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Abstract

We will present results on the representation and the regularity of exact solution

for the Volterra integral equations with singular kernels and vanishing delays. We

then use the collocation method to approximate the solutions for the Volterra inte

gral equations. It is then shown the global order of convergence of the collocation

solutions. Our theoretical results are confirmed in a series of numerical tests.
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Introduction

For the Volterra integral equations with singular kernels,

y(t) = g(t) +l (t - S)-aK(t, s)y(s)ds, tEI:= [0, T] (0 < a < 1) (1.1)

results on the regularity property of the exact solution y and order of convergence of

collocation methods are known (see [4], [5]). For the weakly ingular Volterra integral

equations with vanishing delays,

rqt

y(t) = g(t) + Jo (t - sta K(t, s)y(s)ds, tEI:= [0, T] (0 < a < 1), (1.2)

with a < q < 1 (also mentioned in Brunner [5]), we will present results on the repre-

sentation and the regularity of solutions. It will be shown that the solution of (1.2)

possesses the same regularity properties as the solution of the weakly singular Volterra

integral equation (1.1) with no delay.

We also will show the global order of convergence of the collocation solution of

(1.2) will be 1 - a for uniform meshes. When we u e graded meshes, the order of

convergence of the collocation solution of (1.2) will be larger than 1- a, but can not

exceedm.

The outline of this paper is as follows. In Section 2, we present the representation

and the regularity of solutions of weakly singular Volterra integral equations and prove

existence and uniquenes of the solutions, which we then apply to weakly singular

Volterra integro-differential equations. In Section 3, we present the representation

and regularity of solutions of Volterra integral equations with ingular kernels and

vanishing delays (linear and nonlinear), and prove the existence and uniqueness of

the solutions. We then give analogous results for Volterra integra-differential equations



with weakly singular kernels and vanishing delays. In Section 4, we introduce the

collocation method for weakly singular Volterra integral equations (1.1) and prove the

existence and uniqueness of collocation solutions, and we carry out a complete error

analysis of the collocation method and provide several numerical examples to verify

our theoretical results. In Section 5, we use two different techniques for Volterra

integral equations with singular kernels and vanishing delays: the direct approach

and the transformation approach, and we carry out a complete error analysis of the

collocation method and provide several numerical examples to support our theoretical

results.



2 Volterra integral equations with weakly singular

kernels

In this section, we will present the representation and the regularity of solutions of

weakly singular Volterra integral equations. The presence of the kernel singularities

gives rise to a singular behavior of solutions at the initial point of the interval of

integration.

2.1 Representation of solutions

Consider the general Volterra integral equation with weakly singular kernel

y(t) = g(t) +l (t - st"K(t, s)y(s)ds, tEI:= [0, T] (0 < a < 1). (2.1)

We assume the kernel K = K(t,s) is continuous on D := {(t,s) : 0 ~ s ~ t ~ T},

with K(t, t) oj 0 for t E I. Here we define the kernel H"(t, s) := (t - s)-" K(t, s).

The following result can be found in Section 6.1.2 in Brunner [4].

Theorem 2.1 Assume that K E C(D), and let 0 < a < 1. Then for any 9 E C(I),

the solution of weakly singular Volterra integral equation (2.1) can be represented in

the form

y(t) = g(t) +~ l H,/(t, s)g(s)ds, t E I.

The iterated kernels H'j(t, s) are determined recursively by

(2.2)

H,/(t,s):= l Hf(t,v)H,/_I(V,s)dv, (t,s) ED (j 2: 2), (2.3)

Hf(t, s) = H"(t, s) := (t - s)-" K(t, s). (2.4)



Proof: Using the Picard iteration method to derive the solution, we define

Yl(t):= g(t) + l Hnt,s)g(s)ds.

Then Y2(t) can be expressed in the form

Y2(t) g(t) + l Hf(t, s)Yl(s)ds

g(t) + l Hf(t, s) (g(s) +18

Hf(s, V)9(V)dV) ds

g(t) + l Hnt, s)g(s)ds +II Hf(t, v)Hnv, s)dvg(s)ds.

Defining

H~(t, s) := l Hnt, v)Hnv, s)dv,

we obtain

Y2(t) g(t) + l Hnt , s)g(s)ds + l H~(t, s)g(s)ds

g(t) +t l H'j(t, s)g(s)ds.
j=l 0

Assume we have the same solution representation for Yn(t):

n t
Yn(t) = g(t) + L In H,/(t, s)g(s)ds.

j=l 0

Then by mathematical induction,

Yn+l(t) g(t) + lHnt,S)Yn(S)dS

g(t) + l Hnt, s) (g(S) +t l' H,/(s, V)9(V)dV) ds

g(t) + l Hnt, s)g(s)ds + l Hnt, s) (tl' H,/(s, V)9(V)dV) ds

g(t) +I:l H,/(t, s)g(s)ds.
j=1 0



So when n tends to infinity, we obtain the expression of the solution of Volterra

integral equations with singular kernels,

00 t
y(t) := g(t) + Lin Hj(t, s)g(s)ds.

j=! 0

Since the Neumann series

Ro(t, s) := f Hj(t, s), (t, s) E D,
j=!

converges uniformly and absolutely (Ref [4]), we may write

y(t) = g(t) +l' Ro(t, s)g(s)ds, tEl. (2.5)

We now show that y(t) given by (2.5) is a solution of (2.1). A similar proof can be

found in Theorem 2.1.2 in Brunner [4].

Theorem 2.2 Let K E C(D) and 0 < a < 1, let R denote the resolvent kernel

associated with HO(t, s) := (t-s)-O K(t, s). Then for any 9 E C(I) the weakly singular

Volterra integral equation (2.1) has a solution y E C(1), and this solution is given by

y(t) = g(t) +l' Ro(t, s)g(s)ds, tEl.

Proof: Based on the definition of R(t, s), we have

00 00 it
R(t,s) = HO(t,s) + LH~(t,s) = HO(t,s) + L HO(t,v)H~_l(V,s)dv,

n=2 n=2 s

which we can write as

R(t,s) = HO(t,s) +l HO(t,v)R(v,s)dv, (t,s) E D. (2.6)

An equivalent equation could be obtained:

R(t,s) = HO(t,s) +l R(t,v)HO(v,s)dv, (t,s) E D. (2.7)



We now replace t in the weakly singular Volterra integral equation (2.1) by v, then

multiply the equation by R(t, v) and integrate with respect to v over the interval [0, t].

Using the Dirichlet's formula and the resolvent equation (2.7) we obtain that

l R(t, v)y(v)dv l R(t, v)g(v)dv +l R(t, v) (l V

Her(v, s)y(S)dS) dv

l R(t, s)g(s)ds +l ([ R(t, v)Her(v, S)dV) y(s)ds

l R(t, s)g(s)ds + l (R(t, s) - Her(t, s)) y(s)ds,

implying that

l Her(t, s)y(s)ds = l R(t, s)g(s)ds, t E I.

The resolvent representation (2.5) follows by substituting the above relation in (2.1).

Thus, (2.5) defines a solution y E C(I) for (2.1).

To be more precise, we use following theorem to represent the solution for (2.1). This

proof can be found in Theorem 6.1.2 in Brunner [4].

Theorem 2.3 Assume that K E C(D), and let 0 < a < 1. Then for any g E C(I),

the linear weakly singular Volterra integral equation (l.i) possesses a unique solution

Y E C(I). This solution is given by (l.S): here, the resolvent kernel Rer corresponding

to the kernel Her inherits the weakly singularity (t - s)-er and has the form

Rer = (t - s)-erQ(t,s;a), 0::; s < t::; T,

where

Q(t, s; a) := ~(t - s)(n-l)(l-er)<I>n(t, s; a)

The functions <I>n are defined recursively by

(2.8)

(2.9)

<I>n(t, s; a) :=11

(1 - z)-er z(n-l)(l-er)-a K(t, s + (t - S)Z)<I>n-l (s + (t - s)z, s; a)dz



(n 2: 2), with iP1(t,s;a):= K(t,s) and iPn(-, ·;a) E C(D).

Proof: Using the representation (2.2) and letting v = s + (t - s)z, we have

Hnt,s) = (t - sr"(t - S)I-"iP~(t,s),

where

iP~(t, s) = [(1 -zr"z-"K(t, s + (t - s)z)K(s + (t - s)z, s)dz.

Then we have

H~(t, s) = (t - s)-"(t - s)(n-l)(I-")iP~(t, s),

where

iP~(t,s) = [(1- z)-"z(n-l)(I-,,)-IK(t,s + (t - s)Z)iP~_I(S + (t - s)z,s)dz.

So we have

~ H~(t, s) = (t - sr" ~(t - s)(n-l)(I-")iP~(t, s) =: (t - s)"Q(t, s; a).

We see from Theorem 2.3 that the term wn(t,s;a) := (t - s)(n-l)(I-")iPn(t,s;a)

can be bounded by

where

k := max{IK(t, s)1 : (t, s) ED}.

The resulting uniform convergence of the Neumann series

~ Wn(t, s; a) =: Q(t, s; a) (t, s) E D,



implies that Q(t, s; a) E C(D) for all a E (0,1).

We observe that the existence of another solution z E C(I) leads to

y(t) - z(t) = l Ha(t, s)[y(s) - z(s)]ds, tEl.

Hence,

Iy(t) - z(t)1 S j{ l\t - s)-aly(s) - z(s)lds, tEl.

Since 0 < a < 1 the generalized Gronwall inequality given in Lemma 2.4 yields,

The following result can be found in Theorem 6.1.17 in Brunner [4].

Lemma 2.4 Let 1:= !O,Tj and assume that

(a) 9 E C(1), g(t) 2: 0 on I, and 9 is non-decreasing on I,

(b) the continuous, non-negative function z satisfies the inequality

z(t) S g(t) + M l(t-s)-az(s)ds, tEl,

for some M > 0 and 0 < a < 1.

Then:

z(t) S E1- a(Mr(1 - a)t1
-
a)g(t), tEl. (2.10)

Here, E(3 denotes the Mittag-Leffler function.

So we proved the uniqueness of the solution for (2.1).

The following result can be found in Theorem 6.1.1 in Brunner [4].



Corollary 2.5 For any interval I := [0, T] the unique solution y E C(I) of the

Volterra integral equation with weakly singular kernel

y(t) = g(t) + Al (t - s)Uy(s)ds, t ~ 0, a< a < 1, (2.11)

is given by

where

EfJ(z):= ~ f(1: k/3)' /3 > 0,

denotes the Mittag-Leffler function.

2.2 Regularity of solutions

The following result can be found in Theorem 6.1.6 in Brunner [4].

(2.12)

(2.13)

Theorem 2.6 Assume that g E cm(I) and K E cm(D), with K(t, t) # a on I.

Then:

(i) For any a E (0,1) the functions <pn(t, s; a) (n ~ 1) in (2.9) defining Q(t, s; a)

lie in the space Cm(D), and the regularity of the unique solution of the weakly

singular Volterra integral equation (2.1) is described by

Y E Cm((O, TJ) n C(I), ly'(t)l::; CuCU for t E (0, T].

(ii) The solution y can be written in the form

y(t) = L Yj,k(a)tJ+k(I-U) + Ym(t; a), tEl. (2.14)
(j,k)a



Here, (j,k)o:= ((j,k) : j,k E No,j + k(1- a) < m} and YmCa) E Cm(D).

The coefficients lj,k(a) are defined in the proof below.

Proof: The assertion regarding the regularity of y follows straightforwardly from

Theorem 2.3, since K E Cm(D) implies that <p n (', .; a) possesses the same regularity:

<pn (',', a) E Cm(D) (n ~ 1) for any a E (0,1). Consider the solution representation

described by (2.5) and Theorem 2.3. By the uniform convergence of the infinite series

defining Q(t, s; a) we may write

1
t

00 l'R,,(t, s)g(s)ds = L (t - S)k(I-O)-}Gdt, s; a)ds,
o k=} 0

where Gk(t, s; a) := <Pk(t, s; a)g(s). It follows from the assumed regularity of 9 and

K that Gk(-,·; a) E Cm(D) (k :::; 1). Hence, by Taylor's formula and by employing

the more convenient multi-index notation d:= (d}, d2)(di E No), with

We write

Gk(t,s;a) = L ~DdG(O,O;a)td+ L ~G(()'(2;a)td
Idl<m Idl=m

Note that

l'(t-S)k(}-O)-lsJds = tHk(l-o) 1}(1-v)k(}-o)-l1ldV = B(k(1-a),j+ 1)tHk(I-O),

with B(-'·) denoting the Euler beta function. By suitably rearranging all these terms,

and by adding the contribution due to g,

10



The solution representation (2.5) can be expressed in the form

y(t) = L Ij,k(a)tj+k(l-O') + Ym(t; a), tEl,
(j,k)o

where Ym(t; a) compri es those terms containing tj+k(I-O') with j +k(l- a) 2 m, and

all Taylor remainder terms.

More regularity results can be found in Bellen [1].

2.3 Application to Volterra integro-differential equations with

weakly singular kernels

(These results and proofs can be found in Section 7.1.1 in Brunner [4]). In this sec-

tion, we will analyze the regularity properties of solutions to initial-value problems

for Volterra integra-differential equations with weakly singular kernels, we con ider

the equation

y'(t) = a(t)y(t) + g(t) + [(t - s)-O'[((t, s)y(s)ds, tEI:= [0, T], y(O) = Yo·

(2.15)

Here 0 < a < 1, and [( E C(D), [((t, t) # 0 for tEl. We also define

HO'(t,s) :=(t-s)-O'[((t,s).

