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Abstract
Strengthening of e.tisting concrete structural elements is a viable means for im­

proving the performance of such elements. Plenty of strengthening-related research

work Oil beams and columns has been conducted. HO\\"e\'cr, re;ean;h \.\-'(Irk related to

two-way slab strengthening is .ery scarce. Helice, there nre academic ancl industrial

needs to invC5tigate such an issue experimentally and theoretically. This thesis is

all attempt to fill the need for nn experimental and theoretical re>earch work on tile

pUllching shear and Ilexural strengthening of two-way slab system.

The cxperimeul.ll1 phfL'IC of this research work include<l testing of thrl'C groups of

spl..'Cimens. The first and se-oolld groUp6 are composo:.'<.! of specimens strellgthened

using steel plates amI sleel bolts. The specimens of the fil'll! group are loaded cen­

trallyonly. The second group of 5pet;ifficns is loaded centrally combined with lateral

static or cyclic moment. The specimens of the [hiro group are loaded centrally and

strengthened with either Carbon Fibre Reinforced Polymer (efRP) strips or ClaslI

Fibre R.einforoed Polymer (OfRP) laminates.

The first group of specim('ns iii: IlliCd to de\'elop and optimize a strengthclling

technique using the integration of steel pla.tes and steel bolts. The effectj~nes:sof four

different collfigurations or steel plates and steel boiLS are evaluated. The steel plates

are assumed to act as horizontal flexural reinforcement representing an equivalent

concrete drop panel. Moreover, the steel bolt.'l are designoo to act as vertical shear

reinforcement, to transfer the horizontal forces betw~1l steel plates and concrete slab,

and to confine the concrete between the steel plates. All an'rage increase in tbe load

capacity of 50% i'i achieved O\'er that of the unsttengthenoo specimens.

The secoud group of specimens is intended to cvaluQ.te the performance of rec­

ommended steel strengthening technique for spedml.ins subjected to static or cyclic

moments. The ultimate load capacity is illcreasl.:<1 by all lINcmge of 122% for speci­

mens I'ubjecled to slatic moment compared to the unstrengthcnoo specimells. For the

specimellS subjected t(l cyclic moment, the latcral drift is increased by 76% compared

to thc unstrengthened sl>ecimens.



The third group includes specimens strengthened using eFRP strips and GFRP

laminates for f1.eJ:uraJ-strengtbeniog. In addition, This group includes specimCllil

strengthened 'lith CFRP striJl6 and steel bolts for punching-shear strengthening.

Utilizing CFRP strips and GFRP laminates contribute to an average increase of the

Ouxural capocity of tll"()-\\-ay slab6 by an m-erage of 36% compnred to that of the

unstrengthened specimens. Ho....ever, a 61Ilall a\-erage increase within ff"k i~ achie\-oo

for the CFRP punching sheaNitrengthcning.

The theoretical work is t"Ompooed of twO pans: mt'ChaniclIl model and Finite

Element, Analysis (FEA). In the fin;t part, a mechanical model is developed to analY"l.ll

ccntra.lly loaded t\\"O-way slabs suengthened \IRing steel platCll. A concrete model

that considers the biaxial state of stress of concrete as well 88 the confinement effect

of steel plates is introduced. An iterative incremental mechanical model is used to

determine the load carrying capacity and to evaluate tbe deformation characteristics

of strengthened slabs al each load increment until failure.

In the finite element analysis part, il full ooud assumption is made between the

concrete and both reinforcing titrel bars and the streDgthcning FRP material. The

comparison bet"ll1lCn tIle FEA and the experimental rcsullS showed an acceptable

agreement. A tcnsion-stiffening model is recommended for the coucrete constituth-e

modd taking into consideration the effect of strengthening ml\terial on the concrete

beha\<iour in tension. In addition a regce'iSion equation based on the statistical ap­

proach of the Response Surface ~1ethodology is mcommended. The tension stiffening

model is useful as an input in finite elemeut packages and useful for classicaJ ap­

proaches. In addition, The regression design equations can be used to provide simple

design gnide for engineers to predict the ultimale lo.'d carr)"ing capacit)" of CFRP

and GFRP strengthened two-way ~labt;.



Acknowledgements

Praise be to AUab Almight)' ant.! Peace be upon His Prophet Muhammad.

Many thanks to my mother for her prayer, 1o\"e, and support. Without her, this

....ork would never have come wto existence. Thanks to my father ...-ith whom I wish I

could sllare these moments. I am sure that his spirit is always ""ith me. Also thanks
to my brother Hesham for taking care of my mother and my sisters. 1 am also grateful

to my sisters for tlicir love and Slipport.

Many th3l1ks to my supervisor Dr. 1-1. r.Iarzouk for his support, guidance, and

patience during the COlIl'lllJ of the program. I appreciate his COlJlmituwnl to Iwlp me

doing this work in tilis shape. Also J would likf! to thank Dr. and Mrs. Mar.rouk for

the great attention they devoted during my initial settlement in Canada.

I would like l(l thank Dr. L. Lye for hi!; ad\'ice regn.rding the statistical work in
the thesis. Many thanks to Dr. A. Hussein for his \'aluable comments for improving

the final thesis. Also, I am \'01')' thankful to Dr. K. EI-Rayas for his ad\'ice whCll
preparing the initial proposal. I am indebted to Dr. A. S\\<Unidas, Dr. ~I. Haddam,
and Dr. J. QuIUcoe for their support, help, and precious alMce.

I had the pleasure of work with A. Bursey and C. Ward, Structures and Concrete

1a0000tol"if!S technicians. Their assistance made research like this ~ible. I should
also Thank Mr. :\1. Wrinch and Mr. C. Wight for thoir help.

Man}' thanks to :\is. O. Gill for her suggestions on the malters of wording of

the thesis. I wish to thank Dr. S. Helm~', Dr. A. Awad, :\Ir. D. Toshack, Dr. Y.
EJ..Sa}"cd, Dr. A. Osman, Dr. A. Abdel-Razek, Mr. M. Andrews, Dr. A. Zubaydi,

Dr. S. A..,.adalb.b, Mr. A. EI-Anced, Dr. :\'1. Sta,-ely, Mr. C. Cook, ~[r. T. Dyer,
and Mr. F. Poland for their friendship.

I appreciate and tJll\nk the School of Gmduale Studies at Memorial University of

Newfoundland for the finaucial support of this doctoral tltlldy.

Sl. .101m's, Newfoundland
May 30, 2002

iii

Usama Ebead



Contents

Abstract

Acknowledgements

Contents

List of Figures

List of Tables

Notation and List of Abbreviations

1 Introduction
1.1 ~neral

1.2 Scope
1.3 Research Objectives
1.4 ThesisOutiine.

2 Literature Sun-ey
2.1 General
2.2 Shear Strength of Two-Way Slabil
2.3 Shear Design Equations of Two-Way Slabs .
2.4 Slab!; Subjected to Celltral Load~ and Momelll.s
2.5 High Strength Concrete Two-Way Slahs
2.6 Shear Reinforcement of Two-Way Sial:»;
2.7 Finite Element Analysis of Two-Way Slabs.
2.8 Fibre ReinfoTce([ PlastiCll (FRP)

2.8.1 FRP Reinforcement for CoIlcn:te Structures
2.8.2 FlexurAl STrength~lling of Beams

iii

Iv

ix

xiv

~i

8
8
o

10
13
IG
10
22
23
24
26



2.8.3 Shear Strengthening of Beams
2.8.4 Failure Criteria of FRP Strcllbtthclled Beams
2.8.5 ~ear Surface Mounted FRI> [{ods
2.8.6 Stl'engthening of Columns
2.8.7 Strengthening of Beam-Column Conllectioll~

2.8.8 Strengthening ofSlaoo
V) Pre-Loading Effect Prior to Strcngtheuing

3 The Experimental Program
::1.1 General
3.2 Properties of Materials

3.2.1 COllcrete and Stt'el Reinforcement PropCIties
3.2.2 Strengthening r>.1atcrials Properti~

3.3 The Form\\"ork of the Specimens
3.4 PreparingSt(.>cl Cages
3.5 Mixing Concrete
3.6 Test Slabs

3.6.1 General
3.6.2 Spt'Cimens of Group 1

3.6.3 Specimens of Group 2
3.6.4 Specimens of Group 3

3.7 1c;;t Set-up and Instrumentation
3.8 Test Procooure and Load SequClite
3.9 Strengthening Techniques and Procedure

3.9.1 Steel Plates and ]jOILS Strengthening Technique
3.9.2 Steel Plates and Bolts Strengthening PrOI;a!nre
3.9.3 FRP-strengthening Techniques and Procedure

28
29
31
32
33
34
3G

38
38
39
39
40
42
42
45

"45
47
50
52
54
GI
G3
G3
G4
65

4 Behaviour of Cent-rally Loaded Two-Way Slabs Strengthened Using
Steel Plates 69
4.1 Introduction 69
4.2 Test Results of Specimens of Group 1 70

4.2.1 Central Load-Central Deflection Characteristics 70
4.2.2 I:kflcction Profiles. 75
·1.2.3 Crack and Yield Loads 78
4.2.4 UILimate Load Carrying Capacity 79
4.2.5 Stiffness 80
4.2.6 Steel Reinfortcment Straill 81
4.2.7 Strains in Steel Plates and St.eel Bolts 82



4.2.8 Ductility and Energy Absorption
4.2.0 FailureCllaracterist.ics

4.3 EvaluatioD of the Ultimat.e Load Carrying: Capacity
4.4 Summary and Conclusions

86
88
91
97

5 Behaviour of Steel Strengthened Two--\\'ay Slabs under Different
Types of Loading 101
5.1 llltroouetion 101
5.2 Specimens Subje<:tcd to Static lIIomcllt 102

0.2.1 Load-Dcfk'\:tion Relationships and Deflection Profiles 103
5.2.2 Crack alit! Yield Loads 108

5.2.3 Ultimate Load Capaeity 108
5.2.4 Stiffness 109
5.2.5 Steel Reinforecmcnt Strahl 110
5,2.6 Ductility and Energy Absorption 111

5.3 Specimcns Subjected to Cyclic r-.loment 114
5.3.1 Cyclic Moment·Drift Relationship 114
5.3.2 Cyclic Ductility Characteristics 116
5.3.3 Cyclic Stiffness Charactcristics 118
5.3.4 Rcinforcement Steel Strain 119

5.4 Failure Characteristics of Tested Specimens. 1HI
5.5 Code Verification ofStaUc ~·..tOlllent Spe<:irnens' Results 122
5.6 Sumlllar~' and Conclusions 124

6 Behaviour of Two-Way Slabs Using FRP Materials 130
6.1 Introduction 130
6.2 Test Rcsuhs of Specimens o[ Group 3 131

6.2.1 Crack, Yield, and Ultimate Loads 132
6.2.2 Defonnatiollal Characteristics 133
6.2.3 Stilfness Characteristics 142
6.2.4 Steel Strain 142
6.2.5 Ductility and Energy Absorption Characteristics 146
6.2.6 FailureCharacteristics 148

6.3 Summary and ConclusiOn:> . 157

7 Mechanical Model of Centrally Loaded Steel Strengthened Two-
Way Slabs 159
7.1 Introduction Hi9
7.2 Rational Mt:cllallical Modcls 160

vi



7.3 Strengthening Technique of Two-Way SLabs 163
7.4 1'IIechailicai Model 165

7.4.1 Compress-ive Stress-Straiu Relationship for Omcrete 166
7.4.2 Confinement Effect 1G8
7.4.3 Confined Concrete Stress Strain Relatiouship J70
7.4.4 Evaluation of the Confining Pressure, II 172
7.4.5 Tensile Stress-Strain Rdationship of Concrete 173
7.4.6 Stress Strain Rdationship for Steel Reinfor~ment and Steel

Platcs 174
7.4.7 CompUl.ational Algorithm 175

7.5 Ultimate load carrying capacity of Slabs 178
7.5.1 Verifu;:ation of the Proposed r-.-1ode1 180

7.6 Conclusion 183

8 Finite Element and Numerical Analyses of FRP-strengthened Two-
Way Slabs 186
8.1 General 186
8.2 Concrete Constitutive model 188

8.2.1 Behaviour of Concrete in Compression 188
8.2.2 Behaviour OfCOllcrete in Tension 192

8.3 Finite Element Calibratioll Study . W7
8.3.1 Materilll Properties 199
8.3.2 Geometric Modelling 202
8.3.3 Steel Reinforcement and FRP Representation 203
8.3.4 Boundary Conditions 203
8.3.5 Solution Strateg~' . 20<1

8.4 Result-s of the Calibration Study 204
8.1.1 Stress-Strain Relationships and Contours 204
8.4.2 Load Carrying Capacity and Deformations 206

8.& Numerical Analysis Bused on the ItSM 208
8.5.1 Introduction 208
8.5.2 Respollse Surface Methodology 209

8.6 Parame~rie Study 210
8.u.1 Generation of Finite Element Data 210
8.u.2 Proposed FRP Tension Stiffening /I.-lodel 215
8.6.3 Load Predictioll using RSM 217

8.7 Summary and Conclusions 220

vii



9 Conclusious 223
9.1 Summary 223
9.2 Steel Strengthened Centrally Loaded Slabs. 224
9.3 Steel Strengthened Two-Way Slabs under Different Type; of Loading 225
9.4 FRP-StreugtlLCucd Slaoo 226
9.5 Mechanical :\'\odel for Steel Strengthened SIa.bs 227
!lu FEA of FRP Flexural Strengthened Slabs 228
!l7 Author's Contribution 229
9.8 Rl'Commcuuation for Further Research 230

Bibliography

viii

231



List of Figures

2.1 Differeut early kinds of shear reinforcement (Scible et aL, 1980) 21

2.2 Longitudinal section of a repaired beam (~1eier et aI., 19(3) 30

3.1 The fonnwork witiJ a cast specimen 43

3.2 Reinforcement details of tested specimens. 44

3.3 The simulated part of t.he building (0.4 the Span) 46

3.4 La~'out of specimens with two column stubs and loaded centrally. 47

3.1i Lu}'out or specimells with tv.o column stubs and loaded ccntrally and

laterally 48

3.6 LayoUl of specimens with olle coluIJIll slub and loaded cent rally 48

3.7 Steel plates auu holts oonfigllration (dimension are ill mm) . 50

3.8 A spl.'Cimcu carried using the 10-ton eapadty crane 54

3.9 Layout of the test set-up with a centrally loaded specimen mounted in

~~ ~

3.10 Clamping of specimens subjected to rcversallaterallofuls 56

3.11 Steel gAges locations on tension or compression steel reinforcement for

different reinforcement ratios and cases of loading. 58

3.12 Locations of strain gages on Pattern 2 steel plat(.'S and bolts 59

3.] 3 Computer monitors showing the type of loading GO

3.14 A d05e up of the dial gages 61

3.15 The drift, routine used for specimens suojected to cyclic loading 62

3.16 Roughening and drilling a specimen to be strcllgthcneU 65

i,



3.17 Part of the procedul"C of strengthening using steel plates 66

3.18 Strengthening techniques using FRP materiah . 68

4.1 Load-deflectiou relation~hips for Ikf-P-l.O%, Ref-p-o.5%, Steel-Pl-

1.0%, and Steel-P2-1.0% 72

4.2 Load-deBection relationships for Steel-P3-1.0%, Steel-P4-1.0%, Stecl-

P5-1.0%, alld Stecl-P-O.5% 73

4.3 Load-deflC(:tiOIJ rela.tionships of specimens of Group 1 74

4.4 Deflection profiles for Ref-P-O.5%, Ref-P-1.0%, and Steel-P-0.5% 76

4.5 Deflection profil<'S for Stecl-PI-1.0%, Stecl-P2-1.0%, Steel-P3--1.0%,

and Steel P4 1.0% . 77

4.6 Samples of the typkalload-J5tccl reinforcement strain relationships. 83

4.7 Load-J5teel reinforcement strain at location (I) relationshiJ.ll:i for thc

specimens ofCronp 1 84

4.8 Strain profiles ofsp<..'Cimells Rcf-P-1.0% and Stcel-P3-1.0% 85

4.9 Load-strain distributiOlJ of steel bolts and plates. 87

4.10 Schcmatic illustration of the difference in the failure mode due to the

strengthening 90

4.11 Specimen Ref-P-1.0% after final testing 91

4.12 Spedmen Stecl-p-o.5% afler final testing. 92

4.13 Specimen Steel-Pl-l.O% after fiual testing 92

4.14 Specimen Steel-P2 1.0% afT.er final testing 93

4.15 Specimen Steel P3 1.0% afTer final testing 94

4.16 S!>ccimen Stcel-P4-1.0% after final te;ting 95

4.17 Spl'Cimcll Stccl-P5-1.0% aher final testing. 95

5.1 Load-deflection relationship:> of specimens Ref-!\'l-0.50%, Sr.cel-M-o.5%,

and Stecl-tl'l-l.O'7c 104



,).2 Combined load deflection rt'latiooships ofspecimeos subjected to static

momellt aod a compari<;on 1\'ith specimens of Group I and the reloading

stage . to'>

5.3 Deflection profilts ofstrengthened specimens subjected to centcalload

and static moment 107

5.4 Typical load-6teel reinforcement strain relatioDships for tested speci-

IDellS (Steel-M-0.5% and Steel-M-1.0%) 112

5.5 Load--stef!l reinforcement strain relationships fit location (1) 114

5.6 Unbalan<'"{!ll cyclic moment-drift relationship for strellgtilenoo specimens I t7

5.7 Evaluation of the displacement ductility for AI}CCirnells sllbjL'Cted to

cyclicmolilent. 118

5.8 Load-steel reinforcement strain relatiollslJips for specimen Steel-C-{Ui%l:!t

5.9 Specimen Ref-M-o.5% after final testing. 127

5.10 Specimen St<''eI-:\1-1.0% after finallesting. . 127

5.1I Specimen Steel ~1 0.5% after final testing. .....•••.•. 128

5.12 Specimen Steel e-1.0% after final testing. 128

5.13 Specimen Steel-G-O.5% after final testing. 129

G.l Load-deflection relationships for Ref-P-o.35%. Ref p' 0.5%, CFRP-

r-o.35%, and Gf'RP F-o.5% 136

6.2 Load-deflection relationships for CFRP-F-0.35%, CFRP~F-o.35%.CFRP1-

S--1.(lCA;, and CFRP2-S-1.0% 137

6.3 Load defiection relutioDShips for flexural and shear-strengthening spec-

138

6.4 Deflection profilCl'i for Ref-P-0.3S%, Rcf-P'-o.5%, CFnP F-o.35%,

and GFRP-F-O.[i% 140

6.5 DeflectiOll profiles for CFRP-F-0.35%, CFRP-F-O.3[i%, CFRP1-S-

1.0%, and crRP2-S-1.0% 141



6.G Typical Load-steel reinforcement strain rdatiolJship~for flexural-strengthening

specimens (CfRP-F-fJ.5%) Md punching shear-strengthening sped-

mens (CFRPI-S-l.O%) 144

6.7 r..oad~stecl reinforcement strain relationships for all specimens of Group

3 at locatiou (1) 145

6.8 Specimen Ref-P-O.35% after final testing 149

6.9 Specimen Ref p' -0.5% after final testing 150

6.10 Specimen GF'RP-F-o.35% after final testing 151

G.ll Specimen GFRP-F-o.5% after final testing 152

6.12 Specimen CFRP-F-Q.35% after final testing 153

6.13 Specimen crRP F-O.5% after final testing 154

6.14 Specimen CFRPI-S-l.O% after final test/Jig 155

6.15 Specimen CFRP2~S-l.O% after final testing 156

7.1 The original concept of rational mechanical model 161

7.2 Inclusiou of the teMile properties of concrete ill a Iilcchauical model 162

7.3 SI,rengthening IUld reinforcement details of a typical strengthened spec-

164

7.4 Moment and deflection distribution of a two-way slab 166

7.5 lJiaxial ochaviOllr of concrete 167

7.6 Compression stress strain relationship of COlJcrete 171

7.7 Stress ~train relationship in both compression and tension for steel

reinforcement tl.nd steel plates. 175

7.8 Calculation of the imernalmoment, Md. 176

7.9 The computational algorithm flow chart 179

7.10 Load-deflection relation~hip of selected specimens 184

711 Vcrilication of the mechanical model (Exp. =Expcrimcntal, Cal.

Model prediction) L85

8.1 Concrete behaviour in eompressiou 190

xii



8.2 Fracture energy and cracking model of concrete 194

8.3 Tension stiffening mOOel 196

8.4 Tension stiffening calibration for strengthened concrete slabs 196

8.fi Strengthened specimen configur<ltion and reinforcing details 200

8.6 Finite element mel;h layout for tile calibration specimens 202

8.7 Tensile stress-litrain at slab center relationships for GFRP-strengthenoo

slabs 205

8.8 Tensile stress-strain at slab cent.er relationships for CFRP-strcllgtlJencd

slabs 206

8.9 Stresses, O"u and strains, Ell, at maximum load at the tension side 207

8.10 Ccntrulload-deficction relationships for CFRP strengthened slabs 208

8.11 Centralload-dellection relationships for CFRP-strengthened slab>; 209

8.12 Mesh sensibility effect on the load history. 212

8.13 Comparison between FEA and RSM regarding the tensile post-peak

responsc of concrete . 218

8.14 Comparison between FEA and RS;",'I Io.'\d response for CFRP and

CFRPruns 219

8.15 Intera<.:tion elf~'Ct of the different parameters on the load 221

xiii



List of Tables

3.1 Mix proportion.'> for one l;uhic meter of concrete 39

3.2 Properties of the steel reinforcement bars 40

3.3 Propenics of the strengthening steel plates 41

3.4 Properties of tile epoxy adhesive' for steel strengthening specimens 41

3.5 Properties of a layer of the FRP materials 41

3.6 Properties of the epoxy adhesive for FRP strengthening. 42

3.7 Spccimcns of Group 1 50

3.8 Specimens of Group 2 "
3.9 Specimens of Group 3 53

4.1 Test resul\.ll of Gronp 1 specimens 89

4.2 Code evaluation of the load capacit.y of centrally loaded specimens 98

5.1 Test results of specimens of Group 2 subjected to static moment, in-

cluding references from Group 1 113

5.2 Test results of specimens of Group 2 subjected to cyclic moment 120

5.3 Code \'crification for strengthened specimens subjected to central load

plus static moment 125

6.1 Test results of spco::imclls of Group 3 including references from Group 1 147

181

Comparison with e.xperimental rcsults (Mar?ouk and HUl;..<;cin, 199111.) 182

Comparison with expcrimental results (Elstner and Hoguesteu, 1956) 182

7.1 Comparison with experimental results

72

7.3



8.1 Ranges of the studied parameters of the calibration study specimens. 198

8.2 A sample of the FEA calibration-runs 201

8.3 Properties of a layer of the FRP materials 201

8A Factors and ranges for the parametric study 211

8.5 The studied parameters a.nd variahles 213

8.G FEA paramctcl"li and responses 214



Notation and List of Abbreviations
The following notations wen~ used in the thesis.

support to support distum:c
afactar

fl.:l afao:.:tor
A constant
Ac shear area at the critical sectioll of the slab
A. Steel reinforcement crO&! St-octiullal area
b side dimension of the squa~ loaded area
bo a factor used defines the ratio between the biaxiallUld uniaxial tcusile

strengths
bl widtll of the critical se;;tion for shear measured in the direction of

the span for which moments are determined
~ width of tbe critical sloction for shear measured ill the direction per­

pendicular to /It
her critical perimeter £orshcar in slabs ami footings

side length of tile square column
Co a constant that determines the ratio between the plastic strain in a

monotonically loaded biaxial compression U:~t and the plastic strain
in a monotonically loaded uniaxial tcst.
constant
constant

C3 a facl.Oror constant
rl depth
r1 distance from the compression fiber to the centcroid compression re-

inforcement of the slab
dh thickness of the subdivision of the concrete section
Ike total compressive strain rate
de~l elastic oompressin~ strain rate
<uPl plastic compressive strain rate
rlc~ pl~tk...strll.in increment vector
det total tensile strain rat!: for the crack detectioll problem
dE:~1 tensile elastic strain rate



okf t~msile plru;tic strain rate associated with the crack detection surface
e distance from centroid of section for critical sllear to point where

shearstfC6S is bejllgcalculated
E~ Initial modulus of elasticity of concrete
E, initial modulus of elasticity of steel
I concrete compressive stre;;; or the yield function
f~ the equal biaxial compressive strength
1~ a f<K1.or
f~ characteristic strenb'th of concrete, uniaxial compressive strength of

cOllcrete, or uniaxial compressive cylinder strength
fciJ COlJcrete stress at iteralioni on the locationj of the sectiou
lern mean concrete strength
leo cube strenbrth of concrete
II conlining pre&<;ure
I,~. concrete residual compressive Stress
f; tensilestrcss of concrete
f~ yield stress of the slab reinforcemem
f~ yield stress of tile steel plate
F"'J concrete force at iterationi on the locationj of the section
F.i,t:. force of tile compression reinforcement at itenniolJ,i
F.,,;,t:. force of the steel plate located at the compression side of the slab at

iteration,i
F.i,t force of the Lensilercinforcementatiteration,i
F.,,;,I force of the steel plate located at the tension side of the slab at

iteration,i
9 the plastic-potential function
Go the shear modulus of the un-cracked concrele
G, fracture energy
h thickness of the slab
It width of the l;OlH:rete core
H static or cyclic or Lateral load

iteration number
J location level on the concrete crQSl:l section
J property of tlte critical shear section analogous to the polar moment

ofinertio.
Jeo polar moment of inertia of the 8]ab l;ritical section about its centroid
K confinementcoeffedf'Jlt
K~ 0.1;1 for normal COlicrete and ,105 for lightweight concrete
J(.c 1.15/{4"i'l" (column area)/{colnmn perillleter)~Ph

Ip side length of the steel plate
I, normalized slab length Ol" the length ratio



L ijiclc dblanee between supports uf the square slab or tile slab length
Ai uumber of divisions of tile upper fiber concrete strain range
Mo nomiual slam moment capacity when at zero shear
M, moment at interior support resisted by elements above lind below the

slab
J\1r; internnJ moment lit iteration,i
AI~ lln-halalJ(;ed moment trllIlSferred bety,-eeII slab and colUlJJll

modular ratio between steel and concrete
N number of divisions of the concrete section
N n Dumber of steel bolts
p effective pressure stress
Peal calculated Load carrying capacity
P=, experimentalloiUl carryiug cap.J,city
Pf ; Bexuralload, at iteratiou,i
Pli , flexural load, at iLeration,i when the maximum tensile strain in ten­

sion reillforeement reacll 0.01
Pf ., flexural load, at iteratiou,i when the maximum compression strain in

concrete extreme fiber reach 0.03&
P.nia mllximum load
q 11isescquivalent deviatoricstress
Q number of divL~ions of the lower concrete strain range
R 2 correlation coefficient
s spacing betwccn stirrups or vertical shear reinforcement
8\ a principal stress deviation
52 a principal srress deviation
53 II principal stress deviation
5,j deviatoric stress components
t" thickness of the stccl plate, IIIlll

t, Ilormalizl..-U slab thickncss, or the tltickncss ratio
perimeter of the loaded area

tit crack opcning displacement
Vl,2 shear strc6Se'l on faces of the critical sa:tion

nominal shear strength of concrete or concrete shear stnmh'th
v~ ultimate shear stress or shear strength
V shearforee
v;, nominal punching shear capacity at zero moment
VCQI calculatct.l ultimate loa<.! carrying: capacity
V".,j,OOI'"r correctct.l ultimate loa<.! carryi.ng capacity for the number of bolts
Vf load carrying ca.pacity at flexural failure
Vr load carrying capacity of the slau, the lea..s~ hetweenVf andV.
V. load carrying capacity at shear failure

xviii



Vu ultimate shear force
strengthening material fraction area, or the width ratio

WJ thestrengtheningenerg)'
Xl a principal axis of the critical section
III a principal axis of tlw critical settion perpendicular to Xl
Yj the distance from the an arbitrary location to ccutriod of the com­

pression conCrete fiber.
Yo,. the distance from the centriod of the compression reinforcement to

the compression concrete fiber
Y.,t distance from extreme compre:;:;ion fiber to the center of tension re­

inforcement
Y11',t distance from extreme compression fiber to the center of tension steel

plate
Y.p,< distance from ceutriod of the compression steel reinforcement to t.he

center of tension steel plate
Z", de&:ending tine slope in concret.e stress strain relationship

constant
faetor adjusts 11< for support dimensions and equals" for interior
columns and 3 for edge columns

13 fl'tctor or consrant
13< ratio of the long side to the short side of the column, cOllcentratt.'(!

load, or reaction area0,., dcflettionassociated tOPJ' l

0,., deflettion associated to P!i,
{j, defloc"tion associated to V,
{ju drift at t1w ultimate unhalauced cyclic momcnt
{j" drift at thc yield unhalanced cyclic moment
..\. compressivc bardening parameter
Ii' diameter of a steel bolt or linear degradation function of shear mod­

ulus
4>0 ratio of the ultimate sbear capacity and the ultimate 1le..'G1ral capacity

of the slab
tensioll reinforcement ratio of the slab
compression reinforcement ratio of the slab

P.h volUln~tric ratio of the hooks to the concrete core
p~ reinforcement ratio in the X direction
P~ reinforcement ratio in the Y dire<::tion
0'1 a prillcipal normal stress
0"11 IL principal stress
<711 aprillcipal stress



02 a principal normal stress
022 a principal stress
03 a principal normal stres.<;
o/><: stress ma;l;nitudc in case of biaxial stress state
ae. stress magnitude in case of uniaxial Stress state
Of first in-plane concrete compressive streR.<;
all Sl..'Cond ill-plalleconcrete compressive stress
(Ji,i normal strf'Sses components
"t uniaxialconrreteteIliiilestR~

o~ uniaxial cOllcrete tensile strength (cracking strength
T c yield stress in a state of pure shear Stress when all the components of

0ij vanish except 012 = "21 = Tc or it is the size of tbe yield surface
Oil the q axis at zero value of p in Figure 8.1

strain
Cll a principal strain
fl2 a principal strain
fn a principal strain
Ch<>j, axial strain of a steel holt after tightening up
CI><>I,i strain at the tension fiber of concrete section at iteration,i
Cc conrrete compressive straiu at an arbif.rary location of the section
Cd concrete compressive strain at aD arbitrary location of the section Ilt

iteratiOnl
€p tensile strain at ma.ximum concrete tensile stress
f,i,e strain at the centriod of the compression reinforcement at iteration,i
£,q strain at t.he centriod of the tensile reinforcement at iteral,ion,i
£,pi,< strain at the middle of the steel plate's thickness at the compression

side at iteration,i
5,pi,r strain at tiJe middle of the st.eel plate's thickne~s at d.w tension side

at iteratIon,t
f" total average shear effective strain at which concrete shear .qtiffness

vanishes
£.. total ultimate shear effective strain at which concrete sheaT stiffnes,o;

vanishes
5, tem;ile straiu of COilcrete
CI,maz COllerete tensile strain at 7.ero tensile stress
CI"J',1 strain at the compression fiber of concrete se<::tion at iteral.ioll,i
tt average crack opening strain (I£:fO$ the crack
ftO concrete tensile strain at "I = of
~ size-effect coefficient



ACI American Concrete Institute
AFRP Ammid Fiber Reinforced Plastic
ASTM American Society for 1bting and Materials
CEB Comitc Euro-Intcrnationale de Beton
DS British Standards
CFnr Carnon Fincr Reinforced Plastic
CSA Canadian Standards Associat ion
FEA Finite Element Analysis
FIP federation Int.ernationalIl de la Procontrainte
FOS Fiber Optic Sensor
FRP Finer Reinron:cd Plastic
GFR? Glass Fiber Reinforced Plastic
LNDT Linear Varialole Displacelllent Transformer
MPC Multi Point Constraint
NS~ Near Surface l\.Iounted
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Chapter 1

Introduction

1.1 General

The r.wo~way slab i~ an economical and popular ~trlldllral system that consists of II

plate of a uuifonn thickness cast monolithically with columns. Slabs have been used

iIi different structural applications, such as flool1:l and roofs of buildings; walls of tanks

and offshore structures; and bridges. One of the major drawbacks of the two-wa~'

slab system is the susceptibility to "pullchiugn failure. PUllching failure is a type of

failure in which a columu together with a portion of the slab punches through the

slab. The sudden Mime of this type of failure is a major shortcoming of two-way

slabstructufCS.

The t"'1)--way slab u.s a structural system is au optimum solutiotl for building

oonstruetiolls in countries located ill low or moderate seismic zoncs. Moroowr, this

structural system can be used efficiently in high seismic ZOIU'-S, ifan appropriate lateral

hradng system is provided to resist lateral loads inuucoo from earthquakes.

Strengthening of existing concrete structural elements is it. viable meaIlS of im­

proving the load carrying capacity and tile serviceability performance of such ele­

Strengthening is vital when altering the usage of tlle structure, overloading,



or m(.'Cting neec;;.sary ~tructural code changes or upgrades. Plenty of research "'"Orks

have heen carried Ollt to investigate the strnctllral behaviour of two-way slabs. On

the other haud, there is an academic/industrial need for research Oil two-way slabs

strengthening.

Extensive applications of the Fiure reinforcod polymer (FRP) composites as struc-

tural materials have been accomplished recently. It is deemed one of the mOSt promis­

ing technological advances in materials science and structural engineering. FH.P com­

posites aT(! lightweight, high streugth, lion-corrosive aud uOIl-magnetic materials. The

excellent properties of FRP composite materials are due GO the superior properties

of very small diameter fibres embedde<l in a ductile polymeric matrix. These fibres

enable a good transfer of internal forces from oue fibre to a.nother. The Illost com mOll

types of FRPs are the Carbon Fibre Reinforced Polymer (CFRP) and the Glass Fibre

Reinforced Polymer (CFRP). Typical CFRPs uscJ ill the construction illdustr)' have

tensile strengths eJCCI..'ed six times those of ~teel. 'fhl! stiffn~ of CFRPs is within the

rIl.nge of tbat of steel. GFRPs lJave lower strengths and considerable lower stiffness

than CFRPs_ Howe\'er, CFRP materials attract attentions due to the reduced cost

compared to CrRP materials.

Dne to tbe advantages of FRP compositl'S, there is a wide range of current and

potential applications of these composites for new and existing structures. The most

common application of FRP materials is strengthening and rehabilitating reinfOIced

concrete lJ.eams, columns, and deck bridges. The ease o[ handling FRP laminates

alld sheets provides the means to extend their applications to other structural ele-

ments. Applkatiolls of FRP materials for two-way slabs strengthening are sturce.

Investigating the r.ffectiveness of FRP mllterials in two-way slabs strengthening is an



interesting subject to cngineen; and researchers.

1.2 Scope

There is a lack of research on streugthellillg or rehabilitation of two-way slabs. :\'J06t

of the publL~hed research related to slab strengthening addressed one way slab:>. This

initiate the need for t.his research work to investigat.e experimelltally and thoofetically

the issue of two-way slabs strengthening. The current rescarcn is aimed at enriching

the literature with a comprehensive study on strengthening two-way slabs.

The scope of this work inclndes investigating cxperilllelltally the cffectiveuCS6 of

using steel, as a traditional material, and FRPs, as modern or advanced materials for

two-way slabs strengthening. It is intended to develop different strengthening tech-

niques to suit each type of these materi:lis and tIle purpose of strengthening whether

for punching-shear or llexul'e. In addition, it is intended to investigate experimen­

tally the dfedivellcss of the devclopl.-'<! strcngtlJCning tcchniques for enhancing the

behaviour of two-way shl.hs suhjected to different load combinations and reiuforced

with different reinforcement ratios.

The scope of this work is e.xteuded to include theoretical investigation of two-way

slab strengthening. The theorctka.l im-estigatiou iucludes developing a U1cchauical

model for st.eel strengthened two- way slabs. Such a model is needed for wsearchcrs

a.nd engiueers to design steel strengthened two slabs. In addition, a finite clement

analysili, as a powerful tool, is to be carried out to investigate the behaviour of I<'RP­

strengthened slabs. Results of the extensive finite element analysis will be used to

develop a teusion stiffening model for !"RP strengthened concrete using the statistical

approach orthe Response Surface r....lethodology (RS~·I). In addition, the finite element



anaJysis results will be used to develop a simple design equation for F'ltp strengthened

slabs using the It.'lM. Such a design equation is of II great value to practicing engincers

and researchers.

