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Abstract

Robotic mapping has been an active research arca in robotios aud Artificial Tntelligence
AL i the Tast two decades. The vesearcl on robotic mapping focuses to solve the self-
localization problem of a mobile robot while it s navigating throueh an unknown environ-
nient etther indoor or outdoor) in order to build a map of that envivonment from a series
of sensor measurements collected by the robot itself. This joint problem of mapping and
self localization is commonly referred 1o as Concurrent Mapping and Localization (CNL)
or Siimultancous Localization and Mapping (SLAND in mobile robotices research. The ox-
isting technignues used to solve CNL (or SLAN) inchide Kahman Filter (KEF). Extenced
Nalman Filter (ERE). Expectation Maximization (EN) aleorithim. Particle Filter and dif-
ferent combinations thereof. The objective of this rescarch is to develop a novel robotic
niapping algorithin for indoor and ontdoor environmments using solt computing methods.

The proposed algorithin formalizes the robotic mapping process as an optitiization
problem. The objective function measures the fitness of a robot pose in bost accommo-
dating a local map {(generated from sensor scan) i a partially developed global map. A
Genetie algorithng is designed to search for the optitnal robotr pose which maximize the
overall consistency of @ map. In order to obtain the best result from ecenetic algorithm
based search domain specific knowledge s applied intelligently to generate an initial popu-
lation. A Iizzy set theoretic approach i incorporated in this purpose to generate a sanple
haseed prodiction of possible robot poses. The [uzzy logic system uses the prior knowledge
about robot Kincnatios ad 1t hehavior at ditferent envivomunents to define o tizzy resions
to scarch {or robot pose. The proposed algorithin s incremental in nature as opposed to
bBatch algorithm m which the entire data set is processed all together. and therefore. lias
the areat henefit 1o use tor online rohotic mappineg,

Validity of the algorithm is tested by several experiments camied in simulated and veal
world indoor environments, Maps generated by the algorithin ave topologically consistent

and accurate for use i robot navigation.
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Chapter 1

Introduction

About this chapter. This chapter first introduces the problem addressed by this thesis.
The scientific context of the problem is then described. This follows a summery of con-
tributions to robotic mapping made by this research and finally the organization of the

thesis.

1.1 Motivation

Rescarchers today have been focusing on the use of mobile robots for automation, partic-
ularly to replace human operated vehicles in harsh enviromment. This is because mobile
robots have the potential to carry out tasks which are considered undesirable or diflicult
for humans due to hazardous working conditions (nuclear reactors, abandoned mines, ctc.)
or a shortage of skilled labor (health care). Other reasons for using robots include free-
ing human labor from menial and repetitive work (transportation and doniestic service),
mcreasing safety and reliability by augiuenting human labor with robot assistance (inspec-
tion and surveillance). mcreasing productivity (farming and mining). and applications in
cducation and leisure (tour guide and tovs). Application ol mobile robots have already
shown significant success for exploring volcanoes [1]. going places that are too danger-
ous for humnan access (e.g. abandoned mine) [2]. scarching for meteorites in Antarctica

(3. 1], traversing desert [5]. exploring and mapping sca bed [6]. and even in exploring other



planets [7].

In order to carry out such high level tasks. an autonomous robot must possesses the
fundamental knowledge of the working environment. in general. a map. The map can either
be installed in the robot prior to operation or can be built online. depending upon the task
it is performing. The mapping capability of an unknown enviromment allows a robot to be
deploved with minimal infrastructure. When a map is generated online, the complexity
of the mapping process increases due to the induced problem of robot localization with
respect to the growing map.

The motivation of this research is to develop a robust algorithm for robotic mapping,
which enables the mobile robot to work in an enviromment without having any pre-installed
knowledge of it. The world model required for high-level task planning will be acquired
mdependently by the robot itself. In order to cope with working in an unknown world.
tlie algorithm is devised in such a way that it requires no modification of the environment

in order to [acilitate a robust tool for robot localization.

1.2 Robotic mapping

Robotic mapping is the process of generating a spatial representation of a given environ-
ment from a series of sensor readings observed by a robot while traveling through that
cunvironment. This is generally regarded as one of the important problems in the pursuit
of building truly autononous robots [8]. The robotic mapping problem comes at vary-
ing degree of difficulty. Tn the most basic case. the mobile robot has access to a global
positioning svstem (GPS)/differential GPS which provides it with ahnost accurate pose
information. The problem of ‘mapping with known robot pose’ [9, 10, 11] is a trivial
problem as compared to the general problem of robotic mapping [12] where reliable pose
mmformation is unavailable. When GPS is unavailable, as is the casc of mdoor, underground
or underwater. the mobile robot nevitably accrue pose errors during mapping. This pose
error induces a proportionate error in the map. The robotic mapping generally addresses

the problem of map acquisition without reliable pose information.

8]



There exist a cyelic nature in robotic mapping probleni: while operating in an unknown
environment, a fully autonomous robot needs to know its location in order to build a
map of the uncharted territory. but to know its location, the robot needs a map. This

cvelic nature of robotic mapping problem is illustrated in Figure 1.1. The robot has to

Self-Localization

Environment Model Location Model
(MAP) (Position Estimate)

Map Building
[igure 1.1: The problem of robotic mapping

simultaneously maintain two representations: firstlyv. an environment niodel or map, and
sccondly, a location model or position estimate. [t must be able to run two perceptual
processes. namely map-building and self-localization. simultaneously. This plienomenon of
robotic mapping is often referred to as Concurrent Mapping and Localization (CML) [13]
or Simultancous Localization and Mapping (SLAN) [14] in robotie literature. In rest of

this thesis. the words ‘robotic mapping” , *SLAN and *CNL" will be used interchangeably.

1.3 Map representation

A great number of mobile robot systems [15. 16, 17, 18] in literature relv on maps for
navigation. The robot can represent the map of an environmment in a nuuber of ways
depending on the type of the navigational task. For indoor environments, there are two
fundamental paradigms of mapping: the grid-based (metric) paradigim and the topological

paradigm [19].

e The grid-based paradigm represents environment by evenly-spaced grids. Each grid

cell may. for example. indicate the presence of an obstacle in the corresponding



regionn of the environment. Grid-based maps are relatively easv to construct but

require considerable storage and can be computationally demanding [12].

e The topological paradigm represents robot enviromment by directed graph. Nodes
in such graphs corresponds to distinet places, or landmarks (such as doorways),
while edges in the graphs represent connected path between two landmarks if there
exist any direct path between them in the real world. Topological maps are difficult
to construct as they have to provide geometric relationships between the observed
landmarks. However. this approach of map building is less sensitive to the robot’s

odometry error as opposed to grid-based approach [12].

Basced on the coordinate system the map is presented. maps are divided into two category:
world-centric map and robot-centric map. World-centric maps are represented in a global
coordinate space. Robot-centric map, on the other hand, are described in measurement
space. They deseribe sensor measurements a robot would receive at different locations[12].

This rescarch focuses on developing an algoritlun for generating world-centric, metric
map of environment. MNletric map is chosen over topological map as it oes not require
feature (landmarks) extraction from sensor data. IFurthermore, it does not require engi-
ncering of featurcless environment by placing artificial landimarks. Stinilarly. world-centrice
map is chosen over robot-centric map as the world-centric map facilitates robot navigation

nrore than robot-centric map.

1.4 The challenges in robotic mapping

There exists a number of factors which impose practical limitations on a robot’s ability
10 acquire a consistent map of an environment while localizing itself witli respect to that
evolving map. A comprehensive study on these factors are available in [12]. The key

challenges of robotic mapping are brieflv discussed below.



1.4.1 Sensor and sensor noise

To acquire a map, a robot must possesses sensors that cnable it to perceive the outside
world. The mobile robots having mapping capability are usually equipped with two tvpe

of sensors [20]:

e Proprioceptive - these sensors nieasure robot movement relative to the robot’s own

frame of reference. e.g. optical wheel encoders, Doppler sensors. gyvroscopes.

e Exteroceptive - these sensors measure the lavout of the environment relative to the
robot’s frame of reference c.g. range sensors (e.g. laser range finder, sonar). vision

using caunera.

In general. sensors are subject to errors, often referred to as measureinent error or sensor
noise [12, 21]. A kev challenge in robotic mapping arises from the statistically dependent
nature of different nmeasurement noises [12]. For example, the control commands (obtained
from optical encoder reading) issued during environment exploration carry important in-
formation [or building maps. since thev convey information about the locations at which
different sensor measurements were taken. But the robot’s motion is also subjected to
errors. The errors in optical encoder reading (gencrallv known as odometry) usually arise
from various kinematics characteristics of the robot and also from varving amount of slip-
page and skidding at different terrain conditions. The odometry errors, once introduced,
accinulate unboundedly over time and it effects the interpretation of the future scusor
measurements. Thercefore. odometry alone is insufficient to determine a robot’s pose (lo-

cation and oricntation) relative to its envirommunent.

1.4.2 Data association or correspondence problem

The data association or correspondence problem [22. 23] refers to the problem of determin-
ing whether the sensor measurenments taken at different points in time correspond to the
same physical object in the world. This is one of the most challenging problem of robotic

mapping [12]. Many robotic mapping algorithms perform with an underlying assumption
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of perfect data association hetween different features in environmment 21, 14]. However,
solving data association problenn is an active research in robotic mapping [24. 25. 26]. A
very well-known data association problem is the loop closing problem while mapping cvelie
enviromnent. This problem is complicated due to the fact that at the time of evele closing,
the robot’s accumulated pose errors might be unboundedly large and the robot might fail

to establish perfeet association hetween features.

1.4.3 Real-time requirements

To execute high level tasks in real-time. the robot should be capable of building a map
online. This tiime requirement often demands that the underlving algorithm must be
meremental and sufficiently simple to be performed online. In addition, this developed
map must be ecasily accessible. For example, accurate fine-grained C'AD wmiodels are often

inappropriate to use by a self-navigating robot which takes action in real time.

1.4.4 Complexity and dynamics of environment

Environments that are complex (each entity in the environment might possesses several
dimensions) and dyvnamic (real world environnient is constantly changing over time. small
or large), pose a great challenge for the robot to maintain an exact environment model.
Practically. there arc almost no mapping algorithms that can learn meaningful maps of
dynamic environments [12]. Rather, most of the existing mapping algorithms follow a
static world assumption. In other words, they are applied in relatively short time windows
during which the respective environnients are static.

The proposcd research addresses some of the above mentioned challenges in robotic
mapping. It combines intelligent computing techniques, namely fuzzy logic and genetic

algorithin, to propose a solution to CNL of mobile robot.



1.5 Intelligent computing for robotic mapping

Robotic mapping is a complex problem partly because of sensor noises. Whatever decision
a robot infers about its environment or its own pose, the decision is always plagued with
errors. Assumption of various stochastic models (c.g. Gaussian) to accommodate these
errors performs well for certain type of exteroceptive sensors (c.g. laser) [27, 21]. Errors in
odometry. on the other hand, are not suitable to be modeled stochastically [28]. Several real
world parameters(e.g. amount of slippage and skidding) have non-Gaussian relationship
with the growth of odometry errors [29]. Therefore, stochastic modeling of odometry error
may produce unreliable result. Fuzzy logic provides a natural framework to define and
solve qualitative (as well as quantitative) relations between various quantities. Therefore,
a fuzzy logic based approach is proposed in this research to model the odometry error of
niobile robot.

