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Abstract 

Ongoing deep-sea fisheries off Newfoundland and Labrador, Canada since the 

late 1960s have resulted in large population declines of both targeted and non-targeted 

species. The lack of in situ observations from deep waters in this region limit our 

understanding of the factors influencing distributions of vulnerable taxa such as corals 

and fish, and the links between them. I analyzed data from a research cruise that used a 

remotely operated vehicle to explore 105 km of seafloor, spanning a depth range of 3 51 -

2245 m, in three canyons offNewfoundland and Labrador in 2007. I observed over 

160,000 coral colonies, comprising 28 species, and over 18,000 individual fishes, 

comprising at least 74 species. Distinct assemblages of deep-sea corals and fishes were 

found based on habitat type (or bottom type) and depth. Keratoisis grayi was more likely 

to be broken, dead or partially dead, and less abundant in trawled areas. Multiple factors 

predicted grenadier abundance and/or presence, but these varied in importance with 

sampling resolution. Using life table analyses, I predict prolonged recovery rates for two 

deep-sea fishes: Coryphaenoides rupestris and Macrourus berg/ax. These findings 

illustrate that deep-sea corals influence the distribution and abundance of fishes, that 

trawling negatively affects long-lived deep-sea corals in this region, that deep-sea fishes 

will recover slowly (if at all) from documented declines, and that many unknowns remain 

regarding the sustainability of this ecosystem. Nonetheless, these findings can help to 

support deep-sea conservation efforts offNewfoundland and Labrador. 
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1 Introduction 

Once considered a vast space void of life and coined the "azoic zone" by Edward 

Forbes in 1843, the deep sea continues to astonish researchers and the public alike with 

its impressive diversity, strange new species, and remote connectedness. Although 

previously thought to be pristine and even untouchable, deep-sea ecosystems, like many 

other ecosystems on Earth, face an assortment of anthropogenic threats. But unl ike most 

ecosystems, understanding the occurrences, ecology, and vulnerability of deep-sea fauna 

presents unique challenges, and as a result deep-sea science often lags far behind what is 

needed to adequately inform decision makers. Moreover, available scientific results are 

often disregarded or ignored in response to political pressures. 

1.1 Deep-sea corals 

Only recently have deep-sea corals received worldwide attention. The First 

International Symposium on Deep-sea Corals was held in Halifax, NS in 2000, and since 

then there have been four additional symposia hosted by institutions around the world. A 

search on Web of Science using the keyword 'deep-sea coral ' identified 669 publications, 

with the vast majority published from 2000 onwards (Figure 1-1 ). This growing body of 

research has created a better understanding of deep-sea coral distributions, biology, 

ecology, and vulnerability to anthropogenic disturbances, leading Santi Roberts and 

Michael Hirshfield to title a 2004 paper "Deep-sea corals: out of sight, but no longer out 

of mind" (Roberts & Hirshfield 2004 ). Nevertheless, new species are regularly being 
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discovered; it is estimated that 800 species of scleractinian species alone are still to be 

discovered (Cairns 1999). 

Although deep-sea corals were long known to exist off Atlantic Canada, the first 

targeted research examining their distributions was published in 1997. Breeze et al. 

(1997) used ecological knowledge collected from fishers , fisheries observers, and 

researchers to map the approximate distribution of corals off Nova Scotia. Fisheries and 

Oceans Canada documented only four species off Newfoundland and Labrador between 

1993 and 2000 (Macisaac et al. 2001 ). Later work by Mortensen et al. (2006) identified 

the presence of 1 0 species, and Wareham and Edinger (2007) documented the occurrence 

of 30 species. We now know that at least 60 species of deep-sea corals occur off 

Newfoundland and Labrador (Fisheries and Oceans Canada, unpublished data), some 

extending to depths greater than 3000 m (K.D. Baker, unpublished data). 

Deep-sea corals have been linked to a variety of environmental predictors, but 

given the large diversity of corals, sweeping generalizations regarding their distributional 

patterns and habitats are difficult to make (Bryan & Metaxas 2006). Many deep-sea 

corals require a hard substrate to attach their basal holdfast (Roberts et al. 2009). For 

example, large Paragorgia arborea colonies were found almost exclusively on boulders 

in the Northeast Channel offNova Scotia (Mortensen & Buhl-Mortensen 2004). 

Conversely, many sea pens inhabit areas where their peduncles can anchor in soft 

substrate (Williams 2011 ). 

Deep-sea corals obtain their nutrition by capturing food particles from the 

surrounding water. As a result, they frequently occur in areas of strong currents, and are 
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often more abundant in areas of topographic relief, such as shelf breaks, ridges, 

seamounts, and rocky outcrops (Mortensen & Buhi-Mortensen 2004; Bryan & Metaxas 

2007; Roberts et al. 2009). For example, Desmophyllum dianthus is often reported on 

outcrops, vertical walls, and the undersides of rock ledges (Forsterra et al. 2005; Packer 

et al. 2007). In a submarine canyon off Nova Scotia, Keratoisis grayi and Duva florida 

were associated with steep topography and semi-consolidated mudstone (Mortensen & 

Buhi-Mortensen 2005). Paragorgia spp. along the Pacific and Atlantic Continental 

Margins occurred in areas with steep slopes, linking their distribution to areas with low 

sediment deposition, hard substrate, and strong currents (Bryan & Metaxas 2006). 

However, Etnoyer and Morgan (2007) note that less than 1 m of relief can be sufficient to 

provide suitable habitat for suspension feeders such as gorgonians. 

Temperature is thought to control the distribution of many deep-sea coral species 

(Mortensen et al. 2006; Bryan & Metaxas 2007; Roberts et al. 2009; Davies & Guinotte 

2011; Waller et al. 2011), and was identified as one of the most important ecological 

factors influencing distributions by Roberts et al. (2009). For example, high temperatures 

(> 10 °C) may restrict the upper depth limit of Paragorgia arborea off Atlantic Canada 

(Mortensen et al. 2006). However, the large depth range inhabited by many deep-sea 

corals (Etnoyer & Morgan 2005; Roberts et al. 2009), indicates that many species likely 

tolerate a relatively wide range of temperatures. 

Previous studies link deep-sea coral distributions to a variety of other 

environmental characteristics including the aragonite saturation state, salinity, dissolved 

oxygen, and chlorophyll a. For example, scleractinian corals require aragonite to build 
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their skeletons (Guinotte et at. 2006). In a global habitat suitability model for five 

framework-forming corals (Enallopsammia rostrata, Goniocorella dumosa, Lophelia 

pertusa, Madrepora oculata, and Solenosemillia variabilis), most distribution records 

coincided with waters supersaturated with aragonite (Davies & Guinotte 2011 ). Bryan 

and Metaxas (2007) modelled Paragorgiidae occurrences on the Pacific Continental 

Margin ofNorth America using a combination of temperature, slope, current, and 

chlorophyll a concentration. 

In general, deep-sea corals are long-lived and slow growing, and some taxonomic 

groups have hard and somewhat delicate skeletons. Lophelia pertusa reef complexes in 

the North Atlantic were dated to at least 4550 years old (Hall-Spencer et al. 2002), 

predating Stonehenge! OffNewfoundland, Paramuricea sp. was dated to 205 years old, 

Keratoisis grayi to 200 years old, an undescribed antipatharian to 82 years old, and 

Acanella arbuscula to 30 years old (Sherwood & Edinger 2009). Relatively slow radial 

and axial growth rates characterized all these species (Sherwood & Edinger 2009). 

Whereas some deep-sea corals have soft, flexible skeletons (Henry et al. 2003), others are 

relatively fragile and fracture easily. These biological characteristics of deep-sea corals 

make them particularly vulnerable to (and slow to recover from) anthropogenic 

disturbances, such as oil and gas extraction and fisheries. Here, I focus on the 

documented impacts of fisheries, likely the most significant current threat to coral 

communities off the coast ofNewfoundland and Labrador. 

Multiple studies document negative influences of trawling on the abundance, 

diversity, and health of deep-sea corals. Active trawling of seamounts off Australia 
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reduced cover of Solenosmilia spp. thickets by 2 orders of magnitude and significantly 

increased the density of large gorgonians and black corals with broken stems, compared 

to seamounts that had never been trawled (Althaus et al. 2009). A study in Norwegian 

waters estimated that 30 - 50 % of the total area covered by Lophelia pertusa was 

damaged by fishing activities (Fossa et al. 2002). In the Gulf of Alaska, only 3I Primnoa 

spp. colonies remained in a trawl path revisited seven years after the removal of I ton of 

corals; of those remaining, five large colonies were missing 95-99% of their branches 

and 80% of the polyps were missing from two smaller colonies (Krieger 200 I). 

Although trawling is prevalent on the slopes off Newfoundland (Kulka & Pitcher 200 I), 

no previous in situ research examined the impacts of this trawling on deep-sea corals. 

With my collaborators, I used Fisheries and Oceans Canada scientific survey data, 

as well as Fisheries Observer Program data to examine the distribution and source of 

coral bycatch offNewfoundland and Labrador in relation to fisheries bottom gear. We 

found that although trawling produced significant levels of coral bycatch, all gear types 

(regardless of directed species) reported coral bycatch (Edinger et al. 2007). This gear 

included crab pots, longlines, and/or gillnets. Trawling activity was much more 

widespread, but longline fisheries contained the highest frequency of sets with corals 

(Edinger et al. 2007). Early studies documented coral bycatch and damage related to 

longlines off Alaska; Primnoa and other corals were caught on sablefish hooks in I998 

and submersible dives in the Gulf of Alaska in I997 documented Primnoa colonies that 

had been tipped and dragged (Krieger 2001 ). 
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The significance of fishing impacts becomes increasingly apparent when 

examining the potential ecological importance of deep-sea corals for other taxa. Multiple 

studies suggest deep-sea corals create shelter, feeding habitats, surfaces for attachment, 

and simple structural complexity for a variety of organisms (Husebo et al. 2002; Ross & 

Quattrini 2007; Buhl-Mortensen et al. 201 0), including fish (Baillon et al. 20 12), 

echinoderms (Krieger & Wing 2002), polychaetes (Schembri et al. 2007; Fiege & 

Bamich 2009), crustaceans (Krieger & Wing 2002), and other invertebrates (Krieger & 

Wing 2002; Roberts & Hirshfield 2004). 

Most research on species interactions with deep-sea corals has focussed on deep 

reefs, in particular Lophelia pertusa reefs (Roberts et al. 2009). The size and architectural 

complexity of organisms has been positively linked to the associated species diversity 

(Buhl-Mortensen et al. 201 0). Deep reefs can provide a variety of complex microhabitats 

beneficial to an assortment of taxa (Mortensen et al. 1995) and thus create pockets of 

high diversity (Buhl-Mortensen et al. 201 0). Species-specific interactions have also been 

noted. For example, Eunice norvegica (a polychaete) uses the calcium carbonate deposits 

of Lophelia pertusa to coat its tube, search for food close to the coral's polyps, and clean 

sediments from the coral polyps (Mortensen 2001 ). Munna boecki (an isopod) associates 

with Lophelia pertusa for shelter and attachable substrate (Fossa and Mortensen 1998, 

referenced within Buhl-Mortensen & Mortensen 2005). 

Much less research has focussed on the importance of non-reef forming coral 

habitats (including those found off Newfoundland and Labrador) for other taxa. 

However, non-reef forming corals also create habitat for deep-dwelling species: Primnoa 
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resedaeformis and P. arborea host various taxa off Atlantic Canada (Buhl-Mortensen & 

Mortensen 2005), Gersemia is a host for young, newly metamorphosed basket stars, 

whereas adult basket stars are often found clinging to gorgonians (Mortensen 1927) and 

Funiculina quadrangularis and other sea pens enhance access to food (mainly copepods) 

for Asteronyx loveni (an ophiuroid) in the Northeast Atlantic (Mortensen 1927; Buhl­

Mortensen et al. 201 0). 

1.2 Deep-sea fishes 

We know next to nothing regarding the small-scale habitat requirements or 

preferences of deep-sea fishes, particularly in Newfoundland waters, but several studies 

have attempted to examine deep-sea fish distributions in relation to coldwater corals. 

Most examined the importance of corals in relation to adult fishes and inferred a 

facultative, fairly loose relationship. Two recent studies provide evidence of functional 

and possibly even obligate relationships between fishes and deep-sea corals: (1) Off the 

southern United States, prime reef and transition reef habitats support distinct fish 

assemblages compared to off-reef habitats, suggesting that these deep reefs host unique 

fish communities (Ross & Quattrini 2007). (2) Baillon et al. (20 12) found evidence that 

coldwater corals in Newfoundland waters provide shelter for fish larvae (predominately 

Sebastes spp.) . Before this work, most evidence of relationships between early life 

history stages offish and deepwater corals was anecdotal. For example, swollen, gravid 

Sebastes and ray egg cases were reported on Lophelia pertusa reefs in the Northeast 

Atlantic (Fossa et al. 2002; Husebo et al. 2002; Costello et al. 2005) and catshark egg 
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cases were found attached to gorgonians in the Gulf of Mexico (Etnoyer & Warrenchuk 

2007). 

Much previous work related to patterns in deep-sea fish distributions focussed on 

depth relationships throughout many of the world's oceans. Early studies documented 

zonation within the deep sea (Carney et al. 1983), evidence of fish assemblages at the 

upper (500 m) and mid-slope (800-1200 m) depths off southeast Australia (Koslow et al. 

1994) and the possibility of ' bigger-deeper' relationships between fish size and depth off 

New England (Haedrich & Rowe 1977). Most often depth-related patterns are associated 

with individual species or species richness. For example, although Marlin-spike 

(Nezumia bairdii) has been documented in waters from 16 to 2295 m, it most commonly 

occur between 90 and 700 m (Cohen et al. 1990). Species richness patterns of fishes 

commonly peak near 1500 m (Priede et al. 201 0; Campbell et al. 2011 ), although 

exceptions have been noted (Kendall & Haedrich 2006). 

In general, deep-sea fishes live long, mature late, and produce few offspring 

compared to shelf-dwelling fishes (Merrett & Haedrich 1997). For example, orange 

roughy (Hoplostethus at/anticus) has been aged to 149 years (Fenton et al. 1991), giant 

grenadier (Albatrossia pectoralis) to 58 years (Clausen & Rodgveller 2008), and blue 

ling (Malva dypterygia) to 30 years (Large et al. 2003). These species are thought to 

mature at 22-40, 23, and 7 years of age, respectively. These k-selected life-history 

characteristics of deep-sea fishes alone make them vulnerable to mismanagement and 

overexploitation (Norse et al. 20 12). Their vulnerability to fishing would be amplified if 

any of their life-history stages depend on deep-sea corals. 
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As continental shelf fisheries began to collapse in the 1960s and 1970s, fishers 

moved offshore into deeper waters in search of new fish stocks (Koslow et a!. 2000; 

Morato eta!. 2006). In the North Atlantic, mean fishing depth increased at a rate of 5.5 

m per decade from 1950 to 1989, and 32.1 m per decade since 1990 (Morato et a!. 2006). 

In the high seas, fishing depth increased approximately 250m. Currently, 40% of the 

world ' s trawling grounds lie deeper than the continental shelves (Roberts 2002). 

Deep-sea trawl fisheries around the world exhibit boom and bust trends (Koslow 

et a!. 2000). This is characterized by an unfished population being exploited quickly at 

high rates until the population is depleted and the point of commercial extinction is 

reached (often within 5-1 0 years) (Koslow et a!. 2000). In the Northwest Atlantic, a 

Coryphaenoides rupestris fishery was initiated in 1967, landings peaked in 1971 at over 

75,000 tonnes, then declined rapidly (Atkinson 1995; Koslow eta!. 2000). By 1997 

reported landings were only a few hundred tonnes and only 4 tonnes were reportedly 

landed between 2000 and 2006 within Canadian waters (Koslow eta!. 2000; COSEWIC 

2008). These trends of boom and bust often coincide with serial depletions of 

populations (Norse et a!. 20 12). Therefore, large portions of the population have already 

been removed before the 'bust' is detected. The C. rupestris fishery began in northern 

Labrador and moved south until it concluded in southern New England (Norse et a!. 

20 12). The rapid decline of deep-sea fish landings is not surprising considering that in 

almost all deep-sea fisheries, the science lags so far behind the technological 

advancements and exploitation capabi lities of fisheries that they are managed using little 

or no biological data of the target (as well as non-target) species (Haedrich eta!. 2001). 
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Past studies identify population declines of both target and non-target deep-sea 

fishes. An analysis of 15 abundant deep-sea fishes in the Porcupine Seabight and 

Abyssal Plain area (where a mixed-species fishery began in 1989) found that nine species 

exhibited significant declines in abundance between 1977 and 2002 (Bailey et a!. 2009; 

Priede et a!. 2011 ). Although most fisheries are still restricted to depths shallower than 

1600 m, fishing impacts may extend beyond depths reached by fishing gear (Bailey et a!. 

2009). Bailey eta!. (2009) found that even Halosauropsis macrochir, which has been 

documented in waters greater than 4000 m, exhibited a significant decline in abundance. 

The effect of these declines on the overall deep-sea community remains unclear. 

Large population declines have also been documented in deep-sea fishes off 

Newfoundland and Labrador. Five species exhibited such dramatic population declines 

that they could be considered Endangered using The World Conservation Union (IUCN) 

criteria (Devine eta!. 2006). Roughhead grenadier (Macrourus berg/ax) declined by 93 

%and Roundnose grenadier (C. rupestris) declined by 99.6% between 1978 and 2003 

(Devine et a!. 2006). Despite federal resistance (Devine 2006), these dramatic declines 

led the Committee on the Status of Wildlife in Canada (COSEWIC) to assess Roundnose 

Grenadier as Endangered, and Roughhead Grenadier as Special Concern (Environment 

Canada 2013). Other relatively deep-dwelling fish off Newfoundland have also been 

assessed by COSEWIC as species at risk: Northern Wolffish (Threatened), Spotted 

Wolffish (Threatened), Atlantic Wolffish (Special Concern), Acadian Redfish 

(Threatened/Special Concern), and Deepwater Redfish (Threatened/Endangered) 
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(Environment Canada 2013). It is unknown how long these populations may take to 

recover from such declines. 

1.3 Deep-sea field work off Newfoundland conducted for dissertation 

Past deep-sea research off Newfoundland and Labrador relied heavily on 

destructive survey methodologies (mainly trawls) that damage the very taxa being 

surveyed and studied, but this reliance is slowly decreasing. During my PhD studies, I 

participated in two research cruises focussed on deep-sea ecosystems off Newfoundland 

using a Remotely Operated Vehicle (ROY). The Newfoundland portion of the 2007 

cruise concentrated on dedicated surveys of various coral habitats within three submarine 

canyons off the Grand Banks (more details are provided throughout my dissertation). In 

July 2010, the cruise focussed on the geology, biogeography, and genetic connectivity of 

deep-sea corals in the Orphan Knoll, Orphan Basin, and Flemish Cap. Partnering with oil 

companies (such as Chevron Canada Ltd.) also provided glimpses of deep-sea 

ecosystems within the Orphan Basin and Laurentian Channel using ROVs. Although 

these opportunities created a wealth of exciting data to analyze, this dissertation only 

analyzed the extensive video footage collected during the 2007 research cruise. 

The 2007 research cruise used the ROY, Remotely Operated Platform for Ocean 

Sciences (ROPOS) (see Table 1-1 and Figure 1-2 for details). The cruise's scientific 

team consisted of representatives from two universities and two Fisheries and Oceans 

Canada regions. The cruise formed part of a much larger 3-year, collaborative project 

concentrated on eight major themes: (1) coral distribution, abundance, and diversity (2) 
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inter-relationships between corals and fish, (3) trophic relationships, (4) condition of 

corals, (5) coral growth rates/longevity, (6) oceanographic conditions, (7) taphonomy, 

and (8) reproduction and recruitment (Gilkinson & Edinger 2009). My research ties into 

themes 1, 2, and 4. 

1.4 Thesis outline 

My dissertation consists of seven chapters. My introduction illustrates how a 

variety of factors can influence the distribution of deep-sea taxa and highlights the 

vulnerability of both deep-sea corals and fishes to anthropogenic disturbances 

(particularly fishing). 

In Chapter 2, I identify the species and abundance of deep-sea corals observed 

during the 2007 ROPOS cruise. I also determine if patterns of deep-sea coral 

assemblages occur in the survey area. A general understanding of which deep-sea corals 

occur offNewfoundland, knowledge of their abundances, and identifying factors that 

influence their assemblage patterns will allow better informed decisions about future 

conservation actions. For example, with a better understanding of depth distributions, it 

may be possible to determine whether protecting an area of restricted depth will protect a 

wide range of corals. While recognizing the importance of understanding the 

distributional patterns of coral assemblages, there are also compelling reasons to 

understand factors influencing the distribution, size, and health of fragile, long-lived 

species. 
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In Chapter 3, I explore how environment and fishing affect the abundance, size, 

and state of Keratoisis grayi, one of the most abundant, large/fragile corals off 

Newfoundland. Although other studies document fishing impacts elsewhere around the 

world, the novelty of this chapter is in determining quantitatively how fishing influences 

a specific coral in a part of the world lacking previous studies. 

Deep-sea corals merit protection in their own right, but increasing attention 

focusses on their importance for other fauna, including fish. If fishing impacts K. grayi, 

potential knock-on effects on coral-associated species such as fish add additional concern 

and need for understanding how these and other corals influence fishes. In Chapter 4, I 

identify the factors influencing deep-sea fish distributions and assemblages. 

Fish assemblage patterns in relation to corals may be difficult to decipher using 

large, coral-related habitat categories because such analysis may mask distributional 

patterns of individual species. In Chapter 5, I conduct species-specific analyses on the 

four most abundant grenadiers (Macrouridae) to identify potential factors influencing 

their distributional patterns, with a special focus on the influence of corals. 

In Chapter 6, I collate current knowledge (and gaps) on the biology of deep-sea 

fishes offNewfoundland and Labrador. I then use avai lable biological information to 

estimate potential recovery times for two species of grenadier using life table analyses. I 

use these results to illustrate the need for more dedicated deep-sea research and (more 

importantly) to emphasize the minimal timeframes fisheries managers and scientists must 

consider when developing conservation objectives and plans for deep-sea recovery. 
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I conclude my dissertation with a summary of what I have learned from the 

research described above and identify progress made in deep-sea conservation nationally 

and internationally offNewfoundland and Labrador. 
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Table 1-1. Details of an in situ research cruise conducted on the slope of the southwest 

Grand Banks, Newfoundland in 2007. 

Cruise Title Biogeography, biodiversity, and reproductive 
ecology of deep-sea corals (NSERC Discovery 
Ship Time Cruise) 

Vessel CCGS Hudson 

Submersible ROPOS 

Dates of embarkation I disembarkation 6 - 27 July 2007 

Port of embarkation and disembarkation Bedford Institute of Oceanography (Dartmouth, 
Nova Scotia) 
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Figure 1-1. The number of publications in each decade listed in Web of Science, searched 

using the keyword "deep-sea coral" on 13 May 2012. 
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Figure 1-2. Cruise track of research cruise conducted on the slope of southwest Grand 

Banks, Newfoundland in 2007 (from Gilkinson & Edinger 2009). 

1-27 



2 Distributional patterns of deep-sea coral assemblages in 

three submarine canyons off Newfoundland, Canada 

Abstract 

Deep-sea corals are fragile and long-lived species that provide important habitat for a 

variety of taxa. The rarity of in situ observations in deep waters off Newfoundland, 

Canada motivated the first extensive deep-sea research cruise to that region in 2007. We 

conducted seven dives in three canyons (Haddock Channel, Halibut Channel, and 

Desbarres Canyon) with ROPOS (Remotely Operated Platform for Ocean Science). Over 

160,000 solitary and colonial corals were enumerated and, of the 28 species found, 

Acanella arbuscula, Pennatula spp., and Flabellum spp. were most frequently observed. 

The largest coral observed was Keratoisis grayi at over 2 m in height. Corals spanned 

the entire depth range sampled (351 -2245 m) and inhabited all bottom types surveyed, 

but boulder and cobble habitats were most species-rich. Assemblages differed 

significantly with depth and bottom type. The unique assemblage at outcrops was 

strongly driven by the presence of Desmophyllum dianthus. Keratoisis grayi, D. 

dianthus, and Anthomastus spp. were largely absent in mud-sand habitats. Sea pen 

meadows covered large tracts of muddy seafloor spanning over 1 km. Acanella 

arbuscula and Flabellum spp. characterised large coral fields with abundant corals but 

relatively low species richness. These results highlight not only the importance of bottom 

type in determining patterns of coral distributions, abundances, and assemblages, but also 
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the need to focus conservation efforts on a variety of habitats to ensure protection for the 

full suite of deep-sea coral species. 

2.1 Introduction 

Deep-sea corals are long-lived, slow growing, and highly vulnerable to fishing 

gear damage (Roberts et al. 2006; Edinger et al. 2007; Althaus et al. 2009; Roark et al. 

2009; Roberts et al. 2009; Sherwood & Edinger 2009), climate change, and ocean 

acidification (Turley et al. 2007; Guinotte & Fabry 2008; Hall-Spencer et al. 2008). 

Corals create feeding habitats, shelter, surfaces for attachment, and simple structural 

complexity for other organisms including fish (Husebo et al. 2002; Ross & Quattrini 

2007; Buhl-Mortensen et al. 201 0), echinoderms (Krieger & Wing 2002), polychaetes 

(Schembri et al. 2007; Fiege & Barnich 2009), crustaceans (Krieger & Wing 2002), and 

other invertebrates (Krieger & Wing 2002; Roberts & Hirshfield 2004). Deep-sea coral 

habitats often have greater species diversity than surrounding areas and host unique 

species assemblages (Henry & Roberts 2007; Ross & Quattrini 2007). These 

characteristics underscore the importance of understanding distribution patterns of deep­

sea corals for planning appropriate ocean conservation measures. 

The rapid growth of knowledge on deep-sea coral distributions has focussed 

largely on specific regions or sites (Roberts et al. 2005) and associated research tends to 

concentrate on scleractinian coral reefs (Fossa et al. 2002; Cordes et al. 2008). Coral 

research in the deep waters offNewfoundland and Labrador is still in its infancy, but 

substantial knowledge and data began to accumulate from the previously unknown deep 
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waters of this region when dedicated deep-sea coral research began in 2003 (e.g. Edinger 

et al. 2007; Wareham & Edinger 2007; Gilkinson & Edinger 2009; Murillo et al. 201 0). 

These biogeographic and ecological studies concentrated on results from broad-scale 

trawl surveys and/or bycatch from fisheries observer programs. Video studies in 2002 

examined deep-sea corals on the slope of the Southwest Grand Banks, but covered only a 

few kilometres of bottom to a maximum depth of 500 m (Mortensen et al. 2006a; 

Mortensen et al. 2006b ). Therefore, little information is available on deep-sea coral 

distributions and patterns on small spatial scales for this region and in situ observations of 

deep-sea corals are rare. Fine-scale, in situ observations allow better understanding of 

local patterns of distribution, changes in abundance, assemblages, associations with other 

taxa, and impacts of deep-sea fishing. 

Like most marine organisms, deep-sea corals have preferred depth distributions 

and habitat characteristics. Temperature, salinity, substrate, currents, and slope all 

contribute to distributional trends and levels of abundance (Roberts et al. 2009). For 

example, in Atlantic Canada, Mortensen et al. (2006a) found Flabellum spp. on primarily 

muddy substratum and most coral species occurred between 4.5 and 6.0 oc. In a 

submarine canyon off Nova Scotia, Keratoisis grayi and Duva florida were associated 

with steep topography and semi-consolidated mudstone (Mortensen & Buhl-Mortensen 

2005). 

Most previous deep-sea coral studies focussed on individual distributions of 

species and few examined patterns in composition among and between coral 

communities and species' co-occurrences. Understanding these facets of coral ecology 
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will allow development of more appropriate conservation actions that recognize the 

importance of unique and/or diverse assemblages above and beyond individual species. 

We present here the results of the first extensive, in situ study of deep-sea corals 

on the slope of the southwest Grand Banks ofNewfoundland, and describe the 

distributions and abundances of the observed species, assemblages, and species diversity 

with respect to bottom type, depth, and study area. We increase the known distribution, 

depth range, and abundance concentrations for multiple species and genera, and conclude 

by describing how this new knowledge may facilitate deep-sea conservation planning. 

2.2 Methods 

2.2.1 Video surveys 

We focussed on three submarine canyons on the slopes of the Grand Banks south 

ofNewfoundland: Halibut Channel, Haddock Channel, and Desbarres Canyon (Figure 

2-1 ). A small bank separates Halibut Channel and Haddock Channel, which are situated 

approximately 110 km and 175 km east of Laurentian Channel, and approximately 150 

km and 200 km northwest of Desbarres Canyon, respectively. The cold Labrador Current 

from the north and the warm Gulf Stream from the south both influence the study area. 

Similar temperature regimes in the three canyons averaged ca. 5 oc bottom temperature 

during relatively shallow dives (<1100 m) and ca. 4.4 oc during relatively deep dives 

(> 1100 m). Bottom current measurements taken in Haddock Channel (ca. 700 m) 

indicated relatively slow current speeds (5-1 0 em s-1
), compared to previously studied 

coral habitats on the slope of the Scotian Shelf (e.g. Northeast Channel, The Gully, Stone 
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Fence) (Zedel & Fowler 2009). Data from Fisheries and Oceans Canada surveys and 

bycatch records suggested species rich and abundant corals at these three locations 

(Edinger et al. 2007). 

The remotely operated vehicle (ROY), ROPOS (Remotely Operated Platform for 

Ocean Science) (CSSF 2010) performed video surveys from CCGS Hudson during seven 

dives between 16 - 24 July 2007 (Table 2-1 ). Lasers on the ROY placed 10 em apart 

indicated scale. Depth, date, time, altitude (distance above bottom), temperature, and 

position were logged at 1-second intervals, though sporadic problems with the logger 

resulted in several long periods with no temperature data. 

Based on known distributions of corals and bathymetry from previous work, we 

planned 1-km transects every 200 m of depth along depth contours between 2200 and 600 

m and along contours every 100 m in waters shallower than 500 m (Figure 2-1 ). We 

standardized transects by keeping the ROY as close to the bottom as possible, 

maintaining a constant slow speed (ca. 0.2 - 0.5 m s-1
) while tilting the camera down 

slightly on a wide-angle view in order to image the seafloor and water column directly 

above. Between pre-selected transects, we explored the area with ROPOS, capturing still 

images and video of interesting features, and collecting physical specimens to validate 

visual identification. 

2.2.2 Video processing 

Using the program ClassAct Mapper (Benjamin 2007), we continuously recorded 

geo-referenced data describing bottom type, ROY behaviour, and corals. All corals were 
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identified to the lowest possible taxonomic level and the colony height and diameter of 

relatively large corals (antipatharians, Isididae, Paramuricea spp., and other gorgonians) 

were measured to the nearest 5 em using the lasers for scale. 

We characterized bottom type every second by primary (most abundant) substrate 

and secondary (next most abundant) substrate, with optional additional comments. We 

categorized bottom type as (1) outcrop (vertically exposed bedrock and consolidated 

Quaternary sediment), (2) boulder(> 25 em), (3) cobble (5- 25 em), (4) gravel (0.2- 5 

em), or (5) mud-sand (fine-grain) sediments (Thrush et al. 2001). For example, a bottom 

type description might consist of mud-sand as the primary bottom type and gravel as the 

secondary bottom type, with 'scattered boulders' as an additional comment. 

ROV behaviour was categorized at !-second intervals as transect-mode, benthic­

mode, sampling, too high, stationary viewing, panning, or view obstruction. ' Transect­

mode' was defined as any portion of the video when the ROV followed the prescribed 

methodology for transects (described above), regardless of whether the transect was 

planned. ' Benthic-mode' described periods when the ROV moved forward with a clear 

view of the seafloor and the camera pointed directly toward the sediment. 'Sampling' 

denoted any sections of the video during which sampling occurred and 'stationary­

viewing' denoted periods when we stopped the ROV to view a feature of interest. 

'Panning' described situations when the ROV moved forward, but with the camera at an 

inconsistent angle or position. 'View obstruction' occurred when other sampling gear 

(e.g. pushcore handles) obstructed part of the camera view. 
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2.2.3 Data analysis 

We characterized survey sites according to depth, duration, and distance surveyed 

and used transect segments to describe bottom type. We illustrated the overall 

characteristics of the habitats surveyed by plotting bottom type versus depth for each 

second of data when the ROV moved forward with a clear view of the seafloor (i.e. 

transect-mode, benthic-mode, and panning). All dead corals in the video were noted, but 

because live coral communities were the focus of this study, we removed dead corals 

from the analyses. 

2.2.3.1 Species composition and occurrence 

We described the overall distribution and composition of corals by calculating the 

number of colonies and their sizes for each species (or species group) and by examining 

occurrence of each species in relation to depth. 

For more detailed analyses of patterns, we focussed on those species identified to 

the lowest possible taxonomic level. For example, we excluded gorgonians that could 

not be identified to a unique genus from further analysis. We could easily distinguish one 

species of Pennatula (Pennatula sp. 1) during video processing, but combined all other 

Pennatula into Pennatula spp., so that the abundant 'Unidentified Pennatula ' could be 

included in analyses. For the same reason, we combined all Flabellum into the single 

category Flabellum spp. 

