
CENTRE FOR NEWFOUNDLAND STUDIES 

TOTAL OF 10 PAGES ONLY 
MAY BE XEROXED 

(Without Author's Permission) 





1D030:J 







THE ADAMS COMPLETION 

BY 

ROBERTO BENCIVENGA ,r-

A THESIS 

SUBMITTED IN PARTIAL 

FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

MASTER OF SCIENCE 

Department of Mathematics~ Statistics and Computer Science 

Memorial University of Newfoundland 

December 1977 

St. John's Newfoundland 



- (i) -

ACKNOWLEDGEMENTS 

I wish to express my gratitude to my supervisor, Dr. Renzo 

Piccinini, for his assistance and invaluable support, both 

technical and moral. 

I thank also Dr. Phil Heath and Dr. S. Nanda for their many 

advices, Sr. Rosalita Furey, for her patient reviewing of the 

English form, Miss Elaine Boone for her heedful typing work and 

the Department of Mathematics, Statistics and Computer Science of 

Memorial University of Newfoundland which gave ~e the possibility of 

developing my Master's program. 

And if, as one of my colleagues remarked, the only universally 

known Adam's completion is Eve, then it is to my completion, Loretta, 

that I dedicate this thesis. 



TABLE OF CONTENTS 

PAGE 
ACKNO\-VLEDGE~fENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - i-

INTRODUCTION 1 

CHAPTER ZERO - NOTATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

§1. Gen~ no~on 6o~ ~et4 .......................... 3 
§2. ClLtegoJU.c.at no.ta.:tio~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
§3. Topo~ogic.at no.ta.:tio~ .............................. s 

CHAPTER ONE - UNIVERSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

§ 1. MotivtU:ion and auom6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
§ 2 . u- Ca;teg o!U.u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
§ 3. Funao~ Ca-tego!U.~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

CHAPTER TWO - D !A GRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

§1. ~~otiva;tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
§ 2 • ViagJr.a.m ~ c.he.m~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
§ 3. Viag1ta.m6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
§ 4 . Ca-tego!U..~ o 6 pa.:th6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 
§5. u~ and c.o~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

CHAPTER THREE- CATEGORIES OF FRACTIONS ...................... 35 

§1. Motivation and de.6inLtion ... ....................... 35 
§2. Co~~c.tion o6 a ~e.goJty o6 6~tac.T~on6 ............ 39 
§3. StLt~ed 6amili~ o6 mo!tphi6m6 ............... ..... 56 

CHAPTER FOUR- ADAMS COMPLETION.............................. 61 

§ 1 . Ve.6i~o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 61 
§2. Couniv~at p~op~y ........... ....... .. ...... ..... 63 

CHAPTER FIVE - BROWN'S REPRESENTABILITY THEOREM 
AND ADMvtS COMPLETION . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

§ 1 • 1 n.tJto duc.tio n • . . . . . . • • . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . 7 2 
§2. Homo~ogy .theo!U.u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 
§ 3. Homo.topy 6unc..to,v., . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 
§4. ~own'~ 1r..ep~~entab~y .theo!te.m ................... 93 
§5. The. ~.t!tuc..tu.Jte o6 CWh[s-1] ......................... lOR 
§6. E~.te.nc.e. o6 the. A~ c.amp~etion .................. 112 
§7. Con~LL6-iOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 

BIBLIOGRAPHY 124 



INTRODUCTION 

The idea of the Adams completion first arose in relation to 

problems of stability and it was proposed by J. F. Adams in (1, part 

II, sec. 14). Its characterization and properties were clearly cate­

gorical. However, only in later works by Deleanu, Frei and Hilton 

was the theory freed from its topological bounds. 

The greatest difficulty, in dealing with the Adams completion 

from the categorical point of view (hence in general), lies in its set 

theoretical aspect. In fact categories of fractions, which play a basic 

role here, are not always well defined, since there is no guarantee that 

the collection of morphisms between any two of their objects is a set. 

It is this set theoretical aspect which is the main focus of the 

thesis. 

The initial chapter, chapter zero, gives our notation. 

In chapter one we develop the set theoretical approach to category 

which seems most suitable for the logical difficulties we shall meet. 

The framework is given here by the "universes" of Grothendieck and 

the general references are (2) and (13). 

However we have deduced from the set of axioms only those conse­

quences which are needed in what follows. 

Chapter two is devoted to analyzing diagrams in a category. The 

purpose here is to obtain the structure of diagram schemes and to de­

fine limits and colimits. The general reference is again (13). 
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In chapter three we define the concept of category of fractions 

and give a proof of their existence in the general case. This is 

accomplished~ in case the category is not small~ by a change of uni­

verse. Moreover we make the concrete description of the category of 

fractions where it is defined with respect to a family of morphisms 

admitting a calculus of left fractions. For this topic we refer the 

reader to (6) and (8). 

In chapter four we give the definition of Adams completion and prove 

some general results concerning its existence. 

The final chapter is no longer categorical~ but rather topological. 

Its intention is to indicate a possible direction further analysis of 

the Adams completion might take. The source of this example is (4) - and 

it gives us the possibility of proving the Brown's representability 

theorem for a homotopy functor defined on the category of CW-complexes. 

The author feels the importance of this result in algebraic 

topology justifies its detailed proof. We have, however, been compelled 

to assume that the reader is familiar with CW-complexes and their 

properties. 

The general references for the topology of CW-complexes are (11), 

(12) and (14). 
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CHAPTER ZERO 

NOTATIONS 

We shall give here a schematic list of the particular notations 

and conventions we have used in this work. Any symbol used, but not 

mentioned here, has the meaning usually adopted in the literature. 

The symbol { } denotes the set whose elements are listed or 

described between the brackets, while {Ai}iGJ denotes a collection 

of sets (or objects, elements, etc.) obtained choosing one A. 
1 

for 

each i G J. The reduced form {A.}. will be used whenever the set 
1 1 

J is clearly identified. The same rule applied to wedges (V.), 
1 

unions (U.), products (IT . ) and sums (e.). The set of functions 
1 1 1 

from a set X to a set Y will be denoted by Yx. 

§ 2 . Ca-t e.g o !Uc.a.i. n.o-t.a;t{.o ru, 

Denoting by C (or D or Abc, etc.) a category, then Ob(C) 

will be the collection of objects of C and Mor(C) the collection of 

morphisms of C. The symbol f X ~ Y (or X ! Y) denotes a 

morphism f from the object X to the object Y, while the set of 

all morphisms in C from X to Y will be C(X,Y). 

F C ~ D (or G, H, etc.) will denote a functor from C to D, 

while T F ~ G (or 8, T, etc.) will denote a natural transformation 

from the functor F to the functor G. Furthermore TX : F(X) ~ G(X) 
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will be the morphism associated with the object X via the transfor­

mation T. 

F ~ G means that the functors F and G are naturally equiv-

alent. 

Set will be the category of sets and functions. 

Set* will be the category of pointed sets and based functions. 

Top* is the category of pointed topological spaces and based maps. 

CW* is the category of based, path connected CW-complexes and 

homotopy classes of based maps (under the relation of homotopy which 

will be given later). 

Ab is the category of abelian groups and homomorphisms. 

Grad is the category of graded abelian groups and graded homo­

morphisms of degree zero. 

Given a category C ; for any X 6 Ob(C) there is a covariant 

functor 

~(X,-): C-+ Set 

and a contravariant functor 

C (-,X) C -+ Set 

They are defined by: 

C(X,-)(Y) = C(X,Y) 

f(-,X)(Y) = f(Y,X) 

for every Y 6 Ob(f). Then if f 6 C(Y,Z), C(X,-)(f) is the function, 
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denoted by f* : f(X,Y) ~ f(X,Z) and defined by: 

for all g 8 C(X,Y) 

while ~(-,X)(£) is the function f* : C(Z,X) ~ C(Y,X) defined by: 

f*(g) = g • f for all g 8 C(Z,X) 

When~ _ at the same time, we deal with two of these functors, say 

~(X,-) and f(Y,-), for a given f b f(Z,W) we shall denote by 

f* both the functions C(X,-)(f) and C(Y,-)(f), whenever the 

difference is clear. The reason for that is not only simplicity, but 

also the fact that those functions, even if they are defined between 

different sets, work in the same way. 

§ 3. TopoR__og-ica£ no:ta.U.on-6 

By a "space" we mean a topological space. A continuous function 

between spaces will always be referred to as a "map". 

The symbol I , when denoting a space, will always indicate the 

closed unit interval [0,1] c R. 

In Top* we shall denote by X * I the quotient spac~ 

X X I 
X X I 

0 

Note that X * I is well defined also in CW*, since I is compact 

and x~ x I is a subcomplex of X x I. With this convention a 

homotopy from X to y in Top* or cw* is a map F : X* I~ Y. 
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Moreover the notation F : f ~ g : X * I + Y means that F is a 

homotopy from X to Y such that F[x,O) = f(x) and F[x,l] = g(x) 

for all x G X. Also we say that two elements f, g G Top*(X,Y) are 

homotopic (or base homotopic) if there exists F : f ~ g : X * I+ Y. 

If (X,x ) 
0 

the set Top(I,X) can be regarded 

as an object of Top*, (X)I, by giving it the compact open topology 

and the constant map on x
0 

as base point. 

It can be easily proved that the functor 

defined by: 

(- * I) : Top* + Top* 

(- * I) (X) = X * I 

(- * I)(f) = f * 1 

for all X G Ob(Top*) 

for all f € Mor(Top*) 

(where f * l[x,t] = [f(x),t]) is left adjoint to the functor 

defined by 

I (-) = Top* +Top* 

(-) I (X) = (X) I 

(-)
1

(f) = f* 

for all X € Ob(Top*) 

for all f € Mor(Top*]. 

So it preserves colimits (14, prop.l6.4.6) and, in particular, for 

V (X * I) ;;; (V X ) * I • a a a a 

This implies that two maps f, g : V X __, Y are homotopic if and only if 
a a 
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for each a the restrictions f/X and g/X are homotopic (we 
a a 

shall use this fact very often). 

If {Xa}aEA and {Ya}aEA are two families of spaces indexed 

by the same set A, then 

{f } : V X ~ V Y 
a a a a a a 

will denote the map whose restriction to 

while the notation 

v f V X ~ Y 
a a a a 

X is the map 
a 

f 
a 

is used when every one of the restrictions of V f to X has the 
a a a 

same range Y. 

Finally for CW-complexes we will often use (12~ lemma 1.5.7) which 

states that if we have a pushout in Top* of the form 

f y 

I 

..!, 
x------~w 

where 1 is the inclusion of the subcomplex A into the CW-complex 

X, Y is a CW-complex and f is cellular, then W is a CW-complex. 

The symbol // means "end of the proof". 
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CHAPTER ONE 

UNIVERSES 

§ 1. Motiva_ti_on and auom6 

This thesis does not attempt to make a deep study of set 

theory; it is, however~ important to have some clear 

ideas about the concept o£ universes, since their use seems to be 

unavoidable in some categorical constructions, in particular in the 

construction of categories of fractions. 

It is well known that the usual set theory, as described by 

Zermelo and Fraenkel, when used without extreme rigor leads very 

easily to some incoherent results. The most famous of those is the 

Russell paradox, which implies that the set of all the sets is not 

a set. 

To avoid those difficulties we will work in the logical framework 

of "universes" of Grothendieck. 

The first step in this direction is to forget the existence of 

"primitive", i.e. indivisible, elements, and to consider any set as a 

collection of other sets, where the collection can even be empty or 

consist of a single element. 

With this agreement we can give the following definition. 

Definition 1. 1. A universe u is a set (of sets) subject to the 

following conditions: 

1) . if X b u and y b x, then y b u 

2). if X b u and y b u, then {X,)'} b u 
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3). if x 6 U, then ~(x), the collection of subsets of x, is an 

element of U. 

4). If {xi}i6J is a family of elements of U and J 6 U, then 

u 
i6J 

x. 
1 

6 u. 

However it is just by the following axiom that we can overcome the logical 

difficulties which arise from the usual set theory: 

A) Every set is an element of a universe. 

Notice that in this context the word "set" is just a synonym £or 

"collection" or similar words, while the mathematical restriction of its 

measuring arises only in relation to a given universe. So we say that 

x is a U-set if it is an element of the universe U, but that it is 

a U-class if it is only a subset of U, considering U as an element 

of a ''higher" universe W. This distinction makes sense because of 

axiom l), which allows us to talk about the set of all U-sets being a 

set, but, of course, in a higher universe W. 

We give now more consequences of definition 1.1 which will be very 

useful later. 

Defining an ordered pair (x,y) of U-sets to be the U-set {{x}, {y}}, 

we can define the cartesian product of two U-sets X and Y to be 

the set: 

X X y {(x,y) I xGX,y6Y}. 
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Now, since we can write: 

X x Y = U ( U (x,y)) 
xt:X yt:Y 

by properties 2) and 4) it follows that X x Y is a U-set. We 

define then a function f from X to Y to be a subset of X x Y 

with the property that for each x € X there is a unique pair of the 

form (x,y) in f. As usual that unique y is also denoted by f(x). 

From properties 1) and 3) we have that any function between U-sets is 

a U-set. Moreover the function set that is to say, 

the collection of functions from X to Y, is contained in 

~(X x Y) and hence is also aU-set if X and Y are U-sets. 

Finally we define the cartesian product of a family {Xi}it:J 

of U-sets, with J t: U, to be the subset 

IT X. c ( U X. )J 
it:J 1 it:J 1 

determined by those functions f : J ~ U X. such that for all i t: J, 
i€J 1 

f(i) € X.. Hence whenever J t: U and each of the X. 's belongs to 
1 1 

U, then the product set IT X. belongs to U. An element f of such 
it:J 1 

a product will be denoted by {x. }., where x. = f(i). 
1 1 1 

At this point it is also immediate to see that if f : X ~ Y is 

a function in some universe W ~ U, X t: U and, for each x t: X, 

f(x) t: U, then f(X) t: U. In particular, if f is a surjection or a 

bijection, then Y t: U; hence all quotient sets of U-sets are U-sets. 
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§2. u-cat~goni~ 

It is a firmly established fact that the collection of objects of 

a category need not be a set, but the logical contradiction which is at 

the basis of the Russell paradox works also in this case, so that the 

category of all categories cannot be considered as a category. 

Nevertheless many times it is very useful to consider this or 

other kinds of structures which present the same difficulty. So we 

will rearrange the definition of category keeping in mind the existence 

of universes. 

Thus, in order for C to be a category in the Universe U (a 

U-category) we require that: 

1) Ob(C) must be aU-class 

2) ~(X,Y) must be an element of U for any two objects X, Y of C. 

