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ABSTRACT 

The adsorption and desorption of trichlorofluoromethane (CFC1
3

) 

was studied by using a microbalance on the sulphates of calcium, 

manganese, cobalt, nickel, copper and zinc. The effect of annealing 

0 
the samples at 200, 300, 400 and 500 C on their adsorption charac-

teristics and the heat of t solution has been measured. The surface 

structure of the annealed adsorbents is considered from crystal 

field effects. Thermodynamic parameters such as the heat of adsorp-

tion and entropy of adsorption have been derived from th_e various 

isotherms at 20.0, 6.0 and -l0.0°c. These quantities have been 

used to discuss the surface structures. The heat of solution data are 

analyzed and the work of previous workers is considered in terms of 

the present scheme. The construction of a vacuum microbalance and 

the twin calorimeters is also described. 

Surface cobalt (II} is found to be in a tetrahedral environ-

ment at an annealing temperature of (200°C). On adsorption, the 

surface structure possibly changes to a trigonal bipyramidal struc-

ture. However, on annealing at higher temperatures, the surface o_f the 

anhydrous cobalt sulphate provides an octahedral environment for the 

cation which goes to Hush's intermediate symmetry and finally to ' 

the most stable pentagonal bipyramidal structure. Nickel sulphate 

manifests pentagonal bipyramidal structure on adsorption on trigonal 

nipyramidal surface structure. Copper sulphate most probably pro-
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vides trigonal environment to the metal ion at the surface which 

transforms to trigonal nipyramidal structure on adsorption. Physical 

adsorption measurements are found to be a useful tool in analyzing 

possible surface structures. 
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3.00 INTRODUCTION 

The importance of the transition metal compounds is well known 

and has been the subject of numerous investigations by many workers 

and many publications have been devoted to this area. The 3d transi-

t£on metal oxides have been intensively studied in connection with their 

• use as catalysts. Atte~ to correlate semiconductivity with the 

catalytic activity of these oxides has been the focus of much of this 

1 
work. However, Cimino, Shiavello and Stone found that the p-type semi-

conductivity, due to the drift of charge across an array of (Ni(II)/ 

Ni(III)l ions,has lesser relevance for the catalysis of N
2
o decomposi-

tion than has the nature of the configuration of nickel ions due to a 

change in crystal field stabilization resulting from chemisorbed oxygen. 

Sulphates of the transition metal elements have also been utilized as 
2,3,4 

catalysts for various reactions 
5 

Tanabe et al have given a num-

ber of references to reactions catalyzed by these metal sulphates. 

They have tried to correlate the activity of nickel sulphate with the 

concentration of acid sites of the catalyst. The structure of these 

acid sites with respect to the coordination number of the surface cations 

capable of forming intermediate structures has been discussed in some 

detail. 

Many surface phenomena can be explained if the heterogenous 

distribution and nature of sites on a solid surfaceareknown. The knowl-

edge of the interactions occurring at surface heterogeneities has been 

applied in such apparently diverse fields as corrosion, lubrication, 

6 
catalysis and heterogeneous reactions. 

Several theories have been proposed to explain catalysis 
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by transition metal salts. Many surface reactions can be explained 

on the basis of the interaction of lattice defects with the reacting 

molecules. 
7 

Wolkenstein has emphasized the importance of localized levels 

in catalysis. These localized interactions refer to the interactions 

which do not involve free electrons or holes, but involve the inter-

actions between the adsorba~e molecules and the point defects on the 

catalyst surface, such as anion and cation vacancies, interstitial 

ions, F-centers, V-centers, ad-ions and foreign impurities. Inter-

action between a lattice ion and adsorbed molecule without the partici-

pation of the free electrons of the conduction band or holes of the 

valence band is another example of localized interactions. A band 

formed due to such interactions may extend to near neighbors as quantum 
8 

mechanical calculations imply . The interactions involving local sym-

metry such as crystal field effects in chemisorption and catalysis, 

are also taken as direct evidence for the existence of localized inter-
7 

actions of importance in catalysis . 

9 
Dowden and Wells have suggested the correlation between local 

symmetry of crystal surfaces, chemisorption and catalysis. They showed 

a correlation between the catalytic activity and crystal field stabiliza-

tion energy (CFSE) for several first series (3d) transition metal 

oxides. Their argument is based on the fact that the symmetry around 

the transition metal ion, as well as the strength of the crystal field 

is altered due to chemisorption of oxide ions. 

10 
De et al investigated hydrogen deuterium equilibrium, 

on titanium, vanadium, and chromium oxide. Magnetic susceptibility 
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measurements showed that catalytic activity was determined by the avail-

ability of d electrons for covalent bond formation when hydrogen was 

11 
chemisorbed. Dowden and coworkers showed a twin peaked activity pattern 

across the first period of transition metal oxides with maxima at 
0 5 

cr
2
o

3 
and Co

3
o

4
• Low activity was shown by the more stable 3d , 3d 

10 3 
and 3d configurations, whereas high activity was associated with 3d , 

6 7 8 t 

3d , 3d and 3d electronic configurations. 
12 

Richardson and Rossington 

studied the dehydrogenation of cyclohexane on a number of oxide catalysts 

3 2 
and found that the highest activity was associated with the d , d and 

1 
d configurations. 

The local symmetry of a transition metal salt depends on the 

effect of electrostatic potential on a tfree ion' as the electron 

distribution in the outer shell of the transition ion is remarkably 

affected if the ion is subjected to the electric field of an ionic or 

13 
dipolar matrix. Bethe described this effect when the ion is situated 

14 
in an electric field of prescribed symmetry. Van Vleck extended and 

developed the mathematical basis of Bethe's crystal field theory. 
15 

Haber and Stone were among the first workers to carry out an 

experimental study on the solid gas interface considering CFSE as a 

major factor. They reported that illumination (at 650 m~) of a nearly 

stochiometric nickel oxide surface carrying adsorbed oxygen gives rise 

to oxygen desorption. They proposed a mechanism based on a relaxation 

process from octahedrally coordinated nickel ion to a tetrahedral 

structure 
3 
Tlg). 

16 
Jogenpier and Schuit criticized this inter-

pretation and recommended that a more complete theory based on a molecu-

lar orbital treatment be developed, but did not do so themselves. 

17 
Dunning has discussed the importance of crystal field effects which 
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Dunn et al pointed out that crystal field effects are usually 

small and may be masked by other factors. The only way to separate 

the factors is by a thorough comparison of several members of a tran-

sition series including those which have zero CFSE. 

The aim of the present study is to investigate the possible 

coordination symmetries of oations on the surface before and after 

adsorption, by evaluating the contribution of crystal field effects 

on heat of adsorption and comparing the experimental CFSE effects with 

the calculated CFSE effects for various models of surface structure. 

Such a calculation is discussed later (section 6.30). Heats of 

solution have been used to estimate surface structures. Crystal field 

effects associated with various models are discussed in detail in sec-

tion 6.00 and compared with experimental results. 

Whenever a gas comes in contact with a solid surface the gas 

molecules are concentrated near the solid surface due to adsorption 

forces. At equilibrium,the concentration of gas molecules is greater at 

the surface than in the bulk gas phase. These adsorption interactions 

originate from the electrical interaction of the nuclei and electrons 

comprising the system. In principle, these interactions can be calculated 

using quantum mechanics. However such a calculation requires the knowl-

edge of exact positions and orientations of the molecules relative to 

the surface. In other words, the adsorption energies can be evaluated 

from electrical, magnetic and geometrical properties of the adsorbate 

and the solid adsorbent. These calculations have also to account for 

the effect of lateral interactions of adsorbed molecules on the adsor-
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bent field and the entropy change during the adsorption process. 
l9 

Dubinin et al have reviewed the excellent work of Kiselev and 

coworkers, Crowell and coworkers, Pierotti, Graham and many other 

authors regarding calculations of the energy of adsorption of simple 

molecules. From their work it seems possible to make approximate 

estimates on the basis of a general theory of intermolecular forces 

for very simple systems involving monoatomic gas molecules and uniform, 
• 

nearlyideal surfaces. However, for most real surfaces the crystal planes 

are not geometric planes intersecting an ideal crystal. Moreover, there 

are difficulties of determining the effect, due to forces of adsorption, 

on various internal degrees of freedom of real polyatomic adsorbate 

molecules. This effect will be discussed later. In view of such 

difficulties it becomes necessary to introduce a variety of simplifica-

tions and approximations. The example of one such simplification is to 

divide adsorption into physical adsorption (weak interaction) and chemi-

sorption (strong interactionl. In addition adsorbents may be calssified 

as ionic, covalent or metallic. 

Physical adsorption is considered to arise from van der Waal's 
20,21 

forces The physical and chemical properties of the mo~ecules 

are not drastically altered but somewhat modified. In chemisorption, 

actual bonds (covalent or ionic) between admolecules and the surface 

are formed as in a normal chemical reaction. Physical adsorption 

processes occur in gas-solid interactions such as chemisorption, 

catalysis or heterogeneous chemical reaction. 

In the absence of precise knowledge of the exact state of the 

system, quantum mechanical calculations become impossible. Direct 

experiments still remain the only practical source of our knowledge of 
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adsorption interactions. Thermodynamic quantities have been evaluated 

from the adsorption isotherms determined under various conditions and 

these quantities have been used to interpret the state of the systems 

of interest. 

Trichlorofluoromethane, CFC1
3

, the adsorbate used in this study, 

has 3N degrees of freedom. Ideally we should account for the trans-

• 
formation (alteration or restriction) of three translational, three 

rotational and 3N ~6 vibrational degrees of freedom during the adsorp-

tion process. A polyatomic molecule may lose all translational and 

rotational degrees of freedom in the extreme case of immobile localized 

adsorption. The three translational degrees will be transferred into 

three vibrational degrees. The rotational degrees of freedom will also 

be transformed irrtn vibrations of various modes e.g. bending, rocking, 

torsional about an axis or internal rotation. In the other extreme 

possibility, a molecule may lose only one translational degree of free-

dom and retain all of its rotational and vibrational degrees of free-

dom. The translational degree of freedom is replaced by a vibration 

normal to the adsorbent surface. Adsorption of such a kind is more 

probable when weak physical adsorption forces are involved. However 

hindered rotation or translation, due to the nonuniformity of surface 

resulting in uneven potential barriers is much more likely to be pres-

ent. Rotational motion may even be completely transformed into vibra-

tional motion on adsorption. The selection of a model of adsorption 

is a very difficult problem. Entropy determinations alone are not 

sufficient and independent methods such as spectral or magnetic investi-

gations are useful to confirm the model. A comparison of entropy changes 

as a function of surface coverage for a particular model, with the 
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experimentally observed entropy of adsorption data may help to visualize 

the state of an adsorbed layer on the surface. 
22 

Machin observed that the isosteric heat of adsorption at zero 

surface coverage was maximum with those adsorbents having the largest 

crystal field stabilization energy. Accordingly the adsorbents used 

for the present study were the sulphates of the first series of transition 

metal elements from manganese to zinc and calcium. The crystal field 

perturbations are two orders of magnitude greater for d electrons of 
23 

first series than for f electrons of the lanthanide series The 

f electrons of the lanthanide ions are shielded by s and p electrons 

which lie outside f electrons and screen them from the ligand environ-

ment. No such protection is available for the d electrons of the ions 

of the first transitional series. In the ions _of the actinide series, it 

appears that crystal field effects are of an importance intermediate 

between those for the first transition series and for the lanthanide 
23 

ions 
14 

Dunn et al have shown that if the spectroscopically obtained 

CFSE for the aqueous ions in the series calcium through zinc is sub-

tracted from their hydration energies and the resultant plotted 

against the atomic number of the corresponding elements a better straight 

line relationship is obtained than for the corresponding trivalent 

ions of the series. This observation shows that the properties other 

than those altered by crystal field effects vary more uniformly for the 

divalent ions of the series than for the trivalent ions. 

The aforesaid considerations led to the choice of divalent ions 

of the 3d series for the present study. In the case of anions, oxides 

were avoided due to semiconductivity complications. Furthermore, stoicbio-

metric oxides are di.fficult to prepare. The other factors con-
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sidered were firstly, the ease of preparation and secondly, the stability 

of the compounds at high temperature. Sulfates of Ca(IIl, Mn(II} and 

Zn(II) ions with empty, half-filled and completely-filled d orbitals 
7 8 

and having zero CFSE and Co(II}, Ni(II) and Cu(II} ions having d , d 

9 
and d orbitals, were selected for this investigation,. Ferrous sulfate 

was omitted because of the difficulties involved in preparing the salt 
22 24 25 

without partial decomposition ' ' 

The choice of the method of measurement of extent of adsorption 

at different conditions is discussed in detail in section 4.20. The 

microgravi.metric method has been selected and a suitable vacuum micro-

balance has been constructed. For determining the heats o£ solution 

necessary for the calculati.ons of CFSE, a twin calorimeter was designed 

and a volumetric BET apparatus*has been used to check surface areas 

of the adsorbents before measuring heats of solution. 

The thermodynamic analysis of adsorption is useful for the 

determination of the adsorptive characteristics of real adsorbents. 

Infrared, field ion microscopy, low energy electron diffraction etc. 

describe the adsorption phenomena on the atomic scale but the interpre-

tation of the results of these methods is still only possible for simple 

systems eg. single crystals. 

The preparation and annealing of the adsorbents is described in 

detail in section 4.34. The stability of the compounds and surface 

areas of the samples were the main considerations for adopting the 

method described. Ideally it would be desirable to prepare substrates 

consisting of single planes of specific crystallographic orientation 

to extend Machints qualitative treatment. In order to minimize the 

,uncert~inties j..n surface structure characterization, the anhydrous 
* 28 
The famous Brunauer, Emmett and Teller apparatus 
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transition metal sulphates used as the adsorbents in the present work 

were annealed at 200, 300, 400 and 500°C. The surface structure of 

the adsorbent may change at elevated temperature as the lattice ions 

should have enhanced mobility and the tendency of the ions will be to 

move to more stable si.tuations. The possibility of decomposition of 

sulphates at the surface at higher temperature limited annealing tempera-

0 ture to 500 c. Even at t~ temperature in some cases partial surface 

decomposition may start at reduced pressures. For these reasons and 

others to reduce the effects of sintering, the heat treatment for cobalt, 

nickel and copper sulphates was done in an argon atmosphere. 

The effect of heat treatment was assessed by measuring the 

adsorption isotherms at three temperatures between -10° and 20°c, from 

which the isosteric heats and differential entropies of adsorption were 

determined. The correlation of the annealing effect on heats of adsorp-

tion has been used to give insight into the surface structure before 

adsorption by comparison with suitable models (section 6.30). 

In the di~sion the word 'model' has been used in two different 

ways. One refers to the state of the adsorbate on the surface and the 

other to the configuration around surface cations. The entropy considera-

tions refer to the model for the adsorbate state, and the crystal field 

effect considerations refer to the latter surface structure model. 

The choice of trichlorofluromethane (CFC13 } as the adsorbate is 

due to several properties described below: 

Firstly, freon 11 (CFC1
3

) is a heavy molecule suitable for the 

gravimetric method ofadsorption studies. Secondly, the molecule is 

26 
quasi-spherical and has a small dipole moment Thirdly, the vapour 

pressure at the temperature of isotherm measurement is convenient and 
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finally the purification of the adsorbate is easy. 

Trichlorofluorometbane is also a suitable vapour from the 

point of· view of thermal transpiration effect (see section 4.27). 

carbon tetrachloride also fulfills the above requirements except that 

molecule has no dipole moment and has a lower vapour pressnre. Mo~eover, a 

large variation of molecul~ area of cc14 on different adsorbents was 

27 
found by Machin , whereas the molecular area of CFC13 was found to be 

almost invariant. 
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MATERIALS 

Materials used in adsorption measurements: 

The various adsorbents used in the investigation were the 

anhydrous sulphates of calcium, manganese, cobalt, nickel, copper 

and zinc. The anhydrous salts were prepared from the corresponding 

hydrated salts (Fishef certified reagent grade) by vacuum dehydra­

tion in situ. Sample preparation is further discussed in section 

4.34. 

Trichlorofluoromethane (Matheson, 99.5 mole percent) was 

distilled twice under vacuum using the middle fraction each time. 

The purification procedure is given in section 4.35. 

Argon was used as a streaming gas over the sample during 

the annealing process. Purified grade argon (99.995%) was supplied 

by Matheson Co. 

Materials used in calorimetric measurements: 

The anhydrous sulphates used for heat of solution measure­

ments were prepared in a similar way as for adsorption measure-

ments. However a slightly different procedure was adopted fer streaming 

argon over the samples while annealing, The preparation o.f sulphates 

will be discussed in section 4.41. The materials used were the 

same as in adsorption measurements. 

Helium was used for line volume calibration in the volumetric 

BET apparatus. Spectral grade helium was supplied by AIRCO in one 
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litre bulbs equipped with break seals. 

Potassium sulphate solution (0.5 M} was prepared by dis-

solving K
2
so4 (Analar, B.D.H.} in distilled water. 

Potassium Chloride used for the calibration of the calorim­

eter was supplied by Shawinigan Chemicals (ACS grade) . 
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Adsorption measurements: 

Adsorption measurements may be carried out using three 

28 
types of method , volumetric, gravLmetric or dynamic. The main 

considerations when selecting a method are the adsorbent surface 

area, the nature of the adsorbate, and the required precision. 

In the present study the adsorbate used, CFC1
3

, is a con-

densible vapour and any nonequilibrium method for example those 
29-32 

based on thermal conductivity measurements would not be 

suitable. 

29,33-36 
The volumetric method utilizing the change in 

pressure of a gas at constant volume and temperature as a measure 

of the amount of gas adsorbed has the advantage of sLmplicity of 

apparatus and procedure. The method has disadvantages arising 

from the fact the equilibrium gas pressure is also used to calculate 

the amount adsorbed. Cumulative errors in the quantity of gas 

adsorbed become progressively greater as the total pressure of 

adsaroate increases. Errors also arise if parts of the apparatus, 

other than the sample,adsorb gases, or are the source of any 

other gases. Greased stopcocks obviously could not be used in 

this study since CFCl3 dissolves in the stopcock grease. An 

apparatus wi_th all metal valves could be used for surface area 

measurements, but it is not suitable for the measurement of iso-

therms. In this study the volumetric method was used for the 

measurement of surface areas of the sample which were to be used 

for the calorimetric measurements. The procedure is further 
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described in section 4.44. 

Gravimetric methods, while requiring more sophisticated 

apparatus, can give more precise measurements of quantities ad-

sorbed. The advantage of the gravimetric method is particularly 

marked when the surface area of the adsorbent is small, in fact, 

the method has been applied to samples having surface area less 

than a few hundred sqpare centimeters 
28,37 

Furthermore, pres-

sure and amount adsorbed are measured independently thus avoiding 

the problem in measurements due to adsorption of the gas by other 

parts of the apparatus. A further advantage over volumetric 

method is that any amount of dead-space can be tolerated. The 

method is unique in that it enables one to make a series of pre-

cise measurements of high sensitivity under controlled conditions 

over a wide range of experimental conditi.ons. With samples having 
2 

low surface area (a few em ) volumetric methods lose their 

sensitivity as the pressure increases. If thermal effects and 

buoyancy corrections (sections 4.27 & 4.281 are applied, the 

gravimetric technique remains unchanged over a large range of pres-
-10 36 38 39-41 

sures (lO torr to one atmosphere 1 • Czanderna and others 

have described the versatility of the gravimetric method for 

studying various adsorption characteristics and mass determination 

problems. 

Since surface areas in the present study were expected to 

2 
be small, as low as 10 m /g, and in view of the p oints discussed, 

a gravimetri.c method was chosen for adsorption measurements. 
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Types of vacuum microbalances: 

3 5 ' 3 6 ' 4 2 -4 5 37 
Thomas and Williams and others have described 

a large variety of microbalance types that can be adopted for 
46 

adsorption studies. Honig has classified various types of 

microbalance according to their design and on the basis of the method 

used for monitoring mass changes. Comments on the different 

categories, according to their principles of operation, follow. 
. . 
Cantilever type: 

This type of balance is simple to construct and operates in 

high vacuum. It consists of a fiber with one end fixed and other 

supporting the sample. The deflection of the fiber is linear 

with weight over a limited range. It suffers from the disadvantage 

of being prone to errors from temperature differences and requires 

buoyancy corrections. The sensitivity of such balances is dependent 

on the capacity. 

Spring type: 

47 
McBain and others have used helical silica springs for 

48 
a variety of adsorption studies. Tungsten or copper-berylium 

49 
alloys have also been used to replace the fragile silica for the 

construction of springs. The extension is proportional to the 

load. Obviously, increased sensitivity can only be attained at 

the expense of reduced capacity. Effects of vibrations, convec-

tion currents and buoyancy unless eliminated or corrected for may 

reduce the sensitivity attainable. 
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Beam type: 

These balances incorporate a symmetrical beam supported 

in the centre by a torsion fiber, knife edge or a very thin tung-

sten wire. Accordingly, these are divided into three subcate-

gories: 
38,50-52 

(a) Pivotal type: Czanderna has constructed very sensitive 

and sophisticated types of pivotal microbalances. The pivots 
• 

were constructed of sharp pointed tungsten, resting in quartz 

cups. The possible errors in such balances may be due to irregular-

ities in the pivot surfaces or from friction between the suspension 

point of the beam and the pivots. 

53 
(b} Torsional type: Torsional balances utilize the torsional 

moment of the wire constituting the primary fulcrum to restore 

the balance to an original setting. The torsional fiber system 

suffers from several inherent disadvantages. Chief among these 

is their tendency to yaw. The load capacity of the sensitive 

models is limited though not as severely as in the case of spiral 

balances. These balances are rather delicate. 

(c) Gravity type: A sufficiently thin tungsten wire support 

results in a slffiple gravity operated beam type of balance. The 

torsional contribution of the suspension wire that acts as primary 

fulcrum is made negligibly small compared with the gravity moment 

exerted by the sample and the counterweights which are suspended 

54 37,56 
from the two secondary fulcrums. Gulbransen , Thomas and Williams 

57 
and Wolsky and Zdanuk have described such balances in detail. 
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The main advantage of such a balance is that, owing to its symmetry 

disturbances arising from temperature and pressure gradients are 

minimised, and buoyancy corrections need not be applied if the 

counterweight is so chosen that its density matches that of the 

sample. Furthermore, i .t can be readily converted to a null-point 

58 
instrument Simple gravity type of balances are more stable 

and less sensitive to. temperature changes than the torsional 

balances. 

The limiting value of sensibility, the smallest mass change 

-2 
which this type of balance can measure is ~10 

37 
~g 

59 
extent the sensibility is not dependent on load 

To a large 

Two different types of balance , na~ely the vertically 

37 60-62 
suspended balance and the quartz resonant balance , have 

been developed recen~ly. 

The vertically suspended balance is essentially a torsion 

balance. The beam rotates about a vertical axis rather than 

conventional horizontal axis. Such a balance is especially em-

played to measure vapour pressure of solids. 

The quartz resonance balance is based on the effect of added 

mass on piezoelectric crystal frequency. A very high degree of 

precision is possible with such balances as frequency changes 
~ 2 37 

equivalent to 1 X 10 ~g/cm can be measured However the 

usefulness of such a balance is limited to those materials which 

can be uniformly bonded to the quartz plate and which will not 
63 

unduly lower the amplitude of vibration of the resonator 
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Balance design: 

The apparatus design was based upon the considerations 

listed below: 

The sensitivity, capacity and the range of the instrument 

must be properly coordinated in the balance design. The nature 

of the adsorbent and adsorbate and the method of preparation of 

the sample are other design considerations. Furthermore, the 

material of the balance and the accoutrements must be bakeable 

in vacuum and in an argon stream. 

For the present work a gravity type beam balance, similar 
54 

to that of the Gulbransen balance , was developed. Features of 
55 

Pettersen's balance were employed. The balance assembly was 

symmetrical in detail, except for the difference between the sample 

and the reference bulb. The housing was also symmetrical. Sample 

and counterweight were hung deep in glass tube wells which could be 

maintained at the same temperature. The counterweight was so 

designed that the density of the reference side could be made same as the 

sample side, thus minimizing any buoyancy corrections. This was 

achieved by sealing a calculated amount of mercury within the 

counterweight bulb capillary (Fig. 1). 

The balance housing was slightly modified on the sample side 

in order to permit the flow of argon over the sample while annealing. 

The overall assembly of the balance is shown in Figure 2 & 3. The 
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argon inlet into the balance is shown as legend 12 in Fig. 3. 

The balance beam is constructed of 1 mm quartz rods. A 

full size diagram of the various aspects of the balance beam is 

shown in Figures 4 and 5. The figures being the side view and 

the top view respectively. A complete sketch of the balance beam 

and supporting frame is shown in Figure 6. 

An electromagnetic compensation method was used to restore 

the balance beam to a null position. The balance beam contains 

a magnet as shown in Fig. 6 (legend 21) anla solenoid is wound 

directly around outside the balance case (Fig. 2, legend 1). 

The solenoid windings were cemented to the tube to eliminate the 

possibility of slipping and consequent change in calibration of 

the balance. The mass change of the sample due to adsorption of 

the gas resulted in tilting the beam of balance to the sample side. 

Current was passed through the balance solenoid to restore the 

balance beam back to its null position as monitored by the photo­

current balance in the galvanometer of an optical electronic 

system. The current through the balance solenoid is the measure 

of the mass change. The current flow through the solenoid was 

measured as a potential drop across a standard resistance in 

series with the solenoid (Fig. 7}. The advantage of using the 

balance as a null instrument is that errors due to the deforma­

tion of the beam, irregularities in the supporting wire and asym­

metry of the beam are minimized. The magnet also serves to damp 

the balance vibrations and oscillations. 
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The optical electronic system, utilized to determine the 

beam position, used light sources and sensing devices. The mounting 

of these devices on the support is shown in Figure 2 and 3. Two 

matched phototransistors (Phillips OCP 71) were mounted in an 

al urn inurn block. In order to keep the phototransistors at con-

stant temperature, water was circulated within the aluminum 

block from a thermostatically controlled bath at 25°C. The photo-
• 

transistor circuit is shown in Figure 8. The complete circuit 

was mounted in an aluminum box which was attached to the photo-

transistor mounting block. The box was wrapped with styrofoam 

for thermal insulation. The response time of the system was a 

few seconds. 

The beam assembly was mounted on a frame of 2 mm quartz 

rods. The beam was cemented to the thin tungsten wire by a silver 

64 
chloride seal Similar seals were used to cement the wire to 

the mounting frame. The entire frame was cemented in the required 

position in the balance case at four points using epoxy resin. 