We assigned a single bottom type to each 1-second observation based on the 

premise that hard substrate can influence the coral assemblage regardless of its 
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prevalence. Therefore, bottom type was categorized as the largest sediment structure for 

each 1-second observation. For example, if a given observation included the bottom type 

categories of cobble (Primary), boulders (Secondary), and scattered gravel (comments), 

we assigned it the bottom type "Boulders" . We found one large fishing net in an 

otherwise muddy habitat that created attachment structure for several coral species, so we 

removed this portion of the data from analyses involving bottom type. We then 

examined coral occurrence in relation to bottom type and depth. 

We split video data collected in transect mode into a series of 10-m segments ( = 

samples). For each sample, we defined bottom type as the largest structure encountered 

during the 10-m segment and depth as the mean depth recorded within the segment. 

Coral abundance was calculated as the number of colonies per sample and this value was 

used to investigate maximum abundance for each species (or species group). 

We used the 10-m segments to examine patterns in coral richness by calculating 

species richness for each sample and comparing among dive locations, depth categories, 

and bottom types. We defined depth categories based on the distribution of corals and 

the number of samples in each category: (1) 300-800 m, (2) 800-1300 m, and (3) 1300-

2300 m. Patterns in richness among bottom types were compared graphically using box­

plots. 

2. 2. 3. 2 Assemblages 

We determined patterns in assemblages within the samples using Primer 6.0 

(Clarke & Gorley 2006) analyses of square-root transformed data to reduce the influence 
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of abundant species. A Bray-Curtis similarity matrix was used to conduct a two-way 

analysis of similarities (ANOSIM) test for differences in assemblages between and within 

samples. We examined species similarities (and dissimilarities) within and between 

depth classes and bottom types in SIMPER (similarity percentages). 

We examined similarities between species by creating a Bray-Curtis species 

similarity matrix of standardized samples and species that contributed at least 50 % to a 

sample. We then produced a multi-dimensional scaling (MDS) plot and dendrogram 

(using group average clustering) based on these similarities. 

2.3 Results 

In total , we recorded 90 h of bottom video footage over the seven dives, covering 

a distance of approximately 105 km (Table 2-1 ) and a depth range of351 - 2245 m. We 

recorded 5031 samples (10-m transect segments) over a variety of habitats and depths 

(Table 2-2). Most transect segments were over mud-sand habitats (Figure 2-2) within the 

300 - 800 m depth category. Boulders were rare in deep waters and outcrops were rare 

over the entire depth range sampled. Dive R1070 produced the most samples (n = 90 1). 

2.3.1 Species composition and occurrence 

We recorded over 160,000 coral colonies, comprising at least 28 distinct species 

(Table 2-3). Although we identified Flabellum macandrewi, F. alabastrum, and F. 

angulare from specimens collected during the cruise, these species were usually grouped 

as Flabellum spp. in the video analysis. The most abundant species were Pennatula sp. 2 
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(possibly Pennatula aculeata), Acanella arbuscula, Flabellum spp. and Acanthogorgia 

armata. The maximum number of a single species observed in a 10-m segment was 

Pennatula spp. (622 colonies), followed by Flabellum spp. (300 individuals), and 

Heteropolypus cf. insolitus (123 colonies) (Table 2-4). Rare species included 

antipatharians, Lepidisis sp., and Paragorgia arborea. 

The tallest coral observed was a Keratoisis grayi colony measuring 215 em in 

height. Although rare, antipatharians were fairly large, one exceeding 60 em in height. 

Two of the three Paragorgia arborea observed were only ~5 em in height, whereas the 

largest colony was only approximately 20 em. The abundant corals Acanella arbuscula 

and Acanthogorgia armata both averaged almost 1 0 em in height. 

Many species spanned a wide depth range and appeared unrestricted by depth 

(Figure 2-3). This pattern was especially true for many of the sea pens (e.g. Protoptilum 

carpenteri, Anthoptilum grandiflorum, and Halipteris jinmarchica). The distribution of 

Flabellum alabastrum spanned nearly 1900 m (355 - 2244 m), resulting in the widest 

depth range of all coral species observed, however Halipteris jinmarchica also spanned a 

considerable depth range (353- 2217 m). Very few species were restricted to deep water, 

although Chrysogorgia agassizii was limited to depths greater than 1997 m and the single 

colony of Bathypathes patula was found at 2242 m. In comparision, many more species 

were limited to the upper and middle slope, including all Pennatula spp. (< 1204 m), 

Keratoisis grayi (< 967 m), Duvajlorida (< 906 m), and Paragorgia arborea (< 800 m). 

Most corals occurred in a variety of bottom types, but several appeared to be 

restricted in relation to bottom type (Figure 2-4). Javania cailleti, Desmophyllum 
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dianthus, Paragorgia arborea, and Schizopathidae n. gen. et n. sp. occurred only in areas 

with large, hard substratum. Paramuricea spp., Keratoisis grayi, and Anthomastus spp. 

were mostly limited to areas with hard substratum, but that bottom type ranged in size 

and included small substrate, such as gravel. In comparison, Distichoptilum gracile, 

Umbellula spp., Bathypathes patula, and Kophobelemnon stelliferum occurred primarily 

in soft sediments. Species that spanned a wide variety of bottom types included 

Flabellum alabastrum, Acanella arbuscula, Acanthogorgia armata and others. 

Although many species spanned a variety of bottom types and depths, when we 

plotted their abundances within 10-m transect segments against bottom type and depth, 

several patterns emerged (Figure 2-5). For example, Flabellum spp. colonies spanned a 

large depth range, but were most dense in waters less than 500 m. Although 

Heteropolypus cf. insolitus and Pennatula spp. spanned a variety of bottom types, they 

were much more abundant in mud-sand sediments than in bottom types categorized by 

hard substratum. 

In general, species richness was highest in boulder areas (Figure 2-6). The 

maximum species richness within any sample (7 species) occurred twice in boulders (489 

m and 470 m, Halibut Channel) and once in cobble (600 m, Haddock Channel) (Table 

2-5). The maximum number of coral colonies was associated with mud-sand sediments 

(835 m) in Desbarres Canyon (Table 2-5), but only three of these were colonies other 

than Pennatula spp. 
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2.3.2 Assemblages 

The global ANOSIM showed assemblages differed significantly among depth 

classes (p < 0.00 I) and pairwise comparisons showed significant differences between 

each depth class (p < 0.00 I) (Table 2-6). However, the R-statistic indicated that 

assemblage composition differed most between depth ranges 300 - 800 m and I300 -

2300 m (R = 0.471). This dissimilarity (average dissimilarity = 92.6 %) was largely 

driven by higher abundances of Acanella arbuscula and Pennatula spp. in shallower 

waters. Pennatula spp. and A. arbuscula also drove differences between the 300 - 800 m 

and 800- I300 m assemblages (average dissimilarity = 85 %); Pennatula spp. was most 

abundant in the 800- I300 m depth class, whereas A. arbuscula was more abundant in 

the 300 - 800 m depth class. The assemblage differences between the 800 - I300 m and 

I300- 2300 m depth classes (average dissimilarity = 88 %) were largely driven by 

Pennatula spp. and Protoptilum carpenteri. Pennatula spp. occurred in the shallower 

depth range but not in deeper waters and P. carpenteri was more abundant in the deeper 

depth class compared to the shallower depth range. 

The ANOSIM analysis showed significant differences in composition among 

bottom types (p < 0.00 I) (Table 2-6). Mud-sand sediment assemblages differed from 

those associated with boulders (R = 0.3I6, p < 0.001) and outcrops (R = 0.552, p < 

0.00 1 ). Assemblages in boulder habitats also differed from those in gravel (R = 0.440, p 

< 0.001) and outcrops (R = 0.56, p = 0.069), but not from assemblages associated with 

cobble (R = 0.073). Coral assemblages on outcrops also differed from those in cobble (R 

= 0.585, p = 0.02) and gravel (R = 0.466, p < 0.001) habitats. 

2-12 



Generally, the paucity of species in mud-sand habitats had the greatest influence 

on assemblage dissimilarities. For example, fine sediments generally lacked Keratoisis 

grayi, Desmophyllum dianthus, and Anthomastus spp. and abundances of Flabellum spp. 

and Acanella arbusula were lower than in areas with hard substrate like boulders 

(average dissimilarity= 86.9 %) and outcrops (average dissimilarity= 99.31 %). The 

high dissimilarity of coral assemblages between boulders and outcrops (87.3 %) was 

largely driven by low abundances of Keratoisis grayi colonies on outcrops and the 

absence of Desmophyllum dianthus from boulder habitats. The higher abundance of 

Flabellum spp. in gravel contributed most to the dissimilarities between boulders and 

gravel (84.2 %). The low abundance of A. arbusula and high abundance of D. dianthus 

associated with outcrops drove dissimilarities with cobble (95.0 %). Unlike outcrops, 

gravel had abundant Flabellum spp., but lacked D. dianthus (average dissimilarity= 99.2 

%). 

Species similarity analyses grouped Keratoisis grayi, Acanthogorgia armata, and 

Anthomastus spp. in the dendrogram (Figure 2-7) and MDS plot (Figure 2-8), indicating 

regular co-occurrence. Acanella arbuscula and Flabellum spp. also grouped closely in 

the MDS plot. Desmophyllum dianthus, Chrysogorgia agassizi, Pennatula sp. 1, 

Umbellula spp., and Radicipes gracilis were generally not associated with other species 

in the plot. The dendrogram showed the same species as outliers and illustrated 

groupings (albeit with relatively weak similarity of - 20 %) of Kophobelemnon 

stelliferum and Protoptilum carpenteri, and Funiculina quadrangularis and Pennatula 

spp. 
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2.4 Discussion 

2.4.1 Patterns in species occurrences and abundances 

Bottom type and depth clearly influenced species occurrences and abundance. 

Physical characteristics of some species explain how bottom type influences their 

distributions. Peduncles anchor sea pens in sediments, thus largely restricting them to 

muddy habitats (Williams 2011 ). Some species can retract into the sediment when 

disturbed (Packer eta!. 2007), elevating their requirement for muddy substrate. We often 

observed rapid retraction of entire colonies of Protoptilum carpenteri into the sediment, 

complicating sampling of this species. Although we found sea pens occupied a variety of 

bottom types, they were almost always anchored in the mud/sand portions of these 

substrata. The one exception was Halipteris finmarchica, which sometimes anchored in 

gravelly habitat with little mud or sand. As reported by Mortensen eta!. (2006a) and 

Hecker & Blechschmidt ( 1980), holdfast structures anchored Radicipes gracilis and 

Acanella arbuscula in the soft substratum. Other species, such as Keratoisis grayi, 

Anthomastus spp., Schizopathidae n. gen. et n. sp. and Duva florida, require hard 

substrate for attachment (Roberts et a!. 2009), and their distributions are therefore limited 

by hard structure availability. 

As reported elsewhere (Packer eta!. 2007), Desmophyllum dianthus typically 

occurred in high abundances on outcrops (Figure 2-5). A strong base attaches this cup 

coral to hard substrate where it can benefit from high currents associated with local 

topographic features (Dolan eta!. 2008). Forsterra eta!. (2005) also recorded D. dianthus 

on vertical walls and the undersides of rock ledges, and they hypothesized the coral ' s 
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downward facing polyps were caused by sensitivity to sedimentation. Laboratory 

experiments demonstrate physiological thresholds in corals beyond which they cannot 

compensate for sedimentation (Brooke et al. 2009). Desmophyllum dianthus strongly 

influenced the unique assemblage associated with outcrops and thus could be considered 

an indicator species for vertical cliff-like structures in the study region (i.e. large 

quantities of D. dianthus likely indicate outcrop-type substrate). 

Many species spanned wide depth ranges, including Flabellum alabastrum, 

Protoptilum carpenteri, and Halipteris finmarchica. This pattern parallels findings of 

exceptionally wide depth ranges in corals from the Northeast Pacific Ocean; 

Antipathidae, Primnoidae, and Paragorgiidae spanned minimum depths shallower than 30 

m to depths greater than 1900 m (Etnoyer & Morgan 2005). The especially wide depth 

ranges ofPennatulaceans are thought, in part, to reflect their ability to inhabit soft 

sediments (such as those found in the abyssal plains) (Williams 2011). In contrast to the 

wide depth ranges of some species, several species in our study, such as Duvaflorida and 

Paragorgia arborea were restricted to relatively shallow depths(< 906 m). The 

influence of depth on coral distributions likely reflects associated changes in 

environmental characteristics, such as temperature (Roberts et al. 2009), available bottom 

type (Figure 2-2), and currents. 

Temperature is thought to restrict deep-sea coral distributions (Mortensen et al. 

2006a; Roberts et al. 2009). For example, high temperatures (> 10 °C) may restrict the 

upper depth limit of Paragorgia arborea off Atlantic Canada (Mortensen et al. 2006a). 

Given that our study focussed on relatively deep waters, the maximum temperatures for 
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each species were well within the temperature ranges recorded by Mortensen et a!. 

(2006a). In comparison to other surveys off Canada that recorded temperature 

(Mortensen et a!. 2006a; Beazley 2011 ), we extended the known in situ minimum 

temperature in this region for Radicipes gracilis ( 4.4 °C), Anthomastus spp. ( 4.3 °C), 

Acanella arbuscula (3.5 °C), and Flabellum alabastrum (3.7 °C). Nevertheless, because 

these species are known to occur in higher latitudes and in deeper waters off Atlantic 

Canada (DFO and K Baker, unpub. data), these values likely do not represent their lower 

temperature limit. 

2.4.2 Patterns in community composition and diversity 

Keratoisis grayi, Anthomastus spp., and Acanthogorgia armata co-occurred 

(Figure 2-9a) at relatively shallow depths(< 1000 m) with boulders and cobbles 

throughout Halibut and Haddock Channels. The most species-rich and diverse transects 

were similar in species composition, comprised of A. armata, Anthomastus spp., K. grayi, 

Acanella arbuscula, and Halipteris .finmarchica among others. The associated bottom 

types were boulders or cobble, but closer examination of the bottom classification 

indicated that these assemblages occurred in specific segments of transects with mixed 

substrate. For example, we recorded sand (primary), boulders (secondary), and scattered 

cobble/gravel (comments) for one of the most species rich segments. These features 

created a small-scale habitat mosaic in which a variety of species could co-occur. 

The most numerous species occurred within a variety of bottom types and with a 

variety of other species, but these dominant corals also created unique assemblages in 
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relatively uniform sediments. Pennatula spp. sometimes occurred in large sea pen 

meadows more than 1 km in length (Figure 2-9b ), and reached maximum numbers of 622 

colonies per 10-m segment. Many colonies oriented in a similar direction (presumably to 

maximize use of currents) (Roberts et a!. 2009). Halipteris finmarchica, Protoptilum 

carpenteri, Kophobelemnon stelliferum, and other sea pens were scattered throughout 

these meadows. Although it is unclear what role these meadows play in the wider 

ecosystem context, their large extent, large number of colonies, and added structure in an 

otherwise low-structure habitat suggest their presence may be important for other taxa 

(Tissot et a!. 2006; Baillon et a!. 20 12). Tissot et a!. (2006) hypothesized that 

aggregations of sea pens may create important refugia for small invertebrates, alter 

current regimes, and influence prey availability. The sea pen meadows did not appear to 

host noticeably more abundant or diverse megafauna, but this does not preclude their 

potential importance for macrofauna or small life stages of mobile megafauna. 

Acanella arbuscula (Figure 2-9c) or Flabellum spp. (Figure 2-9d) also dominated 

large tracts of seafloor. We observed both types of coral fields in fine sediments, 

sometimes with scattered gravel. In general, species richness in A. arbuscula fields was 

low with only a few species in any 10-m segment. Sea pens and Flabellum spp. (Figure 

2-8) were also present in A. arbuscula fields. Low coral species richness(~ 2 species) 

also characterized fields with an abundance of Flabellum spp. Although few species 

were present in these fields, numbers of corals were considerable and appeared to 

represent unique ecosystems in this area. 
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2.4.3 Large scale patterns in species distributions and diversity 

We observed at least 28 coral species during the seven dives. Murillo et al. 

(20 1 0) found only 17 species on the Grand Banks during their bottom trawl surveys, 

Mortensen et al. (2006a) identified 12 species on the Grand Banks using a variety of 

techniques, and Wareham & Edinger (2007) recorded 30 species throughout all 

Newfoundland and Labrador waters. In a towed camera survey of more southerly 

canyons, Hecker et al. (1980) found at least 12 species of corals in Baltimore Canyon, 13 

species in Lydonia Canyon, and 16 species in Oceanographer Canyon. 

Our study represents the first observations for many deep-sea coral species in 

Newfoundland waters: Heteropolypus cf. insolitu, Lepidisis sp., Bathypathes patula, 

Schizopathidae n. gen. et n. sp., Protoptilum carpenteri, Umbellula sp. (likely encrinus), 

Flabellum macandrewi, and Javania cailleti. Other species found in this study confirm 

those recorded in extensive fishery and trawl surveys of the Grand Banks and 

surrounding areas, though several studies did not report Chrysogorgia agassizi (Gass & 

Willison 2005; Wareham & Edinger 2007; Murillo et al. 2010). Our cruise identified at 

least three species of Flabellum, compared to the one (Flabellum alabastrum) recorded 

by the other survey methods (Wareham & Edinger 2007; Murillo et al. 20 1 0). Mortensen 

et al. (2006a) found Flabellum macandrewi along the Scotian Shelf and within The Gully 

off Nova Scotia, but not off Newfoundland and Labrador. Pennatula aculeata and 

Pennatula grandis were commonly found in surveys by Murillo et al. (20 1 0), but at least 

three species of Pennatula could be distinguished from our video and require additional 

taxonomic and genetic work. 
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2.4.4 Coral size 

Although the tallest Keratoisis grayi was 215 em in height, many colonies were 

greater in width than height (e.g., 160 x 250 em and 200 x 230 em). The ages and growth 

rates of corals sampled suggest that the 215 em tall K. grayi is likely over 200 years old 

(Sherwood and Edinger 2009). The tallest Schizopathidae n. gen. et n. sp. (incorrectly 

identified as Stauropathes arctica in Sherwood and Edinger (2009)) was over 50 years 

old, and the tallest Acanella arbuscula (30 em) was approximately 30 years old. These 

large sizes and slow growth rates highlight the slow recovery times for disturbed coral 

assemblages and the need for strong conservation measures in the deep sea. 

2.4.5 Conservation implications 

Scientists recognize the importance of protecting deep-sea corals (Roberts & 

Hirshfield 2004), which is often achieved through protected areas (Brocket al. 2009). 

But despite the growing international push for coral protection, no official marine 

protected areas cunently exist off Newfoundland and Labrador to protect deep-sea corals 

within Canadian waters. Conservation objectives should guide selection of which areas 

to protect. Many conservation efforts prioritize protection of high concentrations I 

abundances of corals, high species richness, or unique corals. Our high-resolution video 

surveys provide in situ observations and highlight patterns that can be used to help guide 

future conservation initiatives. 
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If the objective is to protect rare, unique assemblages of corals, our results 

indicate that known deep-sea outcrops off Newfoundland would be an appropriate 

starting point, given the relatively rare species for this region present at outcrops, such as 

Paragorgia arborea, antipatharians, and several species of cup corals. Protection of high 

coral species richness should concentrate on upper to middle slope areas with a variety of 

substratum including boulders, cobble, and fine sediments. Selection of areas to protect 

high abundances of corals varies with species. The middle to upper slope with large 

areas of relatively hard substrate should be targeted if the goal is to protect large, fragile 

corals (such as gorgonians and antipatharians). Although conservation priorities should 

not shift from rarer species, conservation efforts should at least consider common species 

as well (Gaston 2010). More common species (such as sea pens and Flabellum spp.) tend 

to be overlooked in conservation initiatives (for example Edinger et al. 2007; Brocket al. 

2009), in lieu of large, spectacular corals or deep-water coral reefs. The fine sediment 

habitats where these common species occur contain unique coral assemblages and often 

have abundant corals. 

Nevertheless, we believe the most successful conservation initiative for deep-sea 

corals off Atlantic Canada would take a holistic approach to conservation planning and 

use a representative network of protected areas to help conserve a variety of species and 

assemblages. 

In 2008, the Northwest Atlantic Fisheries Organization (NAFO) created a closed 

area for corals off the slope of the Grand Banks to protect corals from bottom fishing 

(NAFO 2011). The protection zone runs roughly along the 800 - 1000 m isobath 
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crossing into Canada's exclusive economic zone (Rogers & Gianni 201 0). In general, 

our results show the highest abundance of fragile corals and highest species richness 

occur on the upper to middle slope, adding to the growing research that indicates this 

zone is too deep for its intended purpose (Rogers & Gianni 201 0). Therefore, this zone 

should be extended into shallower waters where corals currently remain at risk to fishing 

activities. 

2.4.6 Future work 

Although this study illuminates general patterns of deep-sea coral occurrence off 

Newfoundland, the unique sampling problems associated with deep-sea corals 

necessitates much more in situ research in this region. Studies should aim to collect 

detailed multibeam bathymetry data (Dolan et al. 2008), geological samples, 

sedimentation rates, current speed and direction (Mortensen & Buhl-Mortensen 2004), 

and temporal and spatial trends in primary productivity to understand better the processes 

driving coral distributions. Many sites thought to be important for corals based on 

fishing or trawl survey data (Edinger et al. 2007) remain unexplored with other methods, 

constraining any comprehensive understanding of coral abundances, assemblages, and 

diversity. Meanwhile, deep-water fishing (especially bottom trawling) activities continue 

to threaten corals, and as long these activities remain our primary data source, destruction 

will outpace our understanding of coral distributions and assemblage patterns. 
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Table 2- 1. Dives from an ROY cruise on the slope of the southwest Grand Banks of 

Newfoundland in 2007, and their associated depths, time on bottom, and distance 

covered. 

Time on bottom Distance (km) 
Dive Date De_Qth range (h) 
R1065 16- 17 July 606- 1015 m 12.6 10.7 
R1066 17- 18 July 493- 1020 m 16.0 15.8 
R1067 18 - 19 July 395-996 m 10.2 13.4 
R1068 19 July 1990 - 2245 m 4.5 5.9 
R1070 21 July 351 - 940 m 15.5 23 .6 
R1071 22 - 23 July 353 - 1174 m 12.8 16.9 
R1072 23 - 24 Jul~ 1116 - 1900 m 18.8 19.0 
Total 90.4 105 .3 
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Table 2-2. Number of 10-m transect segments in each dive, in relation to depth categories 

and bottom types from an in situ survey off the southwest Grand Banks of Newfoundland 

in 2007. 

Bottom ROPOS dive number 
Depth (m) type R1065 R1066 R1067 R1068 R1070 R1071 R1072 Total 

Mud-sand 159 192 14 490 371 1226 
Gravel 35 8 56 9 108 

300-800 Cobble 98 345 320 223 54 1040 
Boulders 30 75 124 7 17 253 
Outcro 1 1 

Mud-sand 200 203 103 507 289 246 1548 
Gravel 2 2 

800-1 300 Cobble 14 1 15 
Boulders 4 3 7 
Outcro 2 2 

Mud-sand 101 640 741 

1300-2300 
Gravel 69 6 75 
Cobble 7 7 
Outcro 6 6 

Total 507 850 573 177 1283 740 901 5031 
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Table 2-3. Taxonomic composition, abundance, and heights of coral colonies found off 

the southwest Grand Banks ofNewfoundland during the 2007 in situ survey. 

Number Maximum Average 
Coral group Species observed height (em) height (em) 
Antipatharians Bathypathes patula 1 15 

Schizopathidae n. gen. et n. sp. 2 > 60 58 
Antipatharian (unidentified) 1 50 

Scleractinians Vaughanella sp. 7 
Desmophyllum dianthus 143 
Flabellum alabastrum 6965 
Flabellum macandrewi 320 
Flabellum spp. 7894 
Javania cailleti 4 
Scleractinian (unidentified) 5 

Gorgonians Keratoisis grayi 5116 215 37 
Lepidisis sp. 1 30 
Acanella arbuscula 24334 30 9 
Isididae (unidentified) 3 30 30 
Paramuricea spp. 32 45 15 
Paragorgia arborea 3 20 12 
Radicipes gracilis 212 
Chrysogorgia agassizii 80 30 13 
Acanthogorgia armata 7688 51 8 
Gorgonian (unidentified) 2 50 38 

Alcyonaceans Anthomastus spp. 3239 
Heteropolypus cf. insolitus 4869 
Duva florida 232 
Neptheidae (unidentified) 417 

Pennatulaceans Anthoptilum grandiflorum 355 
Funiculina quadrangularis 4694 
Halipteris jinmarchica 1681 
Kophobelemnon stelliferum 1812 
Pennatula grandis 6032 
Pennatula sp. 1 152 
Pennatula sp. 2 67752 
Pennatula (unidentified) 11350 
Protoptilum carpenteri 3086 
Distichoptilum gracile 665 
Umbellula spp. 20 
Pennatulacea (unidentified) 2220 

Unknown Coral -Unidentified 11 
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Table 2-4. Maximum abundance of corals in 10-m transect segments. Depth and dive of 

maximum abundance are noted. Coral abundance with a maximum of 1 are not included. 

Maximum 
Coral grouQ S2ecies abundance DeQth (m) Dive 
Scleractinians Desmophyllum dianthus 61 1506 R1072 

Flabellum SQQ· 300 380 R1070 
Gorgonians Keratoisis grayi 43 573 R1067 

Acanella arbuscula 77 639 R1065 
Paramuricea spp. 3 664 R1065 
Radicipes gracilis 31 1427 R1072 
Chrysogorgia agassizii 3 2243 R1068 
Acanthogorg_ia armata 36 540 R1066 

Alcyonaceans Anthomastus spp. 54 573 R1067 
Heteropolypus cf. insolitus 123 611 R1070 
Duva florida 35 406 R1070 

Pennatulaceans Anthoptilum grandiflorum 3 843 R1070 
Funiculina quadrangularis 17 930 R1070 
Halipteris finmarchica 12 437 R1071 
Kophobelemnon stelliferum 13 585 R1071 
Pennatula sp. 1 7 912 Rl071 
Pennatula spp. 622 835 R1071 
Protoptilum carpenteri 9 993 R1071 
Distichoptilum gracile 4 1323 R1072 
Distichop_tilum gracile 4 1294 R1072 
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Table 2-5. Maximum species richness and number of coral colonies in 10-m transect 

segments in a variety of habitat categories. 

Habitat Maximum species Maximum number of 
categor~ richness colonies 

Sediment type Outcrop 3 61 
Boulders 7 99 
Cobble 7 82 
Gravel 5 200 
Mud-sand 6 625 

Depth category 300-800 m 7 301 
800 - 1300 m 6 625 
1300 -2300 m 4 61 

Dive R1065 6 79 
R1066 7 183 
R1067 7 99 
R1068 2 4 
R1070 6 301 
R1071 6 625 
R1072 5 61 
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Table 2-6. Results from two-way Analysis of Similarity (ANOSIM) to compare coral 

assemblages between depths and sediment types from a ROV survey off the southwest 

Grand Banks ofNewfoundland in 2007. 

Comparison group 
Depth - global test 
300 - 800, 800 - 1300 m 
300 - 800, 1300 - 2300 m 
800- 1300, 1300 - 2300 m 
Sediment type - global test 
Mud-sand, Boulders 
Mud-sand, Cobble 
Mud-sand, Gravel 
Mud-sand, Outcrop 
Boulders, Cobble 
Boulders, Gravel 
Boulders, Outcrop 
Cobble, Gravel 
Cobble, Outcrop 
Gravel, Outcrop 

R statistic 
0.302 
0.239 
0.471 
0.292 
0.224 
0.316 
0.171 
0.222 
0.552 
0.073 
0.440 
0.560 
0.191 
0.585 
0.466 
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Level of 
significance 

(p) 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.069 
0.001 
0.020 
0.001 

Permutations 
> R 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
68 
0 
19 
0 



45" 

44" 

Figure 2-1. Map illustrating location of ROV dive sites during a 2007 cruise off the 

southwest Grand Banks ofNewfoundland, Canada. 
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Figure 2-2. Depth and sediment type surveyed off the southwest Grand Banks ofNewfoundland during the 2007 in situ survey. 

Each point represents one second of video footage while the remotely operated vehicle was moving forward with an 

unobstructed view of the seafloor. 
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Figure 2-3. Depth distributions of coral species observed off the southwest Grand Banks of Newfoundland during the 2007 in 

situ survey. Each point represents a single coral observation. 
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Figure 2-4. Depth and sediment type of habitats where corals were observed off the southwest Grand Banks ofNewfoundland 

during the 2007 in situ survey. Each point represents a single coral observation. 
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Figure 2-5. The number of coral colonies found in 10-m transect segments plotted in relation to depth and sediment type (from 

in situ surveys off the southwest Grand Banks ofNewfoundland in 2007). The sizes of the circles are directly proportional to 

the square root of the number of colonies. 
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maximum values, and an outlier of species richness are illustrated. 
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Figure 2-8. MDS plot of Bray-Curtis similarity matrix based on standardized samples and 

species that contribute at least 50% to a sample (data collected using an ROY off the 

southwest Grand Banks ofNewfoundland in 2007). 
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Figure 2-9. Photos of coral in ROPOS transects off the southwest Grand Banks of 

Newfoundland in 2007; (a) assemblage of Keratoisis grayi, Anthomastus sp. , and 

Acanthogorgia armata on a small boulder during dive R1065 at 671 m (Flabellum sp. 

can also be seen), (b) sea pen field (mostly Pennatula spp.) in fine-sediment habitat 

(R1071 , 835 m), (c) close up view of two Acanella arbuscula in fine sediments with 

Sebastes sp. (Rl 071 , 594 m), (d) view of Flabellum spp. in fine sediments during dive 

R1065 at 946 m. 
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3 Small-scale patterns and the effects of trawling on the 

condition of bamboo coral, Keratoisis grayi, in canyons on 

the Grand Banks, Newfoundland 

Abstract 

We employed in situ data collected in three canyons off the Grand Banks, Newfoundland 

to quantitatively examine the influence of depth, bottom type, canyon, and trawling 

intensity on the distribution, abundance, height, and status of Keratoisis grayi, a large and 

abundant gorgonian coral in this region. While surveying 105 km of seafloor with a 

remotely operated vehicle, we observed 5770 K. grayi colonies and 167 trawl marks. We 

found that K. grayi were significantly more likely to occur in boulder areas than in cobble 

or gravel. We found a significant positive relationship between bottom depth and colony 

height and the largest colonies were found in boulder areas in Halibut Channel, and in 

boulder and cobble areas in Haddock Channel. The majority of colonies observed were 

undamaged, but we also recorded overturned, broken, dead and partially dead colonies. 

Keratoisis grayi colonies were more likely to occur in trawled areas, but these colonies 

were more likely to be broken, smaller in size, and less abundant than colonies outside 

trawled areas. These results indicate that trawling has negatively impacted K. grayi 

colonies offNewfoundland and that fishers may disproportionately target areas where 

these corals occur. 
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3.1 Introduction 

Deep-sea corals have garnered world-wide attention in recent years because of 

their potential longevity (Roark et al. 2009; Sherwood & Edinger 2009), importance for 

other taxa (Buhi-Mortensen et al. 201 0), susceptibility to fishing damage (Dayton et al. 

1995; Edinger et al. 2007; Althaus et al. 2009), and vulnerability to other anthropogenic 

disturbances such as oil and gas extraction and ocean acidification (Rogers 1999; Roberts 

& Hirshfield 2004; Guinotte et al. 2006; Hoegh-Guldberg et al. 2007). Deep-sea coral 

conservation concerns underscore the growing need to increase our understanding of 

factors influencing coral ecology and distributions at a range of spatial scales. 

Previous studies related deep-sea coral distributional patterns to the aragonite 

saturation horizon (Guinotte et al. 2006; Davies & Guinotte 2011), temperature (Bryan & 

Metaxas 2006; Mortensen et al. 2006; Roberts et al. 2009), substrate (Roberts et al. 2009; 

Baker et al. 20 12b ), salinity (Mortensen et at. 2006; Davies & Guinotte 201 1 ), and other 

environmental factors. For example, Paragorgiidae along the Atlantic continental margin 

occurred mainly between 300 - 500 m, in areas with slopes between 1.1 o and 1.4°, 

temperatures 5 - 11 °C, currents between 10 - 30 em s-1
, and low chlorophyll a 

concentrations (Bryan & Metaxas 2006). Watanabe et al. (2009) found that Primnoa 

resedae.formis abundance in the Northeast Channel, Canada correlated negatively with 

depth and positively with cobble and/or boulders. 

Given the known vulnerability of coldwater corals to trawling damage, current 

distributional patterns could be related to current and past fishing intensity (Roberts et al. 

2009). Cover of Solenosmilia spp. thickets was reduced by 2 orders of magnitude on 

3-2 



actively trawled seamounts off Australia, compared to untrawled seamounts (Althaus et 

al. 2009). Fishing activities damaged an estimated 30- 50% of the total area covered by 

Lophelia pertusa in Norwegian waters (Fossa et al. 2002), and illegal trawling activity 

was blamed for destruction of all but 10 % of Oculina spp. in a Florida reserve (Koenig et 

al. 2005). 

