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Abstract 
Robotic mapping has been an active research area in robotics and Artificial Intelligence 

(AI) in the last two decades. The research on robotic mapping focuses to solve the self­

localization problem of a mobile robot while it is navigating through an unknown environ­

ment (either indoor or outdoor) in order to build a map of that environment from a series 

of sensor measurements collected by the robot itself. This joint problem of mapping and 

self localization is commonly referred to as Concurrent Mapping and Localization ( CML) 

or Simultaneous Localization and Mapping (SLAM) in mobile robotics research. The ex­

isting techniques used to solve CML (or SLAM) include Kalman Filter (KF), Extended 

Kalman Filter (EKF), Expectation Maximization (EM) algorithm, Particle Filter and dif­

ferent combinations thereof. The objective of this research is to develop a novel robotic 

mapping algorithm for indoor and outdoor environments using soft computing methods. 

The proposed algorithm formalizes the robotic mapping process as an optimization 

problem. The objective function measures the fitness of a robot pose in best accommo­

dating a local map (generated from sensor scan) in a partially developed global map. A 

Genetic algorithm is designed to search for the optimal robot pose which maximize the 

overall consistency of a map. In order to obtain the best result from genetic algoritlnn 

based search, domain specific knowledge is applied intelligently to generate an initial popu­

lation. A fuzzy set theoretic approach is incorporated in this purpose to generate a sample 

based prediction of possible robot poses. The fuzzy logic system uses the prior knowledge 

about robot kinematics and its behavior at different environments to define a fuzzy regions 

to search for robot pose. The proposed algorithm is incremental in nature as opposed to 

batch algorithm in which the entire data set is processed all together, and therefore, has 

the great benefit to usc for online robotic mapping. 

Validity of the algorithm is tested by several experiments carried in simulated and real 

world indoor environments. Maps generated by the algorithm are topologically consistent 

and accurate for use in robot navigation. 
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Chapter 1 

Introduction 

About this chapter . This chapter first introduces the problem addressed by this thesis. 

The scientific context of the problem is then described. This follows a summery of con­

tributions to robotic mapping made by this research and finally the organization of the 

thesis. 

1.1 Motivation 

Researchers today have been focusing on the use of mobile robots for automation, partic­

ularly to replace human operated vehicles in harsh environment. This is because mobile 

robots have the potential to carry out tasks which are considered undesirable or difficult 

for humans due to hazardous working conditions (nuclear reactors, abandoned mines, etc.) 

or a shortage of skilled labor (health care). Other reasons for using robots include free­

ing human labor from menial and repetitive work (transportation and domestic service), 

increasing safety and reliability by augmenting human labor with robot assistance (inspec­

tion and surveillance), increasing productivity (farming and mining), and applications in 

education and leisure (tour guide and toys). Application of mobile robots have already 

shown significant success for exploring volcanoes [1], going places that are too danger­

ous for human access (e.g. abandoned mine) [2], searching for meteorites in Antarctica 

[3, 4], traversing desert [5], exploring and mapping sea bed [6], and even in exploring other 
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planets [7]. 

In order to carry out such high level tasks, an autonomous robot must possesses the 

fundamental knowledge of the working environment, in general, a map. The map can either 

be installed in the robot prior to operation or can be built online, depending upon the task 

it is performing. The mapping capability of an unknown environment allows a robot to be 

deployed with minimal infrastructure. When a map is generated online, the complexity 

of the mapping process increases due to the induced problem of robot localization with 

respect to the growing map. 

The motivation of this research is to develop a robust algorithm for robotic mapping 

which enables the mobile robot to work in an environment without having any pre-installed 

knowledge of it. The world model required for high-level task planning will be acquired 

independently by the robot itself. In order to cope with working in an unknown world, 

the algorithm is devised in such a way that it requires no modification of the environment 

in order to facilitate a robust tool for robot localization. 

1.2 Robotic mapping 

Robotic mapping is the process of generating a spatial representation of a given environ­

ment from a series of sensor readings observed by a robot while traveling through that 

environment. This is generally regarded as one of the important problems in the pursuit 

of building truly autonomous robots [8]. The robotic mapping problem comes at vary­

ing degree of difficulty. In the most basic case, the mobile robot has access to a global 

positioning system (GPS)/differential GPS which provides it with almost accurate pose 

information. The problem of 'mapping with known robot pose' [9, 10, 11] is a trivial 

problem as compared to the general problem of robotic mapping [12] where reliable pose 

information is unavailable. When GPS is unavailable, as is the case of indoor, underground 

or underwater , the mobile robot inevitably accrue pose errors during mapping. This pose 

error induces a proportionate error in the map. The robotic mapping generally addresses 

the problem of map acquisition without reliable pose information. 
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There exist a cyclic nature in robotic mapping problem: while operating in an unknown 

environment, a fully autonomous robot needs to know its location in order to build a 

map of t he uncharted territory, but to know its location, the robot needs a map. This 

cyclic nature of robotic mapping problem is illustrated in Figure 1.1. The robot has to 

Environment Model 
(MAP) 

Self-Localization 

Location Model 
(Position Estimate) 

Map Building 

Figure 1.1: The problem of robotic mapping 

simultaneously maintain two representations: first ly, an environment model or map, and 

secondly, a location model or position estimate. It must be able to run two perceptual 

processes, namely map-building and self-localization, simultaneously. This phenomenon of 

robotic mapping is often referred to as Concurrent Mapping and Localization ( CML) [13] 

or Simultaneous Localization and Mapping (SLAM) [14] in robotic literature. In rest of 

this thesis, the words 'robotic mapping' , 'SLAM' and 'CML' will be used interchangeably. 

1.3 Map representation 

A great number of mobile robot systems [15, 16, 17, 18] in literature rely on maps for 

navigation. The robot can represent the map of an environment in a number of ways 

depending on the type of the navigational task. For indoor environments, there are two 

fundamental paradigms of mapping: the grid-based (metric) paradigm and the topological 

paradigm [19]. 

• The grid-based paradigm represents environment by evenly-spaced grids. Each grid 

cell may, for example, indicate the presence of an obstacle in the corresponding 
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region of the environment. Grid-based maps are relatively easy to construct but 

require considerable storage and can be computationally demanding [12]. 

• The topological paradigm represents robot environment by directed graph. Nodes 

in such graphs corresponds to distinct places, or landmarks (such as doorways), 

while edges in the graphs represent connected path between two landmarks if there 

exist any direct path between them in the real world. Topological maps are difficult 

to construct as they have to provide geometric relationships between the observed 

landmarks. However, this approach of map building is less sensitive to the robot's 

odometry error as opposed to grid-based approach [12]. 

Based on the coordinate system the map is presented, maps are divided into two category: 

world-centric map and robot-centric map. World-centric maps are represented in a global 

coordinate space. Robot-centric map, on the other hand, are described in measurement 

space. They describe sensor measurements a robot would receive at different locations[12]. 

This research focuses on developing an algorithm for generating world-centric, metric 

map of environment. Metric map is chosen over topological map as it does not require 

feature (landmarks) extraction from sensor data. Furthermore, it does not require engi­

neering of featureless environment by placing artificial landmarks. Similarly, world-centric 

map is chosen over robot-centric map as the world-centric map facilitates robot navigation 

more than robot-centric map . 

1.4 The challenges in robotic mapping 

There exists a number of factors which impose practical limitations on a robot's ability 

to acquire a consistent map of an environment while localizing itself with respect to that 

evolving map . A comprehensive study on these factors are available in [12] . The key 

challenges of robotic mapping arc briefly discussed below. 
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1.4.1 Senso r and sensor noise 

To acquire a map, a robot must possesses sensors that enable it to perceive the outside 

world. The mobile robots having mapping capability are usually equipped with two type 

of sensors [20]: 

• Proprioceptive - these sensors measure robot movement relative to the robot's own 

frame of reference. e.g. optical wheel encoders, Doppler sensors, gyroscopes. 

• Exteroceptive - these sensors measure the layout of the environment relative to the 

robot 's frame of reference e.g. range sensors (e.g. laser range finder, sonar) , vision 

using camera. 

In general, sensors are subject to errors, often referred to as measurement error or sensor 

noise [12, 21]. A key challenge in robotic mapping arises from the statistically dependent 

nature of different measurement noises [12]. For example, the control commands (obtained 

from optical encoder reading) issued during environment exploration carry important in­

formation for building maps, since they convey information about the locations at which 

different sensor measurements were taken. But the robot's motion is also subjected to 

errors. The errors in optical encoder reading (generally known as odometry) usually arise 

from various kinematics characteristics of the robot and also from varying amount of slip­

page and skidding at different terrain conditions. The odomctry errors, once introduced, 

accumulate unboundedly over time and it effects the interpretation of the future sensor 

measurements . Therefore, odometry alone is insufficient to determine a robot's pose (lo­

cation and orientation) relative to its environment. 

1.4.2 Data association or correspondence problem 

The data association or correspondence problem [22, 23] refers to the problem of determin­

ing whether the sensor measurements taken at different points in time correspond to the 

same physical object in the world. This is one of the most challenging problem of robotic 

mapping [12]. Many robotic mapping algorithms perform with an underlying assumption 
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of perfect data association between different features in environment [21, 14]. However, 

solving data association problem is an active research in robotic mapping [24, 25, 26] . A 

very well-known data association problem is the loop closing problem while mapping cyclic 

environment. This problem is complicated due to the fact that at the time of cycle closing, 

the robot's accumulated pose errors might be unbow1dedly large and the robot might fail 

to establish perfect association between features . 

1.4 .3 R eal-time require m ents 

To execute high level tasks in real-time, the robot should be capable of building a map 

online. This time requirement often demands that the underlying algorithm must be 

incremental and sufficiently simple to be performed online. In addition, this developed 

map must be easily accessible. For example, accurate fine-grained CAD models are often 

inappropriate to use by a self-navigating robot which takes action in real time. 

1.4 .4 Complexity and dynamics of e nvironment 

Environments that are complex (each entity in the environment might possesses several 

dimensions) and dynamic (real world environment is constantly changing over time, small 

or large), pose a great challenge for the robot to maintain an exact environment model. 

Practically, there are almost no mapping algorithms that can learn meaningful maps of 

dynamic environments [12]. Rather, most of the existing mapping algorithms follow a 

static world assumption. In other words, they are applied in relatively short time windows 

during which the respective environments are static. 

The proposed research addresses some of the above mentioned challenges in robotic 

mapping. It combines intelligent computing techniques, namely fuzzy logic and genetic 

algorithm, to propose a solution to CML of mobile robot. 
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1.5 Intelligent computing for robotic mapping 

Robotic mapping is a complex problem partly because of sensor noises. Whatever decision 

a robot infers about its environment or its own pose, the decision is always plagued with 

errors. Assumption of various stochastic models (e.g. Gaussian) to accommodate these 

errors performs well for certain type of exteroceptive sensors (e.g. laser) [27, 21] . Errors in 

odometry, on the other hand, are not suitable to be modeled stochastically [28]. Several real 

world parameters( e.g. amount of slippage and skidding) have non-Gaussian relationship 

with the growth of odometry errors [29] . Therefore, stochastic modeling of odometry error 

may produce unreliable result. Fuzzy logic provides a natural framework to define and 

solve qualitative (as well as quantitative) relations between various quantities. Therefore, 

a fuzzy logic based approach is proposed in this research to model the odometry error of 

mobile robot. 

Application of sample based algorithms (e.g, particle filter) have produced significant 

results in robotic mapping [24, 25, 26, 30, 31]. The effectiveness of sample based algorithm 

lies in the capability to accommodate any arbitrary uncertainty in sensor measurements. 

Moreover, sample based algorithms offer effective solution to the data association problem. 

Genetic algorithms (GAs) are a class of sample based algorithms developed on the principle 

of natural evolution. GAs have potential application in robotic mapping. The variation 

including operators of GAs (mutation and crossover) have the capacity to generate samples 

based on their fitness. Theory of particle filters, on the other hand, only allow resampling 

over the existing sample set. Moreover, the property of natural selection in supporting 

better performing individuals to survive offers an iterative solution to data association 

problem of robotic mapping. The proposed research combines fuzzy logic and a GA to 

develop a robust solution to the robotic mapping problem. 

1.6 Contributions to robotic mapping 

The contribution of this research to the CML of mobile robot lies in the following aspects: 
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• It provides a fuzzy framework for modeling the errors in mobile robot's odometry. 

