
CENTRE FOR NUWFOUNDLAND STUDIES 

TOTAL OF 10 PAGES ONLY 
MAY BE XEROXED 

(W!\I~t Author's Permbsion} 









NOTE TO USERS 

This reproduction is the best copy available. 

® 

UMI 





Design, Simulation and Implementation of Enhanced 

Crossbar Combined Input-Output Queued 

Switch Architecture 

St. John's 

by 

© Atiq A wan 

A thesis submitted to the School of Graduate 

Studies in partial fulfillment of the 

requirements for the degree of 

Master of Engineering 

Faculty of Engineering and Applied Science 

Memorial University of Newfoundland 

April, 2004 

Newfoundland 



1+1 Library and 
Archives Canada 

Bibliotheque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de !'edition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre reference 
ISBN: 0-494-02327-9 
Our file Notre reference 
ISBN: 0-494-02327-9 

L'auteur a accorde une licence non exclusive 
permettant a Ia Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I' Internet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

L'auteur conserve Ia propriete du droit d'auteur 
et des droits meraux qui protege cette these. 
Ni Ia these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

Conformement a Ia loi canadienne 
sur Ia protection de Ia vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

Bien que ces formulaires 
aient inclus dans Ia pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

The rapid growth in communication networks has led to an exponential increase 

in the traffic volumes thus requiring high-speed switches and routers, with high 

bandwidth, at the nodes. The networking research community has focused its effort on 

the development of high-bandwidth switches. However, advances in data transmission 

technology, particularly the development and use of the optical technology, have enabled 

reliable high transmission bandwidth at a relatively low cost. On the other hand, neither 

switches nor routers have kept pace with this development. Therefore, the switches and 

routers are increasingly becoming performance bottlenecks in high-bandwidth 

communication. 

Until recently, most of the packet switches were based on output queueing due to 

its ability to provide high throughput. However due to the slow memory speeds compared 

to link bandwidth, output queued switches are no longer feasible for high-speed 

switching. In this work, we consider building a combined input-output queued packet

switch using multiple crossbars, which forms a step forward towards obtaining a better 

solution for high performance packet switching. In particular, we consider multiplane 

switch architecture with four crossbars in parallel. These crossbars transfer up to four 

packets to each output line to provide the high throughput however operating at the same 

speed as the line rate. 

We investigate the performance of this architecture under both uniform and non

uniform traffic arrival patterns and show through simulation that this architecture 

11 



approximately emulates the pure output queued switch. This architecture employs 

pipelined scheduling, which eliminates the traffic scheduling overhead and provides a 

large time window for implementing fair but complex scheduling algorithms. 

Finally, we describe the implementation of this architecture in VLSI using 0.18-

micron CMOS standard cell technology. The distributed control leads to a high-speed 

implementation. We report on the design complexity and discuss implementation results. 

111 



Acknowledgements 

I would like to thank my supervisor, Dr. Ramachandran Venkatesan for his 

support, guidance, and knowledge and for giving me the opportunity to be a member of 

the Computer Engineering Research Laboratory. I want to acknowledge all the members 

of this lab for their help and for being both great friends and colleagues. 

My special thanks to Moya Crocker for helping me with all the documentation 

and Mr. Nolan White for helping me with problems related to CAD tools. I would also 

like to thank my friend Y as sir N awaz for being a wonderful friend. 

Finally, I would like to thank my parents, my brother, my sister in law, and my 

wife for their great support and endless love during my study period, without whom it 

would be impossible. 

lV 



Table of Contents 

Abstract ............................................................................................................................. iii 

Acknowledgements .......................................................................................................... iv 

Table of Contents .............................................................................................................. v 

List of Figures ................................................................................................................... ix 

List of Tables .................................................................................................................... xi 

Notation and List of Abbreviations ............................................................................... xii 

1 Introduction .................................................................................................................... 1 

1.1 Packet Switch Network ...................................................................................... 2 

1.2 ISDN and Broadband ISDN ............................................................................... 3 

1.3 Queueing Techniques ......................................................................................... 4 

1.4 Scheduling ......................................................................................................... 6 

1.5 Motivation for Research and Objective of the Work ......................................... 7 

1.6 Thesis Organization ........................................................................................... 9 

2 An Overview of Packet Switches and Schedulers ..................................................... 11 

2.1 Time Division Switches ................................................................................... 13 

2.2 Space Division Switches ................................................................................... 14 

2.2.1 Single Path Space Division Switch ........................................................... 15 

2.2.1.1 Crossbar Switch ................................................................................. 16 

2.2.2 Multipath Path Space Division Switch ...................................................... 19 

v 



2.3 Performance Enhancement of Crossbar Switches ............................................. 21 

2.3.1 Multiple Input Queueing .......................................................................... 22 

2.3.2 Virtual Output Queueing .......................................................................... 22 

2.3.3 Speedup .................................................................................................... 22 

2.3.4 Multiplane Switch .................................................................................... 23 

2.4 Scheduling Algorithms ..................................................................................... 23 

2.4.1 iSLIP .......................................................................................................... 25 

2.5 Summary .......................................................................................................... 28 

3 Throughput Enhancement Techniques ..................................................................... 29 

3.1 Traffic Models .................................................................................................. 30 

3.1.1 Uniform Random Traffic ........................................................................... 31 

3.1.2 Bursty Traffic ............................................................................................ 31 

3.2 Multiple Input Queueing .................................................................................. 33 

3.3 Comabined Input-Output Queueing ................................................................. 38 

3.3.1 Multiplane Switches ................................................................................. 39 

3.3.2 Speedup .................................................................................................... 42 

3.4 Speeding up using Multiplane Switch Fabric .................................................. 45 

3.5 Scheduling ........................................................................................................ 47 

3.6 Summary ........................................................................................................... 49 

4 Switch Architecture and Performance ....................................................................... 51 

4.1 Switch Architecture .......................................................................................... 52 

4.1.1 Input Port Module ...................................................................................... 54 

Vl 



4.1.2 Output port Module ................................................................................... 55 

4.1.3 Switch Fabric ............................................................................................. 56 

4.1.4 Scheduler ................................................................................................... 57 

4.2 Pipe lined Scheduling ......................................................................................... 60 

4.3 Performance Evalautaion ................................................................................. 61 

4.3.1 Delay Performance ................................................................................... 64 

4.3.2 Buffer Space Requirement ....................................................................... 66 

4.4 Summary ........................................................................................................... 68 

5 Design and VSLI Impementation ............................................................................... 69 

5.1 Input Port Module ............................................................................................ 72 

5.1.1 Write Controller ......................................................................................... 74 

5.1.2 Read Controller ......................................................................................... 75 

5.1.3 Buffers ....................................................................................................... 75 

5.2 Output Port Module .......................................................................................... 76 

5.2.1 Write Controller ......................................................................................... 78 

5.2.2 Read Controller ......................................................................................... 79 

5.3 Switch Fabric ..................................................................................................... 79 

5.4 Sscheduler ......................................................................................................... 82 

5.5 Implmentation Results ....................................................................................... 83 

5.6 Summary ........................................................................................................... 84 

6 Conclusions and Future Work .................................................................................... 86 

6.1 Contributions .................................................................................................... 87 

vii 



6.1.1 Output Queueing Emulation ...................................................................... 87 

6.1.2 Scheduling Overhead Elimination ............................................................. 88 

6.1.3 Distributed Scheduling .............................................................................. 89 

6.2 Future Work ..................................................................................................... 90 

6.2.1 Performance Comparison .......................................................................... 90 

6.2.2 QoS and Integration of QoS ...................................................................... 91 

6.2.3 Dynamic Buffering .................................................................................... 91 

6.2.4 Multicasting ............................................................................................... 92 

References ........................................................................................................................ 93 

Vlll 



List of Figures 

1.1 A packet switched network ........................................................................................... 2 

1.2 A general packet switch ............................................................................................... 5 

2.1 Classification of packet switch architectures based on switch fabric ........................ 12 

2.2 Shared memory switch ................................................................................................ 13 

2.3 Shared medium switch ................................................................................................ 13 

2.4 Fully interconnected switch fabric ............................................................................. 15 

2.5 Banyan network ......................................................................................................... 15 

2.6 N x N crossbar switch ................................................................................................. 16 

2.7 Buffers location in crossbar ........................................................................................ 18 

2.8 Augmented Banyan switch ......................................................................................... 19 

2.9 3-stage Clos switch ..................................................................................................... 19 

2.10 Recirculation switch ................................................................................................. 20 

2.11 Multiplane switch ..................................................................................................... 20 

2.12 A request graph ......................................................................................................... 24 

2.13 A match graph .......................................................................................................... 24 

2.14 iSLIP scheduling ...................................................................................................... 26 

3.1 A 8 x 8 MIQ switch with m = 4 ................................................................................. 34 

3.2 Delay performance of an ideal OQ and MIQ switches .............................................. 37 

3.3 Delay performance of an ideal OQ and multiplane switches .................................... 41 

3.4 Delay performance of an ideal OQ and speeded up switches .................................... 43 

ix 



3.5 Average delay through input ports of speeded up switches for bursty traffic ........... 45 

3.6 Switch fabric with k crossbars in parallel .................................................................. 46 

3. 7 Single stage pipe lining of the traffic scheduling ........................................................ 49 

4.1 Enhanced crossbar CIOQ switch architecture ........................................................... 52 

4.2 SLIP scheduling process for enhanced crossbar CIOQ switch architecture ............... 59 

4.3 Pipe lining of the scheduling process .......................................................................... 60 

4.4 Delay performance of enhanced crossbar CIOQ switch architecture for different 

Traffic loads ..................................................................................................................... 63 

4.5 Average delay performance of enhanced crossbar CIOQ switch architecture .......... 64 

4.6 Maximum delay performance of enhanced crossbar CIOQ switch architecture 
........................................................................................................................................... 65 

4.7 Buffer space requirement of enhanced crossbar CIOQ switch architecture .............. 67 

5.1 High-level schematic for a 16 x 16 enhanced crossbar CIOQ switch architecture 
.......................................................................................................................................... 70 

5.2 High-level schematic of input port module ............................................................... 73 

5.3 High-level schematic of output port module ............................................................. 77 

5.4 4 x 4 crossbar implementation ................................................................................... 80 

5.5 High-level schematic of scheduler ............................................................................. 81 

X 



List of Tables 

3.1 Maximum throughputs of MIQ switches for different number of queues at each input 

port ................................................................................................................................... 36 

3.2 Maximum throughput of multiplane switches ........................................................... 38 

3.3 Throughput of speedup switches for different number of planes .............................. 44 

5.1 Input port module implementation details ................................................................. 72 

5.2 Output port module implementation details .............................................................. 76 

5.3 Area and gate count for the design ............................................................................ 84 

XI 



m 

n 

k 

r max 

p 

Dmean 

Din 

Dour 

L 

N 

s 
ADSL 

ASIC 

ATM 

B-ISDN 

CIOQ 

CMOS 

FIFO 

HOL 

IP 

IQ 

MPLS 

MIQ 

OQ 

QoS 

RAM 

URT 

VOQ 

Notation and List of Abbreviations 

number of queues in a MIQ switch or number of planes in a 

multiplane switch 

traffic arrival rate 

number of outputs in a convolutional encoder 

number of switching planes in a switching network 

maximum throughput 

link load 

Mean delay through the switch 

delay though input buffers 

delay through output buffers 

parallelism factor in multiplane switches 

number of ports in a packet switch 

Speedup 

Asymmetric Digital Subscriber Loop 

Application Specific Integrated Circuit 

Asynchronous Transfer Mode 

Broadband Integrated Services Digital Network 

Combined Input-Output Queued 

Complementary Metal Oxide Semiconductor 

First-In First-Out 

Head of Line 

Internet Protocol 

Input Queued 

Multi-protocol Layer Switching 

Multiple input queueing 

Output Queued 

Quality of Service 

Random Access Memory 

Uniform Random Traffic 

Virtual Output Queueing 

xii 



VHDL 

VLSI 

Very high-speed integrated circuit High Level Description 

Language 

Very Large Scale Integration 

xiii 



Chapter 1 

Introduction 

Communication networks underwent a dramatic change during the 1960s with the 

introduction of a new technology called packet switching. Before that all the interactive 

communication data networks were circuit-switched. In circuit switching, a path is 

established from the source to the destination at the connection set-up time. This path 

remains fully connected for the duration of the connection. Circuit switching is only cost 

effective when there is a continuous flow of data once the circuit has been established. 

This is the case for voice communication. 

Communication among computers, however, happens in bursts. Data travels 

through the networks in the form of blocks. Users do not need the transmission link all 

the time. Therefore assigning a continuous bandwidth for such a connection is a waste of 

resources and results in low utilization. Packet switching divides the input flow of 

information into small blocks and only allocates bandwidth when a block of data is ready 

1 



to be sent. These blocks are referred to as packets. This reduces the wastage of available 

transmission bandwidth resources. To do this, packet systems require both processing 

power and buffer storage resources at each node in the network [1]. 

1.1 Packet Switched Network 

In a packet switched network, the transfer of packets from one point to another 

involves two basic tasks: routing and switching. Routing is performed to determine a 

path, which the packets must take to reach the destination. Switching, which takes place 

at every node on the path, refers to placing the packets onto the path determined by a 

prior routing decision. Packet switching at each node in a network includes packet 

buffering and packet forwarding. Upon arrival of a packet at an input port, the switch 

determines from the header of the packet to which output port the packet should be 

forwarded. As illustrated in Figure 1.1, the packets can be switched through different 

routes to the same destination. 

Node 

Point 2 

Figure 1.1 A packet switched network. 

2 



A router can take advantage of the high switching bandwidth offered by a packet 

switch since a packet switch implements the two tasks that a router also needs to perform. 

A router is a network device that passes traffic between two different IP networks which 

may be either LANs or WANs. This routing process is based on examining the 

destination IP address of the incoming packets and sending on the packets to an output 

port based upon a routing table. A packet switch is a network access device that is used to 

link physical segments of a network together. 

High performance routers are increasingly using a switch as a backplane to 

handle packet buffering and packet forwarding [2]. Most high performance routers 

internally use small fixed size packets that are referred to as cells. These cells are not 

necessarily equal in length to a 53-byte ATM cell. 

This simplifies the system design, allowing switches to run faster. Variable length 

packets are simply segmented into cells as soon as the packets arrive at the input ports of 

the routers, and reassembled back into the variable length packets at the outputs before 

the packets are sent out onto the transmission links. 

1.2 ISDN and Broadband ISDN 

Integrated Services Digital Network (ISDN) was intended to combine the existing 

telephone and data networks onto a single network. The overall goal of ISDN is to create 

the framework and standards necessary to permit public telecommunications networks to 

evolve to the point where worldwide fully digital end-to-end services can be provided [1]. 

