt present in the crankcase oil exuacu. However. me faa that reported

levels ofnitro-PAH ate lighat in the residue oforpnie lIIIIerW combustion (Newton et aI.,

1982; Jooeser.al., 1993; Fellanetal.; 1994Khesinaetal.• I994;and, MoUer, 1994). would

suggest that this is not the case.. While inhibitory compounds might play a role in the low

levels of nitroreductioo activity gcuerated with crude oil extraCtS as cozyme substrates, the

fact remair:.s that crude otis have not been "burned'"' to the poim: ofg;ao6nt or diesd fuel.
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e."<haust (the residue ofwhich is collected in the cra.nlccase oil ofautomobiles). Therefore. the

crankcase oils are richer in nitro-PAH than the crude oils. and as a result the enzyme activity

levels are IUgher with crankcase oil extracts as the substrate.

4.1.2 IndllStriaJ Stac:k Soot Stttdiet

The tested industrial stack 500t extracts exhibited considerably more potency (than

crude oil extracts) as mammalian nitroreductase substrates. This fact is certainly in keeping

with the hypothe$is that combustion is the root cause aftbe formation. from hydrocatbons.,

of nitro-PAH. Both extBCt5 seemed to reach a thresbold where enzyme activity wu not

enhanced by the addition of more submate. This stAle was reached much earlier for extJ1ICI

#2, as the maximal activity was achieved with one fifth the amount required of the first

elCtract. Because these extracts were both incredibly com~ mixtures.. these observation

could be due to any ofa ruIixr offaaors. Sioce CXD¥t In produced rrwdmaI enzyme r.I1es

at a lower concentRtion, it could simpiy have a higher concentration ofsuitable subsrrates.

Similarly, any nitroredue:we-iniibnOf)' compouods prcsem in these extracts could be more

concentrated in extract #1. The exiSlcnce cran apparent ICtivtty threshold, wh.icb was not

evident at much higher activity levels with the crankcase oil exuacu. could imply the laner.

While this would seem to best explain the observed results., it does DOt eliminate the

possibility that the mechanics of l1:troreductase varies COft5idenbIy between the subsunes
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present in the soot extracts and the oil extracts.

4.1.3 Crankase Oil Studies

The DMSO ettraets ofcrankcase oil produced nitroreduetase activity levels of up to

3 times those seen with the soot extracts. While., as before. bigher activity levels might be

indicative of either bigber Ievds ofsubstme Of lower levels OfintubitOB (or a combination

of the rwo).lhe more IikdyccpllnaOon would seem to be tbe former. When gasoline or diesel

fuel is burned in an automobile engine, the residual compounds can collect in the motor oil.

As such, over time. the motor oil becomes very rich in combustion by-products, including

nitrated polyaromatic hydrocarbons. Theref'ore, it would foUow that extracts of such materials

would prove to be ecceUent nitroreduaase subslrates. In any event., the potency ofcrankcase

oil extraelS to induce the fonnItion of nitroreduction products would tend to implicate this

mixture as being J)O(emia1Jy more toxic than the other mixtu.rcs tested in this study.

The: levds Ofcytodrome crecb:ed with varyins Ievds ofenzyme and (crankcase oil)

substrate present suggest that the enzyme(s) respollSlble for the activity had • considerable

capacity to facilitate the taction, as no apparM activity dnsbold was obvious from the data.

The limiting factor in these assays would appear to be the availability of substrate, as higher

concentrations ofSlJbscrate and enzyme each increased aaMty in a~ fashion.
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4,1,4 Id~ntiry or tbe Nitromluttase

In all the nitroreduetase assays, there was no apparent preference for NADH or

NADPH as a cofactor. One possible explanation for this is that the enzyme responsible for

the activity is DT Diaphorase, a known nitroreduewe. However. DT Diaphorase is known

to be present in the endoplasmic reticulum of mammalian ceUs, meaning thac is should be

present primarily in the microsomal product ofa sub-cdIular fractionation procedure (Nilsson

and Dallner, 1917). Given thal: mM cytosol was the enzyme source for these experiments,

DT Diaphorase may not be the only nitroreducrase present in the protein source.

An alternate explanation for the apparent cofactor-indifference of the nitroredueta.se

enzyme is that, like DT Diapho~, some other single (in this case cytosolic) enzyme can

reduce nitro moieties present on PAH molecules. by utilizing either NADH or NADPH as a

cofactor. lfthis is the case, such an enzyme has not yet been identified. Finally, there: could

be a number ofnitroreduction-capabie enzymes that are present in rat liver cytosot. which use

either (or both) ofNADH and NADPH as cofactors.
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are complex by their very nature. and dilfering compositions in the levels and varieties of

mutagens and intubitors can produce profoundly ditfertnt effects in biological sy5l:ems.

