
CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Without Author's Permission)

Hierarchical Web Services

Compositions: Visibility, Compensation and Monitoring

St. John's

by

©Debmalya Biswas

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

Aug 2005

Newfoundland

Abstract

Industry and researchers acknowledge Web services as being at the heart of next generation

distributed systems. The most promising feature of the Web services platform is its ability to

form new services by combining the capabilities of already existing services, i.e., its

composability. The existing services may themselves be composed of other services, leading

to a hierarchical composition. In this work, we focus on the visibility, compensation and

monitoring aspects for hierarchical compositions.

Most works on mechanisms to provide extended functionalities like transactions,

monitoring, security, etc. for Web services compositions consider single-level compositions

with an implicit assumption that they can be straightforwardly extended to hierarchical

compositions. As such, they fail to appreciate an important and unique aspect of hierarchical

compositions, the visibility aspect. For example, a service provider may not be aware of any

providers in the hierarchy other than its parent and children. On the other hand, a service

provider may be aware of all other providers in the hierarchy. Towards this end, we introduce

the notion of Spheres of Visibility (SoV). Basically, SoV provides an abstraction to capture

the upward/downward visibility aspects in a hierarchical composition. We expect other

compositional aspects like transactions, monitoring, security, etc. to build on this abstraction.

We discuss in detail what "compensation" means in a Web services context, analyze

proposed models and show how compensation can be implemented efficiently in hierarchical

compositions. We identify two aspects, Cost of Compensation (CoC) and End User

Involvement, missing from most of the proposed models. Current transaction models also

II

constrain the act of compensation to the original service provider. Given the ability to bind

with a service provider at run-time (dynamic binding), we believe that this is an unnecessary

restriction and outline a mechanism for provider independent compensation. We also

introduce the notion of side-effects in a hierarchical composition to determine if provider

independent compensation is possible for a given scenario. Finally, we outline a

compensation mechanism for hierarchical compositions incorporating the above aspects

while conforming to the visibility restrictions modeled as So V.

With respect to monitoring, we focus on capturing the state of a hierarchical Web services

composition at any given point of time (snapshot). Such information is useful not only for

reporting the current status to the end-user but also for answering specific queries related to

the execution. Analogous to distributed systems, capturing the state of a hierarchical Web

services composition is difficult because of the absence of a global observer, inherent non

determinism, unexpected communication delays, etc. In addition, for Web services

compositions, the "components" of the distributed system may not be known in advance (due

to dynamic binding). We discuss in detail how some of the snapshot algorithms proposed in

literature can be adapted for hierarchical Web services compositions. Snapshots usually

reflect a state of the system which "might have occurred". We outline algorithms to acquire a

state that "actually occurred", from such snapshots. Finally, we discuss how the acquired

snapshots help us in answering execution status related queries.

lll

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. K. Vidyasankar. This work

would not have been possible without his guidance, support and ideas. I am grateful to him

for introducing me to the world of research and for always being there whenever I had

difficulties. I would like to thank him for the countless hours he spent in discussions, coming

up with suggestions to improve the work and proofreading drafts of this work.

I would like to thank my family (parents, sister and nephew) for their endless love,

understanding and faith which allowed me to stay focused during the course of my work.

I am thankful to my friend, Mahantesh, whose smiles and companionship have kept me

relatively sane for the last two years. I am grateful to Ms. Usha Vidyasankar for easing my

transition to a new country and for providing the homely atmosphere away from home. I am

thankful to Dr. Ananthanarayana V. S. for the lively discussions on both technical and non

technical aspects. I would also like to thank the reviewers, Dr. Munindar P Singh and Dr.

Jeffrey Parsons, for their comments which helped to improve the work in this thesis

considerably.

Special thanks to everyone in the Computer Science Department at Memorial University

for providing the perfect study environment, especially, Dr. Wolfgang Banzhaf, Dr. Ashoke

Deb, Ms. Radha Gupta and Ms. Elaine Boone for their encouragement and support. Last but

not the least, I would like thank the various sources within and outside the University for

partially sponsoring my studies at the University and participation at ICWS 2004 and

ICDCIT 2004.

iv

Table of Contents

Abstract ii

Acknowledgements iv

Table of Contents ... v

List of Figures vii

List of Tables ... ix

Chapter 1 Introduction 1

1.1 Web Services .. !

1.2 Web Services Compositions 3

1.3 Objectives of the Thesis 6

1.4 Structure of the Thesis 10

Chapter 2 Related Work 12

2.1 Visibility 12

2.2 Compensation 13

2.2.1 Background- Transactions 13

2.2.2 Related Work 18

2.3 Monitoring 21

2.3.1 Related Work 21

Chapter 3 Spheres of Visibility 25

3.1 Introduction 25

3.2 Definition 27

3.3 Implementation 34

3.4 Modeling Real-Life Scenarios Using SoV ... 37

Chapter 4 Compensation 40

4.1 Cost of Compensation (CoC) 40

4.2 End-User Involvement. 43

4.3 Side-Effects and Provider Independent Compensation 45

4.4 Sphere of Control for Compensation (SoCC)48

Chapter 5 Monitoring 61

5.1 State Transition and Composition Model.. 61

5.2 Synchronized Clock- Snapshot. 68

5.3 Distributed Snapshot Algorithm for Web services (DSW) 70

v

5.4 Actual State of the Composition ... 72

5.5 Taking Stock of the Situation ... 82

5.6 Customizations and Optimizations ... 87

Chapter 6 Conclusion ... 89

Bibliography ... 91

Appendix A XML Schema for Provider Independent Compensation .. 97

vi

List of Figures

Figure 1.1 Web services usage scenario ... 4

Figure 1.2 Typical Web services composition scenario ... 5

Figure 2.1 Hierarchical transaction processing infrastructure .. 17

Figure 3.1 Typical hierarchical composition .. 25

Figure 3.2 Strong reference example .. 28

Figure 3.3 Example composition scenario highlighting the downward visibility of A 30

Figure 3.4 Downward visibility pattern .. 30

Figure 3.5 Example composition scenario highlighting the upward visibilities ofF and G 31

Figure 3.6 Upward visibility pattern .. 32

Figure 3.7 Example composition scenario highlighting the SoY A of provider A 32

Figure 3.8 Graphical representation of the SoY A of provider A as given in Fig. 3.7 33

Figure 3.9 Assignment of strong references with respect to newly selected provider F 36

Figure 3.10 Weak reference assignment using visibility requirement propagation 36

Figure 3.11 Typical e-transaction scenario ... 38

Figure 4.1 Travel booking scenario A .. 43

Figure 4.2 Travel booking scenario B 43

Figure 4.3 Example hierarchical composition scenario49

Figure 4.4 Example composition scenario of Fig. 4.3 with visibility restrictions 55

Figure 4.5 Example composition scenario 58

Figure 4.6 Extended composition scenario with visibility restrictions 59

Figure 5.1 Composition infrastructure 63

Figure 5.2lnvoked provider lifecycle .. 63

Figure 5.3 Invoking provider lifecycle with respect to one invoked action ... 65

Figure 5.4 Sample Snapshot showing "what might have happened" 72

Figure 5.5 Execution showing what "might have actually happened" 72

Figure 5.6 Sample Snapshot 76

Figure 5.7 Recorded (t) and adjusted (tp) state of the root provider (Algorithm 1) 76

Figure 5.8 Recorded (t) and adjusted (tp) state of the provider PE······························ ·························· 76

Figure 5.9 Actual state corresponding to the snapshot in Fig. 5.6 (Algorithm 1) 77

Figure 5.10 Acquiring actual states of sub-trees 77

Figure 5.11 Sample Snapshot ... 79

vii

Figure 5.12 Hierarchical extension of the sample snapshot in Fig. 5.11 .. 79

Figure 5.13 Part of the composition schema with respect to the root provider 81

Figure 5.14 Recorded (t) and adjusted (tp') state of the root provider (Algorithm 2) 81

Figure 5.15 Actual state corresponding to the snapshot in Fig. 5.6 (Algorithm 2) 81

Figure 5.16 Exception scenario for the actual state in Fig. 5.15 82

viii

List of Tables
Table 1 Allowed states of the invoked action (at the invoking provider site) with respect to the state of

the invoking action 66

Table 2 Allowed states of the invoked action (at the invoked provider site) with respect to the state of

the invoking action ... 66

Table 3 Allowed states of the invoked action at the invoked provider site with respect to its state at

the invoking provider site 67

ix

1.1 Web Services

Chapter 1

Introduction

Web services are recognized as the next generation of distributed computing by both

academicians and industrial bodies. The World Wide Web Consortium (W3C) defines Web

Services as "a software application identified by a URI, whose interfaces and bindings are

capable of being defined, described, and discovered as XML artifacts. A Web service

supports direct interactions with other software agents using XML-based messages

exchanged via Internet-based protocols". Web services, also known in a broader context as

Service Oriented Architectures (SOA), are based on the assumption that the functionality

provided by an enterprise/provider is exposed as a service. The middleware aspects currently

addressed by Web services standards are:

Service Description: To be machine understandable, the description should describe

what a Web service can do, where it resides and how to invoke it. Basically, there are three

ways of describing a Web service: (1) Input/Output signatures: A Web service is described in

terms of the Input/Output signatures of its operations. This approach is analogous to W3C' s

Web Service Description Language (WSDL) [WSDL]. A WSDL description is characterized

by an abstract part, which is similar to the Interface Definition Languages (IDL) of

conventional middleware and a concrete part responsible for defining the protocol binding

among other things. (2) Pre and post conditions: Here also, Web services are described in

terms of their operations. However, each operation description is annotated with pre and post

2

conditions which allow capturing the semantic effects of the operations. The specification

synonymous with this approach is Web Ontology Language for Services (OWL-S) [OWL-S]

Service Profile. (3) Signatures with behavior: None of the above approaches consider the

relationships which might exist between operations belonging to a Web service. For example,

a payment receipt cannot be generated before an order has been received. As such, it is

essential to consider the behavioral aspects while describing a Web service. Such

descriptions are usually defined with the help of a state based formalism. In this work, we

follow the behavioral approach and assume that a Web service WS is defined as (based on

the notion of I/0 automaton [LT89]): WS = (Q, LfNp, EoUT, LfNT, i, F, 6), where Q is the set of

states, i is the initial state and F is the set affinal states. Each states e Q is defined as a set of

first order predicates which hold when the system is in state s. The actions are categorized as

internal and external actions. External actions are further classified as input and output

actions. Thus, :EINP, :EouT, :E1NT represent the sets consisting of input, output and internal

actions respectively. Finally, o e Q x :E x Q defines the set of labeled transitions where :E =

:EINP U :EouT U :E£NT. Basically, each action moves the system from a states to a states', also

referred to as the effect of the action.

Service Discovery: To allow services to be used by others, the service descriptions

are published in a service directory. Web services support service discovery both at design

time and at run-time (using dynamic binding techniques). Universal Description, Discovery,

and Integration (UDDI) [UDDI] is the current de-facto standard for service discovery. UDDI

provides a set of data structures and APis for publishing and querying services in a service

directory.

3

Service Interactions: Once the services have been described and discovered, the next

step consists of actually invoking the services and passing XML messages/data amongst

them. Current Web services implementations use the Simple Object Access Protocol (SOAP)

[SOAP] for service interactions. Basically, SOAP allows Remote Procedure Call (RPC) style

interactions by providing standardized mechanisms to turn a service invocation to an XML

message, exchange the message, and turn the XML message back to an invocation. SOAP is

often referred to as XML over HTTP. However, this is not entirely correct as the SOAP

specification does not specify any particular transport protocol. While the current

specification supports HTTP and SMTP, bindings to other transport protocols will probably

be defined in future versions of the specification.

Let us summarize the above discussion with the help of a simple Web services usage

scenario (Fig. 1.1). The steps below refer to the step numbers in Fig. 1.1.

1. The service provider prepares a WSDL document describing the services it provides.

The provider publishes (registers) the WSDL document with an UDDI registry.

2. The client (whenever it needs to get some work done) queries the UDDI registry. The

registry returns not only descriptive information about the service provider but also

information regarding where (endpoint URI) and how (protocol) the service can be invoked.

3. The client uses the above information to interact with the provider and get the work

done.

1.2 Web Services Compositions

Web Services Composition (WS-Composition) relates to the assembly of autonomous

components so as to deliver a new service out of the components' primitive services. Fig. 1.2

4

shows a typical Web services composition scenario. From the client's perspective, a

composite Web service implemented by invoking other primitive Web services is the same as

a basic Web service and can be described, discovered and invoked the same way. Thus, a

composite Web service can act as a basic Web service for further compositions leading to a

hierarchical composition. In this work, we focus on hierarchical compositions of Web

services.

UDDI Registry

3. Interact

SOAP calls

Figure 1.1 Web services usage scenario

Basically, there are two approaches to forming a composite Web service from a set of

primitive Web services:

Dynamic approach: Given a complex user request, the system comes up with a plan

to fulfill the request depending on the capabilities of available Web services at run time

[NM02], [WPSHN03], [RKM04]. [NM02] outlines a mechanism for the automated

composition of a set of services described using DAML-OIL (an earlier version of OWL-S).

The operational semantics (behavior) of the set of services are defined as Petri-nets. Given

this [NM02] states the problem of automated composition as follows: "Let A be a set of

5

atomic Web services and let N = (P;T;F;M) be the net that depicts the behavior of all the

services in A. Further, let q> represent the user's goal, and let M' be the marking that depicts

this goal inN. Then, al;a2, ... ;an is a sequential composition of atomic services that achieves

user goal q> iff al;a2, ... ;an is an occurrence sequence in the reachability analysis ofM' inN".

[WPSHN03] and [RKM04] consider automated composition of Web services using

Hierarchical Task Planning (HTN) techniques and Linear Logic (LL) theorem proving

respectively.

Figure 1.2 Typical Web services composition scenario

Static approach: Given a set of Web services, composite Web services are defined

manually combining their capabilities. Business Process Execution Language for Web

Services (BPEL) [BPEL] provides constructs for a composition designer to manually specify

the process model (composition schema) of a composite service in terms of the interactions

between already existing services (defined using WSDL).

6

In the static approach, the composite Web services are not defined in response to any

specific user request. Rather, they are defined to provide recurring, general services which

are usually requested by users. This is in contrast to the dynamic approach which is more

suitable for ad-hoc complex user requests. As evident, both the approaches have their own

pros, cons and research challenges. In this work, we consider a mix of the above approaches

where the composite services are defined statically but the binding with providers is

performed at run-time depending on the user request [CUKSOO]. In [CUKSOO], a composite

Web service is defined as a graph which may include service, decision and event nodes.

[CIJKSOO] allows run-time binding by attaching a search recipe to the definition of the

nodes. Thus, we assume the existence of a composition schema and the capability to select

and bind with service providers at run-time. Most of the work in this thesis deals with the

execution of a particular invocation of an existing (pre-defined) composition schema. The

services (providers), which do not depend on any other services (providers) for their

execution, are referred to as primitive services (providers). We also assume a WS

Coordination [WS-C] like infrastructure where there is a coordinator associated with each

service provider. The coordinator is responsible for all non-functional aspects related to the

execution of the provider such as monitoring and transactions. Whenever a provider A

invokes an action of another provider B, B' s coordinator registers itself as a sub-ordinate

coordinator with A's coordinator.

1.3 Objectives of the Thesis

Web services have been widely accepted as a platform to provide interoperability between

heterogeneous systems. To make them suitable for mission critical applications, recent work

7

has focused on mechanisms to provide extended functionalities like transactions, monitoring,

security, etc. for Web services compositions. In this work, we focus on the following aspects

of hierarchical Web services compositions:

1. Visibility: The visibility aspect relates to the knowledge, a provider has, about the rest

of the composition. Providers, in a hierarchical composition, vary in their visibility over the

rest of the composition. On one hand, the privacy and autonomy requirements of the service

providers restrict their visibility. On the other hand, functionalities such as transactions,

monitoring, security, end-user involvement, etc. call for ancestors having visibility over some

of their descendants and vice versa. Thus, we need a framework which allows efficient

specification and management of upward/downward visibility in a hierarchical composition.

Towards this end, we introduce the notion of Spheres of Visibility (So V) as an abstraction to

formally define and capture the upward/downward visibility aspects of the providers in a

hierarchical composition. Given that visibility is an inherent trait of hierarchical

compositions, we expect other compositional aspects like transactions, monitoring and

security to build on this abstraction. In particular, we show how So V can be used in

conjunction with the compensation mechanism. This part of the work appears in the

proceedings of the 3rd IEEE European Conference on Web Services (ECOWS 2005), Vaxjo,

Sweden.