ISDN, sometimes referred to as a narrowband ISDN, is based on the use of a 64-kbps 

3 



channel as the basic unit of switching and has circuit-switching orientation. The second 

generation, referred to as Broadband ISDN, supports very high data rates and has a 

packet switching orientation. 

Initially Asynchronous Transfer Mode (ATM) was considered as the most 

suitable switching and multiplexing technique for Broadband ISDN due to its ability to 

provide Quality of Service (QoS) guarantees. However with the introduction of Multi

protocol Layer Switching (MPLS), the Internet Protocol (IP) can attain the same 

capabilities. MPLS can run over nearly any transport medium, including A TM and 

Ethernet. 

Currently IP is the most popular networking protocol and IP routed MPLS is 

making inroads into the backbone and pushing ATM to the edges. However A TM is 

going to stay for some time and is being considered for the congressional ADSL network. 

Irrespective of the networking protocols used, the nodes in a network have the same 

performance requirements. 

1.3 Queueing Techniques 

Packet switches require some queueing mechanism to store the packets. This 

queueing can take place at the inputs, at the outputs, or at both inputs and outputs. For 

high bandwidth switches, the speed of memory, which is the basic building block of 

queues, can become the limiting factor in terms of size and speed of the switch [3]. 

Figure 1.2 illustrates a general packet switch with N inputs, N outputs, and a combination 

of input queueing and output queueing. Input port module (IPM) has an input port 

4 



controller and one or more queues for storing the packets arriving at the inputs. Similarly, 

output port module (OPM) has output port controller and one or more queues for storing 

packets coming from IPMs. In the following we compare three queueing techniques, 

namely: output queueing, input queueing, and combined input and output queueing. 

Switch Fabric 
1 1 

m 
N N 

Figure 1.2 A general packet switch. 

Output queueing is referred to as a queueing technique in which all queues are 

placed at the outputs. Switches employing this queueing technique are known as output 

queued (OQ) switches. Output queued switches have been popular due to their high 

throughput [3]. Throughput is the ratio of total number of cells transmitted on the output 

link to the total number of cells arrived at the inputs of a switch during a given period of 

time. However these switches are unable to meet the requirement of high-speed switches, 

due to memory bandwidth limitations. 

In input queueing (IQ) all the queues are placed at the inputs. Input queued 

switches are the better choice with respect to memory speed, since memory is required to 

5 



operate only at the line rate. However input queued switches suffer from the head of line 

blocking (HOL) problem, which can degrade the performance of the switch considerably 

[ 4]. HOL blocking occurs when the packet at the head of a queue cannot be transferred to 

an output port due to contending packet from another input port. At the same time, a 

packet further back in the queue is blocked although its destination port is free to receive 

the packet. IQ switches also require scheduler/arbiters to configure the switch fabric 

before the transfer of packet from inputs to outputs. 

Combined input-output queued (CIOQ) switches have queues both at inputs and 

outputs. CIOQ switches combine the advantages of input and output queueing and 

mitigate the drawbacks in both the techniques. Only one cell can arrive at each input in 

the CIOQ switches during each switching cycle, therefore the memory is not required to 

operate faster than the line rate. Switching cycle is the time taken to transmit or receive a 

fixed size packet. Switching cycle is also usually referred to as a time slot. In CIOQ 

switches, the memories at outputs are not required to operate at N times faster than the 

line rate. Various performance analyses of the CIOQ switches have shown that with a 

single First In First Out (FIFO) queue at each input port and a speed up of 4 to 5, a very 

high throughput can be achieved [3][5]. However switches involving input queuing 

require schedulers to configure the switch fabric. Use of scheduling algorithms for this 

purpose has shown very high throughput but no delay guarantees are provided and their 

runtime complexity is inadequate for implementation of large-scale switches. 

6 



1.4 Scheduling 

Two different kinds of schedulers are required in switches with input queues. 

These are switching matrix schedulers and flow level schedulers. The switching matrix 

schedulers avoid internal and output blocking by making non-conflicting input-output 

pairs. On the other hand flow-level schedulers are used for providing Quality of Service 

(QoS) guarantees by controlling the delay that a packet may suffer, while traversing the 

switch [6]. In this thesis the term scheduler is used to refer to switch matrix scheduling. 

These are also sometimes referred to as arbiters in the literature. 

In input queued switches, each output can receive at most one cell. The goal in 

cell scheduling is to find a one-to-one match between a nonempty input port and a free 

output port. In other words, the scheduler matches an unmatched input to an unmatched 

output. Every unmatched input makes a request to the scheduler telling it which outputs it 

wants to be matched. 

Conceptually, the set of requests can be represented by a bipartite graph, called a 

request graph. The cell scheduling is equivalent to finding a bipartite graph matching. 

Given a request graph, the scheduling algorithm solves a bipartite graph-matching 

problem to find a match graph [7]. A match graph is a selection of edges such that no 

vertex has two connected edges. 

1.5 Motivation for Research and Objective of the Work 

Broadband ISDN is required to support different high bit rate services, such as 

videoconferencing, video on demand, medical imaging, high-definition television and 

7 



video, distance learning, and geophysical modeling. To provide these services network 

nodes should be capable of providing high bandwidth. 

Output queued switches are capable of providing high throughput, however their 

size and speed are limited by the speed of memory. The other choice, input buffered 

switches, have limited throughput due to head of line blocking (HOL). Various studies on 

CIOQ switch architectures have shown the approximate emulation of output queued 

switches. Multiplane switches are an alternative to switches with speedup [3][8]. The 

number of planes in a multiplane switch architecture is called the parallelism factor (L). 

One example is that of the knockout switch in which up to L, 1 :S; L :S; N, HOL cells can 

be transferred to each output in a switching cycle [9]. In [10], Chen et al showed that for 

L = 4 the throughput is in excess of 99%. This represents the throughput of the switch 

when the traffic load is 100%. Such high traffic load would require very large buffer 

space or it would result in a large amount of cell loss. However switches are usually not 

subjected to such high traffic loads. This number only represents the capability of that 

switch architecture. The average delay through input buffers decreases by increasing the 

parallelism factor and with L = 4, the switch approaches its optimal performance. The 

delay improvement for L > 4 is minimal. 

Along with high speed, other issues that should be considered while designing 

packet switches are scalability and feasibility for VLSI implementation. Any switch 

architecture involving input buffering can be either self-routing or it can employ 

schedulers for configuring the switch fabric. In self-routing the control is distributed 

among the switching elements therefore no external scheduler is required for configuring 

8 



the switch fabric for packet transfer from input ports to the output ports. A crossbar 

switch is not self-routing therefore it needs schedulers. Almost all the existing algorithms 

either fail to maintain high throughput when the traffic becomes non-uniform or are too 

complex to operate at high speed, becoming a speed bottleneck in the switch [11]. 

Although there exist algorithms that can avoid the low throughput problem, they are 

unfortunately too complex and too slow for high-speed switches. 

Speed and scalability are important measures in determining the overall 

performance of a high bandwidth packet switch. This thesis addresses both these 

parameters and attempts to provide a solution, using combined input-output queueing and 

multiple crossbars, which is both scalable and produces throughput close to that of an 

output queued switch. 

1.6 Thesis Organization 

The thesis is composed of four main chapters. Chapters 2 and 3 present the 

architectural options for packet switches and enhancement of throughput using various 

techniques. Chapter 4 presents the design and performance of enhanced crossbar CIOQ 

switch architecture. Chapter 5 presents the VLSI implementation. Chapter 6 concludes 

this thesis. In particular, the following issues are discussed in each chapter. 

Chapter 2 briefly describes the various architectural options available for packet 

switches. Brief description of operation, advantages, disadvantages, and limitations in 

each of type of the switches is presented. Furthermore, it describes the scheduler 

9 



available for configuring the switch fabric before the packet transfer from the input ports 

to the desired output ports. 

Chapter 3 discusses the throughput enhancing techniques for input queued 

switches, such as the use of multiple input queueing, speeding up the switch fabric or 

using multiplane switch fabrics. It also includes the description of popular traffic models 

used for simulation and analysis of switch architectures and the pipelining of the 

scheduling process that eliminates the scheduling overhead. 

Chapter 4 presents the design of the switch architecture that employs combined 

input-output queueing, enhanced crossbar, and pipelined scheduling. This switch 

architecture is suitable for use in routers as a high throughput back plane or as an A TM 

switch. The switch architecture uses multiplane switch fabric for improving the 

throughput. The performance results of this switch architecture, obtained from 

simulations for both uniform random and bursty traffic arrival, are also presented. 

Chapter 5 presents the design and VLSI implementation of the enhanced crossbar 

switch architecture to show that our work is easily implementable in readily available 

CMOS technology. The design complexity and implementation results are reported. The 

design is targeting 0.18-micron CMOS standard-cell ASIC technology. This chapter 

describes the design of each individual block and presents the total area and gate count 

for each block. 

10 



Chapter 2 

An Overview of Packet Switches and Schedulers 

This chapter provides an introduction to the existing packet switch architectures 

and scheduling algorithms. We briefly describe the various architectural options and 

schedulers available. However for detailed introduction to packet switch architectures 

one should refer to [1][12] and [13]. We also describe some of the approaches adapted for 

enhancing the performance of the packet switches. 

The switch fabric is the interconnection network, which provides paths between 

the input and output ports. It switches between N links. A physical port is basically a bi

directional port that consists of an input and an output port. So there are N input ports and 

N output ports in each packet switch. 

In the literature the switches have been mainly classified into two categories: time 

division switches and space division switches [ 1] [ 12]. A simple classification of a switch 

fabric that includes most of the proposed approaches is illustrated in Figure 2.1. We 

11 



briefly describe the operation, advantages, disadvantages, and limitations in each of type 

of the switch. 

Switch Fabric 

{

Shared medium 

Time division 

Shared memory 

Single path 

Space division 

Multiple paths 

Banyan 

Crossbar 

Fully interconnected 

Recirculating 

Multi plane 

Clos 

Augmented banyan 

Figure 2.1 Classification of packet switch architectures based on switch fabric. 

12 



2.1 Time Division Switches 

In these types of switches, all the cells traveling from input ports to the output 

ports share a single resource. This resource can be a bus, a ring or memory. The design 

and implementation of a large-scale switch based on time division switches is usually 

limited due to the capacity of the shared resource. As shown in Figure 2.1, there are two 

types of time division switches: shared medium and shared memory. 

Address Filter 

Address Filter 

Bus 

Figure 2.2 Shared memory switch Figure 2.3 Shared medium switch 

Shared memory switches use a common memory shared by all inputs and outputs. 

Incoming cells are multiplexed into a single data stream and written to the respective 

locations of the common memory with respect to their destination addresses. The 

multiplexing and demultiplexing of cells is shown in Figure 2.2. 

Shared memory architectures are inherently free of internal blocking and provide 

the best memory utilization. Internal blocking occurs due to interconnect contention in 

the switch fabric. However they suffer from output blocking and the capacity of these 

13 



switches is limited by the bandwidth of the common memory. The centralized controller 

requirement is also a limiting factor in terms of size of a shared memory switch. 

Shared medium switches use shared medium such as a bus or a ring for 

interconnection network. As shown in Figure 2.3, address filters filter the header of the 

incoming cells and accept only the cells destined for them. Shared medium switches are 

internally non-blocking and due to their broadcasting nature they can easily support the 

multicast operation. However they suffer from output blocking and the throughput of the 

shared medium, which determines the capacity of the switch, can become performance 

bottleneck in some cases. NEC's ATM output buffer modular (ATOM) is an example of 

shared medium switch [14]. 

2.2 Space Division Switches 

In a space division switch multiple concurrent paths are established between 

inputs and outputs. These switches are classified based on the number of paths available 

from each input to each output. Those with single path are called single path space 

division switches and those with more than one path are called multipath space division 

switches. Unlike time division switches, in space division switches the control can be 

distributed which allows the design and implementation of high-speed large-scale space 

division switches. 

14 



2.2.1 Single Path Space Division Switch 

Crossbar, banyan, and fully interconnected switches are examples of single path 

space division switches. Crossbar and fully interconnected are interconnect contention 

free, that is, each input-output pair has a dedicated path available. On the other hand 

Banyan-based switches suffer from interconnect contention. 

Figure 2.4 Fully interconnected switch fabric 

2 x 2 switch 
element 

Figure 2.5 Banyan network 

As illustrated in Figure 2.4, in a fully interconnected switch there are N broadcast 

buses from every input to every output port providing the connectivity. A cell from any 

input port is broadcast to every output port. This allows the simultaneous transmission of 

cells to the same output. Its very simple architecture, however requires N 2 separate 

buses. The Knockout switch is an example of fully interconnected switch [9]. 

Banyan based switches are self-routing and are built from 2 x 2 switching 

elements. As shown in Figure 2.5, there is a single path available for every input-output 

15 



pair. Self-routing makes these switches very attractive, as no centralized cell routing is 

required. However the major drawback is that of internal blocking which can 

significantly degrade the performance of the switch. 

crosspoint 
switch 

1 2 3 N 

outputs 

Figure 2.6 N x N crossbar switch 

2.2.1.1 Crossbar switch 

'II 

.... .... , , 

'II eros s state 

bar state 

A crossbar is a single path interconnect contention free space division switch. It is 

the first electronic space division switch that came into existence [1]. It consists of 

N 2 crosspoints, one corresponding to each input-output pair. As illustrated in Figure 2.6 

each crosspoint has two possible states, either cross or bar. 

16 



The main advantages of crossbar switches are their simple architecture, ability to 

facilitate all permutations between inputs and outputs, and modularity. Their main 

disadvantage is the number of crosspoints, which grows as N 2 
• The throughput of input 

queued crossbar is limited due to head of line blocking. 

Different buffering strategies have been adopted for crossbar switches like input 

buffered, output buffered, crosspoint buffered, and input and output buffered crossbar 

switches. Figure 2.7(a) illustrates an input buffered crossbar. The main advantage in input 

buffered crossbar is the low memory speed requirement, the same as that of line rate. 

However these switches possess the head of line blocking which limits the throughput of 

the switch. The maximum throughput of the crossbar switches with a single FIFO queue 

at each input is known to be [15] 

rmax = 2-.J2. (2.1) 

The output buffered crossbar switch, shown in Figure 2.7(b), is known for its high 

throughput. However, the output ports of this type of switches should be capable of 

accepting all the cells, during a switch cycle, destined to them to avoid output blocking. 

This requirement makes high-speed switches based on output buffered crossbar, 

impractical. 

To avoid blocking in crossbars, buffers can be placed at the crosspoint as shown 

in Figure 2.7(c). If more than one cell is destined for the same output, one is routed to the 

output and others are stored in the crosspoint buffer and routed in the next switching 

cycles. This approach has neither head of line blocking nor output blocking. However 

this comes at the cost of more buffers, as there are N 2 crosspoints so N 2 buffers are 

17 



required compared to N buffers in both input and output buffering strategies. Fujitsu's 

BMX is an example of a buffered crossbar switch [16]. 