In 

to 

is 

the particular case when Ob (C) is an element of u, c 

be a U-small category. 

Notice that, if u is an element of a higher universe 

a U-category, then Ob (C) belongs to w, and hence 

Mor(f) = U C(X,Y) 
X, Y80b (C)-

is said 

w and 

belongs to W. In fact if C is U-small then Ob(C) 8 U and hence 

Mor(C) is a U-set. 

c 
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§ 3. Fu.nctofL Ca:tegoJvLe4 

The preceding discussion about universes allows us to construct 

any category, but we must be careful to check to which universe 

it belongs. 

We use this fact to define functor categories. 

Given two U-categories C and D the functor category [f,D] - is 

defined by having as objects all the functors F : C ~ D and as 

morphisms all the natural transformations between them. 

[f,Q] satisfies all the structural axioms for a category, but in general 

it belongs to a higher universe. Moreover we have: 

Proposition 1.2. If C is a small category and D is any U-category, 

then the functor category [f, Q] is a U-category. Furthermore if D 

is also U-small, then [f, D] is U-small. 

Proof: Suppose C is U-small. Then Mor(C) is aU-set, so that, for 

any functor F : C ~ Q, MF = F(Mor(f)) is a U-set included in 

Mor(D). 

Now any such functor, like a function, can be viewed _as a subset 

<Pp of Mor(C) X~ and hence is a U-set. So Ob ( [f, D]) c: u, but 

the lack of further information allows us just to say that it is a U-class 

However, if D is U-small as well, then Mor( [f, D]) is contained 

in Mor(D)Mor(~_) which, by the hypothesis, is a U-set. Hence 

~1or([f, D]) itself is aU-set. 
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Furthermore, for any two functors F, G : C ~ D consider the 

collection [f, D] (F,G) of natural transformations between them. 

Denote by N the product set: 

N = TI D(F(A),G(A)) 
A€0b(S)-

which is, 1n our hypothesis, a U-set. Since a natural transformation 

a: S ~ T is a function from Ob(C) to N, then [C, D](F,G) is 

a subset of NOb(C) and hence is aU-set. 

But it could happen that the same natural transformation applies 

to more than one pair of functors. So, to avoid the technical difficulty 

which arises, for this reason, from the definition of a category, we 

will say that an element of [C, D](F,G) is a triple (a,F,G), with 

a a natural transformation from F to G. 

This of course does not affect the set theoretical aspect of the 

matter, so that our claim is completely proved. // 

We can give two counterexamples to show that the conditions of 

proposition 1.2 are necessary for the result. 

First of all if D is U-large, choosing C to be the trivial 

category with one object and its identity morphism, we have that [f, Q] 

is isomorphic to D and so is not U-small. 

For the next example notice that the category Setu of U-sets and 

functions is a U-category which is U-large, i.e. not U-small, since 
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Ob(Set
0

) is not a U-set. 

Let Set* be the subcategory of Set
0 

having all the objects of 

Setu and just the identity morphisms, so that both Set* and Set
0 

are U-large categories. Then let I Set* + Set
0 

be the inclusion 

functor and F : Set* _+ SetU be the constant functor sending all the 

objects of Set* to a set A having only two elements which we will 

denote by 0 and 1. 

For any X b Ob(SetU)' Set
0

(X,A} contains at least two elements: 

the constant functions on 0 and 1 (0* and 1* respectively). Also 

for any f b Set
0

(X,A), the diagram 

f 

X f 
A 

commutes. 

Since the identities are the only morphisms of Set*, . any 

natural transformation a I + F can be determined by simply fixing, 

for each X b Ob(Set*), an f b SetU(X,A). So there is a bijection 

(Set*, Set
0

] (I ,F) ~ II Set
0

(X,A) 
XbOb (SetU) 
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But the right hand side product set contains, 1n particular, all the 

elements of the form (0*,0*, ... , 1*,0* ... ), with 1* 

corresponding to a particular X f Ob(Set
0

) and 0* in all the other 

places. The collection of such elements is clearly bijective with 

Ob(Set
0

) and hence is not aU-set, so neither is [Set*, Set
0

](I,F) 

aU-set which proves that [Set*, Set
0

] is not aU-category.// 

From now on, unless explicitely mentioned, we shall work in a 

fixed universe U which contains the set of natural numbers ~ and, 

consequently, the set of rationals, Q, and the set of reals, R. 

Thus we shall not mention explicitely such a universe, unless we need 

to consider a higher universe W. So by a set we shall mean a U-set, 

by a category a U-category and so on, unless otherwise stated. 
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CHAPTER TWO 

DIAGRAMS 

The use of diagrams to express various situations in category 

theory is very common, useful and sometimes necessary when a clear 

and quick analysis of the situation is needed. 

We examine these ideas in this chapter, including the appro-

priate rigorous definitions. Our purpose is to formalize these well 

kn own mathematical concepts, and to obtain a structure weaker than a 

category, but strictly related to it. 

This will give us the possibility of proving very easily some 

results about categories of fractions which are, otherwise, hardly 

achievable. 

§ 2 • v .-i..a.g Jta.m .6 c.h e.me-6 

Definition 2.1. A diagram scheme L consists of two sets, denoted by 

Ar(L) and Ve(L), and two maps o, e : Ar(L) ~ Ve(L). The elements 

of Ve(L) are called vertices and those of Ar(L) arrows. Finally, 

for any a f Ar(L) o(a) is called the origin of a and e(a) is 

called the end of a. 
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We can already notice that any small category C induces a diagram 

scheme E (C) defined by: 

Ve(E(~)) = Ob(~); Ar(E(C)) = Mor(C) 

and, for each f G ~(A,B), 

o(f) = A; e(f) = B 

E(~) is called the underlying diagram scheme of C. 

We shall try now to invert this process, i.e. to get a small 

category starting from a diagram scheme. What we need for that is to 

reconstruct those peculiar things of a category which are missing in a 

diagram scheme, namely the identities and a law of composition for the 

morphisms. 

To that end we give some more definitions. 

A path in a diagram scheme E is a finite sequence (a1 ,a2 , ... , a) - - -n 

of arrows such that: 

e(a.) = o(a. 1) for 1 < i < n-1 
-l -l+ 

o(~1 ) is called the origin of the path, 

and n the length of the path. 

e(a ) the end of the path 
-n 

It is possible to compose two paths (a1 , 

. ~ . , b), 
-m provided that e (a ) = o (b 

1 
) , 

--n -

, a ) and -n 

by the rule: ' 
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. . . , a ,b
1

, 
--n- . . . ' b ) • -m 

This rule allows us to compose arrows too, since any arrow can be 

considered as a path of length one, although the composition of two 

arrows is not an arrow but a path. 

A diagram scheme L' is then called an extension of L if 

Ar(L) £ Ar(E ... ) and V e (E) £ V e ( E ') . The trivial extension of 

a diagram scheme E is the one obtained by adding to Ar(E), for 

each vertex A, a particular arrow, denoted by lA' starting and 

ending at A and called the identity on A. 

At this point it can be immediately argued that for any diagram 

scheme E there exists a well defined category whose objects are 

the vertices of E. The morphisms in this category from the object 

u to the object v are equivalence classes of paths in from u 

to v under the following equivalence relation: 

p '\, q 

if and only if the paths p... and q' 

obtained from p and q respectively, 

by eliminating all the identities which 

are in their sequences, are equal (or empty). 

In the following we shall denote by lEI the diagram scheme 

obtained from the diagram scheme E by setting 

VeCIEI) = Ve(L) 

Ar (IE I) = ¢. 
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If, for a given diagram scheme L, we have 

i.e. if Ar(L) = ~, L is said to be disconnected. 

We have seen how a small category gives rise to a diagram scheme 

and viceversa. 

Moreover it is possible to connect these two concepts in a 

weaker way, generalizing the ideas given before. 

Definition 2.2. Given a category C and a diagram scheme L, a 

diagram in C of type L is a function D from L to C, sending 

each vertex v of L to an object D(v) of C and each arrow a to 

a morphism 

D(~) D(o(a))-+ D(e(a)). 

We can define D also for the paths of L by: 

D(a
1
,a

2
, ... , a ) = D(a ) . D(a 

1
)· .... D(a

1
). 

- - -n -n -n- -

A diagram is, then, analogous to a functor and in fact it is 

possible to define natural transformations between diagrams of the same 
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type in the same category and to form a category [~,C) whose 

objects are diagrams in C of type ~ and whose morphisms are 

natural transformations between diagrams. The technique is entirely 

analogous to the one used for functor categories and we notice only 

that, since we require Ar(~) and Ve(~) to be sets, the proof of 

proposition 1.2. can be used to show that [~,C) is always a category 

in the initial universe. 

Another very basic notion related to diagrams in commutativity. 

A commutativity condition in a diagram scheme ~ is simply a pair of paths 

(p ; q) in ~ such that 

o(p) = o(q) ; e(p) = e(q). 

For any path p in ~ we can set up, in ~0 , two particular 

commutativity conditions, which are called trivial conditions, given 

by 

(p and (p ; 10 (p) • p) • 

The connection between this definition and the usual concept of 

commutativity of a diagram is now easily achievable. In fact a diagram 

D : ~ ~ C is said to satisfy the commutativity condition (p,q) of 

if D(p) = D(q) in c· _, furthermore a diagram D : ~ ~ C is said 

to be commutative if, for each pair of paths (p,q) in ~ such that 

o(p) = o(q) and e(p) e(q) 
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we have D(p) = D(q). 

More generally if a diagram D : L + C satisfies a set .K of 

commutativity conditions, it is said to be of type L/K. Of course, it 

is again possible to define natural transformations between diagrams 

in C of type L/K and the corresponding category [L/~,f] 1s 

easily seen to be a full subcategory of [L,f]. 

At this point it is easy to understand that a "diagram", in the 

common sense of the word, is just a graphic representation of a 

diagram D : L + C obtained by drawing a symbol for each element of 

L (usually capital letters and arrows) and by associating with each 

symbol the name of the image under D of its corresponding element. 

This convention will be used in the following as often as it is 

used in any other work involving categorical notions. Its efficiency 

seems to be a reason sufficient to justify such a common use. 

§ 4 • Ca-te_g oft-LeA o n pa-tho 

We now have enough notions to define a type of category which will 

be used later on. 

Given a diagram scheme L and a set ~ of commutativity 

conditions in L, we can define a (small) category, namely the category 

of paths belonging to L and K denoted by ~(L/K), as follows. 

The objects of ~(L/~) are the vertices of L. 
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To define ~he morphisms consider, for each pair of objects (u,v), 

the set P(u,v) o£ paths in l: from u to v and the following 
0 

relation on P(u,v) : p '\, q if and only if there exists a finit:e 

sequence pl ... Pn of paths, with pl = p and Pn = q, such that 

is obtained from p. 
1 

by substituting one of the subpaths p 
1-

of p. 1 1-
by a path 

-, 
p such that 

of them is a trivial condition. 

or or one 

This is easily seen to be an equivalence relation and moreover, 

if p "- q, p' "- q' and e(p) = o(p"') then p .. • p 'V q ... • q. 

Hence we can properly define morphisms in P(l:~) from u to 

v as equivalence classes of path_s in l: under this relation. 
0 

The 

existence of identities is guaranteed by the definit.ion of trivial 

condition. 

There is, however, a set theoretical point which makes the whole 

thing possible and justifies the assumptions of Ar(l:) and Ve(l:) 

being sets. In fact, in order for ~(l:/K) to be a category, we 

have to be sure that, for any two vertices u and v of l:, 

~(l:/K)(u,v) is a set. 

Now if Ar(l:) and Ve(l:), as we have supposed, are sets, then 

Ar(l: ) is a set and hence so also is 
0 

p = IT 
i€N 

(Ar (l: ) ) .. 
0 1 

But the collection of paths in L between any two vertices 
0 

u and 
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v is a subset of P, so that ~(E/K) (u,v), 

·t is also a set, as we need. 
1 ' 

being a quotient of 

On the other hand, if Ar(E) is a set, but Ve(E) is a proper 

class, then ~(E/~) is still a category, but it has a very particular 

structure. In fact it is the union of a small category with a discrete 

large category (i.e. a large category whose morphisms are just the 

identities). 

In the following it will be convenient to suppose that ~ is 

empty. 

If Ar(E) is not a set, but Ve(E) is, then clearly there is a 

pair of vertices u, v such that the arrows from u to v do not 

·form a set; so ~(E/~) (u,v) is not a set and hence ~(E/~) is not 

a category. 

Finally, if both Ar(E) and Ve(E) are proper classes, we can 

give an example of a diagram scheme E such that ~(E/~) is not a 

category. Let E have, as vertices, the elements of a proper class. 

Choose two vertices u and v and, for each other vertex z define one 

arrow from u to z and .one from z to v. Adding two arrows from 

u to v we have that the collection of paths from u to v and 

Ve(E) are bijective, so that P(E/~) (u,v) is not a set and hence 

~(E/¢) is not a category. // 

~(E/K) satisfies the following universal property: 
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Proposition 2.3. For a given set ~ of commutativity conditions of 

r, there exists a diagram ~ : E ~ ~CriK) such that if D : r ~ C 

is an object of [riK,C] (C is any category), then there is a 

unique functor D : P(riK) ~ C with D = D • ~ 

Proof: Of course ~ has to be defined by the identity on the 

vertices and by the projection of each arrow into its equivalence 

path class, and this assures us that ~ is a diagram of type rl~. 

The required relation D = D • ~ for a given D gives us the 

uniqueness and the definition of D: 

D(v) = D (v) V v b Ob (~(riK)) D[p] = D (p) 
0 

where D
0 

is the trivial extension of D to r
0 

and [p] is the 

equivalence class of p. 

So we have only to check that D is well defined. But, if 

[p] = fq], then p ~ q and, since D satisfies the commutativity 

conditions of K, D
0

(p) = D
0

(q). II 

The technique we have developed so far prompts us to define by 

means of diagrams the basic notions of limits and colimits. 

Definition 2.4. Let D r ~ C be a diagram in C of type r. An 
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object X 6 Ob(C) is said to be a limit of D if there exists a 

family of morphisms of C 

{f(Y) X+ D(Y)}Y€Ve(L) 

satisfying the following properties: 

Ll) The diagram 

D(a) 
D(Y) D(Y .. ) 

f(Y) ~ / f(Y .. ) 

X 

is commutative for all a 6 Ar(L). 

