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INTRODUCTION

The i1dea of the Adams completion first arose in relation to
problems of stability and it was proposed by J. F. Adams in (1, part
IT, sec. 14). 1Its characterization and properties were clearly cate-
gorical. However, only in later works by Deleanu, Frei and Hilton
was the theory freed from its topological bounds.

The greatest difficulty, in dealing with the Adams completion
from the categorical point of view (hence in general), lies in its set
theoretical aspect. In fact categories of fractions, which play a basic
role here, are not always well defined, since there is no guarantee that
the collection of morphisms between any two of their objects is a set.

It 1s this set theoretical aspect which is the main focus of the
thesis.

The initial chapter, chapter zero, gives our notation.

In chapter one we develop the set theoretical approach to category
which seems most suitable for the logical difficulties we shall meet.

The framework is given here by the "universes' of Groth;ndieck and
the general references are (2) and (13).

However we have deduced from the set of axioms only those conse-
quences which are needed in what follows.

Chapter two is devoted to analyzing diagrams in a category. The
purpose here is to obtain the structure of diagram schemes and to de-

fine 1imits and colimits. The general reference is again (13).



v

In chapter three we define the concept of category of fractions
and give a proof of their existence in the general case. This is
accomplished, in case the category is not small, by a change of uni-
verse. Moreover we make the concrete description of the category of
fractions where it is defined with respect to a family of morphisms
admitting a calculus of left fractions. For this topic we refer the
reader to (6) and (8).

In chapter four we give the definition of Adams completion and prove
some general results concerning its existence.

The final chapter is no longer categorical, but rather topological.
Its intention 1s to indicate a possible direction further analysis of
the Adams completion might take. The source of this example 1s (4) and
it gives us the possibility of proving the Brown's representability
theorem for a homotopy functor defined on the category of CW-complexes.

The author feels the importance of this result in algebraic
topology justifies its detailed proof. We have, however, been compelled
to assume that the reader is familiar with CW-complexes and their
properties.

The general references for the topology of CW-complexes are (11),

(12) and (14).
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CHAPTER ZERO

NOTATIONS

We shall give here a schematic list of the particular notations
and conventions we have used in this work. Any symbol used, but not

mentioned here, has the meaning usually adopted in the literature.

§1. Genewl notation fon sets

The symbol { } denotes the set whose elements are listed or

described between the brackets, while {A denotes a collection

1.
1°1€J
of sets (or objects, elements, etc.) obtained choosing one Ai for

each 1 € J. The reduced form {Ai}i will be used whenever the set
J is clearly identified. The same rule applied to wedges (Vi),

unions (Ui), products (nl) and sums (@i). The set of functions

from a set X to a set Y will be denoted by Yk.

§2. Categorical notations

Denoting by C (or D or Abc, etc.) a category, then Ob(C)

will be the collection of objects of C and Mor(C) the collection of

morphisms of C. The symbol f : X - Y (or X £ Y) denotes a

morphism f from the object X to the object Y, while the set of
all morphisms in C from X to Y will be C(X,Y).
F:C~D (or G, H, etc.) will denote a functor from C to D,

while 1t : F > G (or &, T, etc.) will denote a natural transformation

from the functor F to the functor G. Furthermore 1

X F(X) - G(X)


















3. if x € U, then B(x), the collection of subsets of x, 1s an

element of U.

1). If {Xi}iGJ is a family of elements of U and J € U, then
UxiGU.
1€J

lHHowever it is just by the following axiom that we can overcome the logical

difficulties which arise from the usual set theory:
\) Every set is an element of a universe.

Notice that in this context the word ''set'" is just a synonym for
"collection' or similar words, while the mathematical restriction of 1its
measuring arises only in relation to a given universe. So we say that
x 1s a U-set if it is an element of the universe U, but that it 1s
a U-class if i1t is only a subset of U, considering U as an element
of a '"higher'" universe . This distinction makes sense because of
axiom 1), which allows us to talk about the set of all U—Qets being a
set, but, of course, in a higher universe .

We give now more consequences of definition 1.1 which will be very
useful later.

Defining an ordered pair (x,y) of U-sets to be the U-set {{x}, {y}},

we can define the cartesian product of two U-sets X and Y to be

the set:

X xY = {(x,y) | x€ X, y € Y}.



Now, Slnce we can write:

xxy= U (U v

XEX YyEY

by properties 2) and 4) it follows that X * Y 1is a U-set. We

define then a function f from X to Y to be a subset of X x Y

with the property that for each x € X there 1s a unique pair of the

form (x,y) in f. As usual that unique y 1is also denoted by f(x).

From properties 1) and 3) we have that any function between U-sets 1is

a U-set. Moreover the function set YX. that is to say,

the collection of functions from X to Y, 1is contained in

P(X xY) and hence is also a U-set if X and Y are U-sets.
Finally we define the cartesian product of a family {Xi}i€J

of U-sets, with J € U, to be the subset

1x e (ux)’
ieJ ieJ

determined by those functions f : J - '%;Xi such that for all 1 € J,
f(i) € Xj. Hence whenever J € U and éach of the Xi's belongs to
U, then the product set ‘ggxi belongs to U. An element f of such
a product will be denoted ;y {Xi}i’ where X, = f(1).

At this point it is also immediate to sec that if f : X — Y 1s¢
a function in some universe (U 2 U, X € U and, for each x € X,

f(x) € U, then f(X) € U. In particular, if f 1s a surjection or a

bijection, then Y € U; hence all quotient sets of U-sets are U-sets.



.2, U-Categondes

It is a firmly established fact that the collection of objects of
. category need not be a set, but the logical contradiction which is at
the basis of the Russell paradox works also in this case, so that the
category of all categories cannot be considered as a category.

