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Abstract

We will present results on the representation and the regularity of ezact solutions
Jor the Volterra integral equations with singular kernels and vanishing delays. We
then use the collocation method to approzimate the solutions for the Volterra inte-
gral equations. It is then shown the global order of convergence of the collocation

solutions. Our theoretical results are confirmed in a series of numerical tests.
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1 Introduction

For the Volterra integral equations with singular kernels,

y(t) = g(t) +/t(t —8)"K(t,s)y(s)ds, tel:=[0,T] (0<a<]l) (1.1)

results on the regularity property of the exact solution y and order of convergence of
collocation methods are known (see (4], [5]). For the weakly singular Volterra integral

equations with vanishing delays,

y(t) =g(t) + /nqt(t =) °K(t,s)y(s)ds, tel:=[0,T] (0<a<l), (L12)

with 0 < ¢ < 1 (also mentioned in Brunner [5]), we will present results on the repre-
sentation and the regularity of solutions. It will be shown that the solution of (1.2)
possesses the same regularity properties as the solution of the weakly singular Volterra
integral equation (1.1) with no delay.

We also will show the global order of convergence of the collocation solution of
(1.2) will be 1 — a for uniform meshes. When we use graded meshes, the order of
convergence of the collocation solution of (1.2) will be larger than 1 — a, but can not
exceed m.

The outline of this paper is as follows. In Section 2, we present the representation
and the regularity of solutions of weakly singular Volterra integral equations and prove
existence and uniqueness of the solutions, which we then apply to weakly singular
Volterra integro-differential equations. In Section 3, we present the representation
and regularity of solutions of Volterra integral equations with singular kernels and
vanishing delays (linear and nonlinear), and prove the existence and uniqueness of

the solutions. We then give analogous results for Volterra integro-differential equations
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with weakly singular kernels and vanishing delays. In Section 4, we introduce the
collocation method for weakly singular Volterra integral equations (1.1) and prove the
existence and uniqueness of collocation solutions, and we carry out a complete error
analysis of the collocation method and provide several numerical examples to verify
our theoretical results. In Section 5, we use two different techniques for Volterra
integral equations with singular kernels and vanishing delays: the direct approach
and the transformation approach, and we carry out a complete error analysis of the
collocation method and provide several numerical examples to support our theoretical

results.



2 Volterra integral equations with weakly singular
kernels

In this section, we will present the representation and the regularity of solutions of
weakly singular Volterra integral equations. The presence of the kernel singularities
gives rise to a singular behavior of solutions at the initial point of the interval of

integration.

2.1 Representation of solutions
Consider the general Volterra integral equation with weakly singular kernel
'
y(t) = g(t) r/(tfs)"']\'(t,s)y(s)da, tel:=[07] (0O<a<l). (21)
o

We assume the kernel K = K(t,s) is continuous on D := {(t,s): 0 < s <t < T},
with K (t,t) # 0 for ¢ € I. Here we define the kernel H(t,s) := (t — s) K (t, s).
The following result can be found in Section 6.1.2 in Brunner [4]

Theorem 2.1 Assume that K € C(D), and let 0 < a < 1. Then for any g € C(I),
the solution of weakly singular Volterra integral equation (2.1) can be represented in
the form

®

y(t) :g(i)+2/ HY(t,s)g(s)ds, teEl. (2.2)
=1 o

The iterated kernels H{(t,s) are determined recursively by

H(t,5) ':/‘Hj'(tw)H]",,(v,s)dv, (ts)eD (j>2), (23)

Ho(t,s) = H(t,s

(t—s)"K(t,s) (2.4)



Proof: Using the Picard iteration method to derive the solution, we define
.
) =)+ [ Hale)is
A
Then y(t) can be expressed in the form
:
wt) = o0+ [ B In)s
A

= o)+ [ a5t (o) + [ Hr st as

9(t) + ‘Hf([,a)g(s)d8+ ' lH;“(t,v)Hf’(v,s)dvg(s)ds
o o Js

Defining

.
Hy(t,s /H;*(t,u)H;’(v,s)dv,
we obtain
. .
wl) = a0+ [ Hrsas+ [ B
/ )
2 t
= a0+ [ Hye g
=1 2
Assume we have the same solution representation for yn(t):
.
0l =30+ [ 0 gte)ds
Then by mathematical induction,
.
pon®) = 90+ [ HEC )
;

= a(t)+/l H{(t,5) (9(5)+Z/‘Hf(s,v)g(w)dv) ds
0 3=1 Y9

= g(t)Jr/u Hf(t,a)g(s)dﬁ»/ﬂ H{(t,s) (Z/: Hf’(s,v)g(u)dv,r) ds
=1
ntl

= 9(5)4’,:21/0 HE(t,5)g(s)ds.
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So when n tends to infinity, we obtain the expression of the solution of Volterra

integral equations with singular kernels,
©
y(t) = g(t) + Z/ HE(t, 5)g(s)ds.
=1 0

Since the Neumann series

Ralt,s) =Y Hj(t;s), (t,s)€D,
=
converges uniformly and absolutely (Ref [4]), we may write

(25)

We now show that y(t) given by (2.5) is a solution of (2.1). A similar proof can be

found in Theorem 2.1.2 in Brunner [4].

Theorem 2.2 Let K € C(D) and 0 < a < 1, let R denote the resolvent kernel
associated with H(t, s) = (t—s) K (t, ). Then for any g € C(I) the weakly singular

Volterra integral equation (2.1) has a solution y € C(I), and this solution is given by
.
o0 =0+ [ Relt. sl 1€
8
Proof: Based on the definition of R(t,s), we have

R(t,s) = H*(t,s) + i Ha(t,s) = Ho(t,8) + i/L H (1, v)HE (v, 8)dv,

= S
which we can write as

R(t,s) = H(t,s) +/‘ HO(t,v)R(v, s)dv, (t,s) € D. (2.6)
An equivalent equation could be obtained:

R(t,s) = H(t,5) + /' R(t,v)H*(v,8)dv, (t,5) € D. (27)
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We now replace ¢ in the weakly singular Volterra integral equation (2.1) by v, then
multiply the equation by R(t,v) and integrate with respect to v over the interval [0,¢].

Using the Dirichlet’s formula and the resolvent equation (2.7) we obtain that

/nt R(t,v)y(v)dv = /Dt R(t,v)g(v)dv + /0‘ R(t,v) (/ov H”(v.s)y(s)ds) dv

= /ﬂ‘ R(t,s)g(s)ds + /ﬂ‘ (/ﬂl R(t,v)H”(u,s)dv) y(s)ds

, ,
= / Rty s)g(s)ds + / (R(t,5) — H(t,5)) y(s)ds,
A A

implying that
¢ ¢
/H"’(t,s)y(s)ds:/ R(t,s)g(s)ds, tel.
o o

The resolvent (2.5) follows by substituting the above relation in (2.1).

Thus, (2.5) defines a solution y € C(I) for (2.1)

To be more precise, we use following theorem to represent the solution for (2.1). This

proof can be found in Theorem 6.1.2 in Brunner [4].

Theorem 2.3 Assume that K € C(D), and let 0 < a < 1. Then for any g € C(I),
the linear weakly singular Volterra integral equation (1.1) possesses a unique solution
y € C(I). This solution is given by (1.5): here, the resolvent kernel Ry corresponding

to the kernel H® inherits the weakly singularity (t — s)~ and has the form
Ro=(t-8)°Q(t,s,0), 0<s<t<T, (28)

where
Qt,s;0) 1= Y (t = )" V"D, (¢, 50) (29)
=

The functions , are defined recursively by

Dt sia) = | (1= 2) 02 DOO0K (4 5 4 (£ — 5)2)@pr(s + (t — 8)2,8a)dz

0



(n>2), with y(t, 5;0) 1= K(t,5) and @,(-,;a) € C(D).
Proof: Using the representation (2.2) and letting v = s + (t — 5)z, we have
H(ts) = (¢ = 5)7"(t = 5)' "5 (t,5),
where
|
@5(t,s) / (1= 2) 2 0K (5 + (t — 8)2)K(s + (t — 8)z, 8)dz.
o

Then we have
H2(t,) = (- 8)7(t = 8)" V08, 5),
| where
1
®2(t,5) = / (1= 2)7 D01 K (¢ 5 4 (t — 5)2)@f_ (s + (¢ — 9)2,8)dz.
o
So we have
iﬁ,‘f(m) =(t-s) "i(? — )V (2, 5) = (t — 5)°Q(t, 5; )
=t pt

t = 5)" N0, (¢, 5;0)

We see from Theorem 2.3 that the term W, (t, s; ) ==
can be bounded by

(T —a)"

[a(t,si@)] < KT i

where

K := max{|K(t,s)| : (t,s) € D}.

The resulting uniform convergence of the Neumann series

i U,(t,s;0) = Q(t,s;a) (t,s) €D,

n=1




implies that Q(t,s;a) € C(D) for all a € (0,1).

We observe that the existence of another solution 2 € C([) leads to

W) - =(t) /,, " Ho(t, 9)ly(s) — #(s)lds, tel.

Hence,

.
Jy(t) - =(0) Sl\/n(t~s)"’\y(s)7:(s)\d.s\ tel

Since 0 < a < 1 the generalized Gronwall inequality given in Lemma 2.4 yields,

[y(t) = 2(t)] < Er-a(KT(1 = )t'=*)0

The following result can be found in Theorem 6.1.17 in Brunner [4].

Lemma 2.4 Let I == [0,T] and assume that
(a) g€ C(I), g(t) >0 on I, and g is non-decreasing on I,
(b) the continuous, non-negative function z satisfies the inequality

(t— o)y oa(s)ds, tel,

2(t) < g(t) + M
o
for some M >0 and 0 <a < 1.

Then:

2(t) < By_o(MT(1 - a)t'"%)g(t), tel. (2.10)
Here, Ej denotes the Mittag-Leffler function.
So we proved the uniqueness of the solution for (2.1)

The following result can be found in Theorem 6.1.1 in Brunner [4].
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Corollary 2.5 For any interval I := [0,T] the unique solution y € C(I) of the

Volterra integral equation with weakly singular kernel

l/(t):g(f)+)\/“l(t—€)°1/(8)ds, t>0, 0O<a<l, (2.11)
is given by
y(t) = Ei—a(AD(1 — a)t' )y, t€I, (2.12)
where
Ep(2) :gﬁ B>0, (2.13)

denotes the Mittag-Leffler function

2.2 Regularity of solutions
The following result can be found in Theorem 6.1.6 in Brunner [4].

Theorem 2.6 Assume that g € C™(I) and K € C™(D), with K(t,t) # 0 on I

Then:

(i) For any a € (0,1) the functions ®,(t, s;a) (n > 1) in (2.9) defining Q(t,s;)
lie in the space C™(D), and the regularity of the unique solution of the weakly

singular Volterra integral equation (2.1) is described by
yeC™(O,T)NCU), (B <Cat™ for te(0,T]
(ii) The solution y can be written in the form

y(t) = Y L@ 4 Ya(tia), teT (2.14)
(Gik)a



Here, (j,k)a := {(4,k) : 5,k € No,j + k(1 — a) < m} and Ynu(-;a) € C™(D).

The coefficients Y;x(a) are defined in the proof below.

Proof: The assertion regarding the regularity of y follows straightforwardly from
Theorem 2.3, since K € C™(D) implies that ®,(-,-; a) possesses the same regularity:
®p(-,+,a) € C™(D) (n > 1) for any a € (0,1). Consider the solution representation
described by (2.5) and Theorem 2.3. By the uniform convergence of the infinite series

defining Q(t, 5;) we may write

[ attstatonas - by Je=areoGe s,

where Gy(t, s;a) = ®4(t, 5;0)g(s). It follows from the assumed regularity of g and
K that Gi(, ;@) € Cn(D) (k < 1). Hence, by Taylor’s formula and by employing
the more convenient multi-index notation d := (di, dy)(d; € Np), with

P
ahoh’

|d]:=dy+da, d:=dildg), t?:=ths® D!i=
We write

Gi(t,s;0) = D"Gl)l)nl“+ LG et
d!

ldi<m J {dj=m

Note that

. 1
/(t—s)"“'“"‘s’dx: t”"“"”/ (1= o)M= Nidy = B(k(1 - ), j + )P0,
o o

with B(:, ) denoting the Euler beta function. By suitably rearranging all these terms,

and by adding the contribution due to g,

no1
Zg”])(o)z '+——(m11)l /ﬂ’(t—.s)"‘“'y'"”(s)da, tel.
=0 -
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The solution representation (2.5) can be expressed in the form
W)= 3 a1 Y (ta), tel,
(Gk)a
where Y, (t; @) comprises those terms containing #/++(!-) with j+ k(1 —a) > m, and

all Taylor remainder terms,

More regularity results can be found in Bellen [1].