L2) If {g(Y) : Z + D(Y)}Y6Ve(L) is anothP.r family of 

morphisms of C satisfying property Ll), then there is a unique 

morphism h : Z + X such that the diagram 

h 

D(Y) 

z 

I g(Y) 

is commutative for all Y € Ve(L). 

Now dualizing this definition we obtain 

Definition 2.5. Let D r ~ C be a diagram in C of type I. An 

' 
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object X € Ob(~) is said to be a colimit of D if there exists a 

family of morphisms of C 

{f(Y) D(Y) + X}Y€Ve(~) 

satisfying the following properties: 

CLl) The diagram 

D(a) 
D(Y) 

f(Y~ 
X 

D (Y _.) 

/ f(Y') 

is commutative for all a € Ar(~). 

CL2) If {g(Y) D(Y) + Z}Y€Ve(~) is another family of 

morphisms of C satisfying CLl), then there is a unique morphism 

h : X + Z 

such that the diagram 

h 
X Z 

f(~ ;:(Y) 
D(Y) 

is commutative for all Y € Ve(~). 
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If we drop the uniqueness condition on the morphism h from 

definitions 2.4. and 2.5. we get the definitions of weak limit and 

weak colimit respectively. 

We now give some examples of commonly used limits and colimits. 

When E is disconnected then the limit (colimit resp.) of any 

D r + C is said to be a product (coproduct) of D. 

If E is represented by: 

then the limit (colimit resp.) of any D : E + C is said to be an 

equalizer (coequalizer) of D. The weak colimit o£ such a diagram, 

i.e. the weak coequalizer, will have an important role later on. 

Finally i£ E is represented by: 

a) 
) . 

1 
--~>· 

b) t 
• 

Then a limit in the case a) is called a pullback; while a colimit in the 

case b) is called a pushout. 

A category C is said to be complete (cocomplete) if" every diagram 

in C admits a limit (colimit). 

A very powerful result is given by the following theorem. 

Theorem 2.6. If a category C admits coproducts and coequilizers, 

then it is cocomplete. 
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Note: of course the dual of this theorem is also true and the proof 

of it is just dual to the one we give now. The reason of our choice 

lies in the fact that~ in most of the cases, we shall work with co-

products and (weak) coequalizers. 

Proof: Let D : L ~ C be a diagram in C of type define a 

disconnected diagram L~ by setting: 

Ve(L~) = {(Y,f)/f E Ar(L), o(f) = Y} 

and let D ... D* ILl~ C be the diagrams defined by: 

D ... (Y, f) = D (Y) = D*(Y) . .. 

then D* and D~ admit coproducts, defined suppose, by the families: 

{h(Y) D(Y) 

{k (f) D ... (Y,f) ~ Z}f€Ar(L) 

respectively. Hence the families 

{h(Y) : D~(Y,f) ~ X}f€Ar(L) and 

{h (e (f)) • D(f) D ... (Y,f) ~ D(e(f)) ~ X}f€Ar(L) 

define unique morphisms i Z ~ X and j Z ~ X such that, for 

all f G Ar(L), the diagrams 
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h (Y) h ( e (f) ) • D (f) 
D"'(Y, f) ) X D"'(Y,f) ---------~X 

k(f)~ /i k(f) 

z z 

are commutative. 

Now let L : X + W be a coequalizer of the diagram 

i 
Z ------)X • 

j 

We claim that W, together with the morphisms 

{ L • h (Y) D(Y) +X + W}Y6Ve(I) 

is a colimit of D. 

In fact, for all f : Y + y~ in I, the diagram 

D(f) 

is commutative, since 

l · h(Y-") • D(f) = L • j • k(f) = l • i · k(f) = L • h(Y) • 

Moreover if 

{v(Y) : D(Y) + V}Y6Ve(I) 

is a family of morphisms satisfying the property CLl), there is a unique 
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morphism v X+ V such that for all Y E ILl the diagram 

h (Y) 
D (Y) >X 

v(~/~ 
v 

is commutative. This implies the commutativity of the diagrams: 

for all f 

k (f) 
D ... (Y, f) Z 

v•h(~ L~ 
v 

k (f) 
-----~z D ... (Y, f) 

v•h(Y')·D~ 
v 

Y + Y... in L. Therefore, since 

v·h(Y ... )·D(f) = v(Y ... )•D(f) = v(Y) = v·h(Y) 

Then v·-i = V'!j. But then the coequalizer nature of f._ implies the 

existence of a unique f._' : W -+ V such that f._ ... • f._ = v. So the 

diagram: 

£ ·h (Y) 
D(Y) 

v(Y) 

v 
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is commutative for all Y € Ve(E), and this terminates the proof since 

the uniqueness of ~~ comes from the construction. ff 

We list here a series of well known facts that will be used 

later, but we omit their proofs. 

I) The categories Set> Set*> Top* admit products, and they are 

given by the usual cartesian product (and projections) 

II) The categories Set* and Top* admit coproducts and they are 

given by the wedge spaces (and the inclusions) 

III) The categories Set* and Top* admit equalizers and coequalizers. 

Hence Set* and Top* are complete and cocomplete. 

IV) The category Gr admits products and coproducts. 

From now on, when talking about limits and colimits, we shall 

identify a diagram D : E + C with its image, D(E). For instance 

by product of a family {Xi}i€J of objects in C we mean the limit 
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of the diagram D from the disconnected diagram scheme J to C 

defined by D(i) = X .. 
1 

The following result is weaker than those just given; nevertheless 

it will be useful. 

Lemma 2.7. CWh has weak coequalizers. 

Proof: Let X and Y be based, path connected CW-complexes and 

let [f] and [g) be two elements of CWh(X,Y). 

We know that W = X * I belongs to Ob (CWh) and that the 

subspace 

A= (X x I)/(x x I) 
0 

of W is a subcomplex of W and is, in fact, X V X. 

Now choose cellular representatives f b [f] and g b [g] 

(this is always possible because of the cellular approximation 

theorem); the map: 

f v g A-+ y 

is, also cellular and we can consider, in Top* the pushout: 

y -- -- 7 z 

J 

j A 

fvg l j 

i 
A - > w 
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where i is the inclusion, so that the space Z obtained in this way 

is a CW-complex. 

Then we claim that [j] is a weak coequalizer of [f] and [g]. 

The map j : W + Z is in fact, a homotopy j • f ~ j • g, 

because of the commutativity of the pushout diagram. Furthermore 

suppose j"' : Y + Z... is another map such that [j'" • f] = [j'" • g]. 

Then the homotopy L: j ... f ~ j ... g: W + Z'" makes the diagram 

A\-----~ 

commutative. So there exists a map h Z + Z'" such that: 

h. j = j'" 

and this completes the proof. // 

And, finally, we give another simple lemma that we shall recall 

later. 

Lemma 2.8. Let {f. 
1 

Ai + X}i€J be a family of morphisms in the 
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category C making X the coproduct of {Ai}iEJ. Then there is a 

natural equivalence of functors 

defined by: 

8 : C(X,-) ~ II.C(A.~-) 
1- 1 

Proof: We first notice that the second functor is well defined~ since 

Set is complete. Then for any g : Y ~ Z the diagram 

----~II. C(A.,Y) 
1- 1 l {g.li 

C(X, Z) -------)II. C(A. ,Z) 
1 - 1 

is commutative~ since for any h 6 .f_CX~Y) 

{g*}
1
. • eyCh) = {g*}. • {h ·f.} = {g • h ·f.} 

1 1 1 

= {g•h•f.}., 
1 

Furthermore~ since X is the coproduct of {Ai}. , 
1 

each 

element {h.} 6 II. C(A.~Y) (for any Y) determines a unique 
1 1- 1 

h £ .f_(X,Y) such that ey(h) = {hi} and this completes the proof. fi 
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CHAPTER THREE 

CATEGORIES OF FRACTIONS 

§ 1. Mali va.tio n a.nd de. {y[yz)_;f;)_o n 

One of the most common problems in every branch of mathematics 

is to "enlarge" an algebraic structure A to obtain another structure 

B which contains the "inverses" of some elements of A with 

respect to a given law of composition. 

For example the need of having the inverses of the elements of 

~ with respect to the multiplication gives rise to the construction 

of Q. 

The definition of a group reflects this necessity too. 

Thus having a category ~, the question arises whether and 

how it is possible to get inverses for the morphisms of a given family 

S ~ Mor(C). 

We recall that a category in which all the morphisms are invert­

ible is called a groupoid. However, we avoid such a strict condition 

and set up the following: 

Definition 3.1. Given a category C and a class of morphisms 

S SMor(~), we say that the category C[S- 1 ] is the category of 

fractions of C with respect to S if there exists a functor 
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such that: 

r. for all s € S, F S (s) is an isomorphism , 

II. FS is universal with respect to the above property, i.e. 

if G : C + D is a functor such that G(s) is an isomor-

phism for every s € S, then there exists a unique functor 

H : f[S- 1] + D such that the following diagram commutes: 

Fs 
f[S-1] c 

~ 
/ 

/ 

I H (1) 
/ 

~ 

D • 

We can talk about "the" category of fractions because property II 

ensures that if f[S- 1 ] exists, it is unique up to isomorphisms of 

categories. 

On the other hand the problem of the existence of C[S- 1 ] 

presents some set-theoretical difficulties which we resolve by the 

following theorem. 

Theorem 3.2. If C is a U-small category and S is a subset of 

Mor(f) then C[S-
1

] exists and is a U-category. 

Proof: Since C is U-small, it has a well defined underlying 

diagram-scheme L(C). We can define, on L(C), a set ~ of 
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commutativity conditions by: 

, g ) ) If . f 1 •...• fl = g • g 1 . . . gl }. m n n- m m-

Consider now the diagram scheme E~ obtained from E(C) by 

adding, for each s 8 S, an arrow, denoted by -s, from e(s) to 

o(s). Then Ar(E~) is still a set. Let ~ and ~ be the sets of 
o e 

commutativity conditions in E~ defined by: 

and let 

K
0 

= {(s,-s),lo(s))/s G S}; ~e = {((-s,s),leCsY/s 8 S} 

.IC ~ be the union of K, K 
0 

and K . 
e 

With these hypotheses the category of paths ~(E~/~~) is well 

defined and is, actually, our f[S-
1

). In fact the function 

defined by: 

F
5

(X) = X 

F
5 

(f) = [f) 

for all X 8 Ob(f) 

for all f 8 Mor(f) 

is clearly a functor. It sends each element s 8 S into an isomor-

phism, since 

[..:s] • F5 (s) = [-s) • [s) = [(s,-s)) = [lo(s)) 

and similarly F5 (s) • [-s] = [le(s)]. 
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Furthermore if G : C ~ D is any other functor, then G ban be 

considered as a diagram G : L(C) ~ Q. If it also has the property 

that G(s) is invertible for every s b S, then the function 

G~ : L~ ~ D defined by 

G"(X) = G(X) 

G ... (f) = G(f) 

for any vertex X of L ... 

for any arrow f of L 

-1 
G ... (-s) = G(s) for any s f S 

is the unique diagram extending G to L... and satisfying all the 

conditions of K". 

Now by proposition 2.3 there exists a unique functor 

G ... = HL) 

where 1::. L ... ~ P(L ... /IC ... ) is the "projection" diagram. Therefore we 

have: 

H • FS(X) = H ·!:.(X) = G"'(X) = G(X) 

H • FS(f) = H[f) = H •L) (f) = G"'(f) = G(f) 

for any X fOb(~) and any f b Mor(~). 

This proves that H is the unique functor which satisfies property 

II of definition 3.1. // 

Corollary 3.3. Given any U-category C and any family sc Mor(C), 

the category C[S-
1

] exists in some higher universe W. 
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Proof: Any U-category C is W-small in some higher universe W. 

Applying theorem 3.2 in that universe we get a W-category f[S-
1

] 

which proves the claim. II 

Corollary 3. 4. For any category C and any family S ~ Mor (C), 

Ob(C) = Ob(C[S-
1
]). 

Proof: This follows from the proof of theorem 3.2, from corollary 3.3 

and from the uniqueness of f[S-
1
]. II 

The result given by corollary 3.3 is undoubtedly powerful. 

Nevertheless the construction of C[S- 1 ] used in the proof of theorem 

3.2 is not very practical, as it involved abstractly defined morphisms, 

which, in the particular cases, do not have the same nature as the 

original ones. 

The problem becomes much easier in the case we shall analyze in 

this section. 

Definition 3.5. Given a category C, a family S ~ Mor(C) is said to 

admit a calculus of left fractions if: 

a) S is closed under finite composition and contains all the 

identities of C 



- 40 -

b ) Any diagram of the form 

X 
s y 

f l 
z 

with s 6 s can be completed, in c, to a commutative 

diagram: 

s 
X y 

fl 
'.:/ 

lf-
z w 

s"" 

with s "" 6 s. 

c) Given any diagram 

s f 
X y ;> z 

g 

\-vith s 6 s and f • s = g • s, there exists a morphism 

s"" . z -+ w in s such that s"" • f = s"" • g. 

The fact that S admits a calculus of left fractions will enable us 

to give a description of C[S- 1 ] without introducing new entities. 

Unfo_rtunately this condition is not sufficient to guarantee that, in 

general a change of universe can be avoided. 

However, since for our purposes such a change can be acceptable, 
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we devote the remaining part of this section to giving such a 

description and to checking all the details involved. 

There is, of course, no problem with the objects, since 

-1 
Ob (~ [ S ] ) = Ob (~) . 

For the morphisms, if ~(X,Y) is empty we shall assume that 

~[s- 1 ](X,Y) is empty too. If ~(X,Y) 1 ~, consider all tha pairs 

of morphisms (f,s) represented by a diagram of the form 

X y 

z 

with s € S. There is an equivalence relation on the collection of 

such pairs defined by: 

(f,s) rv (g,t) 

if and only if there exists a commutative diagram of the form 

with as = bt £ S and bg = a£. We shall assume that each equivalence 

class of pairs under this relation will be an element of C[s- 1 ](X,Y) 

and we shall denote by [f,s] the class of (f,s). 

' 
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We have, of course, to verify that this construction is well 

defined. For this purpose we shall prove the following lemmas. 

Lemma 3.6. The relation ~ is an equivalence relation. 

Proof: ~ is clearly reflexive 

and symmetric. To check the transitivity suppose there exist 

commutative diagrams 

with bt = as b s, du = ct b s, bg = af and dh = cg. -Then by the 

hypothesis on s the diagram 

y bt w 

ct 1 
w ... 

can be completed to a commutative diagram 
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y bt )W 

ctl lz 
w .... w w ........ 

with, for instance_, z G S. Then in the diagram 

t 
Y ----~z .... 

