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Abstract

Muscle wasting is common in infect ion. There is increased muscle proteolysis

without concomitant increased muscle protein synthesis so negative nitrogen balance

results . Much work has focused on this aspect of catabolic slates. However. increased

release o f amino acids into circulation leads 10 elevated amino nitrogen levels . The"liver

is the site fo r detox ifica tion of amin o nitrogen wastes. part icularly ammon ia. The urea

cycle. located on ly within the periportal hepat ic acinus. converts neurotoxic arumoum to

urea which may beexc reted in the urine. The response of the urea cycle subsequeru ro

endotoxin adm inistration was of specific interest to this work .

In this study, a single intraperitoneal injection o f E. coli lipo polysaccharide tLPS.

OI ~7 . 88 ) at a sublethal dose (3 mg/kg ) res ulted in a nearly three-fold increase in urea

excre tion from fasted rats betwee n I ~':!4 hours after inject ion. com pared to saline­

injected cont rols. Substrates for urea synthesis wert: also measured . Ammonia levels were

not changed in liver. muscle . blood or plasma 18 hours after endo toxin injection. There

were signi ficanl changes in the total concentrations of amino acids in both arterial plasma

and in the liver. Levels of alanine and glutamine . the primary gluce genic am ino acids.

were also affected subsequent to LPS injectio n. Alanine was sign ific ant ly increased in all

sample groups {skeletal muscle. liver . blood and plasma from hepat ic portal vein and

abdcminalaort ajin respo nse to LPS. Glutamine concentrations were not increased in the

liver nor arterial blood but were significantly elevated in hepatic penal venous plasma



and blood and in arterial plasma. There was. however. a significant decrease in muscle

glutamine .... hich is in agreement with findings in the literature. There appears 10 be an

increase in circulating ureagenic substrates as well 3S an increase in the hepatic content of

amino acids between 12-24 hours after LPS-injection in rats.

The urea cycle exhibits compartrnentation of melabolism. The first IWO enzymes

(carbamyl phosphate synthetase l. CPS I; ornithine transcarbamylase. OTC) are located

within the mitochondrion while the remaining enzymes (erginincsucclnare syn thetase.

AS; argininosuccinate lyase. AL: arginase) are found in the cytosol. Assays of the

enzymes of the urea cycle were carried cut ~4 hours after injection with l PS or saline.

There was no increase in total activity. in vitr o. cf anycf the enzyme s pcst-Lf'S

treatment. A previous study in our lab has found that liver protein increases by 18~ 0 in

response to LPS but this increase is not sufficient to account for the three-fold increase of

urea excretion from rats.

Regulation of flu.'<through the urea cycle enzymes has been previously reponed 10

be limited by the activity of CPS I. In isolated intact rat liver mitochondria. the rate of

citrulline synthesis was doubled in rats 24 hours after injection ofLPS compared to the

salinecontrols. The mitochondrial portion of the urea cycle. therefore. was stimulated in

response to LPS. N·acetylglutamate (NAG). an allosteric activator of epS I. was

hypothesized to playa role in the increased citrulline-synthesizing capacity of

mitochondria isolated from endoroxemic rats. NAG levels were measured in quick frozen

mitochondrial samples from endctoxemic and saline control rats in which citrulline



synthesis had also been measured in a separate aliquot . GC·M S analysis by Dr. Kratz

(Baltimore, MD) determined that mitochondria from endotoxemic animals contained

significantly more NAG (50% ) compared to saline controls. Analysis of the relationship

between citrulline synthesis from these mitochondria and the NAG content showed a

significant positive co rrelation between NAG and the rate of citru lline synthesis. Finally.

to assess the effect of NAG upon citrulline synthesis. we carried out experiments utilizing

uncoupled mitochondria in the presence of varying concentrations of exogenous NAG. At

:2-l. hours post-injection. mitochondria from LPS· injectcd animals synthes ized citru lline ill

double the rate of mitochondria from the saline control animals (as seen in intact. co upled

mitochondrial stud ies) but as the concentration of exogenous :-.lAGreached 2.0-10.0 111M

the difference in citrulline synthesizing capacity between the two groups was abolished

We propose, therefore, that by:24 hours after injection with bacteriallipopolysaccharide

the increased urea synthesis in rats invo lves both increased ureagenic substrate load

(amino acids) and CPS I activat ion by increased mitochondr ial NAG levels.
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Cha pter I
Ge nc ral Introd uction



His fl esh is consumed away. that it cannot

be seen; and his bones that were not seen

stick out.

IJob 11:11.KingJ~ \~ion o( thc HoI)· Bible. I



Gen era l Int rod uction

It has long been known that in conditions such as sepsis (Watters er al, 1986;

Beisel. 1975). bum injury (Nygren et at. 1995), post-surgical states (Heindorff et at. 199 1.

1992. 1994). and during cancer cachexia (Balkwi ll et al , 1987) many homeostatic

mechanisms are disrupted. Most notable is the outpo uring of lean body mass. in the limn

of amino acids. from muscle. their metabolism in liver and the resulting negative nitrogen

balance. This is in dire ct contrast with the event s surrounding starvation in which the

body takes great care to spare its peripheral protein depot s choosing, rather. to deplete the

liver of its excess protein first and then to mobilize fat from adipose tissue.

In 1876 Robert Koch conclusively determined that infections were the direct

result of invading microbes. Upon invasion by a pathogen. the host's immune system

initiates a host response which may be mild. comp rising a mild fever and chills. or severe.

leading to irreversible shock and death (Siegal et £II. 1995; Wane rs et al. 1986 ). Within

the host. microbes may colonize a speci fic tissue . such as the lung in pneumonia.

However. in dire situations the organism may enter the bloodstream. a condition known

as sepsis (Do\\,TISet al. 1995).

Of greatest clinical importance are gram-ne gative bacteria. They possess potent

ce ll wall lipopo lysacchar ides (LPS) or endotoxins (Old. 1987) which evoke the host

immune response. Originall y, LPS was believed to exert its toxicity directly (Reitsche l &

Brade. 1992). It is now known, however, that LPS enlists help within the host via

endogenous cytokines (Old. 1987). Cytckines. or some of the "polypeptide hormones



which transmit signals between cells" such as tumour necrosis factor lTNF). (Fong er £II .

L989) and interleukins I (IL- l )( Fong er al . 1989) and 6 (lL-6)(DeBandt er al , 19943)

have been identified as important mediators of the pathogenesis of endotoxemia.

Recently another cachectic factor has been isolated during the progression of cancer

(Tisdale el al. 1996) but this appears to bespecific for cancer cachex ia.

Endotoxin is the most potent stimulus for m Fproduction (Old. 1988). Studies

which utilized administration of human recombinant TNF (hr-TNF) reproduced the

physiological symptoms of endotoxemia (Beutler & Cerami. 1988). IL-I. though

structurally different from TNF. elicits host responses similar to those elicited by LPS and

TNF. Clearly. the immune system is equipped with mediators with overlapping function.

This. likely. provides a failsafe as well as a potent net of defence when all mediators net

in concert to defeat an infection.

Concomitant with the immune response and alteration in cyt ckine levels, there an:

also disruptions in the hormonal milieu. During endotoxemia there are elevated levels of

insulin (Yelich & Filkins, 1980). glucagon (Zenser et al, 1 97~ ). gtucccorticcids (Melby &

Spink. 1958). and catecholamines (Groves el al. 1973). These disruptions in hormone

levels may lead to disruptions in fuel metabolism and may play significant roles in the

redistribution of body proteins during infection as the body works to regain metabolic

homeostasis.

A major shift in protein metabolism begins at the onset of the host response to

infection. Sparing of peripheral protein is replaced by the mobilization of these amino



acids for the requirements of the acute phase respon se to infection (Powanda. 1977).

The host acute phase response includes: {Wannemacher. 1977)

L. fever;

2. rapid multi plication of white blood cells :

3. increased hepatic gluconeogenesis (part icularly from amino acids );

4. dec reased hepatic synthesis of housekeeping proteins teg.• albumi n) and increased

hepatic synthes is ofimmunoproteins (eg.. complement); and

5. increased free ami no acid liberation from skeletal muscle (Wannemacher. 197h

coup led with increased transport into the liver (Paci tti et al. 1992: Inoue et cd. 1995)

Metabolism in these animals shifts from economy to survival mode.

