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  he efficacy of seven juvenile hormone analogs [JHAsl in 

disruptins metamorphoria of the eastern spruce budworn. 

chadstoneura fumiferanq clemens (Lepidoptera: Tortricidael, 

was dctern~ned by applying the JHAs topically to early sixth- 

instar larvac and monitoring the ~ubsequent development. 

Eenaxycarb was the most effective luvenile hormone analog, 

with an Lo,, of 0.26 p g  per i~sect. Relative lethal 

effectiveness, based on LO5, values, was fanoxycazb > ZR 9892 

> ZR 8487 > 5-71619 > methoprene > ZR 9582 s ZR 10151. All of 

the JHlr,  except ZR 10151, caused a wide array of 

morphogenetio deformities such as formation of larval-pupal 

intermediates, with Grecocious evagination or the imaginal 

wing disks, production of deformed pupae with hemolymph-filled 

blisters, supernumerary molting, nummified larval-pupal 

intermediates. and inhibition of molting. 

A t  a sublethal dose, fenoxycarb and methoprene caused a 

qeneral disr~ption in the metabolism of C. fumiferana, as 

shown by altered levels oE carbohydrate, protein, and lipid in 

the hemolymph and fat bodies. Lipid levels in the hemolymph 

and fat bodies were swerely depleted in fenoxycarb treated 

insects. 

The predominant class of neutral lipid in the henolymph 

was diasylglycerol, and in the Eat body triacylglycerol. 
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The f a t t y  a c i d  complement o f  t h e  hernolymph and f a t  body l i p i d s  

was represented by s e v e r a l  sa tu ra ted  and unsa tu ra ted  f a t t y  

ac ids .  These q u a l i t a t i v e  p r o f i l e s  were unaffected by 

fenaxycarb t r ea tment .  

The capacity o f  f a t  bodies from fenoxycarb t r e a t e d  l a rvae  

t o  syn thes ize  l i p i d s  in xLLra was impaired. The e f f e c t  of 

fenoxycarb treatment on l i p i d  syn thes i s  appears t o  be  a t  l e s s t  

p a r t i a l l y  d i r e c t ,  s ince  addit ion of eenoxycarb t o  the  

incubation medium of f a t  bodies from un t rea ted  l a r v a e  resu l t ed  

i n  reduced l i p i d  syn thes i s .  I t  was found t h a t  impairment 

occurred both i n  t h e  pathway leading t o  f a t t y  ac id  syn thes i s ,  

and t h e  subsequent pathway leading t o  complex l i p i d  syn thes i s ,  

as shown by reduced incorporation of r ad io labe l l ed  precursors 

i n t o  l i p i d ,  as well  as diminished capac i ty  of t h e  f a t  body 

r y t a s o l i o  enzymes t o  syn thes ize  f a t t y  ac ids  h W. 

FenOYycarb treatment a l s o  a l t e r e d  the types of complex 

l i p i d s  synthesized from l a b e l l e d  a c e t a t e ,  but  not i n  t h e  types 

of complex l i p i d s  synthesized from labe l l ed  pa lmi ta te ,  

sugges t ing  t h a t  t h e  J H A  a f f e c t e d  t h e  i n i t i a l  s t e p  of l i p i d  

s y n t h e s i s ,  i . e .  f a t t y  ac id  biosynthesie.  The a b i l i t y  of f a t  

bod ies  from fenoxycarb t r e a t e d  budworms t o  ox id ize  preformed 

f a t t y  ac ids  h m, v i a  t h e  P-oxidation pathway, was 

s i g n i f i c a n t l y  impaired i n  t h e  e a r l y  ( 2 4  hours pos t  t r ea tment )  

s i x t h  i n s t a r  6 .  fua i fe rana  larvae. 
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These studies demonstrate that lipid metabolism was 

severely perturbed in C. fumiferam as a result of fenoxycarb 

treatment. 
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The eastern spruce budworm, Chorisfoneura funiferana 

cleaens (Lepidaptera: Tortrioidae). is a serious defoliator of 

balsam fir and a variety of other softwood ~pecies (i.e. 

LP~UCBI, larches, hemlock) in eastern North America. Outbreaks 

of this pest result in millions of dollars annual lasses to 

the Canadian forest industry. 

Control programs, during the last several decades, have 

relied upan the use of chemical insecticides (Sanders a,, 
1985). The environmental acceptibility of such insecticides is 

now being questioned, and shere is a conpelling need to 

develop alternative control strategies. In addition to the 

implementation of sound farest management practices, several 

strategies are being explored, and some employed, including 

the use of biorational control agents such as pathogenic 

bacteria, viruses, fungi, nematodes, and parasitoid inseotr. 

The bacterial insecticide Bacillus fburi 'ensis Berliner was 

developed Ear use against G. fumiferanq (Morris &a,, 1986). 
A new Category of insecticides which has considerable 

potential far rpruce budworm control are the Insect Growth 

cegulators ( I G R s ) .  These insecticides were developed as a 

result of rational leads from basic research in entomology on 

metabolio disruptors, molt inhibitors, and behavior modifiers 
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of insects. Insect growth regulators constitute an assemblage 

or compaundn that ad>-rsely interfere with the nornal growth 

and development of insects. Such compounds are generally OE 

low toxicity to vertebrates, low peesistenoe under Eield 

conditions, m d  are effective against a variety of insect 

pests (RetnaKaran et gi., 1985). There are five basic 

categories of IGRL: 

1) Chitin synthesis inhibitors: compounds that act directly on 

the epidermal cells and disrupt cuticle synthesis. e.g. 

diflubenzuron (Dimilins) (Wright and Retnaha. xn, 1987) 1 

2) Juvenile hormone analogs: compounds that Eunctionally 

resemble natural juvenile hormone and inhibit molting and/or 

metamorphosis. e.9. nethoprene (Altorid") (Retnakaran & a,, 
1985) ; 

3 )  Anti-Juvenile hormones: compounds that induce premature 

metamorphosis by preventing the insect from secreting juvenile 

hormone. e.g. precocenes (Bowers. 1985): 

4 )  Ecdysone analogs: compounds that induce premature molting 

and disrupt aetamorphoris in insects, e.9. ponasterona A 

(Wilson, 1987): and 

5 )  metabolic inhibitors: compounds, both naturally occurring 

and synthetic, that adversely interfere with metabolic 

~ T O C B ~ S ~ S .  .nd disrupt normal growth and developnent in 

insects. e . s  azasterols (svoboda a,. 1972). 
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Juvenile hormone analogs (JHAs) offer promising control 

potential against a variety of insect pests IStaal, 1975: 

Retnakaran & a., 19851. Preliminary studies in the 

laboratory and the field suggested that methoprene and several 

Other JHAr that were among the first to be developed, were 

relatively ineffective in suppressing the development of r. 
fusiferana (Retnakaran. 1970, 1971: Retnakaran and Grisdale, 

1970: Retnakaran & a,, 1977, 1978: Omram, 1975). However, 

these studies employed a limited range of JHA aancentrations 

on the egg, larval, and/or pupal stages of c. fudferana. The 

efficacy of JHAs against the spruce budworm needs to be 

determined by mora extensive labo-atory screening of the JHAs 

that are commercially available in addition to more recent 

ones being synthesized. 

Juvenile hamane analogs functionally parallel insect 

juvenile hornone (JH) and nay or may not be similar in 

Structure. We know in a general way that application of JKAs 

causes an artificial elevation in the endogenous JX titre in 

the insect, and disrupts the molting physiology. Howaver, the 

precise effects of JHAs at the physiological and biochemical 

level are incompletely known, especially in G. fumiferana. 

considering that eventually, these compounds may be widely 

used against field papu1ations Of the spruce budworn, such 

information is crucial. A detailed examination of the effects 

of JHAs on the target insect's metabolic pathways, in addition 



to the associated neuroendocrine activity, is required to 

obtain a more complete understanding of the mode of action of 

this category of IGRs. Physiological studies are also required 

to provide important information concerning the basic 

physiology of this target insect. 

The present study was undertaken to evaluate several new 

JHAs, in addition to one of the original compounds 

(nethoprene] , against sixth instar larvae of c .  fumiferana and 

to elucidate the physiological effects of 2 JHAs, selected 

from those that were screened, on the insect. Finally, 

detailed studies were performed to determine the effects of 

the most pDtent JHA (fenoxycarb) that was evaluated on one 

particular aspect of metabolism (i.e. lipid metabolism) that 

was found to be moat affected by the JHA. 

1.0 Literature Review 

1.1 Choristonelira m i f a a n a :  economic impact, life history 

and control mecrods 

The eastern spruce budwora, C. fumiferana, is one of the 

most widely distributed and the most destructive forest 

insects in North America. Its range includes the eastern 

United states from Virginia to Minnesota, and all of the 

forested regions of Canada from Newfoundland to Alberta, 
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northeastern British Columbia, the southern part of the Yukon 

Territory, and ths southern half of the MacKenzie River basin 

of the Northwest Territories (Freesan, 1967; Prebble and 

Carolin, 1967). 

It is a native species and a principle pest of ooniier 

species such as balsam fir. &b,& (L.) Mill.: white 

spruce, Picea alauca (Moench) voss.; red spruce, e. 
Sarg.; and black spruce, P. mariana (Mill.) B.S.P. (Greenbank, 

1963). The spruce budwora also attacks eastern larch, 

laricina IDu Roil Koch, and eastern hemlock, T s w a  canadensis 

(L.1 Carr. Periodic outbreaks of C. W a  in eastern 

Canada are known to have occurred since the early 1700's 

(Blais, 1965). Widespread outbreaks usually have resulted in 

tree mortality over extensive areas, with timber losses 

exceeding 50 P of the volume of the infested fir-spruce 

forests (Blais, 1973). 

Outbreaks of the spruce budworm are a natural phenomenon 

associated with the biota of the boreal forest; by killing 

extensive stands uf nature and avermature spruce and fir, they 

prevent the perpetuation of decadent forests and bring about 

their rejuvenation (Blnis g a., 1981). Two main conditions 
required for the development of budworn outbreaks are 

favorable we"ther characterized by warm-dry conditions in late 

spring and early summer, and extensive stands of mature balsam 

fir (Otvos and Woody, 1978; Blais 3 a,, 1981). In recent 
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t imes,  t h e  f o r e s t  has become a n  important source of raw 

mater ia l  f o r  the  needs o f  modern humankind, and any s i t u a t i o n  

s e r i o u s l ~  a f f e c t i n g  t h e  supply of wood and f i b r e  can have fa r -  

reaching sacio-econonic consequences. 

The damage caused by t h e  spruoe budworn i s  cha rac te r i zed  

by severe defo l i a t ion  of t h e  host  t r ees ,  whioh r e s u l t s  i n  

reduced growth and even tua l ly  dea th  ( ~ a s k e ,  1981).  ~ a d i a l  

growth of the t r e e  is reduced f i r s t  and t o  t h e  g r e a t e s t  

e x t e n t ,  i n  the  inmediata v i c i n i t y  of the bole  where 

d e f o l i a t i o n  occurs (McLintack, 1955).  The r a d i a l  growth l o s s  

dur ing  an outbreak genera l ly  ranges between 35 % and 90 % 

(Ba tze r .  1973). Reduction of he igh t  growth, as well  as loss of 

h e i g h t  through t a p  k i l l i n g ,  are  a l s o  s common form of budworm 

damage (Raske, 1981).  Budworn outbreaks usually l eave  a l a rge  

p r o ~ o r t i o n  of t r e e s  wi th  dead tops ,  o f t en  more than 50 % 

(Kulman, 1971; Mi l l e r .  1977).  During a f i v e  year outbreak i n  

Minnesota, b.lght growth of damaged t r e e s  averaged 48 cm 

compared t o  130 cm i n  undamaged t r e e s  (Ba t re r ,  1973).  I n  

pulpwood s t ands  damaged by C. gymirerang, volume l o s s  is 

oaused by redwed  t r e e  s i z e ,  tree deformi t i e s ,  and increased 

wood decay (Mi l l e r ,  1977).  Stem deformi t i e s ,  such 8s farKed 

t o p s ,  mul t ip le  tops ,  and curved tops:  and r o o t l e t  mor ta l i ty  

are a l s o  cornon i n  budworm damaged s t ands  (Raske, 1981).  

Defo l i a t ion  of t h e  new growth causes a dec l ine  of v igaur .  

p red i spos ing  the  t r e e s  t o  d i seases  (Wargo and Houston, 1974) 
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or t o  o the r  des t ruc t ive  agen t s  t h a t  normally do n o t  s e r i o u s l y  

damage a t r e e ,  such as  bark b e e t l e s  (Thomas, 19581. Mor ta l i ty  

of t h e  hos t  t r e e s  nay a l s o  occur a f t e r  f i v e  y e a r r  of 

continuous de fo l i a t ion  of  t h e  new growth (Prebble and Caro l in ,  

1967).  Addit ionally,  t h e  sp ruce  budworm i n f e s t a t i o n  e v e r t s  a 

nega t ive  impact on a e s t h e t i c  q u a l i t y  of  t h e  f o r e s t ,  by 

changing vegetat ional  co lo r ,  t e x t u r e  or form, e.g.  co t h e  red 

and brownish-black color of d e f o l i a t e d  and dead t r e e s  (Case, 

1981). 

General ized accounts of  the  l i f e  h i s to ry ,  h a b i t s ,  

ecology,  populat ion dynamic;, and biology of C .  fvs i f e rank  

h a v ~  been described by s e v e r a l  authors,  including McGugan 

(1954).  Bean and waters  11961). Mi l l e r  (1953).  Morris  (19631, 

Prebble (19751, Hudak and Rarke (1981).  Schinitt S d. (19841. 

and Sanders & &. (1985). The following i s  a gene ra l i zed  

account of t h e  l i f e  cyc le  of spruce budwarm i n  e a s t e r n  North 

America. The l i f e  cyc le  may v a r y  somewhat, depending on t h e  

geographic l o c a l i t y .  The l i f e  c y c l e  of  t h e  budwom spans two 

ca lenda r  yea r s ;  t h e  eggs are l a i d  in  J u l y  and e a r l y  August of  

one y e a r  and l a rvae  f eed  ' 1 t h e  fol lowing yea r  (Prebble,  

1975). Peaale moths d e p o s i t  l ight-green egg masses, 

overlapping l i k e  sh ing led ,  on t h e  needles of t h e  h o s t  trees 

(Mcsnight, 1968).  Each female l a y s  a t  rut 200 eggs (Mi l l e r ,  

1963).  The l a rvae  hatch i n  abou t  10 days (McGUgan, 1954) and 

s p i n  s i l k e n  h ibe rna t ion  s h e l t e r s  (hibern -"la) i n  c r e v i c e s  of 



8 

bark ,  under bud soaleb o r  l i chens ,  and in the cups  oL old 

s t amina te  flowers (Gr i rda le ,  1984).  

The spruce budwom has s i x  l a r v a l  i n s t a r s  (WGugan, 

1954).  F i r s t - i n s t a r  l a rvae  are pale,  yellowish-green wi th  

brown heads,  and are approximately 2 mm long (crummey, 1976).  

F i r s t  l a r v a l  molt occurs i n  l a t e  August i n  t h e  h ibe rnacu la ;  

t h e  second-instar  l a rvae  remain the re  without feeding ( i . e .  

~ ' :erwinter)  u n t i l  t h e  next s p r i n g  (McGugan, 1954: Gl i sda l s ,  

1984) The spruce budworm has ob l iga te  diapause (Harvey, 

1957).  o v e w i n t e r i n g  l a rvae  emerge in l a t e  Rpr i l  or e a r l y  May, 

and commence mining needles,  tunne l  i n t o  the uqapened buds, or 

f eed  on e a r l y  opening s t amina to  flowers when these  are 

a v a i l a b l e  (Grisdala,  1984). The two  major periods of  d i s p e r s a l  

f o r  t h e  l a rvae  are durinq the re  s t ages :  f i r s t  in t h e  f a l l  by 

f i r s t - i n s t a r  l a rvae ,  and t h e  o t h e r  i n  the sp r ing  b y  recond- 

i n r t a r  l a rvae  (Shaw and L i t t l e ,  1973) .  After  about 7-10 days ,  

l a rvae  move to opening vegetat ive buds and fee,: on t h e  need les  

under a p ro tec t ive  s i lken  s h e l t e r  (Gr i sda le ,  1984).  These 

l a r v a e  are yellowish-orange with a blackish-brawn head,  end a 

pale-brown prothoracio s h i e l d  (Crummey, 1976) . 
Full-grown lanrae  are olive-brown with a black head, and 

a brownish p ro thorac ic  s h i e l d ,  and have yellowish-white 

t u b e r c l e s  (Crummey, 1976).  Mature l a r v a e  pupate in t h e  feed ing  

webs (Mi l l e r ,  1961) i n  late June or e a r l y  July (Gr i sda le ,  

1984).  Newly formed pupae are green or  yellowish-green; mature 
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pupae are da rk  grey or dark brown, w i t h  no c o l o r  d i f f e r e n c e s  

between t h e  sexes (Caiapbe;l, 1953) .  Tha moths emerge from t h e  

pupal  oases about  10-14 days l a t e r ,  complet ing the  annual  one- 

g e n e r a t i o n  c y c l e  (Cr i sda l e ,  1984) .  The s e x  r a t i o  of s. 
fumi fe rana  i s  u sua l ly  1:1 ( ~ i l l e r .  19631. ~ d u l t  males emerge -- 

a few d a y s  e a r l i e r  t han  females,  and t h e  f l i g h t  a c t i v i t y  of 

tile moths spans about  3 weeks (McKnight, 1968) .  

I n  t h e  l abo ra to ry ,  s e v e r a l  gene ra t ions  o f  C. fumiferana 

can be reared per yea r  on a r t i f i c i a l  d i e t ,  both with and 

wi thou t  d i apavse  (Robertson. 1984) .  S t e h r  (1954) d e s c r i b e d  a 

method for r ea r ing  spruce budworms on shoo t s  of balsam E i r  

t h a t  had been preserved by f r eez ing .  Subsequently, s e v e r a l  

methods have been desc r ibed  foe mass-rearing t h e  i n s e c t  

(Gr i sda l e ,  1970, 1972. 1984; Mulye and Gordon, 1990) i nvo lv ing  

t h e  use of  a wheat-germ based s y n t h e t i c  d i e t  (McMorran, 1965).  

Con t ro l  programs, during t h e  l a s t  s eve ra l  decades,  have  

r e l i e d  upon t h e  ura of chemical i n s e c t l c i d e a  (Prabble,  1975) .  

I n  t h e  1920'5 and 1930'5, a e r i a l  i n s e o t i c i d e  dus t ing  was -sed 

t o  c o n t r o l  sp ruce  budworm i n  smal? areas. Aer i a l  spraying w i t h  

chemical i n s e c t i c i d e s  began i n  1944,  and has been widely u sed  

for t h e  p r o t e c t i o n  o f  l a r g e  areas of f o r e s t s  €rom budwarm 

a t t a c k  ( P r s b b l e ,  1975).  I n  Canada, t h e r e  are s i x  chen ioa t  

i n s e c t i c i d e s  and  one b i o l o g i c a l  i n s e c t i c i d e  r e g i s t e r e d  f o r  use 

a g a i n s t  t h e  spruce budworrn (ne l son ,  1985):  acepha te  

(Orthenee) , an inoca rb  (Matacil') , ca rba ry l  (Sevin.) , 
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f e n i t r o t h i o n  (sumithian'), phosphainidon (~imecron') ,  

t r i c h l o r f o n  (Diptrex'l, and ILacil lus thurinoien& (B.2.) 

(~hur i c ide ' .  ~ i p e l ' ) .  s eva ra l  new chemical i n s e c t i c i d e s  are 

a l so  being developed €or spruce budworm con t ro l :  ch lo rpyr i fos -  

"ethyl ,  ~ o l s t a r " ,  and permethrin (Amstrong.  1985) i and new 

s t r a i n s  and formulat ions a€ 8.6. are under study (Dimond. 

1985). O the r  p o t e n t i a l  con t ro l  methods for  c. fumiferana 

include v i r u s e s ,  a nuclear  po lyhedros i s  v i rus  (NPV), and a 

c y t ~ p l a s m i ~  polyhedrosis  v i r u s  (CPV) (Cunningham and nowse, 

1980) i sex pheromones ( sande r s .  19801 ; pro tozoa  

(mic rospor id ia ) ,  NoEerna pumiferanae (Wilson, 1981); fung i ,  

EntomoDhthora eqressa, and 2oonhthog.l (Otvos and 

Moody, 1978):  p a r a s i t o i d r ,  Trishooramma spp. (Houseweart et 

d., 1984);  nematodes, He te ra rhahd i t i z  (Finney & 

a,, 19821, and Steinernena spp.  (Finney-crawley, pe r sona l  

communicaticn); an t i f eedan t s  (S t runz  and Fogal, 1981): g e n e t i c  

Control  (Retnaxaran,  1971); and i n s e c t  growth r e g u l a t o r s  

(Retnakaran g s  &., 19851. 

1.2 I n s e c t  Growth Regulators:  d i v e r s i t y  and economic 

a p p l i c a t i o n s  

1 )  C h i t i n  syn thes i s  inh ib i to r s :  These compounds, upon 

inges t ion ,  s e l e c t i v e l y  i n h i b i t  t h e  syn thes i s  of  c h i t i n  i n  

l a rvae  and prevent  normal mal t ing  (Van Eck. 19791. 
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Benroylphenyl  ureas w e r ~ t h e  f i r s t  c h i t i n  s y n t h e s i s  i n h i b i t o r s  

syn the s i zed  by t h e  Phi l ips-ouphar  Company ( t he  Nether land91 i n  

t h e  1970 ' s .  One of  t h e  ana logs  o f  benzoylphenyl  urea, DU- 

19111, was shown t o  be  e f f e c t i v e  a g a i n s t  several i n s e c t  

s p e c i e s  (Retnakaran et al., 1985 ) .  T h i s  l e d  t o  t i b e  development  

and commerc i a l i z a t i on  of  d i f l ubenzu ron  (PH 60-40 ,  ~ i m i l i n * ) .  

Bensoylphenyl  urea* qene ra l l y  c o n s i s t  of two s u b s t i t u t e d  r i n g  

s t r u c t ~ r e s  connected by a urea b r i d g e  (Marks  et a,, 1982;  

RetnaKaran et a,, 1385) .  s u b s t r t u t i o n s  a r e  t y p i c a l l y  ha logens  

(chlorine and f l u o r i n e ) ,  or methyl ,  ne thoxy ,  t r i t l uo rome thoxy ,  

or pen t a f l uo roe thoxy  g roups  (Marks  et al.. 1982: Retnakaran & 

U., 19851. 

Benzoylphenyl  ureas have been shown t o  d i s r u p t  mo l t i ng  i n  

several ~ ~ p i d o p t a r a ,  and spe. .>es  of o t n e r  i n s e c t  o r d e r s .  

Mulder and G i j s w i j t  (1973)  rep0rt .d  tha: Pieris b r a s s i c a e  

l a r v a e ,  f e d  w i t h  a l e t h a l  dose oE i . i f l ubenzu ron ,  move w i t h i n  

t h e  i n t a c t  exuv i ae ,  l o s e  body C lu ld s ,  i n p e r c e p t i b l y  b l acken .  

and d i e  w h i l e  still a t t a ched  t o  t h e  s u b s t r a t e .  I f  t r e a t m e n t  

occu r r ed  d u r i n g  t he  l a s t  l a r v a l  i n s t a r ,  pupa t i on  was 

p reven t ed ,  o r  t h e  aerarnorphic r o l t  was i n i t i a t e d  b u t  n o t  

concluded (Mulder  and G i j s w i j t .  1 9 7 3 ) .  S i m i l a r  r e s u l t s  have  

been o b t a i n e d  i n  Soodootera, l i t t o r a l i s ,  !4alacosoma nexstza, 
and ot-her  Lep idop t e r a  (Zabe l  and o s t o j i c ,  1973: Salama & d.. 

1 9 7 6 ) .  Treatment  with benzoylphenyl  ureas a l s o  r e s u l t s  i n  

no rphoqene t i c  abno rma l i t i e s  such as t h e  development of a 
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f r a g i l e  o u t i c l e ,  p a r t i a l l y  s p l i t  exuvia .  r e t e n t i o n  o f  o l d  head 

c a p s u l e ,  and a o r p h o l a g i c a l l y  abnormal mou thpa r t s  c aus ing  

s t a r v a t i o n  and d e a t h  (Retnakaran S al., 1985). 

I n  C .  f umi f e r ana ,  t r e a tmen t  wlrh tbe benroylphenyl  uraas 

EL-491 and ~ i s i l i n '  caused de l ayed  ma l t i ng  e f f e o t ,  as w e l l  as 

morphogenet ic  e f f e c t s  s u c h  as r e t e n t i o n  of Old c u t i c l e ,  

l e t h a r g y ,  lose oF body F lu id s .  and m o r t a l i t y  (Brushvein and 

Grana t f ,  19771. In f i e l d  s t u d i e s  d i f l ubenzu ron  was i i l e f f e s t i v e  

a t  economic dosage  l e v e l s  a g a i n s t  the s p r u c e  budworm ( ~ i m o n d ,  

1975; Aefnakaran, 1978; RetnaXaran and Smith,  1975;  Refnaksran 

e% u.,  1 9 7 8 1 ,  and younger  i n s t a r s  were shown t o  be l e a s  

s ens ; t i ve  t o  t h e  compound t han  o l d e r  ones (Retnakaran and 

Smith.  1975: Crane t f  and Retnakaran, 1977). p rov id ing  l i t t l e  

or no foliage p r o t e c t i o n .  EL-494, a n  ana log  o f  d i f l ubenzu ron ,  

was more e f f e c t i v e  on t h e  sp ruce  budworm than  Dlrnili"" 

(Retnakaran,  19791, b u t  shown eo b reak  down r a p i d l y  i n  t h e  

environment  (Retnakaran.  1981). S e v e r a l  new c h i f i n  s y n t h e ~ i s  

i n h i b i t o r s  have been s c r eened  a g a i n s t  C. fumifer.na: UC-62641, 

BAY SIR 8 5 1 4 ,  LY-127063, and LY-13125 (Re tnaka ran ,  1980.  1981. 

19821,  w i t h  va ry ing  d e g r e e s  of e f f e c t i v e n e s s .  

21 J u v e n i l e  hormone s n e l o g s :  The JHAr were deve loped  as t h e  

r e s u l t  o f  r e s ea r ch ,  i n  t h e  1960's ,  o n  t h e  i s o l a t i o n ,  structure 

s l u c i d a t i o n ,  am phys io logy  of i n s e c t  j u v e n i l e  hornones.  

Schmialek (1961) was t h e  f i r s t  t o  e l u c i d a t e  t h e  JH-ac t i ve  
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fa rneso l  and f a rnesa l ,  both i soprena ids ,  i n  t h e  f r a e r  of 

Tenebrio W. S l a m  and Williams (1966) r epor t ed  t h a t  

e x t r a c t s  of f i l t a r  paper made from balsam f i r  i nh ib i t ed  

netamorphosis of  pv r rhocor i s  ai l terus.  This  "paper f ac to r " ,  

i d e n t i f i e d  as juvabione (Bowers s al., 19661, and i t s  c l o s e l y  

r e l a t e d  analog dehydrojuvabione (Cerny et al.. 19671, has been 

found i n  +re balsam f i r  tree A. w. Williams (1967) 

suggested t h a t  such juven i l e  hormone m ~ c i c s ,  i . e .  JHAs, could 

be  used as ~ n n e c t - s p e c i f i o  con t ro l  agents, r e fe r red  t o  as 

" th i rd -gene ra t ion  p e s t i c i d e s " ,  t o  which t h e  p e s t  i n s e c t  may be 

unable t c  develop r e s i s t a n c e .  These compounds were r e l a t i v e l y  

weak mimics of JH, with l imi t ed  range of a c t i v i t i e s  aga ins t  

i n s e c t  spec ie s .  

Bowers (1969) synthesized seve ra l  aromatic terpenoid 

e t h e r s  t h a t  were po ten t  mimics o f  the  natural hormone; t h e s e  

compounds were shown t o  be  seve ra l  hundred-fold more a c t i v e  

than  t h e  n a t u r a l  hormone on Tenebrio mol i to r  and Oncooeltus 

f a s c i a t u s .  This  evoked the  i n t e r e s t  of t h e  p e s t i c i d e  indus t ry ,  

end led t o  syntheses o f  seve ra l  hundred a c t i v e  compounds, with 

a wide v a r i e t y  of chemical  s t r u c t u r e s  (Henrick, 1982).  The 

s t r u c t u r e - a c t i v i t y  r e l a t i o n s h i p  of JHAs was found t o  be 

extremely complex ( S l a m  s a,, 1974; Sobotka and Zabna, 

1981; Henrick 1982: Henrick et d., 1976).  Whila t h a  i n s e c t  

j uven i l e  hormones are epoxy methyl dadecadienoates (Richards,  

19811, t h e  JHAs synthesized t o  d a t e  a r e  of va r ious  chemical 
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s t r ~ c t ~ r e s :  a l k y l  t r ime thy l  dodeca t r i enoa tes ,  a lky l  t r ime thy l  

dodecadienoates,  terpenoid phenyl e t h e r s ,  a r y l  t e rpeno ids ,  and 

r e l a t e d  s t r u c t u r e s  (Henriok,  1982).    he only JHAri c u r r e n t l y  

with t h e  U.S. Environaer.ta1 P r o t e c t i o n  Agency (EPA) 

for UEB i n  i n s e c t  c o n t r o l  are methoprene (ZR 515, ~ l t o s i d . 1 ,  

kinoprene (ZR 777, Enstar.) ( s t a a l ,  1982).  and t o  a l i m i t e d  

e x t e n t  tenoxycarb (RO 13-5223, Logic') (Banks et d.. , 1988).  