The coral colonies that remain in previously trawled areas may be heavily 

damaged. Only 31 Primnoa spp. colonies remained in a trawl path seven years after the 

removal of 1 ton of corals in 1990 in the Gulf of Alaska. Of these, five large colonies 

were missing 95- 99% oftheir branches and 80% of the polyps were missing from two 

smaller colonies (Krieger 2001). On actively trawled seamounts off Australia, the 

densities of Solenosmilia variabilis with broken bases were significantly higher compared 

to seamounts not currently trawled (Althaus et al. 2009). 

Keratoisis grayi (synonym: K. ornata), a long-living bamboo coral found 

throughout the North Atlantic and Mediterranean Sea (Appel tans et al. 20 12), is among 

the most common large gorgonians off Newfoundland and Labrador, Canada (Wareham 

& Edinger 2007; Baker et al. 2012b). Using Fisheries and Oceans Canada fisheries 

observer and survey data from that region, Wareham and Edinger (2007) documented K. 

grayi at depths from 19 5 to 1 ,262 m. Baker et al. (20 12b) found K. grayi often co­

occurred with Acanthogorgia armata and Anthomastus spp. at relatively shallow depths 

(< 1000 m) with boulders and cobbles. Keratoisis grayi was associated with steep 

topography and semi-consolidated mudstone in a submarine canyon offNova Scotia 

(Mortensen & Buhl-Mortensen 2005). Large gorgonians (including K. grayi) were 
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recorded as bycatch in multiple fisheries including trawl sets (Panda/us borealis, 

Reinhardtius hippoglossoides, and Sebastes spp. fisheries), crab pots, longlines 

(Reinhardtius hippoglossoides and Hippoglossus hippoglossus fisheries) , and gillnets 

(Reinhardtius hippoglossoides and Sebastes spp. fisheries) offNewfoundland between 

2004 and 2005 (Edinger et al. 2007), illustrating the vulnerability of K. grayi to fishing 

disturbances. 

We employed in situ data collected in three canyons off the Grand Banks to 

quantitatively examine the influence of depth, bottom type, canyon, and trawling 

intensity on Keratoisis grayi abundance, height, and status at small spatial scales. 

3.2 Methods 

3.2.1 Video surveys 

We used the remotely operated vehicle (ROV), ROPOS (Remotely Operated 

Platform for Ocean Sciences) (CSSF 2010) to explore three submarine canyons on the 

slopes of the Grand Banks south ofNewfoundland: Halibut Channel, Haddock Channel, 

and Desbarres Canyon (Figure 2-1). We completed video surveys from CCGS Hudson 

during seven ROPOS dives between 16-24 July 2007 (see Baker et al. 2012a; Baker et 

al. 20 12b for details). The ROV was equipped with lasers placed 10 em apart to indicate 

scale. Depth, date, time, altitude (distance above bottom), temperature, and position were 

logged at 1-second intervals (though sporadic problems with the logger resulted in 

several long periods with no temperature data). 
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Based on known distributions of corals in relation to bathymetry, we planned 1-

km long transects every 200 m of depth along depth contours between 2200 and 600 m 

and along contours every 100 m in waters shallower than 500 m (Baker et al. 20 12b ). 

We standardized transects by maintaining the ROV as close to the bottom as possible, at 

a constant slow speed (approx. 0.2- 0.5 m s-1
) while tilting the camera down slightly on a 

wide-angle view in order to image the seafloor and water column directly above. 

Between pre-selected transects, we explored the area with ROPOS, capturing still images 

and video of interesting features, and collecting voucher specimens to validate visual 

identification. 

3.2.2 Video processing 

Using the program ClassAct Mapper (Benjamin 2007), we recorded continuous 

geo-referenced data describing bottom type, ROV mode, trawl marks, and corals. We 

identified all corals to the lowest possible taxonomic level (typically species) and 

measured colony height and diameter of K. grayi to the nearest 5 em using the lasers for 

scale. Whenever possible, we quantified the general status of colonies using two 

descriptors: proportion of colony dead and overall status. We estimated the proportion of 

each colony that appeared to be dead (no living polyps or tissue) to the nearest 5 %, again 

using the lasers for scale. The overall status of each K. grayi colony (regardless of 

proportion dead) was scored as 'normal' (the colony appeared upright and intact), 

'broken' (the colony or pieces of the colony appeared to be detached), or 'overturned' 
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(the colony was tilted and laying against another object, such as the substrate). We 

classified colonies that were both broken and overturned as broken. 

We characterized bottom type every second by primary (most abundant) substrate 

and secondary (next most abundant) substrate, with optional additional comments. 

Bottom types included (1) outcrop (vertically exposed bedrock and consolidated 

Quaternary sediment), (2) boulder(> 25 em), (3) cobble (5- 25 em), (4) gravel (0.2 - 5 

em), or (5) mud-sand (fine-grain) sediments (Thrush et al. 2001). 

'Transect-mode' defined any portion of the video when the ROY followed the 

prescribed methodology for transects (described above), regardless of whether the 

transect was planned. We combined all other ROY bottom activities as 'Other' (Baker et 

a!. 2012b). 

3.2.3 Data analysis 

Commercial trawl-doors offNewfoundland spread approximately 116m for 

flatfish trawlers (P. Winger, pers comm.) and 95 m for Sebastes spp. trawlers (W. 

Savoury, pers comm.). We therefore created circular 100-m buffers around each location 

(i.e. second) where a trawl mark was observed using ArcGIS 9.3 (ESRI 2008). We then 

calculated the frequency that each second of video coincided with a buffer to determine 

the potential trawling intensity at each location. 

Our analysis considered the effect of average temperature, bottom type, depth, 

canyon, trawl intensity (Trawl), and their interactions on the abundance, height, and 

status of K. grayi. However, because average temperature and depth exhibited strong 
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collinearity and 72 % of the colonies had no associated temperature records, we removed 

average temperature from consideration. When necessary, we used a log10-

transformation of Trawl in our models (logTrawl). We used empirical variograms to 

ensure there were no significant spatial autocorrelations at multiple scales. All final 

models were chosen through backward selection using likelihood ratio tests to remove 

non-significant terms. 

3.2.3. I Abundance 

We examined patterns inK. grayi colony abundance observed when the ROY was 

in transect-mode by splitting transects into 10-m segments (= sample unit) and summing 

the number of live K. grayi colonies ( < 100 % dead) in each segment. Large, hard 

substrates influence K. grayi distribution (Baker et al. 20 12b ). Therefore, we used the 

largest sediment size in each 10-m segment to classify bottom type in that segment. We 

used mean depth of each 10-m segment as ' depth ' and maximum number of trawl mark 

buffers coinciding with any point in the segment as the Trawl value for that segment. 

The 10-m segments in mud-sand, outcrops, or depths > 1000 m were removed from the 

analysis because of low sample size. Because the data were zero-inflated we chose a 

hurdle (zero-altered) model. A hurdle model consists of two parts: a binomial 

generalised linear model (GLM) to model presence/absence, combined with a count 

model for values greater than zero (Zuur et al. 2009). Our count data were overdispersed, 

so we implemented a truncated negative binomial GLM count model using the Pscl 

package (Jackman et al. 2011) in R (RDevCoreTeam 2012). 
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3. 2. 3. 2 Height 

We used all video (regardless ofROV mode) to examine patterns inK. grayi 

colony height, treating each K. grayi colony as a sample unit. Desbarres Canyon and 

mud-sand data were removed because of low sample size. A gamma GLM with identity 

link produced the best model for examining patterns in height of K. grayi. 

3.2.3.3 Status 

We examined all video for patterns in K. grayi status, again removing Desbarres 

Canyon and mud-sand data because of low sample size. Status was assessed using two 

approaches: proportion dead and overall status (normal, broken, or overturned). 

Values ofzero (n = 5037) and 1 (n = 317) strongly skewed the proportion dead 

(i .e. very few partially dead colonies were observed; n = 75), and common 

transformations related to proportional data (e.g. arcsine and logit) did not improve our 

ability to meet model assumptions. As a result, we categorized all colonies with any dead 

portions as 'dead/partially dead', thereby creating a binary response variable: 

dead/partially dead (1) or alive (0). We used a binomial GLM to examine patterns in live 

versus dead/partially dead colonies, and a multinomial logit model to examine overall 

status (normal, broken, or overturned). 

3.3 Results 

We surveyed approximately 105 km (90 hours) of seafloor, and recorded a total of 

5031 I 0-m segments using all dives and depth categories. We observed 5770 K. grayi 
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colonies. Most K. grayi occurred in Halibut Channel (n = 4341) and Haddock Channel (n 

= 1427), whereas only two colonies were observed in Desbarres Canyon (Table 3-1). 

We recorded 167 trawl marks (Table 3-2), spanning all canyons and depths from 

3 77 m to 821 m. A total of 1086 K. grayi colonies occurred within at least one 100-m 

trawl buffer zone, and the greatest number of buffers overlapping with a K. grayi colony 

was 13 (n = 8). 

3.3.1 Abundance 

We enumerated a total of 3765 live K. grayi colonies while the ROY was in 

transect-mode, 2820 of which occurred in 10-m segments. Of the 10-m segments used in 

the model (n = 1422), a total of 440 segments contained K. grayi. The median of counts 

greater than zero in a 10-m segment was 3 and the maximum of 43 occurred at 573 m 

with boulders in Halibut Channel (Dive R1 067). 

Bottom type (p < 0.0001), Trawl (p = 0.018), and the interaction of Depth and 

Canyon (p < 0.0001) were significant predicators of live K. grayi presence within a 10-m 

segment (Table 3-3). LiveK. grayi colonies were significantly more likely to be present 

as Trawl increased (Figure 3-1 ). The probability of K. grayi presence in boulders was 

significantly greater than in cobble (p < 0.0001) and gravel (p < 0.0001), but cobble and 

gravel did not differ significantly (p = 0.053). 

The interaction of Depth and Bottom type was a significant predictor of K. grayi 

counts greater than zero (p = 0.004) (Table 3-3), and as trawl intensity (logTrawl) 

increased, counts of K. grayi decreased (p < 0.0001 ). Trawling intensity appeared to 
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have the greatest negative influence on K. grayi counts during the first trawl (Figure 3-2). 

In cobble, counts were greatly influenced by depth, which was less obvious in boulders 

and gravel (Figure 3-2). 

3.3.2 Height 

Height (median = 30 em) could be determined confidently for 4654 K. grayi 

colonies. The tallest colony (215 em) occurred in cobble in the absence of trawling at 

776 min Halibut Channel. 

Depth (p < 0.0001), logTrawl (p < 0.0001), and the interaction of Canyon and 

Bottom type (p < 0.0001) were significant predictors of K. grayi height (Table 3-3). We 

found a significant negative relationship between K. grayi colony height and logTrawl, 

and a significant positive relationship between height and depth. The predicted height of 

K. grayi increased by 7 em for each 1-m increase in depth. In Halibut Channel, the 

largest colonies occurred in boulders, in contrast with Haddock Channel where the largest 

colonies occurred in cobble and boulders (Figure 3-3). 

3.3.3 Status 

The great majority of K. grayi colonies we recorded appeared to be undamaged 

(Table 3- l). LogTrawl (p = 0.0001) and the interaction of Canyon and Depth (p < 

0.0001) were significant predictors of a K. grayi colony having dead portions (n = 5428) 

(Table 3-3). As logTrawl increased, so did the probability of recording a colony with 

dead portions (Figure 3-4). Depth strongly influenced the probability of K. grayi having 
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dead portions in Haddock Channel, but not Halibut Channel. The probability of a K. 

grayi having dead portions in Haddock Channel was highest in the shallowest depths 

(Figure 3-4). 

Canyon (p < 0.0001), Depth (p = 0.004) and logTrawl (p < 0.0001) were 

significant predictors of K. grayi overall status (n = 5513) (Table 3-3). As trawl intensity 

increased, the probability of a normal K. grayi colony decreased (Figure 3-5) and the 

probability of a broken colony increased (p < 0.0001) (Figure 3-5). There was no 

significant relationship between log Trawl and probability of a colony being overturned (p 

= 0.848). Normal K. grayi were more likely and broken colonies less likely in Halibut 

Channel (p < 0.0001) compared to Haddock Channel. There was no significant 

difference between canyons when comparing the probability of a colony being 

overturned (p = 0.313). As depth increased, the probability of a K. grayi colony being 

overturned decreased (p = 0.003) (Figure 3-5). There was no significant relationship 

between the probability of a colony being broken and depth (p = 0.155). 

3.4 Discussion 

3.4.1 Abundance 

Keratoisis grayi colonies were significantly more likely to occur in boulder areas 

than cobble or gravel. This species requires hard substrate for attachment, therefore, we 

can expect that boulders create more available stable habitat for attachment than smaller 

substrate, such as gravel or cobble. Off Nova Scotia, K. grayi also associate with large, 

hard substrate (consolidated mudstone) (Mortensen & Buhl-Mortensen 2005). 
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We found significant interactions when modelling both presence and counts of K. 

grayi. The significant Depth*Canyon interaction when predicting K. grayi presence 

indicated that the probablity of finding K. grayi at a given depth differs between canyons. 

This contrast implies that although depth is important, other environmental factors that 

differ between canyons likely also influence K. grayi presence. The Depth*Bottom type 

interaction significantly predicted K. grayi counts. Other factors that co-vary with depth 

may account for the difference inK. grayi counts between bottom types. For example, 

current regime may change with depth and vary in effect among bottom types. Multiple 

environmental factors that we did not measure, such as current velocity, temperature, 

sedimentation rates, slope, and food availability that likely influence presence and 

abundance may differ among depths and/or canyons and therefore help to explain these 

interactions (Roberts et al. 2009; Watanabe et al. 2009). 

3.4.2 Height 

We found a significant positive relationship between bottom depth and colony 

height. Bubble gum coral, Paragorgia arborea, exhibited a similar positive relationship 

between colony size and depth in the Northeast Channel off Nova Scotia (Watanabe et al. 

2009). Thresher (2009) found slower radial growth rates in bamboo corals collected at 

lower temperatures. The conjunction between greater colony size and slower colony 

growth rate implies that the deeper, taller corals have been growing for much longer 

periods of time without disturbance effects, compared to the shallower, faster growing 

colonies. 
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Our results predict that the largest bamboo coral colonies will occur on boulders 

in Halibut Channel and boulders and cobble in Haddock Channel (although we did find a 

significant positive interaction between canyon and bottom type). We suspect that the 

larger surface area of boulders represents a more stable surface as a colony grows in size, 

therefore allowing a colony to grow larger before tipping and overturning the stone 

(Tunnicliffe & Syvitski 1983). 

Similar to coral abundance patterns, size and growth rates may link to a variety of 

environmental factors that vary with depth and differ between canyons. These factors 

include, but are not limited to, currents, and surface productivity (Thresher 2009). 

3.4.3 Status 

The great majority of K. grayi colonies observed in both Halibut and Haddock 

Channels were normal and completely alive. Dead/partially dead colonies of K. grayi 

were more prevalent at shallower depths in Haddock Channel than Halibut Channel, and 

colonies in Haddock Channel were broken more often and less likely to be normal 

compared to those in Halibut Channel. Many of the variables that likely differ between 

canyons and affect size and abundance (e.g. current velocity, sedimentation rates, and 

temperature), may also impact overall K. grayi status and contribute to canyon-related 

patterns. 

Numerous mechanisms can overturn and break colonies (Tunnicliffe & Syvitski 

1983). For example, large fish may come into contact with the colony, disease, predation 

or infection may cause death of portions of the colony, and longlines or gillnets may hook 
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corals (Krieger 2001 ). Therefore, we cannot identify the direct mechanism responsible 

for the colonies that were overturned and/or broken in our video. 

3.4.4 Trawling impacts 

Our results clearly illustrate the negative influence of trawling on the size, status, 

and number of K. grayi colonies off Newfoundland. However, K. grayi colonies were 

also more likely to occur in trawled areas, perhaps because fishers target areas with high 

densities offish, which could coincide with coral presence (Husebo et al. 2002; Costello 

et al. 2005; Stone 2006). Remaining corals in trawled areas were more likely to be dead, 

broken, smaller in size, and less abundant. These findings confirm other studies on 

trawling effects. For example, Freese (200 1) found an immediate 16 % reduction in 

sponge density post-trawling, a 21 % reduction 11 months post trawling, and almost half 

of the sponges ( 46.8 %) that remained in three trawl paths were damaged. Cover of 

Solenosmilia thickets was significantly reduced on trawled seamounts, compared to 

seamounts that were never trawled and the density of large gorgonians and black corals 

with broken stems was significantly higher on seamounts with active trawling (Althaus et 

al. 2009). In the Gulf of Mexico, an estimated 27 % of the corals in a trawl net path were 

detached and 50- 90% of these corals were missing their polyps (Krieger 2001). 

Damaged corals may be more susceptible to predation (Malecha & Stone 2009), infection 

and disease, and ultimately mortality (Krieger 200 I), with reduced reproductive 

capabilities (Henry et al. 2003), reduced feeding abilities (Krieger 2001), and slower 

growth rates (Meesters et al. 1994). For example, Malecha and Stone (2009) found 
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Tritonia diomedea actively feeding on sea whips lying on the seafloor after simulated 

trawl disturbance. 

Our data corroborate previous research illustrating that the first pass of a trawl can 

cause significant damage. We found the largest incremental effect of trawling with the 

smallest number of trawls (illustrated by initial slopes in Figures 3.2 to 3.5), and found 

only very modest incremental effects as trawling intensity increased. On the continental 

shelf of Australia, a single pass of a trawl damaged 90 % of the large epibenthic 

organisms in the trawl path (Sainsbury et a!. 1992). A single trawl pass in the Gulf of 

Alaska removed or damaged a significant number of emergent epifauna (Freese et a!. 

1999). Van Dolah et a!. ( 1987) found significantly reduced barrel sponge abundances, 

and octocorals and stony corals broken at the base after only a single trawl pass. 

Although trawling significantly influenced the status, height, and number of K. 

grayi, the overall impacts observed as trawling intensity increased past a single trawl 

were modest. For example, the probablity of a K. grayi colony being normal as trawl 

intensity increased from 2 to 12 was still nearly 0.8 and the probablity of being dead or 

partially dead as trawl intensity increased from 2 to 12 remained relatively stable in 

Halibut Channel (ca. 0.1). The reasons for observing only relatively modest impacts are 

unclear. 

Longlines and gillnets are also regularly used in deep waters offNewfoundland. 

Relatively high levels of gorgonian bycatch from these gears have been recorded in all 

three canyons (Edinger et a!. 2007). These gears leave behind no direct evidence on the 

seafloor and therefore could not be accounted for in our analyses. Nevertheless, they 
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may account for some of the observed differences in K. grayi conditions related to 

canyons and depths. Fisheries and Oceans observer data collected in 2004 and 2005 

indicate that Haddock Channel is targeted by gillnets more heavily than Halibut Channel, 

while both longlines and gillnets are used heavily in Desbarres Canyon. In general, 

longlines were used in deeper waters than both gillnets and trawls (Edinger et a!. 2007). 

Our findings add to the growing research demonstrating clear impacts of trawling 

on deep-sea ecosystems (e.g. Watling & Norse 1998; Freese 2001; Althaus eta!. 2009; 

Norse eta!. 2012). Corals, such asK. grayi are slow-growing and long-lived and recover 

slowly, if ever, from disturbances (Roberts eta!. 2009). Corals may play important roles 

for other taxa in the deep sea (Buhl-Mortensen et a!. 201 0; Baillon eta!. 20 12). 

Collectively, these findings raise significant concerns regarding trawling and 

sustainability of deep-sea ecosystems. Therefore, we believe closing large areas of the 

seafloor to bottom fishing is necessary to protect corals, associated taxa, and their 

ecosystems. Furthermore, in areas that remain open to trawling (and other fishing 

practices), accountability and transparency are essential for ensuring appropriate fisheries 

management in an ecosystem context (Weaver eta!. 2011). 

3.5 Conclusions 

Our results clearly illustrate the negative influence of trawling on K. grayi counts, 

size, and status. As trawling intensity increased, counts of live K. grayi colonies 

decreased, the probability of recording a colony broken or with dead portions increased, 

and the height of the colonies decreased. Our findings also suggest fishers may 
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preferentially target areas with K. grayi (even if unintentionally), underscoring the 

urgency of addressing this conservation threat. Therefore, our research adds to growing 

evidence for the need to protect large seabed areas from bottom fishing gear. Such 

protected areas will help to reduce the overall footprint of fishing and initiate recovery 

efforts for deep-sea corals and associated marine fauna. 
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Table 3-1. Number of Keratoisis grayi colonies and condition observed during ROY 

surveys off the southwest Grand Banks ofNewfoundland in 2007. 

# Dead I 
# # # # Over- Partially # 

Can~on Dive Observed Normal 1 Broken2 turned Dead Alive 
Halibut Channel R1065 192 154 19 9 19 150 
Haddock Channel R1066 1427 1090 184 57 213 1117 
Halibut Channel R1067 4149 3738 140 131 164 3773 
Haddock Channel R1068 0 0 0 0 0 0 
Desbarres Canyon R1070 2 1 1 0 1 1 
Desbarres Canyon R1071 0 0 0 0 0 0 
Desbarres Canyon R1072 0 0 0 0 0 0 

Total 57703 4983 344 197 397 5041 

1 Colony was upright and intact 
2 Includes colonies that were both broken (pieces detached) and overturned. 
3 Sum of columns representing colony status and proportion dead do not add up to 5770 because these 
characteristics could not be determined for all colonies observed. 
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Table 3-2. Number of trawl marks observed by depth and dive during ROY surveys (all 

ROY modes) off the southwest Grand Banks ofNewfoundland in 2007. 

Dive De th (m) 
300-400 400-500 500-600 600-700 700-800 800-900 900-1000 

R1065 5 4 1 0 
R1066 1 26 52 0 1 0 
R1067 0 2 0 0 0 0 0 
R1068 
R l 070 3 6 33 18 0 0 0 
R1071 1 2 11 1 0 0 0 
R1072 

Total 4 11 70 76 4 2 
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Table 3-3. Significant terms in models examining abundance, height, and status of 

Keratoisis grayi colonies from ROV surveys off the southwest Grand Banks of 

Newfoundland in 2007. 

Response Model terms Relationship p-value 
Abundance: Bottom type <0.0001 
presence/absence of Trawl Positive 0.0178 
live colonies I?~P~h~~::t!!Y9!! <0.0001 
Abundance: counts of log10Trawl Negative <0.0001 
live colonies Depth*Bottom type 0.0036 
Height log10 Trawl Negative <0.000 1 

Probability of having 
dead portions 
Overall status 

Depth Positive <0.0001 
Canyon*Bottom type <0.000 1 
Canyon*Depth <0.0001 
log10Trawl Positive 0.0001 
Canyon <0.0001 
Depth 0.0037 

___________________ l_o~g~1 o~T_ra_w __ l __________________________ <_0_.0_0_0_1 __ _ 
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K. grayi presence in boulders (solid), cobble (dotted), and gravel (dashed) within each 

canyon. Depth was held constant at the mean depth in each canyon in all models. 
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4 Small-scale patterns of deep-sea fish distributions and 

assemblages of the Grand Banks, Newfoundland 

continental slope 

Abstract 

Deep-sea fishes are the target of directed fisheries and are considered a conservation 

concern. Yet, we still know little about the factors that affect deep-sea fish distributions 

and assemblage patterns on relatively small spatial scales. We used results from remotely 

operated vehicle surveys that observed 105 km ( ~ 346 960 m2
) of seafloor over a depth 

range of 351 - 2245 m in three canyons off Newfoundland to examine the occurrence, 

behaviour, habitat specificity, and assemblage patterns of deep-sea fishes in this region. 

We found distinct assemblages based on both depth and habitat classifications. The most 

obvious unique assemblage was that associated with outcrops, which served as habitat for 

relatively rare species such as Neocyttus helgae, Hoplostethus at/anticus, and Lepidion 

eques. Several coral habitats hosted distinct assemblages when compared to habitats with 

low or medium structural complexity. Our results illustrate that any program targeted at 

protecting deep-sea ecosystems must protect a wide-range of habitats and depths to 

conserve a variety of fi sh species and assemblages. 
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4.1 Introduction 

In general, we know little about the biology of deep-sea fishes (Bailey et al. 2009; 

Baker et al. 2009), and even less about their community dynamics, the factors that 

influence small-scale distributions, and the functional role of deep-sea fish habitats. 

Ecologists widely accept the importance of shallow-water corals as habitat for fishes, but 

debate parallel functions for deep-water corals. The role and importance of deep-water 

corals as habitat for fishes remain unclear (Roberts et al. 2009; Buhl-Mortensen et al. 

201 0). Some studies suggest that deep-water corals provide refuge (Krieger & Wing 

2002; Costello et al. 2005), enhance prey capture (Husebo et al. 2002; Costello et al. 

2005), and serve as nursery or spawning grounds (Costello et al. 2005; Koenig et al. 

2005; Baillon et al. 2012) for deep-sea fishes. In the latter case, supporting evidence 

includes records of swollen, gravid Sebastes spp. on Lophelia reefs (Fossa et al. 2002; 

Husebo et al. 2002; Costello et al. 2005), ray egg cases on reefs (Costello et al. 2005) and 

fish larvae in the polyps of seapens (Baillon et al. 20 12). In general, deep-sea corals are 

thought to create structure in an environment where structurally complex habitats are 

often scarce (Buhi-Mortensen et al. 201 0). 

Higher abundances of several fishes have been recorded in areas with coldwater 

corals compared to areas without corals. Costello et al. (2005) found greater fish species 

richness and abundance in Lophelia-associated habitats than in surrounding areas and 

argued that reefs may play an important functional role as fish habitat in deep-water 

ecosystems. Higher catches and larger individuals of red fish (Sebastes marinus ), ling 
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(Malva molva), and cusk (Brosme brosme) inside Lophelia reefs off Norway compared to 

those outside (Husebo et al. 2002) further support this hypothesis. Off Alaska, 85 % of 

the economically important fish were associated with corals or other emergent fauna 

(Stone 2006) and off Ireland, Guttigadus latifrons was only observed in areas with live 

corals (Soffker et al. 2011 ). 

Other research suggests that fish only use deep-coral and sponge habitats 

opportunistically (Auster 2005; Tissot et al. 2006). Auster (2005) argued that high local 

densities of fishes do not mean that corals enhance fish populations. Dense corals and 

epifauna hosted equivalent fish communities in the Gulf of Maine compared to less 

complex habitats. These results indicate that coral habitats may not be functionally 

unique and provide similar levels of shelter and prey compared to other complex habitats 

(such as boulder fields) (Auster 2005). Another study further hypothesized that the 

physical structure of reefs attracted redfish, and not the coral itself (Husebo et al. 2002). 

This perspective was defended using observations of redfish associated with shipwrecks, 

or found hiding in the vicinity of large boulders or sponges (Husebo et al. 2002). Tissot 

et al. (2006) found six species of fishes more abundant adjacent to coral colonies than 

predicted, but concluded that corals and fishes simply co-occurred in the same habitats. 

One of the only quantitative studies that showed convincing evidence of obligate 

relationships examined fish assemblages in deep-reef habitats off the southern United 

States (Ross & Quattrini 2007). These researchers found distinct fish assemblages in 

prime reef and transition reef habitats compared to off-reef habitats (Ross & Quattrini 

2007), suggesting that deep reefs host unique fish communities. Baillon et al. (20 12) 
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found evidence of a functional relationship between corals and fish off Newfoundland 

and Labrador: they found fish larvae (predominately Sebastes spp.) within polyps of sea 

pen, thereby hinting that corals may provide shelter for fish larvae. 

Until recently, trawl data were the only means to study fish-coral relationships 

off Newfoundland. Edinger et al. (2007) found highest species richness of fishes in 

fishing sets that contained small gorgonian corals, but found no strong relationships 

between corals and abundances of the 10 groundfish species examined. Nonetheless, 

trawls are not ideal for studying such patterns at small scales because they sample large 

areas of the seafloor in a region with relatively small, patchy coral distributions (KD 

Baker, unpublished data). 

The vulnerability of deep-sea fishes to overexploitation has been demonstrated by 

the boom-and-bust of many deep-sea fisheries (Koslow et al. 2000), dramatic population 

declines of fishes over relatively short time scales (Devine et al. 2006), the indiscriminate 

impact of fisheries on non-target species (Bailey et al. 2009), and the potential for lengthy 

recovery times (Baker et al. 2009). The idea that corals may influence fish distributions 

underscores the urgency of understanding these relationships. As destruction and threats 

to deep-sea corals continue to mount (Fossa et al. 2002; Hall-Spencer et al. 2002; Turley 

et al. 2007), availability of aggregating sites, survival probability, and population 

resilience of deep-sea fishes could be in precipitous decline. 

We present the results from an in situ camera-based survey of deep-sea fishes 

conducted through a variety of coral and non-coral habitats on the Newfoundland 

continental slope. Specifically, we examine patterns in fish assemblages in relation to 
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both depth and habitat classifications, and discuss the conservation implications of these 

findings. We also describe fish occurrence, behaviour, and reaction to the ROV, and 

examine habitat specificity in relation to the complexity of habitats. 

4.2 Methods 

4.2.1 Survey design 

We used the remotely operated vehicle (ROV) ROPOS (Remotely Operated 

Platform for Ocean Science) (CSSF 201 0) to examine the fauna of three submarine 

canyons on the slope of the Grand Banks south of Newfoundland: Halibut Channel, 

Haddock Channel, and Desbarres Canyon (Figure 2-1). A small bank separates Halibut 

Channel and Haddock Channel, which are situated approximately 110 km and 175 km 

east of Laurentian Channel respectively, and approximately 150 km and 200 km 

northwest of Desbarres Canyon respectively. The temperature regimes in the three 

canyons were similar, averaging ~ 5.0 oc during relatively shallow dives ( <11 00 m) and 

~ 4.4 oc during relatively deep dives(> 1100 m). ROPOS performed video surveys from 

CCGS Hudson in July 2007, and was equipped with lasers placed 10 em apart to indicate 

scale. Depth, temperature (during most dives), date, time, altitude, and position were 

logged at 1-second intervals. 

We planned 1-km transects along depth contours every 200m between 2200 and 

600 m and along contours every 100m in waters shallower than 500 m. We standardized 

transects by keeping the ROV as close to the bottom as possible ( < 1 m), maintaining a 

constant slow speed (approx. 0.2 - 0.5 m s-1
) while tilting the color camera down slightly 
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on a wide-angle view in order to image the seafloor and water column directly above. 

Whenever possible, the camera was angled so the ' horizon' was in the center of view and 

the farthest field of view was approximately 5-6 m wide (estimated using lasers). The 

camera was positioned approximately 0.8 m high on ROPOS. ROPOS was also equipped 

with a monochrome camera positioned approximately 1.5 m from the bottom of the ROY 

and oriented slightly downward so the seafloor was in view. Between the pre-selected 

transects, we explored the area, capturing still images and video of features of interest, 

and collecting voucher specimens of invertebrates where possible. 

4.2.2 Video processing 

We used ClassAct Mapper (Benjamin 2007) to analyze the video footage from the 

color video camera and to collect geo-referenced data on fish, habitat, and ROY 

operation mode. We identified each fish to the lowest possible taxonomic level, which 

was often to species except for some groups such as myctophids or redfish (Sebastes) 

where voucher specimens are usually necessary to differentiate among morphologically 

similar species. When fish orientation made identification difficult, the monochrome 

camera images aided identification by providing a different viewing angle of the 

individual. Video clips and frame grabs of individuals that could not be identified with 

certainty were sent to taxonomic experts for confirmation. Behavioral responses of fishes 

are a significant concern when analyzing ROY observations (Stoner et al. 2008). We 

categorized fish behaviour and reaction to the ROY based on first sighting. We grouped 

fish behaviour as actively swimming, hovering, hiding, feeding, or resting and 
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categorized reaction to the ROY as no reaction, avoidance, or attraction (Costello et al. 

2005). 

To reduce double-counting individual fish, we did not count fish that approached 

the field of view from behind the ROY. Sebastes spp. (redfish) followed and often 

circled the ROY, so only individuals that were resting on the seafloor where the sediment 

was undisturbed were counted. If we could identify each individual, they were also 

counted. We noted all other redfish, but coded them as 'suspicious ' and did not include 

them in analyses. Centroscylliumfabricii (black dogfish) appeared to follow the ROY, 

so we measured and described unique characteristics (size, obvious parasites, scars, etc.) 

for each individual to avoid double-counting individuals. 

We categorized habitat associated with each fish observation as (1) outcrop, (2) 

dense large coral cover, (3) boulder field, ( 4) sparse large coral cover, ( 5) dense small 

coral cover, (6) sparse small coral cover, (7) sea pen field, (8) sponge field, (9) cup coral 

field, (I 0) Heteropolypus cf. insolitus field, or (II) fine sediments with sparse epifauna 

(Figure 4-1) (Baker et al. 20 12). Outcrop described cliff-like, vertical structures with 

exposed bedrock or consolidated Quaternary sediment and encrusting sponges, 

Desmophyllum dianthus, and sometimes antipatharians: Schizopathidae n. gen. et n. sp. 