Bacterial Endetm sns

Histo ry

ln 1892. Richard Pfeiffe r discover ed that Vibrio chalerae produce a toxin which is

neither heat-labile, nor excre ted by the intact bacteria (Pfeiffer. 1892). Pfeiffer conclude d

that the toxin must be inside the microbe and coine d the term endotox in from the Greek

word. 'endo ' for within.

C lass ificat ion of bacteria began with the app licatio n of the Gram sta in. a blue dye.

The bacteria whic h retained the dye subsequen t to treatment were tenne d gram positive

and those wh ich did not retain the blue dye. gram-n egative (Con . 1969). Only gram-

negative bacteria possess endo toxins (Boivin & Mesrobeenu . 1935; Westp hal et al,

1952).



Analytical stud ies of gram- negative bacteria during the 1930s and 1940s

determi ned that the heat-stable tox in was comprised of po lysaccharide. lipid and protein

(Boivin &-Mesro beanu. 1935). The term lipopolysaccharide resulted from a simila r

analysis of S. marcescen.r(Shear & Turner. 1943). Interest in endotoxi n .....as fuelled by a

tum of the century physician. William Coley discovered th at malignant tumours o ften

regressed if the patient was treated with a mixture o f killed bacteria (Ccley-Nauts. 1980) .

Lipopclysaeeharid e

Pure LPS can beobtained by extrac tion from cell walls. Phenol-water and phenol.

chloroform-petroleum ether solve nt extractions are commonly used. The lipid

component o f LPS. lipid A. is embed ded on the curer membrane of bacterial cells. Lipid

A constitutes much of the externa l surface of the membra ne. The po lysaccharide

protrudes from the surface like a branch and it is compose d of two distinct pans : (Figure

1.11

I . the core ol igosaccharide whic h attaches to lipid A

2. the Oepecific chain : Co mprised of many repea ling oligosacch aride units: it

serves as the surface antigen and is unique to a given LPS and the strain of bacteria . Then:

are as many disti nct LPSs as there are gram-n egative stra ins. The core region has little

structura l variability compared to the O-speci fic chain. Eschericia coli (E.co/Oand

Salmonella ryphimllrillm. together, present more than one hundred serotypes . yet only 6

and I core types. respectively (Brede et 01. 1988).



a-SPECIfiC
CHAiN

In,"
Cere

CORE

POLYSACCHARIDE LIPID

-Q Monomchil!de ...?~o spha:e -d E:lrlllOl amllle

~Long· ch aln falty aCl d

Figure 1.1 Schematic Structureof Bacterial Lipopolysaccharide. (Modified from
Bradee/a l. 1988)



The region of lipid A proximal to the inner oligosaccharide core has been reported

to signal product ion ofTNF and lL-I (Levin er at, 1988). Lipid A possesses the min imal

structure requirement for full express ion of endotoxicity (Brade et al, 1988). The

structure of lipid A cons ists of a hydrophilic region contain ing bisphosphory lated D·

glucosamine disaccha ride and a hydrophobic region containing fatty acids (Westp hal et

af.1952).

Biologica l Activity of Endc tcxt ns

The effects of endoroxtns. within the host. begin once the LPS is actually released

from the cell walls of gram-negative bacteria (Pfeiffer. 1892). Liberation of LPS may be

accomplished in a numbe r of ways:

l , natura l death of the microbe:

2. bacterio lysis by antibiotics. comp lement or phagocytosis (Levin et at. 1988):

3. and multiplication of the colony.

Biologica l effects ofLPS are elici ted through immunocyte activa tion (Paul.

1993). These host cells. such as mecropbages. then secrete mediators : TNFa:. IL· l and IL-

6 activating a myriad of physiologica l responses collect ively known as an immune

response. The effects of endotox in include: non-specific activation of the immune system.

activation of the complement cascade. and induct ion of the characteristic shock syndrome

(Morrison & Ryan. 1987).

The severity of the effects of endotoxemia is roughly proportional to the le....el of



systemic l PS. Mild. localized infections give rise 10 low 10 moderate levels of LPS

release and a moderate. controlled response with beneficial effects for the immune system

in future infections. In severe infections. howeve r. invading bacteria may gain access to

the bloodstream.

In this temperate environment bacteria thrive and multiply quickly and circul anng

lPS is markedly elevated . As a direct consequen ce there is exaggerated release of ll'-lFa

(Old 1988). IL- I (Libby et al, 1986). IL·6 <Paul. 1993) and nitric oxide (Clancy &

Abramson. 1995). Multiple organ system failure and irreversible shock often result

IDo....ns er 01.1995).

Endo toxin Int er acts With Host Ce ll Rece pt ors

lPS is not belie..ed to interact. directly . with circu lating immunocytes. In many

species. including humans. there is a soluble serum protein wbich binds to LPS. II is

kno....n as LPS binding protein (l BP). Levels of l BP prior 10 immune challenge are <05

ug/ml but they increase approximat ely laO-fo ld within 24 hours of induction oft he acute

phase response (Schumann et al, 1990). The struc ture of LBP has been deduced via

cDNA sequencing. Human and rabbit LBP are 60 kD. hepatically synthesized

glycoproteins (Schumann et al. 1990). LBP binds endotoxin via lipid A so that LBP

serves mainly as a carrier protein for LPS in which the variable a -chains remain exposed

(Cohen et al, 1995). The LPS·lBP complex interacts with membrane receptors (CD 1-41



on monccyte s/mac rophages (Wright et at, 1990) and neutrophils (Cohen et al, 1995).

Tiss ues which lack a membranous CO l4 receptor. such as endothelial and epithel ial cells,

utilize a serum COl 4 to engage local immune responses, These cells do not utilize LBP

(Cohen et ol, 1995),

CDI 4 maps to chromosom e 5. near several myeloid-s pecific growth factors

(Gcyert et al. 1988) and the protein is a 5 kD glycoprotein, CDI4 receptors are mobile

within the lipid phase of the membrane (Wright et ai, 1990). They have. however . no

transme mbrane domain but are linked to the bilayer via a pbcs phatidylinositol linkagc

(Hazier et al. 1988).

Interaction of the LPS-LBP complex:with CDI4 'activates' the macrophage and

stimu lates rapid and abundant transcription ofTN F-tt and IL-6 genes (Cohen et ul, 1995).

Monoclonal antibody abolition ofC DI4 prevents the induction ofTN F-tt (Wright et ai,

1990). /n vivo studies using transgenic mice have demonstr ated that if CD I4 is

cverexpressed the animal is highly susceptible to the lethal effects of LPS (Ferrero et ul.

1993). Converse ly. genetica lly allered mice who lack CD 14 expression are 10-1OO-fold

less sens itive to LPS than normal mice (Cohen et 01. 1995).

There are membrane proteins other than CD14 whic h bind LPS but their functions

are. as yet. unknown (Cohen et of. 1995). Acetylated LDL receptors, which are important

in cholestero l metabo lism. can bind lipid A in liver ce lls but the purpose is strictly to

speed c learance. There is no immune activation (Hampton et 01. 199 1). B cells

(lymphoma culture), which are devoid of CD14 also respond to LPS (Sibley et 01. 1988),
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Signa l T ran sdu ction : From End otoxin to Acti on

The LPS-lBP-CDI4 complex initiates the first signal from bacteria l endo to xin 10

the macrophage . The results include: the respiratory burst. increased level s of cytok ines

and diffe rent iation of the inactive macrophage; yet only a Iin le is known about the post­

memb rane events ....hich effect them. Evidence has. however . accumulated which

implicates prote in kinase C (PKC) as integral in subcellu lar signalling during interaction

with LPS. Activation of macrophage PKC with phorbol myristate acetate (pr-,lA ) and

studies involving elevatio n o f intracellular calc ium via the ionophore A23187, resulted in

marked increases of inflamma tory species as well as a respira tory burst (Ham ilton &

Adams . 1987).