2.3 Application to Volterra integro-differential equations with
weakly singular kernels
(These results and proofs can be found in Section 7.1.1 in Brunner [4)). In this sec-
tion, we will analyze the regularity properties of solutions to initial-value problems
for Volterra integro-differential equations with weakly singular kernels, we consider
the equation
¢
y'(t) = a(t)y(t) + g(t) + / (t—s)K(t,s)y(s)ds, te€l:=[0,T], y(0)=uyo-
o
(2.15)

Here 0 < a < 1, and K € C(D), K(t,t) # 0 for t € I. We also define

Ho(t,s) = (t — )" K(t,5).

The regularity analysis will be based on the weakly singular Volterra integral equa-
tions that are equivalent to the original initial-value problem (2.15). We have the

form

y(t) = go(t) + /u KLt s)y(s)ds, tel, (2.16)
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where

Kl(t,s) :==a(t) + /‘ H(v, 5)dv.

Alternatively, we may consider the equivalent Volterra integral equation for z(t)

¥/(t), namely,
)= fn(f)+/L K!(t,s)z2(s)ds, tel, (2.17)
o
with
¢
folt) = g(t) + (a(t) +/0 li“’(t.s)ds) "
.
K!(t,s) = a(t) + / HO(t,v)dv.
Note that if a(t) = 0 and K(t,s) = 1, we obtain that

Kl(t,5) = Kl'(t,s) =

Theorem 2.7 Assume that a,g € C(I) and K € C(D), and let a € (0,1). Then
for any initial value yo the Volterra integro-differential equation possesses a unique
solution y € C'(I) satisfying y(0) = yo. Moreover, there exists ro, € C'(D), so that

this solution has the representation
]
W0 = ralt O+ [ ra(tla(e)ds, tel 218)
A
The resolvent kernel 1 can be defined as the solution of the resolvent equation
.
w = —ra(ts s)als) -/ ralt, ) Ha(v,s)dv (t,5) €D, (219)
'8 s
with ra(t,t) =1 fort € I
Proof: We establish results on the properties of the solutions of the weakly singular
Volterra integro-differential equation (2.15). Let RY(t,s) denote the resolvent kernel

12



of the kernel K’ (t,s) in the integral equation (2.16). Since K/ € C(D), we have that
R! solves the resolvent equation
(2.20)

RL(t,s) = KL(t,s) +/‘ RI(t,v)KL(v,8)dv (t,s) € D,

and the unique solution y € C'(I) of (2.15) is given by
¢
+ / RI(t,s)go(s)ds, tel (2:21)
o
Using the above definitions of go and K, we obtain
. . ¢
_ (1 +/ RL(t, s)ds) w +/ (1 +/ H;(:,v)du) o(s)ds
o o s
This shows that the desired function rq in (2.18) is given by
.
Talt,s) =1 +/ RL(t,v)dv (t,s) € D. (2.22)

The above also reveals that the resolvent 4 (t, s) associated with the linear Volterra

integro-differential equation (2.15) satisfies

Falts) _ _prg = - '(t,.s)7/‘R,',(t,v)l\'l{(v,s)dv

F
afs) /HHM-/RHU) /Ha s)dz)dv
7(1+'/! R;(m)dv) a(s)—/x (1+/v RI(t,2) )H,,(v, )dv,

2.21),
(2.23)

and hence, by
alt,s '
w = —ru(t, $)a(a) —/ ralt, V)Ha(v, 8)dv (t,5) € D.
'S s
Before analyzing the regularity of the solution for (2.15), we notice that the weakly
singular Volterra integro-differential equation (2.15) is equivalent to the Volterra in-
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tegral equation
‘
y(t) = g(t) +/ (t—s)'"°K(t,s)y(s)ds, te[0,t, a€(0,1), and K €C(D).
o
(2.24)
We compare the representation of solution of weakly singular Volterra integral
equation (2.1) in Theorem 2.3 to represent the solution of Volterra integro-differential
equation in (2.24), we just need to use 1 — a to replace —a in Theorem 2.3. And we
can obtain the regularity result of the solution of Volterra integro-differential equation
(2.15).
Theorem 2.8 Assume that a and g € C™(I) and K € C™(D) (m > 1), with
K(t,t) #0 on I, and a € (0,1). Then:
(i) The regularity of the solution y of the linear Volterra integro-differential equation
(2.15) with weakly singular kernel (t — s)~® is described by
y € C'(I)ynC™((0,T)),
with y" being unbounded at t = 0*:

[yt < cte, te (1]

(ii) The solution y can be written in the form
y(t) = Y Tiw@ D 1Yo (bv), tel (225)
(k)
where 8 =1—a and

(G kDo = {(i k) : 5ok € Noyj +k(1+B) Sm+1}

Moreover, Yoy (5v) € C™(I).



3 Volterra integral equations with weakly singular

kernels and vanishing delays

3.1 Representation of solutions

Consider the general Volterra integral equation with weakly singular kernel and van-

ishing delay,
(t)
y(t) = g(t) +/ (t—s)"K(t,s)y(s)ds, tel=[0T] (0<a<1). (3.1)
o

Here, (t,5) € D{ = {(t,s) : 0 < s < 6"(t), t € I}. We assume that the delay
function 6(t) has the properties:

(i) 6(0) = 0, 0 is strictly increasing (guaranteeing that 6~'(t) exists).

(i) 6(t) < gt for some g € (0,1)

(iii) 0 € C[0,T).

We assume that K € C(D{"), with K(t,t) # 0 for t € I. Here we also define the
kernel Ho(t,s) := (t — 8)™K(t, 5)
First we consider the Volterra integral equation with weakly singular kernel and

linear vanishing delay function 6(t) = gt (0 < ¢ < 1)
a
y(t) :g(i)+/ (t—s)°K(t,s)y(s)ds, tel:=[0,T] (0<a<l). (32)
o

Theorem 3.1 Assume that K € C(D{") with D{" := {(t,s) : 0 < s < qt}, and
let0 < q<1,0<a< ]l Then for any g € C(I), the solution of Volterra inte-
gral equation (3.2) with singular kernel and linear vanishing delay function gt can be
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represented in the form
© oot
y(t) = g(t) +Z/ H(t,s)g(s)ds (t,s) € DY) (0<a<1).  (33)
=170
The iterated kernels HY(t,s) are determined recursively by

Ho(t,s) /GL HO (6 0)H, (v,5)dv (t,5) € DY (5 >2), (3.4)

H(t,s) = HO(t,8) = (¢ — ) K¢
Proof: Using the Picard iteration method to express the solution, first we have
q,
=g+ [ (e a(eyis
A
Then, y(t) can be expressed in the form

wlt) = o+ [ B anG

/ H"t.s( () + / e (s,v)g(u)dv)d.s

/ H(L,5) ds+/ / HE(t, ) B (v, 5)dug(s)ds.

We define
at
H3(t,s) ::/ HE (t,0)H (v, s)dv.
f

So we may write
at
() = !l(f)+/ H{(t,5)g(s)ds +
o
2 ot
= y(t)»#Z/ H(t,5)g(s)ds
3=170
Assume that we have the same solution representation for y,(t):
0 gt
(¢)+Z/ HY(t,5)g(s)ds.
=170

16
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Then,
r(t) = g(:)+/ﬂ" H(t, 8)ya(s)ds
qt L.} s
= g(t)+/D Hi(t,s) (g(s)+;‘/ﬂ H;’(s.v)g(u)d1/> ds

qt qt . o8
= g(t)+/ H,f'(t,s)g(s)ds+/ H{(t,5) (Z/ H;'(s,u)g(w)dv> ds
o o = Jo
a4l gt
= g(t) +Z/ H(t,5)g(s)ds.
=170
Thus, when n tends to infinity, we have the general representation of the solution of

Volterra integral equations with singular kernels and with vanishing delay gt
® ot
Wy =s0+Y [ a3 ter,
i=1 0

where

"
9= [ E @b for 521,
&

with

HE(t,s) = HO(t, ) = (t — ) K(t,s).

To be more precise, we state the following theorem to represent the solution of

(3.2).

Theorem 3.2 Assume that the given function in (3.2) satisfy g € C(I) and K €
C(D{"). Then for all g € (0,1) and a € (0,1), (3.2) possesses a unique solution

y € C(I), and this solution can be written in the form

u(t) = g(t) + i:‘ /0"”(: — ;—ﬂ)’“‘@,,(t, s)g(s)ds, tel. (3.6)
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Here, the kernel functions ®,(t,s) are defined recursively by

,)/n%u—zr“( =

e

s
K (t, st
where

(t,s) € DI = {(t,;s): 0<s<qt, tel} (n21)
The infinite series in (3.6) converges absolutely and uniformly on I
Proof: Using the representation in (3.3), when j = 2, we have
at
a3 = [ H 0w
i

= /m(c — ) K (t,v) (v - ) K (v, 8)dv

Setting v = 2 . g)z and integrating with respect to = from 0 to "4 this
H
becomes
H(t,s) =
When j = 3, it follows that
"
HY(t,s) = / H (8, 0) S (v, 5)do.
Ed
- &

s q!
Again, we let v = qil +(t ~ <)z and integrating with respect to = from 0 to 5—4~,
G -

we obtain




Using mathematical induction this leads to

=0+ [ (= 2w ateds

where

To show that this solution y € C(I) given by (3.6) is unique, we observe that the

existence of another solution z € C(I) leads to

o

y(t) - 2(t) = / HO(t,)[y(s) — 2(s)]ds, tel

j

Hence,
O =201 S & [0 90lu(s) - s6ds, te .

A

Since 0 < a < 1 and 0 < g < 1, the extension of the generalized Gronwall inequality

yields that,

[y(t) = 2(8)] < Br-a(KT(1 = a)t'"")0 =0, tel.
So we proved the uniqueness of the solution for (3.2).
The following lemma is an extension of Lemma 2.4,
Lemma 3.3 Let [ := [0,7] and assume that
(a) g€ C(I), g(t) >0 on I, and g is non-decreasing on I.
(b) The continuous, non-negative function = satisfies the inequality
at
)+ M/ (t—s)z(s)ds, tel,
o

Jor some M >0 and0 < a < 1.



2(t) < Bra(MT(1 - a)t)g(t), tel (37)
Here, Ey denotes the Mittag-Leffler function.
Proof: We see that in condition (b) of this corollary:
at
2(t) < g(t) +M/ (t— 8)""2(s)ds.
o
Since 0 < g < 1, this leads to
qt t
2(t) < glt) + M/ (t—s)""2(s)ds < g(t) + M/ (t - ) 2(s)ds.
o o

This also satisfies the condition (b) in Lemma 2.4.

3.2 Regularity of solutions

We will use the result in Theorem 3.2 on the representation of the solution to the
equation (3.2) to derive regularity results under the assumption that the given func-

tions are smooth enough.

Theorem 3.4 Assume that g € C™(I) and K € C™(D), with K(t,t) # 0 on I.
Then for any a € (0,1), the function ®, (n > 1) in (3.6) lies in the space C™(D{"),

and the regularity of the unique solution of (3.2) is described by
yeC™(O,T)NC), |y(®)|<Cat™ for te(0,T],

where the positive constant Cy, depends on g and K and their derivatives.




Proof: K € C™(D) implies that ®,(t,s) possesses the same regularity: ®,(t,s) €
C™(D) when n > 1 for any a € (0,1). Consider now the solution representation
described by (3.6), let Gn(t, ) := ®n(t, s)g(s), it follows from the assumed regularity
of g and K that G, € C™(D). Hence, by Taylor’s formula and by employing the
more convenient multi-index notation d := (dy,d) (di € No), with

ol
ohon"

|| i=dy+da, dl:=dldyl, t?:=thsh, D=

We write

Glt,s;0) = Z D G(0,0; )t s + Z G(Gr, Goj )t 52,
M(m \dl-m
and

! 40)(0) 1 '
- j-1 e — g)mlg(m
g(t) = J§=0 7 14 ey /o (t—s)™ g™ (s)ds, tel.

Then we obtain

o = +Z/

a“x

% )=0Ga(t, s)ds

_ 920 0 1 /‘ m=1,(m)( ) Js
= S 0 ——— [ (t-s)" g™ (s)ds
Zu 7 m=11Jo
Q- 1 ks s
+ —D"G(0,0;a)t"’ s%(t — —)ds
By Z 266 Gt /., sth(t - ) ods.
=1 |d=m q

Since we know that

o st S i S
[ st frean= [@one-vda

= qnmm/ (t = 5)'-stds = I B((1 — ), dy + 1)t
o

21



This leads to

y(t)

i 1. L / ¥ o1, (m)
_‘] e A 5)ds
go tmomi), Em9"emE
-
+ Z Z DIG(0,00)g™ = B((1 - ), dy + 1)t
- 1
Z Z @ G(Gr, G @)™ 4 B((1 - a), dp + 1)1+,
Thus, the solution of (3.2) can be expressed in the form

=Y TP 4 V(o) te, (38)
(ke

where Y, (t; ) comprises those terms containing t/+*(1=%) with j + k(1—a) > m, and

all Taylor remainder terms.