Methoprane and s e v e r a l  o t h e r  JHAs have been screened 

aga ins t  d ive r se  f o r e s t  pes t s ,  with varying degrees of e f f ioacy  

(Retnakaran & d., 1985).  The spruce budworm has been found 

t o  be q u i t e  r e f r a c t o r y  t o  methoprene and s e v e r a l  o t h e r  JHAr 

t h a t  were i n i t i a l l y  developed, r equ i r ing  h igh  dosages t o  

suppress development (outram, 1975; Retnakaran,  1970, 1973; 

Retnakaran and G r i r d a l e ,  1970: Retnakaran et al., 1977, 1978).  

TWO JHAS, GS42710 and CGA13353, were found t o  be moderately 

e f f e c t i v e  aga ins t  r. fumiferana,  b u t  did no t  save any c u r r e n t  

yea r ' s  f o l i a g e  (Outran,  1975).  There are  seve ra l  new JHAs 

c u r r e n t l y  being developed f o r  in sec t  c o n t r o l :  5-71619, a 

phenoxyphenoxy p y r i d i n e  (Sumitorno Chemical, J apan) ;  ZR 8487, 

ZR 9582, Z R  9892, and Z R  10151, a l l  carbarnates ( s t a a l ,  

personal  communication) (zoecon Sandoz, U.S.A.); and 

fenoxycarb, s phenoxyphenyl carbarnat. (Maag Agrocheaicale,  

u . s . a . ~ .  

3) Anti-Juvenile hormones: The syn thes i s  and development of 
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potent  JHAs, such as aethoprene,  as func t iona l  mimics o f  

enaogenous juven i l e  hornone (S taa l ,  1975) l ed  t o  t h e  concept  

t h a t  t h e  reverse p r i n c i p l e ,  an t i - juven i l e  hormone a c t i o n ,  

could he explored t o  complement t h e  use of 3HAe ( s t a a l ,  1986). 

The app l i ca t ion  o f  JHAS aga ins t  phytophagous i n s e c t s  i n  most 

f i e l d  c rop  and f o r e s t r y  s i t u a t i o n s  would be  of l i t t l e  e f f e c t ,  

s ince  t h e  immature feeding s t a g e s  (e.g. l a s t  l a r v a l  i n s t a r )  

r e spons ib le  fo r  t h e  economic in ju ry  wmld be prolonged,  and 

may even cause an inc rease  i n  feeding damage ( sehna l ,  1985).  

Bowers (19851 suggested t h a t  a chemical method (such as nay be  

p ~ ~ s i b l e  us ing  a n t i - j u v e n i l e  hormones) of i n t e r f e r i n g  with JH 

b iosyn thes i s ,  s e c r e t i o n ,  t r a n s p o r t a t i o n ,  or a c t i o n  a t  a 

r ecep to r  s i t e  would overcome t h e  above aen t j sned  l i m i t a t i o n s  

O f  JHAS. 

Bowers (1976) demonstrated t h a t  e x t r a c t s  o f  t h e  bedding 

p l a n t  Aaeratum hauatonianum shoved pronounoed a n t i - j u v e n i l e  

hormone a c t i v i t y  aga ins t  t h e  milkweed bug OncoDaltus 

f a sc i a tus .  The a c t i v e  f a c t o r s .  named "precocenes", were 

i d e n t i f i e d t o  be simple s u b s t i t u t e d  chromenos, and syn thes i zed  

in  t h e  l abora to ry  (Bowers. 1976).  Preoocenes are s e l e c t i v e l y  

~ y t o t o x i c  t o  the  a c t i v e  corpora a l l a t a ,  causing a p rogress ive  

degenerat ion of t h e  g l ands  (Unnithan & a., 1977).  These 

oompounds a c t  as ' s u i c ide  subs t r a t e s '  f a r  t h e  epoxidase 

enzymes presen t  only i n  t h e  a c t i v e  corpora, a l l a t a  (Bowers, 

1981: P m t t  & a,, 1980: Soderlund et al., 1981). The 
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epoxidaes i s  a l s o  an important r -  .no f a r  t h e  b iosyn thes i s  of 

juven i l e  hormone (Schooley and r -cr, 1985). This menbrane- 

bound enzyme r e a c t s  with precocrre and forms a t r a n s i e n t  

r e a c t i v e  epoxide, which then  a l k y l a t e s  the p ro te ins  i n  the 

parenchyma c e l l s  of t h e  carpus a l l a t u n ,  oausing c e l l u l a r  death 

( P r a t t  st &., 1980). Precocens i s  genera l ly  a c t i v e  only on 

same Heteroptera end same Orthoptera (Bowers, 1985).  a l b e i t  

wi th  a high dose requirement t o  induce precocious 

metamorpharir (Pener et a., 1978). 

There are 9everal  o the r  an t i - juven i l e  hornones, with 

va r ious  mxiw aoerandi (Schooley and Baker, 1985): 

t luoromevalonate (Quistad et a., 1981) , compactin (Monger et 

s., 1982) -  piperanyl butoxide (Kranee and S t a a l ,  1981). ETB 

( s t a a l ,  1977). and EMD ( S t a a l  &., 1981). These compounds 

have been deemed t o  be not s u f f i c i e n t l y  ac t ive  f o r  p r a c t i c a l  

con t ro l  purposes ( S t a a l ,  1982) ,  b u t  remain use fu l  experimental  

prober i n  the  laboratory.  

4 )  Ecdysons analogs:  Ecdysone analogr,  both na tu ra l ly  

occur r ing  and syn the t i c ,  cause dis rup t ion  of growth and 

development in insec t s .  Administrat ion o f  ecdysone ana logs  t o  

i n s e c t s ,  i n  abnormal doses or when the endogenous ecdys te ro id  

t i t r e  is low, r e s u l t s  in morphogenetic abnormal i t i e s  such as 

induc t ion  of s u p e m o l t s  and premature molting and pupation, 

and mor ta l i ty  (Wilson, 1987).  T h u ~ ,  t h e o r e t i o a l l y ,  ecdysone 
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ana logs  could be considered as po te l r t i a l  IGR pes t i c ides .  The 

d i scovery  of  seve ra l  p l a n t  derived ecdys ta ro ids  ("or" and 

Berganasco, 1985). may f a c i l i t a t e  the  syn thes i s  and 

development of  ecdysone analogs f o r  i n s e c t  c o n t r o l .  

Incorporat ion of  ponaeterone A and cyae te rone  i n  t h e  

d i e t s  of  Hurca domestisa (singh & al., 13821, and Tribolium 

C!al&Gm (Robbins & d., 1968) caused an i n h i b i t i o n  of  l a r v a l  

development, while t h e  inc lus ion  of  ponasterone A i n  t h e  d i e t s  

of  LpabYX moa (Nakanishi, 19711, Ornithodoraus monbatg (Mango 

nf a.. 19761, Oeoso~h i l a  nielanoaaster (Fourche, 19671, and 

xalatarmes f l a v i c o l l i s  (Luscher and Karlson, 1958) induced 

~ u p e r m o l t ~  as well  as premature molt ing and pupation. The 

morphogenetic e f f e c t s  exe r t ed  by these  conpounds were shown t o  

be  dose dependent. Administrat ion of  ecdys ta ro ids  (or t h e i r  

ana logs )  a l s o  d i s rup ted  reproduction i n  Stomoxvs c a l c i t r a n s  

(Wright & al., 19711, end w damestica,  Glossin. mors i t an l  

and Triboliun confusum (Robbins & d.. 19681. Eodysteroids,  

or t h e i r  analogs,  have also  been shown t o  possess a n t i f e e d a n t  

a c t i v i t y  a g a i n s t  Pieris brass i cae ,  Chilo w, Phvllobius 

-, and ~ h v l l o b i u s  o rcan ta tus  (Wilson. 1987).  

Ecdysone analogs,  because of t h e i r  high p o l a r i t y ,  do n o t  

r e a d i l y  p e n e t r a t e  t h e  i n s e c t  c u t i c l e  (Wilson, 1987). and must 

be inges t ed  i n  s u f f i c i e n t l y  l a r g e  q u a n t i t i e s  by t h e  i n s e c t  i n  

o r d e r  t o  e x e r t  t h e i r  e f f e c t s  an development and reproduotian.  

Thus, pending t h e  development of newer s y n t h e t i c  ana logs  wi th  
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better penetrating capacity, the esdysone analogs are not 

considered at this time to be promising pesticides. 

5) Metabolic inhibitors: Administration of the 

hypocholestarolenic agents 22.25-diaracholesterol and 

tripersnol to Nanduca ssxta (svoboda and ~obbins, 1967). and 

piatraea srandiosella [Chippendale and Reddy, 1973). caused an 

inhibition in the A"-sterol reductase system and blocked the 

conversion of 8-sitosterol to cholesterol. Several azasterols 

have been found to be potent inhibitors of the sterol 

reductase system in insects (Svoboda & al., 1972). 

OtheP metabolic inhibitors that show various degrees of 

insectgrowth regulator activity include prostaglandins (Datta 

and Benerjee, 1978); caffeine and arninophylline (McDaniel and 

Berry, 1974); sclerin, a metabolite produced by the fungus 

sclerotinia libertiana (Shimada et al., 1977) ; extracts of the 

plants Coleocsis lanceolata (Nakajina and Kawazu, 1980) and 

Vucuna w&b&m (Rehr mf d., 1973); azadirachtin isolated 

from the nee. tree Uadixachta hclisa (Rembald, 1987; Barnby 

and Klocke, 1990); and CGA 106630 (diafenthiuron), a thiourea 

(Ruder & d., 1991). With the exception of azadirachtin and 

CGA 106630, there has been no commercial interest in the 

development of metabolic inhibitors as IGR pesticides. 
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1.3 Effects or J H A ~  on ~nsects 

Administration of J H A s  to insects causes a wide array of 

effects on their growth, development, and metabolism. The 

effects of J H A a ,  in mast rxses,  are similar to the effects of 

natural JH.  ~raroer' and Staal (1981) suggested that J H A s  can 

function as J H  agonists or antagonists, or both. Thus, the 

node of actlon of J H R s  i- complex, and may vary from one 

analog to another. 

Application of J H A s  to insect eggs has been shown to 

disrupt embryogenesis (sehnal, 1983). Depending on the 

species, dose, and timing of application, effects ranging from 

ovicid.1 to delayed effects during postembryonic life have 

been reported (Riddiford, 1971). Death at hatching or during 

the Eirst larval instar is also comeon in J H A  treated insects 

(Staal, 1975). Studies an Hvaloohora (Riddiford and 

Williams, 1967). Samia cvnthia (Staal, 1975). Pvrrhacaris 

(Matolin, 1970). yhermobia domestics (Rohdendorf and 

sehnal, 1973). and g.  fumiferana (Retnakaran, 1980) have shown 

that J H A s  blook embryonic development at blastokinesis, and 

are therefore ovicidal. The eggs were most sensitive to J H A s  

before the blastokinesis phase. If the J H A s  were applied after 

blaatokinesis, there war no ovicidal effect, but delayed 

effects occvrred during metalnorphosie (Riddlford, 19711. 1°C. 

fumiferann (Hicks and Gordon, 19921, treatment of eggs with 
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fenoxycarb at an early stage of embryogenesis (0-21 h old) 

prevented hatching, but the older eggs (48-72 h old) were 

found to be refractory. Disruption of embryogenesis by JHAs 

has been demonstrated in sever31 other insect species 

(Retnakaran eta., 1985; Charmillot & a.. 1985: Masner et 
a., 1987). In addition, the effect of terpenoid and non- 

terpenoid JHAs in impairing the fecundity of adult females has 

been documented for a variety of insect species (Retnakaran sr 
1.. 1985). The ability of JHA-treated aales to affect 

fecundity in females, has also been reported in PvrrhocoCis 

( M a s n e r G a . ,  1968). Trooodema sranariurn (Metawally 

and Landa, 1972). and 2 .  fumiferam (Hicks and Gordon, 1992). 

~uvenils hormone analogs also cause morphogenetis 

effects. ~pplicetion of these compounds to insects causes 

abnormal morphogenesir of ' r integument. Juvenile hormone 

analogs do not interfere with the function and growth of 

insect epidermal cells, but prevent their imaginal 

diffarentiation (Sehnal. 1983). They adversely affect 

metaaorphosis by disrupting the levels of JH at specific 

stages of the insect'sdevelopnrent. In holornetabolous insects, 

the titre of circulating JH in the hernolymph normally remains 

high during the early instars, drops during the last larval 

instar, and is below physiologically active levels in the 

pupa. when last instar larvae are treated with potent JWLs, 

the JH titrc remains high and cellular programming of the 
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epidermis and possibly other tissues takes an abnormal course 

(Retnakaran & a., 1985). The extent and nature of the 

reeponPf to JHA treatment depends on a variety of factors such 

as species, timing of application, dose, mode of 

administration, and type of JHA (Staal, 1975). When JHAs are 

applied during the critical period for sensitivity to 

endogenous JH, usually the beginning of the ecdyrteroid peak 

(Riddiford, 1985). the JH receptors become saturated with the 

Oompound (Slarna, 1985). and lead to an inhibition of 

metamorphosis. This may also result in suparnumersry molting 

ISehnal, 1983). The JH receptors an cells of insects, however, 

are not sensitive in a synchronous fashion (slama, 1985). 

allowing cells with refractory JH receptors to develop 

nornrelly, and lead to the formation of larval-pupal 

intermediates as well as other morpholoqically deeorned 

individuals (slam, 1985).   he precise mode of action of JHAS 

at the molecular level can only be elucidated once the mode of 

action of endogenous JH is clarified. 

The biochemical/physiol~giCal effects of JHAs are 

incompletely known. Juvenile hormone analogs can function as 

JH agonistr or antagonists, or both (Kraaer and Staal, 1981). 

end may interfere with the regulation of JH secretion, 

transportation from the site of secretion to the target site, 

degradation, excretion, and feedback control (RetnaKaran ef 

a., 1985), as Well as hormone-receptor interaction (Goodman 
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and Chang, 1985). In Bi~looter.3 Dunctetq (Tobe and Stay, 

1979), administration of the JHA hydroprene stimulated JH 

synthesis at low doses, but inhibited JH synthesis at higher 

doses, suggesting that the JHA interfered with the feedback 

control of the hormone titre. In Lentinotaesa decemlineata, 

methoprene and hydroprene exert their agonistic action by 

resisting degradation by the JH-specific esterase (Rramer, 

19781, and by stimulating the esterase activity for the 

endogenous juvenile hormone ( ~ r a m e r  & al., 1977). conversely, 

treatment of Manduca larvae with hydroprene caused a 

decline in the levels of endogenous JH (Edwards & al., 19831, 

suggesting a JH antagonistic role for the conpound in this 

insect. 1n the same insect, JH levels were also suppressed in 

a dose dependent fashion following topical treatment with 

renoxycaeb (Baker & a,, 1986). 
Juvenile hormone analogs also interfere with the normal 

pattern of neuroendocrine activity in insects (Retnakaren q 

al., 1985). In Malnestra brassicae, methoprene inhibits the - 
release of the prothoracicotropic hormone from the brain, 

inhibits the prothoracic gland activity early in the last 

larval instar, but stimulates the gland prior to pupation 

(Hiruma & a., 1978). The possible m l e  of JHAs in disrupting 
the normal neuroendocrine activity in insects receives support 

from the finding that RNA and protein synthesis in the brains 

of larval Calli~horq W was modified, as the result of 
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methoprene injection (scheller and Bodenstein, 1981). and from 

the observation that the corpus allaturn of adult 

craccivora s h o w e d h i s t 0 1 ~ g i ~ a 1 a b n 0 r m a l i t i e ~  followingtopioal 

application of hydroprene (Elliott and McDonald, 1976). In 

SaEs&asa crassiaaLgis, methoprene was also found to inhibit 

the development and differentiation of the neuroendocrine 

Bystem (Abou Halaua, 1981). and in E~hestia cautella (Shaaya 

& a,,  19861,  the JHA depressed the sadysteroid titre and 

inhibited metamorphosis. 

The effects of JHAs an metabolic homeostasis and energy 

netaboliem in insects are poorly understood. The most common 

effect of JHA treatment is the disruption in the levels of 

hernolymph and fat body (or whole body) metabolites. The 

metabolic effects of JHAs may also be manifested as a result 

of the marphaqenetic effects of the compound on the insect. 

application of JHAs may also overwhelm the homeostatic 

mechanisms in the insect (Hammock and Vuistad, 1981). Little 

information is available concerning the nature of 

physiological and biochemical effects of JHAs on insects. 

In the last instar larvae of S~odoDterq  orali is, 

topical application of methoprene caused a hypermetabolic 

response, as evidenced by abnormal oz consumption and CO1 

release by the treated insects (Kryspin-sorensen & al., 

1977). Downer & a. (1976) showed that whole pupae of W 

became depleted in glycogen and lipid following 
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exposure to mathoprene. Gordon and Burford (19841, in the same 

insect, reported that methoprene caused a depletion in fat 

body glycogen, and that glycogenolyris was suppressed due to 

an overall depletion of glycogen phasphorylase. The JHA also 

inhibited protein synthesis in the fat bodies of &&%2 

larvae and pupae, as demonstrated by their reduced capacity t o  

synthesize proteins from radiolabelled leucine Lo x&m, 
causing an overall depletion of proteins in tile hernolymph and 

the fat body (cordon and ~urford, 1984). Methoprene inhibited 

protein synthesis in larval melano~aster 

hornagenates (Breccia st a,, 19761 and cultured Culer tarsalis 

cells (Himeno &d., 19791, but had no effect in a 5alli~harq 

W wing disc assay (scheller e+ al., 1978). Topical 

application of methoprene has been shown to stimulate 

vitellogenin synthesis in nc&ias (Chalaye and 

rauverjat, 19851. Pyriproxyfen, a recently developed JHA. 

repressed the synthesis of larval-specific hemolymph proteins 

but stimulated vitellogenesis in Locusts mioratoria (De Kort 

and Koopmanschap, 19911. 

In Lelia radicum (Young and Gordon, 19871, nerhaprene 

treatment caused a signiticantdecraase in hemolymph tr. 3alose 

levels. ~reatment of ~tomoxvs caleitrans with a JHA 

Structurally unrelated to methoprene, caused an increase in 

level of whole body glycogen (Wright and Rushing, 1973). 

Manringh (1972), in Walacosolna ~luvisle, reported that 
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treatment with the JHA farnasyl methyl ether (FME) caused a 

depletion in whole body glycogen and trehalose, while lipid 

levels remained unchanged. 

Fenoxycarb has been shown to modify protein synthesis by 

the fat body of TFicna~luria a (Jones s al.. 1988); the 
sylthesis of a 76-kDa heaolymph protein was suppressed in 

by topical application of the compound. In Bombvx m o d ,  

methoprene treatment depressed protein synthesis (Bosquet a 
al., 1989), and in Bombus terrestris (Roseler and Roseler, - 

19BB), fat body lipid reserves were depleted as a result of 

synthetic JH-I treatment. Cotton and Anstee (1991). in 

mi4ratoria, reported that methaprene treatment caused a 

depletion in the levels of fat body glycogen and lipid, when 

the tissue '1.6 examined structurally. Extraction and 

quantification of fat body lipid and glycogen showed that 

there war no significant difference from the controls. cotton 

and Anstee (1991) reasoned that while the amount O F  fat body 

tissue was increased by the JHA treatnent, toral amounts of 

fat body lipid and qlycogen remained unchanged. thus reducing 

the levels of lipid and glycogen per unit volume. ~onethfless, 

fat body wet weight was not significantly increased in treated 

insects (Cotton and Anstee, 1991). These studies, although 

scarce, demmnstrate that administration of JHAs causes a wide 

array of metabolic effrcts in insects. 
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1.4 Lipid Metabolism i n  I n s e c t s  

L ip ids  c o n s t i t u t e  a l a r g e  number of a t r v c t u r a l l y  

heterogenaus compounds t h a t  are cha rac te r i zed  by t h e i r  

s o l u b i l i t y  i n  o rgan ic  so lven t s .  They inc lude  f a t t y  ac ids .  

f a t t y  ac id  e s t e r s  o f  g lyce ro l  ( a c y l q l y c e r o l s ) ,  sph inqo l ip ids ,  

phospholipids,  vaxes, t e rpenes ,  s t e r o i d s ,  p ros t ag land ins ,  and 

hybrid molecules such  as l i popro te ins  and g l y c o l i p i d s  (Downer. 

19851. Seve ra l  reviews have appeared an i n s e c t  l i p i d s  and 

t h e i r  biochemistry (Fas t .  1964, 1970: G i l b e r t ,  1967a; S t e e l e ,  

1976: Beenakkerr et id.., 1981; Downer, 1978, 1985). 

The t o t a l  l i p i d  con ten t  of in seo t  hernolymph has bean 

found t o  range between 1 .5  and 5 . 5  g % (F lo rk in  and ~ a u n i a u x ,  

19741. Heaolymph l i p i d  l e v e l s  nay f l u c t u a t e  under cond i t ions  

such as muscular a c t i v i t y  (Beenekkers st d., 1981).  

development (Downer and Matthews. 1976).  s t a r v a t i o n  (Jutsum & 

d.. 19751, and d i s e a s e  (Bennett  & al . ,  1972).  The processes 

o f  l i p i d  abso rp t ion  from t h e  d i g e s t i v e  system are incompletely 

understood i n  i n s e c t s .  I n s e c t s  do no t  appear t o  u t i l i z e  

e m u l s i f i e r s  during d i q e s t i a n  (Tilrunen, 19791, and chylornicral 

t r a n s p o r t  of l i p i d s  does not occur (Wyatt and Pan, 1978).  

China et al. (1981) suggest  t h a t  t r i a c y l g l y s e r o l a  undergo 

p a r t i a l  hydro lys i s  i n  t h e  g u t  and are t r anspor t ed  as 

d iacy lg lyce ro le  complexed t o  l i popro te ins .  Transport  of 

d i a ~ y l g l y ~ ~ r o l s  from t h e  midgut t o  t h e  f a t  body, and frsm t h e  
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fat body to the flight muscle has been demonstrated in some 

insects (Beenakkers .& gl., 19811. Several lipid transporting 

hernolymph lipoproteins have been described in insects (Kanast 

st a,, 1990). Recently, a very high den.c'?y lipoprotein in 

the hemolymph of Msnduca sexta has been isolated, and 

characterized as a lipid-transfer particle (Ryan et a.. 
1988). 

While diacylglycerol~ are the mobile hemolymph lipids, 

triacylglycerols constitute the main storage form for fat body 

lipids (Downer, 1985). There is also evidence to suggest that 

lipids may be released from the fat body in several farms, 

which are then converted to diecylglycerols during hemolymph 

circulation (Keeley, 1985). Palnitate is esteriried to 

triacylglycerols in the fat bodies of larval and adult 

saturniid silkmoths but to diacylglycerols in the pupal fat 

body [Stephen and Gilbert, 1969). The most common fac body 

fatty acids are palmitie, palmitoleic, stearic, oleic, 

linoleic, and linalenic acids (Stephen and Gilbert, 1969). 

The fat body can incorporate radiolabelled acetate into 

fatty acids, as has been demonstraced in Periolanetq americana 

(Loulouder E l . ,  1961). Mvzus ~ersicae (strong, 1963). 

E~rvcotis floridana (Bade, 1964), Rornbvx m i  (Sridhara and 

Bhat. 1961). Anthonornus arandis (Lambreaont, 1965). Calli~hora 

erVthroceDhal& (Brak & a,, 1966). Oulema melano~lus (Lamb 
and Monroe. 1968). Tricho~lusi? ~ (Nelson and Sukkestad, 
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19681, and KeliothiQ zes (Lambremont, 1971). 

In addition to acetate, lipogenesis from carbohydrate 

preourrors such as glucose also O C C U ~ S  in the €at body (Chino 

and Gilbert, 1965). The fatty acids then undergo 

estecification with the trihydrio alcohol, glycerol, to € o m  

acylglycerols (Louloudes & 81.. 1961; Sridhara and Bhat, 

1965; Lamb and Monroe. 1968; Turunen, 1973; China and Downer, 

1979: Garcia & 81.. 19801. 

The fat body f o m s  diacylglycerol and releaser it as the 

major hernolymph lipid. In Periolaneta americanq, the 

triacylglycerol content declines in the fat body, with a 

concomitant incraaro in hernolymph diacylglycerol (Nelson & 

al., 1967). chino and ~ilbert (1965), in Hvala~horg cecrooia. - 

--, andnelanoolus differentialis, reported 

that fat bodies prelabelled b XLW with "C-palmitate 

subsequently release radiolabelled diacylglycerol when the 

isolated tissues wera incubated in heaolyaph. Diacylglycerol 

synthesis and release w a r  shown to be energy-dependent (Chino 

2nd Gilbert, 1965). The fat body also exhibits lipase activity 

for degradation of the storage triacylglycerol to circulatory 

lipids, as evidenced in erodenia eridania (Stevenson, 1972). 

~oousta miaratoria ( ~ i e t z  and Weintraub, 1978). and 

rdriulaneta anericana (naffnan and Downer, 19791. 

Most of the potential metabolic energy available from 

stored triacylglycerol is contained within the fatty acid 
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component of the lipid, and these esterified fatty acids 

together with the non-esterified fatty acids constitate a 

major metabolic reserve (Downer, 1985). The pathway for fatty 

acid biosynthesis has been reviewad by Wakil (1970). Wakil & 

aL. (1964), and Lehninger 11975). Two separable enzyme 

systems, acetyl-CoA carboxylase and fatty acid synthetase 

Beesent in the cytosol, are involved in effecting the fatty 

acid synthesis. ~catyl-COA carboxylasa contains covalently 

bound biotin as a prosthetic group, and catalyzes the 

caeboxyl*iron of acetyl-CoA (derived from carbohydrate or 

amino acid source; via the tricarbaxylic acid cycle) to 

malonyl-CaA fnswner. 1985). Malonyl-CoA, a 3-C compound. then 

condenses with acetyl-CoA in a series of reactions catalyzed 

by the fatty acid synthetase complex to yield a 4-C 

intermediate (Downer, 1985). After a series of similar 

condensations of malonyl-CaA with the newly formed eoyl 

intermediate, an acyl chain of appropriate length is 

synthesized (Downer, 1985). 

The primary products of de nave fatty acid synthesis are 

C16:O. C18:0, and C18:1, but the absolute amounts of these 

fatty acids nay vary, depending on the time allowed for fatty 

acid synthesis (Sridhara and Bhat, 1965). The enzymes of the 

fatty acid synthetase complex are closely associated with an 

acyl carrler protein (ACP) that serves to bind the fatty aoyl 

intermediate compounds through the formation of thiol esters 
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(Downer, 1985).  The c y t o s o l i c  enzymes f u r  f a t t y  a c i d  syn'hesis 

have been demonstrated i n  prodenia e r idan ia  (Zebe and ncsha.l, 

1959).  LcsaSz m i c a t o r i a  (T ie t z ,  1963!. W l i a  s e r i c a t a  

(Thongson et al., 19751, Galleiia mel lone l l a  (Thompson and 

Barlow, 19761, p e r i ~ l a n a t a  americana ( s t o r e y  and Bailey.  

19781, and Acvr thos i r rha~  QL%E (Ryan & a., 1982).  

Following t h e  s y n t h e s i s  o f  long chain s a t u r a t e d  f a t t y  

a c i d s ,  t h e  monounsaturated honiologues may be formed by d i r e c t  

dehydrogenation (Downer, 1985).  as has  been shown i n  t h e  

microsornal f r a c t i o n s  from Luu!a miorltoria ( T i e t z  and S t e r n ,  

19691, and ceratitis cai?itata_ (Gonnalez-wuitrago & a., 
1979).  Most of t h e  f a t t y  a c i d s  synthesized f r o m  a c e t a t e  and 

r e s u l t i n g  from l i p o l y r i r  of d i e t a r y  acy lg lyce ro l s  undergo 

e s t e r i f i c a t i o n  wi th  g l y c e r o l  (Downer, 1985).  Two b i o s y n t h e t i c  

pathways f o r  acy lg lyce ra l  syn thes i s ,  comprising s e v e r a l  

a c y l t r a n a f a r a s e r  (Lehninger,  19751, have been i s o l a t e d  from 

Locusts m i a r a t o d  (T ie t z ,  1969: Peled and T i a t z ,  1974; T i e t z  

st a., 1975; T i e t z  and Weintraub, 1980) ,  HvaloDhara ceororria 

(Hirsna and G i l b e r t ,  1967) .  G a l l e r i a  me l lone l l a  (Barlow & 

a,, 1980),  Glossina m c r s i t a m  (Langley & al., 1981).  

&&%me& americana (Hoffman and Downer, 1979) ,  and 

(Garcia & L.. , 1980).  

Fa t ty  a c i d s  p l ay  an important  r o l e  as an energy r i c h  f u e l  

i n  i n s e c t s ,  s t o r e d  i n  t h e  f a t  body c e l l s  i n  t h e  form a €  

t r i a c y l g l y c e r o l s  ( G i l b e r t ,  1967.). The m o b i l i z a t i o n  of 
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asylglyceral reserves involves hydrolysis, catalyzed by 

lipares, of the acylester linkage. Insects have a variety of 

esterases in their hemolymph and tissues, that serve different 

metabolic Functions (Chen, 1971). Lipases are a class of 

esterases that are defined in terns of their specificity for 

long-chain acylglycerols and their capacity to hydrolyze the 

acylester only at the interface formed between the emulsified 

substrate and tha aqueous medium (Downer, 1985). Lipare- 

catalyzed triacylglyccrol hydrolysis has been demonstrated in 

the gut, hernolymph, fat body, flight muscle, end other tissues 

of several insect species (Gilbert. 1967a; Downer, 1985). The 

aomplete hydroly~is of acylglycerol yields fatty acids and 

glycerol. Downer (1985) proposed rhat the liberated glycerol 

is transported to the fat body for esterification with free 

fatty acid produced by lipalysis 1i.e. shuttle function), 

and/or converted to trehalose in the fat body. 