2. Compensation: Transactions have long been considered as the preferred mechanism

for handling failures in distributed systems. Basically, transactions allow grouping individual

operations into logical units of work having the following ACID (Atomicity, Consistency,

Integrity, Durability) properties. Due to their heterogeneous, autonomous and long-lived

8

nature, traditional ACID based models are not sufficient for providing transactional

guarantee to Web services compositions. To overcome this limitation, many extended

transaction models have been proposed based on the concept of compensation (semantically

undoing the effects of an execution). However, current compensation based models fail to

acknowledge the following aspects:

(a) Cost of Compensation (CoC): They assume the existence of a pre-defined compensating

action (for each action) which is invoked in case the effects of the odginal execution need to

be canceled. They do not acknowledge the fact that there might be multiple options capable

of compensating the effects of the original execution with different associated costs (CoC).

This is especially true for a hierarchical composition where compensation may be possible at

different levels.

(b) End-user involvement: We argue that the whole compensation process including selection

of the optimal option is complex enough to warrant end-user involvement.

(c) Provider independent compensation: Most models consider compensation as a provider

dependent activity, i.e., compensation is the responsibility of the odginal service provider.

We believe that this is an unnecessary restdction given the presence of a state based

formalism (which allows us to dynamically determine the effects to be compensated) and the

ability to select a service provider (the compensation provider) at run-time.

Finally, we show how compensation can be realized in a hierarchical composition

incorporating the above aspects (compensation options at different levels, provider

independent compensation and end-user involvement), while conforming to the visibility

restdctions modeled as SoV. Part of the work on compensation appears in the proceedings of

9

the First International Workshop on Semantic Web Services and Web Process Composition

(SWSWPC 2004), CA, USA, LNCS Volume 3387, pages 69-80.

3. Monitoring: Monitoring is an inherent requirement of any distributed system. The

need for a monitoring mechanism is even more critical for Web services compositions

because of their complexity and long running nature. Their complexity makes them prone to

failures leading to the need for a monitoring mechanism to detect and report failures. The fact

that a composition may be running for a long time (even days) calls for the ability to report

its intermediate status. Monitoring Web services compositions, similar to distributed systems,

is difficult because of the following reasons:

No global observer: In fact, due to their privacy and autonomy requirements, even the

invoking service provider may not have visibility over the internal processing of the invoked

service providers.

Non-determinism: Web services compositions allow parallel composition of

processes. Also, Web services usually depend on external factors for their execution.

Therefore, it may not be possible to predict their behavior before the actual execution. For

example, whether a flight booking will succeed or not depends on the number of available

seats (at the time of booking) and cannot be predicted in advance.

Unpredictable communication delays: Communication delays make it impossible to

record the states of all the involved providers instantaneously. For example, let us assume

that provider A initiates an attempt to record the state of the composition. Then, by the time

the request (to record its state) reaches provider B and B records its state, provider A's state

might have changed.

10

Dynamic configuration: Dynamic binding allows the providers to be added

incrementally as the execution progresses. Although we assume static composition, aspects

such as provider independent compensation may require adding new services at run-time.

Thus, the "components" of the distributed system may not be known in advance.

OWL-S states the need for execution monitoring as follows "the ability to find out where

in the process the request is and whether any unanticipated glitches have appeared". In this

work, we only consider the first part, i.e., providing information about the current state of the

execution. The problem of "capturing the state of a system" has been studied extensively in

the area of distributed systems and the solutions are usually categorized as snapshot

algorithms. We discuss in detail how some of the snapshot algorithms proposed in literature

can be extended in a Web services context. Snapshots usually reflect a state of the system

which "might have happened". Snapshot algorithms capable of capturing a state which

"actually happened" depend on real-time timestamps or fully synchronized clocks. Towards

this end, we show how we can acquire a state of the composition which actually occurred

from a state which might have occurred. We conclude by discussing the different types of

execution related queries and how we can answer them using the captured snapshots. This

part of the work appears in the proceedings of the 6th VLDB Workshop on Technologies for

E-Services (TES-05), Trondheim, Norway.

1.4 Structure of the Thesis

The rest of the thesis is structured as follows. Chapter 2 presents a brief overview of the

challenges and related work with respect to each of the three aspects (visibility,

11

compensation and monitoring). In Chapter 3, we focus on the visibility aspect and introduce

the notion of SoV. We give a framework for the specification and implementation of SoV in

a hierarchical Web services composition. Chapter 4 deals with the compensation aspect. We

analyze the compensation based transaction models (proposed in literature) with respect to

the capabilities and limitations of a hierarchical Web services composition and propose a

mechanism for their efficient implementation. The monitoring aspect is considered in

Chapter 5. We provide extensions of some of the well-known snapshot algorithms to capture

the state of a hierarchical Web services composition (which might have occurred) and show

how we can acquire a state which actually occurred from such snapshots. Chapter 6

concludes the work and provides directions for future work.

12

Chapter 2

Related Work

We divide this chapter into three sections corresponding to the objectives of the thesis.

2.1 Visibility

So V extends the concept of Spheres of Control (SoC) [D78] initially proposed by Davies. A

SoC encapsulates entities sharing a similar set of properties or having a dependency relation.

Some of the dependency relations considered in [D78] are atomicity, commitment, resource

allocation, recovery, auditing and consistency. SoV logically groups the providers (and their

details) visible to a provider in a hierarchical composition. Mechanisms to create the SoC for

atomicity, commitment, recovery and so on, as outlined in [D78], assume tightly coupled and

non-autonomous systems. Given that the visibility aspect is an inherent trait of loosely

coupled and autonomous systems, So V can be considered as a complementary sphere to

extend the work in [D78] to loosely coupled and autonomous systems.

Later works have extended the initial concept to Spheres of Atomicity [AHOO] and

Commitment [SYOl]. [AHOO] utilizes the properties of the processes (pivot, compensatable

and retriable) in a Sphere of Atomicity to determine if the sphere, as a whole, guarantees

atomicity. [SYOl] applies the concept of SoC to Multi-Agent Systems (MAS) to structure

agents based on their commitment guarantees. However, the above works are not directly

related to the work presented in this thesis and we mention them for the sake of

completeness.

13

No other work that we are aware of has attempted to formalize the visibility aspect in a

hierarchical composition. Some of the works which have touched upon this aspect are: [M98]

identifies real-life scenarios where there might be a need to deviate from the inheritance of

access rights upwards through the hierarchy in a role-based access control. [CD96] discusses

the visibility aspect with respect to the visibility of the results of a sub-transaction in a nested

transactional system. [CD96] advocates the provision to be able to expose the results to a

particular ancestor to improve performance.

2.2 Compensation

2.2.1 Background - Transactions

A transaction can be considered as a group of operations encapsulated by the operations

Begin and Commit/Abort having the following properties (ACID):

Atomicity: Either all the operations are executed or none of them are executed. In

case of failure (abort), the effects of any operation belonging to the transaction are canceled

(roll-back).

Consistency: Each transaction moves the system from one consistent state to another.

Isolation: To improve performance, often several transactions are executed

concurrently. Isolation necessitates that the effects of such concurrent execution are

equivalent to that of a serial execution. This is achieved by ensuring that the intermediate

results of a transaction are not externalized until it completes successfully (commits).

Durability: Once a transaction commits, its effects are durable, i.e. , they should not be

destroyed by any system or software crash.

14

For example, let us consider the classic bank transaction tb which involves transferring

money from an account A to another account B. The transaction consists of two operations -

the first operation withdraws money from account A and the second deposits it into account

B. Needless to say, any partial execution of the transaction would result in an inconsistent

state. The atomicity property ensures that either both withdraw and deposit operations

succeed or both fail. The isolation property ensures that the changes to both accounts A and

B are not visible to other transactions until tb commits. The atomicity and isolation property

together ensure the consistency of the system (accounts A and B).

The software responsible for implementing transactions is often referred to as a

Transaction Manager (TM). We can divide the functionality of a TM into the following parts:

Concurrency Control Manager (CCM): The CCM ensures the isolation property.

Concurrency control mechanisms allow sharing the resources between concurrent

transactions in a controlled manner.

Recovery Manager (RM): The RM is responsible for providing the atomicity and

durability properties in the event of a failure or software/hardware crash.

Log Manager (LM): The LM is responsible for writing the execution details to stable

storage. While the log plays an important role in recovery, it is also used to analyze and

improve the system performance and efficiency.

While transactions have been accepted as the standard means to provide fault-tolerance and

reliability, new challenges arise when we try to apply them in a distributed setting.

Distributed transactions consist of operations which are executed at different sites connected

by a communication network. Distributed transactions originate at a site (also known as the

15

home/root site) gradually involving other sites where operations belonging to the transaction

are forwarded for execution. The main differences between transaction processing in a

centralized and distributed system are as follows:

1. Decision making: The decision to commit/abort a transaction is not restricted to a

single TM. Rather, a collective decision needs to be taken based on the decisions of the TMs

of all the involved sites.

2. Multiple points of failure: With centralized systems, the system is either working or

not working. However, in a distributed system we can have partial failures in the sense that

some of the involved sites fail while others are still working.

As such, we need a protocol which ensures that the same decision (commit/abort) is

consistently carried out at all the involved sites irrespective of partial failures. Two phase

commit (2PC) protocol (commercially standardized as the XA interface specification) is

probably the most widely accepted solution for the above problems. The TM at the home site

acts as the coordinator while the TMs at all other involved sites assume the role of

participants. As suggested by the name, 2PC protocol consists of two phases. In the first

phase, the coordinator TM sends a PREPARE message to all the participant TMs. Each

participant TM votes Yes/No depending on whether it wants to commit/abort. If the

coordinator TM receives "Yes" from all of its participant TMs, then it begins the second

phase of the protocol by sending COMMIT messages to all of them. However, if it receives

"No" from at least one of the participant TMs, then it initiates the second phase by sending

ABORT messages to all the participant TMs. Finally, the coordinator TM waits for

acknowledgement from the participant TMs to complete the second phase.

16

While the above protocol works well for tightly coupled distributed applications, its

applicability to long running, loosely coupled and cross-organizational applications is

limited. To ensure ACID properties (in a centralized scenario), locks need to be held until the

transactions commit. With distributed transactions, the locks would have to be held until all

the involved (coordinator and participant) sites are ready to commit. The above scenario can

be easily extended to a hierarchy of TMs as shown in Fig. 2.1. Such a hierarchy arises when

a site, invoked to process part of the execution, invokes another site to process part of its own

execution in a recursive fashion. As such, all the TMs in the hierarchy are responsible for

executing operations associated with the global transaction initiated by the topmost (also

known as the root coordinator) TM. All the non-root TMs except the leaves (also known as

subordinate coordinators) are responsible for coordinating operations executed by the

corresponding sub-tree of participating TMs. Given such a setting, locks at each site would

have to be held until all the TMs in the hierarchy are ready to commit. Obviously, this is not

a desirable situation performance wise especially for long running transactions.

An elegant solution to the above limitation is the concept of Nested Transactions [M81].

Nested Transactions allow the TMs at the involved sites to release their locks as soon as the

transaction completes locally by externalizing intermediate results in a controlled manner.

Basically, the global transaction (submitted to the root TM) is divided into a number of

subtransactions that may be executed concurrently. While ACID properties are guaranteed

for the global transaction, subtransactions are not fully isolated as their results are exposed to

their parents. Even the durability of subtransactions is not guaranteed as its effects might

need to be canceled (after it has been committed) if its parent aborts.

17

Figure 2.1 Hierarchical transaction processing infrastructure

While the concept of Nested Transactions resolves the performance issue to some extent, it

still requires certain guarantees from the involved TMs. However, such guarantees may not

always be feasible considering the autonomy and heterogeneity requirements of loosely

coupled distributed systems. Sagas [GMS87] or Open Nested Transactions [WDSS93]

alleviate this problem by allowing intermediate results produced by the subtransactions to be

exposed without any restrictions. Sagas rely on the concept of compensating transactions to

ensure atomicity in case of a failure. Basically, for each transaction t, a compensating

transaction tc capable of semantically undoing the effects of the transaction t is specified. In

18

case of failure, atomicity is guaranteed by executing the compensating transactions in the

reverse order of the original execution sequence of their respective transactions. Classic

examples of compensating transactions are "Cancel reservation" or "Withdrawal" capable of

undoing the effects of a "Reserve ticket" or "Deposit" transaction respectively. Here, it helps

to keep in mind that compensation may not always be possible, especially for real-life

transactions.

2.2.2 Related Work

Web services transactions are also characterized by their long running and loosely coupled

nature. As such, compensation based transaction models are typically well suited for Web

services compositions. Below, we take a look at some of the compensation based transaction

models proposed for Web services.

[KS03] describes how compensating transactions can be modeled based on the active

database concept of triggers basically as Event-Condition-Action (ECA) rules. [TIRL03]

presents a forward recovery based transaction model. It applies the concept of co-operative

recovery in the context of Web services. Co-operative recovery allows the participating

service providers (affected by failure) to coordinate a recovery solution. Towards this end,

they introduce the notion of Web Service Composition Actions (WSCA) as an extension to

the notion of Coordinated Atomic Action (CA). They also acknowledge the importance of

end user interaction in the recovery process. However, in their scenario, the end user is

involved only as the last resort. For example, when it is not possible to get flight or hotel

reservation then the end user is consulted to suggest another travel date. They do not consider

the use of end user interaction for taking intermediate decisions, selecting among possible

19

compensation options, etc. In [PMB02], Pires et. al. propose a framework (WebTransact) for

building reliable Web services compositions. Their framework, based on the concept of

forward recovery, allows for the specification of composition properties like atomicity and

guaranteed termination. According to [PMB02], "the WebTransact framework defines four

types of transaction behaviors of remote services, which are: compensable, virtual

compensable, retriable, or pivot. A remote operation is compensable if, after its execution, its

effects can be undone by the execution of another remote operation. The virtual-compensable

remote operation represents all remote operations whose underlying system supports the

standard 2PC protocol. These services are treated like compensable services, but, actually,

their effects are not compensated by the execution of another service, instead, they wait in

the prepare-to commit state until the composition reaches a state in which it is safe to commit

the remote operation. A remote operation is retriable, if it is guaranteed that it will succeed

after a finite set of repeated executions. A remote operation is pivot, if it is neither retriable

nor compensable". [VV04] presents a conceptual, multi-level service composition model,

which extends the above model [PMB02] to allow specification of atomicity and guaranteed

termination properties at different levels of abstraction. The work in this thesis can be

considered complimentary to [VV04] as we consider the practical aspects involved in

implementing transactions once a multi-level (hierarchical) composition has been defined

satisfying certain properties. [B04b] proposes a formal model based on 1t-calculus to capture

the behavior of nested long running transactions in a Web services context. Of particular

interest are the different modes of failure propagation: up-propagation, down-propagation,

down-specific propagation and non-propagation. Basically, they argue that a transaction's

20

failure should trigger not only the compensation of the enclosed transactions (up-

propagation) but also of the nested transactions (down-propagation). According to [B04b], if

a node P fails then the global compensation process is created by composing the local

compensation processes of all the nodes in the sub-tree of P. Our work can be considered as

an extension to the above model where the visibility aspect is also considered while

computing the possible compensation options (globally). An excellent survey of the extended

transaction models which have been proposed for Web services compositions is provided in

[JG03].

On the standards front, the BPEL specification provides a feature called Long Running

Transactions (LRT) which addresses the problem of the order in which the compensating

operations need to be invoked. However, the notion of LRT is purely local and does not

provide distributed coordination among multiple-participant services to reach a consensus

regarding the outcome. The problem of distributed agreement for a business process

spanning multiple vendors and platforms is left to coordination protocols like WS

Transaction (WS-T) [WS-T] or the more recent WS Transaction Management (WS-TXM),

part of the WS Composite Application Framework (WS-CAF) [WS-CAF]. Both, WS-T and

WS-TXM provide support for compensation based long running activities (called Business

Activities in the WS-T context and Long Running Actions in WS-TXM terminology). The

WS-TXM framework also proposes a Business Process (BP) transaction protocol which uses

a set of interposed coordinators to provide transactional guarantee across business domains.

Basically, the overall business activity is split into domain specific tasks where each domain

might be using a different transaction model.

21

2.3 Monitoring

2.3.1 Related Work

Research in the area of Web services monitoring [PBBST04], [LAP03] has focused on

monitoring as a mechanism for detecting and handling failures. [PBBST04] uses monitoring

to detect and signal if the invoked providers are behaving according to the specified

protocols. In [LAP03], the monitor is responsible for the entire execution process starting

from requesting the planner to come up with a plan for the user request to ensuring that the

execution is proceeding as per plan (once execution starts).

