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Abstract 

Nematodes, tardigrades, bdelloid rotifers, oribatid mites and collembolans (the 

dominant bryofauna) were obtained and identified from the moss species Dicranum 

polysetum at various elevations within 3 towns of northern, coastal Labrador, Canada: 

Nain, Hopedale and Makkovik. A preliminary field collection took place in October, 2001 

followed by 2 further collections in June and August, 2002 which focused more on 

quantitative data. Twenty three nematode genera, 18 tardigrade species, 3 rotifer genera, 

15 oribatid mite genera and 1 collembolan genus were identified during the study. All 

findings were new records for Labrador and many were significant national discoveries. 

A quantitative sampling design and multivariate analyses (non-metric 

multidimensional scaling) were used to examine differences in bryofaunal community 

structure across 4 environmental gradients: elevation, horizon depth/desiccation tolerance, 

seasonality and latitude. The nematodes contributed the most to understanding how 

variable environmental gradients affect bryofauna community structure as they had the 

greatest relative abundance throughout the study. The tardigrades and oribatid mites also 

exhibited some significantly variable distributions with regard to the environmental 

parameters, although fewer total specimens represented them. Bdelloid rotifers and 

collembolans were not quantitatively analyzed due to extremely low representation in the 

dataset. 

It was determined that moss horizon depth had the greatest effect on nematode, 

tardigrade and oribatid mite distributions. In some cases elevation and seasonality also 

accounted for much of the variability in bryofaunal distribution patterns but results were 

often variable between geographic locations. The effect oflatitude on distribution patterns 
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did not show any significant relationship to bryofaunal distribution and was likely too small 

of a gradient to greatly affect the bryofaunal communities. 

Some biotic relationships between bryofaunal groups were inferred and the 

general application ofthe moss fauna as a biological indication system was evaluated. 

Additionally, guidelines were given for the use of such an indicating system that would 

result in optimal effectiveness. 
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1.1 The Bryofauna 

Chapter 1 

Introduction 

Water surrounding the leaves of mosses supports organisms from a wide range of 

taxonomic groups, varying from bacteria and single celled ciliates to multicellular 

organisms (Corbet and Lan, 1974; Ringley, 1999; Zullini, 1970). This study focused on 5 

ofthe dominant groups of organisms (Kinchin, 1987, 1989, 1990; Steiner, 1994, 1995a, 

1995b) that were expected to inhabit mosses from 3 sites in northern coastal Labrador: 

nematodes, tardigrades, bdelloid rotifers, oribatid mites and collembolans. These 5 

groups of invertebrates form complex and dynamic communities within the moss 

cushions. However, the relation ofbryofaunal community structure to varying physical 

conditions is poorly known (Heatwole, 1983; Kin chin, 1989) and was investigated in this 

study. Special attention was given to the nematodes, tardigrades and bdelloid rotifers due 

to their high abundance within mosses. 

1.1.1 Moss Meiofauna 

The dominant meiofauna of the moss environment and key foci of this study were 

the bryophilous nematodes, tardigrades and rotifers, each of which has been studied to 

varying degrees within Canada and throughout the world. 

Nematodes are among the most abundant multicellular animals and are either free­

living or parasitic on plants and animals; some are marine while others inhabit fresh and 

brackish water or terrestrial environments. Nematodes are highly variable in size 

measuring anywhere from less than 1 mm to over 1 m in length. Plant parasitic 

nematodes are either ectoparasitic or endoparasitic. Various life stages of ectoparasitic, 
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endoparasitic and free-living nematodes are readily found in the wet interstitial spaces 

between moss leaves. 

Free-living nematode distribution throughout the world does not seem to be 

related to major geographical features such as mountain ranges, ocean barriers, or 

climatic zones (Nicholas, 1975) and many species seem to be cosmopolitan throughout 

highly variable environments. For example, Dorylaimus stagnalis and Plectus cirratus 

have been found within soil in Denmark and mosses in the high elevations of the Pamirs 

in Tajikistan, as well as the Baltic sea, and a third species Aphelenchoides parietinus 

inhabited these 3 environments plus thermal springs in New Zealand and saline waters in 

Germany (Nicholas, 1975). Although Nicholas (1975) emphasized widespread 

distribution for many species irrespective of varying habitat, he pointed out that some 

studies have conclusively shown that distribution and abundance of some nematode 

species can be linked quantitatively to varying ecological and geographical conditions 

(Johnson et al., 1972). 

Canadian studies on soil and litter nematodes (Appendix 1) are all fairly recent 

and have been conducted for parts of British Columbia (Hayes et al., 1999; Panesar et al., 

2000, 2001; Forge and Simard, 2001), Nunavut (Cockell et al., 2001), Manitoba (Dowsett 

et al., 1984), Ontario (Allen et al., 1988; Little and Maun, 1997) Quebec (Belair, 1989; 

Belair et al., 2001, 2002), New Brunswick (Sweeney et al., 1998), Prince Edward Island 

(Kimpinski et al., 1993; Edwards and Kimpinski, 1997) and insular Newfoundland 

(Cuthbert, 1990). In addition to a few preliminary biological surveys (Kimpinski et al., 

1993; Dowsett et al., 1984; Cockell et al., 2001; Forge and Simard, 2001) studies of soil 

nematode communities in Canada have focused on factors such as the role and impact of 
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nematodes as plant or animal parasites (Watson, 1986; Allen et al., 1988; Belair, 1989; 

Kimpinski et al., 1993; Edwards and Kimpinski, 1997; Little and Maun, 1997; Hayes et 

al., 1999; Belair et al., 2001, 2002) and their ability to act as ecological indicators of 

environmental impact (Yeow et al., 1999; Panesar et al., 2000, 2001). Canadian soil 

nematode communities have been studied extensively usually either to determine 

management techniques for parasitic nematodes or to gain overall information on soil 

health (Freclanan and Ettema, 1993; Neher et al., 1995; Bongers and Ferris, 1999; Hayes 

et al., 1999; Yeates, 1999). However, few studies on nematodes that inhabit bryophilous 

environments have been completed. Some surveys on moss nematodes have been 

conducted globally and a limited number of other studies have attempted to discuss some 

of the ecological factors that shape nematode communities in mosses (Zullini and Peretti, 

1986; Kinchin, 1989; Steiner, 1994, 1995b; Sohlenius and Bostrom, 2001). No previous 

Canadian studies have been devoted to the ecology ofbryophilous nematodes 

communities. 

Tardigrades are highly specialized non-segmented invertebrates commonly 

referred to as the water bears because of their respective habitat and appearance (Rupert 

and Barnes, 1994). Tardigrades typically range from 100 to 500 J..Lm in length but some 

larger species can reach lengths of more than lmm (Kinchin, 1994; Nelson, 1991). Most 

tardigrades are found in the water films surrounding the leaves of mosses but some may 

also inhabit marine environments (Kinchin, 1994). The 2 most common types of 

tardigrades are the Eutardigrades (naked tardigrades) and the Heterotardigrades (armored 

tardigrades), both of which have been found extensively within moss environments. 

Of the 3 groups ofbryophilous meiofauna studied, Canadian tardigrades have 
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received the most ecological attention (Appendix 2). However, very few extensive 

studies have been completed on them. Tardigrades were first recorded from various 

locations within Canada by Richters (1908) and Murray (1910) during exploratory 

scientific expeditions. The tardigrades in parts of New Brunswick were later studied 

during the 1960's and 1970's (Argue, 1971, 1972, 1974) as well as species from Axel 

Heiberg Island, Nunavut (Weglarska, 1970; Weglarska and Kuc, 1980), Quebec (Iharos, 

1973) and the Yukon Territory (Pilato, 1977). Two studies conducted on Vancouver 

island in the 1980's and 1990's (Kathman, 1989, 1990; Kathman and Nelson, 1989), and 

further studies in the Yukon Territory (Dastych, 1987; Manicardi, 1989), Northwest 

Territories (Van Rompu et al., 1991, 1992) and New Brunswick (Argue, 1971, 1972, 

1974) represent more recent contributions to the tardigrades of Canada. The most 

comprehensive study oftardigrades in Newfoundland and Labrador was conducted from 

1997-2001 (Collins and Bateman, 2001; Bateman and Collins, 2001) and described the 

ecological distribution oftardigrades throughout the island of Newfoundland. These 

studies identified 31 tardigrade species including 5 that had no previous record within 

Canada (Appendix 2). 

Rotifers are a small group of aquatic or semi-aquatic invertebrates. They typically 

range from 100-1000 J.lm in length, while some may reach 2 mm. It is the monogonontan 

rotifers that predominate the zooplankton of most marine and freshwater aquatic systems, 

but it is the bdelloid rotifers that commonly inhabit the film of water surrounding the 

leaves of mosses (Nogrady et al., 1993; Donner, 1956, 1975). There are a total of363 

species of Bdelloidea within 18 genera known throughout the world and they differ from 

other rotifers (Monogononta) in that they are obligatory parthenogenic reproducers and 
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are capable ofanhydrobiosis (Ricci, 1987). Ricci (1987) attributed these differences to 

adaptations of the bdelloids to fluctuating environmental conditions (i.e. desiccation) 

typical of mosses. Most species of soil and moss bdelloids belong to the genera 

Habrotrocha and Macrotrachela (Ricci, 1987). 

Monogonontid rotifers have been surveyed within various aquatic environments 

within Canada (Nogrady, 1989) and have been studied for their importance in commercial 

production of mussels, fish, etc. (Koch, 1929; Odell and Harris, 1933; Myers, 1936; 

Burger, 1973; Ramcharan et al., 1996; Dodson et al., 2000; Johannson et al., 2000; 

Patoine et al., 2000; Arnott et al., 2001; Thorp and Casper, 2002). Canadian studies 

pertaining to the bdelloid rotifers, however, are very few. In fact, the bdelloids in general 

tend to be an infrequently studied group probably due to the difficulty of identifying 

preserved specimens and securing quantitative samples (Bateman, 1975). 

Studies that have been conducted on the fauna ofbryophytes often detailed the 

presence ofbdelloids to varying degrees. Milne (1889), Murray (1909, 1911), Heinis 

(1910), Harring (1921), Bryce (1929), Wulfert (1940), Burger (1948), Donner (1950) and 

Nogrady (1962) were some of the first to study bdelloids and their ecology. Murray 

(1911) was the first to document the bdelloids of Canada collected from British Columbia 

and Ontario. Later additions to the bdelloid records of Canada include surveys conducted 

by Harring (1921) in the Canadian Arctic, Koch (1929) and Odell and Harris (1933) in 

New Brunswick and Ontario, as well as Ahlstrom (1940, 1943) from British Columbia 

and Ontario. A more recent study by Bateman (1975) quantitatively examined 

monogonontid and bdelloid populations within Sphagnum of Eastern Newfoundland and 

determined how these rotifer populations reacted to seasonal changes. A later study by 
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Bateman (1987) identified a bdelloid associated with the leaves of the pitcher plant, 

Sarracenia purpurea in Newfoundland. With the exception ofBateman's (1975, 1987) 

work, quantitative studies investigating the ecology ofbdelloid communities within 

Canada are absent. 

Tardigrades, nematodes and bdelloid rotifers dominate the meiofauna of mosses 

due largely to their capability to tolerate the wide range of environmental stresses typical 

of such environments (Wright, 1990; Steiner, 1994). The meiofauna utilize the film of 

water that surrounds the leaves of mosses called bryotelmata (Kinchin, 1994). When 

mosses are prone to desiccation, tardigrades, bdelloid rotifers and many nematodes enter 

and stay in a state of suspended animation called anhydrobiosis until adequate moisture 

returns, allowing continuation of normal activities (See section 1.3.1). Densities of the 

moss meiofauna have been described as inconsistent and changing over time (Kinchin, 

1994). Nematodes, tardigrades and bdelloid rotifers often form densely abundant 

communities within mosses. Fantham and Porter (1945) found the nematodes to be the 

most abundant of the bryofauna often exceeding 4600 specimens per gram of moss. 

Generally moss cushions support relatively low densities of tardigrades, however, 

numbers as high as 823 specimens per gram of moss have been observed (Morgan, 1977). 

There have not been any precise bryophilous bdelloid counts made. Few studies have 

been able to quantify the relationship between the bryophilous meiofauna and variable 

environmental conditions (See section 1.3). 

1.1.2 Moss Arthropods 

Arthropods are also represented within moss communities and, because they are 

not dependent on a film of water to facilitate locomotion, they tend to be more adapted to 
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drier parts of the moss. Kinchin (1990) found that moss arthropod communities tended to 

be richest in cushions that support few aquatic fauna (tardigrades, bdelloids, nematodes) 

and vice versa. Overgaard-Nielsen (1948) and Kinchin (1990) also indicated that most 

trophic interactions between the arthropods and aquatic meiofauna existed when the moss 

cushion underwent transition from wet to dry conditions. Many groups of arthropods 

utilize the moss environment for various stages of their life cycle, however the dominant 

bryophilous types are the collembolans and the oribatid mites (moss mites) (Kinchin, 

1990). Collembolans lack cuticular coverings over many parts of their bodies and are 

more prone to desiccation than are the mites (Kinchin, 1990). Oribatid mites can reach 

densities of up to 500 000 specimens per square meter of moss (Behan et al,. 1978) while 

collembolans can reach densities as high as 240 000 per square meter (Bengtson et al., 

1974). 

Canadian collembolan studies have focused on soils from Manitoba (Ferguson, 

2001) and forest litter from British Columbia (Fjellberg, 1992) but have not considered 

the bryophilous collembolan communities. Canadian studies on moss mites have 

revealed representatives from 75 families, 69 of which have been found in samples taken 

from eastern Canada (Marshall et al., 1987). Generally, these studies have been 

conducted in soil or litter layers of forests (Dwyer et al., 1998) but not the moss systems 

exclusively. 

1.2 Bryofaunal Biotic Relationships 

Some studies have attempted to determine the biotic relationships that exist within 

soil and moss communities. Soil nematodes are commonly prey for small arthropods 

(Brown, 1954; Murphy and Doncaster, 1957) and tardigrades (Doncaster and Hooper, 
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1961). Nematodes can also be attacked by several species of fungi (Duddington, 1955). 

Conversely, plant, fungal and bacterial feeding nematodes are common within soil 

systems and are often present in moss communities. The nematode genus Dorylaimus 

and many species within the genus Tylenchus, are predators, often feeding on other 

nematodes (Nicholas, 1975). 

Bryophilous tardigrades may be predaceous, bactivorous, fungivorous or 

phytophagous (K.inchin, 1987). Carnivorous tardigrades commonly feed upon 

nematodes, rotifers and other tardigrades. The tardigrades Macrobiotus hufelandi 

(Overgaard-Neilsen, 1948) and Milnesium tardigradum (K.inchin, 1994) have been 

observed preying on rotifers and Ramazzotti and Maucci (1983) observed the tardigrade 

Milnesium tardigradum feeding on a variety of other tardigrades. Tardigrades are also 

known to be parasitized by some types of fungus (Dewel and Dewel, 1987). K.inchin 

(1994) indicated that population cycles in competitors, predators or parasites may 

influence tardigrade populations and preliminary findings by Hallas and Yeates (1972) 

indicated a positive correlation between numbers of Macrobiotus harmsworthi and its 

nematode pre?'. However, there have been no further studies to support or refute these 

findings. 

Very little work has been conducted on the feeding habits ofbdelloid rotifers. 

Direct observation has revealed that bdelloids predominantly utilize their ciliated coronas 

to filter/vortex feed, however it is also common to find tardigrade remains within large 

predatory species (K.inchin, 1994). 

Collembolans are opportunistic feeders and are known to feed upon moss, algae, 

fungal hyphae, bacteria and decaying plant matter (Petersen and Luxton, 1982; Lartey et 
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al., 1989; Kinchin, 1990; Varga et al., 2002), while many predatory types feed upon 

juvenile nematodes (Brown, 1954). Many moss mites are bryophagous (Gerson, 1969) 

and others feed upon fungi and bacteria that grow between the moss leaves (Kinchin, 

1990). Some Oribatids, including members of the Prostigmatid and Mesostigmatid 

groups, can also be predaceous upon nematodes and other smaller arthropods (Kinchin, 

1990). 

Only a fraction of moss fauna are bryophagous (consuming the moss itself). 

Davis (1981) calculated that only 0.04% of the bryophyte production is consumed by the 

bryofauna of Antarctic tundra mosses. Similar analysis of relationships between the 

bryofauna has yet to be carried out (Kinchin, 1994). 

1.3 Factors Mfecting Distribution and Density ofBryofauna 

1.3.1 Moisture 

The density of meiofauna within a moss cushion is probably affected most by 

water availability. Tardigrades, nematodes and rotifers rely upon an aquatic environment 

to enable metabolic processes as well as to allow movement within the moss. Nelson 

(1975) as well as Burger (1948), Bartos (1951), Francez (1980), Kathman and Cross 

(1991) and Ingemar-Jonsson (2003) found that it is not so much the species of moss, as its 

characteristic amount of moisture that determines its meiofaunal complement. Sohlenius 

and Bostrom (2001) determined that nematode abundance and distribution in organic soil 

horizons was directly dependant upon moisture levels. Similarly, Ricci (1987) 

determined that the availability of water was the major factor affecting bdelloid rotifer 

distribution. 
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Mihelcic (1954) categorized mosses into 3 groupings based on their moisture 

regime. These included the permanently wet mosses, those that frequently dried out, and 

those that remained dry for extended periods. Because water plays such an integral role 

in survival, mosses at the dry end of the moisture gradient tend to be inhabited by more 

specialized bryofauna than those mosses that are usually wet (Kinchin, 1994). These 

specializations include the ability of the organisms to undergo some form of 

anhydrobiosis. Anhydrobiosis is the term given to the form of cryptobiosis that arises 

from lack of water. During anhydrobiosis, the organism almost completely dries up and 

metabolic activity comes nearly to a halt. The organism will then maintain this 

dehydrated state until adequate moisture returns, thus allowing rehydration and 

continuation of metabolic processes. While bryophilous tardigrades and rotifers tend to 

be uniformly adapted to anhydrobiosis, bryophilous nematodes have been shown to vary 

in anhydrobiotic ability from genus to genus (Hyman, 1951). Kinchin (1990) pointed out 

that this adaptation of aquatic bryofauna to anhydrobiosis is probably an example of 

convergent evolution. Members ofthe genera Mononchus, Dorylaimus, Plectus, 

Monhystera, Cephalobus, Trilobus, Tripyla, Tylenchus and Aphelenchus are characteristic 

of mosses that undergo temperature and desiccation extremes (Hyman, 1951) and are 

believed to exhibit a high degree of anhydrobiotic ability. 

K.lironomos and Kendrick (1995) also considered moisture to be one of the most 

important variables that influenced microarthropod community structure. During periods 

of extended drought the moss arthropods, however, are far less adapted to anhydrobiosis 

than the aquatic meiofauna and must seek out moist moss environments, an option not 

available to the passively dispersing meiofauna (Kinchin, 1990). Although collembolans 
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are very prone to desiccation (Kinchin, 1990), Bonnet et al. ( 197 5) determined that some 

species of collembolan were able to withstand varying degrees of desiccation better than 

others. For example, Entomobrya muscorum could withstand 10 hours in an environment 

of 30% moisture while Tomocerus vulgaris could only survive 1 hour under these 

conditions. Similarly, Hammer (1972) found distinctly different oribatid species 

occurring within environments of variable levels of moisture. Conversely, too much 

moisture has been determined to have a negative affect on the oribatid community. 

Dwyer et al. (1998) determined that oribatid densities decreased in very wet soils, often 

those occurring near open or running water. 

1.3.2 Dispersal 

As mentioned previously, when moss conditions are not suitable oribatids and 

collembolans leave (actively disperse from) the moss cushion in search of more favorable 

habitats. The meiofauna considered in this study, however, are reliant upon passive 

distribution since their rate of active dispersal is minimal. Tardigrades, nematodes and 

rotifers actively move at a pace that is adequate for within-moss dispersal, however they 

must rely upon water, wind and larger animals for long distance (passive) dissemination 

(Dobers, 1915; Bartos, 1951; Maguire, 1963; Donner, 1965). Ramazzotti and Maucci 

(1983) calculated the maximum rate of progression of a large unhindered tardigrade 

species (Macrobiotus sp.) as 17.7 em/h. This is comparable to the rate of progression for 

rotifers and nematodes. Because of their extensive abilities to tolerate long periods of 

desiccation in a dehydrated state during which they may be blown with soil and debris to 

other locations, wind has been documented as a form ofbryofaunal passive dispersal 

mainly for bdelloid rotifers and tardigrades (Kristensen, 1987). Dobers (1915), Bartos 
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(1951) and Donner (1965) detailed the key importance of water to rotifer distribution (i.e. 

heavy rain, flooding, etc.). 

1.3.3 Moss Horizon 

Distribution of the moss meiofaunal community within each moss cushion is also 

dependent upon water, as the film of water surrounding leaves and stems facilitates 

migration to various parts of the moss. Acrocarpous moss cushions consist of 3 

horizontal layers that are clearly distinguished in some species, but more difficult to 

identify in others. The upper-most horizon is the canopy layer (A), under which is the 

stem layer (B), followed by the lowermost rhizoid layer (C) (Kinchin, 1989). The 

canopy layer is the most productive layer securing the most oxygen and sunlight, however 

it is also most prone to desiccation (Overgaard-Neilsen, 1948). The lowest C-layer of the 

moss consists of humus and is least prone to desiccation. It is this layer which i~ least 

productive with low amounts of free oxygen and sunlight penetration. Dicranum 

polysetum (used throughout this study) is an acrocarpous moss species which is widely 

distributed throughout Canada and exhibits distinct separation between successive 

horizons. This species grows in dense clumps, is typical of drier, more exposed 

environments and is seldom found in saturated, acidic habitats such as bogs, marshes and 

fens (Newmaster et al., 1997). Free-living moss fauna take part in diurnal vertical 

migrations throughout these layers depending on prevailing environmental conditions in 

order to secure optimal nutrition while avoiding desiccation (Overgaard-Neilsen, 1948). 

The degree to which each species will migrate has been linked to their individual 

desiccation tolerance. Overgaard-Neilsen (1948) divided moss nematode populations into 
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3 general ecological groupings based on the frequency of their presence throughout the 

moss cushion. These groupings were: 

1. Nematodes that migrated from rhizoid layer to the canopy when the moss was 
damp (e.g. Plectus) 

2. Nematodes that migrated only from the rhizoid layer to the stem layer in saturated 
cushions (e.g. Aphelenchoides). 

3. Nematodes that resided only in the rhizoid layer, never migrating vertically (e.g. 
Dorylaimus). 

Overgaard-Neilsen (1948) indicated that species such as Aphelenchoides parietinus, 

Plectus cirratus and Plectus rhizophilus that can both swim and tolerate desiccation, 

dominated mosses that dry out periodically. 

Vertical distribution of plant parasitic nematodes has also been linked to the depth 

of root penetration into the soil, litter or moss (Bassus, 1962). Bassus (1962) found that 

the bacterial feeders Cephalobus, Plectus and Monhystera were found in the upper 

"superficial" regions of moss/litter while plant parasitic "root feeders" such as members 

of the Hoplolaimidae and Dorylaimidae dominated the deeper zones. Conversely, he 

found that members of the fungal feeding and ectoparasitic nematode genera Tylenchus 

and Aphelenchoides, as well as predators belonging to the genus Mononchus, were more 

uniformly distributed throughout the sample depth. In a similar study by Sohlenius and 

Bostrom (200 1) superficial moss and litter layers of a Swedish Scots pine forest were also 

dominated by Plectus, while a majority of Acrobeloides species occurred in deeper layers. 