• It introduces a new sample based method for solving CML. As opposed to the well 

known sample based method for CML, particle filter[24, 25, 26, 30, 31], the proposed 

method does not keep on updating the history of a set of samples upon receiving new 

sensor measurement. Rather, it generates new samples through the use of genetic 

operators (crossover and mutation). This removes the constraints on the initial 

sample distribution to closely resemble the original distribution. 

• It combines two soft computing methods for solving CML of mobile robot. This is 

completely a new concept in the literature of robotic mapping. 

• Finally, it provides a theoretical frame work of CML as an optimization problem. 

1. 7 Thesis outline 

This thesis will present a novel algorithm for CML of mobile robot. Experiments on simu­

lated and real world data set will be provided to validate the performance of the proposed 

algorithm. The rest of the thesis is organized as follows: 

Chapter 2 discusses some of the state-of-art algorithms in robotic mapping. 

Chapter 3 describes the proposed algorithm for CML. 

Chapter 4 shows experimental results to validate the proposed research in various simu­

lated and real-world indoor environments. 

Chapter 5 provides concluding discussion about the research and indicates some future 

works. 
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Chapter 2 

Literature Review 

About this chapter. This chapter reviews the literature on Robotic mapping and intends 

to provide the current trends in CML. First, existing mapping algorithms are classified into 

different categories based on underlying principle. It follows a general discussion about 

algorithms in each category along with their advantages and shortcomings. 

2.1 History of robotic mapping 

Robotic mapping has been an active research topic since 1980. In the 1980s, a popular 

work of Elfes [9] on metric mapping resulted the Occupancy grid algorithm [10, 11] which 

represents the map by fine-grained grids to model the occupied and free spaces of the 

environment. This algorithm experienced great popularity and has been used in a number 

of robotic systems [32, 33, 16, 34, 35, 36]. The Occupancy grid algorithm has the capability 

to handle uncertainty in exteroceptive sensor (e.g. sonar) using probabilistic techniques. 

However, this algorithm requires exact robot pose information for mapping. In other words, 

occupancy grid mapping is 'mapping with known pose'. The general problem of robotic 

mapping in simultaneously recovering a map as well as the robot pose was first solved by 

Smith et.al [37, 27] in 1990. This seminal work resulted in a new research area in mobile 

robotics for simultaneously solving the mapping problem and the problem of localizing 

the robot relative to the growing map. Since then, robotic mapping has commonly been 
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referred to as SLAM or CML. 

Robotic mapping is inherently challenged by measurement uncertainty. As discussed 

in Section 1.4.1, perceptual noise is complex and exhibiLs random nature. This results 

in adopting probabilistic techniques for solving robotic mapping. Probabilistic techniques 

approach the problem by explicitly modeling different sources of noise and their effects on 

the measurements. Virtually all state-of-the-art mapping algorithms in robotics literature 

are probabilistic. Probabilistic algorithms employ probabilistic models of robot's pose and 

environment, and rely on probabilistic inference for turning sensor measurements into a 

map. Some algorithms [13, 38, 30, 14, 39] make the probabilistic thinking very explicit by 

providing mathematical derivations of the algorithms from probabilistic principles . Others 

[40, 41, 42] use techniques that on the surface do not look specifically probabilistic, but 

in fact can be interpreted as probabilistic inference under constraints [12]. Thrun [12] 

provides an extensive survey on the probabilistic algorithms in robotic mapping. 

The existing state-of-the-art robotic mapping algorithms can be classified into four 

categories based on the underlying theory: 

1. Kalman Filter based approach. 

2. Expectation Maximization (EM) based approach. 

3. Particle filter based approach. 

4. Genetic algorithm based approach. 

Algorithms in each category have their own advantages and shortcomings. A brief discus­

sion about each category is given below. 

2.2 Kalman Filter based approach 

Kalman filter (KF) [43, 44] is a form of Bayesian filters [45] in which the posterior over 

system states is explicitly represented as unimodal Gaussian distribution. The general 
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form of Bayes filter in the robotic mapping problem can be stated as [12], 

p(Xt, fitiSo:t, UQ:t) = TJp(stiXt, fit) J p(xti Ut, Xt-1)p(Xt-1, fitiSo:t-1, UQ:t-1)dxt-1 (2.1) 

Here, 

subscript t discrete time index 

Xt robot pose 

fit - global map generated at time t 

St exteroceptive sensor measurement (e .g. range measurement) 

Ut proprioceptive sensor reading ( odometry) 

TJ normalizer constant 

u o:t { u o, u 1, ... , Ut} 

The distribution p(xt, fitiSo:t, Uo:t) is read as the joint posterior over robot pose and map 

conditioned both on the exteroceptive and proprioceptive sensor measurements. The gen­

erative distribution p(stlxt. fit) probabilistically describes how sensor measurements Stare 

generated for different poses and maps. Therefore, p(stlxt, fi t) is often referred to as the 

perceptual model [33, 16, 13, 31, 30, 46, 6, 47] in robotics. Similarly, the generative distrib­

ution p(xtl u t, Xt- 1 ) in (2.1) specifies the effect of the control Ut (the amount of commanded 

odometry move) on the robot pose Xt· It describes the probability that the control Ut, if 

executed at the world state Xt-1 , leads to the state Xt · For moving robots, the probability 

p(xtl u t, Xt-1) is usually referred to as the motion model [33, 16, 13, 31, 30, 46, 6, 47]. 

The classical approach of solving SLAM/CML using KF was first introduced by Smith 

et.al [37, 27]. This original work proposes a KF-based statistical framework to solve the 

robotic mapping problem. Motivated by this work, several researchers [21, 14, 48, 49, 6, 

50, 39] followed the KF based approach to solve the SLAM problem. 

In KF-based algorithms, the posterior over full state vector is represented with Gaussian. 

In the context of robotic mapping, the full state vector St comprises the robot's pose Xt 

and the map fit: 

(2.2) 
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The probability p(xt, m tlso:b Uo:t) in (2.1) is represented by Gaussian. For robots operating 

on a planar surface, the robot's pose Xt is usually modeled by three variables: the cartesian 

coordinates in the plane, (x, y), and the heading direction, B. Maps in KF-based algorithms 

are commonly represented by the Cartesian coordinates of a set of features. Appropriate 

features may be landmarks, distinctive objects or shapes in the environment. Denoting 

the number of feature in the map by N, the state vector defined in (2.2) is given by the 

following (2N + 3)-dimensional vector: 

(2.3) 

Here mN,x,t, mN,y,t are the Cartesian coordinates of the N -th feature in the map fit· The 

mean and the covariance matrix, J-Lt and ~t, respectively, of the Gaussian representing the 

probability p(xt, m tlso:t, Uo:t) are of dimension 2N + 3 and (2N + 3) 2
, respectively. 

2.2.1 Key advantages of Kalman filter in robotic mapping 

In robotic mapping, the primary advantage of KF is that it estimates the full posterior over 

maps and poses online. To date, the algorithms that are capable of estimating such full 

posterior are based on KF or extensions thereof. In addition to the most likely map and 

robot poses, KF maintains the full uncertainty in the map, which can be highly beneficial 

when using the map for navigation. Additionally, the KF based approach can be shown 

to converge, with probability equal to one, to the true map and the robot pose, up to a 

residual uncertainty distribution that largely stems from an initial random drift [21, 50]. 

2.2.2 Limitations of Kalman filter in robotic mapping 

The KF suffers from some serious limitations in the context of robotic mapping. KF-based 

mapping relies on three basic assumptions: 

1. The motion model (next state function, in theory of KF) must be linear with added 

Gaussian noise. 

2. The perceptual model must be linear with added Gaussian noise. 
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3. The initial uncertainty in roboL'::; pose must be Gaussian. 

The most important limitation of the KF approach lies in the Gaussian noise assump­

tion. In particular, the assumption that the measurement noise must be independent and 

Gaussian poses a key limitation with important implications for practical implementations. 

This makes KF based approaches unable to cope with the correspondence problem [23, 22] 

(the problem of associating individual sensor measurements with features in the map). 

Therefore, the practical implementations of the KF based approaches usually require a 

sparse set of features which are sufficiently distinctive, either by their measurement char­

acteristics or by their locations, so that they can be distinctly identified [26, 24]. Error in 

the identification of features in an environment usually implies a failure of the mapping 

algorithm. For this reason, KF based approaches are usually forced to ignore large por­

tions of the sensor data, and work with a small number of landmark-type features only 

[12]. The resulting maps contain the locations of these landmarks but usually lack detailed 

geometric descriptions of the environment. 

The second limitation of KF stems from the assumption of linear motion and perceptual 

models [12]. In a linear motion model, the robot pose Xt and the map fit depend linearly on 

the previous pose Xt_ 1 and map ffit_ 1 , and also linearly on the control lit. This is trivially 

the case for the map since according to the static world assumption (also known as, Markov 

assumption), the map does not change. However, the pose Xt is usually governed by a 

nonlinear trigonometric function that depends nonlinearly on the previous pose Xt-1 and 

the control lit [28]. Besides, sensor measurements in robotics are usually nonlinear, with 

non-Gaussian noise. To accommodate such nonlinearity, an extension on the basic KF has 

been proposed. This extension of KF, known as Extended Kalman Filter, has been used 

by several researchers for robotic mapping [14, 39]. 

The Extended Kalman Filter (EKF) approximates the robot's nonlinear motion model 

using a linear function obtained via the Taylor series expansion. Single motion commands 

are often approximated by a series of much smaller motion segments, to account for non­

linearities. For most robotic vehicles, such an approximation works well. 
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2.3 Expectation Maximization algorithm based ap-

proach 

Expectation Maximization (EM) is a statistical algorithm which was developed in the 

context of maximum likelihood (ML) estimation with latent variables, in an influential 

paper by Dempster et al. [51]. Application of this algorithm in robotic mapping has 

produced significant results [52, 13, 53]. 

In robotic mapping, the EM algorithm iterates in two steps 

1. An expectation step or E-step. Here, the posterior over robot poses is calculated for 

a given map. 

2. A maximization step or M-step. Here, the most likely map is calculated given the 

pose expectations. 

The function that is being maximized is the expectation over the joint log likelihood of 

the sensor measurements so:t and the robot's trajectory Xo:t 

[i+l) E [l ( I ) I [i) l fi t = arg max xo:t og p so:t, Xo:t fi t fit , So:t (2.4) 
rnt 

Here, fili) is the map generated at ith iteration of the EM algorithm. Part of the likelihood 

that is being maximized is the robot's path Xo:t· However, in robotic mapping the path 

is unknown. Therefore, (2 .4) computes the expectation of this likelihood over all possible 

paths the robot may have taken. Under few assumptions, (2.4) can be re-expressed as the 

following integral [12] 

fili+l) = argmax L j p(x.,.lfi~i], so:t)log p(s.,.lxn fit)dx.,. 
rnt 

T 

(2.5) 

Here, T is the variable of integration with respect to time. The E-step of the EM-based 

robotic mapping algorithm calculates p(x.,. lfilil, so:t) which is the posterior for the pose x.,. 

conditioned on the data so:t and the i-th map fi~iJ_ To calculate this pose posterior at time 

T, x.,., sensor measurements in the entire time interval {1, ... , t} is used, even forT < t. 

Thus, it is required to incorporate both past and future data relative to the time step T 

for posterior estimation over robot's poses. 
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The goal of the M-step is to find a new map mt that maximizes the log likelihood of 

the sensor measurements logp(srlxr) for all T and all poses Xo:t and under the expectation 

p(xrlm~i], so:t) calculated in the E-step. The algorithms proposed in [13] and [52] solve 

this high-dimensional maximization problem by considering each map location (x, y) in­

dependently. This approach of solution assumes that the map is represented by a finite 

number of locations, e.g., by a fine-grained grid. The component-wise maximization is 

then relatively straightforward. 

2.3.1 Advantages and shortcomings of EM-based robotic map­

ping algorithms 

The key advantage of the EM algorithm lies in the fact that it solves the correspondence 

problem. It does so by repeatedly re-localizing the robot relative to the present map in the 

E-step. The pose posteriors calculated in the E-step correspond to different hypotheses 

as to where the robot might have been, and hence imply different correspondences. By 

building maps in theM-step, these correspondences are translated into features in the map, 

which then either get reinforced in the next E-step or gradually disappear. The capability 

of handling correspondence problem makes EM-based algorithms superior over KF /EKF 

based techniques. Besides, EM algorithms are capable of generating consistent maps of 

large-scale cyclic environment even if all features look alike and cannot be distinguished 

perceptually (as discussed in Section 2.2.2, KF /EKF can not take care of such situations). 