(a) input buffered crossbar (b) output buffered crossbar 

I I I I 
I I I I 

~i{ ~i{ ~i{ ---~ 

(c) crosspoint buffered crossbar (d) input- output buffered crossbar 

Figure 2.7 Buffers location in crossbar 

Combined input-output queued crossbar switches combine the advantages of both 

input and output buffered crossbars, at the same time mitigating their drawbacks. A 

combined input-output buffered crossbar is shown in Figure 2.7(d). In this type of switch, 

the output buffer is not required to operate N times as fast as the line rate. Alternatively, 

some speed up or parallel planes can provide the required throughput. Combined input-

18 



output crossbar switches are considered a better option for a high-speed large-scale 

switch architecture. 

2.2.2 Multipath Space Division Switch 

In multipath space division switches there is more than one path available from 

each input to each output. Parallel banyan, augmented Banyan, Clos, Balance Gamma 

and recirculating switch are some of the examples of multipath space division switches. 

The multipath switches have higher reliability due to the availability of more paths. 

However this comes at the cost of more hardware and thus increases the complexity of 

the design. 

2 x 2 switch 
element 

Figure 2.8 Augmented Banyan switch 

Switch 
module 

Figure 2.9 3-stage Clos switch 

When multiple paths are introduced into a Banyan network by adding extra stages 

of switching elements as shown in Figure 2.8, it is called augmented Banyan switch. The 

number of paths between input and output ports is doubled for every extra stage that is 

added to the Banyan network. The extra stages are used to distribute the traffic evenly 

19 



across network and to improve the network's performance. However the improved 

performance comes at the cost of increased hardware complexity. Tandem Banyan switch 

is an example of augmented Banyan switch [17]. 

The Balanced Gamma (BG) switch is also a multipath switch [18]. The BG 

network has n -1 stages where n =log 2 N. The first stage has lx4 switch elements (SEs). 

Each of the following stages has 4 x 4 crossbar SEs. The last stage is a buffer and each 

stage has N SEs. Each output can receive up to four cells in a switching cycle. This 

provides a high throughput. However 4x4 switching elements are very complex. 

Important parameters such as pin count, power consumption, and physical size of 

the chip limit the size of switches implementable on a single-chip. To overcome these 

limitations large switches can be constructed by 3-stage interconnection of small switch 

modules. The performance of these types of switches is dependent on the efficiency of 

the routing algorithm. A 3-stage Clos interconnection is depicted in Figure 2.9 . 

.... ..... 
' 

I ' 
! Switch fabric 

..... ..... 
::: 

,. 

~ 
1---
t--

Recirculation paths 

Figure 2.10 Recirculation switch Figure 2.11 Multiplane switch 

20 



The recirculation switches are designed to address the output-blocking problem. 

As illustrated in Figure 2.1 0, cells which cannot reach their desired outputs during the 

current switching cycle are sent back to the inputs via recirculation paths. This reduces 

the cell loss and improves the throughput of the switch. However this increases the 

hardware complexity and also requires some mechanism to maintain the sequencing 

among the cells. The Sunshine switch is a well-known example of the recirculation 

switches [ 19]. 

In multiplane switches more than one switching plane is used to increase the 

throughput of the switch. A typical multiplane switch is illustrated in Figure 2.11. In case 

of interconnect contention free multiplane switch, the main purpose is to increase the 

throughput and reliability. On the other hand for switches suffering from interconnect 

contention, multiple planes are used to decrease the interconnect contention and increase 

the throughput of the switch. The parallel banyan switch is an example of multiplane 

switches. 

2.3 Performance Enhancement of Crossbar Switches 

Due to their modular nature and simplicity the crossbars are an attractive choice 

for high performance packet switches. However crossbars with single FIFO at input have 

limited throughput due to head of line blocking. Several modifications have been devised 

to enhance the performance of the crossbar switches like multiple input queueing (MIQ), 

virtual output queueing (VOQ), switch fabric speed up, and multiplane switch fabric. We 

21 



briefly discuss performance, merits, and drawbacks of these schemes in the following 

subsections. 

2.3.1 Multiple Input Queueing 

To overcome the throughput limitations of a crossbar with single FIFO queue at 

each input, m queues can be used at each input port, where m ~ N. This is referred to as 

multiple input queueing. The main idea is to increase the opportunity for cells arriving at 

the inputs. This significantly decreases the head of line blocking problem and provides 

significant increase to the throughput of the switch. However as the m increases, the 

complexity of the scheduling schemes also increases. 

2.3.2 Virtual Output Queueing 

Virtual input queueing is a special case of multiple input queueing. Instead of 

having m queues at each input, N FIFO queues are employed at each input, one for each 

output. It completely eliminates the head of line blocking. However it needs schedulers to 

resolve the internal and output blocking. VOQ switches have high throughput for uniform 

traffic however for non-uniform traffic their performance degrades considerably with the 

increase in the burstiness. 

2.3.3 Speedup 

In speeded up switches, the switch fabric is operated S times as fast as the line 

rate so that more than one packet can be transferred to the each output. The speed up of 

22 



the architectures necessitates the employments of output buffers. For a speeded up switch 

fabric the memory at output is also required to operate S times as fast as the line rate to 

enable it to store the cells routed to it during a switching cycle. 

2.3.4 Multiplane Switch 

In a multiplane switch, k planes are used in parallel to transfer up to k cells to each 

output during a switching cycle. A cell coming at an input can randomly select one of the 

planes, or the first cell is sent through the first plane and second through the second plane 

and so on. The former scheme is referred to as random loading and the latter as sequential 

loading. This arrangement significantly increases the throughput. However it comes at 

the cost of increased hardware complexity. As well, the speed of memory at output ports 

must be increased by k. 

2.4 Scheduling Algorithms 

The input queued switches, which are not self-routing, require schedulers to 

resolve the output port contention. Schedulers are also referred to as arbiters. The 

scheduling problem can be considered as finding a matching in bipartite graph. A graph 

is said to be bipartite if its nodes are divided into two sets and each edge has an end in 

one of the sets. In case of switches the inputs and outputs form the nodes and connections 

between them are the edges. The request and match graphs are shown in Figures 2.12 and 

2.13, respectively. 

23 



Inputs Outputs Inputs Outputs 

• 
• 
• 
• 

Figure 2.12 A request graph Figure 2.13 A match graph 

Normally, a request is sent from the input ports for their head of line cells and the 

scheduler finds the best configuration of input-output pairs. This scheduling process is an 

overhead and increases with increase in the size of the switch. Therefore, these 

scheduling algorithms are required to be fast, fair and facilitate easy implementation in 

hardware. These scheduling algorithms can be classified as maximum size matching and 

maximum weight matching scheduling algorithms [20]. 

The maximum size matching algorithm tries to maximize the number of input

output pairs. These algorithms are stable for independent uniform traffic, however these 

are unstable for non-uniform traffic and some queues at the inputs can be starved along 

with the reduced throughput. These algorithms are also complex to be implemented in 

hardware. The most efficient maximum size matching algorithm currently known 

converges in O(N 2
'
5

) running time. 

24 



In maximum weight matching, the algorithm assigns a weight to each input 

queue. It finds the input-output match with the highest weight. The weight assigned to 

each queue is normally equal to the occupancy of the queue therefore the queue with the 

most cells has the highest size. These algorithms are stable for both uniform and non

uniform traffic and queues are not starved unlike in case of maximum size matching. 

However, the most efficient known maximum weight matching algorithm converges in 

O(N 3 logN) running time. As well, maximum weight matching algorithms require multi

bit comparators to compare the weights of the queues. 

Some of the early well-know scheduling algorithms are Longest Queue First 

(LQF) [21], Oldest Cell First (OCF) [22], Parallel Iterative Matching (PIM) [23], and 

iSLIP [24]. LQF is impractical, since it uses a maximum weight algorithm, which makes 

it too complex for high speed implementation in hardware. Similarly, OCF uses a 

maximum weight algorithm which makes it too complex to implement in fast and simple 

hardware, and hence unsuitable for use in high-bandwidth switches. PIM attempts to 

quickly converge on a conflict-free match in multiple iterations. On average, it converges in 

O(log 2 N) iterations, although in the worst case it may take up to N iterations. In the 

following we describe iSLIP in some detail. 

2.4.1 iSLIP 

It is a maximum size matching algorithm which tries to find a maximal size match 

iteratively for multiple input queued switches. Each input and each output has one round 

25 



robin arbiter, and each arbiter uses a pointer to point to the highest priority output or 

input. In each iteration, the arbitration is carried out in three steps: 

(a) Request phase 

Accept arbiters 

·~· • • 
·~· • • 

(b) Grant phase 

• • 

(c) Accept phase 

Figure 2.14 iSLIP scheduling 

26 

Pointer 
update 

Grant arbiters 

Grant arbiters 



A: Every unmatched input sends a request to every output for which it has a 

queued cell. 

B: An unmatched output, starting from the highest priority input, searches in 

round-robin fashion and chooses the first requesting input. The output, then, 

notifies each input whether or not its request was granted. 

C: An unmatched input, similarly, starting from the highest priority output, 

searches in round-robin fashion and accepts the first granting output. At this 

step, the pointer updating takes place. The pointers at both the accept and the 

grant arbiters are incremented to one point beyond the selected inputs and 

outputs, respectively. 

This algorithm has been shown to achieve 100% throughput for uniform traffic 

with independent arrivals [24], and at the same time it can be implemented using very 

simple hardware. The algorithm converges in an average of O(log N), and a maximum of 

N, iterations. 

In Figure 2.14, we present an example of iSLIP scheduling for a VOQ switch of 

size 4. In the request phase, as shown the in Figure 2.14(a), each input requests the output 

for which it has a cell. In the grant phase, as shown in Figure 2.14(b), the grant arbiter 1 

selects input 1 and grant arbiter 4 selects input 4 in a round robin fashion. In the accept 

phase, as shown in Figure 2.14(c), the accept arbiters 1 and 4 select grants from outputs 1 

and 3, respectively, and increment the pointers to the points beyond the accepted outputs. 

Similarly, in this phase, the grant arbiters increment the pointers to the points beyond the 

inputs that have accepted the grant signals. 

27 



2.5 Summary 

In this chapter we presented an overview of packet switch architectures. We 

started with the packet switch classification based on switch fabric and described the 

advantages and disadvantages of both time and space division switches. We described 

crossbar switch in some detail with emphasis on buffer locations. Then we moved on to 

performance enhancing mechanisms usually adapted for crossbar switches. At the end we 

reviewed the scheduling and described the iSLIP scheduling algorithm is detail. In the 

next chapter, we will describe the performance enhancing schemes in detail. We will also 

describe pipelined scheduling adapted for eliminating the scheduling overhead. 

28 



Chapter 3 

Throughput Enhancement Techniques 

In the previous chapter, we reviewed the existing switch architectures and briefly 

described some of the techniques adapted for enhancing the throughput of input queued 

switches. In this chapter, we provide a detailed analysis of throughput enhancing 

techniques, such as the use of multiple input queueing, speeding up the switch fabric and 

using multiplane switch fabrics. The speeding up of the switch fabric or multiplane 

switch fabric necessitates the employment of queues at the output ports; therefore, the 

switch is no longer a pure input queued switch. 

We begin this chapter with the description of popular traffic models used for 

simulation and analysis of switch architectures and move on to a detailed description of 

multiple input queueing (MIQ) followed by combined input-output queueing (CIOQ). 

We then describe the provision of speedup using multiplane switch fabrics. At the end we 

describe the pipelining of the scheduling process that eliminates the scheduling overhead 

29 



and provides a large time window for implementing slow and complex but fair 

scheduling algorithms. 

3.1 Traffic Models 

Analytical modeling, computer simulation, and experimentation are used to 

determine the behaviour of packet switches. These techniques require precise traffic 

models, which can emulate the characteristics of the actual traffic. On the other hand, if 

the traffic model fails to represent the actual traffic, the switch performance may be 

underestimated or overestimated. 

Two processes, namely, the traffic arrival process and the distribution of the 

traffic across destination ports, describe the traffic models. The traffic arrival at the input 

ports can be modeled by different traffic models such as the uniform random traffic 

(URT) and bursty traffic models. The crossbar switch is nonblocking when the 

distribution of cells across outputs arriving in a switching cycle is a permutation of 

outputs, whereas it is blocking under URT or bursty traffic conditions that emulate the 

actual traffic much better than permutation traffic. Therefore we use only the URT and 

bursty traffic models for the performance evaluation of the packet switch architecture 

described in this thesis. In these traffic models, the distribution of the traffic across the 

outputs is uniform. 

30 



3.1.1 Uniform Random Traffic 

The main advantages of using uniform random traffic (URT) are that less 

overhead is involved in the traffic generation compared to others, analytical modeling of 

URT is feasible for most of the switching architectures, and URT provides more realistic 

loads than permutation traffic. Here, overhead means hardware complexity of generating 

the traffic for test purposes. Generating uniform random traffic is very simple and 

requires less hardware. For bursty traffic, the traffic generator state is stored in registers, 

which increases the size of the traffic generator and slows down the process. Due to these 

reasons, URT is the most common traffic model used for evaluating the performance of 

packet switches and has been used for performance study of almost all proposed 

switching architectures [ 18]. 

In URT, a cell arrives at an input port during a timeslot with probability p, and the 

probability of no arrival is 1- p. Cells· arrive at each input port with same probability. 

Therefore p represents the traffic load at each input port. The incoming cell selects its 

output destination randomly and independently from all the other cells arriving at the 

different inputs. Any output port can be selected with a probability of 1/N, where N is the 

size of the switch. 

3.1.2 Bursty Traffic 

As we mentioned in Chapter 1, an integrated broadband communications network 

is required to support different existing and emerging high bit rate services, such as 

videoconferencing, video on demand, medical imaging etc. The traffic originating from 

31 



these sources is usually bursty. A bursty source generates traffic at a peak rate for a short 

time and remains almost inactive between these slots. The bursty traffic model is 

considered to be more realistic than uniform random and permutation traffic models. 

Several traffic models have been proposed in the literature to model this burtiness 

in the traffic arrival. Out of these, the ON-OFF model is the most popular and widely 

used to generate bursty traffic [18]. We use the ON-OFF model to generate bursty traffic 

and observe the behavior of the packet switch architecture presented in this thesis. In the 

ON -OFF traffic model, during the ON period the source sends the cells to the same 

destinations and the source is idle during the OFF period. The durations of both these ON 

and OFF periods are independently determined from two geometric distributions. 