Hallas (1978) described the vertical distribution oftardigrades within moss layers. 

He found that tardigrades associated with the C-layer were consistent with true soil 

dwelling species, whereas B-layer tardigrades were commonly litter species, and those 

associated with the A-layer were the most specialized bryophilous species. Wright 
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(1990) looked at tardigrade vertical migrations during periods of desiccation, and found 

that all but 1 tardigrade species (Echiniscus testudo) took part in some degree of vertical 

migration during desiccation within the moss Grimmia pulunata but did not determine if 

this trend was common among different species of moss. Analysis of distribution 

throughout the moss cushion, including any study of their vertical migrations, is lacking 

for rotifers. However, Kinchin (1994) indicated that bdelloid rotifers were usually 

associated with tardigrades because of their similar rates of active dispersal, moisture 

requirements and anhydrobiotic abilities. 

Distribution of moss arthropods within the moss cushion has not been 

documented. However, some studies have looked at oribatid mite vertical distribution 

within soils and found that both species diversity and abundance decreased with 

increasing soil depth (Dwyer et al., 1998). It was assumed that this was probably due to 

the greater abundance of food resources near the surface and the difficulty of penetrating 

deeper soil layers. Haarlov (1955) and Mitchell (1978) found that vertical distribution of 

collembolans and mites throughout the soil was correlated with moisture and depth of 

horizons. 

1.3.4 Elevation 

Although studies have been conducted to determine the role that elevation plays in 

soil fauna abundance and distribution, such studies on moss fauna are limited. Powers et 

al. (1998) found that soil biodiversity decreased as elevation increased but that a greater 

abundance of soil fauna occurred within the higher elevation sites. This relationship 

remained, even with small ( 40m) changes in elevation. fu the same study the nematode 

Scottnema lindsayae and members of the genus Eudorylaimus dominated each elevation. 
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Elevation has also been linked to the density of tardigrades and there are 

indications that some species are characteristic of certain altitudes (Rodrigues-Roda, 

1951; Rarnazzotti, 1956; Bertrand, 1975; Dastych, 1980). For example, in an analysis of 

Polish tardigrades, Dastych (1980) found that Echiniscus spitsbergensis, Macrobiotus 

willardi and Echiniscus granulatus dominated low elevations while Macrobiotus 

harmsworthi, Echiniscus wendti and Milnesium tardigradum were typical of higher 

elevations. 

Recent studies have begun to show that tardigrades show a large range of physical 

habitat preferences. Some species seem adapted to many habitat extremes where others 

seem to be limited to fairly specialized environments. Dastych (1985) found elevation to 

be one of the 3 most significant variables that affected tardigrade species composition 

within the mosses of West Spitsbergen. He found a net decrease in the number of 

tardigrade species per moss sample as elevation increased. Wright (1990) also examined 

tardigrade populations with regard to elevation and discovered distinct differences in 

tardigrade communities at various altitudes. He categorized species found at lower 

elevations as being hygrophilic ecotypes intolerant of frequent desiccation (Macrobiotus 

hufelandi, Hypsibius dujardinz). Conversely, species occurring at high elevations, where 

frequent and long lasting desiccation was evident, were classified as xerophilic ecotypes 

(Milnesium tardigradum, Hypsibius oberhaeuseri). However, because so few elevational 

studies have been conducted on the tardigrades much remains unknown as to how various 

species are affected by varying altitudes. 

There are no studies relating bryophilous bdelloid rotifers, collembolans and mites 

to elevation. However, Seyd et al. (1996) encountered distinctly different soil/litter 

oribatid populations at different altitudes in the British Isles, but concluded that 
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community distinctions between the higher and lower regions were more closely related 

to glaciation than to differential survival of species at differing altitudes. 

1.3.5 Seasonality 

Seasonality has been studied as a significant factor that affects soil nematode 

density, but has not received universal acceptance. Cuthbert (1990) found that seasonal 

patterns of nematode distribution and abundance were difficult to evaluate. Similarly, 

Franz (1942) and Neilsen (1949) disputed any consistent seasonal pattern. However, 

peaks in nematode abundance during early summer and late autumn have been noted in 

temperate forest floor litter/soil (Yeates, 1972; Popovici, 1980) as well as in peat soils of 

England (Banage, 1966) and in moss occurring on forest floors in Germany (Bassus, 

1962). In Sweden, Sohlenius and Bostrom (2001) found that proportions of :fungal and 

bacterial feeding moss nematodes were nearly equal during summer months but bacterial 

feeders dominated during the winter months. Berney and Bird (2001) determined that the 

abundance of opportunistic bacterial feeding nematodes was linked to the proliferation of 

bacterial populations often associated with an increased rate of organic soil deposition 

characteristic of early spring and autumn. 

Periodic sampling by researchers has quantified some seasonal trends in 

bryophilous tardigrade population dynamics (Kinchin, 1994) but data are still largely 

missing for many species and seasons. Morgan (1977) investigated the relationship 

between tardigrade population density and seasonality but was unable to determine any 

significant patterns. Population studies in Antarctica have shown peaks in tardigrade 

abundance immediately after the ice had melted marking the beginning of the austral 

summer (Jennings, 1976; Everitt, 1981). 

Bdelloid rotifer communities are generally stable across seasons (Madalinski, 

1961) with only slight differences recorded between winter and summer fauna (Koste, 
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1976). However, Zullini and Ricci (1980) were able to show that Philodinaflaviceps was 

more abundant in early spring than at any other time of year. Bateman (1975) determined 

that bdelloid rotifer populations of peatlands in Newfoundland diminished slightly in 

numbers during winter months. Generally, however, relationships of seasonality to the 

bdelloids as well as other bryophilous meiofaunal populations have not been 

quantitatively studied and are not fully understood. 

Orbatid mites have shown trends of reproductive seasonality including Mitchell's 

(1976) Canadian findings that egg maturation tends to take place in spring-summer. 

Studies regarding collembolan reactions to seasonality are absent. 

1.3.6 Latitude 

Little work has been done on latitudinal distributions ofbryofauna, but some 

general trends have been observed. Nicholas (1975) stated that free-living nematode 

populations are quite widespread and species were not greatly governed by factors such 

as climactic zones (i.e. latitude). Nelson (1991) indicated that tardigrades are more 

common in polar and temperate regions than in tropical regions of the world. Tardigrades 

also make up a large component of the microfauna of Antarctica (Murray, 1906, 1910; 

Jennings, 1976; Davis, 1981; Everitt, 1981; Dastych, 1984; Mcinnes and Ellis-Evans, 

1987; Usher and Dastych, 1987). Small-scale latitudinal effects on tardigrade populations 

have not been considered and may be evident in the latitudinal gradient that exists 

between the collection sites of this study. The latitudinal distribution ofbdelloid rotifers 

has received little attention, however, Ricci (1987) indicated that 42% ofknown bdelloids 

were cosmopolitan, while the rest exhibited distributions ranging from widespread to 

endemic. 
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Oribatid mites do not seem to be confined to any particular latitudinal range and 

make up the dominant group of organic soil arthropods globally (Olszanowski and 

Niedbala, 2000). Similar studies regarding collembolan reactions to latitude are absent. 

1.4 Moss Fauna as Biological Indicators 

Biological indication is commonly defined as "the use of an organism or a 

community of organisms to obtain information about the quality of the environment in 

which it is located" (Wittig, 1993). Bio-indicators can be used to monitor the effect of 

stress on communities of organisms and thus determine the degree to which an organism, 

or community of organisms has deviated from the normal (baseline) condition. For a bio­

indicator to be useful, there must be initial or baseline data with which to compare the 

stressed system. Without baseline data, the degree to which the stress is affecting the 

system cannot be assessed. The most useful bio-indicators exist when the stress factor is 

sub-lethal, and when the indicating organisms have different sensitivities or tolerances to 

the same stress (Mhatre and Pankhurst, 1997). These indicators may interpret natural 

phenomena, for example, using tree ages within a forest population to indicate the period 

since the last fire disturbance (Mhatre and Pankhurst, 1997), or they can be used to 

ascertain the effect of anthropogenic disturbances. For example, lichens are often used as 

bio-indicators of air pollution due to their sensitivity to industrial emissions (e.g. Ferry et 

al., 1973; Hawksworth and Rose, 1976; Salanki, 1986). However the suitability of 

mosses as bio-indicators has yet to be evaluated (RUhling and Tyler, 1971; Goodman et 

al., 1975; Yule and Lloyd, 1984). 

The use of nematodes, tardigrades, rotifers, oribatid mites and collembolans as 

biological indicators has only recently been investigated. Generally, the few studies that 
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have been completed relate to the use of soil and marine sediment fauna and not 

bryofauna as biological indicators (Hanel, 2000; Mhatre and Pankhurst, 1997; Yeow et 

al., 1999; Boyd et al., 2000). 

Some studies have made use of nematode populations as bio-indicators of 

disturbance (e.g. Mhatre and Pankhurst, 1997; Yeow et al., 1999; Panesar et al., 2000, 

2001 ), yet few have included moss nematodes. A study conducted by Zullini and Peretti 

(1986) determined that moss nematode communities were very sensitive to lead pollution 

and that certain species abundances significantly declined in the presence of lead. Thus, 

the nematode community structure acted as the bio-indicator of disturbance. 

Sladecek (1983), Donner (1978) and Koste (1976) studied the effects ofwater 

pollutants, temperature and food types on bdelloids occurring within mosses in or around 

streams and rivers. Each showed how bdelloid rotifers could be utilized as indicator 

spec1es. 

Bryophilous tardigrades, oribatid mites and collembolans have not been examined 

to the same degree as the nematodes and bdelloid rotifers and their usefulness as bio­

indicating populations is less understood. Currently, the only studies that investigated the 

biological indicating abilities of all 5 bryofaunal groups were those of Steiner (1994, 

1995a, 1995b) who studied the effects of air pollution on moss dwelling animals 

(nematodes, tardigrades, bdelloid rotifers, collembolans and oribatid mites) in Zurich, 

Switzerland and determined trends exhibited by moss fauna as bio-indicators of 

disturbances in air quality. He found that tardigrade and nematode moss populations are 

sensitive to changes in air quality, and that certain species declined in number while 

others flourished with respect to an air pollution gradient. He also determined that mite 
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and collembolan community richness decreased along a gradient of increasing pollution. 

Steiner (1995b) concluded that measures in abundance of 4 nematodes ( Chiloplectus cf. 

andrassyi, Aphelenchoides sp., Paratripyla intermedia, Mononchidae sp.) and 2 

tardigrades (Macrobiotus persimilis, Jsohysibius prosostomus) were highly correlated 

with air pollution and thus these bryofauna could serve as indicators of air quality 

disturbance for the region of Zurich studied. In comparison to the other moss fauna, 

Steiner (1995a) determined that the moss arthropods were less sensitive to pollution. 

However, conclusive as this study was, it lacked replication and few similar studies have 

been completed to support the range of geographic applicability of Steiner's (1994, 1995a, 

1995b) results. 

1.5 Aims of the Study 

1.5 .1 To survey the bryofauna (October 2001) that inhabit the acrocarpous moss 

Dicranum polysetum at 3 sites in northern, coastal Labrador and discuss any 

preliminary elevational distribution patterns evident for the 5 dominant groups 

(nematodes, tardigrades, bdelloid rotifers, oribatid mites and collembolans). 

1.5.2 To analyze the distribution ofbryofauna (June and August, 2002) with respect to 4 

environmental variables (elevation, moss depth, seasonality and latitude) and to 

compare the results with findings of similar studies conducted worldwide to 

determine genera/species distribution trends with respect to variable 

environmental extremes. 

1.5.3 To investigate Canadian distributions and biotic interactions for the identified 

bryofaunal specimens. 

1.5.4 To assess the ability of the moss faunal communities to function as a system for 
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bio-indication and suggest ways in which to maximize accuracy when utilizing the 

bryosystem as a monitor of environmental disturbance. 
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2.1.1 Moss Species 

Chapter2 

Materials and Methods 

As the majority of studies indicate that bryofauna show no significant preference 

for certain species of moss, a single acrocarpous species was collected throughout this 

study: Dicranum polysetum (Figure 2.1 ). Dicranum polysetum was chosen because of its 

widespread distribution along northern, coastal Labrador as well as the fact that the 

horizons within it were clearly visible. Additionally, this moss species tends to grow in 

drier habitats and is not typical of acidic or saturated environments (Newmaster et al., 

1997) and thus usually exhibits a distinct depth related moisture gradient throughout its 

horizons. 

2.1.2 Site Description 

Newfoundland and Labrador is the most easterly of the Canadian provinces 

comprised of the island ofNewfoundland (108,860 square kilometres situated in the 

northwest Atlantic) and a large portion of the Labrador Peninsula (292,670 square 

kilometres). Labrador makes up about 3% ofthe total area of Canada and its triangular 

geography is bordered northeasterly by the Atlantic Ocean (Figure 2.2). 

With its many islands and inlets it has been estimated that Labrador has 

approximately 8,050 kilometres of coastline stretching :from Blanc Sablon, Quebec in the 

south to the most northern tip of Cape Chidley (approx. 1,127linear kilometres). 

Labrador's coast is often undulating and mountainous with the highest peaks rising north 

ofNain in the Torngat Mountains. A high degree of glaciation has eroded the peaks of 
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Figure 2.1. Acrocarpous moss: Dicranum polysetum sampled throughout the study. Labels correspond to moss horizons A, B 
and C. 
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Figure 2.2. The province of Newfoundland and Labrador. The location of each study 
town is indicated: Nain, Hopedale and Makkovik. 
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the mountain ranges within and south ofNain (Kiglapait, Kaumajet and Mealy mountain 

ranges) into the blunt-topped hills characteristic of the coastline today (Parsons, 1970). 

Samples were collected from within 3 towns along Northern, coastal Labrador, 

Canada. The northernmost site was Nain situated at 56 32' N 61 42' W, followed by 

Hopedale at 55 27' N 60 13' Wand the most southern site, Makkovik at 55 05' N 59 10' 

W (Figure 2.2). The Labrador coastline is often very rugged and barren placing the 3 

coastal towns ofNain, Hopedale and Makkovik within the sub-arctic/open woodland 

vegetative zone (Parsons, 1970). The vegetation within this zone is generally 

characterized by mosses, lichens, shrubs and widely spaced white and black spruce, the 

latter being usually absent in more exposed areas. Labrador is located between 50° and 

60° North latitude and as such is classified as a northern environment associated with a 

cold climate (Parsons, 1970). Labrador's climate is generally more severe in the coastal 

regions due to the chilling effect from the Labrador Strait and high amounts of 

precipitation associated with the ocean environment. Table 2.1 shows the average 

monthly climate trends (1972-2000) for the northernmost study town ofNain 

(Environment Canada, 2002). There was only one weather station that represented the 

northern coast of Labrador, thus, there was no climactic data specific to Hopedale and 

Makkovik. Because of a combination of lingering snowfall and snow-cover, freezing rain 

and daily minimum temperatures, the growing season is generally quite short for the 

coastal towns of Labrador, not usually exceeding 4 months. 

2.2 Preliminary Survey 

Surveys of the bryofaunal communities occurring within the moss species 

Dicranum polysetum in 3 towns of northern, coastal Labrador were carried out in 
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Table 2.1. Average monthlyelimate trends (1972-2000) for Nain, Labrador (Environment Canada, 2002) 

Nain, Labrador Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year 
Daily Mean Temperature ec) -18.5 -18.3 -12.3 -4.9 1.0 6.2 10.1 10.7 7.0 1.1 -5.1 -12.8 -3.0 
Daily Minimum Temperature ec) -23.1 -22.9 -17.3 -9.5 -3.0 1.4 5.2 5.7 3.0 -2.1 -8.3 -16.8 -7.3 
Snowfall (em) 77.2 55.3 82.5 58.7 28.8 16.0 0 0 2.6 26.9 63.8 80.3 492.2 
Days with Freezing Rain 0.5 0.7 1.1 1.8 0.6 0.1 0 0 0.1 0.1 0.7 0.7 6.2 
Mean Snow Depth (em) 69 84 104 95 26 0 0 0 0 1 15 47 37 



October, 2001. Also, a preliminary investigation into the effects of elevation on moss 

fauna distribution was conducted. 

2.2.1 Field Collection 

A total of 54 moss samples were collected in October 2001 from 3 horizon depths 

(A, B and C) in 2 nearby moss cushions at 3 elevations (low, medium and high relative to 

total height of study hill) of increasing altitude along large hills within each of the 3 

sample towns (Nain, Hopedale and Makkovik). With the aid of contour maps and GPS 

triangulation the study site elevations were approximated for each of the towns (Figure 

2.3). Nain had the largest study hill and the greatest differences between altitudes of 

successive sample sites. In Nain, the lowest elevation measured 50m, followed by the 

medium at 500m and the highest altitude at 800m. Makkovik's study hill had the next 

greatest altitude; low, medium and high elevations were 50m, 150m and 300m 

respectively. The study hill with the lowest total altitude was Hopedale, where low, 

medium and high elevations measured 50m, 1OOm and 200m respectively. 

Since this portion of the study was intended to provide a qualitative species survey 

for each site, grab-samples were collected without regard for standardization. Therefore, 

sample sizes, moisture content and other environmental factors were highly variable for 

the October 2001 preliminary collection and thus statistical analysis was not feasible, 

however, some preliminary elevational trends were noted. Mosses collected in October 

had recently been covered with snow, and the Makkovik and Hopedale samples were 

frozen upon collection. The low elevation samples taken from Nain (sampled twice, 1a 

and 1 b) were from a relatively sheltered area, whereas all of the other samples collected 
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Figure 2.3. Sample site elevations for each town in northern, coastal Labrador (2001 and 2002 collections). Red circles indicate 
location of study site. 



were from more exposed sites. Moisture content of the samples also varied between sites 

because of recent precipitation patterns. 

Moss samples that were to be used to extract nematodes, oribatid mites and 

collembolans were kept moist and in sealed plastic bags. However, since tardigrades and 

bdelloid rotifers are highly tolerant of desiccation, replicate samples were collected and 

placed in paper bags and allowed to dry. Moist samples were refrigerated while dry 

samples were kept at room temperature and free of moisture until the time of extraction. 

2.2.2 Extraction, Preparation and Identification of Bryofauna 

For extraction of the bryofauna each moss sample was soaked separately in 

distilled water for up to 24 hours, after which the samples were shaken and squeezed to 

remove as much liquid as possible. The samples were then soaked and squeezed a second 

time to ensure that nearly all(> 90%) of the bryofauna were removed (Bateman, 1975) 

and then discarded. Using a stereomicroscope with a magnification of at least 25x, active 

and inactive tardigrades, nematodes, rotifers, collembolans and mites were removed by 

hand using glass pipettes or nematode picks/loops. The mites and collembolans extracted 

were placed in 85% ethanol solution until ready for identification. 

Preparation of tardigrade specimens was completed using methods developed by 

Nelson (1999). Nematodes were processed and mounted in glycerine using Hooper's 

(1970) technique with as many as 40 nematodes per slide. Bdelloid rotifers tended to 

contract their cuticle upon fixation and thus had to be identified while alive. Before 

mounting in Hoyer's medium, the oribatid mites and collembolans were removed from 

the ethanol and placed in a lactic acid clearing solution for a minimum of 24 hours 

(Balogh, 1972), which digested the especially heavy exoskeletal parts allowing better 
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transmission of light by compound microscope and facilitated more accurate 

identifications. 

Identification of each of the bryofaunal groups was a daunting task that was 

significantly aided by the expertise of a team of biologists each having particular 

specialization with the various groups (See acknowledgements). Due to the extensive 

diversity of nematode and oribatid species, these groups were only identified to genus. 

Identification of the nematodes was aided by the works ofGoodey (1951, 1963), Platt and 

Warwick (1988) and Siddiqi (2000). Tardigrade identification relied largely on the work 

ofRamazzotti and Maucci (1983). The bdelloid rotifers were identified utilizing the 

works of Bartos (1951), Donner (1965) and Bateman (1975). Identification oforibatid 

mite and collembolan genera was aided by the works of Balogh (1972) and Christiansen 

and Bellinger (1980), respectively. 

2.2.3 Analysis 

In addition to establishing genus/species lists for the bryofauna of northern, 

coastal Labrador, the genera/species were also evaluated (pooled% abundance) based on 

their predominance within the total specimen set. Sample sizes, moisture content and 

other environmental factors being highly variable for the samples of October 2001 

statistical analysis was not conducted on these samples. However some preliminary 

elevational trends were indicated for the nematodes, tardigrades and oribatid mites by 

examining genera/species predominance along an altitudinal gradient. Furthermore, the 

datasets of each of the 3 towns were also merged to determine preliminary relationships 

of elevation to species richness. The rotifers and collembolans were represented by too 

few specimens to be useful in determining elevational trends. 

30 



2.3 Ecological Distribution Study 

Quantitative sample collections were conducted in June and August, 2002 and 

were designed to quantitatively analyze the relationships that existed between the moss 

fauna communities and 4 environmental variables: elevation, moss depth/desiccation 

tolerance, seasonality and latitude. On each sampling occasion, each site was sampled in 

triplicate to strengthen quantitative analysis. 

2.3.1 Field Collection 

A total of 162 moss samples were collected in June and August 2002 from 3 

horizon depths (A, B and C) in 3 nearby moss cushions at 3 elevations (low, medium and 

high relative to total height of study hill) of increasing altitude along large hills within 

each of the 3 sample towns {Nain, Hopedale and Makkovik). 

Elevation - Where possible the sample sites and elevations were the same as 

those used during the previous 2001 preliminary survey (Figure 2.3). The only changes 

in sample sites were negligible and were conducted for the purpose of reducing 

extraneous variables acting upon the sample moss. For example, to remove the effects of 

overhead cover on exposure and insolation, the low elevation site in Nain had to be 

moved nearly 4m in height from the sample site of the 2001 collection. 

Moss depth/horizon - Directly following the extraction of the moss cores, the 

horizons were separated using sharp surgical scissors, labelled and stored separately. 

This was done to prevent any cross migration of species from one horizon to another, so 

that differences in community structure between horizons A, B and C would not be 

compromised. 
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Seasonality - Two field collections took place during the year 2002. The first, in 

June was to collect samples representative of northern, coastal Labrador's spring season. 

The second collection, completed in August, was representative of Labrador's late 

summer/early fall season. The samples from these 2 seasons were analysed for the 

existence of any differential survival or reproductive rates for the bryofauna between 2 

seasons. Presence oftardigrade eggs was checked to determine reproductive seasonality. 

General abundance of each species was used to determine the season of higher faunal 

density as well as season of higher activity for individual species. 

Latitude - Samples were collected within the same 3 towns that were surveyed in 

the 2001 collections: Nain, Hopedale and Makkovik. Given the increasingly northern 

positions of these 3 towns (Figure 2.2) consideration was given to the effects of a 

latitudinal gradient on bryofaunal dispersal. 

Standardization of Extraneous Variables - In order to confidently explain 

sample trends, interference by extraneous variables on the samples had to be reduced. 

Thus, the 2002 sample sites were chosen based on the ability to minimise the effect of 

extraneous variables such as exposure, insolation, moisture content, slope, horizon depth 

and sample size. 

In order to reduce interaction of variations in exposure and insolation with the 

ecological analysis of the bryofaunal communities, only sites lacking overhead cover and 

surrounding protection were chosen for collection. Because northern, coastal Labrador is 

characterized by mainly low growing vegetation it was possible to obtain samples which 

were relatively uniform in their degree of exposure and insolation. Additionally, care was 

taken to ensure that each study hill was facing the east. 
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Although it was not possible to ensure similar patterns in precipitation on the 

various sample dates, to minimize moisture content differences samples were taken at a 

relatively constant slope, thus ensuring some degree of similarity in run-off between each. 