However, EM based algorithms do not retain a full notion of uncertainty. Instead, these 

algorithms perform hill climbing in the space of all maps, in an attempt to find the most 

likely map. To achieve this task, EM-based algorithms require processing the entire data 

multiple times. In other words, these algorithms are batch algorithm and cannot generate 

map incrementally. In this aspect, EM is inferior to KF /EKF because most KF /EKF­

based algorithms are capable of generating the map online. 

A new family of algorithm has developed in literature which attempts to combine 

the advantages of both KF /EKF and EM algorithms. This new technique, known as 

15 



Incremental maximum likelihood approach, combines the incremental mapping quality of 

the KF /EKF as well as the power of EM in providing solution to correspondence problem. 

2.3.2 Incremental maximum likelihood method for CML 

The objective of the incremental Maximum likelihood method [11, 38, 54, 55] in robotic 

mapping is to incrementally build a single map as the new sensor data arrives, but without 

keeping track of any uncertainty in pose and map. Such a methodology can be viewed 

as a M-step in EM, without an E-step [12]. The main advantage of this algorithm is its 

simplicity. 

Mathematically, the basic idea is to maintain a series of maximum likelihood maps 

(mi, m;, ... ,) along with a series of maximum likelihood poses (xi, x;, ... ,). The tth map 

and pose are constructed from the ( t- 1) th map and pose via maximization of the marginal 

likelihood given by 

< m;, x; >= arg maxp(stlxt> mt)p(xt> mtlut, x;_ 1 , m;_ 1 ). (2.6) 
mt,Xt 

The map mt can be uniquely determined if the pose Xt is known. The incremental max­

imum likelihood method simply requires a search in the space of all poses St when a new 

data item arrives which in turn is used to determine the pose x; that maximizes the 

marginal posterior likelihood. Similar to KF, this approach can generate a map in real­

time, though without maintaining a notion of uncertainty. Similar to EM, it maximizes 

likelihood. 

In incremental maximum likelihood method, once a pose x; and a map m; have been 

determined, they cannot be revised based on the future data. The KF based algorithms 

are also characterized by the same feature. This weakness reveals itself in the inability to 

map cyclic environments, where the errors in the poses may accumulate unboundedly. 
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2.4 Particle filter based robotic mapping 

Particle filters are the most recent alternative of KF in the context of robotic mapping 

[30, 56]. The key idea of using particle filter is to represent the posterior distribution by a 

random collection of weighted particles which approximate the desired distribution [57, 58]. 

As the posterior is not approximated in parametric form (as opposed to KF /EKF), particle 

filter can accommodate almost arbitrary sensor characteristics, motion dynamics and noise 

distribution. In the literature of robotic mapping, there exist a number of algorithms 

which use particle filter. Hybrid approach and FastSLAM, two popular algorithms in this 

category, are discussed in this section. 

2.4 .1 Hybrid approach 

The hybrid approach [12] of CML [31, 47] estimates the posterior over the robot's poses 

using particle filter. These algorithms [31, 47] use the incremental maximum likelihood 

approach to build map while maintaining a posterior distribution over the robot poses. 

This distribution is calculated using the standard Bayes filter applied only to robot poses 

p(xtlso:tJ Uo:t) = 7]p(stlxt) j p(xtl u t, Xt-1)P(Xt-1lso:t-1, Uo:t-1)dxt-1 (2 .7) 

By retaining a notion of the robot's pose uncertainty, conflicts encoutnered during mapping 

large cyclic environment can be identified, and the appropriate corrective action can be 

taken . A particle filter is employed to calculate the pose posterior p(xtlso:t, Uo:t)· 

Unlike the incremental maximum likelihood method, the hybrid approach has the abil­

ity to correct the map backward in time whenever an inconsistency is detected. 

Limitat ions of hy brid approach 

The hybrid approach suffers many deficiencies . First and foremost, the decision to change 

the map backwards in time is discrete which, if wrong, can lead to a catastrophic failure 

[12]. Moreover, the approach cannot cope with complex ambiguities, such as the uncer­

tainty that arises when the robot traverses multiple nested cycles. Finally, the hybrid 
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approach is, strictly speaking, not a real- time algorithm, since the time it takes to correct 

a loop depends on the size of the loop. However, practical implementations [59, 31, 47] 

appear to work well in real-time when used in office-building type environments. 

2 .4 .2 FastSLAM 

FastSLAM [24, 25, 26, 60] is a SLAM algorithm that integrates both particle filter and 

EKF. It exploits a structural property of the SLAM problem that feature estimates are 

conditionally independent given the robot path. More specifically, correlations in the un­

certainty among different map features arise only through the robot's pose uncertainty. If 

the robot was told its correct path, the errors in its feature estimates would be independent 

of each other. This fact allows to define a factored representation of the posterior over 

poses and maps. FastSLAM implements such a factored representation, using particle fil­

ters for estimating the robot path (not the robot pose). Conditioned on these particles the 

individual map errors are independent, hence the mapping problem can be factored into 

separate problems, one for each feature in the map. FastSLAM estimates these feature 

locations by EKF. The basic algorithm can be implemented in time logarithmic in the 

number of landmarks, using efficient tree representations of the map [24]. Hence, Fast­

SLAM offers computational advantages over plain EKF implementations and many of its 

descendants . 

The key advantage of FastSLAM is the fact that data association decisions can be 

made on a per-particle basis. As a result , the filter maintains posteriors over multiple data 

associations, not just the most likely one. This feature makes FastSLAM significantly 

more robust to data association problems than algorithms based on maximum likelihood 

data association [61]. A final advantage of FastSLAM over EKF-stylc approaches arises 

from the fact that particle filters can cope with non-linear robot motion models, whereas 

EKF-style techniques approximate such models via linear functions [61]. 
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Limitations of FastSLAM 

The main limitation of FastSLAM is the fact that it maintains dependencies in the es­

timates of feature locations only implicitly, through the diversity of its particle set [61]. 

This disadvantage is also the source of FastSLAM's efficiency - a key advantage of Fast­

SLAM over previous techniques. In certain environments this fact can negatively effect the 

convergence speed when compared to the mathematically more cumbersome EKF [14, 21]. 

2.4 .3 DP-SLAM 

A recent development in particle filter based robotic mapping is Distributed Particle­

Simultaneous Localization And Mapping (DP-SLAM) [62][63]. DP-SLAM does not require 

feature extraction or identification from sensor data. It provides an elegant solution to 

efficiently store the individual maps assigned to different particles. The core difference 

between DP-SLAM and FastSLAM lies in the way of representing world state. Rather 

than using KF on landmark positions (like FastSLAM), the DP-SLAM uses probabilistic 

occupancy maps. Unlike the conventional occupancy map [9], each grid in the occupany 

map of DP-SLAM is actually a tree containing observations for different particles. The 

map representation technique which is termed as Distributed Particle mapping in [62][63] 

enables the algorithm to maintain and update hundreds and thousands of candidate robot 

poses and maps in real time as the robot moves through the environment. 

Limitations of DP-SLAM 

The price for the efficiency in memory utilization (as proposed in DP-SLAM) is that the 

data retrieving from a grid cell is far more complicated than a simple array access . Besides, 

the DP-SLAM algorithm requires large number of particles for closing loops. 

2.5 Genetic algorithm based approach 

Application of Genetic algorithms (GAs) in robotic mapping is a relatively a newer concept. 

Its application in CML of mobile robot was first introduced by Ducket [64] in 2003, though 
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EKF based prediction of 
Uncertainty in robot's state 

GA based update of 
robot's state 

(For future prediction of states} 

Figure 2.1: Restricted Genetic Optimization algorithm for mobile robot localization with respect to a 

given map 

GAs have been successfully implemented in navigation [65, 66, 67] and path planning [68] 

of mobile robot since 1990s, . 

In 2002, Luis et. al. [28, 69, 70] proposed algorithms for mobile robot localization with 

respect to a given map using ultrasonic sensors. These algorithms employ GA along with 

EKF to search for the optimal robot pose. The algorithms proposed in [28, 69] are known 

as Restricted Genetic Optimization (RGO) as GA is applied only in restricted areas of 

the solution space. The EKF generates a seed which is used to estimate a neighborhood 

where the true value of the robot pose is located. With this information, and inside this 

neighborhood the most accurate solution is searched. The search is performed employing 

a GA. Each chromosome of the RGO represents the difference with the best point of the 

last generation. ew generations are oriented in the direction of the steepest slope of 

the cost function (steepest descend), and have smaller distance to the correct estimate 

at each generation. The selection process is cross-generational, and the fitness function 

is an approximation of the probability of a current solution conditioned on all the sensor 

measurements and a priori knowledge about initial state. The process of RGO can be 

viewed as shown in Figure 2.1. However, RGO is proposed for robot localization with 

respect to an a priori map. 

The very first application of GA in robotic mapping [64] defines CML as a global 

optimization problem and employs a GA to search for the optimal solution. The trajectory 

generated by a robot during the complete process of data collection is divided into small 

segments (of 3m each). The robot's own measurements of its trajectory are used as a 

generative model. A GA is designed to search for a set of correction vectors associated 
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with the small segments of the robot's trajectory. The correction vectors for different 

trajectory-segments are chosen in such a way that the effect of modifying each small 

segment combinedly develop a compact and consistent map of the environment. Two 

heuristic functions, namely Map Consistency (MC1) and Map Compactness (MC2), are 

defined to measure the compactness and consistency of a map. 

• Map Consistency (MC1): A map is assumed to be consist of finer grid cells of 

resolution 10cm. For each grid cell i, two quantities are calculated: occi, the number 

of laser readings which indicate that the cell is occupied, and empi, the number of 

readings which indicated that the cell is empty. The Map compactness function tries 

to measure the degree of disagreement or 'conflict' between the sensor readings. The 

measure is calculated as 

(2.8) 

by taking the minimum of the occi and empi values for all cells i. 

• Map Compactness (MC2 ): This function tries to reward the GA for producing 

smaller, more compact maps. It does so by fitting a bounding box to the map 

that indicates the total area covered by the cells with occi > 0. The measure is 

calculated as 

MC2 = (Xmax- Xmin) X (Ymax- Ymin), (2.9) 

where Xmax and Xmin refer to the maximum and minimum x-coordinates of the 

bounding box measured in the number of grid cells. 

Linear combination of MC1 and MC1 defines a fitness function F. 

(2.10) 

where the weight w = 0.3 determines the relative importance of the two heuristics in the 

fitness function. 
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2.5.1 Limitations of the existing GA-based CML 

The GA-based CML algorithm proposed in [64] is subjected to certain limitations: 

• The algorithm requires the entire data set, both odometry and laser measurements, 

for processing. Being a batch algorithm, it is unable to generate a map incrementally. 

• There exist a number of cells in the grid map whose status are 'unknown' (nei­

ther empty, nor occupied). The proposed fitness function does not consider these 

cells while measuring the consistency of the map. This weakness manifest itself by 

producing topologically inconsistent map while maintaining a low value of fitness, 

specially in case of complex environments (e.g. turning of a corridor). 

• The algorithm assumes that the odometry data are always within a fixed range 

(±2%) of the true values of robot poses. This hypothesis totally disagree with the 

mobile robot's odometry. As discussed in Section 1.4.1, the robot's odometry is 

subjected to various errors and the magnitude of the errors grow with time. Besides, 

skidding and slippage while traversing irregular terrain might introduce huge error 

in odometry. Therefore, the assumption about odometry to closely resemble the true 

robot pose imposes serious limitation on the applicability of the algorithm. 

• The assumption of small odometry error makes the algorithm unable to cope with the 

huge errors that arise during loop-closure while mapping large cyclic environment. 

• The algorithm does not provide necessary theoretical analysis of CML as an opti­

mization problem. 

2.6 Summary 

Almost all existing state-of-the-art algorithms in robotic mapping are probabilistic. The 

KF and EKF based algorithms are devised only to handle Gaussian noise in sensor mea­

surements which makes these algorithms unable to cope with the data association problem 

of robotic mapping. The EM based algorithms relaxes the Gaussian noise assumption in 
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sensor measurements and overcome the data association problem by performing a hill­

climbing search in the space of all possible maps. In doing so, the EM based algorithms 

lose the capability to build map incrementally as the entire data set is required to search 

for the most likely map. Particle filter based algorithms has the capacity to generate map 

incrementally. These algorithms are also capable to cope with data association problem. 