W•C 

z·b 

t f: S and w·c·t = z•b·t_, so there exists a morphism p : W ....... -+ W .......... 

belonging to S and such that p·w·c = p·z·b. Hence the diagram 

proves that (f,s) ~ (h,u) since 

p·w·d·u = p·w·c·t = p·z·b·t = p·z·a·s 

and p~z·d·u = p•z•a•s f: S. // 

We can now talk about equivalence classes of pairs, we 

legitimatize our choice of them as morphisms by giving an associative 

law of composition and by showing the existence of the identities. 
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y __ g.;......__7Z' 

s l lv 
y .... ----::---:Jo w .... 

k 

gives another completion of diagram (2) . 

Then we can embed the diagram 

Z' 
v 

::> W' 

ul 
y 

w 

into a commutative square 

Z'" 
v 

=> W' 

uJ jv-
u' ' w u 

with u' t: S, getting that v""• v • g = u • ug and hence v""ks = u""ks. 

So, using property c of definition 3.5, from the diagram 

y s 

we get the existence of a 

Y"" 
v'k 

---"--~--} u 

u""h 

w : U + V in S such that 
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v 

is commutative and gives the equivalence (hf,ut) ~ (kf,vt). U 

The technique we shall use _to prove the next lemma is similar to 

the one we used for lemma 3.7. Nevertheless we shall give this proof 

too in full detail in order to point out the tricks involved in it. 

Lemma 3.8. y is independent of the choice of the representative of 

[f,s]. 

Proof: Suppose that the diagram 

' 
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gives the equivalence (f,s) ~ (f~,s~). Then we can complete 

bs y -----;;. v 

hs l 
w 

to a commutative square 

y bs >V 

hsl 
..v 

lc 
w ;>W"' 

v 

with v € S, and hence from 

s 
Y----~ y~ 

cb 

-----tw~ 
vh 

we get a w W"' ~ w~ in S such that 

web = wvh. 

But now wvu £ S and 

wcas' = acbs = wvhs = wvug 

so that we can complete the diagram 

X z 

g 
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by 

In fact lemma 3.7 allows us to make such an arbitrary choice~ which 

is then justified by the fact that in this way the commutative 

diagram 

w ..... 

w~~~//
7 

T wvu ~ 

y~f~/.t: ~ 
X Y Z W ...... 

~ Js g lt 
y-- z ;> 

~lu 
w 

gives the equivalence 

(hf,ut) ~ (wcaf ,wvut) 

and hence the required independence. ff 
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Lemma 3.9. y is independent of the choice of the representative of 

[g,t]. 

Proof: Suppose (g,t) ~ (g~,t~). Then using the same arguments as in 

lemmas 3. 7 and 3.8, it is possible to construct a commutative diagram 

of the form: 

which proves the result. U 

Finally we have 

Lemma 3.10. y is associative. 

Proof: Let [f,s) : X~ Y, [g,t] : Y ~ Z and [h,u] 

morphisms in C[S- 1] and suppose that the diagram 

w 
V"""' 

Z ~ W be 
' 
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gives a representative of 

[f,s] • ([g,t] • [h,u]) 

and the diagram 

h 

s* 

W* 

gives a representative of 

([f,s] • [g,t]) • [h,u]. 

Then using again properties b) and c) of definition 3.5, we get 

first of all a commutative square 
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s* 
w-- W* 

s't'l I 
I v 

k v w..,...,...,. _ -) v 

with k (or v) in S. Then by the usual technique we obtain a 

morphism w : V + U, such that wkg ... s = wvh-g-s, and, successively, 

a morphism w ... : U + u-- such that w--wkg'f = w--wvh~g-f. 

This means that the diagram 

u 

gives the equivalence 

and hence the required associativity. ~ 
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Noticing that for any s : X ~ Y in S the class 

[s,s] = [lx~lx] plays the role of the identity morphism on X, all 

the structural properties of a category are satisfied by C[S- 1 ]. 

However since C is not required to be small nor S to be a 

set, we cannot be sure that C[S-
1

](X,Y) is a set for every pair of 

objects in C. Hence ~[s- 1 ] belongs, in general, to a higher 

universe. 

We now need to prove: 

Proposition 3.11. Let C and ~[S- 1 ] be categories defined in the 

hypotheses and by the construction of the preceding discussion. The 

func-tor defined by: 

F
5

(X) = X Vx 6 Ob(C) 

F5 (f) = [f,ly] \If 6 ~(X, Y) 

is then the canonical functor which makes C[S-l] the category of 

fractions of c with respect to s. 

Proof: F
5 

is well defined, since for every X 6 Ob(C) 

F5 (lx) = [lx,lx] = 1 F
5 

(x) 

and for any f € ~(X,Y) and g € C(Y,Z) 
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as shown by the diagram 

• 

Furthermore for any s X + Y in S: 

F5 (s) • [ly,s] = [s~ly] • [ly,s] = [s,s] = [lx,lx] 

[ly_,s] • F5 (s) = (ly,s] • [s~ly] = [ly,ly] 

as shown by the daigrams: 

y 

y 

so that F
5

(s) is indeed an isomorphism. 

Noticing that any morphism [f,s] can be written as 

we shall now prove the universality of F
5

. 
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Given a functor G : C + D such that for all s € S G(s) is 

an isomorphism, we define a functor 
-1 

H : f[S ] + Q. by 

H(X) = G(X) \j X € Ob ( C [ S - 1 ] ) 

H[f~s] = G(s)-
1 

• G(f) V [f,s] € C[S- 1 ](X,Y). 

H is well defined: suppose (f,s) ~ (g,t) via the diagram 

y{Jz-~ 
X Y W • 

~/ 
z 

Then, since G is a functor and s, t, bs, at € S, we have: 

G(at) = G (bs) . , 

G(at) . G(s)-l . G (f) = G (b) . G(f) ; 

G(s)-l . G(f) = G(at)-l . G (b) . G(f) 

G(s)- 1 . G (f) = G(at)-l . G(a) . G(t) . G (t) -l . G (g) 

G(s)-l . G(f) = G(t)-l . G (g). 

H is a functor: suppose that the composite [g,t] [f,s] is 

given by diagram (3) then: 

H([g,t] [f,s]) H[hf,ut] 
-1 

G(hf) . = = G. (ut) . = 

= G(t)-l . G(u)-l . G(h) . G(f) = 

= G(t)-l . G(u)- 1 . G(u) . G(g) . G(s)- 1 . G(f) = 



- 55 -

= G(t)-
1 

• G(g) • G(s)-
1 

• G(f) = 

= H[g~t] • H[f~s] 

-1 
and furthermore for any X € Ob(~[S ]) 

-1 
H [1 X, 1 X J = G ( 1 X) . G ( 1 X) = 1 G (X) = 1 H (X) 

H makes the diagram (1) commutative: in fact for any f € C(X,Y) 

H • F
5

(f) = H[f,ly] = G(1y)-
1 

• G(f) = G(f). 

H is unique: if H~ is another functor satisfying our 

conditions, for any [f,s] € ~[S- 1 ](X,Y) 

H ... [f,s] = H ... (F (s)-l • F (f)) = (H~ • F (s))-l • (H~ • F (f)) = s s s s 

G(~)-l • G(f) = H[f,s]. 

This completes the proof. ~ 

As an application of the method we have developed in this section, 

we give an example which also justifies the name "category of 

fractions". 

We know that Q is a quotient of ~ x (Z-0) under the equivalence 

relation R defined by 

(a,b) R (c,d) if and only if ad = be. 

But Z may be viewed as a category with one object, whose 

morphisms are the integers. The law of composition is given by the 

multiplication. If we take S = Mor(~) - 0 it is easy to see that S 
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admits a calculus of left fractions. 

So Z[S-
1

) comes out to be the quotient of ~ x (Z-0) under 

the equivalence relation R* given by (a,b) R* (c,d) if and only 

if these exist m and n in (Z-0) such that 

rna = nc and mb = nd ~ 0. 

But we have: 

(a,b) R* (c,d) =-> mnad = nmbc ->ad = be ;> (a,b) R (c,d) > 

> (a,b) R* (c,d), (taking m = d and n =c). 

So Z[S-
1

) = Q, i.e. it is the category of "fractions", in the 

classical sense of the word. · 

We have seen in the previous section that if S admits a 

calculus of left fractions then we can give a very practical description 

of f.[S- 1 ). 

The property of S that we are now going to describe can help in 

deciding whether S admits such a calculus. 

Note: we do not exclude the possibility that f.[S-
1

) may belong to 

a higher universe, but the whole discussion holds true even in this 

more general context. ' 
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Definition 3.12. A family of morphisms S S Mor(f) is said to be 

saturated if any morphism of C rendered invertible by the canonical 

-1 
functor F5 : f + f[S ] belongs to S. 

There is, in fact, a universal characterization of a saturated 

family o£ morphisms, given by the following. 

Proposition 3.13. A family S of morphisms of the category C is 

saturated if~ and only if, there exists a functor F : C + D (for 

some category D) such that S is the collection of morphisms of C 

rendered invertible by F. 

Proof: If F is saturated then F
5 f + f[S-

1
] is the functor 

we need. 

On the other hand if F is a functor as before, the universal 

property of F
5 

ensures the existence of a commutative diagram 

c 

f · ~ 
D 

Now if F
5 

(f) is invertible, then HFS (f) = F (f) is invertible; so 

f £ s and hence s is saturated. II 

Note that if s is saturated, it is closed under composition. 

Furthermore if u·v f s then 

.. 
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~ v 8 s 
-1 -1 

Fs(u)) 1) u 8 s (F S (v) = Fs(u·v) . 

> u 8 s 
-1 

Fs(v) 
-1 

2) v 8 s (F S (u) = . F
5

(u•v) ) 

Moreover we have the following basic theorem. 

Theorem 3.14. Let S be a saturated family of morphisms of C such 

that every diagram 

s 
x----~Y 

fl 
z 

with s € S can be embedded in a weak pushout diagram 

X 
s y 

fl lg 
y 

z )W 
t 

with t 8 s. Then s admits a calculus of left fractions. 

Proof: The fact that S is saturated ensures that S is closed 

under composition and contains the identities of C. Furthermore 

our hypotheses directly imply that part b) of definition 3.5 is 

satisfied. So we need to prove only part c). 

Suppose we have 
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f 
-----;> z 
-----? 

g 

with s € S and fs = gs . Then the diagram 

s 
x-----7-Y 

fsJ 
z 

can be completed to a weak pushout diagram 

X 

z 

s 
-----)Y 

v 
----;>w 

u 

h 

with u € S. Therefore there exist morphisms u and v, represented 

by the dotted arrows~ completing the diagrams: 

X 
s 

X 
s y 

fsl fs h 
...., 

u f z z w 
"'-V 

....... 

' , ~ z 

and belonging to S (since 1 and u belong to S). But nm.; the diagram 

w v z 

"' ,..., 
z 
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can be completed to a commutative square 

v w-----3>' z 

z----~u 
q 

in which p andJ hence, q belong to S. Furthermore we have 

p = pvu = qwu = q 

so that 

pf = pvh = qwh = q • g = p ·g. 

Hence p Z + U is the morphism required by C). II 

' 
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CHAPTER FOUR 

ADAMS COMPLETION 

§ 1 . V e. 6-irU;t.io n 

Suppose we are given aU-category C and a family S SMor(C). · 

We say that an object Y of C isS-admissible if C[S-
1

](X,Y) is 

aU-set for all X 8 Ob(C). Whenever Y isS-admissible the composite 

c 

is well defined and gives us a contravariant functor from C to SetU 

which, from now on will be denoted simply by 

C -+ Set. 

We can now set up the following: 

Definition 4.1. Let C be a category and consider a family 

S c Mor(C) and an object Y of C which is S-admissible. If 

there exists an object Y
5 

8 Ob(f) such that 

then Y5 is called the Adams completion of Y with respect to S, 

or simply the S-completion of Y. 
' 
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The following result is not surprising: 

Lemma 4.2. If Y 6 Ob(C) has an S-completion Y5 , it is unique up 

to isomorphisms. 

Proof: Suppose there is an object Z 6 Ob(C) not equal to YS, 

such that 

Then clearly there exists a natural equivalence 

Denote by e the element in ~(Y5 ,z) such that 

and by e 

TY (ly ) = e 
s s 

the element in C(Z,Y5 ) such that 

Then the following diagram is commutative: 

T 
C(Z,Y

5
) z > C(Z,Z) 

e~*j Ty j e'* 
s > ~(Y5 ,z) ~CY sl' Ys) 

1' e* j e* 
Tz . 

C(Z,Y
5

) / ~(Z,Z) 
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so that: e* • e*(e .... ). But we have 

and since Ty is a bijection, then 
s 

In the 

e • e = ly . 
s 

same way, since 

e ... * -1 (e) . Ty 
s 

then e • e = 1 Z. II 

§2. Cou.niveMat p!topvz;ty 

Tz is 

-1 
= Tz 

e and 

also a bijection 

. e .... *(e) 

and 

In the previous chapter we have shown that the notions of calculus 

of left fractions and saturated families are strictly related to the 

notion of category of fractions. Thus definition 4.1 may lead us to 

conjecture that they are also related to the existence of the Adams 

completion of an object Y. 

Actually the following theorem gives us a very interesting 

answer to this conjecture. 
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Theorem 4. 3. Let S &; Mor (C) be a saturated family of morphisms 

admitting a calculus of left fractions. Then the object Z is the 

s-completion of the S-admissible object Y if and only if there 

exists a morphism e : Y ~ Z in S such that, for any morphism 

s : Y -+ W in S, there is a unique morphism t : W -+ Z rendering 

commutative the diagram: 

y e 
----..::0., z 

~ / 

w 

--:"J 
/ 

/ t 
I 

Proof: a) The condition is necessary. 

Suppose z is the S-completion of 

equivalence 

In particular: 

-1 
Ty: C[S ](Y,Y)-+ f(Y,Z) 

Y· , 

is a bijection between sets. We claim that 

then there is a natural 

is the morphism having the couniversal property. 
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Let s y -+-W be a morphism 

f [ S -1] (Y, y) 
Ty 

Fs (s) ·1 
C[S- 1](W,Y) 

T w 

By hypotheses it is commutative and 

in s and 

C (Y, Z) 

~ s* 

) C(W,Z) 

and 

consider the diagram 

T 
w 

are bijections. 

Moreover, since s € S, FS(s) is invertible so that FS(s)* is also 

a bijection and hence s* is a bijection. In particular there exists 

a unique t € C(W,Z) such that s*(t) = e, i.e. 

t · s = e. 