Activation of PKC occurs via agon ist binding to receptors . coupled 10 a G-protein

(G~) . Membrane phosp hat idylinositol-b isphcs phate ( PIP;) is converted intc inos itol

trisphosphate (IP I ) and diacylglyc eroII DAG ), each with specific second messenger roles .

IP. effec ts an efflux of calcium from intracellular stores while DAG interacts with PKC

and helps trans locate it to the plasma membrane where it is act ive. LPS or lipid A. in

concent rations as low as 10ng/ml, can initiate hydrolysis o f PIP: to IP. (Hamilton &

Adams. 1987). Recent studies have verified thai PKC activity during immune challenge is

blocked ifPKC is prevented from translocating to the plasma membrane (Seguin et al.

1995).

Stimulation of cyclic AMP (cAMP) production within macrop hages has an

inhibitory effect upon the action of l PS . Agents whic h cause the G-protein, Ga.,. to be
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locked in an activated fonn , such as cholera toxin, suppress LPS-induced product ion of

TNFa mR.."JA in a lime- and dose-dependem manner (Tannenbaum & Hamilton. (989 ).

Similar effects have been anri buted to dibutyryl cAMP. 3 synthetic, cell permeable

analogue of cAMP. Stimulation of protein kinase A (PKA) is associated with decreased

TNFa rnRNA (Seguin et al. (995).

Inhibition of G-protd n G.• with penus sis toxin inhibi ted the response of B cells

and macrcphages to LPS (Jakway& Defranco. 1986). Clea rly. multiple second

messenger systems are affected by LPS. Concurrent activat ion of PKC anc inactivation of

PKA lead to increased transcription of TNFa . IL- l and IL·6 and an immediate. cytotoxic

respiratory burst. [I is noteworthy thai the effects of LPS in macrophages may be

amplified if they are first 'primed' by interacting with low levels of interferon gamma

t lFNy) (Hamilton & Adams . 1987). Now macrophages begin to produce three groups of

powerful mediators:

l. proteins: TNF.IL-I , IL-6 and IL-g. Produced de novo. not from a 'store':

2. react ive Oxygen Species: Superc xide. hydrogen peroxide and nitric oxide: and

3. lipids: Prostaglandin E~ . thromboxane A: . and platelet activating factor .

Lowlevels of these endogenous mediators are beneficial 10the host. As levels elevate so.

too. do the potential dangers .
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Ca chexia

The term cachexia arose from the Greek. kakos (bad) plus exe in (state or habit of

the body). It is a wasting syndrome characterized by rapid and pers istent weight loss even

when adequate nutritio n is available (Beutler. 1988). The condition is present in sepsis

(Old. (987). malignant states (Balkwill et ai. 1987; Tisdale & Smith. 1993). after surgery

(Heindorff er at, 1991). and in the progression of AIDS (Grunf eld & Feingold. 1992 ).

Weight loss from Trypanosoma bmceii infected rabbits may reach 50% of initial body

weight (Rouzer & Cerami , 1980). Fat stores are dep leted during cachexia \ Winter et al.

1995; Beutler et al. 1985b j hut the primary source of weight loss is the peripheral protein.

i.e. skeletal muscle. which accounts for approximately 45-S0% of total body protein

(Tessitore et al. (993).

During cachexia the body adapts to systemic dyshomeostas is. Oxygen

consumption increases as does hepat ic gluconeogenesis . In adipose tissue. genes for

enzymes such as lipoprotein lipase. glycerolphosphate dehydrogenase, fatty acyl binding

protein, acetyl CoA carboxylas e and fatty acid synthase are suppressed by TNF-a (Winter

er 01.1995) thus. the depos ition of fat in adipose tissue is prevented . There are elevated

serum triglycerides while hepatic p-oxidation and ketogenesis are suppressed. And. as

tissues such as the erythrocytes and the brain are ob ligatory glucose users,

gluconeogenesis from amino acids is markedly elevate d. The brain. which can adapt to

ketone bodies as fuel. is not presented with the option due to low blood ketone

concentrations. Another drain upon body protein depo ts is the increased demand for acute
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phase prote in synthesis within the liver at the onset of the acute phase response .

Cachexia is a comp licated metabo lic sequence of event s orches trated by a

commo n factor which was. histo rically , termed cachectin (Old, 1987). Cloning technology

has shown that cachectin and TNF-a. are the same molecule (Beut ler et at. 1985a; Beutler

et 01. 1985b; Agga rwa l et 01. 1985; Pennica et at, 1984). TNF-a. was originall y known as

a cyto toxic agent capable o f causi ng necrosis and regress ion of mo use sarcoma tumours

(Green et al, 1976).

The Str uctural Cha racterist ics of T NF

TNF can be funhe r classifi ed into TNFa and nJFp. The latter is also known as

lymphoto xin as it is secreted from lymphocytes rathe r than mac rophage s. The two TNFs

share 50% sequence homology and 35% identity. TN Fa and pcan interact with the same

receptors in some tissues (Aggarwal et of, 1985).

The genes coding for human TNF a are located on the short ann of chromosome 6

and are around 3 ki lobases in length. Murine TNFa is located on chromosome 17

(Beut ler, 1988). The prote in, itself, is a sing le polypeptide of 157 amino acids . with a

homo trimeric tertiary struct ure comprised of 17 kilodalton subunits (Beutler. 1988).

Biological Action of TN Fa

TNF a. levels within the body are markedly elevated du ring chronic bacterial

infection (Waage et al, 1987), parasitic infection (Scu deri et al, 1986) malignant diseases
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(Balkwill et al. 1987). and AIDS (Patry ezal , 1995). The levels of lNFa . produced in

rabb its in response to an LPS injection. peak within 2 hou rs. 1l'I Fa is cleared from the

blood rapidly. as well. with a half-life of6 -7 minutes (Beutler et al , 1985b). The elevated

cytokine has been implicated in many aspects of the host response to bacterial endotoxin.

The degree of detriment to the host direct ly correlates with the level ofTNFa produced

(Waage etal. 1987).

There is a specific. high affinity receptor for nlFa in many tissues of the body. It

has been shown. using intravenous ly-injecte d. radiciodin ated recombinant mFa. that

within 8 minutes 31%. 30%. 8.8% . 7.8%. 1.8% of injected label is bound to receptors on

rabbit liver. skin. gastmintesti na l tract , kidney and lung cells. respect ively. The bound

TNFa is then rapidly degraded (Beut ler et al, 1985b). There are two receptor types which

are known to bind TNF: 55 kD (TR 55) and 75 kD (TR75) (Wiegmann et al. 199~ ) .

The signal transduction pathways ofTN Fa have yet to be fully elucidated. Given

the pleiotrc phic nature of TNFa action it is likely that multiple signal transduction

pathways are involved. It has been suggested that severa l of the biologica l activities of

TNFo.occur via cycloooxygenase pathways (Evans el al. 1989). Recently. evidence has

arisen for a novel pathway. known as the sphingomyelin pathway. which may mediate

some of the effects ofTNFo. and lL- I (Liu et al. 1994 ).

Sphingomyelin is found in the outer leaflet of most mammalian cells [Kclesnicke

& Golde. 1994). Binding of TNFo. or IL- l to surface receptors results in hydrolysis of

membrane sphingomyelin to ceramide which acts as second messenger. Ceramide then
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stimulates a serine/threonine kinase, CAP kinase, seven-fold (Liu et al, 1994). The

sphingomyelin pathway has been implicated in translocation of transcription factors to the

nucleus (NF kB), HIV-1 replication. (L-2 transcription. and apoptot ic cell damage and.

thus, in the signalling ofTNF and IL-I (Kolesnick & Golde, (994). The postmembrane

events can be replicated using synthetic ceramide analogues ( Liu et 01, 1994). II is

noteworthy thai diacylglycerol also activates CAP kinase but ceramide does not activate

PKC (Kotesnick & Golde. 1994). CAP kinase has recently been shown 10 interact with

Raj t, Raj / interacts with GTP-ra s thereby linking the cell surface with important

signa lling cascades (Yao et al. 1995).