The 0-oxidation pathway for fatty acid oxidation, 

localized in the mitochondria, involves sequential removal of 

2-C tunits in the form of acetyl-S-CaA, which undergo 

condensation with axalaacetate to form citrate (Lehninger, 

1975). T h e  citrate is subsequently oxidized in the 

tricarboxyli~ acid cycle to carbon dioxide and water with 

concomitant generation of ATP (tehninger, 1975). The units of 

acetyl-5-COA are formed from the fatty acid molecule by 

oxidation at ':he #-carbon atom of the fatty acid. In addition 
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to providing acetyl-S-CoA, P-oxidation of fatty acids also 

generate reduced coenzymes FADH2 and NADHI, which are oxidized 

through the electron transport chain to yield additional 

lnolecules of ATP (Lehninger, 1975). The operation of the p- 

oxidation pathway in the tissue can be determined indirectly 

by measuring the emission of " C O ~  from "C-labelled fatty acid 

by the tissue W, in an airtight system. 

In r. Pumiferana, the meshanism(s) of lipid digestion, 

transport, synthesis, aobiliration, and oxidation are unknown. 

1.5 Hormonal Regulation of Metabolism 

The homonal regulation of metabolic processes in insects 

has been the subject of extensive study, and some excellent 

reviews are available on the topic (steele, 1976, 1983, 1985; 

Keeley, 1985; Downer, 1981, 1985; BeenaKkers, 1983). The 

homonal aspects of carbohydrate, protein, and lipid 

metabolism in insects will be considered here in brevity. 

Carbohydrates: Glycogen, a polymer of glycosyl residues 

derived from glucose and other carbohydrates, is the principal 

form of stored carbohydrate in insects. The glycogen reserves 

in the fat body are readily mobilized and distributed to other 

tissues (Friedman, 1985). 

Glycogen synthesis in some Diptera and Orthoptera has 
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been shown to be controlled by a hormone originating in the 

medial neurosecretory cells (MNC) of the brain, and in sane 

Lepidaptera, the suboesophageal ganglion (Steale, 1983). 

Ablation of the WNC in Aedds aeawti, Aedes taeniorhvnchu, 

and Iedes solicitans causes an accumulation of glycogen in the 

tissues (van Handel and Lea, 1970; Lea and Van Handel. 19701. 

Thin suggests that a hormone originating in the MNC inhibits 

glycogen synthesis in these insects. Similar results have been 

obtained in Calli~hara .ervthrooeoh& (Thor. :.?n, 19521, and 

~ocusta nisratariq (~oldsworthy, 1971). In Bombvx mori, the 

diapause hormone originating in the maternal suboesophageal 

ganglion, hits been shown to cause an accumulation of qryoogen 

in tt : diapause eggs (Yamashita and nasegawa, 19701. 

The role of the corpora allata (CAI, i.e. juvenile 

hormone, in the regulation of glycogen synthesis has been 

studied extensively. Allatectony of Farausius morosus 

(L'Helias, 1953). Pvrrhocaris aDterus (Jande and Slama, 1965). 

c a u l h o r a  ervthFosephala  hamsen en, 19521, phormia reaina 

(orr. 1964). and Uxsm domestic= (Liu, 19741 causes an 

accumulation at glycogen in the fat body or whole body, while 

implantation of CA or injection of synthetic JH in praronhl& 

melonomastar (Butterworth and Bodenstein, 1969) increased 

glycogen synthesis, suggesting that the role of JH in the 

regulation of carbohydrate metabolism remeins to be clarified. 

Biosynthesis of trehalone, the predominant hemolymeh 
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carbohydrate in most insects (Wyatt and Kalf, 19571, is 

controlled by the hypertrehalosemic hormone which was first 

described by Steele (19611 from the corpora cardiaca (CC) of 

P P a  americana. The hormone elevates the level of 

hemolpph trehalose, with a sonoomitant decrease in fat body 

glycogen (Steele, 1963). The hypertrehalosemic hornone has 

been demonstrated in discoidslis (Bowers and 

Friedaan, 19631, Phor.ia a (Friedman. 19671, Carausius 
m (Dutrieu and Gourdoux, 1967). Calli.hora 

(Noman" and Duve, 19691, Manduca saxta 

(ziegler, 1979). and w t a  misratoria (Moreau & d., 1982). 

The hypertrehalosemic response to CC has also been 

dsmanetratad in for the fat bodies of LeucoDhaea maderaa 

(Weinr and Gilbert, 19671, and Peri~laneta aaericana (Mcclure 

and steele, 1981). The made of action of hypeetrehaloseoic 

hormone has been elucidated (Steele, 1980). The hornone is 

responsible for the activation of glycogen phosphorylase in 

the fat body, by etiaulating the conversion of phosphorylase 

b to a (Steele, 1963; Weinr znd Gilbert, 1967). The effect is 

apparently not mediated via CAMP, but has an absolute 

requirement for ca2+ Isteele, 19s: I .  

A hypotrehalosemic hormone, which stimulates the 

synthesis of glycogen at the expense of trehalose, has also 

been described in some insects (Steele, 1985). The 

hypotrehalosemic hormone war first demonstrated in Calllohor~ 
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e rv th roceoha la  (Nomann, 1975),  and has a l s o  been found i n  

ehornia & (Chen and Friedman, 1977),  W l i ~ h o c a  " m i t o r i a  

(mve et E?. , 1979). Mu.ca domestica (Liu,  1973).  and 

Perirrlaneta (Spring & a,. 1977). The hornone has 

been i s o l a t e d  f rom t h e  MNC o f  t h e  b ra ins  of 

e r v t h r n r e ~ h a l a  (Duve, 1978),  and S s l l i o h a r a  vornitoLig (Duve s 
d., 1979).  The mode of ac t ion  o f  t h e  hypotrahalosemic hormone 

i s  unknown. 

Pro te ins :  I n s e c t s  con ta in  a v a r i e t y  of p r o t e i n s  i n  t h e i r  

harnolpph an0 t i s s u e s .  However, t h e  hormonal r e g u l a t i o n  of 

hemalymph and f a t  body p ro te ins  is incompletsly known. The f a t  

body is t h e  p r inc ipa l  s y n t h e t i c  source for hernolymph p r o t e i n s  

(Agosin,  1978).  The f a t  body produces many unique and 

p h y s i o l o g i c a l l y  s i g n i f i c a n t  p r o t e i n s  such as v i t e l l o g e n i n a ,  

s t o r a g e  p ro te ins ,  diapause p r o t e i n s ,  l i p id -b ind ing  p r o t e i n s ,  

hormone-carrier  p ro te ins ,  and enzymes (Keeley, 1985).  

Neurohormones have been shown t o  increase t h e  gene ra l  

p r o t e i n  syn the t io  capac i ty  i n  t h e  f a t  body of seve ra l  i n s e c t s .  

I n  t h e  a d u l t  females of Sch i s roce rca  s r e s a r i a ,  t h e  r a t e  of 

p r o t e i n  syn thes i s  inc reases  d r a s t i c a l l y  wi th in  4 hours a f t e r  

i n j e o t i o n  of CC e x t r a c t  (asborne & U . ,  1968).  Conversely,  

p r o t e i n  syn thes i s  i n  t h e  f a t  body was seve re ly  reduced i n  t h e  

a d u l t  female Schistocerca a r e o a r i a  8  days a f t e r  removal of t h e  

CI\ and  CC or cau te ry  of neurosec re t a ry  c e l l s  ( H i l l ,  1965).  
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E l l i o t t  and  G i l l o t t  (1978) r epor t ed  t h a t  t o t a l  p ro te in  i n  t h e  

hernolymph, f a t  body, and ova r i e s  of n e l a n o ~ l u s  sanauini~as was 

reduced a f t e r  ab la t ion  of t h e  neurosecretory c e l l s .  A d i r e c t  

r o l e  f o r  neurohormones i n  p r o t e i n  s y n t h e s i s  was demonstrated 

i n  l o u c o ~ h a e a  aa&z%e (Scheurer ,  1969).  where implan ta t ion  of 

b r a i n s  o r  CC increased f a t  body p r o t e i n  syn thes i s .  

J u v e n i l e  hormone has been shown t o  r egu la t e  s t o r a g e  

p r o t e i n  s y n t h e s i s  in  some i n s e c t s .  Tojo st &I,. (1981) 

demonstrated t h a t  JH suppressed s t o r a g e  p ro te in  s y n t h e s i s  i n  

EsWyz m s r l ,  whi le  al latectomy cauzed t h e  oppos i t e  e f f e c t .  JH 

also i nduces  t h e  syn thes i s  of  spec i f i c :  d i apause  p r o t e i n s  i n  

t h e  larvae o f  b t r e e a  o rand iose l l a  (Turunen and Chippendale, 

19801, and r egu la t e s  t h e  s y n t h e s i s  of  hemoglobins i n  

chironolnus thummi (Vefopoulau-Mandalos and Laufer ,  1980).  

Syn thes i s  of v i t e l l o q e n i n s  i n  i n s e c t s  has  been shown t o  be  

r egu la t ed  b y  JH. The hornona a c t s  on t h e  f ena le  f a t  body and 

ovaries t o  s t imula te  v i t e l l o g e n e s i s  (Keelmy, 1985), as has  

been demonstrated i n  Drolivur ( H i l l ,  19721. 

Leuco~haea  made-ae (Brookes, 1969) , Per i e l ane ta  mexiGam 

( s e l l ,  1969).  and I acus ta  .iqratoria (Chen d Eb.,  19791. 

S y n t h e s i s  of v i t e l l o g e n i n s  and o t h e r  p r o t e i n s  i n  some 

i n s e c t s  is regulated by ecdys te ro ids .  I n  && sewizti 

(Hagedorn & a., 1975), ova r i an  ecdys te ro ids  r e g u l a t e  t h e  

onse t  of  v i t e l l o g e n i n  syn thes i s  a f t e r  b l r3d  feedinq.  Treatment 

of c a l l i ~ h o r a  (Thornson st al., 1971).  and 
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D r o s o ~ h i l a  melanoaaster  (Lepesant  et d., 1978), w i t h  

ecdys te ro ids  causes an inc rease  i n  f a t  body p r a t e i n  s y n t h e s i s .  

The s e q u e s t r a t i o n  of s to rage  p r o t e i n s  by the Eat  body has been  

shoxin t o  be mediated by t h e  prepupal  r i s e  i n  ecdyr t e ro id  

t i t r e s ,  a s  shown i n  Caloades e t h l i v s  ( l acke ,  1980).  Bvaloohora 

~~GZCS& (Toio st n?. . 1978). msri (Tojo &a,, 1980).  

Ga l l e r i a  mallonella  (Mi l l e r  and S i lhacek ,  1982),  and 

m c o o h a q a  ne res r ina  (Ueno and Ra to r i ,  1982). More reoently, 

t h e  ro le  of ecdys te ro ids  i n  t h e  s y n t h e s i s  of major heaolymph 

p ro te ins  i n  Bombvx magi (Plantevin s al., 1987),  and s t o r a g e  

p ro te ins  i n  sw&g&ra UUca (Tojo EL a,, 19851, haa been  

demonstrated.  

Lipids:  L ip ids  are  e s s e n t i a l  s t r u c t u r a l  components of t h e  c e l l  

membrane and  c u t i c l e  i n  i n s e c t s .  They provide a s u b s t a n t i a l  

source of metabolic energy f o r  p e r i  d s  of sus t a ined  ene rgy  

demand, f a c i l i t a t e  water  conse rva t ion  by t h e  fo rna t ion  of 

wa te rp r so f ing  c u t i c u l a r  waxes and y i e l d  metabolic water 

(Downer. 1978) .  Some i n sec t  hormones and pheromones a re  

l i p o i d a l  i n  n a t u r e  (BeenaXkers, 1983).  

The p r i n c i p a l  hormones t h a t  a c t  d i r e c t l y  or, i n s e c t  l i p i d  

metabolism are t h e  juven i l e  hormone, t h e  ad ipok ine t io  homane ,  

and t h e  hypolipaenic hormone. The r o l e  of JH ill l i p i d  

metabolism was f i r s t  demonstrated by PEe i f f e r  (1945)  i n  

welanoolus d i f f e r e n t i a l i s .  Allatectomy of the  a d u l t  females 
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r e s u l t e d  i n  a n  abnormal accumulation o f  l i p i d  in t h e  f a t  body. 

S imi le r  r e s u l t s  have been r epor t ed  i n  ca rau r iu r  lnorosus 

(L'Helias. 1353) .  P e r i ~ l a n e t a  americana (Bodenstein,  1953).  

Locusta m i m a t o r i a  (Minks. 1967: S t rong .  19681, 

(Odhiaabo, 1966: Hi l l  and I z a t t ,  1974). S l l ado~ te ra  

l i t t o r a l i s  (El-Ibrashy and ~ o c t o r .  1970);  W r o o h i l a  

melanosaster  (vag t ,  194$; ,  and Ca l l iohora  ervthroceDhela 

(Thossen. 19521. However, f a t  body l i p i d  content  remained 

n a m a l  i n  a l l a t ec tomized  &&s faeniorhvnchus (Van Handel and 

Lea, 1970).  and B l a b e n s  d i r c o i d a l i s  (Mannix and Keeley, 

1980).  1n  Scb i s toce rca  ( H i l l  and I a a t t ,  19741, and 

Locust. m i m a t o r i a  (Beenakkers, 19691, t h e  inc rease  i n  l i p i d  

con ten t  of  t h e  f a t  body of a l l a t ec tomized  i n s e c t s  was 

prevented by r e i n p l a n t a t i o n  of t h e  CA; and in i n s e c t s  whish 

had not been a l l a t ec tomized  but  had r ece ived  CA implants ,  f a t  

body l i p i d  s y n t h e s i s  was diminished. 

A d i p o k i n e t i ~  hormone IRKHI, produced by t h e  corpora 

ca rd iaca  (CC) r t i n u l e t e s  t h e  Eat  body t o  r e l e a s e  

d i a c y l g l y c e r o l s  and inc reases  t h e  ox ida t ion  of  l i p i d s  i n  

p re fe rence  t o  carbohydrates by t h e  f l i g h t  muscles i n  a d u l t  

SchistoEerca. (Mayer and Candy, 1969; Robinson and 

Goldrworthy, 19741. AXH a c t i v i t y  has  a l s o  been demonstrated i n  

n i a r a t o r i a  (Beenakkers, 1969) .  Ewsbd~  U 

( ~ o l d s w o r t h y  et Q., 19721, (Dallmann and 

Heman. 19781, Manduca ZsxCa (Beenakkers et al., 1978).  
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ca raus ius  morosus (Gade, 1980).  ~ e l a n o o l u s  s a n s u i n i ~ e e  

(Downer, 1985),  and t!dA&hb &% ( J a f f e  pf. U . .  1988). 

The mode of ac t ion  of AKH has  been e luc ida ted  (Downer, 

1985). The Am-induced e l eva t ion  o f  hemalymph d iacy lg lyce ro l  

r e s u l t s  from t h e  mobil izat ion of f a t  tody reserves of 

t r i a c y l g l y c e r o l ,  with t h e  l i p o l y t i c  a c t i o n  modulated by t h e  

CAMP-linked secand messenger system (Gade, Is,*), v ia  p r o t e i n  

Kinase ( r )  (van Marrevijk a,, 1980) .  Recently, AKH has been 

demonstrated t o  r egu la t e  carbohydrate metabalirm i n  the  l a r v a e  

or M u m  s e x t a ,  i n  add i t ion  t o  i t s  role i n  the r equ la t ion  of 

l i p i d  metabolism in  the a d u l t s  of  t h e  same spec ie s  (Z ieq le r  & 

a,, 1990).  

A hypolipaemic hormone has  been S ~ J W I I  t o  depress  

hemolymph l i p i d  l eve l s  i n  some i n s e c t s .  Downer and S t e e l e  

(1969, 19721, in  P e r i ~ l a n e t s  americana, reported t h a t  

i n j e c t i o n  of aqueous e x t r a c t s  of  corpora cardiaca reduced 

hemolymph l i p i d  l eve l s  and increased l lpoqenes i s  i n  t h e  f a t  

body. The hypolipaemic hormone was denonstrated i n  Mcusta 

m i m a t o r i a  (Orchard and Loughton, 1980).  I n  t h i s  i n s e c t ,  

i n j e o t i o n s  of t h e  storage lobe e x t r a c t s  of t h e  corpora 

ca rd iaca  r e s u l t e d  i n  deplet ion of hemolymph l i p i d  l eve l s .  The 

s i g n i f i c a n c e  of t h e  hypolipaemio harmorle i n  ~LWSS lniaratoria 

may be r e s t o r a t i o n  of hemalymph l i p i d  l e v e l  fol lowing its 

e leva t ion  dur ing  f l i g h t  (orchard and Loughton, 1980).  The mode 

o f  ac t ion  of  t h e  hormone awaits  e l u c i d a t i o n .  
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2.1 Insec t  Rearing 

Choristoneura fumiferana were reared from second-instnr  

hibernacula supplied by t h e  Forest  Pest  Management I n s t i t u t e  

(Fores t ry  Canada), S a u l t  S t e .  Marie, On ta r io .  I n s e c t s  were 

r ea red  according t o  ;he method desc r ibed  by Mulye and Gordon 

(1990).  The d i e t  was a wheat germ based mer id ic  d i e t  

(ncMorran, 1965). purchased from Eio-serv I n c . .  frenchtown, NJ 

(Appendix A ) .  

A11 of t h e  procedures involved i n  t h e  s e t t i n g  up of 

l a r v a l  c u l t u r e s  and t r ans fe r r l l rg  s i x t h - i n s t a r  l a r v a e  i n t o  new 

d i e t  cups were done under a laninar-f low s t e r i l e  hood. ?'he 

r ea r ing  incuba to r s ,  working area, and t h e  in s t rumen t s  were 

d i s i n f e c t e d  with Hinks-Eyers s o l u t i o n  (Hlnks and Eyers,  1976) 

t o  reduce t h e  inc idence  of mic rob ia l  contamination.  Liquid 

d i e t  (7-10 ml) was poured i n t o  1-02, c l e a r  p l a s t i c  cups and 

allowed t o  cool t o  room temperature ( 2 5  'C) .  The d i e t  cups  

were then sprayed wi th  an a n t i f u n g a l  agen t  c o n s i s t i n g  of 1 . 5  

g r o r b i c  ac id  and 0.6 g methylparaben (methyl p- 

hydroxybenzoate) i n  l o o  in1 o f  9 5  % a thy l  a l coho l  (Chawla & 

a,, 1967).  The d i e t  cups  were carped with unwaxed paper l i d s  

and s t o r e d  i n  sea led  p l a s t i c  bags a t  5 'c. only d i e t  t h a t  had 
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been s to red  for l e s s  than 2 weeks Was used f a r  i n s e c t  r ea r ing .  

TO reduce fungal oontamination of t h e  second-inster  

l a rvae ,  t h e  cheeseclath-parafilms (American Can Co., 

Greenwich. CTI s h e e t s  containing hibernacvla were dipped i n  3 

% sodium hypochlari ta (v/v) ,  then  a i r -d r i ed .  larvae were 

reared in groups of 25-30 p e r  inverted d i e t  cup in a Convieon' 

Controlled environment chamber (Controlled Environments Ltd. ,  

Winnipeg, Manitoba) f i t t e d  with Indorrun' f luorescen t  l i g h t s  

( i n t e n s i t y  2 . 5  W/.') ,  a t  2 3  i 1 'C. non-rliapause 16L:ED 

photoperiod, and 65 t 2 r e l a t i v e  humidity. I t  was noted t h a t  

lower humidity or higher temperature, or boch, caused t h e  

a r t i f i c i a l  d i e t  t o  d ry  out and resu l t ed  i n  s t a r v a t i o n  of t h e  

l a rvae ,  wi th  consequent impairment of l a r v a l  development. 

Higher r e l a t i v e  humidity promoted fungal growth t h a t  was 

de t l lmen ta l  t o  l a r v a l  development. Diet cups were inspec ted  

d a i l y .  I f  any fungal or microbial  contamination was observed 

in t h e  d i e t  cups o r  t h e  l a r v a l  g a l l e r i e s ,  t h e  d i - t  cup was 

discarded.  Within 24 h a f t e r  moulting, e a r l y  s i x t h  i n a t a r  

l a rvae  were t r ans fe r red  t o  new d i e t  cups ( 5  l a rvae  p e r  cup). 

2.2 Dose-TeEpOnSe Stud ies  

The e f f i c a c y  aP seven i n s e c t  juvenile hormone analogs 

(JHRsl i n  d i s rup t ing  t h e  metamorphosis o f  t h e  spruce bvdwom 

was compar3d through dose-response s t u d i e s .  F i f t h  i n s t a r  
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l a rvae  t h a t  wars about t o  molt in to  s i x t h  i n s t a r s  were 

iden t i f i ed  by the  c h a r a c t e r i s t i c  t r ansverse  white band on t h e  

oonjunctiva between t h e  head capnuls and t h e  p ro thorac ic  

t e r g i t e  (Retnakaran, 1971).  S ix th  i r s t a r  l a rvae  were used i n  

the experiments, 1 day a f t e r  molting. The following JHAs were 

evaluated aga ins t  the  s i x t h  i n s t a r :  lncthoprene (1-100 pq/pll ; 

fenoxyoarb (0.0001-0.5 ug /p l ) ;  S-71639 (0.01-100 ug/ulI:  ZR 

8187 (0.01-100 pg /p l ) ;  Z R  9582 (0.01-100 pg /p l ) :  ZR 9892 

(0.01-100 pg/u11 i and ZR 10151 (1.0-100 ug/plI .  Methoprene and 

the  ZR compounds were supplied by Zoecon Sandon Research, Palo 

Alto, CA: fenaxycarb was obtained from Elanca. E l i  L i l l y  

Canada Inc., Scarborough, Ontario: and 5-71639 was donated by 

sumitorno chemical Co.. Osaka. Japan. 

Using a ci lsan'  micropipette,  t echn ica l  grade aonpounds. 

dissolved i n  acetone, were app l i ed  top ioa l ly ,  t o  t h e  mid- 

dorsa l  region,  extending from the thorac ic  t o  t h e  abdominal 

areas o f t h e  larvae.  con t ro l s  cons i s t ed  of acetone t r e a t e d  and 

untreated I-day o l d  s i x t h  i n s t a r  l a rvae .  Larvae were nonitored 

d a i l y  and developmental events such as molting, pupation,  and 

a d u l t  ec los ion  wore recorded. 

2.3 Ef fec t  of JHAS on Metaboli te Concentrat ions 

Day 1, s ix th  i n s t a r  l a rvae  of C. fumiferanii were t r e a t e d  
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with fenoxycarb and methoprene, a t  t h e  respec t ive  mIo 

concentrat ion.  Controls consisted of so lven t  t r e a t e d  larvae.  

Biochemical assays were done a t  va r ious  i n t e r v a l s  (24 h f o r  

hemolymph s t u d i e s  and 48 h f a r  f a t  body assays )  of t h e  

experimental period of 6 days, which was t h e  t ime  when t h e  

con t ro l  i n s e c t s  had pupated. 

2.1.1 Hemolynph Assays 

Direct  measurements of hemolymph volume were made i n  

modified Pasteur p ipe t s .   isp pas able, b o r o s i l i c a t e  g lass  

Pasteur p i p e t s  were cu t  a t  the  d i s t a l  ends with a g l a s s  f i l e ,  

l eav ing  about mid-?.5 cs of t h e  p ipe t .  The cons t r i c t ed  end war 

flame-sealed, and t h e  open end was tlame-polished. R gla r r -  

wool plug war inse r t ed  ins ide  t o  p a r t i t i o n  t h e  modified p ipe t  

i n t o  a ' l a r v a l  compartment' and a 'hernolymph recep tac le ' .  

LaNaa wsrs l i g a t e d  i n  t h e  head and t h e  l a s t  a tdan ina l  s e m e n t  

with waxed den ta l  f l o s s ,  t o  prevent g u t  con ten t s  from 

contaminating the  hemolymph, and placed,  ind iv idua l ly ,  i n  t h e  

modified p ipe t s .  Larvae were pricked with an i n s e c t  p in  to 

al low henolymph flow. These p ipe t s  were then placed i n  

microfuge tubes ,  and cen t r i fuged  a t  200 r.p.m. f o r  5 minutes 

a t  room temperature (25 ' C ) .  Hernolymph volume was measured by 

drawing the  co l l ec ted  hemolymph from t h e  receptacle-end of t h e  

p i p e t  with a Hamilton'micrasyringe. 
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For t h e  purpose of biochemical analyses,  hemolymph was 

c o l l e c t e d  from individual  l a rvae  by p i e r c i n g  the  t h o r a c i c  

region wi th  an insec t  pin,  and gen t ly  drawing t h e  hemolymph i n  

a micropipette (5-10 "1 per i n s e c t ) .  Only c l e a r  hemolymph was 

c o l l e c t e d  and care war t aken  t o  avoid contaminating t h e  

hemolynph with g u t  con ten t s .  Hernolymph was t r a n s f e r r e d  i n t o  a 

cen t r i fuge  tube containing 5 n l  of 5 % t r i c h l o r o a o e t i c  a c i d  

(TcA) ( ~ 1 ~ 1 ,  an i c e .  A f t e r  15  minutes, t h e  t u b e r  were 

cen t r i fuged  a t  800 x g fo r  1 0  minutes a t  4 'C. This procedure 

was s l i g h t l y  modified f o r  hemolymph t o t a l  p ro te in  and t o t a l  

l i p i d  determinations,  by t r a n s f e r r i a 9  5-10 61 heaolymph i n t o  

1.0 ml of d i s t i l l e d  water.  

2.3.1.1 Carbohydrates 

Total  carbohydrates i n  the  hemolymph were determined by 

t h e  anthrone assay  (Roe, 1955).  The anthrone reagent was 

prepared by slow n ix ing  of 0.05 2 anthrone i n  72 % s u l f u r i c  

a c i d  (w/v). The reagent was scored a t  5 'C ,  and used wi th in  2 

weeks of prepara t ion .  Analysis  of hemolymph t o t a l  

carbohydrates was done by mixing 0.5 ml of t h e  superna tan t  

wi th  5.0 n l  of anthrone reagen t  on i ce ,  and b a i l i n g  i n  a water 

ba th  (100 ' C )  lor l o  minutes.  Af te r  coa l ing  t o  room 

temperature (25 ' C ) ,  absorbancer of the  mixtures were measured 

a t  650 na, a g a i n s t  a r eagen t  blank cons i s t ing  of 0.5 ml of 5% 
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TCA and 5.0 ml o f  t h e  anthrone r eagen t ,  i n  a s p e c t r o n i o  601' 

spectrophotometer  (Milton Roy Co., USA). Glucose was used as 

t h e  r e fe rence  s t anda rd .  A s t anda rd  curve i s  shown i n  p ig .  2.1. 

2.3.1.2 P r o t e i n s  

T o t a l  p r o t a i n  concen t ra t ion  of  t h e  heaolymph was 

r leternined by t h e  rnicro-Lowry assay (Lowry et a,, 19511, as 

modified by Patersan (1977).  A sigma* p ro te in  a s say  k i t  war 

utilized Ear saks o f  cons i s t ency  and convenience ( S i w a  

Chemical Co., St. Lauis, MO) .  Diluted hernolymph (1.0 ml] was 

t r e a t e d  wi th  0 . 1  m 1  of aqueous sodium deoxycho la t s  (1.5 

og/ml) ,  fol lowed by thorough mixing. Af te r  l o  minutes a t  room 

t empera tu re  (25 'C),  0.1 nl of aqueous TCA (72 %, w/v) war 

added.  Tubas were vortexed and cen t r i fuged  a t  4000 x g f o r  5 

minutes a t  25 ' C  t o  p r e c i p i t a t e  t h e  p ro te in .  

The supe rna tan t s  were decan ted ,  t h e  p e l l e t s  d i s so lved  i n  

1 . 0  ml of l o  r sodium dadecy l su l f a t e  (w/v) .  0 .5  m 1  o f  2.0 N 

P o l i n  and C ioca l t eu ' r  phenol  r eagen t  was added and t h e  mixture 

b r i e f l y  vortexed.  The mix tu re  was allowed t o  s t and  a t  room 

t empera tu re  (25 'C) f o r  30 minutes t o  al low c o l o r  development. 

Tne blank cons i s t ed  of  1 .0  n l  of d i r t .  wa te r  and t h e  

a p p r o p r i a t e  assay r eagen t s .  Af t e r  30 n i n . ,  t h e  absorbances of 

t n e  mixtures were measured a g a i n s t  t h e  blank i n  a 

spectrophotometer  a t  a wavelength of  750 nm. P r o t e i n  



Figure 2.1. p l o t  of g lucose  concentration (ag/ml) vs. 

absorbance a t  650 am. Glucose was assayed by t h e  anthrone 

procedure ( ~ o e ,  1955). values are shown as Mean t SE of 3 

separate determinations.  
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concentrations were determined by comparing the absorbance 

values with a standard curve (Fig. 2.21 made from known 

amounts of bovine serum albumin (ESA). 

2.3.1.3 Lipids 

Total lipid concentration in the hernolymph was measured 

by Falch extraction (Folch & d., 1957) of the henolymph, 

followed by the Amenta procedure (Amenta. 19701. Diluted 

heaolymph (1.0 m-.) was treated with 1.0 m1 of 

ch1orofarm:methanol (2:1, v/v, freshly prepared) in e Kolmer 

centrifuge tube, followed by thorough mixing. The mixture was 

allowed to stand for 15 minutes at 25 'C. After 15 minutes, 

1.0 ml of 9 % NaCl ("/"I was added, and the mixture 

centrifuged at 1000 x g for 5 minutes at 25 'c. using a 

Hamilton syringe, an aliquot (0.5-0.75 m1) of the lower 

solvent phase was transferred to culture tubes. 

Extracts were dried under a stream of nitrogen. To this, 

2.0 ml of the acid-dichromate reagent (5.0 g potassium 

dichronate (K2cr,o,) in 1000 ml of concentrated sulfuric aoid) 

were added. The reagent blank contained distilled water 

extract and the appropriate reagents. Tubes were heated in an 

oven at 95 'C far 1 hour, and an aliquot (1.0 m1) of the 

~olution was diluted with 3.0 ml water. Absorbances of the 

mixtures were read against a water blank at 430 nm in 



Figure 2.2. Protein calibration curve. Bovine serum albumin 

was used as a standard (ug/nl). Protein was determined by the 

micro-lowry ansay (Lawry ex al., 19511, as madiEied by 

Paterson (1977). Absorbences were measured at 750 nn. Valuer 

are shown as Mean t SE of 3 separate determinarions. 
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a spectrophotometer. A standard curve, constructed from known 

amounts of palmitic acid, was used to calculate lipid 

concentration of the hernolymph (Fig. 1 . 3 ) .  