Wherever possible samples that exhibited a gradient from highly moist C-horizon to 

relatively dry A-horizon were collected. Special note was made of any situations where 

the moss was either completely saturated or entirely dried in the event that outlying 

variances in ecological trends needed to be accounted for. 

Water run-off is greater for sites of high slope than for sites of low slope. 

Similarly, the angle at which wind and sun hit the surface of a moss cushion is also 

affected by the degree of slope. Thus a relatively constant degree of slope was 

maintained to further reduce the effects upon moisture content, exposure and insolation as 

variables between each site. Moss samples with a slope ranging between 10° and 30° to 

the horizon only were collected. 

A coring device was used during sample extractions to ensure uniform moss 

sample sizes (Figure 2.4). The device had a solid metal design with a sharp serrated 

leading edge that enabled cores to be extracted from dense or semi-frozen mosses. The 

coring device extracted cylindrical samples with a diameter of 1.75 em and a depth that 

traversed the 3 moss horizons. The average sample size of the moss cores (A, Band C 

horizons intact) was 20cm3• Care was taken to ensure that the coring device was cutting 

through the moss horizons and not just compacting each layer. The tool was rinsed with 

water between sample extractions to prevent cross contamination ofbryofauna. 

Moss cushion thickness, and thus internal horizon depth, varied depending on the 

growing surface. For example, mosses growing in crevices or concave bowls tended to 
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Figure 2.4. Coring device used to extract moss samples of uniform size. 
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form thicker cushions than those that grew on more exposed convex surfaces such as 

large boulders. As much as possible collections of moss cushions of"average" thickness 

were made, and overall sample depth was held as close to constant as possible. If 

discrepancies did occur in sample width, the samples were standardized by trimming each 

horizon as shown in Figure 2.5. The A horizon was consistently the most thin of the 

horizons (averaged 2cm) while the Band C horizons were generally thicker (averaged 3 

cmeach). 

Storage- While in the field, samples were stored in small "zip-lock" bags for 

transport. Unlike the preliminary survey of October 2001, which had 1 moss sample for 

the tardigrades and rotifers and another for the nematodes and other bryofauna, in the 

2002 collections all bryofauna except the rotifers were extracted from the same moss 

sample, which was kept moist in a sealed plastic bag (sampled in triplicate at each 

elevation, see section 2.3). Having all the bryofauna extracted from the 1 moss sample 

enabled the datasets and statistical analysis to encompass the complete community 

structure of the moss. Thus, biotic relationships were more easily identified and the 

different groups ofbryofauna could be directly compared to one another with regard to 

the environmental variables. Utilizing this method, however, the bryofauna needed to be 

extracted more quickly from the samples so that organisms more prone to asphyxiation 

(tardigrades and rotifers) had less of a chance to expire and decay. Because of the 

difficulties inherent when working with bdelloid rotifers, separate moss samples were 

collected from which the bdelloids were extracted. Care was taken to keep the samples 

relatively moist and cool until returned to the laboratory where they could be refrigerated 

at a temperature of 5° C. 
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Figure 2.5. Procedure for standardization of moss horizon thickness. Red lines indicate 
where horizon separations were made for thicker than average moss samples. 
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2.3.2 Extraction, Preparation and Identification 

Extraction, preparation and identification of the June and August 2002 samples 

followed the same techniques established during the October 2001 preliminary 

collections. 

2.3.3 Analysis 

In addition to broadening the genus/species lists for the bryofauna of northern, 

coastal Labrador the genera/species were also evaluated (pooled% abundance) based on 

their predominance within the total specimen set. 

The dataset was then analysed to determine the effect that the 4 environmental 

variables had upon bryofaunal distributions. The method chosen for analysis was non­

metric multidimensional Scaling (NMS). NMS is one of the most recommended 

ordination techniques in ecology because it is very well suited to data that may or may not 

be normally distributed (McCune and Mefford, 1999). This analysis has fewer 

assumptions than other comparable ordination models and runs less risk of producing 

misleading results. However, being non-parametric in nature this model is less robust 

than comparable metric methods (McCune and Mefford, 1999). A Sorenson distance 

measure was used in the analysis because it is more suited to ecological data than 

Euclidian measures (McCune and Mefford, 1999). 

The nematodes were by far the most abundant of the bryofauna ( -90%) and thus 

had a more quantitatively sound dataset. Therefore, to maintain the strength in ecological 

trends by reducing the interference of the other less abundant bryofauna, the nematodes 

were first analysed on their own, then later merged with the datasets of the tardigrades 

and oribatid mites. Relatively few specimens represented the collembolans and bdelloid 
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rotifers and they could not be quantitatively analysed so only general trends were inferred 

for these groups. 

2.4 Canadian Distributions and Biotic Relationships 

Species lists were made and investigations of past studies were conducted to 

determine previous national findings and known trophic habits. Inference was made as to 

probable biotic relationships shared by various bryofauna based on those species that are 

most positively correlated and respective feeding habits. 

2.5 Assessment of the Bryofauna as Biological Indicators 

Quantitative data collected within this study represented the baseline conditions 

for the ecology of these communities. The potential of these bryofaunal communities as 

biological indicators is discussed. 
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Chapter3 

Results 

3.1 Preliminary Survey (October 2001) 

3.1.1 Identified Specimens and Relative Abundances 
3.1.1.1 Nematodes 

The October 2001 survey ofbryofauna inhabiting Dicranum polysetum in 

northern, coastal Labrador produced 861 nematode specimens belonging to 17 genera. 

The 4 genera that dominated the entire nematode specimen set were Plectus (284), 

Eudorylaimus (279), Panagrolaimus (112) and Prismatolaimus (108). The remaining 

genera made up less than 10% of the total number of specimens: Monhystera 1 (18), 

Aphelenchoides (12), Rhabditis (11), Prionchulus (9), Labronema (6), Ogma (6), 

Daptonema (6), Steineria (3), Acrobeloides (2), Mononchus (2), Achromadora (1), 

Tylenchus 2 (1) and Bunonema (1 ). 

3.1.1.2 Tardigrades 

The October 2001 survey oftardigrades yielded 17 species and 2 specimens that 

may be separate species but have yet to be identified. The 2 unidentified specimens were 

of the Diphascon (1) and Macrobiotus (1) genera. Of the tardigrades identified all but 2 

of the species were of the eutardigrade type (1 Calohypsibius, 4 Diphascon, 3 Hypsibius, 

4 Macrobiotus, 1 Mesocrista, 1 Milnesium, 1 Minibiotus and 1 Platycrista). Macrobiotus 

hufelandi (103) occurred in 59% of the sites and made up 23% of the 440 specimens. 

Dip has con ramazzotti (95) occurred in 41% of the sites and made up 22% of the 440 

specimens. Only 3 other species were represented by more than 10 specimens: D. 

pingue(12), H convergens (13) and Minibiotus intermedius (23). The 2 species of 
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heterotardigrades identified were, Proechiniscus hanneae and Echiniscus wendti. No 

eggs were found within the moss samples of the October, 2001 survey. 

3.1.1.3 Bdelloid Rotifers 

The initial survey of the bdelloid rotifers of northern, coastal Labrador identified 

39 specimens belonging to 3 genera: Adineta, Habrotrocha and Macrotrachela. The 

genus Macrotrachela was the most abundant and was represented by 22 specimens in 11 

varieties, 4 that were identified as the species M aculata (1), M multispinosa (1), 

Macrotrachela plicata hirundinella (1) and Macrotrachela punctata (1 ). The remaining 7 

types could not be identified past the genus Macrotrachela but were significantly 

different from one another and may have been separate species. The second most 

abundant genus was Habrotrocha, which was represented in this survey by 5 specimens 

in 2 groups (Habrotrocha 1 (4) and Habrotrocha 2 (1)). The final genus Adineta was 

represented by 2 species A. steineri (1) and A. vaga (2). 

3.1.1.4 Oribatid Mites and Collembolans 

The initial survey of moss mites in October 2001 yielded only 8 specimens 

belonging to 5 genera: Cepheus (1), Epidamaeus (1), Fuscozetes (1), Mycobates (1) and 

Nothrus (2). Only 1 genus in the family Isotomidae were identified from the 13 

collembolan specimens collected in October 2001: Folsomia (6). Low numbers of 

specimens prevented the identification of the mites and collembolans beyond genus. 

3.1.2 Preliminary Elevational Trends 

3.1.2.1 Nematodes- Distribution of the nematode genera was analyzed to determine any 

elevational relationships. Table 3.1 shows the number of nematodes of each genus found 

at each elevation within the 3 northern, coastal towns. Two samples were collected from 
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Table 3.1. Nematode genera identified relative to elevation in 3 towns of northern, 
coastal Labrador (October, 2001). The low elevation in Nain was sampled twice 
(la and 1b). 

41 



the low elevation in Nain (la and lb). This was because there were inadequate amounts 

of moss in the lower altitudes and a second nearby sample site was needed. Table 3.2 

shows which elevations yielded which nematode genera and thus the relationship 

elevation may have had on species richness and abundance when the data from each of 

the 3 towns were merged. 

3.1.2.2 Tardigrades- The tardigrades were also evaluated based on where they were 

typically found along an elevational gradient. The abundance of each species at each 

altitude within the 3 towns is given in Table 3.3. Table 3.4 merges the tardigrade findings 

of the 3 towns to determine any generalized elevational trends in species richness and 

abundance. 

3.1.2.3 Bdelloid Rotifers, Oribatid Mites and Collembolans - The low abundance of 

bdelloids identified precludes any formulation of trends regarding the bdelloid rotifers, 

oribatid mites and collembolans across an elevational gradient. However, Tables 3.5, 3.6 

and 3.7 indicate where and in what abundance the rotifer, mite and collembolan 

specimens were found, respectively. 

3.2 Ecological Study (June and August, 2002) 

3.2.1 Identified Specimens and Relative Abundances 

The nematodes and tardigrades made up the majority ofbryofaunal specimens 

identified during the 2002 studies (-98%). Appendices 3, 4 and 5 provide the raw data 

for the nematodes, tardigrades and oribatid mites respectively, while the bdelloid rotifers, 

and collembolans had low representation and therefore no raw data were presented for 

these 2 groups. 
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Table 3.2. Nematode genera richness relative to elevation: respective altitudes pooled 
across all3 towns (October, 2001). 
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Table 3.3. Tardigrade species identified relative to elevation in 3 towns of northern, 
coastal Labrador (October, 2001). 
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Table 3.4. Tardigrade species richness relative to elevation: respective altitudes pooled 
across towns (October, 2001). 
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Table 3.5. Abundance ofbdelloid rotifers in relation to town and elevation in 3 towns of 
northern, coastal Labrador (October, 2001). 
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Table 3.6. Abundance of oribatid mites identified in relation to town and elevation in 3 
towns of northern, coastal Labrador (October, 2001). 

47 



Table 3. 7. Abundance of collembolans identified in relation to town and elevation in 3 
towns of northern, coastal Labrador (October, 2001). 
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3.2.1.1 Nematodes- The June and August 2002 ecological survey ofbryophilous 

nematodes inhabiting northern, coastal Labrador produced 6270 specimens belonging to 

21 genera (Appendix 3). The genus Plectus dominated in number (40%) while the next 

most abundant specimens belonged to the generaAphelenchoides (13%), Eudorylaimus 

(9.3%), Prismatolaimus (8%), Monhystera 1 (7.2%), Achromadora (6.7%), Tylenchus 1 

( 4.2% ), Teratocephalus (2.6%) and Euteratocephalus (2.1% ). The remaining genera 

made up less than 1% of the total number of specimens: Bunonema (0.9% ), Acrobeloides 

(0.8%), Tylencholaimus (0.8%), Wilsonema (0.8%), Labronema (0.5%), Monhystera 2 

(0.5%), Daptonema (0.3%), Mononchus (0.3%), Ogma (0.2%), Tylenchus 1 (0.2%), 

Hemicycliophora (0.1%) and Zeldia (0.1% ). Thirteen of the genera identified were 

common to both study years, however, Panagrolaimus, Rhabditis, and Steineria were 

only found in the 2001 collection while Euteratocephalus, Hemicycliophora, Monhystera 

2, Teratocephalus, Tylencholaimus, Tylenchus 1, Wilsonema and Zeldia were found only 

in the 2002 samples. 

3.2.1.2 Tardigrades - The June and August 2002 ecological survey ofbryophilous 

tardigrades from northern, coastal Labrador produced 265 specimens representative of 11 

species and 3 types that may be separate species but have yet to be identified (Appendix 

4). The 3 unidentified specimens are from the genera Diphascon, Echiniscus and 

Macrobiotus. Of the genera identified all but 1 were Eutardigrade types (5 Diphascon, 1 

Hypsibius, 3 Macrobiotus, 1 Mesocrista and 1 Minibiotus). The species that dominated in 

abundance were Macrobiotus hufelandii (25%), M echinogenitus (16.8%), D. pingue 

(8.2%) and M harmsworthi (8.2%). The remaining species each contributed less than 4% 

of the total abundance: D. scoticum (3.4%), Mesocrista spitzbergense (2.4%), D. 
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nodulosum (1.4%), D. ramazzotti (1.4%), H. convergens (1 %), Minibiotus intermedius 

(1 %) and D. recamieri (0.7%). The heterotardigrade identified was from the genus 

Echiniscus and represented 1.4% of the total tardigrade specimens. All but 1 of the 

tardigrade eggs were collected from the August 2002 samples. A total of 36 tardigrade 

eggs were found. Twenty-seven of the eggs belonged to the species M echinogenitus 

while the remaining 9 eggs have yet to be identified including the single egg from the 

June 2002 sample. 

3.2.1.3 Bdelloid Rotifers - Five bdelloid species plus 2 groups that could only be 

recognized to genus level (Adineta and Macrotrachela) were identified from a total of 73 

specimens. The species Habrotrocha lata was the most abundant of the specimens (51%) 

followed by Adineta steineri (13.7%), Macrotrachela habita (8.2%), Macrotrachela sp. 

(6.8%), Adineta sp. (2.7%) and Habrotrocha maculata (1.4%). No rotifer eggs were 

found within the study samples. 

3.2.1.4 Oribatid Mites - Fourteen oribatid genera and 1 specimen that could only be 

identified to the family Oripodoides were represented within the 169 specimens collected 

from the June and August ecological survey (Appendix 5). The dominant genera 

includedFucozetes (42.5%), Mycobates (21 %), Oppiella (12.5%) Limnozetes (8.3%) and 

Sellnickochthonius (6.5%). The remaining 9 genera each had low abundances and were 

all represented by as few as 1 specimen each: Cultroribula (1.8%), Nothrus (1.8%), 

Camisia (1.2%), Xenillus (1.2%) Brachychonius (0.6%), Epidamaeus (0.6%), Rhysotritia 

(0.6%) Trhypochthonius (0.6%) and Trimalaconothrus (0.6%). In addition to the 

oribatids, mites from other suborders were also occasionally found: Endostigmata (3 
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specimens) and Prostigmata (3 specimens). To allow for quantitative analysis of the 

oribatid mites all of the genera were grouped into a single category: the oribatid mites. 

3.2.1.5 Collembolans 

One collembolan genera and 2 groups that could only be identified as far as family 

were identified from 46 specimens collected in June and August, 2002. The 2 families 

Poduroidea (13%) and Isotomidae (9%) were each represented by only a few specimens 

while the genus Folsomia (61 %) dominated the collembolan specimen set. There were 

also 8 poorly preserved specimens which could not be identified. 

3.2.2 Analysis of 4 Environmental Variables on Bryofaunal Distributions 

The June and August 2002 ecological survey of the bdelloid rotifers and 

collembolans identified far too few specimens to be useful in quantitative analysis. Thus, 

the bdelloid and collembolan specimens identified during this sampling period were 

useful only in broadening the species list established from the preliminary findings of 

October 2001. 

3.2.2.1 Nematodes- Nematodes were by far the most abundant of the meiofaunal groups 

and had the most robust dataset of all the bryofauna (i.e. larger specimen sets and sample 

sizes allowed for more accurate analysis). To maintain the quantitative nature and 

integrity of the dataset and to insure that the ecological trends were properly explained, 

the nematode dataset was first analysed and discussed separately from that of the other 

bryofauna. Non-Metric Multidimensional Scaling (NMS) was conducted for each town 

separately to determine any distributional effects that season, elevation and horizon have 

on nematode populations. There was too much interaction of conflicting variables when 

the analysis was run on the 3 towns together. The R-squared values for significance of 
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each axis as well as selected graphical output of the NMS analysis detailing the 

relationship of each town's dataset to the 3 environmental variables are given below. 

R-squared Values- The R-squared values for the nematode dataset are given in 

Table 3.8, which indicate the amount of variability explained by each axis. The 2 axes 

that explain the greatest amount of variation are represented graphically in Figures 3.1, 

3.2 and 3.3. The r-squared values represent the coefficients of determination for the 

correlations between ordination distances and distances in the original n-dimensional 

space (Increment and cumulative r-squared were adjusted for any lack of orthogonality of 

axes)(McCune and Mefford, 1999). 

Main Matrix and Overlays of 3 Environmental Gradients (Season, Elevation 

and Horizon)- Figures 3.1, 3.2 and 3.3 are selected graphical results ofthe NMS 

analysis showing the correlation of seasonality, elevation and horizon depth with 

nematode distribution for each town. Figures 3.1(a), 3.2(a) and 3.3(a) are main matrix 

plots of the study sites with respect to the 2 axes that explain the largest amount of 

variation in the dataset (largest r-squared values). Bi-plot (joint plot) lines originating 

from the centroid of each graph show the relationship between the environmental 

variables and ordination scores. The angle and length of the line indicate the direction 

and strength of the relationship. The longer the bi-plot line, the stronger the relationship 

of the environmental gradient is to the dataset. 

Figures 3.1(b)(c)(d), 3.2(b)(c)(d) and 3.3(b)(c)(d) are overlays ofthe 

environmental gradients on the main matrices for each town. Overlays of season, 
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Table 3.8. R-squared values for the 3 axes that explain the greatest amount of variability 
in the nematode dataset (June and August, 2002). 
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(a) Main Matrix (Cumulative r-squared: 0.518). 
Triangles represent the sample sites. Bi-plot line 
represents moss horizon. 
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(c) Overlay of Elevation Matrix on Main Matrix 
(Axis 1: r=-0.308; Axis 3: r=0.254). Small, 
medium and large triangles represent the low, 
medium and high elevations, respectively. 
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(b) Overlay of Seasonality Matrix on Main 
Matrix (Axis 1: r=-0.149; Axis 3: r=0.264). 
Small triangles represent spring season, large 
triangles represent summer season. 
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(d) Overlay of Horizon Matrix on Main Matrix 
(Axis 1: r=0.599; Axis 3: r=0.047). Small, 
medium and large triangles represent the A, B 
and C-moss horizons, respectively. 

Figure 3.1. The effects of seasonality, elevation and horizon depth on nematode 
distribution in Nain, Labrador (June and August, 2002). 
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Figure 3.2. The effects of seasonality, elevation and horizon depth on nematode 
distribution in Hopedale, Labrador (June and August, 2002). 
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Figure 3.3. The effects of seasonality, elevation and horizon depth on nematode 
distribution in Makkovik, Labrador (June and August, 2002). 
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elevation and horizon are given for each town. The Pearson values (r) are provided below 

the figures to indicate the strength of each environmental gradient to the axes of the main 

matrix. 

Species and Corresponding Pearson Values (r)- Table 3.9 gives the Pearson 

coefficients (r) which show the degree to which each species accounts for the variability 

represented by the 2 most significant axes. Highly negative or positive Pearson values 

(max+/- 1) indicate those species that are found at the ends of the gradient/axis to which 

they correspond and are those species that account for the greatest amount of variability 

of the particular axis/gradient. Pearson values closer to zero indicate those species that do 

not contribute greatly to the variation of an axis/gradient and may indicate that the 

gradient being measured has little affect upon the species' distribution or that too few 

specimens of that species were available. For example, the nematodes that explained the 

greatest amount of variation in the dataset were Aphelenchoides (N ain, axis 1 ), 

Prismatolaimus (Nain, axis 3), Eudorylaimus (Hopedale, axis 1), Plectus (Hopedale, axis 

2), Achromadora (Makkovik, axis 1) and Monhystera 1 (Makkovik, axis 2). 

Latitudinal Trends in Nematode Distribution - Quantitative analysis did not 

reveal any significant trends between nematode species and latitude of sample sites. This 

does not mean that latitudinal trends did not exist for nematode distribution; it may have 

been that there was too much interrelation between the environmental variables (i.e. the 

grouping/independent variables are not mutually exclusive). Instead, Table 3.10 shows 

total species richness and abundance within each town (elevations and horizons grouped 

together) during both 2002 sampling seasons to investigate trends that may indicate a 

latitudinal relationship. 
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Table 3.9. Nematode genera and corresponding Pearson values (r) for axes accounting 
for most variability in each study town in northern, coastal Labrador (June and August, 
2002). 
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Table 3.1 0. Nematode genera richness and abundance relative to latitude for 3 towns in 
northern, coastal Labrador (June and August, 2002). 

2100 
15 
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3.2.2.2 Tardigrades and Oribatid Mites - There were far fewer tardigrade and mite 

specimens than nematodes within the samples. To analyse these groups on their own 

would have done little to determine the ecological trends associated with their 

distribution, as low specimen representation would often result in empty variables. Thus, 

the tardigrades and oribatids were merged with the nematodes so that the highly 

quantitative weight of the nematode data would provide the structure needed to explain 

the ecological trends of the less abundant tardigrade and oribatid fauna. However, while 

strengthening the tardigrade and oribatid data the trends of the nematode dataset may 

have been slightly "diluted". For this reason the nematodes were analysed separately in 

the preceding section. 

Non-Metric Multidimensional Scaling (NMS) was conducted for each town 

separately to determine any distributional effects that season, elevation and horizon have 

on tardigrade and oribatid populations. There was too much interaction of conflicting 

variables when analysis was run on the 3 towns together. The R-squared values for 

significance of each axis as well as selected graphical output of the NMS analysis 

detailing the relationship of each town's dataset to the 3 environmental variables are 

given below. 

R-squared Values - The R-squared values for the entire bryofaunal dataset are 

given in Table 3.11, which indicate the amount of variability explained by each axis. The 

2 axes that explain the greatest amount of variation are represented graphically in Figures 

3.4, 3.5 and 3.6. The r-squared values represent the coefficients of determination for the 

correlations between ordination distances and distances in the original n-dimensional 
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Table 3 .11. R -squared values for the 3 axes that explain the greatest amount of variability 
in the bryofaunal dataset (June and August, 2002). 
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Figure 3.4. The effects of seasonality, elevation and horizon depth on bryofaunal 
distribution in Nain, Labrador (June and August, 2002). 
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Figure 3.5. The effects of seasonality, elevation and horizon depth on bryofaunal 
distribution in Hopedale, Labrador (June and August, 2002). 
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Figure 3.6. The effects of seasonality, elevation and horizon depth on bryofaunal 
distribution in Makkovik, Labrador (June and August, 2002). 
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space (Increment and cumulative r-squared were adjusted for any lack of orthogonality of 

axes )(McCune and Mefford, 1999). 