So we only need to show that e € S. Since S is saturated we . 

shall show it by proving that FS(e) is invertible. 

Let a be the element of f[S- 1 ](Z,Y) defined by 

The commutativity of the diagram 

~[ S -l] (Y, Y) 

Fs(e)•j 

f[S-l) (Z, Y) 
Tz 

----~ C(Z,Z) 
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and 

Hence From the bijectivity of and the 

definition of e we conclude that 

i.e. a is a left inverse of F5 (e). To show that it is also a right 

inverse, let 

be a representative of a, 8 be the element 

and h be the element Tu(B) £ ~(U,Z). 

The commutativity of the diagram 

1 Ty 
C[S- ](Y,Y)----~~(Y,Z) 

Fs(s)* 1 T s* 
1 Tu 

~[S- ] (U,Y) ---~~(U,Z) 

Fs (f)* l 
~[ S- l ] ( Z, Y) 

gives us the equalities 
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h . s = s *(h) -= s* (Tu(B)) = TY(F5 (s)*(B)) = 

= Ty(ly,ly) = e 

h . f = f*(h) = f*(TU(B)) = T2 (F5 (f)*(B)) = 

= T2 [f,s] = T2 (a) = lz 

which prove that 

F
5 

(e) F
5

(e) -1 F
5 

(f) . a = . F
5

(s) . = 

Fs (h) F
5

(s) -1 F
5

(£) = . . F
5

(s) . = 

= F
5

(h) . F
5

(f) = [lz,lz] 

concluding part a). 

b). The condition is sufficient. 

Suppose that there exists e : Y + Z in S satisfying our 

couniversal property. Then we shall prove the existence of natural 

equivalences: 

and T* : ~(-,Z) 
-1 

+ C [S ] (-, Z) . Then the composite (T*)-1 • T will 

give the result. 

Define T by 

for X 6 Ob(C) and a 6 C[S- 1](X,Y). In this way T is a natural 

transformation. In fact for any f 6 ~(X,W) the diagram 
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~[S-l] (X, Y) __ T_X __ > ~[S-l] (X,Z) 

F S (f)* 1 1 F S (f) * 

~[s- 1 ]c~,Y) Tw ~[s- 1 ](W,Z) 

is commutative, since, £or any a 6 ~[S- 1](W,Y) 

TX(F5 (f)*(a)) = TX(a • F
5

(f)) = F
5

(e) • a • F5 (£) 

and F
5

(£)*(Tw(a)) = F
5

(f)*(F
5

(e) • a) = F
5

(e) • a • F5(f). 

Moreover since e t S, F
5

(e) is invertible; hence the natural 

transformation 

de£ined by 

-1 
T 

is the inverse o£ T. This shows that T is a natural equivalence. 

Now define, for each X 6 Ob(C), a function 

Tx = ~cx,z) + c[s- 1 ]cx,z) 

by Tx(f) = [f,lz] for any £ € C(X,Z). 

To show that Tx is surjective £or any X, let a 6 ~[S- 1 J( X, Z) be 

represented by 
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Because of the couniversality of e, the diagram 

e 
Y----~,.. Z 

~ w 

can be completed by a unique morphism t W + Z with tse = e. 

But this means that the diagram 

e 
Y----~,... Z 

~ z 

can be completed by both t s and 1
2

, Thus 

ts = 1 z 

and since S is saturated, we can write: 

Tx(t£) = Tx(t) • Tx(£) = FsCt) • FsC£) 

-1 
= F5 (s) • F5 (f) = [f,s] = a. 

To prove that T* 
X 

lS injective suppose T* (£) = T* (g) X X· for 

some f, g € ~(X,Z). Then [f,l
2

] = [g,1 2] and this implies the 

existence of an s : Z + W in S such that 

sf = sg. 

Now using the same technique as before, from s and e we can 
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construct a morphism t : W ~ Z such that ts = 1 2 and finally 

sf = s g - ;> t sf = t s g - ;> f = g. 

The bijectivity we have just proved ensures that for all 

x € Ob(C), C[S-
1

](X,Z) is aU-set. So Z isS-admissable and 

hence T* can be viewed as an equivalence between C(-,Z) and 

f[S- 1 ](-,Z). To prove the naturality of T* it suffices to look, for 

any morphism h . X~ W in ~, at the diagram . 

T* 
) C[S-l](X,Z) ~CX:o Z) 

X 

h*1 T F (h)* s 
_g_cw, z) 

Tw 
C[S-l](W,Z) 

and to notice that, for any a 8 C(W,Z), Tx(h*(a)) = Tx(a·h) = [a·h,l 2] 

Corollary 4.4. If S is a saturated family of morphisms of a category 

f, admitting a calculus of left fractions and Z 8 Ob(~) is the 

S-completion of an object Y of ~' then the S-completion of Z exists 

and is Z. 

Proof: In these hypotheses there exists a couniversal morphism 

e : Y ~ Z and hence, according to the second part of the proof of 

theorem 4.3, a natural transformation 

which gives the result. ~ 
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We remark here that corollary 4.4 gives the reason for the 

name "completion", since in the case originally analyzed by Adams 

in (1), the family S had the required properties. 

' 
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CHAPTER FIVE 

BROWN'S REPRESENTABILITY THEOREM AND ADAMS COMPLETION 

§1. I~oduction 

In this chapter we will consider a particular case and in it we 

will look for the conditions under which the S-completion of an object 

exists. Our hypotheses will be as follows. 

Let Cl~ be the cate·go!Y of based, path connected CW-complexes 

and homotopy classes of based maps. The family S will be the 

collection of morphisms rendered invertible by an additive homology 

theory H* on CWh. The final result will then be that every 

$-admissible object Y of CWh has an S-completion. 

To this end, in section 2, we define an additive homology theory; 

in section 3, we define homotopy functors and prove some of their 

properties. In section 4, we shall prove that for any homotopy functor 

H there is an object Y in CWh such that 

. 
H ~ CWh(-,Y). 

In section 5 and 6, we shall prove that for any S-admissible object X 

in CWh (S being the family described before), CWh[S-
1
](-,X) is 

a homotopy functor. 

Combining the last two steps the result will follow. 
' 
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§ 2. Homoi.ogy The.oJU..e~.> 

We shall give here only the definition of a homology theory on 

cw* and CWh, without developing this topic any further. More infor-

mation can be found in (12), (9) or in any other work on homology 

theory. 

First of all consider the operator S which assigns to each 

topological space X its reduced suspension: 

SX = Xxi 

(Xx{O})U(Xx{l})U({x }xi) 
0 

and to each base point preserving map f : X ~ Y the map Sf SX ~ SY 

defined by 

Sf([x,t]) = [f(x),t]. 

Then S can be properly defined as a functor 

s cw* ~ cw*. 

Moreover it can be regarded even as a functor 

S CWh ~ CWh 

since, if H f ::: g X * I+ Y, then the map H~ SX * I+ SY, 

defined by 

H-"[[x,t],s] = [H[x,s],t] 

' 
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is actually a homotopy H~ S£ ~ Sg (see (12, lemma I.5.7) and (14, 

ch. 1, sec. 6)). 

Define now a functor 

D Grad -+ Grad 

which assigns to each graded abelian group {A.}.~ the graded 
1 1tt.t.. 

abelian group B. = A. l 
1 1+ 

for all i f: 7l (the 

definition of D on the morphisms then comes in an obvious fashion). 

With this in mind we can give the following: 

Definition 5.1. A homology theory on CW* is a functor: 

having the following properties: 

HI) If f, g f: CW*(X,Y) and f ~ g, then 

H3) If i : A -+ X is the inclusion of the subcornplex A into 

the CW-complex X and p : X -+ X/A is the canonical 

projection, then the sequence 

__ H_*~(p._.)"---> H* (X/ A) 

is exact. 
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Clearly we can define a homology theory on CWh 1n a similar 

way. In this case it will be a functor H* : CWh + Grad satisfying 

H2) and the analogue of H3) obtained by considering, in the sequence, 

homology theory on cw* induces, in a natural fashion, a homology 

theory on CWh and viceversa, so that we can consider the two 

definitions equivalent. 

Notice also that a homology theory H* on CW* determines, for 

each n € Z, a functor 

obtained by considering, for any space X or map f the nth 

component of H*(X), or H*(f) respectively. We say that these 

functors h 
n 

are associated with the theory H* and notice that 

they are commonly used to define such a theory. 

Their importance lies in the following powerful property, of which 

we omit the proof (see (11, ch. II~ sec. 2)). 

Given a cofibration i : A + X, let j X + C. be the inclusion 
1 

of X into the reduced mapping cone of i. Then there exists a long 

exact sequence: 
an+l hn(i) hn(j) 

· · · -> h l (C.) __ ..,.h (A) --> h (X) > h (C.) ---7 ••• n+ 1 n n n 1 

where an's are suitable homomorphisms. Moreover this sequence is 

natural, in the sense that any map g : X + Y such that 
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g • i = i ' • f : A -+ B -+ Y (with i , a cofibra tion) determines a 

commutative diagram: 

a h (i) h (j) 
n+l n n 

-+ h l (C.) )h (A) ) h (X) --? h (C.) -+ ••• n+ 1 n n n 1 

lhn+ 1 (k) hn (f) 1 h (g) hn (k) 

a ' "' h ( i ') n h (j ') " 
n+l n n 

-+ h l ( C . ) ;;) h (B) > h (Y) > h ( C . , ) -+ 
n+ 1 n n n 1 

where and k is the map induced by g. 

A homology theory H* on CW* is said to be additive if it 

s atis fies the following property. 

H4) Given a family {Xi}i£J of objects of CW*, denote by 

k. X. ~V.X. the inclusion. Then the induced homomorphism 
1 1 1 1 

Eah (k.) : EBh (X.) ~ h ( V. X.), 
1 n 1 1 n 1 n 1 1 

(where denotes the coproduct in Ab) is an isomorphism for all 

n £ Z. 

Again notice that a similar definition can be used for a ho~olopy 

t heory on CWh. Furthermore we have that property H4) follows from 

Hl), H2) and H3) when j is finite. 

When J is any set (in U) there are homology theories which 

satisfy H4) and homology theories which do not. An example of the 
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first case is given by the reduced singular homology theory 

(15 Prop. 10.16). 
:1 

To give a counterexample, let H* be the reduced singular homology 

and define a theory H' 
* 

to be the one whose n-th associated functor 

is 

h" = 
n 

II h. 
if:Z l 

(the h.'s being associated with H*). 
1 

It is easy to see that H' 
* 

is a well defined homolog)'~. theory :1 

but we have, 

h"( V Sj) = 
n j€Z 

denoting by sj 

II h. cv. sj) = II 
if:Z 1 J 1 

ED (Z) . , 
. 1 
1 

the j-sphere, that 

EBh. (Sj) = 
- 1 
J 

so that 

II (;E) . , and 
- l 
l 

H" 
* 

is not additive. II 

A morphism f of CW* (or CWh) is rendered invertible by a 

homology theory if is an isomorphi~m, that is if h (f) 
n 

is an isomorphism for all n E: ~- In relation to this we have the 

following result. 

Lemma 5.2. If H* is an additive homology theory on CW* and 

{f. 
1 

by 

X. -+ 
l 

is a family of morphisms of 

H*, then the morphism 

{f.}. : V.X. -+ V.Y. 
l 1 l l l 1 

is rendered invertible by H*. 

cw* rendered invertible 
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proof: With the hypothesis given, in the diagram 

e h ex.) 
1 n 1 

{h (f- "\ }_ 
n 1 - 1 -------> 

e h (k.) 
1 n 1 

h ({f.L) 

e h CY.) 
1 n 1 

e h Ck :") 
1 n 1 

h CV.X.) 
n 1 1 

n 1 1 -------> h ( V. Y.) n 1 1 

{h (f.)}.,~ h (k.) and e h (k.) are isomorphisms for all n £ ~-
n 1 1 i n 1 ~ n 1 

Furthermore for each j £ il 

h ( {f. } . ) • h (k . ) = h ( {f. } . • k- ) = h (k : • f. ) = 
n 1 1 n J n 1 1 J n · J J 

= h (k ~) • h (f-) 
n J n J 

and since ~ h (X.) 
i n 1 

is the coproduct of the h (X.), 
n 1 

is commutative, so that h ({f.}.) 
n 1 1 

is an isomorphism. 

the diagram 

II 

Once again we remark that the same property holds true for a 

homology theory on CWh. 

§ 3. Homo..topy 6u.nc...toM 

Now let H : CWh + Set be a contravariant functor and consider 

the following axioms. ' 
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wedge axiom: Let {Yi}ifJ be a family of objects in Clfu with 

J f U, and let k. : Y.~V.Y . be the inclusion. Then the function 
-----=1 1 1 1_ 

{ H [k. ] }. : H ( V. Y. ) -r II. H (Y. ) 
1 1 1 1 1 1 

is a bijection of sets. 

Mayer-Vietoris axiom: Suppose (X
1
,x

2
,X) is a triad of 

CW-complexes, where X = x1 n x2 'f <f> is a subcomplex of both X1 

and x
2

, and let 

be the inclusion diagram. Then in the induced diagram: 

H(X
1

) 

T H[j ll 

H(X
1 

U X
2

) 

for any at H(X1) and 8 t H(X2) such that H[i 1](a) = H[i2](8) 

there exists a y t H(X
1

V X
2

) such that H[j
1

](y) =a and H[j
2
](y) = s. 

Weak coequalizer axiom: If [j] : Y-+ Z is a weak _coequalizer, 

in CWh, of 

X 
[f] 

-----) y 
[g] 

then for any 8 t H(Y) such that 

H[f] ( 8 ) = H[g] ( B) 
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there exists a y t: H (Z) such that H [j] (y) = f3 • 

These three axioms are related b~ the following proposition. 

Proposition 5.3. Let H : CWh ~ Set be a contravariant functor which 

satisfies the wedge axiom. Then H satisfies the Mayer-Vietoris 

axiom if, and only if, it satisfies the weak coequalizer axiom. 

Proof: To prove that the condition is necessary we need to show a 

property of H related to weak pushout diagrams. 

Suppose that H satisfies the wedge axiom and the Mayer-Vietoris 

axiom; furthermore that 

X 

y 
y 

(4) 

is a weak pushout diagram and that there exist elements y t: H(Y) and 

\v t: H(W) such that H[f] (u) = H[g] (w). Choose cellular representatives 

f b [f] and g b [g] and let 

Top*, by the pushouts: 

X 
f y 

£of 
..: 

X-r[0/2]- - . -r-.1 f 

and M be the spaces defined, in 
g 

X 
g 

':>W 

£1 r 
11 

X*[~,l] -- - -> t-1 g 



where E-
1 

is defined by 

Again since £ 
0 

and 
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£. (u) = [x,i]. 
1 

are inclusions of subcomplexes and 

f, g are cellular, Mf, Mg f: CWh. Mf and 

morphic to the reduced mapping cylinders of 

M are clearly homeo­
g 

f and g respectively. 