The regularity analysis will be based on the weakly singular Volterra integral equa-

tions that are equivalent to the original initial-value problem (2.15). We have the

form

y(t) = go(t) + [ [(~(t, s)y(s)ds, tEl,

11

(2.16)



where

go(t) := Yo + l g(s)ds, K~(t, s) := a(t) + l H"'(v, s)dv.

Alternatively, we may consider the equivalent Volterra integral equation for z(t) :=

y'(t), namely,

z(t) = fo(t) + l K~I(t,S)z(s)ds, tEl, (2.17)

with

fo(t) := g(t) + (a(t) + l H"'(t, S)dS) Yo,

K~I(t,S):= a(t) + l H"'(t,v)dv.

Note that if a(t) == 0 and K(t, s) == 1, we obtain that

Theorem 2.7 Assume that a,g E C(I) and K E C(D), and let a E (0,1). Then

for any initial value Yo the Volterra integra-differential equation possesses a unique

solution y E C1(I) satisfying y(O) = Yo. Moreover, there exists r", E C1(D), so that

this solution has the representation

y(t) = r",(t, O)yo + lr",(t, s)g(s)ds, tEl. (2.18)

The r'esolvent kernelr", can be defined as the solution of the resolvent equation

(t,s) E D, (2.19)

with r",(t, t) = 1 for tEl

Proof: We establish results on the properties of the solutions of the weakly singular

Volterra integro-differential equation (2.15). Let R~(t, s) denote the resolvent kernel

12



of the kernel J(~(t, s) in the integral equation (2.16). Since J{~ E C(D), we have that

R~ solves the resolvent equation

R~(t, s) = J{~(t, s) + [ R~(t, v)J{~(v, s)dv (t, s) E D, (2.20)

and the unique solution y E C1(I) of (2.15) is given by

y(t) = go(t) +l R~(t, s)go(s)ds, tEl. (2.21)

Using the above definitions of go and J{~ we obtain

y(t) = (1 +l R~(t, S)dS) Yo +l (1 + [R~(t, V)dV) g(s)ds.

This shows that the desired function T a in (2.18) is given by

Ta(t, s) := 1 + [R~(t, v)dv (t, s) E D (2.22)

The above also reveals that the resolvent Ta(t, s) associated with the linear Volterra

integro-differential equation (2.15) satisfies

-R~(t, s) = -J{~(t, s) -[ R~(t, v)J{~(v, s)dv

-a(s) -[ Ha(v, s)dv -[ R~(t, v)(a(s) +1v

Ha(z, s)dz)dv

- (1 + [ R~(t, V)dV) a(s) -[ (1 +l R~(t, Z)dZ) Ha(v, s)dv,

and hence, by (2.21),

8Ta (t,S) ) () rt
( ) ( )-8-s- = -Ta(t,s a s - Js Ta t,v Ha v,s dv (t,s) E D. (2.23)

Before analyzing the regularity of the solution for (2.15), we notice that the weakly

singular Volterra integro-differential equation (2.15) is equivalent to the Volterra in-

13



tegral equation

y(t) = g(t) +l (t - S)I-'"1«t, s)y(s)ds, t E [0, t], (} E (0,1), and 1< E C(D).

(2.24)

We compare the representation of solution of weakly singular Volterra integral

equation (2.1) in Theorem 2.3 to represent the solution of Volterra integra-differential

equation in (2.24), we just need to use 1 - (} to replace -(} in Theorem 2.3. And we

can obtain the regularity result of the solution of Volterra integra-differential equation

(2.15).

Theorem 2.8 Assume that a and g E Cm(I) and 1< E Cm(D) (m ~ 1), with

1«t, t) of- 0 on I, and (} E (0,1). Then:

(i) The regularity of the solution y of the linear Volterra integra-differential equation

(2.15) with weakly singular kernel (t - s)-'" is described by

with yl/ being unbounded at t = 0+:

lyl/(t)1 sec"', t E (0, T].

(ii) The solution y can be written in the form

y(t) = L Y j ,k(V)tj +k(l+I3) + Ym+1(t;V), tEl, (2.25)
(j,k)u

where (3 = 1 - (} and

(j,k)v:= {(j,k): j,k E No,j + k(l +(3) S m+ I}.

Moreover, Ym+1(-; v) E Cm+1(I).

14



3 Volterra integral equations with weakly singular

kernels and vanishing delays

3.1 Representation of solutions

Consider the general Volterra integral equation with weakly singular kernel and van-

ishing delay,

rO(t)
y(t) = g(t) + Jo (t - stl> K(t, s)y(s)ds, tEI:= [0, T] (0 < a < 1). (3.1)

Here, (t,s) E D~n) := {(t,s) : °:S s :S (In(t), t E I}. We assume that the delay

function (J(t) has the properties:

(i) (J(O) = 0, (J is strictly increasing (guaranteeing that (J-l(t) exists).

(ii) (J(t):S qt for some qE (0,1).

(iii) (JEC[O,T].

We assume that K E C(D~l»), with K(t, t) i- °for tEl. Here we also define the

kernel H"'(t, s) := (t - st'" K(t, s).

First we consider the Volterra integral equation with weakly singular kernel and

linear vanishing delay function (J(t) = qt (0 < q < 1)

y(t) = g(t) +l qt

(t - S)-'"K(t, s)y(s)ds, tEI:= [0, T] (0 < a < 1). (3.2)

Theorem 3.1 Assume that K E C(D~I)) with D~l) := {(t, s) : °:S s :S qt}, and

let °< q < 1, °< a < 1. Then for any g E C(I), the solution of Volterra inte-

gml equation (3.2) with singular kernel and linear vanishing delay function qt can be

15



represented in the form

y(t) = g(t) +~lqJt

H'j'(t, s)g(s)ds (t, s) E D~j) (0 < D: < 1). (3.3)

The iterated kernels Hj(t, s) are determined recursively by

H'j'(t,s):= jq: Hf(t,v)H'j'_l(V,s)dv (t,s) E D~) (j ~ 2), (3.4)
;;r=r

Hf(t, s) = HCl(t, s) := (t - S)-Cl K(t, s) (3.5)

Proof: Using the Picard iteration method to express the solution, first we have

(qt

YI(t) = g(t) + io Hf(t, s)g(s)ds.

Then, Y2(t) can be expressed in the form

Y2(t) g(t) + l qt

Hf(t, s)YI(s)ds

g(t) +lqt

Hf(t, s) (g(s) +l qS

Hf(s, V)9(V)dV) ds

g(t) +[t Hf(t, s)g(s)ds +l q2t

~qt Hf(t, v)Hf(v, s)dvg(s)ds.

We define

r t

H~(t,s):= i~ Hf(t,v)Hf(v,s)dv.

So we may write

Y2(t) g(t) + l qt

Hf(t, s)g(s)ds + l q2t

H~(t, s)g(s)ds

g(t) +t [Jt H'j'(t, s)g(s)ds
j=l 0

Assume that we have the same solution representation for Yn(t):

n (qJt

Yn(t) = g(t) + Lin H'j'(t, s)g(s)ds.
j=1 0

16



Then,

Yn+l(t) g(t) +lQt

Hf(t,s)Yn(s)ds

g(t) +l Qt

Hf(t, S) (g(s) +t l Q

}S H'f(s, V)9(V)dV) ds

g(t) +lQt

Hf(t, s)g(s)ds +lQt

Hnt, S) (tl QJS

H'f(s, V)9(V)dV) ds

n+l r Qjt

g(t) + L in H'f(t, s)g(s)ds
j=l 0

Thus, when n tends to infinity, we have the general representation of the solution of

Volterra integral equations with singular kernels and with vanishing delay qt:

00 rQJt

y(t) = g(t) + Lin H'f(t, s)g(s)ds, tEl,
j=l 0

where

rt

H'f+l(t,S) = I;; Hnt,v)H'f(v,s)dv fOT j 2: 1,

with

Hnt, s) = W'(t, s) := (t - S)-a K(t, S).

To be more precise, we state the following theorem to represent the solution of

(3.2).

Theorem 3.2 Assume that the given function in (3.2) satisfy 9 E C(1) and K E

C(D~l)). Then fOT all q E (0,1) and Q E (0,1), (3.2) possesses a unique solution

Y E C(1), and this solution can be written in the form

17
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H~(t,s)

Her'e, the kernel functions iI>n(t, s) are defined recursively by

iI>n(t, s) = (t - q:-l)1~(1- z)-O (q:_1 - q:-2 + (t - q:_l)Z)-O

K (t, q:-l + (t - q:_I)Z) iI>n-l (q:-l + (t - q:-l )z, s) dz,

where

(t,s) E D~n):= {(t,s): O:S: s:S: qnt, t E I} (n::::: 1).

The infinite series in (3.6) converges absolutely and uniformly on I

Proof: Using the representation in (3.3), when j = 2, we have

~qtHf(t,V)Hf(v,S)dV

~qt(t _ v)-OK(t,v)(v - s)-OK(v,s)dv.

s s qt- §.

Setting v = -q + (t - -q)z and integrating with respect to z from 0 to t _ ~q, this

becomes

H~(t,s) = (t - ~)l-O r~ (1- z)-O (~+ (t - ~)z - s)-O
q Jo q q

K (t, ~ + (t - ~)z) K G+ (t - ~)z,s) dz.

When j = 3, it follows that

j
qt

Hf(t, s) = • Hf(t, v)H~(v, s)dv.
Q1

. s s . . . ~-~
Agam, we let v = ii + (t - ii)z and mtegratmg wIth respect to z from 0 to t _; ,

we obtain
qt-::lz

Hf(t, s) = (t - !... )1-0 r'1i (1 - ztOK (t,!... + (t - !... )z)
~ h ~ ~

H~ (~+ (t - ~)z,s) dz.

18



Using mathematical induction this leads to

00 rqnt

y(t) = g(t) + Lin (t - ~t°<I>n(t,s)g(s)ds,
n=l 0 q

where

To show that this solution y E C(I) given by (3.6) is unique, we observe that the

existence of another solution z E C(!) leads to

rqt

y(t) - z(t) = io HO(t, s)[y(s) - z(s)]ds, tEl.

Hence,

tt
Iy(t) - z(t)1 ::; k io (t - s)-Oly(s) - z(s)lds, tEl.

Since 0 < a < 1 and 0 < q < 1, the extension of the generalized Gronwall inequality

yields that,

Iy(t) - z(t)1 ::; E1- O(kr(1- a)t1-o)0 = 0, tEl.

So we proved the uniqueness of the solution for (3.2).

The following lemma is an extension of Lemma 2.4.

Lemma 3.3 Let 1:= fO,T} and assume that

(a) 9 E C(!), g(t) ~ 0 on I, and 9 is non-decreasing on I.

(b) The continuous, non-negative function z satisfies the inequality

z(t)::; g(t) + M lqt

(t - s)-Oz(s)ds, tEl,

for some M > 0 and 0 < a < 1.
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Then:

z(t) ~ E1_,,(Mf(1 - oW-")g(t), t E I.

Here, E{3 denotes the Mittag-Leffler function.

Proof: We see that in condition (b) of this corollary:

tt
z(t) ~ g(t) + M Jo (t - s)-"z(s)ds.

Since 0 < q < 1, this leads to

tt t
z(t) ~ g(t) + M Jo (t - st"z(s)ds ~ g(t) + M Jo (t - st"z(s)ds.

This also satisfies the condition (b) in Lemma 2.4.

3.2 Regularity of solutions

(3.7)

We will use the result in Theorem 3.2 on the representation of the solution to the

equation (3.2) to derive regularity results under the assumption that the given func-

tions are smooth enough.

Theorem 3.4 Assume that 9 E cm(I) and K E Cm(D), with J((t, t) of- 0 on I.

Then for any a E (0,1), the function il>n (n ~ 1) in (3.6) lies in the space cm(D~n)),

and the regularity of the unique solution of (3.2) is described by

Y E Cm((O, TJ) n C(I), ly'(t)1 ~ c"e" for t E (0, T],

where the positive constant C" depends on 9 and K and their derivatives.
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Proof: K E Cm(D) implies that <I>n(t, s) possesses the same regularity: <I>n(t, s) E

Cm(D) when n 2 1 for any () E (0,1). Consider now the solution representation

described by (3.6), let Gn(t, s) := <I>n(t, s)g(s), it follows from the assumed regularity

of 9 and K that Gn E Cm(D). Hence, by Taylor's formula and by employing th

more convenient multi-index notation d:= (dl ,d2) (d; E No), with

We write

Gn(t,S;(}) = L ~DdG(0,0;(})tdISd2 + L ~G((1'(2;(})tdlsd2,
Idl<m Idl=m

and
m-lg(j)(O) . 1 t

g(t) = f; -j!-tJ-1 + (m _ 1)' Jo (t - s)m-Ig(m)(s)ds, t E [.

Then we obtain

y(t)

Since we know that
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This leads to

y(t)
m-l (j)(0) . 1 fatL -g-._tJ-1 +-- (t - S)m-lg(m)(s)ds
j=O y! (m-1)! 0

+ f L ~DdG(O, 0; a)qn+I+d2B((l - a), d2+ 1)t1
-

O +d

n=lldl<m

+ f L ~G((J'(2;a)qn+I+d2B((1-a),d2+1)tl-O+d
n=J Idl=m

Thus, the solution of (3.2) can be expressed in the form

y(t) = L Yj,k(a)ti+k(J-o) + Ym(t; a), tEl, (3.8)
(j,k)a

where Ym(t; a) comprises those terms containing ti+k(l-o) with j +k(l- a) 2': m, and

all Taylor remainder terms.