Dense, large coral cover consisted of dense assemblages (average = 1.6 large coral 

colonies m·1
)

1 of Keratoisis grayi colonies of any size (or on rare occasions 

Acanthogorgia armata colonies 2: 30 em in height or dense Radicipes gracilis > 60 em in 

height) with boulders (> 25 em) and cobble, often mixed with gravel and fine-sediments. 

1 Average abundances were calculated after video analysis was complete. 
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Boulder fields consisted of rocks greater than 25 em mixed with cobble, gravel, and fine 

sediments and contained few large corals, sponges, or epifauna. Sparse, large coral cover 

included habitats with sparse colonies of K. grayi (or on rare occasions R. gracilis> 60 

em in height) (average= 0.35 large coral colonies m-1
) , sometimes with small coral 

colonies and sparse boulders and/or cobble. Dense, small coral cover habitats contained 

assemblages of abundant (average = 1.75 small coral colonies m-1
) , relatively small coral 

species ( < 30 em in height), such as Acanella arbuscula, small A. armata, and Radicipes 

gracilis, with occasional cobble and small boulders (usually < 30 em). Sparse, small 

coral habitats were similar to dense, small coral habitats, but with fewer corals (average= 

0.43 small coral colonies m-1
) and occurred in relatively fine-sediments. Sea pen fields 

occurred in fine-sediment with numerous Pennatula spp. often interspersed with 

Halipterisfinmarchica, Protoptilum carpenteri, and Kophobelemnon stelliferum (average 

= 8.4 sea pens m-1
). Sponge fields occurred in relatively fine-sediments (sometimes with 

gravel or sparse cobble) and consisted of unidentified small, white sponges ( < 10 em). 

Cup coral fields consisted of Flabellum spp. in fine sediment habitats with few other 

megafauna present (average= 8.0 cup corals m- 1
). Heteropolypus cf. insolitus fields 

occurred in relatively fine sediments with primarily Heteropolypus cf. insolitus and 

sometimes K. stelliferum (average = 3.0 H insolitus colonies m- 1
). Fine sediment with 

sparse epifauna habitat was composed of mud-sand sediments with very few corals, 

sponges, or large epifauna. Common invertebrates in these habitats included relatively 

small cerianthids, ophiurids, sabellids, and occasional corals (mostly sparse sea pens). 
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One person completed all video processing to reduce subjectivity in habitat 

classifications. 

We characterized ROY operation mode at 1-second intervals. ' Dead time' was 

when the view was obstructed, the ROY was travelling too high for an adequate view of 

the benthic fauna, or physical sample collection was underway. All other ROY operation 

modes (e.g. panning, transect-mode) were grouped into a single category for our analyses 

(Baker eta!. 20 12). 

4.2.3 Data analysis 

We recorded the presence of all fish taxa in all portions of the video, regardless of 

ROY operation mode, and plotted these in relation to depth. We examined fish behaviour 

and reaction to the ROY. The presence or absence of unique fish taxa was recorded for 

each habitat type (using all data) and we then calculated relative abundances within each 

habitat (based on percent of total fish observed) using a subset of the data that excluded 

dead time. 

4. 2. 3.1 Habitat specificity 

We examined habitat specificity (or preference) by grouping habitat types into 

categories that likely represented low, medium, and high habitat complexity (as 

determined by their assumed profiles and sizes relative to fishes) (Buhl-Mortensen et a!. 

201 0). We defined outcrops, dense large corals, boulder fields, sparse large corals, and 

dense small corals as high complexity habitats. Sparse, small coral habitats, sea pen 
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fields, and sponge fields were classified as medium complexity habitats, and cup coral 

fields, Heteropolypus cf. insolitus fields, and fine sediment with sparse epifauna were 

categorized as low complexity (simple) habitats. We examined the relative abundances 

of unique fish taxa (represented by three or more individuals) within each category (Ross 

& Quattrini 2007). 

4. 2. 3. 2 Assemblage analysis 

We identified the following depth classes: (1) 300-800 m (shelf edge and upper 

slope), (2) 800-1300 m (middle slope), and (3) 1300-2300 m (lower slope) (Baker et al. 

20 12). These were chosen to ensure balanced survey coverage of each depth category 

and to reflect fish distributions in previous studies throughout the world (Haedrich & 

Merrett 1988; Koslow et al. 1994; Francis et al. 2002; D'Onghia et al. 2004). We 

conducted multivariate analyses in Primer 6.0 (Clarke & Gorley 2006) to evaluate 

differences in fish assemblages between and within habitats. Following Ross and 

Quanttrini (2007), we considered each unique combination of dive, depth class, and 

habitat type as a sample unit and calculated the number of individuals belonging to each 

unique taxon for each sample unit. Dead time was excluded from this analysis. We 

standardized samples to account for varying survey effort in each sample unit, and fourth­

root transformed counts to reduce overemphasis on abundant species. We used a Bray­

Curtis similarity matrix to create a non-metric multidimensional scaling (MDS) plot, and 

an associated dendrogram using a group average link function . 
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We used a two-way analysis of similarities (ANOSIM) based on depth and habitat 

to test for differences in fish assemblages. We then used SIMPER (similarity 

percentages) to identify the species that contributed most to the observed similarities and 

dissimilarities between samples in relation to depth and habitat type. 

We examined similarities between species by creating a Bray-Curtis species 

similarity matrix of standardized samples and species that contributed at least 10 % to a 

sample. We then produced an MDS plot and dendrogram (using group-average 

clustering) based on these similarities to examine species groupings. 

4.3 Results 

Seven dives captured 90 h of bottom video footage and covered a distance of 

approximately 105 krn (Table 4-1) over a depth range of351 - 2245 m. Based on the 

average viewing width during each ROV operation mode, we surveyed an area of 

approximately 346 960m2
. Fine sediment with sparse epifauna was the most surveyed 

habitat (43 ,765 m), followed by dense small coral habitat (12,954 m) (Table 4-2). 

Heteropolypus cf. insolitus fields were the least surveyed habitat (302 m). Most survey 

coverage occurred in the shallowest depth range (300-800 m) ( 43,845 m). 

4.3.1 Species composition and occurrence 

We recorded over 18,000 individual fishes, comprising at least 74 species or 

unique taxa (Table 4-3); 9901 of these could be identified to 45 species. Most other 

individuals (n = 7249) could only be identified to a unique genus, fami ly, or unknown 
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group (29 unique taxa). The most common taxon was Synaphobranchus kaupii (Kaup' s 

arrowtooth eel) (n = 6586), followed by Sebastes spp. (n = 4767), Myctophidae (n = 

1663), and Nezumia bairdii (marlin-spike grenadier) (n = 876). Rare species in our 

surveys included Apristurus profundorum (deepwater catshark) (n = 2), Harriotta 

haeckeli (smallspine spookfish) (n = 1), and Coryphaenoides armatus (abyssal grenadier) 

(n = 1 ). While some fish taxa were observed as solitary individuals, other taxa (e.g. 

Sebastes spp.) were often observed in aggregations. 

Synaphobranchus kaupii and Sebastes spp. consistently represented large 

percentages of the fish taxa within most habitat types (Table 4-4). Synaphobranchus 

kaupii represented over 20 % of the total fish in every habitat, except outcrops. Sebastes 

spp. accounted for over 25 % of the total abundance in every habitat type, except 

outcrops, sea pen fields , and Heteropolypus cf. insolitus fields. Only 10 taxa occurred at 

outcrops including high relative abundances of myctophids (27 % of total), 

Coryphaenoides carapinus (carapine grenadier), and Neocyttus helgae (false boarfish) 

(both 15 % of total) within these habitats. Myctophids, Nezumia bairdii, and 

Coryphaenoides rupestris (roundnose grenadier) also represented relatively large 

proportions of the fishes(> 5 %) in five or more habitat categories. 

4.3.2 Species behaviour 

Most fish were actively swimming (n = 9690), resting (n = 5004), or hovering (n 

= 3631) (Table 4-5). Centroscyllium fabricii was always actively swimming and was 

often attracted to the ROY. Macrouridae (e.g. , Coryphaenoides carapinus and C. 
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rupestris) mostly hovered just above the seafloor, but also actively swam, hid in coral 

cover, and rested on the sediments. We observed only two incidents of feeding; a 

Synaphobranchus kaupii and a Sebastes sp. were observed feeding on unknown fishes. 

Most fish (n = 9346) exhibited no obvious or consistent reaction to the ROY 

(Table 4-5), but there were several exceptions. Myctophids often swam quickly toward 

the seafloor or ROY, crashed into the sediments, and then rapidly swam away. 

Centroscylliumfabricii often circled the ROY, and also swam directly toward it. 

Synaphobranchus kaupii was sometimes attracted to the ROY (- 25% encountered) and 

even changed direction to swim directly toward it. Individuals of some species, such as 

Simenchelys parasitica (snubnosed eel), Reinhardtius hippogolossoides, and Rajella 

fyllae (round skate), exhibited avoidance behaviour, but other individuals of the same 

species were attracted to the ROY and/or did not react. No species where more than two 

individuals were observed exclusively avoided the ROY. 

4.3.3 Depth range 

Many species spanned a wide depth range, but several were observed only in deep 

waters(< 1200 m) including Coryphaenoides armatus (2202 m), Hydrolagus affinis (> 

2008 m), Apristurus profundorum (deep-water catshark) (> 1348 m), and Serrivomer 

beanii (Bean' s sawtooth eel) (1304 m) (Figure 4-2). The deepest species observed were 

Aldrovandia sp. (2244 m), Antimora rostrata (blue hake) (2243 m), and Halosauropsis 

macrochir (abyssal halosaur) (2242 m). Many more species, including primarily shelf 

species, were restricted to shallower waters ( < 600 m) including Gadus morhua (Atlantic 
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cod) (355 m), Anarhichas lupus (Atlantic wolffish) (358m), Myxine glutinosa (Atlantic 

hagfish)(< 363m), and Argentina silus (Atlantic argentine)(< 612 m). Alepocephalus 

spp. (slickhead) (511 -2220 m), Antimora rostrata (626- 2243 m), Aldrovandia sp.1, 

(659- 2244 m) and Harriota raleighana (642- 2218 m) spanned the greatest depth 

ranges. 

4.3.4 Habitat specificity 

Some species, including Anarhichas minor (n = 5) and Neocyttus helgae (n = 4), 

occurred exclusively in habitats that we defined as complex, based on size and assumed 

profiles relative to fishes (Figure 4-3). Others, such as Hydrolagus affinis (n = 3), 

Bathysaurus ferox (n = 17), and Simenchelys parasitica (snubnosed eel) (n = 6) occurred 

only in relatively simple habitats. Many species spanned high, medium, and low 

complexity habitats, including more abundant species such as Nezumia bairdii (n = 876), 

Harriotta raleighana (n = 19), and Synaphobranchus kaupii (n = 6586). 

4.3.5 Fish assemblage analysis 

The MDS plot and dendrogram clearly illustrate the influence of depth on fish 

assemblages (Figure 4-4, Figure 4-5), but the effect of habitat varied. Boulders, sea pen 

fields, and sediment with sparse epifauna appeared to support somewhat distinct fi sh 

assemblages. Within the shallowest depth range (300-800 m), dense large corals and 

dense small corals showed evidence of distinct fish assemblages, but in deeper waters (> 

800 m) there was no evidence of distinct assemblages within these habitats. No other 
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clear assemblage patterns based on habitats could be distinguished from the MDS plot or 

dendrogram. 

The global ANOSIM showed significant differences in assemblages with depth (R 

= 0.684, p = 0.001). Pairwise comparisons between each depth category showed that 

assemblages within each category also differed significantly from each other (R 2: 0.556, 

p = 0.001). Abundant Sebastes spp. in the shallow depth category (300 - 800 m) 

contributed most to significant dissimilarity in assemblages between both the shallowest 

and mid-depth class (800- 1300 m) (58.5 %) and shallowest and deepest depth classes 

(1300- 2300 m) (86.9 %) (see Appendix A). The high relative abundance of 

Synaphobranchus kaupii in shallower waters, but not deeper waters, also differentiated 

the shallowest (300 - 800 m) and deepest (1300- 2300 m) depth classes. The low 

relative abundance of S. kaupii and Coryphaenoides rupestris and the high proportion of 

Halosauropsis macrochir at greater depths (1300 - 2300 m) contributed most to the 

significant dissimilarities (77.3 %) in assemblages between the deepest and the mid-depth 

range (800 - 1300 m) groupings. 

The global ANOSIM also showed significant differences in assemblages with 

habitat (R = 0.391 , p = 0.001). Based on the R-statistics from the ANOSIM (Table 4-6), 

species assemblages associated with outcrops and boulder fields differed consistently 

from almost every other habitat type. The high relative abundance of Sebastes spp. 

(contribution = 51.9 %) greatly influenced similarity within boulder fields. The absence 

of Coryphaenoides rupestris, and Glyptocephalus cynoglossus (witch flounder), the low 

relative abundances of myctophids and Nezumia bairdii, and the numerous Sebastes spp. 
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in boulder fields all contributed to the dissimilarities between boulders and other habitat 

types (see Appendix A). Fish were only observed at three outcrops, each in a different 

depth zone, so similarities within outcrops could not be examined. The absence of 

Nezumia bairdii, G. cynoglossus, and Sebastes spp., the presence of Neocyttus helgae and 

Hoplostethus at/anticus (orange roughy), the great abundance of myctophids, and the low 

relative abundance of Synaphobranchus kaupii all contributed to dissimilarities between 

outcrops and other habitats. 

Fish assemblages associated with sea pen fields differed from all habitats 

considered highly complex, sparse small corals, and cup coral fields, but we observed no 

differences between sea pen fields and sponge fields, fine sediments with epifauna, and 

Heteropolypus cf. insolitus fields. Synaphobranchus kaupii, Myctophidae, Nezumia 

bairdii, and Glyptocephalus cynoglossus contributed most to the similarity within sea pen 

fields. Dissimilarities with other habitats were largely driven by numerous 

Coryphaenoides rupestris, G. cynoglossus, and myctophids and lower relative abundance 

of Sebastes spp. in sea pen fields (see Appendix A). 

Fish assemblages differed between dense small corals and sponge fields, as well 

as cup coral fields and H insolitus fields. A variety of species drove dissimilarities in 

fish assemblages associated with dense small coral habitats and sponge fields, including 

the absence of Glyptocephalus cynoglossus, Rajellafyllae, and Macrouridae sp. 3 and the 

lower relative abundance of Centroscyllium fabric ii, Macrourus berg/ax, and Zoarcidae 

sp. 1 in sponge fields. The higher relative abundance of myctophids and Nezumia bairdii, 

the absence of Sebastes spp., and the lower relative abundance of Coryphaenoides 
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rupestris in H insolitus fields were largely responsible for the dissimilarities between 

dense small corals and H insolitus fields. The lower relative abundance of C. rupestris 

and the high relative abundance of G. cynoglossus in cup corals fields contributed most to 

the dissimilarity observed with dense small corals. 

Fish assemblages also differed between fine sediments with sparse epifauna and 

H insolitus fields, sparse large corals, and cup coral fields. The higher relative 

abundances of Sebastes spp., Glyptocephalus cynoglossus, Antimora rostrata, 

Coryphaenoides rupestris, and myctophids in fine sediment habitat contributed most to 

the observed differences. Fish assemblages in cup coral fields also differed from those in 

sparse small coral habitats, largely because of low relative abundances of C. rupestris and 

myctophids and higher abundance of G. cynoglossus in cup coral fields. We detected no 

differences in fish assemblages between other habitat types. 

The species-related MDS plot and dendrogram illustrate the co-occurrence of 

relatively deep species (Aldrovandia sp. 1, Coryphaenoides carapinus, and 

Halosauropsis macrochir) (Figure 4-6). Sebastes spp. and Phycis chesteri also grouped 

together in the MDS plot and dendrogram. Outliers in the plot and dendrogram included 

Neocyttus helgae, Hoplostethus at/anticus, Lepidion eques (North Atlantic codling), 

Aldrovandia sp. 2, and Anarhichas minor. 
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4.4 Discussion 

4.4.1 Assemblages patterns 

We found distinct fish assemblages based on pre-defined depth categories, 

corresponding to the upper slope and shelf edge (300-800 m), the middle slope (800-1300 

m), and the lower slope (1300-2300 m). The idea that fish assemblages occur across 

depth gradients is not new; similar findings have been found throughout the world 's 

oceans. For example, D'Onghia et al. (2004) found distinct assemblages in the 

Mediterranean Sea at ~ 600 m, on the middle slope between 800 and 1300 m, and on the 

lower slope below 1300 m. Francis et al. (2002) identified four fish assemblages 

associated with the inner continental shelf, mid-outer continental shelf and shelf edge, 

upper continental slope, and mid continental slope off New Zealand. Koslow et al. 

(1994) found assemblages off southeast Australia based on similar depth categories. 

Lorance et al. (2002) found three major carnivorous fish fauna assemblages in the 

Northeast Atlantic associated with the shelf, upper slope, and mid-slope. Theories to 

explain such depth-related ichthyofaunal assemblages include differences related to food 

availability, changes in topography with depth, and transitions between water masses 

(Haedrich et al. 1980; Hecker 1990; Koslow et al. 1994; D'Onghia et al. 2004). 

We also found distinct assemblages based on habitat types. Outcrops and boulder 

fields both differed consistently when compared to most other habitat categories. 

Outcrops supported relatively rare species in this region, such as Hoplostethus at/anticus, 

Neocyttus helgae, and Lepidion eques. The distinct assemblages associated with boulder 

fields contradict observations from the Gulf of Maine that showed dense corals were 
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equivalent to other fairly complex habitats, such as boulders with sparse coral cover 

(Auster 2005). The contractary findings could be related to distinct differences in overall 

habitat types (and species that define these), the dissimilarities between fish species 

present in each study area, and the timing of the surveys (August versus July). 

Contrary to Ross and Quattrini (2007), we did not find clear relationships between 

fish assemblages and corals. Most other studies around the world focussed on coldwater 

coral reef structures, where reefs are thought to provide shelter, and possibly increased 

food availability for fishes (Costello et al. 2005; Sulak et al. 2007; Roberts et al. 2009). It 

is possible that the importance of non-reef-forming corals in influencing fish assemblages 

and distributions is less than that of reef-forming corals given the former 's reduced 

complexity (in terms of size and profile) and therefore available shelter (Buhl-Mortensen 

et al. 201 0). Alternatively, patterns associated with non-reef habitats may also be more 

difficult to decipher due to the less distinct transition between habitat types. 

Few studies have documented the importance of sea pen fields for fishes, though 

surveys observed hundreds of Sebastes alutus (Pacific Ocean perch) in Pribilof Canyon 

(Bering Sea) inside dense aggregations of sea pens (Halipteris willemoesi) (Brodeur 

2001) and fish larvae were documented in sea pen polyps off Newfoundland and 

Labrador (Baillon et al. 20 12). Tissot et al. (2006) hypothesized that sea pen fields may 

create important refugia for small invertebrates and influence prey availability by adding 

structure in an otherwise low-structured environment. In our study, fish assemblages 

associated with sea pen fields differed from those categorized as highly complex habitats 

and cup coral fields but not from those in sponge fields or sediment with sparse epifauna. 
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Perhaps other stationary megafauna (in addition to sea pens) play equivalent roles for 

some fish species. 

Even though we found distinct assemblages based on both habitat and depth, we 

cannot infer a direct mechanism for the patterns or functional roles of the habitats. 

Indeed, it is possible that current regimes, temperature, topography, and other 

environmental factors separately influence the relative proportion of fishes and the 

invertebrates used in our habitat classification scheme. Because so little is known about 

the influence of small-scale variables on corals and sponges, we cannot eliminate the 

possibility that similar explanatory variables independently drive fish and invertebrate 

distribution patterns. 

Assemblages consist of loosely co-occurring groups of species in a given location 

at a given time, whereas communities are fauna that interact, co-exist, and/or co-adapt 

over time (Haedrich & Merrett 1990). Haedrich and Merrett (1990) argued that deep, 

demersal fish communities do not exist, but instead random assemblages are present. 

Other authors counter that argument with data illustrating strong, consistent patterns 

and/or community organization within the deep sea (e.g. Koslow et al. 1994; Ross & 

Quattrini 2007). Although we have no strong evidence for co-evolved or even interacting 

fish assemblages, our results illustrate non-random distributions at relatively small spatial 

and short temporal scales. Nevertheless, causal factors of non-random distributions 

likely vary geographically, and thus care should be taken when extrapolating results to 

large spatial scales. 
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4.4.2 Conservation implications 

Despite dramatic declines in deep-sea fishes (Devine et al. 2006), the designation 

of several deep-sea fishes as at-risk in Canadian waters (COSEWIC 2007; COSEWIC 

2008), the potential lengthy recovery times of these species (Baker et al. 2009), and the 

call for marine protected areas, very little has been done to protect deep-sea habitats 

within Canadian waters off Newfoundland and Labrador. The Northwest Atlantic 

Fisheries Organization (NAFO) temporarily closed an area off the slope of the Grand 

Banks (that extends into Canada's exclusive economic zone) to bottom fishing to help 

protect corals (NAFO 2011 ). This protected area runs roughly along the 800 - 1000 m 

contour (Rogers & Gianni 201 0). Such a narrow and deep depth range has limited 

capacity to serve its intended conservation objectives (Rogers & Gianni 201 0; Baker et 

al. 20 12), and our results further show that it is unlikely to protect a wide range of deep­

sea fishes. The non-random distribution of fishes and the distinct assemblages associated 

with depth and habitat types, illustrate that deep-sea conservation initiatives must protect 

a wide range of depths and habitat types to benefit a wide diversity of deep-sea fishes. 

Outside Canada's economic exclusive zone (but offNewfoundland), NAFO is 

addressing deep-sea conservation. Eleven areas designated as vulnerable marine 

ecosystems were temporarily closed to bottom fishing in 201 0 (NAFO 201 0) and closures 

on various seamounts off Newfoundland, including the Orphan Knoll were announced in 

2012 (NAFO 20 12). Although the specific amounts of small-scale habitat types 

protected by these closures remain unknown, the closures cover a depth range shallower 
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~----------------------------------------------- -

than 500 m to greater than 5400 m. Our analysis illustrates that a range of fish 

assemblages are potentially protected by these closures. 

4.4.3 Species occurrences and behaviour 

The species and depth ranges reported during our surveys are similar to those 

reported from trawl surveys in Carson Canyon off the Grand Banks during June 1980, 

May 1981, and September 1982 (Snelgrove & Haedrich 1985). But unlike Snelgrove and 

Haedrich (1985), we recorded Synaphobranchus kaupii and Sebastes spp. most often. In 

comparison, Coryphaenoides rupestris and Macrourus berg/ax were most often captured 

in their study. The low abundance of S. kaupii in their survey may be attributed to S. 

kaupii' s net avoidance behaviours (Cohen & Pawson 1977), as well as tears and problems 

keeping the trawl nets open (Snelgrove & Haedrich 1985). Although not the most 

numerous species, we also recorded many C. rupestris. Several surveys have shown that 

C. rupestris, a species at risk in Canada (Environment Canada 20 11), is generally more 

abundant in canyons than the open slope (Snelgrove & Haedrich 1985). Our findings 

reiterate the possible importance of canyon ecosystems for C. rupestris. 

Fish are known to react to ROV s, potentially biasing in situ observations (Koslow 

eta!. 1995; Trenkel eta!. 2004; Ryer eta!. 2009). Fishes may respond to numerous 

variables including light conditions, vehicle motion and speed, noise, water displacement, 

substrate, temperature, current speed, and water column position (Lorance & Trenkel 

2006; Stoner eta!. 2008). In our study, few species were exclusively attracted to or 

displayed avoidance of the ROV. Instead we observed considerable within-species 
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variation, as reported elsewhere (Lorance & Trenkel 2006; Stoner et al. 2008). 

Unfortunately, behavioural variation in some species may be a function of habitat 

characteristics (Uiblein et al. 2002; Uiblein et al. 2003; Lorance & Trenkel 2006; Stoner 

et al. 2008). In the Northeast Atlantic, Synaphobranchus kaupii exhibited a significantly 

higher disturbance response in the deepest waters surveyed (Uiblein et al. 2003). 

Therefore, our apparent assemblage patterns could be influenced by species avoiding the 

ROV (i.e. remaining out of our field of view) in some habitats and not by a genuine 

absence or lower abundances in those habitats. For example, Lorance and Trenkel (2006) 

found Coryphaenoides rupestris reacted to an ROV more often in warmer temperatures, 

when the ROV was close to the seafloor, and in strong currents (indirectly). If some 

species of corals within our study area are more abundant in warmer waters and strong 

currents, it may be difficult to demonstrate associations between C. rupestris and these 

corals using an ROV. 

4.4.4 Notable species observations 

Although we sampled only three outcrops in our survey, all of the four Neocyttus 

helgae we observed were associated with these vertical structures. Moore et al. (2008) 

hypothesized that seamounts act as stepping stones for N. helgae dispersal based on 

sightings of this species on seamounts off the eastern United States. The authors 

explained an observation of N. helgae in Lydonia Canyon as a localized colonization 

event followed by local extinction caused by various factors that prevent population 

persistance in canyons. Our results do not support their hypothesis. The presence of four 
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N. helgae in two canyons associated with relatively rare habitat features indicates the 

species, though relatively rare, is more widespread in the Western North Atlantic than 

originally thought. The apparent reported absence of N. helgae in this region is likely an 

artefact of the most common sampling gears used to date (i.e. trawls). Survey trawlers 

usually avoid vertical, wall structures in order to avoid gear damage. 

We recorded Anarhichas minor five times during our surveys, a species that is 

currently listed as Threatened under Canada' s Species at Risk Act (Environment Canada 

2011 ). Four individuals (including 1 pair) occurred with Keratoisis grayi thickets and the 

other occurred within dense small coral habitat. Laboratory experiments performed on 

juvenile A. minor showed that when shelter was made available, individuals spent most 

of their time around or within the shelter (Lachance et al. 201 0). In the deep sea, where 

shelter is relatively scarce, corals likely play a significant role in providing this shelter. 

These observations highlight the need for more directed research into the small-scale 

habitat requirements and/or preferences of deep-sea species at risk. If invertebrates such 

as corals provide structural habitat for this species, habitat protection must play a key role 

in recovery initiatives. 

4.4.5 Caveats andfuture initiatives 

We examined all fish (regardless of size) within just a single year and month, but 

acknowledge that corals may play different roles for fishes depending on their life stage, 

age, and season. For example, fish egg cases have been found attached to gorgonians and 

sponges off Southern California (Tissot et al. 2006), British Columbia (EN Edinger, 
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unpublished data), and Newfoundland (Fisheries and Oceans Canada, unpublished data). 

Some deep-sea fish also make diurnal, annual, seasonal and/or otogenetic distributional 

changes. For example, in some locations groups of C. rupestris are thought to make daily 

vertical migrations off bottom to take advantage of food descending in the water column 

and may move to shallower waters near the end of summer and deeper waters in the 

winter (Atkinson 1995). A more comprehensive understanding of deep-sea habitat use, 

including coral areas, requires more in-depth research using techniques appropriate for 

studying eggs, larvae, juvenile, and adult fish on a seasonal basis and over longer 

temporal scales. 

4.5 Conclusions 

Our study found distinct fish assemblages based on both depth and habitat type. 

Regardless of whether corals play an obligate, functional role for fish, they remain 

important features within the deep sea and appear to influence fish distributions and 

abundances. Any conservation program aimed at protecting deep-sea ecosystems must 

protect a wide-range of habitats and depths to ensure that a range of species and 

assemblages benefit. In situ fish research is still in its infancy and continued directed 

research promises great dividends in our understanding of functional relationships in the 

deep sea. 
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Table 4-1. ROY dives from a cruise off the southwest Grand Banks of Newfoundland in 

2007, and their associated depths, time on bottom, and distance and estimated area 

covered. 

Dive 
R1065 
R1066 
R1067 
R1068 
R1070 
R1071 
R1072 
Total 

Date 
16 - 17 July 
17 - 18July 
18 - 19July 
19 July 
21 July 
22-23 July 
23 - 24 July 

Depth range 
606- 1015 m 
493- 1020 m 
395 - 996 m 
1990-2245 m 
351 - 940 m 
353 - 1174 m 
1116- 1900 m 
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Time on 
bottom (h) 

12.6 
16.0 
10.2 
4.5 
15.5 
12.8 
18.8 
90.4 

Distance 
(km) 
10.7 
15.8 
13.4 
5.9 

23.6 
16.9 
19.0 
105.3 

Estimated 
area (m2

) 

35,159 
46,876 
43,720 
17,654 
87,31 6 
63,353 
52,883 

346,961 



Table 4-2. The distance (m) and time (min) (in brackets) of each habitat and depth category surveyed with an ROY off the 

southwest Grand Banks ofNewfoundland in 2007. Video classified as 'dead-time' was removed. 

Habitat Habitat Types 300 - 800 m 
Complexity 
High Outcrop 150.2 (12.9) 

Dense large corals 3204.5 (145.8) 
Boulders 1471.4 (84.5) 
Sparse large corals 2889.3 (138.2) 
Dense small corals 12890.3 (612.8) 

Medium Sparse small corals 10642.9 (372.5) 
Sea pen field 2560.1 (77.5) 
Sponge field 665.5 (16.9) 

Low Cup coral field 820.4 (23.4) 
H. insolitus field 144.1 (4.3) 
Sediment with epifauna 8406.6 (273 .5) 
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800- 1300 m 

122.2 (8 .8) 
6.4 (0.5) 

197.6 (19.9) 
63 .3 (3 .6) 

385.4 (16.5) 
6511 .8 (304.3) 

212.8 (11.3) 
157.5 (4.5) 

19868.1 (822.2) 

1300-2300 m 

224.5 (21.8) 
71.5 (1.9) 

16.9 (0.5) 

58.8 (2.4) 

15490.6 (727.0) 



Table 4-3. The number of individuals for each fish taxon observed during an in situ 

survey off the southwest Grand Banks ofNewfoundland, Canada in 2007. 

Number 
Taxa observed 

Myxinidae Myxine glutinosa 2 
Chimaeridae Hydrolagus affinis 3 
Rhinochimaeridae Harriotta raleighana 19 

Harriotta haeckeli 1 
Scyliorhinidae Apristurus profundorum 2 
Etmopteridae Centroscyllium fabricii 223 
Rajidae Raj ella fyllae 13 

Rajella bathyphila 1 
Raj idae (sp. 1) 2 
Rajidae (sp. 2) 1 
Rajidae (sp. 3) 1 
Rajidae (sp. 4) 2 
Rajidae (sp. 5) 1 
Rajidae (sp. 6) 2 
Rajidae (unknown) 5 

Synaphobranchidae Synaphobranchus kaupii 6586 
Simenchelys parasitica 6 

Serrivomeridae Serrivomer beanii 1 
Notacanthidae Notacanthus chemnitzii 11 
Halosauridae Halosauropsis macrochir 59 

Aldrovandia sp. 1 386 
Aldrovandia sp. 2 70 

Argentinidae Argentina silus 10 
Alepocephal idae Alepocephalus spp. 93 
Melanostomiidae Melanostomiidae (unknown) 7 
Stomiidae Chauliodus sloani 1 
Ipnopidae Bathypterois dubius 25 
Bathysauridae Bathysaurusferox 17 
Myctophidae Myctophidae (unknown) 1663 
Lophiidae Lophius americanus 2 
Ogcocephal idae Dibranchus at/anticus 1 
Macrouridae Coelorinchus caelorhincus 4 

Coryphaenoides rupestris 795 
Coryphaenoides carapinus 349 
Coryphaenoides armatus 1 
Macrourus berg/ax 56 

Malacocephalus occidentalis 8 
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Number 
Taxa observed 

Nezumia bairdii 876 
Nezumia aequalis 1 
Trachyrincus murrayi 1 
Macrouridae (sp. 1) 28 
Macrouridae (sp. 2) 17 
Macrouridae (sp. 3) 77 
Macrouridae (sp. 4) 13 
Macrouridae (unknown) 871 

Moridae Antimora rostrata 271 
Lepidion eques 9 
Moridae (sp. 1) 29 
Moridae (unknown) 72 

Lotidae Brosme brosme 1 
Gadidae Gadus morhua 2 
Phycidae Phycis chesteri 141 
Trachichthyidae Hoplostethus at/anticus 4 
Oreosomatidae Neocyttus helgae 4 
Scorpaenidae Sebastes spp. 4767 
Cottidae Myoxocephalus sp. 1 1 
Liparidae Liparidae (sp. 1) 3 
Zoarcidae Lycenchelys paxillus 3 

Lycodesterraenovae 7 
Lycodes esmarkii 2 
Lycodes sp. 1 
Melanostigma atlanticum 38 
Zoarcidae (sp. 1) 11 
Zoarcidae (sp. 2) 1 
Zoarcidae (unknown) 12 

Anarhichadidae Anarhichas minor 5 
Anarhichas denticulatus 2 
Anarhichas lupus 1 

Pleuronectidae Glyptocephalus cynoglossus 277 
Reinhardtius hippoglossoides 51 
Hippoglossus hippoglossus 9 

Pleuronectiforme 
228 

(unknown) 
Unknown Fish unknown (sp. 1) 2 

Fish unknown (sp. 2) 10 
Fish unknown (sp. 3) 1 
Fish unknown (sp. 4) 3 
Fish unknown (sp. 5) 5 
Fish unknown (sp. 6) 29 
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Taxa 
Fish unknown (sp. 7) 
Fish unknown (sp. 8) 
Fish (unknown) 
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Number 
observed 

15 
8 

93 



Table 4-4. The relative abundances (%) of unique fish taxa within each habitat type, with portions of video characterized as 

'dead time' removed. 'X' identifies when a species was found only during dead time. Data collected during an in situ survey 

off the southwest Grand Banks ofNewfoundland, Canada in 2007. 