Uniform random traffic is a special case of bursty traffic model with ON period length 

being 1. The duration of ON and OFF periods are evaluated in terms of time slots from 

two independent geometric distributions as [25] 

L = 1 + [ln(l- R) -1] , 
ln(1- p) 

(3.1) 

where L is the length in terms of timeslots, R, 0 ~ R < 1, is the random number generated 

and p, 0 < p < 1, is the inverse of mean burst length. The above equation is used for 

generating burst length for both ON and OFF periods for the specified mean burst length. 

Users are required to specify two parameters: link load p and the average burst length 

for ON or active period. The mean OFF or idle period length can be obtained from the 

following: 

1-p 
LoFF = LoN x --

p 
(3.2) 

32 



Cells are continuously generated during the ON period and are destined to the same 

output port which is chosen uniformly among all the output ports and independently from 

other bursts. Each output port can be chosen with a probability of 1/N. 

3.2 Multiple Input Queueing 

To overcome the throughput limitation in input queued switches with a single 

FIFO queue at the input ports, many alternatives have been devised. Out of these the 

multiple input queueing (MIQ) technique is drawing much attention recently due to the 

high throughput and high-speed operation capability [26]. The main idea of multiple 

input queueing is to allow the cells behind the blocked head of line to be switched to a 

free output port. A MIQ switch deploys m, 1 < m ::;; N, queues at each input port. Each of 

these m queues stores packets destined for a particular group of the output ports. These 

groups do not overlap with each other. Each input port can transfer up to m cells to output 

ports during a time slot, however, each output port can receive only one cell during the 

same time. This is referred to as the free rule in MIQ switches. Its alternative, the 

restricted rule, restricts the number of cells switched from each input port during a time 

slot to one [27]. However, the total number of cells switched from all the inputs cannot 

exceed N for both free and restricted rules. 

An 8 x 8 MIQ switch is illustrated in Figure 3.1. This switch has four FIFO 

queues at each input port and employs the free rule. The first queue stores the packet 

destined to output ports 1 and 2, the second queue stores the packets destined for output 

ports 3 and 4, and so on. If m is equal to one, there is a single queue for all the output 

33 



ports, and the switch is a conventional input queued switch. On the other hand, if the 

restricted rule is employed and m is equal to the size of the switch (m = N), each queue is 

dedicated to one output port, and the arrangement is referred to as virtual output queued 

(VOQ) switch. 

2 

3 

4 

5 

6 

7 

8 

nput ports 

I 

I 

I 

I 

I 

I 

I 

I 

Crossbar 

2 3 4 5 6 7 8 

Output ports 

Figure 3.1 A 8 x 8 MIQ switch with m = 4 

34 



In [28], Christos Kolias et al. presented the throughput analysis and simulation 

results of a MIQ switch with crossbar switch fabric and showed that maximum 

throughput of a MIQ switch can be computed as 

Y max = m + 1 - ..J1 + m2 
, (3.3) 

where Y max is the maximum throughput of the switch. In this analysis, uniform random 

traffic model was used for modeling traffic arrival. Table 3.1 shows the throughput of 

MIQ switches for different numbers of queues at each input port for both restricted and 

free rule presented in [26]. 

One argument against the free rule is that it requires expansion in the switch 

fabric and thus increases the cost. However, from the table it is obvious that to achieve 

similar performance as for the free rule, the restricted rule application requires a large 

number of queues at the input ports. For example, to obtain a throughput in excess of 

99%, 64 queues are required at each input port for the free rule but for the same 

performance 256 queues are required for the restricted rule. 

The mean cell delay in the pure output queued (OQ) switches is shown to be [13] 

D = p 
mean 2(1- p) ' (3.4) 

where p, 0 :::; p < 1, is the traffic arrival rate. A switch that has no interconnect contention 

and whose output ports are capable of accepting all the cells destined to them during a 

switching cycle, are known as an ideal output queued switches. The ideal output queued 

switches are known for their high throughput and are suitable for providing QoS 

guarantees. 

35 



Table 3.1 Maximum throughputs of MIQ switches for different number of 
queues at each input port 

Number of Queues Maximum Throughput Maximum Throughput 
at each Input Port (free rule) (restricted rule) 

m Ymax Ymax 

1 0.586 0.586 
2 0.746 0.705 
4 0.877 0.802 
8 0.938 0.873 
16 0.969 0.921 
32 0.984 0.953 
64 0.992 0.972 
128 0.996 0.984 
256 0.998 0.991 

Figure 3.2 illustrates the delay performance a ideal output queued switch and 

MIQ switches with different numbers of queues at each input port. These results are 

obtained from simulation of a 128 x 128 MIQ switch with restricted rule and 2, 8, and 16 

FIFO queues at each input port. The delay performance of the OQ switch is obtained 

from Equation 3.4. 

From these results, we observe that the MIQ switch with 16 queues at each input 

port provides delay performance close to that of an ideal OQ switch. However, to 

approximate the performance of an ideal OQ switch, more than 16 queues are required at 

each input. This large number of queues at each input port increases the complexity of the 

input port controllers. Another problem with MIQ switches is that the provision of QoS 

guarantees in MIQ switches is too complex. Scheduling the switch fabric for packet 

36 



30 

m = 4 

m =a 
~5 

m = 16 

OQ 

j20 
u ,., 
u 

"' l: 
:E 
u 

'"' Ji 15 
> .. 
Qj 
c 
" "' e 
" ~ 10 

5 

oC:==:===~======~==~==~--~--~__j 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Traffic Load 

Figure 3.2 Delay performance of an ideal OQ and 128 x 128 MIQ switches 

transfer to the desired output ports and scheduling the packets to provide QoS guarantees, 

simultaneously, is a two dimensional process. 

Employing multiplane switch fabric or speeding up the switch fabric can also 

enhance throughput of the IQ switches. The problem associated with the speed up is that 

it makes the switch unsuitable for high speed switching. Thus, it is one of the important 

issues which is required to be resolved for high-speed switching. At the same time, 

speeding up the switch fabric or using multiplane switch fabric requires queues at the 

output ports. Therefore, the switch becomes a combined input-output queued switch. 

37 



3.3 Combined Input-Output Queuing 

Combined input-output queuing (CIOQ) overcomes the problems posed by input 

queueing and output queueing by allowing the use of slow speed memories and 

mitigating the effect of HOL blocking. When more than one cell contend for the same 

output, some are sent and others are temporarily queued at the input before being 

transferred to the outputs. In CIOQ, the high throughput can be achieved by slight 

speedup or providing multiple paths from inputs to outputs or parallelism. The 

parallelism factor is the number of planes in a multiplane switch architecture. The 

speedup is obtained by operating the switch fabric S times faster than the line rate and 

parallelism is achieved by using multiple parallel switching planes as a switch fabric to 

improve the throughput. 

The speedup or parallelism factor can be anywhere between 1 and N, however, 

usually it is a small constant. A switch with speedup or parallelism factor of 1, stores all 

the incoming packets at the input port and no queueing is required at the output port as 

only one cell can be transferred to each output during one switching cycle. Therefore it is 

a pure input queued switch. Similarly, a switch with the speedup or parallelism factor of 

N doesn't require any input buffer, as all the cells coming at the input ports can be 

instantaneously switched to the desired output ports, and therefore it is a pure output 

queued switch. 

Employing speedup or a multiplane architecture improves the throughput. Thus 

the delay performance close to that of an ideal OQ switch can be achieved. In the 

following sections, we attempt to determine the speedup or parallelism required to 

38 



emulate the OQ ·switch. We analyze the performance of speeded up and multiplane 

switch architectures and compare this with the ideal OQ switch. 

3.3.1 Multiplane Switches 

Multiplane switches are constructed from multiple identical, space division, 

switches [29]. These multiple switching planes improve the throughput of the switches by 

reducing the effect of head of line blocking that limits the throughput of input queued 

switches. However, this improved performance comes at the cost of more hardware 

which increases the cost, and thus, use of multiplane switches is a tradeoff between 

performance and cost of the switch architecture. 

In multiplane switches, the speed of switch fabric is the same as that of the line 

rate. Therefore, multiplane switches are an attractive alternative to speeded up switches 

[30]. The multiplanes allow multiple cells to be switched to the output ports 

simultaneously and independently. In multiplane switches cells arriving at the input can 

pick a switch plane randomly or switch planes can be loaded sequentially. In the 

multiplane switch fabric, m cells can be transferred to the same output, where m is the 

number of the switch planes. However, each input can send only one cell during each 

switching cycle. 

The maximum throughput of a multiplane switch with crossbar as the switching 

plane and singe FIFO queue at each input is shown to be [29] 

Y max = m + 1 - .J1 + m2 
• (3.5) 

39 



Table 3.2 Maximum throughput of multi plane switches 

Number of Planes Maximum Throughput 

m Ymax 

1 0.586 
2 0.746 
4 0.877 
8 0.938 
16 0.969 
32 0.984 
64 0.992 

Table 3.2 provides the maximum attainable throughput for multiplane switches 

for different numbers of planes. We observe that to obtain a throughput in excess 99%, at 

least 64 parallel planes are needed, which requires substantial hardware. 

The mean delay of the multiplane switch is the sum of the mean delay through 

input ports and mean delay through output ports 

(3.6) 

The mean delay through input ports for a multiplane switch with single FIFO 

queue at each input and crossbars as the switching planes is given by [29] 

D. = 1 IA4 -(32m+ 6)...1? + ( 48m + 30)mA.2 -(24m+ 48)m2 A.+ 24m3 

m 6(m-A.)(2m-A)(A2 -2(1+m)A.+2m) ' 
(3.7) 

where A is the traffic arrival rate. Similarly, the mean delay through output ports of the 

multiplane switch is given by 

1 
y(1--) 

D out = -----'m:..:..::.._ 
2(1- y) 

(3.8) 

40 



Equation 3.6 provides the mean delay for multiplane switches when the arrival rate is less 

than the maximum throughput. As the throughput reaches the maximum attainable 

throughput, the average delay approaches infinity. 

In Figure 3.3, we show the delay performances of multiplane switches with 

crossbars as switching planes and an ideal OQ switch, obtained from Equations 3.6 and 

3.4, respectively. We observe that the delay performance of switches with 4 and 8 

parallel planes is not comparable to that of the OQ switch at high traffic loads. However, 

30 

m = 4 

m =a 
25 

m = 16 

OQ 

'iii' 20 
~ 
> u 

"' " :;: 
,.g 

"' 15 !!!. 
> 
1i 
0 ., 
"' e ., 
:> 10 <t 

5 

oc===k===±=======~==~==~ __ _L __ _L __ _j 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Traffic Load 

Figure 3.3 Delay performance of an ideal OQ and multiplane switches 

41 



as the number of switching planes is increased to 16 the performance of the switch is 

much closer to the OQ switch. Both, throughput and delay performance of the multiplane 

switches show that a large number of switching planes are required in multiplane switch 

for emulating the performance of the ideal output queued switch. 

3.3.2 Speedup 

The switch fabric can be speeded up to overcome the head of line blocking 

problem. A switch with speedup S transfers up to S packets from each input port to 

output ports. Similarly, each output port is capable of storing S packets. In speeded up 

switch fabric, the number of cells that can be sent from each input port and the number of 

cells that can be stored in each output port are the same. Therefore, for a single FIFO 

queue at each input and a speedup of 4 or 5, the impact of head of line blocking is 

minimal. However, another problem arises; that is, the switch fabric speedup can limit 

the speed of the switch and thus its performance. We observed from the simulation of a 

128 x 128 switch with single FIFO queue at each input port for uniform random traffic 

model, a speedup of 2 or more provides throughput in excess of 99%. 

Figure 3.4 shows the delay performance of the speeded up switches compared to 

the ideal OQ switch. The delay performance of speeded up switches is obtained from the 

simulation of a 128 x 128 switch for uniform random traffic and delay performance of the 

ideal OQ switch is obtained from Equation 3.4. From these results, we observe that for a 

speedup of 2 and 3, a delay performance close to that of the ideal OQ switch is achieved. 

42 



30 

S=2 

5=3 
25 

S=4 

OQ 

Vi' 20 
~ 
> u 
C> 

" :E 
u 

:t::: 

~ 15 
:;;; 
~ 
0 
(1) 

C> 
E 
(1) 

~ 10 

5 

oC:===:==±=======~==~==~--~--~--_j 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Traffic Load 

Figure 3.4 Delay performance of an ideal OQ and 128 x 128 speeded up switches 

However, the throughput of the speeded up switch with S = 2 and S = 3 for bursty traffic 

with mean burst length of 15, is significantly degraded. On the other hand, the throughput 

of the speeded up switch with S = 4 even for bursty traffic remains almost the same as for 

uniform random traffic. Table 3.3 provides the throughput for speeded up switches for 

URT and bursty traffic. For bursty traffic the mean burst length equal to15 was used. 

Figure 3.5 shows the average delay through input ports of speeded up switches 

with S = 2, S= 3 and S= 4. From the delay performance, we observe that the average 

delay through input ports of a speeded up switch with S = 2 and S = 3 increases with the 

43 



Table 3.3 Throughput of speeded up switches 

Speedup Throughput for URT Throughput for 
bursty traffic 

s r r 
2 0.999 0.982 
3 0.999 0.988 
4 0.999 0.996 

increase in the traffic load, whereas, the average delay through input ports of a speeded 

up switch with S = 4, remains approximately the same for different traffic loads. 

Therefore packets suffer most of the delay at the output ports as the average delay 

through input ports is less than 2 switching cycles and remains so even for higher traffic 

loads. This small delay through input buffers, allows the provision of Quality of Service 

(QoS) guarantees in a similar fashion as in OQ switches by employing the well-known 

scheduling algorithms that exist for OQ switches, at the output ports of speeded up CIOQ 

switches. 

Though speedup improves the performance of the switch significantly, speeding 

up the switch fabric can limit the size of the switch. At the same time, we observed that if 

we employ a multiplane switch fabric, a large number of planes is required to obtain a 

performance comparable to a speedup switch with S = 4. In the next section, we show 

how speedup can be achieved using a multiplane switch fabric. 

44 



20,----,-----,----,-----,----,-----,-----,----.---~ 

18 

16 

14 

S:2 

4 

2 

0~--~-----~----~----~--_J----~----~----~--~ 

0.1 o_z 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Traffic Loa.d 

Figure 3.5 Average delay through input ports of 128 x 128 speeded up switches for 
bursty traffic 

3.4 Speeding up using Multiplane Switch Fabric 

As we described in the above section, speeding up the switch fabric provides the 

desired throughput and delay performance to emulate the throughput and delay 

performance of the OQ switch. However, speeding up the switch fabric is unsuitable for 

high-speed switches. 