3.3 Volterra integral equations with more general vanishing

delays

In the previous analysis we have considered the equation (3.1) with linear delay

function 8(t) = qt (0 < q < 1). Now we consider (3.1) with nonlinear delay function

8 = 8(t) that is subject to

(i) 8(0) = 0,8 is strictly increasing (guaranteeing that 8- J (t) exists)

(ii) 8(t)::; qt for some qE (0,1).

(iii) 8 E C([O,TJ).
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Corollary 3.5 Assume the given functions in (3.1) satisfy g E C(J) and K(t,s) E

C(D~l)), which D~I) = {(t, s) : 0 :::; S :::; O(t), t E I}. Then for all a E (0,1), (9.1)

possesses a unique solution y E C(J), and this solution can be written in the form

00 rOn(t)

y(t) = g(t) + L io (t - o-n(s))-"oI>n(t, s)g(s)ds,
n=l 0

where the kernel function oI>n(t, s) is defined recursively by

(3.9)

rL(O)
oI>n(t, s) = (t - o-(n-l)(s)) io (1 - z)-"(o-(n-I)(s) - o-(n-2)(s) + (t - o-(n-l)(s))z)-"

K(t,o-(n-l)(s) + (t - o-(n-I)(s))Z)oI>n_l(o-(n-I)(s) + (t - o-(n-I)(s))z,s)dz,

(n ~ 2), (t, s) E D~n), where L(O) := O~t~~~(~~~~)s~S) .

The infinite series in (3.9) converges absolutely and uniformly on 1.

Proof: The process of proof is exactly the same as the proof of Theorem 3.2, and

the nonlinear delay function O(t) plays the same rule as qt in Theorem 3.2.

To show that this solution y E C(I) given by (3.9) is unique, we observe that the

existence of another solution z E C(I) leads to

rO(t)

y(t) - z(t) = io H"(t, s)[y(s) - z(s)]ds, tEl.

Hence,

l
o(t)

Iy(t) - z(t)1 :::; K 0 (t - s)-"Iy(s) - z(s)lds, tEl.

Since 0 < a < 1 and O(t) < t, the extension of generalized Gronwall inequality below

yields that,

Iy(t) - z(t)1 :::; E 1_,,(Kr(1- a)t 1
-

o )0 = 0, tEl.

So we proved the uniqueness of the solution for (3.1).
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Lemma 3.6 Let I :== (0, T( and assume that:

(a) 9 E CU), g(t) 2: 0 on I, and 9 is non-decreasing on I.

(b) The continuous, non-negative junction z satisfies the inequality

r8(t)
z(t) :S g(t) + M Jo (t - s)-Oz(s)ds, tEl,

jor some M > 0,0 < a < 1, and with the nonlinear delay junction B(t) subject

to conditions (i),(ii),(iii).

Then:

z(t) :S E1_ o(Mf(1 - a)t1-o)g(t), tEl. (3.10)

Here, Ef3 denotes the Mittag-Leffier junction.

Proof: This result is another extension of Lemma 2.4. We notice that in condition

(b) of this lemma, r8(t)
z(t) :S g(t) + M Jo (t - s)-Oz(s)d .

Since the nonlinear delay function B(t) satisfies B(t) :S qt (q E (0,1)), this leads to

r(t) r
z(t) :S g(t) + M Jo (t - stoz(s)ds:S g(t) + M Jo (t - s)-Oz(s)ds.

This also satisfies the condition (b) in Lemma 2.4. The result still holds.
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3.4 A more general weakly singular Volterra integral equa-

tion with vanishing delay

In this section we will consider the Volterra integral equations with weakly singular

kernels and vani hing delays, but now integrating from qt to t, with 0 < q < 1:

y(t) = g(t) + it(t - S)-a I«t, s)y(s)ds, t E J := [0, T] (0 < 0' < 1). (3.11)
qt

Here, (t,s) E A~n):= {(t,s): qnt:S s:S t}.

We assume that I< E C(A~J)), with I«t, t) =J 0 for t E J. Here we also define the

kernel Ha(t,s) :=(t-s)-aI«t,s)

Theorem 3.7 Assume that I< E C(A~I»), and let 0 < q < 1, and 0 < 0' < 1. Then

for any 9 E C(J), the solution of Volterra integral equation (3.11) with singular kernel

and vanishing delay qt can be represented in the form

y(t) = g(t)+l
t
W'(t, s)g(s)ds+f l

q

"-2

t

H~(t, s)g(s)ds (t, s) E A~l) (0 < 0' < 1).
qt n=2 q"t

(3.12)

The iterated kernel H::(t, s) are determined recursively by

{

H::,o(t,S):= /. Hftt,v)H::_J,J(v,s)dv,
Ha(t s)·= qn=

n , . H~,I(t,S):= lqn'=T Hftt,v)H::_J,J(v,s)dv,
qt

where

(3.13)

Hf(t, s) = Ha(t, s) := (t - S)-a I«t, S).

Proof: Using the Picard iteration method to express the solution, first we have

YI(t) = g(t) + it Hf(t, s)g(s)ds.
qt
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Then, Y2(t) can be expressed in the form

Y2(t) g(t) +it Hf(t, S)Yl(s)ds
Qt

g(t) +1: Hf(t,s) (g(s) +1: Hf(S,V)9(V)dV) ds

g(t) + it Hf(t, s)g(s)ds + it is Hf(t, s)Hf(s, v)g(v)dvds
Qt Qt QS

g(t) + it HfU, s)g(s)ds + l
Qt

1~ Hf(t, v)Hf(v, s)dvg(s)ds
Qt QZt Qt

+1:/Hf(t, v)Hf(v, s)dvg(s)ds

We define

" ._ {H2,o(t,S):= / Hf(t,v)Hf(v,s)dv, qt::; s::; t,
H2 (t,s).- ~

H2,l(t,S):= 1: Hf(t,v)Hf(v,s)dv, q2t::; s::; qt.

So we may write

Y2(t) = g(t) + it Hf(t, s)g(s)ds + it Hf(t, s)g(s)ds.
Qt QZt

Assume that we have the same solution representation for Yn(t):

Yn(t) = g(t) + [Hf(t, s)g(s)ds +t l
QJ

-

Zt

H'J(t, s)g(s)ds.
Qt j=2 QJt

Then,

Yn+l(t) g(t) + it Hf(t,s)Yn(s)ds
Qt

g(t) +1: Hf(t, s)g(s)ds +~LQ

:-

Zt

H'J(t, s)g(s)ds.

Thus, when n tends to infinity, we have the general representation of the solution for

equation (3.11):

y(t) = g(t)+l
t

H"(t, s)g(s)ds+f l
Qn

-

Zt

H;:;(t, s)g(s)ds (t, s) E A~l) (0 < a < 1),
qt n=2 qnt
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where

{

H::'O(t,S):= [, Hf(t,v)H;:_I,I(v,s)dv, qn-1t:S s:S qn-2t,

H;:(t,s):= on:=;
H::,I(t,S):= lqn=T Hf(t,v)H;:_l,l(V,s)dv, qnt:S s:S qn-1t,

qt

with

Hf(t, s) = HOI(t, s) := (t - S)-OI J«t, S).

To be more precise, we state the following theorem to represent the solution of

(3.11).

Theorem 3.8 Assume the given junctions in (3.11) satisjy 9 E C(1) and J< E

C(A~I)). Then for all q E (0,1) and Q E (0,1), (3.11) possesses a unique solution

Y E C(1), and this solution can be written in the form

y(t) = g(t) + it (t - sta K(t, s)g(s)ds + f l q

"-2

t

H;:(t, s)g(s)ds, (3.14)
qt n=2 q"t

where the kemel function H::(t, s) is defined by

{

H::,O(t,s):= (t - :_2)-201 <Pn,o(t,s), qn-1t:S s:S qn-2t,
HOI(t s)·= q

n , . H::,I(t,S):= (t _ q:_ItOl<Pn,l(t,S), qnt:S s:S qn-1t.

The kemel junctions <pn,o(t, s) and <Pn,l(t, s) are defined recursively by

<pn,o(t,s) = (t-~) t(l-Z)-OIZ- OI J«t ~+(t-~)Z)qn-2 Jo 'qn-2 qn-2

<Pn-I,I C:-2 + (t - q:_2)Z, s) dz, n 2: 2,

and
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where (t,s) E A~n) The infinite series in (3.14) converges absolutely and uniformly

on I.

Proof: Using the representations in (3.12) and (3.13), when n = 2, we have

Hf,a(t, s) l Hnt, v)Hnv, s)dv

l (t - v)-a K(t, v)(v - S)-a K(v, s)dv.

Setting v = s + (t - s)z and integrating with respect to z from 0 to 1, this becomes

Hf,a(t, s) = [(t - s)I-2a(1_ z)-az-a K(t, s + (t - s)z)K(s + (t - s)z, s)dz.

Also

Hf,J(t,s) 1~ Hf(t,v)Hf(v,s)dv
qt

1~ (t - v)-a K(t, v)(v - S)-a K(v, s)dv.
qt

Setting v = ~ + (t - ~)z and integrating with respect to z from qt - s~ to 0, this
q q t- q

becomes

fa (t _ ~)J-a(l_ zta (~_ s + (t - ~)z)-a
J~ q q q

K (t,~ + (t - ~)z) K G+ (t - ~)z,s) dz.

When n = 3, it follows that

Hf,a(t, s) l Hnt, v)Hf(v, s)dv

l (t - vtaK(t, v)Hf(v, s)dv.

28



Setting v = ~ + (t - ~)z and integrating with respect to z from 0 to 1, this becomes

H!lo(t, s) = t (t - ~)1-0'(1_ z)-O'z-O'K (t, ~ +(t - ~)z) H~ (~+ (t - ~)z, s) dz.
, Jo q q q q q

We also have

H3,I(t,S) j-;r Hf(t,v)H~(v,s)dvqt
L-;r (t - v)-O'K(t, v)H~(v, s)dv.

Setting v = -; + (t - -;)z and integrating with respect to z from qt - ~ to 0, this
q q t- qr

becomes

Using mathematical induction this leads to

y(t) = g(t) + jt (t _ s)-O' K(t, s)g(s)ds +f jqn-'tH~(t, s)g(s)ds, (3.15)
qt n=2 qnt

where the kernel function H;:(t,s) is defined by

The kernel functions <pn,o(t, s) and <Pn,l (t, s) are defined recursively by

<pn,o(t,s) = (t-~) t(l-Z)-O'Z-O'K(t,~+(t-~)z)qn-2 Jo qn-2 qn-2

<Pn-l,l C:-2 + (t - q:_2)Z,S) dz, n 2 2,
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and

<Pn,1 (t, s) (t - q:-l)J~ (1 - z)-<> (q:-l - qn
S
_2 + (t _ q:_I)Z) -<>

t-qn"=T

K (t, q:-l + (t - q:_I)Z) <Pn-l,l Cns_l + (t - qLl )z, s) dz, n ~ 2.

To show that this solution y E C(I) given by (3.14) is unique, we observe that

the existence of another solution z E C(I) leads to

y(t) - z(t) = 1t

H<>(t, s)[y(s) - z(s)]ds, tEl.
qt

Hence,

Iy(t) - z(t)l:<::: k1 t

(t - s)-<>Iy(s) - z(s)lds, tEl.
qt

Since 0 < a < 1 and 0 < q < 1, the generalized Gronwall inequality below yields

So we easily proved the uniqueness of the solution for (3.11).

Lemma 3.9 Let I := (0, TJ and assume that

(a) 9 E C(I), g(t) ~ 0 on I, and 9 is non-decreasing on I.

(b) The continuous, non-negative function z satisfies the inequality

z(t):<::: g(t) + M 1:(t - s)-<>z(s)ds, tEl,

for some M > 0, 0 < a < 1

Then:

z(t) :<::: E1_<>(Mr(1 - a)t1-<»g(t), tEl. (3.16)

Here, Ef3 denotes the Mittag-Leffler function.
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Proof: This corollary is another extension of Lemma 2.4. We notice that in condition

(b) of this corollary we have:

z(t)::; g(t) + Mjt(t - s)-Oz(s)ds::; g(t) + M t(t - s)-Oz(s)ds.
qt Jo

This also satisfies the condition (b) in Lemma 2.4.

3.5 Application to Volterra integro-differential equations with

weakly singular kernels and vanishing delays

In this section we consider the existence and regularity of solutions to the Volterra

integra-differential equations

y'(t) = g(t) + l qt
(t - srOK(t,s)y(s)ds, tEl. (3.17)

In order to reduce this problem to the one studied in the previous sections, we set

z(t):= y'(t) and write

y(t) = y(O) +l z(s)ds, tEl.

This will lead to

(3.18)

z(t) g(t) +lqt
(t - S)-O K(t, S) (y(O) + [ Z(V)dV) ds

~ ~1~g(t) + Jo (t - SroK(t, s)y(O)ds + Jo s (t - V)-O K(t, v)dvz(s)ds

~G(t) + Jo (t - S)-O K1(t, s)z(s)ds.

Where we have used the notations

r t

G(t) := g(t) + Jo (t - S)-O K(t, s)y(O)ds,
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KJ(t, s) := 1~ (1 - y)-cr K(t, s + (t - s)y)dy.