1.3 Research Objectives

The currpnt study includes experimental and theoretical investigations un strengthen­

ing reinforced concrete two-way slabs. The experiment.al phase of the study includes

evaluation of a traditional strengthening technique, using steel plates, and II modern

strengtllening techniqul!, usil.lg CFRP strips and GFRP laminates. The theoretical

phase of the illvet>t,igation includes numerical modelling of the strengthened two-way

slabs using either dosed form iterative technique or finite element analysis.

The experimental phase is a comprehensive study on strengthening t.wo-way slabs

subjected to different types of loading. The slabs are reinforced with different reiu-

forcement ratioo and strcngtlJ(mcd using different str{JIIbotbening techniques and ilia­

teriak The objectives of the experimental investigation arc summarized as follows

1 Developing and ~ ....."l111ating a new strength~ning technique by tCllting dilf~relJt

COil figurations of steel plates and steel bolts for strengthening t.wo-way slabs

suujected to central monotonic loads

2 Optimizing the strengthening tecbniqlle with regard to the minimum number of

steel bolts so that the technique contributes to a reasonable improvement of the

load carrying capacity and the deformational characteristics of the strellgtheuc<:1

two-way slabs.



3. Generalizing tile optimized tedlllique uy investigating iLq viability in strength­

ening two-way sla~ originally reinfon:p.<1 with djfferent reinfon;ement ratio;;

and subjected to central monotonic loads combilloo with either static or cydic

moments.

4. Investigating the applicability and the effectivcness of using CFItP strips and

GFRr laminates for flexural-strengthening of two-way ~Iabs

5. Investigating the effectiveness of using CrR? strips for punching shear-strengthening

of two-way slabs.

The theoretical investigation includes developing a mechanical model that is in­

tended to analyze two-way slabs strt>ngtlwncd with sted plates. In addition, the

theoretical work includes a tinite element analysis of two-way slabs strengthened

with erRP slripll or GVRP laminates. The objectives of theoretical investigation are

summarized as follows:

1. Developing an iterative incremental mechanical model to analyze centrally loaded

two-way slabs strengthened with steel plates and sted bolts. The model takes

int.o consideration the confinement effect aud the hi-axial Stilte of strCSl; on the

o\'erlll1 behaviour of two-way ~Iahs strengthened with steel plates.

2. F'inite element analysis of the behaviOllr of two-way slabs strengtheued in f1ex-

ural with CF'RP strips and GFRP l;trips.

3. Developing a tew,ion stiffening model for FIlP-strl":ugthened concrete

4. De\·eloping a simplified model that evaluates the uliimate load carrying capacity

of FRP-~trengt.heIHJlI two-way slabs ul;ing a reliable statistical method, tile



Response Surface r.Iethodology (RSM). The RSlvl will he used to develop a

simplifiedexpressjolJ that canllC'lp the researchers as well as practicing engineers

as a guide for the desil\"n of two-way slaLs strengthened witl! FRP materials.

1.4 Thesis Outline

Chapter 2 is divided illto four parts intended to survey relel·ant research work. The

first part surveys research work reh\too to the design and code requirements of shear

ill two-way slabs. The second part surveys experimental rffiearcli work on t.he ell-

hanL"Cmenl, of shear behaviour of slabs using different types of concrete or shear rein­

forcement. The third part reviews research work ou F'RP materials highlighting the

properties and applications of these materials as construction mat.erials. The fourth

part surveys research work Oll strengthening different reinforced concrete clements

using either FRP or steel.

III Chapter 3, details of the test set up, the loading frame, and specimens prepa-

ration are given. In addition, the different strengthening techniques are described in

terms of the metJlooology and the oc'qucuce of installing the strengthelJing compo­

nents of each teclmique. Finally, a description of tile instrumentation and the data

acquisition s)·stem is provided

Chapter 4 introduces the resulU:l of the steel strengthening technique of centrally

loaded two-way slabs. The effoctin~lIes;of two wnfigumtiolls of steel plates and four

different arrangements of steel bolts are evaluated. The load carr)'ing capacity as

"'-ell as thc dcfOlTIIationul charactcristics of the tested specimens are discussed. In

addition, Chapter 4 includes a simple approach that is ba.seJ on yield Iinc thcory to

estimate the load carrying capacity of the strengthened specimens



In Chapter 5, the most effective configuration of sted plates and steel bolts intro­

duced in Chapter 4 is invesligated further for specimens of the same dimcnsiolis but

of diffcrcnt reinforccment ratios alld subjected to different load combinations. The

tested specimens are suhjected to a wmbinlltion of cClltralload and either static or

c)'dic moment. A detRiled analysis of the test results of these specimens ill terms of

the load carrying capacity and deformational chlll"acteri-;tics is prescnh·(j.

Chapter 6 prescnts test results of strengthened two-way slabs with CFR? strips

and erRP laminates. It represents the results of two different strengthening scllemes:

flexural strengthening and punching Sheflf st.rengthening. A detailed analysis of the

test results ofthcsc specimens in terms of the load caJT}·ing capacity and deformational

charaderistio; is presented.

Chapter 7 introduces (\ mechanical model de,·eloped to analyr,e centrally loaded

two-way slflhs strengthened with steel plates and bolts. The model call be used for

Ullstrcngihened two way slabs. Predicted results are included for strengthened and

uru;trellgthened cases and are compared to available experinwlItal data.

Chapter 8 prcscnts a finite element study 011 the FRP-strengthCllcd two-way

slabs. A comparison hetween the finite elemcnt analysis and available test results

is presented. In addition, Chupter 8 indndcs a numerical analysis hased on the

statistical approach of ~he IlSfo.t Developed t.ension stiffening model and regression

design equations for FRP strcngthened two-way slabs are prcsented.

Thc lust chapter, Chapter 9, summarizes and concludes the findings of the exper-

imental work presented in Chapters 4,5, and G, and of r,he theoretical work presented

ill Chapters 7 and 8. Chflpter 9 includes also recommendations for future work



Chapter 2

Literature Survey

2.1 General

Reinforced concrete two-way slab system is a popular structural system. This system

has contributl"<i to the development of reinforced coucrete as a construction IllILterial

since the construction of the first two-way ~lab in 1906 in the USA b~· Turner, as

reported (Sozen and Seiss, 19(3). In the same year, 190G, ~bmart of Europe built

a two-way slab system in Switzerland. A considerable amount of research has been

oonducted to investigate the behaviour of reinforced concrete two-way slabs since

that time

Failure of two-way slabs may occur in a form of f1l',.;(ural failnre, punching-shear

failure, or a combination of both flexure and pUllchiug--shear failure modes. PUllching­

shear failure is of more concern to design engineers than flexural failure. It is sudden

and has a catastrophic nature unlike f1cxural failure.

In this chaptcr, it is intended to survc)' research work related to the design of

shcar in slaus iududing several codes' revisions and t11eorctical approaches of evalu­

atillg shear strength of two-way slab~. In addition, tbe survPy includes experimellta.l



research work on Il$ing different COllcrete types and using different shear reinforce-

ment types in slabs. Furthermore, this chapLer introduces FIlP ma(..erials through

r~rch works that highlights some of the properties and the cOl\5truction applica-

tions of these materials. Conduding this chapter is a survey of some of the research

work cOlllpleted on strengthening of different reinfot'ced concrete structural elements.

2.2 Shear Strength of Two-Way Slabs

One of the early outstanding investigations on the two-way sIal.> system was con­

ducted ]))' Kinnunen and Nylander in 1%0. Tests were conducted on circular con­

crete slabs without shear reinforcement. The S[.lecirncns were subjccted to a uniformly

distributed load along the cirCllmference of the slabs. TIle study cOlltained measure-

ments of deflections, strains, and loads at the appearance of the first shear crack

and ultimate shear loads. The mcclmnical model present€<! by Kinnunen and Kylan-

der's has been the basis of many subsequent rationale models of analy..:ing two-way

slabs (Kinnunen alld Nylander, I!JGO) .

.In another early investigation on slabs, ElstllCl' a.nd Hogn€Sted tested thirty-nine

square specimens that were loaded up to failure th.rough a centrally locatoo eoluilln

stub (E\i;tner and Hognested, 1956). The test results indicated that eccentric loading

had a negligible effect on shear strength compared to that of concentric loadiug. In

addition, it was concluded that compression reillfon;eruent hud no contribution on

increasing the ultimate sIJear strength of slabs. A total of 198 laboratory specimens

were conStructed in a very extensive research on two-way slabs (Moe, 1961). It is

worth mentiouing that tile shear design methods of slabs of the American Concrete

Institute Code, ACI 1963 were based Oil Moe's work. Moe suggested the following
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equation to evaluate the ~hear capacity of slabs loaded with square area without shear

reinforcement:

where;

(2.2.1)

tI,. = the ultimate shear stress, ~dPa,

b = the side dimciision of the square loaded area, Dlffi,

d = the effective depth of the slab, mrn,

f~ = the compressive strength of the concrete, IvlPa, and

<1>0 = the ratio of the ultimate shear capacity and the ultimate flexural capacity of

the sj,~b

A large research investigation was conducted to study the behaviour of two-way

slabs of statically illdetcnuinate arrangement" (Regan, 1981). It \I'M noticed that

shear forces could continue to increase after the fonnation of local yield lines. These

yield lines hOO limited the moments transferred to the coluillu. TlJe design equations

of shear in two-way slabs in the British code (BS 8110, 1985) was based prim1lrily on

Regan's investigation.

Some other theore~ical studies on concrete slalos were focused 011 Lhe design of

pre-stresscU and reinforced concrete two-way slab structure;; (Brotchie, 1978). In

13rotchie's study, the int.eraction of shear and moment is treated as an independent.

variable

2.3 Shear Design Equations of Two-Way Slabs

The shear design equations of tllC Canadian Stalldanls Association Code (C8A-A23.3,

J994) and that of Acr building code (ACl 318, 199'J) are based on Moe's work (Moe,
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1961) The design mcthod~ in these two codes are based on an assumption that the

ultimate shear strength is proportioIlal to the square rool of the compressive strength

of concrete. The shear strellgth of slabs without shear reinforcement in the eSA

A23.3-!l4, Vc in the SJ. units is the smallest of-

Vc = (I + i) O.2Jt

Vc = (~+O.2) Jt

Vc=O.4v1~

where:

Vc = concrete shear strength, MPa,

(2.3.1)

(2.3.2)

(2.3.3)

a. == factor is used to adjust Vc for support dimensions lind equals 4 for interior

(:olumus and 3 for edge columns,

,1, = the ratio of the long side to the short side of the column, concenr.ratlX! load, or

rcaetiou area

d = 'he slab depth, 10m

b"" = critical perimeter for shear in slabs and footings, mm, and

f~ = spt'Cilled compressive suength of concrete, MPa

The shear strength of slabs without shelH reinforcement in the ACI Code (ACI­

3l8, 1999) in the imperial units, tic> is the smallest of:

(2.3.4)

(2.3.5)

(2.3.6)
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where:

lie = cOlluete shear strength, psi,

0, = 40 for iuterior columns, 30 for l,<:lge columns, and 20 for corner columns,

d = the pffective depth of the slab, inch,

b", = perimeter of critical sectioIJ ror shear in slabs and footings, inch, and

f~ = specified compressive strength of concrete, psi.

The shear design equation of the British code (B3 SliD, 1985) is bas€<! on Regan's

results (Regan, 1981) and differs from the ~orih American codes. The discrepant)'

of the British code approach is in the proportionalir.y of the eoncrete shear strength

to the cubic root of concrete compressive strength rather than the square root. The

shear design equation of the Britisb code (3.1. unils) is: (BS 8110, 1985)

The notations are the same as those in the eSA equations.

Allother difference between the I3rilish code and the North American codes for

slab shear design is the location of shear critical section of slabs. Tile eSA building

code and the ACI code asswne that two-way shear is critical at a vertical section

through slabs and never Jess than d/2 from the column face (C3A-A23.3, 1994; AC1­

318,1999). On the other hand, critical shear perimeter is assumed located at 1.5 d

around column faces in ~hc I3ritish code (BS S110, 1985).

Also in the European c.ode (CEB-FIP, 1990), the punching shear resistance, Ve is

proportional to U;)!. However, the critical sl'CLion is considered at 2d from the col­

umn edge. The highest concrete grade considered in the European code corresponds

to concrete compressive strength of to 80 MPa. The effect of steel rcillforcemem and

til\" slah size effcc~ are considered in the European cude where the silear eqnation is
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expressed as (CED~FLP, 1990):

(2.3.8)

(2.3.9)

where:

f2iiii. .
~ = 1 + Vd~ IS a sIze-effect coefficient

Off is tile length of the control perimfltCr at 2d from the column

pz and py are tile reinforccment ratios in the X aud Y, re6p~tively

It was found t1w,t the shear design equation of the British code can be used accII-

ratcly for high strength concrete. It Wil,t; concluded limn the results of an experimental

work conducted on both high strength and normal strength concrete slabs that COIl-

crete shear strength is proportional to tLe cubic root of the concrete compre8Si\'c

strellboth (Marwuk and Hussein, 1991aj Mar7.0uk and Hussein, 1991b). These find-

ings were supported and confirmed by another research work (Gardner and Shao,

j09G) for high stnmgth concrete

2.4 Slabs Subjected to Central Loads and Moments

The two-way slab system is an efficient sYljtem for multistory buildings located at

low and moderate !lCismic zone:; llnd fur those subjoctoo to moderate wiud loads

Many rcsearchcr:'i carried out experimental investigations to estimate the capability

of a two...-way l:ilab l:i:\,'StCIll to resist a simulated earthquakc drift routinc or unbalanced

momcnt caused by wind or ullsymmetrical structural and/or loading distrihution (Pan

and Moehle, 1989; Glmli ct aI., 1976; Islam and Park, 197G).
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Building codes set clear statements of the limitations of the shear stress level car­

ried by slab-to-column connections (CSA-A23.3, 1994; ACI-318, 19(9). Revisions of

tile code limitations were presented to overview cases of utilizing ~'(lrticaJ shear rein-

fOrt;emcnt and cases of corner and edge columns (E:lgabry and Ghali, 199Gb; Elgabry

and Ghali, 1996a).

Canadian Standards Association stated, "SlJear forces and unbalanced moments

to be transferred to the support shall be resolved into a single shear force" (C8:\­

1\23.3, 19(4). This single sbear force is aeting at the centroid of a critical section

The fraction of the unbalanced moment transferred by cccclltricity of the load, 'i'v, is

calculated llsing I,he following €Quation

(2.4.1)

where:

bl = width of tbe critical section for sbear measured in the direction of the span for

which moments are detennine<l aud

l*2 = ....idth of thl;: critical se<:tion for shear measured in the direction perpendicular

tob l

Thl;: rcsulting shear stress due to applied load combination is calculated from the

fo!lowiug equation;

V=~+[]~M;e] +[!~,H,e]
ucrd J.:", J y,

where:

v = t.heshear force, 1'\,

Iler = perimeter of t.he critical section for shear in slabs and footings, mm,

d = the effective depth of t.ile slab, mill,

(2.4.2)
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AI; = moment at interior support resisted by elements above and below the slab,

N.mm,

F. = distance from centroid of sectioll for critical ~hcar to poiut where l:lhcar stress is

being calculated, mm.

J = property of the critical shear section analogous to the polar moment of inertia,

mm\ and

Xl,y, == the two perpendicular principal axes of the critical section.

Equations 2AJ and 2.4.2 arc based on earlier research work (Di Stasio and

Van Burcn, 1960). These equations are adopted by both Canadian and American

codes (CSA-A23.3, 1991; ACt-3IB, 1999).

Shear stH!SSCl> are inuea.<;ed ilcaf the column at the locatiolJ of the slab-column

connection due to the lateral loading cautiCd by an earthquake, wind, or cccentrk

loading. The excessive shear stresses causes pUIIching-shear failure that is brittle in

nature and is not desirable-. The displacement ductility of a two-way slab is defined

as the ratio between the displacement at the ultimate load and that at the yield

load. The displacement ductility is a good indicator on the slab performance and the

type of failure. The shear stress acting Oil tile slab critical section should not exca.,J

0.15 ..fJ: ro.lPa, to ensure adequate displacement ductility under severe eart,hquake

loading (Pan and :o.Ioehle, 19S9). IIcnce, enhancing the shear st.rcngth of a two-way

slab is a key issue 1.0 achieve a better resistance to laterRl and sei~mic loading. An

increase of the shear strength of about 20% was achieved when high strength concrete

ill two-way slabs was used (Emam ct aI., 1(97). Higlwt moments to celltralload ratio

lIlay significallUy reduce the stiffness and the strength of two-way slabs, especially

with openinp; (El-Sabkawy et aI., 1998)



A comprehensive test program \\iUS carried out to investigate the uehaviour of two-

W<iY slabs subjected to both direct shear and moment (Hawkins and Corley, 1989).

That program iuvestigated the effect of slab tlJickness, concrete comprcssh-e strcngt.h,

stirrups shear reinfofL"emellt, colulIllJ rectangularity, sial> reinforcement, amI the ratio

of moment to shear on the behaviour of the slab. The high moment loading was

referred to a case of loll.ding, when the ratio between the applied moment and tile

shear force at ally loading increment was equal to 584 mm. On the other hand, low

moment loading was referrc<l to when the same ratio was J30 mm.

The colnrnn moment transfer was investigated recently tlliing finite element allaJy·

sis (McgaJly and Ghali, 2000). In this finite element analysis of punching of concrete

slabs due to coJUtDU moment transfer, it was concluded that ACI code (.'<:jnation cal­

culates"tvadequately.

2.5 High Strength Concrete Two-Way Slabs

A continuous series of research projects on slabs was conducted using high strength

concrete at .\{cmorial University of Newfoundland, st:uting from 1988. Seventeen

reinforced concrete slabs were tested to investigate the behaviour of slabs in terms

of deformations and punching-shear capacities (Marzouk and Hussein, 1OOIa). The

teste<! slabs had different depths ami reinforcement ratios that varied betw(''C1l 0.50%

and 2.50%. The test results revealed that high strength concrete slabs exhibitP.lI morc

l>rittle failure than normal strengtb concrete slabs. Two more important findings were

achieved. First, there is a direct proportionality of I,he level of the steel reinforcement

and the pnllching-shear strcngtlJ oftbe tested slabs. The second finding is that using

the cubic root of concrete compressive strengt.h to predict punching-shear stt'ength of



17

the concrete slabs generally yielded a bettcr result than that when using the square

root expression.

On the tht'OfcticaJ level, a mechanical model was developed to predict pUlLching

shear capacity of high strength concrete two--way slabs (Marwuk and lIussein, J!)91b)

This Illodel was adopted for high s1,fen~th concrete applications. The formulation of

the model included au idealization of the actual hehaviouf of high strength concrete

and steel reinforcement. A modified mechanical model considering crack size and slab

size effed':; was developed to predict punching-lihcar capacity of high strength light

weight concrete two-way slabs (Osmlln et m., 19(8).

In addition, the effect of high strength concrete colulllus on the behaviour of

two-way slabs was investigated (Marwuk el aI., 1996). The variables selected for

that study were concrete strength, flexural steel reinforcement ratio, and moment to

shear ratio. It was noticed that thc conncction performance w;:u; greatly enhanced by

the use of high strength concrete columns. Alw, it \Va." conduded that: using high

strength concrete for columns led to an increase iIl the connection strength by about

5% in the case of no moment and 17% in the case of high moment.

In another research work, tc5ts wcrc conducted to investigate thc effect of con-

crete strength on the bchaviour oftwo-way slalos (1larzouk et al., 1998a). Specimens

wcrc tested under combinations of gravity and lateral loads to investigate tbe effect

of concrete strength on the entire beha\'iour of two-way slabs. The same parameters

as those in the aforementioned work were considered. It was concluded that ;:u; con~

crete compressive strength of a slab increased from 3[; to 75 MPa the shear strength

increased by 15% for specimens subjected to momcnt. It was uncco\lomical to use

high strength concrete for building slabs subject~l to gnn-ity loads only. However.
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high strength concrete slabs and plates of 70 MPa are commonly used for offshore

applicar,iolls. The results sho""m that only 7% increase in punching-shear strength

was achicn)(.l if the concrete compressive strength increased from 35 MPa to 75 i\IPa

It was found tunt the use of high strcub'tb concrete had a significant effect on the

load-deflection charactcrisiics for specimens subjecLl'<i to high moment. The duc­

tility of the tested slabs was greatly improved due to using high strcligth COll<.:rctC.

The result.s indicated that deflection valUI!!> at failure loads for high strength COllcrcte

specimens wel'C greater than those for llormlll strength OOncrete specimens, with the

same reinforcement ratio. In addition, the extensions of the yielding radii ,,"we larger

than those in case;; of normal strength concrete specimens. This means more effi­

ciency of flexural reinforcement was achieved when high strength concrete was used.

In general, the yielding of specimens constructed with high sl,rength concrete slahs

occurs at lower load values than those of specimens construCted with normal strength

Moreover, tests were conducted to iIl\'eStigate the seismic teSpOilSC of two-way

slabs constructed with high strcngt,h concrete (Emam et aL, 1997). One half of

the specimens WIIS constructed using high strength concrete and the other half was

constructed with normal strength concrete. The compressive strengths of concrete

were 35 tllPa and 75 MPa for normal and high strenKf,h concrete, ret;poctivc!y. It

was concluded that as the concrete slab strength increa.">l1d from 35 1.0 75 MPa, the

displacement ductiljt~· was increased by l\ 100%. Also, the rotation ductility was

increased by 125%. ;\..Ioreover, shear strengfh, moment capacity, drift percent, and

rotation capacity were increased by 20, 31, 37, aud 50% respectively, when high

strength (:oncrete W;L~ used for ttw slabs.



2.6 Shear Reinforcement of Two-Way Slabs

Many researchers hanJ investigate<! the pure behaviour of two-way slabs and/or two­

way slab to column connections (Hewitt aDd Batch~lor, 1975; !<iUJlUnen and Nylall-

def, 1960; Marzouk and Hussein, 19913; Marzouk and Hussein, 1991u; Broms, 1990;

Dilger and Ghali, HISl; Rankin and Long, 1987). The major problem of the two-way

slab system is the sensitivity of slabs to the pUllchillg-shear failure. The following

alternatives can he uSed in ca~ of the illadeqnll.te punching shear r:apadty:

• Increasing tLc slab thickness in the whole floor,

eIncreasing the slab thickness ill the vicinity of tile column by providing a Jrop panel,

• Flaring the top of a column by providing a column capital,

• COIt%TllcI.ing the slab using high strength concrete, and/or

• Providing sbear reinforcement.

These solutions are applicable Juring the construction of the buildilJg. It is practically

difficult to iUlwJucc one of those solutiolls as a strellgthelJiug technique for existing

two-way slabs of inadequate punehiug-shear strength. It was prOYCIJ tha.t tlJ1~ most

effective technique for enhancing tbe shear strength of a two-way slab is to provide

vertical shear reinforcement in the form of shear stucls around the column (Seible

et ill., W80j Dilger aJlJ Ghali, 19S1; Mar'Wuk aud Jiaug, 1997; Yamada Cl aL, 1992).

Rc5CarchefS have paid special attention to the enhancement of t.wo-way slab to

column connections dnring construction against punching-shear failure by adding

vertical shear reinforCement. There have bt'ClJ several rt'Sean;h 'l'.vrks to investigate

the effectivenes.<l of different types of shear reinforcement used in two-way slabs. These

types of shear reinforcement include bent !>ars, stirrupi'; (closed or U typed), shear­

heads (C or r sections stccl channels place<:! in the sial! aronnd the cululJln), welded
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wife fabric, studs, hat~shaped shear reinforcement, and hooked I.JUrli, ThCl;e typCli

of shear reinforcement are summarized ill a number of research papers (Corley and

Hawkins, 1968; SeiLle ct aL, 1980; Dilger and Chali, 1981; Broms, 2000; Beoms, 1990;

~Iortili and Ghali, 1991; Yamada et al., 1(192).

The so-called shear sLuds were developed at Calgary University and rC\'iewed in

several research works (Beible et aL, 1980; Mokhtar et aL, 1986; .\-Iortin and Ghali,

1991). Shear studs arc mechanically anchored studs with a plate or a head at each

end that is capable of developing tile yield strength of the studs. Some of the carly

developed t)pes of the shear studs are shown in Figure 2.1. The stems of these studs

intersect the shear cracks preventing their widening (GhaH and Megally, 1999). In

addition, the heads of the shear studs provide mechanical uILclJOrage at both ends.

The usc of !i\'e different types of shear reiufon:ement was imestigated at Memorial

University of Newfoundland to enhance the punching slwar capacity of high strength

concrete slabs (i\'!arlOuk and Jiang, 1997), The types of the ~hear reinforcement

used in the study were single bent, U-stirmp, double bent, shear stud, and T-headed

shear reinforcement. The structural behaviour was evaluated in terms of the defor-

mational characteristics, load capacity, and post.-faiJure hehuviollr. It was fouud that

double bent, shear !itllds, and T-headed shear reinforcement types were adequate

shear reinforcement. The enhancement techniqne eliminated punching !ihear failure

ami twnsferrt'<! it to flexure failure. It was noticed that the ductility and energy

ahsorptiou were significantly increased by tL~ing !ihear reinforcement

The Canadian code states that shear reinforcement consisting of headed shear

reinforcement, stirrups, or slJeaI-heads may be used to increase the shear capacity

of alabs (CSA-A23.3, 1994). Headed shear reinforcement are vertical bar~, which
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Figure 2.1: Different early kinds of shear reinforcement (Seible et aI., 1980)

are anchored at each end by a plate or a head bearing against the concrete. It is

recommended that the area of these plates should be 10 times tIle cross sectional area

of the bar. The headed shear reinforcement is to be aligned COllcclitrally around the

column. The first line is to be located at a distance 8/2 from the column face, where

s is the spacing of such reinforcement. The value of s is determined according to

the shear stress requirement as provided by the Canadian code (CSAA23.3, 19fM).

The reinforcement is to be extended to the section wilere the factored shear stress

is not greater than O.2..rt:. for lIormal concrete. The current code permits the usage

of silenT reinforcement consisting of bars or wires. In addition, shear reinforcemellt

consisting of steel I or channel-shape sections (shear-heads) call be used. It is stated

in the ACI code that when bars or wires arc provided as shear reinforcemellt, the

shear strength may be increased to a maximum shear stress of G..fl'"c. However, shear
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reinforcement must be designed to carryall shear in excess of stress of fj..rt:, where

f~ is the concrete <:omprcssive strength, psi (ACI-318, 1999).

2.7 Finite Element Analysis of Two-Way Slabs

Few investigations have dealt with the finite element analysis of two-way slabs. Some

of the publis1.K-xl research ill this regard is presented in this section.

An analytical study was aim(.-d at validating the adequacy of the code equations of

the fraction of moment transferred by slab shear stresses (Megally and Chali, 2000).

The analytical study was a 3-D finite element analysis in which both the longitudinal

reinfOTc-emcnt and \"crtical shear reinforcement were defined. It was concludl,,>tl that

the fraction of moment transferred to the slab6 is in concordance with the re;;ults of

previous research work on Il'hich the ACI code is based on (ACI-318, 1999).

A finite element analysis was conducted to investigate the behaviour of high

strengtiJ concrete slabs. A plasticity l>ascJ concrete model was used to define concrete

behaviour under compr(.'SSioD (Marwuk and Chen, 1993). A suitable post cracking

ten~ile model of reinforced high strength concrete wa~ utilized. This model was based

011 the fracture energy of high strength concrete. An eight-node quadrilateral shell

clcrncut with reduced 2x2 Gaussian intcgratioIJ was used. It was concluded that

post-cracking behaviour of high strength concrete had a significant effect on the de.-

formational characteristics of two-way slabs. A similar Tl~<;earch work was complHed

on the behaviour of t'wl)--way slabs with a special emphasis on the scnsitidty of shear

st.rength to fracture energy of high strength concrete slabs (Mar.wuk et al., 1998a).

A more accurate expression for the shear stresses in slabs tllall that used in the CSA

and ACI codes was derivL>d and verified agairu;t experiment.al results.
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A finite element cV'<l1uatioll of the shear enhancement of high strength concrete

plates was conducted tiRing a nonlinear analysis of t'cillforced concrete structures

using three-dimensional solid finite elemenl,s (Marzollk and Jiang, 1(96), The pur-

pose of this research was to demonstrate a proper way of representing vertical shear

reinforcement in slabs as an "out of plauc" three-dimensional bar elements. A three­

dimensional 20-uode brick elements witl! 2 x 2 x 2 Gaussian integration rulc o.-cr the

element faces, and a plasticity-based concrete model wcrc employed

2.8 Fibre Reinforced Plastics (FRP)

The use of FRP composhes, as reinforcement for concrete members, has become a new

troud during the last declUle. These materials are non-corrosive and non-magnetic

composites. Due of tile most, common types of the FitI' composites is the Carbon

FRP (CFRP). CPRI' is up to six times stronger than steel and one fifth lighter. Two

other common types of the FRPs are the Glass FRP (GFRP). and Aramid (AFRP).

CFRPs are of highest stiffness and cost among all other types. The cost of AFRPs is

in betweell those of OPRPs and GFRPs (Demers et al., 1996). Aramid fibres are of

lower strength and modulus of elasticity compare<! to carhon fibres

The overall properties of any of the FRPs depend, at large, on the pwperties of the

fibres component. The superior properties of FRP materials arc due to the excellent

properties of the fibres embedded in a dur:tile polymNic matrix. The function of the

ductile polymeric matrix is to enable good transfer of the load from olle fibre to au-

other. The advantages of using FRP composites as construction materials especially

for strengtheuing, are summarized in a research work (Ballinger, If.lfJ7). The main

ad ,antage of the FRP composites is their relatively high tensile strengtb to weight
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ratio, compared to steel for instance. Hence, these cornp06ites as strengthening mate­

rials do Iiot cause lUI increase ill the dimCDsiollS of cxistingstl'ucturalmcmbers. These

materials arc not subject to corrOGiOll and can be used instead of steel in reinforcing

struciuralelemeut.<!

The use of FRP composites was relatively limiled to the field of airspace industry

due to the high cost of these products (Nanni, 19(3). Kowadays, FRP composiies, as

construction materials, have a wide range of uppliClItions for both ncw anti exhtillg

structures, especially for strengthening. FRP composites are cOllsideroo excellent

strengthening materials for existing structural c1clllcnLS like beams (Lfld columns

2.8.1 FRP Reinforcement for Concrete Structures

Extensive resean:h work has been conducted on FRP as reinforcement for structural

elements. The attraction of FRP reinforcing bars as an alternative to sted reinforce­

ment is to overcome the corrosion relatoo problems in structural elements. Typical

applications for FRP reinforcement are reinforcing bridge decks, parking garages,

water and wastewater trer'tment facilities, marine structUrell, and chemical plants.

A comprdwnsive research work hW> ol..'Cn conducted at Sherorooke University in

Quebec, to iuvestigate the behaviour of concrete structures reinforced with FRP. Test

results of concrete beams reirlforced with FTlP and conventional steel reinforcement

were preseutcJ ewpl..msizing tbe deformatioual and cracking clmraetcristics_ Tlworct­

ital correlations for the prl..'(]iction of crar.k width, maximum deflection, lUld ultimate

load-carrying capaeity were proposed (Mnsmoudi et aL, 1998; Theriault and Bcn­

mokrane, 1997; Theriault and Bcnmokrj~nc, 2001).

In another research work, the effect of the reinforcement rMio of the FRP car-

bon rods known us C-oors on cracking, deflection, ultimate capacities and lIIodes of
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failure of beams were investigated, The rC~lllts of the beams reinforced with C·bars

were compared l.O those reinforced with convenr.ional f>teel reinforcement (8cnmokrane

ct aI., Hl97a).

The interaction between GFRP reinfon;emcnt bars amI concrete is oue of the main

issues that attracts the att.ention of Tel;Curchcrs. It was concluded that a modifica-

tion factor of 1.29 is recommended for compul,ing the dc\"clopment length for the

case of the GFRP rehars to obtain an equh'alent steel reinforcement de~~loplllent

length (Bcnmokranc ot aL, 1997b).

Carbon Fibre Reinforced Polymer (CFRP) was used as deck slab reinforcement for

bridge applications in Sherbrooke (Quebec, Cawula), as reported (Benmokrane et aI.,

1098). The advanced technology used in tbe construction of a section of the bridge

wa;; the use of illtegratl!d Fibre Optic Sensors (FOS) into th~ FRP reinforcement

allowing coutinuous tracking of tbe strains in the FRP reinforcement and hence, the

bridge structural behavionr.

Another research work reported the test results of one-way concrete slabs rein-

forced with glass fibre, carl)on libre and conventional Moel reinforcement. The slabs

were tested uuder static loadiugconditions to determine their flexural a.nd shear limit

states, including the behaviUllr prior to cracking, cracking, ultimate capacities and

modes of failure (M\chaluk et aI., 1998).

Other researchers dealt with slabs reinforced with FRP grids. The structural

behaviour in one-way bending is investigated for different types of FRP grid re­

inforcement (Mattbys and Taerwe, 2oo0a). In addition, The pUllching shear be-

ha"iour of two-way slabs reinforced witb FRP grids wa;; investigated in a continuing

research (Mattbys and Taerwe, 2000h)
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2.8.2 Flexural Strengthening of Beams

The hehaviour of reinforced concrete beams externally reinforced with adwUlced COIll-

posite materials has been studied by a large number of r~archers

Au experimental and theoretical research program was conducted to investigate

the effoctiveness of using FRP plates as external reinforcement to strengthen rein-

forced concrete heams (Ritchie et N., 1991). Carbon, .l:"la$8, and aramid FRPs were

used in the study for stn>ngthening. Also, mild steel plates were used as a tradi-

tional and reference strcllgthening teehnique. The mechanical properties, in terms

of modulus of elasticity and ultimate tensile strength were altered from olle material

to anot.her according to the fibre orientation angle. All of the plates were bonded to

Lhc tension side of the beams using a two-parts epoxy. It was observed the ultimate

streugth of the beams strengtilened with PliP plates increased from 40% to 97%. The

~rviceabilityconditions of tile strengthened beams, ill terms of crack patterns, were

noticeably improved. Although the behaviour of FRP plates was brittle at failure

unlike the Sled plat<.'S, it 11'(11; concludoo that beams strengthened with FRP plates

showed enough ductility required for some of the existing cases.

The performance of conventionally reinforced concrete beams strengthened with

externally bonded advanced compooite mll.terials (ACM) lias hccll studicJ by ana­

lyzing all experimental database compiled from ten separate studies (Bonacci, 1(96).

The strengthening FRP composites included carbon, glass, aramid, and mixed FRP.

:--lore than 95% of the seloctctl beams were strengthened with carbon or gl(ll;s FRPs.

.\1ore precisely, 52% of r.he selected beams were strengthened witll CFRP, and 45%

were strengthened with GFRP. It was clear frOIll these experimental studies that the
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proce<!ures were most representative to exterual reinforcing rather than rehabilita­

tion. Premature dehoniling failure was prevalent in G4% of the tests reviewed in this

database.

Further research was carried out to investigate the effectiveness of external FRP

reinforcement to strengthen reinforceO concrete beams (Chajcs et aI., 1995). A series

ofreinforc<..'1.1 concrete Ueams were tcste<! to determine the ability of externally bonded

CFRP reinforcement to improve the flexural aIH.! shear capacities of beams. CFRP

sheets were bonded to the beams using a two-parts resin and cured at. the ambicnt

temperature. The studied parameters included the \'ariation of number of layers

and fibre orientation. It was concluded that the flexllral stiffness and the ultimate

capacity of the beams were noticeably increased. Tile reinforcing CFRP sheets led to

all increase in flexural stiffness up to 178%, and increases ill ultimate bearn capacity

up to 292% over that of the control beams. It was noticed in that study ii/at failure

was initiated by either tensile failure of th~ composite or shear failure of the eoncrete

E-glass and graphite FRP were used as external reinforcement for the reinforced

concrete beams (ChajCl; el aI., 1994; Chajes et aI., 1995).

GangaRao and Vijay in\"Cstigatoo e.xperimcutally and analytically tile increase

ill Oexural strength of reinforced concrete beams after wrapping them with I.:aroon

fabrics (GaugaRao allJ Vijay, 1(98). In this study, 24 reinforced concrete beams

were teswd to determine the effet..'tiveness of using carbon fibre wraps ill strengthening

concrete beams. The tested specimens were not subjected to any level of damage prior

to repair. Four different carbon wrap configurations were used for rehabilitation. It

was concluded that high strength and stiffness properties of carbon sheets resulted ill

improving the performance of rehabilitated conerete members.
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2.8.3 Shear Strengthening of Beams

Fewer r=rch investigations arc reported in the literature on the FRP bcam-shcar­

strengtlwuing using FRP compOl;ites than those n~porl.l~on the flexural-l5trengthening

Trialltaflllou investigated the application ofFRP as shear-strengthening materials for

reinforced COllcrCLe beams by allal}"~ing expcrilllcutal data of seVCIl different iUVl'sti-

gatioDS together witlJ his own investigation (Triantafillou, 1998). In addition, this

research included developing an analytical model for design of beams ba.<;ed Oll the

ultimate limit states design method. The experimental pari of the study included

testing of cleven concrete beams streugthened ill sllenr with CFR? at various area

fractions and fibre cOllfib'UratioIlS. The analytical inve!>"tigation containco a model

that calculated the gain in shear capacity due to adding FRP composites in allaloK}'

with steel stirrups. It was shown that t1lf~ use of F'RP is effective in improving the

shear capacity of tested specimens.