Main Matrix and Overlays of Environmental Gradients (Season, Elevation 

and Horizon)- Figures 3.4, 3.5 and 3.6 are selected graphical results of the NMS 

analysis showing the correlation of seasonality, elevation and horizon depth with 

tardigrade and oribatid distribution for each town. Figures 3.4(a), 3.5(a) and 3.6(a) are 

main matrix plots of the study sites with respect to the 2 axes that explain the largest 

amount of variation in the dataset (largest r-squared values). Bi-plot (joint plot) lines 

originating from the centroid of each graph show the relationship between the 

environmental variables and ordination scores. The angle and length of the line indicate 

the direction and strength of the relationship. The longer the hi-plot line, the stronger the 

relationship of the environmental gradient to the dataset. 

Figures 3.4(b)(c)(d), 3.5(b)(c)(d) and 3.6(b)(c)(d) are overlays of the environmental 

gradients on the main matrices for each town. Overlays of season, elevation and horizon 

are given for each town. The Pearson values (r) are provided below the figures to 

indicate the strength of each environmental gradient to the axes of the main matrix. 

Species and Corresponding Pearson Values (r)- Table 3.12 gives the Pearson 

coefficients (r) which show the degree to which each species accounts for the variability 

represented by the 2 most significant axes (see section 3.2.2.1 for more information on 

Pearson Values). For example, the tardigrades that explained the greatest amount of 

variation in the dataset were M hufelandi (Nain, axis 2 and 3; Hopedale, axis 3), M 

echinogenitus (Hopedale, axis 1; Makkovik, axis 2) and D. recamieri (Makkovik, axis 3 ). 

65 



Table 3.12. Tardigrade species and oribatid mite genera with corresponding Pearson 
values (r) for axes accounting for the most variability in each study town in northern, 
coastal Labrador (June and August, 2002). 
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Latitudinal Trends in Tardigrade and Oribatid Mite Distribution -As was 

the case with the nematodes, quantitative analysis did not reveal any significant trends 

between tardigrade and oribatid species and latitude of sample sites. Instead, Table 3.13 

shows total species richness and abundance within each town during both 2002 sampling 

seasons to investigate trends that may indicate a latitudinal relationship. 

3.3 Species Lists - Canadian Distributions and Trophic Habits 

3.3.1 Nematodes 

CHROMADORIDA 
Cyantholaimidae 

Achromadora Cobb, 1913 
• Members of the genus Achromadora have been found in fresh water and 

moist soils and are thought to feed upon algae and diatoms (Goodey, 
1951 ). Desiccation tolerance is unknown for this group. Achromadora 
has been recorded for Canada within British Columbia (Panesar et al., 
2000) and Newfoundland (Cuthbert, 1990). 

ARAEOLAIMIDA 
Plectidae 

Plectus Bastian, 1865 
• Plectus is known to be a widespread genus inhabiting soil and freshwater 

systems as well as mosses and lichens (Goodey, 1951; Nicholas, 1975). 
Plectus has been recorded for Canada within British Columbia (Panesar et 
al., 2000) and Newfoundland (Cuthbert, 1990). This genus is well adapted 
to tolerating desiccation and is thought to feed upon bacteria and small 
organic particles (Goodey, 1951; Bassus, 1962). 

Wilsonema Cobb, 1913 
• Little is known regarding the members of this genus. All the species tend 

to be relatively small in size and typically found within the soil although 
some specimens have also been identified from lichens (Goodey, 1963). 
Wilsonema has been recorded for Canada within British Columbia 
(Panesar et al., 2000) and Newfoundland (Cuthbert, 1990). Feeding habits 
are unknown for this group (Goodey, 1951). 

Teratocephalidae 
Euteratocephalus Andrassy, 1958 

• Members of the genus Euteratocephalus occur in both freshwater and soil 
(Goodey, 1951). Euteratocephalus has been recorded for Canada within 
Newfoundland (Cuthbert, 1990). Goodey (1963) indicates that this genus 
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Table 3.13. Tardigrade species and oribatid mite genera richness and abundance relative 
to latitude in 3 towns of northern, coastal Labrador (June and August, 2002). 
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is fairly uncommon and little has been determined regarding its feeding habits. 

Teratocephalus de Man, 1876 
• Members of the genus Teratocephalus occur in both freshwater and soil 

(Goodey, 1951). ). Teratocephalus has been recorded for Canada within 
British Columbia (Panesar et al., 2000). Goodey (1963) indicates that this 
genus is fairly uncommon and little has been determined regarding its 
feeding habits, however Overgaard-Nielsen (1948) states that the species 
Teratocephalus terrestris is a bacterial feeder. 

MONHYSTERIDA 
Monhysteridae 

Monhystera Bastian, 1865 

Xylalidae 

• Members of the genus Monhystera have been recorded from freshwater 
and soil environments (Goodey, 1951). Monhystera has been recorded for 
Canada within British Columbia (Panesar et al., 2000). Species within this 
genus may feed upon vegetation (Goodey, 1963) and bacteria (Bassus, 
1962) Anhydrobiotic ability has not been determined. Two unidentified 
species of Monhystera were found in this study. 

Daptonema Cobb, 1920 
• Members of this genus are typically defined as free-living, marine 

nematodes (Platt and Warwick, 1988). No further information is available 
for this genus regarding habitat, distribution and trophic habits. 

Steineria Micoletzky, 1922 
• Members of this genus are typically defined as free-living, marine 

nematodes (Platt and Warwick, 1988). No further information is available 
for this genus regarding habitat, distribution and trophic habits. 

ENOPLIDA 
Prismatolaimidae 

Prismatolaimus de Man, 1880 
• Prismatolaimus has been recorded from freshwater and damp soils 

(Goodey, 1951). Prismatolaimus has been recorded for Canada within 
British Columbia (Panesar et al., 2000) and Newfoundland (Cuthbert, 
1990). Because Prismatolaimus species tend to be found in moist 
environments its desiccation tolerance is probably lower than others such 
as Plectus (Hyman, 1951). Feeding habits for this genus are unknown. 

DORYLAIMIDA 
Dorylaimidae 

Eudorylaimus Andrassy, 1959 
• Species of Eudorylaimus have been collected from a wide range of 

habitats and are believed to be relatively cosmopolitan (Goodey, 1963). 
Eudorylaimus has been recorded for Canada within Newfoundland 
(Cuthbert, 1990). Some species have been observed feeding on mite eggs, 
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algae, protozoans and fungi (Goodey, 1963). Anhydrobiotic ability ofthis 
group has not been determined. 

Labronema Thome, 1939 
• The genus Labronema has been collected from mosses and soil 

surrounding plant roots (Goodey, 1951). Labronema has been recorded 
for Canada within British Columbia (Panesar et al., 2000). Many species 
are predaceous on other nematodes while others feed upon algae and 
mosses (Goodey, 1951). Little is known about the desiccation tolerance of 
this genus, however its close relative Dorylaimus is thought to have a low 
desiccation tolerance (Overgaard-Neilsen, 1948). 

Tylencholaimus de Man, 1876 
• Members of the genus Tylencholaimus inhabit Sphagnum sp. and other 

mosses or soil around the roots of plants (Goodey, 1963). Tylencholaimus 
has been recorded for Canada within British Columbia (Panesar et al., 
2000) and Newfoundland (Cuthbert, 1990). Feeding habits are unknown. 

MONONCHIDA 
Mononchidae 

Mononchus Bastian, 1865 
• The genus Mononchus contains carnivorous species found in soil, moss 

and freshwater environments (Goodey, 1951; Hyman, 1951; Bassus, 
1962). Mononchus has been recorded for Canada in British Columbia 
(Panesar et al., 2000) and Newfoundland (Cuthbert, 1990). The feeding 
habits of this genus include protozoans, nematodes, rotifers, tardigrades 
and small oligochaetes. Hyman (1951) listedMononchus as one ofthe 
genera characteristic of desiccation-prone moss environments. 

Prionchulus (Cobb, 1916) Wu & Hoeppli, 1929 
• Like the genus Mononchus, Prionchulus contains carnivorous species 

found in soil, moss and freshwater environments (Goodey, 1951; Hyman, 
1951; Bassus, 1962). Prionchulus has been recorded for Canada in British 
Columbia (Panesar et al., 2000) and Newfoundland (Cuthbert, 1990). The 
feeding habits of this genus include protozoans, nematodes, rotifers, 
tardigrades and small oligochaetes. It is unknown if this genus also shares 
the high desiccation tolerance of Mononchus. 

TYLENCHIDA 
Aphelenchoididae 

Aphelenchoides Fischer, 1894 
• Members of the genus Aphelenchoides are very widespread and occur in a 

variety of habitats including soil, litter and mosses and many species are 
known to be plant and insect parasites (Goodey, 1963). Aphelenchoides 
has been recorded for Canada in British Columbia (Panesar et al., 2000) 
and Newfoundland (Cuthbert, 1990). Some free-living and saprophagous 
forms feed upon fungal hyphae while others prey upon other nematodes 
(Goodey, 1963; Bassus, 1962). The anhydrobiotic ability of 
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Aphelenchoides is unknown, however the close relative Aphelenchus is 
listed as characteristic of mosses prone to desiccation (Hyman, 1951). 

N eotylenchidae 
Ogma Southern, 1914 

• Ogma (syn. Criconema) has been obtained from soil, leaf litter, sphagnum 
moss and often around the roots of plants. Ogma has been recorded for 
Canada within Newfoundland (Cuthbert, 1990). It is thought that 
members of this genus are primarily external parasites of plant roots 
(Goodey, 1963). Desiccation tolerance is unknown for this group. 

Tylenchidae 
Tylenchus Bastian, 1965 

• Species occurring within the genus Tylenchus are widespread and 
abundant in both high and low elevations (Goodey, 1951 ). They have 
been regularly collected from soils and some have been found in mosses. 
Tylenchus has been recorded for Canada in British Columbia (Panesar et 
al., 2000) and Newfoundland (Cuthbert, 1990). The feeding habits of 
Tylenchus are largely unknown but it has been determined that some feed 
on fungus, plant roots and mosses (Goodey, 1951; Bassus, 1962). Some 
studies on members within this genus have shown a very high tolerance of 
desiccation (Goodey, 1951 ). Two species of Tylenchus were found in this 
study. 

Hemicycliophoroidea 
Hemicycliophora de Man, 1921 

• The genus Hemicycliophora is typically found in soils especially 
surrounding the roots of plants. Hemicycliophora has been recorded for 
Canada within Newfoundland (Cuthbert, 1990).Feeding habits are largely 
unknown (Goodey, 1963), however in a few cases it has been show that 
they are ectoparasites on plants (Meyl, 1955; Goodey, 1963; Cooper and 
Van Gundy, 1970). 

RHABDITIDA 
Cephalobidae 

Acrobeloides (Cobb, 1924) Thome, 1937 
• The genus Acrobeloides is found mainly in soil but has also been found in 

moss (Goodey, 1951; Zullini and Peretti, 1986). Acrobeloides has been 
recorded for Canada within British Columbia (Panesar et al., 2000) and 
Newfoundland (Cuthbert, 1990). Members of this genus are closely 
associated with and probably feed upon plant roots and decaying plant 
tissues (Goodey, 1963). 

Zeldia Thome, 193 7 
• The genus Zeldia is typically found within soils or decaying plant tissues. 

There is no record of Zeldia species for Canada. Members of this genus 
are saprophagous or microbivorous in feeding habit (Goodey, 1963). 
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Bunonematidae 
Bunonema Jagerskiold, 1905 

• The genus Bunonema has been frequently recorded within sphagnum and 
other mosses as well as rotting wood and other organic matter (Goodey, 
1963). Bunonema has been recorded for Canada in British Columbia 
(Panesar et al., 2000) and Newfoundland (Cuthbert, 1990). It is assumed 
that members within this genus feed upon fungal hyphae or bacteria 
(Sachs, 1949; Goodey, 1963). Anhydrobiotic abilities of this genus are 
unknown. 

Rhabditidae 
Rhabditis Dujardin, 1845 

• Members of the genera Rhabditis feed upon bacteria and occur wherever 
this food source is plentiful (Goodey, 1963). Species from this group have 
been found in soils and mosses (Goodey, 1951). Rhabditis has been 
recorded for Canada in British Columbia (Panesar et al., 2000). 

Panagrolaimidae 
Panagrolaimus Fuchs, 1930 

• The members of the genus Panagrolaimus are typically saprophages and 
are found in soils, litter and decaying or partially decaying vegetable 
matter. Some species are also associated with the dauer larvae of beetles 
which often aid in the dissemination of the nematodes (Goodey, 1963). 
This genus is very widespread and at least 1 species (Panagrolaimus 
rigidus) is cosmopolitan in its distribution (Meyl, 1953). Panagrolaimus 
has been recorded for Canada in British Columbia (Panesar et al., 2000). 

3.3.2 Tardigrades 

Heterotardigrade Species 
ECHINISCOIDEA 
Echiniscidae 

Echiniscus wendti Richters, 1903 
• This species is said to have a cosmopolitan geographic distribution 

(Ramazzotti and Maucci, 1983; Mcinnes, 1994). Echiscus wendti has 
been recorded for Canada in British Columbia (Murray, 1910; Kathman 
and Dastych, 1990) and Newfoundland (Bateman and Collins, 2001). 

Proechiniscus hanneae Petersen, 1951 
• This species has been described as being distributed primarily within 

Greenland (Mcinnes, 1994). However, findings have also been recorded 
for Canada in Newfoundland (Bateman and Collins, 2001). 

Eutardigrade Species 
PARACHELA 
Macrobiotidae 
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Macrobiotus echinogenitus Richters, 1904 
• This species is described as having a cosmopolitan distribution 

(Ramazzotti and Maucci, 1983; Mcinnes, 1994). It has been recorded for 
Canada in British Columbia (Murray, 1910; Kathman, 1990), Ontario 
(Murray, 1910), and New Brunswick (Argue, 1971,1972, 1974). 

Macrobiotus harmsworthi Murray, 1907 
• This species is described as having a cosmopolitan distribution 

(Ramazzotti and Maucci, 1983; Mcinnes, 1994). M harmsworthi has been 
recorded for Canada in British Columbia (Kathman, 1990), The Northwest 
Territories (Van Rompu et al., 1991), Ontario (Murray, 1906), 
NewBrunswick (Argue, 1971, 1972, 1974) and Newfoundland (Bateman 
and Collins, 2001). Macrobiotus harmsworthi is a known predator of 
rotifers, nematodes and other tardigrades (Kinchin, 1994). 

Macrobiotus c.f. hufelandi Shultze, 1833 
• This species has been described as having a cosmopolitan distribution 

(Ramazzotti and Maucci, 1983; Mcinnes, 1994). It has been recorded for 
Canada in British Columbia (Richters, 1908; Murray, 1910; Kathman, 
1990), Alberta (Murray, 1910), Ontario (Murray, 1910), Quebec (Tharos, 
1973), New Brunswick (Argue, 1971, 1972, 1974) and Newfoundland 
(Bateman and Collins, 2001). Macrobiotus hufelandi is a known predator 
of rotifers, nematodes and other tardigrades (Kinchin, 1994). 

Minibiotus intermedius Plate, 1888 
• This species is described as having a cosmopolitan distribution 

(Ramazzotti and Maucci, 1983; Mcinnes, 1994). It has been recorded for 
Canada in British Columbia (Kathman, 1990), Ontario (Murray, 1910), 
New Brunswick (Argue, 1971, 1972, 1974) and Newfoundland (Bateman 
and Collins, 2001). 

Calohypsibiidae 
Calohypsibius ornatus Richters, 1900 

• This species is described as having a widespread distribution (Ramazzotti 
and Maucci, 1983; Mcinnes, 1994). It has been recorded for Canada in 
British Columbia (Kathman, 1990) and Newfoundland (Bateman and 
Collins, 2001). 

Hypsibiidae 
Hypsibius convergens Urbanowicz, 1925 

• This species is described as having a cosmopolitan distribution 
(Ramazzotti and Maucci, 1983; Mcinnes, 1994). It has been recorded for 
Canada in British Columbia (Kathman, 1990), The Northwest Territories 
(Van Rompu et al., 1991 and 1992), New Brunswick (Argue, 1971, 1972, 
1974) and Newfoundland (Bateman and Collins, 2001). 

Hypsibius dujardini Doyere, 1840 
• This species is described as having a cosmopolitan distribution 

(Ramazzotti and Maucci, 1983; Mcinnes, 1994). It has been recorded for 
Canada in the Northwest Territories (Van Rompu et al., 1991, 1992), New 
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Brunswick (Argue, 1971, 1972, 1974) and Newfoundland (Bateman and 
Collins, 2001). 

Hypsibius microps Thulin, 1928 
• This species is described as having a widespread distribution (Ramazzotti 

and Maucci, 1983; Mcinnes, 1994). It has been previously recorded for 
Canada only once, in Newfoundland (Bateman and Collins, 2001). 

Diphascon nodulosum Ramazzotti, 1957 
• This species has been described as having a distribution limited to North 

and Central America (Mcinnes, 1994). It has been recorded for Canada in 
British Columbia (Kathman, 1990), New Brunswick (Argue, 1971, 1972, 
1974) and Newfoundland (Bateman and Collins, 2001). 

Diphascon pingue Marcus, 1936 
• This species is described as having a cosmopolitan distribution 

(Ramazzotti and Maucci, 1983; Mcinnes, 1994). It has been recorded for 
Canada in British Columbia (Kathman, 1990), New Brunswick (Argue, 
1971, 1972, 1974) and Newfoundland (Bateman and Collins, 2001). 

Diphascon ramazzottii Robotti, 1970 
• This species has been described as having a distribution limited only to 

Europe (Mcinnes, 1994). It has only been previously recorded for Canada 
by 1 specimen in Newfoundland (Bateman and Collins, 2001). 

Diphascon recamieri Richters, 1911 
• This species is described as having a widespread distribution (Ramazzotti 

and Maucci, 1983; Mcinnes, 1994). It has been recorded for Canada in 
British Columbia (Kathman, 1990) and the Northwest Territories (Van 
Rompu et al., 1992). 

Diphascon scoticum Murray, 1905 
• This species is described as having a cosmopolitan distribution 

(Ramazzotti and Maucci, 1983; Mcinnes, 1994). It has been recorded for 
Canada in British Columbia (Murray, 1910; Kathman, 1990), Alberta 
(Murray, 1910), New Brunswick (Argue, 1971, 1972, 1974) and 
Newfoundland (Bateman and Collins, 2001). 

Platicrista angustata Murray, 1905 
• This species is described as having a widespread distribution (Ramazzotti 

and Maucci, 1983; Mcinnes, 1994). It has been recorded for Canada in 
New Brunswick (Argue, 1971, 1972, 1974) and Newfoundland (Bateman 
and Collins, 2001). 

Mesocrista spitzbergense Richters, 1903 
• This species is described as having a distribution limited to Europe, Africa 

and North America (Mcinnes, 1994). It has been recorded for Canada in 
British Columbia (Kathman, 1990), New Brunswick (Argue, 1971, 1972, 
1974) and Newfoundland (Bateman and Collins, 2001). 

APOCHELA 
Milnesiidae 

Milnesium tardigradum Doyere, 1840 
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• This species is described as having a cosmopolitan distribution 
(Ramazzotti and Maucci, 1983; Mcinnes, 1994). It has been recorded for 
Canada in British Columbia (Richters, 1908; Kathman, 1990), Ontario 
(Murray, 1910), Quebec (Tharos, 1973), New Brunswick (Argue, 1971, 
1972, 1974) and Newfoundland (Bateman and Collins, 2001). Milnesium 
tardigradum is a known predator of rotifers, nematodes and other 
tardigrades (Kinchin, 1994). 

3.3.3 Bdelloid Rotifers 
No specific trophic habits are known for these bdelloids. 

BDELLOIDEA 
Habrotrochidae 

Habrotrocha lata lata Bryce, 1892 
• This species has been recorded for Canada only from Newfoundland 

(Bateman, 1975). 
Habrotrocha maculata Murray, 1911 

• This species has been recorded for Canada only from Ontario (Murray, 
1911). 

Philodinidae 
Macrotrachela aculata Murray, 1911 

• This species has not previously been recorded within Canada. 
Macrotrachela habita Bryce, 1894 

• This species has been recorded for Canada only from Newfoundland 
(Bateman, 1975). 

Macrotrachela multispinosa Thompson, 1892 
• This species has been recorded for Canada only from Newfoundland 

(Bateman, 1975). 
Macrotrachela plicata hirundinella Murray, 1909 

• This species has been recorded for Canada only from Newfoundland 
(Bateman, 1975). 

Macrotrachela punctata Murray, 1911 
• This species has not previously been recorded within Canada. 

Adinetidae 
Adineta gracilis Janson, 1893 

• This species has been recorded for Canada in British Columbia, the Rocky 
Mountains and Ontario by Murray (1911) and Newfoundland by Bateman 
(1975). 

Adineta steineri Bartos, 1951 
• This species has been recorded for North America only from 

Newfoundland (Bateman, 1975). 
Adineta vaga Bryce, 1893 

• This species has been recorded in Canada for British Columbia (Murray, 
1911) and Ontario (Murray, 1911; Nogrady, 1989). 

75 



3.3.4 Oribatid Mites 
No specific trophic habits are known for these oribatid mites other than they are 
likely bryophagous, bactivorous or fungivorous (Gerson, 1969; K.inchin, 1990). 

BRACHYPYLINA 
Astegistidae 

Cultroribula Berlese, 1908 
• This genus has been recorded for Canada in the Northwest Territories 

(Hammer, 1952; Behan, 1978), Yukon Territory (Behan, 1978), Quebec 
(Marshall, 1968; Smith, 1978), Nova Scotia (Behan-Pelletier, 1987) and 
Newfoundland (Dwyer et al., 1998) 

Ceratozetidae 
Fuscozetes Sellnick, 1928 

Damaeidae 

• This genus has been recorded for Canada in the Northwest Territories 
(Hammer, 1952; Behan, 1978), Yukon Territory (Behan, 1978), Manitoba 
(Oswald and Minty, 1970), Ontario (Jacot, 1935), Quebec (Marshall, 
1968) and Newfoundland (Behan-Pelletier, 1985). 

Epidamaeus Bulanova-Zachvatkina, 1957 
• This genus has been recorded for Canada in British Columbia (Behan­

Pelletier and Norton, 1985), Alberta (Powell and Skaley, 1975), the 
Northwest Territories (Hammer, 1952; Behan, 1978), Yukon Territory 
(Behan, 1978; Bulanova-Zachvatkina, 1979), Manitoba (Oswald and 
Minty, 1971), Ontario (Banks, 1909; Norton, 1979), Quebec (Behan­
Pelletier and Norton, 1983), New Brunswick (Pielou and Verma, 1968), 
Nova Scotia (Behan-Pelletier, 1987) and Newfoundland (Behan, 1978; 
Dwyer et al., 1998). 

Limnozetidae 
Limnozetes Hull, 1916 

• This genus has been recorded for Canada in the Northwest Territories 
(Behan, 1978), Yukon Territory (Behan, 1978), Manitoba (Hammer, 1952) 
and Nova Scotia (Behan-Pelletier, 1987). 

Mycobatidae 
Mycobates Hull, 1916 

Oppiidae 

• This genus has been recorded for Canada in the Northwest Territories 
(Hammer, 1952; Behan, 1978), Yukon Territory (Behan, 1978) Manitoba 
(Hammer, 1952), Quebec (Behan, 1978), Nova Scotia (Behan-Pelletier, 
1987) and Newfoundland (Behan, 1978; Dwyer et al., 1998). 