Sediment 
Dense Sparse Dense Sparse Sea Cup H. with 
large Boulder large small small pen Sponge coral insolitus sparse 

Taxa OutcroE corals field corals corals corals field field field field eEifauna 
Myxinidae Myxine glutinosa 0.13 0.02 

Chimaeridae Hydrolagus ajfinis 0.05 

Rhinochimaeridae Harriotta raleighana 0.09 0.26 0.20 

Harriotta haeckeli 0.02 

Scyliorhinidae Apristurus profundorum 0.03 

Etmopteridae Centroscyllium fabricii 7.14 5.42 2.38 1.04 1.47 l.l5 0.79 

Rajidae Raj ella fyllae 0.33 0.13 0.09 0.02 

Rajella bathyphila 0.02 

Rajidae (sp. 1) 0.05 0.09 

Rajidae (sp. 2) 0.02 

Rajidae (sp. 3) 0.02 

Rajidae (sp. 4) 0.09 

Rajidae (sp. 5) 0.05 

Rajidae (sp. 6) 0.21 0.02 

Synaphobranchidae Synaphobranchus kaupii 11 .54 23.33 20.73 27.08 37.28 49.29 31.43 51.92 54.51 55.56 35.71 

Simenchelys parasitica 0.08 

Serrivomeridae Serrivomer beanii 0.02 
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Sediment 
Dense Sparse Dense Sparse Sea Cup H with 
large Boulder large small small pen Sponge coral insolitus sparse 

Taxa OutcroE corals field corals corals corals field fie ld field field eEifauna 
Notacanthidae Notacanthus chemnitzii 0.48 0.21 0.09 0.09 0.09 0.05 
Halosauridae Halosauropsis macrochir 0.09 0.85 

Aldrovandia sp. I 11.54 0.05 0.13 0.35 5.45 

Aldrovandia sp. 2 6.06 

Argentinidae Argentina silus 0.71 0.13 0.21 0.77 0.03 
Alepocephalidae Alepocephalus spp. 0.24 0.00 0.21 0.09 X 1.56 0.99 
Melanostomiidae Melanostomiidae X 0.05 

Stomiidae Chauliodus sloani 0.02 
Ipnopidae Bathypterois dubius 0.09 0.36 
Bathysauridae Bathysaurus f erox 0.27 

Myctophidae Myctophidae 26.92 10.95 X 13.96 6.71 5.97 23.03 1.15 0.80 20.00 13.34 
Lophiidae Lophius americanus 0.09 0.02 

Ogcocephalidae Dibranchus at/anticus 0.02 

Macrouridae Coelorinchus 
0.05 0.03 

caelorhincus 

Coryphaenoides rupestris 7.69 9.05 I 0.42 4.71 3.72 13 .42 3.08 0.20 6.67 4.77 

Coryphaenoides 
15.38 0.71 0.21 X 5.1 2 

carapinus 

Coryphaenoides armatus 0.02 

Macrourus berg/ax 1.19 0.13 0.63 0.70 0.22 0.35 0.38 0.28 

Malacocephalus 
0.04 0.35 0.05 

occidentalis 

Nezumia bairdii 6.19 1.75 7.50 9.1 3 5.84 7.19 5.00 1.40 6.67 4.79 
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Sediment 
Dense Sparse Dense Sparse Sea Cup H with 
large Boulder large small small pen Sponge coral insolitus sparse 

Taxa OutcroE corals fie ld corals corals corals field fie ld fie ld field eEifauna 

Nezumia aequalis 0.02 

Trachyrincus murrayi 0.02 

Macrouridae (sp. I) 0.44 

Macrouridae (sp. 2) 0.27 

Macrouridae (sp. 3) 0.13 0.21 0.42 1.08 0.09 2.22 0.49 

Macrouridae (sp. 4) 0.13 0.21 0.1 4 0.30 0.02 
Moridae Antimora rostra/a 3.85 0.71 0.63 0.14 0.87 2.86 0.38 2.22 2.76 

Lepidion eques X 0.71 0.05 0.09 0.09 0.20 

Moridae (sp. 1) 0.24 0.42 0.09 0.04 1.39 2.22 0.08 

Lotidae Brosme brosme 0.05 

Gadidae Gadus morhua 0.27 0.00 

Phycidae Phycis chesteri 0.48 3.77 1.04 0.75 0.48 0.00 0.38 1.20 0.54 

Trachichthyidae Hoplostethus at/anticus 3.85 0.48 0.38 

Oreosomatidae Neocyttus helgae 15.38 

Sebastidae Sebastes spp. 34.29 72.54 29.17 33.74 29.21 1.2 1 34.23 4 1.08 0.00 18.56 

Cottidae Myoxocephalus sp. 1 0.24 

Liparidae Liparidae (sp. I) 0.05 0.04 X 
Zoarcidae Lycenchelys paxillus 0.09 0.02 

Lycodesterraenovae 0.17 0.05 

Lycodes esmarkii 0.03 

Lycodes sp. 0.02 

Melanostigma atlanticum 0.14 0.09 1.65 0.22 
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Sediment 
Dense Sparse Dense Sparse Sea Cup H with 
large Boulder large small small pen Sponge coral insolitus sparse 

Taxa OutcroE corals field corals corals corals field field fie ld field eEifauna 

Zoarcidae (sp. I) 0.05 0.09 0.26 0.38 0.06 

Zoarcidae (sp. 2) 0.05 

Anarhichadidae Anarhichas minor 0.71 0.21 0.05 

Anarhichas denticulatus 0.21 0.02 

Anarhichas lupus 0.13 

Pleuronectidae Glyptocephalus 
0.71 2 .05 0.69 5.11 0.40 2 .22 2.05 

cynoglossus 
Reinhardtius 

0.24 0.63 0.05 0.17 0.43 0.20 0.49 
hippoglossoides 
Hippoglossus 

0.21 0.17 0.03 
hippoglossus 

Unknown Fish unknown (sp. I) 0.24 0.04 

Fish unknown (sp. 2) 0.17 0.09 

Fish unknown (sp. 3) 3.85 

Fish unknown (sp. 4) 2 .22 0.03 

Fish unknown (sp. 5) 0.48 0.13 0.05 

Fish unknown (sp. 6) 0.48 0.83 0.28 0.13 0.35 0.38 0. 13 

Fish unknown (sp. 7) 0.2 1 0.09 0.04 0.05 

Fish unknown (sp. 8) 0.17 0.38 0.06 

Total number of species observed 10 23 13 23 33 29 31 14 9 9 59 
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Table 4-5. Behaviour and reactions of individual fish taxa observed during an in situ survey off the southwest Grand Banks of 

Newfoundland, Canada in 2007. 

Reaction to ROY Observed behaviours 
Actively 

Attraction Avoidance No reaction swimming Feeding Hiding Hovering Resting 
Taxa (%) (%) (%) (%) (%) (%) (%) (%) 

Myxinidae Myxine glutinosa - 50 50 50 - 50 - -
C himaeridae Hydrolagus a.ffinis 100 - - 100 - - - -
Rhinochimaeridae Harriotta raleighana 84.2 - 15.8 94.7 - - 5.3 -

Harriotta haeckeli 100 - - 100 - - - -
Scyliorhinidae Apristurus profundorum 100 - - 100 - - - -
Etmopteridae Centroscyllium jabricii 91.9 0.9 7.2 99.6 - 0.4 - -
Rajidae Raj ella .fyllae 23. 1 38.5 38.5 15.4 - - - 84.6 

Rajella bathyphila - 100 - - - - - 100 
Rajidae (sp. 1) - - 100 50 - 50 - -
Rajidae (sp. 2) - 100 - - - - - 100 
Rajidae (sp. 3) - 100 - 0 - - - 100 
Rajidae (sp. 4) - 100 - 50 - - - 50 
Rajidae (sp. 5) 100 - - 100 - - - 0 
Raj idae (sp. 6) - - 100 50 - - - 50 

Synaphobranch idae Synaphobranchus kaupii 25.3 1.9 72.8 95 .5 0.02 0.05 4.2 0.2 
Simenchelys parasitica 33 .3 16.7 50 100 - - - -

Serrivomeridae Serrivomer beanii 0 0 100 100 - - - -
Notacanthidae Notacanthus chemnitzii 27.3 0 72.7 72 .7 - - 27.3 -
Halosauridae Halosauropsis macrochir 11.9 3.4 84.7 13.6 - - 76.3 10.2 

Aldrovandia sp. I 7.3 7.0 85.7 14.0 - - 80.8 5.2 
Aldrovandia sp. 2 5.7 2.9 91.4 24.3 - - 7 1.4 4 .3 

Argentinidae Argentina situs 40 30 30 90 - - 10 -
A lepocephal idae Alepocephalus spp. 67.7 5.4 26.9 76.3 - - 23 .7 -
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Reaction to ROY Observed behaviours 
Actively 

Attraction Avoidance No reaction sw1mmmg Feeding Hiding Hovering Resting 
Taxa (%) (%) (%) (%) (%) (%) (%) (%) 

Melanostom i idae Melanostomiidae 57.1 - 42.9 57.1 - - 42.9 -
Stomiidae Chauliodus sloani - - 100 - - - 100 -
lpnopidae Bathypterois dubius 12 16 72 4 - - 4 92 
Bathysauridae Bathysaurus ferox - - 100 5.9 - - - 94.1 
Myctophidae Myctophidae 86.0 3.4 10.6 9 1.8 - 0.1 7.9 0.2 
Lophiidae Lophius americanus - - 100 - - - - 100 
Ogcocephal idae Dibranchus at/anticus - - 100 - - - - 100 
Macrouridae Coelorinchus - 100 25 - - 50 25 -

caelorhincus 
Coryphaenoides rupestris 11.3 2.3 86.4 24.4 - 0.6 72 .8 2.1 
Coryphaenoides 

13.5 
4.9 81.6 20.6 - - 7 1.1 8.3 

carapinus 
Coryphaenoides armatus - - 100 - - - 100 -
Macrourus berg/ax 7.1 - 92.9 12.5 - 1.8 53 .6 32.1 
Malacocephalus - 100 12.5 - - 87.5 --
occidentalis 
Nezumia bairdii 6.4 1.4 92.2 15.0 - 0.1 84. 1 0.8 
Nezumia aequalis - - 100 - - - 100 -

Trachyrincus murrayi - - 100 - - - 100 -

Macrouridae (sp. 1) - 7.1 92.9 3.6 - - 92.9 3.6 
Macrouridae (sp. 2) 5.9 5.9 88.2 35.3 - - 41.2 23.5 
Macrouridae (sp. 3) 2.6 - 97.4 3.9 - - 93.5 2 .6 
Macrouridae (sp. 4) - - 100 30.8 - - 61.5 7.7 

Moridae Antimora rostrata 31.4 2.2 66.4 73.4 - - 25.5 1. 1 
Lepidion eques 55.6 - 44.4 77.8 - - 11.1 I I. I 
Moridae (sp. I) 55 .2 3.4 41.4 82.8 - - 17.2 -

Lotidae Brosme brosme 100 - - 100 - - - -

Gadidae Gadus morhua 100 - - 100 - - - -
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Reaction to ROY Observed behaviours 
Actively 

Attraction Avoidance No reaction swimming Feeding Hiding Hovering Resting 
Taxa (%) (%) (%) (%) (%) (%) (%) (%) 

Phycidae Phycis chesteri 29.1 3.5 67.4 46.1 - 5.0 17.0 3 1.9 
Trachichthyidae Hoplostethus at/anticus 25 25 50 25 - 25 50 -
Oreosomatidae Neocyttus helgae 25 - 75 25 - - 75 -
Cottidae Myoxocephalus sp. I - - 100 100 - - - -
Liparidae Liparidae (sp. 1) 33.3 33.3 33.3 100 - - - -
Zoarcidae Lycenchelys paxillus - - 100 - - - - 100 

Lycodesterraenovae 14.3 - 85 .7 - - - - 100 
Lycodes esmarkii - - 100 - - - - 100 
Lycodes sp. - 100 - - - - - 100 
Melanostigma atlanticum 21.1 2.6 76.3 63 .2 - - 36.8 -
Zoarcidae (sp. I) - - 100 27.3 - - 36.4 36.4 
Zoarcidae (sp. 2) - - 100 - - - - 100 

Anarhichadidae Anarhichas minor - 40 60 - - 40 - 60 
Anarhichas denticulatus - - 100 - - - - 100 
Anarhichas lupus - - 100 - - - - 100 

Pleuronectidae Glyptocephalus 
1.8 3.6 94.6 1.4 2.5 96.0 

cynoglossus 
- -

Reinhardtius 
13.7 27.5 58.8 35.3 2.0 62.7 

hippoglossoides 
- -

Hippoglossus - 100 33.3 - - - 66.7 -
hippoglossus 

Unknown Fish unknown (sp. I) - - 100 - - 50 - 50 
Fish unknown (sp. 2) - - 100 - - - 10 90 
Fish unknown (sp. 3) - - 100 - - - 100 -
Fish unknown (sp. 4) 33.3 - 66.7 100 - - - -
Fish unknown (sp. 5) 20 - 80 20 - - - 80 
Fish unknown (sp. 6) 89.7 3.4 6.9 89.7 - - 10.3 -
Fish unknown (sp. 7) 100 - - 100 - - - -
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Reaction to ROY Observed behaviours 
Actively 

Attraction Avoidance No reaction sw1mmmg Feeding Hiding Hovering Resting 
Taxa (%) (%) (%) (%) (%) (%) (%) (%) 
Fish unknown (sp. 8) 50 12.5 37.5 62.5 - - 37.5 -
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Table 4-6. Results (R-statistic) of two-way Analysis of Similarities (ANOSIM) of fish assemblages observed during an in situ 

survey off the southwest Grand Banks ofNewfoundland, Canada in 2007 (top right half of table). The global R-statistic 

equalled 0.391 (p = 0.001) and* denotes significant R statistics (p :S 0.05). The lower left half of the table shows average 

dissimilarity results from SIMPER. Analyses were based on standardized, fourth-root transformed data. 

Dense Sparse Dense Sparse Sediment 
large Boulder large small smal l Sea pen Sponge Cup coral H insolitus with sparse 

Habitat Tl'Qes OutcroQ corals field corals corals corals field field field field eQifauna 
Outcrop 1 1 1 0.592 0.453 0. 713 1 1 0 1* 
Dense large corals 58.98 0.510* -0.193 0.090 0.019 0.576 -0.107 0.071 0.393 0.313 
Boulder field 100 49.98 0.531 0.925* 0.900* 0.929 0. 857 -0.143 0. 821 0. 763 * 
Sparse large corals 70.04 45 .15 48.87 0.146 0.110 0.589* -0.036 0.111 0.397 0.479* 
Dense small corals 75 .63 44.57 56.07 49.01 -0.068 0.551 * 0.509 0.608* 0.520 0.202* 
Sparse small corals 66.57 43.66 54.37 47.88 46.43 0.482* 0.218 0.610* 0.31 7 0.158 
Sea pen field 62.65 55 .33 63.66 55.78 69.40 54.11 -0. 250 0. 825 0.331 0.149 
Sponge field 73.00 42.17 55.74 44.45 42.77 38.53 50.43 0 -0.250 0. 091 
Cup coral fie ld 81 .21 47 .71 28.79 44.65 55.66 49.94 54.42 42.72 0 0.684* 
H insolitus fie ld 61.64 56.47 67.80 58.1 3 62.23 50.91 47.85 51 .81 57.52 0. 779* 
Sediment with sparse 

65 .62 47 .67 55.34 50.29 53 .66 47.46 38.71 41.70 
57.52 

53.06 
e ifauna 
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Figure 4-1. Photos depicting examples of habitats encountered (and classified) during an 

in situ survey off the southwest Grand Banks ofNewfoundland in 2007: (a) outcrop, (b) 

dense large coral cover with Sebastes sp. , (c) boulder field with numerous Sebastes spp., 

(d) sparse large coral cover, (e) dense small coral cover, (f) sparse small coral cover, (g) 

sea pen field, (h) sponge field, (i) cup coral fields, U) Heteropolypus cf. insolitus field, 

and (k) fine sediments with sparse epifauna. 
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Aldrovandia (sp. 1) 
Antimora rostrata 

Halosauropsis macrochir 
Apristurus profundorum 

Coryphaenoides carapinus 
Haniotta haeck eli 
Hydro/agus affinis 

Alepocephalus spp. 
Haniotta raleighana 

Bathysaurus ferox 
Rajidae (sp 2) 

Macrouridae (unknoW1) 
Coryphaenoides atmalus 

Fish (unknoW1) 
Rajidae (sp. 3) 

Macrouridae (sp. 1) 
Fish unknoiM1 (sp. 8) 
Fish unknoiM1 (sp. 2) 
Zoarcidae (unkno1M1) 

Myctophidae (unkno1M1) 
Reinhardtius hippoglossoides 

Synaphobranchus kaupii 
Macrouridae (sp. 2) 

Simenchelys parasitica 
No/acanthus chemnitzii 

Nezumia bairdii 
Macrourus berg/ax 

Coryphaenoides rupestris 
Neocyttus helgae 

Centroscytlium fabricii 
Fish unknoiM1 (sp. 3) 

Pleuronectiforme (unknoW1) 
Coelorinchus caelorhincus 

Malacocephalus occidentalis 
Glyptocephalus cynoglossus 

Bathypterois dubius 
Senivomer beanii 

Dibranchus at/anticus 
Rajel/a bathyphila 

Moridae (unk no1M1) 

250 

. ....... • -------- .__. ..... -·· .. .......... ._ ...... -·· • •• . -·· • -· . • 
. . .. . 

• .... ------------·· 
. ........ ._ .. . ..... . 

_... ...... ._. ......... 

... . 
• 

........ 
• 

.. 
• ••• 

---·- • •• 
•• • • • 

• ........... 
• 
• 
• •• 

• • 
• 

• • -. . -... 
·~ ·-------------~-------

• ... -
• • • • ........ _. ..... . -· -------------------------.. -- -· . -·· ... 

•• • • ...... ----------------. ···--.. --- •• .. -.~ .. ._. .. ... .. . .. ....................... .. 
• 

• -------- --... .. ..._._.. ····-·-----­• • • 
• • • • .. ----------· • • • 

• ....._.., .. ._. ... 
500 750 1000 

• _..... ....... 
........... 
.......... 

• 
•• ........ .. ._ ... 

• 
• 
• 

1250 

• 

Depth (m) 

4-50 

• 

•• 
• 

• 

1500 

• 
• • 

• 

1750 

• 
• -· 

--
-• 
• 
• 
• 
• 

• 
• 

--­.­.. .. ..... 
• -­• . .. 

• • 
• 

• •• 
• --·. • 

• 
• 

• • 

2000 

• 

2250 



250 

.. ···~ ..... ·­-• 
• 

• 

• 

• 
• 

• • 
• • • . . -.. .. .. -· ·- ... . .... 

• 
• 

• 

. ---·- . 
...._,~-·-.... 

• 
• 

• 

··-
•• 
• 
• 
• 

• . -
• 

• 
• . .. . .. . . 

• 
• 
• 
• 

• • 
• ............... . 

• • • • 
• • 

•••• 
• • 
• • .. 

_. .. .._. ... .. • 

·- • 

• • •• 
• 

• 
• 
• 
• 

500 

• 
• 

• 
• 

••• 
•• 

• 

-• 

750 1000 

4-51 

1250 1500 1750 2000 2250 

Depth (m) 



Figure 4-2. Depth distribution offish species observed during 2007 surveys conducted with a remotely operated vehicle (ROY) 

off the southwest Grand Banks ofNewfoundland. 
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Neocyttus he/gae 4 

Fish unkno'Ml (sp. 5) 5 

Anarhichas minor 5 

Hoplostethus at/anticus 3 1 

Lycenchelys paxillus 2 1 

Lepidion eques 5 1 3 

Rajella fyllae 7 2 4 

Centroscyllium fabricii til 60 47 

Argentina situs 5 3 2 

Notacanthus chemnitzii 5 3 3 

Macrourus berg/ax 24 20 12 

Fish unkno'Ml (sp. 6) 12 9 8 

Phycis chesteri 57 67 17 = 

Macrouridae (sp. 4) 5 1 7 

Sebastes spp. 1399 2'62 913 

Liparidae sp. 1 1 1 

Nezumia bairdii 276 356 244 

Coelorinchus cae/orhincus 1 3 

Coryphaenoides rupestris 1)8 341 256 

Hippog/ossus hippoglossus 2 5 2 

Fish unkno'Ml (sp 7) 3 n 2 

Synaphobranchus kaupii 1303 3492 1791 

G/yptocephalus cynog/ossus 48 '63 76 

MJridae (sp. 1) 5 7 17 

Myctophidae (unknov.rl) 279 961 423 

Macrouridae (sp. 3) 12 36 29 

Reinhardtius 6 35 n 
Harriotta raleighana ~2 14 3 

Zoarcidae (sp. 1) ~1 4 6 

Melanostigma atlanticum 1=3 14 21 

Alepocepha/us spp. ~4 69 20 

Antimora rostrata n 202 59 

Coryphaenoides carapinus 8 340 1 

Aldrovandia (sp. 1) 4 375 7 

Aldrovandia (sp 2) 70 

Malacocephalus occidentalis 3 5 

Fish unkno'Ml (sp. 8) 5 3 

Lycodes terraenovae 5 2 

Fish unkno'Ml (sp. 2) 8 2 

Melanostomiidae (unknov.rl) 6 1 

Bathypterois dub ius 24 1 

Halosauropsis macrochir 57 2 

Hydrolagus affinis 3 

Fish unknov.rl (sp. 4) o high complexity 3 

Simenchelys parasitica 6 

Macrouridae (sp. 2) · 0 low complexity 
17 _-

Bathysaurus ferox o medium complexity 17 

Macrouridae (sp. 1) 28 

0% 20% 40% 60% 80% 100% 

Figure 4-3. The distribution of unique fish taxa found 2: 3 times during an in situ survey 

off the southwest Grand Banks of Newfoundland in 2007, in relation to habitat 

complexity (high, medium, and low). The number of individuals observed in each 

category is presented for each fish taxon. 
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Figure 4-4. MDS plots of Bray-Curtis similarity matrix based on standardized samples 

and fourth-root transformed data of fish surveyed in situ off the southwest Grand Banks 

ofNewfoundland in 2007. Plots are based on depth (m) (top) and habitat type (bottom) 

classifications. Solid lines on MDS plot correspond to clusters of 50 % similarity in 

dendrogram. 
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Figure 4-5. Dendrogram of samples created using group-average link clustering from Bray-Curtis similarities on standardized 

samples (fourth-root transformed) offish surveyed in situ off the southwest Grand Banks ofNewfoundland in 2007. Both 

depth (m) and habitat type classifications are presented. 

4-56 



0 

20 

40 

60 

80 

1M 

Aldrovamjia sp 2 
~-: 

20 Stress: 0.06 

Halosaurop~.i~'ftTi!K;.~ochir 

Aldrovandia isp. 
1 

• tporyphaenoides carapinus 

:._. 
Afepocepf)ij}us, spp ... .. 

Antimo~-?J rostra;~ .... 
\._ • el~einhardfiUs hippoglossoides 

Glyptocephalus cynoglossu~··· ·· · 'M~ctop_hidae . . 

-

c{ryphaen~des ru~stris 
Nezum\ bair~i Centr<;tyllwm fabricii 

Synaph~'branchus kaupii / 
·-.. ~ .· 

Lepidio~~~ues 

I 

I 

I 
I 

1 

Hoplosteth:~~- at/anticus 

I 

Neocyttus,..l;elgae 
:,.: 

Figure 4-6. MDS plot (top) and dendrogram (bottom) of Bray-Curtis similarity matrix 

based on standardized samples and fish species that contribute at least 10 % to a sample 

(data collected using an ROV off the southwest Grand Banks of Newfoundland in 2007). 

Dotted lines on MDS plot correspond to clusters of 50 % similarity in dendrogram. 

4-57 



5 Grenadier abundance examined at varying spatial scales 

in deep waters off Newfoundland, Canada, with special 

focus on the influence of corals 

Abstract 

There is a growing body of research examining the effects of corals on fish communities, 

species abundances, and biodiversity. Yet, few studies have quantitatively examined 

what factors are influencing the distribution of individual fish species. In general, we 

know what influences the distribution of grenadiers on large spatial scales, but numerous 

studies have shown the distributions of organisms are often determined by various factors 

that change in relative importance when viewed at differing scales. Our study used video 

collected from three deep canyons off Newfoundland, Canada (Northwest Atlantic) to 

examine how the factors apparently influencing the distribution of four grenadiers 

(Macrouridae: Coryphaenoides rupestris, Coryphaenoides carapinus, Nezumia bairdii, 

and Macrourus berg/ax) change when assessed at varying spatial scales. We paid special 

attention to the influence of deep-water corals found in the study area (large 

gorgonians/antipatharians, small gorgonians, sea pens, soft corals, and cup corals). The 

factors that influenced grenadier presence and/or abundance (and the magnitude of this 

effect) varied as different sampling resolutions were examined. We found C. rupestris 

abundance was positively related to cup coral abundance in transects longer than 10 m, 

likely as a result of similar habitat preferences between both taxa. When significant 

relationships between depth and C. rupestris presence and/or abundance were found, they 
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were always negative. Depth was a significant predictor of C. carapinus abundance in 

transects longer than 10 m. Very few predictors of M berg/ax abundance or presence 

could be found. Depth and the number of small gorgonians were consistent predictors of 

N bairdii abundance. 

5.1 Introduction 

Off Atlantic Canada, some grenadiers have exhibited such dramatic population 

declines that two species have been assessed as species-at-risk by the Committee on the 

Status of Endangered Wildlife in Canada (COSEWIC). Macrourus berg/ax (Roughhead 

grenadier) declined 93 % between 1978 and 2003 (Devine et al. 2006) and was identified 

as 'Special Concern' in 2007 (Environment Canada 2011), while Coryphaenoides 

rupestris (Roundnose grenadier) declined 99.6% during the same time period (Devine et 

al. 2006) and was assessed as ' Endangered' in 2008 (Environment Canada 2011 ). 

Consistent with many deep-sea fishes, these species are thought to be slow growing, long 

lived, and have relatively low fecundity, meaning that population recovery will likely be 

very slow, if possible at all (Baker et al. 2009). Their estimated recovery times could be 

even greater if their life strategies depend on other organisms vulnerable to fishing 

impacts such as deep-water corals. Nevertheless, assessments carried out by the 

Northwest Atlantic Fisheries Organization (NAFO) using a shifted baseline (Pauly 1995) 

and non-zero data indicate that biomass of M berg/ax has exhibited an overall increasing 

trend since 1995 (NAFO 201 0). This increasing trend has been attributed to, among 

other factors, decreased fishing mortality (Gonzalez-Costas & Murua 2008). 
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At large spatial scales, researchers generally understand the factors influencing 

grenadier distributional patterns where depth zonation plays a major role (e.g. Powell et 

al. 2003; Bergstad et al. 2008). For example, C. rupestris occurs in water depths of 180-

2600 m, but abundance peaks at depths 400-1200 m (Cohen et al. 1990), and M berg/ax 

is found in greatest concentrations between 300 and 500 m and water temperatures 

ranging from 1 to 4 oc (Cohen et al. 1990). In contrast, at smaller spatial scales we 

understand very little about the factors influencing the distribution of most species in the 

deep sea. Coryphaenoides rupestris is thought to prefer areas of weak or absent current 

and form dense concentrations in troughs, gorges, and terraces (Lorance et al. 2008) and 

sedimentary drifts (Duran Munoz et al. 2012). During in situ surveys in the Northeast 

Atlantic, C. rupestris was found associated with transitional coral zones, coral debris and 

seabed habitats, but not reef or wreck habitats (Costello et al. 2005). Ross and Quattrini 

(2007) found Nezumia bairdii in prime reef and transition reef habitats, but not off-reef 

habitats off southeastern United States. 

Numerous studies have shown that the factors influencing distributions and 

abundances of organisms can change with changing scale (e.g. He et al. 1994; Syms 

1995; Hewitt et al. 1998; Eagle et al. 2001; La Mesa et al. 2011 ). For example, Flach 

(1996) showed that the factors influencing the amphipod Corophium distributions varied 

among temperature, sediment composition, biotic interactions, and family-level 

interactions when examined along global (thousands of km), regional (tens of km), local 

(km), and core (em) scales, respectively. Hewitt et al. (1998) found more factors to be 

responsible for patterns in macrofauna communities as sampling resolution increased 
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from video transects to core samples. Despite numerous findings such as these, few 

studies examine patterns of fish abundances at multiple spatial scales or sampling 

resolutions (Syms 1995; Chittaro 2004). Predictor variables detected at specific scales 

can help provide insight into the underlying processes generating these patterns (Syms 

1995; La Mesa et al. 2011 ). 

Our research used video collected with an ROY in three deep canyons off 

Newfoundland, Canada to identify factors influencing the abundance of four grenadier 

species: Coryphaenoides rupestris, Coryphaenoides carapinus, Macrourus berglax, and 

Nezumia bairdii. We examined how these factors changed at varying spatial scales (i.e. 

sample resolutions) with particular attention to deep-water corals found in the study area. 

5.2 Methods 

5.2.1 Survey design 

We used the remotely operated vehicle ROPOS (Remotely Operated Platform for 

Ocean Science) (CSSF 201 0) to examine grenadier abundance and distribution in three 

submarine canyons on the slopes of the Grand Banks south ofNewfoundland (Halibut 

Channel, Haddock Channel and Desbarres Canyon) in depths from 351 to 2245 m (Table 

5-1 , Figure 2-1). ROPOS performed video surveys from CCGS Hudson in July 2007 (see 

Baker et al. 2012a,b for details). We planned 1-km transects along 200m isobaths 

between 2200 and 600 m and along 100 m isobaths in waters equal to and shallower than 

500 m. We standardized transects by keeping ROPOS as close to the bottom as possible, 

maintaining a constant slow speed (approx. 0.2 - 0.5 m s-1
) while tilting the camera down 
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slightly on a wide-angle view in order to image the seafloor and water column directly 

above (Baker et al. 2012a,b). Between these pre-selected transects, we explored the area 

with ROPOS, captured still images and video of features of interest, and collected 

voucher specimens of invertebrates. 

5.2.2 Video processing 

We used ClassAct Mapper (Benjamin 2007) to analyze the video footage from the 

color video camera and collect geo-referenced data pertaining to fish, corals, sediment, 

and ROPOS operation mode. We identified each grenadier observed to the lowest 

possible taxonomic level. Video clips and frame grabs of species and/or individuals that 

could not be identified with certainty were sent to taxonomic experts for confirmation. 

To reduce double-counting of individual fish, we did not count fish that approached the 

field of view from behind ROPOS. ROPOS was equipped with lasers placed 10 em 

apart, so whenever the orientation of a fish made it possible, we measured the total length 

(TL) of individuals to the nearest 5 em using ROPOS ' s lasers as reference. All corals 

observed during video processing were also identified to the lowest possible taxonomic 

level. 

We characterized sediment once per second using 2 descriptors: primary (most 

abundant) and secondary (next most abundant) substrate. Each of primary and secondary 

substrate were categorized based on grain size, as (1) outcrop (vertically exposed bedrock 

and consolidated Quaternary sediment), (2) boulder(> 25 em), (3) cobble (5- 25 em), (4) 

gravel (0.2 - 5 em), or (5) mud-sand (fine-grain) sediments (Thrush et al. 2001). 
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We recorded ROPOS operation mode at 1-s intervals (Baker et al. 20 12a,b ). 

'Transect-mode' described any portion of the video when ROPOS followed prescribed 

transect methodology (described above), regardless of whether part of a pre-selected 

transect or not. For this study, we categorized all other ROPOS behaviour as "Other". 

5.2.3 Data analysis 

Corals were grouped into categories based on those used by Edinger et al. 

(2007a,b). Keratoisis grayi, Lepidisis sp., Paragorgia arborea, Acanthogorgia armata, 

Paramuricea spp, unidentified Isididae, and unidentified large gorgonians, as well as four 

antipatharians (Bathypathes patula, Schizopathidae n. genet n. sp., and an unidentified 

antipatharian) were categorized as large corals. Chrysogorgia agassizii, Radicipes 

gracilis, and Acanella arbuscula were categorized as small gorgonians. All cup corals 

(Flabellum spp., Desmophyllum dianthus, Javania cailleti, Vaughanella sp., and 

unknown cup corals) were grouped into a single category: cup corals. Anthomastus spp., 

Heteropolypus cf. insolitus, Duvajlorida, and unidentified Neptheidae were categorized 

as soft corals. Anthoptilum grandiflorum, Funiculina quadrangularis, Halipteris 

jinmarchica, Kophobelemnon stelliferum, Pennatula spp., Protoptilum carpenteri, 

Distichoptilum gracile, Umbellula spp., and unidentified Pennatulacea were grouped as 

sea pens. 