Metabolic Adaptation During Sepsis: The Pivotal Role of Skeletal Muscl e,

Fuel Dyshom eostasis

Host metabolism during the anorect ic slate which accompanies sepsis diffe rs both

qualitatively and quantitative ly from prolonged fasting (Powanda. 1977). The overall

variety of nutritional responses is broad and may include most major metabo lic pathways

of most cells (Beisel, 1977). During starvat ion, as nitrogen intake decreases. bodily

protein is spared. in part, by the substitution of fat for carbohydrate as the principal fuel.

Th is spares muscle protein and urinary nitrogen excretion decreases (Young et al. 1973).

In severe infection, however, excretion of nitrogenous compounds increases (Beisel 1975,

1977: Wannemacher. 1977; Hasselgren et 01. 1988). It has been calculated from literature

sources that starvation-adapted individuals lose approximately 4 g nitrogen per day while
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a septic patient loses nearly 15 g of nitrogen per day (Wannemacher. 1977). As there are

no protein 'stores' withi n the body and skeletal muscle co m prises - 45'/, (De Bandt et til.

I 994a; Tessitore et al .199J) of bod ily protein. its \.\tasting has a profound effect upon

bod y mass.

The metabo lic responses to bacterial infection begi n promptly follo...... ing the

init iation of the host respon se and evolve as a ser ies o f interrelated events (Beisel. 1975:

Powanda. 1977) :

I . protein cataboli sm proceeds at a level which exceed s that which can be accou nted for

by anorexia ;

:!. ketogenesis is depre ssed and levels of hepat ic and plasma ketones decrease :

3. septic pat ients have inappr op riate ly elevated plasma insulin as there is concomitant

hypoglycaemia;

4 . gluconeogenesis is stimulated early in the host respo nse (Halestrap. 1989: Fefig. 1973) :

5. there are profound differen ces in protein metabolis m in muscle such as increased

proteolysis (Beisel. 19 75; Hasselgren et ui. 1988 ) ....ith decre ased (Vary&:Kimball. 1 99~ 1

or unchanged levels o f synthesis. Therefore . musc le protein is depl eted;

6. in the liver there is a markedly increased influx of amino acids (Inoue et al, 19951as

well as increased syn thes is of acute phase proteins. pro liferation of phagocytic cells. and

elevated prod uction o f peptide cytckin e media tors.

Ultimately. every aspect of the host defence process is depen dent upon the abi lity of hos t

cells to synthesize proteins. In th is light. skeleta l muscle protein depletion can be viewed

as a sacrifice necessa ry to meet the precurso r needs of the emergent anabolic processes o f

the host defence. If proteolysis were blocked via clinica l interven tion it wou ld be
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deleterious to the patien t's recovery (Wanne macher , 1977; Fischer & Hasse lgren . 1991).

Certain metabolic process es may follow a biphasic pattern of sequential cha nge.

In the early stages of infection the re is hyperglycemia in the presence of periph eral insulin

resistance as well as impaired sens itivity to glucose in the pancreatic pcells (Rocha et al.

1973) which inevitabl y gives way to hypoglycemia as the condit ion worsens and body

glycogen depletes (Beisel, 1975). Glucose metabolis m also plays an important ro le in the

metabolic seque lae of seps is and will be discussed further in the next section .

It has also been shown that injection of bacteria l endotoxin into rats results in an

increased hepatocyte cell vo lume (Qian & Brosnan. (996) . Cell volume increases are

reported to stimulate gluconeogenesis. glycogenolysis and urea synthesis within the liver

[Halestrap. 1989; Haussinger& Lang, 1991).

Gluc oneogenesis and the Endocr ine Hormo na l Mil ieu

During seps is the energy requirements of the host dramatically increase . Th e

hormonal alterations in early infection nave been interpreted as an adaptation to the

demands of the immune challenge. ln severely inj ured patients cortisol. catecholamines

and glucagon are elevated (Hasselgren el ai, 1988). Increased glucoco rtico ids are also

present during gram negative infections (Melby & Spink. 1958). During early sepsis

plasma levels of glucose, insulin, glucagon (Rocha et at. 1973; Rayfield et ai, 19 77), and

catechclamines (Groves et al, 1973 ) are notably increased . The elevated stress ho rmones.

in the presence of periph eral insulin resistance, serve to increase hepatic glucose output
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through stimulation of glycogeno lysis (Beisel. 1975) and depressed glycogen synthesis.

Gluconeogenesis is also increased (Felig, 1973).

The increased glycogenolysis. in the absence of food intake. leads to depletion of

glycogen stores. Obligatory glucose users such as erythrocytes and the brain require a

continuous supply of glucose for survival. This need for glucose, particularly in the brain.

is enhanced by the lack of ketone production and serious demands are placed upon

peripheral sources for gtuconeogenic amino acids. Glucose is also required as the only

source of ATP in those tissues which become anoxic as a result of infection- induced

damage. As sepsis progresses, gluconeogenic capacity decreases and evidence suggests

that phosphoenolpyruvate cnrbcxyki nase (PEPCK) is inhibited within 18 hours after

endotoxin injection with little change in the amount of enzyme present (Horton et at,

1994).

Protein Meta bolism in Skeleta l Muscle During the Host Respo nse

Synthesis Versu s Pro teolysis

Skeletal muscle plays a pivotal ro le in the metabolic seque lae ofa variety of

catabolic states. In fact. the utilization of amino acids encompasses virtually every aspect

of the host's defence against invading microbes. The total protein content of skeletal

muscle depends upon the balance between protein synthesis and degradation . Generally.

emphasis is placed upon the diffe rence of the two processes, rather than the individual

synthetic or proteolytic rates. Clearly, peripheral protein is lost in these states hut there is
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some controversy as to how the final negative balance is reached . Increased rates of

proteolysis of muscle prote in have been widely reported during sepsis (Beisel. 1975;

Beisel, 1977; Wannemacher. 1977; Hasselgren et al, (988), in response to IL -I ill vitro

(Beracos et at. 1983; Cooney et al, 1994). after endotoxin administrat ion to rats (Beutler

et al. 1985a; Fong et al. 1990). after TNFa treatment (Flores ef ai, 1990; Fong et til.

1989). after elective surgery (Heindcrff el al. 199 1), and during AIDS cachexia (Patry iff

al. 1995). There are also reports in which muscle protein synt hetic rates remain

unchanged (Hasselgren et al. 1986c) or increase (Clowes. 1988) during sepsis. However.

even when protein synthesis was reported to increase there .....as an even greater increase

in proteo lysis so that net protein loss resulted (Clowes, 1988).

Sepsis affects individua l muscle fibre types differently (Hasselgre n et al. 1986c).

Depressed protein synthesis is more pronounced in fast twitch rat muscle fibres. TIle

decrease in protein synthesis appears to result from inhibition of chain elongation during

translation (Vary & Kimball. 1992).

There is also evidence of insulin resistance in septic rat muscle. Increased

proteolytic breakdown of extensor digitorum longus (EDL) muscle from septic rats is

maintained even in the presence of elevated insul in levels (Hasselgren et al. 1987 ).

Amino acid uptake is also impaired in septic rat so leus muscle by 30·5 0% within 5 hours

following a Salmo nella eme riditis insult (Wannemacher et al. 1974 ).
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A Mechanism for Increased Skeleta l Muscle Proteolysis During Catabolic Sta tes

Evidence , which has been accu mu lating recently. is shedd ing light upon the post­

membrane events which lead to wasting of, particu larly, myofibrillar proteins. Ubiquit!n.

a pept ide involved in targeting ce llu lar protei ns for degradation via an A'FPcdependent .

nonlysosomal proteosome in the cytoplasm (Hill & Wo lf. 1996 ) has been studied

Research has shown that rat skeletal muscle possessed significantly elevated ubiquitin

mRNA if treated with TNFa (Garcia-Martinez f!t ol. 1994 ) and duri ng cance r cachexia

( Llovera er al. 1995) but not in response to IL· ! (Garcia· Martinez et al , 199 5). It has also

been shown that glucocorticoids cause increases in rat ubiquitin mRNA as well as in both

free and conjugat ed ubiquitin (Hasselgren et al, 1996 ). The re was excessive

ubiquitinization of myofibtillar protei ns while free ubiquitin was in exc ess in the

sarcoplasm (Hasselg ren f!t al. 1996). Treatment of the rats with RU38486, a potent

glucoco rtico id antago nist. attenuated the response only partially. however. suggesting a

more complex regul ation of ubiqu itin induction than can beexplained by glucocorticoids

alone.