2.3.2 Fat ~ o d y  Assays 

Fat bodies were dissected out under isotonic ice-cold 

Dulbecco's phosphate bufferad saline (D-PBS), purchased from 

~ i b c o  Laboratories, Grand Island, NY. Larvae were pinned in 

the head and the last abdominal segment, in a wax dish, and 

placed under a stereo-microscope (Wild Heerbrugg). An incision 

was made with a scalpel, along the mid-dorsal region of the 

body, extending from the prathor6oic tergite to the last 

abdominal segment. The paired salivary glands, the alimentary 

canal, and, in the case of males, the paired tester, were then 

gently excised to avoid Contamination of the fat bodies. The 

dissection was rinsed with ice-cold D-PBS, and the fat bodies 

were gently removed with a pair of fine forceps. Fat bodies 

were frozen rapidly in liquid nitrogen (-195 'C) and 

lyophilized for 8 hours in a labsonco. freeze-dryer (Labconco 

Corp., Kansas City. NO). Fat body preparations were storad at 

-15 'c. for a rnaxilnum of 2 weeks. 



Figure 2.3. Plat of lipid concentration (pg) against 

absorbance at 430 nm. Palaitic acid was used as a reference 

standard. Lipid was assayed according to the Amenta method 

(Amenta, 1970). Values are shown as ~ e a n  ' SE of 3 separate 
assays. 





2.3.2.1 Glycogen 

Fat  body glycogen was ex t rac ted  according t o  a method 

Suggested by D r .  J.E. S t s a l a ,  Department of Zoology, 

un ive r s i ty  of Western Ontario, Landon, Ontario.  Lyopbilized 

f a t  bodies (15-20 mg) were digested i n  3 . 0  m l  of 30 % 

potassium hydroxide (w /v )  a t  100 'C fo r  20 minutes, i n  a ho t  

water bath.  An a l i q u o t  (1.0 ml) a f  t h e  d i g e s t  was t r e a t e d  wi.th 

so u l  of sa tu ra ted  (40 %, u/v) sodium s u l f a t e  and 2.0 m1 of 95 

% e t h y l  alcohol (vl'r) ,  i n  a centrifuge tube.  

The t r e a t e d  d i q e s t s  were vortexed,  allowed t o  stand (15- 

20 minutes) ,  cen t r i fuged  (800 x g f o r  5 minutes a t  25 'c), t h e  

Supernatant  decanted,  and t h e  glycogen p e l l e t  resuspended i~ 

1.0 nl  of d i s t i l l e d  water. To t h i s ,  5.0 mL of  the anthrone 

reagent (0.05 % allthrone in 72 % H$C4, W/V) were added, on i o e  

(Roe, 19551. A reagent blank containing 1 .0  nl d i s t i l l e d  water 

and 5.0 ml of anthrone reagent was prepared.  Tubes were heated 

in a Water bath (100 'C) f o r  10 minutes. Upon coo l ing  t o  roam 

temperature (25 'C), absorbanses of the  mixtures were aeasured 

a t  650 nm, aga ins t  t h e  reagent blank,  in a spectrophotometer.  

Glycqen  l e v e l s  i n  t h e  f a t  bodies were f e t e r n i n e d  by comparing 

t h e  absorbance values with a ca l ib ra t ion  curve made from known 

amounts of glycegen ( ~ i g .  2 .4 ) .  



Flgure 2 . 4 .  Glycogen standard curve. Data are shown as 

glycoqen concentration (pg/ml) p l o t t e d  a g a i n s t  absorbance a t  

650  nn. Glyoagan was assayed by t h e  anthrone procedure (Roe, 

1 9 5 5 ) .  Values are shown as Mean + SE of 3 separate 

determinations.  





2.3.2.2 Proteins 

Lyophilized fat bodies (15-20 rngl were homogenized in 1.0 

ml of ice-cold insect saline, in a Potter-Elvehjem tissue 

grinder rith a natar-driven pestle. The homogenate was 

centrifsled at 10,000 x g for 20 minutes at 4 'C. A 0.1 ml 

aliquot of the supernatant was made up to 1.0 ml (final 

volume) with distilled water and treated with 0.1 ml of 

aqueous sodium deoxycholate (1.5 mq/ml), then vartexed. After 

10 minuter (25 'Cl, 0.1 m1 of aqueous TCA (72 % W/V) was 

added. The samp:es were vorteued, than centrifuged at lo00 x 

g for 5 mi". at 25 'C to precipitate protein. 

The supernatant was decanted, and the pellet was 

solubilized in 1.0 ml of 10 % sodium dodecyl sulfate (w/v). To 

this, 0.5 ml of 2.0 N Folin and Ciocalteu'a phenol reagent was 

added and mixed briefly. TI:e reaction mixture was allowed to 

stand at 25 'C far 30 minutes to allow color development. A 

blank, consisting of 1.0 ml distilled water and the 

appropriate reagents, was set up. After 30 minutes, the 

absorbances of the mixtures were measured against the blank in 

a spectrophotometer, at 750 nn. Protein levels in the fat body 

artracts were determined by comparinq the abrarbanca values 

with a calibration curve mdae from known amounts of BSA (Fig. 

2.2). 



2.3.2.3 Lipids 

Neu.:ral lipid levels in the fat bodies were determined by 

Folch extraction (Folch & a,, 1957) of lyophilired fat 

bodies, followed by the Amenta procedure (Amenta, 1970). 

Lyophilized fat bodies (5-10 mg) were homogenized in 1.0 ml of 

ice-cold ch1oroforn:methanol (2:l v /v ) ,  in a Patter-Elvehjen 

homogenizer. The hamagenate was transferred to centrifuge 

tubes and allowed to stand for 15 minuter at 25 'C. Then, 1.0 

ml of 9 % NaCl (w/v) was added, the contents vortexed, then 

centrifuled (1000 x g; 10 minutes; 4 .C). 

Using a Hamilton syringe, an aliquot (0.2 ml) of the 

lower solvent phase was transferred to culture tubes and the 

solvent evaporated ~ d e r  a stream of nitrogen. Than, 2.0 ml of 

the acid-dichromate reagent was added. The reagent blank 

contained 0.2 a1 solvent, aspirated under nitrogen, and the 

appropriate reagents. ~ u b e s  were heated in an oven at 95 .C 

for 1 h, and an aliquot (1.0 ml) of the solution was diluted 

with 3.0 ml of distilled water. Ahsorbances of the mixtures 

were read against a water blank at 130 nm in a 

spectrophotometer. ~ i p i d  concentrations of the fat bodies were 

calculated from a calibration curve, plotted from known 

amounts of palmitic acid (Fig. 2.3). 



2.4 Effects at Fenoxycarb on Lipid Metabolism 

Treatment of day 1, sixth inster c. fuaiferana larvae 

with fenoxycarb caused a highly significant depletion in the 

levels of hemolymph end fat body lipids. Accordingly, 

subsequent studies on the effects of JHAs on lipid metabolisa 

Of the spruce budworms were conducted only with fenoxycarb. 

Early sixth instar larvae were treared with fenoxycarb, at the 

LDIp concentration. Contra s consisted of acetone-treated 

larvae. Physiological assays were performed at various 

intervals within the experimental period of 6 days, a time 

when the controls had pupated. 

2.4.1 Qualitative Lipid Profile 

Lipids Ware extracted from the hesolymph and the fat 

bodies of the spruce budworn as outlined (Section 2.3.1.3). 

Qualitative analysis of the lipid extracts was done by thin 

layer chromatography (TLC). The TLC procedure of Msngold 

(1969), as described in Fried and Sherma (1986), was employed 

to separate neutral lipids. Precoated Silica Gel G plates (20 

x 20 cm, 250 pm thickness) were purchased from Fisher 

Scientific Co., Montreal, Quebec. TLC plates were heat 

activated at 70 'C for 30 minutes and stored in a desiccator 
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chamber (Fisher)  p r i o r  t o  use. Each p l a t e  was div ided  i n t o  

severa l  l a n e s  by scouring l i n e s  i n  t h e  s i l i c a  ge l  l a y e r .  

Lipid e x t r a c t s  (50-100 u1)  were applied t o  t h e  TLC 

p l a t e s .  2 i cm from t h a  bottom, with micropipets.  A so lven t  

f r o n t  l i n e  was drawn 15 ca from the  o r ig in .  T!I ,..,bile phase 

cons i s t ed  of N-Hexane: Diethyl e the r :  Acetic ac id  (70:30:1. 

v/v).  The TLC p l a t e s  were developed i n  a developing t ank  

(Desaqa, Heidelberg, Germany). p r e - s a t u n t e d  (15-20 min.) by 

l i n i n g  t h e  ins ide  with Whatman No.1 f i l t e r  paper,  pouring t h e  

mobile phase,  and placing t h e  l i d  on t h e  tank. The so lven t  was 

allowed t o  ascend t o  t h e  so lven t  f r o n t  l ine ,  and t h e  p l a t e s  

removed and d r i ed  under a stream of cool s i r  from a ha i rd rye r .  

v i s u a l i z a t i o n  of t h e  separated l i p i d s  was done wi th  iod ine  

V B P O U ~ ,  by placing t h e  TLC p l a t e  i n  a separa te  deve lop inq tank  

con ta in ing  c r y s t a l l i n e  iodine,  placed i n  a warm water bath (40 

'C).  A sample chromatogram is shown i n  Fig. 2 . 5 .  

2 . 4 . 2  F a t t y  Acid P r o f i l e  

The q u a l i t a t i v e  d i s t r i b u t i o n  of f a t t y  ac ids  i n  t h e  

hernolymph and f a t  body was determined by gas - l iqu id  

chromatography. Lipids were ex t rac ted  from t h e  henolymph and 

t h e  f a t  bod ies ,  according t o  t h e  procedure of Foloh & a. 
(1957).  F a t t y  ac ids  were t ransmethylated according t o  t h e  



Figuee 2.5. Qualitative distribution of lipids in the fat body 

of Chohistaneura funiferana. Lipid was extracted according to 

the Folch procedure (Folch et al., 1957) and separated by the 

TLC procedure 7f Mangold (1969) and Fried and She- (1986). 

The mobile phase consisted of N-Hexane:Diathyl ether:Acetic 

acid (70:3O:l v /vJ .  Lanes 1-3, Fat body lipid extract; Lane b. 

commercial diacylglycerol (DI) standard; Lane 8, commercial 

triacylgly~arol (TRI)  standard. 
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procedure of Keough and Kariel  (1987).  Lipid e x t r a c t s  (0.5-  

0.75 n l l  were t r ans fe r red  t o  a 6 . 0  n l  con ica l  v i a l  and t h e  

so lven t  evaporated under a stream o f  ni trogen.  Then, 2.0 m 1  of 

t r ansmethy la t ins  reagent  (6.0 ml of Concentrated H,SO, made up 

t o  100.0 ml wi th  99.9 ma1 P methanol ,  and con+eining 15.0 mq 

of r e c r y s t a l l i z e d  hydroquinone as a n  an t iox idan t ] ,  was added. 

V ia l s  were incubated f o r  4-5 h o u r s  a t  70 'C and t h e  sample, 

a f t e r  d i l u t i o n  with 1.0 m l  d i s t i l l e d  wa te r ,  e x t r a c t e d  I t i m e s  

with 1.5 ml o f  pe r t io ide  g rade  hexanes. F rac t ions  were  

combined and washed 2 t imes with 1 . 5  ml of d i s t i l l e d  water .  

HeYane e x t r a c t s ,  containing the  f a t t y  acid- methyl e s t e r s  

(FAMErl . Were d r i e d  under n i t rogen  and s to red  a t  -20 'C. P r i o r  

t o  i n j e c t i o n ,  samples were d i s s o l v e d  in  carbon d i sv lph ide  (10 -  

20 P I ) .  

Ana lys i s  of t h e  f a t t y  acid-methyl e s t e r s  was accomplished 

by a P e r k i n - ~ l m e r  8110 gas  chrolnatDqraph (Perkin-Elmer. 

Nowalk,  CT) .  A g l a s s  c a p i l l a r y  column (10.0 m x 0.25 mm 

i .d.1,  packed wi th  SP-2310 ( supe lco   no., Bellefonte,  P A ) ,  was 

used t o  8 e p a r a t e  t h e  FAME.. oven t empera tu re  was programmed to 

180 'C f o r  11.6 min., then 199 'C fo r  1 0  .in. The i n j e c t i o n  

p o r t  and t h e  flame ionmat ion  d e t e c t o r  (FID) oven t empera tu res  

were 249 'C. Commercial s tandards o f  f a t t y  ac id  methyl e s t e r s  

IFAMEs) , ob ta ined  from Supelca Inc., were run under i d e n t i c a l  

a n a l y t i c a l  cond i t ions  and t h e  chrumatoqrms eva lua ted  w i t h  

r e fe rence  t o  t h e  r e t en t ion  t ime of t h e  s t anda rds .  



2.1.3 Fat Body Lipid Syn thes i s  

2.4.3.1 o v e r a l l  Lipid Synthesis  from "C-acetate 

The capac i ty  of f a t  bodies i s o l a t e d  from s i x t h  i n s t a r  C. 

funiferana t o  incorporate r ad io labe l l ed  p recursors  i n t o  l i p i d  

wae determined in m. Fat bodies were dissected o u t ,  as 

previously described,  under ice-cold oulbecco's phosphate 

buffered a a l i n e  (D-PBS) . The d i s s e c t i o n  was r insed  with D-PBS, 

and f a t  bod ies  were excised with a p a i r  of f i n e  forceps,  

weighed, r i h s e d  wi th  D-PBS, and t r a n s f e r r e d  t o  b o r o s i l i c e t e  

c u l t u r e  t u b e s  (12 x 7 5  mm) con ta in ing  0 .5  ml of t h e  "C- 

ace ta te -cu l tu re  medium (orace's i n s e c t  medium, Giboo 

Laboratories)  . [l-"c:-sodium a c e t a t e  ( s p .  a c t i v i t y  59.0 

mci/mmol; radiochemical pur i ty  99 %) was purchased from New 

England Nuclear,  Boston. m. 

I n i t i a l l y ,  a c a l i b r a t i o n  curve fo r  "C-acetate 

incorpora t ion  in to  f a t  body l i p i d s  was constructed;  based upon 

f a t  body incubs t ions  a t  va r ious  concen t ra t ions  of "C-acetate, 

and f o r  va r ious  times. Based upon maximal l i n e a r  a c e t a t e  

inoorporation i n t o  f a t  bodies,  1 . 7  nN (0.1 pci)  "C- 

ace ta ta /assay  was u t l l i z e d  in subsequent experiments. A time 

course for "c-acetate incorporation i n t o  f a t  bodies using t h i s  

dosage is g i v e n  in Figure 2 .6 .  1\11 incuba t ions  ware dona a t  30 

' C  f o r  30 minutes,  i n  a Dubnoff metabolic shaking incubator 



Figure 2 .6 .  Incorporation of '"-Acetate i n t o  l i p i d s  by spruce 

budworm f a t  bodies m, a s  a func t ion  of t ime.  values are 

expressed an ~ e a n  i SE of 3 s epara te  assays, DPM/fat 

bodylinsect  ( 8 . 0  mg fresh w t . ) .  Fat bod ie s  were incubated i n  

t h e  cultitre medium containing 1 . 7  nM of ' L ~ - ~ c e t a t e .  IncubatLon 

temperature was 30  'c .  
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( P r e c i s i o n  S c i e n t i f i c ,  Chicago, i ~ )  . 
A f t e r  i ncuba t i on ,  t h e  t i s s u e  was k i l l e d  by a d d i t i o n  o f  

0 . 5  m1 1.0 N H C ~ .  Fat bod i e s  were t r a n s f e r r e d  t o  g l a s s  v i a l s  

and  r i n s e d  6 t i m e s  w i th  0-PBS t o  remov? s u r f a c e  r a d i o a c t i v i t y .  

I n i t i a l  t r i a l s  r e v s a l e d  t h a t ,  a f t e r  r i n s i n g  5-6 t i n e s ,  no 

r a d i o a c t i v i t y  above background l e v e l s  was e v i d e n t  i n  t h e  

washings. ~ o l l o w i n g  t h i s ,  f a t  bod i e s  were homogenized i n  1 . 0  

m l  of ice-cold ch1oroiorn:methanol  (2:1,  v/vl i n  a Po t t e r -  

Elvehjem homogenizer ,  t o  e x t r a c t  t o t a l  l i p i d s  (Folch s t  Q., 

19571. 

An a l i q u o t  ( 20 .0  u1 )  oZ the l i p i d  e x t r a c t  war t r a n s f e r r e d  

t o  s c i n t i l l a t i o n  v i a l s  ( c apac i t y  20.0 m l ) .  The s o l v e n t  was 

evaporated under  a s t ream oi cool a i r  from a h a i r d r y e r ,  and 

10.0 ml o f  Ready s a r e "  l i q u i d  s c i n t i l l a t i o n  c o c k t a i l  (Beckman 

i n s t rumen t s  i nc . ,  Fu l l e r t on .  CAJ was added.  v i a l s  were capped 

and shaken v i g o r o u s l y  t o  s o l u b i l i z r  and su spend  t h e  l i p i d s  i n  

t h e  s c i n t i l l a t i o n  c o c k t a i l .  P - p a r t i c l e  r m i s s i o n  of t h e  samples  

was counted In a LKB-Wallac 1211 Rackbeta  LSC system, with a 

lnisrocolnputer processor (I.KB-Wallac, Stockholm,  Sweden). 

R a d i o a c t i v i t y  c o u n t s  (cpn)  were conve r t ed  t o  d i s i n t e g r a t i o n s  

per minute  (dpa] , based on t h e  quench cu rves ,  w i th  t h e  

microcomputer processor. 
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2.4.3.1.1 Direct Effect of Fenoxyaarb on Lipid Synthesis 

The possibility that the JHA fenoxycarb may directly 

affect lipid synthesis by fat bodies of C. ffmiferana was 

assessed by inclusion of the compound in the culture medium. 

Fat body preparations from untreated sixth instar larvae were 

incubated in 1.7 nM "c-acetate and 0.26 jug ( L D ~ ~ )  fenoxycarb 

in 0.5 ml of Grace's insect medium. After the incubation 

period (30 'c; 3 0  min.) , fat body lipids were extracted (Folch 

s t  a,, 1957). An aliquot (20 iil) of the lipid extract war 

transferred to scintillation vials, the solvent evaporated 

under a stream of cool air, and 10.0 a1 of liquid 

scintillation cocktail wera added. Scintillation counting of 

the samples was done in a liquid ~cintillation counter. 

Radioactivity counts (cpm) wera converted into disintegrations 

per minute (dpm) . 

2.1.3.1.2 "c-~cetate product Analysis 

The qualitative distribution of fat body lipids 

synthesized Erom "c-acetate was determined by thin layer 

chromatosraphy (TLC). Lipids were extracted from fat bodies 

that had been incubated (30 'c; 30 mi".) in 1.7 n~ of ''c- 

acetate in 0.5 ml of Grace's insect mediun. ~ipid extracts 

Were concentrated under a stream of nitrogen, and the neutral 
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l i p i d s  s epa ra t ed  by TLC (F r i ed  and Sheena, 19sr ' l .  P recoa t ed  

s i l i c a  Gel G p l a t e s  (20  x 20 cm, 250 pn t h i c k n e s s )  were h e a t  

a c t i v a t e d  a t  70 ' C  f o r  30 minutes  and 'blank-developed' i n  t h e  

mobile  phase (N-Henane:Diethyl ether:Acet i :  a c i d .  70:30:1, 

v/v) ,  i n  a developing t ank ,  t o  reduce background i n t e r f e r e n c e .  

rnis was fol lowed by oven dry ing  a t  70 'c For 3 0  oinuCes. 

~ i p i d  e x t r a c t s  ( 5 0  p l )  were then a p p l i e d  t o  t h e  TLC 

p l a t e s .  2 . 5  CD from t h e  bo r ton ,  w l th  mic rop ipe t s .  P l a t e s  were 

developed i n  a p re - sa tu ra t ed  developing t ank .  TLC p l a t e s  were 

a i r  d r i e d  and t h e  l i p i d  f r a c t i o n s  were v i s u a l i z e d  with i od ine  

vapour.  Then, p l a t e s  were hea t ed  i n  an oven a t  50 ' C  f o r  1 2  

hour s  Io remove t r a c e s  o f  i od ine  by sub l ima t ion .  The 

a p p r o p r i a t e  areas of t h e  s i l i c a  g e l  were t h e n  sc raped  o f f  t h e  

p l a t e s  i n t o  s c i n t i l l a t i o n  v i a l s ,  and suspended i n  10.0 m1 o f  

s c i n t i l l a t i o n  c o c k t a i l .  samples were counted i n  a l i q u i d  

s c i n t i l l a t i o n  coun te r .  Rad ioac t iv i t y  coun t s  (cpm) were 

converted i n t o  d i s i n t e g r a t i o n s  per  minute (dpml . 

2.4.3.2 S y n t h e s i s  of ~ a t t y  ~ c i d s  from '"-acetate 

  he competence of t h e  f a t  bod ie s  from t r e a t e d  and c o n t r o l  

s i x t h  i n s t a r  c. fuiniferana t o  b io syn thes i ze  f a t t y  a c i d s  in 

VitrO was i n v e s t i g a t e d  by a s say ing  t h e  c y t o s o l i c  enzymes 

r e spons ib l e  fo r  f a t t y  a c i d  s y n t h e s i s  from a c e t a t e  preoureor .  

 he methods desc r ibed  by ~ i e t r  (1961. 1963) were modified f o r  
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sp ruce  budworn s tud ies .  

The p r ino ip le  enzyme systems involved i n  c e l l - f r e e  f a t t y  

a c i d  syn thes i s  are t h e  acatyl-CoA carboxylese (EC 2.3.1.9). 

whioh c a t a l y z e s  the  formation of  malonyl-CoA from acetyl-COA 

(ca rbaxy la t i an )  , and t h e  f a t t y  a c i d  syn the ta se  conplex,  which 

c a t a l y z e s  t h e  success ive  condensation of malonyl-CoA and 

acetyl-CoA u n i t s  t o  pa lmi ta t e  (Lehninger,  1975) .  

Spruce budwora f a t  bodies ware d i s r e c t e f  ou t  under i ce -  

c o l d  D-PBS, r in sed  3 t imes with D-PBS, and homogenized i n  1.0 

m l  of enzyme buf fe r  i n  a Patter-Elvehjem homogenizer, on i ce .  

The enzyme b u f f e r  contained 85.0 mM d i b a s i c  potassium 

phosphate,  9.0 m manobasic potassium phosphate, 10.0 mx 

potassium bicarbonate,  and 2.0 mM g lu ta th ione  ( T i e t a ,  1961).  

The homogenate was cen t r i fuged  a t  400 x g f o r  5 minutes at 5 

'C. . d  f i l t e r e d  through 2 non-absorbent coc tan  pad t o  remove 

f a t .  Subce l lu l a r  f r a c t i o n  from t h e  f i l t r a t e  was ob ta ined  by 

c e n t r i f u g a t i o n  a t  20,000 x g f a r  20 minutes a t  0 'c.   he 

supe rna tan t  was decanted,  and f i l t e r e d  through a nan-absorbent 

c o t t o n  pad.  The crude enzyme p repa ra t ion  was used wi th in  2 

hour s  o f  p repa ra t ion .  P ro te in  e s t ima t ion  of t h e  p repa ra t ion  

was done by t h e  micro-Loury assay (Lowry et U . .  1951).  

Enzyme assays were performed according t o  t h e  procedure 

of Wakil & a. (1957),  w i th  some modi f i ca t ions .  The assay 

medium c o n s i s t e d  of 5.0 pn (294.0 # c i )  "c-acetate and 

 ofa actors (Tab1.e 2.1) .  I n i t i a l l y ,  a c a l i b r a t i o n  curve was 



T a b l e  2 . 1 .  The composition of the A s s a y  Medium lor Cell-eree 

Fatty acid Synthesis (from ~ietr, 1951). 

- 

"c-~~etete (291.0 uCi) 5.0 UM 

ATP 5.0 UM 

coenzyme A 0.1 mg 

Glutsthione 5.0 uM 

NAD 0.5 PM 

NADP 0.5 PM 

Mgcll 10.0 PM 

MnSO' 0.5 pM 

Malanats 20.0 UM 

a-Ketoglutarate 10.0 ,'( 

KHCO, 10.0 uM 
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Constructed for cell-free fatty acid synthesis from "c- 

acetate, based upon enzyme protein concentration and 

incubation time. Incubations were done at 30 ' c  in a Dubnoff 

metabolic incubator. 

Maximum fatty acid synthesis was obtained with 5.34 mg 

enzyme protein/assay. A fatty acid synthesis-incubation time 

curve using this concentration of enzyme protein is shown in 

~ i g u r e  2.7.   ow ever, in order to obtain this amount of enzyme, 

it wan necessary to pool fat bodies from several insects. 

since my studies showed that 1.5-2.5 mg enzyme protein/assay 

allowed a measurable level of fatty acid synthesis to occur 

and that this amount of enzyme could be extractad from the fat 

bodies of individual insects, subsequent experiments comparing 

control and fenoxyearb-treated insects used the lower enzyae 

concentration (0.3-0.4 ml enzyme preparation; final assay 

volume 1.0 ml). An incubation time of 70 minutes was selected, 

because the amount of fatty acid synthesis that had ocourred 

at this time was sufficiently high to allow measurable 

differenoes among samples to be discerned. 

  he reaction was started by addition of the enzyme 

preparation. After incubation, the reaction war terminated by 

addition of 0.5 ml of 10 % potassium hydroxide in ethyl 

alcohol (w/v). Tubes were then heated at 85 "2 for 3 hours in 

s hot-water bath, to saponify the mixture. Pollowing this, the 

tubes were allowed to cool to room temperature (25 "2) and 



Figure 2 . 7 .  Ce l l - f r ee  f a t t y  a c i d  syn thes i s  by f a t  bod ie s  o f  C. 

fuaiferana as a function O F  t ime,  using an enzyme 

conoentratian equivalent  t o  5 . 3 4  mg pro te in .  Each p o i n t  is 

exprersed a s  ~ s a n  DPM f SE o€ 3 separate assays. c e l l - f r e e  f a t  

body preparations were incubated with the  incubation medium 

conta in ing  5 . 0  UM " c - ~ c e t e t e  and co fac tor s .  Incubation 

temperatore was 30 'c .  
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0.5 ml aliquot* of 2.0 N nc1 were added to acidify the 

mixtures. 

Samples were extracted by addition of 4.0 ml of petroleum 

ether (b.p. 40-60 'C) and the mixtures shaken for about 2 

minutes. The two pheses were allowed to separate and the 

petroleum ether layer was transferred by means of a Pastevr 

pipette into ncintilletionvials. The extraction procedure was 

repeated twice in exactly the sane manner. The solvent 

fractions were evaporated under a stream of cool air. Then, 

10.0 ml of scintillation cocktail were added, the vials capped 

and shaKen vigorously to solubilize and suspend the 

radioaotive lipid. Liquid scintillation counting was done in 

a scintillation counter. Radioactivity counts (cpm) were 

converted into disintegrations per minute (dpa). 

The involvement of fat body cyiosolic enzymes, 

particularly the biotin-dependent enzyme acetyl-coa 

carboxylase, was determined by addition of avidin to the 

incubation medium. Avidin is an egg white protein which binds 

biotin very tightly, and inhibits the fatty acid synthesis by 

binding the enape-bound biotin (Wakil and Gibman, 1960). The 

enzyme preparation (0.3 nll was preincubatad for 5 minutes at 

30 'C with 0.1 ng avidin. Then, the reaction was started by 

addition of the 7ssay medium (0.4 ml) containing 5.0 pM of "C- 

Acetate and oafaotors (Table 2.1). Incubations were done at 30 

'C for 70 minutes, and the labelled fatty acids were extracted 
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and quantified, as outlined previously. 

2.4.3.3 Synthesis of complex Lipids from '*c-palnitate 

The capability of the spruce budworm fat bodies to 

incorporate pre-fonaed fatty acids into complex lipids was 

investigated by incubating the fat bodies, ,i~ W. with "C- 

palmitic add. [u-'*c] Palmitic acid (sp. activity 819.0 

mci/mmol, radiochemical purity 99.0 %; Aaersham core., 

Arlington Heights, IL) was converted into its sodium salt and 

complexed with bovine serum albumin, to allow salubilization 

in the aqueous culture medium (Spector et al.. 1965).  he 

methods described by Masironi and Depocas (1961) and Bjorntarp 

(1966) were employed. An aliquot (28  p1=1.96 Fg) of "C- 

palnitic acid was transferred tc. a culture tube and the 

aolvent aspirated under a stream of nitrogen. Then, 3.0-5.0 pl 

Of 0.04 N sodium hydroxide in methyl alcohol was added, and 

the tube heated at 50 'C for 10 minutes in a water bath. The 

solvent was evaporated under nitrogen, and the labelled sodium 

palmitate war dissolved in a few drops of distilled water (SO 

'C). TO this, 1.0 m1 of the BSA stock, containing 192.4 pg 

bovine serum albumin (Fraction 5, fatty acid free) in 1.0 ml 

of D-PBS, was added with vigorous mixing. The final solution 

had a p~ of 7.5, and contained 1.96 pg "c-palnitate and 192.4 

fig BSA, i.c. a molar ratio of fatty acid to albumin of 3 to 1. 
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Pat bodies were dissected out under ice-cold D-PBS. 