A comprehensive dC'lign approach for reinforced concrete beams and one-way slabs

strengthened with externally l.>ondcd FRP plates was investigated (ehaa.!lal ct al.,

HI98). The research was divided into two main parts, namely llexural~trengthening

and shear---fltrengthening. In the first part, analytical models were presented for two

lIlodes of failure, namely classicallllodes, such as cruslling of coucrete in compressiou

or tensile f;Jilurc of the laminate, and premature modes such as debonding of plates.

The models v.'ere based on common principles of compatibility of deformations and

equilibrium of forces that could be useJ to predict the ultimate strength in flexure. In

the second part, d~ign equations were derived to enable the calculation of required

cl'O$S-sectional area of different patterus of FllP shear plates or strips.
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Another research was conductoo to investill;ate the effectiveness of glass fibre re­

iaforccJ polymer lamiuates (in the form of plat.es or strips) as a shear-strengthening

of reillfoITt'l:! concrete beams (Al-Sulaimani el aI., 1994). In this investigation, it

was assume<! that the CFRP-coucrete iuterfaces carry average shear stresses of 0.8

MPa and 1.2 MPa for the case of plate'! and strips, respectively, before peeling-off

occurred.

2.8.4 Failure Criteria of FRP Strengthened Beams

Generally, the modes of failure of FRP-strengthened beams may be classified as two

main categories, namely, t.he flexural failure and the local bond or shear failure (:'.1alek

eL al., 1998). The flexural failure includes the concrete crushing and reinforcement

yielding. The local failure category includes any other sudden failure such as debond­

ing, peeling-off, and shear faiJUl'cs (Mualej aud Bonacci, 1998). Local failurr. mode:;

are more difficult to be characterized than flexural failure modes as they depcnd Oll

factors that are difficult to be included in conventional analysis, These factors may

include the thickness of bonding agent and concrete surface prepa.ration level.

A summary of the possible modes of failure that occurred or could occur during

wme of experimental investigations of strengthening reiuforcOO concrete beams with

CFRP were presented (Meier et a1., 1993). It was implioo that the calculation of

flexure in reinforced concrete elements post-strengthened with carbon fibre reinforce<!

epoxy resin shoots can be performed tmalogous to conventional reinforced concrete

clements. Generally, strengtheniug sheets lead to a much flller cracking distribution

of the streugthened bearns compared to that of the ullstrengthened wams. The

following failure modes were observed in the tests, as shown in Figure 2.2:

• Tensile failure of the CFRP Sll00t. CFRP sheets failed more or less suddenly,(I).
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• Classical concrete failure in the comprc:;sivc zone of the bctUll,(2) .

• Continuous peeling-off of the CFRP sheets due to an uneven concrete sllrface,(3).

eShearing of the concrete in the tensile zone,(3) .

• lnterlalllinar shear witiJill the CFRP shed, (4).

e Pailure of the rcinforcillgstcel in the tensile lOne, (5)

The following failure modes are thooreticlllly possible:

• Cohesive failure withill the adhesive, (6).

• Adhesive failure at the interface CFRP sheet/adhesive, (7).

• Adhesive failure at the interfoce CFRP concrete/adhesive, (8).

S 1 7 8 -4

Figure 2.2: Lon.qit!Jdinal.~ution of (J, rep<Jired beam (Meier et al., 1993)

The main failure mechanisms were classified into tl.trl'C Jifferent collup6C mecha-

nisms of strengthened L'Oncrcte beams, nanlPly, plate-peeling, concrete shear cracking

at plate ends, and concrete tensile cracking at mid-span (Arduini ct aI., 1994). An

experimental alld analytical investigation on strc~s mechanism hetween concrete and

FRP plates through the epoxy-resin was conducted (Arduini et aI., 1994). It was
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concluJoo that when U~iDg FRP plates, the flexural carrying eapaci~)' increases con-

siderably. Relevant increases of stiffness can be obtained only using vcr~' thick plates.

/l..loreover, it was recommended that the adhesive must be of a good visc(}sity to avoid

air binds formation durjn~ the honding phase. It is crucial to prepare illterface sur­

faces to obtain desired reinforcing strength. In additioJl, it WI!.'; concluded that shear

failure modes in concrete occurred at the cnds of the plates due to the tangential

stress concentration in these regions.

2.8.5 Near Surface Mounted FUP Rods

An innovative use of FRP bars was introdm;eJ (De Lorcnzis ot aL, 2(00). This tech­

nique was referred to as the Near Surface j\lounted (NSM) that is a kind of external

flexural or shear reinforcement. This reinforcement may be located in tlH! specified

direction to serve as shear or flexural reinforcement. The method used in applying

the rods was as follows: a groove was cut in tile desired direction into the concrete

surface. The groove was then fillcJ halfway witb efXlxy p~te; the FRP rod was plal.'Cd

in the groove lilld lightly pn'SSoo to fonoe the paste to How around the rod and fill

completely between the rod and the sirles of the groove. The groove was then fiIle<!

with more pastc and the surface WIIS Icveloo. Carbon and GIMS FRP rods of different

sizes \VCrc used for flexural strellgthening. CarbOll F'RP deformed rods lVere used for

shear strengthening. The variables examined in the shear tests were spacing of the

rods, strenglheniug pattern, end anchorage of the rods and presence of internal steel

shear reinforcement. The test results confirm tbat NSM FRP rods could be used to

increase the flexural and the shear fapacit), of reinforced concrete clements signifi­

cantly, with efficiency that varies depemling on the tested varialolcs. Uowover, bond

slip was considered the main drawl>ack of the NSM techniQue. Deformed rods were



32

more efficient than sandblasted rods from the standpoint of the bond pcrfomLUlIce.

In addition, illcre3~ing the groove 6ize, and thus the cover thickness, could lead to

higher bond strength (Lorenzis and i'\auui, 2001; Lorcnzis and Nanni, 2002)

2.8.6 Strengthening of Columns

In literature there are rcsean:h works on rehabilitation or strcngtlwuiug reinforced

collcrete columns (Abolltaha et 11.1., 1999; Saatcioglu and Baingo, 1999; TOlltanji,

1999; Jill et aI., 1994; Soudki and Green, 1996). Generally, the usc of CFRP sheets

for columns repair is quick and simple to implement.

The effectiveness of rectangular steel jackets for seismic strengthening of non­

ductile reinforced concrete frame columns with inadequate shear strength was ex­

perimentally investigated (Aboutaha Hal., 1999). Eleven large-scale columns were

tested to examine the effectivene:;s of steel jackets on improving ductility aud strcllgt.h

of coluITllis. The test results indicated that the usc of thin lcctangular steel jackets

could be an efft'Ctive strengthening technique of reinforced concrete columns with

inadfXjuate shear strength.

Another experimental study on stlengthening reinforced concrete columns using

carloou fibre reinforocJ polymer (CFRP) wraps, with a focus on corrosion-related

issues \I'M carried out (Bonacci et aI., 1998). The initial work concentrated on e:-tub-

lishing improved techniques for laboratory simulation of field COrIosion in reinforced

concrete columns. Various aspects of accelerated COlrosion testing were discussed.

Considerations in designing FRP wraps for column repair were also presented. The

results sho,,-ed that using CFRP led to an increase in the load carIying capacity

of corroded columns by abont 28% eompared to reference specimens. In addition.

strengthelling llas increased the ductility significantly. Axial deformations at failure
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were about ~iJ( times those of corroded specimens.

'The performance of cin;ular coluIIIlls strengthened with CFRP in cold weather

was investigated (Soudki and Green, ]006). The experimental program oolltaiucd

testing of rort~-~two circular plain and reinforced concrete ('~)llImIlS of different rein­

forcement ratios, number of CFRP layers, and environmental exposure conditions. It

was concluded that CFRP shrers were effective for strengthening concrete columns

exposed to rCpelltN freeze/thaw cydel;.

A seismic strengthening teclmique to cnlJll.Il(:e Ilexural strengths, duct,ilil,y, and

shear strellgth uf c.-cisting reinforced concrete bridge columns, using advanced com­

posite materials as externnl reinforcement was pr(;l;.(;Ilted (Jin et 01., 19!:l4). Test

results indicated that the confinement induced by E-glass FRP straps significantly

increased the shear strength, The ductility capacity and tile flexural behaviour of

reinforced concfete columns under simulated earthquake load wefe increased as well

due to the ndditionulmaterials.

Experimental and analytical in"estigations were presented on the performance of

concrete columns externally wrapptoJ with carbon and glass fibre reinforced polymer

sheets (Toutanji, 1999). The experimental results showed a significant enhancement

of strength, ductility, and energy absorption of wrapped coillmns.

2.8.7 Strengthening of Beam-Column Connections

Many of the existing reinforced concrete frame structures, such (L'j non-ductile rein­

forced concrete frame structures designed and constrncted dnring the 1950s through

1970$ do not meet current seismic Jcsigu requirements. r-oiallY researcheno have inves­

tigau,] the problem of the rehabilitation of beam to column ('.onnoctiolls using stllel

plates and FRP wrapping (Geng et aI., [098; Alcocer and Jirsa, 1993; Priestley et 1'11.,
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1994; Chlli ct aI., 1990).

Pour large-scale beam column .::onnectious uuder cyclic loading were tested, which

relJr~nled existing frame connection (Ghobarah et aI., J997). Two suengthening

technique8 for COlliloctiOlJS using corrugated steel jacketing were investigated. The

variables of the test included the reinforcement of the joinl, 3nd transverse reinforce-

ment of the column. One group of t.he specimens had jacketing of column only and

the other group had jacketing of both column and beam. Tile corrugated steel jack-

et,g were found efficient in the rehabilitation of the existing connections that were not

meeting thecurrellt seismic {;odcs.

III another reseaJch on column strengthening, CFRP was introduced as an alleroa·

live strengthening material to steel plates (Geng et al., 1998). II. was used to improve

the ductilitr and the development length sufficiency. CFRP sheets were wrapped

arouud the column near tile joint region for ductility strengthening, and wcre longi­

tudinally honded to llIldjor wrapped around the column ncar thc joint with a sct of

steel angles and rods for developmeut strengthening. Repeated loading, unloading,

and reloading were applie<l ou ductility specimens to simulate seismic loads_ Devel-

opment specimens were tested under monotonic loadiug. h was shown that ductility

strengtilcuing had contributcJ to a significant eniJanccmellt of the cOllnection ductil-

ity.

2.8.8 Strengthening of Slabs

There is a lack of research on rehabilitation of the two-way slabs_ Generally, rcsearcll

on slabs is considerably less than that on beams and columns. Pnhlished research

related to slab strcligtheniug addressed slabs a...; onL'-dimensionai structures, or iu

other words, as one way slabs or beams in the way the load was applied or in the way
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the supports werc located. To the best of the author's knowledge, limited research

ha~ been conducted on the strengthening of slah to column connections (FaTher <:t 'II.,

1995). Four specimens were loaded until a complete failuTe. Theil, the specimcils were

fully repaired c.>;terually using screwed steel plates before applying qunsi-static loads

Iwtil Ii second failure. There is no spe<:ific conclusion can be drawn from the study

due to the limited number of specimens. In addition, the specimens were completely

failed hefore repair. This is not the case of strengthening existing slabs in a building

where the slabs are suffering a certain level of damage not Ii complete failure. Hence,

further applications Oil strcIl,b'thcllilig cxistiug two-way slaUs are Ilce<led. Mo[co\"er,

there is a lack of design of the strengthening tcchni<!lle presented (Farhey et al., l!Y.15).

A few research works have been condllctoo on FRP-strengthened two-way slaVs.

Some research works dealt with the strengtheuing of one-way lilabs using FRP ma­

terials in which slalts were treated in a. similar way 1.0 beams (Karbhari et al., 1994;

Kikllkawa et m., 1998; Seim et aL, 2001; Paramasivam et al., 1995; HOfmann et al.,

1999). On the otl.Ler hand, investigations on FRP two-way slabs strcnb'ihening arc

scarce. To the best of lhe author's knowle<lge, there has been only one attempt to

investigate the effectiveness of FRP materials in the strengthening of 1.0 m width

aud 0.05 III thickness Lwo-way slabs or plates (Brki and Hehhernan, 1995). It is the

author's belief tllat those dimensions are not realistic enougl.L to be counted on whcn

drawing conclusions regarding the effectivcue8."1 of FRP materials for strengthening

two-way slabs in field.

The failure mode of the two-way slabs of low amI medium reinforcement ratiO/;

is Hexural failure mode rather punching shear failure mode. Using FRP materials

to enhlUlcc two-way slabs in flexure is de:;irable from the applicability point of view
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due to the easiucss of handling and installing FAP materials. FRP materials are

tlot subject to either corrosion or rust in the long wem. A drawback of using FRP

materials in strengthening of flexural structural members is tile brittleness of such

materials that lIIay result in a decrease of the overall structural memher ductility.

2.9 Pre-Loading Effect Prior to Strengthening

In almose. all of the SUfVC)'OO research work, original reinforced concrete beams were

nOI, subjcued to certain level of damage before strengthening prace;."; took place. This

is dearly is in contrast witll tlte real life cases in which strengthening structures takes

place after some signs of damage due to structural service loads.

A loading frame for testing beams was developed that can be llSed not just to apply

loads prior to strengthening but also t.o maintain part of the load Juring strengtheuiug

process (Ebi'-3d, 1998). This researclJ was all attempt to simulate the actual field

l;ituation of streugthencJ connele beams using ferrocement.

:\1aalej and Bonacci in their laboratory l;tudy, investigated the effect of pre-loading

levels on the behaviour of strengthened beams with FRP (~Iaalej and Bonacci, J998).

The status of beams during strengthening, whether loaded or unlowk·t!, was inw~

tigateJ. The study consisted of testing of seven reinforced concrete heams. It. was

concluded from the results that the pre-loading le\'el and the status of beams during

the strengthening processes had a slight effect on the results.

The strengtlJCuing of the initially loaded reinforced cone-rete beams using fibre

glass-reinforced polymer sheets was iuwstigatcd (Sharif et aI., 1994). Despite the

low tellsiJe strength and low modulus of elasticity of the GFRP compared to the

ron\·entional steel, it was selected as a strengthening material for beams in t his study.



37

GFRP used consisted of three layers of woven roving cmuedded ill a plastic matrix

wit.h a thicluw1SS of 0.5 HUll awl a maximum tensile strenb>th of about 1700 :\JIPa.

The stndied parameters wcre the plate thickness alld the anchoring schemes. The

strengthened beams were subjocu'(! to a pre-load of 85% of a control beam capacity

In fad, this percent is deemoo a very high pTe-loading lcvd, since working loads

that are generally about 0.67 of tlw ultimate loads afC recommended for pre-loading.

Besides, applying tbis level of dumage to original beams before rehabilitation l\lUY

cause the beams to fail to satisfy the ~rviccability conditions. Generally, the test

results indicated that flexural strengths of the strengthened beams were increased. III

addition, the ductile behaviour of the strengthened beams was inversely proportional

to the plate thickness. The research investigation also showed that tile use of I--jacket

plate provided a prOP!;r anchorage at plate ends and improved the ductility of beams

witb plates of greater thickness.



Chapter 3

The Experimental Program

3.1 General

This chapter gives a detailed description of the experimental program. It includes

sections describing the preparation of the fOrmwork and the stool cages; mixillg COll~

crete; and strengthening techniques anu procedures. The dilTcrcnt strengthening

techniques are described ill terms of the metilOdolog)' of each technique, the sequC1JCe

of installing the strengthening components, and the dilllCl.lsiOllS of the strengthening

materials. Moreover, a detaile<.l description of the tested specimens is provided that

includes the dimensions and title cOll\"cntioll of caclJ specimen.

The test set-up is described in dctail in this chapter. The componellts of the

test set-up include the loading test frame, the different aduators by which different

kinds of loads arc applied, and the supports. In addition, a description of the data

a<:qllisitiolJ ~ystelll is also provided ill this dIOpter.

Detailed deocription of tile material properties utilized in this investigation is

gi\·en. These materials are the concrete; stccl reinforcement: CFRP strips and CFRP

laminates; and the epoxy adhesives.
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3.2 Properties of Materials

In the next sections, the properties of the materials utilized are detai!t..>d,

3.2.1 Concrete and Steel Reinforcement Properties

Concrete mix was designoo to obtain a target COlnpres.~ive strength equal to 35 ylPa

after 28 days of 152-rnm diameter by 304-mm height cylinder. The unit wcigbt of

the concrete mix was 2480 Kg/mJ . The concrete mix proportions for olle cubic meter

of the concrete used in tile elltire test program arc given ill Table 3.1.

Table 3.1: Mi:t ro rtions or one cubic meter 0 l'..Oflcrete
Coarse aggregate (granite 19 mm max. size) 1160 kg
Fine aggregate graded sand) 690 kg
Cement content 350 kg
Water COntent 175litre
Water cernelltratio 0.5

The type of cement utilizl!<1 was normal Portla.nd cement type 10, as specified

by tile Canadian Standards Association (CSA). The surface area of the cement is

approxiIllatel~' 4000 cm2/gm as per the supplier. TIle cement content was kept to

350 kg/mJ , The mixing water was clear and about 4-10 ae. The water conteut per

olle cubic meter was 175 liter resulting a water to cement ratioofD.5. Konnal weigbt

local COUNC aggregate was utilizoo in the mix. That coarse aggregate wa.~ mostly

crushed granite with a ma..umum uominal size of 19 mrn. A minimum number of

three standard cylinders were cast at the dar of casting and te:;too at the day of

testing. The steel reinforccment bars were deformed CSA grade 40U bars. The actual

yield :;trength varied froln 435 MPa to 450 MPa Detailed propertic:; of the stccl

reinforcement are listed in TaLle 3.2.
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Table 3.2: Pr()vertie.~ 0 the steel reinforcement bars

I~::' I~:meter, I::~' I~~~i:, ~~~I strcs>, I~:~, MPa I~ll:~~p~od~ I
10 11.3 100 OJHJ23G 41)0 nOD 1!H J
15 16.0 200 0,(0221) 435 670 Hl3 --1
20 19,::; 300 0.00226 440 6G5 19;,

3.2.2 Strengthening Materials Properties

For specimens strengthened using steel plates, ASTrvl-A3G SI£()) plates were utiJiZl'd,

The nominal thickness of steel plMes was 6 mm alld the actual thickness was 6.35

mm. The minimum yield strength of this t~'pe of steel was 248 ?I·IPa and the ultimate

tensile strength wa:; 400 i\fPa. For the same group of spcdmens, steel bolts, ASTr·.'\­

A325 19 mm-diameter bolts were used. The ultimate tensile strength of each bolt

was 235 kN (MiTM, 1905). These bolts were used to ensure full intcract.jon between

the concrete and tl.te stecl plates and to apply a confinement pre<jsure of t.he platps on

the concrete slab (when the nntS of these bolts were tightened). Epoxy adhesive was

used to ensure, along with the steel bolts, full interaction between the steel plates and

the concrete. "'!oroover, it was used to fill the gaps arouuu the bolts in the 11011.'1). The

properties of the steel plates are summarized in Table 3.3. In addition, the properties

of the epoxy auhesive utilized for the steel plates strengtheningspecirnens are given

in Thble 3.4 as pel' the manufact.urer specifications

For specimens strengthened using FRP materials, unidirectional Gluss Fibre Rein­

forced Polymer (GFRP) laminates and unidirectional Carbon Fibre Reinforced Poly­

Iller (CFRP) strips were utilized as strengthening materials. The thkkuess of one

layer of a cured GFRP laminate and CFRP strips was 1.0 mm and 1.2 mm, resp€('__

tiwly.The Sika CarboDur was used for the CFRP strips. Also, the glass fiul'e fabric,



Si!ul.Wrap Hex lOOC, was used for the GFRP laminate. Two types of tw(}-componcnt

paste adhesive epoxy resiu were utiIJzed for each type of tile FRP illMerial lUi per

the manufacturer's specifications. For CFRP strips, the Sikadur 30 was used and

for GFRP [aminatf'!;, the Sik.v!Uf Hex 300 wa.~ \LS€(1. Properties of FRP materials

are given in TaLle 3.5. [n addition, the properties of the used epoxy fOf the FRP-

strengtllcuiug a.rcgiven iu TaLle 3.6.

TIJble :;1.4: Pm rUes 0 tile e adhesilJ€' or steel sIren tlwning specimens
Compressive strength, MPa 100
Adhesive strength on concrete, MPa 2
Adhesive strength on steel, MPa 26
Elastic modulus, GPa 12.8
• (As per the manufacturer's specifications)
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Table 3.6: hvperfies of tlte e x adhesive or FRP stren thellin

Elongation at break,% 1.00 <l.8
Elastic modulus, GPa 4.5 3.1
• (Sikadur 30)
• (Sikn.dur Hex 300)

3.3 The Formwork of the Specimens

Steel fOflllwork was used for preparing the specimens as shown in Figure 3.1. As it

will be explainlld in thl'! following sections, the specimens have two different gcomct-

rical configurations. Some specimens have one colmlln stub and some otbers have

two column stubs. For the former, both the panel and the l:olumn stub wefe cast

mOllolithically. The specimens that haY(! two column stubs were cast in two stages.

In the first stage, the panel and one column stub were cast first and Qne day later

an additional mold of the other column stub was placed and rested on the concrete

surface for casiing the second cohlmn stub. The additional mold used for casting the

SCl,;ond (upper) column stub as shown in Figure 3.1.

3.4 Preparing Steel Cages

Siecl reinforcement rods were cut in the required lengths and arranged together to

form the cage of the tested specimens. The steel reinforcement. cage WIJoS pn~pared

according to whetiwr the slab has one column stub or two.

For the panel reinforcement, rods of diameters 10 mm and 15 mm were used

as main (tension) reinforcement base<.! all the reinforcement ralio of the prepared

spl'Cimen. For all specimens, 10 lUlll diameter swel rods were USl.-d as secondary
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Figure 9.1: The jormwork with a cast specimen

(compression) reinforc(!ment for the panel. Steel wires were llsed to tie the steel rods

of each layer of the slabs together and to keep the spacing and orientation of steel

rods as re<juired.

In order to ensure an efficient utilization of the steel rods, the upper and lower

cages were welded together using cOllnecting pieces of rods. Tlwsc pieces of rods were

necessary to keep tile distance between both the tension and compression reinforce­

ment of the panel. This method of ensuring the developing of the tension bars was

adopted based on an earlier research work (l\'larzollk and Hussein, 1991a).



All ten5ion and compression rods of the panels had the same lellb>th of 1800 mill

that aJlowed for a distance of fiO mID from each side of the panel edge. DetaiL~ of the

reinforcemellt of t1w panels are shown ill Figure 3.2.

The column stub hars had two configurations Lased Oil whether a second column

stub was used or not. For specimens with only Olle oolumn stub, the rods were

bent at a right angle and extended to 400 mm horizontally inside the panel. For

specimens with two column stubs, column haN were st.raight and of 1750~mm length

allowing for a distan<.:e of 50 mID hetwecll the ends of the rods and the concrete

column surface. For the column siubs, 2O-mm diameter steel rods were used as

the longitudinal reinforcement, while lO-mm diameter mild steel ties were used as

transvenscreinfortementspacecl at 160mm.

(ajSpecimcnswitht"'oooIUlnllstulm (b) SpeciIllell~ with OlJe C01WIlll ~lul>

FigtlT"e 9.2: Ueinforcement details of tested Sp".cimens
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3.5 Mixing Concrete

The specimens were cast after appropriate placing of the steel cages inside the form

allowing for a minimullIconcrete cover of23 mm. Concrete WUlj mixed ffil;'l;hallically at

a rate of 18 rplll in the concrete laboratory at i\lemorial University of Newfoundland

The mixer had a capacity of 0.12 mJ and allowed casting batches of 0_1 mJ each. h

took six batches to cast the panel and one column stub of cadl specimen. An extra

balch was nooded for the second column stnh for specimens with two column stubs.

A minimum of tlm..'C 150 mm diameter hy 300 mill height plastic cylinders, as

per the ASTM standards (AST~'I-C192-88, 1993), were cast witll each specimen to

determine the compressive strength of concrete at the day of the test. Polyethylene

shcel.s wece ploced on the top surface of the cast specimens for at least three days.

Theil the specimens were left in the mold for four more days during which the concrete

tiurfacc wa.;; sprayed with water twice a day. Afterwards, the specimens were removed

from the form and kept in the mnbient temperature until testing

3.6 Test Slabs

3.6.1 General

Tests were conducted on a model of a two-way sIal! part enclosed by contra-flexure

lines on which bending moment values vanish as shown in Figure 3.3. All specimens

were square with 190G-mm side length and 15Q--mm thicknpss. The corners of the

slabs subjected to C€ntralloads only were free to lift. The span of 1830 linn represents

0.4 of the total SlXlll of two-way slabs in an actual building in field (Rankin and Long,

1987). Hence, the selected dimensions rcprcsellt a slab offull scale with an actn:>] span

of about 4575 mm. A slab of 15O-mm tbickness and a span of '1575-mm is commonly
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Figure 3.3: The .5imwatcd ptlrt of the {wilding (O.4 the SP'l1l)

used in multistory buildings. The te~t specimens were simply supported along four

sides with corners free to lift except for specimens subjected to moment or lateral

cyclic loading. Two configurations of specimens were manufactured. Specimens of

the first configuration have one column stub and those of tlw other configuration have

two column stubs ali will be cxplailloo ill Section 3.6,2 and Section 3.6,3. Column stubs

\liCre located at the slab ceuter and wefe of 250-mrn square cross section dimensions.

The columns stubs were extended to a distance of 850 mm from each slab surface.

The tested specimens are divided iuto three main groups; Group 1: slabs strength.

cued using steel plates uuder central monotonic loaJs; Group 2: slabs strengthened

using steel plates under either combination of monotonic central load and moment

load or cyclic load; and Group 3: specimens strengthened using CFRP strips or GfRP

lamimues aud loaded using central monotonic loading. All of the (,hree groups include

reference (unstrellgthtmed) specimens.

Figure 3.4 shows a layout ofspecimells with two column stubs and loaded centrally

only. figure 3.5 shows a layout of specimens with two column stubs and loaded with

a combination of central load, P, and lateral load, H (static or cyclic). Figure 3,6
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Figllre 9.4: Layout of specimens with tWQ column stubs and loaded centrally

shows a layout of specimens with one column stub and loaded centrally.

3.6.2 Specimens of Group 1

For Group 1, the specimens were simply su'pported along fOIlT edges with corners free

to lift as shown in figure 3.4. This group was oomposed of specimens subjected to ccn­

tralloading and strengthened using steel plates and steel bolts. This group includes

two unstrcllgthcncd specimens, Ref-P-LO% and Ref-P-o.5%; and six strengthened

specimens, Stee!-Pl-l.O%, Stccl-P2-1.0%, Stee!-P3-1.0%, Steel-P4-1.0%, Steel-P5­

1.0%, wId Steel-P-O.5%.

The specimens in this grollp were used to iuvcstigate the effectiveness of the

strengthening technique. Particularly, specimens Steel-Pl-1.0% through Steel-P4-

1.0% were designed to optimize the strengthening system in terms of the number of

steel bolts used and the steel plat('~~' configuration.

Figure 3.7 shows the different configurations of steel plates and bolts. The pattern
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Figure 9.5: Layout of specimens with hiiO co/umri stubs and loaded centmlly and
laterally
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Figure 3.6: J,ayout oj specimens wilh one colflmn !Itub and loaded em/mIly



of :;pccimen St.e€l-P 1-1.0% is referroo to as Pattern 1 in Figure 3. 7.a. Specimen Steel­

Pl-1.0% utilized eight steclbolts and four separate steel plates at ei\eh side of the

panel. Each plate's dimensions were 250 mm by 240 mm, tLat means it was extend<-"]

to twice the slab depth from the colllmn face. Bolts were placed at the locations

shown on Figure 3.7.a

The pattern of specimen Stecl-P2-1.0% is referred to as Pattern 2 as shown in

figure 3.7,b. This specimen Iltili7.oo the same lllllllber of steel bolts as used in Pattern

1 hut with different arrangements and different dimensions of steel plates. Pattern

2 utilized two L-shapcd steel plates wclded together and located at each side of the

concrete ~1nel. The ovenlll dimensions of each sted plate were 730 rum by 730 IUlll.

These dimensions afe t'qual to the column side dimensioll plus four times the slah

depth

The pattern of specimen Stool-P3--1.0% is referred to as Pattern 3 in Figure

3.7.c. This pattern adopts ~he same steel plate's configuration as used in Pattern

2. However, an additional stccl bolts werc added in between the outer four bolt.q to

investigate the impact of inueil.';ing the stl'd bolts fwm 8 bolts to 12 bolts on the

overall hehaviour of the slahs.

The final pattern is Pattern 4 for specimen Stee!-P4-1.0% in Figure 3.7.d. It is

the same as Patterns 2 nud 3 witL rC8pect to the configuration and dimensions of the

steel platt'S but utilizes 16 steel bolts distributed as shown ill Figure 3.7.

Based on some preliminary results, Pattern 2 was found to be the preferable

and recommended pattern. Consequently, an additional specimen adopting the same

steel bolls and plates configuration, was manufactured and tested (specimen Steel­

P5-1.0%). This specimen was prepared to record the values of strain in the stool bolts
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(a) Pattern 1 (b) Pattern 2 (c) PatternS (d) Patt'Jrn4

Fi!Jtl.t'C 3.7: Steel plates and bolt3 conjigumtion (dimension are in mm)

and at different localions 011 Ule steel plates. Table 3.7 summarizes the specimens'

parameters of Crouplo

Table 3.1: SpecimcT18 of Group 1
Specimell title Concrete strength, MPa No of steel bolts Pattern type
Ref P 0.5% 35
Ref P 1.0% 36
Steel P 0.5% 34 8 Pattern 2
Steel Pl 1.0% 33 8 Pattern 1
Steel P2 1.0% 37 8 Pattern 2
Sted P3 1.0% 33 12 Pattern 3
Steel P4 1.0% 30 16 Pattern 4
Steel P5 1.0 t 34 8 Pattern 2

3.6.3 Specimens of Group 2

The testt.'d specimens in this group are divided into two main divisions: slabs sub-

ject.ed to combined central load and static moment, and slabs subjected to combined
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central and cyclic moment. It is cmphasizetl that for the specimens of this group ad­

ditional steel brackets were placed at slabs' COTliers to prevcnt the lateral movement

These brackets will cau~e a fixation at t.he corners of t.hese specimens. The specimens

subjected to ccntralloading associated with unbalrmced monotonic moment included

two reference specimen.s, Ref-M-O.5% and Ref-M-1.0%, and twO strengthened spev

imcns, Steel J\..f 0.5% and Steel-M-l.WiO. In addition, the spcdmctls of this group,

that were subjected to a cel/tral h.-wing asoociated to a cyclic moment, WCfe 0001-

posed of two reference specimens, Ref-C-o.1i% and Ref-G-l.O% and two strengthened

specimens, St~I-(J-{J.5% and Stt'CI-e-.-I.O%.

The second letters M and C indicate fipecimens subjected to static moment and

cyclic momont, respectively. The specimens of this grOlJp have the configuration of

Pattern 2 in Figure 3.7. As shown in Figure 3.5, specimens of Group 2 are subjected

to lateral load, tI, that is either static or cyclic. The parameters of Group 2 are

SUllunarizoo in 'Thble 3.8.

Table 3.8: Svecimens 0 Grouv 2
Specimen title Concrete strength, .\IPa Pattern type
Ref. 11.1-0.5% 32 RefcrCllt"e
'Ref M 1.0% 33 Reference
'Ref G-O.5 0 31 Reference
'Ref G-1.0% 30 Reference
Steel M 0.5 33 PatLern 2
Steel M 1.00 34 Pattern 2
Steel G-0.5 0 32 Pattern 2
Steel--e-1.0% 31 Pattern 2
• (r.I(lf'lOUk ct aI., 2000a)
, (Marwuk et al., 2oot)

Load t}pe
Moment
?,Iomellt
Cyclic
Cyclic
Moment
Moment
C)'clic
Cyclic



3.6.4 Specimens of Group 3

The third group is composed of specimens subjected to central monotonic loads and

were used to evaluate two-way slabs strengthening techniques using erRP strips and

GFRP lununatcs

The specimp.Jls of this group werp. reinforwd with three different reinforcement

ratios. The selection of I,he reinforcement ratios was hased on the purpooe of the

strengthening. Studies on slabs at Memorial University of Kewfounrlland showed

that slabs with u reinforcement ratio less than or equal to 0.5% are subject to flexural

failure. Those slabs with a reinforcement ratio of more than 1.0% are subject to

puncbing-shf'ar failure (Marzouk and Hussein, 199Ia).

It was intended to investigate the effectiveness of eFRP strips and CFRP lami-

nates in strengthening two-way slabs against flexural and punching-shear deficiencies

J'he specimens ill this group arc classified as FRP Jlexural-.';trengthening specimens

and FRP punchiug-shear-strclIgUJCuillg sp(.'(;imeIlS. The lattcr will be called "FRP

shear-strengthening" specimen.'; for COIl\·cnicllce. rt is already expected that FRP ma-

terials are not the proper materials for shear-strengthening however two specimens

were tested to confirm this expectation and to compare the test resulls witl) tJ10SC for

specimens utilized the steel plates system in Group l.

Specimens Ref P 0.35% and Ref-P'-O.5% are useo:l as reference specimens for FRP

flexural-strengthening, while specimen Rcf--P-l.O% is used as reference spp.cimen for

the shca('-"-strengthelling. The rcst of the specimens were strengthened using either

CFRP strips or CPRP laminates. The author would like to emphasize that specimen

R.ef-p'-Q.5% has one eolulllll stub and spcdmeu Ref-P-Q.5% has two column stubs.

Specimens CPRP-F-0_35% and CFRP-- F-0.5% had reinforr.ement ratim; of 0.35%
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(Uld 0.5%, rcspecti"ely, a.nd were strengthened using eFRP strips. Similarly spec­

imens GFRP-F-O.35% and GFRP-F~O.5% had reinforccmcnt ratios of 0.35% and

0.5%, respectively, and were strengthencd using GFRP laminatcs. Specimcus CfRP­

F-{).35%, CFRP-F-0.5%, GFRP-F-0.35% and GFRP-F-{).5% are referred to as FRP

flcxural-lit.rengthening specimens. The FRP shear-stl'cngtheuing specimens arc rep-

resenl~l by specimens CFRPI-5--1.0% and CFRP2-S-l.0% having a reiuforcemcnt

rat.io of 1.0%. In the titlecollvcntions, Sand F in thc middle ofcach specimcn's title

refcrs to shear or flexure strengthening, respectivel~"

For FRP flexural-litreugtllClling-specimcus, colulrllJs werc loeatoo at UIC comprcs-

sion side only and extended to 850 mm from thc panel snrfacc as shown in Figure

3.G. Ho\n~ver, for FRP shear-strengthening, both t:olumn stubs were ext.ended to a.

dista.nce of 850 mm from each side for a possible comparison with sleel strengthcned

specimens. All the test specimens of this group were simply supported along the four

edges with mrners free to lift. Tablc 3.9 summarizes the pa.rameters of specimeus in

Group 3.

Table 3. 9: S cimens 0 Grou :1
Specimcn title 10 ,MPa p,% Strengthening materiaJ...~~1s..!:~

Ref. P-0.35 30 0.35 Reference Single
Hef. P'·0.51O 34 0.50 Reference Single
CFRP f'-{).35% 35 0.35 CFRP strip:; Single
GFRP F-O.35% 29 0.35 GFRP hunlllatcs Single

I-ig",,~i.i:i""'p--i;"~~ii":~'ii%%:--t"~::----~+~ii':~"l-ig"';';;~"'~'i:~::::'::;iCilla"t~CC-~--~-~
CFRPI S 1.0% '29 1.0 CFRP strips Double

L:C~F-"R,-P2,--S"--,,1.,,,07<,,-o-=",-_-,-O",.5'-JL:-C".F.:.:R,-P=!Itr.ips Double
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3.7 Test Set-up and Instrumentation

A lO~ton capacity crane was used to lift and install the specimcns vertically insidc

the loading frame and to remo\'e the specimens after testing as shown in Pigure 3.8.