3.3 Volterra integral equations with more general vanishing

delays

In the previous analysis we have considered the equation (3.1) with linear delay
function 6() = gt (0 < g < 1). Now we consider (3.1) with nonlinear delay function

6 = 6(t) that is subject to
(i) 0(0) = 0, 0 is strictly increasing (guaranteeing that 6~'(t) exists).
(i) O(t) < gt for some g € (0,1)

(iii) 6 € C((0,T)).
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Corollary 3.5 Assume the given functions in (3.1) satisfy g € C(I) and K(t,s) €
C(DP), which D = {(t,s) :0 < s < 6(t), t€I}. Then for all a € (0,1), (3.1)
possesses a unique solution y € C(I), and this solution can be written in the form
o pon(t)
y(t) =g(t) + ; /n (t=07"(s))""®ult, s)g(s)ds, (3.9)

where the kernel function ®y(t,s) is defined recursively by

L(0)
Dult,s) = (t—ﬁ‘("'”(s))/ (1= 27"V (s) = 07" D(s) + (¢ = 07"V (5)2)
0
K(t,070D(s) + (£ — 070 (8))2) By (07 (5) + (t — 67" (s))2, 8)dz,

o(t) = 0-""(s)
=00 (s)
The infinite series in (3.9) converges absolutely and uniformly on I.

(n>2), (t,s) € DY, where L(6) :=

Proof: The process of proof is exactly the same as the proof of Theorem 3.2, and

the nonlinear delay function 6(t) plays the same rule as gt in Theorem 3.2
To show that this solution y € C(I) given by (3.9) is unique, we observe that the

existence of another solution z € C(I) leads to

0(t)

o) - =(t) = / HO(t, 5)[y(s) - 2(s)ds, tel
8
Hence,
e
WO - 01 < K [ =7l - x(olds, te .

A

Since 0 < a < 1 and 0(t) < t, the extension of generalized Gronwall inequality below

yields that,
[u(t) = 2(t)] < Br-a(KT(1 = a)t""*)0 =0, tel

So we proved the uniqueness of the solution for (3.1).
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Lemma 3.6 Let I := [0, ] and assume that:

(a) g€ C(I), g(t) >0 on I, and g is non-decreasing on I
(b) The continuous, non-negative function z satisfies the inequality
0(t)
() < glt) + M/ (t-s)z(s)ds, tel,
o

Jor some M >0, 0 < a < 1, and with the nonlincar delay function 6(t) subject

to conditions (i), (i), (iii)

Then:
2(t) < Bi-o(MT(1 — a)t'*)g(t), te€l. (3.10)

Here, Ey denotes the Mittag-Leffler function.
Proof: This result is another extension of Lemma 2.4. We notice that in condition
(b) of this lemma,
o0
2(t) < g(t) + M/ (t = 5)"2(s)ds.
o
Since the nonlinear delay function 6(¢) satisfies 0(t) < gt (7 € (0,1), this leads to
-0(t) t
() < glt) + M/ (t—s)"=(s)ds < g(t) + M/ (t = 5)™z(s)ds.
o o

This also satisfies the condition (b) in Lemma 2.4. The result still holds.
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3.4 A more general weakly singular Volterra integral equa-
tion with vanishing delay
In this section we will consider the Volterra integral equations with weakly singular
kernels and vanishing delays, but now integrating from gt to ¢, with 0 < ¢ < 1:
y(t) = g(t) + /:(t —5)°K(t,s)y(s)ds, tel:=[0,T] (0<a<l). (3.11)
a
Here, (t,s) € Ay := {(t,s) : q"t < s <t}

We assume that K € C(AY), with K(t,t) # 0 for t € I. Here we also define the

kernel HO(t,s) := (t — s) " K(t, s).

Theorem 3.7 Assume that K € C(AY"), and let 0 < q < 1, and 0 < a < 1. Then
Jfor any g € C(I), the solution of Volterra integral equation (3.11) with singular kernel
and vanishing delay gt can be represented in the form
. w ot
y(t) = g(t)+/ H“(t,s)g(s)dﬂ-z/ H(t,s)g(s)ds (t,5) € AP (0<a<l)
at n=2 /e
(3.12)
The iterated kernel Hg(t,s) are determined recursively by
¢
20(t, ) := / HY(t,v)HS_ (v, 8)dv, "'t <s<q" %,
HE(t,8) = L
o
@\ (t,s) :=/ HY(t,v)HI_ (v, 8)dv, q"t<s<q™'t,
.
! (3.13)
where

H(t,s) = HO(t,s) := (t — 8) K (t,5)
Proof: Using the Picard iteration method to express the solution, first we have
'
wn(t)=g(t)+ [ Hi(ts)g(s)ds
t

4
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Then, a(t) can be expressed in the form

1

w) = o)+ [ (o
- e, !H" s, dv ) d:
o0+ [ e s)(g(s>+/q‘ Fls, a0 ) s

S g(t)+/ H;’(Ls)g(S)dH/ /’Hf'(t,S)Hi’(s,v)g(u)dud.q
at at Jas

t qt i
g(t)+/ H;‘[l,.>)y(s)ds+/ / HY () H (v, 5)dvg(s)ds
at ot Jat
.
+/ / H(t,v)HE (v, 5)dvg(s)ds
o
We define
:
Ho(t,9) .:/ HO(t o) HE (v, s)dv, gt <5 <t,
H(ts) =
H\(t,s) = / HY(t,v)Hf (v, s)dv, ¢*t < s < qt.
A
So we may write
¢ y
vty = 90)+ [ B3 gateyis+ [ 5 ot
o o
Assume that we have the same solution representation for y,(t):
, n et
IURTCRY W CEVETES of M AURYOLY
at =2 et
Then,
"
vt = 90+ [ Hy (o)
A
\ el
= g(t)+/ H;’(t.s)g(s)ds+2/ HE(t,5)g(s)ds.
at oo
Thus, when n tends to infinity, we have the general representation of the solution for

equation (3.11)

y(t) = g(t)+ /LL H"[!,s)g(s)d#i/u:r lH,’:(t,a)q(s)rts (t.s) €AY (0<a<l),
o 2 Y™
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where

.
Hyt9) = [ BB, @S s <o,
Hy(ts) = =
Hyts) = [T OB ), S s S,
A
with

Hi(t,s

= H(t,s) = (t — ) °K(t,s)

To be more precise, we state the following theorem to represent the solution of
(3.11).
Theorem 3.8 Assume the given functions in (3.11) satisfy g € C(I) and K €
C(AM). Then for all q € (0,1) anda € (0,1), (8.11) possesses a unique solution

y € C(I), and this solution can be written in the form

¢ o 2t
y(t) = g(t) +/ (t = s)™K(t,s)g(s)ds + Z/ H(t,s)g(s)ds, (3.14)
at n2 Jant

where the kernel function HY(t,s) is defined by

20(t,8) —) 2 B,0(t,s), "t <s <",
0

H2(t,s) =

Halts) o= (t = ) Baaltys), <SSt

Iz

The kernel functions ®,o(t,s) and ®,,(t,s) are defined recursively by

Pnolt,s) = (¢




where (t,s) € A" The infinite series in (3.14) converges absolutely and uniformly

on I.

Proof: Using the representations in (3.12) and (3.13), when n = 2, we have
”
Hiolts) = / Yt 0) B (v, 5)dv
’
= /(t— 0Kt v)(v — 5)K (v, s)dv.

Setting v = s + (£ — s)z and integrating with respect to z from 0 to 1, this becomes

1

Hgo(t,s)= | (¢— 8)!72(1 = 2)™ 27K (t, s + (t — 8)2) K (s + (t — 8)2, 5)dz

Also
a3t = [ HEC 0w
A

- /:'(e — o) K (b, v) (v — 8)"K (v, 8)dv

-3
Setting v = > + (t — s)z and integrating with respect to 2 from ——t
q

to 0, this

becomes

1,00 ~ /;i(:—g)""a—:r"(g—sw— 2"

L
q
s s s s
K(t,=+(t—=)z)K(=+(t—=)zs)dz
(s (Gre-pes)es
When n = 3,it follows that
.
Ho(tys) = /Hf(z,y)H;(u,s)du
A
= / (t - v)"K (¢, v) H (v, s)dv.
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Setting v =2 + (t — g)z and integrating with respect to z from 0 to 1, this becomes
q

Holt,s) = /ﬂl(t = %)""(1 — )oK (t% +(t- s):) HE (% - 2)2,5) dz

We also have

G

Hyts) = [7 H0)HS (v, s)dv
1
- / (t =) "K(t,v) HS (v, 5)do.

at—F

to 0, this

Setting v = q—i +(t = 25)7 and integrating with respect o  from ~—
g -7

becomes

0
e = fogt
HE (% F(t— q-i)z,s) dz.

Using mathematical induction this leads to
w0 =o)+ [ -9kt Y [ s, @19)
qt n=2Ja"t

where the kernel function Hg(t,s) is defined by

s

q,,,,)”"‘l’n,u(t« s), ¢"t<s<q,

S ) Ru(ts), @t <<

e




To show that this solution y € C(I) given by (3.14) is unique, we observe that

the existence of another solution z € C([) leads to

y(t) = 2(t) = /; HO(t,8)[y(s) — 2(s))ds, tel.
a
Hence,
1) 201 < & [ 97lto) - (o, 1.
Since 0 < a < 1and 0 < g < 1, the generalized Gronwall inequality below yields
[y(t) = 2(t)] < Er_a(KT(1 - a)t'=")0=0, tel

So we easily proved the uniqueness of the solution for (3.11).

Lemma 3.9 Let [ :

[0,T] and assume that

(a) g€ C(I), g(t) >0 on I, and g is non-decreasing on I.

(b) The continuous, non-negative function z satisfies the inequality

2(t) < g(t) + M/:(t —8)(s)ds, tel,
u
Jor some M >0,0<a<1
Then:
2(t) € By-o(MT(1 = a)t')g(t), tel. (3.16)

Here, Ej denotes the Mittag-Leffler function.
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Proof: This corollary is another extension of Lemma 2.4. We notice that in condition

(b) of this corollary we have:
. .

2(8) < gt) + M/ (t— ) z(s)ds < g(t) + M/ (t— )""2(s)ds.
t o

This also satisfies the condition (b) in Lemma 2.4.

3.5 Application to Volterra integro-differential equations with
weakly singular kernels and vanishing delays

In this section we consider the existence and regularity of solutions to the Volterra

integro-differential equations
at
y'(t) :g(t)+/ (t—s)"K(t,s)y(s)ds, tel (3.17)
o

In order to reduce this problem to the one studied in the previous sections, we set

2(t) := y/(¢) and write

This will lead to

1 0)+'/‘:(u)du> ds

o
= g(t)+/u“([—s)"'K(f,.»‘)y(U)er " ""1 /q’(f—A,r)‘“K(i‘u)dn:(s)ds

0 = g(t)»w/u"‘(z—sr"mc..,-

at
= G(t)+/ (t = ) Ka(t, 5)2(s)ds. (3.18)
o
Where we have used the notations
at
G(t) = y[!)+/ (t = 5) K (t, s)y(0)ds,
b
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(1=y) K (t: s+ (t = s)y)dy

Theorem 3.10 Assume that the given function in (3.17) satisfying g € C(I) and
K € C(D,). Then for anyyo and any a € (0,1) the integral equation (3.17) possesses

a unique solution z € C(I). This solution can be written as

z(t):c(mZ/D" (t=2)7"Qu(tG(e)es (3.19)
where
gt- by
Quit) = [0 (- o)

K (1 4 0= 2) Qo (5 + 0= 7m0 s
and G(t) is the new function that
.
G(t) = g(t) +/ (t—s)"*K(t, s)y(0)ds.
A
The infinite series in (3.19) converges absolutely and uniformly on I.
Proof: The proof is very similar to the proofs of Theorem 3.1 and Theorem 3.2. We

just need to replace ®,(t, s) by Qu(t, s), and replace g(t) by G(t), then we can easily

obtain the solution representation in (3.19)

Theorem 3.11 Assume that g € C™(I) and K € C™(D,), with K(t,t) # 0 on I
Then for any a € (0,1), the function Qu(t,s) (n > 1) defined in Theorem 3.10 lies
in the space C™(D,), and the regularity of the unique solution of equation (3.17) is
described by:

yeC™Y(0,T) NC(I), with [y"()] < Cat™ for te(0,T].
The positive constant C, depends on g and K and their derivatives
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Proof: We see that z(t) that defined by =(t) = ¥/(t) has the same regularity as the
solution y(t) in equation (3.1). Hence, the regularity result of Theorem 3.11 for y(t)

follows.
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4  Collocation for Volterra integral equations with
weakly singular kernels

We now return to the Volterra integral equation (2.1) in Section 2.1,

"

o) *ﬂ(?)v"/ (t— )KL, 9)y(s)ds, tel,

o

where K € C(D) and g € C(I) are given functions. We define
Ho(t,s) = (t — 8) " K(t,s).

in the piecewise | ial

We will approximate the solution of (2.1) by
space SG')(I). This numerical collocation solution uy, is defined by the collocation
equation

w(t) = g(t) +/O'(: — ) Kt s)un(s)ds, € Xy (41)

‘Where the set of collocation points

Xp={tn+chn: 01 <..<cn <1 (n=0,1, (42)
4.1 Background knowledge
Let
D= {ta=tM:0=tM <tV < . <t =T}, (4.3)

denote a mesh on the interval 7 := [0,7] and set

(0, E0), B = ) — ™, A = max k™, AQ), = min Y

There are two types of meshes which we will use in the following sections

34



T

(a) Unifom mesh Ip:  h$Y) = h%) = h) = ¥ (=01..N)

n

(b) Graded mesh I,;  t$Y) = (F'T (=01..,N), r>1,

where the real number 7 is called the grading exponent.
Now we give the definition of piecewise polynomial spaces,
Definition For a given mesh I, the piecewise polynomial spaces S5 (), with 2 > 0,
—1<d < p, is given by

SO(I) :={ve CUI) i vlo, €m (0SHSN -1}

Here, 7, denotes the space of real polynomials of degree not exceeding .