Opiella Jacot, 1937 
• This genus has been recorded for Canada in Alberta (Hammer, 1952), the 

North West Territories (Hammer, 1952), Yukon Territory (Behan, 1978), 
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Xenillidae 

Manitoba (Hammer, 1952) Quebec (Marshall, 1968), Nova Scotia (Behan­
Pelletier, 1987) and Newfoundland (Behan, 1978; Dwyer et al., 1998). 

Xenillus Robineau-Desvoidy, 1839 
• One unidentified group of this genera has been recorded for Canada in 

Manitoba (Oswald and Minty, 1970). 
ENARTHRONOTA 
Brachychthoniidae 

Brachychthonius Berlese, 1910 
• This genus has been recorded for Canada in British Columbia (Marshall, 

1979), The Northwest Territories (Behan, 1978), Ontario (Marshall, 1972) 
and Quebec (Marshall, 1968; Smith, 1978). 

Sellnickochthonius Krivoluckij, 1964 
• This genus has been recorded for Canada in Alberta (Hammer, 1952), the 

Northwest Territories (Hammer, 1952; Behan, 1978), Quebec (Reeves and 
Marshall, 1971) and Nova Scotia (Behan-Pelletier, 1987). 

DESMONOMATA 
Camisiidae 

Camisia von Heyden, 1826 
• This genus has been recorded for Canada in Alberta (Hammer, 1952; 

Powell and Skaley, 1975), the Northwest Territories (Hammer, 1952; 
Behan, 1978), Yukon Territory (Behan, 1978), Manitoba (Hammer, 1952), 
Quebec (Behan, 1978), New Brunswick (Pielou and Verma, 1968), Nova 
Scotia (Behan-Pelletier, 1987) and Newfoundland (Behan, 1978; Dwyer et 
al., 1998). 

Malaconothridae 
Trimalaconothrus Berlese, 1916 

Nothridae 

• This genus has been recorded for Canada in the Northwest Territories 
(Hammer, 1952; Behan, 1978), Manitoba (Conroy, 1974), Quebec 
(Marshall, 1968), Nova Scotia (Behan-Pelletier, 1987) and Newfoundland 
(Behan, 1978). 

Nothrus C.L. Koch, 1835 
• This genus has been recorded for Canada in the Northwest Territories 

(Hammer, 1952; Behan, 1978), Yukon Territory (Behan, 1978), Manitoba 
(Hammer, 1952), Ontario (Marshall, 1972; Freitag and Ryder, 1973), 
Quebec (Smith, 1978; Forest et al., 1982), Nova Scotia (Behan-Pelletier, 
1987) and Newfoundland (Behan, 1978; Dwyer et al., 1998). 

Trhypochthoniidae 
Trhypochthonius Berlese, 1904 

• This genus has been recorded for Canada in British Columbia (Marshall, 
1979), the Northwest territories (Hammer, 1952), Yukon Territory (Behan, 
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1978), Manitoba (Hammer, 1952; Oswald and Minty, 1970), Quebec 
(Marshall, 1968; Behan, 1978) and Nova Scotia (Behan-Pelletier, 1987). 

MIXONOMATA 
Euphthiracaridae 

Rhysotritia Markel and Meyer, 1959 
• This genus has been recorded for Canada in the Northwest Territories 

(Hammer, 1952), Manitoba (Hammer, 1952; Oswald and Minty, 1970) 
Quebec (Behan, 1978), Nova Scotia (Behan-Pelletier, 1987) and 
Newfoundland (Behan, 1978; Dwyer et al., 1998). 

3.3.5 Collembolans 

COLLEMBOLA 
lsotomidae 

Folsomia Willem, 1902 
• This genus has been recorded for Canada in the Northwest Territories 

(Toda and Tanno, 1983). No specific trophic habits are known for the 
members within this genus other than they likely feed upon moss, algae, 
fungal hyphae, bacteria or decaying plant matter (Petersen and Luxton, 
1982; Lartey et al., 1989; Kinchin, 1990; Varga et al., 2002). 
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Chapter4 

Discussion 

4.1 Species Identified and Abundances Relative to 2001 and 2002 Studies. 

Thirteen of the 23 nematode genera identified were common to both the 2001 and 

2002 study years. The genera Plectus, Eudorylaimus and Prismatolaimus dominated the 

specimens ofboth studies. Ten of the 18 tardigrade species identified were common to 

both years and M hufelandi always dominated in abundance. Diphascon ramazzottii was 

also highly abundant but only in the 2001 study while M echinogenitus, D. pingue and 

M. harmsworthi were only abundant in the 2002 study. All3 of the bdelloid rotifer 

genera were common between the 2001 and 2002 collections. The genus Macrotrachela 

was the most abundant of the genera followed by Habrotrocha andAdineta. In addition 

to the oribatid mites identified from the 2001 study, the 2002 study recorded 10 further 

genera. A large proportion of tardigrade eggs, belonging to the species M echinogenitus 

was found in August of 2002. The genera that dominated the mite specimens were 

Fuscozetes, Mycobates, Oppiella, Limnozetes and Sellnickochthonius. Finally, 2 

collembolan families were identified during the study, Poduroidea and Isotomidae. The 

genus Folsomia (family lsotomidae) dominated the collembolan specimen set throughout 

both years. 

A probable explanation for the high degree of species and abundance variation 

between study years is that the moss collected in 2001 was often from a more variable 

environment. For example, the 2001 samples were often of varying sizes taken from very 

wet moss mats of different species as compared to the less saturated moss cushions of 1 

species collected during the 2002 studies. 
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4.2 Environmental Parameters 

The effects of elevation, horizon depth, seasonality and latitude on bryofaunal 

distributions are discussed in the following section. However, before environmental 

parameters are considered the following must be noted. 

First, the nematodes and mites were only identified to the genus level which may 

have slightly limited the accuracy of the analysis and the application of specific 

distributional trends for these animals. For example, in cases where a particularly 

abundant genus may be represented by large numbers of species, for example Plectus and 

Aphelenchoides which may represented by as many as 11 species each (Hanel, 1994, 

1996; Ruess, 1995; Ruess and Funke, 1995), vastly different effects of environmental 

variables such as elevation or moss depth may have been masked when studied only at 

the genus level. 

Second, many of the trends discussed in the study of variable environments on 

bryofaunal distributions relied on the data acquired from only 2 quantitative samplings. 

Although some very strong trends were found, it is important to acknowledge that these 

findings are quite preliminary and require further study to be verified. 

Third, the rotifers and collembolans were left out of the analysis as were the 

oribatid mites from the 2001 study because far too few specimens were collected of each 

to be useful in assessing environmental trends on distribution. The relatively low 

abundance of these groups within the samples may have been a result of the sampling 

methods. For example, larger moss samples may have been required to procure greater 

numbers of the larger bryofauna (mites and collembolans) as densities of the larger 
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organisms cannot reach that of the smaller meiofaunal groups in moss samples of the 

same size. The bdelloid rotifers were a difficult group to work with in the laboratory as 

identification is largely based on features only visible in living specimens (Bateman, 

1970). Therefore, delays between collection and identification alone may have caused 

high mortality and relatively low representation ofbdelloids within the samples. 

4.2.1 Elevation 

It was often the case that elevation and horizon depth produced the most 

significant effects on faunal distribution in Nain but were not as strong in Hopedale or 

Makkovik. This was likely due to the much greater total height of the sample hill and the 

greater distances between successive sampling altitudes (Figure 2.3). 

4.2.1.1 Nematodes- No elevational relationship existed for total nematode 

abundance and species richness in Nain and Hopedale during the preliminary 

investigation (October 2001 ). In Nain, however, 4 genera typical of each elevation did 

show some preliminary altitudinal trends. Plectus and Panagrolaimus, the 2 most 

abundant genera within the Nain samples, showed a net decrease in abundance with 

increased elevation while Eudorylaimus, the third most abundant genus, and 

Aphelenchoides showed a net increase in numbers with increased elevation (Table 3.1). 

In Hopedale, the most abundant genera (Plectus, Monhystera, Eudorylaimus and 

Panagrolaimus) showed no significant distribution patterns with elevation. Eudorylaimus 

numbers were greatest in the highest altitude but did not show a steady increase from low 

to high elevation. Prismatolaimus exhibited the only significant elevational relationship 

as it was abundant only within the low elevation (Table 3.1). 
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Some preliminary altitudinal trends were found in Makkovik. The greatest 

abundance of nematodes within Makkovik was found in the low and high elevations with 

the lowest elevation yielding the greatest genera richness. There was no significant 

relationship between any of the genera and elevation, except that Plectus and 

Eudorylaimus, the most abundant genera in the Makkovik samples, were found to be least 

numerous in the mid elevation (Table 3.1). 

When the fmdings of each of the 3 northern towns were merged with respect to 

elevation a trend of decreasing genera richness with increasing altitude was evident. 

Table 3.2 showed that the low elevation yielded a total of 15 nematode genera, where the 

mid elevation yielded 10 genera and the high elevation produced 9 genera. Table 3.2 also 

suggests preliminary findings as to the optimal altitudinal habitats for each genus, which 

range from preference for low, medium or high altitudes and those that are cosmopolitan 

throughout all 3 elevations. 

The quantitative study (June and August, 2002) of nematode communities with 

relation to an elevational gradient did not reveal any significant trends within the 2 towns 

of Hopedale and Makkovik. The Pearson values (r) for the relevant axes were quite small 

and a relatively low amount of variability in the dataset was explained by elevation in 

these towns. The nematode genera do not seem to be limited by the altitudinal gradients 

presented within these 2 towns. 

In Nain however, nematode distribution showed a significant degree of variability 

explained by elevation. In this case, the axis that explained the most elevation linked 

variability was also the axis that corresponded to moss horizon. Both elevation and moss 

horizon were represented by fairly high Pearson values on the same axis and were thus 
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mutually inclusive. One end of the gradient represented high elevation and upper moss 

horizons while the other extreme represented low elevations and deeper moss horizons 

(C-layer). This relationship was somewhat intuitive because species capable of 

inhabiting exposed, high elevations should also tend to exhibit higher desiccation 

tolerances while those species found in less exposed, low elevations would tend to be less 

tolerant of desiccation. Thus, the first axis in Figure 3.1 represented a desiccation 

tolerance gradient with those highly tolerant species (high elevation and moss horizon) 

occurring on the left end and those less tolerant species (low elevation and moss horizon) 

occurring on the right end. 

Understanding the elevation/desiccation tolerance gradient being represented by 

axis 1 in Figure 3.1 allowed the specific genus relations to this gradient to be determined 

by examining the individual Pearson values (r) in Table 3.9. The major contributors to 

the variation of the axis, or those genera that are found at the extremes, were 

Aphelenchoides, Plectus, Prismatolaimus and Eudorylaimus. Of these genera 

Aphelenchoides and Plectus were the 2 that were most abundant at the high 

elevation/high horizon end of the gradient and were the genera that were most adapted to 

desiccation (as deemed by this study). This supports Hyman's (1951) findings that listed 

Plectus as characteristic of environmental extremes but negates the preliminary (October 

2001) findings for this species which indicated a decreased abundance with increasing 

elevation. Conversely, Prismatolaimus and Eudorylaimus were the 2 genera that were 

most abundant at the low elevation/low horizon end of the gradient and were the genera 

that were least adapted to desiccation (as deemed by this study). The preliminary 

(October 2001) study also found Prismatolaimus to be abundant only within the low 
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elevations, this supports the hypothesis that this species exhibits a generally low tolerance 

to desiccation. Powers et al. (1998) found Eudorylaimus to dominate relatively low 

elevations of -180m and below in the Antarctic, which supports the 2002 quantitative 

study but contradicts the preliminary (October 2001) findings. Therefore it is highly 

likely that Eudorylaimus spp. are relatively intolerant of frequent desiccation which is 

characteristic of higher altitudes. The remaining species had relatively low Pearson 

values for this gradient and thus fall somewhere between the 2 extremes in their ability to 

withstand desiccation. 

4.2.1.2 Tardigrades- The preliminary elevational surveys of the northern, coastal towns 

ofNain, Hopedale and Makkovik revealed varying trends. Nain showed a directly 

proportional relationship between elevation and species diversity having only 2 species in 

the low, 5 in the mid and 8 in the upper altitude (Table 3.3). Diphascon ramazzottii was 

highly abundant in the low site (71 specimens) and not nearly as abundant in the 2 higher 

sites. Macrobiotus hufelandi showed relatively high representation throughout the 

differing altitudes. As in Nain, the 2 highest elevations in Hopedale showed the greatest 

species diversity. Diphascon ramazzottii was not as abundant in Hopedale as it was in the 

lower elevations ofNain but instead showed a limited representation throughout the 

elevations. Makkovik produced fewer tardigrade species than both Nain and Hopedale. 

An inversely proportional relationship of species diversity and elevation was the trend for 

Makkovik as the greatest number of species was found in the lowest elevation (Table 

3.3). Minibiotus intermedius was the dominating tardigrade and was found only within 

the low elevation. Diphascon ramazzottii had an even further reduced abundance within 

Makkovik but, similar to Nain and Hopedale, was only found in the lower altitudes. 
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When the findings for each of the 3 northern towns were merged a trend of 

increased species diversity with increased elevation was evident. The low elevation 

yielded a total of 7 species, where the mid elevation yielded 9 species and the high 

elevation produced 13 species (Table 3.4). Additionally, D. ramazzottii was found in 

greatest abundance in the lower elevations below 25m. Minibiotus intermedius showed 

similar predominance within elevations below 25m. This seemed to suggest that D. 

ramazzottii and M intermedius were best suited to habitats at lower elevations. 

Macrobiotus hufelandi was found to be represented nearly evenly throughout the 3 

elevations of each community. 

These preliminary results suggested strong links between tardigrade distribution 

and elevation. However, these findings were preliminary and based largely on 

inconsistent sampling methods. Additionally, elevational trends found within the 

preliminary (October 2001) study were based upon extremely small representative groups 

(only 5 of the tardigrade species within the dataset were represented by more than 10 

specimens). Without larger specimen groups and more samples it was difficult to 

determine if these were actually ecological distribution differences related to elevation. A 

much higher degree of significance was given to the quantitative findings of the June and 

August, 2002 study. 

The quantitative analysis of elevational effects on tardigrade communities did not 

find any significant relationship within Mak:kovik and Hopedale (likely due to the smaller 

differences in successive elevations, see section 4.2.1 ). However, a fairly strong 

relationship was found regarding elevation and bryofaunal distribution within Nain. Axis 

3 of Figure 3.4 indicated an elevational gradient beginning with high altitude at the 
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bottom of the axis and moving to low altitude at the top of the axis. The r-squared value 

for axis 3 was the largest of the 3 main axes and thus it was the elevational gradient that 

explained the greatest amount of variability within the bryofaunal dataset ofNain. 

The species of tardigrade that contributed most to the variation of the elevational 

gradient (highly positive or negative Pearson values in Table 3.12) were Mesocrista 

spitzbergensis, M harmsworthi, M hufelandi and D. ramazzottii. Of these species M. 

hufelandi had the largest Pearson value (0.465), was represented by many specimens and 

was typically found only in the lower elevations. The species Mesocrista spitzbergense, 

M. harmsworthi and D. ramazzottii were typically found in the upper elevations but 

because they were less abundant they have relatively low Pearson values. The remainder 

of the tardigrade species found in Nain were represented by too few specimens to be 

useful in inferring elevational relationships. Macrobiotus hufelandi was found to be 

restricted to lower elevations while Mesocrista spitzbergensis, M. harmsworthi and D. 

ramazzottii were typical of higher elevations in the absence of M. hufelandi. The 

occurrence of M. harmsworthi in the higher elevations and M. hufelandi in the lower 

elevations was directly supported by the findings ofDastych (1980) in Poland and 

Wright (1990) in Britain. This elevational trend likely existed because the 3 high altitude 

species were better adapted to the harsh environment characteristic of higher altitudes, 

than was M. hufelandi, which was described by Wright (1990) as being a hygrophilic 

species incapable of :frequent desiccation. Both, Dastych's (1980) and Wright's (1990) 

studies were conducted in parts of the world which exhibited similar seasonal climate 

trends to those of Labrador, thus strengthening the distributional trends attributed to these 

tardigrades by this study. 
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The quantitative findings of this study revealed some similarities to the 

preliminary study of2001. For both studies M hufelandi was found to have fairly high 

representation within the lower elevations, a trend confirmed by Wright (1990) in Britain, 

and Mesocrista spitzbergensis was only found in the highest elevations. However, the 

largest population of D. ramazzottii (83 specimens) was found in the lowest elevation in 

Nain (October 2001) which contradicts the findings of the 2002 study that suggested a 

distribution limited to upper elevations. Therefore, the relationship shared between 

elevation and D. ramazzottii populations requires further investigation. Other 

discrepancies that existed between the preliminary and quantitative findings are relatively 

small and greater significance was placed on the findings from the quantitative analysis. 

4.2.1.3 Oribatid Mites- The quantitative analysis of elevational effects on the 

entire bryofaunal group did not find any significant relationship within Makkovik: and 

Hopedale (likely due to the small differences in successive elevations, see section 4.2.1 ). 

However, in Nain where elevation played a significant role in explaining the variability in 

the bryofaunal dataset, the oribatid mite group had a Pearson value very close to zero and 

was distributed fairly evenly across the elevational gradient. Therefore, general oribatid 

abundence was not greatly influenced by changing elevation. These finding support the 

conclusions ofSeyd eta/. (1996) in the mountains of Snowdonia, Britain who found that 

in the absence of highly invasive environmental factors (e.g. glaciation) small changes in 

elevation did not seem to have great effect on oribatid populations. However, since 

oribatid abundance throughout the elevations was relatively low, further investigation 

with larger samples may find that a distinct elevational pattern does exist for the 

bryophilous mites. 
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4.2.2 Moss Horizon/ Desiccation Tolerance 

The quantitative ecological study of 2002 was the first to determine the 

relationship of moss depth/horizon to the associated nematode, tardigrade and oribatid 

mite communities for Labrador as well as for Canada as a whole. Moss horizon was the 

environmental variable that accounted for the greatest amount of variability in the 

datasets. With the exception ofMakkovik, nematode, tardigrade and oribatid mite 

distributions within each site at each town were directly related to the vertical horizons 

within the moss sample. The different moss horizons (A,B and C) were directly 

correlated with variable amounts of moisture and thus the distribution of the bryofauna 

throughout the moss horizons is likely linked to a gradient of desiccation tolerance. 

4.2.2.1 Nematodes- Axis 1 ofFigure 3.1 and axis 2 ofFigure 3.2 were those axes 

that were strongly correlated with moss horizon/desiccation tolerance in Nain and 

Hopedale (respectively). As indicated by the r-squared values for axes 1 and 2 ofNain 

and Hopedale respectively a relatively large amount of the variability in the data set was 

explained by the desiccation tolerance gradient. In Hopedale and Nain a characteristic 

nematode community was determined to exist in the drier, upper horizons (A-B) that was 

distinctly different from the nematode genera typical of the lower, moister horizons (B­

C). Thus, the communities occurring at either end of this axis represented extremes in 

their abilities to tolerate desiccation (low to high tolerance). Because the B-horizon is 

transitional between the drier A-horizon and the relatively wet C-horizon, it is 

understandable that there is a degree of overlap in the B-horizon along the moss 

horizon/desiccation gradient. 
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With an understanding of the gradient represented by axis 1 and 2 in Figures 3.1 

and 3.2 respectively, specific abilities of the nematode genera to tolerate desiccation are 

determined by examining the individual Pearson values (r) in Table 3.9. In Nain, the 

genera that contributed the most to the variation of the axis/gradient were 

Aphelenchoides, Eudorylaimus, Plectus and Prismatolaimus. In Hopedale, the genera 

Aphelenchoides, Euteratocephalus, Monhystera 1, Plectus and Tylencholaimus 

contributed the most to explaining the axis/gradient. In both Hopedale and Nain the 

generaPlectus andAphelenchoides were typical ofthe dryer A-horizon and were seldom 

found in the lower C-horizon. This is directly supported by the findings of Overgaard­

Neilsen (1948), who described Aphelenchoides and Plectus as the 2 genera most typical 

of the upper moss horizons, and Hyman (1951) who found Plectus to dominate in 

environments most prone to desiccation. In Hopedale, the genera Euteratocephalus, 

Monhystera 1 and Tylencholaimus also had relatively large Pearson values for this axis 

and were also typically found in the uppermost horizons. The high degree of correlation 

of these genera with the upper, dryer moss horizons indicated a high degree of desiccation 

tolerance. 

More nematode genera were typical of the upper moss horizons for Hopedale than 

for Nain. As discussed in the section dealing with elevational effects on nematode 

distribution, desiccation tolerance is often directly correlated with elevation as well as 

with moss horizon. It is probable that Hopedale had more genera in upper moss horizons 

than Nain because elevation was not playing as great of a role in the variation explained 

by the axis/gradient. Thus, the sample hill in Hopedale, being much smaller than that of 

Nain was less affected by elevational interaction and more genera were likely capable of 
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inhabiting the upper moss horizons. fu Nain, Eudorylaimus and Prismatolaimus and in 

Hopedale, Labronema and Ogma were the genera typical of the lower horizons and it is 

believed that these genera exhibit a low degree of desiccation tolerance compared with 

the genera correlated with the upper most moss horizons. The predominance of members 

of the Dorylaimidae found in the lower moss horizons, where desiccation was less 

frequent, was also noted by Overgaard-Neilsen (1948). 

4.2.2.2 Tardigrades and Oribatid Mites- Axis 2 of Figure 3.4 and axis 3 of 

Figure 3.5 are those axes that were strongly correlated with moss horizon/desiccation 

tolerance in Nain and Hopedale (respectively). As indicated by the r-squared values for 

axes 1 and 2 ofNain and Hopedale respectively a relatively large amount of the 

variability in the data set was explained by the axes representative of desiccation 

tolerance. Hopedale and Nain revealed a characteristic bryofaunal community in the 

drier, upper horizons (A-B) that was distinctly different from that existing in the lower, 

moister horizons (B-C). Thus, the communities occurring at either end ofthis axis 

represent extremes in their abilities to tolerate desiccation (low to high tolerance). Again, 

the B-horizon being transitional between the drier A-horizon and the relatively wet C­

horizon is likely to show a varying degree of overlap along the moss horizon/desiccation 

gradient. 

Although the tardigrade species were represented by relatively few specimens and 

had Pearson values of low magnitude (Table 3.12), the following depth related trends 

were determined. fu Nain, all of the tardigrades species had distributions restricted to the 

lower moss horizons. Macrobiotus hufelandi, D. ramazzottii and H. convergens 

contributed the most to the variation, explained by the depth/desiccation axis, and were 
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typical of the lower moss horizons. Hallas (1978) would classify these species as less 

specialized bryophilous species based on their occurrence in the lower moss horizons. In 

Hopedale, the tardigrades accounted for a large amount of the variation caused by moss 

horizon. The species D. pingue, M. echinogenitus, M. hufelandi and Minibiotus 

intermedius were those with highly positive Pearson values and were typical only of the 

upper most moss horizon and would also be classified by Hallas (1978) as being the most 

specialized bryofauna. Dip has con ramazzottii, and M. harmsworthi were the tardigrade 

species that had Pearson values of very low magnitude and were fairly evenly distributed 

throughout the moss horizons. The species D. scoticum, Echiniscus sp. and Mesocrista 

spitzbergense were represented by too few specimens to have ecological trends inferred 

about them. 