Tissues were weighed (wet wt.1, rinsed with D-PBS, and 

transferred to borosilicate culture tubes (12 x 75 an) 

containing 0.5 ml of the 't-palmitate albumin complex- race's 

infect medium. First, a calibration curve for "~-~almitate 

uptake was Constructed. based upon fat body incubations at 

several concentrations of labelled palaitate, and for various 

times. Babed upon maximal linear palmitate Incorporation into 

fat bodies, 0.335 nM ( 0 . 4  pci) "c-palmitate/asray was utilized 

in subsequent experiments. A time course for incorporation 

into fat bodies using this dose of '*C-Palnitate is given in 

Figure 2.8. Incorporation of palmitate into complex lipids was 

maximum at 20 minutes incubation (Figure 2.8). Thus, 

Subsequent incubations comparing control and treated insects 

were performed at 30 'C for 20 minutes, in a Dubnoff metabolic 

incubator. 

After incubation, the tissue was killed by addition of 

0.5 ml 1.0 N HC1. Pat bodies were transeerred to glass vials 

and rinsed 5-6 tines to remove surface radioactivity. Then. 

fat bodies were homogenized in 1.0 ml of ice-oold 

ch1oroform:methanal (2:1, v/v) in a Pottar-Elvehjem 

homogenizer t o  extract total lipids (Folch & al.. 1957). A 

10.0 p1 aliquot of the lipid extract was added to the 

scintillation vials and the solvent evaporated under a stream 

of cool air. Then. 10.0 m1 of scintillation cocktail was 



~ i g u r e  2 . 8 .  ~ncorporation of ILc-palmitate in to  complex l i p i d s  

by spruce budworm f a t  bodies I?, as a function o f  time. 

Data are expressed a s  Mean i SE of 3 separate assays, DPN/fat 

body/insect ( 6 . 0  ng fresh w t . ) .  Fat bodies were incubated i n  

the culture medium containing 0.135 n~ o f ' L ~ - ~ a l a i t a t e - a l b u n i n  

complex. Incubation temperature war 3 0  'C.  
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added, the vials capped and shaken to solubiline the 

radioactive lipid. Liquid scintillat-an counting was done in 

a scintillation counter. Radioactive counts (cpn) were 

converted into disintegrations per minute (dpm). 

2.4.3.3.1 "c-palmitate product Analysis 

  he qualitative profile of fat body lipids +yr!hesized 

from '"-ppalmitata was determined by TLC. Fat body preparations 

were incubated in 0.335 nN 10.4 pci) of lLc-palmitate albumin 

in 0.5 nl of Grace's insect medium. After incubation (30 'C; 

20 min.), fat body lipids were sxtrasted according to the 

protocol outlined previously. Lipid extracts were concentrated 

under nitrogen, and the neutral lipids were separated by TLC 

(Fried and Shema. 1986). Precoated Silica Gel G plates (20 x 

20 en, 250 pm thiskness) were heat activated at 70 ' C  for 30 

minutes and 'blank-developed' in the mobile phase (N- 

Hexane:Diethyl ether:Acetic acid, 70:30:1 v /v ) ,  to reduce 

background interference. Then, the plates were oven dried at 

7 0  .C f o ~  30 minuter. 

Lipid extracts (50 pl) were then applied to the TLC 

plates, 2.5 en from the hattan. with miceopipetn; and 

developed in a pre-saturated developing tank. Plates were air- 

dried, and the lipid fractions were visualized with iodine 

vapaur. Then, the plates were heated in an oven at 50 'C far 
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12 hours to remove traces of iodine. The appropriate areas of 

the silica gel were scraped off the plate into scintillation 

vials and suspended in 10.0 sl of scintillation cocktail. 

Samples were counted in a scintillation counter, snd 

radioactive cobnts (cpm) were converLed inta disintegrations 

per minute (dpa). 

2.4.4 Fat Body "c-palmitate Orldation 

The competence of the spruce budvorm fat bodies to 

oxidize fatty acids jn am via tht? 8-oxidation pathway was 

measured indirectly by monitoring "co2 emission from fat 

bodies incubated in the presence af '*c-palmitate. Long chain 

fatty acids are degraded ~~rirnarily by the sequential 

liberation or 2-carbon (Acetyl-Cal) fragments, by successive 

action of four enzymes- acyl-CoA dehydrogenase, enoyl 

hydratase, a second dehydrogenase, and a thiolase (Lehniager, 

1975). The acetyl-CaA farmed during these reactions is then 

oxidized to C02 and $0 via the TCA cycle. 

[u-''c] Frlnitic acid was converted inta its sodium salt 

and colnplexed with BSA (Fraction 5). Spruce budworm fat bodies 

were dissected out under ice-cold D-PBS. The dissections were 

rinsed with ice-cold 0-PBS, and fat badieo were removed with 

fine forceps. Tiie tissues were weighed. rinsed with D-PBS, and 

transferred into culture tuber (15 x 60 mm) containing 0.5 ml 
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o f  t he  "c-palmitate  albumin complex-Grace's l n s e c t  medium, 

p re incuba ted  a t  30 'C f o r  10 a i n u t e s .  The tubes  were s l a r e d  

wi th  rubbe r  s t o p p e r s ,  through which p l a s t i c  cen t r e -we l l s  

con ta in ing  a sma l l  p i ece  o f  f l u t e d  f i l t e r  paper  and 0.1 a 1  of 

1.0 N potassium hydroxide ( t o  abso rb  t h e  " ~ 0 ~ )  were i n se r t ed .  

.he r e a c t i o n  tubes  were t h e n  sea l ed  wi th  s i l i c o n e  g rease .  

I n i t i a i l y ,  a s e r i e s  of c a l i b r a t i o n  curves fo r  '"oI 

emission from f a t  bodies  incubated i n  " c -pa lmi t a t e  albumin- 

medium was cons t ruc t ed ,  based upon f a t  body lncuba t i ans  a t  

se..ei.al concen t r a t i ons  o f  "c-palmitate ,  and f a r  d i f f e r e n t  

t imes .  Based upon maximal-linear "co2 emission from t h e  f a t  

bod ie s .  1.0 nM (1.65 pc i )  "c-palmitate/assay was u t i l i z e d  i n  

subcequent  expe r inen t s .  k t i n e  course f o r  " C O ~  emission from 

"c-paimitate  by t h e  f a t  bodies  rs given ~n ~ i g u r a  2 .9 .  AII  

s ubsequen t  i ncuba t ions  i n  experimental  samples were performed 

a t  30 ~C f o r  60 minutes ,  i n  a Dubnaff metabolic  i ncuba to r .  A 

60 minute i ncuba t ion  t ime al lowed s u f f i c i e n t  "cc2 emission 

from "c-palmitate  f o r  d i f f e r e n c e s  among samples t o  be 

d i sce rned .  

A f t e r  ~ n c u b a t i o n ,  t h e  t i s s u e  was k l l l e d  by t h e  injection 

of  0.4 ml of 4.0 N HC1 through t h e  s t o p p e r ,  with a syringe. 

The r e a c t i o n  tubes  were al lowed t o  s t and  a t  30 ' C  f o r  10 

minutes  t o  a l l ow  f o r  t he  abso rp t ion  o f  " C O ~  t h a t  had evolved 

p r i o r  t o  t h e  a d d i t i o n  of t h e  a c i d .  Then, t h e  s toppe r s  were 

removed and t h e  con ten t s  o f  t he  cen t r e -we l l s  were t r a n s f e r r e d  



Figure 2 . 9 .  " C O ~  emission from '"-palmitate by spruce budworm 

f a t  bod ie s  U, a s  e function o f  t ime .  Values are 

expressed as  Mean r SE of I separate a s says ,  DPn/fat 

bady/insect  ( 5 . 0  ng f r e sh  w t . ) .  Fat  bod ie s  were incubated i n  

th-  cu l ture  medium conta in ing  1 . 0  nM o f  "C-palmitate-albumin 

complex, a t  I0 'C. 



14C02 production (DPM/fat body/insect) 
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to scintillation vials and 0.5 ml of 1.0 N H C ~  was added to 

neutralize excess alKalinity in the samples. ~ollowing this. 

10.0 m 1  of scintillation cocktail was added, the vials capped, 

and shaken vigorously to suspend the radioactive material. 

Liquid scintillation counting was done in a scintillation 

counter, and radioactive counts (cpm) were converted into 

dieintegrations per milute (dpm). 

2.5 Statistical Analysis of Results 

Data collected from the dose-response studies wera 

subjected to a Probit analysis, to calculate L40 values 

(Finney, 1971), after allowing for the mortality in the 

controls (solvent-treated) using hbbott's formula (hbbatt, 

1925); the significance between treat.nent groups was 

determined using a one-way analysis of variance, followed by 

Duncan's multiple range test (Duncan, 1955). A11 other data 

were subjected to an Analysar of Variance, and the statistical 

siqnifioanse of differences were estimated by Duncan's 

multiple range test (Duncan, 1955). A VAX l1/730 processor 

(M.U.N.) running the VMS operating system, and the SPSS/X 

software (Nie g a,, 1975), were used to analyze the data. 



RESULTS 

3.1 Dose-response Studies 

Larval mortality, expressed as per cent suppression of 

pupation, increased siqnifi.:antly in a dose-dependent fashion 

when early sixth instar larvae of r. dumiierana were treated 
with each of the juvenile normone analogs. The most effective 

compound war fenovycarb which, at the highest concentration 

tested (0.5 pg per insect). caused mare than 70 \ larval 

mortality and completely preveniad adult ecloslon (~iqure 

3.11. The JHAs 5-71639. ZR8487, and ZR9892 were moderately 

effective in disrupting metamorphosis. At the highest dose 

tested, 100.0 pg per insect. there compounds caused 80-95 i 

mortality and prevented adult eclosion either entirely ( 5 -  

71639 and ZR98921, or in more than 80 % at treated insects 

(2118487) that had pupated (Table 3.1). 

Methoprene and ZR95P? were relatively ineffective insect 

growth regulators. ~t a concentration or 100.0 pg per insect, 

aethaprene caused about 8 0  larval mortality, but allowed 

less than 10 % or pupae to eclose (Figure 3.2). ZR9582, at 

this same concentration, caused approximately 50 t larval 

mortality and prevented eclosion to the adult stage in only 50 

% of the insects that completed pupation (Table 3.1). 



Figure 3 . 1 .  Dose-response curves for l -day-old s i x t h  i n s t a r  

l arvae  of Choristoneura f ' ferana t rea ted  w i th  fenoxycarb. 

L e f t  ordinate 1.) represen t s  percentage l a r v a l  mor ta l i t y ,  

r i g h t  ordinate (I) represents  percentage adu l t  e c l a s i o n  from 

trea ted  larvae t h a t  had pupated. Each pa iy t  r epresen t s  t h e  

mean of five r e p l i c a t e s  ( 2 0  i n s e c t s  per r p p l i c a t e ) .  Standard 

errors were within t 3 % of t h e  means. 





Figure 3.2. Dose-response curves for I-day-old sixth instar 

larvae of Choristoneura fumiferana treated with methoprene. 

Left ordinate 1.) shows percentage larval mortality, right 

ordinate (.) represents adult eclosian from treated larvae 

that had pupated. Each data point represents the mean of five 

replicates (20 insects per replicate). Standard errors were 

within i 2 % of the means. 



Dose of Methoprene (pg) 



Table 3.1. E f f e c t  of  s e l e c t e d  juven i l e  hormone ana logs  (JHAS) 

on l a r v a l  m o r t a l i t y  and a d u l t  e c l o s i r  i a f  m o r i s t o n e u r a  

fumiferanaf.  

Treatment Concentretron n * Larval  P a d u l t t  
( J m l  of JHA Mortality Ec los i an  

( w / i n s e c t )  

COntrDlS- 
Acetone 100 9 t 0.58' 98.8 t 0.22' 

COntrOlS- 
Un t rea ted  - 100 7 t 0.5b 97.9 t 0 . ~ 5 ~  

V ~ ~ U B S  shown are Means 5 SE. va lues  followed by t h e  same 
l e t t e r  f o r  each of t h e  JHA i n d i c a t e  no s i g n i f i c a n t  d i f f e r e n c e  
a t  t h e  0.05 l e v e l  (Duncan's ~ u l t i p l e  Range T e s t ) .  
+ Adult  ec los ion  from t r e a t e d  1 dav-old s i x t h  i n s t a r  sPruoe 

budworn l a r v a e  t h a t  underwent pupatian.  
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The median lethal dose (LOIo) values, obtained from Probit 

analysis of the mxtality data (Finney, 19711, quantitatively 

reflects the order of effectiveness of the various JHAr (Table 

3.2). Based on LOso values, fenoxycarb, S-71639, 2 1 8 4 8 7 .  and 

ZR9892 were. respectively. about 170-. 20-, 91-. and 123-tines 

more effective then methoprene in causing mortality of r. 
fumiferana larvae. ZR10151, the least effective of all of the 

compounds screened, had an L D ~ ~  valve of 705.3 pg per insect. 

almost 3000-fold that of fenoxyearb. 

All or the JHAs, except ZR10151, caused a pronounced 

delay in malting. Although the controls (solvent-treated and 

untreated) molted in 6 days, the JHA-treated larvae molted 20- 

30 days post treatment. 

3.1.1 Morphagenetic Effects 

The application of various JHAs to early sixth instar 

larvae of c. fumiferana caused a wide range of morphagenetic 
deformities. The morphaqenetic effects of fenoxycarb included 

the tornation ae larval-pupal intermediates, with precocious 

evaqination of the wing imaginal-disks, and production of 

defomed pupae with hernolymph-filled blisters in the thoracic 

region (Figure 3.3 A-C). 

Methoprenetreatments caused supernumerary malting, with 

the eventual Fornation of larval-pupal intermediates, whish 



T a b l e  3 . 2 .  P r o b i t  a n a l y s i s  of the  l r t h a l  e f f e c t s  o f  j u v e n i l e  

hormone a n a l o g s  (JHAs) t o  s ix th  instar l a r v a e  of choristoneura 

fumiferana. 

JHA N. S l o p e  f SE 

Fenoxycarb 8 0 0  0 . 4 7 7  i 0 . 0 1 7  

ZR9892 4 0 0  0 . 5 4  f 0 . 0 2 5  

ZR8487 4 0 0  0 . 4 7 5  t 0.023 

S-71639 4 0 0  0 . 7 6 6  ? 0 . 0 1 1  

Methaprene 7 0 0  0 . 7 9 4  5 0 . 0 3 7  

ZR9582 100 0 . 1 6 6  f 0 . 0 2 5  

ZR10151 6 0 0  1 . 1 5  + 0 . 1 0 5  

95% C.L.  

0 . 1 1 7 - 0 . 6 6 3  

0 . 1 4 0 - 0 . 8 6 1  

0 . 0 7 8 - 2 . 4 6 6  

0 . 9 4 8 - 5 . 5 3 6  

2 5 . 8 1 2 - 9 8 . 0 1 7  

4 2 . 5 3 - 2 0 0 4 . 7 6  

1 9 9 . 6 5 - 7 7 1 7 2 4  

Total nUmbEr of i n s e c t s  treated w i t h  t e s t  compound or 
a c e t o n e .  

' In units of 119 per insec t  



Figure 3.1. Effects of juvenile hormone analogs IJHAr) on the 

sixth instar larvae of Choriztoneura Comiferana. A-C, 

fenoxycarb: D-E, methoprene: f. 5-71639 and ZR compounds. A, 

larvae that falled to pupate. cuticle abnormally pigmented, 

(more heavily melanized) and/or leathery than In controls. 8, 

larval-pupal intermediate (left) alnngslde pupae with 

hernolymph-filled blister formations. C. larval-pupal 

internedlates vlth precocious evaginatici. of wing disks. D, 

control larva and pupa (c) on either side of a lama that had 

undergone supernumerary malting. E, mummified larval-pupal 

intermediates. F, larvrl-pupal intermediates induced by s- 

71639 (left) and ZR compounds (right). Scale line = 1.0 cn. 
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t y p i c a l l y  become mummified (F igure  3 .3  0-E). The aorphogenetic  

e f f e c t s  of  5-71639 and t h e  o the r  ZR compounds, except  ZR10151, 

were manifested as larval-pupal  in t e rmed ia t e s ,  fol lowed by 

mor ta l i t y  of t h e  deformed i n s e c t s  (F igure  3 . 3  F). The s e v e r i t y  

of t h e  aorphogenetic  deformation was a l s o  concentrat ion- 

dependent. The lower concen t ra t ions  of each of  t h e  JHAs caused 

minor de fo rmi t i e s ,  and thus  lower m o r t a l i t i e s .  

3 . 2  E f fec t  o f  JHts on Metaboli te  concen t ra t ions  

  he ,man henolymph volume of JHA t r e a t e d  and con t ro l  

s i x t h  i n s t a r  spruce budworms is given in  Table 3 .3 .  

S t a t i s t i c a l  analysis of t h e  da ta  showed t h a t  volume of 

hernolymph i n  c. fumiferana l a rvae  was s i g n i f i c a n t l y  influenced 

by t ime (Fn26.71, d . f .=5 :  P < 0 . 0 5 ) .  1n t h e  con t ro l  i n sec t s .  

t h e r e  was a g radua l  inc rease  i n  t h e  hemalymph volume, as t h e  

i n s t a r  progressed.  The hernolymph volume of spruce budworma 

t r e a t e d  with fenoxycarb and nethoprene was s i m i l a r  t o  t h e  

r e spec t ive  c o n t r o l s .  



Table 3.3. Effects of JHA treatment on the hernolymph volume of sixth instar larvae of 

Choristoneura fumiferana (#l)*. 

Data are expressed as Mean k SE of 5-15 separate measurements. valuer followed by the 
ralne letter in the vertical columns indicate no significant difference at the 0 . 0 5  level 
(Duncan's nultiple Range Test). 



3.2.1.1 Ca rbohyd ra t e s  

The mean t o t a l  hernolymph c r r b o h y d r a t e  c o n c e n t r s t i o n  of 

JHA-treated and o o n t r o l  l a r v a e  of c .  f umi f e r ana  is shown i n  

F igu re  3.4.  S t a t i s t i c a l  a n a l y s i s  of t h e  d a t a  showed t h a t  

c a rbohyd ra t e  c o n c e n t r a t i o n  of t h e  hemolymph was s i g n i f i c a n t l y  

i n f l uenced  by t h e  JHA t r ea tmen t s  (F-1.44,  d. f  .=2; P < 0 .05 )  

and t h e  t ime  a f t e r  t r e a tmen t  (F=49.75, d . f .=5 ;  P < 0 .05 ) .  

I n t e r a c t i o n  between t r e a tmen t  and time a f t e r  t r e a tmen t  was 

a l s o  s t a t i s t i c a l l y  s i g n i f i c a n t  (Fs20.78,  d . f .=lo:  P < 0 .05 ) .  

i n d i c a t i n g  t h a t  JHA t r ea tmen t  a l t e r e d  hemolymph c a r b a h y d r a t e  

l e v e l s  a t  c e r t a i n  t i m e s  du r ing  t h e  expe r imen t a l  pe r i od .  I n  t h e  

Control  group,  t h e  hemalylnph l e v e l s  o f  c a rbohyd ra t e  rose 

g r a d u a l l y  throughout  t he  p rog re s s ion  o f  t h e  s i x t h  l a r v a l  

i n s t a r .  

I n  t h e  fenoxycarb t r e a t e d  l a r v a e ,  c a rbohyd ra t e  

concen t r e t i on  of t h e  hemolymph appeared t o  i n c r e a s e  a t  a l e v e l  

lower t h a n  t h e  c o n t r o l s ,  u n t i l  96  h  a f t e r  t r e a tmen t .  However, 

t h i s  i n c r e a s e  was not  s t a t i s t i c a l l y  s i g n i f i c a n t .  A f t e r  96 h ,  

l e v e l s  of c a rbohyd ra t e  i n  t h e  hemolymph i n c r e a s e d  r a p i d l y ,  and 

eenbdined s i g n i f i c a n t l y  h ighe r  t h a n  t h e  c o n t r o l s  u n t i l  144 h 

p o s t  t r e a tmen t  ( F i g u r e  3 . 4 ) .  

I n  t h e  na thop rene  t r e a t e d  l a r v a e ,  t h e r e  war an i n i t i a l  

e l e v a t i o n  i n  t h e  hernolymph ca rbohyd ra t e  c o n c e n t r a t i o n  ( u n t i l  



rigure 3 . a .  r he mean hernolymph total carbohydrate 

concentration of i n h  t r ea ted  and contro l  s i x t h  in s tar  l arvae  

at charirtaneura Eumiferans a t  various t i m e s  a f t e r  treatment.  

Values are shown a s  Mean t SE of 10-22 independent 

determinations,  mg/ml g lucose  equ iva l en t s .  
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72 h), and a decline thereafter until 144 h after treatment, 

a situation opposite to the Ienoxyoarb treated larvae. ~t 24 

h and 48 h after treatment, the hemolymph carbohydrate 

concentration of methoprene-treated insects was ;ignificantly 

higher, while at 144 h after treatment it was significantly 

lower than in controls. 

3.2.1.2 Proteins 

The concentration of protein in the hemalymph of the JHA 

treated and control sixth instar larvae of C. fuaiferana, in 

presented in Figure 3.5. Statistical analysis of tho data 

revealed that total protein concentration in the hernolymph was 

significantly influenced by the JHA treatmsnts (F=17.85, 

d.f.=2; P < 0.051, the time after J H A  treatment (F=80.5, 

d.t.=5; P < 0.051, and the interaction between treatment and 

time (F-6.9, d.i.=lo; P < 0.05), indicating that the effect of 

JHA treatment on hemalymph protein levels w a s  evident at 

certain times during the experimental period. The 

COnOentration of hemolymph protein in the control group 

increased throughout the sixth inatar, followed by a slight 

decline just prior to pupation (Figure 3.5). 

In the fenovycarb treated sixth instar spruce budwoms, 

the total protein concentration in the hemolymph increased, at 

a level lower than the controls, in a similar manner until 



Figure 3 . 5 .  =he mean hernolymph t o t a l  pro te in  concentra t ion  of 

JHA t rea ted  and contro l  s i x t h  i i l s tar  larvae of Choristoneura 

fumiferana a t  various t imes po s t  treatment. Data  are expressed 

as Mean + SE of 10-20 separate measurements, mg/nl BSA 

B q u i v a l e n t ~ .  



Hours after lrealmenl 
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I44 h p o s t  t e ea tmen t .  At 48 h,  72 h, and 120 h a f t e r  

t reatment ,  t h e  hernolymph p r o t e i n  concen t r a t i on  o f  fenoxycarb- 

t r e a t e d  i n s e c t s  was s i g n i f i c a n t l y  lower than i n  c o n t r o l s .  

I n s e c t s  t r e a t e d  with methoprene a l s o  d i sp l ayed  an 

inc rease  i n  t h e i r  hemalymph p ro t e in  t i t r e  s i m i l a r  t o  t h e  

c o n t r o l  group; bu t  had lower l e v e l s  of blood p r o t a i n ,  except  

a t  144  h p o s t  t r ea tmen t .  

1 .2.1.1 L ip ids  

The mean concen t r a t i on  o f  l i p i d  i n  t h e  J H A  t r e - t ed  and 

c o n t r o l  s i x t h  i n r t a r  s p r u c e  budworms a r e  shown i n  f i g u r e  1.6. 

S t a t i s t i c a l  t reatment  o f  t h e  data  showed t h a t  hemolymph l i p i d  

concen t r a t ron  was s i g n i f i c a n t l y  a f f e c t e d  by JHA t r e a t m e n t s  

(F=15.91, d.f . -2;  P 4 0 . 0 5 )  and t ime a f t e r  t r ea tmen t  (F-3.94, 

d.L.-5: P < 0.05).  The re  was no s t a t i s t i c a l l y  s i g n i f i c a n t  

i n t e r a c t i o n  between t r e a t m e n t  and t ime  p o r t  t r e a t m e n t .  I n  t h e  

c o n t r o l  group,  hernolymph l e v e l s  of l i p i d  i no reased  i n i t i a l l y  

(48 h a f t e r  t r e a t m e n t ) ,  but dec l ined  t o  almost  t h e  e a r l y  (24 

h a f t e r  t r ea tmen t )  l e v e l s  by 96 h pos t  t r ea tmen t .  Then,  t h e  

concen t r a t i on  of l i p i d  i n  t h e  henolymph inc reased  somewhat, 

and remained e l eva t ed  u n t i l  pupat ion (144 h 1 .  

By conp8rison,  i n  t he  ienoxycarb t r e a t e d  i n s e c t s ,  t h e  

concen t r a t i on  o f  l i p i d s  i n  t h e  hemlymph remained 

s i g n i f i c a n t l y  dep re s sed  throughout  t h e  i n s t a r ,  t hen  inc reased  



Figure  3 . 6 .  The mean hemolymph t o t a l  l i p i d  l e v e l s  of JHA 

t r e a t e d  and contro l  s i x t h  i n s t a r  spruce budworns a t  d i f f e r e n t  

t i m e s  a f t e r  treatment.  v a l u e s  are expressed as Mean t SE of 5- 

l o  independent ana ly se s ,  mg/ml Pa lmi t i c  ac id  e q u i v a l e n t s .  





92 

s l i g h t l y  a t  144 h  p o s t  t r e a t m e n t  ( F i g u r e  3 . 6 ) .  I n  s i x t h  i n s t a r  

l a l v a e  o f  r. f u m i f e r a n a  t r e a t e d  w i t h  methoprene,  l i p i d  l e v e l s  

i n  t h e  b l o o d  f l u c t u a t e d  c o n c o m i t a n t  w i t h  t h e  c o n t r o l  g r r  7 ,  

e x c e p t  i n  t h e  9 6  h  p o s t  t r e a t m e n t  l a r v a e .  A f t e r  96 h ,  l e v e l s  

of b l o o d  l i p i d  c o n t i n u ~ d  t o  d e c r e a s e  u n t i l  144 h  a f t e r  

t r e a t m e n t  ( F i g u r e  1 . 6 ) .  However, w i t h  t h e  e x c e p t i o n  o f  96 and 

144 h  p o s t  t r e a t m e n t  i n s e c t s ,  t h e r e  was no s i g n i f i c a n t  

d i f f e r e n c e  i n  t h e  b l o o d  l l p i d  t i t r e s  between c o n t r o l  and 

m e t h o p r e n e  t r e a t e d  budworms.. 

1 .2 .2  F a t  Body 

I n i t i a l  s t u d i e s  showed t h a t  f a t  body d r y  w e i g h t  was 

unaf f e E t e d  bv t h e  JHA t r e a t m e n t .  

3 .2 .2 .1  Glycogen 

  he f a t  body glycogen l e v e l s  of JHA t r e a t e d  and c o n t r o l  

l a r v a e  of C. f u m i f e r a n a  is shown i n  T a b l e  3 . 4 .  S t a t i r t i o a l  

a n a l y s i s  of t h e  data showed t h d t  t h e  g l y c o g e n  c o n t e n t  of t h e  

f a t  b o d i e s  was r i g n i f i o a n t l y  i n f l u e n c e d  b y  JHA t r e a t m e n t  

(F=523.88,  d . f . = 2 ;  P * 0.05)  and t i m e  a f t e r  t r e a t m e n t  

(F=1329.81,  d.f.=2i P < 0 . 0 5 ) .  The i n t e r a c t i o n  between 

t r e a t m e n t  and t i m e  a f t e r  t r e a t m e n t  w a s  a l s o  s i g n i f i c a n t  

(F=355.13,  d . f . = 4 ;  P < 0.05) , i n d i c a t i n g  t h a t  JHA t r e a t m e n t  



Table 3.4. Effect of JHA treatment an the Fat Body Glycogen Content of the spruce 

budworn. Choristomeura fvmiferana (q/loO q dry W.) ' .  

- 

Hours after treatment: 24 72 120 

contra1 1.181 ? 0.01. 4 . 2 1 2  f 0.07" 1.354 1 0.03' 

Fenaxyearb 0.156 + 0 . 0 2 ~  2.015 f 0.03' 1.607 t 0.04' 

Methoprene 0 .712  + 0.005' 1.407 + O.Olr 1.170 + O.OZL 

Data are shown as Mean + SE Of 3 separate %aalyses  (10-15 Insects each). Values 
fol lowed by the same letter in the vert ica l  columns indicare no sirjnificanf ditfel-ence 
at the 0 .05  level (Duncan's Multiple Range Test). 
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a f fec ted  f a t  body glycogen content  a t  c e r t a i n  times during the  

experimental period.  In  the con t ro l  group, t h e  f a t  body 

glycogen l e v e l s  inc reased ,  from t h e  24 h post  treatment 

l eve l s ,  by about I-fold ( 7 2  h ) ,  then dec l ined  t o  near i n i t i a l  

l e v e l s  a t  120 h. 

In  the  fenaxycarb t r ea ted  i n s e c t s .  glycogen con ten t  i n  

t h e  f a t  bodics was considerably lower,  2 4  and 7 2  h pas t  

treatment,  than the  con t ro l s ,  bu t  was the  same concentrat ion 

a s  con t ro l s  by 120 h a f t e r  treatment.  This r e s u l t e d  from the  

f a c t  t h a t  i n  c o n t r a s t  t o  con t ro l s ,  t h e  f a t  body glycogen 

content  of t r e a t e d  i n s e c t s  did no t  dec l ine  between 72 h and 

120 h s f t e r  t r ea tment .  I n  t h e  i n s e c t s  t r e a t e d  with methoprene, 

t h e  f a t  body glycogen concentrat ion war lower than i n  con t ro l r  

o r  fenoxycarb-treated insec t s  throughout the  1 2 0  h pos t  

treatment period.  AS wan the case i n  fenoxycarb-treated 

insec t s ,  t h e  glycogen concentrat ion of f a t  bodies of 

methoprene-treated i n s e c t s  increased up to 7 2  h post  

t r ea tment ,  then  s t a b i l i z e d .  