4.2 Collocation solution of Volterra integral equations with
weakly singular kernels

We have the collocation equation which we presented in (4.1). Then we will approx-
imate the solution of the weakly singular Volterra integral equation by collocation in

the piecewise polynomial space

SEAU) = {v: Vo, €Mp (0SS

-1}

The following analysis can be found in Chapter 6.2 in Brunner [4].
The computational form of the collocation equation (4.1) will be based on the local
representation employing the Lagrange basis functions with respect to the collocation

parameters {¢;} which we will recall for convenience, setting

and Uy = up(tn + csha) (G =1,...,m).




by
un(t) = un(tn + vh, ZL(L Unj, vE(0,1. (4.4)

Thus, for t = tn; := t, + cihn the co]]ocatmu equation (4.1) assumes the form
tn o
un(t) = glt) + / HO(t, 5)un(s)ds + hn / HO(ty b + sha)un(tn + shn)ds.
o o
We write as

Ung = g(tn)+Faltns; @)+hn ; (/ﬂ H(tngytn + shﬂ)L,(s)ds) Uy (i=1,...,m)
(4.5)

For t € oy, the lag term is
tn n-l 1
Fu(t;a) = / HO(t, s)un(s)ds = Zh,/ HO(t, 4+ shyun(ty + sh))ds.  (4.6)
o = b
If ¢ = t,,;, this becomes

Fu(tni0) Z‘h,i(/ HO (bt + shi) L ( ,)40)1/,1

=0 j=I

7, gu = (9(tn1), - 9(tam))”, and define the matrices in

The collocation solution u, € S5)(I1) on the subinterval o, == (tn, tas1] is described
|
|
\

(.7)

BY(a (/ HO(tnti + sh)Ly(s)ds  (i,5 =

Ba(a) : (/ HO byt + sh) Ly(s)ds (inj = 1,- ,m))v (48)
The collocation equation (4.1) then assumes the form

[ = haBu(@)lUn = gn + Gul@) (n=0,1,...,N = 1), (4.9)
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where
1
Gul@) = (Fultas3a),. .., Faltami @)™ = > mBO (@)U
=
Here, I, denotes the identity matrix in L(IR"). We note that the integrands defining
the elements of BY(a) and B,(a) are, respectively,

tatchn =t

HO byt + shi) = hy® (
h

s) N K(tnsti+shy) (I <n), (4.10)
H (bt + shn) = b0 (ci — 8) ™K (tug tn + Shn), (4.11)

for0<a<l.
The left-hand side matrix in the system (4.9) then becomes I, — hi=By(a), where

now B(a) has the form
Bu(a) = (/ﬁ(c,—s)’"}((tw.l,,+sh,‘)L/(s)d5 (hi= 1,...,m)>.
o

The following analysis can be found in Theorem 6.2.1 of Chapter 6.2 in Brunner

[4].

Theorem 4.1 Assume that g and K in H(t,s)

t — s)*K(t,s) are continuous
on their respective domains I and D. Then there ezists an h = h(a) > 0 so that,
for every a € (0,1] and any mesh I, with mesh diameter h satisfying h € (0, h),
each of the linear algebraic systems (4.9) has a unique solution U, € R" (n =
0,1,...,N —1). Hence the collocation equation (4.1) defines a unique collocation so-
lution w, € S$)(I4) for the weakly singular Volterra integral equation (2.1), with

local representation given by (4.4)

Proof: By the assumptions on the factor K in the kernel H®, the elements of the

matrices B,(a) in (4.8) are bounded for all a € (0, 1. This implies that the inverse of
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the matrix Bu(a) := I — hyBa(a) € L(IR") exists if hy||Ba(a)|| < 1 for some matrix
norm. This clearly holds whenever h,, is sufficiently small. In other words, there is an
o= h(a) > 0 s that for any mesh I, with h := max{h, : 0 <n < N — 1} < h, each
matrix B,(a) (n = 0,1,..., N — 1) has a uniformly bounded inverse. The assertion
of this theorem now follows.

Now we define the collocation error e, := y — u, associate with the collocation

solution uy, € S5)(I) to the weakly singular linear Volterra integral equation

.
w):g(m/D(:—a)"'K(Ls)y(s)d-«, tel:=[0,T],

satisfies that

:
enlt) = / (t - 5)K(t, s)en(s)ds, t€ X
b
The basic global convergence result s the following. This theorem and its proof
can be found in Chapter 6.2 in Brunner [4] .
Theorem 4.2 Assume:

(a) The given functions in the singular Volterra integral equation (2.1) satisfy K €

C™(D) and g € C™(I)
(b) The kernel singularity is (t — $)=°, with 0 < a < 1.

(c) up € S5 (I1) is the unique collocation solution to the equation (2.1) defined by

(4.9), with h € (0,h) and corresponding to the collocation points Xp.
(d) The grading eaponent r = r(a) > 1 determining the mesh Iy is given by

1(rv):-L;. n2l-a
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Then setting h := %.-

Ry ifl—a<p<m,
Iy = unlloo = »%L:;)\y(t) —un(t) < C(r)
h™, i p>m,

holds for any set Xi, of collocation points with 0 < ¢, < ... < cm < 1. The constant

C(r) depends on the {c;} and on the grading eaponent r = r(a), but not on h.

Proof: The collocation error e, := y — us, and satisfies the error equation

tns

enltns) = [ Htps)en(s)ds, i=1,...,m (0<n<N-1). (412)
o
This error equation can be written as

) = [ H G en)is
= /" H (b, S)en(s)ds + /‘" H (b, S)en(s)ds
o u

o [ H itk shaen(t + shu)ds.

Forn =1,...,N — 1, the collocation error on the corresponding subinterval o, has
the local Lagrange-Peano representation

m

enltn +vhy) = Z v)en; + ki Rma(v), v €(0,1],

(4.13)

where we have set.
&(tny) = enltny),
and

RV / Kon(v, 2)y™ (tn + zhn)dz,

39



with

(v-2)77" - iLk(v)(ck —27 2e (01

Kl 2) 1= gy >

For n= 0, dy = [to, 1] = [0, k], the exact solution can be written in the form
ylto +vho) = 3 1ix(@)(to + vho) O 4 W Vi o(v; ),
(ik)a
with

(G k)a = {(j, k) : 5.k € No,j + k(1 = a) <m}.

We write the representation as

yl(to + vho) Z xR yitk1=a) Z e )1y k(1-a)
Gk GRY
+ R Ymo(via), veE(0,1],

where
(oK) := {( k) 2 5+ k(1 — ) € Noj j + k(1 — @) <m}.
G k) o= {(, k) : 5+ k(1 — @) & Noy j + k(1 —a) <m}
Then
me1
ylto + vho) = Z (@) + By Bro(via) + h Vno(via),  (4.14)
with

Do(via) i= Y csu(a)l ),
Gk

Now, we suppose that the collocation solution wj, € S%}(I1) on dp is expressed in
the form

un(to + vhe) = Zd,.,vi ve (01
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Then we can write the collocation error on ¢y as

ot
enlto +vho) = 3 Bo(@)! + by " @o(v; @) + b Rmo(v;a), v € (0,1], (4.15)
=

where
Biola) := cjo(@) — dso-

Now return to the error equation corresponding to n = 0:

altotehe) = ho [ Ho(ts o+ sholntto + sha)ds
5
= o [t = to = o Kt bt + sttt + sholds
;

= ho/ '(cho — sho) ™K (to + ciho, to + sho)en(to + sho)ds
o

= e / (ci — 8)K (to + ciho, to + sho)en(to + sho)ds
o
(i=1,...,m), where

-
enlto+ciho) = 3 Brola)d + 7 Y cin(@)ed ™7 + i Ro(ei@). - (4.16)

Gk
Thus, we obtain the linear algebraic system
mel
3 Biol@)d +hE S (@) Y Rl )
=0 G
= hg;ﬂ/ " (6 — 8K (to + ciho, to + sho)en(to + sho)ds
o

“ =1
= h,‘,’“’/ﬂ (e = $) K to + csho,to + sho) Y, Bo(a)s

=
R (@) R 4 g Ry o(s; ) ds.
kY
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So we have

i .
> (4 — hg™ / K(toa to + shu)S’d8> Bjo(a)
=0 o
s> (Cf“‘“’"’7hé’“/\(L‘.75)’"1((tn_,,to+shg)s”k“’"’da) (@)
o

Gik)a

—hg' (IL,.,.,(C.,a) —hy® /Drl(cx — 8) 7K (to, to + sho) Rino(s; a)ds) i =0y

It can be written compactly as
[Vin — hg ™ Bo(a))Bo(@) = hgqo() + hg'po(@)- (4.17)

Here, V,, € L(IR™) denotes the Vandermonde matrix based on the collocation param-
eters {c.}, do(@) and po(a) are vectors. Due to the continuity and boundedness of the
kernel K, and the remainder term Ry, o(.;). The inverse matrix [V, — by~ Bo()] ™!
exits for all a € (0,1) and is uniformly bounded for sufficiently small ho. This implies
that, since m > 1,

lBo(@)lls < Bhg™ (€ (0,1))

holds for some constant B, and by (4.16) we have
len(to + vho)| < [1Bo(@)lls + po(@)hg™* + pr(@)hg', v € (0,1,

with appropriate constants po(a), pi(a) and he € (0,k). If the grading exponent

= r(a) is chosen as r = IL with 1~ a < 1 < m, then we obtain
rs

T T e
W = ()™ = ey = g = O
Hence,
lenllose = max len(to + vho)| = O(h*). (4.18)
vel0,1]
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Assume now that 1 <n < N — 1. It follows from the error equations

a(tn) /H tosss)enls ds+/ HO (b $)en(s)ds

+ h,,/ HO(tn,ta + shy)en(tn + sha)ds,
o

and

h(tn + shn) = i (8)en + i Rmn(s), s € (0,1],

that

eng = hy °/ (o] — )" K (tnis to + sho)en(to + sho)ds

SIS ( /ﬂ (B K e+ sm)L,(s)ds) o

=1 =1

+Zh’"“ f'/ ;"' — 8K (bt + 5ht) Rony(5; 0)ds

ho

+h:;"z ( /0 (ci = 8) K (tnir tn + sh,.)L,(s)ds) Eng

=1

A [ 8K b ) a0
8
We rearrange the above equation and obtain

= b1 i (/;'(c, ) K (bt + sh,.)L,(s)nis) eng

=
B> (/u‘( = 1 _ )= (bt + shi)Ly(s )ds) G

0 )kt to + sholen(to + sho)ds
N




This represents a linear system

o1 -1
[In=hi*Bu(@)len = 3 A BO(a)er+hy g (@) +hm 1= p(a)+ Y A1 =p ()
= =

(4.19)

The vectors are defined by

/‘ tni=to o v 5
:( ( — 8) K (tni, to + sho)en(to + sho)ds (i =1, ,m)) R
o

..,m))r,
.,m))T

We can see [I,, — hi™®B,(a)]™! exists and is uniformly bounded whenever h, €

)= ([ 6= 0 K st ) (s (1=

1
() = (/D (t"“h—‘”‘—s)’“h’(cm,c,Hm)nm,,(s;n)ds (i=

(0, ). Thus, there is a constant Do(a) so that

1l = A Bu(@)]) ™[Iy < Dofa) (n=1,

N -1) (4.20)
Thus, (4.19) yields a generalized discrete Gronwall inequality,
[lenlls < Dn(“il AN BY (@)l ledlls + Ayl (@)l
+ e pa(a)ll + Zh'”“ @) (n=1,...,N=1). (4.21)

In order to derive the desired {'-estimates for the above vectors and matrices, we
appeal to the following lemma. (This lemma can be found in Lemma 6.2.10 in Brunner

4

Lemma 4.3 Let I, be the graded mesh on I := [0,T), with grading ezponent v > 1.