Theorem 3.10 Assume that the given function in (3.17) satisfying g E C(I) and

K E C(Dq ). Then for any Yo and any a E (0,1) the integral equation (3.17) possesses

a unique solution z E C(I). This solution can be wr-itten as

00 tnt
z(t) = G(t) + L In (t - ~)-crQn(t, s)G(s)ds,

n=J 0 q

where

(3.19)

qt-:n'!:T -0

(t-~) r~(l-Z)-cr(~-~+(t-~)z)qn-J Jo qn-J qn-2 qn-l

K (t, qr~-l + (t - qns_J)z) Qn-J C:-I + (t - qnS_J )z, s) dz,

and G(t) is the new function that

tt
G(t) = g(t) + Jo (t - stcr K(t, s)y(O)ds.

The infinite series in (3.19) converges absolutely and uniformly on 1.

Proof: The proof is very similar to the proofs of Theorem 3.1 and Theorem 3.2. We

just need to replace <I>n(t, s) by Qn(t, s), and replace g(t) by G(t), then we can easily

obtain the solution representation in (3.19).

Theorem 3.11 Assume that 9 E cm(I) and K E cm(Dq ), with K(t, t) =!= 0 on I.

Then for any a E (0,1), the function Qn(t, s) (n::::: 1) defined in Theorem 3.10 lies

in the space cm(Dq ), and the regularity of the unique solution of equation (3.17) is

described by:

Y E Cm+J((O, T]) n C(I), with ly"(t)1 ::; Ccrt-cr for t E (0, T].

The positive constant Ccr depends on 9 and K and their derivatives.

32



Proof: We see that z(t) that defined by z(t) = y'(t) has the same regularity as the

solution y(t) in equation (3.1). Hence, the regularity result of Theorem 3.11 for y(t)

follows.

33



4 Collocation for Volterra integral equations with

weakly singular kernels

We now return to the Volterra integral equation (2.1) in Section 2.1,

y(t) = g(t) + l (t - st"K(t, s)y(s)ds, tEl,

where K E C(D) and 9 E C(1) are given functions. We define

H"(t,s):=(t-s)-"K(t,s).

We will approximate the solution of (2.1) by collocation in the piecewise polynomial

space S;;~l(h). This numerical collocation solution Uh is defined by the collocation

equation

Uh(t) = g(t) + l(t - st"K(t, s)uh(s)ds, t E X h· (4.1)

Where the set of collocation points

Xh:={tn+Cihn:O~Cl~... ~cm~l (n=0,1, ... ,N-1)}. (4.2)

4.1 Background knowledge

Let

h:= {tn = tl:"): 0 = t~N) < tiN) < ... < t~) = T}, (4.3)

denote a mesh on the interval I := [0, T] and set

There are two types of meshes which we will use in the following sections:
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(a) Unifom mesh h: hr:') = h~~ = h(N) = ~ (n = 0, 1, ... ,N).

(b) Graded mesh h' tr:') := (YirT (n = 0,1, ... , N), r> 1,

where the real number r is called the grading exponent.

Now we give the definition of piecewise polynomial spaces

Definition For a given mesh h the piecewise polynomial spaces S~d)(h), with J.l 2: 0,

-1:::; d < J.l, is given by

Here, 7[1' denotes the space of real polynomials of degree not exceeding J.l.

4.2 Collocation solution of Volterra integral equations with

weakly singular kernels

We have the collocation equation which we presented in (4.1). Then we will approx-

imate the solution of the weakly singular Volterra integral equation by collocation in

the piecewise polynomial space

The following analysis can be found in Chapter 6.2 in Brunner [4].

The computational form of the collocation equation (4.1) will be based on the local

representation employing the Lagrange basis functions with respect to the collocation

parameters {e;} which we will recall for convenience, setting
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The collocation solution Uh E s;;~l (h) on the subinterval an := (tn, tn+d is described

by

Uh(t) = Uh(tn + vhn) = f Lj(v)Un,j, v E (0,11· (4.4)
]=1

Thus, for t = tn,i := tn + c.;hn the collocation equation (4.1) assumes the form

We write as

For t E an the lag term is

If t = tn,i, this becomes

(4.6)

Let Un := (Un,l, .. , Un,m)T, gn := (g(tn,Il, ... ,g(tn,m))T, and define the matrices in

L(JR1'),

and

The collocation equation (4.1) then assumes the form
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where
n-l

Gn(a):= (Fn(tn,l;a), .. ,Fn(tn,m;a)f = LhlB~)(a)Ut
1=0

Here, 1m denotes the identity matrix in L(IR"). We note that the integrands defining

the elements of B~)(a) and Bn(a) are, respectively,

O( ) -0 (tn + e;hn - tl )-0H tn,i, tl + sht = hi --h-
I

- - s K(tn,i, tt + shl ) (I < n),

fora < a < 1.

(4.10)

(4.11)

The left-hand side matrix in the system (4.9) then becomes 1m - h~-OBn(a), where

now Bn(a) has the form

The following analysis can be found in Theorem 6.2.1 of Chapter 6.2 in Brunner

[4].

Theorem 4.1 Assume that g and Kin HO(t,s) := (t - s)OK(t,s) are continuous

on their respective domains 1 and D. Then there exists an h = h(a) > a so that,

for every a E (0,1] and any mesh h with mesh diameter h satisfying h E (0, h),

each of the linear algebraic systems (4·9) has a unique solution Un E IR" (n =

0,1, ... , N - 1). Hence the collocation equation {4.1} defines a unique collocation so

lution Uh E S;;!/(h) for the weakly singular Volterra integral equation {2.1}, with

local representation given by {4.4}.

Proof: By the assumptions on the factor K in the kernel HO, the elements of the

matrices Bn(a) in (4.8) are bounded for all a E (0,1]. This implies that the inverse of
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the matrix Bn(o.) := 1m - hnBn(o.) E L(IR") exists if hnIIBn(o.)11 < 1 for some matrix

norm. This clearly holds whenever hn is sufficiently small. In other words, there is an

h = h(o.) > 0 so that for any mesh h with h:= max{hn : 0:::: n:::: N - I} < h, each

matrix Bn(o.) (n = 0,1, ... , N - 1) has a uniformly bounded inverse. The assertion

of this theorem now follows.

Now we define the collocation error eh := Y - Uh associate with the collocation

solution Uh E S;;j(h) to the weakly singular linear Volterra integral equation

y(t) = g(t) +l (t - sraK(t, s)y(s)ds, tEl:= [0, T],

satisfies that

The basic global convergence result is the following. This theorem and its proof

can be found in Chapter 6.2 in Brunner [4] .

Theorem 4.2 Assume:

(a) The given functions in the singular Volterra integral equation (2.1) satisfy K E

(b) The kernel singularity is (t - s)-a, with 0 < 0. < 1.

(c) Uh E S;;~1(h) is the unique collocation solution to the equation (2.1) defined by

(4.9), with h E (0, /1) and corresponding to the collocation points X h ·

(d) The grading exponent l' = 1'(0.) 2: 1 determining the mesh h is given by

1'(0.)= 1~0.' j.t2: 1-0..
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Then setting h:= ~:

holds for any set X h of collocation points with 0:::; Cj < . < em :::; 1. The constant

C(r) depends on the {Ci} and on the grading exponent r = r(a), but not on h.

Proof: The collocation error eh := Y - Uh, and satisfies the error equation

This error equation can be written as

eh(tn,i) 1tn

"Hc>(tn,i,s)eh(s)ds

t l

HC>(tn,i, s)eh(s)ds + l tn

HC>(tn,i, s)eh(s)ds
Jo tl

+ hn1c

, HC>(tn,i, tn + shn)eh(tn + shn)ds.

For n = 1, .. , N - 1, the collocation error on the corresponding subinterval (7n has

the local Lagrange-Peano representation

eh(tn+vhn) = f,Lj(V)t:n,j + h;:'Rm,n(v), v E (0,1], (4.13)
j=1

where we have set

and
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with

For n = 0, 6'0 = [to, td = [0, ho], the exact solution can be written in the form

y(to + vho) = L /j,k(a)(to + vho)J+k(l-a) + h(;"Ym,o(v; a),
(j,k)a

with

(j,k)a:= {(j,k) , j,k E No,j + k(l- a) < m},

We write the representation as

y(to + vho) L /j,k(a)hb+k(l-a)vJ+k(l-a) + L /j,k(a)hb+k(l-a)vJ+k(J-a)

~~ ~~

+ h(;"Ym,o(v; a), v E (0,1],

where

(j, k)~ := {(j, k) : j + k(l- a) E No; j + k(l - a) < m},

(j, k)~ := {(j, k) : j + k(l- a) ~ No; j + k(l- a) < m},

Then
m-l

y(to + vho) = L cj,o(a)vj + h6-a<pm,0(v; a) + h(;"Ym,o(v; a), (4,14)
j=O

with

<pm,o(v; a) := L Cj,k(a)vJ+k(l-a)

(j,k)~

Now, we suppose that the collocation solution Uh E S;;~~(h) on 6'0 is expressed in

the form
m-l

Uh(to + vho) = L dj,ovj , v E (0,1],
j=O
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Then we can write the collocation error on aa as

m-l

eh(ta+ vha) = L t1j,a(a)t? + hb-O'iPm,a(v;a) + h;;'Rm,a(v; a), v E (0,1], (4.15)
j=O

where

t1j,o(a) := cj,o(a) - dj,o,

Now return to the error equation corresponding to n = 0:

eh(to+ e;ho) hol ci

HO'(tO,i, to + shO)eh(to + sho)ds

ho1 (to,i - to - shotO' K(to+ e;ho, to + shO)eh(to + sho)ds

hol ci

(CihO - sho)-O' K(to+ e;ho, to + shO)eh(to + sho)ds

hb-O' l' (e; - S)-O'K(to + CihO, to + ShO)eh(to + sho)ds

(i= 1, .. ,m),where

m-l

eh(to+ CihO) = L t1j,o(a)c; + hb-O' L Cj,k(a)c;+k(l-O') + h;;'Rm,o(e;;a). (4.16)
j=O (j,k)~

Thus, we obtain the linear algebraic system

m-l

L t1j,o(a)c; + hb-O' L Cj,k(a)c;+k(l-O') + h;;'Rm,O(Ci; a)
j=O (j,k)~

hb-O' l' (e; - S)-O'K(to + CihO, to + ShO)eh(tO + sho)ds

hb-O' [i (e; _ S)-O' K(to+ CihO, to + Sho)[~ t1j,a(a)sJ
o j=O

+hb-O' L Cj,k(a)sHk(I-O') + h;;' Rm,O(S; a)]ds.

(j,k)~
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So we have

~ (c; - h6-al Ci

K(tO,i, to + ShO)sjdS) f3j,o(a)
j=O 0

-h6-a L (c;+k(l-a) - h6-al ci

(Ci - S)-a K(tO,i, to + Sho)sj+k(l-a)dS) Cj,k(a)

(j,k)~ 0

-hO' ( Rm,O(Ci; a) - h6-a 1C, (Ci - sta K(tO,i, to + shO)Rm,o(s; a)ds) , (i = 1, .. , m).

It can be written compactly as

Here, Vm E L(JR") denotes the Vandermonde matrix based on the collocation param-

eters {cd, qo(a) and po(a) are vectors. Due to the continuity and boundedness of the

kernel K, and the remainder term Rm,o(.; a). The inverse matrix [Vm - h6-aEo(a)]-l

exits for all a E (0,1) and is uniformly bounded for sufficiently small ho· This implies

that, sincem 21,

IIf3o(a)111 ::; Eh6-a (a E (0,1))

holds for some constant E, and by (4.16) we have

with appropriate constants po(a), PI (a) and ho E (0, Ii). If the grading exponent

r = r(a) is chosen as r = 1 ~ a' with 1 - a::; J.L::; m, then we obtain

Hence,

(4.18)
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Assume now that 1 ::::: n ::::: N - 1. It follows from the error equations

eh(tn,i) t' Ha(tn,i, s)eh(s)ds + ft n

Ha(tn,i, s)eh(s)ds
Jo t,

+ hnlc

, Ha(tn,i, tn + shn)eh(tn + shn)ds,

and

eh(tn + shn) = tLj(S)cn,j + h'::Rm,n(s) , S E (0,1],
j=l

that

t t-t
Cn,i h~-a Jo (T -staK(tn,i,tO+sho)eh(tO+sho)ds

+~ hi-at ([ (tn'ih~ to - staK(tn,i' tl + Sht)Lj(S)dS) ct,j

n-l t t-t
+ t:: hr,+l-a Jo (T-S)-a K(tn,i, tt + shl)Rm,I(S; o.)ds

+h~-a t (['; (e; - S)-aK(tn,i' tn + Shn)Lj(S)dS) Cn,j
j=l 0

+h,::+l-a1(Ci - S)-a K(tn,i, tn + shn)Rm,n(S; o.)ds.

We rearrange the above equation and obtain

43



This represents a linear system

n-l n-l

[Im-h~-"Bn(a)]en = Bh!-"B~)(a)el+h6-"q~O)(a)+h';.'+I-"Pn(a)+Bh;"+I-"p~)(a).

(4.19)

The vectors are defined by

qo(a) := (11

(tn'ih~ to _ S)-" K(tn,i, to + sho)e,,(to+ sho)ds (i = 1, .. ,m)) T,

Pn(a) := (['; (Ci - st"K(tn,i, tn + shn)Rm,n(s; a)ds (i = 1, ... , m)) T ,

p~)(a):= ([ (tn'i;: tl _ s)-"K(tn,i,tl + shtlRm,I(s;a)ds (i = 1, ... ,m))T.