Sample based algorithms like particle filter, are recent development in robotic mapping 

and has gained much popularity. The particle filter based algorithms approximate the 

original error distribution using a set of samples as opposed to the EM based algorithms 

where, parametric model of error distribution is used. However, particle filter still imposes 

the restriction on the sample distribution (known as proposal distribution, in particle filter 

theory) to closely resemble the original distribution. The GAs are another class of sample 

based algorithm currently being used in robotic mapping. The GAs are more flexible (than 

particle filter) in operating with samples in the context that they can re-parent samples 

while particle filters are only capable to do resampling. The application of GA in robotic 

mapping has not been fully matured and has reported only in a very limited number of 

articles. 

The present research proposes a novel sample-based algorithm for robotic 

mapping using GA and fuzzy logic. 
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Chapter 3 

Proposed algorithm for robotic 

• mapping 

About this chapter. This chapter describes the proposed robotic mapping algorithm. 

First, CML is formulated as an optimization problem. This follows the discussion on 

the proposed fuzzy logic based odometry error modeling technique. Finally, the genetic 

algorithm based global search process for robot pose is described. 

3.1 Introduction 

This research presents a novel sample based robotic mapping algorithm. The proposed 

algorithm formalizes CML as an optimization problem and develops a mapping algorithm 

using two soft computing methodologies, namely fuzzy logic and genetic algorithm. The 

function to be optimized is a measure of quality of a robot pose while accommodating 

a sensor scan in a partially developed global map of the environment. The domain of 

the robot pose within which the objective function tries to optimize itself is defined using 

a fuzzy inference system. This fuzzy rule based system models the errors in odometry 

of mobile robot and generates a fuzzy sample based prediction of the robot pose. The 

underlying fuzzy mapping rules infer the uncertainty in a robot pose after execution of 

each motion command. The rule base is constructed from expert knowledge of the robot's 
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kinematics and its behavior at different terrain conditions. The search for true robot pose 

from the fuzzy sample based prediction of uncertainty is performed by a genetic algorithm. 

The fitness function is set as the optimization funct ion while the fuzzy sample based 

prediction of robot pose acts as the initial population for the proposed GA. The genetic 

operators are designed in such a way that they are capable of intelligently extending the 

search outside the initial fuzzy prediction. The property of natural selection (in favoring 

better performing individuals to survive) is utilized to refine the data associations proposed 

by samples in different generations. 

The proposed algorithm process data in an incremental fashion, i.e. at any point in 

time only the available sensor measurements are utilized to generate a partial global map 

of the environment. 

3.2 CML as a global optimization problem 

3.2.1 Optimization problem 

The Optimization problem is a family of computational problem where a solution having 

the minimum (or maximum) value of the objective function is searched in a feasible region. 

A Feasible region is a region in the solution space where all the constraints are satisfied. 

A global optimization problem can be specified, as suggested in [71], in the form 

Here, 

min <p(z) or max <p(z) 

s.t. z E z, ((z) E <I>. 

z = [~, z] = { z E IRk 1~ ~ z ~ z} 

(3.1) 

(3.2) 

is a bounded or unbounded box in k- dimensional real space JR.k with ~ as lower bound 

and z as upper bound of z. <p : z --+ IR. is a continuous objective function, ( : z --+ IR.1 is a 

vector of l continuous constraint functions (PI ( z), ... , ( 1 ( z), and <I> is a box in IR.1 defining 

the constraints on ( ( z). The feasible region is defined as 

C = {z E z l((z) E <I>}. 
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A global solution to the optimization problem is a feasible point z E C such that 

cp(z) = min cp(z) or max cp(z) 
zEC zEC 

(3.4) 

The problem of CML lends itself to be solved in the framework of optimization problem. 

This is because, generally, any CML algorithm has to search the space of all possible maps 

in order to achieve maximum data association as well as to maintain minimum uncertainty 

in the map. Therefore, CML can be thought of as a problem of searching the most probable 

poses of a mobile robot for generating a 'maximally consistent' map. Consistency of a map 

is indicative to the quality of data association between different local maps and the amount 

of uncertainty associated with different obstacle points in the map. The more accurate the 

data association is, the lower the uncertainty is. Therefore, the term 'maximally consistent' 

map refers to the map having maximum data association and minimum uncertainty. The 

notion of 'maximal consistency' automatically imposes some constraints on the possible 

values of the robot poses. Additional knowledge regarding robot kinematics, dynamics and 

terrain type can also be applied to narrow down the search space. Therefore, the objective 

of CML is to maximize a map subjected to a set of constraints. 

3.2.2 CML in the framework of optimization problem 

A set of symbols will be specified in this section to formally define CML as an optimization 

problem. Some of these symbols have already been defined in Chapter 2. For further 

clarification, they will be re-stated (not re-defined) in this chapter. 

A robot pose Xt is a 3-tuple {x, y, B} where (x, y) is the spatial position of the robot 

with respect to a hypothetical coordinate system and e is the robot's orientation. The t in 

subscript indicates discrete time index. The proprioceptive sensor measurement is denoted 

by Ut while St indicates exteroceptive sensor measurements. The proposed algorithm is 

described for a robot equipped with shaft encoder and laser range finder. Accordingly, 

Ut and St indicate odometry data and laser measurement respectively. These two sensor 

measurements are collected in alternation: {s0 , u 0 , s 1 , u 1 , .. . }. Both Ut and Stare subjected 

to errors and these errors have a strong statistical dependency upon each other. A map 

26 



fit generated upon receiving t-th sensor measurement St at a pose Xt is defined as, 

fit = f(xo:t, so:t) (3.5) 

where, Xo:t = {x0 , x 1, ... , Xt} and so:t = {s0 , s1, ... , St}· For a single pair of robot location-

sensor scan (xt, St), the functional mapping f is defined as 

Here, R( Ot) is the rotation matrix defined as 

Equation (3.5) can be written in recursive form as 

fit f(xo, so) U J(x1, s1) U . . . U f(xt. St) 

f(xo:t-1, so:t-1) U f(xt, St) 

- mt-1 u mt· 

(3.6) 

(3.7) 

(3.8) 

Here, iht = f(xt. St) is the local map generated from a single sensor scan according to 

(3.6) . The robot pose Xt is not known unambiguously in the context of CML of mobile 

robot. Rather, an approximation of Xt can be obtained from odometry Ut. The relation 

between robot pose Xt and the odometry Ut can be formalized as 

(3.9) 

Here, 

Vt - robot's linear velocity within the time interval (t- 1, t] 

Wt robot's angular velocity within the time interval (t- 1, t] 

dt total distance traveled by the robot up to time t 

]( manufacturing/ assembling errors and sensor resolution parameters of a robot 

Ft surface type 
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The quantity K in (3.9) is a vehicle specific parameter and is usually constant for a 

particular vehicle. To quantify Ft in (3.9), an assumption is followed that the robot is 

equipped with a suitable mechanism to identify different terrain conditions while traveling. 

Algorithms are available in literature which can extract terrain quality using sensors (e.g. 

vision, laser [72, 73]). However, all these quantities (vt, Wt, dt, K and Ft) are related to 

mobile robot's odometry in a non-linear fashion. Further, they have strong dependency 

upon each other, and the errors they introduce in odometry accumulate unboundedly over 

time. Therefore, pose estimation by odometry alone results in highly erroneous map. 

The non-linear mapping ¢ as described in (3.9) has not been well-defined in the liter­

ature of mobile robotics. This is because there are quantities in (3.9) whose effects on the 

odometry error are mostly qualitative and therefore can not be modeled in deterministic 

form. However, the exact calculation of Xt from (3.9) is complex in the context of CML. 

Rather, a sample based prediction Xt of Xt can be calculated as 

(3.10) 

where { Xt} indicates a set of robot poses which could possibly be Xt. The function ¢ 

in (3.10) tries to mimic the unknown functional mapping ¢ by a subjective analysis of 

different quantities ( Vt, Wt, dt, Ft and K) and their effects on the odometry Ut· The true 

robot pose is searched from Xt to best accommodate the sensor scan in the currently 

available map. Therefore, according to the definition of optimization problem, we can 

define the CML of mobile robot as 

max F(f(xo:t> So:t)) 

s.t. Xt E conv(Xt) (3.11) 

where F: f(x0 ,t, s0,t) ---+JR. is a continuous function to measure the consistency of a map. 

In the context of CML, there is no definite upper or lower bound for Xt. The feasible 

region is defined as 

C = {xlx E conv(Xt)} (3.12) 

Here, conv(.) represents convex set. Implementation of (3.11) requires the following: 
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• calculation of the sample based estimate Xt according to (3.10). This is related to 

modeling the robot's odometry while accommodating all possible sources of errors. 

• an appropriate search algorithm to search for the true robot pose from Xt. 

• defining the objective function :F: f(xo:t , so:t) ---t R 

The subsequent sections of this chapter will describe the above mentioned requirements 

to solve CML as an optimization problem. 

3.3 Fuzzy modeling of odometry error 

A realistic error model of odometry must reflect the complex locomotion of a mobile robot. 

The most common error model described in literature is an univariate two-dimensional 

Gaussian. There are only a few works [29, 32, 74, 75, 76] that rigorously analyze a mobile 

robot's odometry . Seminal work on mobile robot's odometry described in [29] provides 

a comprehensive study on different properties of odometry errors. Sources of errors in 

the odometry fit into one of two categories, namely Systematic errors and Nonsystematic 

errors [29, 32]. The systematic errors typically include the following: 

1. unequal wheel diameters, 

2. average of wheel diameter differs from nominal diameters (due to wear), 

3. finite encoder resolution, 

4. finite encoder sampling rate, 

5. misalignment of wheels. 

Systematic errors are typically vehicle specific and do not usually change in a particular 

run of the robot. The quantity J{ defined in Section 3.2.2 of this chapter includes the 

sources of systematic errors. It is possible to develop deterministic mathematical model 

that describes the effect of J{ on the robot's odometry from several run of a specific vehicle. 

The non-systematic errors, on the other hand, are less studied in literature, though their 
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effects on overall odometry error is much larger than that of systematic errors in some 

terrains (e.g. rough outdoor environment) . The sources of nonsystematic errors include 

the following [29, 32] 

1. travel over uneven floors, 

2. travel over unexpected objects on the floor, 

3. wheel-slippage due to: 

• slippery floors, 

• over-acceleration, 

• fast turning (skidding), 

• external forces (interaction with external bodies), 

• nonpoint wheel contanct with the floor. 

The variables that control these errors can be identified as the robot's velocity (both 

translational and rotational), surface type and total traveled distance ( Vt, Wt, dt and Ft, 

respectively, as defined earlier in Section 3.2.2). The quantity dt accounts for the accu­

mulation of odometry error with time. An algorithm for multi-robot exploration [74, 75] 

considers both systematic and non-systematic errors to build a realistic model of odom­

etry error. This algorithm [74, 75] devises a set of equations regarding errors in robot's 

translational and rotational movement after several experiments on a diHerential drive 

robot. However, the information about the dependency of a robot's odometry on the non­

systematic errors are available in qualitative form, e.g. 'there will be "more" skidding if 

the robot turns with "high" acceleration' or 'traveling with "high" velocity on a "very" 

slippery floor produces "more" drift than that on a "less" slippery floor'. Because of this 

complex relationship, the mapping¢ in (3.9) lacks a deterministic mathematical structure. 

Instead, these qualitative information usually lead to subjective decision making about the 

uncertainty in robot pose. Fuzzy logic provides a natural framework to model and evaluate 

qualitative relations between variables [77, 78, 79] . Therefore, a fuzzy rule based model 
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is developed to approximate the function¢ in (3.9) as if; in (3.10). The rules in the fuzzy 

model perform non-linear mapping from the vehicle specific constant, K, and available 

sensor information (about surface type Ft, velocities Vt, Wt and traveled distance dt) to the 

degree of uncertainty in odometry. 

The proposed fuzzy system, termed as Fuzzy Predictor, has four input linguistic vari­

ables: robot's Linear velocity (vt), robot's Angular velocity (wt), Surface type (Ft), Traveled 

distance ( dt), and five output linguistic variables : Drift, Translational error, Rotational er­

ror, Vehicle specific error in orientation and Vehicle specific error in spatial position. The 

fuzzy IF-THEN rules for each of the output fuzzy linguistic variables take the following 

form 

• IF Vt is Ai AND Wt is Bi AND Ft is Ck AND dt is Dt THEN Drift is Ew . 