Moreover we have Mf(l Mg = X and the diagram 

(where 

commutative. 

[i ] 
g 

M 
g 

i , rf, r , J. f' J-g g g 

We know that 

are the canonical inclusions) is 

and r 
g 

are homotopy equivalences, 

so that it makes sense to consider the elements 

Since we have 

-1 w = H [r ] (w). 
g 

H[if](y) = H[rf·f](y) = H[f](y) = H[g](w) = 

= H(r • g] (\,·) = H(i ] (K) 
g g 

(5) 

' 
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then, by the Mayer-Vietoris axiom, there exists an element 

u € H(MfUMg) such that H[jf](u) = y and H[jg](u) = w. 

Furthermore by the weak pushout property of diagram (4) and the 

commutativity of diagram (5), we know that there exists a morphism 

[e] : Z-+ Mf UMg completing diagram (5) itself. 

Consider now the element z = H[e](u) € H(Z). It has the 

property that 

H[k](Z:) = H[e·k](u) = H[j •r ] (u) 
g g 

= H [r ] (w) = w 
g 

This proves that whenever we have a weak pushout diagram such as 

diagram (4) and elements y € H(Y), w 6 H(W) such that H[f](y) = 

H[g](w), then there exists an element z € H(Z) such that H[h](i) y 

and H[k](i) = w. 

Using this partial result we can now prove that the condition is 

necessary. 

Suppose that 

[f] [j] x _____ ~Y -----! Z 
(g] 

is a weak coequalizer diagram in CWh· __ , then if we denote the folding 

map by <P : X V X -+ X, the diagram 

X 

7 Y [fvV ~ 
I X ~ z 

[~~x~7 
(6) 

' 
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is a weak pushout. In fact for any commutative diagram of the form 

':::1y 

[f~~ 
X \) X ~ [jgl ~ Z 

[~] ~X~ [k] 

w (7) 

since (h·f) ~ (h·g) = h·(f V g) ~ k·¢ we have that 

hf ~ k ~ hg. 

So there exists a morphism [e] : Z -+ W such that [j] ·[e) = [h] and 

it~ of course, completes diagram (7). Thus, if there exists an 

element y 6 H(Y) such that H[f](y) = H[g](y) = x, then, from 

diagram (6) and the wedge axiom we obtain: 

H[f y g](y) = (H[f](y) ; H[g](y)) = (x,x) 

H[¢](x) = (H[l](x) ; H[l](x)) = (x,x) 

Hence, by the property of weak pushouts just proved, there exists 

z 6 H(Z) such that H[j](z) = y and this proves our claim. 

To prove that the condition is sufficient suppose tha~ H satisfies 

the wedge and weak coequalizer axioms and let 

be an inclusion diagram as in the hypotheses of the ~1ayer-\'ietoris axiom. 
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Furthermore consider the canonical inclusions k l : X
1 
~ X

1 
'-.;' X

2 

and k2 : x2 c:.__, xl "' x2 and the map f : xl " x2 -+ xl u x2 rmiquely 

defined by: 

f • kl = j 1 ; f • k2 = j 2. 

We can see that [f] is a weak coequalizer of 

X 

as follows. First notice that 

then suppose [g] : xl v x2 -+ z is another morphism such that 

[g • k
1 

• i
1

] = ·[g • k 2 • i 2 ] and let g = g
1 

v g
2 

be a representative 

0 f [g]. Then there exists a homotopy G : g
1 

• i
1 

:::: g
2 

• 1
2 

: X * I -+ Z 

and therefore, since i
1 

is a cofibration, a homotopy L : x
1 

* I -+ Z 

completing the diagram 

G 
X* I -----:-;. Z 

r '' 
i *1 1 

X * I 1 

/ 

/ 

/ L 

and such that L : g
1 

:::: e, for some map e . So we have 

e · i 
1 

= g 2 • i 2 and this allows us to define a map g 

by 

g • J 2 = g2. 
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Now the fact that 

g ... • f = e v g ~ g v g = g 2 1 2 

ensures that [g ... • f] = [g] and hence that {f] is a weak coequalizer 

of [kl il] and [k2i2]. Therefore if we have a 6 H(X
1

) and 

S € H(X2) such that H[i
1
](a) = H[i 2](8) = x, then, by the wedge 

axiom, there exists an element v 6 H(X
1 

v X2) such that 

and H[k
2

](v) = s. This implies that 

and the weak coequalizer axiom gives us the existence of 

y € H(X
1 

U X
2

) such that H[f](y) = v. 

This ends the proof, since, clearly: 

H[j
1

](y) = H[f ·k
1
](y) = Hfk

1
](v) =a 

H[j 2 ] (y) = H[f • k 2 ] (y) = H[k 2] (v) = 8. II 

H[k
1

](v) 

Using the last result we can give the following definition: 

Definition 5.4. A contravariant functor 

H CWh -+ Set 

is said to be a homotopy functor if the follmving equivalent state-

ments hold: 

a) H satisfies the wedge axiom and the Mayer-Vietoris axiom. 

= 

b) li satisfies the wedge axiom and the weak coequalizer axiom. 

a 
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The main property of homotopy functors, which will be proved in 

the next section 7 is that each one of them is "representable", i.e. 

is naturally equivalent to the functor CWh(-,Y), for some Y G Ob(Cl~). 

The functor CWh(-,Y) will be simply denoted by [-,Y]. 

In order to prove the claimed result we begin by looking at some 

basic properties common to homotopy functors and to the functors [-,Y]. 

The first of them is given by the following: 

Lemma 5.5. For any CW-complex Y the functor [-,Y] is a homotopy 

functor. 

Proof: To prove the wedge axiom suppose that {Yi}iGJ is a family 

of CW-complexes, with J t U and let 

k* : [V.Y. ,Y] -+II. [Y. ,Y] 
1 1 1 1 

be the function induced by the inclusions 

k. 
1 

y _c.__--7> V. y. 
1 1 1 

Choose an element {[g.]}. 6 II. IY., Y] and for each [g. J choose a 
1 1 1 1 1 

representative g .. 
1 

These maps define a map: 

g = V.g. 
1 1 

V.Y. -+ Y 
1 1 

This proves that k* is a surjection. To prove that k* is an 
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injection suppose that k* [f] = k*[g]. This means that for each 

there is a homotopy G. . f • k. !::: g. k. Y. * I -+ Y. These . 
1 1 1 1 

homotopies define a map G . (V. y.) * I -+ y which is a homotopy . 
1 l 

G . f !::: g and this proves that [f] = [g] . . 

To prove the Mayer-Vietoris axiom let 

be a diagram of inclusions of subcomplexes as required and let 

[X,Y] 
/:'. 

be the diagram obtained from it via [-,Y]. 

i.e. [f • i 1 ] = [g • i 2 ]. Then there exists a homotopy 

H 

and since i 2 is a cofibration, there also exists a homotopy 

i 
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for some f-" , rendering the following 

diagram commutative 

H 
X * 1:-----~Y r 7f 

/ 

/ 

Now, since f-"/X = f"" • i = f • il = f/X, we can define a map 2 

e :, x
1 

u x
2 

-+ y by f on xl and f-" on x2. In this way the 

element [e] € [X
1 

U x2 ,Y] is such that 

j ~ [e] = [ e • j . ] = [f] 1 

j; [e] = [e • j 2] = [f .. ] = [g] 

and hence satisfies the axiom. ~ 

Notice that if x is a singleton and H is a homotopy functor, 

the bijection 

H(x ~ x) -+ H(x) x H(x) 

given by the wedge axiom, tells us, since x v x = x, that H(x) 1s 

again the singleton set. 

We recall that a topological space X has a co-H-structure (or, is 

a co-H-space) if there exist maps: 

' 
rn X-+XVX i X -+ X 

such that the diagrams: 
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X X X 

~ 
m ~-­

XV X~---- X 

X-----
m 

1 X v X 

mJ 1 {l,m} 

{m, 1} 
7X v X Y X v X 

(8) 

(9) 

X 

where d is the diagonal map and j the inclusion, are commutative 

up to homotopies, and the composites 

X 

X 

m X v X 

m 
----~x -.;~ x 

{i,l} 
X v X 

{l,i} -----.::.__ __ ...; X v' X 

where <f> is the folding map, are both nullhomotopic. 

___ p.._____,) X 

___ <fl..;....._~ X 

The classical example of a co-H-structure is given by the reduced 

suspension of any space X, where the required maps are defined in the 

£ullowing way: 

r(x [x,2t]) for 0 < t < ~ o' 
m[x,t] = J 

1 ( (X, 2t- 1 ] , X ) for ~ < t < 1 
..... 0 

i[x,t] = [x,l-t] 

for all [x,t] € SX. So, for instance, then-sphere Sn, n > 0, being 

h h . S(Sn-1), omeomorp lC to has a co-H-structure. 
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The basic application of this concept is given by the fact that 

whenever X is a co-H-space then [X>Y] is a group for every space 

Y, with the operation defined by: 

[ f] + [ g] = [ <f> • {f, g} • m] . 

But this is only a particular case of the following. 

Theorem 5.6. I£ H is a homotopy functor and X is a co-H-space, 

then H(X) has a group structure induced by the co-H-structure of X. 

Proof: Denoting by j
1 

X~X v X and j
2 

: X<:..-?>- X v X the inclusions 

of X into the first and second components respectively, the wedge 

axiom ensures that the composition 

{H[j
1
],H[j

2
]}-l H[m] 

H(X) x H(X) ~ H(X ~X) H(X) 

is well defined. This composition can be viewed as an operation on 

H(X), and to prove that it is a group operation we have to exhibit a 

neutral element, an inverse for each element, and we have to prove 

that it is associative. 

To define the neutral element, let x be the base point of X 
0 

and let c : X ~ x be the constant map. Then the induced function 
0 

H[c] : H(x ) ~ H(X) 
0 

determines a distinguished element in H(X), since H(x ) 
0 

is a point. 
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We shall denote this element by X*. We prove that X* is the element 

we require. 

The composite 

jl j pl 
X X vx ;> X X X ? X 

where p
1 

is the projection onto the first component of the product, 

is just the identity, while the composite 

gives 

X 
j2 

/ 

the constant map: 

c 
X l.. 

/ 

X 

X 
0 

j 
v x ----~-- X X X 

b 
'-----~X. 

P2 
------?X 

Consider now, for any x 6 H (X), the element H [p
1 
j] (v) 6 H (X v X). 

We have: 

since 

H[j
1

] ·H[p
1 

·j](v) = H[p
1 
·j ·j

1
](v) = v 

H [ j 2 ] • H [ p 1 • j ] ( v) = H [ p 1 . j • j 2 ] ( v) = H Ib • c] ( v) = X* 

So, according to our operation and to diagram (8): 

p • d = 
1 

H [rn] • H [p1 • j] (v) = H [p
1 

• j • m] (v) = 

= H[p1 • d](v) = v 
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The same procedure> applied to the projection p 2 

onto the second factor of the product, proves that 

for all v f H(X). 

We chdm now that for each v € H(X), the element 

X X X + X 

v = H[i](v) is the inverse of v in our group structure. In fact 

we know that 

H[¢ • {l>i} • j 1 ] (v) = H[lx] (v) = v 

H[¢ • {l>i} ·j 2 ](v) = H[i](v) = v 

so that again we have 
-1 -

{H[j 1 ], H[j 2 ]} (v>v) = H[¢ • {l,i}](v). 

Hence by our operation: 

v • v = H[m] • H[¢ • {l,i}] (v) = H[¢ • {l,i} • m] (v) = 

= H[b • c] (v) = H[c] • H(x
0

) = x* 

since the equality [¢ • {l,i} • m] = [b • c] follows from the co-H-

structure of X. 

Again using the same technique and the map {i>l} we can prove 

that v • v = x . 
0 

Now, using the same notation for points in H(X) x H(X) and 

H(X V X) which correspond under the canonical isomorphism, it is not 

difficult to see, using diagram (9), that, for any 

(v,y,z) € H(X) "'H(X) x H(X) 
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(v ·y) • z = Him](v·y,z) = H[m] •H[{m,l}](v,y,z) = 

= H[{m,l}•m](v,y,z) = H[{l,m} ·m](v,y,z) = 

= H[m] ·H[{l,m}](v,y,z) = H[m)(v,y,z) = 

= v • (y • z) 

which proves the associativity of the operation. // 

§ 4 • B!town' h Jte.pJtU e.YLt.abilA..;ty .the.oftern 

As we noticed in the last section, the importance of homotopy 

functors for our purposes lies in a result, due to E. H. Bro\~ (3), 

which ensures the existence, for any homotopy functor - H : CWh -+Set, 

of a CW-complex Y, called a "classifying space", such that 

[-,Y] "' H. 

The proof of this theorem, in the more general situation of a 

homotopy functor defined on the homotopy category of topological spaces, 

is given in (14, ch. 7, sec. 7). The same technique will be used in 

this section to prove it in our situation. 

The idea from which we start is the following. Given a homotopy 

functor H on CWh and a CW-complex Y, for any element u E H(Y) 

there is a natural transformation 

Tu [-,Y] -+ H 
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defined by T~[f] = H[f](u) for [f] 6 [X,Y]. In fact for any 

[g] 6 [X,W] the diagram 

[W,Y] 

[g]i 

[X,Y] 

Tu 
___ W __ > H (W) 

IH[g] 
Tu -.v 

__ ....::.X=---4- H (X) 

shows that, for any [f] 6 [W,Y], 

u u 
Tx([g]*[f]) = Tx[f g] = H[fg](u) 

u H[g](TW[f]) = h[g](H[f)(u)) = H[f·g)(u). 

So the problem will be to find a space Y and an element u € H(Y) 

such that Tu is an equivalence. 

Now, if X is a co-H-space, then for any u € H(Y) the function 

T~ is a homomorphism of groups. In fact from the definition of the 

group structures on [X,Y] and H(X) we have, for all [f], [g) in 

[X,Y), 

T~([f]+[g]) = h([f]+[g])(u) = h[¢•{f,g}•m)(u) = 

= H[{f,g}·m] • H[¢)(u) = 

= H[{f,g}·m](u,u) = 

= H[m)(H[f](u),H[g](u)) = 

= H[f](u) + H[g](u) = 

= T~[f] + T~[g]. 