Application of sample based algorithis (e.g, particle filter) have produced significaint
results in robotic mapping [24, 25, 26. 30, 31]. The effectiveness of sample based algorithin
lies in the capability to acconnnodate any arbitrary uncertainty in sensor measurements.
Moreover, sample based algorithins offer effective solution to the data association problem.
Genetic algorithis (GAs) are a class of sample based algorithims developed on the principle
of natural evolution. GAs have potential application in robotic mapping. The variation
including operators of GAs (mutation and Crossover) have the capacity to generate samples
based on their fitness. Theory of particle filters, on the other hand, only allow resampling
over the existing sample set. Noreover, the property of natural selection in supporting
better performing individuals to survive offers an iterative solution to data association
problem of robotic mapping. The proposed research combines fuzzy logic and a GA to

develop a robust solution to the robotic mapping problem.

1.6 Contributions to robotic mapping

The contribution of this research to the CNL of mobile robot lies in the following aspects:

|



e [t provides a fuzzy frammework [or modeling the errors in niobile robot’s odonietry.

e [t introduces a new saniple based method for solving CNIL. As opposed to the well
known sample based method for CNIL. particle filter[21. 25, 26. 30, 31]. the proposed
method does not keep on updating the history of a set of samples upon receiving new
sensor measurement. Rather, it generates new samples through the use of genetic
operators (crossover and mutation). This renoves the constraints on the initial

sample distribution to closely resemble the original distribution.

e [t combines two soft computing methods for solving CNL of mobile robot. This is

completely a new concept in the literature of robotic mapping.

e [inally, it provides a theoretical frame work of CAL as an optimization problem.

1.7 Thesis outline

This thesis will present a novel algorithm for CNL of mobile robot. Experimments on simu-
lated and real world data set will be provided to validate the performance of the proposed
algorithm. The rest of the thesis is organized as follows:

Chapter 2 discusses soute of the state-of-art algorithms in robotic mapping.

Chapter 3 describes the proposed algorithim for C'NL.

Chapter 1 shows experimental results to validate the proposed research in various simu-
lated and real-world indoor environments.

Chapter 5 provides concluding discussion about the rescarch and indicates some future

works.



Chapter 2

Literature Review

About this chapter. This chapter reviews the literature on Robotic mapping and intends
to provide the current trends in CML. First, existing mapping algoritluns are classified into
different categories based on underlving principle. Tt follows a general discussion about

algorithims in cach category along with their advantages and shortcomings.

2.1 History of robotic mapping

Robotic mapping has been an active research topic since 1980. In the 1980s. a popular
work of Elfes [9] on metric mapping resulted the Occupancy grid algorithm [10, 11] which
represents the map by fine-grained grids to model the occupied and free spaces of the
environnient. This algoritlun experienced great popularity and has been used in a number
of robotic syvstems [32, 33. 16, 31, 35. 36]. The Occupancy grid algorithin has the capability
to handle uncertainty in exteroceptive sensor (e.g. sonar) using probabilistic techniques.
However, this algorithin requires exact robot pose information for mapping. In other words,
occupancy grid mapping is ‘mapping with known pose’. The general problem of robotic
mapping in simultaneously recovering a map as well as the robot pose was first solved by
Smith et.al [37, 27] in 1990. This seminal work resulted in a new rescarch area in mobile
robotics for simultancously solving the mapping problem and the problem of localizing

the robot relative to the growing map. Since then, robotic mapping has conimonly been



referred to as SLAN or CML.

Robotic mapping is inherently challenged by measurement uncertainty. As discussed
in Section 1.1.1, perceptual noise is complex and exhibits random nature. This results
in adopting probabilistic techniques for solving robotic mmapping. Probabilistic techuiques
approach the problem by explicitly modeling different sources of noise and their effects on
the measurements. Virtually all state-of-the-art mapping algoritluns in robotics literature
are probabilistic. Probabilistic algorithms emplov probabilistic inodels of robot’s pose and
environment, and rely on probabilistic inference for turning sensor measurements into a
map. Some algorithms [13, 38, 30. 1.4, 39] make the probabilistic thinking very explicit by
providing niatheinatical derivations of the algorithms from probabilistic principles. Others
[40, 41, 42 usc techniques that on the surface do not look specifically probabilistic, but
in fact can be interpreted as probabilistic inference under constraints [12]. Thrun [12]
provides an extensive survev on tlie probabilistic algorithms in robotic mapping.

The existing state-of-the-art robotic mapping algorithms can be classified into four

categories based on the underlying theory:

1. Kalman Filter based approach.

o

. Expectation Maximization (EN) based approach.
3. Particle filter based approach.
1. Genetic algorithm based approacl.

Algorithms in each category have their own advantages and shortcomings. A brief discus-

sion about each category is given below.

2.2 Kalman Filter based approach

Kahuan filter (KF) [43, 44] is a form of Bayesian filters [45] in which the posterior over

system states is explicitly represented as unimodal Gaussian distribution. The general

10



form of Bayes filter in the robotic mapping problem can be stated as [12],

(X, llltlso;r- up,) = ’7P(51|Xn ny) /1’(Xt|llt~ xl*l)p(xt—lanlt‘sﬂzt~l~ gy )dx, - (2.1)

Here.
subscript ¢ = discrete tinie index

x; = robot posc

m; = global map generated at time {
s¢ = cxteroceptive sensor measurcient (e.g. range measurement)
u; = proprioceptive sensor reading (odometry)
n = normalizer constaut

gy =— {ll().ll],...,llf}

The distribution p(x;, me|Sg.. Uy ) is read as the joint posterior over robot pose and map
conditioned both on the exteroceptive and proprioceptive sensor measurements. The gen-
crative distribution p(s;|x,. m¢) probabilistically describes how sensor measurements s, are
gencrated for different poses and maps. Therefore. p(s;|x;, mg) is often referred to as the
perceptual model [33, 16, 13. 31. 30. 46. 6, 47] in robotics. Similarly, the generative distrib-
ution p(x,|u,. x;- 1) in (2.1) specifies the effect of the control u; (the amount of conmmmanded
odometry wmove) on the robot pose x;. It describes the probability that the control u,. if
executed at the world state x,_;. leads to the state x,. For moving robots, the probability
p(xeug.x,-y) is usually referred to as the motion model [33, 16, 13. 31, 30. 16, 6, 47].

The classical approach of solving SLAN/CML using KI was first introduced by Smith
et.al [37, 27]. This original work proposes a KF-based statistical framework to solve the
robotic mapping problem. Notivated by this work. several rescarchers [21. 14. 18, 49. G.
50. 39] followed the KF based approach to solve the SLAN probleni.

[n KEF-based algorithms. the posterior over full state vector is represented with Gaussian.
In the context of robotic mapping. the full state vector S; comprises the robot’s pose x;
and the niap my;:

St = (x;, my). (2.2)
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The probability p(x;. my|sg.;. ug.) in (2.1) is represented by Gaussian. For robots operating
on a planar surface, the robot’s pose x; is usually modeled by three variables: the cartesian
coordinates in the plane. (., y). and the heading direction. #. Maps in KEF-based algorithins
are commonly represented by the Cartesian coordinates of a set of features. Appropriate
features may be landmarks. distinctive objects or shapes in the environment. Denoting
the number of feature in the map by N the state vector defined in (2.2) is given by the

following (2.V + 3)-dimensional vector:
S! - ('1.~ Y. f. IS WRE "714/.(: Mo ts 7”2.;/.!~ BN R AN 777N.y.f) (23)

Here my 4. m oy, are the Cartesian coordinates of the .N-th feature in the map m,. The
mean and the covariance matrix. ji; and 2, respectively, of the Gaussian representing the

2

probability p(x,. m¢|sg., up,) are of dimension 2.V + 3 and (2.V + 3)°. respectively.

2.2.1 Key advantages of Kalman filter in robotic mapping

In robotic mapping. the primaryv advantage of IKF is that it estimates the full posterior over
maps and poses online. To date. the algorithms that are capable of estiinating such full
posterior are based on KI' or extensions thereof. In addition to the most likelv map and
robot poses, KF maintains the full uncertainty in the map, which can be highly beneficial
when using the map for navigation. Additionally. the KF based approach can be shown
to converge, with probability equal to one. to the true map and the robot pose. up to a

residual uncertainty distribution that largely stemns fronn an initial random drift [21, 50].

2.2.2 Limitations of Kalman filter in robotic mapping

The KF suffers from some serious limitations in the context of robotic mapping. KF-based

mapping relies on three basic assumptions:

1. The motion model (next state function. in theory of KIT) must be linear with added

Gaussian noise.

2. The perceptual model must be linear with added Gaussian noisc.



3. The initial uncertainty in robot’s pose must he Gaussian.

The most important limitation of the KIF approach lies in the Gaussian noise assump-
tion. In particular. the assumption that the measurcment noise must be independent and
Gaussian poses a kev lmitation with important implications {or practical implementations.
This makes KI" based approaches unable to cope with the correspondence problem [23. 22]
(the problem of associating individual sensor measurements with features in the map).
Therefore, the practical nnplementations of the KF based approaches usually require a
sparse set of features whicl are sufficiently distinctive. either by their measurement chan-
acteristics or by their locations, so that they can be distinctly identified 26, 24]. Error in
the identification of features in an environment usually iimplies a failure of the mapping,
algorithm. TFor this reason. KF based approaches are usually forced to ignore large por-
tions of the sensor data, and work with a small number of landmark-tvpe features only
[12]. The resulting maps contain the locations of these landmarks but usually lack detailed
geometric descriptions of the environment.

The second limitation of KF stemus {rom the assumption of linear niotion and perceptual
models [12]. In a linear motion model. the robot pose x; and the map m; depend linearly on
the previous pose Xy 1 and map my_;. and also linearlv on the control u,. This is trivially
the case for the map since according to the static world assumption (also known as. Markov
assumption). the map does not change. However. the pose x; is usually governed by a
nonlinear trigonometric function that depends nonlinearly on the previous pose x,_; and
thie control u; [28]. Besides, sensor measurements in robotics are usually nonlinear, with
non-Gaussian noise. To accommodate such nonlinearity, an extension on the basic KIFF has
heen proposed. This extension of KIF, known as Ertended KNalman Filter, has been used
by several rescearchers for robotic mapping [11. 39].

The Extended Kalman Filter (EIXEF) approximates the robot’s nonlincar motion model
using a lincar function obtained via the Tavlor series expansion. Single motion commands
are often approximated by a series of much smaller motion segments. to account for non-

lincarities. For most robotic vehicles, such an approximation works well.
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2.3 Expectation Maximization algorithm based ap-
proach

Expectation Maximization (EMN) is a statistical algorithm which was developed in the
context of maxinmun likelihood (ML) estimation with latent variables. i an influential
paper by Dempster ef al. [51]. Application of this algorithm in robotic mapping has
produced significant results [52. 13, 53].

In robotic mapping. the EN algorithm iterates in two steps

1. An expectation step or E-step. Here. the posterior over robot poses is calculated for

a given map.

o

A marimization step or N-step. Here. the most likelv map is calculated given the

pose expectations.