Since numerous categories of sediment could be classified using our prescribed 

methodologies, we created a ranking/scoring system. We calculated sediment 

heterogeneity as 2*primary sediment + secondary sediment, where the individual value 
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for each primary and secondary category were mud-sand = 1, gravel = 2, cobble = 3, 

boulders = 4, and outcrop= 5. 

We summarized the abundance and lengths of Coryphaenoides rupestris, 

Coryphaenoides carapinus, Macrourus berg/ax, and Nezumia bairdii using all video 

data, regardless ofROV mode (i.e. both transects and other). Using only video collected 

during transects, we modelled the presence and abundance of C. rupestris, C. carapinus, 

M berg/ax, and N bairdii individually using various segment lengths. We split transects 

into arbitrarily-chosen lengths: 10 m, 20 m, 50 m, 100 m, 200 m, and 300 m, and counted 

the number of each species in each segment. We included only transect segments that 

were within the observed depth range of each species. 

Since a large number of segments contained no grenadiers, the abundance data for 

each species were zero-inflated, which did not meet the assumptions for generalized 

linear models (GLM) of counts. Therefore, we used hurdle (zero-altered) models (Zuur 

et al. 2009) to model the presence/absence and abundance of each species separately, 

using the Pscl (version 1.04.1) package (Jackman et al. 2011) in R version 2.14.1 (R Dev 

Core Team 2012). A hurdle model is a convenient way to apply two GLMs to different 

facets of zero-inflated data. Firstly, a binomial GLM (the "presence/absence" sub-model) 

models the factors affecting the presence/absence of a given species. Secondly, a zero­

truncated abundance GLM (the "abundance sub-model"), is used to model the factors 

affecting counts greater than zero (Zuur et al. 2009). The hurdle model implemented in 

the Pscl package automatically applies both sub-models to the correct data subset and 
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produces the parameters estimates, their standard errors, and p-values for each of the 

abundance and presence/absence sub-models separately. 

We included one categorical predictor, Canyon (with levels "Haddock Channel", 

"Halibut Channel", and "Desbarres Canyon"), six ratio scale predictors: depth, number of 

large corals (LCorals ), number of small gorgonians (SGorg), number of soft corals 

(SoftCorals), number of sea pens (SeaPens), number of cup corals (CupCoral), and one 

interval scale predictor, overall sediment heterogeneity score (Sed) in each sub-model. 

Temperature was originally included in the analyses, but it exhibited strong colinearity 

with depth and was missing for several dives, so it was removed. Within each segment, 

we used the mean depth and maximum sediment heterogeneity score (Sed) as the values 

for that segment. 

The independent variables in each of the two sub-models need not be the same, 

and we performed separate model selection processes for each sub-model for each 

species. We began with the full set of predictors listed above for each of the sub-models 

and simplified each sub-model in tum through backward selection to remove non­

significant terms. At each step, the least significant term whose p-value was > 0.05, as 

judged by a likelihood ratio test between two nested models (one with and one without 

the term), was dropped until all remaining terms were significant (Zuur et al. 2009). 

For each species, the choice of whether to use a truncated Poisson versus a 

truncated negative binomial distribution in the abundance sub-model depended upon 

whether there was excess variation (i.e. overdispersion) in the counts that could not be 

adequately modeled by the Poisson distribution, thereby requiring the use of the negative 
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binomial distribution. We made this choice based on the outcome of a likelihood ratio 

test between abundance sub-models based on each of these distributions (Zuur et al. 

2009). 

5.3 Results 

5.3.1 Coryphaenoides rupestris 

A total of 795 C. rupestris were found in depths from 384 to 1623 m (Table 5-2). 

The average length of measured fish (n = 450) was 35 em, while the largest was 70 em 

(observed in Desbarres Canyon at 892 m). 

Using data summarized at the finest resolution (10-m segments) (Table 5-3), we 

found the probability of an individual being present was positively influenced by 

CupCoral (p = 0.004) and LCorals (p = 0.034), but negatively influenced by Sed (p = 

0.044) (Table 5-4). The probability of C. rupestris occurring in Desbarres Canyon was 

significantly less than in Halibut (p < 0.0001) and Haddock Channels (p = 0.001), but no 

significant difference between Halibut and Haddock Channels was observed (p = 0.1 02). 

The abundance of C. rupestris was also positively related to LCorals (p = 0.034), but 

negatively related to SGorg (p = 0.003) and depth (p = 0.042). The predicted abundance 

of C. rupestris in Desbarres Canyon was significantly less than in Halibut (p = 0.001) and 

Haddock Channels (p = 0.005), but again no significant difference between Halibut and 

Haddock Channels was observed. For all other segment lengths(~ 20 m) CupCoral had a 

significant positive relationship with the abundance of C. rupestris (p < 0.0001 ), but this 

relationship became less dramatic as the segments increased in length (Figure 5-1). 
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Depth exhibited a significant negative relationship with C. rupestris presence in 20-m (p 

= 0.015), 100-m (p = 0.004), and 200-m (p = 0.043) segments. 

5.3.2 Coryphaenoides carapinus 

A total of 349 C. carapinus were found in depths from 990 to 2227 m (Table 5-2). 

The average length of measured individuals (n = 262) was 18 em, but the maximum 

length observed was 40 em and was recorded three times; all were recorded in Haddock 

Channel and were at depths of 2210 m, 2214 m, and 2094 m. 

Canyon and depth predicted the probability of C. carapinus occurring, as well its 

abundance at multiple spatial scales (Table 5-4). In general, the probability of presence 

as well as the abundance of C. carapinus was greater in Haddock Channel than Desbarres 

Canyon, and C. carapinus abundance was positively related to depth. The relationship 

between depth and the probability of C. carapinus being present appeared to increase in 

strength as the segment lengths increased (Figure 5-1). In 50-m segments, C. carapinus 

occurrence was positively related to SGorg (p = 0.048), and in 10-m segments, 

occurrence was positively related to Sed (p = 0.015). 

5.3.3 Macrourus berg/ax 

Macrourus berglax was found in depths from 434 to 1638 m, and only 56 

individuals were observed in the video. The average length of measured individuals (n = 

32) was 4 1 em. The largest individual (70 em) was recorded in Desbarres Canyon at 899 
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m. Even at the largest segment size, the maximum number of M berg/ax recorded in a 

segment was 1. 

At the fine and coarse sampling resolutions, we found no predictors of M berg/ax 

presence (Table 5-4). In 50-m segments, the probability of this species occurring was 

positively related to SoftCorals (p = 0.015), and in 100-m segments, it was positively 

related to LCorals (p = 0.017). 

5.3.4 Nezumia bairdii 

Nezumia bairdii was the most numerous grenadier observed in our survey (Table 

5-2). It was found in depths from 362 to 1678 m and the average length of measured 

individuals (n = 475) was 25 em. The largest individual (60 em) was observed in 

Desbarres Canyon at I 024 m. 

The probability of N bairdii occurring was consistently related to depth, and 

canyon in all segment lengths up to 200m, when only depth remained as a negative 

predictor of their presence (p = 0.0002) (Table 5-4). The relationship with depth became 

more dramatic as segment length increased (Figure 5-l ). In every model where canyon 

was a significant predictor of the presence of N bairdii, the probability of occurrence was 

significantly less in Haddock Channel compared to Halibut Channel (10-m: p = 0.008, 

20-m: p = 0.009, 50-m: p = 0.002, 100-m: p = 0.008). In 10-m segments, N bairdii was 

also more likely to be present in Desbarres Canyon than Haddock Channel (p = 0.036). 

At small spatial scales (10-m and 20-m segments), N bairdii presence was positively 

related to SGorg (10-m: p < 0.0001, 20-m: p = 0.0002). At all scales the abundance of N 
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bairdii (2: 1) exhibited a positive relationship with SGorg. In segments 2: 50 m, depth 

also became a significant predictor of N bairdii abundance, exhibiting a negative 

relationship. As scale increased SGorg had a weaker influence on N bairdii presence 

and abundance (Figure 5-1, Figure 5-2). Figure 5-2 illustrates an example of how GLM 

model predictions of the relationship between SGorg and abundance of N bairdii change 

at different sample resolutions. 

5.4 Discussion 

5.4.1 Coryphaenoides rupestris 

The depth range of C. rupestris documented during our surveys was within that 

known for this species. Coryphaenoides rupestris can be found in waters between 180 

and 2200 m throughout much of the North Atlantic (Cohen et al. 1990), and is thought to 

be at greatest abundance on the upper slope, near 1000 m (Bergstad et al. 2008). They 

can be found in a range of water temperatures, from 1.1 to 8.5 oc (Shibanov & 

Vinnichenko 2008). 

The effect of depth on C. rupestris abundance has been noted by many 

researchers in the past (e.g. Jorgensen 1996; Bergstad et al. 2008; Lorance et al. 2008). 

Magnusson and Magnusson (1995) found average catches offlceland to be highest in 

depths greater than 800 m and on the Mid-Atlantic Ridge, Bergstad et al. (2008) observed 

largest catches near 1000 m. West of Greenland, C. rupestris abundance generally 

increased with depth to 1000 - 1200 m, but varied between years (Jorgensen 1996). 

Nevertheless, we found little evidence of depth influencing counts of C. rupestris, and 
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instead found that as depth increased, the probability of encountering C. rupestris 

decreased. Many environmental factors change with depth and could cause such a 

relationship (e.g. temperature, current regime, sediment, food availability). Atkinson 

(1995) hypothesized that C. rupestris is tolerant to a wide range of temperature and other 

factors likely control their distributions. 

Using trawl survey data collected off Newfoundland, Edinger et al. (2007b) found 

C. rupestris was more abundant in areas containing large-growing, long-lived skeletal 

corals (such as Primnoa resedaeformis, Keratoisis grayi, and antipatharians) at depths of 

400- 600 m. We also found a positive relationship between large corals and C. rupestris 

presence and abundance at the finest sample resolution examined. Currently no evidence 

exists suggesting this relationship is functional , but the idea should not be disregarded. 

Roundnose grenadier feed on a variety of fauna including copepods, am phi pods, shrimps 

and cumaceans (Cohen et al. 1990). Although the stomach contents of C. rupestris in 

some parts of its range suggest that they move off bottom to forage (McLellan 1977; 

Bergstad et al. 201 0), Podrazhanskaya (1971) found polychaetes, shrimp, sand, mud, and 

stones in the stomachs of C. rupestris and concluded that they feed heavily on bottom 

dwelling species in the Northwest Atlantic (Bergstad et al. 201 0). Research has shown 

that macrofauna may be more diverse and abundant in areas with corals (Henry & 

Roberts 2007), and it is possible that the increased food availability in areas with large 

corals may contribute to the higher abundance of C. rupestris there. 

Roundnose grenadier are thought to prefer areas of weak or absent current 

(Shibanov & Vinnichenko 2008) and large, dense aggregations of C. rupestris have been 
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documented in areas of particularly weak currents (Lorance et al. 2008). On the Bay of 

Biscay continental slope, C. rupestris was found in a variety of habitats, but was at 

highest densities in relatively slow currents, over hard bottoms (Uiblein et al. 2003). 

Zedel and Fowler (2009) found that Keratoisis grayi, the most abundant large coral in our 

survey (Baker et al. 20 12b ), reduced the bottom current velocity by 13 %, when 

compared to areas without these corals. This phenomenon, in combination with the 

potential for increased food availability, could help to explain the positive relationship 

between C. rupestris abundance and large corals found at fine sample resolutions in our 

study. 

The consistent, positive relationship between C. rupestris abundance and cup 

coral abundance over the range of segment lengths is likely a result of similar habitat 

preferences between the two taxa. Flabellum spp. were the most abundant cup corals 

found during our surveys (Baker et al. 2012b) and are known to prefer areas with fine 

sediments and slow currents (Mortensen et al. 2006; Buhl-Mortensen eta!. 2007). 

5.4.2 Coryphaenoides carapinus 

On a large spatial scale, C. carapinus is known to occur throughout the North 

Atlantic, the southeast Atlantic, and the Indian Ocean between 384 and 5610 m (Iwamoto 

& Anderson 1994). The depth range recorded during our survey was well within the 

known depth range of this species. We found that as depth increased, the probability of 

C. carapinus occurring and its abundance also increased. This is consistent with the 
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known ecology of this species; its maximum abundance is usually below 2000 m (near 

the depth limits of our survey) (Bergstad et al. 2008). 

We found little evidence of strong, consistent relationships for C. carapinus with 

any of the coral groups examined. 

5.4.3 Macrourus berg/ax 

We recorded Macrourus berg/ax well within its known depth range. They can be 

found throughout the Arctic waters of the North Atlantic at depths 100 to 1000 m and in 

bottom temperatures that range from below 0 oc up to 5 oc (Cohen et al. 1990; Dolgov et 

al. 2008). In the Barents Sea, they were only found in areas with high salinity (34.8 -

35.09) (Dolgov et al. 2008). 

We never found more than a single individual of M berg/ax in a sample (even in 

the longest segments) and therefore only presence/absence models could be created for 

this species. The relationship between M berg/ax presence and the abundance of soft 

corals and large corals were similar to those documented by Edinger et al. (2007b ). 

Using trawl survey data collected offNewfoundland, M berg/ax was found to be most 

abundant in sets that contained large gorgonians and/or antipatharians at shallow depths 

(200- 400 m), but in deeper waters (400 - 1000 m) M berg/ax was most abundant in sets 

containing soft corals (Edinger et al. 2007b ). 

Although depth influences the distribution of M berg/ax (Magnusson & 

Magnusson 1995; Jorgensen 1996), we found no significant relationships between depth 

and the presence of M berg/ax. Previous researchers have demonstrated that the 
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influence of depth on M berglax abundance is inconsistent through time and between 

study areas (Gorchinsky 2007; Lorance eta!. 2008). Similar to our results, Fossen eta!. 

(2003) were only able to detect significant depth-related differences of catch rates (using 

trawls) in one of their six study areas. 

5.4.4 Nezumia bairdii 

Nezumia bairdii can be found throughout the Northwest Atlantic in waters 16 to 

2295 m (Cohen eta!. 1990), and therefore our observations fell well within their known 

depth range. We found a fairly consistent, negative relationship between depth and N 

bairdii presence and abundance. This is consistent with the known depth distribution of 

this species; N bairdii is most commonly found between 90 and 700 m (Cohen eta!. 

1990). 

We found a consistent, positive relationship between small gorgonian abundance 

and N bairdii counts. Acanella arbuscula was the most common small gorgonian 

recorded in our survey (Baker et a!. 20 12b ). This species is known to occur in a variety 

of depth ranges, but colonies were more abundant in relatively shallow waters (Baker et 

a!. 20 12b ), and although A. arbuscula was thought to prefer soft bottom habitats, we 

found them associated with a variety of bottom types (Baker et a!. 20 12b ). It remains 

unclear what type of relationship (coincidental or functional) may exist between small 

gorgonians and N bairdii. Nezumia bairdii feeds on a variety of macrofauna including 

euphausiids, amphipods, polychaetes, and copepods (Cohen eta!. 1990), and it is 

unknown whether A. arbuscula affects the abundance of these taxa. 
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Nezumia bairdii was found on the flat, soft bottom of the Bay d 'Espoir Fiord off 

Newfoundland (Haedrich & Gagnon 1991 ), but Ross and Quattrini (2007) found N 

bairdii in prime and transition reef habitats, but not off reef habitats off southeastern 

United States. These somewhat contradictory findings with respect to habitat 

heterogeneity may hint at the truly generalist nature of N bairdii. 

5.4.5 Influence of scale 

The factors that predict the presence and/or abundance of organisms can change 

based on the sampling resolution used in the analyses. In general, it is thought that large­

scale processes can be masked by fine-scale heterogeneity at small spatial scales (Hewitt 

et al. 1998). We found that our predictors related to large-scale processes (depth and 

canyon) were significant at fine sampling resolutions, as well as at the coarser 

resolutions. These are similar to the findings of Hewitt et al. (1998), who reported that 

key predictors at larger scales were still important as resolution increased. However, in 

almost every case where we found depth to be a significant predictor, its relationship with 

presence or abundance was more pronounced at coarser resolutions. These findings 

suggest that studies which sample at fine resolutions can be used to detect important and 

fairly large-scale processes, but the relationship between the predictors, and possibly the 

ability to detect these relationships, may be weaker at finer resolutions. 

It is also expected that as we move to coarser sampling resolutions, we lose 

information about fine-scale heterogeneity (He et al. 1994; Hewitt et al. 1998). At our 

coarsest scales of resolution (albeit this is only 300 m), we still found variables that we 
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originally considered to represent fine-scale heterogeneity (because of their relatively 

patchy distributions) to be significant (e.g. cup corals, small gorgonians, large corals). 

Nevertheless, these variables may represent a combination of large and small scale 

habitat characteristics, such as current velocity, sediment types, etc. 

Our results add to the ever-growing list of studies showing the importance of 

considering scale in ecology. Although we often found similar predictors to be 

significant over a range of scales, this was not always the case and the nature of the 

relationships often changed with scale. As a result, we clearly highlight the need for fish­

habitat association studies to incorporate multiple resolutions to ensure that important 

variables are not overlooked due to inappropriate sampling resolutions. 

5.4.6 Canyons 

Submarine canyons are considered sites of high productivity and biomass, 

compared to other areas in the deep sea (De Leo et al. 201 0). In the northern Gulf of 

Mexico, the greatest fish abundance was found in Mississippi Trough and DeSoto 

Canyon (Powell et al. 2003) and in Kaikoura Canyon off New Zealand, particularly high 

abundances of macrourids were found (De Leo et al. 201 0). Canyons in the Northwest 

Atlantic were identified as potentially important for C. rupestris by Snelgrove and 

Haedrich ( 1985) when the species was found more often in Carson Canyon, compared to 

outside the canyon. They also found a similar result off New England, where canyon 

stations accounted for 95 % of the C. rupestris taken during 105 trawls made between 40 

and 5000 m (Haedrich et al. 1980; Snelgrove & Haedrich 1985). OffNorway, C. 
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rupestris was found in high densities in fjords and channels (Bergstad & Isaksen 1987). 

Coryphaenoides rupestris and N bairdii were among the most common species observed 

during our survey (Baker et al. 20 12a), but our results often identified canyon as a 

significant predictor of grenadier presence and/or abundance. Therefore, the importance 

of the canyons may depend on specific characteristics of the canyon in question. The 

significant differences found between the canyons examined in our study suggest that 

when determining the abundance patterns of species, discrete areas should be examined 

separately, and care should be taken when making sweeping statements about the 

importance of broad-scale oceanographic features. 

5.4. 7 Caveats 

In situ surveys offer a brief snapshot regarding the distribution of mobile species 

and are generally conducted during seasons conducive to at-sea work. As such, they do 

not adequately examine temporal changes in fish distributions, and associations between 

fishes and habitat that occur outside the survey period can go undocumented. Temporal 

changes can be annual, seasonal, diurnal, and/or ontogenetic. For example, in some areas 

groups of C. rupestris are thought to make daily vertical migrations off bottom to take 

advantage of food descending in the water column (Atkinson 1995). Nevertheless, other 

researchers have found no strong differences in catch rates between day and night 

(Bergstad 1990). Coryphaenoides rupestris may also move to shallower waters near the 

end of summer and deeper waters in winter (Atkinson 1995). Snelgrove and Headrich 

(1985) found C. rupestris exhibited a bigger-deeper relationship in Carson Canyon off 
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Newfoundland. Off of Greenland, the large female M berg/ax are thought to dominate 

the most favourable depths, while smaller fish are found in less favourable areas (Fossen 

et al. 2003). These observations highlight the need for more in situ surveys that occur 

over multiple years, seasons, and timeframes to examine the temporal variability and 

scale of relationships. 

5.5 Conclusions 

Despite the growing conservation concern regarding grenadiers in the Northwest 

Atlantic, few studies have used in situ data to examine the factors influencing their 

abundances. We found depth influenced C. rupestris presence, C. carapinus presence 

and abundance, and N. bairdii presence and abundance. Our results also identify several 

unexpected, significant relationships with deep-water corals found in the study area. 

These highlight the need for more in situ research to increase our understanding of 

relationships and to identify causal factors. We found that the identity of significant 

predictors and/or the strength of the relationship between abundance and predictors 

changed as sample resolution changed, and therefore, our results underscore the 

importance of considering scale when examining patterns of fish abundances. 
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Table 5-1. Dives from an ROV cruise offNewfoundland in 2007, and their associated depths, time on bottom, and distance 

covered. 

Distance in 
Time on Distance transect-mode 

Dive Canyon Date Depth range bottom (h) (km) (km) 
R1065 Halibut Channel 16- 17 July 606- 1015 m 12.6 10.7 6.0 
R1066 Haddock Channel 17- 18 July 493- 1020 m 16.0 15.8 10.2 
R1067 Halibut Channel 18 - 19July 395-996 m 10.2 13.4 7.1 
R1068 Haddock Channel 19 July 1990 - 2245 m 4.5 5.9 2.5 
R1070 Desbarres Canyon 21 July 351 - 940 m 15.5 23.6 15.7 
R1071 Desbarres Canyon 22-23 July 353- 1174 m 12.8 16.9 9.6 
R1072 Desbarres Canyon 23-24 July 1116- 1900 m 18.8 19.0 11.1 
Total 90.4 105.3 62.2 
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Table 5-2. The number, maximum and average ( ± standard deviation) of total length (em), and depth range of four species of 

grenadiers observed during an in situ ROV survey offNewfoundland, Canada in 2007. 

Maximum Average length ± 
Number Number length standard deviation Observed depth 

Species observed measured (em) (em) range (m) 
Coryphaenoides rupestris 795 450 70 35 ± 10.5 384 - 1623 
Coryphaenoides carapinus 349 262 40 18 ± 13 .5 990-2227 
Macrourus berg/ax 56 33 70 41 ± 7.5 434- 1638 
Nezumia bairdii 876 475 60 25 ± 7.6 362- 1678 
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Table 5-3. Number of samples (and number of individual fish) belonging to each species at each modelled segment size. Data 

were collected during an in situ ROV survey offNewfoundland, Canada in 2007. 

Species 10m 20m 50m 
Coryphaenoides rupestris 4344 (519) 1974 (467) 636 (394) 
Coryphaenoides carapinus 1090 (221) 522 (206) 163 (174) 
Macrourus berg/ax 3721 (33) 1709 (28) 658 (24) 
Nezumia bairdii 4457 (569) 2059 (530) 655 (41 7) 
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100m 
261 (332) 
71 (154) 
191 (17) 

267 (349) 

200m 
94 (237) 
31(113) 

61 (7) 
93 (245) 

300m 
41 (167) 
17 (63) 
30 (6) 

47 (174) 



Table 5-4. Significant predictors 1 (p < 0.05) of grenadier presence and abundance (n ~ 1) over a range of segment lengths. 

Italicized predictors represent positive relationships with the variable of interest (presence or count). 

10-m 20-m 50-m 100-m 200-m 300-m 
Species Presence Count Presence Count Presence Count Presence Count Presence Count Presence Count 
Coryphaenoides Canyon Depth Depth CupCoral Canyon CupCoral Depth CupCoral Depth CupCoral Depth 
rupestris Sed Canyon Canyon Canyon Sed CupCoral 

LCorals LCorals SGorg LCorals 
Cur:.Coral SGorg Sea Pen 

Coryphaenoides Canyon Canyon Depth Canyon Depth Depth Depth Depth Depth Depth 
carapinus Sed Canyon Canyon 

SCar 
Macrourus SoftCorals LCorals 
ber lax 
Nezumia bairdii Depth SGorg Depth SGorg Depth Depth Depth Depth Depth Depth Depth Depth 

Canyon Canyon Canyon SGorg Canyon Canyon SGorg Canyon 
SGorg SGorg SoftCoral SGorg SGorg 

SoftCorals 
SeaPen 
LCorals 

1 LCorals represents the number of Keratoisis grayi, Lepidisis sp., Paragorgia arborea, Acanthogorgia armata, Paramuricea spp, unidentified lsididae, 
unidentified large gorgonians, and antipatharians in each transect. The number of Chrysogorgia agassizii, Radicipes gracilis, and Acanella arbuscula 
observed defines SGorg. CupCoral is defined by the number of cupcorals in each transect. SoftCorals is the total number of Anthomastus spp., 
Heteropolypus cf. insolitus, Duva jlorida, and unidentified Neptheidae observed in each transect. SeaPen is the number of sea pens observed in each 
transect. Sed (sediment heterogeneity) was calculated as 2*primary sediment + secondary sediment, where the individual value for each primary and 
secondary category were mud-sand = I, gravel = 2, cobble = 3, boulders = 4, and outcrop = 5. Depth is average depth (m) for each transect. Canyon is a 
categorical variable comprising of Haddock Channel, Hal ibut Channel, and Desbarres Canyon. 
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Figure 5-l . The effect of scale on coefficient values from models predicting grenadier 

presence and abundance, from video data collected off the Grand Banks, Newfoundland 

in 20071
• 

1 LCorals represents the number of Keratoisis grayi, Lepidisis sp. , Paragorgia arborea, Acanthogorgia 
armata, Paramuricea spp, unidentified Isid idae, and unidentified large gorgonians, as we ll as 
antipatharians. The number of Chrysogorgia agassizii, Radicipes gracilis, and Acanella arbuscula 
observed defines SGorg. CupCoral is defined by the number of cupcorals in each transect. SoftCorals is 
the total number of Anthomastus spp., Heteropolypus cf. insolitus, Duvajlorida, and unidentified 
Neptheidae observed in each transect. Sea Pen is the number of sea pens observed in each transect. Sed 
(sediment heterogeneity) was calculated as 2*primary sediment + secondary sed iment, where the individua l 
value for each primary and secondary category were mud-sand = I, gravel = 2, cobble = 3, boulders = 4, 
and outcrop = 5. Depth is average depth (m) for each transect. 
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Figure 5-2. Counts of Nezumia bairdii predicted by the number of small gorgonians using 

Generalized Linear Models for each segment length. The models used a truncated 

Poisson error distribution with log link. For all models, the median depth (792 m) and 

number of sea pens (2), soft corals (0), and large corals (0) were held constant, while the 

number of small gorgonians varied. 
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6 Predicted recovery times of deep-sea fishes in Canada's 

Atlantic1 

Abstract 

Because of their slow growth rates, late maturity, and long potentiallifespans, deep-sea 

fishes are vulnerable to and theoretically slow to recover from overexploitation and 

bycatch. As industrial fishing moved into the deep sea, population declines were 

predicted and five species were shown to meet The World Conservation Union (IUCN) 

criteria for endangered species in Atlantic Canadian waters and two other deep-living 

species were assessed as threatened by the Committee on the Status of Endangered 

Wildlife in Canada. Definitive assignment to an IUCN category for most species is 

hampered by a lack of basic biological information, especially species specific generation 

times. Lack of biological information also limits efforts to determine possible recovery 

times, especially with respect to calculating intrinsic rates of population growth (r). For 

two Atlantic grenadiers (where r could be estimated using life-history parameters and 

standard life table techniques), the time to recovery with no fishing mortality could range 

from over a decade to over a century. This broad range results from the general 

I This chapter was published as part of a longer article that inc luded an additional ana lys is regarding 
population trends of deep-sea fi shes in Canada ' s Atlantic: Baker KD, Devine JA, Haedrich RL (2009) 
Deep-sea fi shes in Canada's Atlantic: population declines and predicted recovery times. Environmental 
Biology of Fishes 85: 79-88. 

As a result, Baker et a t. (2009) is cited within this chapter in reference to the analyses regarding population 
declines. 
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uncertainty of life-history characteristics of these deep-sea species. Given the 

documented declines, the lack of basic data on life-history parameters, and the 

conservative assumption that recovery rates are likely to be prolonged, we argue that it is 

imperative to conduct additional studies pertaining to life history characteristics of deep­

sea fishes and implement conservation measures in the deep sea immediately. 

6.1 Introduction 

Conservation in the deep sea is in its infancy relative to terrestrial and shallow­

water ecosystems. The expanding footprint of fisheries and associated improvements in 

fishing technology have increased concern over the vulnerability of deep-sea species to 

overexploitation and loss as bycatch (Koslow et al. 2000; Roberts 2002). In the North 

Atlantic, the mean fishing depth has increased steadily since 1990 at a rate of 32. 1 m per 

decade (Morato et al. 2006) and currently, 40 % of trawling grounds in the world lie 

deeper than the continental shelves (Roberts 2002). 

Despite limited knowledge regarding the biology of many deep-sea fishes, there 

are examples of species that are known to be of concern. The Atlantic wolffish 

(Anarhichas lupus), a slow-growing, late-maturing, territorial fish whose populations in 

the western North Atlantic had declined over 80 %, was declared a Canadian species-at­

risk in 1999 (O'Dea & Haedrich 2002). Two other wolffish (A. minor and A. 

denticulatus) and cusk (Brosme brosme) were subsequently assessed as Threatened and 

the grenadier Macrourus berg/ax was assessed as Special Concern (Environment Canada 

2007). Devine et al. (2006) showed that abundances of five species of deep-sea fishes 
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(Antimora rostrata, Bathyraja spinicauda, Coryphaenoides rupestris, Macrourus berg/ax 

and Notacanthus chemnitzi) from the same geographic area had declined to such an 

extent that they met The World Conservation Union (IUCN) criteria for endangered. 

Using IUCN criteria, a species is considered endangered if it has declined > 70% over 10 

years or 3 generations (whichever is longer) and the causes of the reduction have ceased, 

are understood, and are reversible (IUCN 2001 ). The species listed above could be 

assessed because there were adequate time-series survey data and the generation time of 

most were known or could be estimated. 

There is a need to focus on population rebuilding and future recovery (Safina et 

al. 2005). The same characteristics that make deep-sea species vulnerable to depletion 

should also make any recovery slow. Life-history traits typical of deep-sea fishes, such 

as large body size, slow growth, and late maturity are significantly correlated to slower 

maximum population growth rates (Denney et al. 2002). Recovery times have been 

estimated for sharks (Simpfendorfer 2000) and other fishes (Safina et al. 2005) using 

basic life-history characteristics and population information. 

The purposes of this paper are two-fold. Based on the analysis of deep-sea 

species declines presented in Baker et al. (2009), we estimate recovery times (where 

possible) for declining species using estimated potential rates of increase (as inferred 

from published data on their biology). Then, we investigate the sensitivity of recovery 

time to minimal fishing mortality. 
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6.2 Methods 

6.2.1 Intrinsic rate of population growth (r) 

The intrinsic rate of increase (r) quantifies how much a population can increase in 

a given time period. Information pertaining to life-history characteristics for all species 

that exhibited declines in Baker et al. (2009) was collected from various sources, 

including peer-reviewed articles (e.g. Gordon & Mauchline 1996; Nash & Geffen 2005) 

and discussions with researchers from various institutions (e.g. Woods Hole 

Oceanographic Institution, Fl0devigen Marine Research Station) to determine if r could 

be estimated. If this information was not available, life-history traits were estimated 

using life-history data for closely-related species wherever possible. All life-history 

characteristics were in reference to females. 

The estimate of r was calculated for species with adequate age-specific life 

history information using standard life table techniques (e.g. Simpfendorfer 2000; Krohne 

2001). Specifically, they were estimated using the Euler equation, where x is age in 

years, lx is survival to age x, and mx is the expected female offspring for one female at age 

x: 

re·rxlxmx = 1.0 

Survival from age 0 to 1 is unknown for most deep-sea species. However, 

Anderson (1984) found that less than 1 %of redfish larvae survived from April through 

July on Flemish Cap, Newfoundland. These early and rapid declines are common in fish 

populations (Cushing 197 4) and therefore 1 % survival from age 0 to 1 was used for the 

majority of trials to determiner. This approximation most likely underestimates 
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mortality in the first year. Mortality past age 1 was calculated using two common 

techniques: 

In (Z) = 1.44- 0.982* ln(w) (Hoenig 1983) 

and 

M = 1.6* K (Jensen 1996) 

where Z is total mortality (natural mortality + fishing mortality), w is maximum age 

(years), M is natural mortality, and K is the von Bertalanffy growth parameter. 

6. 2.1.1 Macrourus berg/ax 

Age specific length and maturity relationships were outlined by Murua (2003). 

These were considered the best available data for this species and were thus used for this 

analysis. Whenever possible, data and relationships specific to the bottom survey ( 1991-

2001) were used (rather than commercial data, which presumably target specific size 

classes) to minimize sampling bias. 

The coefficients of the von Bertalanffy growth curves (in particular K) varied 

among survey years. The two extreme values (0.062, 0.024) and the mean (0.038) of K 

were used to estimate mortality. 

Murua (2003) recorded the maximum age of M berg/ax to be near 28 years and 

age at first maturity as 11 years. The proportion of mature females at a given age was 

found by the following equation from Murua (2003): 

Mature proportion = e[-18 785+(1205x)J ( 1 +e(-1 8 785+(1205x)Jrl. 
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Total fecundity at a given age was also calculated using a relationship highlighted by 

Murua (2003): 

Total fecundity = 1401.5 e0·
132

x 

Although the sex ratio of M berg/ax is known to change with age (Murua 2003), 

it was assumed to be I: I at age 0. The reproductive periodicity (RP) of M berg/ax is 

unknown, but energy budgets show that some grenadiers may not reproduce on an annual 

basis and could even be semelparous (Drazen 2002; Drazen 2008). As a result, r was 

estimated forM berg/ax assuming that mature individuals spawned every year, 

individuals spawned every other year (RP = 2), and individuals only spawned once at 

their maximum reproductive potential ( I9 years of age). 