The desiccation/horizon findings ofNain and Hopedale seemed to be in direct 

contrast. A majority of the tardigrades ofNain were restricted to the lower moss 

horizons, while the majority of species in Hopedale were either found in the upper moss 

horizons or exhibited cosmopolitan distributions throughout. A probable explanation for 

this is the greater total height of the sample hill in Nain and the greater distances between 

successive sampling altitudes (See section 4.2.1 ). Because environmental conditions tend 

to be more extreme at higher rather than lower altitudes, the effects of desiccation on the 

moss horizons in the upper elevations were probably more pronounced in the moss 

samples ofNain than those of Hopedale. Thus, elevation not being independent of 

desiccation tolerance was also playing a minor role in explaining this gradient. 

A desiccation tolerance gradient was evident for the tardigrades within Hopedale 

and Nain but no one species studied was more capable of tolerating desiccation than 
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another. Rather, the tardigrades as a group inhabited the parts of the moss that were most 

suitable to their moisture requirements. In Nain, where higher altitudes subjected the 

mosses to a harsher environment, the tardigrades were not found in the upper horizons, 

while the lower less harsh sample elevations in Hopedale allowed the occupation of 

tardigrades within the most productive and exposed A-horizon. 

Similar trends were found for the oribatid mite group. In Nain, the oribatid 

distributions were limited to the lower parts of the moss (B, C-Horizons), while in 

Hopedale oribatids had a relatively uniform distribution throughout the moss horizons. 

As was the case with the tardigrades, it is probable that variability of oribatids in moss 

horizons was being slightly affected by the harsher environmental extremes of higher 

sample altitudes in Nain. The oribatid mites in this study were directly confined to the 

moss horizons that met their requirements for moisture. In the lower elevations where the 

upper moss horizons were subjected to less harsh environmental extremes the oribatids 

were able to occupy variable moss depths. However, at higher altitudes where the upper 

moss horizons were more often subjected to desiccation as well as other climatic 

extremes, the oribatids were restricted to the lower more stable moss horizons. These 

findings are the first ever recorded relating oribatid mite distribution to moss depth. 

4.2.3 Seasonality 

The effect of seasonality on nematode, tardigrade and oribatid mite distributions 

was investigated during spring (June 2002) and summer (August 2002). The genera with 

highly negative Pearson values were found most/only during the summer sampling. The 

genera with Pearson values close to 0 were those genera that were constant throughout 

both seasons. The genera with highly positive Pearson values were found most/only 
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during the spring sampling. Seasonality was found to be significantly variable for the 

nematode dataset only in Hopedale, but was significantly variable in both Hopedale and 

Makkovik for the pooled bryofaunal dataset. 

4.2.3.1 Nematodes -Nematode genera that were most abundant during the spring 

season and had highly positive Pearson values (Table 3.9) were Eudorylaimus, 

Euteratocephalus, Daptonema, Achromadora, Monhystera 1 and Plectus. Few genera 

had greater representation in the summer than in the spring as indicated by the relatively 

low negative Pearson values. The genera that did exhibit greater summer abundance were 

Aphelenchoides, Tylencholaimus and Ogma. The genus Plectus was represented by a 

very large number of specimens in the spring and far fewer specimens in the summer. 

Plectus' large representation and distinct differences in abundance between the 2 seasons 

accounted for a very large portion of the variability in the axis. The genera having 

significant seasonal differences in abundance (Aphelenchoides, Tylencholaimus and 

Ogma) were represented by far fewer specimens and, thus, the seasonal trends were 

dwarfed by the effects of Plectus and other highly abundant genera. Therefore, even 

though the Pearson values for the genera more abundant in the summer were not 

relatively large they were still significant in the explanation of the seasonality gradient. 

Genera that had more even representation throughout the sampling seasons and Pearson 

values closer to 0 were Monhystera 2, Mononchus, Teratocephalus and Wilsonema. 

Generally, the results show that the abundance and richness of nematode genus 

was not constant throughout the 2 sample seasons. A majority of geqera had higher 

abundance in the early reproductive season rather than late, which suggested that these 

genera were more adapted to non-consistent and often harsh spring weather. Yeates 
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(1972), Popovici (1980), Banage (1966) and Bassus (1962) each found similar patterns of 

peaks in nematode abundance in early spring. It was determined that Plectus and 

Monhystera 1 were highly correlated with the upper, desiccation prone moss horizons. 

The abundance of these genera has now also been strongly correlated with an earlier, 

harsher growing season. These findings suggested that these genera are generally adapted 

to harsh environmental conditions. 

Sampling the fall and winter seasons in Labrador is difficult as fall is variable in 

length from year to year and harsh winters make accessing the sites difficult. However, 

sampling from these remaining seasons and repeating the entire procedure over several 

years would further clarify the seasonal relationship shared with nematode richness and 

abundance. The towns ofNain and Makkovik did not show significant season related 

patterns with regard to nematode distributions. This supports the opinions of Franz 

(1942), Neilsen (1949) and Cuthbert (1990) who found that seasonal patterns of nematode 

distribution and abundance were difficult to evaluate and that any such trends were often 

disputable. 

4.2.3.2 Tardigrades and Oribatid Mites - Only a few of the tardigrade species 

had abundances that were high enough to identify significant seasonal trends. The 

species D. ramazzottii, D. recamieri, Echiniscus sp., H convergens, Mesocrista 

spitzbergense and Minibiotus intermedius were represented by very few specimens in the 

dataset and must be studied further with regard to seasonal abundance. However, in both 

Hopedale and Makk:ovik M echinogenitus, D. pingue and D. scoticum were represented 

by a relatively large number of specimens and occurred predominantly in the summer 

samples. It is probable that these 3 species were most reproductively active during the 

94 



late spring to summer, a trend, which was enforced in this study by the discovery of a 

large number of M echinogenitus eggs in the summer samples and none in the spring 

samples. Macrobiotus harmsworthi was also represented by many specimens but had a 

relatively even seasonal abundance. This likely suggests that members of this species 

exhibited relatively constant reproductive rates throughout the 2 sample seasons. 

The seasonal analysis forM hufelandi revealed seemingly conflicting trends 

since it was most abundant in the spring samples ofMakkovik and in the summer samples 

of Hopedale. However, Kinchin (1985) found peaks in the abundance of M hufelandi in 

England during the spring and the autumn, which might be argued to support the findings 

of this study when the similarity between the Labrador coast's summer and England's 

autumn is considered. The predominance of tardigrade eggs from the species M. 

echinogenitus made it difficult to apply seasonal reproductive trends to the other species. 

Generally, this study revealed that some tardigrade species differed in seasonal abundance 

while others were more constant throughout the spring and summer sampling seasons. 

The seasonal relationships oftardigrades have not been well investigated (Kinchin, 1994), 

therefore, these findings add important contributions to the existing body of knowledge. 

However, the small number of other studies relating tardigrade populations to seasonality 

makes it difficult to assign any generalizations to the trends found during this study. 

Further investigations are required before generalizations can be made with respect to 

seasonal effects oftardigrade populations. 

Although the oribatid mites were represented by relatively low abundances they 

were found to have an even spring and summer abundance within Nain and Hopedale, 

while in Makkovik the mites exhibited summer numbers of nearly 4 times the spring ( 42 
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to 13 specimens). A higher summer abundance of oribatids was also found by Mitchell 

(1976) in the Canadian Rocky Mountains. The oribatids were not largely represented 

within the samples of this study and it is unknown whether these results were reflective of 

actual seasonal differences of mite abundances in Makkovik. 

4.2.4 Latitude 

Non-metric multidimensional analysis oflatitude did not show any significant 

differences between the various bryofauna of the 3. This was likely because there was a 

high degree of interaction and possible overshadowing of the latitudinal gradient by the 

other environmental variables measured. Also, not a large enough latitudinal gradient 

may have been represented between the study communities. There was also no direct 

latitudinal based evidence for variability in nematode, tardigrade and oribatid species 

richness. Because latitudinal trends discussed were based on generalizations made during 

only 2 sample periods, results should be further studied to insure validity. 

4.2.4.1 Nematodes- Table 3.10 showed that total nematode abundance was 

consistently lowest for both seasons in Makkovik (lowest latitude), while abundance more 

than doubled from June to August in Nain (greatest latitude) and was halved from June to 

August in Hopedale (middle latitude). The richness of genera among latitudes was 

generally quite even, however, a slight trend of decreasing genera richness with 

increasing latitude was observed (Table 3.10). Makkovik was represented by slightly 

more genera in both seasons than both Nain and Hopedale. 

Genera that showed fairly even representation throughout the latitudes were 

Achromadora, Eudorylaimus, Euteratocephalus, Labronema, Monhystera 1, Mononchus, 

Plectus, Prismatolaimus, Teratocephalus and Tylencholaimus. Genera that were more 
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typical of the lower latitudes were Hemicycliophora, Monhystera 2, Ogma and Tylenchus 

1. Finally, the genera that had greatest representation in the upper latitudes were 

Acrobeloides, Aphelenchoides, Bunonema and Tylenchus 2. None of these apparent 

trends were statistically significant so further investigation is required before any firm 

conclusions can be inferred regarding the latitudinal relationship between nematode 

abundance and richness. As indicated by Nicholas (1975), free-living nematode 

populations are quite widespread and may not be governed by factors such as latitude. 

4.2.4.2 Tardigrades and Oribatid Mites - Although statistical analysis did not 

indicate significant importance of a latitudinal gradient in the dataset for tardigrades and 

oribatid mites, some latitudinal trends were suggested in Table 3.13. Macrobiotus 

hufelandi was the only tardigrade to show abundance patterns consistent with a latitudinal 

gradient. The abundance of this species greatly increased as the latitude of the study sites 

increased. Also, within the October 2001 survey, D. ramazzottii dominated the 

specimens in Nain, had fewer numbers in Hopedale and even fewer in Makkovik. 

Diphascon ramazzottii also showed the same trend of decreased numbers in lower 

latitudes within the June and August samples, but was represented by far fewer 

specimens. Thus, it is possible that both M hufelandi and D. ramazzottii showed a 

degree of preference for higher latitudes which would support the findings of Nelson 

(1975, 1991) in Tennessee and North Carolina that showed tardigrade abundance 

increased with increasing latitude. The latitudinal trends for the remaining species were 

quite minor and variable between seasons; however, both the tardigrades and oribatids 

had the highest abundances in Hopedale (Table 3.13). 

97 



Thus, with the exception of M hufelandi and D. ramazzottii that showed 

consistently high abundance within only the upper latitudes, the distributions of 

tardigrades and oribatid mites did not show any significant relationship to latitude. 

Olszanowski and Niedbala (2000) also found that oribatid mite populations did not seem 

to be limited to latitudinal ranges in the Slonsk Nature Reserve, Poland. 

4.3 Canadian Distributions of Identified Specimens 

4.3.1 Nematodes 

All of the nematode genera identified within this study were new records for 

Labrador, Canada. Additionally, this was the first Canadian study to examine 

bryophilous nematodes, thus, each of the 17 genera were significant national fmdings 

from which a bryophilous nematode species list for Canada has been established 

However, all but 1 of the 17 genera identified within this study has been identified in 

studies on Canadian soils (Appendix 1 ). The genera Achromadora, Plectus, Wilsonema, 

Prismatolaimus, Tylencholaimus, Mononchus, Prionchulus, Aphelenchoides, Tylenchus, 

Acrobeloides and Bunonema have been previously found in British Columbia (Panesar et 

al., 2000, 2001) and Newfoundland (Cuthbert, 1990). Teratocephalus, Monhystera, 

Labronema, Rhabditis and Panagrolaimus have only been recorded for Canada within 

British Columbia (Panesar et al., 2000, 2001) and are new records for Atlantic Canada. 

The remaining genera, Euteratocephalus, Eudorylaimus, Ogma and Hemicycliophora 

have been previously found only in Newfoundland (Cuthbert, 1990). The 1 genus found 

in this study that has not been previously recorded for Canada in soils or mosses was 

Zeldia. 
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There was a high degree of similarity between the moss nematofauna of Labrador, 

Canada and the nematodes discovered in soil studies conducted by Panesar et al. (2000, 

2001) in British Columbia and Cuthbert (1990) in Newfoundland. This similarity may 

also exist for many other parts of Canada but until now these were the only 2 Canadian 

investigations to extensively survey terrestrial nematode communities. It is therefore 

difficult to make generalizations as to the nematodes that exhibit cosmopolitan, 

widespread or even limited ranges of distribution in Canada. 

There were also 5 nematode genera found in Labrador and British Columbia 

(Vancouver Island) but not from the island ofNewfoundland which seems odd given that 

British Columbia lies much further away from Labrador than does Newfoundland. This 

implied that for some unknown reason the 5 genera were better suited to survival in 

British Columbia and Labrador than to Newfoundland. It may have been that the insular 

nature ofNewfoundland prevented the spread of some nematodes from parts of mainland 

Canada. However, in all likelihood the discrepancies between Newfoundland and 

Labrador nematode genera were more a result of sampling methods than of differential 

habitat preference. It is probable that the genera common to both British Columbia and 

Labrador would also be found in Newfoundland but have simply not yet been discovered 

due to the very few studies which have been conducted on the island. 

Similarly, the nematodes found in both Newfoundland and Labrador but not in 

British Columbia may have resulted from differential adaptation to significantly variable 

environments between the east and west coasts of Canada or simply that too few studies 

have been conducted on the soil and moss nematodes to make generalizations regarding 

national distribution patterns. 
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4.3.2 Ta:rdigrades 

Of the 18 tardigrade species identified 10 have been described as having 

cosmopolitan distributions (Ramazzotti and Maucci, 1983; Mcinnes, 1994): E. wendti, M 

echinogenitus, M harmsworthi, M hufelandi, Minibiotus intermedius, H. convergens, H. 

dujardini, D. scoticum, D. pingue and Milnesium tardigradum; and 4 with widespread 

distributions (Ramazzotti and Maucci, 1983; Mcinnes, 1994): P. angustata, C. ornatus, 

H. microps and D. recamieri. Although these species have been described as having 

widespread to cosmopolitan distributions many have not been routinely encountered in 

Canada and as such are important national findings (Appendix 2). Echiniscus wendti and 

C. ornatus have only been recorded previously in Canada within parts of British 

Columbia (Kathman, 1990) and Newfoundland (Bateman and Collins, 2001). Platycrista 

angustata has been recorded in parts ofNew Brunswick (Argue, 1971, 1972, 1974) and 

Newfoundland (Bateman and Collins, 2001) and H. microps has only been recorded 

previously within Canada from Newfoundland (Bateman and Collins, 2001), which made 

this finding in Labrador a new record for mainland Canada. The species D. nodulosum 

and Mesocrista spitzbergensis do not have cosmopolitan or widespread distribution 

patterns but have been found throughout Canada. 

The final 2 species Proechiniscus hanneae and D. ramazzottii have small ranges 

of distribution and were new findings for mainland Canada. Proechiniscus hanneae has 

been found only in Greenland (Mcinnes, 1994) and recently in parts of Newfoundland 

(Bateman and Collins, 2001 ); however, its discovery in Labrador was not especially 

surprising because Labrador, being situated somewhat between both Greenland and that 

Newfoundland likely shares many species common to both. Bateman and Collins (2001) 
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suggest a wind related mode of dispersal for species Newfoundland has in common with 

Greenland, it may be similarly speculated that Greenland species, including 

Proechiniscus hanneae were dispersed to parts of Labrador by the same process. 

Diphascon ramazzottii has a range of dispersal that includes only parts of Europe (France, 

Italy and Russia). Collins and Bateman (2001) found 1 specimen of D. ramazzottii in 

Newfoundland but were unable to repeat this finding. It should be noted that D. 

ramazzottii was 1 of the 2 species that dominated the tardigrade specimens of the 2001 

samples (21% of 440 specimens) which was an unusual finding as this species has only 

previously been documented for Canada by 1 specimen in insular Newfoundland. The 

largest Labrador population of D. ramazzottii existed in Nain at low elevations (~30m). 

4.3.3 Bdelloid Rotifers 

Studies on Canadian bdelloid rotifers are extremely limited (See section 1.1.1 ). 

Therefore, however qualitative these preliminary findings add appreciably to the 

knowledge of Canadian bdelloids. The species Adineta gracilis has been previously 

recorded the most within Canadian studies from British Columbia to Newfoundland 

(Murray, 1911; Bateman, 1975), and is likely a widespread species for Canada. Adineta 

vaga and H. maculata have only been recorded within central and western Canada thus 

making these findings new records for eastern Canada and implying a widespread to 

cosmopolitan national distribution for these species. Conversely, the species H. lata lata, 

Adineta steineri, M plicata hirundinela, M multispinosa and M habita have all been 

recorded in Canada only within insular Newfoundland (Bateman, 1975), which made 

these Labrador findings new records for mainland Canada. Finally, M punctata and M. 

aculata were 2 species found in Labrador that were new records for Canada. Ricci (1987) 
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found the bdelloid genera Habrotrocha and Macrotrachela to be the 2 most widespread 

of the moss rotifers but these genera, to date, have a much smaller range of distribution in 

Canada (Murray, 1911; Bateman, 197 5). More studies are required to determine if any 

actual trends in Canadian rotifer distribution exist. 

4.3.4 Oribatid Mites and Collembolans 

All of the oribatid and collembolan genera identified in this study have been 

previously recorded within Canada but were new records for Labrador. The oribatid 

genera Epidamaeus, Camisia, Nothtus, Fuscozetes, Mycobates, Opiella and 

Trhypochthoniidae are represented in most of the Canadian studies on moss, soil and litter 

oribatids and are likely widespread throughout the country. Six of the remaining mite 

genera ( Cultroribula, Rhysotritia, Trimalaconothrus, Brachythonius, Sellnickochthonius 

and Limnozetes) have also been identified within a number of Canadian studies but are 

more limited in their degree of representation throughout the country than the widespread 

genera. Of these 13 widespread mite genera, Brachythonius has been found in British 

Columbia (Marshall, 1979), the Northwest Territories (Behan, 1978), Ontario (Marshall, 

1972) and Quebec (Marshall, 1968; Smith, 1978) but is a new record for eastern Canada. 

The last oribatid genus Xenillus has only previously been recorded in soils of Manitoba 

(Oswald and Minty, 1970) and was also a new record for eastern Canada. Finally, the 

collembolan genus Folsomia has been recorded previously in Canada only in 

Tuktoyaktuk, Northwest Territories and may have a distribution limited to northern 

environments. However, this hypothesis needs to be further investigated before validity 

can be determined. 
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4.4 Biotic Interactions 

Although direct observations regarding the interaction of the moss bryofauna were 

not conducted, it was possible to identify the species that were most positively correlated 

with one another and speculate possible biotic reasons for these relationships. The 2 

dominant bryofaunal communities that were typical oflow elevation/deeper moss 

horizons and high elevation/upper moss horizons are discussed below. 

The bryofauna that were most positively correlated with low elevation and low 

horizon depth (B-C horizons) were the nematodes Eudorylaimus, Prismatolaimus, 

Labronema and the tardigrade M hufelandi. Members of the genus Eudorylaimus are 

known to feed upon algae, protozoans and fungi (Goodey, 1963), Labronema may feed 

on other nematodes or algae and mosses (Goodey, 1951), while the feeding habits for 

Prismatolaimus are unknown. The tardigrade M hufelandi feeds upon nematodes, 

rotifers and other tardigrades (Kinchin, 1994). These bryofauna are likely to have an 

interconnected trophic structure, as they exist most commonly together in large numbers. 

It is probable that the predatory Labronema and M. hufelandi feed upon the smaller 

Prismatolaimus species as well as larval Eudorylaimus and Labronema species. 

Additionally, M hufelandi may also feed upon other members of its own species. 

The bryofauna typical of the higher elevations and upper moss horizons were the 

nematodes Plectus and Aphelenchoides and the tardigrade M harmsworthi. Plectus is 

thought to feed upon bacteria and small organic particles (Goodey, 1951; Bassus, 1962) 

while in addition to the majority ofthe plant parasitic members of the genus 

Aphelenchoides some also feed upon fungal hyphae or other nematodes (Goodey, 1963; 

Bassus, 1962). The tardigrade M harmsworthi feeds upon nematodes, rotifers and other 

103 



tardigrades. Therefore, the trophic relations within this exposed environment can be 

speculated with a relatively high degree of confidence, as there is such low species 

richness. It is highly likely that within this community M harmsworthi feeds on Plectus, 

Aphelenchoides and other members of its own species. It is also probable that many of 

the members within the genus Aphelenchoides are plant parasitic on bryophytes as well as 

vascular plants that grow in and around the mosses. 

These speculative findings are based only on highly correlated communities and 

are presented to exemplify possible biotic interactions and detail methods by which to 

evaluate such biotic relationships when direct observations cannot be made. Further 

research into other bryofaunal communities and direct observations of trophic habits are 

required to confidently understand the biotic relationships of these organisms. 

4.5 Assessment of Bryofaunal Systems as Biological Indicators 

Mosses have been previously evaluated as useful bioindication systems (Goodman 

et al., 1975). More recently, Steiner (1995a, b) found the bryofauna to be highly suitable 

bioindicating systems, specifically of airborne pollutants. Although this study 

predominantly recorded the baseline ecological trends of the moss faunal communities of 

Labrador it also produced information regarding the use of these systems as monitors of 

environmental stress. Certain species and genera were described on the basis of their 

ability to tolerate varying forms of environmental stress. Certain genera and species were 

found to be more adapted to varying extremes. For example, the nematode genera 

Plectus and Aphelenchoides and the tardigrade species D. pingue, M. echinogenitus and 

Minibiotus intermedius were found to be most tolerant to desiccation and were most 

commonly found in the upper moss regions (Horizon A), while the nematode genera 
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Eudorylaimus and Prismatolaimus, the tardigrade species D. ramazzottii and M 

harmsworthi and the oribatid mite group were less tolerant to desiccation and were 

typically found in the lower moss regions (Horizon C). Additionally, in certain cases a 

distinct community of organisms was described for each moss depth. Each of these 

findings contributes to the essential understanding of how these communities can be used 

as effective bioindicators. 

The tendency for stress tolerant bryofaunal to inhabit the upper moss horizons 

may be of key importance when using the moss invertebrates to monitor environmental 

disturbances. For example, when trying to determine the effects of air-borne pollutants 

on bryofaunal communities one might benefit from focussing on the bryofaunal 

community inhabiting the upper most moss horizon (A) as this is the portion of the moss 

that is most likely to be exposed to such pollutants. If the moss cushion was considered 

as a whole there would likely be less tendency to fmd pronounced pollutant related trends 

because the bryofaunal communities of the lower moss horizons, which are less affected 

by the air-borne pollutants, would have a diluting effect on the pollutant-related trends of 

the upper moss communities. In this regard, Steiner's (1995b) study on the effects of air 

pollution on moss meiofauna may have produced results of even greater significance if he 

had instead looked at the bryofaunal changes throughout the moss horizons and paid 

specific attention to the A-horizon communtiy. 

4.6 Conclusion 

With the exception of the bdelloid rotifers and collembolans which occurred in too 

few numbers, this study determined that the bryofauna do exhibit quantitative reactions to 

various environmental gradients. Future studies on the bryophilous collembolans and 
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mites would benefit by collecting larger moss samples than those collected in this study 

as the relative sizes of these bryofauna prevent them from reaching densities as high as 

the smaller meiofauna in small moss cores. Similarly, it was determined that when 

studying bdelloid rotifers every effort must be made to extract and identify the specimens 

while alive as prolonged storage in moist samples can lead to high mortality. 