The function that is being maximized is the expectation over the joint log likelihood of
the sensor measurcments sg; and the robot’s trajectory xq.

my“] = argmax Ex, . [log p(sy.. x01,|1n,)11n£']. S0:¢] (2.1)
t

Here. mE"] is the niap generated at /' iteration of the ENI algorithm. Part of the likelihood
that is being maximized is the robot’s path x,,;. However, in robotic mapping the path
is unknown. Therefore. (2.4) computes the expectation of this likelihood over all possible

paths the robot may have taken. Under few assumptions. (2.1) can be re-expressed as the

following integral 12|

o
[\a
~

i+1 i ‘
mﬁ b= arg max E /p(xT]nlE].sO:,)log sy X my )dx, (2.1
m
t - .
Here, 7 is the variable of integration with respect to time. The E-step of the EN-based
ol c . : ,1 .~} “l 1. e [ vl-klmls “*.‘f‘l‘ N
robotic mapping algorithm calculates p(x, [y, s, ) which is the posterior for the pose x;
conditioned on the data s, and the /~th map m£']. To calculate this pose posterior at time
7. X,. sensor measurements in the entire tine interval {1.... .t} is used, even for 7 < (.

Thus. it is required to incorporate both past and future data relative to the time step 7

for posterior estimmation over robot’s poses.
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The goal of the N-step is to find a new map m, that maxinizes the log likelihood of
the sensor measurements log p(s,|x,) for all 7 and all poses xq.; and under the expectation
p(xT]mEl],S();,) calculated in the E-step. The algorithms proposed in [13] and [52] solve
this high-dimensional maximization problem by considering cacli map location (r.y) in-
dependently. This approach of solution assumes that the map is represented by a finite
number of locations, e.g.. by a fine-grained grid. The component-wise maximization is

then relatively straightforward.

2.3.1 Advantages and shortcomings of EM-based robotic map-
ping algorithms

The key advantage of the EN algorithm lies in the fact that it solves the correspondence
problem. It does so by repeatedly re-localizing the robot relative to the present map in the
E-step. The pose posteriors calculated in the E-step correspond to different hvpotheses
as to where the robot might have been, and hence imply different correspondences. By
building maps in the M-step. these correspondences are translated into features in the map,
which then either get reinforced in the next E-step or gradually disappear. The capability
of handling correspondence problem makes EN-based algorithis superior over KF/EKF
based techniques. DBesides, EN algoritlins are capable of generating consistent maps of

large-scale cvelic environment even if all features look alike and cannot be distinguished

However, ENM based algorithms do not retain a full notion of uncertainty. Instead. these
algorithms perform hill climbing in the space of all maps. in an attempt to find the most
likelv map. To achieve this task, EN-based algorithms require processing the entire data
multiple tines. In other words, these algorithms are batch algorithm and cannot generate
map incrementally. In this aspect, EN is inferior to KE/EKEF because most KEF/ERT-
based algorithms are capable of generating the map online.

A new family of algorithm has developed in literature which attempts to combine

the advantages of both KF/EKFE and EN algoritluns. This new technique, known as



Incremental mazximum likelihood approach, combines the incremental mapping quality of

the KF/EKFE as well as the power of EN in providing solution to correspondence problem.

2.3.2 Incremental maximum likelihood method for CML

The objective of the incremental Maximum likelihood method |11, 38, 54, 55| in robotic
mapping is to increnientally build a single map as the new sensor data arrives, but without
keeping track of any uncertainty in pose and map. Such a methodology can be viewed
as a M-step in EN. without an E-step [12]. The main advantage of this algorithmn is its
stmplicity.

Mathematically, the basic idea is to maintain a series of maximum likelihood maps
(m?, m3,...,) along with a series of maximum likelihood poses (x},x5,...,). The " map
and pose are constructed from the (¢ — 1) map and pose via maximization of the marginal

likelihood given by
< my,x; >= arg max p(s|X,, mg)p(x,. my[u,. x;_ ;. m;_,). (2.6)
my . X¢

The map m, can be uniquely determined if the pose x; is known. The incremental max-
imum likelihood method simply requires a search in the space of all poses s; when a new
data item arrives which in turn is used to determine the pose x; that maximizes the
marginal posterior likelihood. Similar to KF, this approach can generate a map in real-
time, though without maintaining a notion of uncertainty. Similar to EM, it maximizes
likelihood.

In incremental maximum likelihood method. once a pose x; and a map m; have been
determined, they cannot be revised based on the future data. The INI" based algorithms
are also characterized by the same feature. This weakness reveals itself in the inability to

map cvelic environments, where the errors in the poses may accumulate unboundedly.
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2.4 Particle filter based robotic mapping

Particle filters are thie most recent alternative of KF in the context of robotic mapping
(30, 56 . The key idea of using particle filter is to represent the posterior distribution by a
random collection of weighted particles which approximate the desived distribution [57. 58].
As the posterior is not approximated in parametric form (as opposed to KEF/EKF). particle
filter can accommodate almost arbitrary sensor characteristics, motion dyvuamics and noise
distribution. In the literature of robotic mapping, there exist a number of algoritlims
which use particle filter. Hybrid approach and FastSLAN. two popular algorithis in this

category. are discussed in this section.

2.4.1 Hybrid approach

The hybrid approach [12] of CML [31, 17] estimates the posterior over the robot’s poses
using particle filter. These algorithims 31, 47] use the ineremental maximum likelihood
approach to build map while maintaining a posterior distribution over the robot poses.

This distribution is calculated using the standard Bayes filter applied only to robot poses

[N}
-

I’(X1|Su:r- gy ) = '}}’(Sz|xt) /1)(X1|Ut~ xtfl)p(xt—llstlzl—la Wg—)dX-) (2.

By retaining a notion of the robot’s pose uncertainty, conflicts encoutnered during mapping
large cvelic enviromnent can be identified. and the appropriate corrective action can be
taken. A particle filter is employed to caleulate the pose posterior p(X;|Sg., Ug.).

Unlike the incremental maximum likelihood method, the hybrid approach has the abil-

ity to correct the map backward in time whenever an inconsistency is detected.

Limitations of hybrid approach

The hybrid approach suffers many deficiencies. First and foremost, the decision to change
the map backwards in time is discrete which. if wrong. can lead to a catastrophic failure
[12]. Noreover. the approach cannot cope with complex ambiguities. such as the uncer-

tainty that arises when the robot traverses multiple nested eveles. TFinally, the hybrid
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approach is. strictly speaking. not a real-time algorithm. since the time it takes to correct
a loop depends on the size of the loop. However. practical implementations [59. 31. 17]

appear to work well in real-time when used in office-building type environments.

2.4.2 FastSLAM

FastSLAN [2:1. 25, 26. 60] is a SLAN algorithin that integrates both particle filter and
EKE. It exploits a structural property of the SLAN problem that feature estimates are
conditionally independent given the robot path. More specifically, correlations in the un-
certainty among different map features arise only through the robot’s pose uncertainty. If
the robot was told its correct path. the errors i its feature estimates would be independent
of cach other. This fact allows to define a factored representation of the posterior over
poses and maps. FastSLAM implentents such a factored representation. using particle fil-
ters for estimating the robot path (et the robot pose). Conditioned on these particles the
individual map errors arc independent, hence the mapping problem can be factored into
separate problems, one for cach feature in the map. FastSLAN estimates these feature
locations by EKFEF. The basic algorithm can be implemented in time logarithmic in the
number of landmarks. using efficient tree representations of the map 2. Hence, Fast-
SLAMI offers computational advantages over plain EKF implementations and mauny of its
deseendants.

The kev advantage of FastSLAM is the fact that data association decisions can be
made o a per-particle basis. As a result. the filter maintains posteriors over multiple data
associations. not just the most likely one. This feature makes FastSLANM significantly
more robust to data association problems than algorithms based on maxinmmm likelihood
data association [61]. A final advantage of FastSLAM over EKF-style approaches arises
from the fact that particle filters can cope with non-linear robot motion models, whereas

EKF-style techniques approxiniate such models via linear functions [61].



Limitations of FastSLAM

The main limitation of FastSLAN is the fact that it maintains dependencies in the es-
timates of feature locations only nmplicitlv, through the diversity of its particle set [61].
This disadvantage is also the source of FastSLAN s efficiency - a kev advantage of Fast-
SLAN over previous techniques. In certain environments this fact can negatively effect the

convergence speed when compared to the mathematically more cumbersome EKFE [1.1. 21].

2.4.3 DP-SLAM

A recent development in particle filter based robotic mapping is Distributed Particle-
Simultaneous Localization And Mapping (DP-SLANI) [62][63]. DP-SLANMI does not require
feature extraction or identification from sensor data. It provides an clegant solution to
efficiently store the individual maps assigned to different particles. The core difference
bhetween DP-SLAN and FastSLANI lies in the way of representing world state. Rather
than using KF on landmark positions (like FastSLAN), the DP-SLANI uses probabilistic
occupancy maps. Unlike the conventional occupaney map [9]. cach grid in the occupany
map of DP-SLAM is actuallv a tree containing observations for different particles. The
map representation technique which is termed as Distributed Particle mapping in [62][63]
enables the algorithm to maintain and update hundreds and thousands of candidate robot

poses and maps in real time as the robot moves through the environment.

Limitations of DP-SLAM

The price for the efficiency in memoryv utilization (as proposed in DP-SLANI) is that the
data retrieving from a grid cell is far more complicated than a simple array access. Besides,

the DP-SLANI algorithm requires large number of particles for closing loops.

2.5 Genetic algorithm based approach

Application of Genetic algorithms (GAs) in robotic mapping is a relatively a newer concept.

Its application in CML of mobile robot was first introduced by Ducket [6:4] in 2003, though
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EKF based prediction of GA based update of stat:
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Figure 2.1: Restricted Genetie Optimization algorithm for mobile robot localization with respect to a

given map

GAs have been successfully implemented in navigation [65. 66, 67] and path planning [G8]
of mobile robot since 1990s. .

In 2002, Luis ef. al. [28, 69. 70] proposecd algorithms for mobile robot localization with
respect to a given map using ultrasonic sensors. These algorithims employ GA along with
EKF to search for the optimmal robot pose. The algorithms proposed in [28, 69] are known
as Restricted Genetic Optimization (RGO) as GA is applied only in restricted areas of
the solution space. The EKF generates a sced which is used to estimmate a neighborhood
where the truc value of the robot pose is located. With this information, and inside this
neighborhood the niost accurate solution is scarched. The search is performed emploving
a GA. Each chiromosome of the RGO represents the difference with the best point of the
last generation. New generations are oriented in the direction of the steepest slope of
the cost function (steepest descend), and have smaller distance to the correct estimate
at cach generation. The selection process is cross-generational, and the fitness function
s an approximation of the probability of a current solution conditioned on all the sensor
nicasurentents and a priori knowledge about initial state. The process of RGO can be
viewed as shown in Figure 2.1. However, RGO is proposed for robot localization with
respect to an a priord map.