The reference bulb and the sample were suspended from the 

beam with chains made of short thin quartz rods. This minimizes 
65 

vibrations in the hangdowns and also reduces the thermomolecular 

flow along the hangdown relative to metal wire suspensions. 

Balance sensibility: 

37 
The balance sensibility is defined as the smallest mass 

change that can be reproducibly measured with a given accuracy~ 
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The monolayer capacity, Mm, is related to the cross-sectional 

molecular area, B, and the sample surface area, A, by the relation: 

A 

BN 

where N is the Avogadro's number. 

mole/g (1) 

To have a balance with a precision of + 0.1% of the mono-

layer capacity, then t~e required sensibility is given by: 

6 
s 10 Mm . M . X micrograms (2) 

where x is the precision fraction factor and is equal to 0. 001 of Mm in 

this case. M is the molecular weight of the adsorbate. 
2 

For CFC1
3 

on a surface of area 5 m the required sensibility 

is ~ 4 microgram. 

Outline of operating procedure: 

The details of sample preparation of a particular surface 

is given in section 4.34. 

1. The samples were outgassed for at least 24 hours in vacuum 

at 120°C before each isotherm run was started. 

2. The constant current supply units and the electronic 

circuit were put on at least 12 hours before the run to get constant 

response. 

3. The constant temperature bath was brought to the required 

temperature and allowed to equilibrate for at least two hours 

before starting a run. To facilitate temperature equilibrium 
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helium was introduced (about 4 torr} in the equilibrium manifold 

and evacuated before starting the experiment. A constant current 

reading corresponding to null of the balance was always obtained 

before starting a run. This zero reading was always checked at the 

end of the run to verify the reversibility of the balance behaviour. 

Whenever an appreciable deviation in the zero reading was noticed, 

despite evacuation, the entire isotherm run was rejected . 
• 

4. The adsorption points were obtained by taking a small dose 

of adsorbate vapour from the absorbent storage bulb and equilibra-

ting until the sample weight became constant. The weight reading 

was taken only after constant weight was observed. Desorption 

points were then obtained by condensing the vapours into the 

adsorbate recovery flask cooled by liquid nitrogen. The CFC1
3 

thus recovered was always discarded at end of the run. 

5. The measurement of mass adsorbed has been discussed in 

sections 4.22 and 4.25 ~ The pressure measurements are discussed 

in section 4.32. 

-- calibration of the balance: 

The balance was calibrated by Archimedes principle of 

6S 
buoyancy 

The volume of a small glass buoyancy bulb was calibrated 

by weighing the displaced water using a pycnometer. The buoyancy 

bulb was suspended replacing the sample bulb and its apparent 

mass change was determined as a function of gas pressure. The 



- 30 -

buoyancy bulb was then replaced with a solid glass bead of equiv-

alent mass and known volume (about one-tenth that of the larger 

bulb} . Potential and pressure readings were again recorded as 

in the case of buoyancy bulb. 

In rothof the experiments, the plots (Fig. 9} of mv (the 

potential drop across the standard resistor; section 4.22) versus 

pressure gave a strai~ht line. Slope of these plots was calculated 

using the method of least squares. 

The balance sensitivity is calculated by the following 

66 
relation 

s (3) 

Where S balance sensitivity in ~g per mV potential 

difference across the standard resistQr; 

M molecular weight of the ambient gas in g/mole; 

3 
v -1 

volume of the buoyancy bulb in em 

3 
v -

2 
volume of the glass bead in em i 

sl-.. slope of the plot using buoyancy bulb mV/torr; 

s -2 
slope of the plot using the glass bead; 

P 760 torr; 

V 22,415 ml per mole; 

and z temperature correction factor to operating temperature. 

The data for the weight and volume of the bulbs used are: 

Buoyancy bulb: Weight: 1.0011 g; 

Volume: 4.643 ml; 
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Glass bead: Weight: 1.0010 g; 

Volume: 0.425 ml. 

The slopes obtained at 20°C were: 

s
1

: 3.29 mV/torr; 

s 2 : 0.03 mV/torr. 
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The sensitivity of the balance from the above data was calculated 

to be 9.72 ~g/mV acro?s a 100 ohm standard resistor. 

The calibration of the balance was repeated from time to 

time periodically and all measurements gave a sensitivity in 

agreement with the above value within 1.5%. This change in 

sensitivity can not be attributed entirely to errors in measurement, 

as a few changes were made in the balance such as changing the 

hangdowns, sample or reference bulb, the light bulbs and the photo­

transistors. Every time any such change ~ms made, the balance 

sensitivity was redetermined. However, the change in sensitivity 

never exceeded the limit mentioned above. 

The plot of E.M.F. (mVl versus the pressure (torr) is shown 

in figure 9. These points were taken while increasing the pressure 

as well as while decreasing the pressure. The plot corresponds 

to the data used above for the sensitivity calculation and is the 

typical of the measurements taken at other times. Table 1 (see 

appendix B) contains the pressure and mv readings. 

Experimental error in weighing: 

The potentiometer used, could read to the lower limit of 
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+ 0.05 mv. The difference between two readings of potential drop 

would have an error of 0.1 mv~ corresponding to an error in weight 

of + 0.97 ~g. For CFC1
3 

this is equivalent to an error of + 0.007 
2 

~ moles and for a surface area of 5 m , the error will be + 0.25 X 

-3 
10 Mm, whereMmis the monolayer capacity. 

ThermaL ~ffects of th~ gas phase on~~parent mass: 

. 
Solid-gas equilibria, when measured using a vacuum micro-

balance are subject to error in mass measurements due to tempera-

ture dependent effects on the adsorbate gas. Two types of effects 

can cause disturbances in weighing: Brownian motion, and thermal 

gas flow. An enormous amount of work has been done, both theoreti-

cal as well as experimental investigating these effects. A short 

review is included here. Thermal gas flow includes thermomolecu-
67 

lar flow, slip flow and convection The discussion and the 

figures quoted below are for a typical balance design of the type 

used in this work. 

Brownian motion: This is a completely unavoidable and natural 

limitation to the sensibility of a balance. The effect arises due 

to the irregular bombardment of the moving parts of the balance 

from the random motion of gas molecules causing fluctuations. 

37 67 
Thomas and Williams and Robens have given a review of the work 

68 
in this field. Poulis and Thomas have assessed the spurious 

-4 
mass arising from Brownian motion to lie in the range of 10 

microgram. 

-2 
to 10 
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Thermomolecular flow and slip flow: These effects are most important when 

the mean free path of gas molecules is greater than or equal to 

the diameter of the tubes crossing the region of temperature 

gradient. Consequently the particles arriving at a unit surface 

from the region of higher temperature provide more momentum than 

those coming from cooler regions. This gives rise to a net force 

on the hangdown wire in the direction of decreasing temperature. 

This phenomena is known as a thermomolecular effect, or a thermal 

69 
transpiration effect, Katz and Gulbransen have described it as 

pressure effect. The pressure is an important factor as at very 

low pressures the number of molecules become insignificant 

resulting in fewer collisions with the apparatus and the thermal 

transpiration effect is not noticable. At higher pressures, where 

67 
the mean free path of molecules is restricted convection becomes 

more important. 

50,70 
Czanderna and Honig observed a spurious mass change 

when the temperature of the sample was different from that of the 

-3 
remainder of the balance in the pressure range of 10 

They attributed this effect to thermomolecular flow. 

to 20 torr. 
71 

Czanderna 

separated this effect for the sample and the hangdown and found 

-2 
that the maximum mass change occurs over a pressure range of 10 

-1 72 
to 10 torr. Thomas and Poulis have shown by extension of 

73 
Knudsen's theory that the magnitude of the spurious mass change 

can be calculated theoretically. They have calculated the force 

along the hangdown wire and recommended methods to minimize 
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74 
the extent of the mass changes. Massen and Poulis calculated 

the spurious mass changes arising due to temperature inhomogeneties 

75 
along the balance case to be 0.1 ~g/deg. C. Czanderna recom-

mended the use of an inert gas carrier for the active gas to measure 

the adsorption isotherm with precision (0.2 ~g) at pressures in 

-3 
the thermomolecular flow region (10 to 20 torr) . 

76 
Thomas and Po~lis extended these calculations of Knudsen 

forces £n the intermediate pressure range and suggested that it is 

77,78 
better to avoid these errors by practical methods rather than 

by correcting using theoretical calculations. 
79 

Streensland and Forland found good agreement between 

experimental and calculated error using slip flow theory. They 

showed that both Knudsen and slip forces depend on the geometry 

of the sample and the fiber, and on the temperature gradient 
80 

over these. Behrndt et al quickly analysed both these theories 

and found them equivalent. However, the experimental results 

were found to be different because of the uncertainty in the 

exact temperature above and below the sample. 

81 
Culting has emphasized that it is better to choose 

vapours at room temperature rather than the gases at low or high 

temperatures to avoid these corrections. He recommended use of 

cc14 as an adsorbate. 

Effect due to convection: Convection is observed at relatively 

high pressures (> 100 torr} and results due to gas density 

differences caused by temperature differences and the action of 
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the gravitational field. 

In the present work, it was decided to design the system 

so as to prevent the disturbances by thermal gas flow effects. 

The following points were considered in the choice of the system. 

1. The temperature of the isotherms should be as close to 

room temperature as possible. 

2. The adsorbate• gas has to be a vapour near room temperature. 

3. The choice of the adsorbate should be such that the pres-
-1 

sures below 10 torr should be avoided. 

4. Symmetry of reference and sample side of the balance: the 

entire balance assembly should be constructed and operated in a 

manner that enables the inherent symmetry of the system to counter-

act these potential sources of error. 

Three temperatures for the isotherm measurements were 

selected: 0 0 0 20 , 6 , and -10 C. The adsorbate used was CFC1
3

, 

which is a vapour in the range of the experimental conditions 
43 

and has other advantages mentioned in section 3.00. Machin 

calculated the thermal transpiration correction (thermomolecular 

flow} at equilibrium pressure for CFC13 . According to his con-

elusions the correction need only be applied below 0.02 torr. In 

the present study the pres-sure was kept within the range of 0.1 

torr to 300 torr. 

Buoyancy corrections: 

As already mentioned in section 4.22, the balance was 
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designed to minimize the undesirable influence of buoyancy 

forces. The densities of the reference counterweight bulb and 

the sample bulb were made nearly the same and both limbs of the 

balance including housing and hangdown wires were cooled to the 

same extent during the measurements. 

The symmetry of the sample side and reference side was 

further checked by p~acing a representative sample in the balance 

and admitting dry air into the equilibrium manifold to a pressure 

up to 500 torr. No apparent mass change was detected. 
82 

Pierotti has described another buoyancy effect due to 

gas-solid interactions. The density of the medium in the vicinity 

of the solid will be different and is dependent upon the nature 

of the gas-solid interaction, the temperature and the pressure. 

The perturbation in intermolecular potential between gas molecules 

is caused by the presence of the solid. The resultant change 

in density of the gaseous medium in the vicinity of the solid 

causes the mass defect and is dependent on the surface area of 

the solid. However such a mass defect is appreciable only at 
82 

extreme temperatures. In the example given for helium on carbon 

0 black the mass defect ~ is zero at 300 K. However it is +100 

0 0 
~g at 78 K and -3 ~g at 1000 K. 

In the present study no consideration has been taken of 

this factor. However, ~ is not expected to be appreciable in 

the conditions of our experiment. Moreover, the error will be 

more or less uniform throughout the series of the anhydrous 
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sulphates as the nature and surface area of the samples are similar 

and no relative error wi.ll be caused in our comparitive isotherm 

treatment. 
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Experimental methods for adsorption measurements: 

The microbalance with complete equilibrium manifold, 

vacuum system, constant temperature bath are the essential parts 

of the apparatus used for the adsorption studies. The micro-

balance has already been described in sections 4.21, 4.22. The 

description of the rest of the apparatus will be discussed in the 

following section. 

vacuum requirements and vacuum line: 

The actual number of residual gas molecules which is 

potentially capable of being adsorbed by the surface may be 

36,83 
estimated by kinetic theory 

-6 
In a vacuum of 10 torr, 

10 
there are roughly 3 X 10 

If a fresh surface, say of 

3 
molecules per ern at room temperature. 

2 
100 em surface area, is generated 

in a closed system at this pressure, the extent of contamination 

of the surface will be less than 0.03% of the surface area, if 

84 
all of the residual molecules from the gas phase are finally 

adsorbed on the surface. It follows that our adsorption studies, 
-6 

a vacuum of 10 torr is adequate and there is no necessity to 

utilize ultra high vacuum techniques. 

The vacuum system and the equilibrium manifold are illus-
84 

trated in Fig. 10. Kallen and Czanderna have given a 

theory for the design of a specific microbalance vacuum sys-

57 85 86 
tern. Wolsky and Zdanuk , Rhodin and Cadenhead & Wagner 

have given the experimental set up used in their rnicrogravirnetric 
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studies. 

The vacuum rack consists of Mcleod gauges of two different 

ranges for low pressure measurements and a mercury manometer. 

Three small bulbs (6, 7 and 8 in Figure 10} are provided for puri-

fication and storage of liquid CFC1 3 • The purification and storage 

of liquid CFC1
3 

is described in Section 4.35. During the desorp-

tion runs one of the bulbp was used for condensing the CFC1
3 

vapour. This condensate was discarded after each such run. The 

CFC1
3 

was always stored at -78°C between runs to reduce its uptake 

by grease. 
-6 

A pressure of 10 torr was always ensured before the run 

was started. The fore pumps and mercury diffusion pump were con-

tinuously in operation. A Pirani gauge and a Mcleod gauge were 

used to measure the low pressures. 

Pressure measurements: 

For the measurement of the pressure of a readily condens-

ible vapour a conventional mercury manometer with the aid of a 

cathetometer could give a precision of about 0.01 torr. For 
87 

pressures below 1 torr, a Mcleod gauge could be readily used. 
88,89 

Various types of pressure gauges, for example Pirani gauge 

89,44 90 
spoon gauge , thermistor gauge or an automatic balancing 

91,92 
capacitance manometer have been used by others. Each type 

of gauge has its own limitations for the range and the properties 

of the gas used in the system. 
92 94 

91 
Utterback and Griffith and 

others have raised objections to the use of a Mcleod gauge 
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as a universal gauge. Errors such as mercury pumping and thermal 
95 

transpiration arise due to presence of a cold trap in the 

system, no cold trap was used in our equilibrium manifold. However, 

the errors in measurement are significant only for gas pressures 

-3 87 
below 10 torr Unnecessarily long contact with CFC1 3 vapours 

and the mercury surface were avoided as far as possible. Mercury 

diffusion to the equilibrium manifold was kept to a minimum by 

maintaining the flow of gas stream towards the gauge rather than away 

from it. 

Temperature control: 

The constant temperature bath consisted of an insulated 

stainless steel tank of about 1.5 cubic feet capacity. Water was 

used as coolant and for filling the tank at 20.0°C and 6.0°C. 

To achieve the temperature at -l0°C a methanol-water solution 

was used as the bath liquid. The arrangement used to obtain a 

temperature of -l0°C is shown schematically in Figure 11. Methanol 

at -l5°C was circulated in the cooling coil immersed in the con-

stant temperature bath (C). To cool the methanol at -l5°C in the 

tank (B) a manually adjusted circulation of methanol solution in 

a copper coil was maintained by passing the methanol through a 

slush of dry ice and methanol kept in Dewar (A). A pump was used 

to circulate methanol from tank (B) to (A) and (C) as shown in the 

Figure 11. The flow rate was adjusted by means of pinchcocks 
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as indicated. 

A heater coil connected through a Variac and relay provided 

the source of heat for the bath. A thermistor operated relay 

( '"Thermi.stemp r model 63 RB, Yellow Springs Instrument Co. , Mary-

land) was used to control the heater. Temperature vari.ation was 

0 0 
normally ~0.05 C but never exceeded+ 0.10 c. 

Cold tap water was used to cool the bath at 20°C and 6°C. 

0 
However, whenever the tap water was above 5 C the system described 

above was also used for thermostating at 6°C. 

4.34 Sample preparation~ 

Hydrated sulphates of calcium, manganese, cobalt, nickel, 

copper and zinc were evacuated at room temperature and the temperat-

0 0 0 0 0 ture was increased in steps to 50 , 100 1 125 1 150 and 200 c. 

At each step the pumping was carried on until constant weight 

was obtained. This general method was used for the following: 

Znso4 ·7H2o. Preparation of anhydrous Feso4 was not successful 

as on dehydration, the salt yields a partially decomposed and 
22,24,25 

oxidi.zed product 

The anhydrous products were all prepared directly in the 

sample bulb on the balance and the surface areas were determined. 

Specific detai.ls on the preparation of each adsorbent will be 

presented below. 

Calcium Sulphate: The product on dehydration by the general proce-
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2 
dure yielded a surface area of about 12 m /g and the sample was 

used for adsorption studies. 
96-104 

Many workers have carried out studies on dehydration 

and rehydration of calcium sulphate. 
99 

Malony, Rectka, and Ridge have 

studied the kinetics of dehydration in vacuum, finding that 

dehydration takes place in two steps: 

(Monoclinic} (rhombohedral) (hexagonal, soluble 
anhydrite) 

0 
The 2nd step was carried out by heating at 85 C for 24 hours. 

They have furth.er mentioned that on heating above 200°C the hexa-

gonal form transforms to the orthorhombic form. The crystal 
105 

structure of anhydrite is given by Wyckoff , Cheng 
106 

et al and 
107 

Bokii et al Calcium sulphate has a rhombic unit cell structure 

and each calcium ion is surrounded by eight oxygen atoms. Betoluzza 
103 

et al studied infrared spectra of thermally dehydrated calcium 

sulphate and found that the product on heating up to 600°C is either 

the hexagonal or the orthorhombic. 

Following dehydration, the samples were annealed in vacuum 

at 300° and 400° and isotherms were determined. 

Manganese Sulphate: Anhydrous manganese sulphate was prepared 

following the general method described earlier for calcium sul~ 
2 

phate and was found to have a specific surface area of about 8 m /g. 

This sample was used for adsorption measurements. 
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101 
Tanabe et al have heated manganese sulphate in air and 

vacuum and found that the acidity of the surface increased on 

heating. This acidity presumably arises from chemisorbed water. 

D.T.A. studies on Mnso4 in air have been carried by Bendor and 

1 . hl08 Marga 1t . According to them Mnso4 dehydrates completely at 

On annealing the sample to 300°C in vacuum a slight weight 

loss (0.7%) was observed. Slight zero shifts in the balance 

over long periods of time may produce apparent weight changes 

as well. However, this phenomenon has been observed with the 

other salts up to ca 300°, and the effect is much less important 

at higher temperatures which suggests that it may be due to chemi-

sorbed water. Annealing at 400°C was also done in vacuum. An 

attempt to anneal the salt at 500°C in vacuum was not successful 

because the Pyrex balance limb was softened and deformed at this 

temperature. 

The crystal structure of anhydrous manganese sulphate has 

105 109 110 
been reported by Wyckoff , Rentzperis , Coing-Boyat 

111 112 107 
Pistorius • ~ill and Bokii et al Manganese sulphate is 

isomorphic with NiS0
4 

and the low temperature ( <500°C) modification 

of cobalt sulphate. It has orthorhombic unit cell structure. The 

sulphur atoms lie at the centre of an almost regular tetrahedron of 

oxygen atoms. The manganese ions lie at the centre of a distorted 

octahedron of oxygen atoms. 
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zinc sulphate: Zinc sulphate was partially dehydrated at room tempera-

ture outside the balance assembly and then a suitable amount 

was placed on the balance pan (sample bulb) . This sample was 

heated by the general procedure up to 200°C, giving a satisfactory 
2 

surface area, approximately 7 m /g. The sample was annealed in 

vacuum at 200°, 300° and 400°C in vacuum and the isotherms were 

determined each time. • An attempt to anneal at 500°C was not 

successful for the reasons explained above. The weight loss ob-

served on annealing between 200°C and 300°C was <0.2% which cor-

responds to approximately one monolayer of water. 

Dehydration studies of zinc sulphate were done by Kohler 
113 114 115 

and Zaske and more recently by Ball and Norwood , Manewa 
116 115 

and Sara Sarig According to Manewa zinc sulphate is free 

from water within 24 hours at 140°C in high vacuum. 

The crystal structure of zinc sulphate has been described 
117 118 

by Kokkoros and Reutzeperis Pannetier and Bregeault and 

107 
Bokki et al Zinc sulphate, copper sulphate and the high 

temperature modification of cobalt sulphate (7500°C) are isomorphuus 

The zinc ions lie at the centre afadistorted octahedron of oxygen 

atoms in an orthorhombic cell. 

Cobalt Sulphate: Cobalt sulphate did not yield enough surface area 

when dehydrated by the general procedure described earlier. In 

order to obtain a reasonable surface area, heating in vacuum was 

restricted to temperatures below 125°C until dehydration was 

stabilized. After constant weight was obtained heating at 200°C 
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0 0 0 
and further anneali.ng at 300 c, 400 C and 500 C was done in an 

argon stream. By using this method, a surface area of about 

7 m
2
/g was obtained for the sample heated to 200°C. However, 

when this salt was heated to 300°C in argon, a ~eweight loss 

corresponding to one mole of water was observed. This indicates 

0 
that the constant weight obtained on heating at 125 C could 

have been due to formation of the relatively stable monohydrate 
119 

of cobalt sulphate. Simmons and Wendlandt have reported that 

one mole of water is bonded differently in coso4 and the correct 

formula for the 1-hydrate is CoH2so5 as previously given by 
120,121 122 

Lendormy Kohler and Zaske dehydrated coso4 ·7H2o at 

20 torr and found the composition to be Coso
4

·H 2o between 190°C 

and 210°C and the dehydrated product was obtained by them at 260°C. 

123 124 
Dernassieux and Mallard , Guenot et al Bendor and 

108 125 
Margalith and Tanabe et al have reported their studies on 

108 
dehydration of Coso4 . Bendor and Margalith have stated that 

"The temperature of dehydration of the monohydrates studied, except 

for cupric sulphate follows the same trend i.e. starting from 
2+ 2+ 

Mn there is a continual rise until Zn where there is a drop 

in the dehydration temperature". This explains why cobalt sulphate 

could not be completely dehydrated at 125°C in vacuum or 200°C 

in an argon stream. 

It is argued, on the basis of the foregoing, that the 

0 adsorbent prepared at 200 Cis Coso
4

·H
2

o whereas at higher temper-
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atures, the adsorbent is anhydrous Coso4 . 

The crystal structure of anhydrous cobalt sulphate has 
105 110 125 

been presented by Wyckoff , Coing-Boyat 1 Pistorius 1 

126 127 118 
Rentzeperis Dunitz and Pannetier & Bregeault The 

low temperature modification (<500°C) is isomorphous with nickel 

sulphate and manganese sulphate. High temperature modification 
127 

(or modifications ) . is isostructural with copper sulphate and 

zinc sulphate. 

Nickel Sulphate: A procedure very similar to that described in 

the case of the dehydration of cobalt sulphate was followed for 

nickel sulphate. However, in this case the argon flow at 200°C 

had to be maintained for 15 days in order to obtain a constant 

weight. 
18 G' 127A 

Fruchart & Michel , Thomas and Renshaw , Tanabe & 

101 114 
Katayama and Ball & Norwood have conducted studies on various 

2-5,128 
aspects of dehydration of nickel sulphate. Tanabe et al 

108 
and Bendor & Margalith have extensively studied the dehydra-

1081128 108,2-5,128 
tion of cobalt sulphate and ·nickel sulphate . 

Tanabe et al have correlated the acid property of anhydrous salts 
108 

with the structure of solid metal sulphates. Bendor et al 

have summarized the available studies of X-ray and neutron dif-

fraction and discussed I.R. and D.T.A~ studies of the hydrates 

of the metal sulphates and have interpreted the acidic properties 

of the monohydrates on the basis of the special linkage of water 

molecule to the central metal ion. 

* Differential thermal analysis 
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2-5,128 
Howeve4 the heating procedure of Tanabe et al varies 

from ours. They have directly heated the hydrated salts in 

an electric furnace for three hours at various temperatures 

ranging from 150 to 600°C, and cooled them in an evacuated des-

sicator. 

A weight loss amounting to about 0.5 moles of water was 

observed when Niso
4 

(390)*was heated to 400°C. Heating at 300°C 

also resulted in a smaller weight loss, equivalent to only about 

0.2 moles of water per sample weight. 

The crystal structure of anhydrous nickel sulphate has 
105 129 130 

been described by Wyckoff , Dirnaras , Poljack and Bokii 

107 
et al Nickel sulphate isisomorphous with Mnso

4 
and the low 

temperature form of coso4. 

Copper Sulphate: Copper sulphate was originally dehydrated 

following the general procedure mentioned for the dehydration of 

calcium sulphate. This sample was annealed at 200°, 300° and 

400°C in vacuum. Isotherms were determined. Although a good 

surface area was obtained following the general procedure, the 

method described for the nickel and cobalt sulphate was adopted 

for the present study.The latter method enables one to heat up to 

500°C, consistent with nickel and cobalt sulphate, and yielded 

2 0 
a reasonably good surface area (8.5 m /g) after heating at 200 c. 

In the case of copper sulphate alone the surface area decreased 

rapidly with increasing annealing temperature. It was also ob-

served tgat a rapid increase in temperature up to 200°C results 

*The notation M so4 (200) etc.indicates the adsorbent annealed 
a particular temperatur~ in parantheses. 
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2 
£n a sample w£t~a low surface area (~2m /g} which goes to 

nearly zero on annealing at 300°c. 

122 
Kohler and Zaske have reported that on heat£ng cuso

4
·5H

2
0 

at 20 torr vacuum, anhydrous sulphate is obtained at 192°c. 
1~6,~22,131-~37 

Many authors have reported various studies con-

cerning the dehydration of this salt. 

The crystal structure of anhydrous Cuso
4 

has been given 

117 lOS 138 
by Kokkoros & Rentzper£s , Wyckoff , Rama Rao and Bokii_ 

107 
et al It is isomorphous with zinc sulphate . 

The surface areas for the adsorbents are listed in Tables 

4 to 9* and discussion of change of surface area with annealing 

temperature is given on section 5~80. 

Adsorbate purification: 

The adsorbate, CFC1
3

, was purified £n the equilibrium 

-s 
manifold (Figure 10) . The system was evacuated to 10 torr and 

stopcock 4 was closed. Liquid CFC1
3 

was placed in bulb 6 and 

attached to the manifold. It was slowly dipped in liquid nitrogen 

and after all of the liquid had solidified the cylinder was opened 

to the pumps and evacuated. The process of solidification and 

liquefaction by allowing the bulb to warm up to room tempera-

ture was repeated several times to degas the CFC1
3

. The liquid 

was distilled into three fractions by vacuum distillation. The 

middle fraction was collected in the bulb 8. The last fraction 

and the first fract£on were collected in the bulb 6 and discarded. 