The loading frame IlSed for testing the specimen was a large reaction steel frame as

shown in Figure 3.9, Pieces of rubber were placed between the back surface of the

slab and the supporting edges of the frame. The centrally loaded specimens were

simply snpported alollg the four sides as shown in Pigures 3.4 alld 3.6. For specimens

of Group 2, four brackets were placed at the corners to prevent lateral mo\'cment of

specimens as shown in Figure 3.5.

Figure 3.8: A specimen earned using the lO-ton capacity crane

A central and two side hydraulic actuators were fixed to the frame, The ccntral

actuator was facillg the specimens amI was used. to apply centralloaJ, P, through the

inside column stub. The two side actuators were fixed to wide flange steel columns





that were located next to the frame. These side actuators were used to apply a couple

of equal and oppositc monotonic (static) or cyclic lateral load, Ii, for spccimcns of

Group 2 subjected to static mOlllent or cyclic lIIoment, respectivcl)'. The lever arm

of that couple was kept at a distance of 1570- mm measured along the column stubs'

axis. In the case of the cyclic moment, the two side actuators were clamped to the

column stubs as shown in Figure 3.10 to allow for re\'Crsal application of the quasi

static lateral load. The maximum capacity of the central actuator was 700 kN and

the maxilllulll stroke (displacement) was 150 mm. For any of tile side actuators, the

maximulll load capacity was about 133 kN and the ma.ximum stroke was 150 mill.

Figure 3.10: Clamping of spccimem subjeded to reversal laternl loads

A load cell in each actuator wa.'l used to record the load using four calibrated

electrical resistance stain gages fixed to the inner cylindcr of each load cell. Linear

Variable Displacement Transformers (L\'DTs) were lmilt in the actuators to Illeasure

the central deflection of the slabs associated with thl" loads. Hydraulic pumps of

maximum pressure of 20 :\IPa were used to supply the actuators with the pressurl".
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The load can be applioo under either lood or di,~placement control In case of

hid control the actuator tries to maintain I,he most recent load value and build

mOTe loads based all a predefined load rate that cannot be exceeded irrespective

of the displacement changes. Under displacement control; however, the actuawr

tries to maintain the receut displacement "alne and build mOTC displacements based

on a predefined displacCIllCllt rate that cannot be exceeded irrespecti I'C 1.0 the load

changes. Por the centrulloa(\ application, it was decided to apply the load under the

displacement control to prevent the sudden and uncontrolled failure at the maximum

load. The ratc of applying the displacement for the central actuator ranged from

0.25 to 0.50 mm/min. In ca~ of the side actuators, the main concern was to apply

equal and opposite lateral loads by each actuator at the same time. lIence, it was

decided that the loads of the side acluatOrS he applk.J using a load control. The rate

of applying the load for each of the side actuators ranged from 0.75 to 1.25 k!\/lUin

provided dlat each actuator would apply the same load.

Electrical resistance strain gages, 8-mm long with a nominal resistance of 120

n and a gage factor of 2.070 ± 0.50% were used to measure the strains in selected

locations of steel reinforcement, steel bolts, and steel plates. Figure 3.11 shows the

locations of strain gages on tension and rompression steel reinforcement for aU spec-

imens. T.lJc locations of the strain gages for sleel bolts and steel plates are shown in

Figure 3.12

The LVOTs and the electrical strain gages were conuecte<:! to a data acquisition

system. The data acquisition system was programmed using the G language to apply

the load and/or displacement using predefined functions. For the specimens of Group

2, t.wo computers were used to define both the central and lateral movements of the
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(a) Schematic locations of the gages
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(b) Steel bolts (c) Steel platCll

Figure 3.12: Locations of strain gages on Pattern 2 steel plates and bolts
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(a) C)"clie loads (b) Static loads

Figure 9.13: Computer monitors showing the type of looding

actuators simultaneously as shown in Figure 3.13. The values of load, deflection,

and strains in the fonn of analog electrical signals, were COll\"erted through the data

acquisition system to digital signals and were sa\"oo in digital computer files. One set

of readings was scanned aDd saved ('very two seconds.

:'\IIIC equi-spaced dial gages were placed along the width of slabs to record thl'

deflection profiles of sj>ecimclIs except for tbose subjected to cyclic loading as shown

in Figure 3.5.

For s)X.'Cimcns subjected to cyclic loading, a drift-routine that was limited to 22

cycles (Robertson and Ourrani, 1902) was adopt(!{1. This drift routine was modified

by increasing the lIulllucr of cycles to 20 as shown ill Figure 3.15. The increased

!lumber of cycles was ncecssury to accommodate possible expected improvement in

the behaviour of the strength('lIoo specimens subjected to cyclic loading.
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Figure 3.14: A close up oj the dial gages

3.8 Test Procedure and Load Sequence

All specimens were subjected to a central load 50% of the ultimate central failure

load for a reference specimen with the same reinforcement ratio as the specimen

considered. This level of pre-loading represents the service loads. Specimens witiJ

reinforcement ratios of 0.3;)%,0.;)0%, aud 1.0% were initially loaded to 125 k:'\, 159

kN, and 210 k?\j respectively. Then, the load was released and the specimens were

removed from the loading frame for strellgtlJCllillg. This stage simulates the state of

a slah ill the field shored during the strengthening process. After strengthening and

curing, specimens were placed in the loading frame for reloading.

For specimens of Croup 1 and Group 3, the central load was applied gradually
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Figure 8.15: The drift routine IUJedjQr spedmens subjected to cyclic loading

using a ramp fun(:tioll until failure. For tile specimens of Group 2, a central load of

90 kl'l \\'38 applied. This value of load (90 kN) represents the dead lo..'ld subjected

to II tll'o-way slab in the field. For specimens sUbjcctlU to statk moment, the ~tatic

lateralloarls were applied simultaneously using the two siue aduatoIS, as the central

load was kept constant. The maximum value of the Int,eral load at bor,h sides was

kept at 56 kN that prodllcOO an unbaluuM static moment of 88 kN.m. As the lateral

load was kept constant, the ccutral load was increased gradually until failure. For

specimens subjected to unbalanced cyclic moment, the predelined drift routine, as

shown in Figure 3.16, was applied using the side actuators. The cyclic moment was

applied <IS the central load was kept tOllstauL
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3.9 Strengthening Techniques and Procedure

3.9.1 Steel Plates and Bolts Strengthening Technique

Doth the Canadian and American structural concrete codes state that the location

of the critical shear perimeter in two-way slabs is at 0.5 of the effective depth of the

slab (CSA-A23.3, 1994; ACI-318, 1999). Howc\'cr, the Britisl! code limits this value

to 1.5 times the effective depth orehe sial) (BS 8110, 1985). A three dimensional fillite

element analytlis of concrete slabs revealed that tile critical punching-shear perimeter

is located at a distance that is twice the slab depth around the column (lIfarwuk

and Jiang, 1996). The fillite clcmcllt analysis findings wen' also supported by un

experimental evidence (Marzouk and Jiang, 1997).

13a.<;erl on the aforementioned research work and (;Que provisions (CSA-A23.3,

1994; ACI-3IB, 1999; as 8110, 1985), the ,;treugt,hcniug steel plates were square with

a side length of that of the column plUR four limes the Rlab depth. The thickness

of the steel plates was c1JOS€n so that a reasonable equivalent increase of the slab

thickuess is aclJicvcd. Specimens of Group 1 were used to optimizc the strengthening

technique utilizing steel plates and steel bolts. The optimized system is based on

bonding two L-shaped steel plates welded together to the COllcrete panel followed by

inserting the steel bolts

The strengthening steel plates are of nominal thickucss of 6---mm and ImllJeJ to

the upper aud the lower surfaces of the slab usinp; epoxy n:sign. The dimensions of

the bonde<! sleel plate were chosen so that it surrounds the column with a minimum

distance of twice the depth from the column face. The st~'C1 plates compose a rigid

zone at the position of maximum shear and flexural stresses. This rigid zone acts

as a new drop pimel of equivahmt concrete depth eqIHll to 2 Il- times the steel plate
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thickllCl:iS, where n is the modular rMio betw~n steel and concrete.

Holes wcrc pre-drilled all the way through the slalJ thickucss and 19-mm <.Iiamctcr

holts were inserted immetiiatelf after bonding the stccl plates. Then, the nuts wcrc

subjected to a specified torque using a calibrated torque wrench. The functions of

the steel bolts wcrc thr<''efold: 1) to transfer the horizontal forces generated uetwccll

the steel plates and concrete panels, 2) to improve the pUllchil.lg-shcar strength since

steel bolts act, Wil.h the aid of the steel plates, as vertical shear rcinfof(;ellllmt, amI

3) to improve the concrete behaviour by confining the concrete sandwiched between

the steel plates due to the pre-applied torque.

3.9.2 Steel Plates and Bolts Strengthening Procedure

The reference specimens were tcstp.d to estimate the ultimate load and deflection

characteristics. Each slab was loaded up to 50% of the ultimate load of I.he reference

specimen before strengthening. The slabs y."Crc pre-drilled according to it. specified

distribution of bolts using a hammer drill. The drilling process was followed by

rough(~ning the slab surface using a vibrating llasmller as sho....n in Figure 3. IG. Soon

after, the surface of the slab and the holes were carefully deanlo<.! by relIloving til(! dust

and fine materials using a vacuum deMer. The 2-L-shaped steel plates are aligned

and welded together. The two-part epo.''<y adhesive was ready to be applioo Oil the

concrete surfaces and steel plates. The surface of the steel plates was ensuwd to be

free from oil and dust by using suitable solvent. Then, the steel plates were bonded to

the concrete surfaces at both sides. Afterwards, the steel bolts WCTe immersed in the

epoxy adhesive before they were insert.ed inside the holes. The bolts were subjccted to

a torque of 441 kN.mm using a calihratcd. torque wrench. The strengthened specimens

were left for curing one week before testing. Figure 3.17 shows a I:lChematic of the
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Figure 9.16: Roughening and drilling a specimen 10 be strenglhened

Jifferent components of strengthening technique using stccl plates.

3.9.3 FRP-strengthening Techniques and Procedure

The reference specimens of Croup 3 werc testt>d to estimate thc capacity and the

deformational characteristics of typical ullstrengthened specimens. The strengtheneU

specimens wcrc loaded up to 50 percent of the ullimatc load of the corresponding

reference specimen. The surfacc of the specimens to be strengthened and those of the

strengthening materials were carefully cleancJ by remo\'ing the Just and fine materials

as per the supplier's specifications. Tile two-part epoxy adhesive was applied on

both lhe concrete surfaces aud the strengthening materials. Then, the strengthening

materials were bouded to the concrete surfaces according to the specified scheme as



Figure 9.17: Part of the procedure of ~tnmgthening«sing .1teel plates

follows:

FRP 6exural-strengthening specimens

The strengthening materials were bonded at the bottom (tension) side and extended

to 50 mm before the support locations. For specimens GFHP-F--().3&% and GFHP-F­

0.5%, two layers of GFRP laminates of 300--mm width were bonded to the slab surface

in both directions. Specimens CFRP-F--().35% and CFRP F--().5% were strengthened

using CFRP strips with the same configuration as those strengthened using CFRP

laminates. Trallsverse layers of CFlt!' strips wen, bonded at the end of the FRP

strips or laminates T.O improve the FRP-concrete bond. Figure 3.18.a shows detailh

of the FRP flexural-strengthening specimens
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FRP Shear--8trengthcning Specimens

In case of FRP shear-strengthening specimens, the CFRP strips were placed a.round

the column to a distance of twice the concrete slab depth. Steel bolts were inserted in

the slau to achieve full im.era.ctioll between the strengthening material and CODcrete.

Holes were pre-drilk'd all tllC way through the slab thickness and 19-mm dinme­

teT bolts "''ere immersed in the epoxy adhesive before installation. The boltS nuts

were subjected \.{l1l specified torque of 441 kN.ffim using a calibratoo torque wrench.

DetailJ; of the CFRP pUliching-slJear-strengthening specimens arc shown in Figure

3.18.b.



(a) FRP f1exural--;;trengthening
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(b) C~'RP shear-strengthening

Figure 3.18: StmngthcTllny trclmiqw~s using FRP materials
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Chapter 4

Behaviour of Centrally Loaded
Two-Way Slabs Strengthened
Using Steel Plates

4.1 Introduction

In this cJlapter the results of cmtrally IOUl.k'ti t\\u--way slabs strengthened using steel

plates and 1'1.001 holts are introduced. Steel bolts werc intended to serve as vertical

shear reinforcement, since these holts were distri!)utoo in a similar way to the shear

studs in theaforcmcntioned references.

Steel bolts were inserted in tile CQm;rete lilab around the column; while steel plates

were bonded to the ('-Onerete surface at the upper and lower sides of the slab using the

epoxy and the tightened lints. Hence, the functions of the steel bolts, in addition to

btling \'('rtical shear reinforcement, is to ensure a complete interaction between steel

plates and concrete slab. TlJe steel bolts tralllilllit the horizontal force between steel

plates and concrete, and apply a confinement prcs..<;nre on concrde. Therefore, the

integration of steel plates, steel bolts, and the confining pressure OIl the slab make

up the suggested strengthening teclmiqlle. The number of steel bolts WllS altered to
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obtain un optimum number of boltl; capable of functioning as cxplailled.

4.2 Test Results of Specimens of Group 1

The results of specimens of Group 1 arc discussed in detail. This group contained

specimens Ref-P-o.5%, Rcf-P-LO%, Stl-eJ-P-o.5%, Stec!-PI-l.O%, Stecl-P2-1.0%,

Steel PJ-l.O%, Steel-P4-l.0%, and Steel-P5-1.0%.

These specimens were loaded using the central actuator of 700 kN load capacity

and 100-mm stroke capacit)'. It was decided to apply the load under the displacement

control to prevent the sudden and uncontrolled failure at maximum load as explained

in Section 3.7. The fatc of applying the displacement for the ccrural actuator rangoo

frOIll 0.25 to 0.50 mm/min.

The discussion of resuh.s is i II terms or tbe central load-deflection characteristics,

deflection profiles, first crack loads, yield loads, ultimate load carrying capacity, uuc-

tility, stiffllCSS, steel reinforcement straiIlli, steel plates and bolts straills, alld failure

characteristics. lu additiou, a verification of the design code equations is introduc<.>J

ill this chapter

4.2.1 Central Load-Central Deflection Characteristics

The \'alucs of the centralloaJ lind the Hsso<.:iated central deflection were automatically

stored in computer digital files during the application of the load as cxplaiued ill

Section 3.7. Moreover, the deflection profiles at nine different locations were arranged,

as shown ill Figure 3.4, along each slab's width and recorded using dial gUb'eS. Figures

4. I and 4.2 show the completc ccntralload--(Iefloc.tion curves for GrOllp 1 specimcns.
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The Joad---<icfioctioll relationships for specimen Steel-P-O.5% and specimens 81.001­

Pl-l.O% to Sted-P5-l.O% arc presented in three stages. The first stage is the loading

stage up to 50% of the associated unstrellgthenoo reference spl."Cimen's failure load.

The second stage is the unloading to zero load. Finally, the third stage is the reloading

stage as specimens an~ loaded again until faihuc occurs.

The first crack of each specimen in this group was visually inspcct,cd aud the

corresponding load was recorded as the first crack lOi}{l. Points on the <:cnlra! load-

steel strain curves that correspond to a location of 2000 pstrain "'He considered yield

points. This strain was rncasuroo at a location 170 mm from the center of the slab.

The value of 2000 IJstrain was suggcstcd based on experimental observations of tue

strcss-strain curve of a single rebar. Location1; of tue first crack loads are shown ou

the load-deflection relat.ionship!> in Figure;; 4.1 and 4.2.

Ccutral load--ccntral deflection CllfWS of all the sp~cimens of Group 1 combined

toget.her arc ;Jbown in Figure 4.3.a. Figure 4.3.b shows 11 comparison ber,ween speci­

mens with a reinforcement ratio of 0.5% and those with a reinforcement ratio of 1.0%.

Specimen Steel--P.3-1.0% was used to represcnt the specimens with 1.0% reinforce-

Iilcnt ratio. In these figures, only the relationships at. the reloading stage, the loading

after strengtheniug, was shown for the purpose of clarity of the rl'Sult,.<;

With regard to the ccntralload--cClltral deflection relationships, the slopeR of the

curves within the pre-cracking st.age were steeper than the slopes witbiu later stab'eS.

At thlJ same load level, the central deflect.ion was increased as the reinforcement

ratio was decreased. The variation of thc deflection values against the load was

lar~ly dependent on the reinforcement ratio. The deflection values at the first crack

load varied according to the original reinforcement ratios. The averagc first crack
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(aj Loo.J-dellection curves for speo-..in'etls ",ith p =1.0%

500
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20 30 40
Central deflection (mm)
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(b) Comparison bet",,,,,,n speciru~ns with p = 0.5 % and p =1.0%

Figure 4.9: L()(jd-d~jlcction relationships of specimtf/.S u/ Group 1



deflection for specimens with a reinforcement ratio of 0.5% was 22.86% more than

that for specimens with a reinfon:ement ratio 1.0%.

4.2.2 Deflection Profiles

:Vleasuring the deflection at equal spaced locations along a specimen's width is used to

construct the deflection prolile for such a specimen. Deflection profiles give a global

indication of the deformational re;ponse w the application of load 1I0t just at the

locatioll of the application of load but also along the slab widtl!. In addition, using

the deflection proliles, tile rotational response of the slabs can be specified.

The deflectiou value; at nine equi-spaced locations along the slabs width versus

the central load were recorded as shown in Figure 3.4. Values of the central deflection

at each load increment were recorded and m;ed to determine tile deflection profile at

that increment. Figures 4.4 aml 4.5 show the deflection profiles of the specimens of

this group.

Figures 4.4.a and 4.4.0 indicate that specimen Ref-P-l.O% required more load

to reach the s..'UJle level of defonuation as that of specimen Ref-P--O.5%. It is also

clear thM the zone of high deformation of specimen Ref-P-O.5% is extended over a

higher distance from the cent.cr of the ~lll.b tha.n that of specimen Rcf-P-LO%. This

is a clear indication that specimen Ref-P-O.r.% tends to deform due to flexure unlike

SIX-"Cimen Ref-P--LO% that deforms due to local punching-shear at the location of

the application of load.

The delledion profile of specimen Stecl-P-o.5% ill Figure 4.4.c showed that a

stiffer behaviour was achieved due to strcngthclling. This stronger lJebaviour was

represent.ed by lower deflection values than that of associated with specimen Rcf­

P-o.5% at the same load level. Strengthened specimens with a reinforcement ratio
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of 1.0% in Figure 4.5 showed lower deflection values compared to the associated

llm;trengthened referclice specimen, Ref~P-l.O% in Figure 4.4.h. This indicates that

the strengthening technique improved the deformational respousc of specimens. There

was not a clear e!foct of altering the number of steel bolts on the defk'Ction profile of

strengthened specimens with a reinforcement ratio of 1.0%.

4.2.3 Crack and Yield Loads

The crack propagation for all specimens, prior to strengthening, was traced as the

load was applied. Load values that caused the first crack of tested specimens before

strCIlb>thening were recorded. Specimens with a reinforcement ratio of 1.0% showed

higher first crack loads compared to those with a reinforcement ratio of 0.5%. The

average fin;t crack load ofspecimeus witb a reinforcement ratio of 1.0% was 22% higher

than that of specimens with a reinforcement ratio of 0.5%. The first cr~ load.':l and

the associated central deflection values for all specimens prior to strengthelling are

shown in Table 4.1.

The yield load of the unstrengthencd spedmell Ref-P-l.O% was 1.53 times that of

the unstrengthened specimen Ref-P-O.5%. ~'1on.'Over, the yield load of tile strength­

ened specimen Steel-P-0.5% was 1.1 times that of the unstrengtbenoo reference spec­

illlell, Ref-P-O.::'%.

The average first crack load of specimeus to be strengthened using two lr-sbaped

steel plates was L37 times that of the strengthened spceimrm witb {our separate ste<;Jl

plates. It is clear from Table 4.1 that the specimen utilized 16 boltl; sho\w!d higber

yield load than the others. Moreover, the average yield load of the specimens utilized

8 bolts with 2-L-shaped ste<;J1 plates, Steel P2-1.0%, showed abollt 32% increase in

the ~'ield load compared to that utilizes the same Ilumber of steel bolts with fOUl
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separate plates, Steel-Pl-l.O%. The yield loads and the associated celltra.l deflectioll

values for all specimeus are shol\'l1 in Table 4.1

4.2.4 Ultimate Load Carrying Capacity

Regarding rhe influence of the reinforcement ratio OIl the ultimate load carrying

capacity of the unstrellgthenoo reference specimens, an increase of 27.3% wa:; observed

for specimen Ref-P-l.O% over that of specimen Ref-P-O.5% due to the increase in

the reinforcement ratio from 0.5% to 1.0%.

In general, strf'-llgthened specimens showed higllCf uitilllate load carrying capaci­

ties than the unstrengthenecl reference specimens. The average increase in the ulti­

mate load carrying capocity of specimens Steel-P2-1.0%, Stee!-P3-1.0%, and Steel­

P4-1.0% (with Patterns 2, 3, 4, respecth"cly in Figure 3.7) was abollt 5G.59% higher

than the ultimate load carryillg capacity of the associ(l,too ullstrengthened reference

specimen, Ref-P-LO%. Ewn ~pecimcn Stccl-PI-LO% with a different steel plates

configuration (Pattern 1 in Figure 3.7) and had of the lowest gain in ultimate load

carrying capacity showed 33.33% increase over that of the unstrengthened reference

specilllen Rcf-P-l.O%. III addition, specimen Steel-P--O.5% (Pattern 2 in Figure 3.7)

showed 37.5% innease in the ultimate load carrying capacity Ollcr that of tile associ-

ate<! unstrengthened reference specimcn Rcf-P-Q.5%.

\Vith regard to thc strengthening components' effect 011 the ultimate load tarrying

capacity of the strengthened specimens, it was oOOerved that the steel plates had more

impact Oil the gain of ultimate load carrying capacity than that of the steel bolts. In

otllCr words, the "iystem was sufficiellt if a minimum number of bolts of eight is used.

As it can be seen from Table 4.1, forspel:imen Steel-P2-1.0% where 8 holts were usc<l

(Pattern 2 in Figure 3.7), an increase of the ultimate load carrying capacity of 56.55%
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over the ultimate load carrying capneity of the Ullstl'cngthemxl reference specimen,

Ref-P-l.O% was achieved. For specimtJIl Steel-P4-1.0% (Pattern 4 in Figurc 3.7),

where 1G bolts were Wled, the gain in load carrying" capacity wa9 64.56% compared

to tim associated ullstrengthcncd spccimcil. Hence, [I, minor increase in the ultimate

load carrying capl)city was observed due to doubling the number of the sted wits

from 8 to 16 bolts. Hence, utilizing the eight holts was sufficient to provide concrete

coufinement :luci complete interaction \\'ith the steel plates. Value of the ultimat.e

load carrying capacity of each specimen of Grollp I aTC shown in Table 4.1.

4.2.5 Stiffness

The stiffness of a slab at any loading point is thll slope of the Joad-detloction curve at

t.hat point. The initial stiffness, hence, is the tangent to r.he central load-eentral de-

flection curves. For the unstrengthened specimens, the initial stiffness was calculated

at tlJe uncracked loading. It could be expected that the effect of the reinforcement

ratio to be minor. In this analysis the stiffness wa:> calculated ba:soo on early readings

of the load and defleClion values at which specimcns wcre in thc pre-cracked stagc. lu

case of the strengthened specimens, the initial stiffness were calculated at early stages

of the re-loading stage. The initial stiffness \lllues of all the tested slabs as well as

the initial stiffness values of the strenglhene<J spet.:imens are tabulated in Table 4.1.

As expected, a dear difference was not recognized in the initial stiffness of spcc-

imens with 1.0% reillforcement ratio and thaI, of th06e with reinforcement ratio of

0.5% since tile concrete is in the pre--cracking stage. However, it was evident that

the strengthened slabs showc<l an increm;e of the st.iffuess over that of the as.'rociated

unstrengtheued specimens. Specimen SleeJ-P--{}.5% shOWN an increase of 46% of

tue initial stiffness over that of tbe associat,ed unstrengl,hened reference specimen,
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Hef-P-O.5%. Specimen Stccl-PI-LO% with fOUf separate steel plates showed all in­

crea~ in the initial stiffncss of 33% compared to spedmcil Rcf-P-l.O%. There was a

noticeable effect of the steel platC8 configurntion 011 the initifLI stiffnCtil> of specimens

SteeJ-P2-1.0%, Steel--P3-L.O%, and Steel-P4-1.0%. The increase in the initial stiff­

ness for t!lese specimens was 98%, 109%, and 209%, respectively, O\W that of the

ulistrcligthcnoo specimen, Rcf-P-l.O%.

This indicatCl> that as the number of :;toel bolts \\1f.\; increased, the Miffnl'SS of

the slabs was increased although this increase waso't linear. The illCl'eased stiffness

was attributed to the increased confinement pressure on the concrete mass around

the column and tile increased cross scetionul arca of the stt'el bolts l~ vertkal shear

reinforcement. That confinement pressure was due to the applic(} torque 011 eadl steel

bolt.

4.2.6 Steel Reinforcement Stl'ain

}!easurements were made to determine the steel strain distrihution at selected radii

from the center of slaoo. The locations of the strain gages were selected to track the

vllriation of the sted strain with the dista.nce from the center of the slab panel. Strain

gage locations differed according to the slab reinforcement ratios aud the type of the

applied loads. Tllcse locations were adopte<! according to previous researcll work

Oll slabs carried out at Memorial University of NewfolllJdlanJ with the srUlle concrete

dimensions for any possible comparison (:\1arwuk and HUIj.'iein, 19!)la; Mar.muk et aL,

2oooa), Figure 3.11.8 shows Lhe reinforcement strain gages distribution for Group 1.

The doscst location of measuring the steel strain was at alocatioll (1) that was 170

mm frolll the center of the slab. Measurements of the strain at that location were

of a special importance since these mem;uremeuts wcre used to dcfine the ductility
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of tested specimcns as discussed in Sectioll 4.2.8. Figure 4.6 shows samples of the

typical steel strahl tlistriuutiolJ at different locatiolls (for specimens Ref-P--{),1j% and

Sleel-P-O.5%). As the distance from the location of a strain gage to the center of the

slab was increliSed, the strain gages readings "'"ere decreased.

Strain readings at location (I) for all slabs of Group 1 were combiued together

and shown ill Figure 4.7, It is clear tbat a stiffer behaviour is shown for specimens

of higher reinfon:ement ratios. In addition, strengthened specimens showed stiffer

behaviour compared to the associated U1L'ltrcllgtlwned specimens.

Typical steel strain profiles at different radial distances from panels centers arc

shown in Figure 4.8. Strain profiles of sJX'Cimem; Rd-P-O.5% and specimen Steel­

P3-··1.0% are preseuted in Figure 4.8 to represent the specimens of Group L It is

clear from Figure 4.8 that the flexural ~trains are inveI'l:lCly proportional to the railial

distance between the center of the slab and the p08ition on the steel strain gage.

4.2.7 Strains in Steel Plates and Steel Bolts

Due to the restrictions on the llllmber of channels in the data acquisition system,

specimen St-ce!-P5-LO% was fabricakd and tested mainly to me(U;ure the strain val­

ucs of steel plates and steel bolts for specimens that used Pattern 2 for strengthening

as shown in Figure 3.7. It was shown in previous sections that Pattern 2 was consid­

eroo the optimized pattern allJong the othcr four introduced strengthening patterns.

Hence, it wa.o; important to InvcstigaU~ the effectiveness of that stn~ngtheningpattern

further by providing extra data related to the strain distribution at locations on the

sl,eel platt'\; and bolts. The average measured strain in the steel holts of the specimen

StcC\-Pfr-I.O%, was estimated as 1500 jJstrain due to the application of the 441 kN.m

torque as a part of the slrengtllCning u'Clmique as explained in Sco::tion 3.9. Locatiolls
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of the strain gages placed on the steel plates and 1>olt-5 arc shown in figure 3.12.

Yielding of the steel plates and steel bolts indicates an effirjent utilization of the

strengthening components. The average st.rain of bolts Bolt] and Bolt2 versus the

load is shown in Figure 4.9. Regarding the strains ill the steel plates, as the load was

increased the outer perimeter strain, at location PLI, was increased. In addition, the

strain at a locatioD midway the distance between inner and outer holts, loration PL2,

was increased as the central load increased. The strain at location PLI was slightly

less than that at the location PL2. This result implies that the localiolls on the steel

plate in the direction from inner 1.0 aliter bolts were utilized more efficjelltl~· that

those located along the outer perimeter. The steel strains in the plates at locations

PLI and PL2 are shown in Figure 4.9. Hence, the suggested dimensions of the stl.->cl

plates and the configuration of steel bolts of Pattern 2, that was uti1i7.{~1 in specimens

Steel-P2-1.0% and Sted-P5-1.0%, ensures enhancement of the o\'Crall behaviour of

slahs by complete functioning of the sted plates and steellJolts.

4.2.8 Ductility and Energy Absorption

Displacement ductility is defmed as the ratio between the deflection at t,he ultimate

load and that at the J·jeld load (Geng et al., 1998; Marwuk and Hussein, 1991a;

II.Iam)uk et aI., 1(96). St<.'€1 reinforcement strain gages were used to record steel

strain v,\lues versus Lhe central loads_ Figure 4.7 shows the steel strain distribution

[or tested specimens at location (1) in Figure 3.1I.a. Points on the load-steel strain

relationships in Figure 4.7 that correspond to a load at which steel strain reaches a

valuc of 2000 IJstrain are considered yield points for each specimen.

The displacemellt ductility of the strengthened Sl)l.'(;irncn Sted-P-{}.5% was 73%

higher than that of the associated unstrengthened reference specimen, Ref-P~O.5%.
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Figure 4.9: Lood-stroin distribution of steel baits and plates

On the other hand, tile average ductility of strengthened specimens, that have a

reinforcement ratio of 1.0 %, specimens Stccl-Pl-l.O%, Swel-P2-1.0%, Ste€I-P3­

1.0%, and Steel-P4-1.0%, was about 29% of that of the associated unstrengthened

reference SpCCinJCll Ref-P 1.0%. The displacement dnchlit), indice; are summarized

in Table 4.1

Energy ll.bI;orption is one of the important deformational clmractcristks of two-

way slabs. The definition of the energy absorption is the area under the 1000-

ddl("'l;tioll curve of a tested specimen. The illtcgration of the area under the load-

deflection relationships was carried out numerically of the data of the load versus

dellection. For the ullstrengthcned specimens, Ref-P-O.5% and Ref-P-l.O%, the nu­

merical intch'1"utiou was made along tJle whole load history. However, for the strength-

cned specimens. the integration was made for I.he part of the curve al the reloading
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stage neglecting the first two loading stages, the initial loading and unloading stagt'S.

A considerable increase in t,bc energy absorption values was observed due to the

strengthening. The energy absorption of the strclIgtllcned specimen Stcel--P-{1.5%

was 2.04 times that of the reference Illlstrengthened specimen Rd-P-O.5%. In addi­

tiou, the average of the values of the energy absorption for specimens Sted-Pl-l.O%

to Stec!-P5-1.0% was 2.07 times the value of the energy absorption of the refer­

ence unstrcngtltcnoo specimCll Ref-P-l.O%. Table 4.1 shows the values of the energy

ab;;orptioll of the cntire number of specimens of this group.

4.2.9 Failure Characteristics

The tension reinforcement of a specimen ma~' reae,h the yield point at locations around

the column and far from the center of the specimell and extended to a certain distance

called "punching radius". Larger punching radii are associated with the flexural

failure mode thaa thoose associated with pUlll;hing-shear failure mode (Marzouk et at,

2001).

The mode of failure of the unstrengtlwned reft~rence specimen, R.ef-P-l.O% was

classified as ductile punchillg-shear failure where the failure mode was not either

bending (lle.''Lural) failure or punching---sllCar failure. HOII"ever, for the unstrengthened

rderence specimen with reinforcement ratio of 0.5%, Rcf-P-0.5%. the mode of fail·

ure WalS classified as l1exural mode of failure. The sl.rengtlJened specimens witll a

rcinforccment ratio of 1.0%, more precisely those with L-shaped steel platf'.8, had a

bette!' utilization of the f1exura.l steel reinfor(;ement Umn the associated unstrellgth.

ent'<l referencc specimen, !kf-P-l.O%. The strengthening technique contrihllted to

Lransferring the mode of failure from a punching-shear Illode of failure to a llexural

mode of failure. The utilization of the reinforcement was represented by a larger crack



~HL~:~~~~~~;
G~

!l!1:::::::::'
~~1 ~~~~~~~§~
-3~
~bi -eg~~~~~8~
C~..E.J8"';""L..;n"';""'''';M

"



90

(a) Ullsuength<mod with ,=1,0%

-rA'j-r, I
I

L~l-L:'LII1~~J I~~f

(1.» S,re"lIthenoo with F\.O% us.;"l( Z-L. sha~l steel plate_

Fig7lre 4.10' Schematic illustration 0/ the difference in the failure mOOe due to Ihe
strengtJlI;1Iing

radius due to straining and utilizing of the steel reinforcement.

The difference in the failure modes of the unstrengtheued specimen, Ref-P-I.O%,

and that of the strengthened Sp<.'CiUlcns, Stcc!-Pl-1.0%, Steel-P2-1.0%, and Stccl­

P3-1.0% is sh()\1'll schematically in Figure 4.10 based on the observed crack pattern.

This was dead}' obsened for specimen Steel-P.'3-1.0%. Comparing the mode of

failure of specimen Ref-P-l.O% (Figure 4.11) and that of specimen SteeJ-P3-1.0%

(Figure 4.15), it is evident that the steel reinforcemem. was mobiliz.ed up to the slab

edge as the interfacial contw::t I'dtli concret.e was failCll. Reaching sueh a level of
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mobilization was noticed for the strengthened specimens rather than the ullstrength­

eued reference specimens. For the strengthened specimen Steel P 0.5%, more ductile

behaviour was noticed compared to the associated ullStrclIgthcned specimen, Ref~P-

0.5%. Figures 4.11 to 4.17 show specimens of this group at failure.

I'
\

.... ljl( t' \
,. I -( J

~:~~;-"
~)

SLF\'O t

Figure 4.11: Specimen Ref P 1.0% after final testing

4.3 Evaluation of the Ultimate Load Carrying Ca­
pacity

Theoretically, two possible modes of failure are expected, the pUllching-shear mode

and the flexural mode. Howcn~r, the strengthening technique changed the mode of

failure from punching shear failure to a flexural failure. The rigid zone created by

the steel platcs eliminated the pUllchillgshear failure; therefore, the flexural rcin-

forcemcnt was fully utilized as shown in F'igure 4.16. To verify the codes' provisions



Figure 4.12: Specimen Steel~P-O.5% after final testing

Figure 4.19: Specimen Steel PI 1.0% (lIter final testi11g

92
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Figure 4.1": Specimen Stul-P2-1.0% after final tating

with the experimental work, both the Bexural and punching shear capacities are to

be evaluated. The ultimate capacity of the centrally loaded slabs can be calculated

using Mailable design equations in bOlh the eSA and ACI codes (GSA :\23.3, 199-1.;

ACI 318, 1999). Both punching shear capacity and the flexural capacity can be eml­

uated at the critical section and the least of both determines the ultimate capacity

of the slabs.

For the calculatioll of the pUllching-shear capacity, the critical shear perimeter

is calculated assuming that the critical section is located at a distance lp(2 frOIll

the ccnter of the slab for the strengtlu:-ned specimens rather t!Jan (c + d}/2. The

critical section at (c + d}/2 determines the location of the critical section for the

unstcengthened specimens.

Hence; the punching shear capacit.y can be evaluated using the following formula:



Figure 4.15 Specimen Steel P3 1.0% after final testing

9'



Figure 4.16: Specimen Stw-P4 1.0% after final te&ting

Figure 1.li: Spe<'imen Steel- P;}----I.O% after final (<'Sting.
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(4.3.1)

\Vhere: Ao == 4dl~ alld 4d (c + d) in case of strengthened and unstreugthened

specimens, respectively.