As mentioned earlier, we are primarily interested in capturing the state of a hierarchical

Web services composition at any given point of time (snapshot). The problem of "capturing

the state of a system" has been studied extensively in the area of Distributed Systems. A

distributed system is usually modeled as an undirected graph G = (V, E) where V represents

the set of nodes and E is the set of communication channels connecting them. Thus, if we can

freeze the computation at some instant t, the snapshot would consist of the states of the nodes

and the contents of the channels at t. The contents of the channels are usually the messages

sent but not yet received by the nodes on that channel. However, freezing the execution may

not always be possible (and even if possible should be avoided). Also, snapshot algorithms

should not obstruct the actual execution and need to be superimposed over the underlying

computation. Snapshot algorithms try to record the node states and channel contents in such a

way that they form a complete and consistent state of the system. Consistency is usually

defined by the condition "if the receive event of a message has been recorded in the state of a

22

node then the corresponding send event should also have been recorded in the state of the

sender node".

It is easy to observe that we do not need to physically freeze the system to take a snapshot.

We can achieve the same effect if the clocks of all the nodes in the system are synchronized.

However, it is impossible to perfectly synchronize the clocks in a distributed setting.

Towards this end, several clock synchronization protocols have been proposed based on the

notion of logical [L78], [M89] and physical clocks [M91]. In [L78], Lamport presents an

algorithm to partially order the events across the system based on the assumption that the

clocks are monotonically increasing. An interesting property (or limitation) of Lamport's

algorithm is: "If event a happened before event b then T(a) < T(b) (where T(a) and T(b) are

the timestamps associated with events a and b respectively). However, if T(x) < T(y), it is not

possible to determine if event x causally happened-before y or if they are concurrent". [M89]

overcomes the above limitation by attaching vector timestamps to the events. Basically, it

ensures that the timestamps of two concurrent events are incomparable. Network Time

Protocol (NTP) [M91] extends clock synchronization for large networks connected over the

internet. NTP provides skews in the range of 1-30 ms, even for wide area networks. NTP is

based on physically synchronizing the clocks in a distributed system with an external clock

such as a GPS clock or other radio clocks. We show how we can capture a snapshot of the

hierarchical Web services composition based on the assumption that the clocks of the

providers are synchronized using one of the techniques discussed above.

However, all the above approaches require considerable coordination among the

participants which may not always be feasible in Web services environment (given the

23

autonomy requirements of the providers). Below, we discuss a more loosely coupled

approach, the Distributed Snapshots Algorithm (DSA) [CL85]. Their algorithm requires the

channels to preserve the FIFO property. In addition to the messages belonging to the

underlying computation, the DSA assumes a special type of message called the marker. The

markers do not have any effect on the underlying computation. The algorithm can be initiated

by one or more processes, each of which records its state, without receiving markers from

other processes. The DSA can be divided into two phases: 1) the recording phase and 2) the

collection phase. The recording mechanism given by [CL85] is as follows:

Marker-Sending Rule for a Process p. For each channel c, incident on, and directed away
from p:

p sends one marker along c after p records its state and before p sends further messages
along c.

Marker-Receiving Rule for a Process q. On receiving a marker along a channel c:

if q has not recorded its state then

begin q records its state;

q records the state c as the empty sequence

end

else q records the state of c as the sequence of messages received along c after q's state
was recorded and before q received the marker along c. D

Once the states have been recorded by all the nodes (the recording phase has terminated),

they need to be collected to get a snapshot of the system. The collection phase is context

dependant and [CL85] does not give any specific mechanisms to collect the recorded states.

For example, all the nodes may send their recorded states to a previously agreed upon node

or flood the recorded states through the system so that each node can determine the snapshot

of the system.

24

Later works have tried to optimize the above algorithm by minimizing the time/message

complexity or removing the requirement for FIFO channels. An excellent survey of snapshot

algorithms (including the ones discussed above) can be found in [KRS95]. We outline how

the DSA can be optimized to capture the snapshot of a hierarchical Web services

composition.

25

3.1 Introduction

Chapter 3

Spheres of Visibility

Current hierarchical composition frameworks restrict a service provider' s visibility to its

parent and children. However (as we discuss later), a provider might require information

about its ancestors and descendants. We consider the hierarchical composition as shown in

Fig. 3.1, where the end-user is the top-level ancestor (above the root provider).

End-user

Root service provider

Figure 3.1 Typical hierarchical composition

Below, we outline a few real-life scenarios where a service provider might require

information about its ancestors and descendants. Information about an ancestor might be

required for getting input and for sending notifications/output:

Getting input: Due to security reasons, many online shoppers (buyers) prefer to give

their credit-card or bank account information directly to the financial institution handling the

26

payment. As such, the financial institution which might have been invoked somewhere down

the hierarchy by a seller (service provider) needs information about its ancestor (the buyer) to

get his/her payment details. Please note that the ancestor (to contact) does not always have to

be the end-user. It is easy to envision a scenario where there might be a need to contact an

intermediate ancestor like a manager (to get his approval) or agent/broker (to whom the end

user has delegated responsibility).

Sending notifications/output: In a typical (hierarchical) project team, members are

usually required to send project related notifications to everyone concerned (not only their

immediate supervisors). Similarly, a shipping company delivering goods directly to the buyer

(of an e-transaction) is also a classic example where ancestor information might be required.

Sometimes, non-functional aspects like performance might require exposing results

directly to an ancestor. As discussed earlier, [CD96] proposes exposing intermediate results

to an ancestor directly to achieve higher concurrency.

Lower level information (about descendants) is usually required for

recovery/auditing/analysis. For example, in a supply chain management scenario [LTS98],

lower level information is analyzed (by the higher level entities) to increase the order

fulfillment rate while higher level information is required to reduce the inventory cost.

Thus, we need a mechanism which allows upward/downward access in a controlled

manner. Towards this end, we introduce the notion of Spheres of Visibility (So V). The So V p

of a provider P consists of references to the providers visible to P in the hierarchical

composition. As such, the So V p would vary in range from the entire hierarchy to only its

children and parent. For each provider in the SoV, we are interested in the following

27

attributes: provider (URI, physical address) and services provided (such as execution

sequence, input/output values and effects) details. Thus, a provider A might have visibility

over provider B's provider details only, services provided details only, both or none. The

reason behind considering the two attributes separately is to share only as much information

as required (principle of least privilege). Roughly, provider details are sufficient for invoking

an action of the provider to get input/feedback or send notifications while service details are

required for recovery/analysis. We allow for two types of references to providers in the SoV:

1. Strong reference: A strong reference to a provider implies the inclusion of references

to all the intermediate providers (in the hierarchy) in the SoV. Basically, it implies

knowledge of the hierarchy up to a certain lower/higher level. For example, the existence of a

strong reference from A toG (Fig. 3.2) implies that A has strong references to B and D also.

We can define the strong reference property as follows: For a pair of parent-child providers

(say, P-Q), if A is the highest ancestor to which P is visible, i.e., max-Up_P = A then max

Up_Q has to be A or a lower provider (it cannot be an ancestor of A). Similarly, if Z is the

lowest descendent to which Q is visible, i.e., max-Down_Q = Z then max-Down_P cannot be

a descendent of Z.

2. Weak reference: A weak reference is a direct reference to a provider without any

knowledge about the intermediate providers in the hierarchy.

3.2 Definition

We define SoVP-prov and SoVP-service. the SoY's of provider P corresponding to the provider

and services provided details (hereafter, referred to as the service details) respectively. To

28

keep the definition simple and since SoVP-prov and SoVP-service can be defined similarly, we

drop the suffix (prov/service) and simply mention SoVp below. The SoVp of a provider Pis

defined as the combination of its visibility due to strong (Strong_referencesp) and weak

(Weak_referencesp) references. Further, we divide the strong references of P

(Strong_referencesp) into its upward (Up-So V p) and downward (Down-So V p) visibility.

Formally,

SoVp = Strong_referencesp U Weak_referencesp
Weak_referencesp

For provider A, a strong reference to
provider G implies having visibility
over providers B and D also.

(Down-SoVp U Up-SoVp) U

End-user

Figure 3.2 Strong reference example

Below, we discuss Down-SoVp, Up-SoVp and Weak_referencesp in detail:

Down-SoVp = U R e: Childrenp [DownR] U Childrenp, where Childrenp consists of P's

children. Thus, Down-So V p defines the downward visibility of P (recursively) in terms of the

29

downward visibilities of its descendants. Please note that, in the above definition, we use

DownR to refer to the downward visibility of child R (instead of Down-So V R)- DownR allows

the child R to restrict visibility over some of the providers in its downward SoV (Down

SoVR) to its parent P (and recursively, to its ancestors). Thus, we define the DownR of a

provider R as follows: DownR = (Down-So VR - Down_restrictR), where Down_restrictR is

defined such that the strong reference property is not violated. Fig. 3.3 shows an example

scenario highlighting the use of Down-So V p and Downp. The above definition leads to the

following visibility pattern (Fig. 3.4): the downward visibility over a set of providers

decreases as we go higher up in the hierarchy.

Up-SoVp = UpParentp-P U Parentp, where Parentp is P's parent. Thus, Up-SoVp defines

the upward visibility of P (recursively) in terms of the upward visibilities of its parent (and

ancestors) . Similar to downward visibility, in the above definition, we use UpParentp-P to refer

to the upward visibility of Parentp (instead of Up-SoVParentp-P). Basically, UpParentp-P allows

Parentp to restrict visibility over some of the providers in its upward So V (Up-So V Parentp) to

its child P (and recursively, to its descendants). Let Parentp = M, then we can define the UpM

P of provider M with respect to its child Pas follows: VPM-P = (Up-SoVM- Up_restrictM-P),

where Up_restrictM-P is defined such that the strong reference property is not violated. The

need for the suffix P in UPM-P and Up_restrictM-P arises from the fact that provider M might

like to specify different upward visibilities for each of its children (P' s siblings). Fig. 3.5

shows an example scenario highlighting the upward visibility aspect (as discussed above).

The above definition leads to the following visibility pattern (Fig. 3.6): the upward visibility

over a set of providers decreases as we go lower down in the hierarchy.

30

Down-SoY A= Down8 U Downc U {B, C} = {D, E,
H} U {F, K , L} U {B, C} = {B, C, D, E, H , F, K , L}

_,-----
Down_restrict8 = { G, I}

Down8 = {D, E, H)

Down-SoV8 = {D, E, G, H, I}
I

... -······;;'·································· ····················

···· .. ::: .~-~-"·- ·"''::

--- Down_restrictc = { }
Downc = {F, K, L}

Down-SoVc = {F, K, L}

....... -,,

',<':~;~~ ...
\ ' \ I .,

,.._
I \

I "; , : ,

····· ·· · ··· ·· ·· ·· · ···· · ·························;;· :.:.· -"':~--~---·······
... _____ _ ------

Figure 3.3 Example composition scenario highlighting the downward visibility of A

For a set of providers, down ward
visibility decreases as we go
higher up in the hierarchy

D
I ',

I ''
I I

I I
I I

I ,

E's downward visibility
Down-SoVE

B 's downward visibility
ofDown-SoVE

A's downward visibility
1 ofDown-SoVE

. / __ _ .-

Figure 3.4 Downward visibility pattern

Weak_referencesp is the set of weak references to the providers visible to P . While

information about the hierarchical structure among the providers referenced by strong

31

references is evident from their recursive definition, no such knowledge is available for the

providers referenced by weak references. For example (Fig. 3.7), provider A may have weak

references to providers D and G. However, it does not imply that A is aware of the

hierarchical relationship (parent-child) between providers D and G (Fig. 3.8). A

corresponding real-life scenario would be: In an online shopping scenario, the buyer needs

visibility over the online store to track his order and later over the courier company to track

his/her shipment. Basically, the buyer needs weak references to both the online store and

courier company. However, it does not need to be aware of the hierarchical relationship

between the online store and the courier company, i.e., whether the courier company was

invoked by the online store directly or by a 3rd party seller (which in tum was invoked by the

online store).

I
I
I

, ,

, , , ,

.. ··········

<l'f!

Up-SoVF = UPE-F U {E}

=fB.A.El

... ·············

. -~.-~.:::.::"··"··-········· ········::: .. \''\ Up-SoVE = {B, A}

··· t· ····· ·~·······UPE-F = {B, A}, Up_restrictE-F= {}

} UPE-G = {B}, Up_restrictE-G = {A}

' : •' .
\

.A .. '
' Up-SoV0 = UPE-G U {E} = {B, E}

Figure 3.5 Example composition scenario highlighting the upward visibilities ofF and G

32

Weak references

I
I
I

I
I
I

I
I

,''

For a set of providers, upward
visibility decreases as we go
lower down in the hierarchy

D B's upward visibility
Up-SoYa

,
I

I

, ,

', E's upward visibility of
,' Up-SoYa

. /

F's upward visibility of
Up-SoYa

'· ·- ··

Figure 3.6 Upward visibility pattern

Figure 3.7 Example composition scenario highlighting the So VA of provider A

33

Weak references

, ..
I

I
I

I
I

I
I

0
Figure 3.8 Graphical representation of the So VA of provider A as given in Fig. 3.7

Depending on the range of visibility, we can classify the SoY's as follows:

Up-partial: Provider P has visibility over some of its ancestors.

Down-partial: Provider P has visibility over some of the providers m the sub-tree

rooted at P.

Down-complete: Provider P has downward visibility over the entire sub-tree rooted at

P. It is easy to observe that SoVp is down-complete iff for each provider Q in the sub-tree

rooted at P, Down_restricto = {}.

Up-complete: Provider P has upward visibility up to the end-user. Similar to the

definition of down-complete, SoVp is up-complete iff for each ancestor (including parent) Q

of P, Up_restricto-R = {} where R is a child of Q in the path from Q toP.

Combinations of the above categories are obviously possible, beginning from "up-

partial;down-partial" to "up-complete;down-complete".

34

3.3 Implementation

In this section, we discuss how we expect the SoY's to be specified. Here, we take a cue

from the traditional Role Based Access Control (RBAC) implementations. With RBAC, the

parents acquire the permissions of the children while the children inherit the prohibitions of

their parents. In this case, the providers inherit the upward (downward) visibilities of their

parent (children) with some restrictions (as applicable).

While strong references are ideal for scenarios which require visibility across levels in a

hierarchical composition, weak references are more suited for ad-hoc visibility requirements.

As mentioned earlier, the assignment of providers to So V' s is based on the principle of least

privilege (assign only as much visibility as needed). The privacy and autonomy requirements

may dictate hiding the details about all the providers in the upward and downward visibility

of a provider P from its children and parent respectively, i.e., Up_restrictp_R = Up-SoVp for

each child R and Down_restrictp = Down-SoVp. Addition and deletion of the providers in

Up_restrictP-R and Down_restrictp are as dictated by the visibility requirements of the

functional and non-functional aspects. By functional requirements, we refer to the need for

getting input, sending results/notifications to ancestors/descendants as specified by the

composition schema. Different non-functional aspects like transactions, monitoring, user

interaction, etc. may have their own visibility requirements specified as Service Level

Agreements (SLA) or policies (WS-Policy). For example, performance evaluation may

require monitoring (visibility over) a sub-tree of the hierarchy. Similarly, compensation (as

we discuss in the next chapter) may require direct visibility over the end-user. We do not rule

out the possibility of conflicts between the visibilities requirements of the functional and

35

non-functional aspects. However, resolving the conflicts is application/context dependent and

beyond the scope of thls work. As such, we assume the existence of a non-conflicting set of

visibility requirements for the hierarchical composition.

Below, we outline a simple scheme for the assignment of strong references. Let us assume

that provider F is selected by E to execute part of its functionality (an action) - Fig. 3.9.

Basically, for each selected provider (F), we need to specify the upward visibility ofF (Step

2) and the downward visibility of its ancestors (B and A) with respect to F (Steps 3 and 4).

The actual steps are as follows:

1. F sets ParentF = E and E adds F to ChildrenE.

2. E sets UPE-F to regulate the upward visibility of F.

3. If E needs to expose F to its parent B, it simply sends a message to its parent B,

notifying B about F. If not, add F to Down_restrictE.

4. If B needs to expose F to its parent A, it simply forwards the information about F to

A. If not, add F to Down_restrict8 . Basically, this upward propagation of information about F

continues until some provider (say, X) adds it to Down_restrictx or it reaches the root

provider (end-user).