In this section, we describe how we obtain the same characteristics as for speeded 

up switch using multiple switching planes and eliminate the need for operating the switch 

45 



fabric faster than the line rate. We observed in the previous sections of this chapter that 

the multiplane switches using crossbars as the switching planes can provide the desired 

high throughput, however, it comes at the cost of extra hardware. To emulate the ideal 

output queued switches using a multiplane switch requires more than 64 switching 

planes. Similarly, we observed that a speeded up CIOQ can emulate an ideal output 

queued switch with a speedup of 4. However, this speedup may limit the speed of the 

switch. 

1 

2 

N 

1 I 
~ 

2 
~ 

' ~~ ~ 

'"' ' ' 

"' k - f-- ~~ 

1 

2 

- f-- "' " - f--

"' .~ 
'--

~ .. .. ·•. 

N 

Figure 3.6 Switch fabric with k crossbars in parallel 

If we use k crossbars as shown in Figure 3.6 and instead of switching more than 

one cell through separate planes to the same output port, a cell is transferred in parallel 

through all the k planes simultaneously, a complete cell transfer from input port to the 

46 



desired output port will take llk of the switching cycle. This parallel transfer provides the 

speedup equivalent to the number of planes without operating the switch fabric faster 

than the line rate. That is, for k parallel switching planes a speedup k can be obtained. A 

similar technique has been used in [31]; however, it was not employed for improving the 

throughput. 

This design has two benefits. The first is that the limitation of only one packet 

from each input is eliminated. Therefore more than one cell can be switched from each 

input port and the second is that it provides the same delay performance as a speeded up 

switch while operating the switch fabric at the line rate. 

In the distribution analysis of destinations performed by Li Cheng [32], he 

showed that under unicast uniform random traffic at full load, in any given switching 

cycle, the probability that there are more than four cells arriving in any given cycle at the 

input ports destined to a particular output port is approximately 1% and that this is almost 

irrespective of the size of the switch. Furthermore, we conducted simulations with 

different numbers of planes and found that the performance improvement became 

decreasingly significant as the number exceeded 4. 

3.5 Scheduling 

CIOQ switches require lower speed memories and switch fabrics, however, they 

require a traffic scheduler to configure the switch fabric before the transfer of packets 

from the input ports to the output ports. The switch fabric is required to be configured 

during each time slot to determine which cells are to be transferred to the output ports. In 

47 



crossbar based CIOQ switches we need a centralized or decentralized scheduler to 

provide the input-output pairs. These schedulers control the state of the respective 

crosspoints. 

This scheduling process is an overhead and increases with the increase in the size 

of the switch and may limit the size of the switch. In Figure 3.7, A shows the 

conventional way of scheduling the switch fabric before transferring the packets from 

input ports to the output ports. As the switch size increase; the size of the scheduling 

window increases, which reduces the packet transfer window size. To compensate the 

decrease in packet transfer window, we need to speedup the packet transfer from input 

ports to the output ports or we can employ simple scheduling algorithms for decreasing 

the scheduling time window. These simple scheduling algorithms are fast but no fairness 

guarantees are provided. A scheduling algorithm is said to be fair, if it provides the same 

share of available resource, to all the input ports in a short time interval. 

If the scheduling and packet transfer from input ports to the output ports are 

performed in parallel, the scheduling time problem can be limited. However, this single 

stage pipelined scheduling process will introduce a delay equivalent to the packet transfer 

time from input port to output port. In a speeded up switch architecture this delay would 

be 1/S times a switching cycle, which is not that significant. In Figure 3.7, B shows this 

single stage pipelining for S = 4. This provides a time window equivalent to 114 of a 

switching cycle, called subcycle, for scheduling the switch fabric. For a link rate of 

lGbps and packet size of 53-byte, a time window of 424ns is available for configuring 

the switch fabric. 

48 



With the above-mentioned parallelism, the same size time window is available for 

configuring the switch fabric as for the packet transfer. The fair scheduling algorithms 

presented in the literature for scheduling the switch fabric are slow and very complex 

[21][22], therefore this parallelism allows us to use those complex but fair algorithms for 

configuring the switch fabric. 

Scheduling Packet Transfer 

A 

B 

Subcycle 

Switching cycle 

Figure 3.7 Single stage pipelining of the traffic scheduling 

3.6 Summary 

In this chapter, we described the techniques used for enhancing the throughput of 

the input queued switches such as multiple input queueing, multiplane switch fabric or 

speeding up the switch fabric, in detail. We started this chapter with the description of 

49 



traffic models used for simulations. We observed that speedup improves the performance 

of the switch significantly, however, speeding up the switch fabric can limit the size of 

the switch. At the same time, we observed that if we employ multiplane switch fabric, a 

large number of planes are required to obtain a performance comparable to a speeded up 

switch with S = 4. We showed how we can achieve the performance of a speedup switch 

using multiplane switch fabric. At the end of this chapter, we explained the scheduling 

problem in switches with buffers at the input ports and suggested the use of parallelism to 

eliminate the scheduling overhead. In the next chapter, we will describe the architecture 

of a packet switch which employs the combined input-output queueing, enhanced 

crossbar, and pipelined scheduling described in this chapter. 

50 



Chapter 4 

Switch Architecture and Performance 

In this chapter, we describe the architecture of switch that employs combined 

input-output queueing, enhanced crossbar, and pipelined scheduling that was described in 

the previous chapter. This switch architecture is suitable for use in routers as a high 

throughput back-plane or as an ATM switch. The switch architecture uses a multiplane 

switch fabric for improving the throughput. We begin this chapter with an overview of 

the design and move on to discuss the design of each individual block. We explain the 

scheduler design and describe the pipelining of the scheduling process in some detail. 

Later in this chapter, the performance results of this switch architecture are 

presented. The performance of a switch is usually evaluated for the following three 

parameters: throughput, delay that cells suffer while traversing the switch, and cell loss 

rate or buffer occupancy. We obtained these results from simulations for both uniform 

random and bursty traffic arrival. 

51 



• • • • • 
~ 

DIIJ 

IPM 

Scheduler 

OPM 

Crossbar 

Figure 4.1 Enhanced crossbar CIOQ switch architecture 

4.1 Switch Architecture 

DIIJ 

• • • • • 
~ 

As illustrated in Figure 4.1, the main components of this architecture are the input 

port module (IPM), output port module (OPM), switch fabric and scheduler. The input 

and output port modules each have a single FIFO queue for storing the incoming packets. 

The switch fabric is the interconnection between input ports and output ports. The 

scheduler configures the switch fabric for transferring the packets from input ports to the 

desired output ports. 

52 



When a packet arrives at the input port, it is stored in a single FIFO queue 

available at the input port. The packet waits for a decision from the scheduler, which 

schedules the packet for transfer to the desired output port. This switch architecture has 

decentralized scheduling and is capable of handling fixed size packets only. Each OPM 

has its own scheduler to select one among the ( 1 to N) requesting input ports. All of these 

N schedulers work in parallel to select up to N input ports. At the start of each switching 

cycle, each input port requests the desired output port, each scheduler selects one among 

the requesting input ports. This selection result is passed back to the input ports and the 

switch fabric. Packets are then sent to the configured switch fabric and routed to the 

desired output ports. On arrival at the output port, packets are stored in the FIFO queues 

available at the output ports where they wait for transmission on the output link. When 

the output link is available, the head of line packet among the waiting cells is transmitted 

on the output link. 

Two buffer control schemes are used to control buffers in combined input-output 

queued switches: the queue loss scheme and the backpressure scheme [33]. In the queue 

loss scheme a cell can be lost both at input and output buffers if the desired buffers are 

full. On the other hand, in the backpressure scheme cells are lost in input buffers only. If 

output buffers are full, the output port controller informs the input port and cells are 

buffered in input buffers instead of being lost at output buffers. 

The backpressure scheme requires less buffer space compared to the queue loss 

scheme for providing the same performance. However, if the backpressure scheme is 

used, cell loss occurs only at the input ports and is independent of the session the cell 

53 



belongs to, which is unfair to a cell belonging to a well behaved session. On the other 

hand, in the queue loss scheme, a dropping scheme can be employed at output ports, 

which will drop cells belonging to the session whose session queues are full. Cells can 

still be lost at input ports if the input buffer size is too small. This architecture employs 

the queue loss scheme for dropping cells if desired queues are full. In the following we 

describe the major components of this switch architecture in some detail. 

4.1.1 Input Port Module 

The input port module is responsible for storing the incoming packet and 

requesting for the desired output ports from scheduler, and if granted, transmitting the 

cells to the desired output ports. The IPM is designed to be scalable in terms of packet 

size, however packets must be of the same size. We considered a packet size of 53 bytes 

throughout our work. The IPM in this architecture does not have any header processing 

capability for two reasons. First is that the header processing problem is well studied in 

the literature and a number of fast solutions exist [34] [35]. Secondly, the delay associated 

with header processing is usually fixed, and therefore it does not affect the performance 

of the switch architecture. 

In the speeded up switch architectures, packets are completely stored before 

sending them to the output ports. This architecture has only one packet queue at each 

input port; therefore, the input port controller can store the packet before determining the 

output port address to which the packet is destined. This allows the input port controller 

to use a large time window, equivalent to the time taken in completely storing a packet in 

54 



the queue, for determining the output port to which the cell is destined. Regardless of 

this, our main focus was to determine the performance of this architecture for different 

traffic arrival patterns; therefore, we excluded the header processing capability from the 

IPM. 

On the arrival of the new packet, the input port controller stores the packet in the 

queue and requests for the packet transfer to the respective scheduler of the desired 

output port. If a grant is received from the scheduler, the input port controller dequeues 

the head of line cell and sends it to the switch fabric. Due to the high throughput provided 

by the enhanced crossbar switch fabric, most of the cells are switched to the output ports 

and very few are stored at the input ports. Therefore, the cell storing capacity required at 

the IPM is significantly less than that at the OPM. 

4.1.2 Output Port Module 

The OPM is responsible for storing the packet incoming from the IPM through 

the switch fabric and sending them on the output link on a first-come, first-served basis. 

The output port module has almost the same functionality as the IPM and is scalable in 

terms of packet size like the IPM. The main difference is that the OPM does not have to 

request for the transmission of the head of line cell waiting in a queue. Instead, if the 

output link is available, the head of line cell is transmitted in every switching cycle. As 

we shall see, the virtual speedup provided by the multiplane switch fabric allows the 

transfer of up to four cells to each output port during each switching cycle, therefore an 

output port is capable of storing up to four packets during the same period. The high 

55 



throughput provided by multiplane switch fabric significantly increases the requirement 

of buffer space at the output port. 

The scheduler informs the OPM if a cell is scheduled for it. The output port 

controller stores the arriving cell in the only available queue, if there is space available. 

Otherwise the OPM discards the incoming cell. When the output link is free, the output 

port controller transmits the head of line packet in the queue on the link. Output ports do 

not have any QoS provision capability since we were mainly focused on the throughput 

and delay performance achievable with virtual speedup provided by the enhanced 

crossbar switch architecture. 

4.1.3 Switch Fabric 

In the last chapter, we showed how we can achieve the virtual speedup using 

multiple switching planes. We use the same switching technique in this architecture for 

providing the desired high throughput. The crossbar is the simplest and most widely used 

architecture for packet switches [36]. An N x N crossbar connects N input ports with N 

output ports. Any of the N input ports can be connected to any of the output ports through 

the crosspoint switches. A crossbar is interconnect contention free since every input

output pair has its own dedicated data path. 

In this architecture, the switch fabric consists of four parallel crossbar planes. The 

cell switching is done in these four switching domains. The four domains transfer the cell 

to the output ports simultaneously and each operates at the line rate. Each IPM sends the 

data to the switch fabric through a 4 bit wide data bus and it is switched through each 

56 



plane bit by bit. As there are four parallel planes, 4 bits would be transmitted per clock 

cycle. This allows the transfer of up to four packets to each output port during each time 

slot. Similarly, up to four cells can be switched from each input port during the same 

period. The virtual speedup of four obtained through this four-crossbar arrangement 

provides a high throughput and limits the delay through input buffers. The crossbar is 

popular for the packet switches with a moderate number of ports. However, crossbars 

without any buffering capability at the crosspoints require schedulers for configuring 

them for packet transfer from input ports to the output ports. 

4.1.4 Scheduler 

Switches with input buffers require schedulers for configuring the switch fabric 

before transferring the packets from input ports to the output ports. The performance of 

schedulers is determined by their throughput and delay properties. However, their 

implementation complexity is the decisive factor in the selection of the scheduling 

algorithms for high-speed switches. The iSLIP scheduling algorithm is known for its high 

throughput, fairness and ease of implementation. Therefore we used an iSLIP scheduler 

in this switch architecture. 

In [24], Mckeown showed that the iSLIP scheduling algorithm can achieve a high 

throughput for multiple iterations. However this scheduling algorithm is designed for 

switches with virtual output queueing at input ports where only one cell can be switched 

from each input port to each output port in every switching cycle. For this purpose, to 

decide fairly among the received grants, an accept arbiter at each input port is required to 

57 



select among the output ports which issued a grant. Due to this accept phase, multiple 

iterations are required to get the best match as only one grant can be accepted during a 

switching cycle. However, in our switch architecture every input port has only one FIFO 

queue therefore at the most only one grant can be received which will be certainly 

accepted. We called it SLIP because it is not iterative like the original iSLIP algorithm. 

SLIP does not need any accept arbiters. Therefore step 3 of iSLIP is eliminated in SLIP 

and grant arbiters update takes place in step 2 of the SLIP algorithm. This eliminates the 

need for these accept arbiters and multiple iterations. Therefore we use the SLIP 

algorithm with the first two steps, request and grant phase, for configuring the crossbars 

before packet transfer. Every IPM has separate request and grant lines to each scheduler. 

The following two steps perform the scheduling: 

1. All the input ports which have cells, request for the output ports for which their 

head of line cells are destined. 

2. The grant arbiters select one among the received requests in a round robin 

fashion. The grant signals are sent to the input ports and the pointers are 

incremented to one location beyond the selected input ports. 

Figure 4.2 illustrates this scheduling process for a switch of size 4 and with a 

single FIFO queue at each input port. Each input port makes a request to the output port 

for which it has a packet stored. The output port selects the next requesting input port at 

or after the pointer in the round-robin schedule. Arbiters are shown here for output ports 

in Figure 4.2. Input ports 1, 2, 3, 4 request output ports 2, 3, 1, 3, respectively. Grant 

58 



arbiter 1 and 2 receive one request each and therefore they select the requesting input 

ports. However, output port 3 is requested by two input ports. Grant arbiter 3 selects one 

input port among the requesting input ports in a round-robin fashion as shown in Figure 

4.2. Pointers are incremented to the locations beyond the selected input ports. The pointer 

at the output port 4 remains unchanged as none of the input ports requested the output 

port 4. At the completion of arbitration, three input-output pairs have been matched, 

which is the maximum size matching. 