3 . 2 . 2 . 2  Pro te ins  

  he f a t  body p ro te in  concentrat ion of JHA-treated and 

con t ro l  s i x t h  i n s t a r  l a rvae  is given in Table 3.5. S t a t i s t i c a l  

ana lys i s  of t h e  da ta  showed tha t  p ro te in  concentrat ion of t h e  

f a t  bodies was s i g n i f i c a n t l y  influenced by t h e  t ime a f t e r  



Table 3.5. Ef fec t  of JHA treatment on t h e  Fat Body Pro te in  content of t h e  spruce 

budwom, Chorintoneura fumiferana, (g/100 g dry u t . ) ' .  

Hours a f t e r  treatment:  24 7 2  120 

COnfrOl 8.06 ? 1.16' 17.15 * 3.10" 16.71 0.57' 

Fenoxycarb 5 . 0 3  f 0.24' 21.12 t 1.00"17.20 t 0.80' 

Methoprene 7 . 1 1  i 0.62" 17.55 f 2.08' 17.51 ? 0.53' 

Values are shown as Mean 2 SE of 4-5 separate determinations (10-15 insects e a c h ) .  
Values followed by t h e  same l e t t e r  in the v e r t i c a l  columns indicate no significant 
difference at t h e  0 . 0 5  level (Duncan's nulfiple ~ a n g e  ~ e s t ) .  
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JHA t reatment (F=58.5, d.f.-2; P < 0 . 0 5 ) .  There war no 

s i g n i f i c a n t  d i f f e rence  i n  t h e  f a t  body p r o t e i n  con ten t  f o r  t h e  

treatment groups and t h e  i n t e r a c t i o n  between t r ea tmen t  and 

t ime a f t e r  t r ea tmen t ,  i nd ica t ing  t h r t  JHA t r e a t n e n t ,  and t h e  

t ime a f t a r  JHI t r ea tmen t ,  d i d  no t  a f f e c t  f a t  body p r o t e i n  

concen t ra t ion  s i g n i f i c a n t l y .  I n  t h e  c o n t r o l  i n s e c t s ,  t h e  f a t  

body p r o t e i n  con ten t  i nc reased  from about 8.0 g/100 g d ry  wt. 

a t  24 h tz qpproximately 17.00 g/100 g d r y  wt. a t  7 2  h ,  t hen  

remained unchanged a t  120 h. 

I n  t h e  l a r v a e  t r e a t e d  wi th  fenaxycarb,  p ro te in  l e v e l s  i n  

the  f a t  body were lower a t  24 h pos t  t r ea tmen t ,  as compared t o  

t h e i r  con t ro l  coun te rpa r t s .  P ro te in  l e v e l s  in  t h e  f a t  bodies 

of Fenoxycarb-treated i n s e c t s  increased almost  (-fold between 

24 h and 72 h a f t e r  t r ea tmen t ,  then dec l ined  s l i g h t l y  a t  120 

h a f t e r  t r ea tmen t .  ~ c c o r d i n g l y ,  t h e  f a t  body p r o t s i n  

concen t ra t ion  of fenoxycarb-treated i n s e c t s  was s t a t i s t i c a l l y  

h ighe r  than controls a t  72 h ,  but  t h e  same as i n  c o n t r o l s  a t  

120 h pest  t r ea tmen t .  I n s e c t s  t r e a t e d  with nethoprena shourd 

a t r e n d ,  w i t h  r e s p e c t  t o  f a t  body p r o t e i n  l e v e l s ,  s i m i l a r  t o  

t h e i r  con t ro l  coun te rpa r t s ;  t h e r e  w a r  no s i g n i f i c a n t  

d i f f e rence  between the  two groups.  

3.2.2.3 L ip id  

The l i p i d  con ten t  of f a t  bodies from JHA t r e a t e d  and 
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con t ro l  l a rvae  of  C. Surn i fe rau  i s  given i n  Table 1 .6 .  

S t a t i s t i c a l  a n a l y s i s  of  t h e  data showed t h a t  l i p i d  l e v e l s  i n  

t h e  f a t  bod ies  were ~ i g n i f i ~ a n t i y  a f f e c t e d  by t ~ m e  a f t e r  JHA 

treatment (F=17.7, d . f .=2 ;  P < 0.05) and t h e  t r ea tmen t - t ine  

pos t  t reatment i n t e r a c t i o n  (F-58.54, d.f .=4:  P < 0.05).  

i nd ioa t ing  t h a t  JHA t r ea tmen t  a f f e c t e d  f a t  body l i p i d  l e v e l s  

a t  c e r t a i n  t imes  during t h e  p o s t  t r ea tmen t  experimental  

period.  L ip id  concentration in  t h e  f a t  bodies of  con t ro l  

l a rvae  more t han  doubled between 24 h and 72 h of t h e  

experimental  pe r iod ,  then s t a b i l i z e d .  

Lipid l e v e l s  in  t h e  f a t  bodies of i n s e c t s  t r e a t e d  wi th  

fenaxycarb were i n i t i a l l y  (24 h p o s t t r e a t r n e n t )  t r i p l e  t h a t  of  

con t ro l s .  I n  c o n t r a s t  t o  con t ro l s ,  however, t h e  l i p i d  con ten t  

of t h e  f a t  bod ies  of Eenoxycarb t r e a t e d  i n s e c t s  dec l ined  about  

40 \ between 24 h and 72 h a f t e r  t r ea tmen t ,  then remained 

unchanged t h e r e a f t e r .  Accordingly, t h e  l i p i d  concen t ra t ion  i n  

t h e  f a t  bod ies  of such t r e a t e d  i n s e c t s  was s i g n i f i c a n t l y  l e s s  

than i n  c o n t r o l s  a t  both 72 h and 120 h a f t e r  t r ea tmen t .  

S imi la r  t o  fenoxyaarb-treated i n s e c t s ,  t h e  l i p i d  con ten t  

of t h e  f a t  bod ies  of methoprene-treated ones was i n i t i a l l y  (24  

h p o s t  t r ea tmen t )  double,  then subsequently (72 h p o s t  

t reatment)  l e s s  than t h a t  of  con t ro l s .  The f a t  body l i p i d  

concen t ra t ion  dec l ined  by approximately 50 % between 2 4  h and 

72 h a f t e r  t r ea tmen t  to l e s s  than h a l f  t h e  con t ro l  l e v e l s .  The 

l i p i d  concen t ra t ion  i n  t h e  f a t  bodies of methoprene-treated 



Table 3.6. Effect of JHR treatment on the Fat Body Lipid content of the spruce budworn, 

Choristoneura funiferana, (9,100 g dry ut.)'. 

KOUTS after treatment: 24 72 120 

' Data are shown as Mean i SE of 4 separate determinations (15-20 insects each). values 
followed by the same letter in the vertical columns indicate no significant difference 
at the 0.05 level (Duncan's Multiple Range Test). 
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i n e e c t s  subsequently doubled,  however, with t h e  r e s u l t  t h a t  it 

was on ly  marginal ly l e s s  than Control  l e v e l s  a t  120 h p o r t  

t r ea tmen t .  

3 . 3  E f f e c t  of Fenoxycarb an Lip id  Metabolism 

3 . 3 . 1  Q u a l i t a t i v e  L ip id  P r o f i l e  

The q u a l i t a t i v e  d i s t r i b u t i o n  of n e u t r a l  l i p i d s  from t h e  

f a t  bod ie s  of u n t r e a t e d  ( c o n t r o l s  a t  120 h) C. fvn i f e r anq  is 

shown i n  Figure 2 . 5 .  The q u a l i t a t i v e  l i p i d  p r o f i l e  of  t h e  

t r e a t e d  insects was s i m i l a r  t o  the c o n t r o l s .  The r e s u l t  

demonstrated t h a t  t h e  n e u t r a l  l i p l d  m0.t abundant  i n  t h e  

hemolyaph was d i a c y l g l y c e r o l  (DO). A l so  p r e s e n t ,  were t r a c e  

amounts o f  s t e r o l  e s t e r  (StE) an? f r e e  f a t t y  a c i d s  (FFA). I n  

t h e  f a t  body l i p i d  e x t r a c t s ,  t r i a c y l q l y c e r o l  (TO) formed t h e  

major  p o r t i o n  of t ne  n e u t r a l  l i p i d s .  When d e t e c t e d ,  

phospho l ip id s  (PL). nonoacylglycerol  ( M G ) ,  d iacy lg lyce ro l  

(DG), and f r e e  f a t t y  a c i d s  (FFA) were p r e s e n t  i n  t r a c e  

amounts. 

3 . 3 . 2  F a t t y  Acid P r o f i l e  

The q u a l i t a t i v e  d i s t r i b u t i o n  of t o t a l  f a t t y  a c i d s  from 

t h e  budwom hemolymph and f a t  body l i p i d  e x t r a c t s  is shown 
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in Table 3.7 A h 8. The qualitative fatty acid profile of the 

hemolymph and fat body neutral lipids was similar in the 

treated and control insects. A wide array of saturated and 

unsaturated fatty acids with carbon chain length ranging from 

C14 to CZO were detected in the henolymph and fat body lipids. 

3.3.3 fat Body Lipid Synthesis 

3.3.3.1 overall Lipid Synthesis from "c-~cetate 

The ia W incorporation of "c-acetate into lipids by 

fat bodies of fenoxycarb treated and control larvae is given 

in Figure 3.7. statistical analysis of the data showed that 

fat body lipid synthesis from '"-acetate was significantly 

affected by fenoxycarb treatment (F=84.58, d.f.=l; P < 0.051. 

In the control group, incorporation of acetate by the fat bcdy 

inta lipids remained unchanged during the 120 h experimental 

period. 

In fenoxycarb treated larvae incorporation of "c-acetate 

by fat bodies increased gradually up to 120 h after treatment. 

However, the values were lover than their control 

counterparts: the inoorporation of '%-acetate inta fat body 

lipids was 3- to 5-fold lower than the respective control 

larvae. 



Figure 3 . 7 .  p he mean a vitro incorporation o f  "C-&==tate i n t o  

l i p i d e  i n  f a t  bod ie s  o f  fenorycarb t rea ted  and contro l  s i x t h  

i n r t a r  lzrvae of U o r i s t w e u r a  fumiferana a t  26 h.  72 h and 

120 h pos t  treatment.  Data ere shown as Mean t SE of 10 

independent measurements, nM/mg/h. 





3.3.3.1.1 Direct Effect of Fenoxycarb on Lipid Synthesis 

The addition of fenaxyearb to the "c-acetate cultuee 

medium caused e significant (F.31.53, d.f.=l; P 0.05) 

inhibition in the incorporation of "c-aacetate into rat body 

lipids of r. -. In the control fat bodies incubated 

with "c-acetate, the Mean r SE "c-acetate incorporation into 

lipids was 1.187 f 0.13 nM/ng fat bodylh (n=lo). In contrast, 

fat bodies incubated in the "C-acetate culture medium 

containinq 0.26 fig fenovycarb incorporated 0.365 f 0.023 

nM/ng/h In-10) "c-acetate into lipids. 

3.3.3.1.2 "c-~cetate Product Analysis 

The qualitative distribution of fat body lipids 

synthesized from "c-acetate is shown in ~ i g u r e  3.8. 

Statistical analysis of the data showed that ~reatment, time 

post trsatment, as well as the treatment-time post treatment 

interaction, were the important factors which significantly 

influenced the fat body lipid profile of C .  fuaiferana. 

indicating that effeot of JHA treatment war apparent at 

certain times after treatment.   he analysis of variance of the 

main effects and the interaction between the main effects, are 

given in Appendix B. 



Figure 3.8. The qualitative distribution of fat body lipids 

synthesized from "C-lcetate h W, in fenoxycarb treated 

and control larvae of Charistaneura fumiferam at various 

times after treatment. values are expressed as % Mean f SE of 

6-9 determinations. TI, treztment 21 h; C1, control 24 h; T2, 

treatment 72 h; C Z ,  control 72 hi T3, treatment 120 hi c3. 

Control 120 h. 
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In the 24 h old control larvae, the distribution of 

radiolabel from "c-acetate in the fat body lipids was found 

primarily in the phospholipid (PL) and free fatty acids (FFA) 

fracticns, followed by lesser amounts in triacylglycerol (TG), 

diaoylslycaral (DGI, end sterol ester (StE). In the 72 h and 

120 h old control larvae, the distribution of radiolabel was 

mostly found in the To and the FFA tractions, followed by 

lower levalr in PL. DG, and S ~ E .  

I" contrast to the controls, in the 21 h post treatment 

budwoms, TG and FFA were the principle lipid fractions, 

followed by PL, DG, and StE. At 72 h and 120 h after 

treatnent, thare was no further noticeable change in the lIpid 

profile (Figure 3.8). 

3.3.3.2 Synthesis of ~ a t t y  Acids from "C-~cetate 

The average cell-free lipid synthesis from "C-acetate in 

fenoxycarb treated and control larvae is given in Flgure 3.9. 

statistical analysis of the data showed that cell-free lipid 

synthesis 1i.e. synthesis of fatty acids from acetate) in the 

spruce budworms was significantly influenced by treatment 

(F-39.25, d.f.=2: P < 0.05) and the treatment-time after 

treatment interaction (F=4.10, d.f.=2; P i 0.051, indicating 

that JHA treatment affected fatty acid synthesis throughout 

the experimental period. 



Figure 3.9. The mean synthesis of fatty acids from acetate 

(cell-free1 in the fenoxycarb treated and control sixth instar 

larvae of Choristoneuea funiferana at 21 h, 72 h and 120 h 

after treatment. Data are expressed as Mean ? SE of 8-10 

separate assays, DPM/nq protein/insect. 





In contml larvae, cell-free lipid synthesis from "C- 

acetate increased by approximately 60 % between 24 h and 72 h, 

then declined t o  nesr-initial levels by 120 h of the 

experimental period. By comparison, call-free lipid synthesis 

in fenoxycarb treated insects declined by about 50 t between 

24 h and 72 h post treatment, then increased to initial levels 

by 120 h. The degree of fatty acid synthesis by €at body 

extracts of fenoxycarb treated insects was-25 % to 50 O that 

Of conti-01s. 

The fatty acids were synthesized hy a pathwsy that 

included the biotin-dependent enzyme acetyl-cox carboxylasa. 

This was apparent because the addition of avidin, a biotin- 

binding protein, to the cell-free preparations of spruce 

budworm fat bodies caused a sinnificant reduction in lipid 

synthesis from "c-aacetate. In the cell-free system containing 

avidin, the nean t SE lipid synthesis was 92.6 f 12.2 DPM 

(n=6), whereas in the controls it was 605.25 f 55.72 DPM 

("-8). 

3.1.3.3 Synthesis of complex lipids from '*c-palmitate 

The mean incorporation of "c-palmitate into fat body 

lipids LD .& in the fenoxycarb treated and control spruce 

budworms is given in Figure 1.10. Statistical analysis of 



Figure 3.10. The mean incorporation of "C-Palmitate into fat 

body complex lipids b vitro, in fenoxycarb treated and 

oontrol sixth inrtar larvae of cboeistonew fumiferana at 

various times after treatment, Data ere shown as Mean f SE of 

lo independent measurements, nM/ag/h. 





110 

the data showed that fat body lipid synthesis from "C- 

palnitate was significantly affected by fenoxycerb treatment 

(P=61.86, d.f.=l; P < 0.05). In controls, ~alaitate 

incorporation by fat bodies remained unchanged throughout the 

120 h experimental period. Although the capacity of the fat 

bodies of treated inseotr to incorporate palnitate increased 

between 24 h and 72 h post treatment, then stabilized, the 

values were 50 to 60 P lower than their control counterparts. 

3.3.3.3.1 "C-palmitate Product Analysis 

The qualitative distribution of lipids synthesized from 

''~-~almitate by the spruce budworm fat bodies ~ x&m is 

given in Figure 3.11. Statistical analysis of the data 

demonstrated that tine post treatment and the treatment-time 

interaction were significant factors which influenced the fat 

body lipid profile of S. fumifeeana, indicating that effect of 

JHR treatment was apparent at certain times after treatment. 

However, treatment of larvae with fenoxycarb did not affect 

the type of lipids synthesized hy the fat bodies from the 

palnitate precursor. The analysis of variance of data obtained 

is given in Appendix C. 

In both the control and treated larvae at 24, 72, and 120 

h, the distribution of the radiolabel from '"-palnitate in the 

fat body lipid extrxts was found mainly in the diacylglycerol 



Figure 3.11. The qualitative distribution of fat bady lipids 

synthesized from "c-palmitate hvitro, in fenoxycarb treated 

and oontrol sixth instar spruce budx ?rns, at various times 

post treatment. ~eeults are expressed as % ~ a a n  i SE of 8 

measurements. TI, treatment 24 h; c1, control 24 hi T2, 

treatment 72 hi ~ 2 ,  control 72 h; TI, treatment 120 hi c3, 

Control 120 h. 



Treatment/Control (Time post treatment) 
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(DG) f r ac t ion ,  fol lowed by neg l ig ib le  l e v e l s  i n  t h e  

pharphalipid (PI,), monoacylglycerol (MG) ,  f r e e  f a t t y  ac ids  

(FFA) , t r i a c y l g l y c e r o l  (TG) , and s t e r o l  e s t e r  (S tE)  f r ac t ions .  

3 . 3 . 4  Fat Body "c-palmitate Oxidation 

The mean & W "col emission from "c-palmitate by t h e  

EenOYycarb t r e a t e d  and c o n t r o l  spruce budworm f a t  bodies is 

shown i n  Figure 3.12. S t a t i s t i c a l  a n a l y s i s  of t h e  data showed 

t h a t  t h e  "c-palmitate ox ida t ion  was s i g n i f i c a n t l y  a f f e c t e d  by 

fenoxycarb t rh r tmen t  (F=16.87, d . f . = l ;  P < 0.05),  and t h e  time 

a f t e r  t reatment ( ~ = 7 . 9 2 ,  d.f .=2:  P + 0.05).  

"co, emission from "C-palmitate remained r e l a t i v e l y  

s t a b l e  for  f a t  bodies of  con t ro l  i n sec t s .  A t  24 h pos t  

t r ea tmen t  "co2 emission from "C-palmitate by fat bod ies  of  

t r e a t e d  i n s e c t s  Was only about  30 2 t h a t  of t h e  c o n t r o l s .  "c- 

Pa lmi ta t e  ox ida t ion  inc reased  s i g n i f i c a n t l y  a t  72 h a n d  120 h 

a f t e r  t reatment,  bu t  t h e  va lue r  were lower (72 h) t h a n  or 

s i m i l a r  ( I20  h) t o  t h e i r  c o n t r o l  coun te rpa r t s .  



Figure  3.12.  The mean "CO, emis s ion  from ' L ~ - ~ a ~ m i t a t e  i n  t h e  

fenoxycarb t r ea ted  and c o n t r o l  spruoe budworm f a t  bod ie s  

Yitro, a t  24 h,  72 h and 120 h post  treatment.  Data are 

expres sed  as  Mean t SE of 9-10 independent de terminat ions ,  

DPM/rng/h. 





Fenoxycarb was the  most e f f e c t i v e  juvenile hormone ana log  

of t h o s e  t h a t  were screened f o r  disruption of metamorphosis o f  

t h e  e a s t e r n  spruce budworm, Choristoneura fumiferana.  1n 

a d d i t i o n  t o  its low Lq0 v a l u e  aga ins t  t h e  s i x t h  i n s t a r ,  

fenoxycarb caused a wide .'.ray of morphagenetio d e f o r m i t i e s  

i-eaulting i n  death of c. fumiferana larvae.  

FenOxyEaeb and lnethoprene treatment,  a t  a sub le tha l  dose,  

a l s o  caused a general  d i s r u p t i o n  i n  the  metabolism o f  t h e  

sp ruce  budwarn, as shown by a l t e r e d  l e v e l s  of carbohydrate,  

p r o t e i n  and l i p i d  i n  t h e  hemolynph and f a t  bodies.  L ip id  

l e v e l s  i n  t h e  hernolymph and f a t  bodies were severely dep le ted  

i n  f enoxys r rb  t r e a t e d  i n s e c t s  as compared t o  the c o n t r o l s .  

The c a p a b i l i t y  of f a t  bod ies  from t rea ted  l a r v a e  t o  

syn thes ize  l i p i d s  was impaired.  I t  was found t h a t  impairment 

OCEUrred both in t h e  pathway l e a d i n g  t o  f a t t y  acid s y n t h e s i s ,  

and t h e  subsequent pathway l ead ing  t o  complex l i p i d  syn thes i s .  

L a s t l y ,  the a b i l i t y  of t h e  f a t  bodies from t r e a t e d  sp ruce  

budworms t o  metabolize f a t t y  a c i d s  h vitro v i a  t h e  8-  

oxida t ion  pathway was impaired s o l e l y  i n  t h e  early (24 h pos t  

t r ea tment )  s i x t h  i n s t a r  spruce budworm la rvae .  
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4 .1  Dose-response s t u d i e s  

The r e s u l t s  demonstrated t h a t  ea r ly  s i x t h  i n s t a r  l a r v a e  

o f  C. furniferana were h igh ly  s e n s i t i v e  t o  fenoxycarb, w i t h  an 

LDs0 va lue  of  0.261 r g  pe r  i n s e c t .  Th i s  .compound caused a wide 

a r r a y  of  rnorphogenetic d e f o r m i t i e s  which r e s u l t e d  i n  d e a t h  o f  

t h e  spruce budworm larvae.  a l l  of  t h e  e f f e c t s  were c a n s i r t e n t  

w i th  t h e  juven i l i r ing  a c t i o n  o f  potent  J H A s  on Lepidoptera 

(Retnakaran & d., 1985; Sehnal ,  1983; S t a a l .  1975) .  ~ a s n e r  

Bf. a. (1981) reported t h a t  fenoxycarb was very  e f f e c t i v e  

a g a i n s t  t o r t r i c i d r  and homopterana i n  orchards and f o r e s t s .  

Fenonyearb, a phenoxy e t h y l  c a r b a n a t e ,  has been shown t o  have 

f a v o r a b l e  pe r s i s t enca  on p l a n t s ,  s to red  products ,  and i n  

wa te r ,  w i th  r e s idua l  a c t i v i t y  a g a i n s t  s eve ra l  i n s e c t  s p e c i e s  

(Dorn Bf. a,, 1981; d s ~ e e d a  et d., 1984) .  Moreover, c. 
fumiferana eggs, a t  an e a r l y  s t a g e  of  embryogenesir (0-24 h 

o l d ) ,  as wel l  as a d u l t s  o f  both sexes, were found t o  be  ve ry  

s e n s i t i v e  t o  fenoxycarb t r ea tmen t :  t r e a t e d  eggs  o r  eggs 

d e p o s i t e d  by t r e a t e d  a d u l t s  f a i l e d  t o  hatch (Hicks and Gordo,, 

1992).  It should be f u r t h e r  eva lua ted  aga ins t  C. fumiferana 

under greenhouse and f i e l d  cond i t ions .  

Fenoxycarb h a s  a l s o  been found to be e f f e c t i v e  a g a i n s t  

o t h e r  Lepidaptera:  4doxoohves r e t i c u l a n a  and Adoxoohves 

lMasnee et a,, 1983; Charmi l lo t  and Blaser ,  19851. U 

Dolonella (Charmil lot .  1989; Charmil lot  & a,, 1989) .  
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Graohol&a funebrana (Charmillot & El . ,  19861, Eu~oecilia 

ambiquella and Lobesia botran& (Charnillot & al.. 1987). 

neliothis virescens (Masner et al., 1987; Mauchanp gg a,, 
1989). Pand 's henarana (deReede & al., 1984). Ostrinis 

eubilalis (Gadenne & d., 1990). and Platvnota idaeusalis 

(Hull & al.. 1991). 

By contrast, relatively high doses of methoprene, ZR9582, 

and ZR10151 were required to interrupt the development of 

early sixth instar larvae of C. fumiferana. High doses of 

aathoprene also were required to cause supernumerary molting 

and attendant mortality of C. fumiferana (Retnaxaran, 1973) 

and a related species, C. occidentalis (Robertson and Kimball, 

1979). 1n laboratory, greenhouse, and fi=ld screening of 

aethoprene against the sixth instar larvae of C. funiferana, 

high doses of the JHA ware required to achieve mortalities of 

control significance (RetnaXaran et al., 1977). 

various developmental stages of C. W- have also 

been reported to be refractory to several -f the earlier JHAs 

tested. ~pplications of hiqh doses of juvabione, ethyl- 

aromatic terpenaid ether, and farnesyl methyl ether were 

raquired to cause ovicidai effects (RetnaXaran, 1970) and high 

 ED^ (i.e. median effective dose to elicit a specific effsctl 

values were obtained for AY22.312 (a mixture of eight isomers 

of JH-I), topically applied to opruce budworm pupae (Outram, 

1973). b he biochemical and physiological mechanisms 
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re spons ib le  f o r  d i f f e r e n t i a l  s u s c e p t i b i l i t y  of  c .  fyptiferana 

t o  J H A S  remains t o  be  e luc ida ted .  

The J H A s  S-71639. 2 1 8 4 8 7 .  and ZR.9892 may be  considered as 

moderately e f f e c t i v e  aga ins t  t h e  e a r l y  s i x t h  i n s t a r  apeuce 

budworn l a r v a e .  as i nd ica ted  by t h e i r  LDIo 1 i . e .  median l e t h a l  

dose of t h e  JHA) va lues  and t h e  a s soc ia t ed  morphagenetic 

de fo rmi t i e s  induced. Topical  app l i ca t ion  cf  5-71639 war found 

t o  d i s r u p t  molting i n  f i f t h  i n s t a r  l a rvae  of SoodoDtpra 

(Hatakoshi  et d., 1986). This  compound was also r epor t ed  t o  

be 32 t imes mare a c t i v e  than  methoprene i n  causing 

supernumerary molt ing when app l i ed  t o  f i f t h  i n s t a r  l a rvae  of 

Manduoa s a u t a  (Hatakoshi d al., 1 9 8 8 ) .  Therefore,  it seems 

r easonab le  t o  explore t h e i r  f i e l d  e f f l c a c y  a g a i n s t  f o r e s t  

p e s t s  such as t h e  spruce budwarm. 

4 .1 .1  Marphogenetic E f f e c t s  

J u v ~ i l i l e  hormone analogs adve r se ly  a f f e c t  metamorphosis 

by d i s rup t ing  t h e  t i t r e  of  juven i l e  hormone (Jh) a t  s p e c i f i c  

s t a g e s  of t h e  i n s e c t ' s  development. I n  a holometabaloua 

i n s e c t ,  such as P tuniperana, t h e  l e v e l  of  c i r c u l a t i n g  JH 

normally remains high during the i n i t i a l  i n s t a r s ,  d rops  du r ing  

t h e  l a s t  l a r v a l  i n s t a r ,  and i s  below phys io log ica l ly  a c t i v e  

l e v e l s  i n  the  pupa. When l a s t  i n s t a r  l a rvae  are t r e a t e d  wi th  

e f f e c t i v e  J H I \ s ,  t h e  JH t i t r e  remains h igh  and c e l l u l a r  
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programming of t h e  epidermis and imaginal d i s k s  t akes  an 

abnomal course (Retnakaran al., 1985).  

Laws1 dea th ,  hoWeYeT, mdy a l s o  be  a t t r i b u t e d  t o  a 

oomhinstion of secondary fac to r s ,  which a re  not d i r e c t l y  

r e l a t e d  t o  the  hormonal a c t i v i t y  o f  t h e  JHAs (Sehnal, 19el): 

suf foca t ion ,  bleeding,  and d e s s i c a t i m  due t o  imperfect  

exuviation,  s t a r v a t i o n  due t o  morphogenetic de fec t s ,  f a i l u r e  

of v i t a l  homeostat ic p rocesses ,  and metabolic i apa i rnen t .  As 

r l l u s t r a t e d  i n  r i g u r e  1 2  A-c, treatment of day 1, s i x t h - i n s t a r  

l a rvae  of S.  gumiferana with a l l ~ ~ A s ,  except ZR10151, caused 

a wide range af morphogenntic de fo rmi t i e s -  formation of 

larval-pupal intermediates,  with precocious evagination of t h e  

imaginal-wing disk., production of deformed pupae with 

henolymph-filled b l i s t e r s ,  supernumerary molting, mummified 

larval-pupal intermediates,  and i n h i b i t i o n  of molting. The 

 verity of  t h e  aorphogenatic abe r ra t ions  were e l s o  

concentration-dependent. These rnorphogenetis de fo rmi t i e s  

con t r ibu ted  d i r e c t l y  o r  i n d i r e c t l y  t o  t h e  mor ta l i ty  of t h e  

sp ruce  budworn l a rvae .  

The e l u c i d a t i o n  o f  the mode of a c t i o n  of JHAa, and thua 

the explanation o f  t h e i r  morphogenetic e f f e c t s ,  w i l l  depend 

upon t h e  c l a r i f i c a t i o n  of the  mode of a c t i o n  of endogenous Xi 

in insec t s .  I t  is genera l ly  accepted t h a t  t h s  molt ing process 

and matamorphosir i n  i n s e c t s  i s  under t h e  con t ro l  of hormones. 

The hormonal con t ro l  of molt ing and c u t i c l e  depos i t ion  during 
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a mol t  i s  under t h e  con t ro l  of ecdys t s ro ids .  s e c r e t e d  by t h e  

p ro thorac ic  glands.  The p ro thorac ic  g l ands  a re  s t imula ted  by 

t h e  p ra thorac ica t rop ic  hormone (PTTH), sec re t ed  from t h e  

neurnsecretory c e l l s  of t h e  b ra in .  The type  of  c u t i c l e  

produced, however, i s  under t h e  c o n t r o l  o f  JH, produced by t h e  

corpora a l l a t a .  JH, a= t h e  name impl i e s ,  is requ i red  i n  o rde r  

t o  maintain l a r v a l  c h a r a c t e r i s t i c s  and its disappearance must 

be ensursd Lor metamorphosis t o  ocour (R idd i fo rd ,  1985) .  