Moss horizon/desiccation tolerance was found to be the environmental variable 

that explained the greatest amount of variability in the bryofaunal datasets. The moss 

fauna that exhibited the highest tolerance to desiccation were the nematode genera 

Plectus and Aphelenchoides and the tardigrade species D. pingue, M echinogenitus and 

Minibiotus intermedius. The bryofauna that seemed the least tolerant of desiccation and 

were typically found in the lower moss horizons were the nematode genera Eudorylaimus 

and Prismatolaimus, the tardigrade species D. ramazzottii and M hufelandi and the 

oribatid mite group. The moss fauna that were typical of higher elevations were the 

nematode genera Plectus and Aphelenchoides and the tardigrade species M harmsworthi, 

while those typical of lower elevations were the nematodes Prismatolaimus, 

Eudorylaimus and the tardigrade species M hufelandi and Mesocrista spitzbergense. The 

oribatid mite group did not show significant altitude related distribution patterns but did 

have a much greater abundance in the summer collection than in the spring. Most 

nematode genera and tardigrade species showed even seasonal representation or peaks in 

summer abundance. The tardigrade M echinogenitus had a much greater abundance of 

adult specimens and eggs in the late summer which likely suggests a summer/fall 

reproductive period for this species. No overall latitudinal trends were evident from the 
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analysis of the bryofaunal dataset, although, certain bryofauna showed distribution 

patterns which may have been partially reflective of a latitudinal gradient. 

In future uses ofthe bryofaunal biological indication system to monitor air 

pollution, the communities typical of the upper moss horizons should be given a high 

degree of attention and be separated from the rest of the moss cushion upon collection as 

they are the animals that are highly resistant to variable environments and are most likely 

to encounter airborne pollutants. 
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Appendix 1. Genera recorded by Canadian studies on soil and litter nematodes (including 
Labrador genera). 

Order Family Genus Area Found 
CHROMADORIDA Cyantholaimidae Achromadora BC (P ,M&B), NL 

(C), L (B) 
Ethmolaimus BC(P,M&B) 

Chromadoridae Punctodora BC(P,M&B) 
ARAEOLAIMIDA Bastianiidae Bastiania BC(P,M&B) 

Plectidae Chronogaster BC(P,M&B) 
Plectus BC (P,M&B), NL 

(C), L (B) 
Wilsonema BC (P ,M&B), NL 

(C), L (B) 
Teratocephalidae Euteratocephalus NL(C), L (B) 

Teratocephalus BC (P ,M&B), L (B) 
Diplopeltidae Cylindrolaimus BC(P,M&B) 

MONHYSTERIDA Monhysteridae Monhystera BC (P ,M&B), L (B) 
Eumonhystera NL(C) 
Monhysterella BC(P,M&B) 

Xylalidae Daptonema L(B) 
Steineria L(B) 

ENOPLIDA Ironidae Cryptonchus BC(P,M&B) 
Prismatolaimidae Prismatolaimus BC (P ,M&B), NL 

(C), L (B) 
Tripylidae Tripyla BC(P,M&B) 

DORYLAIMIDA Alaimidae Alaimus BC (P,M&B), NL 
(C) 

Aporcelaimidae Aporcelaimus BC(P,M&B) 
Aporcelaimellus BC (P,M&B), NL 

(C) 
Thonus elegans NL(C) 

Diptherophoridae Diptherophora NL(C) 
Dorylaimidae Discolaimus BC(P,M&B) 

Dorylaimus BC{P,M&B) 
Eudorylaimus BC (P,M&B), NL 

(C), L (B) 
Mesodorylaimus NL(C) 
Prodorylaimus NL(C) 
Labronema BC (P,M&B), L (B) 
Pungentus BC(P,M&B) 
Tylencholaimus BC (P,M&B), NL 

(C), L (B) 
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Longidoridae Xiphinema BC (P ,M&B), ON 
(A,S &VS) 

Leptonchidae Leptonchus BC(P,M&B) 
Tylencholaimellus BC(P,M&B) 

Nygolaimidae Nygolaimus BC(P,M&B) 
Paravulvulus NL(C) 

MONON CHID A Mononchidae Clarkus BC(P,M&B) 
/otonchus BC(P,M&B) 
Miconchus BC(P,M&B) 
Mononchus BC (P,M&B), NL 

(C), L (B) 
Mylonchulus BC (P,M&B), NL 

(C) 
Prionchulus BC (P,M&B), NL 

(C), L (B) 
TYLENCHIDA Aphelenchidae Aphelenchus BC(P,M&B) 

Aphelenchoididae Aphelenchoides BC (P,M&B), NL 
(C), L (B) 

Criconematidae Criconema BC(P,M&B) 
Criconemoides ON(L&M),Q 

@,D&F) 
Neocrossonema NL(C) 
Paratylenchus Q (B,D&F) 

Neotylenchidae Deladenus NL(C) 
Nothocriconemella NL(C) 
Ogma NL (C), L (B) 
Seriespinula NL(C) 

Anguinidae Ditylenchus BC (P,M&B), NL 
(C) 

Tylenchidae Psilenchus BC (P,M&B) 
Tylenchus BC (P,M&B), NL 

(C), L (B) 
Tylenchorhynchus ON (L&M), PEl 

(E&K) 
Coslenchus NL(C) 
Malenchus NL(C) 

Pratylenchidae Pratylenchus ON(L&M), Q 
(B,D&F), PEl 
(E&K), NL (C) 

Hirschmanniella NL(C) 
Heteroderidae Heterodera ON(L&M) 

Meloidogyne ON(L&M),Q 
{B,D&F) 
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Hemicycliophoroidea Hemicycliop_hora NL (C), L (B) 
Hoplolaimidae Helico!Jl].enchus Q(B,D&F) 

Rotylenchus ON(L&M) 
RHABDITIDA Cephalobidae Acrobeles BC(P,M&B) 

Acrobeloides BC (P ,M&B), NL 
(C), L (B) 

Cephalobus BC (P,M&B), NL 
(C) 

Eucephalobus NL(C) 
Chiloplacus BC (P,M&B) 
Zeldia L(B) 

Bunonematidae Bunonema BC (P,M&B), NL 
(C), L (B) 

Diplogasteridae Micoletzky NL(C) 
Rhabditidae Protorhabditis BC(P,M&B) 

Rhabditis BC (P ,M&B), L (B) 
Panagrolaimidae Panagrolaimus BC (P ,M&B), L (B) 
Steinemematidae Steinernema BC(H,F&W) 

Location: Recorded from: 
BC = British Columbia B = Boeckner (current study) 
L =Labrador B,D&F =Belair et al., 2001 
NL =Newfoundland and Labrador C = Cuthbert, 1990 
ON =Ontario 
PEl = Prince Edward Island 
Q = Province of Quebec 

E&K = Edwards and Kimpinski, 1997 
H,F&W =Hayes et al., 1999 
L&M = Little and Maun, 1997 
P ,M&B = Panesar et al., 2000 
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Appendix 2. Species recorded by Canadian studies on the terrestrial tardigrades 
(including Labrador genera, adapted with permission from Bateman and Collins, 2001). 

Heterotardigrada Species 

Bryochoerus intermedius 
(Murray,l910) 
Bryodelphax parvulus Thulin, 
1928 
Echiniscus bisetosus Heinis,1908 
E. canadensis Murray, 1910 
E. horningi Schuster & 
Grigarick, 1971 
E. maucci Ramazzotti, 1956 
E. merokensis Richters, 1904 
E. oihonnae Richters, 1903 
E. quadrispinosis Richters, 1902 
E. reymondi Marcus, 1928 
E. spiniger Richters, 1904 
E. sylvanus Murray, 1910 
E. wendti Richters, 1903 
Hypechiniscus gladiator 
(Murray, 1905) 
Proechiniscus hanneae 
(Petersen, 1951) 
Pseudechiniscus alberti Dastych, 
1987 
P.goedeni Grigarick, 

Mihelcic, & Schuster, 1964 
P. suillus (Ehrenberg, 1853) 
Testechiniscus laterculus 

(Schuster, Grigarick, & 
Toftnei, 1980) 
T. spinuloides (Murray, 1907) 
T. spitzbergensis (Scourfield, 
1897) 

Eutardigrada Species 
Dactylobiotus ambiguus 
(Murray, 1907) 
D. dispar (Murray, 1907) 
Macrobiotus areolatus Murray, 
1907 
M bondavilli Manicardi, 1989 
M crenulatus Richters, 1904 

(=Mdentatus Binda, 1974) 
M echinogenitus Richters, 1904 
M furciger Murray, 1906 
M harmsworthi Murray, 1907 
M cf. hufelandi Shultze, 1833 

M montanus Murray, 1910 
M. occidentalis Murray, 1910 
M richtersi Murray, 1911 
M tenuis Binda & Pilato, 1972 

Area Found 

BC(M) 

BC(M) 

BC(M) 
BC(M) 
BC(K&D) 

NB (A),BC (K&D) 
NF (B&C), NWT (W&K) 
BC(M) 
BC(K&D) 
BC (M-named by MARCUS) 
NB(A) 
ON(M) 
NF (B&C), BC (M, K&D), L (B) 
NB (A), BC (R, K&D) 

NF (B&C), L (B) 

YU(D) 

BC(K&D) 

NB (A),BC (K&D), NWT (W&K,VR2) 

BC(K&D) 

NB(A) 
NWT(W &.K, VR1,2) 

Area Found 
NB(A) 

NWT(VR) 
NB (A), ON (M), SK (P), BC (M,K), RM (M) 

YU(MA) 
BC(K) 

NB (A), ON (M), BC (M,K), L (B) 
NB(A) 
NF (B&C), NB (A), ON (M), BC (K), NWT (VR1) , L (B) 
NF (B&C), NB (A), Q (1), ON (M), BC (R,M,K), RM(M), 
L(B) 
NF (B&C), NB (A) 
BC(M) 
NB (A), Q (1), BC (K) 
SA(P) 
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Distribution Pattern 
According to RAMA.zzorn 
and MAuca 1983, 
and MciNNES 1994 
rare 

widespread? 

holarctic, widespread 
N.Amer. 

N.Amer. 
widespread 
widespread 
cosmopolitan 
Can-BC 
widespread 
Can-ON 
cosmopolitan 
widespread 

Gmlnd 

N.Amer.-Yukon 

cosmopolitan 

cosmopolitan 
Can-BC 

Eur, N.Amer. 
holarctic 

Distribution Pattern 
cosmopolitan 

cosmopolitan 
cosmopolitan 

Can.- Yukon 
Eur. N.Amer. 

cosmopolitan 
widespread 
cosmopolitan 
cosmopolitan 

cosmopolitan 
cosmopolitan 
Eur, N. Amer. 



M tonollii Ramazzotti, 1956 NB(A) Bur, N. Amer. 
M virgatus Murray, 1910 ON (M), BC (M) Bur, N.Amer. Aust. 
M willardi Pilato, 1977 SA(P) Bur, N.Amer. 
Minibiotus intermedius (Plate, NF (B&C), NB (A), ON (M), BC (K), L (B) cosmopolitan 
1888) 
M. lazzaroi Maucci, 1986 BC(K) Bur, N.Amer. 
Murrayon dianeae (Kristensen, NF (B&C), NWf, (VR 1·2) Grnlnd,NWf 
1982) 
M hibernicus (Murray, 1911) NB (A), BC (K) Bur, N.Amer. 
M pullari (Murray, 1907) NB(A) widespread 
Microhypsibius (Thulin, 1928) NF(B&C) Burope,Greenland, Japan 
sp. 
Pseudodiphascon arrowsmithi BC(K) 

Kathman & Nelson, 1989 
Amphibolus smreczynskii NWf(W) Bur, Can-NWf 
(Weglarska, 1970) 
A. weglarskae (Dastych, 1972) BC (K), NWf (VR2) Bur, N.Amer. 
Calohypsibius ornatus* NF (B&C), BC (K), L (B) widespread 
(Richters, 1900) 
Hypsibius arcticus Murray, 1907 WC (M), BC (M), ON (M) cosmopolitan 
H. convergens (Urbanowicz, NF (B&C), NB (A), BC (K), NWf (VR1 ,2), L (B) cosmopolitan 
1925) 
H. dujardini (Doyere, 1840) NF (B&C), NB (A), NWf (VR1 ,2), L (B) cosmopolitan 
H. microps Thulin, 1928 NF (B&C), L (B) widespread 
H. pallidus Thulin, 1911 NF (B&C), NB (A), Q (I) cosmopolitan 
Isohypsibius bertolanii YU(MA) Can,-Yukon 
Manicardi, 1989 
L canadensis (Murray, 1910) BC (M), NWf (VR2), RM (M) Asia, N,Amer. 
L granulifer (Thulin, 1928) NWf(VRI,2) cosmopolitan 
L lunulatus (Iharos, 1966) NF (B&C), BC (K), YU (MA) widespread 
L papillifer (Murray, 1905) NWf(VR1,2) cosmopolitan 
L papillifer bulbosus (Marcus, NWf(VR1,2) cosmopolitan? 
1928) 
L prosostomus (Thulin 1928) NF(B&C) widespread 
L sattleri (Richters, 1902) NF (B&C), NB (A), BC (M,K), RM (M) cosmopolitan 

(=L bakonyensis (Iharos, 
1964)) 
L schaudinni (Richters, 1909) NF (B&C), Q (1), NWf (VR2) widespread, 

NWf(VR\2) 
cosmopolitan 

L tetradactyloides (Richters, cosmopolitan 
1907) 
L tuberculatus (Plate, 1888) NB (A),BC (M) widespread 
L woodsae Kathman, 1989 BC(K) Can-BC 
Ramazzottius baumanni BC(K) NZ,Amer. 
(~zotti, 1962) 
R. oberhauseri (Doyere, 1840) NB (A), Q (1), BC (M,K) cosmopolitan 
R. sp NF(B&C) 
Diphascon (Adropion) belgicae NB (A), BC (K) widespread 
(Richters, 1911) 
D(A.) modestum Binda, Pilato & BC(K) Bur, Can.-BC 
Dastych, 1984 
D(A.) prorsirostre Thulin, 1928 NF (B&C), NB (A), BC (K) widespread 
D.(A.) scoticum Murray, 1905 NF (B&C), NB (A), RM (M), BC (M,K), L (B) cosmopolitan 
D.(Diphascon) alpinum Murray, ON (M), RM (M) cosmopolitan 
1906 
D. (D.) bullatum Murray, 1905 NB(A) widespread 
D. (D.) burti Nelson, 1991 NB (A- named by N) Can-NB 
D. (D.) chilenense Plate, 1888 RM(M) cosmopolitan 
D. (D.) iltisi (Schuster & BC(K) Bur, N.Amer., Asia 
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Grigarick, 1965) 
D. (D.) nodulosum (Ramazzotti, 
1957) 
D. (D.) oculatum vancouverense 
(Thulin, 1907) 
D.(D.) pingue (Marcus, 1936) 

(including brunsvicensis) 
Argue, 1972) 
D. (D.) ramazzottii Robotti, 1970 
D.(D.) recamieri Richters, 1911 
D. (D.) rugosum (Bartos, 1935) 
D. (D.) tenue Thulin, 1928 
D. behanae Dastych, 1987 
Hebesuncus conjungens (Thulin, 
1911) 

NF (B&C), NB (A), BC (K), L (B) 

BC(M) 

NF (B&C),NB (A), BC (K), L (B) 

NF (B&C), L (B) 
BC (K), NWf (VR2), L (B) 
NB(A) 
Q(l) 
YU(D) 
NF(B&C) 

BC(K) 

NZ, N.&C.Amer. 

Eur, N.Amer. 

cosmopolitan 

Europe 
widespread 
Eur., Can -NB 
Eur, Can-Q 
Eur, Can-Yukon 
widespread 

Eur, N.& C.Amer. Itaquascon pawlowskii 
Weglarska, 1973 
Mesocrista spitzbergense 
(Richters, 1903) 
Platicrista angustata (Murray, 
1905) 

NF (B&C), NB (A), BC (K), L (B) 

NF (B&C), NB (A), L (B) 

Eur,Afr,NA 

widespread 

BC(K) P. cheleusis Kathman, 1990 
Mi/nesium tardigradum Doyere, 
1840 

NF (B&C), NB (A), BC (R, K) Q (I), ON (M), L (B) 
Can-BC 
cosmopolitan 

Location: 
BC = British Columbia 
L =Labrador 
NB =New Brunswick 
NL =Newfoundland and Labrador 
NWT =Northwest Territories 
ON =Ontario 
PEI = Prince Edward Island 
Q 
RM 
SA 
we 

=Province of Quebec 
=Rocky Mountains 
= Saskatchewan 
=West Coast 

Recorded from: 
A 
B 
B&C 
D 
I 
K 
K&D 
MA 
M 
N 
p 
R 
VRl 
VR2 

w 
W&K 

130 

=Argue (1971, 1972, 1974) 
= Boeckner (current study) 
=Bateman and Collins (2001) 
= Dastych (1987) 
= Iharos (1973) 
=Kathman (1990) 
= Kathman and Dastych (1990) 
= Manicardi (1989) 
=Murray (1910) 
=Nelson (1991) 
=Pilato (1977) 
= Richters (1908) 
=Van Rompu et al. (1991) 
= Van Rompu et al. (1992) 
= Wegalarska (1970) 
= Wegalarska and Kuc (1980) 
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Appendix 3. Nematode raw data (June and August, 2002). 

Site Town Season A B c D E F 
NA1A1 Nain Jun-02 0 0 0 0 0 0 
NA1B1 Nain Jun-02 0 0 0 0 0 0 
NA1C1 Nain Jun-02 2 1 1 7 0 1 
NA1A2 Nain Jun-02 0 0 0 0 0 0 
NA1B2 Naln Jun-02 0 0 0 0 0 0 
NA1C2 Nain Jun-02 0 0 0 2 0 2 
NA1A3 Nain Jun-02 0 0 0 0 0 0 
NA1B3 Nain Jun-02 0 0 0 0 0 1 
NA1C3 Nain Jun-02 0 0 0 0 0 2 
NA2A1 Nain Jun-02 1 0 0 0 0 11 
NA2B1 Nain Jun-02 10 5 0 0 0 1 
NA2C1 Nain Jun-02 0 5 0 0 0 11 
NA2A2 Nain Jun-02 0 0 0 0 0 17 
NA2B2 Nain Jun-02 2 13 0 0 0 7 
NA2C2 Nain Jun-02 0 4 0 0 0 3 
NA2A3 Nain Jun-02 0 0 0 0 0 5 
NA2B3 Nain Jun-02 0 0 0 0 0 0 
NA2C3 Nain Jun-02 4 1 0 0 0 1 
NA3A1 Nain Jun-02 0 0 0 0 0 0 
NA3B1 Nain Jun-02 30 0 0 0 0 2 
NA3C1 Nain Jun-02 3 0 0 0 0 10 
NA3A2 Nain Jun-02 44 0 0 0 0 2 
NA3B2 Nain Jun-02 1 9 1 0 0 2 
NA3C2 Nain Jun-02 5 6 0 0 0 1 
NA3A3 Nain Jun-02 0 6 25 4 0 9 
NA3B3 Nain Jun-02 39 19 0 0 0 7 
NA3C3 Nain Jun-02 10 3 0 0 0 0 
HA1A1 Hooe Jun-02 65 0 27 0 0 6 
HA1B1 Hope Jun-02 17 11 5 0 0 2 
HA1C1 Hooe Jun-02 13 1 2 0 0 6 
HA1A2 Hooe Jun-02 80 0 32 0 0 7 
HA1B2 Hope Jun-02 3 2 0 0 2 
HA1C2 Hope Jun-02 4 4 3 0 0 8 
HA1A3 Hope Jun-02 205 0 101 0 0 11 
HA1B3 Hope Jun-02 0 0 0 0 0 0 
HA1C3 Hope Jun-02 0 0 0 0 0 0 
HA2A1 Hope Jun-02 52 1 38 0 0 16 
HA2B1 Hope Jun-02 10 0 2 0 0 32 
HA2C1 Hooe Jun-02 25 5 0 0 0 5 
HA2A2 Hope Jun-02 116 2 0 0 0 23 
HA2B2 Hope Jun-02 17 3 0 0 0 10 
HA2C2 Hope Jun-02 14 5 2 0 0 2 
HA2A3 Hope Jun-02 n 3 2 0 0 14 
HA2B3 Hooe Jun-02 18 8 6 0 0 16 

G H I J 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 0 
0 0 1 
0 0 0 
0 0 4 
0 0 1 
0 0 11 
0 0 0 
0 0 2 
0 0 3 
0 0 0 
0 0 0 
1 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 1 
0 0 4 

K L M N 0 p Q R s u v w y Totals 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 1 0 0 15 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 1 0 0 1 4 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 
2 0 0 4 0 0 0 0 0 2 0 0 0 0 24 
0 0 0 4 0 0 0 0 0 2 0 0 0 0 22 
0 0 0 0 0 0 0 0 0 0 0 17 0 0 34 
1 0 0 10 0 0 0 0 0 8 3 0 0 0 44 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 
0 0 0 0 0 0 0 0 0 1 1 0 0 0 7 
0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 
0 0 0 0 0 0 0 0 0 0 0 0 0 25 31 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 34 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 15 
0 0 0 0 0 0 0 0 0 0 0 25 0 2 73 
7 0 0 0 0 0 0 0 0 0 0 1 0 6 27 
0 0 0 16 0 0 0 0 0 0 3 0 0 8 39 
0 0 0 0 0 0 0 0 0 0 0 32 0 1 78 
2 0 0 0 16 0 0 0 0 0 0 2 0 1 86 
0 0 0 0 6 0 0 0 0 0 1 0 0 0 21 
0 0 1 1 1 0 0 0 0 1 0 0 0 0 102 
1 0 0 0 5 0 0 0 0 0 3 0 0 0 48 
1 0 0 1 0 0 0 0 0 0 2 0 0 0 27 
0 0 0 0 4 0 0 0 0 0 2 0 0 0 136 
0 0 0 0 2 0 0 1 0 0 1 0 0 0 11 
0 0 0 0 2 0 0 0 0 0 1 0 0 0 24 
0 0 0 0 10 0 0 0 0 0 4 0 0 0 334 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 8 0 0 0 0 0 0 0 0 0 0 116 
0 0 0 5 8 0 0 1 0 0 0 0 0 0 58 
0 0 0 0 2 0 0 0 3 0 0 0 0 0 40 
0 0 0 0 0 0 0 0 2 0 0 11 0 0 154 
3 0 0 0 0 0 0 0 1 0 0 0 0 0 34 
2 0 0 0 0 0 0 0 0 1 0 0 0 0 26 
0 0 0 0 1 0 0 0 0 1 1 0 0 0 100 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 52 