Regulation orSkeletal Muscle Wasting

lncreased muscle protein brea kdown, particular ly of myofi brillar proteins . and

increased hepatic protein synthes is have long been hallmarks of seps is and severe injury .

Surv ival in these states is corre lated with increased viscera l ami no acid uptak e and

increased hepatic protein synthes is (Clowes. 1988). Cytoki nes and glucocort icoids are.
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likely, key mediators (Fische r & Hasselgren. 1991) but catecholamines and glucagon may

have roles in the sequelae of sepsis as well (Bessey et al, 1984).

In muscle. there is conflicting evidence for the role of glucocortico ids in severe

infection . In in vitro studies. in which the hindquarte rs of nonnal rats are perfused with

glucocorticoids at concentrations comparable to those seen during sepsis. there is a 30­

50% decrease in myofibrilla r protein synthesis but an increase in proteol ysis (Kayall et ,II.

1987). However. the increased myofibrillar protein breakdown in septic rats was not

normalized when treated with the glucocorticoid antagonist RU38486 (Hatl-Angeras III

aI, 1990).

Reports of the effects of glucocortlccids upon the liver have been more consistent

in the literature. Plasma glucocorticoid concentra tions increase during gram negative

infections (Melby & Spink . 1958)./n vitro. dexamethasone potentiates acute phase

protein synthesis if iso lated rat hepatocyt es are co-incubated in the presence ofL PS (Koj

et at. 1984). Dexamethasone alone. however, does not stimulate the increased protein

synthesis (Baumann et ul, 1987). There is also increased sodium-dependent transport of

amino acids into hepatic plasma membrane vesicle preparations (HP MVs) from

endotoxin-treated rats which is attenuated by 20-60% if the rats are pre-treated with

RU38486 (Inoue et al. 1995).

There is interplay between hormones and cytokines . Cytoklnes can increase

production and secretion of glucocorticoids while glucocorticoids can potentiate the

effects of cytokioes. It has been suggested that there may be an integrated response
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between ske leta l muscle and liver during seps is. In fact. so me of the effects genera lly

attributed to cyt ok ines may well reflec t glucocort icoid act ivity (Fischer & Hasselgre n.

199 1). Sept ic rats exhib it increas ed total muscle protein loss and myofibrillar protein loss

but this is signifi cantly blunted in adrenalectomiz ed rats (Fisc her & Hasselgren, 199 1). In

isola ted hepatocytes, or in an hepatoma cell line. a com bina tion o f IL-6. IL·I . IF~~ and

n.lF« are requi red to induce the entire acute phase respon se (Bau mann et al , 1987 ).

Within the liver. Kuppfe r ce lls are likely the most important source of acute phase­

regulating cytoki nes in seps is and endo tc xemia (Fische r & Hasselgr en. 1991) .

The role of cytok ines in mus cle protein turnove r is less clear. It has been proposed

that muscl e prote olysis. during sepsis. is bro ught abou t by a circulating factor which is a

c leavag e prod uct of IL· ! (Elowes. 1988 ). It was foun d that a partially purified supernatant

from stimulated monocytes added in vitro to rat muscles increased proteolysis (Baraccs tor

al. 1983: Moldawer er al, 1987). However. when IL-t act ivity derived from activated

mon ocyte supe rnatan t was blocked using IL- I antibod ies . prote in breakd own was

unchanged [Molda wer et 01. \9 87) .

The avai lability and use of recom binant cytckines have also yielded confli cting

results. Recombinant TNFa (rTN Fa l infused into canc er pa tients resu lted in increase d

amino acid efflu x from the forearm (Sta rnes et al, 1988). However. neit her rTN F« nor

rIL-\ had any effect upon muscle prot ein breakdown or synthesis in mice (Mo ldawe r I!t

01. 1987) . Similarly in rats. ad ministration ofrWF« caused fever but did not affect

prot ein turnover (Kenlehut et 01. 1988). The reliab ility of recc mbinen t cyt okine s in
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med iating in vivo respo nses has been debated . Recom binant technology does not account

for post -trans lational mod ifications whi ch may benecessa ry for bioact ivity. In addition.

when administered on the ir own . neithe r glucoco rticoids nor other possibly impo rtant

mediators may bepresent at appropriate conc ent rat ions {Hall-Angerds et 01.1990).

rTNFa has. howe ver. been implicated in inducin g a co ncomita nt increase in adrena l

weight and plasma co rtico trophin in rats while decreas ing carcass nitrogen and ca using

negat ive nitrogen ba lance (Mea ly et ai. 1990) . in vitro. muscle amino acid uptake is

reduced by incubation of muscle with the catabo lic hormones but not when the hormones

arc infused in vim thereby suggesting that cytckines play the more impo rtant ro le invivo.

Ind ivid ual Amin o Adds Play Key Roles

Durin g infection in man the pattern of individual plasma free am ino acid

concentrat ions differs marked ly from that during simple starva tion. Phenylalanin e and

tryp tophan are relea sed into the free amino acid pool of muscle but are non-metabolizable

in that tissue so plasma co ncent rations rise (Wannem ache r. 1977 ), Stud ies show that

there is marked incorporation of these am ino acids into hepatic proteins synthesized de

novo but plasma level s rema in high as synthetic rates proceed mo re slow ly than the

release o f phen ylalan ine and tryptoph an from ske leta l muscle (Wa nne macher et al. 197~).

Branched chain amino acids serve a dua l role with in the muscle. The

intramuscular levels o f valine. isoleucine and leuc ine increase as proteolysis proceeds but

their plasma conce ntrations are depressed during sepsis (Wannemacher. t977) Branched
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chain amino acids may be utilized both as an energy source for the muscle

(Wannemacher. 1977; Beisel. 1977) and may provide amino nitrogen for transamination

of pyruvate to alanine (Beisel. 1977).

Alanine, the principle gluconeogenic substrate (Felig et al, 1973), is released in

large quantitie s. by muscle. during the host response (Beisel. 1975; Beisel , 1977 :

Wannemacher. 1977) while alanine re-upteke by the muscle is impaired (Hasselgreu "I " I,

1986b). It also serves as a nitrogen carrier from the periphery to the liver. The free alanine

is, subsequentl y, taken up by the liver at an accelerated rate (Inoue et al. 1995;

Wannemacher et al. 197-1). There is an elevation of muscle to liver alanine exchange via

the glucose-alanine cycle (Felig. 1973).

Glutamine also serves a variety of vita I functions. ln addition to its role as an

inter-tissue carbon and nitrogen carrie r. it serves as a fuel for cells both of the intestine

(Souba, 199 1) and of the immune system (Newsholme et al, 1985). It has also been

surmised to provide much of the nitrogen dur ing ureagenesis (Nissim et al . 199:!l while

there is some evidence which runs conversely to this notion (Moorma n. et al, 1994 ).

Rennie and associates have hypothesized that there is a net efflux of glutam ine from

muscle which limits protein synthetic rates during catabolic states. They found a positive

correlation between muscle glutam ine content and the rate of protein synthes is

(Mac lennan et al, l 987).

Arginine is another key amino acid during infection. It is an intermed iate in the

urea cycle (Krebs & Henseleit. 1932) and an allosteric activator for N-acetylglutamate
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synthetase. whose product serves as an alloste ric activator for the first enzyme of the urea

cycle. CPS I (Tat ibana & Shigesada, 1976 ). Arginine is also substrate for !'iDSs (Clancy

& Abramson. 1995). Nitric oxide INO ) is a labile free radical which provi des non­

speci fic immun ity against invading microorgan isms (Clancy & Abramson. 1( 95). NO is

also known as endothe lium relaxing factor. (Palmer et al , 1987) wh ich help s regu late

blood pressure . and has been implicated in irreversible shock during seps is (Downs ei at.