• IF Vt is Ai AND Wt is Bj AND Ft is ck AND dt is Dt THEN TTanslational error is 

Fv. 

• IF Vt is Ai AND Wt is Bi AND Ft is Ck AND dt is Dt THEN Rotational error is Gz. 

• IF dt is D1 THEN Vehicle specific error in orientation is H1q. 

• IF dt is D 1 THEN Vehicle specific error in spatial position is H 2q. 

Here, Ai, Bj, Ck, D 1, Ew, Fv, Gz, H 1q and H 2q are fuzzy subsets denoting linguistic values 

of Vt, Wt, Ft, dt, Drift, Translational error, Rotational error, Vehicle specific error in orien­

tation and Vehicle specific error in spatial position, respectively. The linguistic labels of 

different fuzzy subsets are as follows 

• Ai : {LOW, MEDIUM, HIGH}, i = {1, 2, 3}. 

• Bi : {LOW, MEDIUM, HIGH}, j = {1, 2, 3}. 

• Ck : {SLIPPERY, ROUGH }, k = {1, 2}. 

• Dt, Ew, Fv, Gz : {VERY LOW, LOW, MEDIUM, HIGH, VERY HIGH }, 

l, w, v, z = {1, 2, 3, 4, 5}. 
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• H 1q, H 2q: {LOW, MEDIUM, HIGH}, q = {1, 2, 3}. 

Depending on the possibility of encountering any other different surface conditions (e.g. 

rocky, sandy) new fuzzy subset(s) can be introduced in the model. A set of fuzzy map­

ping rules are formulated using the knowledge of robot's behavior subjected to different 

velocities, surface types and nature of accumulation of errors with time gathered from 

experimentations on a mobile robot and also from literatures on odometry error study 

[29][74][76]. Fuzzy subset partitions and membership function definitions are derived based 

on the subjective assessment of the problem. The bounds on the universe of discourse for 

estimating the degree of error in odometry are chosen based on experimental knowledge 

about the maximum possible errors in nominal condition. Membership functions for dif­

ferent fuzzy linguistic variables are shown in Figure 3.1 and 3.2. Table. 3.1 through 3.5 

represent the rule-bases for different output variables. As an example, the rule shown in 

the upper left box of Table 3.1 is read as: 

if Surface type is slippery and Traveled distance is Low (L) and Linear velocity is 

Low (L), then Drift is Medium (M). 

The fuzzy model, termed as Fuzzy Predictor, is a max-min-centroid defuzzification Mam­

dani type Fuzzy Inference System (FIS) [77]. Output of the FIS is a prediction about the 

radius of uncertainties in spatial position (rs) and angular orientation (re) (with respect 

to odometry) after execution of a piece of control command. 

rs dSte + dSJ( 

re 5Bd + 5Bre + 5Bg 

Here, dste, 5sK, 5Bd, 5Bre and oBK represent defuzzified values of Translational error, Vehi­

cle specific error in spatial position, Drift, Rotational error, and Vehicle specific error in 

orientation, respectively. To account for the accumulation of odometry errors over time, 

accumulated uncertainty radii are calculated as 
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Figure 3.1: Input Membership functions 

rst and rflt usually result in an uncertainty ellipsoid in the 3D discrete space of (x, y, B). A 

number of samples arc selected randomly within this uncertainty ellipsoid. These samples 

constitute the fuzzy sample-based prediction Xt of the true robot pose Xt- The number 

of samples are calculated as a fraction of the maximum possible samples within the three 

dimensional discrete space of predicted uncertainty 

(3.13) 

where, 

( ) ( 2rst )2 
~ =2 +1 ~-max Resolution t 

(3.14) 

Here, Resolution indicates the resolution of a map represented in image plane in em/pixel 

and Cn is a constant denoting a fraction of the total samples (Ns)max· Therefore, the 

number of sample varies proportionately with the amount of predicted uncertainty. The 

dynamically varying sample size increases the probability of including the correct basin of 

attraction when the uncertainty in robot 's pose is large, and at the same time it reduces the 

computational burden by generating fewer samples to take care of small uncertainty. The 

fuzzy sample-based prediction can be characterized by the parameter vector [Tst> Tot> en]· 
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Figure 3.3: Performance of fuzzy predictor: uncertainty build up is represented by the spread of sample 

cloud (a) Surface: Slippery, Velocity: 0.3m/s (b) Surface: Rough , Velocity: 0.3m/s (c) Surface: Slippery, 

Velocity: 0.7m/ s 

Figure 3.3 shows its performance in estimating uncertainty subjected to various conditions. 

The control command for traversing an 'L' shaped trajectory is represented by the 

solid black line. The robot executes this motion command on two different type of surface, 

slippery (medium) and rough (medium), at two different velocities (0.35m/s and 0.70m/s). 

An increase in uncertainty is shown by the increasing radius of sample cloud. Figure 3.2(a) 

and 3.2(b) shows the effect of surface type on the amount of uncertainty. Clearly, traveling 

on slippery surface introduces less uncertainty than that on a rough surface (carpet) with 

the same velocity (this result is for a Pioneer 3 AT mobile robot whose odometry is more 

unreliable on carpet than on hard floor. Detail will be described in Chapter 4). For both 

cases, uncertainty grows with traveled distance. Similarly, the effect of robot 's velocity on 

the amount of uncertainty is demonstrated in Figure 3.2(a) and 3.2(c) where the robot 

travels with different velocities on the same surface. 

Table 3.1 : Rule base for Drift 

Traveled distance, Linear velocity 

Surface type L,L L,M L,H M,L M,M M,H H,L H,M H,H 

Slippery 11 L L H H M VH VH H 

Rough L L VL H M L VH H H 
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Table 3.2: Rule base for Rotation error 

Linear velocity, Angular velocity 

Surface type L,L L,M L,H M,L M,M M,H H,L H,M H,H 

Slippery VL L M L NI H L M VH 

Rough L M H M M VH M H VH 

Table 3.3: Rule base for Translational error 

Traveled distance, Linear velocity 

Surface type L,L L,M L,H M,L M,M M,H H,L H,M H,H 

Slippery VL L M L M M L H VH 

Rough L M M L M H M H VH 

3.4 Search algorithm for true robot pose 

A search algorithm is required to determine the true robot pose Xt from its sample based 

estimate Xt. The process of generating Xt ensures that it is very likely that the basin 

of attraction of the true robot pose will be within Xt or conv(Xt). But any unexpected 

slippage or collision with obstacle may results in unusually high uncertainty and ultimately 

leads to the situation where Xt ¢:. Xt. In such case, searching within Xt or conv(Xt) will 

detect a sub-optimal solution of the problem. Therefore, a search algorithm is required 

which is capable of extending the search outside conv(Xt) depending on requirement. 

The proposed research designs a genetic algorithm which considers Xt as the initial 

Table 3.4: Rule base for Vehicle specific error in orientation 

Traveled distance Vehicle specific error in spatial position 

L L 

M M 

H H 
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Table 3.5: Rule base for Vehicle specific error in spatial position 

Traveled distance Vehicle specific error in orientation 

L L 

M M 

H H 

population. The genetic operators are designed to intelligently specify new search areas 

even outside of conv(Xt) in order to avoid premature convergence to a local optima. 

The objective function F(.f(xo:t, So:t)), as introduced in (3.2), is considered as the fitness 

function for the proposed GA. The functional mapping F is defined in such a way that 

F(J(xo:t, so:t)) faithfully measures the consistency of a map. 

3.4 .1 Genetic algorithm 

Genetic algorithms [80] are random search techniques modeled on the principle of evolution 

via natural selection. They employ a population of individuals that undergo selection in 

the presence of variation-including operators such as mutation and crossover. A fitness (or 

cost) function is used to evaluate the individuals and reproductive success varies with the 

fitness (or cost). The string representing an individual is often referred to as its genome, 

locations on the genome are termed loci and the value found at a locus is an allele. The 

encoding of solution in the form of string is called a genotype while the solution that 

a specific genotype reflects is termed phenotype. Each iteration of a genetic algorithm, 

also called generation, involves a selection process which exhibits strong bias for fitter 

solutions to survive while eliminating the poorly fit solutions from the future competition. 

The generations continue until the termination criteria is fulfilled. A set of symbols will 

be specified in this section to describe the genetic algorithm designed for CML of mobile 

robot . 

A population, denoted by Pt(n), evolves from one generation, n, to the next, n + 

1. The members in a population are characterized by strings of genetic variables xf(n) 
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(chromosome, in GA terminology). The superscript is used to label the different members 

of the population, where p = 1, 2, 3, .... 

3.4.2 Chromosome encoding: Genotype and Phenotype 

The chromosomes are real-coded in the proposed GA. A chromosome represents a robot's 

pose. Fig. 3.4 shows the genotype of a chromosome. Its phenotype is the 3 x 3 homogenous 

transformation matrix 

11 = ( R~e) [x,;]r ) (3.15) 

Here, R(B) is the rotation matrix as defined in (3.7) and 0 represents a 1 x 2 null vector. 

I x y e 

Figure 3.4: Chromosome 

3.4.3 Initial population 

The sample based prediction Xt of the true robot pose is considered as the initial popu­

lation for the proposed GA, that is Pt(O) = Xt. As Xt infers a set of robot poses while 

considering possible causes of deviation from the true robot pose, it is very likely that Xt 

will include or be near to the correct basin of attraction. This ensures fast convergence 

of the search process, though for Xt tf. Xt, the partial solutions for (3.11) with relatively 

high fitness tend to produce clones at high rate (termed as 'founder effect' in GA termi­

nology). This reduces the diversity in population and the GA will loose its exploratory 

capability and may results in a premature convergence to a local optima [81, 82]. To 

avoid this, a multiple island model of population [83] is adopted which helps to main­

tain diversity in population. The initial population Pt(O) is divided into small islands 

Pt(O)m, m = 1, 2, ... , q based on the samples' spatial positions and each island evolves 

independently up to a predefined number of generations n 9 . In addition, the evolutionary 

operators help to maintain the exploratory capability of the algorithm. 
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3.4.4 Fitness function 

Design of the fitness function F is motivated from the scan matching approaches proposed 

in [41][42] and their probabilistic generalization discussed in [31][47]. The fitness function 

measures the quality of each candidate robot pose in best accommodating the current 

sensor scan in the partially developed global map. Therefore, the posterior p(stlfit, xr(n)) 

is calculated as a measure of fitness for each xnn) E Pt(n). 

F(J(xo:t-1 u xr(n), So:t-1 u St)) = p(stlfit, xnn)) (3.16) 

According to Bayes theorem the posterior p(stlfit, xr(n)) can be expressed as 

(3.17) 

where, 77 is the normalizer constant. The prior probability p(st) is assumed to be a nar­

row Gaussian centered on the zero uncertainty outcome of individual sensor measure­

ments. This assumption performs well for high accuracy sensors [37]. The probability 

p(fitlxnn), st) measures the likelihood of each obstacle point in the map fit given that the 

current sensor scan St is taken at pose x~(n) . In other words, the likelihood p(fitlxnn), St) 

in (3.17) measures the consistency of a map after accommodating the current sensor scan 

St (local map) at x~(n) in the global map. Two heuristics are followed to calculate the 

likelihood. 

1. Objects perceived by the laser range finder arc opaque. 

2. Space perceived as free in one sensor scan can not be perceived as occupied in the 

successive scan. 

Similar heuristics have been used in [41 ][31]. Likelihood of each obstacle point in map 

fit is calculated based on these two heuristics. Assuming conditional independence be­

tween measurements, the resulting probabilities are multiplied to obtain the final likelihood 

p(fitlxr(n), St). The fitness function generates low value for poorly fit samples and higher 

values for better performing samples. For the real world environments, the fitness land­

scape of the function F can be fairly complex (with several local maxima or global maxima 

guided by valley) in the context of CML. 
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3.4.5 Evolutionary Operators 

Selection 

Selection is cross-generational and elitist [84]. Probability of an individual xt( n) to be 

selected is 
:FJ.L 

p(xi(n)) = LJ.L :FJ.L (3.18) 

where :FJ.L is the fitness of xi(n). Individuals from both parent and offspring generations 

compete to be selected for the next generation. 