We can see [1m - h~-"Bn(a)]-I exists and is uniformly bounded whenever hn E

(0, h). Thus, there is a constant Do(a) so that

Thus, (4.19) yields a generalized discrete Gronwall inequality,

n-I
Ilenlll ::; DO(B h!-"IIB~)(a)lhlledh+ h6-"llq~O)(a)lh

n-I
+ h';.'+I-"IIPn(a)lll +Bh;"+l-"llp~)(a)lll) (n = 1, ... , N - 1) (4.21)

In order to derive the desired II-estimates for the above vectors and matrices, we

appeal to the following lemma. (This lemma can be found in Lemma 6.2.10 in Brunner

[4])

Lemma 4.3 Let In be the graded mesh on I := [0, T], with grading exponent r ~ 1.

If {cd satisfies 0::; Cl < .. < em ::; 1, then for 1::; I < n::; N - 1, and v E No,

[ (tn'ih~ tl _ s) -" sVds::; 'Y(a)(n - W" (i = 1, ... ,m),
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with 'Y(a) := ~.

Recall the definitions of the matrices B~)(a) and the vectors p~)(a) (l < n). It is

easy to verify that

and

with appropriate constants D 1(a) and R1(a) depending on m and the bounds for J(

and the uniform norms of the Langrange fundamental polynomials L j . The inequality

(4.21) now becomes

n-l
II<:nlll < po(a)h1- O~)n -l)-ollcllh + 'Yl(a)h6-0

1=1

n-l
+'Y2(a)h;::,+1-0 + 'Y3 L h;"+l-O(n -l)-o, (4.22)

1=1

with 1 ::; n ::; N - 1 and appropriate constants 'Yi(a) (i = 1,2,3). Now we have

ZI := Ilcdh, and the sequence bn} given by

n-l
'Yn:= 'Yl(a)h6-0 + 'Y2(a)hm+1- 0 + 'Y3~ h;"+1-0(n -l)-o (n 2: 1),

is clearly non-decreasing. Moreover, we have

n-l T1-0
~hJ-O(n-n-o::;~ (n= 1, .. ,N).

This is easily verified by observing that, for any uniform mesh,
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where the last expression represents the lower Riemann sum for the given integral

whose integrand is convex on [0, to). Hence, we have found a uniform upper bound

for '"Yn, namely,

'"Yn "( := '"Yl(a)h6-a + '"Y2(a)hm+1- a + '"Y3(a)hm~~-:

= '"Yl(a)h6-a + ['"Y2(a)h1-a + '"Y3(a) T1-a] hm
,

I-a

and with this (4.21) leads to

Since we have

nh::; nrTN-1 = (~)rT::; rT, n = 1, ... ,N,

and we also have

for any graded h with grading exponent r = 1 ~ a (1 - a ::; J.L ::; m). Therefore,

Ilenlll ::; Bhl' (1 ::; n ::; N - 1), and so we arrive at the desired estimate for Ilehlloo·

4.3 Numerical examples

In this section, we present a set of numerical experiments which confirm our theo-

retical results. Throughout, we consider the problem (2.1) with T = 1 and J((t,s) =

1. We choose the right-hand side

f(1 - a)f(2 - a) t2-2a
f(3 - a) ,
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such that the solution y of (2.1) is given by

y(t) = 1+t1
-

o . (4.24)

We notice that this solution is smooth away from t = 0 and that for 0' E (0,1),

the second derivative y" is unbounded near t = O. Thus, the solution (4.24) is suitable

to test the performance of the collocation method.

We will approximate the solution by collocation in the piecewise polynomial space

S~~l(h) where m = 1 and m = 2 in using uniform meshes and graded meshes, and

then we will use pictures to show the collocation solutions will converge to the real

solution.

(1) We set m = 1 and use the uniform meshes to obtain the numerical solutions

when the step numbers are N = 10, 20, 40 and 80. Then we can compare the

errors between the numerical solutions and the exact solutions.

Table 1: Ilerroril oo for m=l on uniform meshes

step number 0' = 0.1 0' = 0.5 0' = 0.9

10 0.0053 0.5169 0.0122

20 0.0014 0.1853 0.0115

40 3.8426e-04 00672 0.0109

80 1.0212e-04 0.0242 0.0103

(2) We set m = 1 and use the graded meshes to obtain the numerical solutions when

the step numbers are N = 10, 20, 40 and 80. Then we can compare the errors

between the numerical solutions and the exact solutions.
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Table 2: Ilerror'lloo for m=l on graded meshes

step number a=O.l a=0.5 a=0.9

10 00053 0.2982 0.0051

20 00014 0.0920 0.0022

40 3.7854e-04 0.0298 8.9760e-04

80 9.9170e-05 0.0098 3.7984e-04

(3) We set m = 2 and use the uniform meshes to obtain the numerical solutions

when the step numbers are N = 10, 20, 40 and 80. Then we can compare the

errors between the numerical solutions and the exact solutions.

Table 3: Ilerroril oo for m=2 on uniform meshes

step number a=O.l a=0.5 a=0.9

10 4.6398e-04 0.1176 0.0058

20 1.4724e-04 0.0510 0.0055

40 4.4926e-05 0.0206 0.0052

80 1.3359e-05 0.0080 0.0049

(4) We set m = 2 and use the graded meshes to obtain the numerical solutions when

the step numbers are N = 10, 20, 40 and 80. Then we can compare the errors

between the numerical solutions and the exact solutions.

The following three pictures: Figure 1, Figur'e 2 and Figure 3 can show us the

collocation solutions will converge to the exact solution when the number of time
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Table 4: Ilerroriloo for m=2 on graded meshes

step number 0=0.1 0=0.5 0=0.9

10 2.4840e-04 0.0272 9.8585e-04

20 6.9452e-05 0.0092 3.4351e-04

40 1.838ge-05 0.0027 1.1097e-04

80 4.7355e-06 7.5888e-04 3.5033e-05

steps becomes larger.

1.3

1L-_-'--_-----L__-'---_--'---_---'__--L-_----l

o

Figure 1: m=l, 0 = 0.9, N=lO on graded meshes
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0.3
1'-----------'_----'--_----'--_----'-_--'--_-'---_L----'-_----J

o

Figure 2: m=l, a = 0.9, N=40 on graded meshes
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0.80.3
1'=----------'----'---'-------'----'---'-------'----'---'-----1

o

Figure 3: m=1, a = 0.9, =80 on graded meshes
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5 Collocation for Volterra integral equations with

weakly singular kernels and with vanishing de-

lays

We now return to the Volterra integral equations (3.2) and (3.11), where J( E C(D)

and 9 E C(!) are given functions.

We will approximate the solutions of (3.2) and (3.11) by collocation in the piece

wise polynomial space S;;~l(I,,). The numerical collocation olutions Uh are defined

by the collocation equations, respectively,

rUh(t) = g(t) + Jo (t - s)-O J((t, s)uh(s)ds,

Uh(t) = g(t) + It(t - s)-oJ((t,s)uh(s)ds,
qt

Where the set of collocation points

tEXh , (5.1)

(5.2)

X h := {tn + c;hn : 0 S Cl S ... S Cm < 1 (n = 0,1, ... , N -I)}.

5.1 Collocation solutions of weakly singular Volterra integral

equations with vanishing delays on uniform meshes

We have the collocation equations which we presented in (5.1) and (5.2). ow we will

use two methods the direct approach and the transformation approach to approximate

the solutions of the weakly singular Volterra integral equations with vanishing delays

on uniform meshes.
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(1) We use the direct approach to solve the weakly singular Volterra equation (3.2)

tt
y(t) = g(t) + Jo (t - s)-O J«t, s)y(s)ds

on uniform meshes, the diameter will be ~. We denote

and employ the notations

with qn,i := lq(n + Ci)J, and In,i := q(n + Gi) - qn,i' The computational form

will be

Uh(tn,;) g(tn,i) + hq~1 ~ ([ H~I)(tn,i'tl + Sh)Lj(S)dS) Uh(tl,j)

+ ht (r n
" H~l)(tn,i' tqn ., + Sh)Lj(S)dS) Uh(tqn,,,j)' (5.3)

j=1 Jo

(a) Initial phase (complete overlap): 0::; n < r1q~lq1=: ql

In this situation, we have qn,i = nand In,i E [0,1) (i = 1,2, .. , m). This

leads to

Uh(tn,i) g(tn,i) + h~~ ([ H~I)(tn,i'tl + Sh)Lj(S)dS) Uh(tIJ)

+ h~ (l"1n" H~I)(tn,i' tn + Sh)Lj(S)dS) Uh(tn,j)' (5.4)

We define

B~)(q):= ([ H~l)(tn,i,tl+ sh)Lj(s)ds (i,j = 1, ... ,m)) (l < n),

B~(q) := (l"1n" H~l)(tn,i' tn + sh)Lj(s)ds (i, j = 1, ... ,m)) ,
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and obtain the linear system

n-l

Un = gn + h~ B~)(q)UI + hB~(q)Un'

The linear system can be written as

[I - hB~(q)lUn = gn + h~ B~)(q)U1, (5.5)

with Un := (Un,i,"" Un,m)T and gn := (g(tn,i),"" g(tn,m))T

(b) Transition phase (partial overlap): q' ~ n < rlq~mq1=: qll

This set could be empty. If it is not empty, there exists an integer

Vn E {I, ... ,m - I} such that qn,i = n - 1 (i = 1, ... ,vn) and qn,i = n,

'Yn,i > 0 (i = Vn + 1, ... ,m). That is, we have tq,. .• ~ tn for i = 1,

and tq,. .• > tn, when i > Vn. Then we define the matrices

where

The linear system will be
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(c) Pure delay phase (no overlap): qIl ::; n ::; N - 1.

In this situation, we have qtn,i ::; tn' Assume that, for given n,

qn,i = qn (i = 1, ... ,vn) and qn,i = qn + 1, In,i > 0 (i = Vn + 1, .. ,m) for

some Vn E {I, ... ,m}, where qn + 1 < n.

We define the matrices

with

So the linear system will be

Un = gn + h~ B~I)(q)Ul + h(§:~l(q) + B~qn)(q))Uqn

+ hs:~il(q)Uqn+I' (5.7)

(2) We use the direct approach to solve the weakly singular Volterra integral equa-

bon (3.10)

y(t) = g(t) + 1:(t - s)-O K(t, s)y(s)ds

on uniform meshes, with the diameter h =~. We also define

Hil)(t,s):=(t-s)-OK(t,s),

and employ the notations
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with qn,i := lq(n + Ci)J, and In,i := q(n + Ci) - qn,i' We have

U(t) g(t) +LH~I)(t, s)u(s)ds

g(t) +l H~I)(t, s)u(s)ds - lqt
H~l)(t, s)u(s)ds

g(t) + l H~l)(t, s)u(s)ds +lqt
(-H~l)(t, s))u(s)ds.

Then, setting H;,2)(t, s) := -H;})(t, s). We find

t r t

u(t) = g(t) + Jo H~1)(t, s)u(s)ds + Jo H~2)(t, s)u(s)ds.

The computational form will be

(5.8)

Uh(tn,i) g(tn,tl + h~t ([ H~l)(tn,i,tt + Sh)Lj(S)dS) Uh(tl,j)

+ ht ([' H~I)(tn,i' tn + Sh)Lj(S)dS) Uh(tn,j)

+ hq~1t ([ H~2)(tn,i' tt + Sh)Lj(S)dS) Uh(tt,j)

+ hf (1"("" H~2)(tn,i' tq"" + Sh)Lj(S)dS) Uh(tq"",j) , (5,9)
j=1 0

(a) Initial phase (complete overlap): 0 ~ n < r1q~lq1=: qr

Since now qn,i = nand In,i E [0,1) (i = 1",., m), this leads to

Uh(tn,i) g(tn,i) + h~t ([ H~l)(tn,i' tt + Sh)Lj(S)dS) Uh(ttJ)

+ ht (lC

' H~I)(tn,i' th + Sh)Lj(S)dS) Uh(tn,j)

+ h~t ([ H~2)(tn,i' tt + Sh)Lj(S)dS) Uh(tl,j)

+ ht (1"("" H~2)(tn,i' tn + Sh)Lj(S)dS) Uh(tn,j). (5,10)
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Introducing the matrices

B~):= ([ H~I)(tn,i,tL+ sh)Lj(s)ds (i,j = 1, ... ,m)) (I < n),

Bn := (1C, H~l)(tn,i,tn+sh)Lj(s)ds (i,j = 1, ... ,m)),
B~)(q):= ([ H~2)(tn,i,tl+ sh)Lj(s)ds (i,j = 1, ... ,m)) (I < n),

B~(q):= (l"1n.. H~2)(tn,i,tn+sh)Lj(s)ds (i,j = 1, ... ,m)),
we obtain

n-l n-1

Un = 9n + hBnUn + h~ B~l)Ul + hB~(q)U,t + h~ B~)(q)Ul' (5.11)

The computational form will be

[1 - h(Bn + B~(q))]Un = 9n + h ~(B~) + B~)(q))UL' (5.12)

(b) Transition phase (partial overlap): ql ~ n < ft:q1=: qll.