1995; Clancy & Abram so n. 1995 ).

Ther e are two NO syntheses. Constit utive NO synthase (eN OS) is calc ium­

dependent and produces low levels of NO (Clancy & Abramso n. 1995) . Inducible NOS

(iNOS). which is expressed in response 10 LPS. IL-1. and TNFa prod uces high. sustaine d

levels of NO (Clallcy& Abram son. 199 5). iNOS is expre ssed in many tissues including.

macrcph ages (Clancy & Abra mson. 19951as well as hepatocytes (Curran et al. 1989 1alk!

Kupffe r cells (Marietta Itt 01. 1988). In perfused livers of rats which have been injected

with endotoxin there is a time- and dose-dependent increase of NO synthesis t w ensrein

et al. I99.J).

Th e Urn Cycle

Int rod uctio n

All of the evidenc e surrounding dyshom eostasis and acceler ated protein

catabolis m inevit ab ly leads to a discussion on the dispos al of protein catabolic waste

produc ts . Urea was first iso lated from urine in 1773 by Rouille and gain ed fame as the
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first organic compound to have been synthesized from inorgan ic precursor s. In ureotelic

species it is synthesized from am monia and bicarbonate in the liver . The pathway of urea

synthes is, orig inally terme d the ornithine cycle, was elucidated in 1932 by Sir Hans Krebs

(Krebs & Henseleit . 1932). It is localized to the peripona l region of the hepatic acinus

(Haussinger et al. 1992 ).

In mamm als. the prima ry role of urea synthesis has been d iscussed and two

schools of thought have em erged. TIle first : urea serves as an irrever sible ammo nia

removal pathway (Krebs & Henseleit , 1932: Meijer et al. 1990 ). The second: urea is a

way of removing excess bicar bonate produced during amino acid catabol ism and

maintai ning acid-base homeostasis (Bean & Atkinson. 1984 ).

Protein catabol ism results in increased levels of free am ino acids which are. then.

subject to a variety of fate s. They may be: ( I) oxidized: (2) used as glucone ogeni c

subst rates: and (3 ) recycled into prote in synthesis. During catabolic states the re is

increased oxidation and gluconeogenesis from amino acids as well as acute phase protein

synthesis . As glucon eoge nesis proceeds excess ammonia is cleared by the urea cycle.

Simi larly, as oxidation proce eds. exces sive amounts of ammoni um and bicarb onate ions

as well as carbon diox ide are evolved (Meijer. 1995). These must beremove d from

circulation . Norm al fasting arterial amm onia is < 50 11M(Cooper & Plum, 1987).

Ammo nia is a potent neurot oxin at greater than 200 J.1M (Cooper & Plum. 1987) thus

irreversible remo val of ammo nia by the urea cycle is crucial.
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Zona tion of Am monia Metabo lism in the Liver

The urea cycle is located only within liver periporta l hepatccytes where it acts as a

low affinity but high capacity system of ammonia removal (Haussinger et al, 1 99~ ) .

Within these cells the urea cvcte enzymes are compartmentalized, The first two enzyme s

of the cycle proper. CPS ItE C (:..3.-1.16 ) andOTC t EC ~.1.3.3 ) are located in

mitochondria (Nuzum & Snodgrass. 1976) in proximity 10 the inner mitochondrial

membrane (Cheung et al. 19S9l. Also located within the mitochondrial matrix is ,V·

acety lglutamate synthetase (NAG synthetase: EC ~ .3 . 1 . 1) which synthesizes NAG. the

obligatory allosteric activator of CPS I (McCudden & Powers-lee. 1996l . The remaining

enzymes of the cycle are located within the cytosol. These include AS (EC 6.3.-1.5). Al,

(EC 4 .3.~ .1 ) and arginase tEe 3.5.3.1) (Nuzum & Snodgrass. 1976). The cycle is

presented in Figun 1.2.

The metabolism of glutamine is also involved in ammonia detoxification. h. too.

exhibits zonation of metabolism. There is some evidence that catabolism of glutamine.

via glutam inase. may present CPS I with the bulk of amino acid-derived ammonia in an

in vitro liver perfusion rnodel jNissim et al, 1992). Glutaminase is hypothesized 10 be:ill

close proximity to CPS I within mitochondria (Haussin ger et al, 1992). Synthesis of

glutamine occurs in the perivenous bepatocytes via glutamine synthetase (Hau ssinger et

ai, 1992). Glutamine synthetase is a low capacity. high affinity ammonia scaven ging

enzyme. The enzyme is localized 10 the perivenous liver and it acts as a fail safe by
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Figure 1.2: The Urea Cycle(hepatocyte)
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remo ving ;11I1111OLlia. which has not been converted to urea by the urea cycle [Haussinger

et al. 190.) :;1.

Occur rence Ill"Urea Cycle Enzy me s Outside the Liver

l'radit iona lly. the urea cvcte i ~ believed to ex ist exclusi ve ly with in the liver.

howe ve r recent evidenc e has arisen \\ hich supports an entire urea cycle with in the

devel oping intes tina l cme rocy res of pigs (w u, 1995). C PS I and OTC are co-expressed in

inte stinalmucosa cells t Ryaller ul. 1986) whi le AS and AL are expressed in kidne y

proximalr ubutcs t Dhanakoti <'l al, 1 9 l) ~ ) and in testis (Yu et 01. 1995).

The En zym es orrhe Ure a Cycle

CPS I uccouut-, for approxim ate ly 22-26 % of so luble mitochondrial protein in

liver t Raijuum & J OIl..:S. 19761 and nearly 5% of soluble liver protein (Raij man & Jones.

1976) . '["11..:enzyme is a horuodimer 01"221.000 ± 10.000 Da total weight (Raijman &

Jones. 197ht. The human C PS I gene has. recentl y. been re-mapped to chromosome .2q35

(Sum mar ,'lal. 199 51.

orc is the second enzyme o f the urea cycl e. Like CPS I, it is a majo r compo nent

of the mitochondrialmatrix prote in comprisi ng 3-4% in vivo (Raij man & Jones , 1976).

OTC is a rrimcr ic protein whose molecula r weig ht is 36 ,000 Da. The OTC gene maps to

Xp11 .1 region ofthe human genome cObbliger-Leibundgut et at. 1996).

AS is the third enzyme of the pathway. Its gene maps to chro mosome 9q34 (S urh
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et al. 1991; Dennis et al, 1989 ) and the bovine protei n is a tetramer of 180.000 Da

(Ratne r. 19821.

The fourth step o f the urea cycle is catalyzed by AL whose gene is found on

chromosome jcen-q t \. ::. It is also a tetrarneric protein whose molecular weight is

- 200.000 Da (Powers-Lee s:Meister. 1988).

The final reaction in the urea cycle is the production of urea and regenera tion of

ornithine. The enzym e arginase is fo und in abundance in the live r. Its activity is reponed

in the literature as 35000 -: 1500 ur uc l/hout'g (Schimke. 1962). The human arginase gene

is located on chromoso me 6q23 (Spa rkes et al. 1986). Regulation occurs at each of't hese

five enzymes but the molecular mechanisms are not the same fOTeach (Morris et al,

1987).

Cha nnelling a nd th e Ur ea Cy cle

The enzymes of the urea cycle are hypothe sized to fonn a 'metabolon' (Watford.

1991) in which the substrate of each enzyme is formed from the previous enzymic

reaction and undergoe s limited mixing with the general pool. Studi es using radiolabe lled

ornithine and isolated rat liver mitochondria showed tha t exogenous ornithine is used.

preferentially. to that generated within the mitochondria l matrix (Cohe n et al , (987).