*See Appendix B. 
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The whole procedure was repeated on the initial middle fraction 

in bulb 8 and again the middle fraction was collected in previously 

evacuated bulb 7. This liquid was used for adsorption studies. 

During the desorption process the vapours were condensed in bulb 

6 and the collected liquid was discarded after the run. 

In between the runs the adsorbate was stored in bulb 7 at 

dry ice temperature a~d the bulb stopcock was kept closed. Vapour 

was always removed from the bulb to prevent mercury vapours from 

the gauges condensing in the bulb. 
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calorimetric measurements: 

The present work was concerned with the effect of heat 

treatment of the anhydrous transition metal sulphates on their 

heats of solution. Accounts of calorimetric principles and 

28,33,139,140 
apparatus have been given by several authors Based 

on the general principles, a design was developed and the twin 

calorimeters were constructed • . 
The surface areas of the samples were measured volumetrical-

ly prior to calorimetric measurements. The volumetric B.E.T. 

apparatus is described in section 4.44. 

Different designs of calorimeters have been adopted for 

141-143 
various types of studies. Morrison, Drain and coworkers 

have studied phase transitions and other thermodynamic properties 
144tl45 

of the adsorbate on adsorption. Hobmes and coworkers 

146 
have conducted heat of immersion studies. Motooka et al have 

described the effect of grinding on the heat of solution. Tsau 
147 

and Gilson 

this method. 

have studied solid phase transitions and fusion by 

148 149 150 
Lang , Readnour et al , Eatough and coworkers 

151 152 
and more recently Larson and Hedwig et al have studied the 

association and dissociation of ion pairs of metal sulphates from 

heat of dilution measurements. 

153 154 155 
Pace , Holmes and Zettlemoyer and Narayan have 

reviewed the various aspects of adsorption calorimetry. The 

application of calorimetry in the measurement of laser energy 

156 
has been described by Gunn 
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Description of calorimeters: 

A twin or differential calorimeter consists of two identical 

cells. The cells are made of Dewar flasks of 250 ml capacity 

each. These were placed symmetrically in a constant temperature 

bath*constructed from a 7.5 cubic feet (approximately) stainless 

steel tank, insulated with styrofoam. A temperature controller, 

stirrer, cooling coil and a heating coil maintained the bath at 

0 
25.0 + 0.01 c. 

The solution process is carried out in one of the cells, 

the second serving as reference. A single motor has been used to 

drive the two identical stirrers in the cells. As both the 

calorimeter cells are in the same environment, and the temperature 

was recorded differentially, any errors due to fluctuations in 

the environment or due to stirring heat cancelled out. 

The cells: The cell assembly~ shown in Figure 12. A plexiglass 

flange around the Dewar was sealed with a plexiglass top block 

using an 'O' ring on the flask between the flange and top. It 

was fastened with stainless steel bolts. A stirring shaft ex-

tended down to the bottom of the flask. Holes through the block 

let out the leads of the heating elements, the thermopile wires 

and the stainless steel rod which was attached to a sample breaking 

device in the calorimeters. 

The stirring shaft was kept in position by two 'O' 

rings sitting on the groves on the shaft close to the two ends of 

*Figure (l2A) 
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the block hole. Thin teflon washers on the shafts and the block 

holes facilitated the shaft motion with minimum friction and 

sealed the solution chamber. 

The sample breaking device consisted of a stainless steal 

plate with a sharp point in the centre supported by ap~xiglass 

cylinder held by three stainless steel bolts. A threaded rod went 

through the block and rested on the sealed stem of the thin walled 

sample bulb. The bulb could be easily broken by pressing the 

steel rod. 

The heating element, for the electrical calibration was 

made by a bifilar winding of ename~ insulated consta.ntan wire 

(30 gauge, supplied by Leeds and Northrup company} wound on a 

polyethylene sheet. This sheet was pressed between two thin hollow 

brass cylinders. The endsof the cylinders were sealed by soldering, 

after the leads of the heating coil along with a ground wire con­

nected to brass cylinder were taken out through copper tubing which 

was then compressed to the size of the opening between the two 

cylinders. This made the heating coil leak proof and well pro­

tected from the silica pieces moving around in the cell after 

the sample bulb was broken. Either of the cells could be used 

as the active or reference cell. 

The thermopile: A twenty five junction copper constantan thermo­

pile, supplied by Science Products Corporation, New Jersey, U.S.A., 

was used differentially to measure the temperature changes in 

the active cell with respect to the temperature in the reference 
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cell. The order of temperature change detectable by the thermo­

pLle was one degree per mv. 

calibration of the calorimeters: 

The temperature rise wi.thin the cell during solution 

process was monitored by the thermopile connected to a recorder 

(Type LER-12 A, Yokogaw Electric Works) . The heat capacity of the 

cells was measured by electric calibration of the calorimeters. 

After the initial thermal equilibrium has:- been established as in­

dicated by the baseline of the recorder, the solution was heated 

by known current and for a known time and the temperature rise 

recorded. The heats of solution calculated from these data are des­

cribed later. 

The calorimeters were also calibrated by determining the 

heat of solution of potassium chloride. 

Electrical calibration circuit: 

The heating current circuit for the calorimeters is shown 

in Figure 13. The current was measured by monitoring the potential 

across a standard one ohm resistor in series with the heating 

coil. The thermopile leads were connected to the recorder. All 

the leads were shielded and grounded along with the recorder and 

power supply to a common ground terminal. The DPDT switch* in 

the heating current circuit also actuated an electrically operated 

stopwatch. 

Electrical calibration of the calorimeters: 

In order to compare the stirring heat or the heat changes 

*double pole double throw switch 
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due to the environmental fluctuations in the reference cell and 

the active cell, the heat capacities of the two calorimeter cells 

must be known. This was determined by supplying a known amount 

of heat to both heaters connected in series. From the measure-

ment of temperature, current and time it was observed that both 

the cells had the same heat capacities. In the present study 

the cell in which the heat of solution was measured was calibrated 

for its heat capacity after each measurement, when the tempera-

ture of the cell returned to the original temperature. 

Chemical calibration: 

A known weight of dried potassium chloride (heated at 100°C 

for 24 hours and cooled at room temperature in a dessicator) 

was placed in a sample bulb with a glass wool plug and sealed. 

The twin calorimeters were assembled with 200.0 grams of dis-

tilled water in each cell. The calorimeters were left in the con-

stant temperature bath for at least 16 hours and the sample was 

broken when asteadybase line was obtained in the recorder in 

its most sensitive range (one mV or one degree full span) for 

about one half hour or more. The change in temperature was 

automatically recorded. Heat capacity was measured by supplying 

electric power as described earlier. 

The hea~of solution were calculated from the following 

relation: 

2 

~H 
I R t M X 

4.184 y w 
Cal/mole (4) 
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where, 

I heater current in amperes (stability 0.1%), 

R = heater resistance in ohms (~ 0.01 ohms), 

t heating time in seconds (+ 0.05 seconds), 

X 

y 

temperature change during dissolution (+ O.OOl°C) 

temperature change due to electrical heating (+ O.OOl°C) 

w weight of the sample (+ 0.0001 g) 

M molecular weight of the solute. 

For potassium chloride the measured data were, 

I= 0.1256 amp. 

R 63.55 ohm 

t 264.85 seconds 

X 0.200°C 

y 0.231°C 

w 1.0048 g 

M 74.56 g 

These data for potassium chloride give a ~H value of 4077 cal/ 

mole at 25°c. This value of heat of solution is for the dilution 
157 

up to 0.067 molal solution. The reported heat of solution 

for KCl is 4115 cal/mole at 25°C for infinite dilution. The heat of 

solution of potassium chloride at various dilutions derived from 

158 
the heat of formation data are given in Table 10. 
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Heat of solution measurements: 

The quantities ofhydr.atedmetal sulphates which have been 

calculated to give the required amount of anhydrous sulphates were 

weighed. These weights were such that on dissolving in 200.0 

grams of solvent the solution had a similar metal ion concentra-

tion (approximately 0.01 molal}. This avoided the correction due 

to ionic strength_ effect~. Dehydration and the determination of 

surface area of samples were done using a BET apparatus as des-

cribed in section 4.44. The samples were outgassed and sealed 

in argon at one atmospheric pressure. The sample was then placed 

in the calorimeter. The solvent used was 0.5 molar potassium sul-
148,159 

phate solution to minimize the dilution effects on the heat 

of solution of different metal sulphates. Another advantage of 

potassium sulphate solution was that the condensation of solvent on 

the upper part of the calorimeter was eliminated. 

The procedure which was followed was the same as that 

described for the chemical calibration in which the heat of solution 

for the potassium chloride sample was measured. 

The results of calorimetric studies are given in Table 2.* 

A typical plot obtained by the recorder for heat of solution measure-

ment along with the electrical calibration curve for heat capacity 

is given in Figure 14. 

4.44 Surface area measurements: 

Apparatus: An apparatus was constructed for the volumetric measure-

*There is no trend observed in the measured heat of solution data 
with respect to annealing temperature. The variations are presumably 
due to changes in bulk and surface structures, and unfortunately it 
is not possible to separate the two contributions. 
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ment of surface area of the various samples used for calorimetric 

measurements. It was necessary that the surfaces of the samples 

used for heat of solution measurements be prepared by a method 

similar to that used in preparing the adsorbents used in the 

gravimetric adsorption studies. The apparatus is sketched in 

Figure l5. The principles involved in the construction are general 
28~29~33~35~36 • and well known The amount adsorbed is determined 

as the difference between the amount of gas in the vapour phase 

within the free volume of the apparatus before and after adsorp-

tion. For the sake of accuracy~ the free volume and the sample 

surface area should be such that the adsorbed amount should be 

insignificant as compared to the amount of gas in the entire free 

volume of the apparatus. As stated before~ the assumption used in 

this method is that no part in the apparatus, other than sample and 

adsorbate reservoir, may either adsorb gases or be the source of 

any gas. 

Pressure measurement: Pressure was measured by a capacitance 

manometer as an absolute gauge by using the high vacuum side as a 

reference. Capacitor manometers utilize the principle that the capac-

itance of any capacitor is directly proportional to the dielectric 
l60 

constant of the medium relative to air and to a geometric factor 

Capacitance gauges available commercially are excellent universal 
9l,92 

pressure sensors A pressure difference between two chambers 

separated by a metallic diaphragm, moves the diaphragm, increasing 

the capacitance between the diaphragm and electrode on one side, 
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while decreasing the capacitance on the other side. The change in 

capacitance is measured by a bridge circuit. There is no electrical 

feedback to null the diaphragm position which may alter the pres-

sure reading. The capacitance gauge used can read the pressure 

-4 95 
with reliability to a few percent at 10 torr 

A MKS Baratron TM type 77 capacitance manometer using 0-100 

torr range head,was in€orporated in the volumetric apparatus(see 7 in 

Figure 15). The manometer could read to + 0.1 torr on the 100 torr range. 

vacuum requirements: The vacuum requirement of this method is 

similar to that of the gravimetric method (section 4.31). There 

is an additional consideration in volumetric method regarding 

evacuation is that 'over evacuation' may leave the surfaces of 

the metal parts such as valves, gauges etc. in an 'active' state 

which may adsorb gases during the experiment. In practice, a 

compromise between the vacuum requirement and 'over evacuation 

effect' has to be made. However, if the sample surface area is 
2 

large enough (a few em ) the adsorption by other parts of the 
-6 

apparatus would be insignificant. A vacuum of the order of 10 

torr was obtained using a two stage oil diffusion pump backed by 

a fore pump. The low pressure measurement was done using a Pirani 

gauge and an ionization gauge. 

Procedure for sample preparation: A hydrated metal sulphate sample 

was weighed in a thin walled silica bulb and was joined below 

the Pyrex-silica seal as shown at point 17 in Figure 15. The 

sample was evacuated, heated or annealed before adsorption as in 
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the case of gravimetr£c measurements (section 4.34). However, 

a slightly different arrangement was used to stream argon gas 

over the sample while annealing. A capillary was introduced into 

the sample bulb and argon was admitted through the capillary 

(see Figure 15) and vented to the atmosphere through the equilibrium 

manifold. To observe the flow of argon and to prevent back dif-

fusion an oil bubbler was introduced near the exit of the gas. 

0 After annealing, the system was degassed at 125 C, at least 24 

hours before measurements. 

Volume calibration: The volume of the bulb Vc was determined 

before the apparatus was assembled. This was done by filling the 

bulb with deionized water and weighing it several times, and 

from the average weight the volume was calculated. The other 

volumes used in the calculation are: the volume between the valve~ 

no. 1, 2, 3, 4, 5, 6 and capacitance gauge 7 equals v
1

; the volume 

included by valves 3 and 8 equals v
2

; v
2 

does not include the 

volume of the sample or the outer jacket around the sample bulb. 

v
1 

and v
2 

were calculated following the ideal gas law using 

expansion of helium gas. At constantroom temperature TR, v
1 

can 

be calculated as 

(5) 

where, p
1 

and p
2 

are the pressures in volume v
1 

before expansion 

and after expansion into volume V respectively; 
c 

* See Figure 15 
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v
2 

= v
1 

[p I (p
2
-p l ] 

eq eq and (6) 

where, peq is the equilibrium pressure after expanding the gas to 

sample side. 

The volume v
2 

so obtained has to be corrected for the 

temperature difference between the thermostat and rest of the system. 

The volume of the bulb lffimersed in the thermostat is say VB; this 

volume was measured at temperature TR before joining the bulb 

with the apparatus. The corrected volume of the sample side, 

generally known as dead space Vd is given by, 

(7) 

Helium was used for volume calibration owing to its low 

critical temperature. 

Isotherm measurements: During the experiment the volume V was 
c 

not used. The rest of the apparatus was evacuated. Purified 

CFC1
3 

vapour (see section 4.35) was introduced from the liquid 

reservoir to the volume v
1 

and the dose volume was calculated. 

The sample was then exposed to the adsorbate and the pressure 

was recorded. The amount of adsorbate adsorbed per sample 

weight can be evaluated by using ideal gas laws. The isotherms 

were constructed for all the samples and surface area was calculated 

as discussed in section 5.20. These are tabulated in Table 2. 

A typical isotherm measured volumetrically is shown along 

with the isotherm measured gravimetrically in Figure 16. 
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Experimental data: 

The pressure and mass change data obtained from gravimetric 

adsorption experiments are tabulated in Appendix A (Section 8.10). 

The heats of solution data are tabulated in Table 2 (Section 

9.00). Volumetric adsorption data are tabulated in Appendix B (Section 

8.20). An isotherm measured volumetrically as compared with one 

measured gravimetrically is shown in Figure 16 . 
• 

The saturation vapour pressures of CFC1
3

, (p), were measured 
0 

at each temperature. The results are shown in Table 3 and a plot 

of log p against 1/T is shown in Figure 17. 
0 

The error in weighing is discussed in Section 4.26. The error 

in pressure measurement is + 0.01 torr. In the volumetric method the 

error in measurement is difficult to assess. The main source of error 

in this method occurs in the calibration of the volumes and the tern-

perature changes in the bath or other parts of the equilibration 
216 

manifold during the course of a run. The probable error in volumetric 

surface area measurements is estimated as between 5 to 10%. 

Isotherms: 

The isotherms obtained from the gravimetric data are plotted 

in Figures 18 to 38 (section 10.00). 
19 

Dubinin et al have reviewed the theoretical basis of adsorption 

isotherms. The theoretical treatment involves determining the properties 

of adsorbent and adsorbate independently and following three operations: 

1) Calculation of the potential energy of an isolated molecule 

in the adsorption field of a given adsorbent; 

2) Calculation of the interaction energy between adsorbate molecules; 

3) Calculation of the entropy of the adsorbed molecules. 

The statistical thermodynamic approach is used to deduce the 

adsorption isotherm from the above data. However insufficient 
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knowledge of intermolecular interacti.ons at intermediate distances, 

the nature of the surface of a real adsorbent, the realistic 

model for entropy calculations and finally the exact adsorbate-

adsorbate interactions, do not allow one to deduce the isotherm. 
19,161-163 

In a few simple cases success has been achieved in 

correlating the theoretical and experimental isotherms. Numerous 

empirical and semiempipal adsorption isotherm equations have also 
33,164 

been proposed from time to time 
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surface area determination3 
165 

The li.terature contains a number of comparisons of the 

various methods that have been used to determine surface area. 

The methods include chromatographic experiments, radiometri.c 

methods, heat of wetting, gas permeabi.lity, small angle X-ray 

scattering and electron microscopy. However, analysis of adsorp-

tion isotherms remainstthe princ£pal method of obtaining specific 

surface area. 

Various equations of state have been utilized to derive 

adsorption isotherm equations, but the BET equation is still 
36 

widely applied. The Langmuir equation in the form 

12. 
M 

1 

PMut 
(8) 

is mainly used in chemisorption studies for surface area deter-

minations. 

In equation (8) p is the vapour pressure of the adsorbate 

and M is amount adsorbed. Mffi represents the mass of the adsorbate 

occupying one monolayer. From the slope and intercept of the 

plot p/M against p, Mffi can be evaluated. 
166 

In the present studies the BET equation has been applied 

for the determination of surface area of each adsorbent used. 

The BET equation 

The derivation of the BET equation is given in many refer-

28,33,36 
ences One of the forms of the equation is as follows: 
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p 
(.9) 

where p 0 is the saturation vapour pressure of the adsorbate 

and c is a constant. The monolayer capacity ~ is determined 

from the slope ns" and intercept 'li" of a plot of 

p 
versus 

The monolayer capacity is given by, 

1 
S+i 

(10} 

Good straight lines were obtained for the BET plots 

[ p 
M (p0 -p} 

versus p/p0 ] in all the cases over the range of p/p
0

-p0 

28 
from 0.05 to 0.3. Gregg and Sing have discussed the applicability 

range for the BET equation and the BET 'C' values in terms of 

shape of the adsorption isotherm and heat of adsorption. 

Two representative BET plots are shown for Mnso
4 

(300} 

in Figure 39 and for Niso
4 

(400) in Figure 40. 

Calculation of surface area: 

The surface area corresponding to monolayer capacity is 

33 
given by 

A 

where, 

-26 
~ B N 10 

2 
A area of the surface (m /g) 

(11) 
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and 

02 
B Cross section molecular area (A ) 

N Avogadro's number. 

The molecular area of CFC1
3 

was calculated from the following 
33,36 

equation 

where 

and 

B 
2/3 6 

f(M/pN) 10 , 

M molecular weight of the adsorbate; 

p bulk density of adsorbate; 

f packing factor. 

(12) 

The packing factor is 1.091 if each molecule has 12 nearest 

neighbors. It was assumed that the packing or configuration of 

the adsorbate molecules on the surface was similar to that of the 

bulk liquid phase of the adsorbate. The density of the adsor-

3 (167) 
bate is taken as 1.623 g/cm These values yield an apparent 

2 
molecular area for CFC1

3 
of 31.2 £ 27 

Machin has compared 

the effective molecular area of CFC1
3 

on anhydrous transition metal 

2 
sulphates with argon (taken as 13.6 R ) on the same adsorbents. 

0 2 
His average value of the molecular area of 29.7 + 0.7 A is in 

good agreement with the above value. 

The surface areas for the samples were calculated using 

0 2 
a molecular area of CFC1

3 
of 31.2 A and are tabulated in Tables 

4 to 9. 

The same procedure was followed for determination of surface 

areas from the isotherms determined volumetrically. These surface 

areas are reported in Table 2. A representative BET plot is shown 

for CuSO 
4 

(200)_ in Figure 68. 
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Thermodynamic quantities and adsorption: 

It is possible to interpret the experimental adsorption 

isotherms with the help of thermodynamics, in two ways. Either 

integral or differential molar quantities can be derived from the 

isotherms. Although both methods yield the same conclusions, 

the calculation of differential molar quantities is relatively 

easy. Differential he~ts of adsorption and differential entropies 

of adsorption have been derived and will be compared with the 

assumed models. 
7 

Clark has described the localized, nonlocalized, mobile 

and immobile models of adsorption. 

Favoured positions of minimum potential energy on a surface 

lead to localized adsorption. In such adsorption the molecules 

are held at the bottom of the potential well, the depth of which 

is much greater than the thermal (translational) energy of the 

molecule (kT) . The molecules cannot escape from regularly 

spaced and equally deep potential wells at the surface. Three 

translational degrees of freedom of the gas transform to three 

vibrational degrees of freedom on adsorption. Two of the vibra-

tional degrees of freedom remain in the plane of the surface and 

one normal to the surface. 

When there are no strongly favoured positions, essen-

tially non-localized adsorption takes place. In general a non-

localized adsorption phase will be mobile except at high coverages 
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181 
when caging action of neighboring molecules results in the 

transformation of free translation to vibrations of progressively 

decreasing amplitude with increasing coverage. 

Localized molecules may be mobile or immobile depending 
7 

on the surface characteristics i.e. whether there are structural 

irregularities or surface inhomogeneities present or surface 

. . 
diffuslon can later take place on the surface. 

An intermediate situation is possible between mobile and 
168 

immobile adsorption as described by de Boer In this type of 

adsorption, the molecules move from site to site by 11hopping". 

A completely immobile system is inconsistent with the con-

cept of the equilibrium system. The residence time of adsorbed 

molecules in relation to the heat of adsorption is a measure of the 

degree of localization and no sharp division between either type 

of adsorption at all coverages can be made in real systems. The 

life time or residence time (T) of adsorbate molecules is dependent 

168 
on the heat of adsorption (q) according to the relation 

-q/RT 
T = To e (13) 

-13 
where To is the molecular vibration time (~ 10 sec}; and RT 

represents thermal energy. 

The differential heat of adsorption at a particular surface 

concentration is defined as the change in heat content, per mole 

transferred, when an infinitesimal amount of material goes from 

the gas phase to the surface. 
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A two dimensional gas is defined as the adsorbed molecules 

of gas, constrained to freely move parallel to the surface. Move-
169 

ment normal to the surface is prohibited. Everett has derived 

equations for the heat of adsorption and the entropy loss of the 

surface phase of an ideal two dimentional gas. He has also formu-

lated, from thermodynamic considerations, the various conditions to 

be satisfied if the ads9rbed phase is an ideal two dimensional 

gas. The conditions are: 

1) the adsorption isotherm must be linear; 

2) the heat of adsorption must be independent of the surface 

coverage; 

3) the differential entropy of adsorption 6S must be a linear 

function of surface concentration with a slope R; 

4) the magnitude of 6S (6) must be equal to the expected 

value for adsorption of a two dimensional gas. 

It is only rarely that any gas-solid system obeys all the 

above criteria. However, the procedure followed here is to 

compare the 6S (6) curves with the theoretical ideal two dimen-

sional gas entropy changes as a function of 9 (coverage) and 

interpret the deviation from ideal behaviour to improve the 

real model. Deviations from the model may be due to: 

1) motion normal to the surface; 

2) the effect of the finite size of the adsorbed molecules 

on the surface entropy particularly at higher coverages; 

3) variations of heat of adsorption with coverage due to 
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molecular interactions (a cohesion term, if included in the equa-

tion of state, leads to a linear variation of heat of adsorption 

with coverage}; 

and 4) entropy changes due to structural changes in the adsorbent 

itself. However, this last consideration is relatively unimpor-

170 
tant in physical adsorption. Scholten and Kruyer , however, 

have expressed their doubt about change in surface structure 

affecting even chemisorption entropies significantly. According 

to them, the bonds between the surface and subsurface layer 

are still so strong that the changes in adsorbent vibrations have 

almost no effect on the entropy of the adsorbent. 
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The heats of adsorption~ 

As mentioned in section 5.11 it is possible to make 

theoretical estimations of adsorption energies, based on the theory 

of intermolecular forces, only in a few simple cases. The various 

adsorption forces and theoretical calculation of adsorption 

33 19 163 
energies have been given by Young & Crowell , Dubinin and Kiselev 

As a result, direct experiments for measuring adsorption iso-

therms must still be the source for heats of adsorption. Ad-

sorption heats can be calculated either by -direct calorimetric 
171-173 

studies as described by Morrison and coworkers or by 

determining the temperature dependence of adsorption. The calcu-

174 
lation of adsorption heats from gas chromatographic data is 

similar in principle to that from isosteric heats of adsorption. 

A knowledge of adsorption heats allows one to determine entropy 

changes accompanying the adsorption process. 

Various relationships between the heats of adsorption, 

measured from isosteres, or calorimetry, both adiabatic as well 

as isothermal and the heat of immersion, have been derived in 
33 7 164 

details by Young & Crowell , Clark , Adamson and more 
175 

recently by Letoquart et al 

The isosteric heat, qst' is given by, 

2 (alnp ) 
RT 8T r 

Where r refers to the number of moles adsorbed per unit area 

(14) 

(n /a) . The approach followed by Young and Crowell emphasizes s 
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that qst is also a calorimetric heat of adsorption for a suitably 

operated calorimeter. The differential heat of adsorption, qd, 

is related to q by the following relation: st 

q = q - RT d st (15) 

A plot of ln p against 1/T at constant coverage should 

yield a straight line. • The slope of this line when multiplied 

by R yields the~steric heat. The isosteric heats determined 

in this work are tabulated in appendix B (Tables 17-19). Good 

straight lines were obtained from the ln p plots against 1/T at 

three temperatures 20.0°, 6.0° and -10.0°C. 

Heats of adsorption have been plotted (Figure 41-46) and 

straight line plots for low values of e extrapolated to e 0 

to obtain qst (8 = 0) which are taken to be the isosteric heats 

pertaining to the high energy sites of the bare surface. 

The error in isosteric heat of adsorption is estimated 

from the method of least squares as approximately ±300 cal/mole 

at lower coverages. However, in the region of higher coverages, 

the error decreases to about + 100 cal/mole. 

An excellent review on heat of adsorption investigations 
176 

for specific systems is given by Holmes who has reviewed 

much experimental work especially that from the laboratories of 

Beebe, Kiselev, Morrison, Kington and their co-workers. 

The form of the dependence of differential heat of adsorp-

tion (or isosteric heats) with coverage is strongly affected 
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by the properties of the speci_fi.c adsorbents and adsorbates under 

study, althoug~there is a general trend which remains more or 

less the same. At low coverages, differential heats of adsorp­

tion are higher due to ini.tial surface heterogeneity. The next 

region is where adsorbate-adsorbate interactions are still 

relatively unimportant and the surface is more or less uniform. 