If {ci} satisfies 0 ¢ < ... < e <1, then for 1 <I<n < N =1, andv € No,

/’ (t ]
b \

) s'ds < y(@)n =D (i=1,..,m),
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Recall the definitions of the matrices B (a) and the vectors pi(a) (I < n). It is

easy to verify that

1IBO@h < Di(a)(n -1 (I <n),
and

1o (@)l € Ri(@)(n =D~ (L <n),

with appropriate constants D; () and Ry(a) depending on m and the bounds for K

and the uniform norms of the Langrange fund 1 p ials L;. The inequality

(4.21) now becomes
llealli < pol@)h’™ "Z(ﬂ*l) “lledlly +m(a)hg™
=
(ki + 'hZh;““’"(n —Iy2, (4.22)

=

with 1 < n < N — 1 and appropriate constants %(a) (i = 1,2,3). Now we have

[ledlls, and the sequence {4} given by

nsd
= (@S + pa(@)h™ g R =) (n 2 1),
=

Zh (n—1)"

This is easily verified by observing that, for any uniform mesh,

-
/(t —)" °ds—h‘ﬂz/ (n—1—s)yods 2 K=" (n— 1)
A

=3
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where the last expression represents the lower Riemann sum for the given integral
whose integrand is convex on [0, ). Hence, we have found a uniform upper bound

for v,, namely,

Ti-a
T < F= (kg +p(@)h™ T +(@)h"

Ti-a
=mn(a)hy™ + |[r(a)h' =+ “m(a)l = a] K",
and with this (4.21) leads to

[lenlls € Er-a(r0(@)T(1 = a)(nh)' ).

Since we have

nh <nrTN™' = (%)TT <T, n
and we also have
e = (TN-7)1-e = T'-aN-r0-e) = Tl-eN-n, (4.23)

for any graded I, with grading exponent r = ﬁ (1-a < u < m). Therefore,

llenll < Bh* (1 < n < N — 1), and so we arrive at the desired estimate for ||ex]|oc-

4.3 Numerical examples
In this section, we present a set of numerical experiments which confirm our theo-
retical results. Throughout, we consider the problem (2.1) with 7' = 1 and K (t,s) =

1. We choose the right-hand side




such that the solution y of (2.1) is given by
y(t) =1+ (4.24)

We notice that this solution is smooth away from ¢ = 0 and that for a € (0,1),
the second derivative y” is unbounded near ¢ = 0. Thus, the solution (4.24) is suitable
to test the performance of the collocation method.

We will approximate the solution by collocation in the piecewise polynomial space
SUD(14) where m = 1 and m = 2 in using uniform meshes and graded meshes, and
then we will use pictures to show the collocation solutions will converge to the real

solution.

(1) We set m =1 and use the uniform meshes to obtain the numerical solutions
when the step numbers are N = 10, 20, 40 and 80. Then we can compare the

errors between the numerical solutions and the exact solutions.

Table 1: |[error]]u for m=1 on uniform meshes

stepnumber a=0.1 a=05 a=09

10 0.0053 0.5169  0.0122
20 0.0014 0.1853  0.0115
40 3.8426e-04  0.0672  0.0109
80 1.0212e-04  0.0242  0.0103

(2) We set m = 1 and use the graded meshes to obtain the numerical solutions when
the step numbers are N = 10, 20, 40 and 80. Then we can compare the errors

between the numerical solutions and the exact solutions.
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Table 2 [lerror]s for m=1 on graded meshes

step number a=0.1 a=05 a=09

10 0.0053 0.2982 0.0051
20 0.0014 0.0920 0.0022
40 3.7854e-04  0.0298  8.9760e-04
80 9.9170e-05  0.0098  3.7984e-04

(3) We set m =2 and use the uniform meshes to obtain the numerical solutions
when the step numbers are N = 10, 20, 40 and 80. Then we can compare the

errors between the numerical solutions and the exact solutions.

Table 3: [[error]ls for m=2 on uniform meshes

step number a=0.1 a=05 a=09

10 4.6398¢-04  0.1176  0.0058
20 1.4724e-04  0.0510  0.0055
40 4.4926e-05  0.0206  0.0052
80 1.3359¢-05  0.0080  0.0049

(4) We set m = 2 and use the graded meshes to obtain the numerical solutions when

the step numbers are N = 10, 20, 40 and 80. Then we can compare the errors

between the numerical solutions and the exact solutions.

The following three pictures: Figure 1, Figure 2 and Figure 3 can show us the

collocation solutions will converge to the exact solution when the number of time
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Table 4: ||error||u for m=2 on graded meshes

stepnumber a=0.1 a=05 a=09

10 2.4840e-04 0.0272 9.8585e-04
20 6.9452¢-05 0.0092 3.4351e-04
40 1.8389e-05 0.0027 1.1097e-04
80 4.7355e-06 7.5888e-04  3.5033e-05

steps becomes larger.

0 0.1 0.2 03 04 05 06

Figure 1: m=1, a = 0.9, N=10 on graded meshes
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0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

Figure 2: m=1, a = 0.9, N=40 on graded meshes




Figure 3: m=1, a = 0.9, N=80 on graded meshes




5 Collocation for Volterra integral equations with
weakly singular kernels and with vanishing de-
lays

We now return to the Volterra integral equations (3.2) and (3.11), where K € C(D)
and g € C(I) are given functions.

We will approximate the solutions of (3.2) and (3.11) by collocation in the piece-
wise polynomial space S4'}(I1). The numerical collocation solutions uj are defined

by the collocation equations, respectively,

a

un(t) = g(t) +/ (t— 5)K(t,s)un(s)ds, t€ Xp, (5.1)
o
‘

up(t) = g(t) +/ (t—8)°K(t, s)un(s)ds, t€ Xy (5.2)
at

Where the set of collocation points

Xpi={tatcha:0<cr<...Sen<1 (n=0,1,...,N-1)}

5.1 Collocation solutions of weakly singular Volterra integral
equations with vanishing delays on uniform meshes

We have the collocation equations which we presented in (5.1) and (5.2). Now we will

use two methods the direct approach and the transformation approach to approximate

the solutions of the weakly singular Volterra integral equations with vanishing delays

on uniform meshes.
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(1) We use the direct approach to solve the weakly singular Volterra equation (3.2)
it
+ M= aex s
o
on uniform meshes, the diameter will be . We denote
HO(t,s5) = (t —s)K(t,s)

and employ the notations

Gtni = tg,, + Tnh € [ta o taus1]s

with gn; := [a(n + ¢;)], and Yu == ¢(n + ¢;) = gai. The computational form

will be

il m

Unltns) = 9ltnd) +h Z(/ H“tm,ﬂ+ah)L(~r)ds) wltey)

=0 j=1

-
+ h; (/0 HO (b tg,, + ah)LJ(s)ds) Un(tgys)- (5.3)

(a) Initial phase (complete overlap):  0<n < rl“f‘q1 1ql.

In this situation, we have g,; = n and 7, € [0,1) ,m). This

leads to
3
witn) = o) +h3 ( /D H,(,”(t.._..h+s/l)LJ(s)ds) i)

+ "Z(

3

" HO (b iy tn + sh)Ly(s )ds) up(tn;). (5.4)
We define
BY(q (/ HO(ti, to + sh)Ly(s)ds (wil,mm)) (t<n),
T
Bl(a) :( HO (bt + sh)Ly()ds (,.,:1,‘”,"”),
o
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and obtain the linear system
-t
Un=gn+hy BO(@Ui+hBi(q)Un.
1=0

The linear system can be written as
[ = hBY@Un = gu + by BY (a)Us (5.5)
=

with Uy := (Un, -, Un;m)T and ga := (9(tna), - 9(tnm))"

(b) Transition phase (partial overlap): ¢/ <n < [{’i
-q

This set could be empty. If it is not empty, there exists an integer

Vv € {1,...,m — 1} such that gu; = n—1 (i = 1,...,) and gus = n,
Yug > 0 (i = vo+1,...,m). That is, we have t,, , < tn for i =1,...,vn,

and t,,, > tn, when i > v,. Then we define the matrices

B!!(q) := diag(0,...,0,1,...,1)Bl(q).

S (g) := diag(0,...,0,1,...,1)BI" V(q),

8!\ (q) := diag(l, ..., 1,0,...,0)B!" (q).
where
"
Bl = (/ HO (tni, tnor + sh)Lj(s)ds (z,j:l,”,.m)).
o

The linear system will be

1 = hBI @)U = gu + b Y BOV + hBIL1(0) + SIL (@)Vacr. (5.6)
=



(c) Pure delay phase (no overlap): ¢/ <n <N -1

In this situation, we have gtn; < t,. Assume that, for given n,

Qi =n (i =
some vy € {1,...,m}, where g, +1 < n.
‘We define the matrices

3111(g) = ding(L,. .., 1,0,....,0) B (q),

S (q) = diag(0,..-,0,1,..., 1) B! (),

with

o vn) and gog = qa+ 1, Wi >0 (I = v+ 1,0

,m) for

o
B:"”(q):t(/u HO (bt + W)Ly (8)ds (i = 1, .".>>.

So the linear system will be

o
Un=ga + hY BO@U+ k(8L (g) + B(0)Us,
1=0

+ hS (@)U

tion (3.10)

:
U0 =90+ [ (=7 K s)la)ds
/

T
on uniform meshes, with the diameter h = N We also define

(t-)"°K(ts),

HO (s

and employ the notations

Gtng = tgn + Tnth € [tgns tanetih
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(2) We use the direct approach to solve the weakly singular Volterra integral equa-



With gng = Lq(n + )], a0d Yoy i= a( + ) — Gag. We have
.
ut) = a0+ [ B s
pt "
= g(t)+/ H.‘,”(t,a)u(S)ds-/ HO, s)u(s)ds
5 o
’ i
- g(t)+/ 11,‘,”@,@)“(5){1.”/ (—HD (2, 5))u(s)ds
£ o
Then, setting HP(t, s) := —H"(t, ). We find
: o
u(t):g(t)+/ H},"(l,s)u(s)der/ HOM u(s)ds.  (58)
0 0
‘The computational form will be

i (/u‘ HO (tni i + sh)L,(s)ds) un(try)

1
=0 j=1

+ ni (/o HO (bt + sh)L,(s)rls) Un(tny)

=1

unltni) = gltni) +h

+ hqi‘i(/‘H‘”u t+ sh)L, (.«)d.q) un(tiy)
2 2, e 5 w(tr

] Tt
4 B taste, s | un(tg,.j)- i
+ 1;(/u HP)(tn, t,,‘+sh)L_,(s)d) h(tgnad) (5.9)

_—

(a) tnitial phase (complte overlap): 0 < n < [£4]

Since now g = n and v, € 0,1) (i = 1,...,m), this leads to

.
= gltn) + O(tassti+ sh)Ly(s)ds
Whltns) = oltns) + ’E]Z,(/u HY s+ WL ) wa)
D ([ st s st 61wt
A
+ hzz(/ HP (b ti + sh)L,(s)ds) u(tyy)
1=0 j=1 0

+

W/ i
n;u H},‘H(L,,,,,t,,+sh)L,(.«)rz~) up(tng).  (5.10)
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Introducing the matrices

1
BY = (/ HO (tni ti+ sh)Ly(s)ds (i, =1,. .m)) (l<n),
o

By (/D HO (bt + sh)Ly(8)ds (5,7 = 1,.. ,m)),

BV (q) == (/olHSV(tm,n +sh)Lj(s)ds (i,j = 1,...,m)) (L<n),

i) = ([ Pt L0 G =
A

we obtain

a=t -
o = gn+ hBUn + 1> BOU + hB]()Un + h S BY@u. (511)
=

=0

The computational form will be

(b) Transition phase (partial overlap): ¢/ <n < [f’”—'"q =

.
(1 = h(Bo+ BL@)Wn = ga + h I _(BY + BO@)U.  (5.12)
=

1

This set could be an empty set. If it is not empty, there exist an integer

Vo € {1,...,m—1},s0 that g,; =n—1(i=1,...,vn) and gni =1, Y >

0(i=vatl,.

t,

ana

.,m); that is, we have t, < t,, fori = 1,... v, and

> t,,, when i > v,. Then we define the matrices

Bl!(q) = diag(0

sl

ne1(9) = diag(0,

1
,-0,1,...,1)Ba(a),

<30, 1B (g),
9 )B;" Y (q)

11 (q) += diag(L,.. ., 1,0,...,0) Bl 1 (a),

Vo



®

where

This leads to
nci n2
Up = hB.Un+hY BOU +hBY (q)Un + b~ BO(a)U
= =
+ WS (@) + SiL(@)Un-1 + gy (5.13)
and the computational form will be

[In = h(Ba+ B (@)IUn = gn+ hZB"’U; + hz B (q)U
1=0 =0
+ WS )+5,.,1(q))l/n».. (5.14)
Pure delay phase (no overlap): ¢/ <n< N -1
In this situation gt < t,. Assume that, for given n, gns = gn (i =
1,...,vn) and Yaq > 0, (i = v+ 1,...,m), for some v, € {1,...,m},
where g, + 1< n.