The very first application of GA in robotic mapping [64] defines CNL as a global
optimization problem and emplovs a GA to search for the optimal solution. The trajectory
generated by a robot during the complete process of data collection is divided into small
segments (of 3m cach). The robot’s own measurements of its trajectory are used as a

generative model. A GA is designed to scarch for a set of correction vectors associated
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with the small segments of the robot’s trajectoryv. The correction vectors for different
trajectorv-segients are chosen in such a wav that the effect of modifving each small
segient combinedly develop a compact and consistent map of the environment. Two
hewristic functions. namely Map Consistency (M) and Map Compactness (M), are

defined to measure the compactness and consistency of a map.

e Vap Consistency (MCy ). A map is assumed to be consist of finer grid cells of
resolution 10em. For each grid cell 7. two quantities are calculated: oce;, the nuniber
of laser readings which indicate that the cell is occupied, and emp;. the nummber of
reaclings which indicated that the cell is empty. The Map compactness function tries
to measure the degree of disagreement or “conflict” between the sensor readings. The

measure is calculated as

MOy = Ximin(oce,, emp,). (2.8)

by taking the minimum of the oce; and emp; values for all cells 7.

o Map Compactness (MCy): This function tries to reward the GA for producing
smaller. more compact maps. It does so by fitting a bounding box to the map
that indicates the total area covered by the cells with occ; > 0. The measure is
calculated as

‘\[Cv_ - ('I'.IH(LI‘ - -l‘min) X (yﬁl(l.l‘ - ,I/min)- (29)

where ., and .r,,;, refer to the maximmuun and mininnun .c-coordinates of the

bounding box measured in the number ol grid cells.
Lincar combination of A/}, and M) defines a fitness function F.
F=MC, +wlMC,. (2.10)

where the weight w = 0.3 determines the relative importance of the two heuristies in the

[itness function.



2.5.1 Limitations of the existing GA-based CML
The GA-based CML algorithm proposed in [64] is subjected to certain limitations:

e The algorithm requires the entire data set, both odometry and laser measurements,

for processing. Being a batelh algorithin. it is unable to generate a map inerenientally.

e There exist a mumber of cells in the grid map whose status are “unknown” (nei-
ther cmptv, nor occupied). The proposed fitness function does not consider these
cells while measuring the consistency of the niap. This weakness manifest itself by
producing topologically inconsistent map while maintaining a low value of fituess,

specially in case of complex environments (e.g. turning of a corridor).

e The algorithin assumes that the odometry data are alwavs within a fixed range
(£2%) of the true values of robot poses. This hypothesis totally disagree with the
mobile robot’s odometry. As discussed in Section 1.4.1, the robot’s odometry is
subjected to various errors and the magnitude of the errors grow with time. Besides,
skidding and slippage while traversing irregular terrain miglit introduce huge error
in odometryv. Therefore, the assumption about odometry to closely resemble the true

robot pose imposes serious linlitation on the applicability of the algorithm.

e The assumption of small odometry error makes the algoritlini unable to cope with the

huge errors that arise during loop-closure while mapping large cvelic environment.

e The algorithm does not provide necessary theoretical analysis of CNIL as an opti-

mization problem.

2.6 Summary

Almost all existing state-of-the-art algoritlims in robotic mapping arce probabilistic. The
KT and EKTI based algorithms are devised only to handle Gaussian noise in sensor niea-
surements which makes these algorithins unable to cope with the data association problem

of robotic mapping. The EN based algorithims relaxes the Gaussian noise assunmption in

o
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sensor measurements and overcome the data association problem by performing a hill-
climbing search in the space of all possible maps. In doing so, the EN based algoritlimns
lose the capability to build map incrementally as the entire data set is required to search
for tlic most likely map. Particle filter based algorithms has the capacity to generate map
incrementally. These algorithms are also capable to cope with data association probleni.
Sample based algorithins like particle filter. are receut developiment i robotic mapping
and has gained much popularity. The particle filter based algorithis approximate the
original error distribution using a set, of samples as opposed to the EN based algoritinns
where, parametric mnodel of error distribution is used. However. particle filter still imposes
the restriction on the sample distribution (known as proposal distribution, in particle filter
theory) to closely resemible the original distribution. The GAs are another class of sample
based algorithim currently being used i robotic mapping. The GAs are more flexible (than
particle filter) in operating with samples in the context that they can re-parent samples
while particle filters are only capable to do resampling. The application of GA in robotic
mapping has not been fully matured and has reported only in a very limited number of
articles.

The present rescarch proposes a novel sample-based algorithm for robotic

mapping using GA and fuzzy logic.






kinematices and its beliavior at different terrain conditions. The search [or trie robot pose
from the fuzzy saniple based prediction of imcertainty is performed by a eenetic algorithin.
The fitness function s set as the optimization funcrion while the fuzzy sample bhased
prediction of robot pose acts as the initial population for the proposed GA. The genetice
operators are designed in such o way that they are capable of intelligently extending the
scarch outside the initial fuzzy prediction. The property of natural selection (In favoring,
hetrer performing individuals to sinvive ) is utilized 1o refine the data associations proposed
by samples in different generations.

The proposed algorithm process data i an increntental fashion. Le. at any point in
tinie onlv the available sensor measureiments are utilized to generate a partial global map

ol the environment.

3.2 CML as a global optimization problem

3.2.1 Optimization problem

The Optinization problem is a family of computational problem where a solution having
the minimumn (or naxinnm) value of the objective function is searched 1 a feasible region.
A Feasible region is a region in the solution space where all the constraints are satisfied.
A global optimization problemn can be specified. as suggested in 710 in the form
min S(2) or max 2(z2)
stz €z ((2) €D (3.1)
Here,

z=:7={:ebll:<:<7)} (3.2)

i= 2 bounded or unbonnded box in A- dimensional real space 2% with 2 as lower hound

and 7 as upper bound of . 21z — E is a contimouns objective function. ¢z — R is a
vector of 1 continuous constraint functions o, (). .., ¢(2). and @ is a box in R’ delining

the constraints on (). The feasible region 1~ defined as

C—{-€z

(=) € D} (3.3)
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A global solution to the optimization problem is a feasible point z € C such that

S(2) = min 2(z) or max () (3.4)

sl z€C

The problem of CNL lends itself to he solved in the franiework of optimization problem.
This is because, generallv. anv CNL algorithm has to search the space of all possible maps
i order to achieve maximuni data association as well as to maintain minimum uncertainty
in the map. Therefore. CNIL can be thought of as a problen of scarching the most probable
poses of a mobile robot for generating a “maximally consistent” map. Consistency of a map
is indicative to the qualitv of data association between different local maps and the amount
of uncertainty associated with different obstacle points in the map. The more accurate the
data association is. the lower the uncertainty is. Therefore, the term ‘maximally consistent’
map refers to the map having maxinmum data association and minimum uncertainty. The
notion of ‘maximal consistency’ automatically imposes some constraints on the possible
values of the robot poses. Additional knowledge regarding robot kinematics, dynamics and
terrain tvpe can also be applied to narrow down the scarch space. Therefore. the objective

of CNIL is to maximize a map subjected to a set of constraints.

3.2.2 CML in the framework of optimization problem

A set of svinbols will be specified in this section to formally define CNIL as an optimization
problem.  Some of these svinbols have already been defined in Chapter 2. For further
clarification. they will be re-stated (not re-defined) in this chapter.

A robot pose x; 15 a 3-tuple {r.y. 0} where (r,y) is the spatial position of the robot
with respect to a hyvpothetical coordinate svstem and € is the robot’s orientation. The ( in
subscript indicates discrete time index. The proprioceptive sensor measurcment is denoted
by u, while s, indicates exteroceptive sensor measurcients. The proposed algoritlm is
deseribed for a robot equipped with shaft encoder and laser range finder.  Accordingly,
u, and s, indicate odometry data and laser measurcinent respectively. These two sensor
meastrenents are collected in alternation: {sg, ug, s uy. ...}, Both u, and s, are subjected

to errors and these errors have a strong statistical dependency upon each other. A map

26



m; penerated upon receiving -th sensor measurenient s, at a pose x; s defined as.
ny = [(Xy,. So) (3.95)

wheres xo = {xo-x1ox P and s = {ss.. s; b For a single pair ol robot location-

SCHSOE scan (X.80). the functional mapping [ is defined as
J RO s+ Loy (3.0)
Here. RR(#;) is the rotation matrix defined as

cosf; —=int,
R(6,) = . (3.7)

sinfl,  cosH,

Equation (3.5) can be written in recursive form as

m, = f(xp.80)0 f(x).81)U...US(xs.8)
= f(X[u—h S[lrt—l) U .f‘(Xr- S¢)

= my ; JJ(x.s)

= 1my,_; Umy. (3.8)
Herveo iy — [(x,.8¢) 15 the local map generated from a single sensor scan according to

(3.6). The robot pose x; is not known unambiguously in the context of CNL of mobile
robot. Rather. an approximation of x; can be obtained {rom odometry u;. The relation

between robot pose x, and the odometry uy can be formalized as

Xy = rf)(u,. U Wy ([/‘ Ft- [\’). (‘59)
[ere.
v, = robot’s lincar velocity within the time interval (¢ = 1./7]
«t = robot’s angular velocity within the tinwe interval (¢ — 1. 7]
oy = total distance traveled by the robot up to time f
A = manufacturing, assembling errors and sensor resolution paraimeters of a robot
[, = swrlace type



The quantity AV i (3.9) 15 a vehicle specific parameter and is usually constant for a
particular vehicle. To quantify F} in (3.9). an asswption is {ollowed that the robot is
cquipped with a suitable mechanism to identfy ditferent terrain conditions while traveling,.
Aleorithnis are available m literature which can extract terrain quality using sensors (.9,
viston. laser [720 73)). However, all these quantities (14w d,c Voand Fy) are related 1o
mobile robot’s odometry in a non-linear fashion. Further. they have strong dependency
upon each other: and the errors they introduce in odometry accmmulate nuboundedly over
time. Therefore, pose estimation by odometry alone results in highly erroneous map.
The non-linear mapping o as deseribed in (3.9) has not been well-defined in the liter-
ature of mobile robotics. This is hecause there are quantities in (3.9) whose effects on the
odometry error are mostly gqualitative and therelore can not he modeled in deterministic
formr. However. the exact calculation of x; from (3.9) is complex in the context ol CNIL.

Rather. a sample based prediction X, ol x; can be calculated as

Xi = {X/} — (;)(l_l,. l".w'f.(/f. Fr. /\’) (31())

where {x;} indicates a set of robot poses which could possibly be x,. The function o
in (3.10) tries to mimic the unknown functional mapping ¢ by a subjective analvsis of
different quantities (v . dp  Fyoand V) and their effects on the odometry u,. The true
robot posc 1s scarched from X, to best acconnmuodate the sensor scan in the currently
available map. Therefore, according to the definition of optimization problem. we can

define the CNL of mobile robot as

max F(f(Xog.t S04))

st Xe € ("()/11'(X,) (3.11)

where F o f(Xoe. Sur) — = 1s a continuous function to measure the consistency of a map.

In the context of CNL. there is no definite upper or lower hound for x,. The feasible

recion 1s defined as

C={x|x € conr(X;)} (3.12)

Here, cone(l) represents convex set. Implementation of (3.11) requires the following:



e calculation of the saple based estimate X, according 1o (3.10). This is related to

modeling the robot’s odometry while accommodating all possible sources of errvors.

e an appropriate search algorithi to scarch for the true robot pose from X, .

e defining the objective function F o [ (Xt Soe) — =

The subsequent sections of this chapter will describe the above mentioned requirements

to solve CAL as an optimization problem.

3.3 Fuzzy modeling of odometry error

A realistie ervor model of odometry must refiect the complex locomotion of a mobile robot.
The most comon error model deseribed in literature is an univariate two-dimensional
Ganssian. There are only a lew works 29,320 71 75, 76] that rigorously analyze a mobile
robot’s odometry . Seminal work on mobile robot’s odometry desceribed in 29] provides
a comprehensive study on different properties of odometry crrors. Sources of crrors in
the odowmetry fit into oue of two categories, nawmely Systematic crrors and Nonsystematic

crrors 290320 The systematic ervors tyvpically include the [ollowing:
1. unequal wheel diaaneters,
2 average of wheel diamerer differs [rom nominal diameters (due to wear).

fintte cncoder resolution.