Crossover 

A half uniform type crossover (HUX- Half Uniform Crossover) is used. Fifty percent of 

the genes in a parent are crossed over with another parent. Genes to be exchanged are 

chosen randomly without replacement. To prevent incest, two parents having a Hamming 

distance of less than a certain threshold are prohibited to perform crossover. Let , xf and 

xt are two randomly chosen parents from a population Pt(n). The child through crossover, 

x?, is calculated as 

(3.19) 

and the complementary child xJ; is 

(3.20) 

Here, Xi is a randomly chosen binary variable. x~; represents i-th element of x~, i = 1, 2, 3. 

Therefore, no alleles are lost in crossover. The offsprings generated through crossover 

maintain diversity in population but suffer from the following limitation. 

Let, the initial population contains chromosomes having x-positions X = { x 1 , x 2 , ... , XM }, 

y-positions y = {yl, Y2, ... ) YM} and orientations 8 = {el, e2, ... ) eN}, N ~ 111. The HUX 

guarantees offsprings which are maximum Hamming distance away from the parents [84] 

but lacks the diversity that, for all offsprings, X E X, y E y) and e E 8. If the actual robot 

pose Xt tJ_ {X, Y, 8}, a premature convergence will occur. In order to avoid this situation 

mutation is introduced in each generation. 
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Mutation 

Mutation plays an important role in the proposed GA to introduce new alleles (x, y or e) 

in the population. Therefore, power of this G A to drive a generation towards the optimal 

solution, even when Xt tf. Xt, lies partly on careful design of the mutation operator. Two 

mutation operators proposed by this algorithm are: Space Mutation and Angle Mutation. 

Space Mutation: mutates the chromosome in such a way that the offsprings are different 

in spatial position while the orientation is same as the parent. Therefore, only the first 

two elements of chromosome undergo Space Mutation process. 

Angle Mutation: mutates the chromosome to add diversity in orientation while keeping 

the spatial position unchanged. Obviously, only the third element of chromosome experi­

ences Angle Mutation. 

Two mutation arrays J-ls and J-lA for Space Mutation and Angle Mutation, respectively, are 

defined as 

J-ls = [a, b, 0]; a, b = [0, ±c:] 

J-lA = [0, 0, c]; c = ±'1/J 

The chromosome to be mutated (either Angle Mutation or Space Mutation) is added with 

the corresponding mutation array. The magnitudes of c and 'ljJ determine how far the 

offspring will be from the ancestor in the 3 dimensional space of ( x-y-e). The exploratory 

capability of GA is greatly influenced by the choice of these two parameters. The present 

implementation is performed with constant values of c and 'lj;. There are scopes to adjust 

the values of c and 'ljJ using an intelligent algorithm such as fuzzy logic. Eligibility of a 

chromosome to be mutated is decided by its relative fitness in the island of population to 

which it belongs. Mutation shows strong bias in favor of the better performing individuals. 

As the selection is cross-generational and elitist, the poorly fit offsprings, if generated 

through mutation, never survive to the next generation. 

The mutation operators enable the algorithm to generate new robot poses which might 

even be outside the radius of uncertainty as suggested by the Fuzzy Predictor. Therefore, 

the search space experiences a drift and the drift sustains when the true robot pose is 
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outside of fuzzy prediction. Crossover and mutation operators provide the GA with the 

capability to re-parent fresh samples from better performing ancestors. In the context of 

CML, this makes GA superior to other sample based methods (e.g particle filter) which 

update the history of a seL of samples and can only perform resampling to eliminate poorly 

fit samples. 

The tuning factors for the proposed genetic algorithm are: population size lp, number 

of island m and mutation rate ur. Together, they form the parameter vector [lp, m, ur] 

that characterizes the proposed GA. 

3.5 Mapping through the proposed fuzzy-GA algo­

rithm 

The proposed fuzzy-GA based algorithm processes sensor measurements sequentially. In 

other words, at any point in time it uses the currently available sensor readings to generate 

a partial map of the environment. 

3.5.1 Robot pose prediction through fuzzy model of odometry 

It is assumed that the robot takes a sensor scan s0 before executing the very first control 

command u 0 . Without loss of generality, the very first robot pose x 0 is assumed to be 

the origin of a hypothetical global co-ordinate system and s0 is the available map that the 

robot 'memorizes' at the time of taking its first move. Let, at any point in time, t- 1, the 

robot have a map m t-1 generated from currently available sensor measurements So:t-1 and 

corresponding pose information Xo:t-1 . Execution of a new control command U t- 1 makes 

a new sensor measurement St available. The corresponding robot pose Xt is the quantity 

to be determined. The Fuzzy Predictor, as described in Section 3.3, generates the sample 

based prediction Xt to predict Xt . The Xt 'remembers' the errors in each step of the robots 

past moves in addition to the errors in most recent movement U t_1 . Therefore, at any point 

in time it is very likely that the true robot pose will be included within its sample based 
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prediction even when the accumulated error is very high. However, this assumption does 

not hold good if the robot encounters slippage or collides with unexpected obstacles. In 

such cases Fuzzy Predictor usually fails to include the true robot pose within the convex 

set of the sample based prediction. 

For the trivial case of Xt E Xt, the time complexity of search is O(n), where n is the 

number of samples in Xt. To end up with such a trivial case it is generally required that 

n is very high. This makes the search almost an exhaustive one. As the robot pose is a 

three-dimensional continuous variable, an exhaustive search on such a huge search space 

does not lend the algorithm to be used online. For the non-trivial case of Xt E conv(Xt), a 

local search is performed around each sample point in order to obtain the global maxima. 

An obvious choice for this is gradient ascent search. A particle filter based algorithm in [30] 

uses gradient ascent search starting from each particle. However, gradient ascent search 

imposes the constraint that Xt should be densely populated with samples in order to avoid 

reaching local maxima. Further, gradient ascent can not guarantee global maxima for the 

non-trivial case of Xt rt conv(Xt)· A genetic algorithm is proposed in this research which 

performs well at all situations (i.e. Xt EXt, Xt E conv(Xt) or Xt rt conv(Xt)). 

3.5 .2 GA based search for true robot pose 

The GA based search is designed in such a way that the convergence to global maxima does 

not get affected severely by the density of sample in Xt . Upon receiving each new sensor 

measurement the GA is initialized by the fuzzy sample based prediction about the robot 

pose. Samples in each population are divided into multiple small islands. Each population 

island undergoes selection, crossover and mutation processes independently up to certain 

number of generations, n 9 . The GA-based search algorithm is described in Figure 3.5. 

For this implementation, n 9 = 10. It has been observed that the GA can detect the correct 

basin of attraction within 10 generations. After that, individuals in different islands are 

merged together and the search is performed on the merged population. 

After reaching global maxima, a generation starts to get populated with clones of the 

best estimate of true robot pose, Xt. Repetition of the same maximum fitness for gener-
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Algorithm GA_Search(Xt, St): 

count=O; //a variable to count the number of generations. 

Pt (count) : = Xt //fuzzy prediction is set as initial population. 

while( count :S: n 9 ) //continues upto n9 generations. 
4 

Pt(count) = U Pt"(count) //population is divided into small islands. 
a=l 

for a= 1, 2, 3, 4.... // for each island of population 

Fitness evaluation according to (3.17) 

P a( t) selection [Pa( t)]sel t coun ~ t coun // selection according to (3.18) 

[Pt"(count)]sel m~on [Pta(count)]sel.mut //mutation 

P a( t) crossover [Pa( t)]c t coun ~ t coun //crossover according to (3.19-3.20) 

Fitness evaluation according to (3.17) 

Pt"(count) U [Ptm(count)]c U [Pta(count)]sel.mut se~on pta(count + 1) 

end for 

count++ 

end while 

Figure 3.5: the GA-based search Algorithm 

ations and monotonically decreasing diversity of population is considered as the stopping 

criteria for the proposed GA. Despite the best estimate Xt, the associated terminating gen-

eration is also ' remembered ' with each robot pose in order to perform the back propagation 

of accumulated error. 

3.5.3 Map update and backward correction of map for loop clos-

After obtaining the best estimate of robot pose, the map is updated according to (3.5) -

(3.8). As long as the robot explores new area from each new scan, the accumulated error 

in pose estimation does not deteriorate the topological consistency of the map. However, 

whenever any previously mapped area is discovered again from the current sensor scan (e.g. 

during closing a loop in a cyclic environment), a severe topological inconsistency appears 
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in the map. The amount of inconsistency depends on the dimension of the loop and also on 

the type of environment. From experimentations in different types of cyclic environments 

it is observed that the loop closure error can be extremely high, specially during mapping 

long featureless corridors where there arc insufficient features for localization and the 

end points (of the corridor) are not detectable reliably from the other end. Backward 

correction of the calculated robot poses is usually proposed in literature [13], [59] to take 

care of this problem. The loop closure process in this research essentially follows the 

similar approach of backward correction. A directed graph of the calculated robot poses is 

always maintained in order to detect the loop closure. A node in this graph indicates the 

spatial position of a robot while an edge represents the difference in orientation between 

two successive nodes. For example, at timet= 4, if the calculated robot poses according 

to the proposed algorithm are [x1,yl,OI],[x2,Y2,02],[x3,Y3,03] and [x4,y4,84], then the 

directed graph G = {V, E} is defined as 

where, 

V - {{xi·Y1},{x2,Y2},{x3,Y3},{x4,Y4}} 

E {a1, a2, a3} 

a1 - 82- 01 

a2 - 03 -02 

a3 84- 03 

(3.21) 

In a two-dimensional Cartesian coordinates system (same as the global coordinate system 

of the map) the graph looks like Figure 3.6. To detect a loop closure two simple heuristics 

are applied. 

1. 250° ::; Lt-1 at- 1 ::; 300° 

2. 3mE{1, ... ,t} · d( { xt+, Yt+ }, { Xm, Ym}) is decreasing monotonically. Here, d(.) represents 

Euclidean distance between two points, and t+ in the subscript indicates time in 

near future including the present time. 
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y 

Figure 3.6: Directed graph for loop closure detection. 

For any calculated robot pose Xt, if the first condition is satisfied, it is assumed that the 

corresponding pose is 'possibly' going to close a loop. If the successively calculated robot 

poses satisfy the second condition, it is decided that Xt and its successors 'certainly' close 

a loop. Whenever a loop closure is detected, a backward correction of poses is performed 

starting from Xt up to the neighborhood of Xm· A genetic algorithm similar to the one 

described in Section 3.4 takes care of the backward correction process. For every pose 

x E [xt, xmJ, a GA searches for the corrected pose which maximize the consistency of loop. 

Here, search starts from the terminating generation which is 'remembered' along with the 

best estimate of the true robot pose. 

Strictly speaking, the procedure of loop closure detection might not work well for a 

complex loop structure or a nested loop. 

3.6 Summary 

The proposed CML algorithm, presented in this chapter, is an incremental mapping al­

gorithm which fulfills all necessary requirements of a robotic mapping algorithm. The 

algorithm uses fuzzy logic to model the error in a mobile robot's odometry. The fuzzy 

modeling of error in odometry enables the algorithm to consider all the systematic and 

non-systematic errors while inferring the uncertainty in robot pose. Compared to most 

of the existing CML algorithms, the proposed algorithm does not confine itself with a 

Gaussian assumption of odometry error. The fuzzy error model of odometry generates a 

sample based prediction of the robot pose. A GA is designed to search for the optimal 
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robot pose which best accommodate a local map in the current partially developed global 

map. This GA based search starts from the pose space defined by the fuzzy system. The 

property of natural selection, which supports the survival of better performing individuals, 

offers an iterative solution to the corrcspondcnc;c problem of robotic mapping. The ca­

pacity of GA to perform both resampling from the existing samples and at the same time 

re-parenting fresh samples imposes less restriction on the initial sample distribution (pro­

vided by the fuzzy error model of odometry) to closely resemble the original distribution. 

This also enables the algorithm to avoid converging to a local optima. Experimental results 

are described in the next chapter to validate the performance of the proposed algorithm. 
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Chapter 4 

Results 

About this chapter. This chapter describes experimental results to validate the proposed 

robotic mapping algorithm. A small discussion on the equipments used to carry out the 

experiments are provided first. This follows the description and analysis of experimental 

results obtained from various simulated and real world environments. 