With weak references, the situation is slightly different as the providers are not aware of

the upward (downward) visibility requirements of their descendants (ancestors). With

reference to Fig. 3.10, let us assume that provider A needs downward visibility over F

(although, B does not have downward visibility over F). Given this, the visibility requirement

can be propagated downwards (recursively via child providers) until F or a provider which

has downward visibility over F is reached. Once the destination provider is reached, its

36

reference can be added to the weak references set (Weak_referencesA) of the source provider

(A). On the same lines, ifF needs upward visibility over A (although, its parent E does not

have upward visibility over A) then the visibility requirement can be propagated upwards

(recursively via parent providers) until provider A or a provider which has upward visibility

over A is reached. Since weak references do not have any hierarchical relationship, we can

extend the above scheme to specify weak references between providers which are not

ancestors/descendants (such as F and C).

Set the downward visibility of F's
ancestors with respect to F i.e. set the
Down_restrict sets of E, B and A (as
applicable).

l Sot "" "PW~d •i•ibilioy fo, F, UpH

Figure 3.9 Assignment of strong references with respect to newly selected provider F

Propagation of the downward visibility
requirement (A needs downward
visibility over F although B does not
have downward visibility over F)

Figure 3.10 Weak reference assignment using visibility requirement propagation

37

Although for strong references assignment, the scheme (outlined above) updates the SoY's

of all the affected providers with each provider selection, we would like to stress that this is

not a requirement. Other more efficient schemes can be designed. It is easy to see that the

above schemes can be extended to handle the deletion of references (from SoY's) too.

Finally, we address the problem of specifying the visibility requirement that provider P needs

visibility over provider Q even before Q has been selected (esp. with downward visibility).

An example, in the online-shopping scenario, is where the buyer would like to have visibility

over the courier company to track his/her order. To overcome this problem, we assume that

all visibility requirements are specified in terms of "the provider of action x (of the

composition schema)" rather than "provider y". Basically, the visibility requirement in the

example online shopping scenario would be specified as "the buyer needs visibility over the

service provider handling shipping" rather than DHUFedEx. This is similar to the concept of

"roles" in RBAC where permissions are assigned to roles irrespective of the actual users

assigned to the roles at run-time.

3.4 Modeling Real-Life Scenarios Using SoV

In this section, we illustrate how some real-life scenarios can be modeled using SoY. First,

let us consider a typical e-transaction scenario as shown in Fig. 3.11. Let the visibility

requirements be as follows:

The courier companies need visibility over the contact details of the customer to

deliver the goods: The requirement can be accommodated by adding the customer's reference

to the weak references sets of the courier companies. Now, their parents (suppliers A and B)

38

may not have provider details visibility over the customer. Thus, the visibility requirement

needs to be propagated via parent providers (as discussed earlier).

To track the status of his/her order (at all times), the customer needs visibility up to

the courier companies' levels for each of the purchased products: The above visibility

requirement can be accommodated by providing strong references to the courier companies

used to deliver the products (implying that the customer has visibility over any intermediate

suppliers).

Figure 3.11 Typical e-transaction scenario

The earlier (e-transaction) scenario illustrated the use of So V with respect to provider

details visibility. We refer to the supply management scenario given in [LTS98] to illustrate

the utility of service details visibility. [LTS98] states the need for upward and downward

information sharing as "the information acquired by downstream entities are mainly material

and capacity availability information from their suppliers. The information acquired by an

upstream entity is information about customer demand and orders. The depth of information

penetration can be specified in various degrees, e.g., isolated, upward one tier, upward two

39

tiers, downward one tier, downward two tiers, and so forth." The above visibility requirement

can be elegantly accommodated by assigning strong service details visibility up to the desired

level.

40

Chapter 4

Compensation

Due to their long running and loosely coupled nature, compensation based models have been

widely accepted as the preferred mechanism to implement Web services transactions.

Compensation based models, in the event of a failure, try to undo the effects of the currently

executing activities (using roll-back) and terminated ones (using compensation) to preserve

atomicity. Below, we consider some aspects required to ensure satisfactory compensation for

hierarchical Web services compositions.

4.1 Cost of Compensation (CoC)

Most models assume the existence of a predefined compensating action, which is invoked in

case of failure. They fail to appreciate the fact that there may be multiple ways of

compensating the same actions (effects of the action). Real-world activities often have a cost

associated with them. As such, the different options may have an associated cost, the Cost of

Compensation (CoC). The actual CoC may be in terms of the time, money, effort, etc.

required to perform compensation. The compensating options may also vary depending on

the extent of compensation provided. Below, we describe a simple classification for

compensating actions:

Fully compensatable: Such actions are capable of negating the effects of the original

transaction completely. In OWL-S terminology, the "effect" of a fully compensating action

would be the exact negation of the "effect" of the action (for that particular invocation) it

compensates. The only exception is probably the noop action which does not have any effect

41

on the execution (the compensating action corresponding to a noop should also be a noop

action).

Conditionally compensatable: By conditionally compensatable, we refer to those

compensating actions which allow full compensation, but have a condition associated with

them. For example, often vendors instead of refunding money allow the customer to purchase

something equal in worth to the returned item. Studies [GLC99] have shown that most refund

policies can be described as a conditional relationship between price, quantity and time. We

find the factor customer relationship/history (premium member, credit rating, etc.) as being

equally important and assume all compensation options as described in terms of the factors:

price, quantity, time and customer relationship. The effects of a conditionally compensatable

action can be expressed as a percentage of the effects of the action it compensates. For

example, if the effect of a booking action is "Ticket booked and $x paid" then the effect of a

conditionally compensating action satisfying the condition "quantity (>5 tickets) & time (>14

days in advance) -> money (refund 90%)" would be "Ticket canceled and 90% of $x

received".

Partially compensatable: As the name suggests, such actions are capable of

compensating the effects of the original action partially. For example, if the effect of a trip

planning action is "Flight booking St. John's - London, London - Bahrain and Bahrain -

Delhi, Hotel booking at London and Bahrain" then the effects of a partially compensatable

action (for the above action) might be "Flight booking London - Delhi, Hotel booking at

London canceled" or "Flight booking London - Bahrain and Bahrain -Delhi, Hotel booking

at Bahrain canceled".

42

In a nested composition scenario, compensation may be possible at different levels with

different costs. For example, let us consider the classic travel booking scenario (Fig. 4.1). If

the hotel and flight booking need to be compensated then it can be achieved by either

invoking the compensating (cancellation) operations of the hotel and flight booking providers

respectively or by invoking the compensating operation (Cancel Travel) of the composite

travel booking provider. Now, if we assume that the user is a premier member of the

composite travel booking provider and as such gets a 15% discount on all cancellation

charges then it makes sense to invoke the Cancel Travel operation of the composite travel

booking provider, i.e., perform compensation at a higher level. On the same lines, most travel

agents consider cancellation as a separate activity (similar to booking) and would charge

their commission in addition to the cancellation charges applicable (Fig. 4.2). Given this

scenario, it makes sense to compensate by invoking the Cancel Hotel and Cancel Flight

operations directly, i.e., perform compensation at a lower level.

Please note that the above concept is different from the upward propagation of unhandled

faults allowed by most transaction models. For instance, the "throw" mechanism followed by

BPEL allows transferring the responsibility for compensation to the enclosing scope in case

the current scope (where the failure has occurred) does not have an appropriate handler or the

compensation fails. While the mechanism allows compensation at different levels, it is still

based on the concept of trying to perform the first possible compensation rather than

acknowledging the possibility of multiple options and trying to perform the most optimum

one. Also, there is no downward propagation of faults and therefore the compensation

options at lower levels are not considered.

43

.-------------,---------------------------I
Composite Travel Booking Cancel Travel :

Service (I S% off on cancellation charges) :
I

~-------- - -------------.-----~-. .---------,- - -- - - - - - - - - - - - - - - - - -- - - I
I
I
I

Cancel Flight Hotel Cancel Hotel 1
I

: (Cancellation charges involved)

Flight

Booking Booking (Cancellation charges involved) :
I

~---------------------J----~ '------'------ ------------------1 .-----.
I I
I I

-----'
Compensating actions

Figure 4.1 Travel booking scenario A

.....----------,---------------------------I
Composite Tmvel Booking Cancel Tmvel :

Service (Commission +Cancellation charges)

.------.__,- ----------------------I
Cancel Flight Flight Hotel Cancel Hotel

I
(Cancellation charges involved) Booking Booking (Cancellation charges involved)

1

L-----------------------~--~ .__ ___ ...J.. __ ------------------- __ I .-----.
I I
I I _____ , Compensating actions

Figure 4.2 Travel booking scenario B

4.2 End-User Involvement

In the previous section, we discussed how there might be multiple compensation options

available to recover from a failure. Given this, we need a mechanism to select the

compensation option and more often than not it is the end-user who has the required

information and intelligence to take such a decision. Please note that people often equate

compensation selection with fault (exception) handler selection. However, there is a subtle

difference between the two. Fault handler selection depends on the type of fault that has

occurred and as such can be done by the system. Compensation selection, on the other hand,

is much more complex. During compensation we are trying to semantically undo the effects

44

of an action which has earlier completed successfully (without failure). There are many

variable factors like current state of the system, extent to which the results need to be undone

(for forward recovery), CoC, etc. to be considered which make the process of compensation

selection quite complex.

Also, we have the other extreme (with respect to multiple available compensation options)

where compensation is not possible. In such a case, the end-user might help by suggesting

alternate acceptable outcomes. For example, if the flight reservation cannot be compensated

(non refundable tickets) then the user might change his initial requirement of both flight and

hotel reservation to just flight tickets saying he can get the hotel reservation from some other

travel agency. Researchers have also proposed forward recovery schemes as a means of

overcoming the limitations posed by non-compensatable actions. However, forward recovery

does not mean that there is no need for compensation. In fact, [VV04] acknowledges that

forward recovery might not be always possible and it might be required to compensate up to

some extent and then try forward recovery. [TIRL03] relies on the concept of co-operative

recovery. For example, in the case where either the flight or hotel booking fails, the

component service raises an exception that is cooperatively handled at the next higher level.

While conceptually absolutely feasible, the question we need to ask here is "Are current

software systems intelligent enough to take such decisions on their own?" Probably the only

systems capable of showing such intelligence are MAS. Even if we assume MAS, it is

probably more feasible to have an agent acting on behalf of the end-user [KS02] rather than

two agents trying to negotiate a recovery. The reason is that an agent acting on behalf of the

end-user needs to keep only the user's interests in mind while two agents trying to negotiate

45

would involve a conflict between the interests of the respective parties the agents represent

(which is definitely much more complex).

4.3 Side-Effects and Provider Independent Compensation

As mentioned earlier, compensation is defined as semantically undoing the effects of an

execution. These effects are usually the externally visible or advertised effects of an

execution. We show that in addition to such effects, there might be some effects which are

not always evident especially in a hierarchical composition. However, they would still need

to be canceled to achieve full compensation.

Thus, by side-effects, we refer to those effects of an execution which are in addition to the

advertised (expected) effects of an execution. For example, let us assume that a shipping

service provider S uses trucks provided by transportation provider T for its operations. As

such, a booking with S would also involve a booking with T. However, there is no mention

ofT's involvement in the booking confirmation receipt provided by S to the customer. Thus,

the booking with T is a side-effect of the above execution and would need to be canceled

along with S's booking for a successful compensation. Below, we take a look at the different

ways side-effects arise in a hierarchical composition and the information about them required

for compensation:

Internal actions: Side-effects usually arise as a result of the internal actions involved.

In a hierarchical composition, the input/output actions of the providers become internal

actions of their parents. For example, in the shipping scenario discussed above, the

arrangement with transportation provider T would map to an internal action of S. Thus,

46

information about the internal actions also needs to be recorded. In addition to recording the

effects of internal actions, we also need to capture their outputs (if any). Such outputs might

be needed to undo their effects during compensation. For example, with respect to the

shipping scenario (discussed above), we would need T's booking reference number to cancel

the booking with T. However, this information is not in the booking confirmation receipt

given to the customer. Thus, S would need to store this information somewhere so that it can

be used for compensation later (if required).

Output and input action concatenation: Composition involves connecting the output

action of a provider to the input action of another provider. However, exact matches are rare

and often the output actions result in effects (output values) which are not required (utilized)

by the next input action in sequence. For example, a credit card payment (output action) may

initiate delivery (input action) in an online shopping scenario. Now, let us assume that the

credit card used has an associated reward points system. The award of credit points is clearly

a side-effect and not required for delivery (the next input action). However, a successful

compensation would require not only crediting the paid amount to the credit card account but

also deducting the awarded credit points. As in the previous mechanism, here also we require

that any additional output be recorded so that it can be used for compensation later.

Please note that all invoked providers do not necessarily produce side-effects. Also, side

effects may not always be relevant for compensation. For example, registering with a web

site may give discounted rates (as applicable) with partner sites which remain valid even if

the original registration is canceled. Another scenario would be side-effects canceling each

other.

47

With the above discussion about side-effects in the background, let us consider the notion

of provider independent compensation. Most transaction models consider compensation as a

provider dependent activity, i.e., compensation is the responsibility of the original service

provider. We argue that this is an unnecessary restriction and propose provider independent

compensation as an alternative. Basically, we would like to consider compensation as any

normal activity (whose provider is selected dynamically at run-time) rather than constrain its

execution to the original service provider. Towards this end, we identify the information

which would be required as well as the conditions which determine if provider independent

compensation is feasible.

The information required for provider independent compensation of the effects of a

provider Pis basically the services provided details (execution sequence, input/output values,

effects, etc.) of P. Due to side-effects, we need the services provided details of all the

providers in the sub-tree rooted at P which produce side-effects. An XML schema which can

be used to capture and store the above (compensation) information appears in Appendix A.

We assume that the original service providers retain such information until their expiry

(flight departure time for a flight booking action). It is similar to saying that the original

service providers enter the stage "Completed but Compensatable" for a limited period after

completing execution. In case of failure, the compensation information (maintained by the

original service providers) is used to select a provider for compensation (dynamic binding).

Once selection is over, the stored (compensation) information is passed to the selected

provider (required to perform the compensation).

48

Until now, we have assumed that the original providers are ready to share their services

provided details with other providers (at least, with the compensation providers). While it

may be a valid assumption given that we are dealing with static composition (can be

specified as part of the contract), it may not always be feasible due to the security and

autonomy requirements of the providers. As such, let us assume that each provider P has

visibility over the services provided details of a limited set S of providers in the sub-tree

rooted at P. Let Ss denote the providers in the sub-tree rooted at P which produce side-effects.

Given such a scenario, provider independent compensation of Pis possible iff S is a superset

of S5• We consider the partial visibility aspect in detail in the next section.

4.4 Sphere of Control for Compensation (SoCC)

For compensation, we first need to compute the possible compensation options. The

compensation options consist of the provider independent options and the compensation

possible at different levels. For example (with reference to Fig. 4.3), let us assume that

provider D has failed and as a result the effects of provider C need to be compensated. Given

this, some of the possible compensation options are {C}, {E, F}, {E, I, J}, {F, G, H}, {G, H,

I, J}. For each option, the effects of each provider can be compensated either in a provider

independent fashion or by invoking a compensating action of the original provider (provider

dependent compensation). For example, we can expand the option {E, I, J} as provider

independent compensation forE and invoke the compensating actions of I and J.

Thus, to compute the compensation options, the providers affected by the failure are first

brought into a SoCC, called the Sphere of Control for Compensation. The affected providers

49

are usually the terminated providers (which have finished executing their actions) in the sub-

tree rooted at the parent of the failed provider. Once we have the SoCC, the compensation

options can be computed as follows: If we consider the SoCC as a set of providers, each

compensation option is a subset of the SoCC with the following properties (with reference to

Fig 4.3):

End-user

Figure 4.3 Example hierarchical composition scenario

Consistency: The subset cannot contain providers having an ancestor-descendant

(including parent-child) relation between them. For example, the subset {E, F, I} is not

consistent because F and I have a parent-child relationship. The consistency criterion is based

on the fact that provider independent compensation or invoking the compensating action of

any provider (F) in the hierarchy also compensates the effects of any providers in the sub-tree

50

rooted at F. Thus, there is no need to compensate the effects of any of its descendants (I)

separately.

Completeness: The providers in the subset should compensate the effects of the

original execution completely. For example, the subset {G, H, I} is not complete because the

effects of J won't be compensated.

Finally, to perform the actual compensation, we need the provider details of the providers

to invoke their compensating actions and the service details of the providers for provider

independent compensation. Until now, we have assumed that there are no visibility

restrictions in the hierarchical composition. Now, let us consider the visibility restrictions

modeled as SoV. With SoY's defined, only those affected providers can be brought into the

SoCC which are in the Down-So V p of the parent P of the failed provider. Since we are

interested in both the provider and service details, we consider the providers in both Down

SoVP-prov and Down-SoVP-service· With the visibility restrictions, we need to consider the

following conditions (in addition to the consistency and completeness properties) to compute

the compensation options.