Further adsorption redutes the distance between adsorbed molecules 

and adsorbate-adsorbate interactions become more important. 

These attractive forces may increase the heat of adsorption (qst> 

Finally, qst decreases due to repulsive forces when the distance 

between adsorbed molecules becomes reduced, decreasing until the 

monolayer is complete and p approaches p 0 , and qst approaches the 

heat of condensation (6.44 kcal/mole for CFC13 ). 

The following analysis of the heat curves obtained for 

individual samples wi.ll now be discussed. 

Manganese Sulphate: The heat curve (Figure 411 for Mnso
4 

(200) 

gradually decreases, with 8 increasing up to 0.5 and then remains 

more or less constant suggesting an initial minor inhomogeneity 

of the surface. The isosteric heat curve, qst (8) , of MnSO 4 (300) 

follows the same trend except that it reaches more or less constant 

level at 8=0 .3 suggesti.ng a smaller heterogeneous surface. Both 

these heat curves fall close to the heat of condensation of the 

adsorbate at 8=.1. However, the heat of adsorption of Mnso4 (400) 

is less than that of the other two at low coverage signifying a 

smaller heterogeneity. It then passes through a shallow minimum at 
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&=0.5 and increases again until ~0.7 and remains constant to 

6=1. At 6=1 the qst .is rv7. 7 kcal/mole about 1. 3 kcal/mole 

higher than heat of condensation whlch probably indicates that 

there is some effect of the forces of the solid beyond the first 
176. 

layer 

That annealing should give a more uniform surface, is to 

be expected and can be seen for Mnso
4 

(400l initial heat curve 

from a comparison of these heat curves. 

Cobalt Sulphate: The coso4 (200} heat curve seems to be quite 

different from the surfaces annealed at 300 and 400°c. The 

cobalt sulphate CSOOl shows different behaviour at low coverages, 

but shows similar behaviour to that of coso4 (200) at higher 

coverages. There is similarity between heat curves of coso
4 

(300} 

and coso
4 

(400) except that the adsorption at low coverages seems 

to be more energetic with CoSO 4 C400} than with CoSO 4 (300) • 

Adsorption at low coverages on CoSO 
4 

(200) is much less than on 

Coso
4 

C300} and Coso
4 

(400). This is understandable in view of 

the discussion of sample preparation which suggests that coso
4 

(200) is probably in monohydrate form rather than the anhydrous 

salt. Initial heat tren~ in coso
4 

(300), coso
4 

C400} and coso
4 

(500) decreases with increasing coverage. The decrease is 

more gradual for Coso
4 

(400) than for coso4 (300) or coso4 (500). 

0 The cobalt sulphate annealed at 500 C (coso
4 

(500)) follows the 

general trend of a surface which is less heterogeneous compared 

to Coso
4 

C300} and coso
4 

(400}. This may be expected due to the 
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effect of treatment at a higher temperature. 

Nickel Sulphate: All the Niso4 surfaces follow the same general 

heat curve trend with respect to coverage with the possible 

exceptions of Niso
4 

(400) which may have some scatter at low 

coverages. There also seems to be another trend in that the 

initial heat at 8=0 increases with annealing temperature. The 

initial heterogeneity may be due to a particular surface structure 

which increases with increasing annealing temperature. The 

0 nickel sulphate annealed at 500 C follow.sthe general trend pre-

dieted by the previously described model better than the other 

samples. 

Copper Sulphate: The curves for cuso4 (200), cuso4 (300) and 

cuso
4 

(400) start off more or less the same but diverge at 

intermediate coverages and rejoin at 8=1. In the case of Cuso
4 

(500) the initial surface heterogeneity as indicated by a higher 

heat of adsorption at 8=0 suggests the increasing of a particular 

type of surface structure. This curve also follows the general 

heat curve trend decreasing very close to the heat of condensa-

tion of CFC1
3

, whereas CuSO 
4 

(200) , CuSO 4 (300) and CuSO 
4 

(400) 

have qst about 0. 8 k c al/mole greater than that of heat of con-

densation at 8=1. 

Zinc Sulphate: With znso
4

, all the different heat treatments 

show more or less the same trend. The heat of adsorption decreases 

to 8=0.5 and then remains constant. However, the initial heat 
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(at 8=0) constantly increases with respect to annealing tempera-

ture. This may be due to the creation of more energetic sites due 

to removal of chemisorbed water. 

calcium Sulphate: By examining the heatcurves of calcium sulphate 

the following references can be obtained: 

In the region 8=0 to 8=0.4 the isosteric heat increases 

with increasing coverage for all three surfaces investigated, 
• 

that of caso
4 

(200), caso4 (300) and Caso
4 

(400). However, the 

slope of the line joining the initial points is lesser for caso
4 

(400) than for caso
4 

(200) and caso
4 

(300). The heat curves do 

not decrease to the heat of condensation at 8=1. The difference 

is about 1 kCal/mole. 

One of the possibilities is that the adsorption takes 

place in two different types of sites, one type being preferable 

to the other. Competition of the adsorbate molecules for the 

preferred sites brings them closer on such sites where dispersion 

forces come into play, and due to these attractive forces, the heat 

of adsorption increases with increasing coverage until all such 

sites are filled. 

Anhydrous calcium sulphate has two crystalline forms, 

hexagonal and orthorhombic as discussed in section 4.34. The 

orthorhombic form is a high temperature form. Presumably most 

of the surface has the hexagonal form with patches of the other 

form. The surface having the orthorhombic form should increase 

with annealing of the sample at higher temperature and consequently 
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the compet£tion of adsorbate molecules at low coverages should 

decrease. The slope of the initial points for the CaSo4 (400) heat curve 

is less than that for the others. 

No def£nite conclusion can be drawn for lack of independent 

adsorption data for the two forms of caso
4 

and assessment of 

adsorbate-adsorbate interaction by independent means. 

The occurrence of a minimum in the heat curve much before 

8=1 is presumably the result of the two opposing effects of 

heterogeneity and adsorbate interactions. As the higher energy 

sites are occupied on a nonuniform surface, qst decreases with 

increasing e. Some of the higher energy sites may be adjacent 

on the surface and a cooperative effect may take place. This 

effect can make an increased contribution to the heat of adsorp-

tion. Similarly interplay of lateral interaction and heterogeneity 

177 
effects may also produce a maximum in the heat curves 

The criteria, that qst must be linear with respect to 

coverage for either the localized or mobile model to be 

33 
applicable , is not satisfied unless the variation of qst is 

understood in terms of surface heterogeneity and lateral interactions. 
169 

Surface heterogeneity usually plays the more important role 
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Entropies of adsorption _: 

A knowledge of differential adsorption heats or isosteric 

heat lqstl and changes in free energy as derived from the adsorp-

tion isotherm permits us to determine the entropy of adsorption. 

As already mentioned in section 5.30, the knowledge of the entropy 

of adsorption is of great importance in deriving a model for the 

adsorbed layer. 
~7 

Young and Crowell have deduced the following relationship: 

where, 

and 

a RT <-aT ln p) r = 

S molar entropy of the gas; 
g 

s -s 
g s 

S differential molar entropy of the adsorbed gas; 
s 

f = n /A 
s 

(16) 

(17) 

where n is the number of moles adsorbed and A is the area of the 
s 

adsorbent. 

On comparing equation (141 with equation (16) we get, 

s - s 
g s 

~ 
T 

(18) 

which is the difference between molar gas entropy and differential 

entropy of the adsorbed gas at a particular temperature and pres-

sure and amounts to the entropy loss during adsorption. If, 

0 
S' is the molar entropy of a gas at unit pressure and 6 c, then 

g 

s { 
g 

s 
s 

(19) 
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where pis pressure in atmospheres. 

which yields, 

S' 
g 

s 
s 

qst + R ln p - R ln 760 
T torr 

S' .::::- qst .,.... R ln pt + 6.633 R. 
g ~ orr 

(20l 

(2ll 

The differential ·entropy for the various surfaces were cal-

culated as a function of e (coverage} • The results are tabulated 

in Appendix B (Tables 20-22)_ • The differential entropy for the 

various surfaces have been plotted as a function of e in Figures 

47 to 52. 

As mentioned earlier (section 5.30), the experimental 

results will be compared with two models, (i) a localized film 

(ii) a two dimensional freely moving adsorbed layer. 

Theoretical calculation of the change of entropy on adsorption for 

localized film: 

The Langmuir model consists of localized adsorption on a 

two dimensional array of active sites having the same adsorptive 

properties. The assumptions involved in this model are that an 

adsorbed molecule does not affect the properties of any other 

neighboring sites and that there is no adsorbate-adsorbate inter-

actions. As per this model, from a residence time point of view, 

at any instant, most of the molecules will be in the vicinity of 

adsorption sites and only a few will be in intermediate positions. 

The model also requires that the vibrational and rotational 
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degrees of freedom of the adsorbed molecules remain unchanged and 

independent of coverage and temperature. 

The entropy of a localized phase can be conveniently separated 
169 

into thermal entropy and configurational entropy The thermal 

entropy originates from excitation of rotational, vibrational and 

electronic states, the zero-point contribution to the entropy of 

adsorption usually being assumed to be negligible. The configurational 

entropy arises from the number of distinguishable arrangements among 

sites of equal energy and can be evaluated by the Boltzmann 
164 

equation 

s confg. 
K ln st 

where n is the number of distinguishable arrangements of M ad-

sorbed molecules on the N adsorption sites or, 

N! n = --=-:....:=----
M! (N-M)! 

or 
N! 

S = K ln -----
confg. M! (N-M)! . 

On substituting M/N = 8 (the fractional degree of coverage) and 

also using Stirlings approximation for factorials 

(24) can be simplified to 

s confg. 

x! = (x/e)x, 

-KN [8ln8 + (1-8) ln (1-8)] 

(22) 

(23) 

(24) 

(25) 

(26) 
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On differentiating l26l with respect to M and multiplying 

by Avagodro's number, we obtain the differential molar configura-

tional entropy sconfg. 

Hence, 

s confg. 
8 -R ln 

1
_

8 

s 
local 

S - R ln 
8 

thermal l-8 

{27) 

(28) 

The change of entropy on transferring one mole from the 

gas at unit pressure to the surface is: 

or, 

or, 

!1S 
local 

l1S 
local 

s 
local s 

gas 

8 
S h 1 - S - R ln 

1
_

8 t erma gas 

!1S 
local 

8 
!1S - R ln l-8 

{29) 

(30) 

(31) 

The term !1S is a negative quantity and represents the loss 

in translational entropy of adsorption. This is equivalent to 

the complete loss of the translational entropy of the molecule 

in the gas phase, S0 g . No rotational or vibrational entropy 
trans. 

changes are involved according to this model. Equation (31) can 

then be rewritten as, 
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!J..S local 
-R ln l-e-> 

1-e 
so,g 
trans. 

(32) 

~S is plotted as a function of 8 in Figure 53*. This 
local 

curve can be compared with the curves derived from the experimental 

data for S (~igures 47 to 521. Alternatively, the theoretical 
s 

value of the differential configurational entropy S f is 
con g. 

zero ate =0.5, the experimentally observed s ate =0.5 should be 
• s 

the differential thermal entropy of the system, Sth Thus on 
erm. 

adding this value of Sthermal to the theoretical value of Sconfg.' 

the experimental curve should be reproduced, if a simple localized 

model i .s valid. 

The translational entropy loss SO,g 
trans. 

5/2 3/2 

164 
is given by 

so,g 
trans. R ln (T M ) - 2.30 (33) 

For 8 =0. 5, M (molecular Weight) for CFC1
3 

137.37, T 0 6 c, we get, 

~s 
local 

-SO'g 
trans. -40.35 E.U. 

Theoretical entropy of mobile adsorbed layer: 
164 

Adamson has derived the following relation for the mobile 

model: 

8+Ss +63.8 
trans. ~s-- b.l mo ~ e 

-R ln (341 

cr'box 

where ss is the translational entropy of the adsorbed layer 
trans. 
a-0 box 

considering the site as a two dimensional potential box. The 

value of the translational entropy is given by, 

* These values are also tabulated in Table 11. 
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(351 

where o-
0 

is the molecular area of adsorbate~ At 8=0.5 and 

0 02 0 
substituting rr =31.2 A at T=279 K, we get, 

and 

ss 
trans. 

0 
cr box 

18.40 E.U. 

is-:obile ~ -20.55 E.U. from (341 

The experimental differential entropies for all the surfaces 

studied calculated at 6°C at 8=0.5 (see Appendix Bi compare 

reasonably well with the theoretical entropy for a mobile adsorbed 

layer. This suggests that the adsorbed layer is better represented 

by a mobile model rather than a localized model. 

The dfferential molar entropies as a function of coverage 

for the model, a two dimensional van der Waal 's gas having no inter-

actions, is derived below. The differential entropies of adsorp-

tion thus calculated were compared with that of the experimental 

entropies in the coverage range up to 8=1. 

The adsorbed state of any adsorbate may be a two dimensional 

gas in a submonolayer region. 

gas is 

The translational partition function for a three dimensional 

178 

3/2 
{2'ITlllkT 1 V 

h 
(361 

* Tables 20-22. 
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where v is the volume available to the molecules and the remaining 

symbols are well known~ For a two dLmensional gas the transla-

tional partition function is given by 

(371 

where A is tie area availa::Ole per molecule and b is the area of 

the molecules (A-bl repr~sents the area accessible to the molecules. 

The statistical translational entropy of any two dimen-

179 
sional or three dimensional gas is given by 

s RT (A-bl + R ln Q - K ln N ! (38) 

The change in entropy associated with a transition from a three-

dimensional gas to a two dimensional gas will be, 

But 

Or, 

(note S 
g 

s 
g 

entropy of 3d gas, s 
s 

entropy of 2d gas} 

s 
s 

a Q3 Q3 
RT ( aT ln Q

2 
.:iv' A-b + R ln Q2 

3/2 
Q3 = (2rrmkT) V 

2 
h 

Q2 rL (2rrmkT) (A-b) 

ln Q3 = ~ ln l2nmkT) + ln V-ln h (A-b) 
Q2 

on substitution in (40) , 

s - s 
g s 

RT [_2_ (~} ln (2nrnkT} ] + RT , _1... (ln V-ln h (A-b)) aT aT 
+ R [~ ln C2nmkTl + ln V-ln h (A-b) J 

(39) 

(40) 

(41) 

(42) 
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s - s 
g s R/2 + R/2 ln (2nmkT) + R ln V/h (A-b) 

33 
According to Young and Crowell 

s 
s 

s 
s 

R 
+ l+fb 

(43) 

(44) 

where S is the differential molar entropy and r is the surface 
s 

concentration i.e. the number of moles of adsorbed gas per unit 

surface area of adsorbent. 

since 

Equation (44) can also be written as 

s 
s 

s 
s 

R 
+ 1-8 

rb e 

On substitution in (43) we get, 

s - s 
g s 

R R V R 
2 + 2 ln (2mnkT) + R ln h(A-b) + 1 _8 

(45) 

(46) 

from the ideal gas law, PV-RT; at the standard condition of one 

atmosphere pressure V=RT or, 

R ln V R ln RT 

Therefore, 

R R ( RT R 
= 2 + 2 ln 2TimkT) + R ln h (A-b) + 1 _8 

(47) 

where s 0 denotes the entropy of the gas at standard conditions. 
g 
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By definition, b = A8 

b/A = 6 

A-b 1-b/A = 1-6 
A 

A-b = (1-6} ·b/6 (48) 

ln (A-b) ln b ln 6 -
& • 1-6 

(49) 

From equation (49) and . (47) we obtain, 

s 
s 

R R 6 R 
2 

+ 
2 

ln (2nmkT) + R ln RT - R ln b h + R ln 
1

_
6 

+ 
1

_
6 

(50) 

R 3 R8 R R 
ss = 2 ln (2mnk) + 2 R ln T + R ln h b (l-6 ) + 1 _ 6 + 2 

(51) 

From the equation (51) the theoretical entropy S of the 
s 

two dimensional gas has been calculated for trichlorofluromethane 

and is listed in Table (11). The plot of these entropies versus 

6 is given in Figure (54) . The curve has been plotted (with solid 

line} along wit~the experimental differential entropy plots in 

Figures 47 to 52 (Section lO.OOJ. 



5.60 

- 87 -

selection of the model: 

If the assumpt:ion that the entropy loss during adsorption 

is mainly translational is valid, then the superimposition of 

Figure 54 on the experimental plots of differential entropy versus 

8 should be satisfactory. Neglecting weak vibrations perpendicular 

to the surface the comparison is good up to 6=0.5 in most cases. 

After this coverage the experimental entropies fall off as in the 

theoretical calculations. No account was taken of the adsorbate-

adsorbate interactions. Where the translational or rotational 

freedom is restricted, the experimental entropy is found to be 

less than the theoretical value. The inference one gets out of 

these compari£cr.s is that the adsorbate phase is better described 

by a mobile model rather than a localized model, particularly at 

low coverages. 

The isosteric heat of adsorption at zero coverage should 

thus represent an average value for the entire surface in the 

absence of adsorbate-adsorbate interactions. The qst (8=0) has 

been obtained by extrapolation to 8=0 using the data below 8=0.5. 

These values are tabulated in Appendix B (Tables 17 and 18). 

The isosteric heat of adsorption at zero coverage should represent 

the average q for the high energy sites of the bare surface in 
st 

the absence of adsorbate-adsorbate interactions. 
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Effect of annealing on surface area: 

The thermal decomposition of various metal sulphates has 
180-184 185,186 

been studied in inert atmospheres and at low pressures 

As previously described (section 4.34) the preparation of the 

adsorbents involved dehydration at temperatures up to 400° either 

in vacuum or in argon atmosphere. The particular conditions used 

for each adsorbent ensured that decomposition of the anhydrous 

salts was prevented. 

Slight apparent weight changes observed up to 400°C may 

be due to loss of chemisorbed water. Relatively greater weight 

changes of the Coso
4 

sample between 200 and 300°C correspond to 

about one mole of water. This probably accounts for the increase 

in surface area for this sample between 200 and 300°, in contrast 

to most of the other adsorbents which generally show a decrease 

in surface area as the annealing temperature is increased (Figure 

62). Heat of adsorption q (9) curves also clearly indicate 
st 

different behaviour for the Coso
4 

(200) surface. Similar behaviour 

was also shown when nickel sulphate was heated to 400°C from 300°C. 

As can be seen from Figure 62, the trend to decreasing 

surface area with increased annealing temperature is, apart from 

the above exception, quite uniform. The curves have been extra-

polated to zero surface area. The annealing temperature corresponding 

to zero surface area on plotting against the melting point or de-
215 

composition point (Figure 63) of the adsorbent (manganese sulphate 

through zinc sulphate) yield a straight line. The behaviour may be 

explained as being due to greater mobility of the ions at elevated 

temperature approaching the melting point. Calcium sulphate does not 

fall in the straight line probably because of its very high melting 

point. 
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crystal field effect and physical adsorption: 

The study of physical adsorption at gas-solid interfaces is 

important in various fields such as chemisorption, catalysis, cor-

rosion, dissolution and heterogeneous chemical reactions, as at 

some stage physical adsorption of a gas on a solid surface is 

involved. 

It is well known that the method of preparation or pretreat-

ment has a great effect on the nature of the surface produced. Cer-

tain types of crystal faces, due to geometric factors, have greater 

or lesser catalytic activity. Thus, a knowledge of surface structure 

is very important in catalysis and adsorption as well as for studying 

crystal growth, sintering, adhesion and mechanical strength. The 

surface structure of a solid may also be modified significantly by 

the presence of adsorbed substances. For transition metal salts with 

partially filled orbitals, the crystal field effects have an impor-

tant role to play in the modification of surface structures. 

The crystal field effect: 

The cation in a transion metal salt or a complex experiences 

an electrostatic field due to surrounding ligands. In hydrated ions 
2+ 

of the transition metals M(H
2

o)
6 

, the metal ion is surrounded 

octahedrally by six water molecul.es with the negative end of the water 

dipole nearest to the cation. The anhydrous metal sulphates of 

cobalt, nickel and copper have an orthorhombic crystal structure with. 

the metal ions coordinated by oxygens from ions arranged in a 
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slightly distorted octahedron about the metal ion. Many authors have 

studied the crystal structures of the anhydrous sulphates as referred to 

in Section 4. 34. Three theories have been used to account for the 

187 
properties of the complexes of transition metals: molecular orbital 

188 
Valence bond 

1s· 
and the crystal field theory 

Crystal field theory provides a relatively simple model for 

the discussion of absorption spectra and electric and magnetic 

properties of the salts and complexes. This theory is described 

below. The five degenerate 3d orbitals of the cations of the transi-

tion elements have directional properties. When the cations are 

placed in an electric field, the 3d orbitals lose the degeneracy. 
189 

Hush has discussed the effect of crystal field stabilization on 

interatomic separations for crystals containing ions of the transi-

tion elements with partially filled d shells. For such ions, Stark 

splitting of electronic levels of the central ion results in an ad-

ditional stabilization energy. The essential physical idea of the 

crystal field theory is that the electrons of a central ion avoid 

those regions where the field due to the attached negative ions and 

dipoles is largest. This tendency results in the removal of the 

degeneracy of the ground state of certain transition metal ions. It 

can be easily demonstrated that the d orbitals of the central ion, 

in an octahedral crystal field, are all affected, the d 2 and d 2 2 
Z X -y 

orbitals more so than the d d and d orbitals. In a tetrahedral 
xy' yz xz 

crystal field the d d and d orbitals are more affected than 
xy' yz xz 

d 2 and d 2 2• .z x """'Y -
Similarly for a trigonal field the splitting pro-

duces two sets of doubly degenerate orbitals and a single orbital. 

Figure 64 shows the splitting of the five d orbitals in various 

symmetries of the crystal field. 
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~crystal field splitting in octahedral field: 
< 

When a transition metal ion is coordinated with six identical 

ligands situated on the cartesian axes- as shown in Figure 65A, the 

electrons in all five d orbitals are repelled by the negatively charged 

ligands and the baricentre of the degenerate energy levels is raised. 

As shown in the Figure 65B, the lobes of the e orbitals (d 2 2 
g X -y 

• and d 2> point towards the ligands. Electrons in these orbitals are z 

repelled to a greater extent than those in the t 2g orbitals (dxy' 

d and d ) , the lobes of which point between the ligands. This 
yz xz 

results in an energy separation between the t 2g and eg orbital energy 

levels and is termed the crystal field splitting and is denoted by 

~ . An important rule regarding the splitting of these levels is 
0 

that their centre of gravity in energy is not affected by the pertur-

bation.* That is, 

+ 2 E 
e 

g 
0 (52) 

Each electron in a t 2g orbital stabilizes a transition metal ion 

by 2/5 ~ . The energy scale is considered in such a way that the 
0 

energy is zero at the ground state of the free ion at the baricentre and 

10 Dq is defined as the energy difference between the two levels 

190 
after the degeneracy is removed This resultant net stabilization 

energy is known as crystal field stabilization energy (CFSE) • 

The crystal field splitting in coordinations other than 

octahedral symmetry can be determined by electrostatic arguments and 

* This rule is applicable for the salts used in this study; however, 
this rule does not apply if the spin-orbit or configurational 18 
interactions become significant, especially in high crystal fields · 
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by group theory relative to octahedral coordination. For example the 

crystal field splitting in the case of tetrahedral coordination is 
191 

given :by 

ll.t -4/9 ll 
0 

(531 

The distribution of d electrons utilize another rule, apart 

t 

from Hund's rule of parallel spins, that the electrons will favour 

orbitals with the lowest energy. This leads to high spin or low spin 

configurations in certain transition metal ions. The strength of 

the field due to parti.cular ligands decides the configuration. 

sulphate ion which coordinates through oxygen might be expected to 

favour high spin complexes, as does water. The distinction between 

these two states can be assessed by magnetic susceptibility and by 

interatomic distances. A series which contains the ligands in order 

of increasing crystal field splitting (fl.) is known as a spectrochemical 

series. Various factors which affect the fl. values are discussed 
0 

191 192 
by Orgel and Burns If the ground state or lowest energy 

level of the molecule is degenerate, it will distort spontaneously 

to remove the degeneracy. This effect is known as Jahn-Teller effect 

and gives further stabilization to the configuration. 

An approximate value is given for crystal field stabilization 
193,194 

energy (CFSE) , 10 Dq, by perturbation calculations 

10 Dq 
5 e q r 

3R5 

4 

(54) 

191 
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where e is the charge on the electron, 

q is the charge of one li_gand, 

r is the mean value of the radius of d orbLtal, 

and R is the distance between the transition metal and surrounding 

ligands. 

The crystal field effect and surface energy: 

The crystal field decreases the electronic energy of the ion 

in a crystal relative to that of the gaseous ion. This change in 

the electronic energy decreases the potenti_al energy of the crystal 
195 

and this results in the relaxation of the surface ions On 

cleaving a crystal of NiO along a (001} plane,the surface energy 

17 
change can be calculated following Dunning 

A cation in a site on the (001) face of a NiO surface is 

surrounded by five negative ions disposed at the corners of a square 

pyramid. When the relaxation of surface ions occurs, the metal ions 

move (relatively) towards the center of gravity of the pyramid and 

the symmetry of the electrostatic field would then still be that of 

a tetragonal pyramid. In this field, three degenerate orbitals 
191 

would be split up. With the weak field approximation , the resul-

tant electronic energy of the ion in the (001) face will be different 

than that of the ion in an octahedral environment. The CFSE in the 

two symmetries can be calculated by using the energy levels given 
18 

by Dunn, Mclure and Pearson 
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t 
9.14 Dq 

tt 
6.00 Dq 

0.86 ------J-"1 _____ _ 
- -0.86 

t,J, t...:L__ -4.57 
- ~ t+ t+ . -4.00 

(square pyramidal} (octahedral} 

CFSE = -10 Dq CFSE = -12 Dq 

The nickel (II) ion has eight electrons in the 3d shell. When 

these are assigned to various levels, keeping a maximum number of 

parallel spins (the weak field approximation) , there are two un-

paired electrons in each of doubly degenerate orbitals. The electronic 

energy of the nickel ion in the crystal is 12 Dq less relative to 

that of the gaseous ion. 