4 .1 Robot and sensor system 

An ActivMedia Pioneer 3 AT mobile robot is used in this research to test the proposed 

algorithm. A SICK LMS 200 laser range finder is used as an exteroceptive sensor and the 

optical encoder of the P3 AT is used as a proprioceptive sensor. 

4. 1.1 A ctivMedia Pioneer 3 mobile robot 

The ActivMedia Pioneer 3 AT mobile robot (Figure 4.1(a)) used in this research is a 

4 wheel drive, all-terrain mobile robot which operates autonomously with an onboard 

PC104 computer and multiple PC104 accessory cards. The drive system of this robot uses 

two high-speed, high-torque reversible DC motors, each equipped with a high-resolution 

optical quadrature shaft encoder for precise position and speed sensing and advanced 

dead-reckoning. The robot tracks its position and orientation based on dead-reckoning 
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from wheel motion derived from encoder readings (motor encoder resolution is 500-ticks per 

revolution). The Active Media Robot Control and Operation Software (ARCOS) maintains 

robot's internal coordinate position in platform-dependent units, but reports the values in 

platform-independent millimeters and degrees in the standard Server Information Packet 

(SIP). This registration between external and internal coordinates deteriorates rapidly 

with movement due to gearbox play, wheel imbalance and slippage, and many other real­

world factors . The dead-reckoning ability of the robot is reliable for a short travel distance; 

in the order of a few meters, or one to two wheel revolutions, depending on the surface. 

Traveling on carpet produces more erroneous result than that on the hard floors [85]. 

Also, moving either too fast or too slow tends to exacerbate the absolute position errors. 

Accordingly, the robot's dead-reckoning capability can be considered as a means of tying 

together sensor readings taken over a short period of time, not as a method of keeping the 

robot on course with respect to a global map. The maximum linear velocity of P3 AT on 

fiat terrain is 0.7m/s. 

(a) ActivMedia Pioneer 3 AT mo­

bile robot 

(b) SICK LMS 200 Laser 

range finder 

Figure 4.1: Robot and sensor used for experiment 

4.1.2 SICK LMS 200 laser range finder 

The Laser Measurement System LMS 200 laser range finder developed by SICK is a non­

contact measurement system that scans the surroundings two-dimensionally. As a scanning 
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system, the device requires neither reflectors nor position marks. The LMS 200 system 

operates by measuring the time of flight of laser light pulses: a pulsed laser beam is emitted 

and reflected if it meets an object. The reflection is registered by the scanner's receiver. 

The time between transmission and reception of the impulse is directly proportional to 

the distance between the scanner and the object (time of flight). The pulsed laser beam 

is deflected by an internal rotating mirror so that a fan-shaped scan is made of the sur-

rounding area (laser radar) (Figure 4.2(a)). The maximum scanning angle is 100° or 180° 

(180° scanning angle is used in this research). The contour of the target object is de­

termined from the sequence of impulses received. The measurement data is available in 

real time for further evaluation via a serial interface. Two important parameters of LMS 

system are the variation of spot spacing and spot diameter with range. In a radial field 

of vision, a light impulse (spot) is emitted every 0.25°,0.5° or 1° (0.5° resolution is used 

in this research). As a result of the beam geometry and the diameter of the individual 

spots, the spots overlap on the target object up to a certain distance. Figure 4.2(b) shows 

spot spacing in relation to the range and the corresponding spot diameter for the LMS 

200. The range of the scanner depends on the reflectivity of the target object and the 

scann1ng angle 180" 

(a) Fan shaped scan­

ning of LMS 200 

Spot spacing for 
~ resolUtion of 1 o 

Spot spacng for 
angula" resolution of 0.5· 

Spot darneter 
LMS200/ 220 

Spot spacng for 
eo1gula" resolution of 0.2 5 

. . . . . . . . . 
0 l 4 6 I tO U H 16 11 10 21 H 16 11 lO 

Range(m) 

(b) Variation of spot size and spot spacing with range 

Figure 4.2: LMS 200 Operating characteristics [Adopted from [86]] 

transmission strength of the scanner. In standard setting, the maximum range is 30 meter 
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15m --- 12m 

(a) Polygonal environment (b) Cyclic environment 

Figure 4.3: Simulated indoor environments 

with 10% reflectivity [86]. 

4 .2 Simulation result 

The proposed algorithm is first tested on synthetic data of different indoor environments 

using a simulated robot and laser range finder. The simulated robot has maximum speed 

of 0.7m/s. The simulated laser range finder has maximum range of 30m with an angular 

resolution of 1° for maximum scanning angle of 180°. Environments are modeled using 

straight lines and spline curves. The robot is instructed to take scan at some pre-specified 

locations. Random noise is introduced in its motion (both in translation and orientation). 

The added orientation error varies from -15° to 15° while the translational error is ran-

domly distributed within a circle of radius ±30.48cm. Measurement noise are modeled as 

random variable uniformly distributed within a circle of radius ±15.24cm. 

The first simulated test environment is a 15m x 15m polygon consist of lines and splines 

(Figure 4.3(a)). The pre-specified scan locations are marked by solid black boxes and the 

circles show the locations where the robot actually takes scan due to errors in executing 
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(a) Predicted uncer­

tainty at different 

scan location 

(d) Generation 2 

(b) Initial population 

at scan locatiou five 

(e) Generation 3 

(c) Generation 1 at 

scan location five 

(f) Final map 

Figure 4.4: Mapping a polygonal environment 

motion commands. Uncertainty in the robot pose at different scan locations are shown in 

Figure 4.4(a). Growth of uncertainLy is represented by increasing radius of sample cloud 

around each expected robot location. Figure 4.4(b) shows a scenario when the robot is at 

the last scan location and has already developed a partial map of the environment. The 

performance of GA module in searching the actual robot pose is shown in Figure 4.4(c)-

4.4( e). The samples in Figure 4.4(b) constitute the initial population. The samples start to 

generate around the true robot pose (Figure 4.4(c)-4.4(e)) as the generations evolve. The 

algorithm converges after four generations. The initial population contains 204 samples. 

When the robot disambiguates its position uncertainty, the new sensor measurement is 

added at the calculated robot pose (Figure 4.4(f)). 
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Figure 4.5: Mapping a simulated cyclic environment 

(d) Generation 3 

,-·······"l . 
~ 
' 

.........,_, ___ _ 

~-·--··· 

(h) Final map 

Another simulated test environment is shown in Figure 4.3(b). It is cyclic hallway of size 

12m x 12m. The robot is instructed to capture six scans at six different locations (Figure 

4.3(b)). Figure 4.5(a)-4.5(h) show different stages of the incremental mapping process. In 

Figure 4.5(a), the robot is at its second scan location with the partial map of environment 

captured at the starting pose. It disambiguates the position uncertainty gradually and 

estimate a pose which is close to the actual pose. Similar analysis is applicable to the 

other scan locations. The final map obtained (Figure 4.5(h)) is not perfectly accurate as 

the walls are sometimes not properly aligned. However, the final map is appropriate for 

navigation and does not contain any topological inconsistency. 

The initial sample space, in the above examples, generated by the Fuzzy Predictor 
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Figure 4.6: Robustness of Genetic algorithm 

includes the actual robot pose. The proposed GA is capable to generate poses near the 

actual robot pose if the FuzzyPredictor does not include it. Figure 4.6(a) shows such a 

situation. The robot's actual position is outside the predicted search space. Figure 4.6(b) 

to 4.6(c) show the gradual drift of the sample space toward the actual solution. The 

algorithm converges after seventeen generations. The resulting map is shown in Figure 

4.6( d). 

4.3 Experimental result 

The proposed algorithm is tested on real world data captured by ActivMedia Pioneer 3 

AT mobile robot equipped with SICK LMS 200 laser range finder (experimental set up 

is shown in Figure 4. 7). For mapping, the robot is operated by a joystick to different 

places at Memorial University of Newfoundland. The robot is instructed to capture sensor 

reading after each 1 to 1.5 meter of travel or 30° to 40° change in orientation. Gyroscope 

correction of the robot is turned off to obtain raw odometry reading. The Pioneer 3 

AT can not turn without skidding due to lack of differential drive mechanism. This fact 

54 



Figure 4. 7: Robot and sensor setup for experiment 

supports our experimental observation that the translational error is larger compared to 

rotation error when the robot undergoes frequent turning. The fuzzy sets as well as the 

rule bases are constructed after observing the behavior of odometry errors from several 

runs of the robot on two surface conditions (tile and carpet). As discussed in Section 4.1.1, 

the odometry readings are more reliable while traveling on tile than those on carpet. In 

order to justify the capability of the algorithm to handle erroneous odometry, the robot is 

pushed often by hand to introduce more errors in odometry. The added orientation error 

at each 'manual push' varies from 0°- 40° and the translation error from 0- 80cm. 

4.3.1 Test 1: 

• Environment: 15m long L-shaped corridor (blueprint shown in Figure 4.8(a)) 

• Surface: Tile floor 

• Range measurement: After each 1.5 meter of travel or 40° change in orientation 

• Added odometry error: Extremely high 

Due to high odometry error, in most cases the Fuzzy Predictor fails to include the true 

robot pose within the sample based prediction. The map generated from raw odometry 
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(b) Final map generated after fuzzy based prediction and GA based 

global search. Blue shaded area in the blueprint shows the same cor-

rid or 

Figure 4.8: Mapping an approximately 15m long corridor under severe odometry error introduced by 

'manually pushing' the robot. Quantities within bracket show actual dimensions. Other dimensions are 

according to the developed map 
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Figure 4.9: Performance of genetic algorithm in registering a local map (scan no. 15) during mapping the 

environment shown in Figure 4 .8 (a) Initial registration by odometry. Fuzzy sample based prediction for 

robot pose (initial population for GA) is indicated by the point cloud (b) Local map registration according 

to the highest fit member of first generation. Samples are generating outside initial population (c) Second 

generation. More than one island of populations are evolving independently (d) Third generation. Samples 

have generated within the correct basin of attraction (e) Fifth generation. The best estimate of true robot 

pose has determined (f) Terminating generation. Samples are gathered around the best estimate of true 

robot pose 
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data is shown in Figure 4.8(a). This map contains severe topological inconsistency and 

does not reflect the true geometry of the building. The odometry readings are corrected 

according to the proposed algorithm and this results in the map as shown in Figure 4.8(b) 

after registering 21 scans. Figure 4.9( a)-4.9(f) show difi"erent generations of the genetic 

algorithm while accommodating a new local map (scan number 15) in the partial global 

map developed from previous sensor measurements. This particular local map is captured 

after pushing the robot approximately 1m away from its true position and turning it 

manually by an angle of approximately 21°. Parameter vector for the Fuzzy predictor is 

[12cm, 5° , 20]. Two-dimensional projection of the samples on the x-y plane are shown by 

the black dots. Each image in Figure 4.9 shows the alignment of the local map according 

to the highest fit chromosome of a generation. Whenever the GA locates the best estimate 

of the true robot pose, the samples start to generate around the best estimate and the 

population rapidly starts to lose diversity. 

4.3.2 Test 2: 

• Environment: Cyclic environment of approximately 17m x 14m dimension (blue­

print shown in Figure 4.10). 

• Surface: Tile floor and carpet. 

• Range measurement: After each 1m of travel or 20° change in orientation. 

• Added odometry error: Moderate. 

As discussed in Section 4.1.1, traveling on carpet introduces more error in odometry. The 

trajectory is chosen in such a way that the robot is subjected to frequent turning. There­

fore , the resulting map from raw odometry data (Figure 4.11) shows large translational 

errors. This environment is not completely corridor-type and contains several features 

(e.g. table, chair, door etc.). Therefore, accumulated errors during loop closure do not 

become too high. The corrected map as shown in Figure 4.12 consists of 45 local maps 
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K-2014 K-2017 K-2018 11:·2019 K-2020 
K-2012 

K-2008 

Figure 4.10: Architectural blueprint of Level-2, C-CORE (courtesy of C-CORE, MUN). The blue shaded 

area shows a 17m x 14m loop mapped by the robot 

and maintains topological consistency (the generated map does not exactly reflect the blue 

print because of tables, chairs and temporary partitions in the environment). 

4.3 .3 1rest 3: 

• Environment: Larger cyclic hall-way of approximately 22m x 12m (blueprint is 

shown in Figure 4.13). 

• Surface: Tile floor. 

• Range measurement: After each lm of travel or 20° change in orientation. 

• Added odometry error: None. 