(o

1. finite encoder saanpling rate.

[

misalicmuent of wheels.

Svstematic errors are tyvpically vehiicle specifiec and do not usnally change inoa particular
i of the robot. The quantity A defined in Section 3.2.2 of this chapter includes the
sources ol svstematic errors. It is possible to develop deterministic mathematical model
that describes the effect of A on the robot’s odometry from several run of a specifie vehicle.

The non-svstematic errors. on the other hand. are less studied in literature, though their
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ctfects on overall odometry error 1= much larger than that of svstematic errors i some
terrains (e.g. rough outdoor enviromment ). The sources of nonsvstematic errors include

the following 129, 32]

1. travel over uneven Hoors.

2. travel aover unexpected objects on the Hoor,

3. wheel-shippage due to:

e slippery floors.

e over-acceleration,

o [ast turning (skidding).

e cxternal forces (interaction with external bodies).

e nonpoint wheel contanct with the floor.

The variables that control these errors can he identified as the robot’s velocity (hoth
translational and rotational), surface type and total traveled distance ( vpowp.dp and I,
respectively. as defiied carlier in Section 3.2.2)0 The ¢uantity ; accounts for the accu-
nmlation of odowmetry error with time. An algorithun for multi-robot exploration [7 1. 75]
constders hoth systematic and non-svstematic errors to build a realistic model of odom-
etry error. This algorithin 710 75] devises a set ol equations regarding crrors in robot’s
translational and rotational movement after several expernments on a differential drive
robot. However, the infornation about the dependency of a robot s odometry on the non-
svstematic errors are available in gualitative form. e.g. there will be ~more™ skidding if
the robot turns with “high™ acceleration” or “traveling with “high™ velocity on a “very”
slippery floor produces “more”™ drift than that on a “less™ slippery floor. Because of this
complex relationship, the mapping o in (3.9) lacks a deterministic mathematical straeture.
[nstead. these qualitative information usually lead to subjective decision making about the
uncertainty in robot pose. Fuzzy logic provides a natiral framework to model and evaluate

qualitative relations between variables 770 750 79 Therelore: a fuzzy rale bhased model
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is developed to approximate the funcetion o in (3.9) as o in (3.10). The rules in the luzzy
model perform non-linear mapping from the vehicle specific constant. A and available
sensor information (about swrface tvpe Fyoovelocities o, oy and traveled distance o) to the
degree of uncertainty in odometry.

The proposed fuzzy svstem. termed as Fuzzy Predictor. has four input linguistic vari-
ables: robot's Lincar eclocity teg). robot's Angular vclocity (o). Surface type (). Traveled
distance (). and five outpur linguistic variables: Drift. Translational crror. Rotational -
ror. Vehiele specific erroran orientation and Vehicle specific error in spatial position. The
fuzzy IF-THEN rules for eacly of the output fuzzy linguistic variables take the following

[orm

o IF ¢ is A, AND wy is 3, AND F} is (3 AND d, is 1)) THEN Drifl is E,.

—

o II" vy 15 o4, AND wy is B; AND I} is ' AND & is 1)) THEN Translational crror is

!

F..
o I vy sl AND wyix B, AND F} is % AND o, is D) THEN Rolational erroris (5.
o IF d, is 1) THEN Vihicle specific crror in ovientation is 11,
o IF dyis 1)) THEN Vihucle specific crror in spalial posilion is T,

Hereo AL B, . Dy FEy Fo G H Yy ad Hay ave fuzzy subsets denoting linguistic values
ol vy Foody Drift. Translational ¢ rror. Rolational error. Vahicle specific crror o oricn-
tation and Yehicle speeific crror in spalial position. respectively. The linguistic labels of

different fuzzy subsets are as follows
o A, {LOW.MEDIUN. HIGH}. / = {1.2.3},
e B, : {LOW.MEDIUN. HIGH}. j = {1.2.3}.
o (% : {SLIPPERY. ROUGH }. k = {1.2}.

o ) I Fo GL o {VERY LOW, LOW., MEDIUN. HIGH. VERY HIGH }.
low ez = {1.2.3. 1.5},
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o /1y, IT,,: {LOW. NEDIUN. HIGII}. ¢ — {1.2.3}.

Depending on the possibility of enconntering any other different surface conditions (e

2.
rocky. sandy) new fuzzy subset(s) can be introduced in the model. A set of fuzzy map-
pitte rules arve formudated using the knowledgee of robot’s hehavior subjected o different
velocities. swrface types and nature of accoumnulation of errors with time gathered [rom
experimentations on a mobile robot and also from literatures on odometry error stidy
29 TL[T6L Tuzzy subset partitions and membership function definitions are derived based
on the subjective assessment of the problem. The bounds ou the universe of discourse for
estimating the degree of error in odometry are chosen based on experimental knowledge
about the maxinnun possible errors in nominal condition. Membership functions for dif-
ferent fuzzy linguistic variables are shown in Figure 3.1 and 3.2 Table. 3.1 through 3.5
represent the rude-bases for different output vartables. As an exawmple, the rule shown in

the upper left hox of Table 3.1 is read as:

if Surface tvpe s slippery and Traveled distance is Low (L) and Linear velocity is
Low (L). then Drift is Medium (M).
The fuzzy model. termed as Fuzzy Prcdictor. is & mar-min-centroid de fuzzification Nam-
dani tvpe Fuzzy Inference Svstem (FIS) [77]. Output of the FIS is a prediction about the
radius ol uncertainties in spatial position (r,) and angular orientation (rg) (with respect
to odometry) after execution of a piece of control command.

r.e fs.\t, - fj.\/\'

rg — 08,06, — 00y
Heve. s, dnpe, 00,00, and 06, represent defuzzified values of Translational crror. Vehi-
cle specifie crror in spatial position. Drift. Rotalional crroro and Viluele specifie cror im
oricntation. respectively. To account for rhe accumulation of odonmetry errors over time.,

accumulated uncertainty radii ave caleulated as

o, = Tyt e -
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Figure 3.1: Input Membership functions

., aud g, usually result inan uncertainty ellipsoid in the 3D discrete space of (r.y.6). A
nuinber of samples are selected randomly within this uncertainty ellipsoid. These sanples
constitute the fuzzy sample-based prediction X, of the triue robot pose x,. The number
of samples are caleulated as a fraction of the maximum possible samples within the three

dimensional diserete space of predicted uncertainty
‘\" - (‘\“)lnu.r("’ (31;)

where.

DI
Zr.
(N =2 -
S hinaa

_— 1Y%, . 3.1.1
Resolulion L7, ( )

Heve, Resolution indicates the resolution of a map represented in image plane in cm/pirdd
and ¢, is a constant denoting a fraction of the total samples (\N]), . Therefore, the
number of sample varies proportionately with the amount of predicted nneertainty. The
dynamically varving sample size increases the probability of including the correct hasin of
attraction when the uncertainty i robot s pose is lavge. and at the same time it reduces the
computational burden by generating {ewer samples to take care of small uncertainty, The

Inzzy sample-based prediction can be chavacterized by the parameter vector r,.rg,. .
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a —Start

(a) (b) (c)

Figure 3.3: Performance of fuzzy predictor: uncertainty build up is represented by the spread of sauple
cloud ta) Surface: Slippery, Velocity: 0.3 s (b)) Surface: Roughe Velocity: 0.3, 5 (¢) Surface: Slippery.

Velocity: 0.7m /s

Figure 3.3 shows its performance in estinating uncertainty subjected to various conditions.

The control conunand for traversing an "L7 shaped trajectory is represented by the
solid black line. The robot exeentes this motion command on two dilferent type of surface,
shppery (nedium) and rongh (medinm, . at two different velocities (0.35m /s and 0.70m /s).
Anincerease in uncertainty is shown by the increasing radius of sample cloud. Figure 3.2(a)
atd 3.2(h) shows the effect of suwrface tvpe on the amount of uncertainty, Clearly, traveling
on slippery surface introduces less uncertainty than that on a rough surface (carpet) with
the same velocity (this result is for a Pioneer 3 AT mobile robot whose odometry is more
unreliable on carpet than on hard floor. Detail will he deseribed in Chapter 4). For bhoth
cases, uncertainty grows with traveled distance. sinilarlv. the effect of robot™s velocity on
the amount of uncertainty is demonstrated in Figure 3.2(a) and 3.2(¢) where the robot

travels wirth different velocities on the same surface.

Table 3.1 Rule base for Drift

Travelod distance. Lincar velocily

Surfacc type | L) LA ) LLH | NLL | NLA | NLIE | HUL | HAL | HUL

Slhippery Ay L L [1 I M Vil VI I

Rough L L V'L [1 M L V' H H




Table 3.2: Rule base for Rotation error

Lincar velocity. Angular colocily

Surface type | L.L { LN | L. | ML | NN | NLIT HLL | 1IN HIT

Slippery V'L L N L M H L MO VH

Rough L AV I AV AV VI A I1 VI

Table 3.3: Rule base for Translational error

Traveled distance. Lincar velocity

Surface type | LL | LA | L | NLL | NLNT | MU H.L | HEAN | HU

Shppery V'L L AV L N Al L H \'H

Rough L Al Ay L A H AY| H VH

3.4 Search algorithm for true robot pose

A search algorithm is required to determine the true robot pose xe {rom its sample based
estimate X,. The process of generating X, cusures that it is very likelv that the basin
of attraction of the true robot pose will be within X, or mm'(X,). But any unexpected
slippage or collision with obstacle may results in unusually high uncertainty and ultimately
leads to the situation where x; € X,. In such case. searchine within X, or cone(X,) will
detect a sub-optimal solution of the problem. Therefore. a search algorithm is required
which is capable of extending the scarch ontside mm'(X,) depending on requirement.

The proposed rescarch designs a genetic algorithun which considers X, as the initial

Table 3.4: Rule base for Vehicle speetfie error i ortentation

Traveled distance | Vehicle specific crror in spalial posilion

L L
Al AV
H I
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Table 3.5 Rule bhase for Vehicle specific ervor in spatial position

Travelcd distance | Vehicle specific crror i orientation

[. L
A A
I H

population. The genetic operators are designed to intelligently specify nesw search arcas
even outside of conv(X,) in order to avoid premature convergence to a local optima.
The objective function F( /(X0 Suq)). as introduced i (3.2}, is considered as the {itness
. (Ut (et
function for the proposed GA. The inctional mapping F is defined in such a wav that
S .

FU [ (X0¢- S0 ) faithfully measures the consisteney of a map.

3.4.1 Genetic algorithm

Genetic algorithms 'R0} are randon scarch techniques modeled on the principle of evolution
via natural sclection. Thev emplov a population of mdividuals that undergo selection in
the presence of variation-including operators sucl as mutation and crossover. A fituess (or
cost) function is used to evaluate the mdividuals and reproductive success varies witl the
fitness (or cost). The string representing an individual 1s often referred to as its genome.
locations on the genome are termed locs and the value found at a locus is an allelc. The
encoding of solution in the form of string is called a genolype while the solution that
o specific eenotvpe reflects s termed phenolype. Each iteration of a genetic algorithin.
also called goncration. involves o selection process which exhibits strong bias for fitter
solutions to survive while eliminating the poorly {it solutions [rom the [uture competition.
The generations continme until the termination criteria is fulfilled. A set of syvinbols will
be specified in this section to describe the genetie algorithm designed for CNL of mobile
rohot.