Thus on cleaving a crystal along (001) plane, cations in the 

new surfaces have electronic energies that are higher by 2 Dq com-

pared with the electronic energies of those in the interior. The 
2 

surface potential energy is increased by 2 Dq/2a per unit area and 
0 

assuming a value of 4600 cal/mole for this amounts to about 370 
2 ( 17) 

ergs/em Despite the assumptions involved in these calculations, 

it can be concluded that the crystal field splitting may, in many 

cases, make a substantial contribution to the surface energy. Further-

196 
more, Dunning has calculated the line energy of 01 step on a (001) 



6.13 

- 96 -

surface of NiO. His results indicate that the change in CFSE resulting 

due to change in surface structure is enough- to form a kink on a 
197 

step. K.ollrack calculated a CFSE as high as 70 K. Cal/mole for 

certain geometric arrangements of the transition metal oxides. 
198 

Morrin has used crystal field effects to explain the con-
199 

duction mechanism in transition metal oxides. Houten has explained 

• conduction in NiO by utilizing the difference in crystal field stabiliza-

+ 2+ 3+ 200 
tion between Ni , Ni and Ni ions. Eggerton and Stone have 

considered crystal field stabilization as one of the factors in 

determining the site preference of cations in zeolite Y. 

Crystal field effects on adsorptive properties: 

197 
Kollrack has shown that the crystal field affects the metal 

ion and also the chemisorbed reactant. 
201 

Klier has incorporated 

the concept of crystal field stabilization in a discussion of the 

activity of various transition metal oxide catalysts for oxidation 

202 9,11 
reduction reactions. According to Dowden and coworkers 

the rate controlling steps in certain chemisorption and catalytic 

reactions which involve highly polarized species may contribute to 

higher energies of activation and lower activities on the cation 
a s 10 

electron configurations d , d and d , which are the configurations 

possessing zero stabilization energy. A twin peaked CFSE pattern, 

is found for the activity of hydrogen exchange reactions 

as a function of the number of electrons in the d orbitals of the first 
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0 5 10 
transi..ti..on seri..es. The maxima was found between d and d and d 

10 0 5 10 
and d confi..gurati..ons and minima at d , d and d configurations. 

203 
Harrison et al nave studied the hydrogenation of ethylene 

over oxides of the 3d transition metals. They also found a twin 

9,11 
peaked activi..ty pattern as described by Dowden et al for hydro-

204 
gen-deuteriurn exchange reaction. Dixon et al noted similar 

behavi..our for the disproportionation of cyclohexane to benzene 

catalyzed by the same oxides. Two peaks of activity were found, the 

3+ 3 3+ 6 
first at cr

2
o

3 
(Cr 3d ) and the second at co

3
o

4 
(Co ~ 3d ; 

2+ 
Co 

7 
3d } . These two peaks of activity were separated by those 

5 
oxides whose cations possess the stable 3d configuration (MnO, 

205 
The models of Haber and Stone depict clearly, as seen from 

2-
Figure 66, the effect of CFSE and adsorption of oxide ions (Q } 

on the three principal planes (100) , (110) and (111} of a NiO crystal. 

On cleavage, the surface may relax in such a way that the nickel 

ion enters the pyramid as shown to the left in the Figure 66 A. 

Oxygen ions also move but it is simpler to show the relative movement 

of the nickel ion only. Chemisorption of an oxygen ion completes 

the octahedron about the nickel ion as shown to the right in Figure 

66 A. The change in CFSE is deduced by the change from square 

pyramidal to octahedral configuration. Table 12 shows the CFSE 

changes due to chemisorption of oxygen on different planes of nickel 

oxide. 
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The CFSE is largest for the (llOl plane and this plane 

20.5 
should be preferentially covered. Haner and Stone desorbed 

the chemisorbed oxygen by i.llumi.nating the surface of the oxide 

with light of an appropri.ate wavelength. They suggested a model 

to explain the structural change after observing the desorption of 

oxygen as a function of the wavelength of the incident light. Ac-

cording to thi.s model a •surface ni.ckel i.on forms an octahedral complex 

after adsorbing two oxygen atoms and when i.rradiated, these two 

oxygen atoms are desorbed as an oxygen molecule and the configura-

tion returns_ to the tetrahedral state when i.rradiated with the wave-

3 3 
length corresponding to the transition A2g + Tlg" 

l 
Cimi.no et al have studi.ed the decomposi.ti.on of N

2
o on NiO 

on the basis of localized interactions. They suggested that 

r~versibly ad~orhed oxygen, which correlates with the catalytic 

activity, is present as 0 . The strongly adsorbed oxygen is 

2-
present as 0 which acts as a poison i.n this process. 0 can be 

formed preferentially on (llO} planes as a result of decomposition 

of N
2
o molecules. Desorption of this oxygen is relatively easy 

permitting further decomposition of N
2
o. The mechanism suggested 

for this process is also based on the transition from tetrahedral 

to octahedral symmetry on adsorption of two oxygen atoms on this 
205 

plane. The difference between the models of Haber and Stone 

1 
and that of Cimino et al are that the central metal ion is trivalent 

in Cimino's model instead of divalent and the oxygen ions are singly 

charged. The oxygen is doubly charged in the model of Haber and 

Stone. The preferenti.al adsorption on the (110) plane at low 
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coverage can be similarly explained using the model proposed by 

Cimino. 

It is evident that the anomalous properties of ions wi.th_ 

unfilled d orbitals affect their surface chemistry. The relation-

ships between coordination chemistry, solid state chemistry and 

surface chemistry reviewed so far suggest that crystal field 

• 
effects should influence the adsorptive properties of appropriate 

solids. 
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6.14 The crystal field effect on the isosteric heat of adsorption: 

It is well known that the CFSE contributes to heats of 

hydration and heats of ligation. CFSE also shows up in other 

thermodynamic properties such. as lattice energies and stability 

constants. The effect on chemisorption and adsorptive properties 

has been discussed in previous sections. The heat of adsorption 

of an adsorbed molecule should also be similarly i .ncreased by the 

crystal field. This effect on heat of chemisorption has been 
202 22. 

discussed by Dowden Machin has found that the heat of ad-

sorption of CFC1
3 

at zero coverage is related to the adsorbent 

CFSEi the adsorbent having the greatest CFSE showed the largest 

heats of adsorption. 

Isosteric heats extrapolated to zero coverage qst(O) repre-

sent the heat of adsorption without any mutual interactions between 

adsorbed molecules (see section 5.60). 
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Excess heat of adsorption: 

0 
The q

5
t(8=0) values for the surfaces annealed at 200 C 

were plotted as a function of atomic number of the cations. A 

+2 2+ 
straight line was drawn joining qst(O) of Mn and Zn both of 

which have zero CFSE. The perpendicular distance from this line 
2+ 2+ 2+ 

to the qst(O) points of Co , Ni and Cu are defined as the 
. 

excess heat of adsorption. The same method was used to calculate 

the excess heats of adsorption on the surfaces of cobalt, nickel 

and copper sulphates annealed at higher temperatures. These plots 

are shown in Figure 55-58 and the values of the excess heats of 

adsorption are included in Table (16) • The excess heat of adsorp-

tion will be correlated with CFSE in determining the surface 

structures. 

Excess heat of solution: 

A similar procedure was followed for the calculation of 

the excess heats of solution which are shown in Figures 59-61 

and values included in Table (13) . 
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calculation of CFSE: 
22 

The following cycle was used to derive the CFSE of ad-

sorbents from the measured heats of solution: 

-Q 
++ ----~ M (aql + SO 

4 
(aql 

r-~-H(so4 ) 
(g} 

where, 

and 

Q heat of solution, 

U lattice energy of the solid, 
0 

i:IHM and i:IH (SO 
2 

= heats of hydration of the gaseous 
4 

We derive from the energy balance 

-Q= u 
0 

-Llli 
M 

- i:IH cso4 J 

ions. 

(56) 

Both U
0 

and i:IHM for transition metal ions have CFSE contri-

butions such that, 

and 

u 
0 

-i:IH 
M 

U' + X 
0 

-i:IH' - S 
M 

(57) 

(58) 

where X is the CFSE in the solid anhydride and S is the CFSE in 

the aqueous solution. Hence, 

U' - i1H 1 

o M 
fl.H + (X-S) 

LS0
4

} 
(59} -Q 
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Since manganese (IIl and zinc (ITl have zero CFSE in the 

solid and in solution, and since it is generally assumed that the 

properties whlch are not dependent on crystal field effects vary 

linearly or nearly so with the atomic number, we may obtain the 

quantity (X-S) , as the difference between the experimental heat 

of solution and the heat of solution derived from a linear inter-

polation between the Mnso
4 

and Znso
4

. The quantity S has been 
191 

calculated from the reported spectroscopic values The magnitude 

of the difference between s and X-S gives the value of the adsor .... 

bent CFSE X. These values are tabulated in Table 13. 

To obtain the value of unit Dq, the CFSE X as btained above 
18 

is compared with the CFSE calculated from the energy levels of the 

octahedral structure of the adsorbent. For example, Co (II) has 

seven electrons in its d orbits as shown below: 

e 
g 

t t 

_""":: _______ _ 

t..J, t..J, t 

6 Dq 

-4 Dq 

(High spin octahedral 

structure of Co II) 

CFSE (.2x6) - (.5x4) 

-8 Dq 

For Coso
4

(200) CFSE (X) = 17.11 

kcal/mole from Table 13 (this is 

also a negative quantity). 

On comparing we get, 

8 Dq = 17.11 or Dq = 2.14 kcal/mole 

The Dq values so calculated are 

included in Table 13 for each adsor-

bent. 
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surface structures and CFSE: 

The crystal structures (bulk structures) of the adsorbents 

have already been discussed in sections 4.34 and 6.11. 

The cations in Mnso
4

, coso
4

, cuso
4 

and znso
4 

are surrounded 

by six oxygens from six sulphate ions coordinated to the metal 

ion in octahedral symmetry. However the octahedra may terminate 

• at the surface in a number of different ways depending on the 

surface energy and other factors such as lattice defects, effect 

of impurities, the rate and conditions of dehydration of salts. 

If conditions are such that one surface plane is preferred 

during sample preparation, a layer type or a parallel plate type 

of structure might result. This has been suggested for nickel 
206 

sulphate and the sensitivity of surface CFSE to the type of 

crystal face exposed should be an important factor in determining 

the dominant crystal faces in all of the adsorbents considered 

here. Figure 29 shows the isotherm of Cuso4 (200) which has a 

shape similar to that of the Niso
4 

isotherm, obtained by Kinloch 
206 

and Machin 

Annealing of the sample would be expected to make the 

proportion of the preferred plane higher at the surface, giving a 

more stable surface structure. The large pores resulting from 

the loss of water during dehydration would, however, leave a very 

rough surface, giving rise to many possibilities of surface 

structures. 
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196 
Dunning has considered various symmetry coordinations 

207 
for surfaces hav£ng steps, kinks, etc. Wells has recently 

investigated some aspects of the geometry of octahedrons meeting 

at a point for rutile and corundum structures. Considering similar 

ideas, and the crystal structure of sulphates, the following 

possibilities for surface structures seem reasonable. Some of 

the structures, eg. tetrahedral would involve surface relaxation 

process, where a very large energy is not involved. We will 

consider the main possibilities of surface structures as a surface 

cation may possibly exist in an octahedral environment, one of the 

ligand sites may be vacant giving a square pyramidal environment, 

or the octahedron may be cut by a plane giving trigonal, trigonal 

bipyramidal or tetrahedral structures. The trigonal bipyramidal 

and tetrahedral structures would be possible as a result of surface 

relaxation or on edges, kinks and steps of the surfaces. 

Preliminary calculations based on unit cell dimensions (Table 

14}, cation-cation distances in each plane, and the molecular area 

of the adsorbate molecule, suggest the possibility of half adsorbate 

molecule per cation to more than one adsorbate molecule per cation. 

Two adsorbed molecules per cation are possible on rough surfaces 

with steps, kinks and edges. There is no possibility of more than 

two adsorbate molecules per cation at the surface as is evident from 

the calculations considering the experimental monolayer capacity 

and surface area obtained for different adsorbents. Table 14 con-

tains the results of these calculations for the various planes 

shown in Figure 67. The various possibilities of surface 
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structures obtained after adsorption are l .isted below: 

Initial structure No. of adsorbed molecules Final structure 

Octahedral one Hush's seven coordinated 
structure 

Octahedral one Pentagonal bipyramidal 

Tetrahedral one Trigonal bipyramidal 

Square pyramidal one Octahedral 

Trigonal two Trigonal bipyramidal 

Trigonal bipyramidal two Pentagonal bipyramidal 

Square planar one Square pyramidal 

The structures involving very large energy changes have not 

been considered. Another consideration in choosing a model is that 

on adsorption a more stable surface structure should be obtained. 

The considerations of the initial and final surface struc-

ture allows us to estimate the change in crystal field stabiliza-

tion energy on adsorption. The calculated CFSE's for the 

various models will be compared with the experimental value of ~CFSE 

derived from heats of adsorption (section 6.20). 

The energy levels and the symmetry notation were used as 

18 191 
given by Dunn et al and by Orgel The notation (200) , (300) 

(400) or (500) written after the chemical formula of the adsorbent 

indicates the temperature in degrees centigrade at which the 

corresponding adsorbent was annealed before taking the adsorption 

measurements. 
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Cobalt Sulphate: 

Cobalt II has seven d electrons. Energy level diagrams 

for the 3d orbitals in various ligand symmetries are shown below: 

e 

ttt 
1.78 Dq 

t+ t+ 
--~------- -2.67 Dq d d 2 2 

xy' x - y 

dxz' dyz 

d 2 z 
t 

------ 7. 07 Dq 

tt 
----- -0.82 Dq 

t+ t+ 
----- -2.72 Dq 

(Tetrahedral) (Trigonal bipyramidal) 

CFSE ( 3 x 1 . 7 8) - ( 4x 2 . 6 7 ) CFSE = 7.07 - (2x0.82) - (2x2.72) 

-5.34 Dq -5.45 Dq 

The trigonal bipyramidal structure is more stable than the 

tetrahedral structure by 0.11 Dq. The value of unit Dq value has 

already been calculated in section 6.40 and listed in Table 13. 

The stabilization energy of 0.11 Dq due to adsorption on 

tetrahedral Co(II), giving trigonal bipyramidal structure can 

be expressed in kcal/mole units by substituting the unit Dq value. 

and 

for Coso
4 

(200): 0.11 x 2.14 

for coso
4 

(300): 0.11 x 2.70 

for coso
4 

(400): 0.11 x 2.28 

0.24 kcal/mole, 

0.30 kcal/mole, 

0.25 kcal/mole. 

On comparing with the CFSE obtained from heat of adsorption 

(the excess heat of adsorption given in Table 16 for various 

surfaces of cobalt sulphate, only coso4 (200) surface matches 

this model: 0.30 kcal/mole (experimental} against 0.24 kcal/mole 
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(calculatedl. The excess heat of adsorption for coso
4 

(300) and 

coso
4 

(400} are hlgher than the values calculated according to 

this parti.cular model. Further models considered are octahedral, 

pentagonal bipyramidal and Hush's intermediate. The crystal 

field stabilization energy for these models are; 

Octahedral -8 Dq 

Pentagonal bipyramidal: -10.55 Dq 

Hush's intermediate -8.69 Dq 

Considering octahedral going to Hush's intermediate structure 

on adsorption, the gain in stabilization energy is 0.69 Dq and 

on going to pentagonal bipyramidal the gain in CFSE is 2.55 Dq. 

Substituting the unit Dq value from Table 13 for the various 

adsorbents we get, 

Octahedral ~ Hush 's intermediate 

Coso
4 

(200) : 0.69 X 2.14 = 1.48 kcal/mole 

Coso
4 

(300) : 0.69 X 2.70 = 1.86 kcal/mole 

Coso
4 

(400} : 0.69 X 2.28 1.57 kcal/mole 

Octahedral > Pentagonal bipyramidal 

Coso
4 

(200) : 2.55 X 2.14 5.46 kcal/mole 

Coso
4 

(300) : 2.55 X 2.70 = 6.89 kcal/mole 

Coso
4 

(400) : 2.55 X 2.28 5.81 kcal/mole 
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The octahedral structure yielding Hush•s intermediate 

seems to be closest for Coso
4 

(300} and coso
4 

(400} as the CFSE 

(calculatedl values are much higher for the model (octahedral 

Pentagonal bipyramidal). However, there is possibility of a 

mixture of some sites with pentagonal bipyramidal structure of 

cation environment. This will be further discussed when con­

sidering the annealing effect in section 6.44. 

Considering a square planar surface model yielding square 

pyramidal structure on adsorption the following values of crystal 

field stabilization energy are obtained: 

CFSE for square planar structure -10.28 Dq 

CFSE for square pyramidal structure: - 9.14 Dq 

One obtains a less stable final structure, by 1.14 Dq. 

Such a possibility is less likely to be effective. Furthermore 

such structural change will result in a decreased heat of adsorp­

tion. The presence of this sort of site might contribute to 

the decreasing heat of adsorption as the surface coverage increases. 

There are other possible structures which can give less stable 

surface structures on adsorption, some of them have been listed 

in Table 16. 

Nickel Sulphate: 

Three models out of the eight considered yield more stable 

structure on adsorption. Moreover, the models, tetrahedral -+ 
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tri.gonal bipyramidal, and square pyramidal -+ octahedral involve 

hi.g~CFSE changes as evident from Table 16. Adsorption on a 

trigonal bipyramidal site yielding a pentagonal bipyramid is con-

sidered below: 

CFSE for trigonal bipyramid -6.27 Dq 

CFSE for pentagonal bipyramid: -7.73 Dq 

The final structur~pentagonal bipyramidal, which results 

when two molecules of adsorbate molecules are adsorbed on each 

cation, is more stable than the trigonal bipyramidal surface 

by 1.46 Dq. This value is calculated in kcal/mole below for 

different surfaces: 

Niso4 (200) : 1.46 X 2.05 2.99 kcal for two moles of 
adsorbed CFC1 3 

1.50 kcaljmole 

Niso
4 

(300) : 1.46 X 2.13 3.11 k.cal 

1.56 kcal/mole 

NiS0
4 

(400) : 1.46 X 2.78 4.06 kcal 

2.03 kcal/mole 

These values compare reasonably well with the experimental 

excess heats of adsorption (Table 16) • 

• 
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6.43 copper sulvhate: 

Comparlson of the eight models summarized in Table 16 suggests 

the model of a trigonal envlronment around the cation changing to a 

trigonal blpyramidal symmetry on adsorptlon of two CFC1
3 

molecules 

per cation. 

The crystal fleld stabilization energy for a trigonal struc-

• 
ture lS -5.48 Dq and for trigonal bipyramidal structure is -7.09 

Dq. The flnal structure, trigonal bipyramid, ls more stable by 

1.61 Dq, which on conversion of unlts yields, 

Cuso4 
(200) : 1.61 X 3.64 5.86 kcal for two moles of CFCl 

3 

2.93 kcal/mole 

Cuso
4 

(300} : 1.61 X 4.82 = 7.76 kcal for two moles 

3.88 kcal/mole 

Cuso
4 

(_400} : 1.61 X 2.86 4.61 kcal for two moles 

2.30 kcal/mole 

These values compare reasonably well with the experimental 

excess heat of adsorption. However, the difference between cal-

culated change of CFSE and excess heat of adsorption for cuso
4 

(300) 

and cuso
4 

(_4001 surfaces may be accounted for if a fraction of 

surface possessed octahedral (more probably} or tetrahedral sym-

metry. 

6.44 Effect of anneallng on surface structures: 

Anneallng of the surface is expected to yield a more stable 
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surface structures. The mobility of the ions in the lattice is 

increased at elevated temperature and thus annealing should give 

a surface w2th fewer lattice defects (unless lattice defects are 

caused by impurities) and more stabilized surface structures. 

Cobalt sulphate surface structure is discussed in 

section 6.41. Coso
4 

(2001 is found to have a tetrahedral environ-

t 

ment of ligands around the cations which changes on annealing 

0 
at 300 C to an octahedral structure and which remains octahedral 

0 
on annealing at higher temperatures up to 500 c. This change 

between the (200) & (300) surface structures may have been caused 

by the removal of water. The structures for Coso
4 

(500) could 

not be measured. However when the qst (o) for ZnSO 4 (200) , (300} 

and (400) surfaces were plotted against the annealing temperatures 

a straight line was obtained which when extrapolated yielded a 

0 
qst (o} at 500 C of 2.53 kcal/mole. The excess heat of adsorp~ 

tion for Coso
4 

(400) is 2.75 kcal/mole. These excess heats of 

adsorption values for the (400} and (500} surfaces are higher 

than the calculated CFSE of 1.57 kcal/mole for Coso
4 

(400). This 

difference suggests that annealing at higher temperatures yields 

surface structures which have a terrlency to go to more stable 

(pentagonal bipyramidal) structure on adsorption. Probably, by 

this argument, it is expected that annealing at sti.ll higher tempera-

tures will finally yield surface structures close to the model, 

Octahedral -+ Pentagonal bipyramidal 
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Most of the nickel sulphate surface seems to agree with 

the model trigonal bipyramidal going to pentagonal bipyramidal 

structure on adsorption. However the annealing effect seems to 

favour formation of the square pyramidal or tetrahedral sites on 

the stabilized surface which g~ve larger experimental excess heats 

of adsorption. The extrapolation technique as discussed for coso
4 

• (500}, yielded an excess q (o} for Niso
4 

(5001 of 3.37 kcal/mole, 
st 

consistent w£th the above argument. Annealing at still higher 

temperatures is expected to yield more stable surface structures 

close to the model square pyramidal ~ octahedral. The probability 

of the tetrahedral going to trigonal bipyramidal on adsorption 

is not ruled out. However, intitutively, this seems less likely 

in view of the bulk crystal structures. 

The calculated CFSE's for copper sulphate (200} and (300) 

surfaces for the model trigonal ~ trigonal bipyramidal, are a 

bit higher than the experimental excess qst Col • 

Such a difference may be due to the presence of octahedral 

cation sites on the surface. On annealing to 400°C the calculated 

CFSE is decreased indicating the disappearance of such sites while 

annealing at 400°C. The (500°Cl surface yields an excess qst (o) 

of 2.95 kcaljmole by the extrapolation (as used for Coso
4 

(500}). 

This suggests that the surface is very sensitive to the presence of 

traces of chemisorbed water. However, these results indicate that 

the most likely model for the stable surface of Cuso4 is the 

trigonal ~ trigonal bipyramidal one. 
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Importance of surface structure studies: 
208 

Recently Cim£no, Pepe and Schiavello have given a good 

account of the effect of symmetry of the cation at the surface 

on the catalytic activity of oxide solid solutions. They found 
2+ 

that the catalytic activity of Cu ions in tetrahedral symmetry 

is very low. Cobalt(II) ions and nickel(II) ions with octahedral 

coordination were found to be much more active. The heat treat-

ment was found to increase the occupancy of octahedral sites by 

2+ 2+ 
Co and decrease the occupancy of octahedral sites by Ni 

The effect due to surface defects was not significant. The explana-

tion for lower activity with tetrahedral structure is given by them 

as being due to the shorter bond lengths in tetrahedral symmetry. 
196 

These bonds are stronger and more difficult to cleave. Dunning 

explained the effect of symmetry on the catalytic activity as being 

due to the availability of cations near the surface or deeper 

in the interior depending upon the specific symmetry. 

196 
Dunning has also demonstrated how different ligand sym-

metries around surface cations eg. a cation lying on edges, steps 

or kinks of a particular plane can affect catalytic activity. 

209 
Erofeeve et al have explained that the symmetry of the cation 

decides the stability of the intermediate complex formed during 

catalytic process. They compared their results of symmetry con-

siderations and activity with the multiplet theory and found that 

both have their origin in the crystal field theory and are related. 
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Studies of acidity and catalytic activity of Niso
4 

2,3,4,114 5 
and Cuso4 have been carried out Tanabe and coworkers 

stud£ed the problem using X-ray and N,M.R. analysis and found 

the relation :Oetween structures of acid sites based on coordina-

108 
tion symmetry and catalytic activity. Bendor and Margalith 

have explained the aciq properties of the monohydrates of Niso
4 

on the basis of the special linkage of the water molecule to the 
21Q 

central metal ion. Wade et al have found during their micro~ 

calorimetric estimation of surface acidity of hydrated Niso4 that 

the heat of immersion for the adsorbent differed in two ligands 

pyridine and 2 ,6-dimethylpyridine, havj_pg similar base strength. 

This difference may have arisen from CFSE differences due to 

different symmetries. 
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Conclusions: 

The quantitative understanding of all the forces involved 

in physical adsorption is not yet possible. From the general 

quantum mechanical point of view physical adsorption, chemisorp-

tion, heterogeneous catalysis and homogeneous catalysis are all 

particular cases of the overall problem of intermolecular inter-

actions. Although it is possible to make approximate estimations 

of adsorption energies, for very simple cases, on the basis of 
19,211,212 

general theory of intermolecular forces , in most 

real cases nonadditivity of interactions, heterogeneity complica-

tions, uncertain crystal structures and more uncertain surface 

structures make inferences uncertain. Direct experimentation 

still remains the most useful means of our knowledge of adsorption 

phenomena. 

Many powerful techniques such as LEED have been applied 

to studies of the surfaces of single crystals. However, poly-

crystalline substances are most commonly used as catalysts. 

Physical adsorption measurements allow us to probe the surfaces 

in the form in which they are used and generally it is possible 

to closely reproduce the actual environment which the adsorbent 

may meet during a catalytic process. The thermodynamic approaches 

coupled with band theory, crystal field theory and the general 

principles of organic and inorganic chemistry can give insight 

into the possible properties of the transition complex formed at 
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the surface. An attempt has been made in this work to utilize 

crystal field theory in assessing surface structures and it is 

found that the physical adsorption measurements can be used as 

a suitable tool, in simpler manner than other more powerful 

physical methods, for determining the surface structures. 

There is a need to couple infrared, magnetic susceptibility 
• 

and differential thermal analysis studies along with the adsorption 

studies, preferably in situ. These should enable one to quanti-

tatively assess the proportion of sites having different surface 

structures and the number of adsorbate molecules per cation on 

the surface under any set of experimental conditions . 

• 
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8.10 Adsorption Data (gravimetric) 

Pressure (P) is recorded in torr and amount adsorbed is 

recorded as W micrornoles. The temperature at which the sample 

was annealed is shown in parenthesis along with the various adsor-

bents. The start of each run is indicated by 'X'. CFC1
3 

was 

used as an adsorbate in all the runs. 