The flexural capacity of the tested sJabs can be evaluated using the yield line

theory. A modification is made to the original equation prel:lcnted by Rankin and

Long ill which the flexural capacity was evaluated using the following equation and

considering (Rankin and Long, 1987);

(4.3.2)

Where Land (l are the length and $upport-to-support distance of the slab. Equa­

tion 4.3.2 is based on the virtual work done by the actions of I.he yield lines. For the

Ilre~lIt case, r,he column size dimension c is rep!oc-etl by the widtll of the steel plate,

Ip • This effective width could be assumoo as SilOWl1 ilJ Figure 4.11. Therefore, the

yield line flexural capacity of the strengthened slal.ll; can b(~ written as follows·

P'l.~ = 8!L1b (---.!.....- - 0.172)a-lp

M b is calculated III. the unstrengthcnoo section of the slab as follo'l'.'S

(4.33)

AI" ~ bd'(p-P') f, [,- 059 (p-2 f,] (43.5)

MlIl=P'!vd(d-d') (4.3.6)

Rcl;ults of this approach, ill terms of the flexural and pllncbiug-shcar capacities

are compared witil tile experimental work results in Table 4.2. It is indicated in this
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table that there is a good agreement between the experimental results and the simple

prediction of d.w eSA and ACI codes regarding the ultimate load carrying capacity of

specimens with 1,0% reinforcement ratio and the mode of failure of the slabs (CSA­

A23.3, J994; ACt-318, 1999). The predicted values of the ultimate load carrying

capacities for ~pecimelis that have a reinforcement ratio 0.5% wus underestimated

by the codes' prediction. The contribution of the steel bolts is introduced using

an empirical equation that Illodifies the ultimate load capacity calculated using the

codes' proviJ;ions. It is assumed that a minimum llllmber of 8 bolts are sufficient to

achieve tbe solid part around the column and therefore the critical section cali be

shifted to the steel plate C<ige as explained earlier. Helice, any steel bolts in excess

of the 8 holts Clill contribute to increase the load capacity. An empirical equation

basetl on the experimental t\)!;t TllSU!tS b derived to consider the effect of the number

of bolts. In this equation N 8 is the number of 00118 that should not be less dian 8

bolts. The corrected sLJear force due r.o the st.eel bolts is:

(4.3.7)

4.4 Summary and Conclusions

The effectiveness of two different configuration~ of steel plates and four different

arrangements of steel bolts were evaluatetl. The following conclusions are drawn for

the strengthened t,wQ--wll.ysla!»;

I The suggested dimensions of the rehabilitating steel piatt'S and the number of

the steel bolts were efficiellt as a strcnb'ihenillg technique. The steel plate side
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dimension should equal the column size plus four times the slab depth. A mini­

mum of Gmm is recommended for the plate thickness for efficient strengthening

A minimum of eight bolts is recommended with four bolts on the outer perime­

ter of the steel plate and four bolts on the inner perimeter of the steel plate

near the column

2. Both of the yield load and the ultimate load carrying capacity wcre incrcaseO due

to the strengthening process. For specimens with 1.0% reinforcement ratio, the

a\·erll.gc increase of the yield load is 50 %of the yield load of the unstrengthened

reference specimen. Moreover, t.he average increa.se of Ute ultimate load of

the slrengthenoo specimens over that of the unstrengthened specimen is 53%.

However, tlw increase of the ultimate loaJ of the specimens with separate st.eel

plates, Stcel-P1-1.0%, is evaluated at 36%. The use of separate steel plates is

not f(.'COillmenJeJ for tbe strengtlwning of two-way slabs

3. For the specimen with a reinforcement ratio of 0.:';%, the stfengtlJeliing COll-

tributed W increase the yield load and the ultimate load by IO.33%a.nd 45.19%,

respectively.

4. The minimum number of steel bolts tlmt is lIeweJ to ensure full interaction

between st,eel plates and slab is eight holts. However, an ill(;rease in the ultimate

capacity of about 5% was recorded due to increasing the bolts from eig:ht to 16

holts.

5. The steel plates with the suggested r1imen~ions and steel bolts with the sug­

gested configuration were wen utilized. The strain in the steel plates and uolts

indil':ated a complet.e composite action and int(~raction between cOllcrete and
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steelplales.

6. The strengthenoo spl"CimCIls were stiffer than the ullstrclIgthcnoo reference spec­

imen. Moreover, the average ductility of tile strengthened specimens was about

29% more than the ductility of the uilstrengthencd reference specimen

7. The CUCl-g)' absorption of the strengtbened specimens is greatly increased due to

the strengthening process. The average increasing of the energy absorption of

the strengthened slXldmclls over that of the ulistrengthclJoo reference spcdmcn

was about 100%.

8 A simple expression based on the equivalent concrete depth can be used to

estimate the shear capacity of the strengthened slabs. The yield line theory

shows a good agreement with tllc experimental results ill tenns of the ultimate

fiexural capil.City of the strelJb'thcliOO specimens.



Chapter 5

Behaviour of Steel Strengthened
Two-Way Slabs under Different
Types of Loading

5.1 Introduction

In tills chapter the results of a further application of the proposed strcugthening

technique are prcscntoo for the case of specimens 511hjoctoo to different loading COIl-

dilioos arc provided. The strengthening technique is compooed of the integration

of steel plate:; Hod steel bolts that work as a unit to enhance thl! performance of

two-way slahs against excessh~ flexural and shear stresses due to tile comhinatiol\ of

either centra/loads plus static or cyclic moment~. The strcngtheuing technique could

be adopted in multistory buildings that are subjected to unbalanced sunic or cyclic

moments in addition to the central gravity loads.

This eh.apter provides further details Oil the application of a strengthening tech­

nique u~ing steel plates and steel bolts of specimcns of Group 2. The t.ested slabs

of this group were subjected to a combination of either ccntralload and unbalanced

101
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static or cyclic moments. This group contains specimens the ullstrcngthenoo speci­

mens Rcf-~f-o.5%, Ref-M-1.0%, Ref-C-o.ii%, and Ref--G-I.O% an(1 the strengthened

specimens, Stecl-M~O.5%, Stccl-M-LO%, Sted-G-O.5%, Steel-G-LO%. The discus-

sian is divided into two maiu parts. The first part is a discussion Oli specimens

subjected to a combination of central load and unbalanced static moments and the

spconu part is a discussion of specimens subjected to II combination of central loads

and unbalmlccd cyclic moments.

5.2 Specimens Subjected to Static Moment

In the following discussion, the result:> of specimens in Group 2 that were subject.ed to

II. combination of central loads and uni>alallced static moment arc discussed in detail.

This group contains specimens Ref-M-D.5%, Ref-M-1.0%, Steel-M-0.5%, and Steel­

M-I.O%. For the centra.! load application, it was decided to apply the load under the

di;;placemellt control to pre\'(mt the sudden and uncontrolled failure at the maximum

load. Tile rate of applying the displacement for the central actuator was ranged from

0.25 tv 0.50 mill/min. III <:ase of the side actuators, the mai.n concern was to apply

equal and opposite latera.! loads uy each actuator at the same time. Helice, it was

d(;!Cided tba~ the loads of the side actuators be applied using a load <:ontrol. The rate

of applying the lortd for each of the side acLuators ranged from 0.75 to 1.25 kN/min

provided that clI.(;h aduator would apply the same load.The discussion is focused on

the load-ueftection characteristics, ductility, stiffness, steel reinforcement details, and

failure characteristics.
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5.2.1 Load-Deflection Relationships and Deflection Profiles

The values of the central load and central deftection were automatically ~ton)(1 in

(;ompllter digital files during the application of load llsing the LVDT's. Moreon~r, the

deflection profiles at nine different locations IlIT(mgoo as shovm in Figure 3.5 along

each slab's width were recorded \Ising dial gages. Figure 5.1 shows the complete

load-ocllection curves for specimens Ref :\'! 0.5%, Steel-;"I-o.5%, and SteeJ-M-l.O%.

Figure 5.2 combines tire load-defiection ClllTCS for those three spcdmens Ill; well as

specimens from Group I for L'Omparison

The load--clellection relationships for specimens Steel-M-O.5% and Stccl-:"'I-1.0%

arc presented within Ih-e stages. The first stage is the initial celltralloading stage until

50% of ultimate load carrying capacity of the associated unstrcllgthened reference

specimen while the second stage is the unloading of the central load 1,0 zero. The

third stage is the emltral reloading until a nllue of the celltralload of 97 kN. Stage

<I starts by maintaining the central load lc~-cl while applying the lateral load that

ej)llSl'!S a pre-specified unualanced moment.. Finally, l)tagtl five starts uy maintaining

the lateral load level while increasing the ccutralload gradually until failure occurs.

The first crack of each specimen ill this group was visually inspected aud the

correslxmding load was recorded as the first crad: load. Points Oil the cclltralload-

steel strain curves that correspond load values at wldch steel strains at a certain

location reach a value of 2000 ~ strain were cow;iderPll yield points. The location

at which the steel strain was measured was 170 mm from the center of the slab and

the value of 2000 II strain was suggested b..'lSC<1 on experimental observations of the

load-strain curve of a single rebur. Locations of the first crack loads are shown Oll

the loaJ-(}eflectioll relationships in Figure 5.1. The loaJ-(}efk..;:tion curves of the
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Figure 5.1: Laad-defieciion relationships of specimens Ref-M-O.5U%, StfXI-M 0.5%,
and SteehW-l.O%
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Pigure 5.2: Combined load-deflection relationships of spt'cimens subjected to static
moment and a oomp<lrnon with specimens of Group 1 and the relQading stage
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specimens of Group 2 are combiJled together in Figure 5.2

With regard to the load-deflection relationships, the slopes of the load-deftection

relationships within the pre-cracking stage are flatter thull the slopes of those of later

stages. For the unstrcllgthelled reference specimens, Ref-M-O.5% and Jkf-1I-I-l.O%,

as the load was increased, the central dellectioTl of a slab was incrcru;c(l. At the

same load level, the central deflection was increased as the reinforcement ratio was

dccreast.'<i

Tlw first crack was observed in the first stage of loading of the strengthened

spt!('.imeru; Steel-M-tl.5% and Stecl-M-l.O% at loads 90 kN and 85 k:\", respccth'cly. It

is clear from Table 5.1 and Figure 5.2 that the deflection values at the same load levels

arc decreased due to the strengthening process. A strcngtllCned specimen requires

higher load compared to the unstrengtheued specimen to achieve the same deflection.

Comparing tile specimen!\ subjected to static lDomtJut, combined with central load.

and tho;;c subjl'Ctcd to ctJutralloads orowup I, at the ultimate load, the strengthened

specimens Steel-M-l.O% aud Stccl-i\1-0.5% showed average deflect.ion values of about

5 % less than the average of those of specimens Sted-P2-1.0% and Steel-P--G.5%.

The deflectioll values that correspond to first crack, yield, and ultimate load carrying

capacity for each specimen are summari7.e.-1 in Table 5.1.

The deflection valuCti at CQui-spaced nine locations along the slabs width were

recorded at each load incremcnt. The \,alUl'll of the deflection at each load incremr.n1.

determine the dellectioll profile at that increment. Figure 5.3 shows the deflection

profiles of specimen Stee1~:-'1-0.5% and specimen Stecl-M-l.O%. It is shown in Figure

5.3 that tllC specimen Stcd-M-l.O% has less deformat.iolJ at the same load compared

to specimen Steel-:-'1--Q.5%.
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5.2.2 Crack and Yield Loads

The cracks for all specimens before strengthening were traced as the load wa.~ applied.

Load values that cau;;ed the first crack of te:;too specimcns before strengthening were

recorded. The first crack loads and the a.'lSOciated central deflection value:; for all

specimens before stren~,'thening are shown in TaGle 5.1. Specimens with a reinforce­

ment. ra.tio of 1.0% sliowed higher average first crack loads compared t.o those with a

reinforccmeut ratio of 0.5%.

Yield loads and the associated central deflection values for all specimens ate sum­

marizt-'<I. in Taule 5.1. The effect of the applied sta.tic moment. was dear on the vallie

of the yield load of specimen Steel-:\{-l.O%. This specimen showed lower yield load

compared to the specimen strengthem.x! using tile same steel plates and bolts config­

uration but loadod centrally only, specimen Stecl-P2-1.0%. Spccimen Stcel-P2-1.0%

showed a yield load value that was 1.45 times that of specimen Stecl-r,'!-J .0%. The

yield load of specimens Stcel-ro.'\-0_5% and St.Cl'!1 P 0.5% I.hat. was subjectt.'<I. to central

load only was almost the same.

5.2.3 Ultimate Load Capacity

As explained earlier in Chapter 4, due to the strengthening process, specimens Steel­

P3-1.0% and Steel-P-O.5% showed an increase of about 54% and 3G.5% in the Hl-

timate load carrying capacity over that of the associated unslrengthened reference

specimens, Ref-P-1.0% and Ref-P--O.5%, rc-~pectively. For SpI.'Cimens subjected to

static moment as well as central load, the increase of the ultimate capacity was more

noticeable. Due to the strengthening process, specimen Su..'CI-M--(J.ti% showed more

tlian twice ~he ultimate capacity of the reference specimen Ref-M-O.5%. Results of a
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previolls investigatioll indicated that the strengthened specimen Steel-M-l.O% gained

an increase in t.he ultimate capacity of 88% over that of all ullstrengthenerl reference

specimen with the same dimensions and reinforcement ratio (Marzo\lk et a!., 2000a).

Regarding the influence of the reinforcement rntio on the ultimate load carryiug

capacity of the ullstrengthcned reference specimens, an increase of 83% was observed

for specimen Ref-.\'!-1.0% over that uf SpecilliCIl Rcf-J\'!--Q.5% due to the increase in

the reinforcement ratio from 0.5% to 1.0%. Morc(wer, the strengtbened specimen

Steel-M-l.O% showed about 52% increase in the ultimate load carryilJg capacity over

that of t.he strengthened specimen Steel-M-Q.5%.

The ultimate load carrying capacities of the strcllb'thcned specimens were affected

by the applied unbalanced static moment. As shown in Cbapter 4, the strength­

em.>J specimens Stecl-P2-1.0% and Stecl-P-O.5% showed load ca.rrying capacities of

about 1.25 and 1.18 time those of the specimeus Steel-ro.l-1.0% and Stcc!-M---{).5%,

respectively.

5.2.4 Stiffness

As explained in Section 4.2.5, the stiffness of a slab at any loading point ill the slope

of tbe loaJ-defieclion curve at that. point. The initial stiffness, helice, is the tangent

to the central load---ceutral deflection curves. The initial stiffne!l8 is ca!culau,>J at !.he

uncracked stage of loading, i.e. Ilt the first stage of celltralloading and before applying

the lateral load t hat causes the unbalanced static moment. It could be expected that

the effect of the reinforcement ratio to be minor. The stiffness was calculated based

on ea.rly readings of the load and de!lC\.-'tion values at which specimens is in the pre-­

cracked stage.

The initial stiffness values of all the tested slabs as well as the initial stilfuesB
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values of the strengthened specimens are l,abulatoo in Table 5.1. It was evident that

the strengthened slabs showed an increase of the stiffness over that of the unstrength-

ened slabs. Also it was shown tllat the wriatioll of the reinforcement ratio of the

llIlStrcngthcncd specimens did not have Ii profound effect on the stiffness of the slabs.

On the other hand, the strengthening impro,.,y[ the stiffness of the sjx>t:illlcus. Spl'C­

imen Sted-M-O.5% sl.towoo an increase of 73% of the initial stiffness over that of the

associated ullstrcllgthcll('([ reference specimen, Ref-M-O.5%.

The application of the unbalanced static moment had an effect on the stiffnes.'l of

spft:imens. Due to the application of the unbalancP.ll static moment, the stiffness of

specimens subjected to static moment was lower than those of the central loads only

at the same load levels as may be recognized from Figure 5,2.

5.2.5 Steel Reinforcement Strain

Measurements Wl1rll made to dl1termine the steel strain distribution at selected radii

from slabs centers. The locations of the strain gages were selccted to track the

variation of the steel strain with t.he distance from the center of the slab. Figure 3.11.b

shows the main reinforcement strain gages distribuLion for specimens subjected to a

combiuation of central load and static moment. Figure 3,11.d shows the distribution

of the compression reinforcement strain gages. The closest location of measuring

the steel strain is at a location (1) that is 170 mm from the centl~r of the slab.

Measurements of the strain at that location is of a spccial importance since it, was

u.-.J to define the ductility of tested specimens as diSl.:ussOO in Section 5.2.6. Figure

5.4 shows .samples of tbe typical steel strain distribution at different locations (for

spt-'Cilllens Sted--"I-O.5% and SteeJ-~ l.0%). Th(~ values of the strains are recorde<l

at local.ions shown in Figure 3.11.0 and 3,11.d. As the distance from the location of
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a strain gage to the ccuter of the slab was increased, the strain gages readings were

decreased

Strain distributions at location (1) for specimells Ref-M-{l.fi%, Stcd-.\f-Q.5%,

and Steel-M-l.O% were combines together and shown in Figure 5.5. It is clear t1mt

a stiffer behaviour is shown for specimcllS of higher reinforcement ratios. In ad­

dition, strengthened specimens sho"'"L>J stiffer behaviour compared to the associated

unstrcllgthened specimens. The effect. of the unbalanced static momeIlt 'I'M noticeable

on the strain distribution at Location (1) for Specimen Ref~M-o.5%. The location

of strain gage (1) is shown in Figure 3.11.1>. Table 5.1 shows the steel strain values

at location (1) for the tested specimens subjected to static moment at the ultimate

load.

5.2.6 Ductility and Energy Absorption

As explained earlier, displacement ductility is definf'(l as the ratio between the deflec-

tion at the ultimate load and that at the yield load (Geng et aL, 1998; Marzouk and

Hussein, 1991a; :vIarzouk et aI., 1996). The ductility indicel3 are summarized in Table

5.1. Strengthened specimens showed more ductile behaviour than unstrengthened

specimens. The ductilil,y of the strengthened specimcu Steel-M-O.5% was ahout 2.25

times that of the as:;ociatoo Ullstrengthened reference specimen, R.ef-M-o.5%.

The definition of the energy absorption is the area under the load-deflection curve

of a tested specimen. A considerable increase in the energy abwrption values was

observed due to the streugthening. Specimen Stccl-M-O.5% showed energy absorption

of about 8.4 times that of the associated ullstrellgthcned specimen, Ref-M-O.5. it was

noticed that sp(.'Cimcns suhjocted to unbalanced static moment gained more energy

alJsorption ,'alnes than those subjected to central loads only. Table 5.1 shows the
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Figure 5.[;: Lood-steel reinforcement strain relationships at location {1J

values of the cllergy absorption for specimens subjected to static moment

5.3 Specimens Subjected to Cyclic Moment

The following discussion focuses on the unl>alanL-etl cydic llJolllcut-drift relationship,

cyclic ductility characteristics, and cyclic stiffness characteristic of specimens SHU­

jccted to 1I combination of cemral load and cyclic moment.

5.3.1 Cyclic Moment-Drift Relationship

Figure 5.6 shows the relationships between the cyclic moment and the aswciated drift

fOf the strengthened specimcus subjected to a combiuntioll of central loads and cyclic

Specimen Steel-e-l.O% achieved unbalanced cyclic moments of 190 k.!\.m and
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-160 k::\.m tilat oorra;pondcd to lateral drift of 7.92 % and 7.93%, respectively, after

26 cycles. The unbalanced cyclic moment drops to 74 kN.lIl aud 49 kN.m when the

drift ratios reached 6.08% and 5.56%, respec&ively. Those values of lateral drifts were

the maximum drift that could be readIed by the testing actuator

Specimen Steel-G-O.5% achieved a value of unbalanced cyclic moments of 145

kN.m and 134 k.\".m I.hat rorreHponded to lateral drift of 7.83 % aud 7.94 %, rl}­

spective!y, after 26 cycles. The unbalanced cyclic moment drops to 143 kN.m and

108 kN.1ll when the drift ratios reached 9.30% and 8.66%, respecti\;ely, at which tile

specimen failed

No distinct points Oll the unbalanced cyclic moment-drift relationship to define

the yield point. It was noticed that the slope of the unbalanced cyclic lIloroent-drift

enve!ope was gradually decreased indicae.ing the weakening of the tcstoo specimens

until failure.

In comparison with the unstrcugthencd reference specimens that were tested in

the same lahoratory with the same conditions aud material properties (Marzouk et aI.,

2001), the unbalanced cyclic moment resistance ofa strengtIlCned specimen was about

15% higher than that of the corresponding unstrengthelJoo specimen regardless the

reinforcement ratio. It lias been reported that the unstrellgthenlX1 sp<.,<;imem; with

reinforcement ratio of 1.0%, Ref-G-1.0% showed higher unbalanced cyclic moment

resistance of about 25.5% than that of specimens with rcinforcemcnt ratio of 0.5%,

Ref-G-O.5% (l\'lar,(ouk et al., 2001).

The most significant finding is that, a strengthened slab can undergo a lateral drift

as high lIS 7G% Iilore tuau the associated lInstrengthenoo specimen. :'Ioroo\l:~r, the

strengthened specimens had more drift cycles after reaching the ultimate capacity
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than that of the unstrcngthened specimens. The unstrengtheucd slab to column

conner-tiom; can resist a lateral drift ratio of about 4 to G% before failure (~larzol1k

01 aI., 2(01). On the other hand, the strengthened specimens resist a drift ratio

of almost 8% before failure. Considering the actual building dimensions aud safety

consideration, illost of the building codes limit the inter·story lateral drift ratio to

2% for most of structures except for hospitals. ,",or a slab to column connection

strengthened using the suggcstoxl technique, the limit of 2% conkl be safely increased

to 3.[;% if all otber circumstances and factors remain rue same.

5.3.2 Cyclic Ductility Characteristics

The lateral displacement dUCtility of a slab-column connection is defined as the ratio

of lateral displacement Ilt failure to that at the yield of the COflIlection. The maximum

peak vailles of the cyclic moment for the test<.-d slabs arc clear On the cyclic moment-

drift relationship. The yield point of the slab-to column eonnediou subjccted to

cyclic moment is not tllat straightforward to be identified since it depends on the

overall behaviour of the connection. The latewl load-drift relationship is not unique

since yield spreads across the slab width gradually (Pan and ~{oehle, t980). An ap­

proximate method was developed to overcome the un<.'crtainty of identifying the yield

point of slab-column connections subject,ed to reversal lateral cyclic drift (Pan and

Moehle, 1989). The procedure of tile oJet.ermination of the yield and the displacement

ductility of a slab to column cOllne<:tioll is shown in Figure 5.7. It is based on COII­

structiug a se<:ant through %the ultimate unbalanced cyclic moments that intersects

l,he unbalanced cyclic lIloment-drift envelope with origin point (0) at (A). Denoting

the interse<:tion of line (OA) and the horizontal line at the ultimate unhalaIKetl <'J'die

moment level as (ll), The intersection of the vertical line from (B) and the drift axis
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Figure 5.7: Evaluation of the displacement ductility for specimens subjected to cyclic
moment

defines the drift at the yield of the connection.

As shown in Table 5.2, specimens with reinforcement ratio of 0.5 %, Ref-G-O.5%

and Steel-0-0.5%, showed 57% and 24 % higher ductility V'.dues than specimens

Ref-C-l.O% and Steel-C-l.O%, respectively. In addition, the strengthened specimen,

Stcel-e-.-o.5% showed 21 % less ductility than that of the associated unstrcngthcncd

reference specimen, Ref~e-O.5%. Also, the ductility of the strengthened specimen,

Steel-e-LO% and that of the unstrengthened reference specimen, Ref-G-l.O% were

almost the same.

5.3.3 Cyclic Stiffness Characteristics

The peak-to-.peak connection stiffness is well defined as the slope of the line connecting

the peak-to-.peak unbalanced cyclic moment points at a load cycle of the unbalallced



cyclic lJIoment-drift relationship (Emam et aL, 1997). The ratio of stiffness at a

drift corresponding to the ultimate unbalanced cyclic moment and that at a drift of

0.5% indicates the stiffness degradation us shown in Table 5.2. The average value of

stiffness of the strengthened specimens was 25% lower than that of tlw ulistrengtheneJ

reference specimens.

5.3.4 Reinforcement Steel Strain

Measurements were made w dcwrminc the steel strain distribution at selected radii

from slabs centers of specimens Steel-e-o.5% and Stccl-C~1.0%. The locations of

the strain gages are shown in fignre 3.11.b and 3.lt.d. Fignre 5.8 shows a typic.ul

stress-strain distribution at different locations for a strengthened specimen (Specimen

Steel-G--{).5%). Generally, as the unbalanced cyclic moment is increased, the stntin in

steel reinforcement is increased with accumulated irrecoverable strain. This indicates

the plastic irrecoverahle strains due to the increasingly repeated C,)·clic moment.

5.4 Failure Characteristics of Tested Specimens

The tension reinfon:cment of a spt'Cimen may reach the yield point at locations around

the column and far from the center of the specimen with what is so called "punching

radius". Larger punching radii are associated with the flexural failure mode tllan

thoRC associated with pUllching-shear failure mode (Marzouk et al., 20m; Osman

ct a!., W98).

Figures 5.9 to 5.13 show pictnres of l.ested specimens at failure. It is shown ill

Figure 5.9 that the mode of failure of tile ullsuengtlwued fief-P-O.5% was classified
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as flexural ductile failure. Due to the strengthening process both specimens Stcel­

M 0.5% and Steel-.\t-l.OO£, showed more flexural ductile behaviour compared to the

asIlOCiated illlStrengthcned reJerence specimens. The punching fadius was increased

due to the contribution of the steel plates. Failure modes of specimens Steel-~I-l.O%

and Steel-M-{).5% are shown in Figures 5.10 and 5.11, re8pt'Cti\'t'ly.

The ~·t-rellgthened specimens subjected to cyclic 1Il0lllCilt in this group, specimens

Steel 0--1.0% aud Steel-C 0.5% failed ill the column portion (IS shown in Figures

5.12 and 5.13. The ~trellgthclJillg process illlprovoo tllll slab part of the conucctiOll

forcing the failure to occur in the column unlike the failure mode experiencoo in

the refereuce specimens Il.ef-e-l.ifib and Ref-e-o.5% (Mul'2ouk et Ill., 20(1). It is

essential when dcsigniug slab--t:olumn/beam--colullln connections that plastic hinges

be formed in the slab/beam rather than the column. This fact does nOt conuadicL

with the finding tbat thc slab ill the present work wa.~ strengthenoo to a limit that a

plastic hinge, or failure, oocurrOO in tbe column. In fact. this is an indication of the

SUooes!>fu! sLrengtheDing I.eChniqlIe, especially when emphasizing the finding that the

column drift was increased by ;6%.

5.5 Code Verification of Static Moment Specimens'
Results

For two-way slabs subjecu....t to cclltral load and static momellt, the shear perime­

ter is aJ;..~umed that the perimeter of critical section 00 ]ocatetl nt distance 11'/2 for

strengthened specimcn rather than (c + d)/2. Verification of several Ca.selJ of tile

llllsucligthened spe<'imCnl; WM rCJXIrted ill previous research work (MarzOilk et 11.1.,

2OOOa).
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The frac~ion 1~ carl be calculated as foUows;

1
"r~=1-1+% rr;=O.4

VI;
(5.!:i.l)

Under combined load anti moment tra.nsfer, the shear stresses on the critical slab

sections are computed uc('{)rJing to til(! equation;

Vl,2 = f ± "I~:lu, ('52)

where; ACJ = 4 d I" ill case of strengthened specimen. According to CSA and the

ACI cod~' provisions (CSA-A23.3 IM4, ACI-318 1999), the larger shear stress til

wust not exceed the nominal shear sire;s, v~. The flexural capacity M. in this case is

calculated at the unstrengthened section of dlt~ slab within slab width equals I" which

value is almost the same as c + 3 II as used ill as follows;

Vulu(.'t; of .Hr and the portioll of ultimate measured moment (1 -"tv) At" divided

by flexural capacity lvI, are listed in Table 5.3. The maximum shear ant! moment

trausfcrred to the column achieved ill the tests simultanoously prior to failure, Vtell

and M" are compared with the ACI/CSA codes prediction. V< is tbe ultimate strength

for shear transfer only, and .lI.fo is tbe ultimate strength for moment transfer only. The

value of lifo is calculated as follows (CSA-A23.3, 1994; ACI-318, 1999);

(5.5.4)

The sum of the two non dimcnsional quantities, Vte../v" and 1\1,./1110, represents

the non-dimensional sbear strength Vr (k.ll/V:n <o.I<} as sllmmari~ed in T-ahle 5.3. BotiJ
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specimens Stccl-M-o.5% and Steel-M-l.O% failed in flexure The cakulatco ratio

\-7'(t<>Ii/VT{""k) in Table 5.3 is less than l.0 for both specimens Sted--M-O.5% IIJld

Stecl-tl'I-I.O% indicating that these two specimens in flexure. HCtl~'C the code predic-

tion of the failure mode matches the experimental findings for strengtbenoo ~pedmel\s

Steel-M-Q.5% and Stccl-M-l.O%.

The ratio (I - 1.) Mu shown ill Table 5.3 exceeds ullity for specimen Steel 1\1­

0.5% that confirms the codes for that specimen to fail in flexure. Hov.1wer, the ratio

(1- 1.) Mu for spochnen Su~I-:\{-l.O% is lower than one. Tlw dilforeue<! between

test results ami code f1.,tjuiremculs could be attributed to that the code shear stress

model overestimates the portion of moment tram;ferrcd by flexure. ACI and eSA

codes' calculation of tho? shf!ar force carried by concrete, Vc~hould be similar. Yet since

the material and load factors are omitted, the calclilations showed minor discrepancy.

5.6 Summary and Conclusions

The following conclusions arc applied for two-way slabs strengthened with steel plates

and steel bolts using the describL>O. technique.

l The strengthened specimens subjected to central load plu~ static moment with

reinforcement ratios of 0.5% and 1.0% showed ultimate capacities of 2 and 1.88,

respectively, times those of the as50ciated unstrengtllened reference specimens

2. The strengthening technique in the C1J.Se of central loads and static moment

was more eflicient than in ca;;e of central loads only. The gain in ultimate load

carrying: capacity in case of cClltrailoads plus static moment was about 3 t,imes

tha~ in case of central loading only
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3. The strengthened specimens showed an average of 72% increase in the initial

stiffncss over that of the unstrengthen~.!(l referellce spedmens

·1. A considerable increase in the energ~' absorptioll values lI"as observed due t.o the

strengthening for specimens subjected ceutralload pillS sl.atic moment over that

of the llllstrengthened reference specimens. Specimen with reinforcement ratio

of 0.5% showed energy absorption of about 8.4 times tbat of the unstrcngthened

rcfCfCncespccimen.

[; For specimens subjected to a combination of central load and cyclic moment,

the c~'c1ic moment resistance of the StrCllgtl.umeJ slabs was about 15% higher

than that of the unsirt>-llgthened refl'rcnce specimen regardless the reinforcement

ratio.

6. For specimens subjected to a combination of central load and cyclic moment,

a strengthened slab can undergo a lateral drift capacit}' 76% higher than that

of the associated unstrcngthened reference specimen. i\'1oreover, the strenbrth­

eued specimens had morc drift cycles after reaching the ultimate load carrying

capacity than that of the llustrengthened referencc specimens.

7. A simple approach basc<l Oll the CSA and ACI codes is proposed to pn.odict the

mode of failure of strcugthencd specimcns subjected to central loads and static

moments.



Figure 5.9: Specimen Ref-/'I1-0.5% after final testing.

Figure 5.10: Spccimen Steel /'II 1.0% after lInal testing.
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Figure 5.11; Specimen Steel-~I--o.5% after final testing.

Figure ;).12: Specimen Steel C-1.0% after final testing.
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Figure 5.13: SpC(;imcn Stcel-C- O.::i% after final testing.



Chapter 6

Behaviour of Two-Way Slabs
Using FRP Materials

6.1 Introduction

lncreasing attention has been placed to the applications of the advanced composite

materials especially glass fibre reinforced polymer (GFRP) laminates and carbon fi­

bre reinforced polymer (CFRP) strips ill the structural engineering field. Extensive

applications of tbe FRP materials as new construction materials have been accom-

plished recently. FRP materials are lightweight, high strength, nOll-corrosive and

nOll-magnetic nwtcrials. 8y \·jrtue of the advantages of these materials, there is a

wide range of recent, current aud potential applkatiolls of th<.'$C Illaterials that cover

!loth new and eXisting structures.

FRP materials have been used in many of the structural projects and strcngth-

clling applications. These composites ha,-c bccn used for strengthening reinforced

concrete beams, columns, and one-wa}' slabs. Tile flexural capacity of concrete beams

is proven to be increased by bonding FRP sheets, strips or laminates to the tension

side. The ease of ilandling PRP materials providcs the means to the extcnsion of

dleir applications for strengthening other structural element.
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In this chapter the results ofFRP-strcngthcllcd two-way slab5 arc introduced. the

spedmCllS of Illis group are divided into fiexural-strengthpnf'ri slabs, and pUIlching

shear-strongthcncd specimen

6.2 Test Results of Specimens of Group 3

The results of speeimcns of Group 3 are discussed in detai!. This group is divided

according to the pllrp~ of the strengthening into two divisions. These divisions

arc FRP flexural-strengthcning specimens and fRP shear-Sl('cngthClling specimens.

III tile following sections, the l:\ttcr wiU he referred to as FRP shear-strcngtlJClling

specimens. For each set of specimens, there are associated ullstrengtlJeuoo reference

specimens. The FRP f1exural-strclJgthening set of specimens contains specimens Ref­

P--{).35% and Ref-P' -0.5% that represent the unstrengthened reference specimens

Also, this set includes specimens GFRP-F'--{l.35%, GF'RP-F--{l.5%, CFRP-F--{l.35%,

and CFRP-F--{).5% that represent the strengthen...'<l specimens. The FRP shcar­

strengthening set of specimens contains specimen Ref--P-l.O% that represents the

llnsuengthenod reference specimens and specimens Cfo'RP1-S-LO%, and CFRP2­

5-1.0% that represent the strengtlJened specimens. A complete description of the

specimens title conventions are introduced in Chapter 3. The following discussion is

related to tile structural behaviour in terms of the crack, yield, and ultimate loads;

load---<ieflcction characteristh:s; ductility; stiffness; reinforcement steel strains; and

failure characteristics. In the following section of this chapter, the ultimate load

t'llrrying capacity will be referred to as the load capacity.
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6.2.1 Crack, Yield, and Ultimate Loads

The cracks for all specimcnR before strengthening were traced as the load was applied.

Cracks of each specimen in this group werc visually inspoctoo and the corresponding

loads weTC recorded. Specimens with a reinforcement ratio of 0.35% showed the lowest

first crack loads. The first crack loads and the as;ociated central defk'Ctioll values for

all specimclls before strengthening aTC shown in Table 6.1. The highest load causing

the first o:;raek was observed for specimens with reinforcement ratios of 1.0%. The

average first crack loan of specimens with 11 reinforcement ratio of 0.5% was higher

than that of Splx:imens with a reinforcement ratio of 0.3,)% by about 17%.

Due to Oexural-slrengthening, specimens CFIU'-F-Q.35% and CFRP-F-{).35%

showed yield loads tllat were 1.96 and 1.91 times that of tlle ulistrengthened reference

specimen, Ref-P-O.35%. In addition, specimclIs GPHP-F'--Q.5% and CFRP-F--0.5%

showed yield loads that were 1.88 and 2.47 times that of the Ulistrengthened reference

specimen Ref p' 0.5%. On r.he other hand, there was not a clear effect of the shear­

strengthening on the values of yield load of specimens CFRP I~S~1.0% and CFIlP2~

5-1.0%. The yield loaUs and the associated cenr,ral deflection values for all specimens

are shown in Table 6.1.

The FBI' f1exural-strengthening specimens showed highlJr load to.pat;ity ovcr that

of the corresponding unstrengthenl..'{) reference specimens. Specimens CFRP-F-o.35%

and GFRP-F-fl.35% showed au increase of 44.4% and 38%, respectively, in the load

capacity over that of the unstrengthenecl refercnce gpecimell, Ref-P-o.35%. More­

over, Specimens CFRP-F-o.5% and GFRP-F-o.5% showed an increase of 36.4% and

2&.8%, respectively, in the load capacity over that of the Ullstrengthelled reference

spedlllell, Ref-P' --0.5%. The load capacity of specimen Ref-P' -0.5% was 1.:l2 times
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that of specimen Ref-P-0.35%.