This set could be an empty set. If it is not empty, there exist an integer

Vn E {I, ... ,m-l}, so that qn,i = n-l (i = 1, ... , vn) and qn,i = n,"Yn,i >

o (i = Vn + 1, ... , m); that is, we have tqn .• ~ tn, for i = 1, .. , Vn and

tqn .• > tn, when i > Vn. Then we define the matrices

B~/(q) := diag(~,1, .. , I)B~(q),

S~~l (q) := diag(~,1, .. , I)B~'-l)(q),

S~~l(q) :=diag(~,O, .. ,O)B:Ll(q),
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where

This leads to

n-l n-2

Uh hBnUn + ht; B~)UI + hB~1 (q)Un + ht; B~)(q)UI

+ h(§~~l(q) + S~~I(q))Un-l + 9n, (5.13)

and the computational form will be

n-l n-2

[1m - h(Bn+ B~I (q))]Un 9n + ht; B~)UI + ht; B~)(q)UI

+ h(§~~l(q) + S~~l(q))Un-l' (5.14)

(c) Pure delay phase (no overlap): qlI ~ n ~ N - 1.

In this situation qtn,i ~ tn' Assume that, for given n, qn,i = qn (i =

1, ... ,vn) and "'tn,i > 0, (i = Vn + 1, .. ,m), for some Vn E {l, ... ,m},

where qn + 1 < n.

We define the matrices

with

This leads to

Un = 9n + hBnUn + h ~B~)UI + h~B~)(q)UI

+ h(§:~/(q) + B~qn)(q))Uqn + hS:~~I(q)UqnH
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The computational form will be

[I - hBnJUn gn + h~ B~)Uj + h~ B~)(q)Uj

+ h(S:.:/(q) + B~qn))Uqn + hS::~I(q)Uqn+l' (5.15)

(3) We use the transformation approach to solve the weakly singular Volterra inte-

gral equation (3.2)

tt
y(t) = g(t) + Jo (t - s)-" I«t, s)y(s)ds

on uniform meshes, with the diameter h =~. We still denote

Hi1)(t,s) :=(t-s)-"I«t,s).

First we transform the weakly singular Volterra integral equation with vanishing

delays into another equivalent Volterra integral equation, namely,

y(t) g(t) +lqt
(t-s)-"I«t,S)y(S)dS

i t s s S s
g(t) + q (t - q( - W" I«t, q( - ))y(q(- ))d( -)

o q q q q

g(t) +l q(t - qst"I«t, qs)y(qs)ds. (5.16)

We define H~2)(t,s) := q(t - qs)-"I«t,qs) to obtain another computational

form of the Volterra integral equation (3.2):

U(tn,i) = g(tn,i) + ~ h t Hi2)(tn,i, tl + Sh)Uh(q(tj + sh))ds
1=0 Jo

+ h[' H~2)(tn,i' tn + Sh)Uh(q(tn + sh))ds. (5.17)

We define the following phases:
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(1) For n = 0, we have q(tn+cjh) E (tn, tn+1) for j = 1, .. , m, and q(tn+sh) >

tn for all s E (0,1].

(2) For n 2: 1, when q(tn+h) > tn, we have n < 1 ~ q' we denote ql := r~1·

In this situation, we also define Vn, such that q(tn + vnh) = tn'

(3) For n 2: l,when q(tn + h) ::; tn, we have n 2: 1 ~ q'

We now discuss these phases in detail:

(i) When n = 0, we have

Uh(tO,i) g(tO,i) + h lCi H~2)(tO,i' to + Sh)Uh(qsh)ds

g(tO,i) + h '2)1<; H~2)(tO,i' sh)Lj(qs)ds)Uh(tO,j)' (5.18)
j=) 0

This leads to

The computational form will be

(5.19)

where

B6(q) := ([' H~2)(to, sh)Lj(qs)ds (i, j = 1, ... , m)) .

(ii) Partial overlap: n < r1 ~ q1=: q'.

In this situation, the interval (tn, tn+d overlaps with the interval (qtn,qtn+d·

We already have the collocation equation

Uh(tn,i) = g(tn,i) + ~ h t H~2)(tn,i' tl + Sh)Uh(q(tl + sh))ds
1=0 Jo

+ h[' H};)(tn,i' tn + Sh)Uh(q(tn + sh))ds. (5.20)
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Here we employ the notation Vn , since n < I~1, we have ~n E [0,1].

For the formula (5.20), we consider in two cases: Ci ~ Vn and C; > Vn ·

(a) In this case, we have Ci ~ Vn . The computational form becomes

Uh(tn,i) = g(tn,i) +~ h t H~2)(tn,i' tl + Sh)Uh(q(tl + sh))ds
1=0 Jo

+hl c
, H~2)(tn,i' tn + Sh)Uh(q(tn + sh))ds

g(tn,i) + h11

H~2)(tn,i' to + Sh)Uh(q(to+ sh))ds

+~ h t H~2l(tn,i' tl + Sh)Uh(q(tl + sh))ds
1=1 Jo

+h[' H~2)(tn,i'tn + Sh)Uh(q(tn + sh))ds. (5.21)

We separate I = 0 from the summation in (5.21), since I = 0 is a special

case, that the interval (qto, qtd is exactly in the interval (to, tl]' This

yields
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(b) In this case we have Cj :S Vn- The computational form will be

Combine the two forms in (a) and (b). We define two matrices

A1n := diag(l, ... ,l,O, ... ,O),

where the index 1 in A1n is the largest number i such that Cj :S Vn ,

and

So we obtain

n-l
Un =9n + hBa~1(q)UO+8hB~?I(q)Ul-l

n-l
+ 8hB~?i2)(q)Ul + AlnhB~~l(q)Un-l

+ A2n h [B~,~(q)Un-l + B~?P)(q)Un] ,

where
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(I) ._ (r' (2) q(tl + sh) - tl_ 1 .. _ )
Bn,](q)·- Ja Ho (tn,i,tl +sh)Lj(--h--)ds (Z,J - 1, .. ,m) ,

(1)(2) ._ (t (2) q(tl + sh) - tl .. _ )
Bn,] (q).- JVI Ho (tn,i, tl +sh)Lj(--h--)ds (Z, J - 1, .. ,m) ,

(I) (r" (2) q(tn + sh) - tl- 1 . . )Bn,2(q):= J
a

Ho (tn,i, tn + sh)Lj ( h )ds (Z, J = 1, .. , m) ,

B(I)(2)( ).= ( t' H(2)(t . t + h)L(q(tl + sh) - tn)d (.. = 1 .. ,m)).
n,2 q. Jv" 0 n," n S J h s Z,J ,

(iii) Complete overlap: n 2 qi.

In this situation, Un completely relies on the previously computed

collocation solution.

5.2 Numerical examples using uniform meshes

In this section, we present a set of numerical experiments which confirm our theo-

retical results. Throughout, we consider the problem (3.2) with T = 1, q = 0.6 and

I«t, s) = 1. We choose the right-hand side

g(t) = 1+ tl-o _ 1 - ~1~:)1-0e-o hypergeom([a, ~ -=.;' [3 - a], q)q2-0 e-20,

such that the solution y of (3.2) is given by

y(t) = l+t l
-

O (5.22)

We notice that this solution is smooth away from t = 0 and that for a E (0,1),

the first derivative y' is unbounded near t = O. Thus, the solution (5.22) is suitable

to test the performance of the collocation method.

We will approximate the solution by collocation in the piecewise polynomial space

S;;~l(h) where m = 1 and m = 2 in using uniform meshes, and then we will use

three pictures to show the collocation solutions will converge to the real solution.
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(1) We set m = 1 and u e the uniform meshes to obtain the numerical solutions

when the step numbers are N = 10, 20, 40 and O. Then we can compare the

errors between the numerical solutions and the exact solutions.

Table 5: Ilerroriloo for m=l, q = 0.6 on uniform meshes

step number Q' = 0.1 Q' = 0.5 Q' = 0.9

10 0.0272 0.0524 0.0940

20 0.0150 0.0304 0.0756

40 0.0079 0.0165 0.0614

80 0.0040 0.0087 0.0503

(2) We set m = 2 and use the uniform meshes to obtain the numerical solutions

when the step numbers are N = 10, 20, 40 and 80. Then we can compare the

errors between the numerical solutions and the exact solutions.

Table 6: Ilerrorlloo for m=2, q = 0.6 on uniform meshes

step number Q'=0.1 Q'=0.5 Q'=0.9

10 2.3135e-04 0.0047 0.0981

20 7.3816e-05 0.0022 0.0768

40 2.2698e-05 0.0011 0.0609

80 6.8026e-06 5.251Oe-04 0.0489

The following three pictures: Figure 4, Figure 5 and Figure 6 can show us the

collocation solutions will converge to the exact solution when the number of time
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steps becomes larger.

:::/
1.3

1.2

1.1 "--__-'--__--'--__-L.-__-'-__--'

o

Figure 4: m=2, q = 0.6, a = 0.5, N=lO on uniform meshes

5.3 Collocation solutions of weakly singular Volterra integral

equations with vanishing delays on graded meshes

We have the collocation equations which we presented in (5.1) and (5.2). In this

section we will use two methods, namely a direct approach and a transformation

approach, to approximate the solutions of the weakly singular Volterra integral equa-

tions with vanishing delays on graded meshes.
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1.6

Figure 5: m=2, q = 0.6, a = 0.5, N=40 on uniform meshes

(1) We will use the direct approach to solve the weakly singular Volterra integral

equation with vanishing delays (3.2) on graded meshes. First we define

H~l)(t, s) := (t - s)-a K(t, s)

and employ the notations

with qn,i:= lq(n+ci)J and In,i:= q(n+ci) -qn,i' The computational form will
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Figure 6: m=2, q = 0.6, a = 0.5, N=80 on uniform meshes

be

Uh(tn,i) g(tn,i) + q~1 hi~ ([ H~I)(tn,i'tl + Sht)Lj(S)dS) Uh(tt,j)

hqn"f (l"1n., H~I)(tn,i' tqn,j + Shqn.JLj(S)dS) uh(tqn ."j)·(5.24)
j=1 0

1
(a) Initial phase (complete overlap): 0 ~ n < r(~)~ _1 1=: ql

In this situation, we have qn,i = nand In,i = [0,1) (i = 1,2, ... , m). This
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leads to

Uh(tn,i) g(tn,i) +~ hlt ([ H~1)(tn,i' tl + ShdLj(S)dS) Uh(tl,j)

+ hnt (l'Yn'i H~I)(tn,i' tn + Shn)Lj(S)dS) Uh(tn,j). (5.25)

We define

and obtain
n-I

Un = gn + ~hlB~l)(q)UI + hnB;(q)Un. (5.26)

The linear system will be

n-l
[1 - hnB;(q)]Un = gn +~ hlB~)(q)UI' (5.27)

with Un := (Un,I, .. " Un,m)T and gn := (g(tn,I)"'" g(tn,m))T.

(b) Transition phase (partial overlap): qi ::; n < r(~)~ _1 1=: qU.

This set could be empty. If it is not empty, there exists an integer

Vn E {I, ... ,m - I}, such that qn,i = n - 1 (i = 1, ... ,vn) and qn,i = n,

'Yn,i > 0 (i = l/n + 1, ... , m). That is, we have t qn., ::; tn for i = 1, .. , vn,

and tqn.i > tn when i > l/n' Then we define the matrices
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where

The linear system will be

n-2

[I -hnB:/(q)]Un = 9n+L hIB~)UI+hn-l(§~~l(q)+S~~l(q))Un-I' (5.28)
1=0

(c) Pure delay phase (no overlap): qII ::; n::; N - 1.

In this situation, we have qtn,i ::; tn' Assume that, for given n, qn,i =

qn (i = 1, ... ,vn) and qn,i = qn + 1, "In,i > 0 (i = Vn + 1, .. ,m) for some

Vn E {1, ... ,m}, where qn + 1 < n.

We define the matrices

with

So the linear system will be

Un = 9n + ~ hIB~)(q)UI + hq,,(~~/(q) + B~q")(q))Uq"

+ hq,,+IS:,;~l(q)Uq,,+I' (5.29)

(2) We will use the direct approach to solve the Volterra equation (3.10) on graded

meshes. We also denote

Hil)(t,s):=(t-s)-OK(t,s)
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and employ the notations

with qn,i := lq(n + Ci)J, and In,i := q(n + Ci) - qn,i· We already have

u(t) g(t) +It H~l)(t, s)u(s)ds
qt

g(t) +l H~l)(t, s)u(s)ds - 1qt
H~I)(t, s)u(s)ds

g(t) + l H~])(t, s)u(s)ds +1qt
(-H~])(t, s))u(s)ds.

Then we define H;,2)(t,S):= -H;'I\t,S). This yields that

rt r t

u(t) = g(t) + Jo H~I)(t, s)u(s)ds + Jo H~2)(t, s)u(s)ds.