Compensation by invoking the compensating actions of the original provider: A

provider's (Q) effects can be compensated by invoking the compensating actions of either Q

or of all of Q's children. However, for the above to be possible, Down-SoVP-prov should be a

superset of ChildrenQ (P has downward provider details visibility over all of Q' s children).

Provider independent compensation: Provider independent compensation of any

provider Q is possible iff Down-So V P-service is a superset of the providers in the sub-tree

rooted at Q which produce side-effects. Since it is not possible for P to determine if a lower

51

level provider R actually produces side-effects unless R belongs to Down-SoVP-service (orR is

willing to provide such information itself), we change the requirement for provider

independent compensation as follows: "Provider independent compensation of any provider

Q is possible iff Down-So V P-service is a superset of all the providers in the sub-tree rooted at Q

(down-complete with respect to Q)".

Below, we outline a simple algorithm to compute the compensation options with the

visibility restrictions (as specified by the SoY's) in place. The algorithm is initiated by the

coordinator corresponding to the parent of the failed provider (hereafter, referred to as the

initiating coordinator and provider respectively). The algorithm could be initiated by other

ancestors too (discussed later). Initially, the algorithm traverses downwards, as permitted by

the downward visibility of the initiating provider, to compute the providers in the SoCC.

Once the SoCC has been computed, it uses the conditions outlined above to determine the

compensation options. To keep the algorithm simple, we consider the parts to determine the

provider independent and dependent options separately. However, the two pru.ts can easily be

interleaved and there is no need to traverse the sub-tree (rooted at the initiating provider)

twice.

/* Part I: Algorithm to determine the possible provider dependent compensation options at

different levels and acquire the provider details of the providers (as applicable) */

1. The initiating coordinator (say, C-P) sends the provider details seeking message

(hereafter, referred to as the PM) to the coordinators of its affected children providers.

2. /* Downward traversal */ Each child coordinator (say, C-Q), on receiving the PM,

forwards it to the coordinators of the providers in (Down-SoVP-prov n Childreno). i.e., to Q's

52

children whose provider details are visible to the initiating provider P. /* The request is

forwarded to only the children at a level to maintain the hierarchical structure of the acquired

information. */

If the PM is received by a primitive coordinator, it simply returns a blank message to its

parent /* based on the assumption that any parent is aware of the provider details of all its

children. As such, the provider details of the children can be returned by their parents (Step

3) */.

3. Once the coordinator C-Q has received replies from all its children (to which it had

sent the PM), it checks if (Down-So V P-prov is a superset of Childreno). /* Check if P has

downward provider details visibility over all of Q's children */

If so, C-Q appends the provider details of all its children to the information returned by its

children and sends it to its parent.

Otherwise, C-Q appends the message "Provider dependent compensation is not possible at

the level of Q' s children" and the provider details of its children in (Down-So v P-prov n

Children0) to the information returned by its children and sends it to its parent. This upward

propagation of information continues until the initiating coordinator has received replies

from all its children coordinators. D

/* Part II: Algorithm to determine the provider independent compensation options and

acquire the service details of the providers (as applicable). */

1. The initiating coordinator (C-P) sends the service details seeking message (hereafter,

referred to as the SM) to the coordinators of its affected children providers.

53

2. Each child coordinator (say, C-Q), on receiving the SM, forwards it to the

coordinators of the providers in (Down-SoVP-service n ChildrenQ), i.e., to Q's children whose

service details are visible to the initiating provider P.

If the SM is received by a primitive coordinator, it returns a blank message to its parent.

3. Once the coordinator C-Q has received replies from all of its children (to which it had

sent the SM), it checks if (Down-SoVP-service is a superset of ChildrenQ) or if it has received a

"Provider independent compensation is not possible at R" message from one of its children

R. /* Check if P has downward service details visibility over all the providers in the sub-tree

rooted at Q. */

If so, C-Q appends the service details of all its children to the information returned by its

children and sends it to its parent.

Otherwise, C-Q appends the message "Provider independent compensation is not possible

at Q" and the service details of its children in (Down-So V P-service n ChildrenQ) to the

information returned by its children and sends it to its parent. This upward propagation of

information continues until the initiating coordinator has received information from all its

children coordinators (to whom it had sent messages). [l

Please note that the above algorithm requires the lower level providers to have access to

the Down-SoVP-proviDown-SoVP-service of the initiating provider P. We assume that the Down

So V P-prov (Down-So V P-service) is propagated along with the PM (SM). Further (to protect the

confidentiality of P's visibility information), we assume that each coordinator Q forwards

only the subset (Down-So V p n DownR) to its child R (rather than the complete set Down

SoVp). For example, with reference to Fig. 4.3, if Down-SoVs-service = {C, D, E, F, G, H, I}

54

then C-B sends {E, F, G, H, I} along with the SM to C-C. Similarly, C-C would send {G, H}

and {I} along with the SM (while forwarding the SM) to C-E and C-F respectively. Also,

note that selecting provider dependent compensation for a provider X implies passing the

responsibility of compensation (of the effects of X) to X. The corresponding provider X

could very well choose provider independent compensation for a descendent Y (provided, of

course, that the downward visibility of X is down-complete with respect to Y).

Let us walk through the above algorithm with the help of an example scenario.

Scenario (Fig. 4.4): We assume that provider D has failed and as a result the effects of

provider C need to be compensated. Thus, C-B is the initiating coordinator for the algorithm.

Further, we assume that B has visibility as shown in Fig. 4.4. Basically, Down-SoVs-setvice =

{C, F, I, J} and Down-SoVs-prov = {C, E, G, H}. Given this, a trace of the algorithm would be

as follows:

Part 1:

1. C-B sends the PM to C-C.

2. Since Down-SoVs-prov n Childrenc = {E}, C-C forwards the PM to C-E. Since Down

SoVs-prov n ChildrenE = {G, H}, C-E forwards the PM to both C-G and C-H. Both G and H

are primitive providers, as such C-G and C-H simply return blank messages to C-E.

3. On receiving replies from C-G and C-H, C-E returns the provider details of G and H

to C-C since Down-SoVs-prov is a superset of ChildrenE. On receiving the reply from C-E, C

C appends the message "Provider dependent compensation is not possible at the level of C's

children" and the provider details of E to the information returned by C-E and sends it to C-B

55

(because Down-So V B-prov is not a superset of Childrenc). C-B terminates the algorithm on

receiving the information from C-C.

Part II:

1. C-B sends the SM to C-C.

2. Since Down-SoVs-service n Childrenc = {F}, C-C forwards the SM to C-F. Since

Down-SoVB-service n Childrenp = {I, J}, C-F forwards the SM to both C-I and C-J. Both I and

J are primitive providers, as such C-I and C-J simply return blank messages to C-F.

I
I

I
I

I
I
I
I
\

I
I

I

I
I

I

I
I

I

I
I

I ,
I

Down-So V B-prov

, , , ,

I

I
I

I

I ~ ~

,J~~

------- ~~~

End-user

Figure 4.4 Example composition scenario of Fig. 4.3 with visibility restrictions

3. On receiving replies from C-I and C-J, C-F returns the service details of I and J to C-

C since Down-SaYs-service is a superset of Childrenp and C-F hasn't received a "Provider

56

independent compensation is not possible at I (J)" message from C-I (C-J). On receiving the

reply from C-F, C-C appends the message "Provider independent compensation is not

possible at C" and the service details ofF to the information returned by C-F and sends it to

C-B (because Down-So V a-service is not a superset of Childrenc). C-B terminates the algorithm

on receiving the information from C-C with the conclusion that provider independent

compensation is possible only up to F. 0

The initiating coordinator uses the information received from its children (to which it had

sent the PM/SM) in accordance with the consistency and completeness properties (discussed

earlier) to compute the possible compensation options. For the example scenario (Fig. 4.4),

the computed compensation options would be:

Option 1: Invoke the compensating action of C.

Option 2: Provider independent compensation of F and invoke the compensating

action ofE.

Option 3: Provider independent compensation of F and invoke the compensating

actions of G, H.

Option 4: Provider independent compensations of I, J and invoke the compensating

action of E.

Option 5: Provider independent compensations of I, J and invoke the compensating

actions of G, H.

Finally, we need to select the best compensation option. Let us assume that we need the

end-user's feedback (end-user involvement to select among the available compensation

options) or approval from a manager higher up in the hierarchy.

57

/*Algorithm to get end-user feedback */

1. The initiating coordinator (say, C-P) checks if it has contact (provider) details

visibility over the end-user, i.e., if End_User £ Up-SoVP-prov· If so, C-P can contact the end

user directly to get his/her feedback. If not, the initiating coordinator sends a request for

feedback message (hereafter, referred to as the RFM) to its parent, identifying itself and the

end-user as the ultimate source and destination respectively.

2. The parent coordinator, on receiving the RFM, checks if it has provider details

visibility over the end-user. If so, it forwards the RFM directly to the end-user. Otherwise,

forwards the RFM to its parent. This upward propagation continues until the RFM reaches

the end-user.

3. The end-user, on receiving the RFM, provides his/her feedback to the initiating

coordinator. 0

Example Scenario (Fig. 4.5): We assume that provider D has failed and as a result the

effects of provider C need to be compensated. Thus, C-B is the initiating coordinator for the

algorithm. Further, we assume that C-B has already computed the SoCC and now needs end

user feedback to select the optimum compensation option. Given the So V of provider B as

shown-in Fig. 4.5, a trace of the above algorithm would be as follows:

1. Since End_User is not a member of Up-SoVB-prov, it sends a RFM to its parent (C-A)

identifying itself and the end-user as the ultimate source and destination respectively.

2. C-A forwards the RFM to the end-user (End_User belongs to Up-SoV A-prov).

3. The end-user, on receiving the RFM, provides its feedback to C-B. 0

58

I
I
I
I
I
I
I
I
I
I

',

I
I

I
I

I

I

,
I

I
I

I
I

I
I

I

_______________ , I ,

End-user

' I
I

Figure 4.5 Example composition scenario

The above message sending pattern, i.e., sending messages to an ultimate destination via

intermediaries is supported by SOAP/WS-Routing [WS-R]. Although, we consider user-

interaction with respect to compensation above, it is easy to see that the mechanism can be

directly applied to support any user (or ancestor) interaction requirements of the service

providers.

In the discussion until now, we have considered that the parent of the failed provider is (the

initiating provider) responsible for computing the compensation options. As such, the

computed options are limited to the level of the parent. However, compensation may be

possible at higher levels too. For example (with reference to Fig. 4.4), the effects of C can be

compensated by compensating the effects of higher level providers AlB (the effects of AlB

are a superset of the effects of C). The above can be accommodated by making a slight

modification to the end-user feedback algorithm. The initiating coordinator sends the

computed compensation options to its parent (irrespective of whether it has provider details

59

visibility over the end-user or not). The parent coordinator, on receiving the information,

assumes the role of the initiating coordinator and executes the same algorithm (discussed

earlier) to compute the provider dependent and independent compensation options at its

level. The parent coordinator passes the computed compensation options along with the

received options (from its child) to its parent. This upward propagation continues until the

end-user receives the accumulated compensation options. For example (again, with reference

to Fig. 4.4), let us assume that A had invoked another provider B' before B and the

downward visibility of A is as shown in Fig. 4.6. Thus, we need to compensate both B and B'

to compensate the effects of A.

'
Down-So V B-prov

I
I

I
...._ I

I
I

I
I

I
I

I
I

I
I
I
I
\

I
I

I
I

I

......_ I --...._)•' ·-' , , , ,
I

I
I

I

, ,

End-user

Down-SoY A-prov• Down-SoY A-service

'·I
\ " .I

Figure 4.6 Extended composition scenario with visibility restrictions

60

Given this, the compensation options (available to the end-user) would be as follows:

I* compensation by compensating the effects of C *I

Option 1: Invoke the compensating action of C.

Option 2: Provider independent compensation of F and invoke the compensating

action of E.

Option 3: Provider independent compensation of F and invoke the compensating

actions of G, H.

Option 4: Provider independent compensations of I, J and invoke the compensating

action of E.

Option 5: Provider independent compensations of I, J and invoke the compensating

actions of G, H.

I* compensation by compensating the effects of B *I

Option 6: Invoke the compensating action of B.

/*compensation by compensating the effects of A*/

Option 7: Invoke the compensating action of A.

Option 8: Invoke the compensating actions ofB' and B.

Option 9: Provider independent compensation of B' and invoke the compensating

action of B.

Options 10-14: Invoke the compensating actions of B' and (Option 1 or Option 2 or

Option 3 or Option 4 or Option 5).

Options 15-19: Provider independent compensation of B' and (Option 1 or Option 2

or Option 3 or Option 4 or Option 5).

61

Chapter 5

Monitoring

In a hierarchical composition, it is essential to be able to provide information about the state

of execution at the right granularity (level) to the user. For example, while a user might be

interested in execution status messages of the form "The bedroom is being painted", he might

not be interested in messages of the form "The house is being built" or "IOOOth bedroom

brick is being laid". Thus, we consider the problem of capturing the states of all the providers

(which have been invoked until now) at different levels of the hierarchical composition.

Before discussing the actual algorithm, let us have a look at the underlying state transition

and composition model.

5.1 State Transition and Composition Model

We consider the composition model as shown in Fig. 5.1. In addition to the coordinator

(mentioned earlier), each service provider has a log manager associated with it. The log

manager logs information about any state transitions as well as any messages sent/received

by the provider (protocols view of services). The state transitions and messages considered

are as outlined in Fig. 5.2.

Not -Executing (NE): The provider is waiting for an invocation.

Executing (E): On receiving an Invocation message (IM), the provider changes its

state from NE to E.

Suspended (S) and Suspended by Invoker (IS): A provider, in state E, may change its

state to S due to an internal action (Suspend) or IS on the receipt of a Suspend message (SM).

62

Conversely, the transition from S toE occurs due to an internal action (Resume) or from IS

toE on receiving a Resume message (RM) respectively.

Canceling (CI), Canceling due to invoker (ICI) and Canceled (C): A provider, in state

E or S or IS, may change its state to CI due to an internal action (Cancel) or to ICI on the

receipt of a Cancel message (CM). Once it finishes cancellation, it changes its state to C and

sends a Canceled message (CedM) to the invoking provider. Please note that cancellation

may require canceling the effects of some of its children (discussed later).

Terminated (T) and Compensating (CP): The provider changes its state to T once it

has finished executing the action. On termination, the provider sends a Terminated message

(TM) to the invoking provider. A provider may be required to cancel an action even after it

has finished executing the action (Compensation). A provider, in state T, changes its state to

CP on receiving the CM. Once it finishes compensation, it moves to C and sends a CedM to

the invoking provider.

To keep the discussion simple, we assume that each provider is responsible for executing a

single action (composite/primitive). The state of a provider at time t is its execution history

until t. For simplicity (and where there is no scope for confusion), we represent the state of a

provider at t in terms of the state of its executing action at t and sometimes, also as a

combination of the states of its executing and invoked actions at t. For example, if the

execution history of a provider P A until t is "(Receive IM of a1 from User, E 1) (E11, Send IM

of a11 to P8) (E 12, Send IM of a12 to Pc) (Receive TM of a 11 from P8 , T 11)" then the state of

P A at t can be represented as E1 or E 1 (T 11 , E!2). Due to the support for solicit-response

invocations, the terms "parent" and "child" with respect to the hierarchical composition need

63

a little clarification here. Usually, the invoking and invoked providers are referred to as the

"parent" and "child" respectively. However, the above definition is clearly not suitable for

solicit-response invocations where a "child" invokes an action of the "parent". Here, it helps

to recall that any solicit-response invocation of provider P by Q implies an earlier request-

response invocation of provider Q by P. Thus, we use the terms "parent", "child", "ancestor"

and "descendant" corresponding to the initial request-response invocation.

I
I

:eM I
I

:eM

Figure 5.1 Composition infrastructure

• :eedM
I

: Receipt of message M
eM : M from the invoking

: provider causes the
~ transition from state

S 1 to Sz

Internal action a
~ causes the transition
~ from stateS 1 to S2

•
Send message M to
parent on reaching
stateS

Figure 5.2 Invoked provider lifecycle

64

The lifecycles of an invoking and invoked provider are not independent. In fact, the

discussion until now (Fig. 5.2) can be considered as the lifecycle of an invoked provider with

respect to its invoker. Below, we consider a few characteristics of the lifecycle of an

invoking provider with respect to its invoked providers (Fig. 5.3). Please note that a

composite provider can invoke many providers. Thus, Fig. 5.3 shows the lifecycle stages of a

composite provider with respect to an invoked provider. The same cycle would be repeated

for other invoked providers. We augment the discussion below with an example scenario

where a composite service provider P invokes an action a11 of provider Q.