6. 2.1. 2 Coryphaenoides rupestris 

The maximum recorded age for C. rupestris is approximately 60 years and the age 

of first maturity, 50 % maturity, and I 00% maturity are thought to be near 6, 10, and 16 

years, respectively (Bergstad 1990). The relationship between age and L was found using 

von Bertalanffy growth-curve terms K= O.I 00, Loo = I8.I em, and x0 = -0.9, where Loo is 

asymptotic pre-anal length (em), and x0 is the theoretical age when length is zero 

(Bergstad I990). Growth coefficients equal to 0.1 00, 0.086, and O.II4 were used to 

estimate mortality (Bergstad I990). 

Fecundity at a given length was calculated using the following equation from 

Allain (2001): 

Log (fecundity) = 3.4*Log (L) - 0.09 
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The proportion of mature females at a given age was approximated using the relationship 

shown by Bergstad (1990). 

The sex ratio of C. rupestris was assumed to be 1: 1 at age 0. RP is also debated 

for C. rupestris so various scenarios were used, similar to those used forM berglax. The 

age of maximum reproductive potential for C. rupestris is 16 years. 

6.2.2 Recovery times 

Estimated population declines and their 95 % confidence limits from Devine et al. 

(2006) were used with the intrinsic rates of increase in a Schaefer model (Schaefer 1954) 

to estimate recovery time for each species (similar to Safina et al. 2005). The magnitude 

of the population decline identified by Devine et al. (2006) was considered to indicate a 

similar change in biomass (Moss 2002). The first trial assumed that all fishing mortality 

and disturbances were removed from the system. But a total absence of fishing mortality 

and disturbances are highly unlikely, so recovery time was also estimated assuming an 

arbitrary fishing loss of only 5 %total biomass annually. This is equivalent to annual 

harvest rates of Atlantic cod (Gadus morhua) off Newfoundland during the 16th and 18th 

centuries and was meant to represent fishing mortality related to bycatch or a low level of 

disturbance (Rose 2004). In comparison, annual harvest rates for Atlantic cod exceeded 

45% in the early 1990s during heavy exploitation (Rose 2004). 
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6.3 Results 

After an extensive investigation, it was determined that length/age data were 

available for only a very few of the fishes that had declined. In most cases, the species 

had never been aged and therefore age at maturity, maximum age, and fecundity as a 

function of age could not be determined or even estimated (Table 6-1 ). Even fewer 

species had associated age-related, life-history parameters needed to create life history 

tables, and thereby estimate r. Thus, M berglax and C. rupestris were the only species 

that could be studied in detail. 

Natural mortality estimates forM berglax varied greatly depending on K and 

ranged from 0.0432 to 0.0992 (Table 6-2). Z was estimated as 0.1600 using the model 

from Hoenig (1983). Values of M, /1, and RP were varied to determine a range of 

possible values for r, which ranged from 0.0820 to 0.4397. Recovery time forM berglax 

was estimated to be between 18 and 125 years (Table 6-3). When a catch of 5 % was 

included in the model to account for bycatch in deep-sea fisheries, the estimated time to 

recovery ranged from 19 to 248 years (Table 6-4). 

C. rupestris natural mortality estimates ranged from 0.1376 to 0.1824 (Table 6-2), 

but Z was estimated to be only 0.0757. The estimates of r for this species also varied 

greatly depending on the range of parameters used in the life table (Table 6-5). The 

recovery times when fishing loss was not included in the model ranged from 14 to 80 

years. When catch was set at 5 %, the estimated time to recovery ranged from 16 to 136 

years (Table 6-4). 
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6.4 Discussion 

Trawling is known to drastically change the benthic habitat, resulting in a more 

homogenous environment (Watling & Norse 1998; Koslow eta!. 2001). Although little 

is known about the association and importance of corals for deep-sea fishes in the 

Northwest Atlantic, deep-water corals are thought to play an important role in ecosystem 

structure (Husebo eta!. 2002). These corals are easily damaged by trawling and have 

very slow growth rates and thus recovery times. If their presence is important for the 

survival of the fishes that have exhibited declines, recovery times for fishes could be on 

the order of centuries, if they are even possible. 

There is insufficient data for the deep-sea species that declined in Canada's 

Atlantic Ocean to generate precise life tables and recovery-time estimates. This data gap 

highlights the drastic lag of science in relation to present-day disturbances and the need 

for more extensive research in the deep sea (Haedrich et a!. 2001 ). Deep-sea fishes 

(including those that are not economically important) should be aged and studied in detail 

to determine the possible indirect influences of human activities. 

The values of r and recovery time for C. rupestris and M berg/ax were wide­

ranging and can only be considered 'soft' estimates. Nonetheless, given that the deep-sea 

fishery had already begun off Canada by 1978 (Haedrich et a!. 2001 ), the target for 

recovery used in this analysis is most likely an underestimate. Moreover, the ' known' 

life-history parameters for these deep-sea fishes have likely changed as a result of recent 

disturbances and therefore do not represent those of a pristine population. 
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When minimal fishing mortality was included in the model, the estimated times to 

recovery increased. There are few areas on the slope where disturbance and fishing 

mortality are absent, even in the deep sea; thus the estimates that include fishing 

mortality are probably more realistic. Although C. rupestris and M berg/ax are no 

longer targeted fisheries in Atlantic Canada, other deep-sea fisheries still occur and 

bycatch remains a problem. 

Future management decisions should be based on strong science and the 

precautionary principle. The burden of proof should be reversed to prevent fisheries from 

being developed without first understanding the basic biology of the target species and 

those that will be caught as bycatch. In the meantime, large no-take marine protected 

areas should be created to not only protect the target species, but also habitat. These 

prudent measures would help ensure that ignorance is not used an excuse for causing 

long-lasting effects in the deep-sea ecosystem. The results clearly show that any 

conservation measure established for the deep-sea ecosystem could be slow to 

demonstrate significant results, so action should be taken quickly and lack of instant 

results should not be justification for discontinuing conservation initiatives. 

6.5 Conclusions 

Many of the basic life-history characteristics needed to manage fish populations 

are not yet known for deep-sea fishes, but based on what is known, reversal could take 

more than a century, if reversible at all. Research is urgently needed to ensure 

appropriate management strategies are developed for deep-sea fishes. 

6-10 



6.6 Literature cited 

Able K. W., Irion W. (1985) Distribution and reproductive seasonality of snail fishes and 

lumpfishes in the St. Lawrence River estuary and the Gulf of St. Lawrence. 

Canadian Journal of Zoology-Revue Canadienne De Zoologie 63(7): 1622-1628. 

Alekseyev F.Y., Alekseyeva Y.I., Zakharov A.N. (1992) Vitellogenesis, nature of 

spawning, fecundity, and gonad maturity stages of the roundnose grenadier, 

Coryphaenoides rupestris, in the North Atlantic. Journal of Ichthyology 32: 32-

45. 

Allain V. (2001) Reproductive strategies of three deep-water benthopelagic fishes from 

the northeast Atlantic Ocean. Fisheries Research 51(2-3): 165-176. 

Anderson J.T. (1984) Early life history of red fish (Sebastes spp.) on Flemish Cap. 

Canadian Journal of Fisheries and Aquatic Sciences 41 (7): 1106-1116. 

Andriashev A.P. (1986) Zoarcidae. In: P. Whitehead, M.L. Bauchot, J.C. Hureau, J. 

Nielsen & E. Tortonese (Eds). Fishes of the Northeastern Atlantic and the 

Mediterranean. UNESCO, Paris. 1130-1150 pp. 

Baker K.D., Devine J.A., Haedrich R.L. (2009) Deep-sea fishes in Canada's Atlantic: 

population declines and predicted recovery times. Environmental Biology of 

Fishes 85(1): 79-88. 

6-11 



Bergstad O.A. (1990) Distribution, population-structure, growth and reproduction of the 

roundnose grenadier Coryphaenoides rupestris (Pisces, Macrouridae) in the deep 

waters ofthe Skagerrak. Marine Biology 107(1 ): 25-39. 

Coggan R.A., Gordon J.D.M. , Merrett N.R. (1998) Abundance, distribution, reproduction 

and diet of notacanthid fishes from the north-east Atlantic. Journal of Fish 

Biology 52(5): 1038-1057. 

COSEWIC (2001) COSEWIC assessment and status report on the northern wolffish 

Anarhichas denticulatus in Canada. Committee on the Status of Endangered 

Wildlife in Canada, Ottawa. 

COSEWIC (2001) COSEWIC Status Report on the Spotted Wolffish (Anarhichas minor) 

in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa. 

COSEWIC (2003) COSEWIC assessment and status report on the cusk Brosme brosme 

in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa. 

Crabtree R.E., Sulak K.J., Musick J.A. (1985) Biology and distribution of species of 

Polyacanthonotus (Pisces: Notacanthiformes) in the western North Atlantic. 

Bulletin of Marine Science 36(2): 235-248. 

Cushing D.H. (1974) The possible density-dependence of larval mortality and adult 

mortality in fi shes. In: J. Blaxter (Ed). The Early Life History of Fish. Springer­

Verlag, Berlin. 103-111 pp. 

6-12 



Denney N.H., Jennings S., Reynolds J.D. (2002) Life-history correlates of maximum 

population growth rates in marine fishes. Proceedings of the Royal Society of 

London Series B-Biological Sciences 269(1506): 2229-2237. 

Devine J.A. , Baker K.D., Haedrich R.L. (2006) Fisheries: Deep-sea fishes qualify as 

endangered. Nature 439(7072): 29. 

Drazen J.C. (2002) Energy budgets and feeding rates of Coryphaenoides acrolepis and C. 

armatus. Marine Biology 140(4): 677-686. 

Drazen J.C. (2008) Energetics of grenadier fishes. In: A.M. Orloov & T. Iwamoto (Eds). 

Grenadiers of the World Oceans: Biology, Stock Assessment, and Fisheries 203-

223 pp. 

Environment Canada (2007) Species at Risk Public Registry. www.sararegistry.gc.ca, 

Accessed 13 May. 

Frisk M.G. , Miller T.J., Fogarty M.J. (2002) The population dynamics of little skate 

Leucoraja erinacea, winter skate Leucoraja ocellata, and bamdoor skate Dipturus 

laevis: predicting exploitation limits using matrix analyses. ICES Journal of 

Marine Science 59(3): 576-586. 

Gordon J .D.M. (2004) Biology of deep sea fishes. Deep-sea Fisheries Symposium. 

Woods Hole Oceanographic Institute, Woods Hole, MA. 

6-13 



Gordon J.D.M., Mauchline J. (1996) The distribution and diet of the dominant, slope­

dwelling eel, Synaphobranchus kaupi, of the Rockall Trough. Journal of the 

Marine Biological Association ofthe United Kingdom 76(2): 493-503. 

Gusev E.V., Shevelev M.S. (1997) New data on the individual fecundity ofthe wolffishes 

of the genus Anarhichas in the Barents Sea. Journal oflchthyology 37: 381-388. 

Haedrich R.L., Merrett N.R., O'Dea N.R. (2001) Can ecological knowledge catch up with 

deep-water fishing? A North Atlantic perspective. Fisheries Research 51 (2-3): 

113-122. 

Hoenig J.M. (1983) Empirical use of longevity data to estimate mortality rates. Fishery 

Bulletin 81(4): 898-903. 

Husebo A. , Nottestad L., Fossa J.H., Furevik D.M., Jorgensen S.B. (2002) Distribution 

and abundance of fish in deep-sea coral habitats. Hydrobiologia 4 71: 91 -99. 

IUCN (2001) IUCN Red List Categories and Criteria, Version 3. 1. IUCN, Cambridge. 

Jensen A.L. (1996) Beverton and Holt life history invariants result from optimal trade-off 

of reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences 

53: 820-822. 

Kelly C.J ., Connolly P.L. , Bracken J.J. (1997) Age estimation, growth, maturity and 

distribution of the roundnose grenadier from the Rockall trough. Journal of Fish 

Biology 50(1): 1-17. 

6-14 



Klein-MacPhee G. (2002) Silver hakes. Family Merluccidae. In: B.B. Collette & G. 

Klein-MacPhee (Eds). Bigelow and Schroeder's Fishes ofthe GulfofMaine. 

Smithsonian Institution Press, Washington. 

Koslow J.A. , Boehlert G.W., Gordon J.D.M., Haedrich R.L., Lorance P., Parin N. (2000) 

Continental slope and deep-sea fisheries: implications for a fragile ecosystem. 

ICES Journal of Marine Science 57(3): 548-557. 

Koslow J.A., Gowlett-Holmes K., Lowry J.K., O'Hara T. , Poore G.C.B. , Williams A. 

(2001) Seamount benthic macrofauna off southern Tasmania: Community 

structure and impacts oftrawling. Marine Ecology Progress Series 213: 111-125. 

Krohne D. (2001) Instructor's Edition: General Ecology. Brooks/Cole, California. 

Magnusson J.V. (2001) Distribution and some other biological parameters of two morid 

species Lepidion eques (Gunther, 1887) and Antimora rostrata (Gunther, 1878) in 

Icelandic waters. Fisheries Research 51(2-3): 267-281. 

Morato T., Watson R., Pitcher T.J., Pauly D. (2006) Fishing down the deep. Fish and 

Fisheries 7(1 ): 24-34. 

Moss A.L. (2002) Change in abundance and extent of occurrence of demersal marine 

fishes: quantitative assessments based on research survey data. Environmental 

Science. Memorial University ofNewfoundland, St. John's, NL. 

6-1 5 



Murua H. (2003) Population structure, growth and reproduction of roughhead grenadier 

on the Flemish Cap and Flemish Pass. Journal of Fish Biology 63(2): 356-373. 

Murua H. , Motos L. (2000) Reproductive biology of roughhead grenadier (Macrourus 

berg/ax Lacepede, 1801) (Pisces, Macrouridae), in Northwest Atlantic waters. 

Sarsia 85(5-6): 393-402. 

Nash R.D.M. (1986) Aspects ofthe general biology ofVahl eelpout, Lycodes vahlii 

gracilis M. Sars, 1867 (Pisces, Zoarcidae) in Oslofjorden, Norway. Sarsia 71 (3-

4): 289-296. 

Nash R.D.M., Geffen A.J. (2005) Aspects of the general biology of Sars' eelpout, 

Lycenchelys sarsi (Collett, 1871) (Pisces, Zoarcidae ), in Oslofjorden, Norway. 

Marine Biology Research 1(1): 33-38. 

O'Dea N.R. , Haedrich R.L. (2002) A review of the status ofthe Atlantic Wolffish, 

Anarhichas lupus, in Canada. Canadian Field-Naturalist 11 6(3): 423-432. 

Oldham W.S. (1972) Biology of Scotian Shelf cusk, Bros me bros me. International 

Convention for the Northwest Atlantic Fisheries Research Bulletin 9: 85-98. 

Roberts C.M. (2002) Deep impact: the rising toll of fishing in the deep sea. Trends in 

Ecology & Evolution 17(5): 242-245. 

6-16 



Rose G.A. (2004) Reconciling overfishing and climate change with stock dynamics of 

Atlantic cod (Gadus morhua) over 500 years. Canadian Journal of Fisheries and 

Aquatic Sciences 61(9): 1553-1557. 

Safina C., Rosenberg A.A. , Myers R.A., Quinn T.J., Collie J.S. (2005) US ocean fish 

recovery: Staying the course. Science 309(5735): 707-708. 

Schaefer M. (1954) Some aspects of the dynamics of populations important to the 

management of commercial marine fishes. Bulletin of the Inter-Tropical Tuna 

Commission 1: 27-56. 

Simpfendorfer C.A. (2000) Predicting population recovery rates for endangered western 

Atlantic sawfishes using demographic analysis. Environmental Biology of Fishes 

58(4): 371-377. 

Watling L., Norse E.A. ( 1998) Disturbance of the seabed by mobile fishing gear: A 

comparison to forest clearcutting. Conservation Biology 12(6): 1180-11 97. 

6-17 



Table 6-1. Life-history characteristics of species that have declined significantly. a is the 

estimated age (years) at 50% maturity and w is the estimated maximum age (years). 

a w 
S12ecies (years) (years) Fecundity References 
Careproctus 10-20 Able and Irion (1985) 
ranula 
Lycenchelys sp. 3-5 6+ 20-40 Nash and Geffen (2005) 
Lycodes esmarki 1200 Andriashev (1986) 
Lye odes 
reticulatus 
Lycodes vahli 18-93 Andriashev (1986); Nash (1986) 
Merluccius albidus 340,000 Klein-MacPhee (2002) 
Polyacanthonotus 2,000 - Crabtree et al. (1985); Coggan et 
rissoanus 60,000 al. (1998) 
Synaphobranchus 8 (?) 111 ,507 - Gordon and Mauchline (1996); 
kaupi 119,467 Gordon (2004) 
Antimora rostrata ~13 23 Magnusson (2001) 
Bathyraja 12 50 47 Frisk et al. (2002) 
spinicauda 
Coryphaenoides 10 60 8,700- Alekseyev et al. (1992); Kelly et 
rupestris 56,000 al. (1997) 
Macrourus 13-16 28 8,500 - Murua and Motos (2000); Murua 
berg/ax 79,220 (2003) 
Notacanthus 9,000 - Gordon (2004) 
chemnitzi 30,000 
Anarhichas 5 14 27,000 Gusev and Shevelev ( 1997); 
denticulatus COSEWIC (200 1) 
Anarhichas lupus 8-10 20 O'Dea and Haedrich (2002) 
Anarhichas minor 7-1 0 21 19,000 Gusev and Shevelev (1997); 

COSEWIC (200 1) 
Brosme brosme 7 1,000,000 Oldham (1972); COSEWIC 

(2003) 
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Table 6-2. Estimates of mortality forM berglax and C. rupestris based on published 

models. K is the Von Bertalanffy growth curve coefficient and w is the maximum age 

(years). 

Species 

M berglax 

C. rupestris 

Model 
Hoenig (1983) 
Jensen ( 1996) 
Jensen ( 1996) 
Jensen ( 1996) 
Hoenig ( 1983) 
Jensen (1996) 
Jensen (1996) 
Jensen (1996) 

Parameters 
w=28 
K = 0.027 
K = 0.062 
K = 0.038 
w=60 
K= 0.100 
K= 0.086 
K=0.114 
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Estimate of mortality 
0.1600 
0.0432 
0.0992 
0.0608 
0.0757 
0.1600 
0.1376 
0.1824 



Table 6-3. Estimates of intrinsic rates of increase and recovery time, based on possible 

life-history characteristics of M berg/ax and estimated declines (mean and 95 % 

confidence intervals) from Devine et a!. (2006). M is estimated mortality past age 1, / 1 is 

estimated survival to age 1, RP is reproductive periodicity, and r is the calculated 

intrinsic rate of increase. These results assume there are no fishing impacts. 

Recovery time (years) for 
population decline estimates 

Lower CI Mean Upper CI 
M ll RP r 80.4 % 88.1% 94.1 % 

0.1600 0.01 I 0.2020 42 45 49 
O.I600 0.01 2 0.1655 52 56 61 

Once 
0.1600 O.OI (.x=I9) 0.0820 I07 II5 125 
0.1600 0.1 1 0.3296 25 27 29 
0.0432 O.OI I 0.3I26 26 28 3I 
0.0432 O.OI 2 0.2762 30 32 36 
0.0432 0.1 1 0.4397 18 19 22 
0.0608 O.OI I 0.2960 28 30 33 
0.0608 0.01 2 0.2595 32 35 38 
0.0608 0.1 I 0.423I 19 20 22 
0.0992 O.OI 1 0.2596 32 35 38 
0.0992 0.01 2 0.223I 38 41 45 
0.0992 0.1 1 0.3869 21 22 25 
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Table 6-4. Recovery time (years) forM berglax and C. rupestris based on several 

potential values of rand estimated population declines. These results assume a fisheries 

catch equal to 5 % of the total population. 

Proportion of original Recovery time 
Species r Decline population reached (years) 
M berglax 0.2020 88.1 % 75.2% 53 

0.0820 94.1% 39.0% 248 
0.2762 88.1% 81.9% 39 
0.4397 80.4% 88.6% 19 

C. rupestris 0.5681 88.4% 91.2% 16 
0.2787 96.4% 82.1% 50 
0.2420 96.4% 79.3% 49 
0.1570 99.4% 68.2% 136 
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Table 6-5. Estimates of intrinsic rates of increase and recovery time, based on possible 

life-history characteristics of C. rupestris and the estimated declines (mean and 95 % 

confidence intervals) from Devine et al. (2006). M is estimated mortality past age 1, /1 is 

estimated survival to age 1, RP is reproductive periodicity, and r is the calculated 

intrinsic rate of increase. These results assume no fishing impacts. 

Recovery time (years) for 
population decline estimates 

Lower CI Mean Upper CI 
M /I RP r 88.4% 96.4% 99.4 % 

0.0757 0.01 1 0.3559 25 29 35 
0.0757 0.01 2 0.2989 30 35 42 

Once 
0.0757 0.01 (x=16) 0.1570 59 68 80 
0.0757 0.1 1 0.5681 14 17 21 
0.160 0.01 1 0.2787 32 37 45 
0.160 0.01 2 0.2214 41 47 57 
0.160 0.1 1 0.4922 17 20 25 

0.1376 O.OI 1 0.2992 30 35 42 
0.1376 0.01 2 0.2420 38 43 52 
0.1376 0.1 I 0.5124 16 I9 24 
0.1824 0.01 I 0.2582 35 40 48 
0.1824 O.OI 2 0.2008 46 53 62 
O.I824 O.I I 0.4720 I8 2I 26 
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7 General Conclusions 

Though current fishing activity penetrates well into the deep sea off 

Newfoundland and Labrador, we still know very little about the distribution, biology, 

ecology, and small-scale habitat preferences of the taxa living there. The 2007 research 

cruise (used for the majority of analyses presented in this dissertation) represents one of 

the first extensive in situ surveys in deep waters off Newfoundland. Video from seven 

dives completed over eight days, spanning depths of 351 to 2245 m offer a small glimpse 

of species living on the canyons ' seafloor, how they are distributed, and the factors 

influencing their distributions. 

By surveying 105 km of bottom, I documented over 160,000 coral colonies, 

comprising 28 species that collectively spanned the entire depth range of the dives and 

every bottom type examined. However, corals were not randomly distributed throughout 

the sampling area. Bottom type and depth both helped define unique assemblages. For 

example, Keratoisis grayi, Anthomastus spp. , and Acanthogorgia armata co-occurred at 

relatively shallow depths within boulders and cobble. 

Environmental factors clearly influence the current distribution and abundance of 

corals, but so do anthropogenic activities, specifically trawling. Building on other 

research around the world, I documented a negative influence of trawling on deep-sea 

corals. Keratoisis grayi was significantly less abundant, smaller in size and more likely 

to be dead as trawling increased, but somewhat surprisingly, they were more likely to 

occur where trawling was evident. This linkage may result from trawlers targeting 
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preferred locations forK. grayi, perhaps because of differences in the distribution of 

fishes between areas with and without these large corals. 

I used video data to determine whether depth and habitat define unique 

assemblages of fishes. Although no distinct fish assemblage associated with large corals 

such asK. grayi, I did find distinct assemblages based on both depth and habitats. For 

example, boulder fields supported high relative abundances of Sebastes spp., an absence 

of Coryphaenoides rupestris and Glyptocephalus cynoglossus, and relatively low 

abundances of myctophids and Nezumia bairdii, when compared to other habitat 

categories. 

When I examined the distribution of individual fish species, more clearly defined 

relationships with corals and depth became evident. Nevertheless, the factors influencing 

the fishes varied as I examined different sampling resolutions. In general, depth and the 

number of small gorgonians were predictors of Nezumia bairdii abundance, whereas 

Coryphaenoides rupestris abundance related positively to abundance of cup corals. 

Depth was often a significant predictor of Coryphaenoides carapinus abundance. 

Although we know very little about the general biology of many deep-sea fishes, 

great declines have been documented in several species, including species that are not 

(and never were) targeted by a fishery. Based on what we know, we can expect long 

recovery times for these fishes even after the removal of fishing pressure. 

The results of this dissertation also highlight the need for continued, dedicated 

research in Newfoundland and Labrador's deep sea and throughout the chapters I propose 

several main directions for future research: 
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More in situ surveys should be conducted that record additional variables of 

interest, such as current velocity and direction, multibeam bathymetry, 

temperature, and sedimentation rates. 

Additional in situ surveys of fishes should be conducted that examine patterns at 

various spatial and temporal scales providing for the adequate analysis of 

relationships of various life stages in reference to observed patterns. 

Deep-sea fishes (including those that are not economically important) should be 

aged and studied in detail to determine indirected influences of human activities. 

7.1 Progress toward sustainable deep-sea management 

Documented and suspected population declines, increasing evidence of seafloor 

destruction, limited knowledge regarding deep-sea species, and overall vulnerability of 

deep-sea taxa, led to the call for a global moratorium on bottom trawling in the high seas 

in 2006. Over I ,400 scientists joined the campaign by signing a statement calling for the 

protection of deep-sea coral and sponge ecosystems (DSCC 20 12). An international 

high-seas bottom trawling moratorium was never adopted- among the countries opposed 

to the scientifically-backed moratorium was Canada (a country with no high-seas bottom 

trawling vessels) (DSCC 2012). 

Instead, in 2006 the United Nations General Assembly (UNGA) adopted 

Resolution 611105, calling for the long-term sustainability of deep-sea fish stocks, and 

adopted guidelines for its implementation in 2008. The resolution called for timely 

actions to ensure sustainable deep-sea fisheries and protection of vulnerable deep-sea 
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ecosystems (UNGA 2007; Rogers & Gianni 201 0). Highlights of the guidelines included 

a list of criteria to consider when conducting assessments to determine whether deep-sea 

fishing activities will likely produce significant adverse impacts, characteristics that 

should be used as criteria for identifying vulnerable marine ecosystems (VMEs) (e.g. 

uniqueness or rarity, functional significance, structural complexity), and factors to 

consider when determining the scale and significance of an impact (Rogers & Gianni 

201 0). In 2009, experts determined that the resolution implementation was inadequate 

and additional provisions were added emphasizing that Resolution 61/105 should be 

adopted before allowing bottom fishing on the high seas and calling upon states to take 

action immediately (individually or through Regional Fisheries Management 

Organizations (RFMO) (UNGA 2009; Rogers & Gianni 201 0). 

In May 2011, I participated in a workshop examining the overall impact and 

outstanding issues of the UNGA resolutions with 21 other scientists from around the 

world. We drew three main conclusions: "(1) The UNGA resolutions had not been fully 

implemented, (2) deep-sea fisheries were not being managed for long-term sustainability; 

and (3) VMEs were not being given sufficient protection from significant adverse 

impacts" (Weaver et a!. 2011 ). 

While several RFMOs are making considerable strides toward deep-sea 

conservation (e.g. Convention on the Conservation of Antarctic Marine Living Resources 

- CCAMLR), actions by others, such as the Northwest Atlantic Fisheries Organization 

(NAFO) fall short of meeting targets. Reviews of the implementation of Resolutions 

61/105 and 64/72 in 2010 and 2011 by the Deep Sea Conservation Coalition and 
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colleagues highlighted the fact that NAFO had no Contracting Parties conduct impact 

assessments, had repeatedly ignored recommendations by the Scientific Committee (e.g. 

2009 redfish quotas), attempted to manage very few deep-sea species (both targeted and 

non-target), and set unrealistically high thresholds to identify VMEs (Rogers & Gianni 

201 0; Gianni et al. 2011 ). 

NAFO has made progress toward protecting benthic marine ecosystems by 

closing portions of six seamounts and 12 coral and sponge areas. However, all closures 

are temporary (set to expire in 2014). Based on the findings presented in Chapter 6, these 

protected areas or any other conservation efforts in the deep sea cannot be expected to 

produce change quickly. Any recovery should be expected to require decades at the very 

least, and not just simply several years. As such, closed areas should be permanent, not 

temporary. The NAFO closures occur in areas where little fishing occurred in the past(> 

99 % of the past fishing area remains open), open areas lack specific measures to prevent 

significant adverse impacts, and no measures to protect deep-sea fish have been adopted 

(Rogers & Gianni 201 0; Gianni et al. 20 II). 

Off Newfoundland and Labrador within Canada's exclusive economic zone 

(EEZ), where presumably conservation measures should be more easily created and 

enforced, true effective and sustainable deep-sea management remains more a vague idea 

than an implementation target. In 2007, Fisheries and Oceans Canada, along with 

NAFO, created a coral protection zone in NAFO zone 30, along the Southwest Grand 

Banks. Despite urging from scientists to move the zone into shallower water, the zone 

was created near the 800 - 1000 m isobath, thereby providing no protection for the larger 
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number of corals and most fragile species known to occur in nearby (shallower) waters. 

Based on the findings presented in the previous chapters and outlined above, it is clear 

that in order to protect a wide range of species, deep-sea conservation efforts (particularly 

protected areas or closed areas) must also span a wide range of depths and habitat types. 

Despite numerous deep-sea dwelling species assessed by COSEWIC as Species at 

Risk, only three wolffish species have been designated under Canada's Species at Risk 

Act (SARA). In fact, of the 40 Atlantic fish species and populations currently considered 

at risk by COSEWIC, 34 are not designated as such under SARA (Environment Canada 

20 13). This means that although these species meet the criteria for species at risk, they 

receive no extra federal protection (e.g. critical habitat protection). 

Recent (20 12) changes to Canada's Fisheries Act removed the protection of fish 

habitat. The Fisheries Act once prohibited activities that harm the habitat of fish in 

Canadian waters, but the Act currently protects only fished species from 'serious' harm 

(House Of Commons Of Canada 20 12). This change occurred despite strong evidence 

that habitat loss causes fish population declines, despite strong opposition from fisheries 

scientists, and despite Canada's international responsibilities, such as the Convention on 

Biological Diversity (Favaro et al. 2012). How these changes will translate into changes 

for deep-sea management remains to be seen. Regardless, it is clear that further studies 

(such as those presented in Chapters 4 and 5) are needed to evaluate the broader 

distribution patterns and habitat requirements important for the survival of deep-sea 

fishes. 
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The general lack of substantial progress towards effective sustainable deep-sea 

management begs the question of whether such an idea is even feasible. In 20 I 0, I 

participated in a workshop aimed at determining whether ecosystem-based deep-sea 

fishing could be truly sustainable. In general, our answer was "yes", but the monitoring, 

assessments, surveillance, enforcement, reduction of catch (both targeted and non­

targeted) to sustainable levels, and time to allow adequate recovery from past mistakes 

necessary for sustainable deep-sea fisheries drew into question the economic viability of 

such a task (Watling et al. 2011 ). Another team of authors tackled that same question in 

a 2012 publication, but also considered economics (Norse eta!. 20 12). They concluded 

"instead of mining fish from the least-suitable places on Earth, an ecologically and 

economically preferable strategy would be rebuilding and sustainably fishing resilient 

populations in the most suitable places, namely shallower and more productive marine 

ecosystems that are closer to markets" (Norse et a!. 20 12). 
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Appendix A : Detailed SIMPER results (from Chapter 4) 

Similarity Percentages - Species Contributions (SIMPER) results of two-way analysis between depth class and habitat type 
dissimilarities. Only species which contributed to more than 50% of the cumulative percentage are shown. 