The computational form will be

(5.30)

Uh(tn,i) g(tn,;) +~ hi~ (1] H~])(tn,i' tl + Shl)Lj(S)dS) Uh(tl,j)

+ hn~ (l
Ci

H~I)(tn,i' tn + Shn)Lj(S)dS) Uh(tn,j)

+ q~] hl~ (1 1

H~2)(tn,i' tl + Sh;)Lj(S)dS) Uh(tl,j)

+ hqn,i t (l-rn'i H;,2) (tn,i, tqn,i + ShqnJLj(S)dS) Uh(tqn .;,j)(5.31)
j=1 0

(a) Initial phase (complete overlap): 0:::; n < r(~)~ _11=: ql

In this situation, we have qn,i = nand In,i E [0,1) (i = 1, ... , m). This

70



leads to

Uh(tn,;) g(tn,;) +~ hit ([ H;,I) (tn,;, tl + Sh)Lj(S)dS) Uh(tl,j)

+ hnt (1e, H;,I)(tn,;, tn + Shn)Lj(S)dS) Uh(tnJ )

+ ~ hlt ([ H;,2) (tn,;, tl + Shl)Lj(S)dS) Uh(tl J)

+ hnt (l'Yn., H;,2) (tn,;, tn + Shn)Lj(S)dS) Uh(tn,j)' (5.32)

Defining the matrices

B~) := ([ H;,I)(tn,;, tl + shl)Lj(s)ds) (i, j = 1, ... ,m)) (l < n),

Bn := (l C

' H;,l)(tn,;,tn + shn)Lj(s)ds) (i,j = 1, ... ,m)),

B~)(q) := ([ H;,2) (tn,;, tl + sht}Lj(s)ds (i,j = 1, ... ,m)) (I < n),

B;'(q):= (l'Yn.. H;,2)(tn,;,tn + shn)Lj(s)ds (i,j = 1, ... ,m)) ,

we obtain

n-l n-l

Un = gn + hnBnUn +~ hlB~)Ul + hnB;'(q)Un +~ hlB~)(q)Ul' (5.33)

The computation form will be

(b) Transition phase (partial overlap): qi ~ n < r(~)~ _1 1=: qIJ.

This set could be an empty set. If it is not empty, there exists an integer

l/n E {I, .. , m-1}, so that qn,; = n-1 (i = 1, .. , l/n) and qn,; = n, In,; >
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o (i = lin + 1, ... , m). That is, we have tqn" :s; tn, for i = 1, .. , lin and

tqn .< > tn, when i > lin. Then we define matrices

where

This leads to

n-l n-2

Uh gn + hnBnUn + ~hlB~)Ut+hnB~{(q)Un+ ~hIB~)(q)U1

+ hn-l(S~~l(q) + S~~l(q))Un-l'

The computational form will be

n-l n-2

[1m - hn(Bn + B~I (q))]Un gn +~ hlB~)Ul +~ hIB~)(q)Ul

+ hn-l(S~~I(q) + S~~l(q))Un-l' (5.35)

(c) Pure delay phase (no overlap): qfl :s; n :s; N - 1.

In this situation qtn,i :s; tn' Assume that, for given n, qn,i = qn (i =

1, ... ,lin) and 'Yn,i > 0, (i = lin + 1, .. ,m), for some lin E {I, ... ,m},

where qn + 1 < n.

We define the matrices
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with

This leads to

n-l q,,-l

Un = gn + hnBnUn + t; hIB~)UI + t; hIB~I)(q)U1

+ hqn(S:,;r(q) + B~qn)(q))Uqn + hqn+lS:.;~l(q)Uqn+l-

The computational form will be

n-l qn-1

[I - hnBnJUn = gn + t; hIB~)UI + t; hIB~)(q)UI

+ hqJS::r(q) + B~qn))Uqn + hqn+1S:.;~1(q)UQn+l. (5.36)

(3) We will use the transformation approach to solve the Volterra integral equation

(3.2) on graded meshes. And we still denote

H~l)(t, s) := (t - s)-O K(t, s).

First, we transform the weakly singular Volterra equation with vanishing delays

to another equivalent Volterra equation

y(t) g(t) +lqt
(t - s)-O K(t, s)y(s)ds

1
t s s S s

g(t) + q (t - q(-WOK(t,q(-))y(q(-))d(-)
o q q q q

g(t) + l q(t - qs)-O K(t, qs)y(qs)ds. (5.37)
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We set H~2)(t,S):= q(t-qs)-"'K(t,qs). Then we have the computational form

of Volterra integral equation (3.2):

n-l 1

U(tn,i) = g(tn,i) + L hi r H~2)(tn,i' tl + sh1)Uh(q(tl + sh1))ds
1=0 Jo

+ hnlc

, H~2)(tn,i' tn + Shn)Uh(q(tn + shn))ds. (5.38)

We define the following phases:

(1) For n = 0, we have q(tn + cjhn) E (tn, tn+d, for j = 1, .. , m, and q(tn +

shn) > tn, for all s E (0,1].

(2) Forn 2: 1, when q(tn+hn) > tn, we haven < -1-,1_, and we define ql :=
(q);: -1

1-,1_1- In this situation, we also define Vn, such that q(tn+vnhn) = tn'
(*);: -1

(3) FOrn2:1,whenq(tn+hn)::;tn,wehaven2:-(1)11 .
q r-1

We will discuss the collocation solutions for these three phases:

(1) When n = 0, we have

Uh(tO,i) g(tO,i) + hol ci

H~2)(tO,i'to + ShO)Uh(qsho)ds

g(tO,i) + hot (lCi

H~2)(tO,i' Sho)Lj(qS)dS) Uh(tO,j).

(5.39)

This leads to

and so the computational form will be

(5.40)
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where

(2) Partial overlap: n < 1-,1-1=: ql
(~);: -1

In this situation, the interval (tn, tn+tl overlaps with the interval (qtn,qtn+tl·

We already have the collocation equation

Uh(tn,i) = g(tn,i) + I: hi t H;}) (tn,i, tl + shl)Uh(q(tl + shl))ds
1=0 Jo

+ h[' H~2)(tn,i'tn + Shn)Uh(q(tn + shn))ds~5.41)

Here we employ the notation lin, which satisfies q(tn + IInhn) = tn, since

n < 1
1
~ q1, we have 1 ~ qn E [0,1]. For form (5.40), we consider two

cases: C;::::; lin and Ci > lin·

(a) If Ci ::::; lin, the computational form becomes

n-l I

Uh(tn,i) = g(tn,i) +~ hi1H~2)(tn,i' tl + sh1)Uh(q(tl + shl))ds

+hnlci
H~2)(tn,i' tn + Shn)Uh(q(tn + shn))ds

g(tn,i) + ho[ H~2)(tn,i' to + ShO)Uh(q(tO+ sho))ds

n-I 1

+8hi1H~2)(tn,i' tl + Sht}Uh(q(tl + sh1))ds

+hnlc
, H~2)(tn,i' tn + Shn)Uh(q(tn + shn))ds. (5.42)

We separate I = a from the summation in (5.41), since I = a is a

special case, as the interval (qto,qtl] is exactly in the interval (to,t l ].
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This yields

(b) If c; ~ I/n, the computational form will be

Combine the two forms in (a) and (b). We define two matrices

A 1n :=diag(l, ... ,l,O, ... ,O),

where the index 1 in A 1n is the largest number i such that Ci ~ I/n,

and
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So we obtain

n-J
Un = 9n + hoB6~i(q)Uo + {;hIB~:l(q)Ut-J

n-l

+ {; htB~:i2)(q)U1+ AJnhn-JB~~l(q)Un-l

+ A2n[hn-1B~,~(q)Un-J + hnB~,~(2)(q)Un],

where

(3) Complete overlap: n ~ qI.

In this situation, Un completely relies on the previously computed colloca-

tion solution.

5.4 Numerical examples using graded meshes

In this section, we present a set of numerical experiments which confirm our thea-

retical results. Throughout, we consider the problem (3.2) with T = 1, q = 0.6 and

K(t, s) = 1. We choose the right-hand side
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such that the solution y of (3.2) is given by

y(t) = 1+t1
-"'. (5.43)

We notice that this solution is smooth away from t = 0 and that for Q' E (0,1),

the second derivative y" is unbounded near t = O. Thu , the solution (5.43) is suitable

to test the performance of the collocation method.

We will approximate the solution by collocation in the piecewise polynomial space

S;;~I(h) where m = 1 and m = 2 in using graded meshes, and then we will use three

pictures to show th~ collocation solutions will converge to the real solution.

(1) We set m = 1 and use the graded meshes to obtain the numerical solutions when

the step numbers are N = 10, 20, 40 and 80. Then we can compare the errors

between the numerical solutions and the exact solution .

Table 7: Iterrorll"" for m=l, q = 0.6 on graded meshes

step number Q' = 0.1 Q' = 0.5 Q' = 0.9

10 0.0252 0.0365 0.0636

20 0.0142 0.0199 0.0375

40 0.0073 0.0105 0.0224

80 0.0038 0.0054 0.0120

(2) We set m = 2 and use the graded meshes to obtain the numerical solutions when

the step numbers are N = 10, 20, 40 and 80. Then we can compare the errors

between the numerical solutions and the exact solutions.
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Table 8: IlelTorlloo for m=2, q = 0.6 on graded meshes

step number a=O.l a= 0.5 a=0.9

10 8.7798e-05 0.0012 0.0114

20 2.4605e-05 3.3388e-04 0.0048

40 6.4984e-06 8. 1945e-05 0.0022

80 1.6690e-06 2.1628e-05 0.0010

The following three pictures: Figure 7, Figure 8 and Figure 9 can show us the

collocation solutions will converge to the exact solution when the number of time

steps becomes larger.

5.5 Convergence analysis

We have the collocation solution for Volterra integral equation (3.2) in Chapter

4.1. The collocation error eh := y-Uh associate the collocation solution Uh E S;;~I(h)

to the singular Volterra integral equation with vanishing delays

(qt
y(t) = g(t) + Jo (t - s)-cr K(t, s)y(s)ds, tEI:= [0, T],

satisfies that

The following theorem will give a brief global convergence result.

Theorem 5.1 Assume:

(a) The given functions in the singular Volterra equation with vanishing delays (3.2)

satisfy K E Cm(D) and g E Cm(!).
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Figure 7: m=2, q = 0.6, a = 0.5, N=lO on graded meshes

(b) The kernel singularity is (t - s)-O, with 0 < a < 1.

(c) Uh E S;;;~I(h) is the unique collocation solution to the equation (3.2) defined by

(4.25), with h E (0, h) and corresponding to the collocation points X h·

(d) The grading exponent l' = r(a) determining the mesh h is given by

Then setting h := ft,

{

hI-'
Ily - uhlloo := sup Iy(t) - uh(t)1 :<:; C(1') ,

tEl hm ,

ijl-a:<:; p,:<:;m,

ijp,2:m,
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1.9

0.8

Figure 8: m=2, q = 0.6, a = 0.5, =40 on graded meshes

holds for any set X h of collocation points with 0 ~ Cl < .. < em ~ 1 The

constant C(r) depends on the {e;} and on the grading exponent r = r(a), but

not on h.

Proof: The collocation error eh := Y - Uh satisfies the error equation

(qt n ••

eh(tn,i) = Jo (tn,i - s)-o- K(tn,i, s)eh(s)ds, i = 1, ... ,m, 0 ~ n ~ N -1, (5.44)

For n = 1, ... , N - 1, the collocation error on the corresponding subinterval an has

the local Lagrange-Peano representation

eh(tn + vhn) = f Lj(v)en,j + h'; Rm,n(v), v E (0,1], (5.45)
j=1
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Figure 9: m=2, q = 0.6, a = 0.5, N=80 on graded meshes

where we have

and

with

1 m

Km(v, z) := (m _ I)! (v - Z),;,-l - 8Lk(v)(Ck - Z)';'-l, Z E (0,1].

(I) For n = 0, aD = [to, til = [0, ho], the exact solution can be written in the form

y(to+ vho) = L /j,k(a)(to+ vho)j+k(J-a) + h;;"Ym,o(v; a),
(j,k)o
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(recall equation (3.8) in Chapter 3)

with

(j, k)" := {(j, k) : j, k E No,j + k(1 - a) < m},

and where

We write the representation as

y(to+ vho) L ,,/j,k(a)h~+k(I-")vl+k(I-") + L ,,/j,k(a)hi+k(I-")VHk(I-")

(j,k)~ (j,k)~

+ h;;'Ym,o(v; a), v E (0,1],

where

(j, k)~ := {(j, k) : j + k(l- a) E No; j + k(1 - a) < m},

(j, k)~ := {(j, k) : j + k(1 - a) ~ No; j + k(l- a) < m}.

Then

y(to + vho) = L cj,o(a)vj + h6-"<I>m,0(v; a) + h;;'Ym,o(v; a), (5.46)
j=O

with

<I>m,O(v;a):= L Cj,k(a)vHk(I-"),
(j,k)~

and cj,o(a) is the coefficient of vj and j is an integer from a to m - 1.

Now, we suppose that the collocation solution Uh E S;;~I(h) on 0'0 is expressed

in the form
m-I

Uh(to+vho) = Ldj,ovl, vE(O,I].
j=O
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This allows to write the collocation error on 0'0 as

m-l

eh(to+vho) = L (3j,0(a)v j+h6-°<J>m,0(v; a)+h;;' Rm,o(v; a), v E (0,1]. (5.47)
j=O

where

(3j,o(a):= Cj,o(a) -dj,o,

Thus, since

m-l

eh(tO+cihO) = L{3j,0(a)c;+h6-0 L Cj,k(a)d;+k(I-O) +h;;'Rm,o(Ci; a), (5.48)
j=O (j,k)~

the error equation corresponding to n = 0,

eh(to + CihO) hol qC

, H°(tO,i, to + shO)eh(to+ sho)ds

hel qC

, (to,i - to - sho)-O K(to+ CihO, to + shO)eh(to+ sho)ds

ho1 (e;ho - sho)-O K(to+ CihO, to + shO)eh(to+ sho)ds

h6-01.(Ci - stoK(to+ CihO, to + shO)eh(to+ sho)ds,

can be written as

m-l

L (3j,o(a)c; + h6-0 L Cj,k(a)c;+k(I-O) + h;;'Rm,o(Ci; a)
j=O (j,k)~

h6-01.(Ci - stoK(to+ CihO, to + shO)eh(to + sho)ds

h6-0 l qC

, (Ci - s)-O K(to+ e;ho,to + Sho)[~ (3j,o(a)s1

+h6-0 L Cj,k(a)sj+k(I-O) + h;;' Rm,o(s; a)]ds (i = 1, .. , m).