Exogenous app l i ca t ion  o f  JHAs t o  i n s e c t s  zause6 an 

e l eva t ion  i n  t h e  endogenous JH t i t r e .  t he e x t e n t  and na tu re  of 

t h e  response t o  JHA app l i ca t ion ,  however, depends on t h e  

spec ie s ,  t h e  t ime  of app l i ca t ion ,  t h e  dose, t h e  mod- of 

admin i s t r a t ion ,  and the  type of compound ( S t a a l ,  1975).  If 

JHAs are app l i ed  during t h e  c r i t i c a l  pe r iod  f o r  s e n s i t i v i t y  t o  

JH, u s u a l l y  t h e  beginning of t h e  eodys te ro id  peak ( R i d d ~ f o r d ,  

19851, the  JH r e c e p t o r s  ( loca ted  on t h e  epidermal c e l l s  and 

possiDly c e l l s  o€ o the r  t i s s u e s )  become s a t u r a t e d  with t h e  JHR 

(slama,  19851, and  l e a d  t o  an i n h i b i t i o n  a t  metamorphosis. 

This  may a l s o  r e s u l t  i n  supernumerary molt ing ( sehna l ,  1983). 

Moreover, t h e  JH r ecep to r s  on c e l l s  of i n s e c t s  are n o t  

s e n s i t i v e  a t  e x a c t l y  t h e  same t ime  Islama. 19851, i . e .  

asynchronous JH-sens i t iv i ty ,  al lowing c e l l s  with i n s e n s i t i v e  

JH r e c e p t o r s  t o  develop normally. Such a s i t u a t i o n  w i l l  l ead  

t o  t h e  formation a? larval-pupal  in t e rmed ia t e s  as w e l l  as 

o t h e r  morphological ly deformed i n d i v i d u a l s  (Slama, 1985). 
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Direct experimental evidence for this thsory is still lacking. 

HemOlymph and callular JH-binding proteins have been 

reported in several insect species (Goodman and chanq, 19E51 

Roberts and Jeffsrier, 1986) and, in Yso.haea w, 
cytosoli~ and nuclear JH receptors in the fat body have been 

characterized (Engelmann et al., 1987). Moreaver. two high- 

affinity nuclear binding proteins for JH-I and JH analogs 

(methaprene and iodovinylmethoprenol) have been demonstrated 

in the larval epidermis of Manduca sexta (~iddiford & d., 

1987). Factors such as the chemical structure of the JHh, its 

rate of entry into the cuticle, in & metabolism, and 

excretion are also important factors governing its efficacy. 

The node of action of fenoxycarb, the mast potent JHR against 

the sixth instar g .  fumiferana, remains to be elucidated at 

the cellular and nolecular level. 

4.2 Effect of JHAS on Metabolite Concentrations 

In addition to their morphoqenetic effects on the sixth 

instar S. Uf- larvae, the fenoxycarb and methaprene, at 

a LDIO concentration, caused an alteration in the hernolymph and 

fat body levels of carbohydrate, protein and lipid an oompared 

to the controls. Since there was no effect of JHA treatment on 

the henolynph volume and fat body dry weight of sixth inatar 

S. fumiferana, the observed alterations in metabolite levels 
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r e s u l t e d  from changes in t h e  mobil izat ion and/or u t i l i z a t i o n  

of carbohydrate,  p ro te in  ana l i p i d .  

4.2.1 Henolymph and Fat Body Carbohydrates 

I n  t h e  c o n t r o l  s i x t h  i n s t a r  l a rvae  of c. fun i fe rana ,  

blood carbohydrate l e v e l s ,  on an average, increased throughout 

the  progression of t h e  i n s t a r .  This f ind ing  is cons i s t en t  with 

observations t h a t  t h e  l e v e l s  of blood t r e h a l o s e ,  t h e  p r inc ipa l  

carbohydrate i n  t h e  hemolymph, increased during the  l a s t  

l a r v a l  i n s t a r  i n  seve ra l  i n s e c t  spec ie s :  

(Wyatt and Xalf ,  1957) ,  Antheraeq d (Egorova and Sao l in ,  

1962). Leucania seoa r s t a  (LLU and Feng, 1965) .  Bontbvx mori 

(Duchateau-Bosson & a,, 1963),  and Sania cvn th ie  riiiai 

(Chang & a,, 1964).  

Th i s  inc rease  i n  t h e  blood carbohydrate ( t r s h a l o r e )  

l e v e l s  appears t o  be a s soc ia t ed  wi th  a c t i v e  feeding.  There may 

also be hormone-mediated r egu la t ion  of blood t r e h a l o s e  l e v e l s ,  

ae soo ia t ed  with t h e  growth, molting and development of t h e  

i n s e c t s  (Chen. 1971). I n  t h e  con t ro l  sp ruce  budworns, t h e  

inc rease  i n  t h e  l e v e l s  of hemolymph carbohydrate during t h e  

l a s t  l a r v a l  i n s t a r  may be a s soc ia t ed  with feeding and growth, 

i n  preparat ion fo r  t h e  metamorphic molt. The r o l e  of t h e  

hyper t r eha losen ic  hornone (S tee le ,  19611, i f  any,  i n  t h e  

carbohydrate r egu la t ion  o f  C. remains t o  be 
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i nves t iga ted .  

I n  t h e  t a t  bodies o f  c o n t r o l  i n s e c t s ,  t h e  l e v e l s  of  

glycogen, t h e  predominant reserve carbohydrate i n  i n s e c t s  

(Wyatt, 19671, inc reased  almost 4-fold a t  72 h from t h e  

i n i t i a l  l e v e l s ,  t hen  dec l ined  t o  n e a r - i n i t i a l  l e v e l s  towards 

t h e  end of  the  i n s t a r .  s i m i l a r l y ,  a s u b s t a n t i a l  r i s e  i n  t h e  

glycogen l e v e l s ,  both p e r  ind iv idua l  and as percentage of body 

weight ,  during l a r v a l  growth have been r epor t ed  in  seve ra l  

i n s e c t  spec ie s :  W (Rause l l ,  1955) .  ~ n t h e r a e a  

d (smolin and Gudalina, 1957) ,  Bombvr m d  (ZalUrKa, 

19591, Hva lo~hara  c e c r o ~ i a  (Bade and wyatt ,  1962). Sa.la 

M (Chang & 81.. 1963).  m (George 
and Nair, 1964). M u s c a  d o m e ~ t i c a  (Ludw~g et a., 1964). 

b c v r t h o s i ~ h o n  dsm (Sr ivas t ava ,  1965).  and Anthanomus 

(Ne t t l e s  and  Benz. 19651. The inc rease  i n  g7.yc"Jen l e v e l s  

du r inq  l a r v a l  growth was i n t e r rup ted  by a temporary dec l ine  a t  

each molt. I n  t h e  f i n a l  l a r v a l  i n e t a r ,  t h e  accumulation of 

glycogen was i nc reased  in  preparat ion for metamorphosis 

(wyatt ,  1967).  A s i m i l a r  s i t u a t i o n  appears t o  oLcur i n  r. 
fumiferana;  however, t h e  metabolic and homeostat ic  pat:.uays 

remain t o  b e  s tud ied  i n  more d e t a i l .  

I n  s w e  Diptera and Orthoptera,  glycogen syn thes i s  is 

con t ro l l ed  by a hormone o r i g i n a t i n g  in  the  medial 

neurosecratory c e l l s  (MNC) of t h e  b r a i n ,  and i n  some 

Lepidapterai, t h e  suboesophageal ganglion (S tue le ,  1983).  
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GlYC09snalysis, an the other hand, is mediated by the 

hyperglycaernic (hypertrehalasaemic) hormone secratad by the 

corpora cardiaca (Steele, 1961): this hormone causer an 

elevation of hemalymph trehalosa, with a concomitant decline 

in the fat body glycogen. 

After 96 h, fenoxycarb treatment, at a sublethal dose, 

caused blood carbohydrate levels to elevate significantly in 

the JHA treated insects compared to the controls. There was a 

substantial decrease I" glycoqen levels in the fat bodies of 

fenouyoarb-treated r. fumiferana larvae, at 24 h and 72 h past 
treatment: at 120 h after traatnent, levels were slightly 

higher than the controls. However, this apparent deplotian in 

glycogen did not result in an increase in heaolymph 

carbohydrate levels, as might be anticipated from accelerated 

glycogenolysis or reduced glycogen synthesis, until after 96 

h post treatment. This paradoxical result is difficult to 

explain, since biochemical/enzymatic resolution of the effect 

Was not attempted. 

The concomitant depletion in fat body glycogen and 

henolymph carbohydrate prior to 96 h post treatment may be a 

result of accelerated glycaqenolysis and/or depressed glycogen 

synthesis, followed by energy mobilization for the synthesis 

of lroteinr or other biomalecules. Toward the end of the 

experimental period, the elevated levels of carbohydrates in 

the hernolymph of fenouycarb-treated inseots, concmitant with 
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high levels of fat body glycogen (cf. controls), suggest an 

increase in glycogen synthesis and/or reduction in 

glycogenolysis accompanied by decreased energy mobilization 

for biasynthetic purposes. Such postulated effects an 

glycogenolysis and/or glycogen synthesis may be induced by the 

JHA indirectly effecting changes in the insect's neurohomonal 

system responsible for regulating carbohydrate netebolisn. 

Alternatively, the JHA may target the fat body and its 

constituent pathways for carbohydrate metabolism directly, as 

nppears possible from the direct effect of fenoxycarb on lipid 

synthesis that was demonstrated in this study. While the 

precise role of JH in carbohydrate metabolism remains to be 

elucidated, there is evidence that the natural hormone, or its 

analogs, modulate fat body glycogen levels. Allatectoay of 

carau~iii mosus (L'Helias, 1953), hrrrhocoris aoterus (Janda 

and Slaaa, 1965). Calli~lhora ervthrocenhala (Thomsen. 1952). 

phormia reaina (orr, 19641, and Mueca domest- (Liu, 1974) 

caused an accumulation of whole body or fat body glycogen, 

while injection of synthetic JH or implantation of corpora 

allata in Drosoohila melanoaasta (Butterworth and Bodenstein, 

1969) increased glyoogenesis. 

In the methoprene-treated larvae of C. tumiferau, there 

was an initial increase in the hemoljsph carbohydrate levals 

(72 h post treatment), and a decline thereafter until 144 h 

post treatment, compared to the controls. Thus, the effect of 
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methoprene on the henolymph carbohydrate concentration war 

opposite to that of fenoxycarb treatment. In the fat bodies of 

aethoprene-treated spruce budworma, glycogen levels ware 

altered in a fashion similar to thc fenoxycarb treated 

insects. 

Methoprene treatment, initially, caused a significant 

depletion in fat body glycogen (24 h and 72 h post treatment). 

followed by an elevation at 120 h after treatment, as oampared 

to the respective controls. The heaolymph carbohydrate level= 

in methoprene-treated insects show a trend opposite to the fat 

bodyglycogen concentration, suggesting a relationshipbetween 

hemolynph carbohydrate mobilization and the depletion of 

glycogen in the fat body. 

Disruption of hamolymph and fat body carbohydrate levels 

have been reported for certain other insect species. Exposure 

of early fourth-instar lanlae of Aedes aeavoti to methoprene 

significantly increased the carbohydrate levels in the 

hernolymph of late fourth-instar larvae, but reduced the 

hemolynph carbohydrate concentration of 24 h old pupae (Gordon 

and Burford, 1984). Additionally, treatment of poet-feeding 

larvae of z & h a  with the JHA caused a significant 

decrease in the henolymph trehalose levels (Young and Gmdan, 

1987). Thus, it is apparent that methoprene causes varied 

effects on carbohydrate mobilization, depending on the 

species, instar, and age of the insect. 
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Data obtained in this study are explicabls in terns of 

increased glycogenalysis/reduced glycogen synthesis, fallowed 

by diminished glycogenolysis/enhanced qlycoqenesis, resulting 

f ~ o m  inethoprene treatment. 

There is evidence obtained from other insect species that 

methoprene can modify glycogenolysis and glycogenesir. In the 

mosquito Aedes a&, Gord-n and Burford (1984) reported 

that methoprene caused a reduction in fat body glycogen, and 

that glycogenolysis was suppressed due to an overall depletion 

of glycogen phosphorylase. Downer et d. (1976) showed that 

whole pupae of Aedes aeqvmti became depleted in glycogen and 

lipid following exposure to methoprene. However, treatment of 

Stomoxvs calcitrans with an aromatic tarpenoid ether, a JnA 

unrelated to nethoprene, caused increased level of whole body 

glycogen (Wright and Rushing, 1973). 

In a subsequent study, Wright eta. (19731 reported that 

JHA treatment had no effect on the glycogen phosphorylase 

activity in this insect, suggesting that the increased 

glycogen levels resulted from enhanced synthesis rather than 

impaired q1ycoqeno1y.i.. The presiee mechanism of action o f  

methoprene on anabolic and catabolic carbohydrate pathways in 

c. zumiferana is still not known. As ;,as been postulated for 
fenoxyoarb, methoprene-induced perturbation in carbohydrate 

metabolism of c. funiferana .,lay be the result of a direct or 

indireat effect of the JHA on the fat body or the 
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4.2.2 Hemolyaph and Fa t  Body Pro te ins  

Henolymph p ro te in  concentrat ion of t h e  c o n t r o l  s i x t h  

i n r t a r  l a rvae  of S. fumiferana increased ds..ing t h e  i n s t a r ,  

and dec l ined  s l i g h t l y ,  j u s t  be fo re  pupation.  Hernolymph p r o t a i n  

l e v c l s  i n  many ~ e p i d o p t a r a  (Wyatt and Pan, 1978) a re  lower i n  

e a r l y  i n s t a r s ,  r i s e  s t eep ly  i n  t h e  l a s t  l a r v a l  i n s t a r ,  and may 

f a l l  before t h e  larval-pupal  ecdysls .  The f ind ings  r epor t ed  

he re  are cons i s t en t  with t h e  t r end  f o r  blood p r o t e i n  l e v e l s  i n  

t h e  l a s t  l a r v a l  i n s t a r  r epor t ed  in  several o t h e r  Lepidoptlara: 

p e i l e o h i b  (He l l c r  and MoklowsKa, 1930).  Hva lo~hora  

(Chefurka, 19531, P o o i l l i a  i a ~ o n i c a  (Ludwig, 19541, 

G a l l e r i a  n e l l o n e l l a  (DenucC, 1958).  B.mgxx .ori (Wyatt SZ aL., 

1956) .  Saa ia  cvn th ia  r i c i n i  (Laufer ,  19601, and Eb2.s 

b r a r s i c a e  (Van Der Geest ,  1968; Chippendale and Kilby,  1969). 

The inc rease  i n  blood p ro te in  l e v e l s  during t h e  l a s t  i n s t a r  is 

assoc ia t ed  wi th  a c t i v e  feeding,  and is a r e s u l t  of a c t i v e  

p r o t e i n  syn thes i s  i n  t h e  f a t  body (Chen, 1978).  The r e s u l t s  

sugges t  t h a t  a s i m i l a r  s i t u a t i o n  e x i s t s  i n  C. fumiferana 

l a rvae .  

The l a r v a l  f a t  body has been shown t o  se rve  as a major 

s i t e  of  syn thes i s  of hernolymph p r o t e i n s  i n  BambVX m9+i 

(Shigeaatsu,  1958, 1960: Faulkner and Bheemeshwar, 19601, 
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Hvaloohora c e c r o ~ i a  (Laufe;, 1960; T e l f e r  and Williams, 1960; 

sk inne r ,  1963).  E i e r i i  b r - s s i c a e  (Chippendale and Kilby, 

1969). and seve ra l  o the r  i n s e c t  spec ie s  (Chen, 1978; Keeley, 

1985). 

I n  the  f a t  bodies of  t h e  con t ro l  spruce budworn, t h e  

p r o t e i n  content  i nc reased  about  2-fold ( a t  72  h and 120 h ) .  

from t h e  i n i t i a l  l e v e l s  ( 2 4  h) . This inc rease  i n  t h e  l e v e l s  of 

f a t  body p r o t e i n  may be  t h e  r e s u l t  of  enhanced p ro te in  

s y n t h e s i s  during t h e  a c t i v e  feeding period o r  s t o r a g e  of 

p r o t e i n ,  or both,  i n  p repa ra t ion  f o r  t h e  upcoming metamorphic 

molt. These da ta  p a r a l l e l  t h e  r e spec t ive  hemolymph p r o t e i n  

l e v e l s ,  as might be a n t i c i p a t e d ,  given t h a t  t h e  hemolymph 

p r o t e i n s  are derived from the  f a t  body. 

In t h e  l a rvae  of g. m, t h e  increased concen t ra t ion  of 

hernsrymph p ro te in   nay serve a s  a n u t r i t i o n a l  source of amino 

a c i d s  f o r  p r o t e i n  syn thes i s  and energy (Cresne and Dahlman, 

1973).  The s to red  p ro te in  may a l s o  be u t i l i z e d  f o r  t h e  

b i a s y n t h e s i s  of a d u l t  s t r u c t u r e s  (Kanost pb a,, 1990).  The 

hormonal r egu la t ion  of  hemolymph and f a t  body p r o t e i n s  is 

incompletely known. 

1n t h e  nolonetabola,  such as c. f u n i f e r m ,  t h e  f a t  body 

syn thes i ze r  and r e l e a s e s  p r o t e i n s  i n t o  t h e  hernolymph during 

t h e  e a r l i e r  l a r v a l  r t ages ,  then seques te r s  t h e s e  p r o t e i n s  from 

t h e  hernolymph i n  t h e  prepupal  s t a g e  (Xenost ot al., 1990).  

sugges t ing  t h a t  20-hydroxyecdysone or a dec l in ing  t i t r e  of JH 
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stimulate protein synthesir/uptake. In larvae of B. d, 

synthesis OF major hernolymph proteins is regulated by JH 

(Plantevin s i  d., 1987); there being s reverse correlation 

between protein synthesis and JH titre. In the same inseot, 

storage protein uptake was induced by ecdysane after a decline 

in JH levels (Toja SS d., 1981). Also, protein storage 

granule Formation in the cal~odes ethlius larvae ( L a c K e  and 

Collins, 1965, 1968) has been shown to be stimulated by 20- 

hydroxyecdyrone (Collins, 1969). Similar results have been 

reported in lit"- (Tajo et a., 1985). The 

hormonal regulation of protein levels in T. iumikrrn 

hemalymph and fat body remains to te elucidated. 

In the fenoxycarb treated sixth instars, henolymph 

protein concentration increased in a pattern similar to 

controls, albeit at a lower level, throughout the last instar. 

In the Fat body OF sixth instar C. U w  treated with 
Fenoxyoarb, the protein content was reduced at 24 h post 

treatment as compared to the controls. Then, the protein 

levels increased about 4-fold, so that lev+ls were higher than 

or comparable to the controls at 72 hand 120 h, respectively. 

These data suggest that Fenorycarb caused an initial reduction 

in protein synthesis by the Fat body. 

The finding that protein levels in the fat bodies of 

treated insects became higher than, or similar t o  the 

controls, while hernolymph protein levels were below normal. 
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suggests that the JHA may interfere with release of 

synthesized proteins into the hernolymph. There is evidence to 

suggest that fenoxycarh modifier protein synthesis by the fat 

body of certain insecr species. In larvae of ~richo~lus&ni, 

the appearance of a 76-kDa henolymph protein was suppressed 

b by topical application of fenoxycarb (Jr ,es eL a., 
1988). Using an antibody specific far the 76-k~a protein, 

Jones st a. (1988) reported that translation of poly(~) RNA 

from untreated larvae yielded the protein whereas ~ R N R  from 

fenoxycarb-treated larvae did not. Grrelak and ~ u m a r a n  (1985. 

1986) have shown that. in Galleria mellonella, several 

ecdysteroid-induced storage proteins could be suppressed by JH 

treatment. The degree to whlch renoxycarb madrfles the 

separate processes of prate~n synthesis and release, as well 

as the molecular mode of action, remains to be determined for 

r. furniferana. 
Methaprene treatlent caused a s~gnlflcsnt depletion in 

the henolymph protein levels of sixth instar C. Fumiferana 

until 120 h post treatment, as compared to the controls. Then, 

the blood protein titre increased signiricantly. However, the 

protein content of the fat bodies of methoprene-treated 

insects was comparable to controls throughout the enparimental 

period. These findings are in agreement with those of Tojo & 

aL. (1981) and sasquet and calver (19851, who reported that 

treatment of Bombvx mori larvae with methoprene caused a 
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significant reduction in thh hemolymph proteins. In the same 

insect, allatectomy-induced storage protein synthesis was 

revarsed by methoprene injection (Izuni & al.. 1981, 19841. 

The result is a1-a in agreewent with Gordon and Burford (1984) 

who, in Aedas see, reported a depletion in hemolymph 

protein as a result of mtthoprene treatment. The depletion in 

hemolymph protein of methoprene-treated insects was the redult 

of impaired capacity of the €at bodies to synthesize proteins 

(Gordon and Burford, 1984). 

b ore recently, the inhibitory effect of aethaprena on 

protein synthesis in d has been studied at the 

molecular level (~osquet & a,. 1989). These authors reported 
that, the JHA treatment decreased major hemalymph protein 

synthesis without any ac? diation of untranslated mRNA, 

suggesting that methoprene treatment affected translation of 

aRNA for protein synthesis. Interpretation of the data 

obtained for C. funiferana can only be done once the effects 

of the JHA on the separate processes of protein synthesis and 

release by the €at body have been elucidaxed. It is possible, 

for example, that the JHA could impair bothpeasesses, leading 

to lower than normal hemolymph protein levels concomitant with 

narmal, or above normal, fat body concentrations. 

Altsmatively, the lower thnn normal hemolymph protein levels 

may be the consequence of increased utilization and uptame by 

other tissues rather than reduced production by the fat body. 
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More in depth studies are required to determine which of these 

hypotheses is tenable and the nature of the endocrinological 

events attendant with such disrupted protein metabolism. 

4.2.3 Hernolymph and Fat Body Lipid 

rn the control sixth-instar. larvae of c. fumiferana, 

hemolynph lipid levels Vera characterized by an initial steep 

increase (48 h), followed by a gradual decline to near-inirial 

levels until 96 h, and a subsequent increase until pupation. 

In the fat bodies, there was a concomitant increase in the 

lipid content st 72 h, from the initial (24 h) levels. These 

broad fluctuations in the lipid levels may be associated with 

active feadinq as well as developmental events during the last 

larval in5tar. in preparation for the metamorphic molt. 

Many halonetaboloun insects have been shownto accumulate 

large amounts of lipid during larval development, as energy 

reserves for later nonfeeding stages (Past, 1969). This has 

been demonstrated in several Lepidoptera: Bo.byX WZJ 

(Niemierka & &. , 1956). Malacosoma americana (Rudolfs, 

1926), Pellothis (Lambremont and Graves, 19691, Heliothis 

virescens (wood & a,, 1969). Hvaloohora cecraeA (Gilbert 

and schneidernan, 1961); and other insect species (Beenakkers 

& d., 1981). 

The hernolymph lipid levels in a developing larva may be 
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t h e  n e t  r e s u l t  of  feeding,  d iges t i on ,  abso rp t ion ,  t r a n s p o r t  t o  

and from f a t  body and o the r  t i s s u e s ,  and metabolism 

(Beenakkers & a., 1985). Thus, i n  t h e  c o n t r o l s ,  t h e  i n i t i a l  

r ap id  e l eva t ion  i n  blood l i p i d  l e v e l s  fol lowed by a g radua l  

dec l ine  u n t i l  96 h ,  sugges t s  t h a t  d l e t a r y  l r p i d  nay appear  i n  

t h e  hernolymph, f o r  t r a n s p o r t  t o  t h e  f a t  body f a r  s t o r a g e  and 

turnover .  However, d i r e c t  experimental  evidence for t h i s  

h y p o t h e s i ~  is s t i l l  r equ i r ed .  

Af t e r  96 h,  t h e r e  was a gradual  r i s e  i n  t h e  blood l ~ p i d  

l e v e l s  u n t i l  pupat ion 1144 h ) .  The f a t  body l i p i d  con ten t  a t  

120  h a l s o  i nc reased  over -:e 72 h l e v e l s ,  s u g g e ~ t i n g  t h a t  f a t  

body l i p i d  may no t  be mobil ized IC t h i s  t ime.  The e l eva t ion  i n  

blood l i p i d  may be a s soc i a t ed  with t h e  netamorphic 

developmenti1 program, or metabolic  t u rnove r ,  or both,  i n  

t he se  i n s e c t s .  The p o s s i b i l i t y  t h a t  some of t h e  i nc rease  i n  

hernolymph l i p i d  toward t h e  end of t h e  experimental  pe r iod  may 

have r e s u l t e d  from carbohydrate  t o  l i p i d  conversion i n  t h e  f a t  

body ( S t e e l e ,  1976) appears  un l ike ly ,  s i n c e  f a t  body glycogen 

levels were not  dep le t ed  a t  t h i s  t i n e .  An examination of t h e  

enzyme systems involved i n  t h l s  p roces s  would seem t o  be a 

promising avenue t o  follow. 

I n  sp ruce  budworms t r e a t e d  with fenoxycarb,  t h e  henolymph 

l i p i d  l e v e l s  were seve re ly  dep le t ed  throughout  t h e  progression 

o f  t h e  i n s t a r ,  a l t hough  t h e r e  was a s l i g h t  i nc rease  a t  144  h 

a f t e r  t r ea tmen t .  I n  t h e  f a t  bodies ,  t h e r e  was an i n i t i a l  
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elevation in lipid content ( 2 4  h post treatment), followed by 

a depletion at 72 h and 120 h post treatment. These data 

demonstrate that hernolymph and rat body lipid turnover is 

severely perturbed by the JHA treatment, either by reducing 

synthesis, transport or increased metabolism. Indeed, as 

discussed in the subsequant section, lipid synthesis and 

metabolism in the fat body was severely impaired in fenoxycarb 

treated insects. The digestion andlor absorption of dietary 

lipid may also have been disrupted. 

The results presented hare are in agreement with 1,eported 

effects of corpora allata (CA) implantation or exogenous 

application of JH in some insects. Using i? t~chhniques, 

Gilbert (1967a) has shown unequivocally that CA depress the 

rate of neutral lipid synthesis in the fat body of LeuooDhaea 

baderae. The inhibitory effect of JH on lipid synthesis in the 

fat body has also been confirmed in schistocerca areaaria 

(Hill and Izatt, 1971). There are numerous studies which 

demonstrate abnormal accumulati?n of lipid in the fat body 

following allatectomy: Carausius lnorosua (L'Helias, 1953). 

Perinlaneta anerican~ (Bodenstein, 1953). ~ o c u s t a  miaratoria 

(Minks, 1967; Strong, 1968). SShistocerca oreoaria (Odhianbo. 

1966; Hill and Izatt, 1974). Soodoptera littoralis (El-Ibrashy 

and Boctor, 1970). Drosoohi!g aelenoaaster (Vogt, 19491, and 

calli~hora ervthroceohala (Thornsen. 1952) i a result that is 

opposite to CA implantation or application of JH. In 
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Schistocerm (Hill and Izatt, 1974) and 

aisratoria (Beenakkers, 1969), the increase in lipid content 

of the fat body of allatectomized insects was prevsntad by 

reimplantation of the CR: and in insects which had not been 

allatectomized but had received cA implants. fat body lipid 

synthesis was reduced compared to controls. 

In the sixth-instar lamas of G.  fumiferana treated with 

nethoprsne, lipid levels in the blood corresponded to controls 

until 96 h after treatment, then declined relative to controls 

until 144 h post treatment. As was the case in fenoxycarb- 

treated insects, fat bodies from rnethoprene treated insects 

initially (24 h post treatment) had lipid levels higher than 

the controls, Then, lipid levels in the fat bodies were 

depleted at 72 h post treatment, followed by an increase at 

120 h after treatment to near-initial levels. However, the 

lipid content of the fat bodies of nethoprene-treated insects 

was still lower than in controls. These data on hernolymph and 

fat body lipids demonstrate a methoprene-induced disruption in 

lipid metabolism.   he changes in fat body lipids (initially 

higher, then lower then in controls) does not correlate with 

the hernolymph lipid titres, however, which are generally 

similar to the controls. A detailed examination of lipid 

metabolis~. by the fat body and other tissues that avail of fat 

body generated lipids in methaprene-treated insects is needed 

to explain the observed effects. 
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The depletion in hemolymph lipid of methoprene-treated 

larvae of C. fumiferana, albeit after 96 h post treatment, 

appears to be in agreement with the results of Downer & a. 
(1976). There authors reported that treatment of fourth-instar 

larvae of Aedss with the JHA caused a depletion in 

lipid oontent of the pupae. However, these results should be 

viewed with caution, since whale body homogenates were 

utilized. More recently, in a structural study of the 

niqratoria fat body. cotton and Anntee (1991) reported 

depletion in the levels of fat body lipid and glycogen, as a 

result of nethoprene treatment. Paradoxically, extraction and 

guantification of the fat body lipid and glycogen showed that 

there was no significant difference from the controls. Cotton 

end Anatee (1991) reasoned that while the amount of fat body 

tissue was increased by the JHA treatment, the total amounts 

of fat body lipid and glycogen remained unchanged; thus 

reducing the levels of lipid and glycogen per unit volume. 

Yet, fat body wet weight was not significantly increased in 

treated insects (Cotton and AnStee, 1991). In the bumblebee 

BOmbUSterrestris, fat body lipid reserves were depleted as a 

result of synthetic JH-I treatment (Roseler and Raseler, 

1988). 



4 .3  Effec t s  of Fenoxycarb on Lipid Netabalism 

4.3.1 Q u a l i t a t i v e  Llpid P ro f i l e  

The Predominant c l a s s  of neu t ra l  l i p i d  i n  t h e  heaolysph 

of sixth-inat . ,  ". f u d e r a n a  was d i a c y l g l y c e ~ o l  (DG) .  h e n  

de tec ted ,  s t e r o l  e s t e r s  (StE) and f a t t y  ac ids  (FA) were 

presen t  i n  t r a c e  concen t ra t ions .  By c o n t r a s t ,  t r i a s y l g l y c e r o l  

(TG) "a,. t h e  major c o n s t i t u e n t  of  t h e  f a t  body n e u t r a l  l i p i d ,  

followed by t r a c e  amounts of phospholipid (PL), DG, and 

monoacylqlycerol (MG). The major r epos i to ry  of TG is t h e  f a t  

body, as demonstrated in  Pe r io l ane ta  americana (Downer, 1981). 