The stade soot 0CInlCtS exbibited a D'md, 'oVitb respect to the response aCthe different

bacterial strains, which was in keeping with that produced by the crankcase oils. Minimal

numbers of revenant colonies were produced in the TA98NR strain tests of both extracts.

When the TA98 strain was exposed to the extnas. significantly more revertants were

produced. These results suggest a significant role of nitrated compounds in the mutagenic

process. When a niuoreducwe defic:ieztt smin ofbacteria was used, scarcely more revertants

were produced than those seen in control testS. Since experiments done undtl' identical

conditions but for the nittoreduetase de6ciency (eg. the TA98 tests) produced many more

revertants., nitroreductiol'l appears eueDtiaI to generating mutations.

A further increase, beyond the rIJmber of~ts produced by the TA98 stnin.

was exhibited when the YGI024 stniD was tested. smcc YGI024 is essentially TA98 bacteria

with tlevated Q.acaytaseacrivity, tbeelevaled IcMklXnaabon exhibited with the: YGI024

strain suppon the overall theoryof~ wbcRby O-aettylabon is required (after

nitroredoction) to generate the u1tim1le DNA reactive species. Thus nitroreduction and 0

acetylation seem essential to the ONA·reactioDimutation pathway as per the hypothesis

presented in Figure 1.1 (It page 4).

The final observation arising from the stack soot extract mutagenicity studies is the

fact that the preserx::e oftbe mammaliut pnxeiD aauaDy diminished the rmrtagenic response.
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This is .:ontmy to the trend exhiJiud in the other m.nagaW::ity studies. where the mammalian

protein proved es.sentia.I to produce the higbesr: levels ofreverwn formation. This is likely a

testament to the fact that there are numerous competing chemicals, enzymes. and reaction

pathways in such a complex mixture. As such, the mammalian enzymes may be binding and

posSibly modifying species which are essential to the production afme uhinwemu~ at

work in the non-59 experiments. Alternately, the mammalian enzyma may be producing

compounds which inhibit the mutagenic pathway. This does not detract from the theory that

nitrocompounds are the parent rruu.genic species at work here. It merely iIlusuates that

complex mixtures can have unpct.dictabIe dfeas in 1Iivo, and that while the general trend may

be toward nitro-PAH-induced~, this does not preclude the diminution of toxicity

ofsome combu~ion byproduct mixtures by mammalian enzymatic modi1kation.

4.2.3 Craakase Oil EstrKt StMiet

The aankcase oil extrKlS produced a clear trend with respect to the response of the

different bacterial straios. The TA98NR suain produced. minimal II'tKIUDtS of rnatant

colonies, while the TA98 strain produced almost three times u many revatants. This level

of mutation was increased • funbcr three fold wben the tester stn.i.D wu YG1024. Clearly,

the absence ofMroredua.ue eozyma drasticalty reduces the~ ofw extraCt

administration. Fwtbcrmore, the combirJation ofdevued D-acetytase xtivity and oonnaI
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nitroreduetase levels greatly increases the mutagenic effect. Both observations otTer strong

support for the hypothesis that, in the bioaeti\'ation ofnitro-PAH. nitroreduction is the initial

step. foUowed by Q.acetylation. In the absence of either of these steps, mutagenicity is

significantly reduced.

It is also clear from the results that the presence of rat liver $9 is key in producing

maximallevds of revenant production. Again. this is in keeping with the theory ofnitro-PAH

DNA-reactivity in manunalian systems. as bioactivation by mammalian enzymes greatly

increases the mutagenic potential ofthis particular combustion byproduct mixture. Obviously

some aCthe rat liver enzymes playa key rok: in generating the ultimate DNA·reactive species.

The fact that this elevation ofmutagenicity occurs with all tester strains make it unclear which

aspect of the mutagenic pathway is being enhanced by the mammalian enzymes. Suffice it to

say that is could be increased nitroreduction, increased O-acetylation. diminished inhibition

or any combination thereo~ that gives the observed result.

4.3 np-postlabelliaa Studies

The postlabelling studies yielded no data which was ofany comparative value. This

could be the result ofany number of factors. The tim is thai the animals tested could just be

exhibiting their natural biological variance. While this is certainly a valid con«m, attempts

were made to minimize this effect, as tested animals were of the same 5elC., age, and were of
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similar body weights. Furthermore. in some experiments., aU the animals tested were of the

same liner. In any evern. the results were always wildly inconsistent.