Normal execution: Once P starts executing an action (E), it is capable of invoking

actions of other providers. To invoke action a 11 , P sends the corresponding 1M to Q.

Suspension: Provider P may decide to suspend any of its invoked actions (which are

still executing). For example, if P is currently in state E 1 (E1 1) and it decides to suspend the

action a,, then it sends the SM to Q and changes its state to E 1 (IS 11). Whenever P decides to

resume action a1 1, it sends the corresponding RM to Q and changes its state back to E1 (E 11).

Cancellation: We allow for two types of cancellation. (1) Provider P decides to cancel

one of its invoked actions. For example, if Pis currently in state E 1 (E 11) or E 1 (T 11) and it

decides to cancel the action a11 then it sends the CM to Q and changes its state to E 1 (ICI 11)

or E 1 (CP 11) accordingly. Please note that the same message CM is used for both cancellation

and compensation. We do not differentiate between the two because of synchronization

problems between parent-child providers. To illustrate the problem, let us assume that we

have separate messages for cancellation (CM) and compensation (say, CpM). Consider a

situation where the child has terminated (T) but its TM has not yet reached the parent. Now,

65

if the parent had to cancel the execution of the child, it would send a CM to the child (since

the state of the child is still Eat the parent's site). However, the child has already terminated

and requires a CpM to cancel its effects. (2) Provider P needs to cancel its execution (due to

its internal action Cancel or on receiving a CM from its parent), implying cancellation for all

the actions invoked by P. For example, if the current state of P is E 1 (T 11) and it receives a

CM then it sends a CM to Q and changes its state to ICI1 (CP11). Please note that the above

state transition is not evident from Fig. 5.3.

Termination: Provider P changes the state of a11 to T (C) on receiving the TM

(CedM) from Q. Needless to say, P can change the state of its action a1 toT (C) only after it

has received the TM (CedM) from the providers of all the actions invoked by P.

1RM
I
I ..

Receipt of message
M from the

~ invoked provider
~ causesthe

I
I transition from

State S 1 tO S2

Send of message M
to the invoked

~ provider causes the
~ transition from

.f state S1 to S2

Figure 5.3 Invoking provider lifecycle with respect to one invoked action

The allowed state transitions are summarized in Tables 1, 2 and 3. We assume that the

composition schema (static composition) specifies a partial order for the actions invoked by a

provider. We define the happened-before relation between the actions invoked by a provider

as follows:

66

An action a happened-before action b invoked by the same provider (a --> b) iff one of the

following holds: (1) There exists a control/data dependency between actions a and b such

that a needs to terminate before b can start executing. (2) There exists an action c invoked

by the same provider such that a--> c and c --> b.

The term "partial order" in literature is synonymous with the partial ordering between

events in a distributed system as determined by Lamport's happened-before relation [L78].

Lamport's happened-before relation between events assumes that local events are totally

ordered. In comparison, the composition schema defines a partial order on the actions

invoked by a provider (local actions).

Table 1 Allowed states of the invoked action (at the invoking provider site) with respect to
the state of the invoking action

State of the State of the invoked action (at

invoking action the invoking provider site)

E/S/IS E, T, ICI, CP, C, IS

CIIICI ICI, CP, C

CP CP,C

T T

c c

Table 2 Allowed states of the invoked action (at the invoked provider site) with respect to the
state of the invoking action

State of the invoking State of the invoked action (at

action the invoked provider site)

E/CIIICIIS/IS E, T, CI, ICI, CP, C, IS, S

T/CP T,CP,C

c c

67

Table 3 Allowed states of the invoked action at the invoked provider site with respect to its
state at the invoking provider site

State of the invoked action (at State of the invoked action

the invoking provider site) (at the invoked provider site)

E/IS E, T, CI, C, IS, S

ICI E, T, CI, ICI, CP, C, IS, S

CP T,CP,C

c c
T T

Note that a particular invocation (of a provider) may have already terminated by the time

execution details of that invocation are required for reporting the state, answering execution

status related queries, etc. To accommodate the above scenario, we assume that the log

entries are persistent, i.e., execution details of a particular invocation are available even after

it has terminated. Finally, to accommodate asynchronous communication, we assume the

presence of Input/Output (I/0) queues. Basically, each provider has an I/0 queue with

respect to its parent and children (as shown in Fig. 5.1). The Input (Output) queue of a

provider p corresponding to provider q is referred to as Ipq (Opq). Although, each provider

might only have a single I/0 queue in a practical implementation, it really does not matter for

the rest of discussion as long as there is some way of differentiating between messages sent

by different providers. We assume that the status of the I/0 queues and logs are updated in an

atomic manner. With respect to Fig. 5.2 and Fig. 5.3, for any message M whose send

(receipt) causes the provider to change its state, the details of the state transition are written

to the log and M inserted into (deleted from) the Output (Input) queue in an atomic fashion.

68

For example, as soon as an action terminates, the state of the action in the log is updated (to

T) and the corresponding message TM inserted into the Output queue atomically.

5.2 Synchronized Clock - Snapshot

In this section, we discuss snapshot algorithms based on the assumption that the clocks of the

providers are synchronized using one of the techniques discussed earlier [L78], [M89],

[M91] . Please note that the above approaches require considerable coordination among the

participants (providers), which may not always be possible in a Web services scenario due to

the autonomy requirements of the providers. A more loosely coupled approach for clock

synchronization is the use of a timestamp element as advocated by WS standards like WS

Security [WS-S] for SOAP messages. Basically, a timestamp element consists of the creation

time and transmission delays . Given this, we can calculate the skew (drift) between the

invoking and invoked providers' clocks as follows : skew = receiver 's processing time -

sender's creation time- transmission delay. The transmission delay, in this case, corresponds

to the time spent waiting in the I/0 queues before the message is processed. Although the

synchronization achieved with message timestamps may not be as accurate as with NTP

(Network Time Protocol), we believe that it would still be acceptable for Web services

compositions given their long-lived nature.

Given synchronized clocks and logging (as discussed earlier), a snapshot of the

hierarchical composition at time t would consist of the logs of all the "relevant" providers

until time t (provider P's log until time t is hereafter referred to as logp1) . The relevant

providers can be detemuned in a recursive manner (starting from the root provider) by

69

considering the providers of the invoked actions recorded in the parent provider's log until

time t. In case clock synchronization protocols like NTP are not possible and message

timestamps are used, then we need to consider the skew while recording the logs. Basically,

if a parent provider's log is recorded until time t, its children providers' logs need to be

recorded until (t +skew). The states of the 110 queues can be determined as follows. Initially,

we consider that all the queues are EMPTY.

For each invoking (P) - invoked (Q) pair of providers until time t, if for an action at (the

last entry for action a1 in logp1 denotes its state at t)

logQt does not contain an entry for at while its state is denoted as EIISIICI in logpt then

add IM/SM/CM corresponding to at to IQP·

logpt denotes the state of at as E while logQt denotes its state as TIC then add

TM/CedM corresponding to at to IPQ·

logQt denotes the state of at as EIIS/S while its state is denoted as ICI in logpt then add

CM corresponding to at to IQP·

logQt denotes the state of at as T while its state is denoted as CP in logpt then add CM

corresponding to at to IQP·

logpt denotes the state of at as ICIJCP while logQt denotes its state as C then add CedM

corresponding to at to IPQ·

logQt denotes the state of at as E while its state is denoted as IS in logpt then add SM

corresponding to at to IQP·

logQt denotes the state of at as IS while its state is denoted as E in logPt then add RM

corresponding to at to IQP·

70

Please note that the above list is not exhaustive as it does not consider some of the more

implementation dependent scenarios. For example, if logPt denotes the state of a1 as IS while

logQ1 denotes its state as S then whether Q changes its state to IS (and waits for RM from P)

or it simply ignores the SM (and the corresponding RM from P) is implementation dependent

and we would not like to impose any constraints on the same.

5.3 Distributed Snapshot Algorithm for Web services (DSW)

In this section, we do not assume synchronized clocks and outline an extension of the DSA to

capture the state of the composition.

Distributed Snapshot algorithm for Web services (DSW):

Assumption: The 110 queues maintain the FIFO order of the messages. For example, if

provider P inserts a message m 1 before message m2 in its Output queue corresponding to Q,

then Q receives m 1 before m2•

The algorithm is initiated by the root provider, which atomically records its state (as of the

time of recording) and sends markers to its children providers. By recording its state at timet,

we mean that a provider records the contents of its local log at t, i.e., its execution history

until t.

Child providers, on receiving the markers, do the same, i.e., atomically record their states

(as of the time of recording) and send markers to their children providers. This downward

propagation of the markers continues until leaf providers are reached.

The states of the 1/0 queues are computed as outlined for the synchronized clock scenario.

71

The above algorithm differs from the original DSA as follows:

In DSA, markers are sent along all the outgoing channels. Basically, DSA assumes

that the network topology is static (fixed in advance). With Web services compositions, due

to dynamic binding, a provider at any point of time is only aware of the providers of the

actions it has invoked until then. A provider may invoke other providers after it has recorded

its state. Thus, the set of providers, whose states are recorded, may vary from one snapshot to

the next.

Our algorithm does not require the providers to record the states of their 110 queues

explicitly. The contents of the 110 queues can be determined from the local states of the

providers as discussed earlier.

Correctness:

As with the DSA, here also we show that the above algorithm captures a state of the

hierarchical composition which "might have happened" (is consistent with the state

transitions discussed earlier- Tables 1, 2 and 3). More precisely, we show that the recorded

states preserve the causality of the messages sent/received, i.e., if the reception of a message

is recorded then its transmission has also been recorded.

Intuitively, the proof follows from the fact that messages are exchanged only between

parent-child providers and that the state of a parent is always recorded before any of its

children. Thus,

for messages recorded as received by any parent: If the receive event is recorded, then

its corresponding send event (by the child) will also get recorded as the state of the child is

recorded later.

72

for messages recorded as received by any child: The FIFO nature of the 110 queues

ensures that the parent sent the corresponding message before sending the marker. And, since

the recording of state and sending of markers is done in an atomic fashion, the corresponding

send event would have been recorded by the parent. 0

5.4 Actual State of the Composition

The snapshot acquired by the DSW highlights a global state of the composition which "might

have happened". For example let us consider a single-level composition. Now the algorithm

might record the states of the providers in the composition as shown in Fig. 5.4 namely, that

actions a~, a11 and a12 are all executing. However the execution might have happened as

shown in Fig. 5.5 where action a11 had terminated before a12 started executing, i.e., actions

a 11 and a12 were never executing simultaneously. On the other hand, the global state as shown

in Fig. 5.4 might have actually occurred too. In the absence of a global observer it is

impossible to deduce whether a recorded global state actually occurred or not.

Ptt

No messages in the
queue (EMPTY)

Figure 5.4 Sample Snapshot showing "what might have happened"

Pt Et (Ett> E12)
;.MP

No messages in the

~
queue (EMPTY)

EMP

/M The queue contains
Ttt

I NE

message M

Figure 5.5 Execution showing what "might have actually happened"

73

Let Ps denote the set of providers whose states were recorded as part of a DSW snapshotS.

For a pair of parent-child providers in Ps, if the state of the parent was recorded at timet then

the child's state would have been recorded at a later time, say (t + L). Thus the providers in

Ps may never have been in their recorded states simultaneously. We can still infer the

following about the states of the providers in Ps at t based on the state of a provider P in Ps

recorded at t.

Observation 1: The presence of an action at in the recorded state of P implies that all

the actions having a happened-before relation with at have terminated by t (their states are T

at t).

Observation 2: If the recorded state of Pis E/S/IS/CIIICI then its ancestors cannot be

in the states T/CP/C at t.

Observation 3: If the recorded state of P is T(C) then all the providers in the sub-tree

rooted at P are in the state T (C) at t.

Observation 4: If the recorded state of P is CP then all the providers in the sub-tree

rooted at Pare in the state CP (or would be at a later time).

In the rest of the section, we use the above observations to acquire a state of the

composition which actually occurred. We define an actual state of the composition as

follows:

A global state represents the actual state of the composition at time t if it reflects the states

at t of all and only those providers invoked until t.

The concept of actual states is similar to the notion of Strongly Consistent Global States

(SCGS) [B04a] in literature. While [B04a] defines SCGS in terms of the local states of all the

74

providers in the system, we define the actual state at a time t in terms of the local states of the

providers invoked until t (due to dynamic binding). Algorithms to detect SCGS in [B04a] are

based on real-time timestamps (similar to our algorithm based on synchronized clocks).

Given a (DSW) snapshot S initiated at time t, we can acquire an actual state of the

composition at some point tp in the past (tp <= t) as given below.

Algorithm I:

/* Intuitively, we can simulate "freezing the execution" if we can determine a time tp at

which none of the providers invoked until tp are executing, i.e., they are in the state TIC at tp.

Thus, the algorithm tries to determine the latest set of providers which have definitely been

canceled or terminated until t. The algorithm achieves this by determining the most recent

time tp when all the invoked providers at the root level are in the state TIC (implying all the

lower level providers invoked until tp are also in the state TIC - by Observation 3). We

illustrate the steps with the help of an example scenario (Fig. 5.6 and 5.7). Fig. 5.6 depicts a

sample snapshot (only shows the current states of the recorded actions) and Fig. 5.7 shows

the recorded state of the root provider (contents of its log until t). *I

1. Let PIN denote the set of invoked providers in the recorded state of the root provider.

If the state of each provider P in PIN is either C or T, then terminate the algorithm /* the

recorded snapshot represents an actual state of the composition */.

2. From the recorded state of the root provider, determine the last provider P1 in PIN to

terminate/cancel before the invocation of the first provider Pr in PIN which is still executing

(in state EIISIICI) /* the "last" part (of the above statement) helps us in acquiring the latest

set while the "first" part ensures that the acquired set consists only of terminated/canceled

75

providers. PIN= {P8 , Pc, P0 , PE, PF}, P1 = PE and Pf = PF */.Given this, tp corresponds to the

time just after P1 terminated/canceled.

/* The following steps determine the providers invoked (at all levels) until tp and their

states at tp. Recall that the recorded states of the providers reflect their states at a later time t.

As discussed earlier, the states of all the providers (invoked until tp) would be err at tp. A

small complication arises due to the possibility of compensation. A provider which was in

state T at time tp may have been compensated before t (after tp) leading to its state being

recorded as C. For example, the recorded state of the provider PE is C (Fig. 5.6). However,

from the log (Fig. 5.7) it is clear that the state of PE was T at tp. As such, we may need to

adjust the recorded states of some of the providers (invoked until tp) so that they reflect their

states at time tp. */

3. Let SAP denote the set of invoked providers (at all levels) until tp. Initially, SAP= Root

provider.

4. Adjust the recorded state of the root provider so that it reflects its state at tp (contents

of its log until tp- Fig. 5.7). Use the newly adjusted state to determine the set of providers PTP

invoked by the root provider until tp and their states at tp. Adjust the receded states of

providers in PTP accordingly (if required). Add the providers in PTP to SAP i.e. SAP = SAP U

PTP /* the adjusted recorded state of the root provider denotes the state of PE as T, so adjust

the recorded state of PE accordingly (trim its log until tp- Fig. 5.8). */.

5. Repeat Step 4 recursively for each provider in PTP (determined at each stage) until

leaf providers are reached. /* SAP= {P A, Ps, Pc, Po, PE, Pa, PH, P~. P1, PK, PL, PM, PN, Pp, Po,

PR, Ps, PT } */

76

The global state G, consisting of the recorded states of the providers in SAp, represents the

actual state of the composition at time tp Uust after the provider Pt terminated/canceled) -

Fig. 5.9.