Caso
4 

(200°C) 

Sample weight, 414 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 1.15 4.25 20.20 18.93 236.40 43.69 
2.50 7.03 44.75 24.64 193.10 39.80 
4.30 9.83 71.25 28.63 140.75 35.59 
9.35 14.47 131.90 34.70 101.20 31.84 

15.95 18.11 172.80 38.20 54.60 26.24 
30.45 22.76 223.20 42.05 10.10 14.26 
59.60 27.83 262.30 44.17 0.360 2.02 
91.50 31.73 329.10 51.08 

, X, 0.950 3.78 289.80 47.77 

Temperature, 
0 

6.0 c 

p w p w p w 

'X' 0.590 4.55 70.95 35.32 'X' 0.530 4.41 
1.05 6.51 102.65 39.72 8.50 17.92 
1.55 8.23 152.15 47.70 'X' 14.70 21.52 
2.15 9.67 130.05 44.89 51.50 31.73 
5.90 15.78 110.70 41.98 78.55 35.99 

10.45 19.67 90.35 39.15 97.90 38.77 
20.90 24.34 61.60 34.70 121.60 42.19 
39.50 29.39 30.60 28.15 
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Temperature, 
0 

-10.0 c 

p w p w p w 

'X' 0.280 5.79 41.40 38.11 9.00 24.69 
0.560 8.33 50.80 40.80 37.20 36.72 
0.9000 10.61 61.10 43.62 57.05 42.16 
1.75 14.16 44.70 39.22 46.60 39.51 
4.60 20.29 25.15 32.99 34.65 35.85 

11.75 26.61 15.85 29.21 27.50 33.53 
21.10 31.24 'X' 1.90 14.58 18.00 29.71 
31.40 35.11 4.00 19.07 7.65 23.57 

Caso4 
(300 C) 

Sample weight, 414 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 0.250 1.19 203.25 32.50 299.50 38.81 
0.570 2.13 1.10 2. 75 251.80 35.18 
1.25 3.52 6.15 9.00 189.60 30.86 
4.90 8.77 19.15 15.34 130.80 26.85 

14.05 14.92 39.90 19.46 88.60 23.85 
31.20 19.28 82.20 23.57 63.45 21.72 
51.40 22.04 121.95 26.35 9.40 11.09 

101.55 26.08 170.35 29.53 
152.80 29.29 221.35 32.95 

Temperature, 
0 

6.0 c 

p w p w p w 

'X' 0.200 1.47 161.25 38.74 25.90 20.71 
0.460 2.44 119.15 33.06 44.85 24.20 
0.980 4.39 91.50 29.87 68.20 27.23 
1.80 6.56 60.95 26.05 86.60 29.40 
5.95 12.83 39.80 23.17 111.35 32.15 

14.45 17.64 19.65 19.35 95.80 30.41 
31.15 21.79 10.35 16.08 78.40 28.49 
51.40 24.65 'X I 0.36 2.30 55.50 25.63 
73.55 27.70 1.10 4.85 34.40 22.53 

102.60 31.03 2.45 7.88 
132.15 35.88 8.40 15.17 
182.45 41.39 17.70 18.97 
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Temperature, -1o.ooc 

p w p w p w 

'X' 0.270 3.77 89.95 42.75 7.60 19.00 
0.430 5.09 73.85 38.50 23.80 25.18 
1.15 8.65 55.10 33.86 43.75 30.20 
1.45 10.53 44.05 30.51 54.60 32.78 
4.30 16.28 34.65 28.07 71.05 37.10 
9.60 20.19 25.45 25.73 101.90 47.11 

21.90 24.72 15.60 22.84 80.65 40.59 
30.85 27.16 I){, I 0.158 2.51 48.45 31.77 
39.00 29.15 0.46 5.23 36.65 28.66 
51.65 32.32 0.865 7.67 10.40 20.78 
60.70 34.49 2.35 12.87 

Caso4 
(4oo 0cl 

Sample weight, 413 mg. 

Temperature, 2o.ooc 

p w p w - p w 

'X' 0.950 2.89 175.70 26.19 137.80 23.78 
5.55 7.32 126.65 23.57 186.95 26.40 

19.70 13.60 74.35 20.33 230.85 28.73 
51.15 18.27 35.65 16.70 210.60 27.62 

102.70 22.11 10.90 10.67 160.25 24.79 
151.85 24.79 'X' 0.345 1.40 91.00 20.92 
198.45 27.34 0.935 2.37 59.10 18.55 
252.70 30.62 3.00 4.85 26.80 14.65 
357.10 38.01 16.75 12.17 8.50 8.89 
293.50 33.96 42.75 16.95 
225.45 28.98 76.25 19.95 

Temperature, 6.rPc 

p w p w p w 

'X' 0.380 2.18 180.85 35.27 43.30 20.57 
0.945 3.93 150.05 31.96 66.15 22.56 
2.05 5.95 109.70 26.80 86.45 24.65 
7.30 11.95 90.00 25.02 106.95 26.54 

20.50 16.76 70.30 23.14 75.20 23.61 
40.25 19.97 49.85 21.12 55.40 21.65 
61.20 22.34 30.15 18.68 33.90 19.11 
81.30 24.15 15.00 15.50 4.75 9.87 

102.00 26.14 5.90 11.04 0.460 2.55 
130.7 5 28.82 'X' 2.20 6.15 
161.50 32.42 10.00 13.53 
202.00 38.06 25.80 17.82 



- 133 -

Temperature, 
0 ...... 1o .o c 

p w p w p w 

I X l 0.735 6.21 93.60 37.,56 1 .. 45 8.09 
1.70 9.50 80.30 34.28 2.40 11.23 
5.25 15.45 59.95 29.95 6.90 15.97 

10.40 18.24 45.75 26.22 13.10 18.69 
22.25 21.41 34.25 23.96 24.15 21.60 
30.95 23.36 25.35 22.25 33.15 23.29 
39.70 25.11 15.80 19.95 43.05 25.32 
50.60 27.13 . 0.48 4.46 53.00 27.20 
70.50 31.45 0.80 5.93 47.55 26.15 

37.70 24.13 
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Mnso
4 

(200 °C} 

Sample weight, 542 mg. 

0 
Temperature, 20.0 c 

p w p w p w 

'X' 21.55 3.80 239.00 27.69 13.90 3.42 
35.75 6.98 180.90 22.34 26.70 6.00 
80.10 12.90 139.95 • 18.68 50.75 10.30 

116.00 16.55 101.15 15.09 101.60 16.32 
158.15 20.58 57.15 9.86 153.75 21.34 
100.00 24.15 'X' 5.85 1.60 78.75 13.77 

Temperature, 
0 

6.0 c 

p w p w p w 

'X' 7.65 3.59 142.40 31.07 50.35 14.17 
20.10 7.60 100.35 22.91 91.75 20.99 
40.85 12.97 60.30 16.46 122.50 25.73 
84.00 20.43 'X' 7.10 3.17 110.05 23.73 

122.55 26.29 13.80 5.54 69.05 17.44 
163.60 33.85 28.15 9.59 18.20 7.22 

0 
Temperature, -10.0 c 

p w p w p w 

'X' 0.550 0.82 31.65 17.82 51.40 24.55 
0.870 1.15 41.40 20.96 34.60 18.69 
4.95 5.06 62.75 27.83 13.50 10.43 

10.45 8.84 88.80 38.39 1.90 2.57 
20.50 13.77 72.55 32.26 
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MnS04 
(300 °Cl 

Sample wei.gh.t, 537 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 2.80 1.81 101.40 15.44 164.10 18.06 
7.90 3.52 61.00 12.17 'X' 59.55 11~08 

18.60 6.09 29.20 7.99 119.80 15.73 
38.75 9.49 .g. 70 4.12 181.00 18.83 
81.05 14.23 3.55 2.19 239.75 21.34 

119.35 16.70 'X~' 0.92 0.59 206.50 19.95 
161.05 18.72 49.15 10.15 148.55 17.40 
202.15 20.50 131.05 16.53 89.85 13.95 
231.10 21.62 209.75 19.86 29.55 7.04 
184.30 19.67 295.90 23.75 15.20 4.48 
141.45 17.73 250.35 21.93 

Temperature, 6.0°C 

p w p w p w 

'X'- 0.78 0.66 60.40 15 .. 41 107.70 19.33 
1.40 0.98 79.40 17.23 90.65 18.15 
2.20 1.47 101.00 18.83 69.70 16.42 
6.20 4.30 118.80 20.23 48.25 14.06 

17.20 8.23 171.40 24.04 28.80 10.67 
38.45 12.73 146.30 22.11 10.65 5.66 

Temperature, -10.0°C 

p w p w p w 

'X' 0.66 1.16 41.80 17.87 16.00 12.32 
1.00 1.63 62.05 20.74 12.45 10.70 
4.75 5.45 83.10 23.82 8.15 8.19 

10.65 9.67 49.80 19.28 3.10 4.21 
19.10 13.27 35.00 16.98 
31.50 16.26 25.25 15.00 
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0 
MnS04 

(400 Cl 

Sample weight, 537 mg. 

Temperature, 20.0 °c 

p w p w p w 

'X' 0.635 0.17 152.75 13.97 50.45 7.97 
1.70 0.49 212.70 16.09 102.25 11.77 
5.55 1.33 180.70 14.98 160.15 14.30 

10.40 2.60 119.70 12.65 213.20 16.15 
21.35 4.43 65.80 9.24 189.35 15.31 
41.05 7.05 tx, 1.40 0.35 140.80 13.37 

'X' 42.50 7.10 7.15 1.81 108.00 11.89 
90.30 11.10 29.80 5.44 78.55 10.22 

Temperature, 
0 

6.0 c 

p w p w p w 

'X' 0.23 0.25 60.90 12.82 70.00 14.42 
0.75 0.59 80.90 14.23 50.60 11.74 
1.50 0.91 111.40 15.44 30.65 9.17 
2.10 1.24 122.55 16.57 15.35 5.96 
4.30 2.41 172.30 19.27 6.80 3.28 

10.40 4.69 137.65 17.30 3.70 2.08 
20.45 7.28 108.05 15.73 
40.25 10.81 89.80 14.62 

Temperature, 
0 

-10.0 c 

p w p w p w 

'X' 0.222 0.43 18.85 11.33 44.55 15.16 
0.455 0.74 31.25 13.40 35.50 14.05 
0.798 1.20 42.45 14.80 25.30 12.55 
1.25 1. 74 51.30 15.81 15.45 10.32 
4.15 4.42 69.70 17.74 8.25 7.25 
6.20 5.71 90.15 20.25 3.40 4.14 

12.05 8.96 58.45 16.70 1.75 2.68 
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coso4 
(200°C} 

Sample weight, 358 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 0.84 0.11 'X' 0.78 0.12 2.40 0.46 
2.10 0.39 3.60 0.67 'X' 154.70 17.02 
6.05 1.17 5.20 0.86 196.35 19.75 

14.30 2.23 9.20 1.42 239.85 22.26 
27.40 3.77 15.75 2.27 289.30 24.94 
46.75 6.00 20.45 2.73 260.80 23.48 
91.60 11.08 26.95 3.51 219.15 21.10 

131.30 14.69 36.70 4.57 178.60 18.62 
171.95 17.79 59.50 7.22 142.25 15.53 
202.00 19.93 87.65 10.30 101.60 11.45 
151.40 16.28 117.25 13.16 59.30 6.56 
109.80 12.64 138.50 15.05 32.75 3.74 

68.10 8.40 126.00 13.98 
30.95 4.14 84.85 9.96 

Temperature, 
0 

6.0 c 

p w p w p w 

'X' 4.95 1. 77 69.20 14.04 56.60 11.93 
10.10 2.92 48.95 10.56 77.45 15.27 
15.45 3.65 16.75 4.04 97.60 17.95 
24.90 5.67 6.70 1.81 117.60 20.17 
38.75 8.46 'X' 0.57 0.21 143.25 22.66 
60.20 12.49 2.05 0.85 162.40 24.43 
81.15 15.80 6.50 2.01 125.90 20.96 

111.45 19.53 12.25 3.34 87.35 16.67 
150.15 23.19 19.65 4.90 49.80 10.83 
169.45 24.92 24.05 5.82 15.35 3.87 
131.30 21.51 43.20 9.74 7.45 2.09 

90.80 17.18 'X' 27.35 6.27 
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Temperature, -10.0°C 

p w p w p w 

'X' 0.446 0.34 70.00 22.95 9.75 5.51 
0.750 0.52 92.10 26.94 15.55 8.13 
1.000 0.69 79.50 24.82 20.95 10.49 
2.90 1.90 59.80 21.33 28.45 13.30 
4.85 2.99 39.05 16.57 56.10 20.60 
8.55 4.74 24.70 11.86 66.75 22.66 

13.10 6.95 2.75 1.95 44.60 18.03 
17.70 9.03 I )I I 0.795 0.59 33.40 14.93 
30.60 13.84 1.30 0.80 22.25 11.96 
40.85 16.95 2.25 1.59 11.55 6.36 
50.05 19.17 6.65 4.02 6.50 4.06 
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coso4 
(300 °C) 

Sample weight, 298 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 0.54 0.39 81.60 19.29 192.85 28.43 
1.15 0.67 122.45 23.54 141.05 24.71 
2.00 1.17 172.10 27.22 90.10 20.07 
4.70 2.44 220.60 30.33 30.20 10.16 
8.10 3.82 271.30 33.81 15.10 5.84 

19.40 7.58 303.65 36.00 
40.80 12.85 248.25 32.18 

Temperature, 6.0°C 

p w p w p w 

'X' 0.675 0.92 14.55 10.66 51.00 21.35 
2.45 2.62 'X' 0.294 0.46 70.10 24.53 
5.75 5.38 0.422 0.57 91.35 27.40 

10.00 7.86 0.772 0.92 125.35 31.26 
21.15 13.20 1.15 1.17 161.60 35.33 
40.50 19.19 2.45 2.45 202.35 40.64 
78.70 25.77 5.15 4.60 181.05 37.95 

115.60 30.16 7.35 6.09 141.20 33.17 
99.35 28.53 12.00 8.74 95.00 27.90 
60.90 23.40 23.95 14.23 65.40 23.97 
30.60 16.74 37.30 18.34 33.75 17.63 

Temperature, -10.0°C 

p w p w p w 

'X' 0.210 0.99 9.10 13.45 59.80 31.22 
0.420 1.81 20.15 20.43 52.40 29.56 
0.635 2.44 30.70 24.25 43.45 27.54 
0.780 2.94 40.25 26.73 34.00 25.13 
2.40 6.41 50.45 29.03 24.00 22.09 
4.60 10.12 71.50 33.52 13.90 17.17 

•xt 0.620 1.95 99.05 40.36 3.20 6.66 
2.45 5.42 85.10 36.78 1.70 3.89 
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coso
4 

(_400 °C} 

Sample weight, 293 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 0.51 0.53 14.30 6.66 270.35 29.81 
1.80 1.42 6.25 3.79 216.05 26.73 
4.80 2.87 'X' 0.366 0.28 164.45 23.90 

10.00 4.99 1.80 1.13 114.50 20.53 
20.60 8.32 4.15 2.23 74.70 16.53 
40.85 13.06 9.55 4.25 'X I 0.41 0.43 
70.10 17.74 13.40 5.49 2.50 1.98 

120.45 22.48 19.20 7.15 40.40 12.43 
170.85 25.67 27.75 9.31 84.95 18.80 
222.20 28.67 50.35 13.52 125.30 22.23 
200.10 27.40 89.60 18.51 166.80 24.99 
149.75 24.60 141.65 22.48 186.90 26.16 

98.80 20.89 191.20 25.45 145.90 23. 75 · 
61.65 16.74 241.65 28.18 94.35 19.79 
29.95 10.80 301.15 31.51 66.55 16.78 

Temperature, 6.0°C 

p w p w p w 

'X' 0.22 0.35 168.25 31.29 37.80 17.17 
0.67 0.81 120.95 27.22 58.90 20.74 
1.95 2.30 100.00 25.35 78.90 23.25 
4.65 4.32 81.35 23.40 97.30 25.13 
9.50 7.08 59.60 20.82 138.35 28.82 

17 .. 20 10.66 37.90 17.03 180.95 32.71 
25.25 13.68 ' 28.00 14.37 157.10 30.55 
49.25 19.22 13.90 9.03 110.80 26.41 
70.65 22.23 7.50 5.49 88.40 24.39 
90.95 24.39 1.35 1.35 66.50 21.88 

110.40 26.13 'X' 0.32 0.53 46.45 18.87 
150.90 29.67 1.85 2.41 26.40 14.30 
192.75 33.74 18.20 11.51 7.60 6.37 
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Temperature, -10.0°C 

p w p w p w 

'X' 0.22 1.13 14.70 18.16 81.10 32.82 
0.43 1.95 20.15 20.53 60.15 29.35 
0.72 2.80 30.10 23.58 45.15 26.76 
1.25 4.32 40.70 25.95 33.80 24.53 
3.55 8.50 51.00 27.72 24.45 21.84 
5.45 10~83 72.15 31.22 6.70 12.11 

10.60 15.68 95.35 35.44 

Coso4 
(500°C} 

Sample weight, 288.2 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 52.00 11.57 0.73 0.50 240.40 23.54 
97.55 17.06 4.05 2.23 297.80 26.23 

150.40 19.65 10.75 4.35 271.50 25.28 
201.25 21.70 14.60 5.49 220.20 23.36 
250.75 23.61 20.80 7.12 179.25 21.59 
225.75 22.73 40.75 11.12 138.95 19.75 
171.40 20.46 79.50 15.61 98.70 17.35 
120.15 17.88 120.95 18.51 60.85 14.09 

74.05 14.76 160.95 20.36 27.00 8.85 
'X' 0.455 0.32 198.80 21.95 6.40 3.54 

Temperature, 6~0°C 

p w p w p w 

'X' 0.30 0.35 40.60 14.51 126.45 22.66 
0.70 0.57 56.00 17.24 93.90 20.46 
2.65 2.12 79.70 18.94 69.35 18.48 
5.50 3.89 108.85 21.13 27.95 12.46 
9.80 5.95 151.10 24.07 5.80 4.39 

15.30 8.18 192.40 27.00 
20.20 10.02 168.90 25.38 
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Temperature, -1o.o
0

c 

p w p w p w 

'X' 0.235 0.78 56.00 21.49 38.00 19.12 
0.630 1.52 86.70 25.28 47.85 20.50 
1.80 3.54 37.55 19.12 90.15 25.81 
6.10 8.18 'X' 0.65 1.70 71.15 23.47 

12.65 12.39 2.80 4.96 23.65 16.53 
22.35 15.72 9.10 10.48 5.55 8.21 
32.60 18.02 18.05 14.59 1.45 3.36 
43.55 19.82 28.60 17.31 
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NiS04 
(200 °C) 

Sample weight, 452 mg. 

Temperature, 20.0 °c 

p w p w p w 

'X' 5.95 0.85 39.75 9.00 'X' 0.745 0.43 
37.05 7.01 70.20 15.90 2.50 1.10 
79.00 17.70 112.30 24.35 6.30 2.37 

119.70 25.35 151.10 29.98 9.15 3.29 
160.75 30.94 192.45 34.44 16.25 5.20 
200.95 35.61 234.50 38.42 25.90 7.72 
177.20 32.92 266.50 41.77 35.15 10.02 
139.15 28.99 314.85 46.09 64.65 16.53 

98.30 22.37 289.50 43.90 96.75 22.36 
59.25 14.05 250.95 40.37 129.15 27.01 
19.60 5.17 210.30 36.43 167.75 31.95 

'X' 0.405 0.18 167.85 32.16 199.30 35.19 
2.95 0.35 124.70 26.62 151.45 30.34 
4.75 0.99 88.85 20.43 111.40 24.89 
9.75 2.20 48.85 12.21 58.20 13.20 

19.50 4.18 2.95 0.67 1.65 0.885 

Temperature, 6.0°C 

p w p w p w 

'X' 0.30 0.19 182.10 46.06 87.15 30.78 
0.72 0.46 208.40 50.87 74.90 28.14 
2.10 1.38 194.45 48.39 54.75 23.22 
4.30 2.55 164.90 43.61 34.35 15.72 

11.20 5.98 135.15 39.05 'X' 18.30 10.12 
20.75 10.12 105.40 34.44 39.95 18.69 
41.10 18.41 80.20 29.59 79.25 29.42 
71.15 22.98 50.80 21.77 120.05 36.85 

2.45 1.20 24.05 11.68 166.00 44.32 
14.05 6.87 'X' 3.40 l. 70 144.65 40.43 
30.40 13.74 9.95 4.60 98.90 33.77 
60.70 24.32 15.65 7.51 59.95 25.13 
91.35 31.58 23.90 11.33 4.35 3.26 

122.10 36.71 45.90 19.40 
152.40 41.75 65.55 25.38 
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Temperature, -l0.0°C 

p w p w p w 

'X' 3.80 5.31 3.40 5. 70 19.00 20.60 
11.45 13.66 8.05 10.41 14.25 16.82 
21.35 21.38 13.05 15.01 4.50 7.04 
40.95 32.00 17.55 19. 40 0.52 2.23 
71.10 41.59 25.30 24.3 6 'X' 1.30 2.62 
99.05 51.05 35.60 30. 41 1.90 3.72 
85.85 46.30 45.90 34.30 5.25 8.25 
47.25 34.27 60.40 39.22 10.40 13.31 
28.85 26.80 53.25 36.32 20.05 21.59 
15.20 17.49 46.20 34.87 31.10 28.29 

0.45 1.56 37.90 31.93 41.30 33.17 
'X' 1.30 2.62 28.50 27.01 51.20 36.29 

NiS0
4 

(300°C) 

Sample weight, 441 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 2.20 0.57 31.05 9.30 101.60 22.09 
7.80 1.81 61.30 16.25 152.40 28.32 

20.20 5.56 91.40 21.66 201.30 33.10 
51.10 13.06 120.45 26.02 233.30 36.32 
99.95 22.16 162.20 30.83 176.25 31.05 

150.20 28.67 142.40 28.36 126.00 25.63 
197.80 33.77 107.95 24.43 75.25 17.98 
248.60 37.91 61.20 16.53 40.00 11.29 
297.25 42.13 40.55 11.75 19.30 5.91 
275.05 40.00 'X' 3.90 1.70 5.95 2.20 
226.75 36.25 10.30 3.79 1.00 0.35 

'X' 3.50 1.63 31.50 9. 35 
9.95 3.65 51.10 13.31 
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Temperature, 6.0°c 

p w p w p w 

'X' 0.567 1.27 59.70 25.67 29.60 16.74 
2.55 2.51 80.65 30.23 13.90 9.24 
5.65 4.39 110.80 35.65 6.40 5.17 
9.90 6.69 95.55 33.56 3.30 3.54 

21.25 12.21 68.90 28.57 0.76 1.91 
41.15 20.21 49.65 23.12 

Temperature, -10.0°C 

p w p w p w 

'X I 1.35 2.80 0.70 1.63 64.25 37.10 
3.40 5.77 1.65 3.26 54.35 34.30 
8.85 11.54 5.40 7.86 44.35 31.15 

19.85 20.28 11.35 13.52 34.60 27.79 
30.40 26.20 25.75 23.79 14.30 15.58 
39.25 29.81 50.45 33.36 6.80 8.71 
59.60 35.99 72.20 39.40 3.90 5.52 
80.00 41.56 97.10 46.44 2.40 3.86 

'X' 0.23 0.64 89.75 44.04 0.60 1.52 
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NiSO 4 
(400°C} 

Sample weight, 417 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 19.50 12.28 5.65 4.50 'X' 1.65 1.88 
48.95 21.49 9.85 6.44 7.45 5.70 
99.25 31.15 29.20 14.59 24.80 13.74 

149.50 37.45 59.40 22.73 84.65 26.90 
196.30 42.20 86.40 28.57 160.20 37.35 
178.55 40.43 117.10 32.29 241.15 44.96 
126.30 35.12 105.20 30.73 322.80 52.89 

74.35 27.51 69.20 25.35 279.65 48.68 

'X' 0.38 0.43 38.75 17.74 208.10 42.16 
3.10 3.01 14.15 8.92 121.15 32.92 

Temperature, 6.0°C 

p w p w p w 

'X' 0.34 0.78 141.50 45.28 'X I 0.975 1.49 
0.56 1.20 172.45 49.78 2.90 4.25 
1.50 2.48 202.10 55.08 5.55 7.26 
3.20 4.81 186.95 52.29 8.50 9.63 
6.10 7.89 156.05 47.37 15.50 14.44 

10.55 11.33 126.65 43.40 24.85 19.53 
20.65 17.35 95.05 38.06 40.35 25.28 
49.60 28.18 64.70 32.39 50.80 28.32 
80.75 35.33 34.95 23.68 91.15 36.53 

111.05 40.71 0.665 2.30 69.85 32.60 
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Temperature, -10.0°C 

p w p w p w 

lx' 0.183 1.17 71.00 46.41 12.35 22.27 
0.280 1.18 96.05 53.95 22.45 29.59 
0.466 2.16 83.75 50.02 38.20 36.46 
0.685 2.41 54.55 41.70 47.85 38.75 
1.05 3.68 44.60 38.44 47.30 40.43 
2.55 7. 75 33.90 34.55 58.35 43.65 
5.15 12.85 24.25 30.13 67.85 46.27 
8.00 16.60 14.70 23.68 77.45 48.36 

11.00 20.28 1.75 6.62 45.90 39.29 
19.30 27.19 'X' 0.735 3.51 25.00 31.08 
31.30 33.52 1.20 4.81 9.45 19.75 
40.15 36.92 3.40 10.55 
50.15 40.11 7.05 16.57 

Niso
4 

(500°C) 

Sample weight, 411 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 1.15 2.12 4.65 5.49 38.85 19.399 
10.05 9.45 'X' 2.20 3.47 18.55 12.92 
30.25 18.34 7.35 7.26 'X' 0.081 0.14 
60.10 25.74 16.40 12.14 0.330 0.53 

102.80 31.44 31.05 17.52 0.965 1.42 
151.45 36.29 49.95 21.49 3.05 3.93 
200.75 40.00 98.35 28.99 5.85 6.20 
248.05 43.26 150.40 33.45 7.70 7.61 
247.05 43.01 200.15 37.35 10.65 9.31 
301.10 47.15 247.85 40.89 16.95 12.28 
276.55 45.14 309.55 45.77 27.20 16.11 
227.20 41.42 276.50 43.15 36.15 18.76 
178.05 37.89 223.15 39.65 46.50 21.20 
136.15 33.67 177.75 35.93 56.60 22.90 

75.90 27.90 125.75 31.61 67.55 24.78 
19.90 13.95 74.55 26.02 77.90 26.41 
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Temperature, 6.0°C 

p w p w p w 

'X' 0.555 1.59 100.85 36.07 0.872 2.90 
0.79 2.83 130.20 39.40 2.00 5.03 
2.05 5.06 160.95 43.19 4.10 8.00 
3.70 7.43 190.65 47.26 6.45 10.80 
7.85 11.86 176.50 45.14 11.50 14.94 

10.85 14.69 146.50 41.24 17.10 18.44 
15.45 17.35 115.00 37.70 25.75 22.02 
19.35 19.65 89.80 34.62 36.40 25.45 
39.55 26.30 69.20 31.68 45.40 27.51 
60.50 30.44 50.00 28.14 76.85 32.64 
81.40 33.45 'X' 0.482 1.91 

Temperature, -10°C 

p w p w p w 

'X' 0.298 2.73 90.90 45.92 26.15 30.94 
0.570 4.14 70.35 40.78 36.60 34.02 
0.850 5.27 49.35 36.11 46.70 36.60 
1.80 8.57 29.40 31.05 57.70 38.87 
4.80 15.29 14.45 24.39 53.05 37.95 
8.90 20.60 'X' 0.150 2.27 41.45 35.29 

20.25 28.00 0.400 3.89 32.40 33.06 
41.20 34.27 1.30 7.75 22.95 29.70 
60.85 38.66 5.90 18.20 11.85 23.86 
80.75 43.26 10.45 22.62 3.70 14.66 

100.95 48.85 16.75 27.05 

• 
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Cuso
4 

(200°c) 

Sample weight, 486 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 1.85 7.26 1.75 6.05 273.65 121.88 
50.30 48.46 5.65 13.03 226.05 102.73 
98.35 66.84 10.80 19.47 180.70 89.39 

147.95 80.54 21.05 29.03 142.60 79.15 
199.10 94.34 39.30 41.35 100.85 67.72 
175.00 87.97 80.30 59.65 59.65 53.10 
125.85 74.87 120.25 72.22 30.90 38.06 

74.65 59.30 159.90 82.94 14.40 25.31 
24.35 34.35 201.10 94.52 7.10 17.88 
9.40 20.71 250.90 110.91 

'X' 0.79 3.61 297.35 129.39 

Temperature, 6.0°c 

p w p w p w 

'X' 0.326 3.08 180.90 147.62 291.95 259.66 
0.775 5.42 141.70 124.43 336.40 348.76 
2.15 10.27 100.50 89.39 388.25 798.55 
5.60 18.55 88.05 83.47 'X' 363.50 551.50 
8.65 24.28 69.00 74.80 316.00 362.64 

11.40 28.99 47.10 63.12 270.20 312.55 
15.05 33.77 24.40 46.55 228.50 269.71 
20.50 40.50 12.25 32.04 189.45 223.59 
31.10 50.66 2.65 14.37 153.80 158.56 
39.95 57.35 'X' 34.50 51.93 'X' 359.85 442.50 
60.65 69.28 94.45 83.40 380.25 644.46 
81.45 79.40 131.20 102.70 367.80 535.25 

121.55 95.76 171.40 130.73 346.50 438.96 
161.60 125.32 209.35 164.75 180.10 222.52 
201.05 158.59 255.80 212.37 
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Temperature, -10.0°C 

p w p w p w 

'X' 0.400 6.66 21.75 63.26 'X' 0.743 9.35 
0.865 10.34 40.80 82.91 6.30 33.60 
1.65 15.01 59.50 103.40 26.50 68.46 
3.60 23.93 79.50 132.01 47.70 89.88 
5.35 30.37 48.45 91.86 69.55 116.43 
7.35 36.71 29.85 72.22 109.65 187.23 

10.55 44.57 13.45 50.76 87.75 161.18 
15.15 53.81 1.00 12.36 54.20 103.72 

cuso
4 

(300 °C} 

Sample weight, 482 mg. 