Site Town Season A B c 0 E F G H I J K L M N 0 p Q R s u v w y Totals 
HA2C3 Hope Jun-02 1 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 
HA3A1 Hope Jun-02 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 
HA3B1 Hope Jun-02 0 2 3 2 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 
HA3C1 Hope Jun-02 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
HA3A2 Hope Jun-02 126 1 14 0 0 6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 149 
HA3B2 Hope Jun-02 14 2 2 0 0 1 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 22 
HA3C2 Hope Jun-02 7 3 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 13 
HA3A3 Hope Jun-02 448 10 15 0 0 25 0 0 20 4 0 0 0 6 0 0 0 10 4 0 1 0 0 543 
HA3B3 Hope Jun-02 7 7 0 0 0 2 0 0 2 9 0 0 0 8 0 0 0 0 0 0 0 0 0 35 
HA3C3 Hope Jun-02 12 5 1 0 0 13 13 0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 48 
MA1A1 Makk Jun-02 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
MA1B1 Makk Jun-02 10 1 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 20 
MA1C1 Makk Jun-02 0 0 4 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 
MA1A2 Makk Jun-02 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 
MA1B2 Makk Jun-02 4 1 1 0 0 3 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 13 
MA1C2 Makk Jun-02 2 1 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 8 
MA1A3 Makk Jun-02 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 3 
MA1B3 Makk Jun-02 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 4 
MA1C3 Makk Jun-02 0 1 0 1 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 6 
MA2A1 Makk Jun-02 2 0 3 0 0 7 0 0 1 1 0 0 0 6 0 0 0 0 0 0 0 0 0 20 
MA2B1 Makk Jun-02 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
MA2C1 Makk Jun-02 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 2 0 0 0 0 0 0 0 5 
MA2A2 Makk Jun-02 4 0 21 0 0 3 0 0 7 0 0 4 0 3 0 0 1 0 0 1 0 0 0 44 
MA2B2 Makk Jun-02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MA2C2 Makk Jun-02 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 3 
MA2A3 Makk Jun-02 1 1 1 0 0 13 0 0 0 0 0 0 0 4 12 0 0 0 0 0 0 0 0 32 
MA2B3 Makk Jun-02 4 1 0 0 0 6 0 0 0 1 0 0 0 6 3 0 0 0 0 3 0 0 0 24 
MA2C3 Makk Jun-02 0 1 8 0 0 3 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 15 
MA3A1 Makk Jun-02 1 0 3 0 0 8 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 15 
MA3B1 Makk Jun-02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MA3C1 Makk Jun-02 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 
MA3A2 Makk Jun-02 4 0 2 0 0 6 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 15 
MA3B2 Makk Jun-02 0 0 4 0 0 5 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 13 
MA3C2 Makk Jun-02 1 0 3 0 0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 9 
MA3A3 Makk Jun-02 11 0 5 0 0 10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 
MA3B3 Makk Jun-02 0 0 0 0 0 3 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 7 
MA3C3 Makk Jun-02 3 0 0 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 7 
NA1A1 Nain Aua-02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 10 
NA1B1 Nain Aug-02 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 5 0 0 11 
NA1C1 Nain Aua-02 0 16 3 0 0 2 0 0 3 1 0 0 0 24 0 2 2 0 0 1 0 1 0 55 
NA1A2 Nain Aug-02 48 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 4 59 0 0 113 
NA1B2 Nain Aug-02 12 6 0 0 0 2 0 0 1 3 0 0 0 15 0 0 0 0 0 0 3 0 0 42 
NA1C2 Nain Aug-02 2 19 0 0 0 6 0 0 0 11 0 0 0 0 0 15 1 0 0 0 0 0 0 54 
NA1A3 Nain Aug-02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
NA1B3 Nain Aug-02 4 0 0 4 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 11 
NA1C3 Nain Aua-02 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 6 
NA2A1 Nain Aua-02 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 44 0 0 78 



Site Town Season A B c D E F G H I J K L M N 0 p Q R s u v w y Totals 
NA2B1 Nain Aug-Q2 0 49 0 0 0 3 10 0 0 0 0 0 11 0 0 2 0 0 1 1 0 0 0 77 
NA2C1 Nain Aug-Q2 1 51 0 0 0 3 0 0 0 1 0 0 19 0 0 1 0 0 0 0 0 0 0 76 
NA2A2 Nain Aua-Q2 15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 19 0 0 36 
NA2B2 Nain Aua-Q2 3 0 0 0 0 6 0 0 0 2 0 0 17 0 0 0 0 0 0 0 0 0 0 28 
NA2C2 Nain Aug-Q2 2 10 3 0 0 17 3 0 1 1 0 0 17 0 0 0 0 0 0 3 0 0 0 57 
NA2A3 Nain Aug-Q2 9 1 1 0 0 2 0 0 0 0 0 0 11 0 0 0 0 0 9 4 67 0 0 104 
NA2B3 Nain Aug-Q2 1 18 3 0 0 10 5 0 0 0 0 0 98 1 1 1 0 0 1 1 3 0 0 143 
NA2C3 Nain Aua-Q2 3 115 1 0 0 10 0 0 1 2 0 0 25 0 1 0 0 0 0 1 1 0 0 160 
NA3A1 Nain Aug-Q2 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
NA3B1 Nain Aug-Q2 5 5 3 0 0 8 3 0 0 0 0 0 5 0 0 4 0 0 0 0 0 1 0 34 
NA3C1 Nain Aug-Q2 4 14 1 0 0 4 0 0 0 2 0 0 3 1 0 0 0 0 0 0 0 0 0 29 
NA3A2 Nain Aug-Q2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 68 0 0 73 
NA3B2 Nain Aua-Q2 37 0 0 1 0 1 0 0 0 13 0 0 0 6 0 0 0 0 18 4 26 0 0 106 
NA3C2 Nain Aug-Q2 2 5 0 0 0 8 4 0 2 7 0 0 3 1 0 0 0 0 1 4 0 0 0 37 
NA3A3 Nain Aug-Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 
NA3B3 Nain Aua-02 48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 2 15 0 0 73 
NA3C3 Nain Aug-02 2 0 0 0 0 7 0 0 0 9 0 0 0 0 0 3 0 0 0 0 2 0 0 23 
HA1A1 Hope Aug-Q2 16 0 1 0 0 3 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0 0 24 
HA1B1 Hope Aug-02 4 0 2 0 1 1 0 0 1 2 0 0 0 5 0 0 0 0 0 1 0 0 0 17 
HA1C1 Hope Aua-Q2 5 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8 
HA1A1 Hope Aua-Q2 48 0 7 0 0 0 0 0 5 1 0 0 0 2 0 0 0 0 0 4 5 0 0 72 
HA1B2 HOJ)E! Aug-Q2 107 2 5 0 0 9 1 3 2 10 0 0 0 26 0 0 0 0 0 0 0 2 0 167 
HA1C2 Hope Aug-Q2 9 1 0 0 0 1 0 0 1 0 0 0 0 3 0 0 0 0 0 0 0 0 0 15 
HA1A3 Hope Aug-Q2 73 0 18 0 0 3 0 0 5 1 0 0 0 15 0 1 0 0 0 0 7 0 0 123 
HA1B3 Hope Aua-02 33 4 1 0 0 8 2 1 1 5 0 0 0 10 0 0 0 0 0 1 0 0 0 66 
HA1C3 Hope Aug-Q2 10 1 0 0 0 0 3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 16 
HA2A1 Hope Aug-Q2 32 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 1 12 0 0 50 
HA2B1 Hope Aug-Q2 4 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 
HA2C1 Hope Aua-02 3 1 0 0 0 4 0 1 0 3 0 0 0 2 0 0 0 0 0 0 0 0 0 14 
HA2A2 Hope Aug-Q2 23 0 0 0 0 1 0 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0 35 
HA2B2 Hope Aug-Q2 4 0 0 0 0 1 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 9 
HA2C2 Hooe Aua-o2 1 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 4 
HA2A3 Hope Aug-02 22 2 8 0 0 0 0 3 1 2 0 0 0 6 0 1 0 0 0 2 84 0 0 131 
HA2B3 Hooe Aua-02 2 0 0 0 0 7 0 2 11 0 0 0 0 10 0 0 0 0 0 1 0 0 0 33 
HA2C3 Hope Aug-Q2 3 0 0 0 0 2 0 0 1 1 0 0 0 2 0 0 0 0 0 0 0 0 0 9 
HA3A1 Hope Aug-Q2 17 1 0 0 0 1 0 0 0 8 0 0 0 2 0 1 0 0 0 0 39 0 0 69 
HA3B1 Hope Aua-o2 20 2 2 0 0 1 0 0 0 2 0 0 0 4 0 0 0 0 0 0 0 0 0 31 
HA3C1 Hope Aug-Q2 9 1 2 0 0 1 0 0 4 0 0 0 0 4 0 0 0 0 0 0 20 0 0 41 
HA3A2 Hope Aua-Q2 19 0 8 0 0 0 0 2 0 6 0 0 0 3 0 1 0 0 0 0 204 0 0 243 
HA3B2 Hope Aug-Q2 16 1 1 0 0 0 1 0 1 6 0 0 1 9 0 0 0 0 0 0 0 0 0 36 
HA3C2 Hope Aug-02 8 0 1 0 0 0 0 0 6 0 0 0 1 3 0 0 0 0 0 0 0 0 0 19 
HA3A3 Hope Aua-Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
HA3B3 Hope Aua-Q2 13 0 0 0 0 1 0 0 0 3 0 0 1 3 0 0 0 0 0 0 0 0 0 21 
HA3C3 Hope Aua-Q2 12 0 0 0 0 0 1 1 0 1 0 0 0 3 0 0 0 0 0 0 0 0 0 18 
MA1A1 Makk Aug-Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MA1B1 Makk Aug-Q2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 
MA1C1 Makk Aug-02 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 4 



Site Town Season A B c D E F G H I J K L M N 0 p Q R s u v w y Totals 
MA1A2 Makk Aug-Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MA1B2 Makk Aug-Q2 103 1 0 0 0 1 0 7 0 2 0 0 0 7 0 0 0 0 2 3 1 0 0 127 
MA1C2 Makk Aug-Q2 5 0 3 4 0 0 1 7 0 0 0 1 0 12 3 0 0 0 0 0 0 0 36 
MA1A3 Makk Aua-o2 3 0 4 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 11 
MA1B3 Makk Aua-Q2 9 1 4 0 0 10 0 2 4 0 0 0 0 24 0 0 0 0 0 1 0 0 0 55 
MA1C3 Makk Aug-Q2 4 2 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 12 
MA2A1 Makk Aug-Q2 15 0 2 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 21 
MA2B1 Makk Aua-o2 8 1 0 0 0 0 0 0 0 0 0 0 0 37 0 2 1 0 0 0 0 0 0 49 
MA2C1 Makk Aug-Q2 5 1 1 0 0 2 0 0 0 0 0 0 0 6 0 1 0 0 0 0 0 0 0 16 
MA2A2 Makk Aug-Q2 3 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 7 
MA2B2 Makk Aua-o2 10 2 2 0 0 2 0 1 0 2 0 0 0 15 0 0 0 0 0 0 0 0 0 34 
MA2C2 Makk Aug-Q2 1 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 9 
MA2A3 Makk Aua·02 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
MA2B3 Makk Aug-Q2 16 0 0 0 0 1 0 0 0 6 0 0 0 0 0 1 1 0 0 0 0 0 0 25 
MA2C3 Makk Aug-Q2 0 2 1 0 0 2 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 8 
MA3A1 Makk Aua-o2 14 3 11 1 0 5 0 0 2 0 0 0 0 2 0 0 0 0 0 0 30 0 0 68 
MA3B1 Makk Aua-o2 4 0 5 0 0 1 0 0 2 0 0 0 0 1 0 0 1 0 0 0 0 0 0 14 
MA3C1 Makk Aug-Q2 0 0 1 0 1 3 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 8 
MA3A2 Makk Aug-Q2 5 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 8 
MA3B2 Makk Aug-Q2 4 0 1 0 5 1 0 0 1 1 0 0 0 2 3 0 0 0 0 0 0 0 0 18 
MA3C2 Makk Aua-Q2 1 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 4 
MA3A3 Makk Aug-Q2 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
MA3B3 Makk Aug-o2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MA3C3 Makk Aug-Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Totals 2503 497 452 29 12 588 50 33 132 165 8 13 265 389 34 52 16 17 57 96 807 4 51 6270 

Site Translation 
NA1A1 Naln, Hill Side A, Low Elevation, Horizon A, Sample 1 
MA2C1 Makkovik, Side A, Mid Elevation, Horizon C, Sample 1 

Code Taxa Code Taxa Code Taxa 
A Plectus I Euteratocephalus Q Mononchus sphagnii 
B Prismatolaimus J Teratocephalus R Daptonema 
c Monhystera 1 K Hemicyc/iophora s Bunonema 
D Labronema L Tylenchus 1 u Unknown 
E Ogma M Tylenchus2 v Aphelenchoides 
F Eudory/aimus N Achromadora w Zeldia 
G Wi/sonema 0 Achromadora larvae y Acrobe/oides 
H Monhystera 2 p Tylencholalmus 



Appendix 4. Tardigrade raw data (June and August, 2002). 

Site Town Season D. nod D. pin D.sco D. sp. D. tam D.rec E.sp. H. con M.ech M.huf M.har M. sp. M.spi M.int Eaa M. ech Unidetified Not Found Totals 
NA1A1 Nain Jun.02 0 
NA1B1 Nain Jun.02 3 3 
NA1C1 Nain Jun.02 6 6 
NA1A2 Nain Jun.02 0 
NA1B2 Nain Jun.02 2 2 
NA1C2 Nain Jun.02 9 9 
NA1A3 Nain Jun.02 0 
NA1B3 Nain Jun.02 2 1 3 
NA1C3 Nain Jun.02 1 1 
NA2A1 Nain Jun.02 0 
NA2B1 Nain Jun.02 6 6 
NA2C1 Nain Jun.02 2 2 
NA2A2 Nain Jun.02 0 
NA2B2 Nain Jun.02 1 1 
NA2C2 Nain Jun.02 1 1 
NA2A3 Nain Jun.02 0 
NA2B3 Nain Jun.02 2 2 
NA2C3 Nain Jun.02 1 1 
NA3A1 Nain Jun.02 0 
NA3B1 Nain Jun.02 0 
NA3C1 Nain Jun.02 0 
NA3A2 Nain Jun.02 0 
NA3B2 Nain Jun.02 1 1 2 
NA3C2 Nain Jun.02 0 
NA3A3 Nain Jun.02 0 
NA3B3 Nain Jun.02 1 5 6 
NA3C3 Nain Jun.02 0 
HA1A1 Hope Jun.02 .0 
HA1B1 Hope Jun.02 0 
HA1C1 Hope Jun.02 0 
HA1A2 Hope Jun.02 1 1 
HA1B2 Hope Jun.02 1 1 
HA1C2 Hope Jun.02 0 
HA1A3 Hope Jun.02 1 3 2 6 
HA1B3 Hope Jun.02 0 
HA1C3 Hope Jun.02 0 
HA2A1 Hope Jun.02 3 3 
HA2B1 Hope Jun.02 1 1 
HA2C1 Hope Jun.02 1 1 
HA2A2 Hope Jun.02 1 1 2 
HA2B2 Hope Jun.02 1 1 2 
HA2C2 Hope Jun.02 0 
HA2A3 Hope Jun.02 1 1 
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H. con M.ech M.huf M.har M.sP. M.spi M. int EggM. ech Unidetified Not Found Totals 
1 2 3 
1 1 
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0 
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1 1 
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Site Town Season D. nod D. pin D.sco D. sp, D. tam D.rec E.sp. H. con M.ech M.huf M.har M.sp. M.spi M.int Egg M. ech Unidetified Not Found Totals 
NA2A1 Nain Aug. 02 0 
NA2B1 Nain Aug. 02 1 1 
NA2C1 Nain Aua. 02 1 1 
NA2A2 Nain Aug.02 0 
NA2B2 Nain Aug.02 1 3 4 
NA2C2 Nain Aug.02 2 2 
NA2A3 Nain Aua.02 0 
NA2B3 Nain Aug.02 0 
NA2C3 Nain Aug.02 2 1 3 
NA3A1 Nain Aug. 02 0 
NA3B1 Nain Aug. 02 3 3 
NA3C1 Nain Aug. 02 1 1 
NA3A2 Nain Al.lg. 02 3 3 
NA3B2 Nain Aug. 02 1 1 2 
NA3C2 Nain Aug. 02 4 5 1 1 11 
NA3A3 Nain Aug.02 2 2 
NA3B3 Nain Aua.02 0 
NA3C3 Nain Aug.02 0 
HA1A1 Hope Aug.02 0 
HA1B1 Hope Aug. 02 0 
HA1C1 Hope Aug.02 0 
HA1A2 Hope Aug.02 0 
HA1B2 Hope Aug.02 0 
HA1C2 Hope Aug.02 0 
HA1A3 Hope Aug.02 0 
HA1B3 Hope Aug. 02 0 
HA1C3 Hope Aug.02 0 
HA2A1 Hope Aug.02 0 
HA2B1 Hope Aug. 02 0 
HA2C1 Hope Aug.02 0 
HA2A2 Hope Aug. 02 0 
HA2B2 Hope Aug.02 0 
HA2C2 Hope Aug.02 0 
HA2A3 Hope Aug. 02 0 
HA2B3 Hope Aug. 02 0 
HA2C3 Hope Aug.02 0 
HA3A1 Hope Aug.02 0 
HA3B1 Hope Aug.02 0 
HA3C1 Hope Aug.02 0 
HA3A2 Hope Aug.02 0 
HA3B2 Hope Aug.02 0 
HA3C2 Hope Aug.02 1 1 
HA3A3 Hope Aug.02 1 1 
HA3B3 Hope Aua.02 0 
HA3C3 Hope Aug. 02 3 3 
MA1A1 Makk Aug. 02 0 
MA1B1 Makk Aug. 02 0 
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Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 

Season D. nod D. pin D.sco D. sp. D. ram D. rae E.sp. H. con M. ech 
Aug.02 
Aug. 02 
Aug.02 4 1 
Aug.02 
Aug. 02 
Aug.02 
Aug.02 2 
Aua.02 
Aug. 02 
Aug. 02 
Aug.02 
Aug.02 
Aug. 02 
Aug. 02 1 1 3 
Aug. 02 2 2 8 
Aug. 02 1 
Aug.02 2 
Aua. 02 
Aug. 02 
Aug.02 2 
Aua.02 
Aug.02 1 
Aug. 02 
Aug.02 2 
Aua.02 

4 4 8 2 2 2 4 3 22 

Translation 
Nain, Hill Side A, Low Elevation, Horizon A, Sample 1 
Makkovik, Side A, Mid Elevation, Horizon C, Sample 1 

Translation 
Dlphescon nodulossum 
Dlphescon pingue 
Dlphescon scot/cum 
Diphescon species 
Diphescon ramezzottii 
Dlphascon recamieri 
Echiniscus species 
Hypsibius convergens 
Macrobiotus echinogenitus 
Macrobiotus hufelandi 

Code 
M.har 
M.sp. 
M.spi 
M.int 
EggM. ech 

Translation 
Mecrobiotus harmsworthi 
Macrobiotus species 
Mesoctista spitzbergense 
Mimbiotus intermedius 
Macrobiotus echinogenitus egg 

M.huf M.har M.sp. M.BDi M. int EaaM. ech Unidetifted Not Found Totals 
1 1 

0 
5 

1 1 
0 
0 

1 3 
0 
0 
0 
0 
0 
0 

1 6 
1 2 1 16 

1 3 5 
2 

1 1 2 
1 1 

1 3 
2 2 
3 4 

0 
2 4 

0 

65 19 2 6 1 11 2 32 189 



Appendix 5. Oribatid mite raw data (June and August, 2002). 

Site Town Seas A 8 c D E F G H I J K L M N 0 Totals 
NA1A1 Nain Jun.02 0 
NA1B1 Nain Jun.02 2 1 1 4 
NA1A2 Nain Jun.02 0 
NA1C2 Nain Jun.02 3 3 
NA1C3 Nain Jun.02 3 1 4 
NA1C3 Nain Jun.02 0 
NA2B1 Nain Jun.02 0 
NA2C2 Nain Jun.02 1 1 
NA2B3 Nain Jun.02 1 1 
NA3A1 Nain Jun.02 0 
NA3B1 Nain Jun.02 1 1 
NA3B3 Nain Jun.02 1 1 
HA1A2 Hope Jun.02 1 1 
HA1B2 Hope Jun.02 1 1 
HA1C3 Hope Jun.02 1 1 
HA2A1 Hope Jun.02 1 1 
HA2C1 Hope Jun.02 1 1 
HA2A2 Hope Jun.02 3 3 
HA2B2 Hope Jun.02 1 1 2 
HA2A3 Hope Jun.02 6 1 7 
HA2B3 Hope Jun.02 9 1 10 
HA2C3 Hope Jun.02 1 1 
HA3A3 Hope Jun.02 2 5 1 1 9 
HA3B3 Hope Jun.02 1 1 2 
MA1B1 Makk Jun.02 1 1 
MA1C1 Makk Jun.02 1 1 
MA1B2 Makk Jun.02 3 1 4 
MA1C2 Makk Jun.02 1 1 
MA1B3 Makk Jun.02 1 1 
MA1C3 Makk Jun.02 1 2 3 
MA2B2 Makk Jun.02 1 1 
MA2A3 Makk Jun.02 1 1 
MA3B3 Makk Jun.02 0 
NA1B1 Nain Aug.02 3 3 6 
NA1C2 Nain Aug.02 1 1 
NA1C3 Nain Aug.02 0 
NA2C2 Nain Aug.02 1 2 3 
NA3A1 Nain Aug.02 2 2 
NA3B3 Nain Aug.02 3 3 
HA1A1 Hope Aug.02 4 4 
HA1B1 Hope Aug.02 1 1 1 3 
HA1A2 Hope Aug.02 1 1 2 
HA1B2 Hope Aug.02 5 1 6 
HA1C2 Hope Aug.02 1 1 
HA1A3 Hope Aug.02 2 2 
HA183 Hope Aug.02 3 3 
HA1C3 Hope Aug.02 2 2 
HA2A1 Hope Aug.02 1 1 
HA2C1 Hope Aug.02 1 1 
HA2A2 Hope Aug.02 0 
HA282 Hope Aug.02 1 6 7 
HA2C2 Hope Aug.02 1 2 3 
HA2A3 Hope Aug.02 1 4 5 
HA283 Hope Aug.02 1 1 
HA381 Hope Aug.02 2 2 
HA3A3 Hope Aug.02 1 1 
HA3C3 Hope Aug.02 1 1 
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Site 
MA1A1 
MA1B1 
MA1C1 
MA1B2 
MA1C2 
MA1B3 
MA2A1 
MA2B1 
MA2C1 
MA2A2 
MA2B2 
MA2C2 
MA2A3 
MA2B3 
MA2C3 
MA3A1 
MA3B1 
MA3C2 
MA3A3 
MA3B3 
MA3C3 

Totals 

Site 
NA1A1 
MA2C1 

Code 
A 
B 
c 
D 
E 
F 
G 
H 

Town 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 
Makk 

Seas A B c D E F G H I 
Aug.02 1 
Aug.02 
Aug.02 1 
Aug.02 2 
Aug.02 1 
Aug.02 1 
Aug.02 1 1 
Aug.02 5 1 
Aug.02 2 
Aug.02 1 
Aug.02 5 
Aug.02 
Aug.02 1 
Aug.02 1 
Aug.02 1 
Aug.02 1 
Aug.02 1 2 
Aug.02 1 
Aug.02 1 
Aug.02 1 
Aug.02 1 1 

1 2 3 1 72 14 35 3 

Translation 
Nain, Hill Side A, Low Elevation, Horizon A, Sample 1 
Makkovik, Side A, Mid Elevation, Horizon C, Sample 1 

Taxa 
Brachychthonius 
Camisia 
Cultrorlbula 
Epidamaeus 
Fuscozetes 
Limnozetes 
Mycobates 
Nothrus 

Code 
I 
J 
K 
L 
M 
N 
0 

Taxa 
Oppiel/a 
Oripodoidea 
Rhysotrltia 
Sel/nlckochthonius 
Trhypochthonius 
Trlmalaconothrus 
Xenillus 
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J K L M N 0 Totals 
1 

1 1 
1 2 

2 4 
1 

1 2 4 
2 
6 
2 
1 
5 

1 1 
1 
1 
1 
1 
3 
1 
1 
1 
2 

21 1 1 11 1 1 2 169 