LeucoDhaea naderae (Gi lbe r t .  1967b). Pvr rhocor i s  aDterus 

(Mart in,  1969). Dia t raea  ciyan8iosel& (chippendale,  1971). 

c e r e a l e l l a  (Chippendale, 19731. Manduca 

(Famando-Warnakulasuviya & a,. 19881, &WGS domastisgs 

(Grapes eC a., 1989) ,  and Lvinantria &2a (ClarR & a., 
1990).  Diacylglycerol  is t h e  dominant henolymph l i p i d  i n  most 

insects (Gi lbe r t  and  chino,  1974; Downer and Matthevs, 1976; 

Chino & a, ,  1981; van d e r  Harst & f,., 1981; Mvangi and 

Goldsworthy, 1981; Turunen and Chippendale, 1981; Chino and 

Downer. 1982; Chino, 1985).  I n  c. fumiferana,  t h e  q u a l i t a t i v e  

l i p i d  p r o f i l e  a t  t h e  t r e a t e d  i n s e c t s  was s i m i l a r  t o  t h e  

con t ro l s :  and the  o v e r a l l  l i p i d  p i c tu re  was i n  aq reenen twi th  

t h e  r epor t ed  data on hemolynph and f a t  body l i p i d s  i n  several 



i n s e c t s .  

4.3.2 Fatty Acid P r o f i l e  

Q u a l i t a t i v e  a n a l y s i s  of  t h e  f a t t y  a c i d s  Irom t h e  

henolymph and f a t  body n e u t r a l  l i p i d s  i n  c. fumiferana 

r evea led  t h a t  t h e  major proport ion of  t h e  f a t t y  acid 

complement was r ep resen ted  Dy seven f a t t y  ac ids :  t h e  s a t u r a t s d  

f a t t y  ac ids ,  myr in t i c  a c i d  (C14:0), pa l in i t l c  a o i d  (C16:0), and 

a r a c h i d i c  a c i d  (C20:0), t h e  monounsaturated f a t t y  ac ids ,  

p a l n i t o l e i c  a c i d  (C16:l)  and a l e i c  a c i d  (C18:1), and the  

po lyunsa tu ra t ed  f a t t y  a c i d ,  l i n o l e i c  a c i d  (C18:2). 

Th i s  r e s u l t  i s  i n  agresment with t h e  p r o f i l e  of f a t t y  

a c i d s  r epor t ed  i n  s e v e r a l  i n s e c t s  (Thompson, 1973; Fast .  1964; 

G i l b e r t ,  1967a) ; with t h e  =xception of l i n o l e n i s  a c i d  (C18:3), 

which was below t h e  l i m i t s  of de tec t ion  i n  C. f u r n i f e r a u .  Mort 

o f  t h e  p o t e n t i a l  energy a v a i l a b l e  from n e u t r a l  l i p i d s  in  

i n s e c t s  i s  contained wi th in  t h e  f a t t y  ac id  component of t h e  

molecu le ( s )  . 
I n  t h e  spruce budworm, t h e  q u a l i t a t i v e  f a t t y  a c i d  p r o f i l e  

of t h e  hernolymph and f a t  body n e u t r a l  l i p i d s  was s i m i l a r  a t  

v a r i o u s  t i n e s  of  t h e  l a s t  l a r v a l  i n s t a r ,  and t h e r e  was no 

s i g n i f i c a n t  d i f f e r e n c e  between t h e  t r e a t e d  and c o n t r o l  

i n s e c t s .  Thus, it appea r s  t h a t  t h a  f a t t y  ac id  complenent i n  P. 

fumif-ran* may be  maintained a t  a q u a l i t a t i v e l y  s t e a d y  l e v e l .  
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irrespective of the lipid concentration of the hemolymph and 

fat bodies of control and treated insects. The mechanism(s) by 

which this 'qualitative steady-state' is accomplished remains 

to be studied. 

4 . 3 . 3  Fat Body Lipid Synthesis 

4.3.3.1 Overall Lipid Synthesis from ''C-Acettae 

The capacity of fat bodies from treated c. fuaiferana 

larvae to synthesize lipids in v i t w  was significantly 

impaired, as evidenced by reduced incorporation ai "C-acetate 

precursor into lipid: in contrast to the respective controls. 

This result is also consistent with the observed depletion in 

lipid levels of fenovycarb treated budworms in the hemolymph 

throughout the entire experimental period and in the fat 

bodies at 72 h and lzr h after treatment. The reduced 

incorporation of "c-acetate precursor in the fat bodies of 

teeated insects Suggest that the enzyme complement involved in 

lipid synthesis may be affected by the JHA. 

That the fat body can incorporate radiolabelled acetate 

into Patty acids has been established in several insect 

species: peridaneta aaericana (Louloudes et a,. 1961), 
Eurvcotis floridana (Bade, 1964). Bornbvx mori (Sridhara and 

Bhat, 1964). U o n d u s i ~  ni (Nelson and Sukkestsd, 19681, 
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y e l i o t h i s  a (Lambremont, 19711. CalliDhora e ry th roceoha la  

(Brak si  El., 1966). Q!~&Iw melanmlus (Lamb and Monroe, 

1968).  Anthonornus LE~IK&~ (Lambremont, 19651, and 

( s t rong ,  1963).  The Fatty ac ids  then  undergo 

e s t e r i t i c a t i o n  With t h e  t r i h y d r i c  alcohol ,  g l y c e r o l ,  t o  c a m  

a c y l g l y c e r o l s  (Ululoudes et A,, 1961: S r idha ra  and  Bhat, 

1965;  Lamb and Monroe, 1968; Turunen, 1973: Chino and Downer, 

1979: and Garcia et a,, 1980).  

I n  c. fua i f e rana ,  as d i scussed  elsewhere,  f a t t y  ac id  

s y n t h e s i s  v i a  the  f a t  body c y t o s a l i c  enzymes war reduced as a 

r e s u l t  of fenoxycarb t r ea tmen t .  =h i s  would cause a d e f i c i e n c y  

of f a t t y  a c i d s  f o r  subsequent e s t e r i f i c a t i a n  and complex l i p i d  

~ . y n t h e s i s .  Mi.-cover, t h e  demonstrated decrease i n  t h e  ~ a p a c i t y  

of  t h e  f a t  bodies from JHA t r e a t e d  l a rvae  (d i scussed  

elsewhere)  t o  incorpora te  preformed f a t t y  ac id  1 i . e .  "C- 

pa lmi t a t e )  i n t o  complex l i p i d s ,  may have c o n t r i b u t e d  t o  

dep le t ed  l i p i d  i n  t h e  t r e a t e d  insec t s .  

The e f i e c t  of JHA t r ea tn l rn t  on l i p i d  syn thes i s  i r o n  "C- 

a c e t a t e  appears t o  be a t  l e a s t  p a r t i a l l y  d i r e c t ,  s i n c e  

a d d i t i o n  o f  fenaxycerb t o  t h e  inoubation inedium of f a t  bodies 

from un t rea ted  l a rvae  r e s u l t e d  i n  reduced l i p i d  s y n t h e s i s .  The 

p o s s i b l e  involvenent  OF t h e  neurofndoarine system i n  l i p i d  

s y n t h e s i s  o f  c. fumiferana remains t o  be researohed.  
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4.3.1.1. I " C - ~ c e t a t e  product Analysis 

A t h i n  l aye r  chromatoqraphic (TLC) ana lys i s  of l i p i d s  

syn thes ized  from '%-acetate by t h e  f a t  bodies of t r e a t e d  

i n s e c t s  revealed tha t ,  a t  va r ious  t i n e s  a f t e r  t r e a t m e n t ,  most 

Of t h e  rad ioac t iv i ty  was presen t  i n  the TG and FA f r a c t i o n s ,  

followed by PL, DG, and StE. I n  t h e  con t ro l s ,  i n i t i a l l y  ( 2 4  

h ) ,  PL and FA were the  p r i n c i p a l  l i p i d s  synthesized from "c- 

a c e t a t e ,  with l e s s e r  amounts o f  T G ,  DG, and StE. Then, a t  7 2  

h  and 1 2 0  h ,  t h e  radiolabel  from "C-acetate was found mostly 

in t h e  TG and FA f rac t ions ,  wi th  lower l e v e l s  i n  PL, DG, and 

StE. These r e s u l t s  suggest  t h a t  fanaxycarb t r ea tment  also 

caused en a l t e ra t ion  i n  t h e  l i p i d  syn the t io  p a t t e r n ,  as 

compared t o  the con t ro l s .  

The syn thes i s  of PL and FA in the con t ro l  e a r l y  s ix th -  

i n s t a r  budworms may be a s s o c i a t e d  wi th  a c t i v e  growth. s i n c e  PL 

comprise an  essen t i a l  component of b io log ica l  membranes, i . e .  

s t r u c t u r a l  function (Downer, 1 9 8 5 ) ;  and FA may be u t i l i z e d  f o r  

energy metabolism and lo r  TG s y n t h e s i s .  The Iliqh p ropor t ion  of 

TG a n d  PA f r a c t i o n s  in t h e  l a t e r  period may be i n t e r p r e t e d  as 

a switchover towards l i p i d  s t o r a g e  in t h e  f a t  body. I n  t h e  

t r e a t e d  insec t s ,  a d i s r u p t i o n  in t h e  growth p a t t e r n  may be 

assoc ia ted  with a preponderance of TG over  PL s y n t h e s i s .  The 

high l e v e l s  of FA concomitant with TG in t h e  t r e a t e d  i n s e c t s  

sugges t  t h a t  FA ,nay be u t i l i z e d  f o r  TG syn thes i s  or energy 
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metabolism. However, t h e  p o s s i b i l i t y  of metabolic; 

intBrOOnYersions betWBBn t h e  va r ious  l i p i d  c lasses  canno t  be  

discounted,  and should be explored by charac te r i z ing  the  

enzyme systems involved. 

4.3.1.2 Synthesis  of Fa t ty  ~ c i d s  from " C - ~ c e t a t e  

The a b i l i t y  of c y t o s a l i c  enzymes, i . e .  c s l l - f r e e  

p repara t ions .  From the  f a t  bod ies  of t r e a t e d  budwarms t o  

syn thes ize  f a t t y  ac ids  b m, was a l s o  s i g n i t i c a n t l y  

impaired,  as demonstrated by reduced incorporation of "C- 

a c e t a t e  i n t o  f a t t y  ac ids .  Th i s  r e s u l t  corroborates the  

observed reduction i n  t h e  incorporation of "C-asetata i n t o  

l i p i d s  i n  i n t a c t  f a t  bodies,  and may explain t h e  o v e r a l l  

d e p l e t i o n  i n  l i p i d  l e v e l s  of fenoxycarb t r ea ted  r. &&slam 

i n  t h e  hemolyloph throughout t h e  e n t i r e  experimental pe r iod  and 

i n  t h e  Cat bodies a t  72 h and 120 h p o s t t r e a t m e n t .  The da ta  

sugges t  t h a t  the enzyme complement involved i n  f a t t y  ac id  

s y n t h e s i s  is af fec ted  by JHA treatment.  Perhaps, t h e  

b iosyn thes i s  of t h e  enzyme complex, as a composite of t o t a l  

p ro te in ,  was af fec ted ;  or t h e  capacity t o  u t i l i z e  the  

p recursor  and/or co fac to r s  was zmpaired as a r e s u l t  of 

fenoxycarb t reatment.  

There i s  compelling evidence t h a t  f a t t y  ac id  b iosyn thes i s  

i n  i n s e c t s  proceeds by a pathway s i m i l a r  t o  t h a t  desc r ibed  for  
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b a c t e r i a  and othLr animal groups (Wakil, 1961, 1970; Wakil st 

a,. 1964; Municio S a,, 1977: Lissrbe et a,, 1980; T i e t z ,  

1961, 1963) .  TWO separable cytoplasmic enzyme systems, a c e t y l -  

CoA carboxylase and f a t t y  a c i d  Eynthetare a re  r e spons ib le  for  

r a t t y  a c i d  syn thes i s  (Downer, 1985).  ~cmtyl-COA ca rboxy lase  

con ta ins  cova len t ly  bound b i o t i n  as a p ros the t i c  group,  and 

c a t a l y z e s  t h e  carboxylat ion of aoetyl-CaA t o  t h e  3-carbon 

compoUnd malonyl-CoA. Malonyl-coA then condenser wi th  a c e t y l -  

CoA i n  a series o f  r - l c t i a n s  ca t a lyzed  by the  f a t t y  a c i d  

syn the ta se  complex t o  y i e l d  a 4-carbon bu ty ry l  i n t e rmed ia t e  

(Downer, 19851. Af te r  a success ive  sequence of s i m i l a r  

condensations of malonyl-COA wi th  t h e  newly formed a c y l  

in t e rmed ia t e ,  an acy l  chain of appropr i a t e  length is formed. 

The enzymes of  the  f a t t y  a c i d  syn the ta se  complex are  c l o s e l y  

a s s o c i a t e d  with an aoy l -ca r r i e r  p r o t e i n  (ACP) t h a t  serves t o  

bind t h e  f a t t y  acy l  in t e rmed ia t e  conpounds through t h e  

formation of  t h i o l  e s t e r s  with t h e  a c t i v e  4'- 

phosphopantetheine group of  ACP (Downer, 1985).  Th i s  pathway 

r e s u l t s  i n  t h e  production of f a t t y  a c i d s  containing mostly an 

even-number of carbon atoms. The s y t o s o l i s  enzymes f o r  f a t t y  

a c i d  s y n t h e s i s  have been demonstrated in Prodenia g i d a n i a  

(Zebe and McShan, 1959). Locusts miqra ta r i a  (T ie rz ,  1963) .  

Fe r iDlane ta  a m e r i c a  ( s t o r e y  and  Bailey,  1978). m t i t i s  

(Linarbe et a,, 19801, L u c i l i a  s e r i c a t a  (Thompson st 

a,, 1975) ,  Ga l l e r i a  mellonella  (Thompson and Barlow, 1976).  
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and Acvr thas i~hon  (Ryan et d., 1982). 

I n  C. funtferana, t h e  involvement of  c y t a s o l i c  enzymes, 

p a r t i c u l a r l y  acetyl-COA carboxylase,  i s  suggested by t h e  

observation t h a t  add i t ion  of av id in ,  a potent  i n h i b i t o r  of 

b i o t i n ,  t o  c e l l - f r e e  p repa ra t ions  of t h e  f a t  body inh ib i t ed  

t h e  syn thes i s  of f a t t y  ac ids .  

4 . 3 . 1 . 3 .  Syn thes i s  of Complex L ip ids  from '*c-palmitate 

The competence of  f a t  bodies from t r e a t e d  sp ruce  budworms 

t o  syn thes i ze  complex l ip!ds in ill- from preformed f a t t y  

a c i d  Was s i g n i f i c a n t l y  diminished,  as demonstrated by t h e  

reduced incorpora t ion  of "C-palmitate i n t o  l i p i d ,  compared 

With t h e  r e spec t ive  c o n t r o l s .  Th i s  r e s u l t ,  i n  conjunction wi th  

t h e  impaired c a p a c i t y  of t h e  f a t  bodies from t r e a t e d  i n s e c t s  

t o  syn thes i ze  f a t t y  ac ids ,  may account fo r  t h e  o v e r a l l  

dep le t ion  i n  hernolymph and f a t  body l i p i d s  of  t r e a t e d  

budworas. The r e s u l t s  are in  agreement with G i l b e r t  l l967b) 

who, i n  Leuco~haea maderae, demonstrated t h a t  JH 1i.a .  CA 

implan ta t ion )  depressed t h e  r a t e  of  inco rpora t ion  of  preformed 

f a t t y  a c i d s  i n t o  f a t  body l i p i d s .  

I t  i s  g e n e r a l l y  accepted t h a t  i n s e c t  f a t  body has t h e  

capac i ty  t o  incorpora te  long-chain f a t t y  a c i d s  i n t o  

acy lg lyceeo l s  (Gi lbe r t .  1967a).  Short- term i n  W 

experiments have demonstrated t h a t  ILc-palmitate w a s  r a p i d l y  
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e s t e r i f i e d  by f a t  bodies from seve ra l  developments1 s t ages  of 

~ v a l o ~ h o r a  c e c r o ~ i a  (Bhaktan and Gi lbe r t ,  1970). S imi la r  

r e s u l t s  were obtained wi th  Ph i losan ia  w, Antheraea 

&v~hemur,  HvaloPhora q l o v e r i ,  and 1.eurmhaea m-n 

(Bhaktan and G i l b e r t ,  1970). 

In c. fumiferana,  t h e  d a t a  suggest  t h a t  t h e  enzyme 

systemis)  r e spons ib le  fo r  t h e  e s t e r i f i c a t i o n  of  f a t t y  ac ids  i n  

t h e  f a t  bodies may be  disrupted a s  a r e s u l t  of  Jlia t r ea tmen t .  

However, t h e  type ($ )  of l i p l d  syn thes i zed  prom "C-palni tata 

appaar t o  be una f fec ted  by t h e  JKA t reatment:  poss ib ly  because 

t h e  enzymes involved are a f f e c t e d  q u a n t i t a t i v e l y ,  rather t han  

q u a l i t a t i v e l y .  

In  Locusts miora to r i a ,  t he  f a t  body hamogenates have been 

shown t o  con ta in  variouz a c y l t r a n s f e r a s e s  of t h e  

aonoacylqlycerol  and o-glycerophosphate pathways f a r  

t r i a c y l q l y c e r o l  syn thes i s  (T ie t z ,  1969: Peled a n d T i e t 2 ,  19'11; 

T i e t z  & a,, 1975; T i e t z  and Weintraub, 1980).  The 

i n ~ o l v e m e n t  of  acy l t r ans fe rases  i n  l i p i d  syn thes i s  has a l s o  

been demonstrated i n  ClaIsina morsitans (Langley SS d., 

19811, c e r a t i t i s  c a ~ i t a t q  (Municio et al., 1980). 

n e l l a n e l l a  (Barlow f.. , 1980) , and Pe r io l ane ta  americena 

(Hoffman and Downer, 19791. Fur the r  s t u d i e s  on t h e  

cHaracterieat :on of t h e  a c y l t r a n s f e r a s e s  in  C. fumiferana are 

requ i red .  
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4.3.3.3.1 "c-palmitate Product ana lys i s  

TLC a n a l y s i s  of the  l i p i d s  b iasyn thes i red  from 16c- 

palmitats  by t h e  f a t  bodies OL JHA t r e a t e d  spruce budwoms 

showed t h a t  s u b s t a n t i a l  r ad io labe l  from "C-palmitete was 

loca l i zed  i n  t h e  DG f r a c t i o n ,  followed by smal le r  aaovntr  i n  

the  PL, MG, TG, FA, and StE f rac t ions .  However, t h i s  l i p i d  

p r o f i l e  i n  t h e  t r e a t e d  insec t s  was s i m i l a r  t o  t h e  respec t ive  

con t ro l s .  These r e s u l t s  ind ica te  t h a t ,  while overa l l  f a t  body 

l i p i d  syn thes i s  from labe l l ed  pa lmi ta te  was reduced, t h e  

c l a s s e s  of l i p i d  synthesized was unaffected as t h e  r e s u l t  o f  

fenoxycarb treatment.  The enzyme s y r t e m ( s ) ,  p r inc ipa l ly  

a c y l t r a n s f e r a s e ( s ) ,  involved i n  t h e  e s t e r i f i c a t i o n  of f a t t y  

ac ids  may be disrupted quan t i t a t ive ly ,  r a t h e r  than 

q u a l i t a t i v e l y ,  i n  the  t r e a t e d  insec t s .  

Al te rna te ly ,  it is possible t h a t  t h e  incubation period 

employed i n  t h i s  study (20  minutes, sea Mater ia l s  and 

Methods), al though allowing maximal incorporation of "C- 

p a l n i t a t e  i n t o  f a t  body l i p i d s ,  war nor s u f f i c i e n t  t o  e r t e r i f y  

the  f a t t y  a c i d  t o  TG and o the r  l i p i d s .  In  HvaloDhor.3 cecrooia 

and o t h e r  s a t u r n i i d  silkmoths (Bhaktan and G i l b e r t ,  1970).  t h e  

l a r v a l  eat  bod ies  incorporate palmitate i n t o  t r i a c y l g l y c e r o l  

b W, i n  an experiment of 3 hours incubation period,  

ind ica t ing  t h a t  t h e  longer period of incubation would allow 

almost  a l l  t h e  l a b e l  t o  accumulate i n  the  TG. Further s tud ies  
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on t h e  e a t e r i f i c a t i o n  of  preformed f a t t y  ac ids  i n t o  f a t  body 

l i p i d s  in  E. furniferana are "ceded. 

4 . 3 . 4  Fat Body '9-Palmitate Oxidation 

The 0-oxidation pathway for f a t t y  ac id  ox ida t ion ,  

l oca l i zed  i n  the  mitochondria, involves sequen t i a l  removal or 

2-carbon u n i t s  i n  t h e  form of acetyl-S-CaA, which undergo 

condensation with oxaloncetate t o  form c i t r a t e  (Lehninger, 

1975). The c i t r a t e  i s  subsequently oxidized i n  t h e  

t r i c a r b o x y l i c  a c i d  cyc le  t o  carbon d iox ide  and water  with 

conoolnitant generatLon of ATP (Lehnlnger,  1975).  I n  r. 
funiferana,  t h e  emission of "Co2 from "c-palmitate by f a t  

bodies b i? is i n d i c a t i v e  of pa lmi ta t e  ox ida t ion ,  and 

suggest  t h a t  t h e  p-oxidation pathway is opera t ive  i n  t h i s  

i n sec t .  

Ths c a p a c i t y  of f a t  bodies from fenoxycarb t r e a t e d  

bud worm^ t o  ox id ize  preformed f a t t y  a c i d s  m, v i a  t h e  P-  

oxidation pathway, was s i g n i f i c a n t l y  unpaired,  as demonstrated 

by reduced emission of '%o, from "C-palni tate,  compared with 

t h e  r e spec t ive  con t ro l s .  Th., ec fec t  of  JHA treatment was most 

pronounced a t  24 h post  t r ea tmen t ,  when t h e  r a t e  of pa lmi ta t e  

ox ida t ion  was about 10 % t h a t  of con t ro l s .  At 72 h and 120 h 

a r t e r  t r ea tmen t ,  p a l n i t a t e  ox ida t ion  increased,  a l b e i t  a t  a 
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l e v e l  lower than  ( 7 2  h) o r  s i m i l a r  t o  ( 1 2 0  h )  the respec t ive  

con t ro l s .  This r e s u l t  ind ica tes  t h a t  f a t t y  a c i d  oxidation,  as 

monitored by "a2 emission from "C-palmitate i n d i r e c t l y  v ia  

t h e  p o x i d a t i o n  pathway, was impaired i n i t i a l l y :  and may 

account fo r  t h e  observed accumulation of l i p i d  i n  t h e  f a t  

bodies o f  fenoxycarb t r ea ted  i n r e s t r  at 2 4  h pas t  t r ea tnen t .  

Then, t h e  r a t e  of f a t t y  ac id  oxidation appears t o  have been 

res to red  t o  near-control  l eva l s .  Thus, it i s  conceivable t h a t ,  

i n  t r e a t e d  budwoms, the re  may be i n i t i a l  disruption in t h e  P- 

oxide t ion  pathway, e i t h e r  by Impaired enzymatic a c t i v i t i e s  or 

incapac i ty  t o  u t i l i z e  subs t ra te /cofec to ra  o r  both;  followed by 

i return t o  near-control  l eve l s .  

Th i s  r e s u l t ,  i n  conjunction with the  e f f e c t s  of J H A  

t r ea tment  on l i p i d  syn thes i s  from a c e t a t e  and pa lmi ta te ,  

demonstrate t h a t  l i p i d  metabolism i s  severe ly  perturbed i n  r. 
fumiferana a s  a r e s u l t  of fenoxycarb t r e a t n e n t .  The ne t  r e s u l t  

o f  JHA t r ea tment  on l i p i d  metabolism i n  T. fu.iferana was an 

o v e r a l l  dep le t ion  i n  hemilymph and f a t  body l i p i d ,  evidently 

caused by reduced l i p i d  syn thes i s  and continued oxidation of 

l i p i d .  The i n i t i a l l y  high l e v e l  of f a t  body l i p i d s  i n  

fenoxycarb-treated i n s e c t s  may be a t t r i b u t e d  t o  the  pronoxnced 

i n h i b i t i o n  of t h e  p o x i d a t i o n  pathway ev:dent a t  t h i s  time. 

That f a t  bodies can ox id ize  f a t t y  a c i d s  v i a  t h e  P- 

oxida t ion  pathway has been unequivocally demonstrated, 

enzymatically,  in && (HosKins al., 1957).  
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Hvalollhora cecronia (Domroese and ~ i l b a r t ,  1964) .  

tnisratoria (Beonakkers, 1969; Beenakkers & al . ,  1967, 1975,  

1981 ) .  M a n e t a  alnericana (Storey and Bailey,  1978 ) .  

EllFosta s o l i d a a i n i s  ( s torey  and s t o r e y ,  19R1).  Sch i s toc srca  

qreqaria ( .ye= pr a,, 19601, Prodenia pridania (Stevenson,  

19661, and Luc i l i a  cu13rina (D'costs and B i r t .  1967, 1969a .b ) .  

The enzyme systems involved i n  t h e  P-oxidation pathway Eor 

f a t t y  a c i d  ox ida t ion  i n  c. iumiffffnp remain to be e luc ida ted .  



SUHne8.Y AND CONCLUSIONS 

The present  s tudy  h a s  focused on the e f f i c a c y  o£ severa l  

juven i l e  hormone analogs 1JHAs) aga ins t  t h e  s i x t h  i n s t a r  G. 

Fumiferana, and on t h e  e f f e c t s  OF s e l e c t e d  JHAs on 

carbohydrates,  p ro te ins ,  and l i p i d s  i n  the  hernolymph and f a t  

bodies of t h e  insec t .  Detailed s t u d i e s  were conducted on t h e  

e f f e c t s  of t h e  JHA fenoxycarb on Lipid ne tabo l i sn  of t h e  

spruce budworm. 

I) DOS~-response s tud ies :  Fenaxycarb, a phenoxy e t h y l  

carbarnate, war t h e  most e f f e c t i v e  JHA, of t h o l e  t h a t  were 

evaluated,  i n  d i s rup t ing  t h e  metamorphosis of G. fua i fe rana ;  

with a 14, of  0.261 #g / insec t .  

2 )  Morphogenetic Ef fec t s :  Fenoxycarb caused a wide a r r a y  

o f  morpnogenetic da fo rmi t i e s  r e s u l t i n g  i n  dea th  of C. 

fumiterana larvae. 

3)  Ef fec t s  o f  JHAs on Metaboli te Concentrat ions:  

Fenoxycarb and methoprene, a t  a sub le tha l  dose,  caused a 

genera l  d i s rup t ion  i n  t h e  metabolism oi' T. fu.iferane, as 

shown by a l t e r e d  l e v e l s  or carbohydrate,  p ro te in ,  end l i p i d  i n  

t h e  hemolyaph and f a t  bodies.  Lipid l e v e l s  i n  t h e  hemolymph 
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and fat bodies were severely depleted in fenoxycarb treated 

insects. 

I )  Neutral Lipid and Fatty Acid Profile: The predominant 

=lass of neutral lipid in the hesolymph of C. fumiferana was 

diacylglycerol; in the lat body teiacylqlycerol war abundant. 

Trace amounts or sterol esters and fatty acids (hernolymph), 

and phospholipid, diacylglycerol, and manoacylglyoerol (fat 

body) were also detected. The fatty acid complement of the 

henolymph and fat body Lipids was repre+*nterl by Clil:O, C16:Q. 

and C20:o (saturated fatty acids); C16:l and c18:l 

(monounsaturated fatty acids); and C18:2 (polyunsaturated 

fatty acid). These profiles were similar in controls and 

fenoxycarb treated insects. 

5 )  Overall Lipid Synthesis: The capacity of fat bodies 

from fenoxycarb treated C. fumiferars larvae to biosyntherire 

lipids in vitro was significantly impaired, a s  evidenced by 

reduced incorporation of "c-acetate precursor into lipid, 

compared to controls. 

6) "C-~cetate Product Analysis: A TLC analysis of lipids 

synthesized from "C-Acetate by the fat bodies b !&zs showed 

that fenaxycarbtreatment caused an alteration in the types of 

~omplex lipids synchesired, compared to controls. 
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7) Fatty Acid Synthesis: The ability of cytosolic enzymes 

isell-free preparations), from the fat bodies of treated 

insects to synthesize fatty acids m, was also 

significantly impaired, as demonstrated by eeduoed 

incorporation of '*c-Acetate precursor into fatty acids. The 

involvement of cytosolic acetyl-coA carbaaylase, a biotin- 

dependent enEyme, in fatty acid synthesis was demonstrated in 

the csll-free preparations of fat bodies from C. fumiferana. 

8 )  Synthesis oC Complex Lipids: The capability of fat 

bodies from treated C. fumiferana to biosynthesize complex 

lipids b vitrD from preformed fatty acid was signiPicantly 

diminished, as shown by the reduoed incorporation of "C- 

Palmitate into lipid. 

9) "C-Palmitate Product Analysil: A TLC analysis of 

lipids synthesized from '*c-palmitate by the fat bodies in 

~ilowed that, while overall fat body lipid synthesis from 

labelled palmitate was reduced in fenoxycarb-treated insects. 

the olesres of lipid synthesized was unaffected, compared to 

oontrols. 

10) "C-palmitate Oxidation: p he capacity of fat bodies 

from fenovycarb treated budworms to oxidize preformed fatty 

acids ja vitro, via the p-oxidation pathway, was significantly 
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impaired, as demonstraced by reduced emission of '$cat from "c- 

Palmitate.  his affect was most pronounced in the early ( 2 1  

hours post treatment) sixth instar r. z u f e r a n a  larvae. 
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