We define the matrices

8l11(q) 7d|ag(w,0,.,,,0)ﬂ”'(q),
U = Qe 1 DB
with
Blli(g) := (/; HO (b ten + sh)Ly(s)ds (55 = 1,.. .,m)) .
This leads to
Up=go + hBUn +hZB<”u +h Z B (Ui
=t
+ h(SH"(q) + BY™(4))Us, + hS o1 (OUat1-
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The computational form will be

nst -t
[[=hBU, = guthY BOU+HY. BO(q)U,
=0 1=0
+ HE(q) + By, + hSi @V (5.15)
3) We use the transformation approach to solve the weakly singular Volterra inte-
Pp! 'y 14

gral equation (3.2)

ot
y(t) :g(t)+/ (t — )" K(t,s)y(s)ds

on uniform meshes, with the diameter h = % We still denote
HO(t,s) = (t — )™ K(t,s).

First we transform the weakly singular Volterra integral equation with vanishing

delays into another equivalent Volterra integral equation, namely,

.
) = g(t)+/ (- 8 K(t, s)y(s)ds

k

i 8 § k] s

= g +a [ t-aS) Kt a)ua)dE

o0+a [ €= ) K aCAC)
A

= a0+ [ alt=a9 oK (tashylass. (5.16)

We define H®(t,s) := q(t — gs)*K(t,qs) to obtain another computational

form of the Volterra integral equation (3.2)

Al
ultns) = gltns) + Zh/ HO (bt + shyun(alts + sh))ds
1=0 o
+ h/'H},‘“(zm,z"» shyun(g(tn + sh))ds.  (5.17)
o

We define the following phases:

59



(1) Forn = 0, we have q(ta+c;h) € (tn,tagr) for j = 1,...,m, and q(ta+sh) >

t, for all s € (0,1].

(2) Forn > 1, when g(t,+h) > t,, we have n < ﬁ we denote ¢/ = [1%].

In this situation, we also define vy, such that q(t, + v,h) =
(3) For n > 1,when q(t, + k) < t,, we have n > ﬁ
We now discuss these phases in detail
(i) When n = 0, we have
unltor) = gltos) + n/oc' HO (o to + shyu(gsh)ds
= gltoi) + ’lé/j HP (to,, sh) Ly (gs)ds)un(to,)- (5.18)

3=

This leads to

Up = 9o+ hB{ (g)Us
The computational form will be
1= kB (9))Uo = g0, (5.19)
where
Biq (/ HO(to, sh)Ly(gs)ds (i =1,... .m)) .

(ii) Partial overlap:

In this situation, the interval (t,, t,.+1] overlaps with the interval (gtn, gtnsa).

‘We already have the collocation equation

wnltng) = 9ltns) Zh/ HE (taty + shyunla(t + sh)ds
+ h/ HP (tn i, tn + shyup(q(tn + sh))ds. (5.20)
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Here we employ the notation v, since n < [y4;], we have tLon € [0,1).

For the formula (5.20), we consider in two cases: ¢; < vy, and ¢ > v

(a) In this case, we have ¢; < v,. The computational form becomes

un(tns) = gltns) +Hih£ HO (bt + shyun(a(ti + sh))ds
I
M/Dc H (tn st + sh)un(a(tn + sh))ds
= gltns) +h/nlij)(t,,,‘,tﬂ+_.;;,)uh(q“0+ sh))ds
N "21 . Al HP(tn,to+ shun(q(ty + sh))ds
+f,/0“- H (tni, tn + shyun(q(ta + sh))ds. (5.21)

We separate [ = 0 from the summation in (5.21), since [ = 0 is a special
case, that the interval (gto, gt] is exactly in the interval (o, t,]. This

yields

un(tn,i)

oltnd +03 ([ s s a5)is) )

=1

(\gEl

=1
+ Yh
i
|

h

=1

(tut sh) =t

+ hi

=

61

( [ 1+ .m)L,(wm) wtiong)
o
+ S (/ H,(,“(,.,,tﬁrsh)L,(q‘,—y)ds) un(ti;)

T a WV

(,/., HO (tt + 5h) Ly [M)d&)ﬂh(in—l‘,).




(b) In this case we have ¢; < v,. The computational form will be

up(tni) =

+

t:’llz, (,/ HO(tnsti + sh)L (W)ds) g
hi (/ HO (tu st + sh) Ly (%)“) ezt

"i (/ HO (b, tn + sh)L (%W) e

Combine the two forms in (a) and (b). We define two matrices

Ajy 1= diag(ly 00410, ., 0);

where the index 1 in Ay, is the largest number i such that ¢; < vy,

and

Agn =T = At

So we obtain

where

Un=gn + hBE(g un+ZhB” Wi

=

Zw”)‘” QUi + AnhBL (@)Una
=

+ Auh [B0)Un-1 + B (@)U

BOa) = (/ HO (b 5h) L gs)ds (wfl-»»»,m))‘
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By (/ HO (tti + 5h)LJ(;Q(" +52) “Hlygy (i = L...,m)),
BOP(g) - ( HO (bt + sh)L; (“‘—*Z’u)d‘g (i = 1,...,m)).

BY (/ HO (bt + sh)L (%M)ds Gi=1,. ,.m)),

% ..,m)).

In this situation, U, completely relies on the previously computed

B (g ( H< ) (tais ta + sh)Ly(
(iii) Complete overlap:  n > ¢’

collocation solution.

5.2 Numerical examples using uniform meshes

In this section, we present a set of numerical experiments which confirm our theo-
retical results. Throughout, we consider the problem (3.2) with T = 1, ¢ = 0.6 and
K(t, s) = 1. We choose the right-hand side

1- (=)™, hypergeom(a2— o[ 0}, )d*® o a0
l-a 2-a '

gty =1+t~
such that the solution y of (3.2) is given by
y(t) =1+t (5.22)
‘We notice that this solution is smooth away from ¢ = 0 and that for a € (0,1),
the first derivative y' is unbounded near ¢ = 0. Thus, the solution (5.22) is suitable
to test the performance of the collocation method.
We will approximate the solution by collocation in the piecewise polynomial space
S5 (1) where m = 1 and m = 2 in using uniform meshes, and then we will use
three pictures to show the collocation solutions will converge to the real solution.
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(1) We set m =1 and use the uniform meshes to obtain the numerical solutions
when the step numbers are N = 10, 20, 40 and 80. Then we can compare the

errors between the numerical solutions and the exact solutions.

Table 5: [[error||u for m=1, ¢ = 0.6 on uniform meshes

step number a=0.1 a=05 a=09

10 0.0272  0.0524  0.0940
20 0.0150  0.0304  0.0756
40 0.0079  0.0165  0.0614
80 0.0040  0.0087  0.0503

(2) We set m =2 and use the uniform meshes to obtain the numerical solutions
when the step numbers are N = 10, 20, 40 and 80. Then we can compare the

errors between the numerical solutions and the exact solutions.

Table 6: ||error||. for m=2, q = 0.6 on uniform meshes

stepnumber a=01 a=05 a=09

10 2.3135e-04 0.0047 0.0981
20 7.3816e-05 0.0022 0.0768
40 2.2698e-05 0.0011 0.0609
80 6.8026e-06  5.2510e-04  0.0489

The following three pictures: Figure 4, Figure 5 and Figure 6 can show us the

collocation solutions will converge to the exact solution when the number of time
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steps becomes larger.

*

‘ Figure 4: m=2, ¢ = 0.6, a = 0.5, N=10 on uniform meshes

5.3 Collocation solutions of weakly singular Volterra integral

equations with vanishing delays on graded meshes

We have the collocation equations which we presented in (5.1) and (5.2). In this

section we will use two methods, namely a direct approach and a transformation
approach, to approximate the solutions of the weakly singular Volterra integral equa-
tions with vanishing delays on graded meshes.

65



0.8 1

Figure 5: m=2, g = 0.6, a = 0.5, N=40 on uniform meshes

(1) We will use the direct approach to solve the weakly singular Volterra integral

equation with vanishing delays (3.2) on graded meshes. First we define
H{O(t,5) = (t = ) "K(t,5)
and employ the notations
Gtog = ton + Vnidhony € g tanitr]s (5.23)

With gus = [g(n+¢)] and 7 = g(n + ;) — gus. The computational form will




Figure 6: m=2, ¢ = 0.6, a = 0.5, N=80 on uniform meshes

be

il m

;
witn) = o)+ 3 3 ([ HO st L) )

=

+ th;(/D I”H{E”[!,,‘,.i.,,”+shqm)LJ(.5)(ls> unltan,)-(5:24)

1
& se t e1 <
(a) Initial phase (complete overlap): 0 <n < [(‘7 o
i
In this situation, we have gn; = n and 7, = [0,1) (i = 1,2,



leads to

net .
Unltns) = gltas) + Zh, > ( /ﬂ HO (tn ot + sh;)Lj(s)ds) un(ty)
= =

2

Y ( " HO (ot +ah,‘)L7(s)ds) unty).  (5.25)

i

‘We define

BY(q (/ HO (ot + sh)Ly(s)ds (1,5 = 1,.. ,m)> (t<n),

Bl(q) = (/ﬂw""yg"(:",‘,c,.+sh.,)Lj(s)ds Gri=1. ,m))‘

and obtain
=g+ sz‘” VUi + ha By (4)Un (5.26)
The linear system will be
[T = haBi(@)Un = g + fmﬂ&”u)w (5.27)
=
with Uy := (Un1, - -, Unm)T and gn := (g(tn), - - 9(tnm))"-

1
Transition phase (partial overlap): ¢/ <n < {ml =:g'l.

E

This set could be empty. If it is not empty, there exists an integer

vn € {1,...,m =1}, such that gns = n—1(i = 1,...,0,) and go; = n,
ug >0 (i = v +1,...,m). That is, we have tg,, < to fori =1,...,vn,
and

> t, when i > v,. Then we define the matrices

ans




&

517 (q) := diag(L 1,0,...,0)B! (q),

( HO(tny taor + sha_1)Ly(s)ds (i, = l,...,m)) ,
o
The linear system will be
2
[I=ha B (@)Un = gu+ Y WBOUi+ho1(S1L1(g)+SiL, (4))Un-1. (5.28)
i=

Pure delay phase (no overlap): ¢/ <n <N -1

In this situation, we have gt < t,. Assume that, for given n, gu; =

gu(i=1,...,v5) and gng = g + 1, %0 > 0 (i = v + 1,...,m) for some

vn € {1,...,m}, where g, + 1 < n

We define the matrices

8i11(q) = diag(L,..., 1,0,...,0)B}!(q),

SUI () = diag(0,.....0,1,...., ) B, (@),

with
Bl (q) (/ HO (b g, + she,)Li(s)ds  (i,5 = 1,...,m)>
So the linear system will be
Un=gn + Z WBY(@)U; + ha, (35! (4) + B (a) s,

+ hamS S (@Ug1. (5.29)

(2) We will use the direct approach to solve the Volterra equation (3.10) on graded

meshes. We also denote

HO(t,5) = (¢ — )" K (t,5)
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and employ the notations

tni = tgp, + Tniligns € tanirtanitih
with o == [g(n + ci)], and A = q(n + ¢;) — gus. We already have

ut) = g(l)+/LHL')(t,a)u(s)ds
ot

. g(t)+/0LH;')(t,s) s)ds—/anf,”(t,s)u(s)ds

. at
= g(t)+/ H},"([,s)u(s)der/ (~HO(t, 8))u(s)ds
o o
Then we define H$(t,s) := —H(t,s). This yields that
¢ at
u(t):g(c)+/ H,‘,”(t,s)u(s)ris+/ HP(t, s)u(s)ds. (5.30)
o o

The computational form will be

n-1

wltnd) = oltn + 03 ([ Pt shL, 01 ) )
1=0 0

i=

hn ; (A HO (ot + sh,)L](s)d.,-) Uh(tns)
et

o
N th;( [t shoLs s )

=0

3

-
+ hq, HO (b tan, + $ha, ) Li(5)ds ) un(ty, ,;)(5.31)
s A ans + Shan )L it

=1

1
() Initial phase (complete overlap): 0 <7 < [W
o
In this situation, we have g, = n and s € (0,1) (i = 1,...,m). This
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leads to

ltn) = 0t +Z'~Z( [ 0wt m0) e

= =

+ ha ( HO(tnstn +sh,.)L,(q)ris)u,,( )
e
+3 m;(/ HE st sh)Ly (51 ) (1)

+ hﬁi([ﬂm" (tnistn + sha )L,(s)ds) untng).  (5:32)

=

Defining the matrices

a= ([
BY(q (/ H (tng ti + shi) Li(s)ds  (i,5 =

m) <),

B0 = ([ HP it sh) LN (=1 ).

we obtain

-t -t
Un = g+ huBalUn + 3 WBOUL + ha BY(@)Un + Y B (q) V. (5.33)
1=0 1=0

The computation form will be

at
(1 = h(Bu+ BY@)Un = g0+ 3 W(BY + BO@)U.  (530)
=
(b) Transition phase (partial overlap): ¢/ < 7 < [——1 =i ¢"!