Figure 5.6 Sample Snapshot

(Receive 1M of a1 from User, E1) (E1 I> Send IM of a 11 to P8) (Receive TM of a 11 from P 8 , T 11)

(E 12, Send IM of a 12 to Pc) (Receive TM of a 12 from Pc, T12) (E13, Send 1M of a13 to Po) (E 15,

Send 1M of a 15 to PE) (Receive TM of a13 from P0 , T13) (Receive TM of a15 from PE, T 15)

:(E11 4, Send 1M of a14 to PF)(CPts, Send CM of a15 to PE)(Receive CedM of a15 from PE, Cts) :
I I

Figure 5.7 Recorded (t) and adjusted (tp) state of the root provider (Algorithm 1)

(Receive 1M of a 15 from P A• E 15) (E 15 t> Send 1M of a151 to PM) (Receive TM of a 151 from PM, T 151) (E 152,

Send 1M of a152 to PN) (Receive TM of a 152 from PN, T 152) (T15, Send TM of a15 toP ~:(Receive CM of a15

from PA, CP 15) (CP 151 , Send CM of a1st to PM) (CPt52• Send CM of a152 to PN) (Re~eive CedM of a 151

from PM, C 151) (Receive CedM of a152 from PN, Cts2) (Cts. Send CedM of a 15 toP~ :
I

: t
I

Figure 5.8 Recorded (t) and adjusted (tp) state of the provider PE

77

Figure 5.9 Actual state corresponding to the snapshot in Fig. 5.6 (Algorithm 1)

It is easy to observe that the above mechanism can be used to acquire an actual state for

any sub-tree belonging to a snapshot acquired by the DSW. For example, if we add another

level of nesting to the composition in Fig. 5.6 (Fig. 5.1 0) then the above mechanism can be

used to acquire an actual state for the sub-tree rooted at provider P A·

Figure 5.10 Acquiring actual states of sub-trees

78

An obvious limitation of the above algorithm is that the states of all the providers (except

the root provider) in any actual state acquired by the algorithm would always be TIC. To

understand the problem in capturing the state of a provider as E, we revisit the single level

composition scenario considered in Fig. 5.4. Let us assume that the states of the providers P 1,

P 11 and P 12 are recorded by the DSW at times t1, t2 and t3 respectively. We know for sure that

t2 and t3 occurred after t1. It is easy to see that the above information is not sufficient to

determine the actual state of the composition at t1, t2 or t3 . Fig. 5.4 reflects the difficulty with

respect to a scenario where the states of more than one invoked provider are recorded as E by

the invoking provider. As such, let us restrict the scenario further so that the state of only one

child is recorded as E (Fig. 5.11). With this restriction, let us try to determine the actual state

of the composition at t3 . We can say that provider P 11 would be in its recorded state T at t3 if

there exists a happened-before relation between a11 and a12. On the same lines, the recorded

state of P1 would change between t1 and t3 iff one of the following occurs: (1) an already

invoked action of P1 changes its state or (2) P 1 invokes a new action a 13 • The above two

scenarios won't occur (P1 would be in its recorded state at t3) if for each action at (a1 -::f a12)

belonging to the composition schema either at --> a12 (all actions invoked before a12 have

terminated) or a12 --> at (no new actions can be invoked before a 12 terminates). Extending the

above scenario to a hierarchical composition, we can simulate "freezing the execution" if a12

belonged to the lowest level of a recorded snapshot (Fig. 5.12). When a12 started executing,

its ancestor (including parent) actions (aR and a1) and their corresponding providers (PR and

P 1) would also have been executing (Observation 2), i.e., we have an executing action

(provider) at each level. However (as explained above), the executing ancestor actions

79

(providers) at each level cannot change their states until a12 (P 12) terminates. With reference

to Fig. 5.12, P1 cannot changes its state until P12 terminates. All the providers (P11) invoked

by P1 before P12 have already terminated and it cannot make any new invocations until P12

terminates. On the same lines, PR cannot change its state until P1 (and recursively, P12)

terminates. We use the above logic in the algorithm given below to acquire an actual state of

the composition at time tp' given a (DSW) snapshotS initiated at timet (t >= tp'):

J No messages in the
jEMP - queue (EMPTY)

Figure 5.11 Sample Snapshot

:MP __ No messages in the
jEl queue (EMPTY)

Po

Figure 5.12 Hierarchical extension of the sample snapshot in Fig. 5.11

Algorithm 2:

/*We illustrate the steps with the help of the earlier scenario (Fig. 5.6 and 5.7). *I

1. Let SAP denote the set of invoked providers (at all levels) until tp'. Initially, SAP =

Root provider.

80

2. Let CSr denote the projection of the composition schema with respect to the root

provider. Determine the last action a1 invoked by the root provider to terminate such that ¥at:

at£ CSr and at -:j:. a1: at --> a1 or a1 --> at. Let Pit be the provider invoked to execute a1. Adjust the

recorded state of the root provider so that it reflects the state when PIL was executing. SAP =

SAP U P1t /* Fig. 5.13 shows part of the composition schema with respect to the root provider.

Thus, a1 = a 12, Pit = Pc. Adjust the recorded state of the root provider so that it reflects the

state when Pc was executing, i.e., (E12, Send 1M of a 12 to Pc) is the last entry in its log - Fig.

5.14. */.

3. Repeat Step 2 for the provider Pit (instead of the root provider). Keep repeating Step 2

recursively for the provider P1t (determined at each stage) until leaf providers are reached. /*

Let us assume that Pc is sequential, i.e., a121 -->am --> am. Given this, a1 = am, P1t = PK and

adjust the recorded state of Pc such that (Em, Send 1M of am to PK) is the last entry in its

log.*/

4. The steps for determining the providers invoked before P1t at each level, appending

them to SAP and performing any required adjustments to their recorded states (due to

compensation) is similar to Algorithm 1 and as such have been skipped. /* Please note that

the states of the providers invoked before P11 at each level would be CIT. *I

The global state G, consisting of the recorded states of the providers in SAP, represents the

actual state of the hierarchical composition at time tp' (Fig. 5.15), where tp' corresponds to

the time when the provider P1c (with respect to the lowest level) started executing. With

reference to the example scenario (Fig. 5.6), tp' corresponds to the time when provider PK

started executing.

81

a1 has to terminate before
a2 can start executing

Figure 5.13 Part of the composition schema with respect to the root provider

(Receive IM of a1 from Usar, E 1) (E11 , Send IM of a11 to P8) (Receive TM of a11 from P8 , T11)
tp'--+--------- I

(E12 , Send 1M of a12 to Pc) :(Receive TM of a12 from Pc. T 12) (En. Send IM of a13 to P0) (E 15 ,
I

Send IM of a15 to PE) (Receive TM of an from P0 , T13) (Receive TM of a15 from PE. T 15)

(E 11 4, Send IM of a14 to PF)(CP 15, Send CM of a15 to PE)(Receive CedM of a15 from PE, C15) :

I

Figure 5.14 Recorded (t) and adjusted (tp') state of the root provider (Algorithm 2)

Figure 5.15 Actual state corresponding to the snapshot in Fig. 5.6 (Algorithm 2)

Now, there exists an exception scenario where the above algorithm is not guaranteed to

return an actual state. Algorithm 2 is based on Observation 2, i.e., if a provider is in state Eat

time t then its ancestors cannot be in the states T/CP/C at t (they are also executing at t).

Given this, the complication arises due to the possibility of suspension. Let us consider the

problem with reference to the actual state in Fig. 5.15. Let the providers PA, Pc and PK

82

(executing providers at each level) be in state E between the time intervals (tA1 - tA2), (tel -

tez) and (tKJ - tK2) respectively such that tA1 < te1 < tK1 < tK2 < tez < tA2. Given this, Algorithm

2 returns the actual state at time tp' Gust after PK started executing), i.e., tK1 < tp' < tK2. Now,

let us assume that provider P A was in the stateS during the entire interval (tK1 - tK2) as shown

in Fig. 5.16. Given this scenario, the state acquired by Algorithm 2 does not represent the

actual state of the composition at tp' cPA was in state S at tp'). Again, it is not possible to

determine if such a scenario (as described above) actually occurred or not. The best we can

do is to examine the contents of the log (recorded state) of the executing provider at each

level to determine if it was ever suspended (in state SIIS). If so, we conclude that Algorithm

2 is not guaranteed to return an actual state and Algorithm 1 is the only option.

tAl tA2

PA

....._ E1 sl El---+

lei lc2
Pc

E12

tKI tK2
PK

Em

Figure 5.16 Exception scenario for the actual state in Fig. 5.15

5.5 Taking Stock of the Situation

We started this chapter with the objective of providing information about the current

(intermediate) state of execution of a hierarchical composition. Towards that end we have

outlined three algorithms to capture a snapshot of the ongoing execution: (1) Algorithm

83

based on the assumption of synchronized clocks (synchronized algorithm), (2) DSW and (3)

Algorithms to acquire an actual state of the composition from a DSW snapshot (actual state

algorithms). Providing intermediate information encapsulates two aspects:

Reporting the state: The snapshots acquired by both the synchronized and actual state

algorithms can be used to report the current state of the execution. It is easy to see that a

synchronized snapshot also represents an actual state of the composition. Please recall that a

snapshot acquired by the actual state algorithms represents the state of the composition at

some point in the past. While a synchronized snapshot answers the question "what is

currently going on", a snapshot acquired by the actual state algorithms provides information

about "what has happened".

Answering state related queries: Sometimes a diagram representing the state of the

entire composition may contain too much information for the end-user to comprehend. As

such, it should be possible to answer specific queries related to the state of execution. We

discuss the capabilities and limitations of the different snapshots (acquired using the

algorithms mentioned earlier) with respect to answering different types of queries. We use

[CHKOl] as a basis while determining the set of execution related queries which a

hierarchical system might be required to answer. [CHKOl] discusses a query model (WSQM)

for workflows specified and enacted using XML. We divide the queries into the following

categories:

1. Local queries: Queries which can be answered based on the local state information of

a provider. For example, queries such as "What is the current state of provider P?" or "Has

provider P reached a specific state?". As obvious, we do not need a snapshot of the

84

composition to answer such queries. Local queries can be answered by directly querying the

concerned provider as long as it provides a query interface such as WSDM [WSDM].

2. Status queries: Queries expressed over the states of several providers (complex

queries). We assume that any query related to the status of a composition is expressed as a

conjunction of the states of individual providers. We do not consider disjunction for the

simple reason that any disjunctive query can be expressed as a local query. Examples of

status queries: "Have providers A, B and C reached states T, E and E respectively?", "Have

providers A, B, C and D started executing?". It is easy to see why such queries cannot be

answered by querying the concerned providers separately. Status queries can be answered

using snapshots acquired by any of the above given algorithms. Such queries have been

referred to as stable predicates in literature. Stable predicates are defined as predicates which

do not become false once they have become true. To check for a stable predicate, we simply

need to keep taking snapshots regularly until the predicate holds. Common examples of

stable predicates are deadlock and termination. In our case, the stability of the query is

reflected by the fact that we do not have to capture the state of a provider as E to conclude

that it has started executing. We can infer the same even if the state of the provider is

recorded as T/CIIICIICP/CIIS/S.

3. History queries: Queries related to the execution history of the composition. For

example, "How many times have A and B been suspended?" or "How many providers have

been canceled until now?". Both synchronized and actual state snapshots can be used to

answer execution history related queries. A DSW snapshot cannot be used directly because

the recorded states of the providers reflect their states at different times. If the query is

85

answered usmg a snapshot acquired by the actual state algorithms then it needs to be

mentioned that the statistics are with respect to a time tp in the past.

4. Relationship queries: Queries based on the relationship between states. For example,

"What was the state of provider A when provider B was in E" or "Did provider A start

executing before provider B?". Unfortunately snapshot based mechanisms do not guarantee

answers for such queries. For example we would not be able to answer the first query unless

we have a snapshot which captures the state of provider B when it was in state E. B could

have been in state NE when a snapshot was taken and in state T when the next snapshot was

taken. Such predicates have been referred to as unstable predicates in literature. Unstable

predicates keep alternating their values between true and false. As discussed above if a

predicate becomes true between successive snapshots it won't get detected. While unstable

predicates are in general very difficult to detect, researchers have studied some special

classes of unstable properties:

(a) Strong unstable predicates [GW96] or predicates which will "definitely" hold [CM91]: A

predicate is called a strong predicate iff the global state over which it holds is guaranteed to

occur for any execution (irrespective of the execution speeds, communication delays and

other variable parameters in a distributed setting). Intuitively, strong unstable predicates

allow us to verify that a desirable state will always occur.

(b) Strong unstable linked predicates [GW96], [MC88]: A linked predicate is expressed as a

sequence of local predicates and is called a strong linked predicate if the corresponding local

states occur in the same sequence for every execution. Such predicates are useful in detecting

a sequence of states in a distributed setting.

86

In a hierarchical composition scenario, the concepts of strong and linked predicates can be

used to answer relationship queries as long as there exists a parent-child (ancestor

descendant) relationship between the concerned providers. For example, a global state where

parent and child providers are executing simultaneously will definitely occur or an ancestor

will always starting executing before any of its descendants. Researchers have also

considered weak unstable [GW94] or "possibly" true predicates [CM91] and predicates

defined over atomic sequences [HPR93]. We point the reader to [SM92] for a survey of the

unstable predicates studied in literature.

Finally we consider some parameters which allow us to get a rough estimate of the

accuracy of a DSW snapshot:

The time taken to record the snapshot (duration): It is easy to see that the accuracy of

the algorithm decreases as the duration increases. The duration of the algorithm depends on

the communication delay between the providers (at different levels) and the number of

(nesting) levels. Assuming the communication delay between providers is specified as part of

the SLA and we can get the number of (nesting) levels at any point of time from the

composition schema, it is possible to estimate the duration of the algorithm. In fact, given the

long running nature of complex business process, if the duration of the algorithm is very

small (in sees) as compared to the total execution time of the business process (in days), it

might even be practical to actually freeze the execution.

Degree of concurrency: This factor arises from the fact that it is possible to get an

"actual" snapshot if all the involved providers are sequential. In fact, the higher the

concurrency the lower the accuracy of the algorithm. Given the composition schema, we can

87

compute the degree of concurrency in terms of the number of actions capable of running

concurrently. As mentioned before, two actions are capable of executing concurrently if they

do not have a happened-before relation between them.

5.6 Customizations and Optimizations

DSW captures the state of the hierarchical composition until the lowest level (leaf providers

are reached). The algorithm can be customized as follows to record the state of the

composition up to a certain granularity:

Capture the state up to level n: Append a counter with the marker. Each child

provider, on receiving the marker, increments the counter by 1 and forwards it to its children

(if any) if the value of the counter <= n.

Capture the state until a certain condition holds: The condition may be time based (for

example, capture the state of as many providers as possible within a time frame) or any

predicate which can be evaluated locally. Similar to the above case, we can accommodate

this requirement by appending the predicate to the marker. Each child provider, on receiving

the marker, evaluates the predicate and forwards it to its children if the predicate holds.

Snapshot algorithms are primarily used to capture an intermediate state of the execution.

As such there might be a need to run it multiple times for the same execution. However we

cannot apply the idea of incremental snapshots [V89] directly here. A provider cannot decide

to forward the marker to only those children to (from) which it has sent (received) messages

after the last snapshot. Although the provider may not have exchanged any messages with its

children since the last snapshot, the state of the lower level providers may have changed.

88

Exceptions include scenarios where the children providers have either terminated or

canceled. While lower level terminated child providers may be canceled (compensation), it

would involve the send of a CM (a provider cannot decide to compensate itself).

Even without the idea of incremental snapshots, it may not be required to traverse the

entire hierarchy for each snapshot. A provider P may proactively take snapshots of the sub

tree rooted at P and return the same whenever it receives a marker from its parent. To

preserve consistency, the above should be allowed only if the recorded states of P and its

parent are consistent with the earlier state transition discussion (Tables 1, 2 and 3). For

example, if the state of an invoked action ai is recorded as T at the invoking provider's site

(P's parent) then ai's state should beT at the invoked provider's (P's) site too. In case P does

not have visibility over the entire sub-tree rooted at P, it can still take snapshots of the

providers in its downward visibility (Down-SoVp).

89

Chapter 6

Conclusion

The major contribution of this thesis is with respect to the visibility, compensation and

monitoring aspects of hierarchical Web services compositions. Web services compositions

are characterized by their "loosely coupled" nature. For a single-level composition, it

translates to the composite provider not having visibility over the internal (processing) logic

of the primitive providers. For a hierarchical composition, it translates to a provider not

having visibility over the other providers in the composition. We introduced the notion of

Spheres of Visibility (So V) to capture the visibility aspects of a hierarchical composition. We

also provided implementation details related to populating the SoY's of the involved service

providers. While the concept of compensation has been around for quite some time, new

challenges arise when we try to apply the same to hierarchical Web services compositions.

Most of the transaction based compensation models do not acknowledge the fact that

compensation may be possible at different levels in a hierarchical composition with different

costs (CoC). The dynamic aspect of Web services compositions, esp. dynamic binding, also

allows for the possibility of provider independent compensation. Earlier works have

considered end-user involvement as a last resort for unhandled (or ad-hoc) faults. We

stressed that end-user involvement may be required for selecting the most optimum

compensation option too. We showed how the above aspects could be implemented in a

hierarchical Web services composition with visibility restrictions (modeled as SoY). On the

monitoring front, we outlined algorithms to capture the state of a hierarchical Web services

90

composition. More precisely, we discussed how the Distributed Snapshots Algorithm (DSA),

algorithms based on the assumption of synchronized clocks and incremental snapshots

algorithm could be adapted to capture the state of a hierarchical Web services composition.