A population. denoted by Fi(n). evolves fronr one generation. n. to the next. n +

L. The members i a population ave characterized by strings of genetic variables x}'(n)
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(chromosome. i GA terminology). The superseript is used to label the different members

of the population. where = 1.2.3.. .

3.4.2 Chromosome encoding: Genotype and Phenotype

The chromosonies are real-coded in the proposed GA. A chiromosome represents a robot’s
posc. Fig. 3.1 shows the genotype of a chromosome. Its phenotype is the 3 x 3 homogenous

transformation matrix

RO) [ gl
v [ O Ll (3.15)
0 |

Here. R(6) is the rotation matrix as defined in (3.7) and 0 represents a 1 x 2 null vector.

Figure 3.1 Chromosonie

3.4.3 Initial population

The sample hased prediction X, of the true robot pose is considered as the initial popu-
lation for the proposed GA. that is 74(0) = X,. As X, infers a set of robot poses while
considering possible causes of deviation from the true robot pose. it is very likelv that X,
will include or be near to the correct hasin of attraction. This ensures fast convergence
of the search process. though for x; ¢ X;. the partial solutions for (3.11) with relatively
high fitness tend to produce clones at high rate (termed as fomnder effect” in GA termi-
nologyv). This reduces the diversity in population and the GA will loose its exploratory
capability and may results in a premature convergence to a local optima 1810 82]0 To
avold this. a multiple island model of population R3] is adopted which helps to main-
tain diversity i population.  The initial population F(0) 1s divided mto small islands
i)™ m = 1.2, .. ¢ based on the samples’ spatial positions and cach island evolves
independentlv up to a predefined mnnmber of generations o, In addition. the evolutionary

operators help to maintain the exploratory capability of the algorithamn.
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3.4.4 Fitness function

Design of the litness funcetion F s motivated from the scan matching approaches proposed
in 41 42 and their probabilistic generalization discussed in 31 [47 . The fitness fuiction
measures the quality of cach candidate robot pose in best accommodating the current
sensor scall in the partially developed global map. Therefore. the posterior pis,in,. x}' (1))

is caleulated as ameasure of fitness for cach xi'(n) € P(n).
F(J (X0 U (n)ospqo Us)) = pls . xt(n) (3.16)
According to Baves theorem the posterior pls,jm,. x(n)) can be expressed as
plsyme. x| (1)) = npls;)plmy xj'(n).s;) (3.17)

where, 7 1s the normalizer constant. The prior probability p(s,) is assumed to be a nar-
row Gaussian centered on the zero uncertainty outcome of individual sensor measure-
ments. This assumption performs well for high accuracy sensors [37]. The probability
plag x5 (). s;) measures the likelihood of cach obstacle point in the map m; given that the
current sensor scan s; 18 taken at pose xfl(n ). In other words, the likelihood p(my{x} (1), s)
in (3.17) measures the consistency of a map alter acconmmodating the ciurent sensor scan
s; (local map) ar x),(n) in the global map. Two heuristics are followed to caleulate the

likeliliood.
1. Objects perceived by the laser range finder ave opague.

2. Space percerved as [ree in one sensor scan can not be perceived as ocenpied in the
SUCCesSIVe scal.

Similar heuristies have been used o (11] 31]. Likelihood of cach obstacle point in map
ny, is calculated based on these two heuristies. Assuming conditional independence be-
tween measurcinents. the resulting probabilities are multiplied to obtain the final likelihood
plmg|xi(n).s,). The fitness function generates low value for poorly fit saaples and higher
values for better performing samples. For the real world enviromments, the fitness land-
scape of the lancetion F can be fairly complex (with several local maxinia or global maxina

guided by vallev) in the context of C'NL.
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3.4.5 Evolutionary Operators

Seclection

Selection is cross-generational and elitist N1 Probability of an individual </ (n) to be

selectoed is
7 Fr
pixs(n)) = W

where F7os the fitness of x'(n). Individuals from botlr parent and offspring generations

(3.18)

compete to be selected for the next generation.

Crossover

A half uniform tvpe crossover (HUNX- Half Uniform Crossover) is used. Filty percent of
the genes in a parent are crossed over with another parent. Genes to be exchanged are
chiosen randomly without replacement. To prevent hncest. two parents having a Hamining,
distance of less than a certain threshold are prohibited to perform crossover. Let. xj' and
. . . .

xt are two randomly chosen parents from a population P (n). The child through crossover,
R

x; . 15 calculated as

x’,” =X (=X (3.19)

and the complementary child x;* is
X, = (1= Xt = (3.20)

. . . 7, B 3 . . .
Hereo y, 18 a randomly chosen binary variable. x,7 represents /-th element of x; .7 — 1.2.3.
Therefore. no alleles are lost in crossover. The offsprines gencerated through crossover
= la) D

maintain diversity in population but suffer from the following lmitation.

Let, the initial population contains chromosomes having o-positions X — {a oo L Tar b
y-positions Y =Ly s yar b aud orientations © — {f) 6y oo 0o N < A The HUX

cuarantees offsprings which are maxinnun Hamning distance away fron the parents [31]
but Lacks the diversity that. for all offsprings. » € X.y € Y, and ¢ C O. If the actual robot
pose X, € {N. Y. O} a premature convergence will occur. Inorder to avoid this sttuation

mutation is mtroduced i cach generation.
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Nutation

Mutation plavs an important role i the proposed GA to introduce new alleles (. y or ()
in the population. Therefore. power of this GA 1o drive a generation towards the optimal
solution. even when x, @ X, lies parthv on careful design of the mutation operator. Two
nnitation operators proposed by this algorithm ave: Space Mutation and Angle Mutation.
Space Mutation: mutates the chromosoine in such a wav that the offsprings are different
1 spatial position while the orientation is same as the parent. Therefore. only the first
two clements of chromosome undergo Space Mutation process.

Angle Mutation: mutates the chromosome to add diversity in ortentation while keeping
the spatial position unchanged. Obvioustyv. only the thivd element of chromosome experi-
ences Angle Mutation.

Two mutation arvavs pg and gy for Space Mutation and Angle Mutation. respectively, are
delined as

py = a. b 0lia.bh =1[0.%=]
pg = 0.0.c)ie = %0

The chromosome to be mutated (either Angle Mulalion ov Space Mutation) is added with
the corresponding mtation arrav.  The magnitudes of = and o determine how far the
offspring will be from the ancestor in the 3 dimensional space of (a-y-#). The exploratory
capability of GA is greatly mfuenced by the choice of these two parameters. The present
implementation is performed with constant values of = and o There are scopes to adjust
the values of = and ¢ using an intelligent algorithim such as Mzzy logic. Eligibility of a
chiromosome to be mutated is decided by its relative fitness in the island of population to
which it belongs. Mutation shows strong bias in favor of the better performing individuals.
As the selection is cross-generational and elitist. the poorly fit offsprines. if generated
through mutation. never survive to the next generation.

The mutation operators enable the algorithim to generate new robot poses which might
even be outside the radius of uncertainty as suggested by the Fuzzy Predictor. Therefore,

the scarch space experiences a drift and the drift sustains when the true robot pose is



owtside of fuzzy prediction. Crossover and mutation operators provide the GA with the
capability to re-parent fresh saauples from hetter performing ancestors, In the context of
C'NTL. this makes GA superior to other sample hased methods (e.g particle filter) which
update the history of a set of samiples and can onlv perform resampling to eliminate poorly
fit samples.

The tuning factors for the proposed genetie algorithin are: population size [, munber

P

ol iskand e and mutation rate w,. Together. they form the parameter vector 7,0m. ]

that characterizes the proposed GA,

3.5 Mapping through the proposed fuzzy-GA algo-
rithm

The proposed fuzzy-GA based algorithn processes sensor measurements sequentiallyv, In
other words. at any point in time it uses the carrentlv available sensor readings to generate

a partial map of the environment.

3.5.1 Robot pose prediction through fuzzy model of odometry

It is assumed that the robot takes a sensor scan sy before execuring the very first control
comnmand uy. Without Joss of generalitv, the very first robot pose xg 1s assuned to bhe
the origin of a hypothetical global co-ordinate system and s, is the available map that the
robot ‘memorizes” at the thne of taking its first move. Let. at any point in thne, £ — 1. the
robot have a map m; . generated fron current v avatlable sensor measurenents s and
corresponding pose information X, ;. Execution of @& new control command u, - makes
a new sensor measurenient s, available. The corresponding robot pose x; is the quantity
to be determined. The Fuzzy Prodicltor, as deseribed in Section 3.30 generates the saimple
hased prediction X, 1o predict x;. The X, rementbers” the errors i each step of the robots
past moves in addition to the errors inmost recent movement u; ;. Therefore. at any point

in time it is very likely that the true robot pose will be included within its sample based



prediction even when the accumulated error is very high. However. this assumption does
not hold good if the robot encounters slippage or collides with unexpected obstacles. In
such cases Fuzzy Predictor usually fails to include the true robot pose within the convex
set of the sample based prediction.

FFor the trivial case of x; < X,. the time complexity ol scarch is O(n). where nois the
nuber of samples i X,. To end up with sucli a trivial case it s generallv required that
nois very high. This makes the scarch alimost an exhaustive one. As the robot pose is a
three-dimensional continuons variable, an exhaustive search on such a huge search space
does not lend the algovithm to be used online. For the non-trivial case of x, & ('(mz‘(X, ). a
local search is performed around cach sample point i order to obtain the global maxima.
A obvious choice for this is gradient ascent scarcl A particle lter based algorithm in (30,
nses eradient ascent scarch starting [rom cach particle. However. gradient ascent scarch
nposes the constraint that X, should be densely populated with saples i order to avoid
reaching local maxima. Further. gradient ascent can not guarantee global maxima for the
non-trivial case of x; € conv(Xy). A genctic algorithm is proposed in this research which

performs well at all situations (.o x; € X0 xp € cone(Xy) or x4 € conv(X,)).

3.5.2 GA based search for true robot pose

The GA based search is designed i such a wav that the convergence to global maxima does
not get affected severely by the deusity of sample in X,. Upon receiving each new sensor
measurement the GA is initialized by the fuzzy sample hased prediction about the robot
pose. Samples in cach population are divided into multiple small islands. Eacli population
island undergoes selection. crossover and mutation processes independently up to certain
muber of generations, 7, The GA-based scarch algorithn is deseribed i Figure 3.5.
For this implementation. n, = 10. It has been observed that the GA can detect the correct
basin of attraction within 10 generations. After that. mmdividuals in different islands are
merged together and the scarch is performed on the nierged population.

After reaching global maxima. a generation starts to get populated with clones of the

hest estimate of true robot pose. X, Repetition of the same maximum fitness for gener-
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Algorithim GA,Soarch(X,. Si):

count=0:  a variable to count the munber of generations.

Pilcount) = X, [ tuzzy prediction is set as initial population.
while(count < n,) "/continues upto n, generations.

i
Pitcount)y — \J Pfcount) ,, population is divided into small islands.

a—l1
for « — 1.2.3. 1. // for cacly island of population
Fitness evaluation according to (3.17)

selection
—

P (count) 1 (count )]"‘[ /] selection according to (3.18)
;/),”(f'”“'i/)]”l tadien Picount )]"’/'”“” / /mutation

Pfu(”””’/) et [[7,"(('()1””)]( ,/ lcrossover according to (3.19-3.20)
Fitness evaluation according to (3.17)

Ptcount)y ¢ P (count )] U il’[”(('uuut)}“"-'““’ S leetion Pétcount — 1)
end for

count + +

end while

[Figure 3.5: the GA-based scarch Algorithm

ations and mounotonically decreasing diversity of population is considered as the stopping
criteria for the proposed GAL Despite the best estimate x;. the associated terminating gen-
eration is also remembered” with caclh robot pose inorder to perform the back propagation

of accmnulated error.