(j,k)~
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So we have

~ (c; - h6-0 rc

, K(tO,i, to + ShO)sjdS) 13j,o(o.)
j=O Jo
-h6-0 L (c{+k(1-0) - h6-0l q

e; (Ci - stoK(tO,i, to + Sho)si+k(l-O)dS) Cj,k(o.)
(j,k)~ 0

- h~ ( Rm,o(e;; a) - h6-0l qCi

(Ci - s)-O K(tO,i, to + sho)Rm,o(s; o.)ds) , (i = 1, .. , m).

It can be written compactly as

Here, Vm E L(W) denotes the Vandermonde matrix based on the collocation

parameters {e;}, qo(o.) and po(o.) are vectors in IRm
, Bo(o.) E L(W) is defined

by

Bo(o.):= (lqCi

K(tO,i, to + sho)sjds (i,j = 1, ... ,m)).

Due to the continuity and boundedness of the kernel K, the inverse matrix [Vm-

h6-0Bo(o.)]-I exists for all a E (0,1) and is uniformly bounded for sufficiently

small ho. This implies that, since m 2: 1,

11130(0.)111 s Bh6-0 (a E (0,1)),

holds for some constant B, and we have:

with appropriate constants po(o.), PI(o.) and ho E (0, h). If the grading exponent

r = r(o.) is chosen as r = 1 ~ a ,with 1- as j1. S m, then we have:
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Hence, by (5.45)

Ilehllo,oo := max leh(to + vho)1 = O(hl'). (5.50)
vEIO,I]

(II) When 1::; n < qI, we have qn,i = n > 1 and "In,i > 0 (i = 1, .. ,m). The error

equation becomes

eh(tn,i) = ~ hi~ ([ Hil)(tn,i' tl + ShtldS) eh(tl,j)

+hn~ (l'Yn'i Hil)(tn,i,tn + Shn)dS) eh(tn,j).

Based on the analysis in Chapter 4, we may write

11 t-t
Cn,i h6-0 0 (T-S)-O K(tn,i, to + ShO)eh(tO + sho)ds

+ ~ hl-o f (t (tn,i
h
- tl - stoK(tn,i, tl + Shl)Lj(S)dS) ct.j

1=1 j=1 Jo 1

n-l t t ·-t
+ ~ hl +1

-
0 Jo (T-stoK(tn,i' tl + shtlRm,I(s; a)ds

+ h~-o ~ (l'Yn.i (Ci - S)-O K(tn,i, tn + Shn)Lj(S)dS) Cn,j

+ h~+1-0 l'Yn'i (Ci - S)-O K(tn,i, tn + shn)Rm,n(s; a)ds.

Cn,i - h~-o f (l'Yn'i (e; - S)-O K(tn,i, tn + Shn)Lj(S)dS) Cn,j

j=1 0

~ hl-o f (1 1

(tn'i
h
- tl - stoK(tn,i, tl + Sht)Lj(S)dS) ct.j

1=1 j=1 0 1

11 t-t
+ h6-a

0 (T-S)-O K(tn,i, to + ShO)eh(tO + sho)ds

n-l 11 t .-t
+ ~hl+l-0 0 (T-stoK(tn,i,tl+Shl)Rm,l(s;a)ds

+ h~+1-01.(Ci - S)-O K(tn,i, tn + shn)Rm,n(S; a)ds. (5.51)
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Then we obtain the linear algebraic system

n-I
[1m - h~-aBn(Q)]cn = ~ hI-aB~)(Q)el + h6-aq~0)(Q)

n-I
+h~+I-apn(Q)+ ~hr'+I-ap~)(Q), (5.52)

where

B~l)(Q) := (1"1"·, (Ci - s)-a K(tn,i, tn + shn)Lj(s)ds (i,j = 1, ... , m)) ,

q~O)(Q):= (l(tn'ih~ to _ s)-aK(tn,i,to + shO)eh(tO + sho)ds (i = 1, ... ,m)),

Pn(Q) := (1"1"·, (Ci - s)-aK(tn,i, t n + shn)Rm,n(S; Q)ds (i = 1, .. ,m)) ,
(1)( )._(t(tn'i-tl )-a}(( h)R(')d ('- ,m)).Pn Q .- Jo -h

l
- - S . tn,i,tl +s I "'m,1 S,Q S t -1, ..

Using the results from Theorem 4.2, we arrive at the conclusion:

(a) For uniform meshes, when /-L = 1 - Q, since the equation (5.52) is similar

to the equation (4.19), the error can be estimated as

and so, by (5.45) and (5.50), we have

(b) For graded meshes, with 1- Q < /-L:::; m, we have Ilenll! :::; BhlJ., and so,

When /-L > m, we have Ilenlll :::; Bhm, thus,
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Here, we have set h:= ~ and h = O(N- 1
).

(III) When ql S n < qll, there exists an integer Vn E {1, .. , m} so that

qn,i = n - 1 (i = 1, ... , Vn), and qn,i = n, "tn,i > a(i = Vn + 1, .. , m).

(i) Fori= 1, ... ,vn , we have

Cn,i =

(ii) For i = Vn + 1, ... ,m, we have

Cn,i - h~-o t ( tn" (Ci - S)-O K(tn,i, tn + Shn)Lj(S)dS) Cn,j
j=l Jo

h6-0(tn'ih~ to _ Sro K(tn,i, to + shO)eh(to + sho)ds

+~ h!-O~ ([ (tn,ih~ tt _ sro K(tn,i, tl + Sht)Lj(S)dS) Cl,j

n-l t t· t
+~ h;n+l-O Jo (-T -S)-O K(tn,i, tt + Sht)Rm,I(S; a)ds

+h;:,+l-O l'Yn,i (Ci - s)-O K(tn,i, tn + Shn)Rm,n(S; a)ds.
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Combining the above cases, we obtain the algebraic form of the system for en,i:

n-2

[1 - h~-OIBn(q)]en = h6-OIq~O)(a) +~ h!-OIB~)(a)el

n-2

+ diag(h;;'!/-OI, ... ,hr;:!/-OI, h;;,+I-OI, ... , h;;'+l-OI)Pn(a) + L h;n+l-OIp~)(a)

~ l=l

(5.54)

where

B~n-l)(a) = ( Jo'Y,,'(t"'h:~~-l - stOlK(tn,i, tn-I + shn_1)Lj(s)ds, 1:::; i:::; Vn ) ,

JdC"':,:~~-l - S)-OIK(tn,i, tn- 1 + shn_dLj(s)ds, Vn + 1:::; i:::; m

(n-I)() (Jo\t",~:~~_, - stOlK(tn,i,tn_l + Shn_I.)Rm,n_l(s;a)ds, 1:::; i:::; vn)
~ a= .

0, vn+l :::;t:::;m

We see that [1 - h;-OIBn(a)]-I exists and is uniformly bounded whenever hn E

(0, h). Thus, there is a constant D 1(a) so that

Thus, the error can be estimated as

n-2

+~ h;n+I-OIllp~)(a)lll + h;;'!/-OIllp~n-l)(a)lld

n-I
DI(a)(~ h!-OIIIB~) (a) Illlletih+ h6-0I1Iq~O) (a) Ih

n-I
+h;;,+I-OIIIPn(a)lll + ~h;n+l-OIllp~lll)'
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Then we derive the desired II-estimates for the above vectors and matrices,

using Lemma 4.3 and the results in Theorem 4.2:

Since

nh:::; nrTN- J = (nIN)rT:::; rT, n = 1, ... ,N,

and we have

for any graded h with grading exponent r = /-LI(1 - a) (1 - a :::; /-L :::;

m). Therefore, Ilenlh :::; Bhl' (ql :::; n < qll).

Thus, we arrive at the conclusion:

(a) For uniform mesh, when /-L = 1 - a, by (5.45) and (5.50), we have

(b) For graded mesh, with 1- a < /-L:::; m, we have Ilenlh :::; Bhl', and so,

When /-L > m, we have Ilenlll :::; Bhm Thus,

(IV) When qll < n < N - 1, we have qtn,i :::; tn' Assume that, for given n, qn,i =

qn (i = 1, ... , lin) and qn,i = qn + 1, In,i > 0 (i = lin + 1, .. , m) for some

lin E 1, ... ,m, where qn + 1 < n.

90



(i) For i = 1, ... , l/n, we have

t t ·-t
cn,i = h6-'" Jo (T-S)-'" I«tn,i, to + ShO)eh(to + sho)ds

+~ hi-"'~ ([(tn'ih~ tl - st"'I«tn,i,tl + Shl)Lj(S)dS) Cl,j

qn-
1 t t ·-t

+~ hl +1-", Jo (-T- -st'" I<(tn,i, tl + shl)Rm,I(S; a)ds

+h~:'" f (l'Yn" (Ci - st'" I<(tn,i, tqn + Shq..)Lj(S)dS) Cq",j
j=l 0

+h:',+l-'" l'Yn,; (e; - s)-"'I«tn,i, tqn + shq..)Rm,qn(s;a)ds,

(ii) For i = l/n + 1, .. , ,m, we have

t t ·-t
cn,i = h6-'" Jo (T-S)-"'I<(tn,i,to+sho)eh(to+sho)dS

+t hi-'" f (t (tn'i
h
- tl - st'" I«tn,i, tl + Shl)Lj(S)dS) Cl,j

1=1 j=l Jo I

qn t t ·-t
+~ hl +1

-", Jo (-T- - s)-'" I«tn,i, tl + Shl)Rm,I(S; a)ds

+h~:~l f (1'1"" (e; - st'" I«tn,i, tqn +l + Shqn+I)Lj(S)dS) Cqn+ 1,j

j=1 0

+h;;:.-+;.11-'" l'Yn,; (Ci - st'" I«tn,i, tqn+1 + shqn+1)Rm,q,,+1 (s; a)ds,

Combining the above cases, we obtain the algebraic form of the system for

qn- 1

h6-"'q~O)(a) +~ hi-'"B~)(a)cl

qn- 1

+diag(h;;:.+I-""", ,h;;:'+l-"', h:',-+;'ll-""" ,h;;:'-+;'\-"')Pn(a) + ~ h;n+I-"'p~)(a)

(5,56)
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where

Thus, the error can be estimated as

Ilcnlh :S ~ h;-aIIB~)(a)lllllcdll + h~:aIIB~qn)(a)lldlcqnlh

+h6-allq~O)(a)lll + h;;::~ll-aIIPn(a)111

qll-l

+~ h;n+l-allp~)(a)111 + h~+I-allp~qn)(a)111

~ h;-aIIB~)(a)lllllcdll + h6-allq~O)(a)lll

+h~"t\-aIIPn(a)lll +~ h;n+l-allp~)(a)lh·

Then we derive the desired tl-estimates for the above vectors and matrices,

using Lemma 4.3 and the results in Theorem 4.2:

Since

nh:S nrTN-1 = (n/N)rT:S rT, n = 1, ... , N,

we obtain

for any graded h with grading exponent r = f.L/(1 - a) (1 - a :S f.L :S

m). Therefore, Ilcnll, :S Bhl' (qIl :S n:S N - 1).
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Thus, we arrive at the conclusion:

(a) For uniform mesh, when j.t = 1 - a, by (5.45) and (5.50), we have

(b) For graded mesh, with 1 - a < j.t::; m, we have IIEnlll ::; BhJ.L, and so,

When j.t > m, we have IIEnll! ::; Bhm
, thus,

So the result of convergence

if1-a::;j.t::;m,

ifj.t2 m .

(5.57)

still holds for equation (3.2).

Remark: The results of Theorem 5.1 on the attainable order of the collocation

solution Uh E S;:~i(h) remain valid for the equation

y(t) = g(t) +1t

(t - s)-aI«t, s)y(s)ds
qt

(0 < a < 1, 0 < q < 1).

(5.58)

This follows from the fact that the solution of (5.58) possesses the same regularity

properties as the one for (3.2). Details will be given in a separate paper.
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6 Concluding remarks

We conclude the paper by pointing out some extensions and future work.

In this paper, we have considered the attainable order of (global) convergence on

I for the collocation solutions Uh of (1.1) and (1.2), where {Ci} is an arbitrary set of

collocation parameters. If u~ is the corresponding iterated collocation solution,

ru~(t) := g(t) + J
o

(t - s)-aK(t, s)uh(s)ds, tEl,

there is a need to further pursue the analysis of global or local superconvergence and

optimal orders.

We have implemented the collocation method on uniform meshes and graded

meshes to solve the weakly singular Volterra integral equations without vanishing

delays and with vanishing delays. But if we implement the collocation method on

geometric meshes (see [2]), can we obtain better results?

Finally, the situation becomes rather more interesting if we use collocation method

to approximate the weakly singular Fredholm integral equations with delays,

r°(T)
y(t) = g(t) + Jo (t - S)-a K(t, s)y(s)ds, tEI:= [0, T], a< a < 1. (6.59)

The main reason is that we have to know the eigenvalues of the Fredholm integral

operator
ro(T)

(Foy)(t) := Jo (t - s)-a K(t, s)y(s)ds,

where e(T) = qT (0 < q < 1).
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