This environment is more challenging than the cyclic environment of Test 2 because, 

the hall-way does not contain much detectable features to facilitate robot localization. 

Moreover, the end points of the hall-way are not measurable reliably from the other end. 

Therefore, pose errors accumulate while adding local maps and become very high during 

loop closing. Map generated using raw odometry data is shown in Figure 4.14. The red 
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Figure 4.11: Mapping cyclic environment of dimension 17m x 14m: Map from raw odometry data. The 

red line shows robot trajectory according to odometry 
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Figure 4.12: Mapping cyclic environment of dimension 17m x 14m: Map generated using proposed 

CML algorithm. Quantities within bracket show actual dimensions. Other dimensions are according to 

the developed map 
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Figure 4.13: Blueprint of Level-2, Centrifuge building. Blue shaded area shows a 22m x 12m hall-way 

mapped by robot 

line shows the odometry. The back propagation of accumulated errors help to recover the 

final map as shown in Figure 4.15. This map consists of 115 local maps and reflects the 

correct geometry of the actual environment with minimum uncertainty. 

4.3.4 Test 4: 

• Environment: 17m x 15m Intelligent System Lab(ISLAB), C-CORE (blue print 

shown in Figure 4.16) 

• Surface: Tile floor. 

• Range measurement: After each lm of travel or 30° change in orientation. 

• Added odometry error: None. 

The interior of ISLAB is highly unstructured unlike other environments described earlier 

in this section. The map generated from raw odometry data is shown in Figure 4.17. The 
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Figure 4.14: Mapping a large cyclic corridor of dimension 22m x 12m: Map from odometry. Red line 

shows the robot trajectory according to odometry 
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Figure 4.15: Mapping a large cyclic corridor of dimension 22m x 12m: Map generated using proposed 

CML algorithm. Quantities within bracket show actual dimensions. Other dimensions are according to 

the developed map 
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Figure 4.16: Blueprint of Level-2, C-CORE. Blue shaded area shows ISLAB (17m x 15m) 

red line shows odometry. The proposed algorithm successfully generates a topologically 

consistent map as shown in Figure 4.18. 

4.3.5 Test 5: 

• Environment: Approximately 34m long corridor. (blue print shown in Figure 4.20) 

• Surface: Tile floor. 

• Range measurement: After each 1m of travel or 30° change in orientation. 

• Added odometry error: High. 

The corridor contains very few features for robot localization. The resulting map from 

odometry along with robot trajectory is shown in Figure 4.19. The final map (Figure 

4.20) generated according to the proposed algorithm is topologically consistent and reflect 

the correct geometry of the corridor. 
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Figure 4.17: Mapping unstructured environment cyclic environment of dimension 17m x 15m: Map 

from odometry. The red line shows robot trajectory according to odometry 
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Figure 4 .18: Mapping unstructured environment cyclic environment of dimension 17m x 15m: Map 

generated using proposed CML algorithm. Quantities within bracket show actual dimensions. Other 

dimensions are according to the developed map 
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Figure 4.19: Mapping an approximately 34m long 'U' shaped corridor: Map from odometry. The red 

line shows robot trajectory according to odometry 
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Figure 4.20: Mapping an approximately 34m long 'U ' shaped corridor: Map generated using proposed 

CML algorithm. Blue shaded area in the blueprint shows the same corridor. Quantities within bracket 

show actual dimensions. Other dimensions are according to the developed map 
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Figure 4.21: Convergence characteristics of the GA under parameters variation (a) Effect 

of sample density in Xt (b) Effect of mutation parameters 'lj; and E (c) Effect of multiple 

island model of population. Results are corresponding to the mapping example shown in 

Fig. 4.8 
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4.3.6 Convergence characteristics of the proposed algorithm 

A set of parameters influences the convergence of the proposed Fuzzy-Evolutionary SLAM 

algorithm. This section provides a brief discussion about the effect of these parameters on 

the convergence characteristics of Fuzzy-Evolutionary SLAM. 

Sample density in Xt (determined by the value of en) has significant effect on convergence 

when Xt E conv(Xt), though for Xt tj:. Xt the effect becomes less obvious. For Xt E 

conv(Xt) or Xt E Xt high sample density (large en) ensures earlier convergence as the 

GA can detect/ generate the correct solution within fewer number of generations . Fig. 

4.21(a) shows the convergence characteristics of the GA with different values of en. Here 

the GA is involved in registering a local map of the second test environment for which 

Xt E conv(Xt)· Global maxima is at 0.95. For similar fuzzy prediction, rst = 12cm 

and rrlt = 5°, larger values of en cause the convergence to happen earlier. Results are 

corresponding to the island of population which contains the highest-fit chromosome in 

the termination generation. 

The mutation parameters E and 'ljJ play a vital role for convergence in global maxima 

when Xt tj:. conv(Xt). This is because, an appropriate choice of c and 'ljJ can generate a 

sample near to or within the basin of attraction of the global maxima which is outside 

of conv(Xt)· For the mapping example of Fig. 4.9 effect of different values of E and 'ljJ 

on convergence is shown in Fig. 4.21(b) . The output parameters of the Fuzzy predictor 

are [rst = 12cm, TfJt = 5°, Cn = 0.3]. With larger values of E and 'ljJ the GA can quickly 

generates samples near the correct basin of attraction and convergence occurs within fewer 

number of generations. But smaller values of E and 'ljJ cause delayed convergence, even for 

too small values the algorithm may fail to reach the global maxima. The results shown in 

Fig. 4.21 (b) are corresponding to island nine of the population. 

Effect of multiple island model of population on the convergence of the algorithm is an in­

teresting property to observe. Multiple island population model does not contribute much 

difference in result when Xt E Xt or Xt E conv(Xt) . For Xt tj:. conv(Xt) partial solutions 

in Xt having relatively higher fitness win the competition and go to the next generations. 

These individuals , which are usually of same phenotype, generate offsprings essentially 
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similar to their parents. Thus the generation starts to loose diversity and ends up with 

premature convergence. Rather, with multiple island model as each island grows indepen­

dently without interaction with other islands, the diversity in generation is maintained 

properly. Consequently, probability of reaching the correct basin of attraction of global 

maxima increases. For the mapping example of Fig. 4.9 the effect of multiple island popu­

lation is shown in Fig. 4.21( c). In both cases the output parameters of the Fuzzy Predictor 

are [rst = 12cm, rot =5°, en= 0.3]. The GA with multiple island (Ni = 6) model converge 

to the global maxima while the GA with single population suffers premature convergence. 
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Chapter 5 

Conclusion 

5.1 Overview 

This research exploits the intelligent properties of two soft computing techniques to de­

velop a novel algorithm for robotic mapping. The algorithm uses both fuzzy logic and 

GAs to solve the CML problem of mobile robot. The proposed CML algorithm is an 

incremental mapping algorithm which addresses all the necessary requirements of robotic 

mapping. Odometry error modeling using fuzzy logic enables the algorithm to consider all 

the systematic and non systematic errors to infer the uncertainty in robot pose. A fuzzy 

error model of odometry generates a sample based prediction of the robot pose. A GA is 

designed to search for the optimal robot pose which can best accommodate a local map 

in a current partially developed global map. The GA based search starts from the pose 

space defined by the fuzzy error model of odometry. The property of natural selection, 

which encourages the better performing individuals to survive, offers an iterative solution 

to the correspondence problem of robotic mapping. The capacity of GA to both re-sample 

andre-parent new samples from the existing samples imposes less restriction on the initial 

sample distribution (provided by the fuzzy error model of odometry) to closely resemble 

the original distribution. This also enables the algorithm to avoid convergence to a local 

maxima. 
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5.2 Contributions to research 

• Combining soft computing methods for robotic mapping: The proposed 

algorithm successfully combines soft computing methods, namely fuzzy logic and 

GA, to solve the CML of mobile robot. It utilizes the capacity of fuzzy logic to 

handle both qualitative and quantitative uncertainty while inferring the uncertainty 

in robot pose. Similarly, it uses the property of natural selection to iteratively solve 

the data association problem while mapping. Moreover, it uses the capacity of genetic 

operators (in re-parenting samples) to remove the restriction on the fuzzy error model 

to always include the true robot pose. Therefore, the proposed algorithm maintains 

a harmony between the two soft computing methods while applying them to robotic 

mapping. Combination of different soft computing techniques is a completely new 

concept in the literature of robotic mapping. 

• Fuzzy frame work for odometry error modeling: The proposed algorithm uses 

fuzzy logic to model the errors in mobile robot's odometry. The existing odometry 

error modeling techniques use stochastic distribution to predict the uncertainty in 

robot pose introduced by several vehicle specific and real world parameters. The 

widely used stochastic model in this aspect is a two dimensional Gaussian distribu­

tion. This research proposes an alternative technique based on fuzzy rules to model 

the error in the robot's odometry. The proposed fuzzy inference model of odometry 

error provides a sample based prediction about the robot pose after execution of a 

control command. Effectiveness of fuzzy logic in odometry error modeling lies in the 

fact that a number of real world parameters influence the errors in odometry in a 

qualitative fashion, rather than in a quantitative way. Many of these parameters 

lack enough probabilistic sophistication to be modeled stochastically. Stochastic 

models of odometry, therefore, ignore these parameters and intend to model only 

the available quantitative uncertainty. Therefore, stochastic modeling of odometry 

error tends to be optimistic in certain environments where the qualitative parame­

ters dominate in the odometry error (which is typical in outdoor environment). The 
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fuzzy logic has the ability to infer the available qualitative information into fuzzy 

quantitative form while avoiding the use of complex mathematical procedure. The 

proposed technique applies the knowledge of the robot's kinematics and its behavior 

at different environments to develop a fuzzy rule base and also to define various fuzzy 

subsets. The resulting fuzzy model of odometry error considers all the parameters 

related to odometry error(both qualitative and quantitative) in order to infer the 

uncertainty in robot pose. A key advantage of fuzzy based modeling of odometry 

error lies in its simplicity. As the rules of fuzzy logic are constructed from less re­

strictive axioms than probability theory, introducing new variables in the odometry 

model (due to change in robot's construction, environment conditions etc.) only 

requires the addition of one or more coherent mapping rules with the existing rule 

base. Fuzzy modeling of odometry error is a new concept in the literature of mobile 

robot's odometry and there remains much room for development. 

• GA based mapping: A GA is used in the proposed algorithm to search for the best 

robot poses to produce a 'maximally consistent' map from the sensor measurements. 

After execution of each control command, the GA based search starts from the sample 

based prediction of the robot pose that has been predicted by the fuzzy error model of 

odometry. As the fuzzy prediction always 'remembers' the robot's pose errors at each 

step of its past moves, it usually includes the true robot pose. The genetic operators 

(mutation and crossover) are capable to re-parent samples outside the fuzzy sample 

based prediction. This imposes less restriction on the initial sample distribution to 

closely resemble the actual distribution of robot pose. Particle filter based CML 

algorithms usually require the initial sample distribution to include the correct basin 

of attraction. Therefore, under a poorly defined odometry error model, particle 

filter based CML converges to a local optima. The particle filters keep on updating 

the history of a set of samples upon receiving new sensor measurement. Therefore, 

they are only capable to re-sample from the initial sample distribution in order to 

support better performing samples, known as Sequential Importance Resampling 

(SIR) in literature [58]. The theory of GA, on the other hand, provides means of 
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both re-sampling andre-parenting from initial samples based on individual's fitness. 

This property has significant importance in the context of proposed algorithm, as 

the incorrect inference (from fuzzy error model) about the pose uncertainty does not 

lead the algorithm to premature convergence. The natural selection property that 

supports better performing samples to survive offers an iterative solution to data 

association problem of robotic mapping. 

5 .2.1 Furthe r recommendations 

Though the proposed robotic mapping algorithm is devised for both indoor and outdoor 

environment, its validity, in this research, has been tested only at different indoor environ­

ments. In addition, the present implementation of the algorithm follows the assumption 

that the robot is equipped with a terrain (or surface) recognition mechanism. Therefore, 

future works in the context of robotic mapping include: 

• development of a real-time terrain recognition algorithm. 

• construction of fuzzy subsets and fuzzy rules for different terrain conditions (such as 

rocky, sandy, grassy, etc). 

• testing the performance of the algorithm at various outdoor locations. 

Further investigation is also required to test the potential use of the algorithm for a nav­

igating mobile robot employed in high level task planning and execution in an unknown 

environment. 
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