3.5.3 Map update and backward correction of map for loop clos-
ing

After obtaining the hest estimate of robot pose. the map is updated according to (3.5) -

(3.8). As long as the robot explores new area fromn cach new scan. the accumulated error

in pose estimation does not deteriorate the topological consistencey of the map. However.

whenever any previouslv mapped arca is discovered again from the current sensor scan (e.g.

during closing a loop in a cvelic environment ). a severe topological inconsistency appears
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in the map. The amount ol inconsisteney depends on the dimension of the loop and also on
the tvpe of enviromment. From experimentations i different tvpes of evelic environents
it is observed that the loop closure error can be extremely high. specially during mapping,
lony, featurcless corridors where there are nsudlicient features for localization and the
end points (ol the corridor) are not detectable reliably from the other end. Backward
correction ol the calculated robot poses is usually proposed in literature 13]0 [59] to take
care of this problem. The loop closure process in this research essentiallv follows the
sinilar approach ol backward correction. A directed grapl of the caleulated robot poses is
alwavs maintained i order to detect the loop closure. A node in this graph indicates the
spatial position of a robot while an edge represents the ditference in orientation between
two successive nodes. For example. at time { = 1. if the calculated robot poses according
to the proposed algorithim ave Lryyp 0] oo yo. o]l [ese yy. O3] and [0y 0], then the

directed graph ¢ = {17 I} is defined as

Vo= b Aot Aes st {rioui b}

L = {OI.(\-_).O;J} (3_)1)
where,
a, = Hy—01
tn = 03 — 2
(}3 — (1)1 — US

In a two-dimensional Cartesian coordinates svstem (same as the global coordinate svsten
ol the map) the graph looks like Figure 3.6. To detect a loop closure two simple heuristies

arc applied.
L2507 <37, ap <3007

20 e oy A v b Lo v b) s deercasing monotonically. Hereo d(.) represents
Euclidean distance bhetween two points, and 7+ in the sabscript indicates time

near future including the present time.

[y
<t
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Figure 3.6: Directed graph for loop closure detection.

For any calculated robot pose x;, if the first condition is satisfied. it is assumed that the
correspouding posc is possibly’ eoing to close a loop. If the successively calculated robot
poses satisfv the second condition. it 13 decided that x; and its successors ‘certainly’ close
a loop. Whenever a loop closure is detected. a backward correction of poses is performed
starting from x; up to the neighborhood of x,,. A genetic algorithim similar to the one
described in Section 3.1 takes care of the backward correction process. For every pose

—

X € [x¢. X,,]. 2 GA searches for the corrected pose which maximize the consistency of loop.
Here. search starts from the terminating generation which is ‘remembered’ along with the
hest estimate ol the true robot pose.

Strictly speaking. the procedure of loop closure detection might not work well for a

complex loop structure or a nested loop.

3.6 Summary

The proposed CNL algorithn. presented in this chapter. is an incremental mapping al-
goritlim which fulfills all necessary requirements of a robotic mapping algorithim. The
algorithm uses fuzzy logic to model the error in a mobile robot’s odometry. The fuzzy
modeling of error in odometry enables the algorithim to consider all the systematic and
non-systematic errors while inferring the uncertainty in robot pose. Compared to most
of the existing CML algorithins. the proposed algorithin does not confine itself with a
Gaussian assiunption of odometry ervor. The fuzzy error model of odometry generates a

sample based prediction of the robot pose. A GA is designed to search {or the optimal
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robot pose which best accommodate a local map in the cirrent partially developed global
map. This GA Dbased scarch stares tfrom the pose space detined by the fuzzy svstem. The
property of natural selection: wlhich supports the survival of hetter performing individuals.
oflers an iterative solution to the correspondence problenn of robotic mapping. The ca-
pacity of GA to perform both resampling from the existing samples and at the sane time
re-parenting fresh samples iiposes less restriction on the initial sample distribution (pro-
vided by the fuzzy error model of odometry) to closely resemble the original distribution.
This also enables the algoritlun to avoid converging to a local optima. Experiimental vesults

arc deseribed in the next chapter to validate the perforimance of the proposed algorithn.
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Chapter 4

Results

About this chapter. This chapter describes experimental results to validate the proposed
robotic mapping algorithn. A small discussion on the equipments used to carry out the
experitents are provided first. This follows the deseription and analysis of experimental

results obtained from various simulated and real world environnients.

4.1 Robot and sensor system

An ActivMedia Pioneer 3 AT mobile robot is used in this research to test the proposed
aleorithim, A SICIKK LNS 200 laser range finder is nsed as an exteroceptive sensor and the

optical encoder of the P3 AT is used as a proprioceptive sensor.

4.1.1 ActivMedia Pionecer 3 mobile robot

The ActivMedia Pioneer 3 AT mobile robot (Figure 4.1(a)) used in this research is a
I wheel drive. all-terrain mobile robot which operates autonomounsly with an onboard
PC 101 computer and multiple PCLO T accessory cards. The drive svstem of this robot nses
two high-speed. high-torque reversible DComotors. cach equipped with a high-resolution
optical quadrature shaft encoder for precise position and speed seusing and advanced

dead-reckoning.  The robot tracks its position and orienfation based on dead-reckoning



from wheel motion derived from encoder readings (motor encoder resolution is 500-ticks per
revolution). The Active MNedia Robot Control and Operation Software (ARCOS) maintains
robot’s mternal coordinate position in platform-dependent units, but reports the values in
platform-independent millimeters and degrees in the standard Server Information Packet
(SIP). This registration between external and internal coordinates deteriorates rapidly
with movement due to gearbox play. wheel imbalance and slippage. and many other real-
world factors The dead-reckoning ability of the robot is reliable for a short travel distance;
in the order of a few meters. or one to two wheel revolutions, depending on the surface.
Traveling on carpet produces more erroneous result than that on the hard floors [85].
Also. moving either too fast or too slow tends to exacerbate the absolute position errors.
Accordingly, the robot’s dead-reckoning capability can be considered as a means of tying
together seusor readings taken over a short period of time, not as a method of keeping the
robot on course with respect to a global map. The maxunum linear velocity of P3 AT on

flat terrain is 0.7m/s.

(a) ActivMedia Pioneer 3 AT mo- (b) SICK LMS 200 Laser

bile robot range finder

Figurce 4.1: Robot and sensor used for experiment

4.1.2 SICK LMS 200 laser range finder

The Laser Measurcment System LMS 200 laser range finder developed by SICK is a non-

contact measurement system that scans the surroundings two-dimensionally. As a scanning
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svstem, the device requires neither reflectors nor position marks. The LMS 200 system
operates by measuring the time of flight of laser light pulses: a pulsed laser beamn is cuitted
and reflected if it meets an object. The reflection is registered by the scanner’s receiver.
The time between transmission and reception of the impulse is directly proportional to
the distance between the scanner and the object (tune of flight). The pulsed laser beam
15 deflected by an mternal rotating mmrror so that a fan-shaped scan is made of the sur-
rounding area (laser radar) (Figure 4.2(a)) The maximuni scanning angle is 100 or 180
(180¢ scanning angle 1s used in this research). The contour of the target object is de-
termined from the sequence of mmpulses received. The measurement data is available in
real time for further evaluation via a serial interface. Two important parameters of LMS
system are the variation of spot spacing and spot diaineter with range. In a radial field
of vision. a light impulse (spot) is emitted every 0.25°.0.5% or 1° (0 5° resolution is used
in this research). As a result of the beam geometry and the diameter of the individual
spots, the spots overlap on the target object up to a certain distance. Figure 4.2(b) shows
spot spacing in relation to the range and the corresponding spot diameter for the LMS
200. The range of the scanner depends on the reflectivity of the target object and the
St spACINg for Spot IEmeter

WA reschit T of 1 LMS 200 220

SOt a2 fo Sprot o G for

angubar r=solution of 0 £ ANgUkAl fesoluton of .25
15
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1 4 " " t 1 14 1 18 20 - It 24 18 30
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(a} I'an shaped scan- (b) Variation of spot size and spot spacing with range

ning of LMS 200

Figure 4.2: LMS 200 Operating characteristics [Adopted from [36]]

transmission strength of the scanner. In standard setting, the maximum range is 30 meter
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Figure 4.4: Mapping a polvgonal coviromnent

motion conmnands. Uneertainty in the robot pose at different scan locations are shown in
Fiegure Ld(a). Growth of uncertain(y is represented by increasing radius of sample ¢loud
around cach expected robot location. Figure L I{(D) shows a scenario when the robot is at
the last scan location and has alveady developed a partial map of the enviromment. The
performance of GA module in searching the actual robot pose is shown in Figure L-1(c¢)-
L. I{¢). The samplesin Figure 1 4(b) constitute the initial population. The samples start to
cenerate around the true robot pose (Figure ©11(c¢)- 1 1(e)) as the generations evolve. The
algorithim converges after four generations. The initial population contains 20-1 samples.
When the robot disambiguates its position uncertainty, the new sensor measureinent is

added at the calculated robot pose (Fieure 1)),
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Fipure 1.5 Mapping a simulated evelie environment

Another simulated test environment is shown in Figure L3(h). It is evelic hallway of size
12m x12m. The robot s instructed to capture six scans at six different locations (Figure
430 Figure £.50a)--L5(0) show different stages of the incremental mapping process. In
Figure L5(a). the robot is at its second scan location with the partial map of environment
captured at the starting pose. It disambiguates the position nneertainty gradually and
estinlate a pose which ix close to the actual pose. Stmilar analyvsis is applicable to the
other scan locations. The final map obtained (Figure -.5(h) is not perfectly accurate as
the walls are sometinmes not properly aligned. However. the final map is appropriate for
navigation and does not contain any topological inconsistency.,

The initial sample space. i the above examples, generated by the Fuzzyv Predictor
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Figure 1.6: Robustuess of Genetie algorithin

inchudes the actual robot pose. The proposed GA is capable to generate poses near the
actual robot pose if the FuzzyProdictor daes not include it. Figure -1 .6G(a) shows such a
situation. The robot’s actual position is outside the predicted search space. Figure LG(D)
to LO(c) show the gradual drift of the sample space toward the actual solution. The
aleorithm converges alter seventeen gencrations. The resulting map is shown in Figure

LOG(d).