FRP shear--strengthening ~pecimens CF'RP1-S-l.0% and CFRr2-S~I.0% gained

an average increase in the load capacity of 9.0% over that of the lJustrengtheneJ

reference specimen, Ref-P-1.0%. Consequently, FRP materials arc not cfficiclit in

shear-strengthening for two-way slabs as much as in FRP f1exuml-llt,rengthening

This could be attributed to the fact that FRY materials have a weak out.-of plane

resistance compared to that of the in-plane. Comparing specimens strengtbened using

FRP materials and t1JOse strcngtbeucd lIsiul{ stC\!1 plates as prescntcJ in Chapter

4 and 5, specimens strengthened witb steel plates significantly ,'\ained higher loads

thall the FRP shear-strengthelling speeimelis. Specimen Steel-P2-1.0% gained an

increase of 31,36% and 51,76%, as presented in Chapter 4, o\'er that of the FRP shcar­

~tmngthcnillgspeciJJlensCFRPl-8-1.0% and CFRP2-S-1.0%, rcspecti,·ely. Table 6.1

summarizes the ultimate load carrying capacity of all specimens

6.2.2 Deformational Characteristics

The centralloaJ-central deflection relationships were stored using the data acquisition

system described in Chapter 3. Moreover, the deflection profiles at nine different

pooitiolls along each slah's width as shown ill Figures 3.4, 3.6, and 3.14 were recorded

using dial gages,

Complete load--{leflectioll rc1ationshipsof all the teste<! specimens in this group arc

showil in Figures 6.1 and 6.2. For the strengthened specimells of this group, the load-

deAectioll relationships are prf>.senteJ within the initial ceutralloading, unloading, and

reloading stages. Locations of the first crad: and yield loads are shown in Figures G.t

and 6.2 using the l',ymhols (~) and (0), respectively.

Points on the ceotral load-steel strain curves that correspond to load values at
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which steel strains at a certain location reach a \'a!ue of 2000 tlStrain werc considered

)·jcJd points. The location at which the steel strain was measured was 170 mm from the

center of the slab Il.'l explained earlier in Chapter 4 and Chapter 5. All of the ccutral

load-central deflection curves of the specimens of Group 3 are combined togetllcr and

shown in Figure 6.3. The load---<leflectiou curve of specimen Stce1-P2-1.0% is included

in Figure {;.3.c for cnmpari.-;on purposes.

The deflection values at nine equi-spaced locations along the slabs width were

recorded versus the load. Figures 6.4 alld 6.5 show the deflection profiles of till'

specimens of Group ;·t The deflection values that correspond t.o first crack, yield, and

ultimate load for each specimen are summarized in Table 6.1.

Load-Deflection Relationships

The variation of the deflection values against the load is largely dependent OIl the rein­

forcement ratio. The average value of the deflection at fiTl)l. crack loads for specimens

with reinforcement ratio of 0.35% is 1.18 times that of specimens with reinforcement

ratio 0.5% and 1.[;2 times that of specimens with reinforcement ratio L.O%.

For the FRP flexural-strengthening specimens, at the SlIme load level the tangents

to the load-deflection curvet'; were higher than those of the assodated unstrengthenPd

specimens Ref P 0.35% and Ref-P·-{).5%, respectively. Moreover, due to the brittle

nature of the fRP materials (strips or laminlltes), the overall load-deflectioll rela-

tionships of the FRP f1cxural-strengthcning specimens showed stiffer behaviour.

The deflection values at the ultimate load of strengthened specimens GFRP-F­

0.35% and CFRP-F-o.35% weTC 0,76 and 0.50 that of the associated ullstrengtheucd

reference specimen 1lP.f P 0.35%. In addition, the deflection values at the ultimate

load of strellb'thelloo specimens GFIlP-F-0.5% and CFRP-F'-0.5% were 0,83 and 0.64
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times that of the aS50ciat,,>J lln~t.rengthcncd refereuce specimen Ref-P'-0.5%. These

findings agree with the fac.t that FRP flexural-strengthening reduce! the deformations

of the strengthened specimens. This behaviour is more obvious when the ro:;ult8 of

the ductility of the tested specimens arc discussed.

The deflection values at yield of strengthened specimens GFRP-F-Q.3,3% and

CFRP-F-O.35% were about, 1.84 and 1.4 times that the associated ulJstrengthened

reference spe6men Ref-P-O.35%. This result may be ill contrast, at the fin;t look.

the fact that FRP-strcngthelloo specimens show lower deflection wllues compared to

the associated unstrengthened specimen~. Actually, this fact is satisfied since at the

same load level the unstrengthelJed specimen Ref-P-Q,35% showed more deformation

than allY of the strengthened specimens GFRP--F~O.35% or CFRP-F-0.35%. These

specimens showed higher deliection values at the their yield load since these values of

the yield loads arc increased due to the strengthening. Also, the deflection values at

yield of strengthened specimens GFRP-F-Q.5% and CFRP-F-Q.5% were abauL 1.14

and 0.88 times those of the associated unstrengthened reference specimen, H.ef~P'~

0.5%.

Regarding the FRP shear-strcngthening specimens, specimens CFRPI-S-l.0%

and CFRP2-8-1.0% had dcflectiall at yield 0.78 and 0.7, respectiwly, times that

of the associated unstrengthened reference specimen Rcf-P-l.O%. At ultimate load,

sped mens CFRPI-S-l.O% and CFRP2-S--1.0% had deflection at the ultimate load

1.09 and 0.09, respectivel}', times that of the associated unstrengthcned reference spec­

imen Ref-P-l.O%. This indicated that the contribution of CFRP strips and CFR?

laminates for shear-strengthcning was random and not effective. It is clear that FRP

materials are more effective for flexural-strengthening than for sIJear-suengthening.
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Deflection Profiles

Figures 6.4 and 6.5 show the deflection profiles of all tile specimens of Group 3 at nine

cqui-spaced locations along eoch slab's width. The variution of the deflection !-'fotile

was largely dependent on the original reinforcement ratios of the slabs as well as on

whether the slabs wen~ strclIgthenoo or not. Specimeu Ref-P' -0.50% needs morc load

to reach the same level of deformation as that of specimen Rcf-P-o.35% as shown in

Figures GAn and G.4.b

For tile FRP flexural-strengthening specimens, there was a clear illflw~nce of the

presence of the strengthening FRP material Oil the deUection profiles of the strength-

cned specimens compared to that of the assoeiated unstrcugthencd reference speci-

mens. 11lC brittle nature of FRP materials restrains Ute overall deflection prollle of the

strengthened specimens. This results in a stiffer allliless deformable behaviour of the

FR.P flexural-strengthening specimens, GFRP-F-O.35%, GFRP-FO.5%, CFRP-F­

0.35%, and CFRP-F'-D.5% compared to specimens Ref-P-D.35% and Ref P'-O.5%.

Comparing the FRP flexural-strellgthening specimens with reinforcement ratio of

0_3[;% and those of reinforcement ratio 0.5%, it is shown that specimens with rcin-

foreement ratio O,iJ% lJeed more load to reach the same deflection level lL~ those of

specinwns with reinforcemelit ratio 0.35% as shown in Figures 6.4 and 6.5.

For the PRP shear---i>t.ren~t.heningspecimens, there was llot a cleM effect of the

contribution of rhe strengthening materials on the overall deflection profile of the

strengthened spl'Cimens compared to that of the 8SSO(:iatecl ullstrengtllcned reference

specimens a:; shown in Figures 6.5.c and 6.5.d. This indicates that it is ineffective to

usc FRP materials ill s!Jcar-strcngthclling of the two-way slab system.
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(a) CFRP-F'-O.Jn%, Pm•• =31H kN

-,j()() -200 0 200 olOO 000
Disl8naltom.w."""*!,,",,j

(b) CFR,P-F-o.35%, Pm•• =~SO kN

-J
i~ ~~ i~

11 ~~ I'r r:~ :1£= .. =0.1
-800 -600 ~ -200 0 200 400 IlOO eoo -110O -.aM _?<Y> n '"

OiII_In:In>~IOb_Mr(mMl

(c) CFRPl 5 1.0%, Pm.. .,4(H kN (d) CFRP2--S-LO%, I'",.. _4'!:> kN

Pigure 6.5: Dejiecliolil/rojileljor CFRP-F-O..95%, CPRP-F-0.35%, CFllPl-S-l.0')6, lind CFRPe 5-J.O%



6.2.3 Stiffness Characteristics

As explained in Chapters 4 and 5. the stiffness of a slah at any loading point is the

slope of the load-deflection cun'e at that point. Table 6.1 shows the initial stiffness

values of all specimeus.

The FRP flexural--strengtl.wning specimens showed higher initial stiffness o\"er that

of the uustrengthenoo reference specimells. The flexural--strengthening specimens

sho\\'Cd higher initial st.iffness o....er UHlt of the reference specimens. The average

initial stiffness of specimens CFHP-F-O.35% and GFRP-F.....().35% was abOllt. 2.37

times that of the rderence spccimen, Rd·-P-{I.35%. Moroo\"er, the average initial

stiffness of specimens CFRP-F-Q.5% and GFRP-F-Q.5% was about 1.99 times that

of the reference specimen, Ref-P'-Q.5%.

Punching--slwar-strengthening spedmens CFRP1-S-1.0% and CFRP2-S-1.0%

gaitlCd an average increase in the initial stiffness of 9% over that of the reference

spedmCll, Ref-P-LO%. The specimens strengt,hened using L-shaped steel plates

gained all average inerease in t1H~ initial stiffness of 70 % over the awrage of that. of

the FRP shear--strengthening specimens.

6.2.4 Steel Strain

Mcu.o;urernents were made to determine the steel strain distribution al. selected radii

from centers of the slabs. The locations of the strain gages were selected to track the

variation of the steel straill with the distance from the center of the panel. Figures

3.11.a and 3.11.c SIIOW the mailJ reinforcement strain gages distribution for specimens

subjected to cenl,ral load wit.h reinforcement rat.ios 0.5% and 0.35%, respect.ively.

Figure 3.11.d shows the distribution of the compression reinforcement strain gages.
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AE. explained earlier in Chapters 4 and 5, locations of the strain gages \\we adopted

according t.o previolls re::;ea.rch workls 011 slabs carried at Memorial University of New-

foundlulltl with the same concrete dimensions for any po.';.')iblc comparison (Marzollk

et al., 2000a; .\{anouk et aI., 19983). The closest location of measuring the steel

strain is at a location (1) that is 170 10m from the center of tllc slah. Measurements

of the strain at that location is of a special impOitance since it was used to define the

ductility of tested specimens as discussed in Section 6.2.6.

Figure 6.6 show salllpies of a typical strain distribution at dilferclIt locations for

a specimens of flexural und punching shear strengthening. Obviously, strain gages

readings reflected the locations of the gages from the pauel center. As the distance

from the strain gages location to the panel center was increased, the strain gages

readings were decreased.

Figure G.? that combines the steel strain distribution for all specimens of Group

3 at location (1) of Figur(.'l; 3.11.a. and 3.1 I.c. as showu in Figure G.7.a, a stiffer

behaviour was shown for tim strengthened specimens compared to the as..<;Qciated un­

strengthened specimens for flexural-strengthening specimens. III addition, specimens

with higher reinforcement ratios showed stiffer behaviour compared to the equivalent

specimens of lower reinforcemcnt ratios On the other hand, The pllm:hing shear~

strcngthening specimens showed a different oOscrvatioll as shown in Figure G.7.b. The

punching shear strengthene<1 specimens showed lower stiffness COlllpared to lhe refer­

cnce ullstrengthcuoo specimens. This is dlle to the stress concentration effect around

the locations of bolts. In addition, there was not lIluch confinement to enhance the

behaviour of these specimcns and hence stiffer load steel strain distribution.
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Figure G,7: Lood-steel reinforcement strain relationships for all specimens of Group
Satlocatir>1l (1)
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6.2.5 Ductility and Energy Absorption Characteristics

Di~plaCCUlent ductility of a specimen, as defined in Chapters 4 and 5, is the ratio

between the deflection at the ulLimate load aud the yield Joad. Regarding the un-

strengthened specimens, as the reinforcement ratio was increased, the ductility was

dl.'<Orcased. Specimen Ref-P'-O.5% showed duct.ility about 0.55 times that of the

specillLclJ Rcf-P-o.35%, as shown in Table G.1.

The clrcet of flexural-strengthenillg was noticeable on the ductility of the FHP

flexural--strengthcning specimen. Specimens GFRP-P-D.35% and CFRP-F-D.35%

showed ductility 0.41 and 0.35, respectively, times that of ullstrengthened reference

specimen Ref-p-o.35%. Also, both specimens GFRP-F-O.5% and CFRP-F-O.5%

showed ductility 0.39 times that of IJnstreugthened reference specimen Ref-P'--Q.5%.

On the other hand, the ductility of the FRP shear-strellgthening specimens was ran­

domly varied without a clear indication of the effect of the FRP shear-strengthening

Oll the ductility.

The energy absorption is the area under the loaJ-ddlcction curve for a tellted

specimen. It was clearly noticed that strengthening eontribnted to a decrease ill tbe

energy akiorption of the FRP flexural-strengtbening spccimeus. f\ n a\ierage decrease

in the values of the energy absorption of about 30% for FRP lIexuraJ--streligthenillg

specimens was ob:>erved. On the other hand, an average increase of about :n% wa.<;

recorded for the energy absorption for Far shear--strengthening specimens. Value!;

of the energy absorption for each slab urI.' summarized in Table. G.1.



luOleQ.l:1estresullso s eClmenso (irou S incjudinlJ re erenCe/l rom Grou 1
Titl" C,rl Df'fleetion Yield Defleetion Ultimate Deflection Energy Ab- Stiffncss, Ductility Steel

lo.'ld, a.t crack load, at yield load, at ultimate oorption, index strain,
load, 100£1, load,

Pc., ,~, P, '" p., '.. >I, 1(,

kN mm kN mm kN ""n kN.llllll kN/mm £",(lOGj
Ref--P-o.35% 73 7.00 169.0 13.05 250 42.01 9346 8.42 3.22 2540
IWf-P-0.5% 84 (1.25 175.(1 t2.35 330 38.08 9473 18.50 2.88 30G5
Ref-P-l.O 0 89 4." 37O.U 20.09 420 24.50 5950 20.08 1.22 2463
CFRP F--{).3:>% 70 7.25 323.3 18.25 361 20.82 7821 1:>.54 1.14 2107
GFRP F-o.35% 68 7.69 330.7 24.10 345 32.10 4597 24.42 1.33 2816
CFRP F-o.5% '0 6.03 43G.0 20.17 450 22.59 6686 26.76 L12 2199
GFRP F-O.5% 83 6.35 40J.'J 26.OS 415 2OM1 7475 23.15 L13 2093
CPRPI S~1.0% 103 502 341.0 15.60 101 26.91 100'" 26.10 1.73 4377
CFRP2 S 1.0% 96 4.&!1 270.0 14.15 425 24.44 7501 17.68 1.73 3!)48

"
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6.2.6 Failure Characteristics

For unsirf'Jlgthenoo reference specimens, Rcf-P-o.35% and Rcf-P-o.5%. failure mode

was classified as ftaxural--ductile. Flexural reinforcement yielded and th~ two SpI..'C­

imens showed relatively large defle<;tioTl values before reaclling the ultimate load.

On the ot.her hand, as explained earlier in Chapter 4, specimen R.ef-P-LO% showed

brittle failure due to puuching-shear. Figures 6.11 and 6.12 show the failure of UIl­

strClIgtllened reference specimens Ref-P--o.35% and Ref-P' --0.3%.

Considering the failure characteristics of tile FRP nexural-strengthcning spec-

imens as shown in Figures 6.13, D.H, (l.IS. and 6.16, the strengthening materials

contributed to strengthening the specimen by im.:re<J,.<;ing the capacity until the bond

between the FRP material and concrete failed. Debonding cracks appeared at late

stage of loading resulting in separation of the strengthening materials. These speci-

mens failed due to aceelerated flexural failure after the FRP-concrete debouding.

CFRP shear-strengthening specimens failed ill a similar mode of failnre as the

associated uDstrengthcned refercllce specimCIlS. There wa.,> not much contribution

of CFRP strips on the failure characteristic:; of the specimens due to the lack of

the confinement effect and the low out of plane stiffness of the CFRP strips. For

specimens strengthened using CFRP strips, a local failurc at bolt locations as shown

in Figures 6.17 and 6.18 occurred. at late stages of tlie application of load followed by

a sudden punchiug-shear failure. As shown in Chapter 4, for the steel strengthened

specimen, Stecl~P2-1.0% that the pUllching failure was eliminated and transferred to

a flexural ductile failure shown in Figure 4.15.



(0) Closeup

Fig1J.l'e 6.8: Specimen Ref P 0.95% after final testing
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(a) Layout

(b) Closeup

F(qIJre 6.9: Specimen Ref-P -0.5% afteT" final testing



(a) LayOUt

1,)1

)

(b) Clotieup

Fi!Jtlre 6.10: Spet:imen GFRP F 0.95% after final testing
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(8.) Layout

(b) Close up

FifJ'ure 6.11: S'Jecimen GFRP-F 0.5% after final testing



(<I) Layout

(b) Clos<J up

Figure 6.12: Specimen CFR? F 0.95% after final tes/ing
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(a) La)'OUt

(b) Cb;e up

Figure 6.13: Specim~ CFRP F-O.5$4 ofter finol te.!ting

IJ,I



(al La}"out

(b) Close up

Figure 6.1.(: Specimen CPllP1 S 1.0% after final testing
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(b)C~up

Figure 6.15: Specimen CFRP2 S 1.0% after filial testing

1:;(;
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6.3 SUlllmary and Conclusions

The following conclusions were drawn for the strengthened two-way slabs llsingGFRP

laminates and CFRP stripll

1. The use of the crRP strip6 and GFRP laminates with the suggested dimen-

sions were sufJicielit to achieve positive results for the ficxural-strengthening

spel::Imens.

2. rlexural-strengthelling specimens using crRP strips showoo an average gain in

load capacity of about 40% OI·er that of the unstrellgthened reference specimens.

;t Flexural-strengthening specimens \Ising GFRP laminll.tl'S showed an average

gain in loaJ capacity of about 31% o\·er that of the unstrengthened reference

specimens.

4. The flexural-strengthening specimens showed a stiffer behaviour than that of

the reference specimens. Ho....-cver, a decrease in ductility and energy absorption

Wall recorded due to the brittle nature of the strengthening of the FRP mate­

rials. Tile average ductility of the strengthened specimens using CrRP stripl;

and GFRP laminates were 0.37 and 0.40, respectively, of that of the reference

specimens. In addition, the average energy absorption of the strengthened spec­

imens using CFRP strips and GFRP laminates were 0.77 and 0.64, f(.'spectivcly,

of that of tile reference specimens

5 For the suggested flexural strengthening technique, debondillg between FRP

mat.erials and concrete was the main cause of failure. Slabs failed soon after
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delooncllng occurred due to exceeding lIexural capacity. None of the strcllgth-

ening material type experience<! rupture or failure.

6. A small average increase within 9% was achieved for the CFRP strips and

GFRP laminates punching-shear-strengthcning spedmclls. Tn addition, the

~T,rengthenoo specimens failed Tmder sudden undesiralole punching shear failure

mode. Therefore, it is lIot recommended to use CFRP strip!; or GFRP laminales

for strengthening two-way slab system for specirneru; with a steel reinforcement

ratio of 1.0% and more due to the nature of the pUllching-shear failure mode.



Chapter 7

Mechanical Model of Centrally
Loaded Steel Strengthened
Two-Way Slabs

7.1 Introduction

A mechanical model is developed to analyze ~trcngtlJened aud unstrengthened two-

way reinforced concrete slabs. Details of this model are pre;cntcd ill this chapter. The

developed model is iutcuded to analyze steel plates strengthened two---way slabs using

the strengthening technique presented aud discu~ ill Chapters 3 and 4, n'Spectiwliy.

Inclusively, the model analyzes the UlIstfcngthClled two-way slabs made of normal

or high strength concrete. A uniaxial (:oncrete cunstitutive lIlodel of concrete is

developed collsidering tile biaxial state of stress of concrete ill a two-way slab as

well as t.he confinement effect of the steel plates. The constitutive madd of concrete

illcludcs defining the concrete properties in tension including pre-peak (lnd post-\*ak

properties of concrete. The mechanical model is iterative and incremental in nature.

With this model, the deformation characteristics of a slab can be evaluated at each

load increment until failure.

150
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The strategy of the suggested model is based on evaluating the internal roomellt

corresponding to a certain strain distrihutioll at the column face section. The eval­

uated iuternal moment in the radial dire£tion is correlated to the flexural central

concentrated lwul, from which a value of a flexural central concentrated load, P,i,is

evaluated. A central deflectioll of tile concrete slab, J j , due to the flexural central con­

centrated load, P,;, is evaluated at each load uicrelllcnt i. Punchiug--shell.f capacity

oCtIle slah, Ve , is evaluate<! in accordance with the GSA C(ldc (CSA-A23.3, 1994). A

failure criteria is set to differentiate between the f1CXllf<l1 failure and pUllching-shcar

failure for the evaluation of the go,-crnillg failure load and mode

Unlike most oCthe available mechanical models, the model presented in this chap­

ter evaluates not onl}' the load carrying capacity of two-way slab but also the defor-

mational characteristics during the application of flexural central concentrated load.

In addition, the model considers the biaxial state of stress of the coucrete that was

ignored ill most of the rm:chanical models in two-way slabs. This lllodel includes

the confining effect, which takes into consideration the effect of the initial strain in

steel bolts due to the tightening torque. \\'itlj !;uch a treatment, the effect of stool

bolts is iududoo. A comparison between the suggested mechanical lIlodd and rome

of the available experimental data of strengthened and lInstrengthened normal and

high strength concrete two-way slal.>s is presented

7.2 Rational Mechanical Models

Kinnunen and Sylander developed an early rational mechanical moJel for the analysis

of circular concrete slabs based on the theory of plates (Kinnunen and :'\ylander,

19(0). Further models adopted and modified the original model of Kinnunen and
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(a) PUllching~beu mechanism (b) A radial sector oftbe slab

Figure 7. J: The original concept of mtiorwl mechanical mode!

Nylander (Hewitt and Batchelor, 1975; Regan, 1981; Broms, 1990; r..tarzouk and

Hussein, 1991b; Marzouk et aI., 2000b). The main approach of these models was

based on dividing the sla.b into sectors then formulating cquilibrium equations to

obtain the ultimatc load carrying capacity oftbe slab. Under the action of the ccntral

load, the column punches thc slab and tcnds to separate its central part from the rest

of it. This action of separation is well known as "pullching---shear" that is Cll.illied by

the crcation of radial cracks that initiate at a distance x from the slab face measured

along the column axis as shown in Figure 7.1. The distance x dctcrmines the height

of the compression zone beyond which is the tension zone.

Some ofthc models ignored thc tcnsile forces in concretc (Kinnunen and Nylander,

1960; Brollls, 1990; Marzouk and Hussein, 1991b). The tensilc properties of concretc

wcre considered using the concept of the non-linear fracture mechanics. This concept

was implemented through introducing the tcrm characteristic length (Marzouk et aL,

2oo0b). The characteristic length is defined through the relationship betwecn the
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pre-fracture and post-fracture properties of concrete and considered as a material

property. The definition of the characteristic length is expressed as a function of the

modulus of elasticity, E<, tensile strength, ai, and tbe fracture energy, GI , of concrete

using the formula:

(72.1)

The inclusioll of the tensile forces when evaluating the concrete forces is demonstrated

in Figure 7.2.

Figure 7.2: Inclusion of the tensile properties of concrete in a mechanical model.

The si7.e effect .....as taken into consideration ill a number of mechanical mod-

cis (Brams, 1990; Zdenek and Shen, 1985; Marzouk et aI., 2000b). In Broms work, a

correction for the size effect was made by considering the height of the compression

zone of concrete with respect to the diameter of standard test cylinder specimen. In

turn, the compression zone height was a function of the total depth of tb.e concrete
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slab (Broms, 1990).

A truss-model-based dpsign proc.ednre was introduced for transversely reinforced

slabs by Marti. In this model, the transverse shear reinforcement was adequately

modeled (Marti, 1990). That approach was modified to fit slabs problems; bowever,

it was originally intended for beams in earlier research work (Marti, 1986; Cerruti

Il.lld Marti, 1987)

In some o~her surveyed work, a three-dimensionaJ axi-symmctrical numerical so-

lution for the punclJing-shear strength of concrete slabs was developed based on the

theory of pllOSticity (Bortolutti, 1990). A modified Coulomb yield criterion was used

in that model considering utilizing the concrete in tension. The theory of plasticity

was applied to e"aluale the load carrying capacity of c-Oncrete slabs in pUIlching-shear

by other researchers (Jiang and Shell, 1986).

In the aforementioned mechanical modds, the state of stress of concrete in the

two-way slab is assumed uniaxial; however, normal stresses ill a two-wa.y slab are

,,-aried in both directions so [bat the state of stress at any poiut is a biaxial one. It

was justified that there is not a profouud effect due to considering the biaxial state of

strefi." of concrete in compression (Broms, 1990). In the current model, the suggested

stress-strain relationship of concrete considers the biaxial state of stress of concrete

as wen as the tensile properties of concrete.

7.3 Strengthening Technique of Two-Way Slabs

In Chapter 4, the results of centr1l.lly loaded two~way slahs strengthened with stL'e1

plates and bolts were prescnted. The strengthening steel plates are extended to twice

the sIal.> depth aroulld The column and act as a drop palleL Full interaction between
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the steel plates and concrete is ensured using epoxy adhesive as well as the steel bolts.

The boltl; are subjected to a. specified tensile strain. Consequently, the bolts apply a

pressure on the steel plates causing the steel plates to be in a continuous interaction

with the concrete surface. Figure 7.3 shows details of a typicnJ strengthened slab

using that recommended technique.

n;l~U
~~II

\TWOL-shapedslecIP\ate9

Figure 7.9: Strengthening and reinforcement details of a typical strengthened specimen

Generally, in a two-way slab system, two possible modes of failure are expected.

These two possible modes are flexural failure mode and puuchillg-shear failure mode.

The reinforcement ratio contributeJl, at large, to the domination of a certain mode of

failure (Marzouk and Hussein, 19913). The fiexural failure mode of slabs is normally

developed for slabs with low reinforcement mUos. On the other hand, the puncbing­

shear failure is generally associated with high reinforcement ratios. Flexural failure is

more desirable in two-way slabs, since it is a ductile failure that gives CIlOugh waming

by utilizing the steel reinforcement. Unlike flexural failure, punching-shear failure has
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a suddeD nature that makes it undesirable. In order to categorize the failure as flexural

failure, the tensile ftcxural reinforcement must yield. In case of high reinforcement

ratio, the steel reinforcement might DOt reach tbe ~'icld limit before punching-shear

capacity of I be slab is reached. Consequently, relath'e1y lower deflection "alues are

expected ill the latter and the failure can be classified as pUllching-"i>bear failure.

7.4 Mechanical Model

As the flexural central cOI..;t!ntrated load, PI., ill applied incrca.<;ing]y, the section

aronnd the column is strained in the radial direction. For a uuit width of the critical

cross section at till: column face, the strain distributiolL along the thickne&<; of the

section is assumed linear. Hence, Internal stresse; corrcsponding to that distribution

are induced in the materials. The correlation between 1,1.re5Se8 and strains are defined

using the appropriate relationship for each individu&.1 material. Due to the presence

of the epoxy adhcsl\-e as well 35 the steel bolts in case of the !it.J"eIlgtheIKrl slabs,

full interaction between ooncrete and steel plates is as5umed. Using the concept

of balancing internal and external forces applied to the critical section, the resisting

mornellt is e\'-aluated. The resi5ting moment is equal to the external moment caused by

the flexural central concentrAted load IL5 shown in Figure 7.4. Helice, a complete },fri­

th (moment-<:urlo'llturc) relationship is developed for the two-wa)' slab in the radial

direction at each load incnmcnt, i. Consequl'ntl)·, UIling the },fri---6; relationship,

an expression for the varied stiffness of the slab M any load increment, i, call be

derived. Hence, thc slab de!l(.'Ction, o:l" at the renter of the two-way slab for each load

incTCmcnt, i, call be evall1att."t1.
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Pigure 1.4: Moment and deflection distribution oj a two-way 81av

7.4.1 Compressive Stress-Strain Relationship for Concrete

An equal-biaxial state of stress (Ill = (111) is considered in the current model. Con-

sidering the bilD;ial strl'SS eIlvelopes of conCIcte as shown in Figure 7.5.a, it is clear

that along the compression surfaces, the combination of the in-plane stresses, (7/ and

(1/1, IcaUs to a different value of the actual compressive strength of concrete. Por the

faihlte surface cll\'Clope as sllown in Figure 7.5.b, tlJcre are upper and lower limits of

the actual COllcTete compressive strength, baSl.->J on the ratio bet\\"CeIl (J/ and C1f1. The

lower limit is the uniaxial state of stresses and lhe upper is at the state of stresses

when the ralio 0'/ I (1/f is eqllll! to about 0.5. Considering the lower limit case, the

actual compressive strength I'alues will be underestimated and will not represent the
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(a) biaxial Planc~tn:5l;ellvclops (b) biaxial ~trC5S failure envelope

Figure 7.5: biaxial behaviour 0/ concrete

a.ctual state of stress in a two-way slab. In case of the upper limit, the ultimate

biaxial compressive stress is abont 25% more than the uniaxial value. For the equal

biaxial state ofstrcss, (J/ 1011 is unity, the actual compressive strength if! abont 19%

and 14% more than that of the uniaxial compressive strength in the case of the nor-

mal strength and high strength concrete, respectively (Hnssein and 1Iarzouk, 1998).

Based on Kupfer's work the increase in the compressive strength is 15% in case of

equal biaxial Sl,ate of stress.

The concept of an equivalent Ulliaxial model for concrete structural elements tl1at

best described using a biaxial model, as in the case of the state of stress in a two-

way slabs, was suggested by many researchers (Floegl and Mang, 1982; Chen and

Ting, 1980). Such expressions for the equivalent uniaxial models were always based

on best fitting the available experimental results of biaxial tests. A stiffer behaviour

of concrete is achieved ill the case of biaxial state of stress compared to the case of
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uniaxial state of slresl>. The slress-strain relationships for the uniaxial and the equal

biaxial states of slress have the same trend with an al;cumulatoo shift (Kupfer ct aI.,

1%9; Hussein and :\1arwuk, 1998).

In tltis study, II modified uniax..ial model for concret(l is derived based all best

fitting of available reliable results of comprehensive biaxial testS on concrete (Hull.scin

and Marzouk, 1(98). A multiplicr function, /(E), is developed to transform the uni­

axial stress---strain relationship to a biaxial one. This function, f (E:), if JIlultiplied by

the uniaxial cnrvc will result in the biaxial Cnf\·C. Hcncc, the uniaxial stress-strain

relation is magnified using the multiplier function, /(E:).

(7.4.1)

III Equation 7.4.1, c, and C'} are 1.3{i and -58.18 for normal strength concrete <Iud

lAO and -40.36 for high strength concrete. respectively

7.4.2 Confinement Effect

Whcn the steel bolts are strained as the outs arc tightened up, the steel plates are

pushed agai.nst tbe concrete surfllees causing tile strengthened part of concn':te to be

under a confincment pressure. Concrete is more confined at locations closer to the

Steel bolts than at locations between bolts duc to the relative flexibility of the steel

plates compared to the concretc slab. Howewr, it is assumed that the strengthened

part of concrete is subjected to a uniform confining pressure by neglecting the internal

dcfonnatious of the stecl plates that OCCllr due to the installation of the steel bolts.

The effect of out-of-plane stresses caused by tightening the steel bolts, is, a.t best,

included by treating the stMc of stress as a tri-axial state of stress. However, adopting

such II treatment complicates the meehanical model. A simpler approacll is used



169

in this ~tudy to consider the confinement effect on tbe comprCSlion stress-strain

relationship of concrete. Tbis apprO'l,dl is ba~1 on utilizing a magnification factor,

K.

Kent-Park and Scott Models

The compressive stress can be evaluated as follows \Ising this model (Kent and Park,

1971):

For the ascending part of the stress-straill relaliouship;

For the descending part of the curve;

f = f~[l - Zm (e~ - 0.002)1 2': f.",

The residual stress;

(7.4.2)

(7.4.3)

(7.4.4)

One of the lll06t famous and widely acceptaLle models for confined concrete is

Scott model (Scott et al., HI82). Scott's model was applied primarily in the case of

the COUfiUl"<i normal reinforceo:l concrete columns. A modification was made Oil the

original model so that it could be used for high strength concrete columns (r-."endis

et aL, 2000). In t.he current invc,,;t.igation, the original model is modified further so

that it can be used for !lwei plates streugtllened two-way slabs

For the ascending part of the concrete unia.xial stress strain curve ill Figure 7.6, the

stress-strain relationship is parahulic ill shape according" to the following expression-

for £ < O.OO2J<



,[ '" (' )']f = Kfe 0.0021< ~ 0.002K
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(7.4.5)

The potit peak behaviour of the concrete ill compression is divided into two 7,one~.

The first zone is assumed linearly descended using the following expression:

forr > 0.0021<

(7.4.6)

The second part of the compression post peak relationship is a flat part at a

coru;tant value of the residua.! stretiS, f.~" that is given by:

fT" = 0.2 K f~

where

1<= I +fJ'hlJ!!!..

(7.4.7)

(7.4.8)

(7.4.9)

where P.h is the volumetric ratio of hoop reinforcement to the concrete L"Orc.

Alw

, 0.5 3~
Zm= 3+0.29f~ +:t fJ'hV--;-0.OO2K

145f;- 1000

where h" is the width of the concrete core between I,he Olltside of the tics; and s

is the spadng between tics.

7.4.3 Confined Concrete Stress Strain Relationship

Ba..~{.'(j on the tevised models for unconfined and confined COI\crete proposed by Kent-

Park and Scott ct aI., respectively, the strCfiS-strain relationship of concrete under

compression can be idealized for two-way slabs subjected to a confinement pressure.
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Figt>r"e 1.6; Compression stress strain rell1tionshi]J of c.mcrete

Referring to Figure 7.(; that shows a hypothetical representation of the suggested

comprCS1;ive model of concrel.e used (Scott et aL, 1982) and adopted hen~in:

For the ascending purt of the relationship;

Fore <0,002[(

_ '" ,[ 2, (' )']f - KelC f~ 0.002K - 0.002K

For the descending part of tile curve;

(7.4.10)

The residual stress;

I,u = O.2[(f~ (7.4.12)

The value of K gives the ratio beLW€ell confined and unconfined concrete comprel:><;ivc

strengths. A simple e.xpressiou is proposed by Scou ct al. {Scott ct aI., 1982} and
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employed herein; K = 1 + A~ for confined concrete and K = I for unconfined con­

crete. The vJ.!nc of A is set as 2.00 for the normal strengt.h concrete as recommended

in Scott's model and varil'<1 from 3.00 to [i.00 for the high strength concrete (Mcndis

et aI., 2000). The \'aluc of K is correlated to the volumetric ratio of the steel stirrups

in Scott's model. In the current model the confinement effect at steel bolts along with

part of the stt~1 plates bet,ween bolts can provide a similar effect to that uf the closed

stirrups in the original confined concrete model.

7.4.4 Evaluation of the Confining Pressure, II

The steel bolls are straiued as tightened up. The confining pressure of the sleel plates

all the concrete slab is evaluated using the following expression:

f, CI><>.!, E,~ Nn ll" ¢l
I 4 (l~ &1)

(7.4.13)

wbere, Nn is the number of bolts; eboll is the strain induced in the bolt. due to the

applied torque; E.b is the elastic modulus of tile material of the bolts, and 1J is the

diameter of the holts.

An equi\'alent expression to Z", in 8<:ott model is introduced in the current model

taking into consideration the dimensions of the steel plates and the number of bolts.

Z _ 0.5 (7.4.14)
"m~ 3+0.29f~ +Y.:.. I 1" c 0OO2K

14:i/;-lOOO 2/vV4.,12h2 +O.2[ic2 +hc

For unconfined concrete 2m is evaluated according to the followingexpressioll (Mendis

et a.1., 2(00):
(7.4.1[i)
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7.4.5 Tensile Stress-Strain Relationship of Concrete

Many researr.h works have iuyc:,;tigateJ a complete stress-deformation relatiollship for

normal concrete in tension (Guo and Zhang, 1987; Hille\)org, 1985; Gopalaratnum

and Sha.h, 1985). One oftbe simplest expressions (Hurlbut, 1983) was adopted ill Etse

and Willam model (Else and Willa,lll, 1994). Tklt expre;;sioll correlates the post-

peak normalized tensile stress atla~ and the lLormali~ed crack opening displacement,

utiUIO using the following formula'

(7.4.16)

?o.Iore re<::ently, a research investigation of the direct tension and fracture ener~J'

of high strength concrete was conductpd (?lI~zouk and Chen, 1995). The following

expression was adopted in the current analysis

for pre-peak softening relationship (el ::; EtO)

(7.4.17)

For post-peak stiffening relationship (~, 2: ~t(l)

(7.4.18)

where:

(7.4.19)

The value of Co is 0.31 for normal strength concreLe (Guo and Zhang, 1987) and

modified to 0.28 for high st,rength concrete (Marzouk and Chen, 1!}95). Also, 13

is equal to 1.70 for normal strength concrete and 1.67 for high :streJIbrth concrete.