So in particular is a homomorphism for q > o. 
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If, for a given u, it is an n-isomorphism, i.e. an isomorphism 

for 1 < q < n and an epimorphism for q = n, then u is said to be 

an n-universal element for H. Moreover, if u 8 H(Y) is n-universal 

for all n > 0, then it is said to be universal andin this case Y is 

called a classifying space for H. 

The following series of results will lead us to the proof of the 

existence, for any homotopy functor H on CWh, of a classifying 

CW-complex Y. Hence in the whole discussion the spaces involved will 

be objects of CWh and H will denote a homotopy functor CWh. 

Lemma 5.7. Let f: Y ~ y~ be a map; if u 8 H(Y) and u~ 8 H(Y~) 

are such that H[f](u~) = u, then for all q the diagram 

is commutative. 

Proof: For any [g] 8 [Sq,Y] we have 

u. = T [f•g] = h[f g)(u~) 
q 

= H[g](u) 
u = T [g]. q II 

(10) 

= H[g]·H[f](u~) = 

Theorem 5.8. Let f Y ~ Y; be a map. If u 8 H(Y) and u; 8 H(Y~) 
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are universal elements for H such that H[f](u~) = u, then f is 

a homotopy equivalence. 

Proof: The commutativity of diagram (10) and the fact that and 

Tu' are isomorphisms for all q imply that f is a weak homotopy 
q 

equivalence. The result then follows from the fact that Y and Y' 

are CW-complexes (14, cor. 7.6.24). II 

Corollary 5.9. A map f : Y + y~ is a homotopy equivalence if and 

only if [f] E [Y,Y~] is universal £or [-,Y']. 

Proo£: In this case for any q and any [g] E [Sq,Y] 

so T [f] = [f] 
* q 

T[f][g] = [g]*[f] = [f·g] = [f]*[g] 
q 

and this completes the proof. II 

The purpose of the following lemmas will be to construct a "nice" 

CW-complex y~ by attaching cells to a given CW-complex Y. Y will 

then be a subcomplex of y~ and i : Y ._..y' will denote the inclusion. 

Lemma 5.10. If u E H(Y) there exists a CW-complex y' , obtained 

from Y by attaching 1-cells, and a !-universal element u~ E H(Y~) 

such that H[i](u') = u. 



- 97 -

Proof: For each A € H(S
1

) let S~ be a 1-sphere and define y~ 

to be Y v (V). S~). Then Y.... is a CW-complex and is obtained from 

Y by attaching 1-cells (attaching !-spheres through the wedge is, 

in fact, attaching 1-cells via the constant map). If 

denotes the inclusion, it follows, from the wedge axiom, that there 

exists an element u .... € H(Y~) such that H[i](u .... ) = u and 

H[g).](u~) = A for all A E H(S
1
). Furthermore, by the definition of 

u"' 
for A € H(S"'), 

u .... 
i.e. Tu is epimorphism and T , any Tq[gA] = A, an q q 

hence u' is !-universal. II 

Lemma 5.11. Let u € H(Y) be ann-universal element for H, with 

n > 1. Then there exists a CW-complex y .... , obtained from Y by 

attaching (n+l)-cells, and an (n+l)-universal element u ... € H(Y .... ) 

such that H[i](u~) = u. 

Proof: For each A € H(Sn+l) let Sn+l be an (n+l)-sphere and 
A 

again consider the space Y = Y v (l/ AS~+ 1). Denoting the inclusion 

n+l -
by we know, from the wedge axiom, that there exists s c:__::,. y gA, A 

u € H(Y) such that H [h] (u) = u (h . Y~Y) and H[g).] (u) = A . 

for all A € H(Sn+l). Now for each a. € [Sn,Y] such that H(a)(u) 

choose a cellular representative f E a and attach an 
a 

(n+l)-cell 

En+l to Y via f . The space Y' constructed in this way is a 
a a 

a 

= 

CW-complex obtained from Y by attaching (n+l)-cells (again the wedge 

of spheres is obtained by attaching (n+l)-cells via the constant rna~. 

0, 
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This kind of construction, commonly used in algebraic topology, 

will enable us as we shall soon see, to define an element u~ £ H(Y~) 

such that the homomorphism 
u~ 

T q 
has the same properties as for 

q < n, and 
u~ 

T is a monomorphism. 
n 

This, of course, brings us near 

the construction of an (n+l)-universal element. 

For each a£ [Sn,Y] such that H(a)(u) = 0 let sn be the 
a 

boundary of and let f : -v Sn -+ Y be the constant map and 
o a a 

the map defined by f 
a 

on the a-th component of the 

wedge. If j : y~y~ denotes the inclusion, we see that the map 

j • f 
1 

sends each sphere Sn into the boundary of the corresponding 
a 

cell En+ 1 attached via f . . Hence j · f 
a a 1 

is homotopic to the 

constant map j . f 
0 

n : VS -+Y~. 
a a. 

is another map such that 

to the constant map c : 

Furthermore suppose 

i.e. 

via a homotopy 

·~f 
J 1 

y -+ z 

is homotopic 

Then since the inclusion e : V Sn ~ V En+l is a cofibration, there 
0. 0. a. a. 

exists a homotopy ~~ : c~ z k : V En+l -+ Z between the constant map 
0. a. 

c~ and some map k, completing the diagram: 

IC -----')' z 
7 

so that k•e = j~f1 . Moreover since y~ is the space obtained as 

the pushout: 



v sn 
a a 

ef 
n+l 

V E ---a a 
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I j 
J 

->Y' 

the maps and K : V En+l + Z determine a unique map 
a a 

e : Y' + Z such that e•j = j'. This ensures that [j] is a weak 

coequalizer of [£ ] 
0 

and [£
1
]. 

On the other hand since f can be written as 
0 

where y
0

. is the base point of Y, it follows that H [f ] 
0 

constant function on the zero element of H(V Sn) and hence 
a a 

H[f ](u) = 0. 
0 

But now the a-th component of H[f
1
](u) 

is given by 

H[h·f ](u) = H[f ]·H[h](u) = H(a)(u) = 0, 
a a 

is the 

so H[f
0

](u) = H[f
1
](u) and by the weak coequalizer axiom there exists 

u-" 8 H(Y-") such that H[j] (u"") = u, hence H[i] (u.#) = u. Then we 

need only to show that u' is (n+l)-universal. 

Now since Y' is obtained from Y by attaching (n+i)-cells, the 

map [i]* : [Sq,Y] + [Sq,Y ... ] is ann-isomorphism (14, th. 7.2.3 and 

lemma 7.6.15). Furthermore we know by hypothesis that Tu is iso for 
q 

q < n and epi for q = n' so that the commutativity, for all q, of 

diagram 

the 

.... 
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q 

To prove that 
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is an n-isomorphisrn. 

Tu"' is mono, suppose that n 

is such that Tu (8) = 0. Since [i] * is epi n 

is an element a € [Sn,Y] such that [i*] (a) 

the element 8 € [Sn,Y .. ] 

in dimension n, there 

= 8; but then we have 

Tu(a) = Tu"' ( [i] *(a)) = 0 and this implies ·that H(a) (u) = 0. 
n n 

Hence there is a cell attached to Y via f € a, 
a 

among the 

ones used to construct Y... But then i·f­
a 

Sn ~ y.. . h . 
~ 1s ornotop1c to 

the constant map, i.e. 

u"' 
so ker(T ) = 0, 

n 
which proves that is mono. 

Finally for every the inclusion of into Y"' 

is given by the composite: 

j 
.__ ___ / Y' 

so that: 

and this shows that is surjective, completing the proof of the 

lemma. // 
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At this point it is not difficult to realize that lemmas 5.10 

and 5.11 give us inductive arguments for the construction of a 

"classifying" CW-complex. But before actually doing this construction 

we need another lemma: 

Lemma 5.12. Let {Y } ~~ be a family of subcomplexes of a CW-complex 
n ncn 

y such that y 
n 

U Y = Y. Let 1 

is a subcomplex of y 
n+l 

for all n 

n n n y <"'~ y 1" 1 n n+ n 
Y ~ Y and J. 

n n n 

the inclusion maps. Then: 

[{i }] [VJ ] 
VY ----~nL_ __ :-, V y ----'1-)_n __ > y 
n n [ {l } ] n n 

n 

is a weak coequalizer sequence. 

Proof: Since jn+l • i = jn • 1 it follows that 
n n" 

v· • {i } = v· • { 1 } Jn n Jn n 

Furthermore, given a map j ... ·v Y -+ ·z such that 
n n 

{i } . ~ 
n 

j .... {1 } 
n 

and 

Y c~y be 
n 

let j"' : Y -+ Z be the restriction of j"' to the n-th element of 
n n 

the wedge. It follows that j~+l ·in ~ j~. 

Now define, by induction, map h : y -+ z 
n n 

in the following way. 

First define h = j"'. Then suppose that we have defined hq, for 
0 0 
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q ~ n - 1, in such a way that ~ h . 
q 

1n particular we can 

define a homotopy K' 
n-1 ] . .... i 

n n-1 ::: h 1 : y 1* I-+ z. n- n-
Since 

in-l is a cofibration, the diagram: 

I 

JK' 
n-1 -----3- z 

can be completed with a homotopy 1[ 
n 

will be our h . 
n 

from 

In this way the maps h n are such that: 

. , b) h- •i =h . n+l n n 

to another map which 

So we can define a map h Y -+ Z by requiring h/Y = h . n n Then for 

every n we have: 

h·J· =h _J .... 
n n - n 

and these hornotopies give us a homotopy L h ·Vj ::: j' which 
n 

completes the proof. // 

Theorem 5.13. For any CW-complex Y and any u € H(Y) there 

exist a classifying CW-complex y-- , obtained from Y by attaching cells, 

and a universal element u' t H(Y') such that H[i](u') = u. 
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Proof: Using lemmas 5.10 and 5.11 we can construct, starting from 

Y and going on by induction, a sequence of CW-complexes 

and, correspondingly, elements u {; H(Y ) 
n n 

such that: 

a) Y = Y and u = u 
0 0 

{Y } nm 
n nONi 

b) Y is obtained from Y by attaching (n+l)-cells. n+l n 

c) 

d) 

H[i ](u 
1

) = u n n+ n 
(i : Y C-..:).Y 

1
) 

n n n+ 

u is n-universal for n > 0. 
n 

In this way the space y~ , colimit of the diagram 

is a CW-cornplex obtained in the required way. By the last lemma the 

homotopy class [~jn] : VYn ~ y~ is a weak coequalizer of the classes 

[{in}] and ({ln}]. By the wedge axiom, then, there is an element 

u G H(vY ) such that H[k ] (u) = u for all n (k 
n n n n 

y ~ ). 
n n 

But we have that {i } • k = k • i 
n n n+l n' so, using again the wedge axiom, 

we can write: 

H[{i }] (u) = {H[{i } • k ] (u)} = {H[k 
1
·i ] (u)} 

n n n n n+ n. n 

= {H[i ](u 
1
)} = {u} 

n n+ n n n 

H[{l }] (U) 
n 

{ H ( { 1 } • k ] (u) } = { H [ kn ] ( ii) } n = n n n 

= { u } . 
n n 
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Then according to the weak coequalizer axiom there is an element 

such that H[Vj ] (u ... ) = u 
n 

hence for all n > 0 

H[jn] (u') = H[Vjn • kn] (u') = 

= H[k ](u)= u . 
n n 

H[k ) • H[Vj ) (u ... ) = 
n n 

In particular~ for n = 0, H[i](u ... ) = u. 

Thus we need to prove that u is universal. But again the 

diagram: 

is commutative for all n and for all q. Furthermore, by 

(14, th. 7.2.3 and cor. 7.6.16), we have that, for any fixed n, 

is an n-isornorphism; since 
u 

T n has the same property, it 
q 

follows, that u is n-universal for all n, hence is universal. n 

The above theorem gives us the existence of classifying spaces 

for any homotopy functor H. Such an existence, together _with the 

following lemma, will lead us to the proof of Brown's theorem. 

Lemma 5.14. Let A be a subcomplex of the CW-complex X and let 

v be an element of H(X). Given a map g: A+ Y and a universal 
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element u € H(Y) such that H[f] (v) = H[g] (u) (f : A c...- X), there 

exists a map g~ : X+ Y such that g = g~/A and v = H[g~](u). 

Proof: Let i: X~X V'Y and i": Y~XVY be the canonical 

inclusions and let j : X v Y + Z be a map such that [j] is a weak 

coequalizer of [i • f] and [i ~ • g] (such a map exists by lemma 2. 7). 

By the wedge axiom there is an element v € H(X ' Y) such that 

H[i](v) = v and H[i~](v) = u. Since H[f](v) = H[g](u), it follows 
--------- -

that H[if](v) = H[i"g](v) and, by the weak coequalizer axiom, that 

there exists an element z € H(Z) such that H[j](z) = v. 

Using the construction of theorem 5.13 and starting from Z and 

z we can obtain a CW-complex Y" containing Z and a universal 

element u"€H(Y~) suchthat H[h](u~) = :2: (h: Z~Y ... ). Let j' 

be the composite 

y 
i.. ]. h "-----;> X V Y '-c----"'--;> Z .._c ____ ? Y " • 

Then H[j'](u") = H[i~] ·H[j] ·H[h](u~) = H[i'] ·H[j](:-z) = H[i ... ](v) = u 

and by theorem 5.8) j~ is a homotopy equivalence. Now since 

[j • i ~ · g] = [j · i • f], there exists a homotopy 1: 

j" • g : A * I+ Y ~ and, using the fact that f is a cofibration there 

is a homotopy K' : h • j · i :::< g, for some g, completing the diagram: 

A I 
K 

~ y _,. * 

f*ll " / 

/ 

" K ... 
"' X * I 
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Then we have g/A = g · f = j"' • g. Denoting by e Y' -+ Y the 

homotopy inverse of j"'~ we can write: 

If L : egf = g is the above homotopy~ we can use again the homotopy 

extension property of f to find a homotopy L~ : eg = g~ filling 

the diagram 

A * 
L . y I 

f*l f .?1 ... 
/ 

L~ 

X * I 

with g~/A = g"' ·f =g. Moreover since eg = g~~ then j~eg = j'g' 

so that g = j~g' and we can write 

H(g"](u) = H[g'] •H(j'](u') = H[g](u') = H[i] ·H[j] ·H[h](u') = 

= H[i] • H[j] (z) = H[i] (v) = v 

which shows that g' has the required properties. n 

Theorem 5.15. (E. H. Brown) If Y is a classifying CW~complex and 

u £ H(Y) is a universal element for H, then Tu is a natural 

equivalence between [-,Y] and H. 