IPM OPM IPM 

• 
(a) Request phase 

OPM 

• 

• 
(a) Grant phase 

Grant arbiters 

Figure 4.2 SLIP scheduling process for enhanced crossbar CIOQ switch architecture 

59 



4.2 Pipelined Scheduling 

In the last chapter, we showed that by parallelizing the packet transfer from input 

ports to the output ports and scheduling process, the scheduling overhead can be 

eliminated and this single stage pipelining provides a large time window for slow and 

complex but fair scheduling algorithms. Similar approaches have been reported in 

[37][38] for CIOQ switches with multi-stage interconnection networks. This switch 

architecture employs this single stage pipelining for providing the large time window for 

schedulers for configuring the switch fabric for packet transfer from input ports to the 

output ports. 

Time window for scheduling 

n n n n n 
Grant 1 Grant 2 Grant 3 Grant 4 

_n/ n n ~ n 
Request 1 Request 2 Request 3 Request 4 Request 1 

Subcycle 1 I Subcycle 2 Subcycle 3 Subcycle 4 

Switching cycle 

Figure 4.3 Pipelining of the scheduling process 

60 



The process is explained in the following. Each switching cycle is divided into 

four equal subcycles. Each input port requests for its head of line cell at the start of 

subcycle 1, and if selected, a grant is issued at the start of the next subcycle 2. The same 

process is repeated four times during each switching cycle as shown in Figure 4.3. The 

request 4 is granted in the first subcycle of the next switching cycle. This pipelined 

scheduling adds one subcycle delay for every cell traversing input buffers. For a line rate 

of 1 Gb/s a time window of 1 06ns is available for the schedulers for configuring the 

switch fabric for cell transfer, which will decrease to 53 ns for a line rate of 2Gbps. This 

large time window allows the design and implementation of complex but fair scheduling 

algorithms. With the increase in the line rate, this time window will decrease, since an 

increase in line rate means a shorter switching cycle, which means a small subcycle. 

The SLIP schedulers used in this architecture take less than 5ns for configuring a 

16x 16 switch. However with the increase in the switch size this delay would increase. For 

a line rate of 1 Gbps, a scheduler 20 times more complex than SLIP can be implemented 

due to the large time window provided by pipelined scheduling. 

4.3 Performance Evaluation 

In this section, we present the software simulation results of the architecture 

described in the previous sections. The primary goal of simulation is to study the 

behavior of the presented switch architecture for both uniform random and bursty traffic. 

Performance of a switch is mainly determined by the overall throughput and the delay 

packets suffer while traversing the switch and the buffer requirement for achieving an 

61 



acceptably low cell loss rate. Delay performance is determined separately for input and 

output buffers. 

We developed a C++ simulator on a UNIX platform for evaluating the 

performance of the presented packet switch architecture. Some of the modules were used 

from the existing simulator developed by Mehrotra [39]. The simulator is simple and 

modular and can be used for input queued, output queued and CIOQ switches. 

Throughout the simulations we used a 53 byte cell. However, the cell size can be changed 

but should be fixed for an entire simulation. We used the traffic models described in 

Chapter 3, for generating the traffic. All the simulations were run for 1000000 switching 

cycles unless specified otherwise. Large buffer size, were was used to ensure that no cell 

was lost during a given simulation. As the number of cells used in every simulation 

exceeded 10 million, this corresponds to a cell loss of less than one in ten million or 

better. All the queue sizes are given in terms of 53-byte cells e.g a queue size of 50 means 

that queue can hold 50 53-byte long packets. Throughout the simulations for bursty 

traffic load, a mean burst length of 15 was used. 

Figure 4.4 shows the delay performance of the switch architecture for uniform 

random traffic and bursty traffic for different traffic loads. These results were obtained 

from the simulation of a 128 x 128 enhanced crossbar CIOQ switch architecture. From 

these results it is apparent that the delay performance of this architecture significantly 

degrades for bursty traffic. 

For bursty traffic and an arrival rate greater than 0.8 the delay through the switch 

architecture is significantly high, therefore for determining the buffer space requirement, 

62 



we use a traffic load of 0.8. If we use higher traffic loads, to avoid cell loss we need a 

very large buffer space. At the same time for higher traffic loads (>0.8) delay through the 

switch architecture will increase significantly. Therefore we use a reasonable (0.8) traffic 

load such that delay through the architecture will be acceptable. We then determine the 

buffer space requirement for this load such that there is no cell loss. Throughput of this 

switch architecture is in excess of 99% and remains almost the same for both uniform 

random and bursty traffic. In the following we present the delay performance and buffer 

requirements for this architecture for different switch sizes. 

80r---~~--~-----T-----r-----r----~----~-r--~---, 

70 

60 

BL1rsty Traffic 

URT 

0.4 0.5 0.6 0.7 0.8 0.9 
Traffic Load 

Figure 4.4 Delay performance of enhanced crossbar CIOQ switch 
architecture for different traffic loads 

63 



4.3.1 Delay Performance 

We studied the simulation results for different switch sizes of the average delay of 

the speeded-up packet switches for both uniform random and bursty traffic arrival. We 

plotted the total average delay through the switch suffered by packet traversing the switch 

obtained from simulations. We have plotted the input and output queue delays separately. 

The delays shown in Figure 4.5 are in the number of switching cycles used to traverse 

through input ports, output ports or through the switch. It can be seen that the total delay 

is dominated 

100r--------r-.-------r--------r-~==;,=~~=;~~~;=====~ 
4- Through Input B~ffcrs for URT 

90 

so 

(j) 
.9:! 70 
u 
() 
C) 
c: 60 
:E 
.l:l 

~ 50 

~ 
Qi 
0 40 
Q) 

~ 
~ 30 
<( 

20 

10 

-»- Through Output Buffers for URT 
+ Through the Switch for URT 
-u- · Through Input Buffers for Bursty Traffic 
-v- · Through Output Buffers for Bursty Traffic 
-B- Through the Switch for Bursty Traffic 

~~---------~~=--=--=-=-=-==-~~=-=-=============~ Iff--. . 

ol-..llllllc~~;;·.;;;.;~==~· =~~J=.c~·-;;.;·;;;-·;;;·~,_;;;=r=;· ~;;;;· ;,;;:' ;.;;· =·&=;a;·;;;·;;;;'';;;;=cr~;;;·-;.;;"· ;.;;·-;;;;· ==;;.;">"'~;;;;·=-'' ==.;;;.;·-;;.;'·-1'41~;;·11....-----1 
0 so 100 150 200 250 300 

Switch Size 

Figure 4.5 Average delay performance of enhanced crossbar CIOQ switch 
Architecture (traffic load = 0.8) 

64 



by the output queueing delay. It can be seen from the plot that the average delay that cells 

suffer while traversing the input port is significantly less than the average delay through 

output ports. The interesting result is that, even for bursty arrivals the average delay 

through the input ports is less than 2 switching cycles. This implies that the cells 

traversing the switch suffer most of the delay at the outputs. In other words, this is a 

predominantly output queued switch architecture. This is an important observation 

considering the fact that well-known scheduling algorithms exist for providing QoS 

guarantees in ideal output queued switches. These scheduling algorithms can be 

employed in this architecture in a similar fashion as in an ideal output queued switch for 

ID 
u 

1500.----.----r--.----.--;==~==r;=::==~~;::r::;;::====~ 
-!)- Through Input Buffers for URT 
-><- · Through Output Buffers for URT * Through the Switch for URT 
-o- Through Input Buffers for Bursty Traffic 
+ Through Output Buffers for Bursty Traffic 
o Through the Switch for Bursty Traffic 

(> 1000 
0') 
c 
E 
B 

~ 
~ 
Qj 
0 
E 
::;:, 

Ill 

Ill 

E 500 
·:;;: 

. 
<tS 

:::;;: 

ol_~~~3t====~~~========~=====~~----~ 
0 50 100 150 200 250 300 

Switch Size 

Figure 4.6 Maximum delay performance of enhanced crossbar CIOQ switch 
Architecture (traffic load = 0.8) 

65 



providing the QoS guarantees. The switch architecture overcomes the HOL blocking 

problem associated with pure IQ switches and the high switch speed requirement for the 

ideal OQ switches and closely approximates the best performance obtainable. From 

Figure 4.5 it is also obvious that the delay performance of these switch architectures 

remains the same for different switch sizes. This implies that this architecture scales well. 

Most prior work compares the performance of the switches by measuring the 

average delay that packets suffer while traversing the switch for various traffic loads. 

Average delay serves as a good metric for studying the relative performance of two or 

more switch architectures; however maximum delay performance is a better parameter 

for determining the performance of any switch architecture. In Figure 4.6 we show the 

maximum delay performance of the switch architecture. Once again it can be seen that 

the total delay is dominated by the delay though output ports. Similarly, the maximum 

delay remains almost the same for different switch sizes. As expected the maximum 

delay for bursty traffic is significantly high. 

4.3.2 Buffer Space Requirement 

The buffer space requirement is one of the important factors in determining the 

performance of the switch architecture. Figure 4. 7 presents the maximum buffer 

occupancy for both uniform random and bursty traffic arrivals. The buffer space 

requirements at the input port and output port are shown separately. It can be seen from 

Figure 4.7 that for bursty traffic the buffer requirement at the output port increases 

significantly. As we observed for delay performance the buffer space requirement is also 

66 



very high at the output port compared to at the input ports. This is because of the high 

throughput due to virtual speedup provided by the multiple switch fabric. It can be also 

seen that the buffer requirement at input port and output port for different size of switches 

remains the same. The increase in the buffer space requirement at the IPM is much less 

than the increase in the buffer space required at the OPM when traffic arrival changes 

from uniform random to bursty. Thus, this is a predominantly output queued switch. 

1!l 

1soo r----'T----"'T'"----~-----;::=:~==:=.~:=.::~:~====~ 
-¢-- Input Buffers for URT 
-fr · Output Buffers for URT 
-o- Input Buffers for Bursty Traffic 
0 Output Buffers for Bursty Traffic 

~ 1000. 

:E' 
0, 
c 
Q) 
_j 

Q) 
::J 
Q) 
::J 
0 
E 
::J 

0 

0 
--------------------------------------0 

0 
0 

. E ·x soo 
Ill 
2 

~.~-*~--"7=·~"'=-=--~~----·a--~---------------o 
0~~~~~--~--~---~-._---~----~~--~ 

0 50 100 150 
Switch Size 

200 250 300 

Figure 4.7 Buffer space requirement of enhanced crossbar CIOQ switch 
architecture 

67 



4.4 Summary 

In this chapter, we described the design of enhanced crossbar combined input

output queued switch architecture which is capable of approximating the ideal OQ 

switch. We described each component of this architecture and discussed its design We 

also described the parallelism that is used to provide a large time window for 

implementing slow and complex but fair scheduling algorithms. 

At the end of this chapter, we presented the performance of this architecture under 

uniform random and bursty traffic. The performance of the architecture is evaluated for 

the following parameters: the delay that packets suffer while traversing the switch and the 

buffer space requirement both at input and output ports for an acceptable performance. 

We observed that the average delay through input buffers is very small for both uniform 

random and bursty traffic and delay through output ports dominates the overall delay. 

The buffer requirement at the input ports is much smaller compared to that at the output 

ports. These results show that the performance of this switch architecture is close to that 

of an ideal output queued switch. In the next chapter we will VLSI implementation of this 

switch architecture. 

68 



Chapter 5 

Design and VLSI Implementation 

In the previous chapter, we presented the performance of the enhanced crossbar 

CIOQ switch architecture. In this chapter, we present the design and VLSI 

implementation of the same architecture to show that our work is easily implementable 

using readily available CMOS technology. The design is targeting 0.18-micron CMOS 

standard-cell ASIC technology. We describe the design methodology and implementation 

of input port module, output port module, switch fabric and scheduler in detail with high

level schematic diagrams. We report on the design complexity and discuss 

implementation results. This implementation is capable of handling a line rate of 622 

Mbps. We begin with the input port module and describe all the major sub-blocks, and 

similarly, describe the output port module and its major sub-blocks. We then describe the 

implementation of the switch fabric and scheduler. At the end of the chapter, we present 

the total area and gate count for the design and each individual block. 

69 



add_op_l c::::::::==::;!>l 
ip_pulse_l--~ 

ip_pulse_l 
add_op_l6 

IPM 
1 

grant_}_] 

grant_l_l6 

grant_l6_1 

f?rant_l6_16 

IPM 
16 

an rant 1 

Switch fabric 

rant 16 

OPM 
1 

OPM 
16 

Figure 5.1 High-level schematic for a 16 x 16 enhanced crossbar CIOQ switch architecture 

70 

odata_l 

o _pulse_] 

odata_l6 

o _pulse_l6 



Figure 5.1 illustrates a high-level schematic of the enhanced crossbar CIOQ 

switch architecture described in the previous chapters. The grant_bus is a 16-byte wide 

bus, which carries the grant signal from all the 16 schedulers to the switch fabric. 

idata_bus is a 16-bit wide data bus that carries the data from IPMs to the switch fabric. 

Odata-bus is also a 16-bit wide data bus that carries the data from the switch fabric to the 

OPMs. Every scheduler has a 16-bit wide request and grant bus associated with it. The 

request bus carries the requests from all the IPMs to that scheduler and the grant bus 

carries the grants issued by all the schedulers back to the IPMs. 

We determined from the software simulation of the architecture that for a bursty 

traffic load of 0.8 with mean burst length of 15, the input port should be capable of 

storing 50 cells and output port module should be capable of storing 900 cells to avoid 

cell loss both at input ports and output ports. Therefore we used this storage capability at 

each IPM and OPM, respectively. 

The interface to the scheduler involves two lines for each input. One is dedicated 

to the request and the second is for the grant signal. Routing complexity increases with 

the switch size. Therefore this architecture with the current routing configuration may not 

be feasible for large sized switches, where by large size switches, we mean switches with 

more than 1000 ports. However with current VLSI technology, medium (50-500 ports) 

sized switches based on this architecture can be implemented. 

The area of the design and blocks that is shown in this chapter is given in ,u ni 

and the gate count is given with reference to the area of a two-input NAND gate. Results 

presented later, do not include the area of memories, since for synthesis of memories, 

71 



usually a memory compiler is used, as it is the most area efficient approach [40]. This 

memory compiler can be called from within the synthesis tool or a component that has 

already been compiled can be instantiated. However, if a design compiler is used for 

synthesis of memories, it maps a bit cell to a flip-flop that results in very high gate 

counts. Due to unavailability of the memory compiler, we were unable to obtain the 

estimate of the gate count for all the buffers. 