Concretc tensile strength is taken as 0.08 and 0.05 times the uni:l.xial compressive
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strength of nOTlnal and high strength concrete, respectively (),{arzouk and Chen,

1995).

7.4.6 Stress Strain Relationship for Steel Reinforcement and
Steel Plates

The definition of the stress strain relatiouship for steel reinforcmnent and s\.e<:J1 plate

is shown to be similar to that shown in Figure 7.7 considering the appropriate no-

tations for the steel reinforcement and steel plates. The stress---l;train relations in

hoth compre:;sioll and tension arc the same. The strCl;!; strain relationship for steel

reinforcemelit or steel platcs can be f!xpres.<;ed as follows

j
2100lXl£. 0 <e. <21~O'

f.:= f~ 21~ < c. < Q.OOG, (7.4.20)

f~ (-26.57£~+ 7.438&, + 0.99) 0.006 < e. < 0.1

o c. > O.L

where:

and

!
f'"

f _ f.,.

f.",

f w,.

1

'·,'
e _ f."

,- C.p,t

£.p,c

for teIL~ion steel reinforccmcnt,

for compression steel reinforcement,

for steel plates at the tension side of the slab,

for 8tl'el plates at the compression side of the 8lab,

for tell8ion steel reinforcement,

for compression steel reinforcement,

for steel plates at the tension side of the slah.

for steel plates at the compression side of the slab.
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The yield stress is equal to f~ in the case of steel reinforcement and is equal to

fw in the case of stccl plates.

,
,

----"'O.~strai;?
&, 0.006

stressl

~~[;,->-----'-~!
, ,

I , ,
, ,
, ,
, ,, ,

, ,
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FIgure 7.7: Stress stmin relationship in both compression and tension for steel rein­
forcement and ~Jteel plate~.

7.4.7 Computational Algorithm

The cross section at the slab to column COllnection of a unit width of a slab is subdi-

v:ided to N number of divisions through the t.lJickllcss oftiJe slab. At the beginning of

the analysis, two values of upper fibre coucrete strain, £top,i, and lower fibre concrete

strain, £hot,i, are interactively specified. The procedure also allows the user to define a

range of c/op,.and CI><1I,i' The upper and lower ranges of Cl<Jp,' and C!>ol,i are divided into

Q and M subdivisions, respectively. Each value of the lower subdivisions, CW,i, is

coupled with all the upper subdivisions in a successful manner to formulate /1,-1 times
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Figure 7.8: CaJcu/atiorl of the internal moment, Mr;

of strain di6tribution profiles for each division of Q. Only one strain distribution pro-

file, if any, is speeifi~-u as a ~true" strain distribution at which the imerna! equilibrium

of the internal forces occur. The condition of a tnle distribution is acllieved where the

sum oCthe internal forccsCf.juals zero or equals acceptable tolerance, O(F). Once the

whole values of different strain proliles acrObS tIle overall thickness of slab cross section

for an assumed strain range are examined, another rauge of strain is automatically

assumed for new strain profiles a.nd new equilibrium positions, etc. The computer

mechanical model intelligently defines the upper amI lower ranges for each succesliive

run to estimate the strain distribution proliles as they change with the load. The

calculations of the internal forces at all arbitrary strain distribution profile is shown

ill Fignre 7.8.

At any iteration, i, the internal forces generated in the concrete, steel reinforce-

ment, and steel plates are calculated. These forces are associated with a certaiu

strain distribution. For a true strain distribution, the StUll of the internal forces,
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l:: F" should l'qual to zero or to an acceptable tolerance.

N

LFi=LFciJ+ F.i,t+F.i,c+F,pi" .... }~p;,e (7.4.21)
;",1

N
where, L Fci,j is the sum of lbe internal fort;cs generated in concrete at iteration,

j=1

i, along the section divisions, j,. The value of F",,; is the concrete force at section

division j and load lev~1 i and is calculated from the following rclation

(7.4.22)

Also F..,l' F.i,.)uC the forces generated in the tension steel, compression reinforcement,

Foi,f = t'i,. pd (7.4.23)

(7.4.24)

The s/R.el plate length, Ip , is less than the slab length, L. Therefore, the total foree

in the tension and comprCSliion sted plates is reduced hy a factor 11; where'

fl = O.85lp~C (7.4.25)

Hence, the forces gcueratoo in the tension and compression plates respectivel~' are:

(7.4.26)

and;

(7.4.27)

Accordingly, the iuterual moment of the section around the upper concrete fibres-that.

is equal to the exr.ernal moment caused by the flexural ceutral concenlrated load--call

be calcuJatc<l as;



178

N

Mri =' Ef",,j dhYJ .- pI,;,t dY'i,t+ p'l,i,. ay.;,•
.i=l (7.4.28)

+ tp J1 (J,pi,IY'I'i,1+ !'JJi,c y,pi,c)

The How chart shown in Figure 7.9 shows the computer algorithm used in the

currcnt analysis.

7.5 Ultimate load carrying capacity of Slabs

Tile radial Ocuding Oloment for a plate under fl central COllcclllralcd load according

to the theory of elasticity call be written as:

P" ['" 1 ( ")]A1.;= -In-+- 1---;-
411" C 2 L2

(7.5.1)

Therefore, the aI;:;Ociated concentrated load that causes a value of internalmomcnt

of At.; (Broms, 1990) is;

PI; = [In ~ :I~~~" p)] (7.5.2)

The cun'ature of the slab cross section of unit width of the slab at the column location

is;

(7.5.3)

The stiffness of the slab at all}' load increment, i, is:

(7.5.4)

The following approximate expression is used to evaluate the deflection at a slab

center;

(7.5.5)
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Figure 1.9: The complitotUmal algoritJlm flow chnrt
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The punching-shear capacity of a SQuare strcll!,'thened two-way slab can be cal-

culated using the following expression

In the ea.seof ullstl"Cllgthcncd specimens:

v;, = 0.4[4d (d+c)JI7:.

III the case ofstrCligthened specimens

(7.5.G)

Failure is assumed to occur according to two criteria, namely fiexural criterion or

pUlichilig-shear criterion. Hence, the slah failure is assulIled to occur when one of the

these two criteria issa-tistie<!

1 if the tensile strain at the location of the tensile sT,eel reinforcement readla> a

value of 0.01 or if the maximum compressive strain of concrete reaches a vallie

ofO.OO3fJ. TiJiscase represents tile flexural failure.

2. if Ve, the maximum silear is reached. This case represents the punching-shear

failure.

7.5.1 Verification of the Proposed Model

The rcsults of the mechanical modcl sho\\ls a good agreement with I\.\"dilable cxperi­

mcntal data, for botiJ thc strengthcned and UIlstrclIgthened two-way COllcrete slabs.

The moJel is verified against data of sp~imcns Ref-P-l.O%, Ref-P-o.5%, Steel­

P2-1.0%, Steel-P3-1.0%, and Stcel-P4-1.0% as presented Chapter 4. Figure 7.11

shows a compariooll between the experiment,a] and theoretical results ill tcrms of the

load-deflection relationsiJips of the slabs Sreel-P3-1.0% and Steel P4-1.0%. The de-

veloped model overestimates the initial stiffness of the slabs. The ovcrestimation can
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l.>e attributed to the fact that tile original slabs were subjected to pre-loading and prc-

~trcugtlleningprocess of drilling, hammering, and rougheuing. Such factors were not

considered in the current model. The model is verified further against wlIle of other

researchers experimental data of unstrengthcllcd specimens (\farzouk and Hussein,

19911.>; EIRiner and HOgllcsted, 1956). The verifIcation of the suggested model shows

a good agreement with these I".xperimenta! data in terms orthe ultimate load carrying

capacity a.;; shown in ~~igure 7.12. Tables 7.1 to 7.3 show [I oomparisoIl between the

theoretical ami experimental results and indicate that the mean value of tbe mtio

between the caknlated load carrying capacity using the suggested model, P<~I, and

that obtained experimeI1tally, P~p, is about 0.979.

Table 1.1' Comparison witli exm rimental results
Title 10' p,% No. of PUP' kN p.'ll, Pwl,fP...

~IPa BolLs kN
Ref P 1.0 36 1.00 420 400 0.97
Ref P-0.5% 35 0.50 314 276 0.83
Steel P2 1.00 32-- 1.00 8 645 649 1.01
Steel P3-LO% 34 1.00 12 650 650 1.00
Steel P4 1.010 33 1.00 18 678 654 0.%
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l'able 7.2: Comparison witli experimental re.,uits (MarzlJuk and Hussein, 19910
Title !" fI, IllID C,IllIll p,% L,mm p.""" Poal, P«>l/Pu;

:\IPa kK kN
NSI 42 120 150 1.474 1000 320 329 l.03
NS2 30 150 150 0.944 1500 400 3S!) 0.90
liSt 07 120 150 0.491 1500 178 102 1.08
H52 70 120 150 0.842 1500 249 239 0.96

HS3 69 120 150 1.474 I!lOO 356 321 0.90
HS4 GO 120 150 2.370 1500 418 421 1.01
HS5 68 150 150 0.640 1500 365 373 1.02
HSG 70 150 150 0.944 1500 489 522 1.07
HS7 74 ]20 150 1.l!)3 1500 356 350 0.98

0.98E&H-l

Table 7.:J: Comparison with experimental results fElslner (Iud l/O!JflC8ted, 1956)
Title f., Ii, nun c, mill p,% L, nun Pc>;p, P<ul, P«JJ.IP.:e

MPa kl\ k?\
14.1 130 254 1.15 1780 302 295

E&H-2 25.2 130 254 1.15 1780 365 300 0.82
13.7 127 254 2.47 1780 334 358
12.8 127 254 3.70 1780 356 346

l.07
0.97

E&H-5 26.2 130 356 Ll.'i 1780 400 390 0.98
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7.6 Conclusion

It CilIl be concluded that the mechanical model predicts the ultimate load carrying

capacitJ' of the strengthened and unstrengthened two-way slahs rairl~· accurately. The

verification of the model against some experim@mal data shov.-w a good agreement

with respect to the defonnational characteristics tile steel strengthened !>1>CCirnens.

The proposed concret.e model can succC8IlfuUy illtt1,'l'atC the equal-biaxial state of

stress of normal and high strength concrete ill two-way slab6, The contribution of

steel plates and bolts 011 the compressive sucss-;jlrain relation~hiJl is aL~o coru;iOCfo:..,j

in the model. The RUlel bolts confinement effect is collsidered in de\'eloping the model

by modifying the strcs.<t-5traiu relationship of concrete in compression. A full tensile

stress-deformation relationship of concrete is imposed in the model including both

the pre-peak and post-peak properties of ooncr~te.

An overall C\o'aluatioD of the mechanical mod~1 indicates that it e5timates the

"3lues of th~ ultimate loading capacity with an O\'t'restirnation 8~-ernge ratio of about

6%. based on the 19 examined ~-pecim~ns. The ability of this model in e~'a1uating the

deflection of the two-'111l.y slabli, as "I-ell as the ultimate load carrying capacity makes

it useful on the academic and industrialle\'t'I..
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Chapter 8

Finite Element and Numerical
Analyses of FRP-strengthened
Two-Way Slabs

8.1 General

The research work on strengthening tWo-\\'aY slabs is scarce. A few research works

have dealt cxpcrimclltaUy .....ith the strengthening t"..o-way slab!; (Ebcad and :\1arl.Ouk,

20023: Ebead and Manouk, 2002b; Farhey et aI., 1995). Coll5eQucutly. and to the

!lest of the authors knowledge, there is no research work on the finite element analysis

(rEA) of strengthened two-,.ray slabs. In the Iilcnuure, there ace research works on

the finite element analysis of unstrengthened UI'O-I\"3Y slabs (~Iarzouk et al., 1998b;

:\Ianouk and Jiang, 1997; Mcgally and Ghali, 2000; Mllr,wuk and Chen, 1993).

In the experimentnJ invCtltig8tion prcscnted ill Chapter 6, the results of the study

on strengthening two-way slabs using GFRP strips and GFHP laminates was 1Jre­

selitL'd. It was concluded that CFRP strilJS and GFRP laminates could be retUffi­

mended for strengthening two way slabs subjocL to flexural failnre. The FRP lami­

nates and stript; could be usccl for strengthening slab!; with reinforcement ratio less

186
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than 1.0% that normally filii in a ftexural mode.

Although we finite clcDlell~ method prO\ide> an accurate analysis for a single case,

it does not provide a design guide or cquawollS. The design equation should consider

certain input parameters to achien! cenain output responses. The response surface

methodology (RSM) is all important statistical mlrthod 1Is/"'(j to pre-design cases of

study or computer rollS, which can be conducted in a laboratory or implemcDlcd

using a finite element package. l3ased on the data result.ll of the pre-desibFI1ed runs,

the RSM can be used to provide desigu equations that correlate the output responses

to the input parameters.

This Chapter includClS FEA of the flexural FRP strengthened two-way slabs pre­

sentoo experimcntall)' in Chapter 6. The experimental results of the strengthened

slab> were used to calibrate the finite clement model based on the ultimate load car­

rying capacity. The rEA is used to gcnernl:e data fQr cases that were not included in

the experimental progrtl/ll presenl«! in Chapter 6,

Pan of lhis numerical e\'tl1uation is aimed at proposing a tenslOIl stiffening model

that considers the clfoct of the FRP strengthening materials. In adtIition, the numer­

ical endU3lion includes prop06ing a simple equation Cor the ultimate load carrying

capacity of the FRP-strengthcnoo l\\u-way slabs to be aWlilable for the design engi-

The FE.'\. I>rcscntcd IJcrein i.o; divided into two main stages of 5tudy: a calibration

study and a parametric study. lu the first stage, the flniLe elemcnt model is calibrated

Cor the aw\ilable experimcntal results presented in Chapter G. In the panllnctric

study, tiJe effect of certain parameters on certain respouses is investigated. TiJcse

parameters arc the slab si'te represeOled by the slub thickness {lud the span, the
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tensile reinforcement ratio, 8.lld the width of the FRP-strengtbeniog IWl.terial. 00

the other hand, the output mlPOnses are cepre;entoo by the actual tensile beha~iour

and the ultimate load carrying capacity of the strengthened slab6. In the second stage,

the RS~I is w;.ed to pre-<lesign a Dumber of finite elem('nt fUllS to be implemented

using the FE.o\ to dC\"elop a model for the iensilc strCl§-strwn relationship for PRP­

strengthened concrete and II simple equation for the ultimate load carrying capacity

of FRP-strcngthened two-way slab.!;.

8.2 Concrete Constitutive model

Several constitutive models have ~11 developed to descrioo the behaviour of plain

concrete. These constitutive models differ from one to aoother regarding the degree of

complexity in describing con<;rcte behaviour. The CODcreUl model Ulif.:d ill this study

is plasticity baged oonstituth-e model thaI utiliUlS the c1l\SSicaJ. aspects of the thcory

of p1asticit)' (AUAQUS, 20(1). A complete representatiOn of the model is defined by

collSidering t.he following ooo<:eplS: strain rate decompotiitioD into elastic and inelastic

strain rates; eli\5ticity; yield; f!.o....'; and hardening. The model uses a crack detectioD

surface to determine tbe cracking onset.

8.2.1 Behaviour of Concrete in Compression

Concrete modcl in compression is elastic until the initial yield sudace limit is reached

as silown in Figure B.l.a. Figure B.l.b shows tile compression surface in the p - q

plane. The iniLial yield surfate defines the elastic limit at which the linear-elastic

constitutive relatiollships are valid. Further stresses of concrete cause all expansioll

of the initial yield surface 50 that new yield !;urfaccs arc developed. Moreover, stres,.<;e;;
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beyond the iuitial yield surface formation cause further "irrecoverable" stHlin. The

strain rate is then decompo:;eJ intu clastic strai!l rate and plastic strain rate. The

strain rate decomposition is governed by this simple equation:

(8.2.1)

where rk~ is the total compressive strain raie, d£~ is the compressive elastic strain

rate, aud d£':} is the compres.<;ive plastic strain rate.

The yield stage is followed by flowing of the material, as if it is a metal, and

t.hen hardening. The main equation of tite compression surface is defined using the

[ollowing relationship;

(1-1.) '"fc-=q-3 ~ IJ~v3T,=O
1 - 2Jk

(8.2.2)

The compression stress in concrete is expre<>.-.;ed in tenns of the effective pressure

stress, p, the Mises equivalent deviatoric Sf.Tess, q, and II hardening parameter, Te _

The efIedive pressUT~ stress, p is expressed as·

(8.2.3)

wlJ~rc (lJ, (11, aud 0'3 are the principal normal stresse:>.

Also th~ .\lises d~viatoric stress, q is expressed as

q= J~m(Sf+Si+Sn (8.2.4)

where 51. 8 2, and S'j are the principal stress dcviator:> Hence the amount q1 is

equivalent to 3/2 times the mean of the square of principal-stress deviatious. The

deviatoric stress componeuts, Sij> are correlatcd to the normal strc;;SCl; components,
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Ojj, using the following formula

whereJij is equal to:

(8.2.5)

(8.2.0)

The factor l'b< in Equation 8.2.2 define!; the ratio between the equal bia.--..:ial com­

pressive strength, f;"', aud the uuia.x.iaJ compressive cylinder strength, J:', through the

equation:

(8.2.7)

(a)l.oiaxjalPlalle~tr~em·elops (b) Failurcsurfa.ceiu lhep-q pLane

Figure 8.1: Concrete behaviour in compression

In &juation 8.2.2, 'c (>'c) is the hardening relationship as a fUlIctioIJ oftlie lJarden-

ing parameter, ).", that is used to define the hardening component ill the (;()mpre:ssive
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constitutive mood of concrete. T~ is the yield stress in a !,tate of pure shear stft'S

when all tile components of t1;j vanish except Ql:l = (111 = T~ due to the equilibrium

or an in1Jnitesimlll element of the concrete material. lIence,"'c is the size of the yield

surface on the q axis at zero nUlIe of p in figure 8.I.b. In the case of the uniaxial

state ofcompre:ssive stre&l:

I ( 1-1_)TC=Jj"c l-~

In the case of the biaxial state of compressive strC!lS:

2 (I I-h.)TC=J30'" 2-~

(8.2.8)

(8.2.9)

where, (1c and 11k are the stresa magnitude in case of uniaxial stress state and the

magnitude of each nonzero principal stress in biaxial state of stress, respccl.hl!ly.

The associated Bow rule assumpt.ion is used to delennine the flow component in

the elastic pJastk model in CODcrt.1c under compression. The associated flmo.' rule

assumptions are thredold (Chen and Tillg, 1980):

t. Perfectly plastic behaviour of concrete after tbe maximum carr)'ing: capacity

has been reached.

2. TIle failure surf:u::e is taken directly as the fucd yield surrace in stress space.

3. The pla.-;tic strain increment vector is assumed to be normal to tIle yield surface

in thecurrellt stres8space.

In the general ease of nine-dimensional stl't'SS space, t1w plas~ie-straill increment
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vector. ~, is correlat.ed t.o the plastic-potential functiou, 9 (O"ii), through the equa­

Lions of plastic How in the form:

(8.2.10)

If the yield function, f~, and Lhe plastic-pOtential function, g, coiIlcide. i.e.:

(8.2.1I)

Equation 8.2.10 can be modified ali:

(8.2.12)

In E<luations 8.2.10 nnd 8.2.12. CO is a constant that determines the ratio between

the plastk strain in a monotonically loaded biaxial compression test and tbe plastic

strain in II monotonically loaded uniaxial test. Equation 8.2.10 is ....a1id as loug as

f~ = 0 and d~ is a posilh-e flCtllar factor, otherwise~ = O. H is "..orth mentioning

that if Equation 8.2.11 is nOL satisfied; Equation 8.2.10 refers w tbe non-associated

ftowrule.

8.2.2 Behaviour of Concrete in Tension

Wben addressing the tensile behaviour of concrete, several IISpects are considered.

These aspects are cracking, shear modulus degradation, (racture CUCfg)', and tension

stiffening.

Cracking is considered the most significant factor of tile lllaterial behaviour in teu-

sion. Generally, cracks ill the finile element simulation may be dcfinl>O as Sme3l'l'tl,

discrete, or fracture cracks. Cracking is assumed UJ occur when the stresses reach

crack detection surface that is defined bJ' tIle Coulomb line written in the first two
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stress invariants p and q. Crack occurrence is determined using the crack Jetec-

tiOll plasticity surface in stress space. In the crac.k Jetl,.'Ctioli model, the straiu rate

decomposition in tcnsioll is governed by the simple equation

(8.2.13)

where de, is the total tensile strain rate fur the crack detection problem, rk'f is the

tensile elastic strain rate, and d",r is the tensile plastic strain rate associated with

the crack detection surface. TllI~ main eqllatiou of the crack detection surface is the

Coulomb line as follows:

j, = I}- (3 -110 ~)p- (2- ~ ~) J, = 0 (8.2.14)

where u; is the uniaxial tensile strength of concrete. The factor bo is used to define

the ratio bel.w,*,u the biaxial and uniaxial tensile strengths. In Equation 8.2.14, 11, is

the equivalent uniaxial tensile stress. The crack detection model USl.'S the associated

flow rule assumptioll tbat states:

, • _ {d>..t!J2- 11( = 0 and d>"t > 0,
(l£i -

o othen.\iise.
(8.2.15)

where >"t is a factor to measure the hardening

Cracks in concrete reduce the shear modulus of concrete linearly as the crack

opening increases. The shear moduhls of concrete is reduced using the following set

of equations as adoptc<! earlier (~larzo\lk and Chen, 199:~):

G=rjJGo (8.2.16)

(8.2.17)
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(8.2.18)

(8.2.19)

where Go is the shear modulus of the \1ncrarJ!:cd concrete, If; is the linear degradation

function of !;hear modulus, and if! is the average crack opening strain across the crack

for and t,r are the total average shear effective strain aud the ultimate shear effective

strain at which concrete she:u stiffness ~'anishes

b) the case of plain concrete, fracture energy, GJ , is define<! as the energy required

to form a unit area of crack surface. Fracture energy is considered a material property

based on the brittle fracture concept of (Hilleharg, 1985). The fracture .mcrb'Y, G"

is estimated as the numerical integration of the function between tile tensile stress,

0"" and tlle "crack width" or displacement, 11j as shown in Figure 8.2, i.e.:

(8.2.20)

Cracks exist in reinforced concrete suhjected to t~nsil~ stresses along with the steel

iJ~.
I displacetTlCnl(crackopening),u u"'"

Figure 8.2: Frueture energy and cmckj'l!l model of concrete

reinfor(~m('nt. Subsequently, illterfaeial shear stresses oetweel1 concrete and the re-

inforcement are triUlsmitttxl to concrete between er3tks as tensile StJesse8. lIclIce,
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concrete bonded to the reinforcement is loadcJ with tensile stresses causing an in-

crease of the overall stiffness. This phenomenon b called Tension Stiffening. In the

elLse of rcinforc«.l or strengthened concrete, the calculations are made hased on the

assumption of smeared crack approach. In this case Uw tensile behaviour of concrete

is represented using the tension stiffening that is expressed as the tensile stress-straill

(UI~t"I) relationship rather than stre&l-displaccment. The numerical integration of

the (Jt-CI curve can be referred to as the fracture energy density, \V, (Marzouk and

Chen, 1993).

Based on some experimental evidence on high strength concrete (Marwuk and

Chen, 1995), it was found that the poot peak relationship may be defined according

to the following relationship·

(8.2.21)

where·

(8.2.22)

where E:t is the concrete tensile strain and £10 is the concrete tensile strain at at "" u~.

In addition, the value of 1:3 is 0.31 for normal strength concrete (Cuo and Zhang, 1987)

alld modified to 0.28 for high strength concrete (Marzouk and Chen, 1995). Also, {3

is equal to 1.70 for normal strength concrete and 1.67 for bigh strength concrete.

The post-peak zone can he define using broken line segmem.8 such as Iin(.'1j AB, BC,

and CD in Figure 8.3. It, has been decided to defille the tension stiffening of concrete

by considering only two points 011 the post-peak mne of the Ut-E:t relationship as

shown in Figure 8.4.



Figure 8.3: 'lbl8ion stiffening model

Figure 8.4: Tension stiffeninrl ca/ibmtion for atrellg/hened concrete slabs

lOG
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The interaction of FRPs with concrete is assumed similar to that of st.t~e1 reinforc-

lug bars. A similar dfed to steel rebars is recoglli:wd when concrete interacts with

FRP materials. Hence, FRP materials are defined as srneareu external reinforcement

located at the tension side of the slab. It is expected that there is a difference in the

tensile behaviour of the strengthened and the urtStrengthened concrete.

8.3 Finite Element Calibration Study

It is intended to iuvC!itigate the effect of certain parameters on FRP strengthened

concrete tensile behaviour iilld the load carrying capacity of strengthened two-way

slaoo. The following parameters arc invClitigated:

1 lo~RP strengtlJelling width ratio, W"

2 The original steel reinforcement ratio, fl.

3. The slah length ratio, I,.

4. TllCslab thickness raLio, I,

The FRP strengtuening width ratio, w" is the ratio oetweeJ] the width of tile

FRP material and the slab length, L. The original;;tl'Cl reinforcement ratio, p, is the

tellsiou reinforcement ratio of the SlAb. The slah length ratio, I" is the normalized

slab length with respect to a test specimell's length of 1830 mm. Finally, the slao

thiclwess ratio, t" is the normalized slab thickness with respect to 1\ test specimen's

thickll'..'SS of 150 Jlun. Tile length of 1830 10m aud the thickness 150 mIll are the

typical length and thickness of the speduwn.s tested experimentally in Cilaprer 6.

In this stage of the FEA study, the Ot-i':t relationship, and hence the fracture

energy denSity are ealibmted. Tlw calibratioll is o..'IS(ld on the agreement of the FEA
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results and the a\1J.ilable experimental fetiults from Chapter 6. This calibration is

conducted with respect to the ultimate load curryi.ng capacity of the slabs. Six finite

element cases are implemented and compared to the available experimental results of

the flexural-strengthening specimens. The cases implemented in the calibration study

arc for the reference specimens Rcf-P-o.35% and Ref-P-o.5% to represent the lle;.;ural

reference speciulIms; spl'{:imens CFRP-F-O.35% aud CFRP-F-o.5% to represent the

fiexural strengthening specimens lIsing CFRP strips; and spcdmclIs GFRP-F-O.35%

and GFRP-F-o.5% to represcut the Bexural strengthening specimeru; using GFRP

lamitlates. The FRP width ratio of the rcfere1Jce and strengthened specimens is 7.ero

and 0.164, respecti"ely. Both the slab length ratio, I" and the ~lab thickness ratio,

I., are CQual to the unity. The original stf!C1 reinforcement ratio, p, for two-way slab

specimens is either 0.35% or 0.5% as listed in Table 8.1. Figure 8.5 shows a schematic

representation of a strengthened specimen of the calibration study.

Table 8.1; Ran '!.!....!!L the studied f)(lrallleter.~ of the calibration stud snecimens
Title p t,. I.
Ref P-o.35 0 0 0.35 1.0 I.U
Ref P 0.5% 0 0.50 1.0 1.0
CFRP F-o.35% 0.164 0.35 1.0 1.0

~:1::;~ 0 ~:~~: ~:~~ ~:~ ~:~
GFRP F-Q.5% 0.164 0.50 L.O 1.0 __

For each set of implementations, the fracture energy density of concrete strength-

ened with FRP materials is calculated as follows:

(8.3.1)
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Based au the approach considered in Figure 8A, the fracture energy dCll~ity can be

calmlated as follows:

(8.3.'.!)

8.3.1 Material Properties

The properties of materials ucc known based on experimental testing and/or as given

by the manufacturer's specifications to be used ill the finite element materials simu­

lation. The uniaxial compressive strength of concrete, I;, i~ a.<;SllllleJ 35 MPa to rep­

resent l.he normal strength concrete dass. The modulus of elasticity of cOll([c1e, Ee ,

is calculated as 26600 MPa (ACI-31S, 1999). The equal hiaxial strength of concrete

is assumed 1.16 times that of the uniaxial strength of concrete as 40.6 ~1Pa (Hussein

and Marzollk, 1998). The yield stress of concrete is assumed 20 MPa. The tensile

sf.rength of concrete, ".r, is assumed 0.08 times the uniaxial strength of COIlcr~te that

is equal to 2.8 r.,oJPa (Marwuk and Chen, 1995). The post-peak U/-E:, relationship of

strengthened or UilstrengtlJCued concrete is assumed linear des(:ending to zero tl:nsile

stress at maximum stra.in E:i,,,,u as shown ill Figure 8.4.

A calibration concept is adopted by as..<;llming the value> of the tensile strain at

zero teusile stresses, E:"mu from which the values of the fracture enl:rgy density of

the strengthened concrete, WI, can be evaluated according to EqUaI.ion 8.:·U. The

calil>ration attempts are implemente<l 50 that the FEA results will yield dose results

to the experimental results in terms of the ultimate load carrying capacity of the

slabs. Each implementation in the calibration study leads to 11 better assumption of

the ma"{imum strain, 001,,,,,,,,,, and hence the fracture cIl~rgy density, ~V,. Table 8.2

shows a sample of a caw of calibratioll ill this study. Three attempts are sufficient to
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Figure 8.5: Strengthened specimen configuration and reinforcing details

200



201

achieve satisfying result.ll. The satisl)'iog ~-alues of the maximum titrain, £ ...... ' and

the fracture energy densit)'. W" are u5ed in the finite element parametric study.

Table 8.2: A "am Ie 01 the PEA caJibmti01l'roru
Specimen " ,", IV ,MPa. P.E VIUI,kfl: V"",,,,Ir.N Vn;AIVj~J'

Ref P-o.35% 400 "" "'" 227.6 0.910
Ref P-o.5% 600 840 3JO J20.8 0.972
CFRP F-o.35% 1600 22" 361 329.6 0.913
GFRP F-o.35% 600 112O .., 300.0 0.870
erRP F-O.5% 2400 3:]60 450 399.2 0.887
CPRP F-O.5% 1200 1660 415 412.0 0.993

The steel reinforcemellt illllSSUlIled to have a yi~lcl8tress as 440 MPa lIlid a modu­

lus of elasticity of 210 CPa. CFRP strips and GFRP laminates are defined as elastil,;

material DlIlil breaking points. Both tensile strength and the modulus of elasticity of

the FRP strengthening materials are defined as per the manufacturer specifications.

One layer of the CFRP strips is 1.2 mm thick ha\'ing a tensile strength of 2800 :\iP"

lWd a modulus of elasticity of 170 CPa. Two la)lmI or the GFRP are used in each

direction with a thicknCll'l of 1.0 uun per layer. The tensile strength of the GFRP is

600 MPa and the modulus of elasticity is 26.16 CPa. The properties of the CFRP

strips and the GFRP laminates are summarized in Table 8.3. The assumptklll of the

full bond between FRP lIlateria15 and concrete i.e; inherited by the definitioll of these

materials as smeared reinrorcing la)"CfS located aL Lhe tension side of the concrete

slabs.
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8.3.2 Geometric Modelling

One quarter of the sial> is modeled clue to the geometrical and loading symm~try

using a fi x 5 mesh. Modelling only olle quarter of the slabs is essential to save the

computational time and running cost. The general layout of the finile clemellt model

is shown In Figure 8.6.

Figure 8.6: Finite element mesh layout for the calibration specimens

Degenerated 8-node quadrilateral shear-flexible shell elements with six degrees of

freedom at each node an~ useel for modellillgthe slau. The degrees offrccdom arc three

translations and three rotations. This permits the transverse shear dcfonllatioll to

be accoulIteJ for. .\"inc Simpson-type integration points nrc used along the t}lickness

of each shell element. In addition, a roouced 2 x 2 Gaussian integration rule is

used ovcr thc X-V plauc of tile elements. Eight-node brick element~ are used to

represent the column stub through which the load is applied. The brick clement hus

thn~ translational degrees of freedom per node in the X, Y, and Z directions. The
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distt'cpullcy between the degrees of freedom of the column stuu brick clement and the

panel shcll clements is overcome using the /lIulti Point Constraints (ylPC) teclmiquc.

MPC technique allows constraints to be imposed between different degrees of freedom

in the model

8.3.3 Steel Reinforcement and FRP Representation

Steel reinforcement in either the tension or compression side of the panel in each

direction is treated as smearoo unidirectiouRI layers. These laycrs are embedded in

concrete aud located at the center line of the actual reillforcing lmrs in the slabs.

The layers are smeared with a constanl, thickness that is equal to the area of each

reinforcing bar divided by tile reinforcing bars spacing. CFRP striflS and GrRP lam­

inates are reprcscnf.ed ill a similar way to the rel.mn;. FRP materials are treated as

smeared unidirectional la)'ers located at the tension surface of concrete. The defini­

tion of FRP materials as smeared reinforcement inherih tlte assumption of full bond

with the concrete surface. In addition, I,he impact of steel reinforcement and FIU~

mRtcrials 011 tensile properties of plain concrete is modeled l,hrollgh the developed

tension stiffcning relationship for the FRP strengthened portious of the slab. For

the ull5trengthened portions of the t;lab, the tension stilfellillg model is used as was

r€l::ommcnded (J\1arzouk and Cben, 1993).

8.3.4 Boundary Conditions

The simply supported slabs are free to lift at corners. Non-linear spring clemcnts

are defined in the trallsver8C direction at slab edges as showll ill Figure 8.6. The

stiffness valuPS or the sprin~ are set to vcry high values as long as the spring is under

eomprcssioll, aud arc set to H~ry low values as long as the spring is under tension to
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simuJalc the actual boundary condition of the tested slabs.

8.3.5 Solution Strategy

The modified lliks a1~rithm type of analysis is used in the current analysis. Modified

Riks algoritlun is generally used w fiud solutions of problems that invoh'e unstable,

geometrically nonlinear colJl\pHe of a structure, and/or nonlinear materials and bound­

ary conditions. HlJIlCC, modified Riks algorithm is suitllulc for this allal)'sis to deal

effectively with the instauiliiy during the analysis call~ hy the initiation of concrete

cra.cking in tension, concrete crushing in compl'essiOll, and/or steel reinforccUlclll

yielding. The Riks method usee the load magnitude as an additioual unknown and it

solves simultanoously for loads and displacements.

8.4 Results of the Calibration Study

The results of tbp FEA of the calibration study in Lenns of the lICtual wnsile Slre;J5

strain reJalionships, load carrying capacity, and load-defleclioD relationships and dis-

~""'.

8.4.1 Stress-Strain Relationships a.nd Contours

Figures 8.7 and 8.8 show the oct.ual tensile Stress strain relatiom;hips for specimens

of the calibration swdy at the slab center. It is clear that due to the contribution of

FRP strengthening materials, the post-peak behaviour of slubs is stiffened. The slope

of the tensile strC&'i-tellsile Iltmin is decreased at the post. peak zone indicating tile

cont,ribuiion of the FIlP strengthening materials iu illcreasillg lilt"! post peak stiffnes:;

of concrete in tensioll. The tensile post-peak behaviour is drastically changed dlle

to the strengtLening. A stiffer pOb't.-peak for strengthened concrete is recogni?.ed. A
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suggested profilc for thc tensile stress-strfl.in has emerged to account for the effect of

FRPstreugtheniug procCS8.

o-Rer-P-O.5'll.
__ Ref"P-Q.35'll.

__ GFRp·F-Q.5%

___ GFRP-f-Q.35%

o~'--_-~

Figure 8.7: Tern;ue stre..;;.,-stmin at slab ce7lt~r 1-eluli07lships for GFRP-slrengthened
slabs

The FEA results in terms of the normal strCSSl.'S, 0"11, and norlllal strains, ell,

contours at the tension side of selected specimens are shown ill Figure 8.9. For

the unstrengthcIII..'<1 specimens, the contours are smooth and continuous as shown in

Figure 8.9.b. It. is evident that due to tile geometrical and loading symmetry a10ug tile

diagonal axis, the stresses and strain are also distributf..'<1 sylIlllletricall}'. In the case of

the strengthened specimens, there is a clear dis-continuous distributioll of the stresses

and strains contours as shown in Figures 8.9.c to 8.9.£. It wm; obvious that the values

of stresses were corresponding to lower values of straills at the strengthened locations.