Proof: Let X be any CW-complex and v £ H(X). Applying the previous 

lemma to the pair (X,x ) with 
0 

g : x -+ Y the only possible map 
0 
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(the hypothesis of the lemma are satisfied since H(x ) 
0 

is a point) 

we get a map g ... X~ Y such that H[g ... ](u) = v, i.e. such that 

and this proves that is surJective for all X. 

Now suppose for some [f], [f""] t: [X,Y]. Then 

let W denote the space X * I and let v t: H(W) be the element 

defined by 

v = H[f • h] (u) = H[f ... • h] (u) 

where h W -+ X is defined by 

h [x, t] = x .. 

Since the subcomplex A of W defined as 

A = X X {0,1} 
X X {0,1} 

0 

is actually Xv X, we can define a map g 

Then the wedge axiom tells us that 

A ~ Y as g 

H[g](u) ~ H[fV f ... ](u) = {H[f](u), H[f""](u)}. 

f , f". 

If j
0

, jl : X~ A denote the inclusions into the first and second 

element of the wedge respectively and K . A~W is the canonical . 

inclusion, we have, for all X t: X: 

h • k • j (x) ;:;; h · k(x,o) ;:;; h[x,o] :::;; X 
0 

h • k • j (x) 1 = h • k (x, 1) = hfx,l] = X 
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so that h • k • j 
0 

= h • k • j 1 = lx and we can write: 

Now 

. g . 

H[k](v) = {H[kj
0
](v) ; H[kj

1
](v)} = 

applying again 

A -+ y, we get 

= {H[f •h • k • j
0
](u) ; H[f"" •h • k • j 1 ](u) 

= {H[f](u) ; H[f~](u)} = H[g](u). 

lemma 5.14 to the pair (W ,A) and the map 

a map g ~ . w -+Y such that g""IA = g. This 

= 

means 

that g is a homotopy from f to f"", so that [f] = [f~] and 

hence Tu 
X 

is injective. II 

A£ter the proof o£ Brown's representability theorem, our attention 

will be focussed on the functors 

CWh + Set 

with the purpose of proving that they are homotopy functors. For this 

we need to know something about the structure of Clfu[S-
1
]. We are, 

however, in a very good position, according to the following result: 

Proposition 5.16. The family S defined in section ~admits a calculus 

of left fractions. 

Proof: \\'e know, by definition, that S is the family of morphisms of 
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C\fu rendered invertible by the functor 

H* CWh -+ Grad. 

This implies, by proposition 3.13, that S is saturated. So, 

according to theorem 3.14, we need only to prove that any diagram of 

the form : 

X 

[g] 1 
z 

[f] y 

with [g] in S, can be embedded in a weak pushout diagram: 

X 
[f] y 

[g] 1 I (h] 

(k] v-
z ------~W 

with [h) in S. 

Let f be a cellular representative of [f] and Mf the 

reduced mapping cylinder of f, defined by the pushout: 

X 
f y 

E I , i 
0( 

f 
X *I --- -~ :t-ff 

in Top*. By the cellularity of f, Mf is a CW-complex. If 

i : Y c.-!'-lf and if : X 4- Mf denote the inclusions defined by: 

(11) 
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i(y) = [y] ; if(x) = [x,l] 

we know that i is a homotopy equivalence, with inverse v 

defined by 

v[y] (y) Yy E: i (Y) v[x,t] f(u) 'f[x,t] E: f(X*I). 

Hence v. if = f. Moreover if is a cofibration. 

Let g be a cellular representative of [g] so that the pushout 

g z 

. u 
v k .,, 
Mf- --- ~ W 

(12) 

in Top* gives us a CW-complex W. Since u is the inclusion of a 

subcomplex, it is a cofibration, and it is easy to see that: 

Hf '::::! w ~c 
X - Z - f 

where Cf is the reduced mapping cone of f. Hence, denoting by 

e : Mf ~ Cf and m : W ~ Cf the canonical projections, the commutivity 

of the diagram: 

X c i 
Mf / 

e 

g I lk 
-( .,., 
z c u w ::. 

m 

implies the commutativity of the infinite diagram 
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a h [i] h [e] a h (X) 
n 

hn (Mf) 
n 

__..:.. hn+l (Cf) ---:- ;> ~ h (Cf) ~ h l (X) ----7 " n n n-

I hn [g] l hn [k] J. = 
I hn-1 [g] 

I a, 1 h [u] h [m] a' J • I 

hn+l (Cf) h (Z) n h (W) 
n 

h (Cf)~ h l (Z) ~ / n n n n- ? 

where the two rows are exact. Since [g] € s, h [g] 
n 

is an isomorp~ism 

for all n and, by the five lemma, it follows that h [k] 
n 

is an 

isomorphism for all n, i.e. that [k] € S. But since i is a 

homotopy equivalence, [i] € S, so that [k • i] € S. Now the diagram: 

X 

[ g] r 
( 

z 

is commutative, since 

[f] 

[u] 

y 

J [k • i] 

w 

(13) 

Hence to complete our proof we have to show that diagram (13) is a weak 

pushout. To this end let the following diagram 

X 
[f) y 

[ g] J I [k (14) 

[u] 
, 

z W. 

[b] ~ v 
be commutative in CWh. Then there exists a homotopy L . af =:: bg . X* I . . 

and since diagram (11) is a pushout, there exists in Top.,.. a completion 

+ ~ 



e: Mf -+ V of the diagram 

£ 

X 

I 
0 -J, 

X* I 

f 
----~Y 
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Notice that if = f • £
1 

~ where s
1 

(x) = [x~ 1], so that 

e • if = e • f · f)_ = L • £ 1 = bg 

and from diagram (12) we get a completion of the diagram 

v 

Now it is obvious that [c] completes diagram (14). U 

Having proved proposition 5.16, we now have that the ~tructure 

of C\~[S- 1 ] is as described in chapter three, section 2, so that in 

the following section we shall refer to that structure. 

§ 6. Exi...6.te11c.e. o 6 :the. Ada.m6 c.omp.tetion 

Although ~e have known that in our case S 1s saturated and ad~its 
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a calculus of left fractions, we cannot proceed straight ahead, 

forgetting all the problems of the world, because CWh is not a U-small 

category and hence CWh[S-
1

] is not necessarily a U-category. So 

we have to look for some criterion which can help us in deciding about 

the S-admissibility of the objects of CWh. For this purpose consider 

the following: 

Admissibility axiom. Given a CW-complex Y there exists a subfamily 

s* of the family 

Y ~ Y"", s £ S} 

such that and, for each from Y to Y"" , there 

exists an s"" £ S* from Y to some y- and a morphism u E CWh(Y""~y-) 

rendering commutative the diagram: 

The name of this axiom is justified by the fact that it gives a 

necessary and sufficient condition for the S-admissibility of an object 

of CWh. 

Its necessity will be proved later. Now we have the following: 
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Proposition 5.17. If Y 8 Ob(CWh) satisfies the admissibility axiom then 

it is S-admissible. 

Proof: For any CW-complex X and any [f~s] € C~~[S-l](X~Y) the 

diagram 

Y"' 

~ /-:y"' 
/ s 

X y 

uf js-
y 
y-

1 

in which s"' and u are chosen by applying the admissibility axiom 

to s~ is commutative. This proves that [f~s] = [uf,s"'], so any 

element of CWh[S- 1 ](X,Y) has a representative of the form (g,s"') 

with s"' 8 S*. Now the collection of pairs of this form can be written 

as 

where Y"' is the range of s"'. Since both indexing sets are elements 

of U the whole collection is an element of U. Hence 

CWh[S- 1 )(X,Y), being a quotient of this collection, is aU-set, and 

this proves our claim. U 
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Our next step is given by 

Theorem 5.18. I£ Y is an S-admissib1e CW-comp1ex, then Y has an 

Adams completion with respect to S. 

Proof: If Y is $-admissible then, by definition, the functor 

-1 
C\fu[S (-,Y) takes values in the category of U-sets. So we shall prove 

that CWh[S- 1](-,Y) is a homotopy functor, since Brown's theorem will 

then ensure that there exists a classifying CW-complex Y5 such that 

i.e. that there exists the Adams completion Y
5 

o£ Y. 

To prove that CWh[S- 1](-,Y) satisfies the Mayer-Vietoris axiom 

consider the inclusion diagram 

X 

where X = x
1 
n X2 is a subcomplex of both X1 and X2 . We have 

then an induced diagram: 
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which is still commutative. Let a € CWh[S- 1 )(X
1

,Y) and 

8 € CWh[S- 1)(X
2

,Y) be represented by (f,s) and (g,t) respectively 

and suppose ii(a) = i2(8). This means that 

and the commutativity of the diagrams 

allows us to admit the existence of two morphisms e and d such 

that in the diagram 
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es = dt £ S amd efi
1 

= dgiz.· But we know that CWh(-,Y-"") is a 

homotopy functor (lemma 5.5) so that applying the Mayer-Vietoris axiom t1 

the diagram 

and the elements ef £ CWh(X1 ,Y-~), dg £ C~fu(X2 ,Y-"") we obtain the 

existence of a morphism c £ CWh (X
1 

U x
2

, y--- ) such that cj 
1 

= ef and 

cj
2 

= dg. We claim that the morphism 

has the required properties. In fact 

and the commutative diagram 

proves that [cj
1
,es] = [f,s], i.e. that ji(y) = a. An identical 

procedure shows that j~(y) ; B. 
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To prove that CWh[S- 1
](-,Y) satisfies the wedge axiom we will 

show that for any family {yi}i£J of objects of CWh, with J £ U, 

the wedge V. Y. > 
1 1 

together with the morphisms where 

k. : Y.~\lY. are the inclusions, is the coproduct of the family in 
1 1 1 l 

CWh [S-l]. Then the natural equivalence given in lemma 2. 8 "-'ill ensure 

that the function 

CWh ( YY. mY) + n. CWh (Y. , Y) induced by the inclusions 
--11 1--1 

is a bijection. 

So let 

let (f. ,s.) 

{cpi Yi + Z}i£J be a family of morphisms in 

be a representative of cp . • Furthermore let 

CWh[S- 1
] and 

Yz be a 
1 1 1 

wedge of copies of Z, one for each i £ J, and 

corresponding "folding" map. Now the morphism 

1 

g : \( Z + Z the 
1 

[ {f. } , { s . } ] : VY . + 
1 l 1 1 

is well defined, by lemma 5.2, so that we can consider the morphism 

cp : '(y. + Z given by the composition 
1 1 

v . y. 
1 1 

[{f.}, {s. }] V [g,l] 
1 1 . z z 

1 

Vz 
1 

which, of course, does not depend on the representatives of the cp. 's. We 
1 

claim that cp is the unique morphism such that cp • [k . , 1] = cp. 
1 1 

for 

all i. 

In order to obtain a representative of cp • [k. , 1] 
1 

we have to 

find a completion for the diagram 
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This we do by starting from the right and then completing the whole 

construction getting a diagram of the form: 

with s £ s. Now denoting by w. : 
1 

~ v w.~ .w. 
1 1 1 

~Js 
(r) 

and z. : z4Yz 
1 1 

canonical inclusions, and recalling the definitions of {f.}, {s.} 
1 1 

g, we have 

e . W. f. = e {f.} k. . 
1 1 1 1 

, 

e . W. s. = e . { s.} z. and 
1 1 1 1 

e . {s.} z. = s . g . z. = s. 
1 1 1 

So the diagram 

the 

and 



e • 

Y. 
1 

{f.}~ 
1 1 ,.. w -

gives us the equality: 
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cf>. = [f. ~ s . ] = [ g, 1] • [ {f. } , { s . } ] • [k. ~ 1] = cf> • [k. , 1] . 
1 11 1 1 1 1 

To prove that cf> is unique suppose that t1J : V.Y. -+ Z is another 
1 1 

morphism in CWh [s-
1

] such that t1J • [ki, 1] = <Pi for all i 6 J 

and let 

be a representative of tiJ. Then the diagram 

shows that each 4· has a representative of the form (f ·k. ,s). 
1 1 
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Hence $ can be represented in the form [g,1] • [{fk.}., {s}]. 
1 

But 

denoting by e : Vw-+ w 
1 

the folding map related to 

that such composition is represented by the diagram 

w, we can see 

i.e. by the pair (e • {f.k. },s). On the other hand for each i the 
1 

diagram 

f·k. 
l w 

lw~ {f·k.} ·-~ ~ 
---

1
---;;.. V. w w 

1 

is commutative and, by the property of wedges, 

e. {f•k.} =f. 
l 

Hence the diagram 
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s commutative and shows that ¢ = ¢~ This ends the proof of the 

theorem. // 

Corollary 5.19. If the object Y of CWh is $-admissible, then 

it satisfies the Admissibility axiom. 

Proof: Since in our hypotheses Y has an Adams completion, taking 

S* to be composed only by the couniversal morphism of theorem 4.3, 

the axiom is satisfied. // 

We have seen that in this particular case the only condition for 

the existence of the Adams completion of an object Y is the S-admissibili1 

of Y. So we are facing again a set-theoretical problem and this shows 

the importance of the investigation we have made in this field. 

One could search for the Adams completion of a CW-complex in a higher 

universe W (modulo same, light changes in the definitions). But then 

to properly apply Brown's theorem we need to extend all the functors 

we are dealing with to this higher universe, eventually finding the 

same problems there. 

Deleanu has shown in (5) that also in a tegorical situation which 

generalizes our example, namely when C is ar : category and S admits 

a calculus of left fractions and satisfies a further comparability 
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condition on limits, the Adams completion of any S-admissible object 

always exists. But again the S-admissibility depends Uniquely upon 

the admissibility axiom. 

Nevertheless the concept of the Adams completion deserves great 

attention, both for its intrinsic categorical importance and for its 

actual applications. In fact, apart from the original context of 

stability problems, it has been shown by Deleanu and Hilton (7) that 

the Adams completion of a !-connected CW-complex Y with respect to 

the family of morphisms rendered invertible by the reduced homology 

with coefficients in ~p (the integers localized at the family P of 

primes) is the P-localization of Y. Moreover if we consider the 

reduced homology with coefficients in 

completion of Y. 

~ = Z/p!l 
p 

we get the p-profinite 

Also in (5) we find an example due to Bousfield, of research of 

the Adams completion in the algebraic category of abelian groups, in a 

particular case when the admissibility axiom is satisfied by all the 

objects of the category. 

We conclude remarking that also the notion of Adams cocompletion, 

obtained dualizing the definition of Adams completion, can be used in 

many applications and leads to equally interesting results. 
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