Next, we showed how we can acquire an "actual" state of the composition from such

snapshots. Finally, we discussed using the captured state information to answer execution

status related queries.

Some aspects which we would like to explore in the future are as follows:

In this work, we showed how compensation and end-user involvement can be

achieved in a hierarchical composition taking the visibility aspect of the providers in

consideration. In the future, we would like to consider how some of the other compositional

aspects especially security can be implemented in conjunction with SoV.

We would like to extend the monitoring algorithms to consider failure detection

including deadlock, livelock, etc.

We would like to consider the notion of "constraints" for hierarchical compositions.

Constraints are used to specify the functional and non functional limitations of an action. For

example, a painting service might be available only for a particular paint type/color

(functional) and cost/duration (non functional). The challenge arises when we try to reason

about the constraints of a composite service based on the constraints of its component

services (constraint composition).

The aspects discussed in this thesis assume a static composition and dynamic binding

environment. It would be interesting to try and apply the same to fully dynamic

compositions.

91

Bibliography

[AHOO] Gustavo Alonso, Claus Hagen. Exception Handling in Workflow Management

Systems. IEEE Transactions on Software Engineering, vol. 26, no. 10, pp. 943-958, Oct 00.

[B04a] Janusz Borkowski. Hierarchical Detection of Strongly Consistent Global States. In

Proceedings of the 3rd International Symposium on Parallel and Distributed Computing,

2004, pp:256-261.

[B04b] Laura Bocchi. Compositional Nested Long Running Transactions. In Proceedings of

the Fundamental Approaches to Software Engineering 2004, LNCS 2984, pp:194--208.

[BPEL] Specification: Business Process Execution Language for Web Services (BPEL4WS).

http:/ /www-1 06.ibm.corn/developerworks/library/ws-bpel/.

[CD96] Qiming Chen, Umeshwar Dayal. A Transactional Nested Process Management

System. In Proceedings of the 12th International Conference on Data Engineering, 1996, pp.

566-573.

[CHKOl] V. Christophides, R. Hull, A. Kumar. Querying and Splicing of XML Workflows.

In Proceedings of the 6th International Conference on Cooperative Information Systems

(CoopiS 2001), 2001, pp:386-402.

[CUKSOO] Fabio Casati, Ski llnicki, LiJie Jin, Vasudev Krishnamoorthy, Ming-Chien Shan.

Adaptive and Dynamic Service Composition in eFlow. HP Technical Report, HPL-2000-39,

March, 2000.

[CL85] K. M. Chandy, L. Lamport. Distributed Snapshots: Determining Global States of

Distributed Systems. ACM Transactions on Computer Systems, 3(1):63--75, February 1985.

92

[CM91] R. Cooper, K. Marzullo. Consistent detection of global predicates. In Proceedings of

the ACM/ONR Workshop on Parallel Distributed Debugging 1991, pp:163-173.

[D78] C. Davies, Jr. Data processing spheres of control. IBM Systems Journal, 17(2):179--

198, 1978.

[GLC99] B. Grosof, Y. Labrou, H. Chan. A Declarative Approach to Business Rules in

Contracts: Courteous Logic Programs in XML. In Proceedings of the 151 ACM Conf. on

Electronic Commerce (EC-99), 1999, ACM Press (1999), pp:68-77.

[GMS87] H. Garcia-Molina and K. Salem. SAGAS. In Stonebraker, M. ed. Readings in

database systems, San Francisco, California, 1987, 290-300.

[GW94] V.K. Garg, B. Waldecker. Detection of Weak Unstable Predicates in Distributed

Programs. IEEE Transactions on Parallel and Distributed Systems, vol. 05, no. 3, pp. 299-

307, March 1994.

[GW96] V.K. Garg, B.Waldecker. Detection of Strong Unstable Predicates in Distributed

Programs. IEEE Trans. Parallel and Distributed Systems, Dec. 1996, pp. 1323-1333.

[HPR93] M.Hurfin, N.Plouzeau, M.Raynal. Detecting Atomic Sequences of Predicates in

Distributed Computations. In Proceedings of the ACM/ONR Workshop on Parallel and

Distributed Debugging, 1993, pp:32-42.

[JG03] Tao Jin, Steve Goschnick. Utilizing Web Services in an Agent Based Transaction

Model (ABT). In Proceedings of the 151 International Workshop on Web Services and Agent

based Engineering (WSABE'2003), 2003.

93

[KRS95] A.D. Kshemkalyani, M. Raynal, M. Singhal. An Introduction to Snapshot

Algorithms in Distributed Computing. Distributed Systems Eng. J., vol. 2, no. 4, pp. 224-

233, Dec. 1995.

[KS02] H. Kuno, A. Sahai. My Agent Wants to Talk to Your Service: Personalizing Web

Services through Agents. HPL-2002-114.

[KS03] Randi Karlsen, Thomas Strandenres. Trigger-Based Compensation in Web Service

Environments. In Proceedings of the International Conference on Enterprise Information

Systems 2003 (ICEIS03), pp:487-490.

[L78] L. Lamport. Time, Clocks and Ordering of Events in Distributed Systems. Corum.

ACM, vol. 21, no. 7, pp. 558-565, July 1978.

[LAP03] A. Lazovik, M. Aiello, M. Papazoglou. Planning and Monitoring the Execution of

Web Service Requests. In Proceedings of the 151 International Conference on Service-

Oriented Computing (ICSOC'03), 2003, LNCS 2910, pp:335--350.

[LT89] N. A. Lynch, M. R. Tuttle. An Introduction to Input/Output Automata. CWI

Quarterly 2, 3 (1989), 219- 246.

[LTS98] Fu-Ren Lin, Gek Woo Tan, M.J. Shaw. Modeling Supply-Chain Networks by a

Multi-Agent System. In Proceedings of the 31 st International Conference on System Science,

1998, pp: 105 - 114.

[M81] T.E.B. Moss. Nested Transactions: An Approach to Reliable Distributed Computing.

Ph.D. Thesis, MIT Laboratory for Computer Science, 1981 .

94

[M89] F. Mattern. Virtual time and global states of distributed systems. In Parallel and

Distributed Algorithms, Elsevier Science Publishers B.V. (North-Holland), 1989, pp:215-

226.

[M91] D. L. Mills. Internet time synchronization: the Network Time Protocol. IEEE Trans.

Communications 39, 10 (October 1991), 1482--1493.

[M98] J. D. Moffet. Control principles and role hierarchies. In Proceedings of the 3rct ACM

Workshop on Role-Based Access Control, 1998, pp:63-69.

[MC88] B.P. Miller, J.D. Choi. Breakpoints and Halting in Distributed Programs. In

Proceedings of the 8th lnt'l Conf. Distributed Computing Systems, 1988, CS Press, pp. 316-

323.

[NM02] S. Narayanan, S. A. Mcllraith. Simulation, Verification and Automated Composition

of Web Services. In Proceedings of the 11th International World Wide Web Conference

(WWW-11), 2002.

[OWL-S] Specification: Web Ontology Language for Services (OWL-S).

http://www.daml.org/services/owl-s/.

[PBBST04] M. Pistore, P. Bertoli, F. Barbon, D. Shaparau, P. Traverso. Planning and

Monitoring Web Service Composition. In Proceedings of the Workshop on Planning and

Scheduling for Web and Grid Services, 2004.

[PMB02]Paulo F. Pires, Marta L.Q. Mattoso, Mario Roberto F. Benevides. Building Reliable

Web Services Compositions. In Proceedings of the Web, Web-Services, and Database

Systems 2002, LNCS 2593, pp:59-72.

95

[RKM04] Jinghai Rao, Peep Kungas, Mihhail Matskin. Logic Based Web Services

Composition: From Service Description to Process Model. In Proceedings of the 2nd Inti.

Conference on Web Services (ICWS 04), 2004, IEEE, pp:446-453.

[SM92] R. Schwartz, F. Mattern. Detecting causal relationships in distributed computations:

In search of the holy grail. Tech. Rep. SFB 124- 15/92, Univ. of Kaiserslautern, Germany,

1992.

[SY01] Munindar P. Singh, Pinar Yolum. Commitment Machines. Revised Papers from the

gth International Workshop on Intelligent Agents Vill, 2001, pp:235-247.

[TIRL03] Ferda Tartanoglu, Valerie Issarny, Alexander Romanovsky, Nicole Levy.

Coordinated Forward Error Recovery for Composite Web Services. In Proceedings of the

22nd Symposium on Reliable Distributed Systems (SRDS'2003), 2003.

[UDDI] Speciation: Universal Description, Discovery and Integration (UDDI).

http://www.uddi.org/specification.html.

[V89] S. Venkatesan. Message-optimal incremental snapshots. In Proceedings of the 9th

International Conference on Distributed Computing Systems, 1989, pp:53--60.

[VV04] K. Vidyasankar, Gottfried Vossen. Multi-level Model for Web Service Composition.

In Proceedings of the 2nd Inti. Conference on Web Services (ICWS 04), 2004, IEEE, pp: 462-

471.

[WDSS93] G. Weikum, A. Deacon, W. Schaad, H.-J. Sebek. Open Nested Transaction in

Federated Database Systems. IEEE Data Engineering Bulletin, 16(2):4--7, June 1993.

[WPSHN03] Dan Wu, Bijan Parsia, Evren Sirin, James Hendler, Dana Nau. HTN planning

for web service composition using SHOP2. Web Semantics, 1(4):377--396, 2004.

96

[WS-C] Specification: WS-Coordination (WS-C). http://msdn.microsoft.com/library/en-

us/dnglobspec/html/ws-coordination.asp.

[WS-CAF] OASIS Web Services-Composite Application Framework (WS-CAF) Primer.

http://www. webservices.org/index. php/article/articleview/1297 11/24/.

[WSDL] Specification: Web Services Description Language (WSDL).

http://www. w3 .org/2002/ws/desc/.

[WSDM] Specification: Web Services Distributed Management (WSDM).

http:/ I devresource.hp .com/ drc/speci ficati ons/wsdrnlindex .j sp.

[WS-R] Specification: WS-Routing.

http://msdn.microsoft.com/library/default.asp?url=llibrary/en-

us/ dnglobspec/htrnl/wsrou tspeci ndex. asp.

[WS-S] WS Security Addendum. http://msdn.microsoft.com/library/en

us/dnglobspec/html/ws-security-addendum.asp.

[WS-T] Specification: WS-Transaction.

http://msdn.microsoft.com/library/default.asp?url=llibrary/en

us/dnglobspec/htmllwstxspecindex.asp.

97

Appendix A

XML Schema for Provider Independent Compensation

In this section, we outline an XML schema which can be used to capture and store the

information required for provider independent compensation. The XML schema follows:

<!--Input name/value pairs required for compensation-->

<xs:complexType name = "inputType">
<xs:sequence>

<xs:element name= "inputParName" type= "xs:string"/>
<xs:element name= "inputValue" type= "xs:string"/>

<lxs:sequence>
<lxs:complexType>

<!--An action element, basically, consists of four elements: the action name, its effects, input

values and the original service provider. We use the WS-Addressing EndpointReference

XML data type to store the provider details. -->

<xs:complexType name = "action">
<xs:sequence>

<xs:element name= "actionName" type= "xs:string"/>
<xs:element name= "effects" type= "xs:string" maxOccurs = "unbounded" minOccurs

= "1 "/>
<xs :element name= "inputValues" type= "inputType" maxOccurs = "unbounded"

minOccurs = "0"1>
<xs:element name = "provider" type = "wsa:EndpointReference"/>

<lxs: sequence>
<lxs:complexType>

<!-- A composite action consists of a partial order of actions (which may themselves be

composite). To accommodate this hierarchical composition, we need to be able to specify a

composite action within another composite action (in a recursive manner) -->

<xs:complexType name = "compositeAction">
<xs:all>

98

<!--Composite action details-->
<xs:element name= "compositeActionName" type= "xs:string" max Occurs= "1 "/>
<xs:element name= "compositeEffects" type= "xs:string" maxOccurs ="unbounded"

minOccurs = "1"/>
<xs:element name= "compositelnputValues" type= "inputTypes" maxOccurs =

"unbounded" minOccurs = "0"1>
<xs:element name= "compositeProvider" type= "wsa:EndpointReference"/>
<!--Information about invoked actions-->
<xs:element name= "invokedAction" type= "action" maxOccurs ="unbounded"

minOccurs = "1 "/>
<!--Recursive composite actions-->
<xs:element name= "recSeq" type= "compositeAction" maxOccurs ="unbounded"

minOccurs = "0"1>
<lxs:all>

<lxs:complexType>

The figure below shows a hypothetical travel scenario which involves booking flight

tickets from St. John's - Delhi and have them delivered to the customer. The letters in

brackets () correspond to the actions in the figure. We assume that the travel agent (A) deals

directly with airline (B), credit card (C) and courier (D) companies. Further, the airline

company B uses another airline company G to provide for part of the journey (London-

Delhi). Given this scenario, the figure shows the XML compensation information which

would be maintained by the different service providers.

99

A:Tr.wel an-angements (St
John's- Delhi)

compositeAct:i:m?
campositeActDnN arne>tr.wel_anangemerds</compositeActi:>nN arne>
compositeE£1Ects>tickets _booked('St. John's, 'Delhi')</compositeEffects>
compositeE£1Ects>paymerd('full ')</compositi!Effects>
compositeE£1Ects>tickets_del.Wered</compositeEfFects>
compositeE£1Ects>reward.JOints(lOO)c:/compositeEfFects>
compositePlOvider>www. travel-cuts .oomJ</compositeProvid.er>
compositeAct:i:m? Enhy for ~Dn B</compositeActi:>n>
invokedAction> Enhy fOr ~ion C</invokedActnn>
invokedAction> Enhy fOr ~ion D</itwokedAct:i:m?

r--------J
compositeinput Values> AC Ticket #o:/compositeinput Values>
compositeinput Values> P aymenl trans~i:>n #o:kompositelnput Values>
compositeinput V alues>Courier #o:/compositi!Input Values>
/compositeAct:i:m?

~---------------

______________ J __ _

F:Book tickets (St.
John's- Londan):

:.-~~~------~----------~r~Um> 1 ~Um> ccti.anN arne>oourier</~i:>nN arne>
ccti.anNarne>pay _by _credncard</~i efficts>tickets_del.Wered </efFects> I I

I I I
I I
I I I

nName> inputValues>Courier #
efficts>paymerd('full ')</effects> /input Values> -~------1----------------,-------

r .. ~- ... • - ------ - 1 '\
I

: C:Book tickets
tLondan - Delhi)

~~------------------j
~i.anN arne>book tickets<l<cti.anN arne>

'
'

' ' '

efficts>tickets _boclced('Londan' ,'Delhi ')</effi
ts>
input V alues>GA Ti:ket #o:/input Values>
plOvid.er>www .gulf-air .oomJ</provid.er>
/act:i:m?

D
,-----,
I I

~-----2

XML Cornpensati:>n
infOnn.ati:>n

Actions comprising tre
composite .rlion

__., I/0 Action --- Internal
Action

' \
'

efficts>reward.JOints(100) plOvid.er>fed.ex .oomJ</provid.er>
/efficts> /ad:i:m?
input Values> Payment trans~i:>n

/input Values>
plDvid.er>cJbc .cal</plOvid.er>
/act:i:m?

compositeAct:i:m?
compositeActDnN arne>book_tickets</compositeActi.anN arne>
compositeE£1Ects>book_tickets('St . John's' ,'Delhi')
/compositeE£1Ects>
compositePlOvid.er> ail'-can.a.da..oomJ/</compositeProvid.er>
compositeAct:i:m?
compositeActDnN arne>book_tickets</compositeActi.anN arne>
compositeE£1Ects>book_tickets('Londan ','De ;hi')
/compositeE£1Ects>
compositePlOvid.er>gulf-air.coml<kompositePlOvid.er>
invokedAction> Entry fOr Acti:>n G</ invokedActi:>n >
compositeinput V alues>GA Ticket #o:/cotnpositelnput Values>
/compositeAct:i:m?
~ion>

~i.anN arne>book tickets</.rli.anN arne>
efficts>book_tickets('St. John's' ,'London')</efficts>
inputValues>AC Ticket #o:/inputValues>
plOvid.er>ail'-can.a.da..oomJ</provid.er>
lact:i:m?

Figure A. 1 XML Compensation information maintained by the service providers at different

levels of a hierarchical composition