It is clear that the values of stresses are corresponding to lower values of strains at the

strengtbened locations. Moreover, the ullstrcugtilelled portions in the strengthened

specimens have different stresses and strains distribut.ionF compan..u to those of the
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• Ref-p-o.5%
__ Ref_p-o.35%

...... CFRP-F-o.5%
___ CFRP-F.(I.35%

0.003

Tensilesllain

Figure 8.8 Tensile 8tre.~h~tmin at slab center relationships for CFRP~8trengthened

slabs

associate<! ullstrengthened specimens at the same locations. This indicatt'8 that tbe

effect of the strengthening is lIot local hut it affect.~ the stress and strain distributions

or the entire slab.

8.4.2 Load Carrying Capacity and Deformations

Values of the load carrying capacity of the six specimelJs investigated ill the calibration

sf.udy shom-s II. good match to tho.se tested experiment.ally. As shown in Tdhlc 8.2,

the initial assumptions of the strengthening energy, WI, lead to a good agreement

between the FEA and the l..'Xperimental results in terms of the load carrying capacity.

The FEA underestimated the values of the central deflections for either the strength­

ened and llnstrengthcned specimens. Figures 8.10 and 8.11 show the load deflection

relationships of the specimens. The FEA gave a stiffer dcfonuational behaviour com­

pared to the expcrimcutal rCSlllts presented in Chapter 6. Many factors may con­

tribute to this discrcpMcy. These factors include the pre--loading effect tlJat does
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(a) Rcf-P-O.3G%(0'11) (11) ncr P.O.31:i%(tll)

(e) CFRP F-O.3:i%(DII)

(e) GFRP F O'~~(O'II)

(d) CFRP f-O.35%(cu)

C·
(I) GFRP f O.3.l%(Cll)

FIgure 8.9: Stressu, Oil and stnufI$. ell. at maximum load at the temion side
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not affect the ultimate load carrying capacity but cause permanent (plastic) defor­

mation (Ebead, 1998; Al-Sulaimani et aL, 1994). In addition, there is an initial

defonnation associated witil the imperfect fit of the slab on the loading frame. For

the strengthen~1 specimens, a pos.sible rCI;I.';01l for that di~rcpaIlCr is the full homl

assumption.

::r---- -~

~::j
i 250 ~

J~: I'
"0
50

o
0.00

Centraldeflec~on(mm)

__ Ref-p-o.5%

___ Ref-p-o.35%

___ GFRP_F.().5%

-o.-GFRP-F-o.35%

Pigure 8.10: Centro/load-deflection relationships for GFRP-strmylhtmed s/ubs

8.5 Numerical Analysis Based on the RSM

8.5.1 Introduction

There is a difference between data such as experimental or finite element. analysis

results; and information such as mathematical models. The information can be ex-

tracted from data by making assumptions about th~ whole syst~m through which the

data is generated to develop a mathematical model of that system. In general, the

mathematical models contain some unknown constants. Experimentation is a way
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Figure 8.11: Ccnlralload-deflediQlI reiatioruJhips for CFRP-8treflgthened slabs

that ll~eo:l to acquire the data that enables determining these constants included in

these mathematical models.

Hence, the experimentation provides the data needed for creating II successful

mathematical modeL The data can be collected froUl laboratory experimentation or

running finite element padwge. For 1\ suct;essful muthematkal modd, the experiments

have to be designed. The llumber of experiments depends all the number of variahles

and facWTS (inputs) to be considered and on the \lumber of resp(lnse8 "outputs" to

be achieved. The main role of the mathematical model u; to identify the reasons for

chang!o's in the output response with the chauge in the input variabh~.

8.5.2 Response Surface Methodology

There are several different stratcgie; of experimentation. Three of those arc the Be~t

Guess approach, the One factor At a Time (OFAT) approach, and the Factorial

appron~h.
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The mo..' efficient approach el-er developed is tbe Factorial approoch. This ap­

proach is capable of handling large models wry efficiently. It pre-detennincs ~he

number of experiments basal on the 3\1l.i.lable input \'llriables and tbe required au....

put responses. There are three major classes of lhe factorial design approach those

are 1) the 2-1e\-e1 full factorial, 2) the fractioual factorial, and 3) the response surface

methodology (RSM). In the CUrrt,:ut analysis tlie RSto.·! wa., selected to dc\"clop the

mathematical models involved in this study.

The HSM is a collection of mathematical and statistical techniques used for mod-

ctliug and analysis in applications where a response of interest is iuflucncoo by several

variables (l\'lyers ami Montgomery, 1995). Suppose there are two factors XI and Xl,

tbe surface represented using the function [(X1.X2) is called the Response Surface.

If there is another Amount Y that represents the response, then Y = !(:r;"Z2) + 'I;

where 'I is a coustant.

In this study, a fae:tH:Clltcred central composite response surface design Vias USEd

to caTty Ollt the parametric :..tudy. The central composite design (CCO) is the most

popular response surface method (RS:l.1) design. The factors and their JlUlges or

inlere>t are WCM'O io Table 8.3. For 10 = .. factors. the design requires 25 (2k + 210 + l)

PEA runs; 'A'here k is the nwnber or paramelers. For the case of CFRP and CFRP

strengthened slab!;,

8.6 Parametric Study

8.6.1 General~jon of Finite Element Data

111 the parametric stud)' stage, Lhe four aforeml'ntioned fa(:tors or parameters are

oonsidered as listed in TAble 8.4.. The FRP width ralio, ttl" rll.llges [rom 0.0 to 1.0;
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the original steel reinforcement ratio, fI, ranges from 0.35% to 0.80%; the slab length

ratio, Ir, ranges from 0.8 to 2.0; llIH.! fiuall}' the slab thickness ratio, t,. ranges from

0.8 to 1.2. The rest of the materials properties, geometric modelling, element type,

steel reinforcement representation, strengthening materiaL~ representation, boundary

conditions, and solutioll strategy arc the sallie as for the calibration study.

Table8.l; FactQrsmlJranaes or the varamctric studu

Parameter Name Low
yledium

High
MidI ~1id2 to.'lid3

w, FRPWiclthratio 0.000 0.250 0.500 O~750 1.000

p Reinforcement ratio O.:i5Q 0.463 0.575 0.688 0.800

"
Thickness ratio 0.800 0.900 1.000 l.lOO 1.200

"
Slab lenw.h ratio 0.800 1.100 1.400 1.700 2.000

Altering the llIesh has to be made to I\Ccommodate widths of FRP strengthening

mal,erials Iwd different slab sparJs. An invClit.igat.ion of the mesh sensitivity effect. is

carried out using three specimens of the same slab length and with different mesh

sizes. A minor increase in the load carrying capacity within 5.0% rl!Sult,!l(1 when using

50% eoarser mesh size. Figure 8.12 shows the load dctlection curves of specimen rtef­

P-0.35% using three different mesh sizes. The lllL'Sh sizet; are 232 mill, 186 mm, and

155 mm for·1 x 4., 5 x 5, and 6 x 6 meshes, respectivel)'. Bflsed on this in\T'Stigation,

there is not a considerable dfL'(:t of the JlJesh size 011 the FEA results

The statistical approach of the RSM is used in this study to prc-design the finite

element funs. This methodology is capable of handling large models effitiently. It

pre-determines the number of runs based on the available input variables and the

required output responses. In this study, a face-centerco ecntral composite fesponse

surface design method is used to carry out the parametric study. The selected fmite
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Pigure 8.12: Mesh sensibilit.lJ effect on the IQod history

element runs are designed IxJscd on the RSM using a statistical software (Desigll­

Expert, 2001). The statistical technique of the RSM minimizes the number of finite

element runs; however, it permits efficiency and economy.

The finite element runs are designed lIS 2[; runs for each case of CFRP strips and

GFRP laminates strengthening. The total number of the finite element runs is 41

runs since there are nine (9) duplicated rullS for the unstrengthened slabs. The v3JUes

of the studied parameters for tbe parametric study along witll the actual value of the

length, L, for both eFRP strips and GFllP laminates strengthening specimens are

listed in Table 8.5. The results of the para.metric study are tabulated in Table 8.6.

The ultimate load carrying capftCities, Pm41' are shown for both eFRP strips aud

GFRP laminates strengthenl'<1 specimens.



~aIlH:: D.O: Ifill II'malflll WfUnae'llr" ana t/ClnaOlr..,
S~renl(l.lll'lI\ ...1

UlUIlrenglllCrIt.'<I
R,~ w. p,% I. I. S,mrn C1"ltP Gl"R

'I......., If, tl.....~, f' t.,....z, "f,
I" MPa.pt '" MPa./,t I" MPa./.t

1 00 0.35 0.8 0.8 14M NA NA NA NA 076 S05
2 1.0 0.35 0.8 0.8 1464 2111 2%5 '000 1442 NA NA
3 0.0 0.80 0.8 0.8 1464 NA Nt\ NA NA 002 1346, 1.0 O.SO 0.8 0.8 '46' 4;140 0076 1300 1[146 NA NA
5 0.0 0.35 1.2 0.8 1454 NA NA NA NA 57(j 805
0 1.0 0.35 1.2 08 14M 2111 2'J55 1030 1442 NA NA
7 0.0 O.SO 1.2 0.' 1464 NA NA NA N,' 902 1346
8 1.0 OSO 1.2 0.' 1464 4340 607(1 1300 HMO NA NA
9 0.0 0.35 0.8 2.0 3660 NA NA NA NA SUi 805
10 1.0 0.35 0' 2.0 36GO 2111 2955 1030 1442 NA NA
11 00 080 0.8 2.0 3G60 NA NA NA NA 902 13<16
12 1.0 0.80 0.8 2.0 36fiO 43<1U 6076 13')0 1640 NA NA
13 0.0 0.35 1.2 2.0 3G60 NA NA N" NA li70 S05
14 1.0 0.;15 1.2 2.0 3liliO 211l "" 1030 1442 NA NA
15 0.0 080 1.2 2.0 "00 NA NA NA NA 1.162 I:Hli
10 1.0 O.SO 1.2 2.0 "GO '340 0076 13!ltJ l!Mli NA NA
17 0.0 0.57 1.0 IA 25" NA NA NA NA 71l1! 1075
18 1.0 0.58 1.0 IA 2562 3475 48f. 1210 1694 708 1075.9
19 0.5 0.35 1.0 IA 2562 2111 2955 1030 '442 675 805
20 0.5 0.80 1.0 IA 2562 43<10 G076 J300 19:16 002 1346
21 0.5 0.58 0.8 I., 2562 3475 486li 1210 1694 708 1075.9,., 0.5 0.58 1.2 IA 2562 3475 4860 1210 1694 708 1075
23 0.5 0.08 1.0 0.8 "64 3475 '81" 1210 Ili94 708 1075

" 0.5 0.58 1.0 2.0 "00 3475 "'" 1210 1694 768 1015

" 0.5 o.a8 1.0 IA 2562 3475 4865 1210 1691 768 1075



Table 8.6: FEA, .....,......... v •••."I/XIramC!Cf'sanares orMes

No
Parametcrs GFRP specimcns rCHpoll9l)lj CFRP specimens rffll>OUSC!l

w, p.• t, I, P,nuz, 'ro, eri, a, w, P,,,,,,,, f,O, er~, a, 0,
kN I" MPa kN I''" MPa

1 0.00 0.35 0.80 0.811 UK7 163 1.902 0.526 -0.0081 11)4.8 237 1.868 0.542 -0.029, 100 0.35 0.80 0.811 396,6 199 1.904 0.542 -0.0059 595.2 274 2.002 0.489 -0.012
3 0.00 0.80 0.80 O.llO 347.4 258 1.905 0.548 -0.0133 :M7.5 194 1.863 0.S8G -0.046
4 1.00 0.80 0.80 0.811 436.4 351 2.07ii 0,472 -0.0045 623.2 2[...-, 2.093 0.479 -0,006
5 000 0.3~ 1.20 O.llO 357.0 341 1.983 0.685 -0.143~ 351.1 341 1.983 0.685 -0.144, 100 0.35 1.20 0.80 836.8 '86 2.032 0,556 -0.0501 1096,4 215 2.052 0.500 -0.014
7 0.00 O.llO 1.20 0.80 609.2 281 2,021 0.541 -OJl493 609.6 281 2.021 0.541 -0,0-19
8 1.00 0.80 1.20 0.80 917.6 252 2,036 0.635 -0,(1636 1097.2 198 2.050 0.500 -0.009
9 000 0.35 Ollo 2.00 158.4 146 2,113 0.474 -0.()()Q5 158.0 '71 2.000 0.661 -0.117
10 1.00 0.35 O.llo '.00 371.9 239 2.042 0.679 -0.0687 580..1 176 2.052 00490 -0.008
11 0.00 0.80 0.80 2.00 318.8 237 2.040 0.580 -0.0518 318.9 231 2.040 0.579 -0.051
12 1.00 0.80 O.llo '.00 438.8 221 2.050 0.512 -0.0231 602.4 169 2.057 00489 -0.005
13 0.00 0.35 1.20 2.00 343.2 300 2.004 0.582 -0.0865 343.2 300 2.004 0.582 -0.087
14 100 0.31i 1.20 2.00 718.0 27. 2.042 0.850 -0.3745 1088.4 '26 2.0:;9 0.500 -0.014
15 0.00 0.80 1.20 '.00 605,2 27' 2.038 0.540 -0.0441 607.2 27' 2.038 0.681 -0.082

16 100 0.811 1.20 '.00 872.8 249 2.042 0.710 -0.0718 1089.6 213 2.063 0.497 -0.007
17 0.00 0.58 1.00 1.40 342,2 262 2.027 0.526 -0.0484 342.5 262 2.027 0.562 -0.063

18 1.00 0.58 1.00 1.40 612.0 232 2054 0.511 -0.0203 858.0 178 2.056 0.485 -0.00·1

19 0.50 0.35 100 1.40 52fi.4 243 2.033 0.a21 -0.0375 774.4 19' 2.082 0,473 -0.007

20 0.50 0.80 1.00 lAO 661.2 224 2.D48 0.M5 -0.0322 865.2 174 2.056 0.489 -0.004

21 0.00 0.58 0.80 lAO 408.4 243 2.033 0.521 -0.0375 571.2 167 2.0M> 0.483 -0.003

22 0.50 0.li8 1.20 1.40 715.2 282 2.057 0.809 -0.0504 1092.4 228 2.063 0.495 -0.00')

23 0.50 0,58 1.00 0.811 631.2 212 2.0[;5 0.495 -0.0086 880.8 324 2.068 0,481 ~0.007

24 O.W 0.58 100 '.00 593.2 232 2.055 0.518 -0.0221 827,6 182 2.0r,8 0.484 -0.004

25 0.50 0.58 100 1.40 599.6 233 2.054 0.528 -0.0219 832.4 180 2.057 0.484 O.()(}1
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8.6.2 Proposed FRP Tension Stiffening Model

Ba.5ed on the generated finite element data, a suggested model for t.he tensile stl'('5S­

strain for concrete is de\-e.loped. This model was ocoording to the fol~ingsuggested

(oml:

For the pre peak portion of the relationship:

(8.6.1)

For the post-peak portiOll of !,he relatiOllShip

(8.6.2)

The tensile stress-iitrain relaLionship presented in Equlltions 8.6.1 and 8.6,2 call

be completely defined b~' detl.'fJTlilling the \'alues of tbe maximum tensile StI"CSS. q~,

Ihe associated tensile strain, EIO, and tbe constants 01 and 0,. For all of tbe finite

element runs, the ,-alllCfl of q~ and EItJ can be easil}' determined. A study based on

the best fitting of the post peak relationship of each case study (run) is oonducted

to determine the values of the oonstants OJ and a-,. Tbeoe t,,'O constants along witb

the values of the maximum tensile stress, o~ and the associated tensile strain, EIIl>

are needed for a oomplete representation of the tensile past-peak relationship. The

quantities oj, Elfh OJ, and a, are tabulated in Table 8.6.

Considering the FEA results in Table 8.6, one can Ilotil.-e that the impact or the

studied paraOlcte!'l:l on the llCtuallilax.iWUilJ tensile stress. 01-, and the (;orresponding

tensile strain, ElfI, is eitlJCr random or minor. Due to FRP strengthening there is a

drastic change in the post-peak heiJa\'iouf ofstrengthened concrete compart'(} to tiJat

of the ullStrcngthened cOllcrcU!. Bonded FRP materials delay the initiation of cracks

aud then control the propagation of cracks fOf a higher load. This is clear due to the
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stiffer post-peak part of tile tensile strcss-straill relationship as shown in Figures 8.7

and 8.8.

The actual teIlsile stress-strain relationship of the FRP strengthenoo COllcrete can

be modified to take into coru;ideration th~ effect of the FUr strength~ningmateriab.

Hence, it is decided to develop an expression for the descending portion of the tensile

stfeS,.<;-strain relatiouship of concret,e. The model is d~vdoped mainly [0 describe the

post-peak behaviour of concrete slabs strengthened for l!l.'Xure using FRP materials.

By analyzing the results presented in Table 8.6, it is obvious that the best fit of

both the maximum t.ensile stress, Q"~, and th~ llS.<;odated tellsilestraill, flO, ig the mean

value of the data for these two quantities. Hence, for the CFRP and GFRP specimens,

the tcnsil~ pre-peak behaviour of concrete can be reprrJ;entl.J using Equation 8.6.1

using the quantities u~ and flO as 2.03 1...IPa and 247.5/-1£, rcspecii\'c1y.

'The proposed modd of post-peak relationship is in the form of Equation 8.6.2

that contains the four quantities: the maximum tensile sLress,ui, the associat.ed ten­

sile strain, £10, the constant UJ, and the coru;tallt U2. The quantities III and 112 are

requirod for representing the relatiollship. In particular, 02 determincs the slope of the

descending portion of the post-peak relatiollship. Thl:!8e two quantities are dependeot

on the aforementioned paramctcn;

For CFRP specimens, 01 and <"l1 can he evaluated using Equations 8.G.3 and 8.G.4

Ul "" 0.528+ 0.093w, - O.143p+ 0.427/, + 0.07441. (8.6.3)

0.2 = 0.153 - 0.026w, +0.J04p- 0.200/. - 0.0367/. {8.6Al

Similarly, for the GFRP specimens, the quantit.ies, 0.1 and U2 can be calculated

using Equations 8.6.5 and 8.6.6.

0.1 = 0.945 -0.198w, - 0.037 p+ .091 t, + .0271, (8.6.5)

a2 = -0.043 + 0.OG5w. + 0.042p- O.038t. - 0.006/, (8.G.G)
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Researchers and design ellgjn~rs may find the model to be useful. The model is

simple to be applied althollgh many parameters are cOllsidered. The proposed model

(Equation 8.6.2) ('..an either be used to define the post-peak behaviour of concrete,

strengthened with FAP, ill a finite element pockagc or in li classical concrete lllechanj~

cal model. This equation is lilUited to the configuration and of tbe studied parameters

presented in thisstndy.

This model is verified against the availaMc finite element results of the calibration

study specimens as shown in Figure 8.13. The comparison between the PEA results

and the RS:\1 regn'$l;ioll modds shows a good agreement for the reference specimens as

slJOwlI in Figures 8.13.30 and S.13.b. Figures 8.13.c and 8.13.d show an acceptable level

of agreement between the FE-A and REM results for specimens strengthened using

GfR? materials. Finally, the RSM results show an overestimated behaviour of the

poot-peak stiffness compared to the FEA results for CFRP streub>thened specimens.

8.6.3 Load Prediction Using RSM

The finite clement data are used as input daT,a for the RSM procc<lure. Using a

step-wise regression procedure, the following expression is obtained for FRP strength-

l,.'TlOO two-way slabs. For specimens made of concrete of strength up to 35 MPa and

strengt.henoo using CFRP stripli type Sika CarboDur of Young's r.Iodulus of 170 CPa

, the regression expres.'lion for the ultimate load carrying capacity in terms of the

studied parameters is expressed as follows

P_~ = 1-4.59 + 31.7ul. + 12.4p + l6.0tr - 20.3w~ -12.2w.p + 5.87w.t'r]2

(8.6.7)

Similarly, for For spedmcns madc of concrele of strength up to 35 1.olPa and

strengthened using CPRI' laminates type Sika Wrap of Young's 1!odulus of 26.13
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Figure 8.13 Comparno'l between FEA and RBi,.! regarding the: terl$ilc post-peak 1"1:­

$poflJC oj concrete:
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PEA values dlhc !lQUl"" loaf oflh~ lood rnA ,ma,," uribe "'1""'" load oflhc lead

(a) CFRP "pecimens {l>j GFRI' sp<'Cimcns

Figure 8.14: Comparison between FEA and nSM lood re.~pon:Jefor CPRP and GFRP

OPa, the regression expression for the ultimate load carrying eapacity of these spec-

imCIlS in terms of studied parameters is expressed as:

Pm~ = [~17.5 + 15.31t'T + 12.5p + 50.4t. - 4.89/,

-10.2 w~ - 17.6t; + 1_561~ - 8.99uI,p + G.081JJ,t.]2
(8.6.8)

It is clear that the slab length ratio, I" has a small effect Oil the load response

for both the CF'RP and GFRP spedm€nii. The regression correlation coefficiellt, n2 ,

is 0.9926 and 0.9915 for CFRP and the GF'TlP strengt,hened specimens, rcspectively.

This indicates good fit and prediction accuracy. Figure 8.14 shows a comparison

between the prtodicted maximum load using the RS~d and the actual finite element.

results of specimens stecugthcneJ using CFRP specimens and GVitI' specimens. Fig-

uee 8.14 indicates a good fit belv.-eeu the predicted and actual maximum loads.
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Effect of t.he different parameters on the load carr:)'ing capacity

The RS:\'! provides au outstanding statisticaJ e'\1uuatiolJ of the results such lI.!J the

effecl of each parameter at a time on the responses aDd the correlation coefficient.

:l.loram:lI, the combination effect of twO parameters aD a single response can be dis­

cussed au oue graph. From figure 8.15 and from the regression expressions in Equa­

tions 8.6.7 and B.G.S, olLe call see that there is a clear w~/4, and w,!p interactions.

Figures 8.15.a and 8.15.lJ show wr/p and Writ. interaction graphs for eFR? and

GFRP specimens, r~pectively. Regarding the efTl'Cl of the FRP width ratio, w" it

is evident that there is a clear second order effect as shown in Pigureli B.15.a aud

8.15.h. 10 addition, tllere is an optimum value of w, that is almost 0.75 at which

the load is maximum and beyond which tbe square root of the ultimate load carrying

capacity decrealleS. The illteraction diagram in Figure 8.15.a converges indicating

that increasing both FRP width raLio, lOr, and the reinforcement ralio. p, leads to a

10'A'ef load response, p....... On the other hand, the diagram in Figure 8.IS.b diverges

indicating that increasing both the FRP 'width ratio, tor, and the slab thickness ratio,

4, leads to a higher load response.

8.7 Summary and Conclusions

In this chapter a finite element anal~"Sis analysis complimented with a statistical

approach was prcscnted. The rull bond between either the steel reinforcement or

FRP materials and concrete was assumed

A calibration study is conducted on a finite element moocl and is used to analyze

strengthened tWl?-way slabs. Tile finite dement resulL'> are calibrated with tile exper·

irnental results. A parametric study is carried Ollt to generate finite element data. A
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(a) Cf'RJ' apl'cirDeM(tIl.-p) (b) Gt-RPspecimens(lII.-I.)

Figure 8.1$: InteroctiOfl effect of tJle different poromder" on the, load

total of 25 runs are im"lelOemoo for each of the CFRP strips and CFRP laminateo;

strengthenoo specimens.

An FRP teroiion stiffening model is recommended to predict the complete be­

haviour of concrete in tension. 'fhe l'(,'COmmcnded model describes the tensile be-

hllviour of concrete slabs strengthened using FRP materials. The parameters of

the model arc dcrhlXl bo.seJ on the statistical analysis using the Response Surface

Methodology and modified to obtain a better lit. The comparison between lhc pre­

dicted pa;t-pcak concrete model and the actual post-peak behaviour shows an ac­

ceptable agreement. 'Tile llIodel is useful as an input in finite elclIiCllt packages and

useful for classicalll.pproaclll'll. The restriction to the mOOel is t.hat concrete !Jas to

be normal strength concrete and the configurat.ion of the tested slab has to be withiu

the ,"ll.!ues of the stlidied Il<'\rameters.
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A simple equatiou is de'"cloped to pn)""ide a simple design guide for engineen. to

predict the ultimate load carrying capacity of CFRP or GFRP strePgthened two­

tI-ay slabs. The correlation coefficient of the developed expression is close to unity

indicating that the models can predict ~he ultimate loads cxtrC!D('!)" well.



Chapter 9

Conclusions

9.1 Summary

A comprehensive experimental and th(.'()wtical study on different strengthening wclJ­

niques of two-way slabs are presented. TIle research work is divided into two main

phases: experimental and theoretical. The experimental work includes illw~stigatillg

the effectiveness of using: steel a.\l a traditional strengthening material. Tile cOlllbilleU

effect of steel bolts lI.l; vertical shear reinforcement and st.eel plate; as horizontal rcin­

forcement is studied experimentally. The strengthening tedlllique using steel plates

and bolts noticeably increases the load carrying capacil.y and enhunces the deforma-

tional characteristics of the strengthened slabs. An average increase of the ultimate

load carrying capacity of about 50% is achieved

In addition, the experimental work included investigating the validity of using

Carbon Fibre lleillforood Polymcr (CFRP) strips and Glass Fibrc reinforced polymer

(GFRP) laminates as flexural-strcngthening of two-way slabs. Although specimcns

showcd a greater brittle behaviour, the load capacit)' call be increase<! up to about

36%.

The theoretical work includes all iterative-i.llcremental-mechanical model suitable

223
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for ~labs strengthened with steel plates. This model can analyze two-way slabs made

ofnorrnal or higb-strength concrete.

II.'1orOOH~r, the theoretical \\'Ork includes a finite element analysi~ of FRP ftexural-

strengthened two-way slabs. The finite element modd is calibrated with the a,·ailable

experimemal data and showed a good agreement. A teusiou stiffening model for

CQncrete portions strengthcnl,.>U using FRP is suggest.e<l. This model accounts for the

effect of FRP-strengthenillg material. III addition, a mathematical regression model

l<; suggested to evaluate the ultimate load carrying capacity of FRP-strengthened

two-way slabs. The suggested model predicts tbc ultimate IOMI carrying capacity of

FRP-strengthened two-way slabs accurately.

9.2 Steel Strengthened Centrally Loaded Slabs

The effectiveness of two different configuratiolls of steel plates and four different ar­

rangements of steel bolts is imestigatcd. The strengthening sted plates arc extended

to twke the slab depth arouud the column and act as drop panels of lill equivalelit

concrete depth. The minimum number of eight 19-mm diameter steel bolts is sufti-

cieut to transfer l.he horizontal forces from the steel plates to concrete and to confine

concrete between the ~teel plates.

The recommendt.>U dimensions of tbe strengthening ~teel plates and the number of

the steel bolts are sufficient to achieve positive results. The steel plate side dimension

should equal the column size plus four times the slab depth. A minimum of eight

bolts are recommended with four bolts on the outer perimeter of l.he steel plaw and

fonr bolts on t.he inner perimet.er of the steel plate neur the column

The ~treugthening: technique contributed to an increNle of the yield and ultimate
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load of the slabs. For specimens with 1.0% reinforcement ratio, an average iliCrease

of the yield load of 50% compared to that of the reference specimen is ochieved.

1\"loreover, the average increase of the ultimate load of 53% is aclJie~-eJ. The increase

of the ultimate load of the specimens with separate st.eel plates is eYli1uated at 36%.

For the specimen with a reinforcement ratio of 0.5%, the strengthening contrihutes

c.o in(:rease t.he ultimate load by 15.19%.

It is concluded that the minimum number of steel holts needed to ensure full

illleroctioll between steel plates and slab is eight bolts. In addition, the steel plates

with the suggested dimensions tmd steel holts with the suggested {'{)nfiguration arc

well utilized. The strain in the steel plates and bolts indicates a complete composite

interaction between concrete and steel plates

The strengthened specimens show stiffer behaviour than that of tiJe rererence

specimen. MorrowI, the average ductility of the Mrengthelled specimcns is about

29% more than the ductility of thc refcrcnce specimens. The eller~y absorption of

the strengthened specimens is greatly increased due to the strengthening process. The

average increase of the energy absorption of the strengthened specimens over that of

the refelellce specimen is about 100%.

9.3 Steel Strengthened Two-Way Slabs nnder Dif­
ferent Types of Loading

The applications of the sleel strengthening tBchlliquc was e.xtended to cases of two­

way slabs loaded wi~h different loading types and reinforced with different reinforce-

meut ratios. Specimens wcre loaded centrally plus either monotonic or cyclic 11I0­

ment~. The specimens were reinforced with either 0.5% or 1.0% reinforcement ratio.
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The strengthened spcciulcn with a reinforcement ratio of 0.5% and suuj..octed to

central load plus monotonic moment showed more than twice the ultimate capacity

of the associated reference specimen. ~Ioreo\"{lr, the gain of the ultimate capacity for

specimen with reinforcement ratio of 1.0% subjected to central load plus moment was

greater than that of tlJe associated reference specimens by about of 88%.

It was evident that the strengt.hened slabs subjected to central load pIllS mono­

lOnic moment showed an increase of the stiffness over that of the reference slabs.

The strengtheued specimens showed about an average of 72% increase ill the initial

stiffness over t.hat of the reference specimens. In addition, a considerable increase

in the ellcrg)-' absorption values was observed over that of the reference specimells.

Specimen witll reinforCClllellt ratio of 0,5% showed energy absorption of about 8.4

times that of the reference specimen.

For specimens subjected lO central load plus cyclic moment, the unbalanced

cyclic moment resistance of the strengthened was ahout 15% higher than that of the

reference spe<'imen, regardless the rein[on;ement ratio. Furthermore, strengtlJened

slabs can ulldergo a lal~ral drift capacity 76% higher than that of the associated

reference specimen. .\1oroover, the strengthened specimeils had more drift cycles

than that of the reference specimens.

9.4 FRP~StrengthenedSlabs

It was concluded that CFRP strips and GFRP laminates were sufficient to achie\'c

positive results for the FRP f1e;mral-strCllgthening for two-way slabs. Flexural~

strengthenin:; specimens llsing CFRP strips. sho.....-ed an average gain ill load capacity

of about 36% O\'f'r that of the referenee spL'(.:imens. In addition, f1exuraJ--!;trengthf!ning
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spt'cimens using GFRP laminates shov.-ed an 3\"l!:rage gain in load. capacity of about

31%0'>-erwato{thereferencesp«imens.

The llexural-strengthening specimens sbov.-ed a stiffer behaviour than that of Ihe

reference specimeus. Hov.'(l\"er, a decrease in ductilit.y and energy absorption was

recorded due to the brittle nsture of the FRP materials. 'The average decrease of tile

energy absorption of the strengthened specimens over that of the reference specimt:ns

WfL~ about 37.5% for flexural strengthening specim('ns usiug CFBP strips. The ratio

was 24% in case of GFRP laminates. For the suggestt..u llcxllral-strcngthcning tech·

lliquc, debonding between FRP lIIaterials and concrete was the main cause of failure.

None of the strengthening materials experiencc<.l rupture.

Ou the other blllld, a small 8\'crage increase within 10% was achie\'El(:l for punching­

shear-strengthening. In addition, the strengthened specimens failed under sudden

undesirable pundJing-shear failure mode. Therefore, it is Dot recommended to use

CFRP strips or CFRP laminates for punching-shear-suengthening two-way S)'StCltl

for specimens with steel reinforcement ratios of 1.0% or more.

9.5 Mechanical Model for Steel Strengthened Slabs

The mechanical model analyzes steel strengthened and unstrengthened two-Woly slabs

fairly accurately. The \·erificatiou of the new modcl for 19 specimellil showed a good

agreemcnt with respect to the ultimate load carrying capacit)'. The proposed con­

crcte model successfully integrates the cqual-biaxinJ state of stress of normal and high

strength concrete in two-way slabs. The contribution of steel plates and boilS as well

as the confillelll~llt effect Oil the COllcrele compressive strC!l!i~train relationship are

considered in thl' model. A complete tensile stress-strain relationship of concrete is
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impa;ed in the model that includes ooth the pre-cracking and p<J6t--emcldng proper-

ties of concrete in tension.

An O\'eTall e,'ll!uatioll of the mechanical model indicated estiUlation of the ultimate

loading capacity. The ability of this model to evaluate I,he deflection of the twQ-""ay

slabs, as well as the ultimate load carr)'ing capacity makes it useful on the academic

and industriallc\"el.

9.6 FEA of FRP Flexural Strengthened Slabs

A finite element analysis of FRP ;;trengthclloo two-\\'ay slabs is presented. The finite

dement analysis is calibrated with available experimental results with respect w

the ultimate load carrying capacity of the slabs. TLe calibration study leads to

a sUCCffiSful modelling of different aspecl8 of the finite element analysis so that a

good agreement oot"..ccn the finite element analysis and the anUlahle experimental

results is achie\'OO. This calibration fillite element analysis is followed by a. parametric

study to generate se\'eI'al pre-designed C&'iCS of FRP s~rengthened sJab&. The data

generated of these cases an! pre-designed using the Response Surface Methodology

(RS~1)statb."tical approocb.

The impact of fOllr parameten; on tbc output responses W&'i in\"CStigated. The

studied parameters were the strengthening width ratio, the original slab reinforcement

ratio, the slab thicknCSll ratio, and the slab lenKth ratio. The output responses were

the ultimate capacity of the slabs and the actual tensile post peak behaviour of

The RSM is used to develop a model for the tf'llsile stress--stra.i.u relationship

of FRP strengthened concrete. The de\--elopcd. model is referred to as FRP tension
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stiffening model. The model is useful in a finite dcmcut analysill input or for classical

mechanical model of FRP strengthened tWO way slabs. In addition, the RSM is used

to de~'elop a simple design regression equation to predict the ultimate load carrying

capacity of CFRP and CPRP strengthened two-way slabs. The regression equation

can be vcry useful fOl" design engineers to predict the ultimaw load carrying capacity

of FRP strengthened two-way ~lab6 accurately.

9.7 Author's Contribution

I. The r~urch was focused on different strengthening Wchnil.\ucs of two-way slab6

with different loading t)'JX!5 and reinforcement ra.tios. The strengthening loch­

niques were c"a1uaUXI ill cascs where slabs were liubjed.ed to central load only,

cent,ral load phIS monotonic lllOmellt, or cePlraJ load plus C)'die moment. In

addition, specimens \\;th reinforcement ratios ranged from 0.35% to 1.0% were

in\'C8tigated. Hence, the presented rescarcb will benefit the researchers and

design engineers "'ith such a oomprehelllli\'l data ou a subject that is rarely

investigated; that it the strengthening of t\\'O-wa)' slabs.

2. A new strengthening technique is recommeolled using an innovative idea of using

the integration or steel plate and sted bolts. This technique is technically viable

aoll sound. It is successful and can be applied in the field without installation

difficulties.

3. Unlike tile scveral meclmuical models that uuulyze two-way slabs, a mechanical

model was SU~l:;tM in this study able to keep t.ra<;k of the load-deftection

relationship of two way slabs. In addition, the suggested model is the lin;t. of

its kind that analyzes the strengthened tWO-IO'II)" slabs.
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4. A finite element aual)'Sis i.~ presented to anal)"u FRP-strengthened two-way

slabs. A tension stiffening model for concrete strengthened with FRP is recom­

wtmded for concrete ' ....u-way slabs_ The tension stiffening model accounts for

the effoc' of FRP strengthening material. h is useful wben defining the oon­

crete tensile post-peak Str~-strain relationship in the case of FRP strength­

ened slabs. In addilioll, a regression model is l!!COmmended to estimate the

ultimate load carryiug capacity of FRP strengthened two-way slabs.

9.8 Recommendation for Further Research

1. The author suggests lilat a numerical lUIalysill ooS(!O on the RSM be used for

similar research work where certain other parameters nt'ed to toe i!I\'ct>ligated,

for instance, FRP-strengtbcned beams or columnll. It would be beneficial to

obtain the equh'll.leot formula faT coocrete tensile sll'e!II-strain relationship in

the case strengthened be1l.ms and colWIlllS as an attempt to de~'elop a unified

formula.

2. The author sugges18 thal the finiLe element analysis be carried out witbout the

assumption of the full bond. A comparison hetV.'eeD the potential resulLs and

thale presented ill this research will greally benefit the research.
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