There is reported channe lling of citru lline from the active site o f O'FCwithi n the

mitochondrion to the active site of AS in the cytoso l (Cheung et at.1989 ). Furthermore.

these authors provide eviden ce for Channell ing between AS and AL as well as nry tight
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channelling between AL and arginase,

Th e Urea ey rie and Endo toxemta

As mentioned earlier. during endotoxemia protein catabolism significantly

increases, Skeletal muscle amino acids are released at an accelerated rate (Hasselgren ~t

al, 1988) to meet the increasing energy demands oflhe body as well as to furnish

substrates for protein sYlllho::sis for the immune response. But how is the li..'er affected

during endctoxemia?

Is there increased Ilux through the enzymes of the urea cycle? Are the enzyme

activities increased? Is tho:cyc le in some way activated during endotcxernia? Or. is there

an effect which results fro m ;1 combina tion of lwc or more of these factors?

Obj eerives of this Work :

I. To determine whether Ilk: urea cycle is affected by endotoxin treatment. Specifically.

does endotoxin administrution to rats result in a net change in urinary urea excretion'?

! . If urea excretion is changed. to determine the nature of the effect. i.e.. is there an

increased flux through the enzymes of the urea cycle? Are the activities of the enzymes

increased? Is there an elevation of ureagenic substrate concentrations within the liver?Or

is there an activation of one or more of the enzymes of the pathway?
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Chapter 2

Materials and Methods
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T reatment of Animals

Male Sprague-Dawley rats weighing ::!50· ] 50g were obtained from Charles River

Co. (Montreal. P.Q.). Animals were maintained in a constant environment at 24 Celsius

with a 12 hour light-dark cycle n ight: 8:00 am-8:00 pm) and they had access to Purina

chow (Ralston Purina of Canada. Don Mills, Ontario) and tap water ad hbinun. T he rats

were housed. two or three per cage, in Nalgene Cages unless specified otherwise.

Animals wen: housed in this manner for at least 5 days before experimental use so as (0

become acclimatised. All procedures were approved by the President' s Committee all

Animal Bioethics & e m: of Mernorinl University and were in accordance with the

guidelines of the Canadian Council on Animal Care.

Chemicals

Enzymes. E. ,'uti endotoxin serotype 0127:B8, and unlabelled amino acids were

purchased from Sigma Chemical Co.. (St. Louis. Mo). [1 ~C)-Ure idoc i l rul1 i ne was

obtained from Dul'ont-New England Nuclear [Mississeuga, Ont.) Glutamate

dehydrogenase in glycerol and bovine serum albumin (prepared from fraction v,

essentially fatty acid-free.Iwere purchased from Boehringer-Mannheim Canada (Laval.

P.Q.). Toluene and Ornnitluor were purchased from Fisher Scientific (Nepean. ant).

Other chemicals wen: of analytical reagent grade.
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Th e Experimental ;\Iodt l

Anima ls utilized in endotoxin studies were subjected to a uniform protocol. Rats.

weighing 2QO-3 S0g. were weighed and fasted for 8-12hours. but retained freeaccess 10

tap water . They then received a single intraperitoneal injection of 0.3 mgfl OOgbody

weight bacteria llipopolysaccharide (Eschericia coli serotype 0127:88) in 0.9'%pyrogen­

free sterile saline ! I.O lUg. mil. They continued 10 have free access 10water bUI were give»

no food. Paired controls \ \c: tc: injected with vehicle alone. Subsequent to injection all

animals were housed iudividunlly.

The protccol rcr this experimental model was based upon prior studies in our lab

Endctox ernic animals are anorexic and there is constriction of the pyloric sphincter

(Evans et al. 19891. Fhcreforc. the LPS-treated animals arc in a fasted state and. for a

suitable control. fasted animals must also be: used. The dose of endotoxin chosen was that

determined to be the lowest dose:which would induce the symptoms of endoroxe mia in

rats (Qian & Brosnan. 19961.

Animals ....ere excluded from the experimental group if they did nOIdisplay the

external physical manifestations of endot oxemia. These include: piloerection . lethargy.

lack of preening. exudate around the eyes and nostrils. and diarrhea (Qian. 1993). Less

than 10 animals were rejected during the course of these studies because they did not

display the symptoms associated with endoroxemia. It is noteworthy that livers excised

from treated rats were increased in mass compared to paired controls and they had a

characteristic maroon colour IQian. (993 ).
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In vivo Study: ~Ieasuremenl of Urinary Urea

Rats were housed individually in Nalgene metabolic cages for a total of 4 days.

ROIlSwere acclimat ized to the metabolic cages for 36 hours with free access to ground

chow and tap water. After 36 hours the food was removed . After 12 hours of fasting the

rats were injected with endoto xin or vehicle and returned to the cages for urine collect ion.

After a further 48 hours all animals were sacrificed.

Urine was collected at 12 hour intervals throughout the study including the initial

acclimatization period. taking care to rinse all plastic surfaces for complete urine sample

collection and measurement. The volume was measured and then aliquots were frozen fo r

urea determination. Urine samples were uniformly diluted but not chemicall y treated in

any way prior to freezing. At the end of the study urea was measured in all samples by the

method of Geyer and Dabich ( 1989).

Pr eparati on of Inta ct Mitochondria

Each rat was killed by cervical dislocation and the liver rapidly removed and

immersed in an ice-cold isolation medium which was modified from Hampson et til

(1983). This medium consisted of mannitol. ~~ 5 mM; sucrose. 75 mM:ethyleneglycc l­

bis-{~-aminoethy l ether) N.;V..V'.N- tetraacetic acid (EGT A), I mM: N-2-ethanesul phonic

acid (Hepesj . 5 mM;pH 7.4. The method. essentially that of lois et at (1989), required

that the liver be quickly and linely minced with scissors and then homogen ized in 19

volumes of cold medium in a hand-held te flon. Poner-Elvejhem homogen izer. clearance
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of - 0.3 rnm. The homogenate was then centrifuged in a Beckman J2·M C centrifuge (JA­

20 rotor) at 2250 rpm (600 g ) for 10 minutes at ~ °C to pellet any erythrocytes,

connective tissue, etc, The subsequent spins were carried out at 8250 rpm (8200g ). The

second cent rifugation provided a crude mitochondrial pellet which was re-suspended in

isolation medium with one 1,)1"two p:lsses of a Dounce homogenizer. The mitochondria

were purified by centrifug ing this suspension at 8200g for 10 minutes, re-suspending the

pellet. and then repeating this procedure. The final mitochondrial suspension had a

concentra tion of 25-70 mg 111 1of mitochondrial protein as determined by the biuret

reaction tGomalt et al, 1 9~9 ) using bovine serum albumin (BSA) as standard. The yield

of mitochondr ia W<lS similar lo r endotoxin-treated and saline-treated rat livers. The

mitochondria were then evaluated for respiratory control.

Respir at ory Co ntrol Rau u a nd Succina te Oxida tion

Mitochondrial oxygen uptake was measured using a Clark -type electrode

(Estabrook. 1967) in a medium which contained: KCL I ~O m,\1; KH:PO " ~ 1ll.'.4:EDTA,

I mM; MgCI:, 2.5 III.'.!; Hepes. 5 mM: BSA, I mg/ml: pH 7A at 30' C, The medium was

equilibrated with air. Mitochondria ( 1·2 rug mitochondria l protein) were incubated in this

medium with 5 m.'.!succinate and state 3 respiration begun by addition of AD? (0.26 /11M.

final concentration ). The mitochondria were acceptable if they exhibited resp iratory

control ratios (state 3/ state ~ respiration) of greater than 4.
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Disruption of Mit ochond ria

The first two enzymes of the urea cycle are located within the mitocho ndrion and .

thus. assays of CPS I and OTC required disr uptio n of the mitochondrial inne r membrane.

They were d isrupted by three cyc les o f freezing in liquid nitrogen followed by thawing in

wann water (less than 37 ' C ). As a control. to comp are maximal membrane breakage via

this method, the mitochondrialmarker enzyme glutama te dehydrogenase (GD H: Bernt &

Bergmeyer. 1974) was meas ured in samples of mitochondr ia which were disrupted by 0.5

% Triton-X 100. The acti vity ofG DH utmuxir nal disru ption by Triton-X 100 Wasa little

more than the activity d isplayed following 3x freeze-thaw using liquid nitrogen. B~

measuring the disappearance of \lA DH ~ \ I 340 nm under vary ing disruptive cond itions it

was found that nticr 2x freeze-thaw there was no addit ional enzyme activity . This control

was reproducible. Sx freeze-thaw was. subsequently, used to ensure that the mitochondria

were adequ ately broken.