4.3 Experimental result

The proposed algorithin is tested on real workd data captured by Activledia Pioneer 3
AT mobile robot equipped with SICIK LNS 200 laser range finder (experimental set up
i~ shown in Figure -1.7). For mapping. the robot is operated by a joystick to different
places at Memorial University of Newfoundland. The robot is instructed to capture sensor
reading aflter cach 1 to 1.5 meter of travel or 307 to 107 change in orientation. Gyroscope
correction of the robot is turned off to obtain raw odometry reading.  The Pioncer 3

AT can not turn without skidding due to lack of differential drive mechanisi. This fact
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Figure 4.9: Performance of genetic algorithm in registering a local map (scau no. 15) during mapping the
environment shown in Figure 1.8 (a) Initial registration by odometry. Fuzzy sample based prediction for
robot pose (initial population for GA ) is indicated by the point cloud (b) Local map registration according
to the highest fit member of first generation. Samples are generating outside mtial population (¢) Second
generation. More than one sland of populations are evolving independently (d) Third generation. Sawmples
have generated withm the correct basin of attraction (e} Fifth generation. The best estimate of true robot
pose has determined (f) Ternunatimg generation. Samples are gathered around the best estimate of true
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data 1s shown in Figure Ls(a). This map contains severe topological inconsistency and
does not reflect the true geometry of the building. The odonetry readings arve corrected
according to the proposed algorithin and this results in the map as shown in Figure 1L8(h)
alter registering 21 seans. Fieure LYGa0)--L9¢F) show different eencrations of the genetic
algorithm while accommiodating a new local map (scan number 15) in the partial global
map developed from previous sensor nicasurentents. This particular local map is captured
alter pushing the robot approximately Im awayv from its true position and turning it
manually by an angle of approximately 219 Parameter vector for the Fuzzyv predictor is
12¢m.57.20]. Two-dimensional projection of the samples on the r-y plane are shown by
the black dots. Each image in Figure 19 shows the aligniment of the local map according
to the highest it chromosome of a generation. Whenever the GA locates the best estimate
of the true robot pose. the samples start to generate around the hest estimate and the

population rapidly starts to lose diversity.

4.3.2 Test 2:

e Environment: Cvelic environnment of approximately 17m x 1 bn dimension (blue-

print shown in Figure [.10).
e Surface: Tile floor and carpet.
e Range mecasurcment: After cach 1m of travel or 207 change in orientation.

e Added odometry error: Moderate.

As discussed i Section 111 traveling on carpet introduces more errvor in odometry, The
frajectory is chosen in such a way that the robot is subjected to frequent turning. There-
fore. the resulting map from raw odometry data (Figure L11) shows large translational
crrors. This environment is not completely corridor-tvpe and contains several features
(c.o. table. chair. door etel). Therelore. accumulated errors during loop closure do not

become too high. The corrected map as shown in Figure 112 consists of 15 local maps

Hy






By s .
el AN

-,
>

.
%?J

e
mmnon |
- v, ~ -
— . i
7 o GETW
e

Figure 4.11: Mapping cyclic environment of dimension 17m » 14m: Map from raw odometry data. The

red line shows robot trajectory according to odometry
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Figure 4.17: Mappmg unstructured environment cvelic environment of dimension 17m x 15m: Map

from odometry The red line shows robot trajectory according to odometry
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4.3.6 Convergence characteristics of the proposed algorithm

A set of paramceters influences the convergence of the proposed Fuzzy-Evolutionary SLANI
algoritlhim. This section provides a brief discussion about the effect of these parameters on
the convergence characteristics of Fuzzv-Evolutionary SLANLL

Sample density in X, (determined by the value of ¢,) has significant effect on convergence
when x, € ('mu'(X,), though for x, ¢ X, the effect becomes less obvious.  For X, €
u')n‘u(Xf) or x, € X, high sample density (large ¢,) ensures earlier convergence as the
GA can detect/gencerate the correct solution within fewer number of generations. Fig.
4.21(a) shows the convergence characteristics of the GA with different values of ¢, Here

the GA is involved in registering a local map of the second test enviromment for which

x; € conv(Xy). Global maxina is at 0.95. Tor similar fuzzy prediction, r,, = 12cm
and 7y, = 5. larger values of ¢, cause the convergence to happen earlier. Results are

corresponding to the island of population which contains the highest-{it chromosome in
the ternination generation.

The mutation parameters ¢ and v play a vital role for convergence in global maxinia
when x; ¢ mnz'(X,). This is because. an appropriate choice of ¢ and w: can generate a
sample near to or within the hasin of attraction of the global maxima which is outside
of c'()m'(X,). For the mapping example of Fig. 1.9 effect of different values of ¢ and v
on convergence is shown in Iig. 4.21(b). The output parameters of the Fuzzy predictor

= 12cm.ry, = 5" ¢, = 0.3]. With larger values of ¢ and " the GA can quickly
1 &

are r,,
generates samples near the correct hasin of attraction and convergence occurs within fewer
munber of generations. But smaller values of € and ¢ cause delayved convergence, even for
too small values the algorithin may fail to reach the global maxinia. The results shown in
Fig. -1.21(b) are corresponding to island nine of the population.

Effect of multiple island model of population on the convergence of the algorithin is an in-
teresting property to observe. Nultiple island population model does not contribute much
difference in result when x; € X, or x; € cmz,z'(X,"). For x; & c'om'(X,) partial solutions

m X, having relatively higher fitness win the competition and go to the next generations.

These individuals. which are usually of same phenotype. generate offsprings essentially

71



siinilar to their parents. Thus the generation starts to loose diversity and ends up with
premature convergence. Rather, with multiple islaaud model as each island grows indepen-
dentlv without imteraction with other islands. the diversity in generation is maintained
properlyv. Consequently, probability of reaching the correct basin of attraction of global
maxima increases. For the mapping exaanple of Fig. 4.9 the cffect of multiple 1sland popu-
lation is shown in Fig. 1L.21(c¢). In both cases the output parameters of the Fuzzy Predictor
ave [ry, = 12cm.rg, — 5 ¢, — 0.3]. The GA with multiple island (N, = 6) model converge

to the global maxima while the GA with single population sulfers premnature convergence,



Chapter 5

Conclusion

5.1 Overview

This rescarch exploits the intelligent properties of two soft computing technigues to de-
velop a novel algorithm for robotic mapping. The algorithim uses both fuzzy logic and
GAs to solve the CNML problem of mobile robot. The proposed CML algorithm is an
meremental mapping algoritlnn which addresses all the necessary requirements of robotic
mapping. Odometry crror modeling using fuzzy logic enables the algorithn to consider all
the svstematic and non svstematic errors to infer the uncertainty in robot pose. A fuzzy
crror model of odometry generates a sample based prediction of the robot pose. A GA is
designed to search for the optimal robot pose which can best acconnnodate a local map
in a cirrent partiallv developed global map. The GA Dhased search starts from the pose
space defined by the fuzzy error model of odometry. The property of nalural selection,
which encourages the hetter performing individuals to survive. offers an iterative solution
to the correspondence problem of robotic mapping. The capacity of GA to both re-sample
and re-parent new samples from the existing samples miposes less restriction on the initial
sample distribution (provided by the fuzzy error model of odometry) to closely rescmble
the orieinal distribution. This also enables the algorithim to avord convergence to a local

Mmaxin.



5.2 Contributions to research

e Combining soft computing mecthods for robotic mapping: The proposed
algorithn successfully combines soft computing methods, namely [uzzy logic and
GAL to solve the CNL of mobile robot. Tt utilizes the capacity ol fuzzy logic to
handle both qualitative and quantitative uncertainty while inferring the uncertainty
in robot pose. Similarly. it uses the property ol natural selcction to iteratively solve
the data association problem while mapping. Moreover, it uses the capacity of genetic
operators (in re-parenting sanmples) to remove the restriction on the fuzzy error model
to alwavs include the true robot pose. Therefore. the proposed algorithm maintains
a hharmony between the two soft computing methods while applving them to robotic
mapping. Combination of different soft computing techniques is a completely new

concept in the literature of robotic mapping,.

e Fuzzy framec work for odometry crror modcling: The proposed algorithin uses

v. The existing odometry

fuzzy logic to model the errors in mobile robot’s odometry
error modeling technicques use stochastic distribution to predicet the uncertainty in
robot pose introduced by several vehicle specific and real world parameters. The
widelv used stochastic model in this aspect is a two dimensional Gaussian distribu-
tion. This rescarch proposes an alternative technigue based on fuzzy rules to model
the cerror in the robot’s odometry. The proposed fuzzy inference model of odometry
crror provides a sample based prediction about the robot pose alter excecution of a
control conmmand. Effectivencss of fuzzy logic in odometry error modeling lies i the
fact that a number of real world parameters influence the errors in odometry i «a
qualitative [ashion. rather than in a quantitative way. Many ol these parameters
lack cnough probabilistic sophistication to be modeled stochastically.  Stochastic
models of odometry. therefore. ignore these parameters and intend to maodel only
the available quantitative uncertainty. Therelore. stochastic modeling of odometry
error tends to bhe optimistic in certain environments where the qualitative paranie-

ters dontnate in the odometry error (which is typical in outdoor environment). The
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fuzzy logic has the ability to infer the available qualitative information into fuzzy
quantitative form while avoiding the use of complex mathematical procedure. The
proposed technque applies the knowledge of the robot™s kineniatics and its behavior
at different environmunents to develop a fuzzy rule base and also to define various fuzzy
subsets. The resulting fuzzy model of odometry ervor considers all the parameters
related to odometry error(both qualitative and quantitative) in order to infer the
uncertainty in robot pose. A key advantage of fuzzy based modeling of odometry
crror lies inits simplicity, As the rules of fuzzy logic are constructed from less re-
strictive axioms than probability theory, introducing new variables in the odometry
model {(due to change in robot’™s construction. environmuent conditions ete.) only
requires the addition of one or more coherent mapping rules with the existing rule
base. Fuzzy modeling of odometry error is a new concept in the literature of mobile

robot’s odonetry and there remains much room for development.

G A based mapping: A GA is used in the proposed algorithi to search for the hest
robot poses to produce a ‘maxinially consistent” map from the sensor measurements.
After execution of each control commmand. the GA based seavch starts from the sample
hased prediction of the robot pose that has been predicted by the fuzzy error model of
odometry. As the fuzzy prediction always remembers” the robot’s pose errors at each
step of 1ts past moves. it usually includes the true robot pose. The genetic operators
(mutation and crossover) are capable to re-parent saanples outside the fuzzy sample
based prediction. This mmiposes less restriction on the initial sample distribution to
closclv resemble the actual distribution of robot posce. Particle filter hased CMNL
algorithims usuallv require the initial sample distribution to include the correct hasin
of attraction.  Therefore. under a poorly defined odometry error model. particle
filter based CNIL converges to a local optima. The particle filters keep on updating
the history of a set of samples upon receiving new sensor measurement. Therelore.
they are only capable to re-sample from the mitial sample distribution i order to
support better performing samples. known as Sequential himportance Resampling

(SIR) iu literature 58] The theory of GAL on the other hand, provides means of
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both re-sampling and re-parenting from initial samples based on individual's fitness.
This property has significant importance in the context of proposed algoritlun. as
the mcorrect inference ([rom fuzzy error model) about the pose uncertainty does not
lead the algorithm to premature convergence. The natural sclection property that
supports better performing samples to survive offers an iterative solution to data

association problem ol robotic mapping.

5.2.1 Further recommendations

Though the proposed robotic mapping algorithm is devised for both indoor and outdoor
cuvirommnent. its validity, in this rescarch, has been tested only at different indoor cnviron-
ments. In addition. the present implementation of the algorithm follows the assumption
that the robot is cquipped with a terrain (or surface) recognition mechanism. Therefore.

future works in the context of robotic mapping include:
e development of a real-time terrain recognition algorithm.

e construction of fuzzy subsets and fuzzy rules for different terrain conditions (such as

rocky, sandy. grassyv. etc).
e testing the performance of the algorithm at various outdoor locations.

Further investigation is also required to test the potential use of the algorithm for a nav-
igating mobile robot emploved in high level task planning and execution in an unknown

crvaronnent.
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