(i)t ]
e
This set could be an empty set. If it is not empty, there exists an integer

vn € {1,...,m—1},50 that g, s =n—1(i =

svn) and gni =1, g >

g



0 (i = vn+1,...,m). Thatis, we have t,,, < tn, fori =1,...,1, and

tqs > tny When i > v,. Then we define matrices
By(q) = ding(0,....0,1,.. 1)B(9),
Silila) = diag(0y. -, 01 BV (a),
(@) = ding(L. 1,0, 0B (@),
where -

Bl \(g) = (/ HP (tni taor + sh)L(s)ds  (i,j =1, ,m)).
o
This leads to
Un = gut haBuUn+ Y WBOU + b B (@)U + Y MBY (@)U
i= =
+ e (SiL (@) + SiL (@) U
The computational form will be
2
[ = ha(Ba + B @)Un = gat D mBOU+ Y iBP(q)Ui
=

+ bt (SiL (@) + 1L (@)Ut (5.35)

Pure delay phase (no overlap): ¢/’ <n< N -1

=

In this situation gt,; < t,. Assume that, for given n, ¢n; = gn (i =
1,...,v,) and Yu; > 0, (i = vy +1,...,m), for some v, € {1,...,m},
where g, +1 <n.

‘We define the matrices

i

8111 (g) = diag(L, .., 1,0,...,0)B!"(q),
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Saria(q) = diag(0,

DB )

with
B0 = ([ P it + sho s G = 1)
A

This leads to

Un=go + haBuUn+ Y mBOU+ D iBP(q)Ui
=1
+ hg, (S117(q) + B (9)Uq, + hant1Spria (@)U

an

The computational form will be

[I = haBuUn =g+ Y mBOU+ Y MBP(g)U;
=

4 heu(BL(q) + BEUy, + by Si(@)Ugir. (5.36)

(3) We will use the transformation approach to solve the Volterra integral equation

(3.2) on graded meshes. And we still denote
HO(t,s) = (t — 8)™°K(t, ).

First, we transform the weakly singular Volterra equation with vanishing delays

to another equivalent Volterra equation

y(t) = g(z)+/nu (t — s)™°K(t, s)y(s)ds

¥ Y ——— ] )
= 9(t)+f1/(f—(1(;)) "(tu(a))y(q(z))d(;)
- !1(')+A q(t = gs) K (t, qs)y(qs)ds. (5.37)



We set H(t, 5) =

q(t —gs) K (t,qs). Then we have the computational form

of Volterra integral equation (3.2):

U(tng) = g(tni) + "i:ht /‘ H (b, ty + shoun(g(t+ shi))ds
=0 0

+ b ’/n HO (bt + sho)un(altn + sha))ds. (5.38)

We define the following phases:

(1) For n = 0, we have g(tn + ¢jhn) € (tn,tns), for j

shy) > ty, for all s € (0,1]

(2) Forn > 1, when q(ty+hn) > tn, we have n <

(3) Forn > 1, when g(ty + hy) < t,, we have n >

We will discuss the

I

0

collocation solutions for these three phases:

(1) When n =0, we have

un(to;) =

This leads to

oltod + 1o [ Bt to+ shoyu(ashods
,

alton) +ho S ([ HO(tos,sho)Ly(as)ds

U = go + hoBS (),

and so the computational form will be

1 = hoB§ (@))Uo = go,

T4

m, and q(t, +

, and we define ¢/ :=

= . I thissituation, e ls dofine vy, such that at +41h) = o

un(to)-

(5.39)



where

BA(g) ( / H®(to, sho) Ly (gs)ds

(2) Partial overlap:  n <[

hi -
In this situation, the interval (t,, t,+1] overlaps with the interval (gtn, gtns1]-

We already have the collocation equation
w1l
o) = a0+ D / HO (bt + shunalt + sho)ds
+ h/ HP (g, tn + sha)un(q(tn + shy))ds(5.41)

Here we employ the notation v, which satisfies q(t, + vahn) = ts, since

n< [ﬁ}, we have 13

n € [0,1). For form (5.40), we consider two
q

cases: ¢; < vy and ¢; > vy,
(a) 1f ¢; < vy, the computational form becomes
wnltns) = gltns) + Z m/ HO (bt + shoyun(alts + shy))ds
+h"/u HP (tniy tn + sha)un(q(tn + shn))ds
= g(tag) +ho / i H (b1, to + sho)un(q(to + sho))ds

+Zm / HO byt + shi)unla(t + sh))ds

tha [ HP (ot + sha)un(q(tn + shy))ds.  (5.42)

o
We separate | = 0 from the summation in (5.41), since { = 0 is a

special case, as the interval (gfo, gt1] is exactly in the interval (to, t1].



This yields

.
wling) = gum)w;( [ B st ) o)

ISR t+ sh) =t

+ Z”’Z(/n Hf’(:,,v.,t,+sh,)L,(%)ds) un(tirg)
= = -
wl m g B

sy (f HO st by (L0 ) )
r=l=A

+ Y (/D HO(tpistn + sh")L,(Mh")——i'ﬂ)ds) nltnrg)

= Iy

(b) If ¢; < v, the computational form will be

un(tn) = 9ltns +hoZ(/ H tm,shu)Lj(qs)ds) unltos)

n Zh,):(/n H}f’(t,..,,n—v»slu)L,(%ﬂ)ds)un(h—u)

=1 =1

ot m
+ YuY (/‘ HO b1+ sm)L,("“'*Z_f")’“)ds) u(tey)

[=lr=a
oy

([ #9 st )ty L) =) ),

Combine the two forms in (a) and (b). We define two matrices

. (/u" HO (bt + a'h,l)L,(M)ds) unltn-1)

+ ha

[\gEl

i

=1

Ay, = diag(1,...,1,0,...,0),

where the index 1 in Ay, is the largest number i such that ¢; < vn,
and

Agn =TI = A,



So we obtain

Un=g0 + hoB&(9) UmeB,E’, @)Ui

=

+ Zh,Bi‘.’.‘”mv, + Aunhn 1 B (@)Un
=

+ Asalhnr BO(@Unor + b B (q) U],

where

Bg) = ( f HO (tai, sho)Ly(as)ds (i, = w))

gt + sh) —tiy

BY(q) (/ 2 (bt + shi) L (’—“‘)d.’ (i,j= 1,“.,",)),

qlt+ sh) — i

BY?(q) ( HO (bt + shi) Ly (L = Yds
0

500 = ([t + b1y Lt oty g5
=

BOA(q) - ( H‘u,,‘,tﬂwn,.)l.((‘"*—;”")'—"')ds Gi=1,...

(3) Complete overlap: ~ n > .
In this situation, Uy, completely relies on the previously computed colloca-

tion solution.

5.4 Numerical examples using graded meshes

In this section, we present a set of numerical experiments which confirm our theo-
retical results. Throughout, we consider the problem (3.2) with 7 = 1,¢ = 0.6 and
K(t,s) = 1. We choose the right-hand side

L= (=)™ o hypergeom(la,2 = al,[3 = ol )~ s

e
s =1+t T-a 2-a
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such that the solution y of (3.2) is given by
y(t) =1+ (5.43)

We notice that this solution is smooth away from ¢ = 0 and that for a € (0,1),
the second derivative " is unbounded near ¢ = 0. Thus, the solution (5.43) is suitable
to test the performance of the collocation method.

We will approximate the solution by collocation in the piecewise polynomial space
S4U(I,) where m = 1 and m = 2 in using graded meshes, and then we will use three

pictures to show the collocation solutions will converge to the real solution.

(1) We set m = 1 and use the graded meshes to obtain the numerical solutions when
the step numbers are N = 10, 20, 40 and 80. Then we can compare the errors

between the numerical solutions and the exact solutions.

Table 7: |lerror||o for m=1, ¢ = 0.6 on graded meshes

step number a=0.1 a=05 a=09

10 0.0252  0.0365  0.0636
20 0.0142  0.0199  0.0375
40 0.0073  0.0105  0.0224
80 0.0038  0.0054  0.0120

(2) We set m = 2 and use the graded meshes to obtain the numerical solutions when
the step numbers are N = 10, 20, 40 and 80. Then we can compare the errors

between the numerical solutions and the exact solutions.



Table 8: ||error|s for m=2, ¢ = 0.6 on graded meshes

stepnumber o =01 a=05 a=09
10 8779805  0.0012 00114
20 2.4605e-05 3.3388¢-04  0.0048
40 6.4984¢-06  8.1945¢-05  0.0022
80 1.6690e-06  2.1628¢-05  0.0010

The following three pictures: Figure 7, Figure 8 and Figure 9 can show us the
collocation solutions will converge to the exact solution when the number of time

steps becomes larger.

5.5 Convergence analysis
We have the collocation solution for Volterra integral equation (3.2) in Chapter

4.1. The collocation error e, := y—up associate the collocation solution u, € S5} (I4)

to the singular Volterra integral equation with vanishing delays
o) :g(t)+/u"’(tfs)’"K([,s)y(s)ds‘ ter:=[0,T),
satisfies that
en(t) = /:t(t — 5)"OK(t, s)en(s)ds, tE€ X
The following theorem will give a brief global convergence result
Theorem 5.1 Assume:

(a) The given functions in the singular Volterra equation with vanishing delays (3.2)
satisfy K € C™(D) and g € C™(I).

9




Figure 7: m=2, g = 0.6, a = 0.5, N=10 on graded meshes
(b) The kernel singularity is (t — s)=°, with0 < a <1
(c) un € S)(I1) is the unique collocation solution to the equation (3.2) defined by
(4.25), with h € (0,h) and corresponding to the collocation points Xy

(d) The grading ezponent r = {a) determining the mesh Iy is given by

“"

r(a) = . uzl-a

=T
Then setting h = %,

B, ifl-a<p<m,
lly = unlleo = sup ly(t) = u(t)] < C(r)
hryif p>m,



02 04 06 08 1

Figure 8: m=2, ¢ = 0.6, a = 0.5, N=40 on graded meshes

holds for any set Xy, of collocation points with 0 < ¢ < ... < cm < 1. The
constant C(r) depends on the {c;} and on the grading exponent r = r(a), but

not on h.

Proof: The collocation error ey, := y — uy, satisfies the error equation

4)

atns
/ (tni—$)""K(tns,8)en(s)ds, i=1,....m, 0<n<N-1,

.., N =1, the collocation error on the corresponding subinterval o, has

the local Lagrange-Peano representation

enltn + vhy) = Z Li(0)eny + K Rn(v), v E (0,1], (5.45)
=
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Figure 9: m=2, ¢ = 0.6, a = 0.5, N=80 on graded meshes

where we have

and
Rin(v) = ' Kn(v, 2)y™ (tn + zhn)dz,
o
with
.
Kon(v,2) = m(ﬂ -t - glq(w)(q -7 ze(01).