The more likely, and some n::spects unavoidable. sources oferror in these experiments

arise from the method itsei( namely theextremc sensitivity oCme technique (Randerath et aI.,

1985). Because the method is theoreticaI.Iy capable ofdel:ecting such miniscule amounts of

addueted DNA.. the slightest human error or reagent problem could give grossly inaccurate

results. Furthermore. the time required to do the cxpaiments. the finantiai costs, and the

complc:xiTyofthe sysIem all severely limit the viability ofa comprehensive evaluation crthe

protocol. Simply put, once severe protocol problems were suspected. the anempted

resolution of the dif6cuJties was beyond the scope of this work. Finally, problems in

reproducing postlabelling results have been documented in the past. This inherent difficulty

with the technique. corrDocd with the biological variation ofsamples, makes the production

of meaningful results very difficult. It may wdJ be that the technique requires experienced

technicians with the time and resources to refine the system, elements which were lacking in

this parocuW- study.

4.4 pBR321 ..... aicki8c Shdies

When incubaled with a complete reaction sysIem and I.nitropyrene or crankcase oil

condensIle, pBRJ22 piamid wa IImotR compIctety convened to the relaxed coil form.. This
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is strong evidence that metabolites ofboth I·nitropyrene and cnnkca.se oil condensate are

capable of producing hydroxyl radicals wlUch can result in DNA stand scission. These data

are consistent with the theory that the niuoaromatic compounds being: studied here are

capable of producing potent ONA-fUCtive species in vivo. This DNA damaging effect can

be said to occur in llNo on the strength of the observation that. in the absence of rat ~ver

protein. significantly lower levels orONA strand scission were observed.

When crankcase oil condensal:e and l..n.itropyrene were used in concen (in the

presence ofa complete reaction system), there was no signlticant devation in strand scission

beyond that exhibited with 1- nitropyrene. This means that was no synergistic. cumulative or

inhibitory effixt being obsaved, unless the DNA conversion levds were max:imaJ.. This might

mean that a threshold exists in tCfTDSofproduction ofradlcal.producing species., and :hat this

threshold had been reached by l-ritropyrene and/or cnnkcase oU condensate alone. If this

were the case., then increased IeYds of the parent compound would oat produce any

appreciable effect. Furthermore. oxygen radicals are quite sbort.tived. Thus, an increased

production of radicals only means a sbort4erm increase in their coocC'DUation, as the highly

reactive spcc:ies are quicIdy comumcd. As such, there is no cooMuiDg and tingaing effect to

be observed when more raw llWcriaJs are present.

The final expaimen: conducted in the plasmid breakage series was that involving the

mni«a>e oil ",OdaUaIe and DMSO. The pRSCllCC ofDMSO <educed the s<nPd bRobge

level to approxinwdy baIfof that !em in the complete system raction.. Since DMSO is a
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known hydroxyt radica! SC8'YCflSC1". tbe:sc data oifer stroog suppoct to the theory that the cause

of the strand breakage exhibited in the plasmid experiments wu the production ofhydroql

radicals. ThJs., the undeniable capacity of crankcase oil and I·Ditropyrene to cause DNA

strand scission would seem (0 arise &om the propensity of in vivo systems to create oxygen

radicals in the metabolic modi5cation ofthese complex chemicals. as discussed in Chapter I..
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CHAPTERS

5. CONCLUSIONS

5.1 Condu5KlnS

In this study, three principal types ofstudies were undenaken to measure the possible

in vn:o effects ofexposure to nitro-PAH. In the nittoreductase assays, crankcase oil and stack

soot e:ttraets were shown to be excellent substrates for rat liver cytosolic nitroreduetase.

likc'A-ise, in the Ames tests, crankcase oil and stack soot extracts were found [0 be potent

mutagens. For purposes ofcomparison.. crude oil extracts were used in nitroreduetase and

Ames SalmOl1l!lIa assays, and proved capable of producing neither nitroreduetion nor

revenant fonns of salmonella bacteria. These results are strongly suggestive that it is the

partial combustion reactions which have generated the chemical species responsible for the

nitroreduetase activity and mutation/revertant production. Furthennore, the Ames results

using differing bacterial strains Wustrate that, as hypothesized, nitroreducrion and 0

acetylation are critical steps in the mutagenic pathway.

In Chapter One it was suggested that after the oitroreduction and O-acetylation steps..

the compound underwent a chemical de-acetylation to produce a chemically active species.

Taken one step funher. this chemicaUy acti...e species could interact with oxygen molecules

[0 produce hydroxy{ radicals. The hydroxyl radicals could d1eo produce strand scission in
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DNA which could be responsible for generic mutations and other toxic responses. To test

this theory. studies were done to measure the strand scission of pBRJU plasmid upon

exposure 10 nitro-PAH. These studies iJlustm:e that nitro-PAH compounds can produce DNA

strand scission. Furthermore. when these reactions were attempted in the presence ofOMSO,

a scavenger of hydroxyl radicals., the scission effect was greatly diminished. Thus it would

seem that nitro-PAH can produce the ultimate genotoxic effect via the production ofhydroxyl

radicals and subsequent DNA strand scission.
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