Table 5.1 Input port module implementation details 

Block Area Gate count 

Address memory pointer 2272 184 

Data memory pointer 5338 432 

6-bit counter 2273 184 

Write controller 4793 388 

Read controller 8724 706 

6-bit up down counter 3263 264 

5.1 Input Port Module 

A high-level schematic of the Input port Module (IPM) is shown in Figure 5.2. To 

achieve a high-speed implementation, the control of the input port module is distributed 

between two controllers, the write and read controllers. As illustrated in the figure, each 

IPM has two dual-port Random Access Memories (RAMs) called the data buffer and 

address buffer, two 6-bit counters, four memory pointers, a 6-bit up down counter, a 

serial to parallel converter, and a parallel to serial converter. Table 5.1 summarizes the 

72 



ip_pulse 
full 6-bit +-1_----d~Pre_~.;.t_P~?"--n.rt-----~::: 

1-------iLLi;n"-=r!-f..LJrnuwm•:J.J-t_---'lli Up-down r--

Counter 

reauest 

Read Write 
Controller r-

r--
f-

~ 

I~ 
l::l 
~ 

rd_data_enb .------1 Controller IE----

~: ...... \ 

-
count_53 

6-bit 
Counter 

data_in Serial to 
parallel 

converter 

_]'... 

4 Memory~ 
Pointer 

wr _data_enb 

L...--~ Memory 
Pointer 

I~ 
~ 
~ 
<::l"' 

f-. i lf•~. G, f- i.;•· • ~ll {pi. ~ •••· ;$. ;l$;...~ j~ 
E-

Address 1.4""'~~-d 
Buffer ~$$ ri.i." Memory ~ 

Pointer 

Data 
Buffer 

6-bit 

ount_53 Counter 

Parallel to 
serial 

converter 

Figure 5.2 High-level schematic of input port module 

73 

-



area and gate count for each sub-block in the IPM for 0.18-micron CMOS technology. In 

the following we explain the functionalities of some of these blocks in some detail. 

5.1.1 Write Controller 

The write controller stores the incoming cells in the data buffer and stores the 

corresponding address of the output port to which the cell is destined in the address 

buffer. A serial to parallel converter converts the incoming data into a byte wide word 

and latches the word for the write controller, which stores the word in the memory. 

The memory pointer for the address buffer is a 6-bit rollover counter, which 

provides the 6-bit address required to write to an empty location in the address buffer. 

Similarly, the memory pointer to the data buffer is a 12-bit rollover counter. The write 

controller increments these memory pointers after the respective write operations. 

The write controller uses a 6-bit counter to count the number of bytes written to 

the data buffer. When 53-bytes have been written to the memory a wr _count_53 signal is 

generated by the counter to inform the write controller about the completion of packet 

being written. A 6-bit up-down counter is used by both write and read controllers to keep 

track of packets stored in the data buffer. If the packet count is 50, a full signal is asserted 

to inform the write controller. The write controller samples the full signal before storing 

the cell to check if there is space in the data buffer for storing another cell. If the buffer is 

full the write controller drops the arriving cells. After storing the packet in the data buffer 

the write controller increments the counter. 

74 



5.1.2 Read Controller 

The read controller samples the empty signal from the 6-bit up-down counter to 

check the status of the data buffer. If the empty signal is level high than there is no cell 

stored in the data buffer, thus the read controller waits for the arrival of a new cell. If the 

empty signal is level low, the read controller reads the corresponding address of the head 

of the line packet from the address buffer and requests the desired output after decoding 

the address. If a grant is received from the scheduler, it transmits the packet to the output 

through the switch fabric and decrements the up-down counter. 

The read controller also uses a 6-bit counter, like the write controller, to count the 

number of bytes the read controller reads from the data buffer. When a complete packet 

has been read the counter generates a rd_count_53 signal to inform the read controller 

about packet completion. A parallel to serial converter converts the read byte wide data 

into a 4-bit wide word and sends it to output port module through the switch fabric. 

Like the write controller, the read controller also maintains two similar memory 

pointers to address and data buffers. These memory pointers provide the address required 

to read from the specific locations in the memory. 

5.1.3 Buffers 

The data buffer holds up to 2650 one-byte words, equivalent to 50 53-bytes 

packets. The address buffer holds up to 50 four-bit wide words, the output port addresses 

of up to 50 packets stored in the data buffer. The buffers are maintained as first-in-first-

75 



out queues, that is the cell and address are stored at the end of the queue and read from 

the head of the queue. 

Table 5.2 Output port module implementation details 

Block Area Gate count 

Data memory pointer 6826 552 

6-Bit counter 2273 184 

Write controller 2678 217 

Read controller 3785 306 

1 O-bit up down counter 4919 398 

5.2 Output Port Module 

The output port module is responsible for storing and transmitting the cell on the 

link. A high-level schematic of the output port module is shown in Figure 5.3. Like the 

input port module it has two controllers for storing and retrieving the cell from the data 

buffer. As illustrated in the figure, each IPM has a dual-port RAM called data buffer, two 

6-bit counters, four memory pointers, a 10-bit up-down counter, a serial-to-parallel 

converter, and a parallel-in serial-out shift register. The data buffer holds up to 47700 

one-byte words that is equivalent to 900 53-byte packets. 

In the following we explain functionalities of the write and read controllers in 

some detail. Table 5.2 summarizes the area and gate count for each sub-block in the OPM 

for 0.18-micron CMOS technology. 

76 



fill u empty 

any _grant inc count dec count 
10-bit count_ 

Write Up-down Read 
Controller wr _count_53 Counter rd_count_53 Controller 

53 

-
-

en_wr _count en_rd_count 
6-bit E--- '---- 6-bit 

Counter Counter 

t wr _data_enb rd_data_enb 
data_out data_in ~ 

0 Serial to .. 
.... ,, .... , ' ...... ',>i,' 

'J,< '',,,'''":"< ,';,<c;;',,Cc,'<~ } ,,,.,;;:;;;' ,;;;;,;, .. , 0, s+Jij!) ,,, .. , .... ;, Parallel to v parallel 7 

converter serial 

~ 
Data A shift 

Memory Buffer 
,, .. , 

Memory re!!ister 
"' Pointer Pointer 

Figure 5.3 High-level schematic of output port module 

77 



5.2.1 Write Controller 

The write controller stores the cells coming from the IPM in the data buffer. A 

serial to parallel converter converts the incoming 4-bit word into a byte wide word and 

the write controller stores the word in the data buffer. The memory pointer provides the 

address of the location where the packet is to be stored. This memory pointer is a 16-bit 

rollover counter, which is incremented by the write controller after every write operation. 

The write controller uses one of the two 6-bit counters, to count the number of 

bytes written to the data buffer. When 53-bytes have been written to the memory a 

wr _count_53 signal is generated by the counter to inform the write controller about the 

completion of packet being written. 

A 6-bit up down counter is used to keep track of packets stored in the data buffer. 

If the packet count is 900, a full signal is asserted to inform the write controller. The 

switching cycle is divided into four equal subcycles and at the start of each subcycle the 

write controller samples the full signal and the any _grant from the scheduler associated 

with the OPM. If a grant has been issued and the full signal is not level-high then it 

stores the packet, else if the buffer is full the write controller discards the arriving cells as 

we employ a queue loss scheme in this architecture. On the other hand, if the data buffer 

is not full, the write controller stores the incoming packet from the IPM at the end of the 

buffer and increments the up-down counter. 

78 



5.2.2 Read Controller 

Like the read controller at the IPM, the read controller at the OPM also samples 

the empty signal from the 1 O-bit up down counter to check the status of the data buffer. If 

the empty signal is level high then there is no cell stored in the data buffer, thus the read 

controller waits for the arrival of a new cell. If the empty signal is level low, the read 

controller generates a frame pulse and starts reading the packet byte by byte and stores a 

byte in an 8-bit parallel to serial shift register. This shift registers transmits the packet bit 

by bit on the link. The read controller also uses a 6-bit counter, like the write controller, 

to count the number of bytes, the read controller reads from the data buffer. When a 

complete packet has been read the counter generates a rd_count_53 signal to inform the 

read controller about packet completion and the read controller decrements the up down 

counter. Like the write controller, the read controller also maintains two similar memory 

pointers to address and data buffers. These memory pointers provide the address required 

to read from the specific locations. 

5.3 Switch Fabric 

The switch fabric is the interconnection between inputs and outputs. Figure 5.4 

illustrates a 4 x 4 crossbar that is a simple and area efficient implementation of crossbars 

of smaller sizes; however, large crossbars cannot be implemented using this design due to 

the fanout constraint. We used the same design for implementing 16 x 16 crossbars for 

the design we presented in this document. 

79 



Grants from 
Scheduler 1 

Output 1 

Grants from 
Scheduler 3 

Output 2 

Grants from 
Scheduler4 

Output 3 

Figure 5.4 4 x 4 crossbar implementation 

Output 4 

This architecture is fully controlled by schedulers. Schedulers are also responsible 

for informing the output port modules (OPMs) if cells have been scheduled for them. To 

understand the functionality properly we need to consider each column of AND gates in 

the crossbar shown in the Figure 5.4. Each scheduler controls a column of AND gates 

and at the most issues one grant signal during a subcyle. Therefore in each column only 

one input is connected to the output. As shown in Figure 5.4, if inputs 2 and 3 have cells 

for outputs 1 and 4 respectively, scheduler 2 will select input 2 and scheduler 4 will select 

80 



input 3. The grant signals are latched so that these input - output pairs are available for 

the entire subcycle. Cells are then routed to their respective outputs. 

As we described in the previous chapter, four of these crossbars in parallel serve 

as the switch fabric for the switch architecture presented in this document. All four 

crossbars are configured with the same grant signal that is the overlapping crosspoints 

use the same latched grant signal to determine their states. 

Request ... Barrel ... Simple ... Barrel Grant ..... 
1: ,I, .. r .·1Y Shifter 1•\:VIIIC Priority i '···i .,,q,.;;p Shifter , ... .. 

(left) 
.. 

Encoder 
l1'11i ~ (right) 1.1 

.... 

j':i 

fo I~· 
~t 1:::11< I. 

•• ·•u;IW+IIIII<H .;. :•·•••• . , ·· •n AY. ill/' IT.ih. ···><·+ .• 

any _grant ,..JL- l:i 

lit l OR I 

'----- <~ 
.... .... 

Rotate •.. , vn .• :mv. .. ,.,;, •. , •. IGHdl!ii· H;>.<;+ i i. 

Registers ... Encoder ..... 

Figure 5.5 High-level schematic of scheduler 

81 



5.4 Scheduler 

We used the iSLIP scheduling algorithm [24], and implemented it using barrel 

shifters and an encoder, as this is the most common design used for implementing round

robin arbiters [41]. One of the alternatives to the barrel shifter implementation is N 

simple priority encoders with an N: 1 (N+ 1 )-bit multiplexer implementation. This 

implementation is faster than the barrel shifter but results in large area compared to a 

barrel shifter implementation. In the barrel shifter implementation, there are two barrel 

shifters in the critical path. Therefore it is slower than the N simple priority encoder 

implementation. As well, in barrel shifter implementation only one simple priority 

encoder is required. A high-level schematic of the scheduler is shown in Figure 5.5. Two

barrel shifters in the critical path make this implementation of the scheduler slower than 

some other implementations presented in literature. However, in the presented switch 

architecture, for a line rate of 622 Mbps, a time window of 170 ns is available for the 

scheduling process, in the switch architecture presented in this document. This large time 

window allows us to use slow schedulers and focus on decreasing the area. Thus, we use 

a barrel shifter design, as it requires considerably less area than the other 

implementations. 

In this implementation, a barrel shifter first rotates the incoming requests by P, 

where P is a 4-bit pointer used to remember the state of the scheduler and points to the 

input port, which had the highest priority at the end of previous scheduling cycle. The 

simple priority encoder selects one among the requesting input ports. The second barrel 

shifter than rotates the output of the simple priority encoder in the other direction by the 

82 



same P to obtain the final grant signals. If a grant is issued, P is incremented to the next 

location beyond the selected input port. This process of incrementing the pointer involves 

rotating the grant signal by one, then encoding that rotated signal and registering these 

encoded log 2 N bits. The state of the scheduler is changed only when there is a grant 

issued during the scheduling process. 

5.5 Implementation Results 

The architecture is designed in a top down fashion. However, the implementation 

was carried out in bottom up fashion. Each block was functionally verified and observed 

to be working as intended. However, we were unable to functionally verify the complete 

design because of the limitation of the simulation tools. Each block as well as the 

complete design is synthesized using Synopsys Design Compiler. The design met all the 

timing requirements. Packet transfer from the IPM and OPM and the serial to parallel and 

parallel to serial conversion of data are performed at the line rate. The corresponding 

blocks met the timing requirement that is 622 MHz. The rest of the design operates at 

half the line rate and successfully synthesized to meet the timings. 

The maximum throughput of this 16x 16 switch is close to 1 OGbps with memories 

operating at 311MHz. Table 5.3 provides the area and its corresponding gate count for 

each individual block and total area of the 16x16 switch architecture. The area and gate 

count shown in the table exclude the area for the memories. 

83 



Table 5.3 Area and gate count for the design 

Block Area Gate count 

Input port Module 26755 2166 

Output port module 29670 2402 

Switch fabric 16652 1348 

Scheduler 18343 1485 

Total 1212940 98213 

5.6 Summary 

In this chapter we described the VLSI implementation of the 16 x 16 switch fabric 

presented in this document, using 0.18-micron CMOS standard cell technology. We 

described each block of the design with a high-level schematic and presented synthesis 

results. The control is distributed to achieve high speed. Similarly, instead of a 

centralized scheduler, each output port modules has a corresponding scheduler to 

schedule the traffic destined for it. Slow memory speed requirement for this architecture 

alleviates the size limitation problem, usually associated with speeded up switches. 

Due to its simplicity and small gate count, the crossbar implementation presented 

in this chapter is suitable for small sized switches. The large time window available for 

scheduling due to pipelining of the scheduling process enabled us to use a slow but area 

efficient, barrel shifter and priority encoder, design for the scheduler. This 

implementation is capable of handling a line rate of 622 Mbps and the maximum 

84 



throughput of this 16x 16 switch architecture is close to 1 OGbps with memories operating 

at 311MHz. The throughput can be further improved with the use of 0.13 or 0.09-micron 

CMOS standard cell technology. 

85 



Chapter 6 

Conclusions and Future Work 

Speed and scalability are important measures in determining the overall 

performance of a high bandwidth packet switch. In this thesis, we addressed both these 

parameters and attempted to provide a solution, using combined input-output queueing 

and multiple crossbars. The resulting architecture is scalable and provides the throughput 

close to that of an ideal output queued switch. The switch architecture presented in this 

thesis is a combined input-output queued switch with four crossbar planes used for 

providing the virtual speedup of four. It employs pipelined scheduling for eliminating the 

main bottleneck of scheduler speed. 