(I) For n.=0, 6y = [to, t1] = [0, ho, the exact solution can be written in the form

Ylto+ vho) = 3 (@) (to + vhal K= 4 Vo 0(v; ),
(ik)a
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(recall equation (3.8) in Chapter 3)
with
(s K)a = {(G k) : 5.k € No,j + k(1 —a) <m},
and where
Yo € C™(D).
We write the representation as
ylto +vho) Z () ik-a) Z i(Q)hg RN itk(1-0)

G (TH
+ h§Ymo(via), ve (1],

where
Gy kYo = {(G, k) : 5+ k(1 — @) € Noj j+ k(1 —a) <m},
(ok)e = {(G k) : 5+ k(1 = @) & Noj j +k(1 = a) <m}.
Then
y(to + vho) = mz‘c,a W+ B o(v; @) + B Yimo(v; @), (5.46)
=]
with

Bpo(via) i= Y eyl A0,
Gk

and cjo(a) is the coefficient of v/ and j is an integer from 0 to m — 1.
Now, we suppose that the collocation solution uy, € S{;"}(I4) on g is expressed
in the form

un(to + vho) = Zd,uw ve (0,1



This allows to write the collocation error on G as
m-1

enltotvho) = Y Bjo(a)v +hy P o(v; ) +hE Rmo(v;0), v € (0,1). (547)
=

where
Biola) = cso(@) = djo
Thus, since
enltotciho) = 3 Bio(@)d +h5 3 cin(a)d 4 Rl @), (5.48)
i=0 Gk

the error equation corresponding to n = 0,

ac
enlto + ciho) = m,/ H®(tos,to + sho)en(to + sho)ds
o

ac
ho / (tos — to — sho) K (to + ciho, to + sho)en(to + sho)ds
o

s
ko / (ceho — sho)™K (to + ciho to + sho)en(to + sho)ds
o
o
= h° f (i — ) K (to + ciho, to + shoen(to + sho)ds,
o

can be written as

et
S Bol@)d + ks Y eiu(@)ed ™ 4 A Ro(ei; @)
=0 4

Gk

=
n\';"/ (e = 8)"K(to + ciho to + sho)enlto + sho)ds
5
et

ac
hy / (¢ = 8)™ K (to + ciho, to + sho)[ Y, Bio(a)s’
o =

Y (@) O 4 B Rg(sia)lds (=1, ym).
Gk



So we have

) (c’, e / “ Kltog to+ shu)s’ds) Biola)
= 0
vt (dwufu) e /%(C' K {tonto +sh0)s]+k(lfn)ds) cale) ‘
o

Gik)a
By (Rm‘um:a) = [ 9 Kt + s ol @), G

It can be written compactly as
[Vin = ™ Bo(@)]Bo(@) = hg™a0(@) + h'pola)- (5.49)

Here, Vi, € L(IR™) denotes the Vandermonde matrix based on the collocation

parameters {c;}, go(a) and po(a) are vectors in IR", By(a) € L(IR) is defined

).

Due to the continuity and boundedness of the kernel K, the inverse matrix [V, —

by

w
Bo(a) i= (/0 Ktoto+ sho)s'ds (i) =

Bl Bo(a)]! exists for all a € (0,1) and is uniformly bounded for sufficiently

small ho. This implies that, since m > 1,
[1Bo(e)lly < Bhy™  (a € (0,1)),
holds for some constant B, and we have:
len(to + vho)| < [1Bo(@)lls + po(@)hy™* + pr(@)hg', v € (0,1],

with appropriate constants po(a), p1(a) and hg € (0,h). If the grading exponent

.
7 =r(a) is chosen as r = 1‘—,wnh 1= a << m, then we have:
a

e i-a
= T o)

= N@ Nk




Hence, by (5.45)

llenlooo := max len(to + vho)| = O(h*). (5.50)

(I1) When 1< n < g/, we have g,; =n > L and 7, > 0 (i = 1,...,m). The error

equation becomes

n1

.
ehltns) = Zmz( / H,[,')(t,.,.,iwsh,)ds) enltiy)

=0 =

-
(1), g
+n,,; (/O H (t,.“,t,,+sh,,)da)s;.((,.‘/)»

-

Based on the analysis in Chapter 4, we may write

or

1t — b
hé"’A Tn — 8) K (tni,to + sho)en(to + sho)ds

Yy P
Sy (/0 (et ) K bt + sm)L,(s)ds) g

=1 =1

o )
doprice /o 5 U ) Kt -+ 5h) R (s ) s
=

h},’"i ( /O " = 8 K (gt + sh,.)Lj(s)ds) €ng

3=

e [ = Kt ) R 50
,

> ( A ™ 6= ) K tnistn + sh,‘)LJ(n)ds) eng

=

e
DD (/ﬂ (b K it + sh()LJ(s)ds) e

=1 =

(5.51)



Then we obtain the linear algebraic system

i
[Im = Ry Ba(@)en = Y W "BP()er + gl (@)
=

R (a) + DR D), (5.52)

where

BO() = (/"ﬁ”(c,—s)’“’K(Cn.u!nJrsh")L,(s)ds Gi=1, .m)),
i

1 "
(/ (=10 _ a1, to + sho)enlto + sho)ds (i =
(N

pal) = (/Dm'(c‘ — 8) K (tngotn + $h) Rmn(s.0)ds (i =

Aa) = (/0‘ xhit'—s)""K(tn_.,t‘+s)u)llm_;(s;u)ds (i=

Using the results from Theorem 4.2, we arrive at the conclusion:

(a) For uniform meshes, when 1 = 1 — a, since the equation (5.52) is similar

to the equation (4.19), the error can be estimated as
lenlli € Er-a(v0(@)0(1 = a)(nh)' =)k =5, (5.53)
and so, by (5.45) and (5.50), we have
Ilen]lnoo < CHI2.
(b) For graded meshes, with 1 —a < < m, we have [|eu|| < BA*, and so,
[lenllnco < CH-.
When p > m, we have ||e,ly < BA™, thus,
[lellnoe < CH™
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Here, we have set h = % and h=O(N™).

(I1I) When ¢’ < n < g¢'/, there exists an integer v, € {1,...,m} so that

n—1( < vn), and gui =1, Y > 0 (i=vp+1,...,m).

n

(i) Fori=1,...,v,, we have

1 -
i = B / (B )0 o+ holen(a -+ sholds

S

3=1

it
!

=) Kt shLy (51 e
'm’ -a
+Zh’““ "/ = AT H ) K (g, o + Shi) Ring(s; 0)ds

hize (/m(c, = ) Kty tnr + sh,..,)L](.q)ds) enty
o

=1

[ e K st St R0
J

(ii) For i = v+ 1,..,m, we have

i - ROy ( | ™ = ) Kty ta + .,h,.>L,<.«)ds) s
;
J’nx — 1y
ho

= (LT )7 K (b, to + sho)en(to + sho)ds

-
+ 3 e ('"" — 8Kty 1+ sh) Ly (s)d
;: (/ 1+ shi)Ly(s )Ew
o

Yo hpte
=

~
phpice / (¢ = ) K {tng,tn + Sh) Rrnn(55 2)ds.
o

)" K (tnyiy ty + shi) R (s @)ds
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Combining the above cases, we obtain the algebraic form of the system for e, ;:

(1= k™ Bu(@)len = g (@) + Zh‘ “BY(a)e:
=

+ diag(hmH-, L R i pmtisa), (o +th| 0 (a

+ B (@)ennr + Ao ), (5.54)

where

= 8) K (tngy tnr + shno1) Li(s)ds, 1 <i<wn

B V() =

tamtocd )0 K (4 by + Shoo)Li(s)ds, va+1<i<m
- = 8)7 K (b bt $hut) Rmr(s0)ds, 1S 0 < v
o V(@) =

0, vp+l1<i<m

We see that [I — hi~*B,(a)]~" exists and is uniformly bounded whenever h,, €
(0, 2). Thus, there is a constant Dj(a) so that

11 = = Ba(@)] ™'l < Di(a).
Thus, the error can be estimated as

[lealls < Zh‘ B (@) lledlly + 1B @)l len-ally
=1
+hy “Ilq“” @)l + A0 pa(a) ‘

+Zh:"“’°ua‘n”<u>n. + ol () )

In

(a (th N BO (@)l + Ay 1la (@)l

AR lpa(@)] + Zhl"“’"llﬂﬁ\h) (5.:55)
=



Then we derive the desired I'-estimates for the above vectors and matrices,

using Lemma 4.3 and the results in Theorem 4.2:
llealls < Er-a(ro(@)I(1 — a)(nh)' )3
Since
nh < nrTN"' = (n/NyT <rT, n=1,...,N,
and we have

he = (TN-")e = Ti-eN-T0-0) = Tl-aN-#,

for any graded I, with grading exponent r = p/(1—0a) (1-a < p <
m). Therefore, [|en||; < Bh* (¢' <n < q'").

Thus, we arrive at the conclusion
(a) For uniform mesh, when y = 1 — @, by (5.45) and (5.50), we have
[lenllnoo < CR.
(b) For graded mesh, with 1 — & < p1 < m, we have ||e,||; < BA*, and so,
[lenllnoo < Ch.
When p > m, we have ||e,|ly < BA™. Thus,
llenllnoo < CA™.

(IV) When ¢'/ <n < N -1, we have gt,; < t,. Assume that, for given n, qn; =
gn (i = 1,...,v0) and gug = o+ 1, g > 0 (i = v +1,...,m) for some
Vn € 1,...,m, where g, + 1 < n.
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(i) Fori=1,...,0,, we have
1o [Htai=t _ o
€ng = h} Pt =) K st + shoJen(to + sho)ds
ol mo gy
+ Z By (/ (T — 8) K (tnis i + sm>L,(s)d..-> ey
d=1. W0
; Z p- u/
i
+h;;ﬂz ( / (ci = 8) K (tns tgn + 5IL‘,“)L,(s)ds) Eani
o

=1

— 8) 7K (tnis i + shi) R (55 2)ds

i
+hmti-e (ci = 8) K (tnis tg, + Shg,) Ring, (5 @)ds.
an o n 4

(i) For i = v +1,...,m, we have

":'.Z(j (61 = Kty a1 + shgu 1) s )ds) .y

-
R “/ (¢ = ) K (tngs tars1 + Shgus1) Rmgusr (51 a)ds
o

Combining the above cases, we obtain the algebraic form of the system for

€n = (Enlre--rEnm) Tt

e = g0 zhx aB(a
+dmg(h:ﬂﬂ.. .h;:ﬂfa‘h;:tl]ﬂ. ’lqnu Yon(a zhmu apd(a
S,
+hi- B (a)ey, + ht e plin) (a), (5.5
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where
() St (azten — )= K (tn i, ty, + shq,)Lj(s)ds, 1<i<wn
@)(a) = =
Jo (242 — 5) =K (b g, + shq,) Ly(s)ds, va+1<i<m
(@) = ju "'% — 8) K (tn, g, + Shg,) Rmga(s3)ds, 1<i<uy

0, vp+1<i<m
Thus, the error can be estimated as
llealh < Z R BO @) hledlh + by 1B (@)1l eqa

+h' "Ilqw’( M+ B2 lon(@)]

i

+ Z Bl @l bl @l

In

th' 1B (@)l lledll + ks~ la” @)

Hhet i llen(@)ll +Zh’““ Nl @

Then we derive the desired ['-estimates for the above vectors and matrices,

using Lemma 4.3 and the results in Theorem 4.2:
[lenlls € Er-a(n0(@)T(1 = @)(nh)'~)3.

Since

nh <nrTN~' = (n/NyT <rT, n=
we obtain

hi-e = (TN-7)!-o = Pl N-r-0) ~ Ti-a N4,
for any graded I, with grading exponent r = p/(1—a) (1-a < p <
m). Therefore, ||ea|ly < Bh* (¢ <n < N 1)
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Thus, we arrive at the conclusion:
(a) For uniform mesh, when s = 1 — a, by (5.45) and (5.50), we have

Ilenllnee < CRI.

(b) For graded mesh, with 1 — a < 1 < m, we have |||y < BA*, and so,

[lenllnoo < Ch*

When 1 > m, we have [|eq|[i < BA™, thus,

[lenllnoo < CR™.

So the result of convergence

h,ifl-a<p<m,
lly = wrlloo := suply(t) - un(®)] < C(r) (5.57)
B> m

still holds for equation (3.2).

Remark: The results of Theorem 5.1 on the attainable order of the collocation

solution w, € S{')(I4) remain valid for the equation

W0 =)+ [ (¢= 9Kt (s (5.59)

(0<a<l, 0<g<l).
This follows from the fact that the solution of (5.58) possesses the same regularity

properties as the one for (3.2). Details will be given in a separate paper.




6 Concluding remarks

We conclude the paper by pointing out some extensions and future work.
In this paper, we have considered the attainable order of (global) convergence on

I for the collocation solutions u of (1.1) and (1.2), where {c;} is an arbitrary set of

locati If ujl is the ing iterated solution,
at
uft(t) = g(t)+/ (t =) K(t,s)un(s)ds, tel,
o

there is a need to further pursue the analysis of global or local superconvergence and
optimal orders.

We have implemented the collocation method on uniform meshes and graded
meshes to solve the weakly singular Volterra integral equations without vanishing
delays and with vanishing delays. But if we implement the collocation method on
geometric meshes (see [2]), can we obtain better results?

Finally, the situation becomes rather more interesting if we use collocation method

to approximate the weakly singular Fredholm integral equations with delays,
0(T)
y(t) = g(t) +/ (t—s)°K(t,s)y(s)ds, tel:=[0T), 0<a<l. (6.59)
o

The main reason is that we have to know the eigenvalues of the Fredholm integral
operator
0(T)
(Foy)(t) = / (t = 8)"K(t, s)y(s)ds,
o

where 0(T) = qT (0 < ¢ < 1).
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