Temperature, 20.0°C 

p w p w p w 

l X • 0.430 0.67 262.10 25.28 71.90 14.05 
1.25 1.38 197.65 22.55 121.10 17.98 
4.85 3.15 153.30 20.50 187.15 21.49 

15.15 5.98 108.85 17.84 247.40 24.00 
40.65 10.41 62.20 13.63 164.15 20.39 
79.35 15.05 25.40 8.39 94.25 16.14 

132.65 19.01 10.20 5.20 51.40 11.72 
182.35 21.42 •x • 0.690 0.85 12.30 5 .. 17 
231.40 23.65 2.30 1.95 6.70 3.68 
295.60 26.66 20.75 7.01 

Temperature, 6.0°C 

p w p w p w 

'X' 0.425 0.92 79.35 19.93 91.00 20.60 
0.820 1.42 105.60 21.28 69.35 18.66 
2.65 3.12 142.20 24.00 48.95 16.28 
5.70 4.96 180.70 26.73 29.05 12.67 

10.80 7.29 218.40 30.09 14.45 8.50 
20.45 10.62 192.40 27.79 7.15 5.84 

40.80 15.22 161.55 25.35 
59.55 17.91 119.60 22.62 
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Temperature , -10.0°C 

p w p w p w 

'X' 0.315 1.59 29.90 18.23 55.30 22.30 
0.900 3.08 39.30 19.97 44.75 20.89 
2.00 4.89 49.85 21.45 33.55 19.08 
4.15 7.01 69.40 23.93 24.95 17.31 
6.05 8.57 89.05 26.48 11.90 12.39 

10.10 11.29 109.80 30.13 7.60 9.70 
15.85 14.23 99.10 28.21 
20.85 16.04 79.80 25.42 

cuso
4 

(400°C) 

Sample weight, 480 mg. 

Temperature, 20.0°C 

p w p w p w 

~x 1 0.905 0. 74 303.60 15.58 7.65 2.90 
3.90 1.88 272.70 14.76 12.10 3.65 
7.80 2.80 215.35 13.28 36.75 6.62 

12.05 3.47 172.45 12.21 81.15 9.66 
17.40 4.25 131.30 11.05 121.80 11.33 
21.10 4.64 89.30 9.52 161.45 12.50 
40.00 6.80 55.90 7.72 201.70 13.59 
69.15 8.85 30.00 5.31 180.90 13.10 

111.20 10.27 18.55 3.86 138.55 11.86 
151.55 11.86 'X' 0.65 0.71 90.00 10.09 
191.40 12.74 2.45 1.49 54.15 8.04 
239.70 13.88 4.45 2.12 19.50 4.78 
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Temperature, 6.0°C 

p w p w p w 

'X' 0.660 0.99 89.25 12.25 10.25 4.96 
1.70 1.91 109.50 13.06 29.10 8.43 
3.20 2.58 150.00 14.59 44.00 9.95 
5.20 3.33 198.90 16.25 58.20 10.83 
7.60 4.04 168.50 15.40 78.10 11.93 

10.80 4.99 128.80 13.88 99.15 13.17 
15.35 6.02 108.70 13.13 140.65 14.83 
19.30 6.83 69.70 11.47 119.15 13.98 
39.90 8.50 48.80 10.16 80.40 12.43 
50.40 10.27 l:X.' 0.51 0.89 41.10 10.09 
72.25 11.51 1.95 2.12 

Temperature, -10.0°C 

p w p w p w 

'X' 0.355 1.59 85.40 15.93 1.95 3.47 
0.720 2.37 60.45 14.09 4.35 5.06 
2.80 4.67 44.85 13.03 8.60 7.29 
5.15 6.09 34.00 12.14 11.95 8.50 

11.50 8.92 24.60 11.22 18.50 9.98 
19.75 10.69 14.70 9.70 30.70 11.58 
28.90 11.79 7.40 7.40 41.05 12.57 
39.65 12.67 2.85 4.67 56.35 13.74 
51.35 13.52 1.20 3.47 39.95 12.50 
69.05 14.76 'X' 0.255 1.20 32.30 11.82 

100.75 17.31 0.600 1.88 11.40 8.46 

cuso4 
(500°C) 

Sample weight, 479.2 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 0.635 0.14 152.85 4.67 169.25 4.71 
2.20 0.53 190.65 5.10 129.60 4.18 
7.90 0.99 239.90 5.66 109.40 3.89 

16.15 1.45 296.30 6.27 77.70 3.40 
30.10 2.05 257.70 5.77 43.10 2.51 
59.45 3.08 220.00 5.31 20.05 1.59 
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Temperature, 6.0°C 

p w p w p w 

'X' 0.44 0.28 68.10 4.35 90.45 4. 74 
1.05 0.57 88.50 4.78 76.85 4.46 
4.45 1.27 110.15 5.17 58.90 4.07 
9.90 1.84 155.35 5.84 38.40 3.40 

16.40 2.37 193.60 6.58 19.75 2.51 
29.45 3.19 168.00 6.09 
49.85 3.93 130.80 5.45 

Temperature, -10.0°C 

p w p w p w 

'X' 0.375 0.53 4.90 1.95 15.75 3.22 
0.800 0.81 6.85 2.34 20.70 3.51 
2.30 1.27 9.75 2.69 30.40 3.90 
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znso
4 

(200 °C} 

Sample weigh-t, 530 mg. 

Temperature, 20.0°C 

p w p w p --- w 

''X' 50.60 5.72 127.40 12.76 12.60 1.60 
112.70 11.71 91.20 9.79 23.20 2.75 
151.45 14.88 70.50 7.60 32.55 3.69 
200.30 18.68 36.80 4.22 43,00 4.81 
249.65 21.85 • 15.70 2.20 27.40 3.21 
220.65 19.97 0.94 0.52 7.70 1.15 
173.10 16.62 'X' 3.90 0.49 0.87 0.31 

Temperature, 
0 

6.0 c 

p w p w p w 

'X' 33.25 6.48 179.60 25.72 27.70 5.68 
56.95 10.59 145.40 22.30 15.80 3.42 
91.90 15.89 112.55 18.68 5.20 1.39 

130.30 20.70 74.00 13.35 3.00 1.05 
162.35 23.98 40.20 7.81 0.70 0.56 

Temperature, -10.0°C 

p w p w p w 

'X' 8.65 3.69 89.95 26.17 15.25 6.52 
20.40 8.33 107.40 29.80 4.75 2.41 
32.15 12.65 70.80 22.58 2.85 1.57 
57.90 19.97 44.60 16.62 0.91 0.63 
67.05 21.85 25.35 10.42 0.61 0.45 

• 
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0 znso
4 

(300 C) 

Sample weight, 529 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 2.70 0.56 58.20 6.80 202.15 17.36 
6.10 1.01 23.50 3.19 251.00 19.83 

16.35 2.37 5.20 0.98 175.00 15.86 
28.65 3.69 ~x' 22.45 2_93 125.80 12.51 
47.65 5.61 49.35 5.76 75.35 8.33 
64.80 7.32 104.75 10.87 
81.15 8.85 151.55 14.32 

Temperature, 
0 

6.0 c 

p w p w p w 

I X' 2.65 0.96 76.50 13.91 54.85 10.87 
7.00 2.06 105.00 16.90 31.35 6.94 

12.30 3.24 131.70 19.20 15.95 3.97 
18.50 4.32 155.20 21.05 6.55 1.95 
26.10 6.06 114.15 17.63 0.81 0.45 
39.15 9.15 89.10 15.26 

Temperature, -l0.0°C 

p w p w p w 

'X' 4.70 2.88 100.00 24.47 5.65 3.28 
11.10 5.68 51.85 17.25 2.10 1.50 
18.95 8.75 36.80 14.05 3.15 2.09 
42.00 15.33 26.15 11.14 0.42 0.53 
62.75 18.96 16.00 7.53 
83.70 22.03 8.95 4.74 
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znso4 
(400 °ci 

Sample weight, 528 mg. 

Temperature, 20.0°C 

p w p w p w 

'X' 2.85 0.38 180.40 13.70 69.55 6.39 
6.55 0.85 283.85 18.43 111.00 9.63 

20.05 2.16 219.45 15.65 141.00 11.58 
50.45 4.74 170.25 13.24 162.20 12.85 
80.20 7.18 101.65 8.92 192.85 14.48 

121.45 10.20 rx, 1.25 0.15 207.60 15.26 
150.10 12.00 22.75 2.34 261.00 17.49 

Temperature, 
0 

6.0 c 

p w p w p w 

'X' 2.50 0.67 161.15 18.40 19.85 4.04 
6.85 1.67 199.45 21.12 7.95 2.00 

11.20 2.51 180.80 19.87 4.85 1.36 
42.30 7.28 140.00 17.08 0.70 0.37 
80.95 12.18 100.30 14.06 

126.70 16.10 59.45 9.79 

Temperature, -l0.0°C 

p w p w p w 

'X' 3.60 2.04 39.85 12.65 14.95 5.95 
5.25 2.72 82.20 18.84 8.30 3.69 
7.25 3.42 97.45 20.84 5.25 2.54 

10.35 4.41 60.45 16.10 3.20 1.78 
21.05 8.00 48.10 14.15 0.56 0.49 
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Volumetric Adsorption Data 

0 
The temperature at which the isotherms were measured was 6 C. 

Amount adsorbed W is expressed in micromoles of CFC1 3 per gram of 

adsorbent. 

MnS0
4 

(200) MnS04 
(300) Mnso

4 
(400) 

p w p w p w 

16.124 12.72 10.588 5.33 15.455 3.21 
31.937 22.26 21.684 9.61 34.748 6.64 
53.068 31.80 32.912 13.52 45.275 8. 76 
72.137 40.06 43.474 17.01 57.765 11.16 
93.083 47.85 53.992 20.48 73.288 14.13 

64.960 23.79 90.640 17.72 
76.156 26.94 
87.340 29.46 

Znso
4 

(200) Znso
4 

(300) Znso
4 

(400) 

p w p w p w 

14.400 3.65 14.210 7.52 25.510 12.01 
32.386 7.83 35.600 13.59 32.960 15.43 
50.495 12,09 55.152 16.93 48.290 18.54 
65.342 15.28 76.926 19.89 61.878 21.21 
89.682 29.23 87.790 21.26 76.363 22.55 

'X' 14.392 3.79 97.840 22.63 89.786 24.47 
52.750 11.80 
77.390 16.66 
94.110 20.12 
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NiS0
4 

(200) Niso
4 

(_300) Niso
4 

(400) 

p w p- w p w 

17.924 18.52 21.910 21.79 15.240 29.32 
47.444 43.31 47.546 41.20 40.866 51.11 
68.974 59.56 67.392 50.40 55.066 58.97 
90.872 70.34 85.392 59.72 71.748 65.90 

104.810 75.35 98.300 65.39 90.526 72.76 

Niso
4 

(500} Coso4 (200} Coso
4 

(300) 

p w p w p w 

18.705 37.97 22.064 10.75 20.916 11.17 
36.027 54.48 40.820 19.25 40.716 21.15 
60.310 74.08 60.624 28.11 58.692 30.03 
75.620 80.44 86.673 38.22 79.100 38.63 
89.768 179.72 95.466 41.85 95.970 44.45 

Coso4 l400l Coso4 
(500} Cuso4 

(200) 

p w p w p w 

18.935 11.80 23.901 18.12 15.292 53.30 
36.247 18.47 44.203 25.88 31.255 82.41 
55.227 23.65 58.967 29.40 48.865 104.60 
72.025 26.79 'X' 20.445 15.71 64.105 118.93 
93.424 30.45 36.775 22.75 83.035 133.32 

55.460 28.75 
72.065 33.16 
88.280 37.02 

cuso
4 

(300) cuso4 
(400) cuso4 

(500) 

p w p w p w 

19.158 26.35 18.738 27.37 19.645 16.29 
34.532 39.90 33.106 34.62 35.214 21.31 
49.900 51.03 49.684 39.64 50.615 24.38 
70.835 61.94 68.480 42.97 75.296 27.32 
88.375 68~99 89.877 45.78 91.552 29.29 
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Appendix B 

List of Tables: 

Tabl-e no. 

l. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

Title 

Calibration data for balance calibration 
A. using buoyancy bulb 
B. using glass bead 

Heat of solution and surface area of 
adsorbents • 

161 
163 

164 

Vapour pressure of CFC13 165 

Monolayer capacity and surface area of 166 
calcium sulphate 

Monolayer capacity and surface area of 167 
manganese sulphate 

Monolayer capacity and surface area of 168 
cobalt sulphate 

Monolayer capacity and surface area of 169 
nickel sulphate 

Monolayer capacity and surface area of 170 
copper sulphate 

Monolayer capacity and surface area of 171 
zinc sulphate 

Heat of solution of potassium chloride at 172 
various dilutions 

Differential entropy calculated for localized 173 
adsorbed layer or mobile adsorbed layer 

CFSE gain on adsorption on nickel oxide 174 

Crystal field properties of adsorbents 175 

Crystal structure parameters 176 

CFSE for various symmetries 180 

CFSE change on adsorption for various models 181 
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17. Isos.teric heat of adsorption, calcium 182 
sulphate, manganese sulphate and cobalt 
sulpliate 

18. Isosteric heat of adsorption, nickel 183 
sulphate and copper sulphate 

19. Isosteric heat of adsorption 184 

20. Differential entropy, calcium sulphate 185 
and manganese sulphate 

21. Differential entropy, cobalt sulphate 186 
and nickel sulphate 

22. Differential entropy, copper sulphate 187 
and zinc sulphate 



Table l A. OBSERVATION DATA FOR BALANCE CALIBRATION USING BUOYANCY BULB 

RUN 1 BATH TEMP. 20°C RUN 2 BATH TEMP. 20°C RUN 3 BATH TEMP. 20°C 

Pressure (torr) E.M.F. (mV) Pressure. (torr) E .~M •. F •. (mV) Pressur:e , (tor:r:). E.t-·LF. (mV) 

15.3 44.0 19.2 57.5 0.87 3.0 

48.2 148.0 38.8 129.0 3.2 10.5 

99.9 322.0 81.7 272.0 6.7 23.0 

151.0 483.0 111.6 397.0 17.8 60.0 

201.9 653.0 161.7 539.0 29,8 97.0 

252.6 822.0 220.4 738.0 62.5 207.0 

298.0 975.0 180.5 608.0 98.8 328.0 

350.4 1154.0 137.7 461.0 150.0 499.0 

101.8 341.0 205.0 682.0 

59.3 204.0 250.6 835.0 

9.2 30.0 290.0 967.0 

341.4 1142.0 

372.9 1248.0 

218.8 727.0 

179.5 596.0 



Table lA (cont 'd .1 RUN 3 
(Contd.) 

Pressure (torr) 

118.0 

17.4 

• 

BATH TEMP. 20°C RUN 4 

E.M.F. (mV) Pressure (torr) 

390.0 50.2 

59.0 81.8 

149.5 

200.8 

248.9 

301.2 

255.5 

187.9 

137.2 

28,4 

RUN 5 BATH TEMP. 20°C 

E .M.F. (mV) Pressure (torr) E .M.F. (mV) 

167.5 50.8 175.0 

270.0 118.0 404.0 

492.5 195.0 667.0 

665.0 258.0 886.0 

820.0 153.7 521.0 

1000.0 94.9 287.0 

850.0 25.0 82.0 

625.0 

455.0 

97,5 



Table 1 B. OBSERVATION DATA FOR BALANCE CALIBRATION USING GLASS BEAD 

RUN 1 BATH TEMP. 20°C RUN 2 BATH TEMP. 20°C RUN 3 BATH TEMP. 10°C 

Pressure (torr) E.M.F. (mV) Pressure (torr) E.M.F. (mV) Pressure (torr) E.M.F. (mV) 

99.2 3.0 50.0 1.0 106.2 2.5 

199.9 6.0 151.5 5.5 151.0 4.0 

295.4 10.0 277.8 8.5 201.1 6.0 

249.3 9.5 297.4 11.0 264.1 8.5 

149.3 5.5 202.4 7.0 172.8 5.5 

99.6 5,0 101.6 2.5 

67.4 1.5 



Table 2 

ADSORBENT 

Manganese 
Sulphate 

Cobalt 
Sulphate 

Nickel 
Sulphate 

Copper 
Sulphate 

Zinc 
Sulphate 

HEAT OF SOLUTION AND SURFACE AREA OF THE ADSORBENTS 

ANNEALING 
TEMP. 
(oC) 

200 
300 
400 

200 
300 
400 
500 

200 
300 
400 
500 

200 
300 
400 
500 

200 
300 
400 

HEAT OF SOLN. 
(kcal/rnole) 

14,85 
17.52 
13.32 

21.10 
19.65 
18.83 
18.54 

22.50 
24.81 
12.70 

18.87 
15.29 
22.69 
15.35 

20.27 
23.99 
19.59 

EXCESS HEAT OF SOLN. 
Ckcal/rnole) 

(X-S) 

4.05 
-0.42 
2.95 

4.40 
3.45 

-4.40 

-0.35 
-7.40 
4.35 

SURFACE AREA 
(Volumetric) 

(rn2 /g) 

9.97 
6.92 
5.75 

10.57 
10.56 

5.23 
6.56 

12.10 
11.81 
11.79 
15.21 

23,66 
13.43 
6.49 
4.43 

5.22 
3.61 
3.97 



Temperature 
(°Cl 

20 

6 

-10 

Table 3 

Vapour pressure of CFCl3 

Vapour pressure (E 1 
0 

666.23 

385.50 

191.40 

log P 
10 0 

2.82362 

2.58602 

2.28194 

- 165 -

l/T 
(T in OK} 

.003411 

.003582 

.003800 



Annealing 
Temperature 

(°C) 

200 

300 

400 

• 

Table 4 

Monolayer Capacity and Surface Area 

of Calcium Sulphate 

Isotherm 
Temperature 

(OC) 

20.0 

6.0 

-10.0 

20.0 

6.0 

-10.0 

20.0 

6.0 

-10.0 

Monolayer 
Capacity 

(]...lmoles/g} 

73.41 

73.65 

73.90 

58.03 

58.27 

58.51 

49.64 

48.43 

49.15 

Specific 
Surface 

(m2 /g) 

13.79 

13.81 

13.86 

10.90 

10.93 

10.98 

9.32 

9.08 

9.23 

- 166 -

Weight of 
Sample 

(g) 

0.4141 

0.4136 

0.4130 



Annealing 
Temperature 

(°C} 

200 

300 

400 

Table 5 

Monolayer Capacity and Surface Area 

of Manganese Sulphate 

Isotherm 
Temperature 

(OC) 

20.0 

6.0 

-10.0 

20.0 

6.0 

-10.0 

20.0 

6.0 

-10.0 

Monolayer 
Capacity 

()..lmoles/g} 

41.18 

40.63 

41.74 

28.67 

29.04 

29.97 

23.47 

23.10 

23.66 

Specific 
Surface 

(m2/g) 

7.74 

7.63 

7.83 

5.38 

5.45 

5.62 

4.43 

4.34 

4.45 

- 167 -

Weight of 
Sample 

(g) 

0.5415 

0.5372 

0.5368 



Annealing 
Temperature 

(°C} 

200 

300 

400 

500 

• 

Table 6 

Monolayer Capacity and Surface Area 

of Cobalt Sulphate 

Isotherm 
Temperature 

C
0
cl 

20.0 

6.0 

-10.0 

20.0 

6.0 

-10.0 

20.0 

6.0 

-10.0 

20.0 

6.0 

-10.0 

Monolayer 
Capacity 

(]lmoles/g} 

54.44 

54.44 

54.99 

76.46 

76.46 

76.46 

70.26 

70.26 

72.31 

58.29 

58.29 

58.29 

Specific 
Surface 

(m2/g) 

10.23 

10.23 

10.33 

14.35 

14.35 

14.35 

13.20 

13.20 

13.59 

10.95 

10.95 

10.95 -

- 168 -

Weight of 
Sample 

(g) 

0.3582 

0.2982 

0.2932 

0.2882 



Annealing 
Temperature 

(°Cl 

200 

300 

400 

500 

Table 7 

Monolayer Capacity and Surface Area 

of Nickel Sulphate 

Isotherm 
Temperature 

(OC) 

20.0 

6.0 

-10.0 

20.0 

6.0 

-10.0 

20.0 

6.0 

=10.0 

20.0 

6.0 

---lO.. 0 

Monolayer 
Capacity 

(].lmoles/gl 

74.18 

75.07 

73.52 

69.68 

69.68 

69.68 

80.52 

80.52 

80.52 

69.55 

69.55 

69.55 

Specific 
Surface 

Cm2/g) 

13.93 

14.08 

13.80 

13.07 

13.07 

13.07 

15.12 

15.12 

15.12 

13.06 

13.06 

13~06 

- 169 -

Weight of 
Sample 

(g) 

0.4516 

0.4406 

0.4173 

0.4112 



Annealing 
Temperature 

(
0 cl 

200 

300 

400 

500 

Table 8 

Monolayer Capacity and Surface Area 

of-Copper Sulphate 

Isotherm 
Temperature 

Co c) 

20.0 

6.0 

-10.0 

20.0 

6.0 

-10.0 

20.0 

6.0 

-10.0 

20.0 

6.0 

~10.0 

Monolayer 
Capacity 

(lJmOles/g} 

46.12 

44.06 

42.82 

35.88 

35.88 

35.88 

21.66 

22.07 

22.28 

8.35 

8.35 

8.35 

Specific 
Surface 

(m2 /g) 

8.65 

8.28 

8.03 

6.74 

6.74 

6.74 

4.06 

4.14 

4.19 

1.57 

1.57 

1.57 

- 170 -

Weight of 
Sample 

Cgl 

0.4857 

0.4822 

0.4802 

0.4792 



Annealing 
Temperature 

C°CI 

200 

300 

400 

• 

Table 9 

Monolayer Capacity and Surface Area 

Isotherm 
Temperature 

(OC) 

20.0 

6 .. 0 

-10.0 

20.0 

6.0 

-10.0 

20.0 

6.0 

-10.0 

of Zinc sulphate 

Monolayer 
Capacity 
(~moles/gl 

35.67 

37.56 

40.77 

34.04 

37.63 

33.28 

29.19 

29.19 

27.86 

Specific 
Surface 

(m2/g} 

6.70 

7.06 

7.66 

6.39 

7.07 

6.25 

5.48 

5.48 

5.23 

- 171 -

Weight of 
Sample 

(g) 

0.5298 

0.5288 

0.5276 
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Table 10 

Heat of solution of potassium chloride at various dilutions 

Description of 
state and dilution 

Crystalline 

Std. state, m l 

in 50 H2o 

100 H
2

0 

200 H20 

400 H
2

0 

800 H
2

0 

1600 H2o 

3200 H2o 

6400 H
2

0 

00 H2o 

158 
Heat of formation 

(at 25°C) 
kcal/mole 

-104.175 

-100.060 

-100.105 

-100.015 

- 99.974 

- 99.973 

- 99.982 

- 99.994 

-100.008 

-100.626 

-100.060 

Heat of solution 
(at 25°C) 
kcal/mole 

4.115 

4.070 

4.160 

4.201 

4.202 

4.193 

4.181 

4.167 

4.149 

4.115 

Example of calculation of heat of solution (~Hsoln.)from heat of 

K(s) + ~cl2 (g) 

KCl(s) + H
2
o 

KCl (s) 

KCl (aq) 

~H8 = -104.175 

~Hsoln. = x 

K.Cl (aq) mf = -99.982 K(s) + ~c1 2 (g) + H
2

0 (Q,) 

(800 H
2
0) 

· x=l04.175-99.982=4.193 kcaljmole 

0.067 moles of KCl in 1000 gms. of water corresponds to l mole 
of KCl in 829 moles of H2o. The heat of solution of .067 m KCl 
derived from above table is 4.19 kcal/mole. 
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Table 11 

Differential entropy calculated for localized adsorbed laxer 
or mobil.e adsorbed layer 

e so - s s so - Ss mobile 
Ss mobile g local local g 

E.U. E.U. E.U. E.U. 