Nevertheless many times it 1s very useful to consider this or
other kinds of structures which present the same difficulty. So we
w11 rearrange the definition of category keeping in mind the existence
of universes.

Thus, in order for C to be a category in the Universe U (a

J-category) we require that:

1) Ob(g) must be a U-class

2) C(X,Y) must be an element of U for any two objects X, Y of C.

In the particular case when Ob(C) 1s an element of U, C 1is said
to be a U-small category.

Notice that, if U 1s an element of a higher universe W and

O

is a U-category, then Ob(C) belongs to , and hence
Mor(c) = U cix,v)
X, YeEODb (C)
belongs to W. In fact if C 1s U-small then Ob(C) € U and hence

Mor(g) is a U-set.



»5. Functown Categerdes

The preceding discussion about universes allows us to construct
anv category, but we must be careful to check to which universe
1t belongs.

We use this fact to define functor categories.

Given two U-categories C and D the functor category [C,D] 1is

defined by having as objects all the functors F : C > D and as
morphisms all the natural transformations between them.
[L,l'; satisfies all the structural axioms for a category, but in general

it belongs to a higher universe. Moreover we have:

Proposition 1.2. If C 1s a small category and D is any U-category,

then the functor category ([C, D] 1is a U-category. Furthermore if D

is also U-small, then [C, D] 1is U-small.

Proof: Suppose C is U-small. Then Mor(C) 1is a U-set, so that, for

any functor F : C - D, MF = F(Mor(C)) 1is a U-set included in

Mor (D).
Now any such functor, like a function, can be viewed as a subset
of Mor(C) x MF and hence is a U-set. So Ob([C, D]) < U, but

the lack of further information allows us just to say that it is a U-class

+
4

1

However, if D is U-small as well, then Mor([C, D]) 1is contained

Mor (C)

in Mor(D) which, by the hypothesis, is a U-set. Hence

Mor([C, D]) ditself is a U-set.












CHAPTER TWO

DIAGRAMS

£1. Motivation

The use of diagrams to express various situations in category
theory is very common, useful and sometimes necessary when a clear

and quick analysis of the situation is nceded.

We examine these ideas in this chapter, including the appro-
wiate rigorous definitions. Our purpose is to formalize these well
inown mathematical concepts, and to obtain a structure wecaker than a

category, but strictly related to it.

This will give us the possibility of proving very easily some
results about categories of fractions which are, otherwise, hardly
achievable.

§2. Diaghram schemes

Definition 2.1. A diagram scheme I consists of two sets, denoted by

Ar(Z) and Ve(Z), and two maps o, e : Ar(Z) - Ve(I). The elements
of Ve(Z) are called vertices and those of Ar(Z) arrows. Finally,
for any a € Ar(Z) o(a) 1is called the origin of a and e(a) 1is

called the end of a.
































































































































































































































































g - n - 1., 1n such a way that j& = h . 1in particular we can
define a homotopy Kn—l R N hn-l : Yn—l*I -+ Z. Since
in—l 1s a cofibration, the diagram:
Eg :
* _ ~ Z
\n—l I .
ln-l*l e K
_ n
Y\r -
*
n 1

can be completed with a homotopy Kn from jé to another map which
will be our h
n

In this way the maps hn are such that:

a h_ =i~ ; b) h i =nh

n n n+1 n n
So we can define a map h : Y - Z by requiring h/Yn = hn Then for
every 1T we have:

h an = ]] =~ Jn

and these homotopies give us a homotopy L : h -an = j~ which
completes the proof. //
Theorem 5.135. For any CW-complex Y and any u € H(Y) there

exist a classifying CW-complex Y~, obtained from Y by attaching cells,

and a universal element u” € H(Y”) such that H[i1](u”) = u.




























































s commutative and shows that = ¢. This ends the proof of the

theorem. //

Corollary 5.19. 1If the object Y of CWh 1is S-admissible, then

it satisfies the Admissibility axiom.

Proof: Since in our hypotheses Y has an Adams completion, taking

S, to be composed only by the couniversal morphism of theorem 4.3,

7

the axiom 1s satisfied. //

27, Conclus{ons

We have seen that in this particular case the only condition for
the existence of the Adams completion of an object Y 1is the S-admissibili-
of Y. ©So we are facing again a set-theoretical problem and this shows
the importance of the investigation we have made 1in this field.

On¢ could seuarch for the Adams completion of a CW-complex in a higher
aniverse W (modulo same, light changes in the definitions). But then
to properly apply Brown's theorern we need to extend al: the functors
we are dealing with to this higher universe, eventually finding the
same problems there.

eleanu has shown in (5) that also 1n a tegorical situation which
generalizes our example, namely when C  is a category and S admits

& calculus of left fractions and satisfies a further comparability



condition on limits, the Adams completion of any S-admissible object
always exists. But again the S-admissibility depends uniquely upon
the admissibility axiom.

Nevertheless the concept of the Adams completion deserves great
attention, both for its intrinsic categorical importance and for its
actual applications. In fact, apart from the original context of
stability problems, it has becen shown by Deleanu and Hilton (7) that
the Adams completion of a l-connected CW-complex Y with respect to

the family of morphisms rendered invertible by the reduced homology

with coefficients in Zp (the integers localized at the family P of
primes) is the P-localization of Y. Morcover if we consider the

reduced homology with coefficients in Zp = Z/PZ we get the p-profinite
completion of Y.

Also in (5) we find an example due to Bousfield, of research of
the Adams completion in the algebraic category of abelian groups, in a
particular case when the admissibility axiom is satisfied by all the
objects of the category.

We conclude remarking that also the notion of Adams cocompletion,
obtained dualizing the definition of Adams completion, can be used in

many applications and leads to equally interesting results.





