Depth Class Analysis: 

Groups 300 - 800 m & 1300 - 2300 m 

Species 

Sebastes spp .. 
Synaphobranchus kaupii 
Coryphaenoides carapinus 
Nezumia bairdii 
Halosauropsis macrochir 
Myctophidae (unknown) 
Coryphaenoides rupestris 

300-800 
Average 

Abundance 

1.93 
2.36 

0 
1.46 

0 
1.28 
1.17 

Groups 300 - 800 m & 800 - 1300 m 

Species 

Sebastes spp .. 
Coryphaenoides rupestris 
Myctophidae (unknown) 
Nezumia bairdii 
Synaphobranchus kaupii 
Glyptocephalus 
cynoglossus 
Centroscyl/ium fabricii 

300-800 
Average 

Abundance 

1.93 
1.17 

1.28 
1.46 
2.36 

0.61 
0.61 

1300-2300 
Average 

Abundance 

0 
0.81 
1.81 
0.15 
1.2 

0.82 
0.18 

800-1300 
Average 

Abundance 

0 
1.59 

1.53 
1.1 

2.07 

0.81 
0.64 

% Contribution Cumulative % 

9.75 9.75 
9.25 19 

7.47 26.47 
6.99 33.47 
6.97 40.44 
6.29 46.73 
5.96 52.69 

% Contribution Cumulative % 

12.48 12.48 

8.45 20.93 

7.66 28.59 

6.17 34.76 

5.76 40.52 

4.67 45.19 

4.56 49.76 
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Antimora rostrata 0.41 

Groups 1300 - 2300 m & 800 - 1300 m 

1300-2300 
Average 

Species Abundance 

Synaphobranchus kaupii 0.81 
Halosauropsis macrochir 1.2 
Coryphaenoides rupestris 0.18 
Aldrovandia (sp 1) 1.33 
Coryphaenoides carapinus 1.81 

Habitat Types Analysis: 

Groups Boulders & Dense large corals 

Species 
Coryphaenoides rupestris 
Myctophidae (unknown) 
Nezumia bairdii 
Phycis chesteri 
Macrourus berg/ax 
Centroscyllium fabricii 

Boulders 
Average 

Abundance 

0 
0 

0.87 
0.75 
0.24 

0 

Groups Boulders & Dense small corals 

Species 

Myctophidae (unknown) 
Coryphaenoides rupestris 

Boulders 
Average 

Abundance 

0 
0 

0.6 4.09 53.85 

800-1300 
Average 

Abundance % Contribution Cumulative % 
2.07 14.71 14.71 

0.09 13.57 28.28 

1.59 8.82 37.1 
0.42 7.94 45.04 

0.05 7.8 52.84 

Dense large 
corals 

Average Cumulative 
Abundance % Contribution % 

1.13 15.16 15.16 
1.6 11 .26 26.42 
1.1 7.41 33.83 

0.44 7.31 41.14 
0.47 6.31 47.45 
0.81 5.9 53.35 

Dense small 
corals 

Average Cumulative 
Abundance % Contribution % 

1 10.61 10.61 
1.34 9.89 20.5 
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Glyptocephalus cynoglossus 0 0.68 7.09 27.59 
Centroscyl/ium fabricii 0 0.64 6.55 34.1 5 
Nezumia bairdii 0.87 1.11 6.24 40.39 
Sebastes spp. 2.91 1.31 5.28 45.67 
Phycis chesteri 0.75 0.59 5.05 50.72 

Groups Dense large corals & Dense small corals 
Dense small 

Dense large corals corals 
Average Average Cumulative 

Species Abundance Abundance % Contribution % 
Myctophidae (unknown) 1.6 1 12.79 12.79 
Synaphobranchus kaupii 2.16 1.94 9.52 22.3 
Coryphaenoides rupestris 1.13 1.34 5.5 27.8 
Glyptocephalus cynoglossus 0.47 0.68 4.88 32.68 
Centroscyl/ium fabricii 0.81 0.64 4.83 37.51 
Phycis chesteri 0.44 0.59 4.52 42.02 
Macrourus berg/ax 0.47 0.49 4.32 46.35 
Anarhichas minor 0.4 0.09 4.02 50.36 

Groups Boulders & Outcrop 

Boulders Outcrop 
Average Average Cumulative 

Species Abundance Abundance % Contribution % 

Sebastes spp. 2.91 0 17.34 17.34 
Coryphaenoides rupestris 0 1.39 13.26 30.6 
Hop/ostethus at/anticus 0 0.75 13.26 43.86 
Myctophidae (unknown) 0 2.3 13.26 57.1 2 

Groups Dense large corals & Outcrop 
Dense large corals Outcrop 

Average Average Cumulative 
Species Abundance Abundance % Contribution % 
Neocyttus helgae 0 1.45 13.37 13.37 
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Sebastes spp. 1.5 0 11.49 24.86 
Synaphobranchus kaupii 2.16 1.31 11.25 36.11 
Hoplostethus at/anticus 0.16 0.75 10.14 46.25 
Nezumia bairdii 1.1 0 8.05 54.3 

GrouQS Dense small corals & OutcroQ 

Dense small corals Outcrop 
Average Average 

SQecies Abundance Abundance % Contribution Cumulative % 

Synaphobranchus kaupii 1.94 1.31 16.27 16.27 

Myctophidae (unknown) 2.3 15.29 31.55 
Coryphaenoides rupestris 1.34 1.39 10.5 42.06 
Hoplostethus at/anticus 0 0.75 6.64 48.69 
Neocyttus helgae 0 1.45 6.64 55.33 

GrouQS Boulders & SQarse large corals 
Sparse large 

Boulders corals 
Average Average 

SQecies Abundance Abundance % Contribution Cumulative % 

Myctophidae (unknown) 0 1.13 12.43 12.43 
Coryphaenoides rupestris 0 1.56 10.43 22.86 
Nezumia bairdii 0.87 1.53 9.72 32.57 
Phycis chesteri 0.75 0.48 6.86 39.43 
Centroscyllium fabricii 0 0.94 5.87 45.3 
Sebastes spp. 2.91 1.32 5.6 50.9 

GroUQS Dense large corals & SQarse large corals 
Sparse large 

Dense large corals corals 
Average Average 

SQecies Abundance Abundance % Contribution Cumulative % 
Myctophidae (unknown) 1.6 1.13 11 .25 11.25 
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Centroscyllium fabricii 0.81 0.94 9.73 20.98 
Coryphaenoides rupestris 1.13 1.56 9.64 30.62 
Synaphobranchus kaupii 2.16 1.53 8.03 38.65 
Anarhichas minor 0.4 0.2 5.17 43.82 
Phycis chesteri 0.44 0.48 5.1 48.92 
Nezumia bairdii 1.1 1.53 4.87 53.79 

Grou~s Dense small corals & S~arse large corals 
Sparse large 

Dense small corals corals 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 
Coryphaenoides rupestris 1.34 1.56 11 .85 11 .85 
Centroscyl/ium fabricii 0.64 0.94 11.11 22.96 
Nezumia bairdii 1.11 1.53 8.48 31.44 
Synaphobranchus kaupii 1.94 1.53 7.68 39.12 
Myctophidae (unknown) 1.13 7.12 46.24 
Glyptocephalus 
cynoglossus 0.68 0 5.07 51.32 

Grou~s Outcro~ & S~arse large corals 
Sparse large 

Outcrop corals 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 

Synaphobranchus kaupii 1.31 1.53 13.72 13.72 
Nezumia bairdii 0 1.53 11 .33 25.05 
Myctophidae (unknown) 2.3 1.13 11 .11 36.16 
Neocyttus helgae 1.45 0 10.63 46.79 
Sebastes spp. 0 1.32 8.32 55.11 

Grou~s Boulders & Sea ~en field 
Boulders Sea pen field 

S~ecies Average Average % Contribution Cumulative % 
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Abundance Abundance 

Sebastes spp. 2.91 0.22 20.5 20.5 
G/yptocephalus cynog/ossus 0 1.63 12.75 33.26 
Nezumia bairdii 0.87 1.72 6.57 39.83 
Synaphobranchus kaupii 2.14 2.39 6.15 45.98 
Myctophidae (unknown) 0 1.82 5.92 51 .9 

Groups Dense large corals & Sea pen field 
Dense large 

corals Sea pen field 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Coryphaenoides rupestris 1.13 1.5 10.15 10.15 
G/yptocephalus cynog/ossus 0.47 1.63 9.33 19.48 
Sebastes spp. 1.5 0.22 8.63 28.12 
Myctophidae (unknown) 1.6 1.82 6.41 34.53 
Nezumia bairdii 1.1 1.72 5.4 39.92 
Synaphobranchus kaupii 2.16 2.39 5.17 45.1 
Alepocephalus spp. 0.3 1.08 5.09 50.19 

Groups Dense small corals & Sea pen field 
Dense small 

corals Sea pen field 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Myctophidae (unknown) 1 1.82 10.76 10.76 
Coryphaenoides rupestris 1.34 1.5 8.54 19.3 
G/yptocephalus cynog/ossus 0.68 1.63 7.52 26.81 
Synaphobranchus kaupii 1.94 2.39 7.52 34.33 
Nezumia bairdii 1. 11 1.72 7.3 41 .63 
Alepocephalus spp. 0.09 1.08 6.29 47.92 
Antimora rostrata 0.29 0.81 5.03 52.95 
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Groups Outcrop & Sea pen field 
Outcrop Sea pen field 
Average Average 

S12ecies Abundance Abundance % Contribution Cumulative % 
Nezumia bairdii 0 1.72 11 .97 11 .97 
Glyptocephalus cynoglossus 0 1.63 11.4 23.37 
Synaphobranchus kaupii 1.31 2.39 8.07 31.44 
Alepocephalus spp. 0 1.08 6.99 38.43 
Myctophidae (unknown) 2.3 1.82 6.3 44.73 
Hoplostethus at/anticus 0.75 0 5.91 50.64 

Grou12s S12arse large corals & Sea 12en field 
Sparse large 

corals Sea pen field 
Average Average 

S12ecies Abundance Abundance % Contribution Cumulative % 
Glyptocephalus cynoglossus 0 1.63 11 .29 11 .29 
Myctophidae (unknown) 1.13 1.82 8.73 20.02 
Coryphaenoides rupestris 1.56 1.5 7.56 27.58 
Centroscyllium fabricii 0.94 0.53 6.55 34.1 2 
Synaphobranchus kaupii 1.53 2.39 6.54 40.66 
Sebastes spp. 1.32 0.22 6.47 47.13 
Alepocephalus SP!2· 0.11 1.08 6.18 53.31 

Grou12s Boulders & s12arse small corals 
Sparse small 

Boulders corals 
Average Average 

S12ecies Abundance Abundance % Contribution Cumulative % 
Myctophidae (unknown) 0 1.19 13.06 13.06 
Coryphaenoides rupestris 0 1.07 10.28 23.34 
Centroscyllium fabricii 0 0.68 7.05 30.39 
Antimora rostrata 0 0.54 6.98 37.36 
Glyptocephalus cynoglossus 0 0.52 6.69 44.05 
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Sebastes spp. 2.91 0.97 6.12 50.17 

Groups Dense large corals & Sparse small corals 
Dense large Sparse small 

corals corals 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Myctophidae (unknown) 1.6 1.19 10.49 10.49 
Centroscyl/ium fabricii 0.81 0.68 7.96 18.45 
Antimora rostrata 0.47 0.54 7.36 25.81 
Synaphobranchus kaupii 2.16 2.07 6.6 32.42 
Glyptocephalus cynog/ossus 0.47 0.52 5.33 37.75 
Macrourus berg/ax 0.47 0.32 4.9 42.64 
Coryphaenoides rupestris 1.13 1.07 4.57 47.21 
Phycis chesteri 0.44 0.25 4.08 51 .3 

Groups Dense small corals & Sparse small corals 
Dense small Sparse small 

corals corals 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Synaphobranchus kaupii 1.94 2.07 14.79 14.79 
Coryphaenoides rupestris 1.34 1.07 10.59 25.38 
Myctophidae (unknown) 1 1.19 8.84 34.22 
Aldrovandia (sp 1) 0.4 0.31 8 42.22 
Centroscyllium fabricii 0.64 0.68 5.78 48 
Nezumia bairdii 1.11 1.05 4.91 52.91 

Groups Outcrop & Sparse small corals 
Sparse small 

Outcrop corals 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Synaphobranchus kaupii 1.31 2.07 11.5 11 .5 
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Myctophidae (unknown) 2.3 1.19 10.85 22.35 
Neocyttus he/gae 1.45 0 9.38 31 .73 
Coryphaenoides rupestris 1.39 1.07 7.97 39.7 
Nezumia bairdii 0 1.05 6.79 46.48 
Hoplostethus at/anticus 0.75 0 6.06 52.54 

Grou~s S~arse large corals & S~arse small corals 
Sparse large Sparse small 

corals corals 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 
Coryphaenoides rupestris 1.56 1.07 10.39 10.39 
Synaphobranchus kaupii 1.53 2.07 8.49 18.89 
Myctophidae (unknown) 1.13 1.19 8.03 26.92 
Centroscyllium fabricii 0.94 0.68 8 34.92 
Coryphaenoides carapinus 0.45 0 6.1 41.02 
Halosauropsis macrochir 0 0.51 5.47 46.48 
Nezumia bairdii 1.53 1.05 5.31 51.79 

Grou~s Sea ~en field & S~arse small corals 
Sparse small 

Sea pen field corals 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 

Myctophidae (unknown) 1.82 1.19 9.1 1 9.11 
Coryphaenoides rupestris 1.5 1.07 8.77 17.88 
Glyptocephalus cynoglossus 1.63 0.52 8.14 26.02 
Alepocephalus spp. 1.08 0 7.27 33.29 
Antimora rostrata 0.81 0.54 6.79 40.08 
Nezumia bairdii 1.72 1.05 5.52 45.59 
Centroscy_llium fabricii 0.53 0.68 4.9 50.49 
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Grou~s Boulders & S~onge field 
Boulders Sponge field 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 

Sebastes spp. 2.91 1.32 16.28 16.28 
Coryphaenoides rupestris 0 1.36 12.63 28.91 
Myctophidae (unknown) 0 1.04 9.48 38.38 
Phycis chesteri 0.75 0.43 6.31 44.69 
Synaphobranchus kaupii 2.1 4 2.76 6.2 50.89 

Grou~s Dense large corals & S~onge field 
Dense large 

corals Sponge field 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 

Sebastes spp. 1.5 1.32 13.85 13.85 
Synaphobranchus kaupii 2.16 2.76 7.15 21 
Myctophidae (unknown) 1.6 1.04 6.7 27.7 
Macrourus berg/ax 0.47 0.43 6.42 34.12 
Centroscyl/ium fabricii 0.81 0.57 6.33 40.45 
Phycis chesteri 0.44 0.43 6.08 46.53 
Glyptocepha/us cynoglossus 0.47 0 5.91 52.44 

Grou~s Dense small corals & S~onge field 
Dense small 

corals Sponge field 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 

Sebastes spp. 1.31 1.32 10.61 10.61 
Glyptocephalus cynoglossus 0.68 0 8.12 18.73 
Centroscyl/ium fabricii 0.64 0.57 5.67 24.39 
Rajella fyllae 0.39 0 4 .62 29.01 
Macrourus berg/ax 0.49 0.43 4.38 33.39 
Macrouridae (sp 3) 0.35 0 4.3 37.69 
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Zoarcidae (sp 1) 0.1 0.53 4.3 42 
Phycis chesteri 0.59 0.43 4.28 46.27 
Myctophidae (unknown) 1.04 4.22 50.5 

Groups Outcrop & Sponge field 
Outcrop Sponge field 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Synaphobranchus kaupii 1.31 2 .76 18.4 18.4 
Neocyttus helgae 1.45 0 14.72 33.12 
Hoplostethus at/anticus 0.75 0.43 12.28 45.41 
Nezumia bairdii 0 1.5 9.86 55.26 

Groups Sparse large corals & Sponge field 
Sparse large 

corals Sponge field 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Sebastes spp. 1.32 1.32 12.52 12.52 
Myctophidae (unknown) 1.13 1.04 8.98 21.5 
Centroscyllium fabricii 0.94 0.57 6.22 27.72 
Coryphaenoides rupestris 1.56 1.36 6.2 33.92 
Synaphobranchus kaupii 1.53 2.76 5.48 39.4 
Phycis chesteri 0.48 0.43 5.28 44.68 
Zoarcidae (sp 1) 0 0.53 5.14 49.82 
Antimora rostrata 0.15 0.53 4.98 54.8 

Groups Sea pen field & Sponge field 
Sea pen field Sponge field 

Average Average 
Species Abundance Abundance % Contribution Cumulative % 
G/yptocepha/us cynoglossus 1.63 0 13.03 13.03 
Sebastes spp. 0.22 1.32 10.12 23.15 
Coryphaenoides rupestris 1.5 1.36 9.86 33.01 
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Myctophidae (unknown) 1.82 1.04 9.08 42.1 
Antimora rostrata 0.81 0.53 5.12 47.22 
Zoarcidae (sp 1) 0.36 0.53 4.93 52.15 

Groups Sparse small corals & Sponge field 
Sparse small 

corals Sponge field 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Sebastes spp. 0.97 1.32 12.96 12.96 
G/yptocephalus cynog/ossus 0.52 0 8.1 21.06 
Centroscyllium fabricii 0.68 0.57 6.37 27.43 
Myctophidae (unknown) 1.19 1.04 6.22 33.66 
Antimora rostrata 0.54 0.53 5.93 39.59 
Zoarcidae (sp 1) 0.23 0.53 5.28 44.87 
Macrouridae (sp 3) 0.38 0 4.94 49.81 
Phycis chesteri 0.25 0.43 4.48 54.3 

Groups Boulders & Sediment with epifauna 
Sediment with 

Boulders epifauna 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Myctophidae (unknown) 0 1.79 12.98 12.98 
Coryphaenoides rupestris 0 1.39 9.67 22.65 
Sebastes spp. 2.91 0.79 7.6 30.25 
Glyptocephalus cynoglossus 0 1.04 6.85 37.1 
Centroscyllium fabricii 0 0.87 6.11 43.21 
Phycis chesteri 0.75 0.22 5.41 48.62 
Antimora rostrata 0 1.1 4.73 53.35 
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Grou~s Dense large corals & Sediment with e~ ifauna 
Dense large Sediment with 

corals epifauna 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 
Glyptocephalus cynoglossus 0.47 1.04 6.18 6.18 
Centroscyllium fabricii 0.81 0.87 5.97 12.15 
Coryphaenoides rupestris 1.13 1.39 5.58 17.73 
Myctophidae (unknown) 1.6 1.79 5.45 23.18 
Antimora rostrata 0.47 1.1 5.18 28.36 
Macrourus berg/ax 0.47 0.59 4.77 33.13 
Sebastes spp. 1.5 0.79 4.52 37.66 
Nezumia bairdii 1.1 1.4 4.29 41.95 
Macrouridae (sp 3) 0 0.46 3.61 45.56 
Phycis chesteri 0.44 0.22 3.6 49.16 
Synaphobranchus kaupii 2.16 2.18 3.49 52.65 

Grou~s Dense small corals & Sediment with e~ifauna 
Dense small Sediment with 

corals epifauna 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 

Myctophidae (unknown) 1 1.79 7.74 7.74 
Nezumia bairdii 1.11 1.4 6.11 13.86 
Coryphaenoides rupestris 1.34 1.39 6.07 19.93 
Synaphobranchus kaupii 1.94 2.18 5.7 25.63 
Antimora rostrata 0.29 1.1 5.36 30.99 
G/yptocephalus cynog/ossus 0.68 1.04 5.08 36.07 
Centroscyl/ium fabricii 0.64 0.87 5.02 41.09 
Aldrovandia (sp 1) 0.4 0.73 3.78 44.87 
Alepocephalus spp. 0.09 0.68 3.75 48.62 
Macrourus berg/ax 0.49 0.59 3.38 52 
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Grour2s Outcror2 & Sediment with e[2ifauna 
Sediment with 

Outcrop epifauna 
Average Average 

Sf2ecies Abundance Abundance % Contribution Cumulative % 
Nezumia bairdii 0 1.4 7.74 7.74 
Synaphobranchus kaupii 1.31 2.18 7.47 15.21 
Neocyttus helgae 1.45 0 7.17 22.38 
Glyptocephalus cynoglossus 0 1.04 5.7 28.08 
Hoplostethus at/anticus 0.75 0 5.64 33.72 
Antimora rostrata 0.54 1.1 4.86 38.58 
Sebastes spp. 0 0.79 4.79 43.37 
Centroscyllium fabricii 0 0.87 4.73 48.1 
Myctophidae (unknown) 2.3 1.79 3.76 51.86 

Groups S[2arse large corals & Sediment with epifauna 
Sparse large Sediment with 

corals epifauna 
Average Average 

Sf2ecies Abundance Abundance % Contribution Cumulative % 
Myctophidae (unknown) 1.13 1.79 7.12 7.12 
Glyptocephalus cynoglossus 0 1.04 6.88 14 
Antimora rostrata 0.15 1.1 6.07 20.07 
Coryphaenoides rupestris 1.56 1.39 5.85 25.92 
Synaphobranchus kaupii 1.53 2.18 4.99 30.91 
Centroscyl/ium fabricii 0.94 0.87 4.8 35.72 
Macrourus berg/ax 0.15 0.59 3.92 39.64 
Alepocephalus spp. 0.11 0.68 3.67 43.31 
Macrouridae (sp 3) 0.11 0.46 3.3 46.6 
Reinhardtius hippog/ossoides 0.26 0.42 3.25 49.85 
Aldrovandia (sp 1) 0 0.73 2.96 52.81 
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Grou12s Sea 12en field & Sediment with e12ifauna 
Sediment with 

Sea pen field epifauna 
Average Average 

S12ecies Abundance Abundance 
Centroscyllium fabricii 0.53 0.87 
Sebastes spp. 0.22 0.79 
Myctophidae (unknown) 1.82 1.79 
Antimora rostrata 0.81 1.1 
Coryphaenoides rupestris 1.5 1.39 
Macrourus berg/ax 0.37 0.59 
Macrouridae (sp 3) 0.12 0.46 
Melanostigma atlanticum 0.53 0.36 
Aldrovandia (sp 1) 0.29 0.73 
Moridae (sp 1) 0.52 0.13 
Reinhardtius hippoglossoides 0.49 0.42 
Glyptocephalus cynog/ossus 1.63 1.04 
Harriotta raleighana 0.36 0.4 

Grou12s s12arse small corals & Sediment with e12ifauna 

S12ecies 
Myctophidae (unknown) 
Antimora rostrata 
Coryphaenoides rupestris 
Glyptocephalus cynoglossus 
Centroscyllium fabricii 
Nezumia bairdii 
Alepocephalus spp. 
Aldrovandia (sp 1) 
Macrourus berg/ax 
Macrouridae (sp 3) 

Sparse small Sediment with 
corals epifauna 

Average Average 
Abundance Abundance 

1.19 1.79 
0.54 1.1 
1.07 1.39 
0.52 1.04 
0.68 0.87 
1.05 

0 
0.31 
0.32 
0.38 

1.4 
0.68 
0.73 
0.59 
0.46 
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% Contribution Cumulative % 
5.02 5.02 
4.91 9.93 
4.7 14.62 

4.69 19.31 
4.55 23.86 
4.46 28.31 
3.94 32.25 
3.87 36.12 
3.52 39.64 
3.43 43.07 
3.38 46.44 
3.23 49.68 
2.72 52.39 

% Contribution Cumulative % 
6.14 6.14 
6.13 12.26 
5.51 17.77 
5.29 23.06 
4.39 27.44 
4.27 31.72 
4.15 35.86 
3.88 39.74 
3.62 43.36 
3.47 46.83 



Reinhardtius hippoglossoides 0.25 0.42 3.21 50.05 

Grou~s S~onge field & Sediment with e~ifauna 
Sediment with 

Sponge field epifauna 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 
Sebastes spp. 1.32 0.79 11 .76 11.76 
Glyptocephalus cynog/ossus 0 1.04 7.81 19.58 
Myctophidae (unknown) 1.04 1.79 5.93 25.51 
Centroscyllium fabricii 0.57 0.87 5.41 30.92 
Zoarcidae (sp 1) 0.53 0.13 4.98 35.89 
Macrouridae (sp 3) 0 0.46 4.7 40.59 
Antimora rostrata 0.53 1.1 4.53 45.13 
Fish unknown (sp 6) 0.43 0.25 4.32 49.45 
Macrourus berg/ax 0.43 0.59 4.24 53.68 

Grou~s Boulders & Heteroe_oly_e_us ct. insolitus field 
Heteropolypus ct. 

Boulders insolitus field 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 
Sebastes spp. 2.91 0 26.47 26.47 
Coryphaenoides rupestris 0 1.24 10.22 36.69 
Nezumia bairdii 0.87 1.2 8.75 45.44 
Mycto~hidae (unknown) 0 1.43 8.6 54.04 

Grou~s Dense large corals & Heteroe_oly_e_us ct. insolitus field 
Dense large Heteropolypus ct. 

corals insolitus field 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 
Sebastes spp. 1.5 0 16.42 16.42 
Coryphaenoides rupestris 1.13 1.24 9.87 26.29 
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Nezumia bairdii 1.1 1.2 8.92 35.21 
Myctophidae (unknown) 1.6 1.43 7.3 42.51 
G/yptocephalus cynog/ossus 0.47 0.57 6.22 48.73 
Macrouridae (sp 3) 0 0.57 6.06 54.79 

Groups Dense small corals & Heteroeolypus cf. insolitus field 
Dense small Heteropolypus cf. 

corals insolitus field 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Myctophidae (unknown) 1 1.43 10.67 10.67 
Sebastes spp. 1.31 0 9.61 20.28 
Coryphaenoides rupestris 1.34 1.24 9.27 29.55 
Nezumia bairdii 1.11 1.2 9.01 38.55 
Synaphobranchus kaupii 1.94 2.72 6.56 45.11 
Centroscyllium fabricii 0.64 0 4.49 49.6 
Moridae (sp 1) 0.1 0.47 4.43 54.03 

Groups Outcrop & Heteroe_oly_eus cf. insolitus field 
Heteropo/ypus cf. 

Outcrop insolitus field 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Synaphobranchus kaupii 1.31 2.72 18.23 18.23 
Hoplostethus at/anticus 0.75 0 13.95 32.18 
Neocyttus helgae 1.45 0 13.95 46.13 
Nezumia bairdii 0 1.2 10.97 57.11 

Groups Sparse large corals & Heteroe_oly_pus cf. insolitus field 
Sparse large Heteropolypus cf. 

corals insolitus field 
Average Average 

Species Abundance Abundance % Contribution Cumulative % 
Sebastes spp. 1.32 0 14.41 14.41 
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Coryphaenoides rupestris 1.56 1.24 9.81 24.21 
Myctophidae (unknown) 1.13 1.43 9.65 33.86 
Centroscyl/ium fabricii 0.94 0 7.05 40.91 
Synaphobranchus kaupii 1.53 2.72 6.66 47.57 
Nezumia bairdii 1.53 1.2 6.52 54.09 

Grou12s Sea 12en field & Heteropolye_us cf. insolitus field 
Heteropolypus cf. 

Sea pen field insolitus field 
Average Average 

S(2ecies Abundance Abundance % Contribution Cumulative % 
Glyptocephalus cynoglossus 1.63 0.57 10.66 10.66 
Antimora rostrata 0.81 0.57 8.67 19.33 
Coryphaenoides rupestris 1.5 1.24 7.27 26.6 
Alepocephalus spp. 1.08 0 6.61 33.22 
Myctophidae (unknown) 1.82 1.43 6.12 39.34 
Nezumia bairdii 1.72 1.2 6.08 45.41 
Moridae (S[2 1) 0.52 0.47 5.55 50.97 

Grou12s S[2arse small corals & Heteroe_oly_e_us cf. insolitus field 
Sparse small Heteropolypus 

corals cf. insolitus field 
Average Average 

S(2ecies Abundance Abundance % Contribution Cumulative % 
Sebastes spp. 0.97 0 12.02 12.02 
Coryphaenoides rupestris 1.07 1.24 10.55 22.57 
Myctophidae (unknown) 1.19 1.43 10.23 32.8 
Nezumia bairdii 1.05 1.2 8.81 41.61 
Centroscyllium fabricii 0.68 0 7 48.61 
Macrouridae {sl2 3} 0.38 0.57 5.62 54.24 
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Grou~s S~onge field & Heteroeoty_eus cf. insolitus field 
Heteropolypus cf. 

Sponge field insolitus f ield 

Average Average 
S~ecies Abundance Abundance % Contribution Cumulative % 
Coryphaenoides rupestris 1.36 1.24 11.07 11.07 
Sebastes spp. 1.32 0 10.81 21.88 
Nezumia bairdii 1.5 1.2 9.36 31 .24 
Myctophidae (unknown) 1.04 1.43 9.28 40.52 
G/yptocephalus cynog/ossus 0 0.57 8.25 48.77 
Macrouridae (sp 3) 0 0.57 8.25 57.01 

Grou~s Sediment with e~ifauna & Heteroe_oly_e_us cf. insolitus field 
Sediment with Heteropolypus cf. 

epifauna insolitus f ield 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 
Sebastes spp. 0.79 0 9.69 9.69 
G/yptocephalus cynog/ossus 1.04 0.57 7.11 16.81 
Antimora rostrata 1.1 0.57 7.04 23.84 
Coryphaenoides rupestris 1.39 1.24 6.64 30.48 
Myctophidae (unknown) 1.79 1.43 6.33 36.82 
Centroscyllium fabricii 0.87 0 6.22 43.03 
Macrouridae (sp 3) 0.46 0.57 5.42 48.45 
Nezumia bairdii 1.4 1.2 5.1 6 53.62 

Grou~s Boulders & Cu~ coral field 
Boulders Cup coral field 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 
Nezumia bairdii 0.87 1 17.54 17.54 
Phycis chesteri 0.75 0.35 15.84 33.38 
Synaphobranchus kaupii 2.14 2.5 13.84 47.22 
Sebastes spp. 2.91 1.62 11.27 58.49 
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Grou12s Dense large corals & Cu~ coral field 
Dense large 

corals Cup coral field 
Average Average 

s12ecies Abundance Abundance % Contribution Cumulative % 
Coryphaenoides rupestris 1.13 0.67 17.32 17.32 
Myctophidae (unknown) 1.6 0.32 12.65 29.97 
G/yptocephalus cynoglossus 0.47 0.8 9.05 39.02 
Synaphobranchus kaupii 2.16 2.5 7.29 46.31 
Phycis chesteri 0.44 0.35 6.2 52.51 

Grou12s Dense small corals & Cu~ coral field 
Dense small 

corals Cup coral field 
Average Average 

s12ecies Abundance Abundance % Contribution Cumulative % 
Coryphaenoides rupestris 1.34 0.67 13.03 13.03 
G/yptocephalus cynog/ossus 0.68 0.8 12.88 25.9 
Reinhardtius hippog/ossoides 0.1 0.67 6 .9 32.8 
Lepidion eques 0.1 0.67 6.88 39.68 
Synaphobranchus kaupii 1.94 2.5 6.57 46.25 
Mycto12hidae (unknown) 0.32 5.93 52.18 

Grou12s Outcro12 & Cu12 coral field 
Outcrop Cup coral field 
Average Average 

S12ecies Abundance Abundance % Contribution Cumulative % 
Myctophidae (unknown) 2.3 0.32 15.26 15.26 
Synaphobranchus kaupii 1.31 2.5 14.23 29.49 
Sebastes spp. 0 1.62 11.99 41.48 
Coryphaenoides rue_estris 1.39 0.67 11.25 52.73 
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Grou12s S12arse large corals & Cu12 coral field 
Sparse large 

corals Cup coral field 
Average Average 

S12ecies Abundance Abundance % Contribution Cumulative % 
Myctophidae (unknown) 1.13 0.32 11 .87 11.87 
Coryphaenoides rupestris 1.56 0.67 11 .34 23.21 
Centroscyl/ium fabricii 0.94 0 9.41 32.62 
Nezumia bairdii 1.53 1 8.2 40.82 
Reinhardtius hippog/ossoides 0.26 0.67 7.93 48.75 
Synaphobranchus kaupii 1.53 2.5 7.03 55.78 

Grou12s Sea 12en field & Cu12 coral field 

Sea pen field Cup coral field 
Average Average 

s12ecies Abundance Abundance % Contribution Cumulative % 
Myctophidae (unknown) 1.82 0.32 11 .29 11 .29 
Glyptocephalus cynoglossus 1.63 0.8 9.74 21 .03 
Sebastes spp. 0.22 1.62 9.71 30.74 
Nezumia bairdii 1.72 7.98 38.72 
Lepidion eques 0.12 0.67 7.6 46.32 
Alepocephalus spp. 1.08 0 5.91 52.24 

Grou12s S12arse small corals & Cu12 coral field 
Sparse small 

corals Cup coral field 
Average Average 

S12ecies Abundance Abundance % Contribution Cumulative % 
Coryphaenoides rupestris 1.07 0.67 12.69 12.69 
Glyptocephalus cynog/ossus 0.52 0.8 12.14 24.84 
Myctophidae (unknown) 1.19 0.32 10.99 35.82 
Lepidion eques 0.11 0.67 7.9 43.73 
Centroscyllium fabricii 0.68 0 7.34 51.07 
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Grou~s S~onge field & Cu~ coral field 
Sponge field Cup coral field 

Average Average 
S~ecies Abundance Abundance % Contribution Cumulative % 

Sebastes spp. 1.32 1.62 17.88 17.88 
Coryphaenoides rupestris 1.36 0.67 16.76 34.64 
Antimora rostrata 0.53 0 7.33 41 .97 
Zoarcidae ( sp 1) 0.53 0 7.33 49.3 
Mycto~hidae (unknown) 1.04 0.32 7.04 56.34 

Grou~s Sediment with e~ifauna & Cu~ coral field 
Sediment with 

epifauna Cup coral field 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 

Myctophidae (unknown) 1.79 0.32 10.94 10.94 
Coryphaenoides rupestris 1.39 0.67 7.41 18.35 
G/yptocephalus cynoglossus 1.04 0.8 6.71 25.06 
Centroscyllium fabricii 0.87 0 6.39 31.45 
Antimora rostrata 1.1 0 6.07 37.52 
Nezumia bairdii 1.4 5.67 43.19 
Macrourus berg/ax 0.59 0 4.59 47.78 
Macrouridae (sp 3) 0.46 0 4 51 .78 

Grou~s Heteroe_olypus cf. insolitus field & Cu~ coral field 
Heteropolypus cf. 

insolitus field Cup coral field 
Average Average 

S~ecies Abundance Abundance % Contribution Cumulative % 
Sebastes spp. 0 1.62 21.02 21 .02 
Myctophidae (unknown) 1.43 0.32 12.16 33.18 
Glyptocephalus cynoglossus 0.57 0.8 11.45 44.63 
Nezumia bairdii 1.2 1 11 .25 55.88 
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