0.05 46.20 5.85 14.18 26.17 

0.10 44.72 4.37 15.78 24.57 

0.15 43.80 3.45 16.83 23.52 

0.20 43.11 2.76 17.67 22.68 

0.25 42.53 2.18 

0.30 42.03 1.68 19.10 2l.25 

0.40 41.16 0.81 ' 20.45 19.90 

0.50 40.35 0 21.92 18.43 

0.60 39.54 -0.81 23.72 16.63 

0.70 38.67 -1.68 26.23 14.12 

0.80 37.60 -2.75 30.63 9.72 

0.90 35.98 -4.37 42.18 1.83 



Plane Crystal field 

(1001 Sq. pyramidal 

(110) Tetrahedral 

(111) Trigonal 

Table 12 

C:FSE Atoms 
Dq ads. 

-10.0 1 

- 3.6 2 

-10.9 3 

Final 
field 

octahedral 

II 

u 

CFSE 
Dq 

-12.0 

-12.0 

-12.0 

Gain 
Dq 

2.0 

8.4 

1.1 

- 174 -

Gain per 
ads. atom 

2.0 

4.2 

0.4 



Table 13 

Properties 

Excess heat of soln. 
(X-S) 

kcal/mole 

CFSE in aqueous 
Soln. (S) . kcal/mole 
-4/5n. n from ref. 191 

Adsorbents CFSE 
(X} kcal/mole 

Unit Dq value 
for octahedral structure 

see section 6.20 kcal/mole 

Crystal field properties of adsorbents 

(200) 
4.05 

Coso
4 

(300) 
-0.42 

21.16 

(400) 
2.95 

17.11 21.58 18.21 

2.14 2.70 2.28 

(200) 
4.40 

Niso4 
(300) 
3.45 

29.01 

(400) 
-4.40 

24.61 25.56 33.41 

2.05 2.13 2.78 

(200) 
-0.35 

cuso4 
(300) 
-7.40 

21.50 

(400) 
4.35 

21.85 28.90 17.15 

3.64 4.82 2.86 

213 
Crystal field parameters derived from heat of solution data of Jamieson et al 

and Frost et a1 214 

(X-S) kcal/mole) 8.07 (Jamieson) 6.19 (Jamieson) 3.51 (Frost) 
max 

(X-S) kcal/mole) 6.52 " 6.04 " -3.83 " min 

X kcal/mole) 12.99 II 22.82 II 17.99 II 

max 

X kcal/mole) 14.65 II 22.97 " 25.33 " min 

Unit Dq value from X 1.62 " 1.90 II 3.00 II 

max 

Unit Dq value from ·x ·· ~ ·· 1.83 .... ... 1.91 II 4.22 " 
• c m1n · 

Dq value of M(H2o)++l91 
from orgel~s S value 2.65 2.42 3.58 

in aqueous solution kcal(mole ...._ 

I-' 
-._) 

lJl 
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Table 14 

-crystal ·parameters 

(i} Uni.t Cell Dimensions 

:E>arq.rneter Coso4 . 'At Coso4 
'"B' NiS0

4 cuso4 

Ao Ao Ao Ao 

a 5.198 • 8.62 5.155 8.396 

b 7.871 6.70 7.842 6.698 

c 6.522 4.75 6.338 4.829 

(iil Area of planes and number of cations: 

Coso
4 

'A' is isostructural with Niso
4

. 

Coso4 
,.B l is i.sostructural with cuso

4
. 

Both types of crystal structures are shown in Figure 67. 

All the length. units are in Al"lgstroms 
0 

(A ) • 

Plane CoSO 'A' 
4 

CoSO 'B' 
4 

Niso
4 

Cuso
4 

Number of cations/unit cell 

Struc. A Struc. B 

(001} 40.91 57.75 40.43 56.24 2 2 

(100) 51.34 31.85 49.70 32.35 2 2 

CllO) 61.52 51.87 59.48 51.86 4 2 

Qlll 28 .. 77 31.69 27.98 31.18 1 1 

COlOl 33.90 40.95 32.67 40.54 2 2 

llOll 65.64 65.93 64.07 55.33 2 4 

(0111 53.12 70.77 51.96 69.35 2 2 
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Table 14 (cont 1d) 

(ii.il Surface area and ·rnortolayer capacity of adsorbents: 

Cobalt sulrhate 

Annealing 
(OCJ 

Temperature 200 300 400 500 

Surface area 3.66 4.28 3.90 3.15 
(J\02 X 1020) 

Monolayer Capacity 19.5 22.8 20.8 16.8 
(moles x 10-61 

No. of moles of CFC1
3 

O.ll7 0.137 0.125 0.101 
@ 6=l (moles X 10~ 0 } 

Nickel Sulphate 

Annealing Temperature 200 300 400 500 
(OC} 

Surface area 6 .29. 5.76 6.29 5.37 
(J\02 X 1020) 

Monolayer Capacity 33.5 30.7 33.53 28.6 
(moles x 10-61 

No. of moles of CFC1
3 

0.202 O.l85 0.202 0.172 
@ 6=1 (moles X 1020 ) 

Copper Sulphate 

Annealing Temperature 200. 30.0 400 500 
(OC) 

Surface area 4~04 3.25 1.98 0.75 
(A02 X 1020) 

Monolayer Capacity 21.53 17.30 10.57 4.00 
(moles· x 10-6} 

No. of moles of CFC13 
0.130 0.104 0.064 0.024 

@ 6=1 (moles x io20
> 
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Table 14 {_cont 'd) 

(iv) Area ·per cation: 

Plane Coso4 'A' _£o~o4 'B' Niso
4 Cuso4 

(001) 20.45 28.88 20.22 28.12 

(1001 25.67 15.93 24.85 16.18 

(110) 15.38 25.94 14.87 25.93 

(111} 28.77 31.69 27.98 31.18 

(010) 16.95 20.48 16.34 20.27 

QOl} 32.82 16.48 32.04 13.83 

(011} 26.56 35.39 25.98 34.68 

(vl Number of cations on each plane (at surface 0 annealed at 200 C) . 
Each number to be multiplied by 1020. 

Plane coso4 
'A I Coso4 'B' NiS04 cuso4 

(001) 0.179 0.127 0.311 0.144 

(100) 0.143 0.230 0.253 0.250 

QlO) 0.238 0.141 0.423 0.156 

(111) 0.127 0.116 0.225 0.130 

(010) 0.216 0.179 0.385 0.199 

(101) 0.112 0.222 0.196 0.292 

(011) 0.138 0.103 0.242 0.117 
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Table 14 lcont td) 

(vi} Number of CFC13 moles per cation: 

Plane Coso4 
tA' Coso4 'B' NiS04 c~so4 

(0011 0.65 0.92 0.65 0.90 

(1001 0.82 0.51 0.79 0.52 

(110) 0.49 0.83 0.48 0.83 

(llll 0.92 1.01 0.90 1.00 

(010}_ 0.54 0.65 0.53 0.65 

QOll 1.05 0.53 1.03 0.45 

(011) 0.85 1.14 0.84 1.11 

• 
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Table 15 

Crystal fLeld stabLlization energy for various surface environments 

for adosrbents. 

Symmetry 

Trigonal 

Tetrahedral 

Square planar 

Trigonal bipyramidal 

Square pyramid 

Octahedral 

Pentagonal bipyramidal 

Hush's intermediate 

coord. 
number 

3 

4 

4 

5 

5 

6 

7 

7 

Cobalt (II1 Nickel (II} Copper CII) 

- 7.73 Dq -10.94 Dq - 5.48 Dq 

- 5.34 - 3.56 - 1. 78 

-10.28 -14.56 -12.26 

- 5.45 - 6.27 - 7.09 

- 9.14 -10.00 - 9.14 

- 8.00 -12.00 - 6.00 

-10.55 - 7.73 - 4.91 

- 8.69 -10.20 - 8.81 



Model 
(surface structures) 

(Before ads.) (After ads.) 

Tetrahedral Trig. bipyr. 

Sq. pyramidal Octahedral 

Octahedral Hush's inter. 

Octahedral Pent. bipyr. 

Trigonal Trig. bipyr. 

Trig. bipyr. Pent. bipyr. 

Sq. planar Sq. pyramidal 

Sq. planar Octahedral 

Excess heat of ads. 

Table 16 

CFSE change on adsorption for various models 

L\CFSE in kcal per mole of CFCl3 

Cobalt Sulphate Nickel Sulphate 

(200) (300) (400) (200) (300) (400) 

0.24 0.30 0.25 5.56 5.77 7.53 

Fin. struc. less stable 4.10 4.26 5.56 

1.48 1.86 1.57 Fin. struc. less stable . 
5.46 6.89 5.81 Fin. struc. less stable 

Fin. struc. less stable Fin. struc. less stable 

10.91 13.77 11.63 1.50 1.56 2.03 

Fin. struc. less stable Fin. struc. less stable 

Fin. struc. less stable Fin. struc. less stable 

0.30 1.50 2.75 1.35 1.50 1.80 

Copper Sulphate 

( 200) (300) (400) 

19.33 25.59 15.19 

Fin. struc. less stable 

10.23 13.54 8.04 

Fin. struc. less stable 

2.93 3.88 2.30 

Fin. struc. less stable 

Fin. struc. less stable 

Fin. struc. less stable 

2.20 2.20 2.55 
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Table 17 

Isosteric Heat of AdsorEti~:m 

8 Calcium Sulphate Manganese Sulphate Cobalt Sulphate 

200 300 400 200 300 400 200 300 400 500 

0* 8.30 7.70 7.50 8.50 8.20 7.80 8.30 9.50 10.75 10.50 

o.os 8.23 6.95 8.02 9.00 9.15 7.90 7.46 10.63 11.58 9.60 

0.1 8.90 7.30 7.93 8.25 8.00 7.70 8.00 9.57 8.72 8.51 

0.15 9.55 8.65 8.12 8.05 7.95 7.75 7.67 9.00 10.18 7.65 

0.2 9.35 9.00 8.35 8.00 7.41 7.75 7.55 9.00 9.96 7.25 

0.3 9.42 9.55 8.70 7.40 7.00 7.74 7.35 8.91 9.70 7.17 

0.4 9.26 8.68 8.38 7.35 7.02 7.45 7.03 8.82 9.65 6.62 

0.5 8.65 8.75 8.48 7.15 7.20 7.00 7. 23 8.51 8.96 6.82 

0.6 8.48 8.45 8.30 7.10 7.20 7.55 6.90 7.88 8.72 6.72 

0.7 8.15 8.35 8.48 7.20 7.13 7.80 6.42 7.97 8.39 5.59 

0.8 8.20 7.83 8.10 7.10 7.17 7.75 6.95 7.84 8.23 6.85 

0. 9_ 7.95 8.00 8.00 7.15 7.07 7.85 6.70 7.81 8.15 6.70 

1.0 7.45 7.55 7.65 7.12 6.85 7.75 6.50 7. 51 7.85 6.57 

'-Excess' 0.30 
heat 

1.50 2.75 2.53 

* q 8=0 values are extrapolated values from the qst VS 8 curves. 
st 

The isosteric heat has been expressed in kcal/mole in Tables 17, 18 and 19. 
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Isesteric Heat of Ad-sms.:12ti.on 

e Nickel Sulphate Copper Sulphate 

200 30.0 "400 500 200 300 400 500 

0* 9.15 9.45 9.90 11.60 9.80 10.05 10.50 11.70 

0.05 10.72 9.93 8.12 11.96 10.30 10.12 10.22 

0.1 8.83 8.91 8.01 10.42 9.42 9.58 9.25 10.20 

0.15 8.37 8.88 8.60 9.23 7.73 8.95 9.87 9.12 

0.2 8.38 8.44 8.65 8.81 9.16 8.26 8.42 8.67 

0.3 8.04 8.12 8.04 8.40 8.65 7.98 9.37 8.97 

0.4 7.73 7.97 7.44 8.43 8.32 8.15 8.92 8.98 

0.5 7.78 7.62 7.73 8.86 7.88 7.61 8.50 8.80 

0.6 7.58 7.66 7.75 8.75 7.87 7.66 8.39 8.63 

0.7 7.62 7.53 7.54 8.44 7.55 7.83 8.15 7.97 

0.8 7.56 7.40 7.47 8.31 7.51 7.56 8.17 7.39 

0.9 7.62 7.23 7.32 7.97 7.37 7.76 8.07 6.74 

1.0 7.58 7.00 7.04 7.78 7.37 7.27 7.37 6.53 

'Excessl 
1.35 1.50 1.80 

heat 
3.37 2.20 2.20 2.55 2.95 

* qst 8=0 values are extrapolated values from the qst vs e curves. 



- 184 -

Table 19 

Isosteri.c Heat of Adsorption 

e Zinc Sulphate 

200 300 400 

0* 7.35 7.75 8.30 

0.05 7.80 8.50 9.20 

0.1 7.20 7.54 8.20 

0.15 7.00 7.50 8.40 

0.2 7.15 7.48 8.30 

0.3 7.00 7.17 7.78 

0.4 6.80 7.39 7.50 

0.5 6.81 7.40 7.52 

0.6 7.00 7.20 7.35 

0.7 6.85 7.30 7.30 

0.8 7.09 7.15 7.30 

0.9 7.30 7.00 7.07 

1.0 7.30 6.95 6.95 

* qst 6=0 values are extrapolated 

values from the qst vs e curves. 
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Table 20 

Differential Entropy 

Calcium Sulphate Manganese Sulphate 

Annealing 200 300 400 200 300 400 
temp. 

e 
0.05 28.18 32.37 28.85 19.90 21.06 25.64 

0.1 27.16 27.69 31.24 18.40 26.85 24.65 

0.15 19.92 22.32 26.78 20.66 22.87 21.62 

0.2 22.14 21.25 20.32 19.61 23.38 23.03 

0.3 17.10 17.98 18.55 22.70 23.62 22.00 

0.4 17.83 19.92 21.17 21.35 23.21 22.33 

0 .. 5 17.32 18.93 19.92 20~96 22.28 22.62 

0.6 19.08 19.10 19.59 19.84 20.72 20.64 

0.7 19.16 18.42 17.35 21.35 20.87 19.17 

0.8 17.98 19.73 17.16 20.93 19.65 19.05 

0.9 18.16 18.04 19.00 21.59 19.81 17.90 

1.0 15.84 18.92 15.81 21.26 20.00 18.00 

Differential entropies have been expressed in entropy· units 

(kcal per mole per degree) in Tables 20, 21 and 22. 
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Table 21 

Differential Entropy 

C.obalt Sulphate Nickel Sulphate 

Annealing 200 300 400 500 200 300 400 500 
temp. 

e 
0.05 24.95 15.52 12.18 19.58 13.55 21.17 24.78 12.93 

0.1 21.19 17.66 21.85 21.79 18.91 19.39 23.42 16.64 

0.15 21.34 19.88 • 15.06 23.80 19.55 18.34 20.25 19.64 

0.2 20.97 18.19 14.97 24.71 18.86 19.19 19.36 20.14 

0.3 20.76 17.46 15.01 23.95 19.02 19.42 20.34 20.40 

0.4 21.19 16.93 14.28 24.30 19_37 19.66 20.64 19.41 

0.5 20.12 17.42 16.14 23.62 18.67 19.92 19.90 17.17 

0.6 20.92 19.11 16.50 23.41 18.93 19.08 19.26 16.25 

0.7 23.32 18.42 17.30 25 .. 85 18.40 19.18 19.46 17.32 

0.8 19.90 18.30 17.12 22.10 18.21 19.92 19.17 17.15 

0.9 20.60 17.94 17.11 22.08 17.65 19.45 19.21 17.79 

1.0 20.92 18.54 17.26 22.00 17.36 19.90 19.77 17.90 

• 
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Differential Entropy 

Copper Sulphate Zinc Sulphate 

Annealing 200 300 400 500 200 300 400 
temp. 

8 

0.05 21.21 19.10 20.07 23.46 23.40 21.26 18.75 

0.1 22.98 19.21 21.10 24.12 24,01 23.55 20.68 

0.15 27.93 20.09 , 17.78 20.57 23.91 22.30 18.92 

0.2 22.10 21.63 22.11 21.16 22.20 21.55 18.77 

0.3 22.54 21.38 11.19 18.61 21.62 21.71 19.72 

0.4 22.85 19.76 17.50 17.01 21.76 19.45 19.96 

0.5 23. 70· 20.90 18.18 17.22 21.48 19.81 19.39 

0.6 23.19 20.18 17.86 17.04 20.35 19.81 19.34 

0.7 23.85 18.97 18.21 18.84 20.43 19.21 19.10 

0.8 23.53 19.40 17.37 20.23 18.68 19.49 18.70 

0.9 23.60 18.21 17.23 21.93 17.89 19.36 19.06 

1.0 23.26 19.27 19.21 22.16 17.83 19.49 19.19 
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Figures 2 to 6: 

1. Solenoid. 

(25 watts- eachl. 

- 192 -

LEGEND FOR ~URES 

2. Solenoid connections. 3. Light bulbs 

4. Support. 5 . Al umi._nium box with 

phototransistors circuit. 6. Balance case. 7. B .45 

9. Photo-cone and socket. 8. B.34 cone and socket. 

transistor circuit connections. 10. Sample bulb. 

Reference bulb. 

ert gas inlet. 

12. Inert gas inlet stopcock. 

11. 

13. In-

14. Quartz rods (2 mml supporting frame. 

15. Support for the tungsten wire. 16. Thin tungsten 

wire. 17. Balance beam and beam arrests. 18. Aluminium 

foil. 19. Secondary fulcrum (tungsten wire) . 20. Balance 

beam arrest . 21. Magnet. 22. Quartz weight to adjust 

centre of gravity. 23. Balance frame. 

Figure 7: 

1. Regulated power supply (23.3 volts technipower PC-23.3-0.100). 

2. IK resistance. 3. Coarse adjust (IKQ in ten turns, 

Bourns). 4. Fine adjust (lOOst in ten turns, Bourns) . 5. 

Double pole double throw switch. 6. Standard resistor 

(Gen. radio lOOst + 0.05%). 7. Solenoid (approx. lOOst). 

8. Potentiometer. 

Figure 8; 

1. and 2. Matched phototransistors (Phillips OCP 71). 3. 

Regulated power supply unit 23.3 volts tTechnipower PC-23, 

3-0' 100}_. 4. Galvanometer (G.H. Laboratories Inc.} 

(Catalogue N. 570-2121. 
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Figure 9: 

1. Change in E.M.F. with pressure using glass bead. 2. 

Change in E.M.F. with pressure using buoyancy bulb. () Points 

measured while increasing pressure. ~ Points measured while 

decreasing pressure. 

Figure 10: 

1. and 2. Mcleod gauges. 3 • Manometer . 4. Stopcock. 
+ 

5. Cold trap. 6, 7 and 8. Bulbs. 9. Bellows. 

Figure 11: 

A and B. Dewars. C. Constant temperature bath. D. 

Pinchcocks. E. Pump. F. Copper cooling coils. T. 

Thermometers. 

Figure 12: 

1. Dewar. 2. Stirrer. 3. Heater. 4. Thermopile. 

5. Sample bulb holder (plate). 6. Sample bulb. 7. 

Plexi-ring. 8. 'O' ring. 9. Plexi-top. 10. Bolt. 

12. Thermopile leads. 13. Stainless steel rod. 14. 

Stirrer-shaft. 15. Motor for stirrer. 16. Teflon 

tubing. 17. 'O' ring on stirrer rod. 18. Heater leads. 

Figure 13: 

1. Electrical clock. 2. Double pole double throw switch. 

3. Standard resistance (one ohm). Model 601, Ballantine 

laboratories. 4. Potentiometer. 5. Stabilized power 
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supply unit (constant voltage and constant current) . Harrison 

6200 B, DC, S. No. prefix 6A Hewlett Packard. 

Heating coils. 

Figure 15: 

1 to 6. Stopcocks. 7. Capacitance manometer lower plate. 

8 and 9. Stopcocks. 10. Sample bulb. 11. Capillary. 

14. Sample. 12. P.V.C. tubing. 

15. Outer jacket. 

Glass to pyrex seal. 

Figure 18 to 40: 

13. Glass wool. 

16. Constant temperature bath. 17. 

E] Adsorption points at -10°C. O Adsorption points at 6°C. 

~ Adsorption points at 20°c. Half-filled squares, circles 

or triangles represent desorption points. 

Figure 41 to 52: 

O Points for adsorbents annealed at 200°C. Q Points for 

adsorbents annealed at 300°C. ~ Points for adsorbents annealed 

at 400°c. EJ Points for adsorbents annealed at 500°C. 

Figure 63: 

The symbol of the element represents corresponding sulphate com­

pound. e.g. Cu stands for copper sulphate. 
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-F~c;ure 65A: 

e Cation. 0 Anion. 

Figure 66: 

CAY (1001 plane. (B} GlOl plane. (C) (111} plane. 

e Nickel ion. 0 Lattice oxygen i .on. ~ Adsorbed oxygen 

ions. Middle column refers to a bare surface at the instant 

of cleavage; left column, bare surface, relaxed position; 

right column, after adsorption of oxygen. 
205 

(After Haber & Stone ) . 
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Figure 1. Reference bulb 
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Balance beam 
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Figure 4. SIDE VIEW OF THE BEAM 

21 
19 19 

Figure 5. TOP VIEW OF THE BEAM 
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Figure 7. 

ELECTROMAGNETIC COMPENSATION CIRCUIT 
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Figure 10. Vacuum line and Equilibrium manifold 



Figure ll. Low temperature control assembly 
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Figure 12. Calorimeter cell assembly 
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Figure l2A. Twin calorimeters 
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Figure 14. Calorimetric measurement 
Heat of solution of cuso4 (300) 

Time of heating: 150.3 sec. 

Current: 0.12794 amps. 

R: 70.67~ 

Y: 1.58" 

w = 0.29664 

M = 159.63 

X = 1.08n 

t.H = cal/mo1e = 15.285 k.cal/mo1e 
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Figure 15. Volumetric BET apparatus 
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Figure 16. Isotherm for Niso
4 
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Figure 18. Isotherms for Mnso
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Figure 19. I.sotherms for MnSO 
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Figure 20. Isotherms for Mnso
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Figure 21. Isotherms for Coso
4 
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Figure 22. Isotherms for Coso
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Figure 23. Isotherms for Coso
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Figure 24. Isotherms for Coso
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Figure 25. Isotherms for Niso
4 
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Figure 26. Isotherms for Niso
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Figure 27. Isotherms for Niso
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Figure 28. Isotherms for Niso
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Figure 29. Isotherms for Cuso4 (200) 
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Figure 30. Isotherms for cuso
4 
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Figure 31. Isotherms for Cuso
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Figure 32. Isotherms for Cuso
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Figure 33. Isotherms for znso4 (200) 
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Figure 34. Isotherms for znso
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Figure 35. rsotherms for Znso4 (400) 
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Figure 36. Isotherms for caso
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Figure 37. Isotherms for caso
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Figure 38. Isotherms for caso
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Figure 39. BET plot for Mnso
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Figure 40. BET plot for Niso
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Figure 41. Isosteric heat curves for Mnso
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Figure 42, Isosteric heat curves for coso
4 
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Figure 43. Isosteric heat curves for Niso
4 



Figure 44. Isosteric heat curves for cuso
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Figure 45. Isosteric heat curves f or znso
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Figure 46. Isosteric heat curves for caso
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Figure 47. Differential entropy vs. coverage 
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Figure 48. Differential entropy vs . coverage 
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Figure 49. Differential entropy vs. coverage 

(NiSO 
4

) 

28 

-::J 
Q) - 24 
>-a. 
0 
a:: ¢ r-
z 20 -0- t -9- -8-w 8 ~ -@- ~ -6- -6-
_J ¢ 0 

~ 0 <( 

r- 8 (] 8 0 
z 8 
w 16 
a:: 
w 
LL 
LL 

B 0 

12 [\.) 

.t>. 
1-' 

0·0 0·2 0·4 0·6 0·8 1·0 

SURFACE COVERAGE (9) 



-::> 
Q) -
>-a.. 
0 
a: 
I-
z 
w 

...J 
<( 

I-
z 
w 
a: 
w 
LL 
LL 

0 

Figure 50. Differential entropy vs. coverage 
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Figure 51. Differential entropy vs. coverage 
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Figure 52. Differential entropy vs. coverage 
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Figure 54. Theoretical entropy for mobile model 
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Figure 55. Excess heat of adsorption for 

adsorbents annealed at 200°c 
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Figure 56. Excess heat of adsorpti_on for 
0 

adsorbents annealed at 300 c 
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Figure 57. Excess heat of adsorption for 

Sc Ti 

0 
adsorbents annealed at 400 C 

v Cr Mn Fe Co Ni Cu Zn 
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Figure 58. Excess heat of adsorption for 
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adsorbents annealed at 500 C 
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Figure 59. Excess heat of solution for (200) surfaces 

Fe Co Ni Cu Zn 
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Figure 61. Excess heat of solution for (400) surfaces 
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Figure 62, A surface area change with annealing temperature 

14 NiS04 
g 

CoS04 • 
12 

CaS04 0 
ZnS04 0 
MnS04 

C) 

10 CuS04 e 

8 

6 

4 

2 

o~--~--~----~---L~--L---~--~~--~~~~~ 

I 2 3 4 5 6 7 8 9 10 II 

Annealing temp. in ° C x 100 



Figure 63 

1000~------------------------------------------~ 



Coordination Number Figure 64. Crystal field splittings for various symmetries 
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Figure 65A. Octahedral field around a cation 

Figure 65B. d orbitals in an octahedral field 
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Figure 66. Chanqes in nickel ion coordination 

during chemisorptio11 of oxygen on Nio 
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Figure 67. Crystal structures and crystal planes 
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