In Chapter 5, we have described the VLSI implementation of this architecture to 

show that this architecture is easily implementable in available VLSI technology. A 

16x16 switch is implemented in 0.18-micron CMOS standard cell technology. This 

architecture is capable of achieving an overall throughput close to lOGbps. Each port can 

86 



handle a line rate of 622Mbps which can be further improved by using 0.13 or 0.09-

micron standard cell technology. 

6.1 Contributions 

The main contributions of this work are the throughput enhancement of the switch 

fabric such that it can emulate an ideal switch and elimination of the overhead associated 

with configuring the switch fabrics involving input buffers. Furthermore, this architecture 

employs distributed scheduling which makes the implementation of the schedulers 

simple. In the following we describe major contributions in some detail. 

6.1.1 Output Queueing Emulation 

Pure output queued switches which have no interconnect blocking and whose 

output ports are capable of accepting all the cells destined to them, are known for their 

high throughput and are suitable for providing QoS guarantees. However, due to switch 

fabric and memory speed limitations, the ideal output queued switches are no longer 

feasible for high-speed switching. Various studies have shown that an output queueing 

emulation approach is able to address the QoS issue. The idea is that if the switch fabric 

of an input-queued switch is moderately (by 4 or 5 times) speeded up, most of the 

incoming cells can be instantly sent to the output port. This requires queues at the output. 

This arrangement of speeded up switch fabric and combined input-output queueing 

makes the switch behave as an output queued switch. Each output port can provide QoS 

by using the well known scheduling algorithms which exist for this purpose. 

87 



In the packet switch architecture described in this thesis, we obtained the speedup 

using multiple switch planes and showed that this architecture achieves almost the same 

delay performance as an ideal output queued switch. We observed that the delay suffered 

by packets traversing the switch was dominated by the delay through the output buffers 

and the delay through the input buffers was very small compared to that through output 

buffers for both uniform random and bursty traffic. These results showed that this 

architecture can approximately emulate the ideal output queued switch. Hence the well

studied scheduling algorithms for providing QoS can be employed for this architecture at 

the output ports and similar QoS performance can be achieved. This architecture is 

suitable for switches which are required to support different services as it has the same 

throughput close to an ideal output buffered switch and similar QoS performance can be 

achieved. 

6.1.2 Scheduling Overhead Elimination 

Switches involving buffers at the input ports need schedulers for configuring the 

switch fabric before transferring the packet from input ports to the output ports. This 

scheduling is usually an overhead which increases with the increase in the size of the 

switch and may become a limiting factor in terms of size of the switch. In this 

architecture the scheduling and packet transfer are performed in parallel which eliminates 

this scheduling overhead. The single stage pipelining provides a larger time window for 

scheduling equivalent to that of the time required for a packet transfer from input port to 

88 



output port. The cost of this parallelism is that every cell traversing the input ports suffer 

a small delay equivalent to 1A of a switching cycle. 

With this pipelined scheduling, increasing switch size does not present a major 

problem in terms of the scheduling time because the scheduler has a large time window 

for configuring the switch fabric. The fair scheduling algorithms presented in the 

literature for scheduling the switch fabric are slow and very complex, therefore this 

parallelism allows us to use those complex but fair algorithms for configuring the switch 

fabric before transferring the packets from the input ports to the output ports. 

6.1.3 Distributed Scheduling 

Centralized schedulers face the scaling problem. Using distributed schedulers can 

mitigate this problem and each individual scheduler is much simpler. Distributed 

algorithms scale linearly with the switch size. One of the problems in designing a 

distributed algorithm is the exchange of information among all schedulers that may be at 

different input ports and output ports. In some scheduling algorithms multi-bit 

information, such as queue lengths, or waiting times, is required which increases the 

number of interconnections significantly. As well, the interconnection delay can increase 

the scheduling time significantly, especially when iterative scheduling algorithms are 

employed. 

In this architecture, we employed schedulers at each output port, responsible for 

scheduling the traffic destined to that output port only. The scheduling algorithm 

employed does not require the queue length or waiting time information, therefore only 

89 



select and grant interconnections are required from each input port to each scheduler. The 

interconnection delay is not a problem in this architecture since a large time window is 

available for configuring the switch fabric due to pipelining of the scheduling process, 

described in the previous section. 

6.2 Future Work 

High-speed switches are required for emerging high bit rate applications. In 

addition to receiving high throughput, these applications often have other requirements 

such as a delay guarantee and a low packet loss rate. Currently, researchers are working 

in the direction of integrating QoS and switch matrix schedulers. In the following, we 

briefly describe some potential areas for modifications, which can be explored to improve 

the performance of this architecture. 

6.2.1 Performance Comparison 

An important task for the future is the comparison of this switch architecture with 

other existing or proposed similar switch architectures both in terms of performance and 

complexity. We compared the performance of this architecture to a hypothetical output 

queued switch which is referred to as the ideal output queued switch throughout this 

thesis. However this ideal output queued switch is impractical therefore for comparing 

the implementation complexity and related cost, a practical switch, whose performance is 

close to that of an ideal output queued switch is required. 

90 



6.2.2 Provision and Integration of QoS 

Many emerging high bit rate application not only require high throughput but also 

need some delay and delay jitter guarantees. To support these emerging applications the 

packet switches should be capable of providing the QoS guarantees. For this architecture 

QoS scheduling algorithms can be implemented at the output port. 

Integrating the functionality of the QoS scheduler into the switch matrix scheduler 

still remains a difficult task. Configuring the switch fabric for increasing the throughput 

and reducing the delay simultaneously becomes a two dimensional problem, since the 

delay and throughput in many cases are conflicting specifications. Some work is being 

carried out in this direction, but high throughput and fair scheduling algorithms are not 

yet available. 

6.2.3 Dynamic Buffering 

For a small sized switch, instead of maintaining one memory per port, one large 

multi port RAM can be used for several ports. The advantage of maintaining queues of 

several ports in the same RAM is that it may be dynamically partitioned, resulting in 

more efficient usage. This is particularly important, as the average memory utilization of 

this switch architecture is very low. Thus dynamic buffering can significantly reduce the 

memory requirement of this architecture. 

91 



6.2.4 Multicasting 

The crossbar performs multicast by simultaneously delivering packets to multiple 

destinations. Two schemes can be adapted for this purpose: in the first, all the copies of 

packets are sent simultaneously. If the multicast packet does not get grants from all the 

desired outputs, it waits for the next cycle and tries again. In the second case, the copies 

of the packet can be sent to the outputs which have issued a grant. The second scheme is 

much simple and results in high performance. 

92 



References 

[1] F. A. Tobagi, "Fast packet switch architectures for broadband integrated services 

digital network," Proc. IEEE, vol. 78, no. 1, pp. 133-167, January 1990 

[2] Cisco Systems; "Fast switched backplane for a gigabit switched router," 

www.cnaf.infn.it/-ferrari/tfngn/doc/fasts wp.pdf 

[3] S. Chuang, A. Goel, N. Mckeown, and B. Prabhakar, "Matching Output Queueing 

with a Combined Input Output Queued Switch," Infocom '99, New York, USA, 

1999 

[4] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, "Input vs. output queueing on a 

space-division packet switch," IEEE Transaction on Communications, Vol. 35, No. 

12,pp. 1347-1356,1987 

[5] Y. Oie, M. Murata, K. Kubota, and H. Miyahara, "Effect of speedup in nonblocking 

packet switch," in Proc. ICC '89, Boston, MA, p. 410-14, June 1989 

[6] M. A. Marsan, A. Bianco, E. Filippi, P. Giaccone, E. Leonardi, F. Neri, "On the 

behavior of input queuing switch architectures", European Transactions on 

Telecommunications, n.2, Feb./Mar.1999 

[7] A. Mekkittikul & N. McKeown, "A Practical Scheduling Algorithm to Achieve 

100% Throughput in Input-Queued Switches," INFOCOM '98, 792-799, 1998 

[8] B. Prahhakar and N. McKeown, "On the Speedup Required for combined Input and 

Output Queued Switching," Automatica, Vol. 35, no. 12, December 1999 

93 



[9] Y. S. Yeh, M. Hiuchyj, and A. Acampora, "The Knockout Switch: a Simple 

Modular Architecture for High Performance Packet Switching," IEEE J. Selected 

Areas in Communications, Vol. SAC-5, No.8, pp. 1274-1283, October 1987 

[10] J. S. C. Chen and T. E. Stern, "Throughput analysis, optimal buffer allocation, and 

traffic imbalance study of a generic nonblocking packet switch," IEEE Journal of 

Selected Areas in Communications, 9(3):439-449, April 1991 

[11] K. Kar, T. V. Lakshman, D. Stiliadis, L. Tassiulas, "Reduced complexity input 

buffered switches," Proceedings of Hot Interconnects VIII, Palo Alto, August 2000 

[12] A. H. Ahmadi and W. E. Denzel, "A Survey of modern high-performance switching 

techniques," IEEE Journal on Selected Areas in Communications, vol. 7, no. 7, pp. 

1091-1103, Sep. 1989 

[13] R.Y. Awdeh, and H.T. Mouftah, "Survey of ATM switch architectures," Computer 

Networks & ISDN Systems, vol. 27, pp. 1567-1613, 1995 

[14] H. Zuzuki, H. Nagano, T. Zuzuki, T. Takeuchi and S. Iwasaki, "Output-buffer 

switch architecture for asynchronous transfer mode," Int. journal of digital and 

analog cabled systems, vol.2, 269-276, 1989 

[15] C. Kolias and L. Klienrock, "Throughput Analysis of Multiple Input-Queueing in 

ATM switches," Broadband Communications, L. Mason and A. Casaca, pp 382-

393, Chapman & Hall, London U.K.1996 

[16] S. Nojima et al., "Integrated services packet network using bus matrix switch," 

IEEE J. Select. Areas Commun., vol. SAC-5, pp. 1284--1292, Oct. 1987 

94 



[17] F. A. Tobagi and T. C. Kwok, "The Tandem Banyan Switching Fabric: A Simple 

High- Performance Fast Packet Switch," Proc. IEEE, Infocom' 91, 1991 

[18] Y. El-Sayed, "Performance analysis, design and reliability of the balanced Gamma 

network," Ph. D. Thesis, Memorial University of Newfoundland, 1999 

[19] J. Giacopelli, M. Littlewood, and W. D. Sincoskie, "Sunshine: A broadband packet 

switch architecture," In Proc. ISS'90, Stockholm, May 1990 

[20] N. McKeown, V Anantharam, and J. Walrand, "Achieving 100% throughput in an 

input-queued switch," in Proceedings of INFOCOM'96, pp. 296-302, March 1996 

[21] D. S. Lee, "Generalized longest queue first: An adaptive scheduling discipline for 

ATM networks," in Proc. IEEE INFOCOM'97, vol. 3, pp. 1096-1104, 1997 

[22] A. Mekkittikul and N. McKeown, "A starvation-free algorithm for achieving 100% 

throughput in an input-queued switch," Proc. ICCCN'96, Washington D.C., pp. 

226-231, October 1996 

[23] T. Anderson, S. Owicki, J. Saxie, and C. Thacker, "High speed switch scheduling 

for local area networks," ACM Trans. Comput. Syst., vol. ll,no. 4, pp. 319-352, 

November. 1993 

[24] N. McKeown, "iSLIP: A scheduling algorithm for input-queued switches," 

IEEE/ACM Transactions on Networking, vol. 7, no. 2, pp. 188--201, April1999 

[25] C. Li, H. Heys, R. Venkatesan, "Traffic Generation for Broadband Switch 

Simulation," NECEC2002, St. John's, Canada, Nov. 2002 

95 



[26] H. Kim and K. Kim, "Performance analysis of the multiple input queued packet 

switch with the restricted rule," IEEE/ACM Transactions on Networking, vol.11, 

no.3, June 2003 

[27] H. Kim, C. Oh, Y. Lee, and K. Kim, "Throughput analysis of the bifurcated input

queued ATM switch," IEICE Trans., Commun., Vol. E82-B, pp. 768-772, May 

1999 

[28] C. Kolias and L. Klienrock, "Throughput Analysis of Multiple Input-Queueing in 

ATM switches," Broadband Communications, L. Mason and A. Casaca, pp 382-

393, Chapman & Hall, London U.K.1996 

[29] C. Kolias and L. Kleinrock, "Performance Analysis of Multiplane, Nonblocking 

ATM Switches," Globecom'98, pp. 356-362,Sydney, Australia, November 1998 

[30] Y. Oie, T. Suda, M. Murata, and H. Miyahara, "Survey of Switching Techniques in 

High-Speed Networks and Their Performance," International Journal of Satellite 

Communications, 9, 1991 

[31] M. Keyvani, "VHDL implementation of a high-speed symmetric crossbar switch," 

M.S. Thesis, Simon Fraser University, 1998 

[32] L. Cheng, "Design, Modeling and Analysis of the Balanced Gamma Multicast 

Switch for Broadband Communications," Ph. D. Thesis, Memorial University of 

Newfoundland, 2004 

[33] A. Pattavina and G. Bruzzi, "Analysis of Input and Output Queueing for 

Nonblocking ATM Switches," IEEE/ACM Transactions on Networking, Vol. 1, No. 

3, June 1993 

96 



[34] A. Moestedt and P. Sjodin, "IP address lookup in hardware for high-speed routing," 

In Proc. Hot Interconnects VI, Stanford Univ., 1998 

[35] D. Wu, "Modeling, Analysis and design of the Input Controller for A TM Switches," 

M. Eng. Thesis, Memorial University of Newfoundland, 2001 

[36] M. Katevenis, G. Passas, D. Simos, I. Papaefstathiou, and N. Chrysos, "Variable 

Packet Size Buffered Crossbar (CICQ) Switches," Proc. of the Int. Conference on 

Communications, Paris, France, 20-24 2004 

[37] P. C. Wong and M.S. Yeung, "Design and Analysis of a Novel Fast Packet Switch 

- Pipeline Banyan," IEEE/ACM Trans. on Networking, vol. 3, no. 1, pp. 63-69, 

February. 1995 

[38] R. Venkatesan and H. T. Mouftah, "Balanced gamma network- a new candidate for 

broadband packet switch architectures," in Proceedings of INFOCOM, IEEE, 

Florence, Italy, pp. 2482-2488, May 1992 

[39] P. Mehrotra, "A Framework for Studying Work-Conserving and Non Work

Conserving Scheduling Disciplines," Post doc. report, Memorial University of 

Newfoundland, June 2000 

[40] M. J. S. Smith, "Application-Specific Integrated Circuits," Addison-Wesley, 1997 

[41] Gupta and N. Mckeown, "Designing and Implementing a Fast Crossbar Scheduler," 

IEEE Micro, pp. 20-28, 1999 

97 