Table 2.t : Disruption of Mil ochondri al Membrane s Via Fr eezin g I Th awing Using
0.5 T r ilon-X 100 as Sta nda rd.

Experi men ta l
Co nd itions

0.5% Tnton-X 100
l x Fr eeze-thaw
Ix Freeze-thaw
3x Freeze-thaw
.h: Fr eeze-th aw

Disapp earance Of NADH
( ~l lll o Um i n/mg mitochondrial
pr otein )
0.178
0.111
0.133
0.133
lU 33
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Blood , Liver. Skeleta l Muscle and PI;ISl11a Sa mpling

Rats were anaesthetized by an intraperitonea l injection of nembural (sodium

pentobarbito l) at a dose of6 .5 ru g 100 g body weight . For blood and plasma

determinations about I ml of blood was dra....n into an hepariniz ed syrin ge from the

hepatic portal vein and from the abdomin al aorta. Liver and muscle sam ples were

obtained from animals which were no! used for blood sampling. The procedure of

remov ing tissue samples was stepw ise. lhe rats were surgically prepared . unde r

anaesthes ia. such that the abdom inal 0.::1 \ ity was ope n and the liver expose d. Next . the

skin from one thigh was remo ved and a port ion of the muscle cut out and freeze-clamped

using pre-coo led aluminum tongs. lrnmedia rely. a lobe of liver was removed and freeze­

clamped . Each sample was wrapped ill labelled aluminum foil and stored. in liquid

nitrogen. until analysis .

Amin o Add Determi nati on

Liver and muscle amino acids were extracted as described by Brosnan 1;'1 ,,{

(1983). The frozen tissu e samples were pulverized in pre-cooled ceramic mortars. 0.5 g of

tissue powder was added to a pre-cooled. tared centrifuge tube and was homogenized

with 2.5 ml of 0.5 .\1 perchloric acid using a motor -driven teflon pestle that j ust lined the

centrifuge tube . The homogenate was then centrifuged at 18000g for 15 minutes at..j. C.

The superna tant was neutralized. dro p-vise. with 10 MKOH and 3 MK ,POJ then placed

on ice for 30 minutes. The precip itated potass ium perch lorate was then removed by
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centrifugation. The neutralized supernatant was diluted with lithium citrate sample

dilution buffet (0.2 S Li" with I~~ thiodiglycol and 1% phenol. pH 2.2 :::0.2; Pierce

Chemica l. Rockford. IN. and the pH adjusted to thaI of the buffer with 3.0 MliOH. 100

J,llof amino-ethyl-cysteine l.-\EC) was added 3S an internal standard and amino acids

were measured on a Beckman model I ~l -~ I amino acid analyzer as described by lee

( 1974) by Doug.Hall and Sonia Banfield ofM emorial University's Amino Acid Analysis

Facility.

Blood samples were dcproteintzcd by addit ion to cooled. pre-weighed centrifuge

tubes containing.0.75 nil ufo 5 Jl perchloric acid and then vortexed vigorously.

Centrifugation at IbOUOrpm (3 1000g ) pellcted the precipitated proteins . OA ml of the

supernatant was mixed \\i lll 11.1 ml SSA LiOH ()O% sulfosalicylic acid in 3 N LiQUI.

0.05 m1 L!5 111.\1 AEC and O .~5 ml lithium citrate sample dilution buffer. pH was

adjus ted with LiOH to 2.': :: O . ~ for amino acid determination. Approximately I mlof

blood was centrifuged lor ~ minutes in an Eppendorf benchtop microcentrifuge 10 pellet

the cells. OA ml cf plast na\\.:I.S then prepared lor amino acid analys is in the same manner

as deprote inized blood. The straw colour of the plasma indicated very little baemolysis.

Ammonia Determination

Ammonia \\ as measured in hepatic ponal and abdominal aortic blood as well as in

liver samples 18 hours ariel' injection with LPS or vehicle. Supernatants of deproteinized

blood and tissue samples were neutralized 10 pH 1.0 using 3MKlPO~ and 10 M KOH.
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Samples were assayed for ammonia by the method of Buttery & Rowsell (1911) in a

Beckman DU65 spectrophotometer. using Kinetic PacN software which tabulated the

results and traced the course ef the reaction. This method coupled ammonia removal by

GDH to NADHconsumption at 3-W nm t Bemt & Bergmeyer. 1974)_Scrupulously dean .

i.e. ammon ia-free. ~lass spectrcphotc metric cuvertes were used in these measurements

Glutamate dehydrogenase. suspended in glycerol ( 120 U/mg in 50% glycerol v/v:

Boehringer Mannhctrnj. was added to the cuvette to begin the reaction.

Enzyme Assays

A summary of lime and protein requirements for the assays employed in this work

is appended {Ta ble ..\· 11.

Ci t ru lline Synthes is in Int act ~lilochon dria

Flux through the mitochondrial portion ofthe area cycle was measured by

incubation of mitochondria in a shaking water bath at 30·C with a medium ....hich

comprised (final conc entratio n]: potassium chloride. 80 mM; Iris Ihydroxymerhyl}

methylamine (TRIS). ~O 11I.\1; dibasic potassium phosphate. 5 rnM; succinate HCI. 5 11I.\1;

potassium bicarbonate, 20 111.\1: ammonium chloride. 5 mM; L-ornithine, 10 mM;

ethyleneglycol-bis-t jl-aminoethyl ether) N.N.N',N'·telraacetic acid (EGTA), I m..H: pH

7.4 in a final volume of 1.0 ru! (Lacey et ol. 1987), The reaction was started by adding the

mitochondria and Slopped wilh 0.3 ml of 30% perchloric acid.



Assessments of linearity for protein concentration as well as incubation time were

carried out. Representative experiments can be seen in Figur e 2.t. Subsequent

incubations were within these linear ranges and used 3.0 mg of mitochondrial protein per

flask. at 30 C for 6 minutes. Incubations were terminated with perchloric acid and

citrulline assayed in the dep roteinized incubation mixtures using the colorimetric method

of Herzfeld and Raper ( 1976 ).

Ca r ba myl Phosphate Synthe tase I

CPS I was assayed as descri bed by Nuzum and Snodgrass ( 1976). The principle of

this assay is that all carbamyl phospha te is converted to citrulline (via the added ornithine

and OTC ) which is measured. Pyruvate kinase is included so as to regenerate ATP from

ADP using PEP as phosphoryl dono r. Preparation of the incubation cocktail invo lved 20

minutes of gassing with 9~~ <> 5<> <> 0 : I CO: of a 'working pool.' This pool consis ted of

(final concentr ations) : ammonium bicarbonate. 5004 mM: N-acetylglutamate (NAG). 5.04

mM:Lornithine. 5.04 111M: ATP. 12.\ mAl: magnesium sulphate, 24.2 mM:

phosphorenoljpyruvate (PEP). 40.3 11IM: pH 7.0. Once gassed. and immediately prior to

assay. supplementary enzymes OTe. (168 units from Streptococcus jaecalisis and

pyruvate kinase (Type II from rabbit muscle . 2233 units: final values) were added to form

the 'assay pool. '

Freeze-thawed mitochondria was added to stan the reaction. The total volume was

0.3 rnl and the reaction was termina ted by precipitation using 0.3 ml of 30% perchloric
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Figure 2.1: Linea rity With Protein Concentra tion and Time for Citrulline
Synthesis in Intact Mitochond ria. The time linearity curve for
mitochondrial citrulline synthesis utilized 3.0 mg of mitochondrial protein.
The protein linearity evaluation was carried out for 6 minutes.



acid . Citrulline \ \3:> measured in the deprote inized supernatan t tbierzfeld & Raper . 1976 ).

The linear ranges for both protein and time were determined and repre se nta tive

expe riments are incl uded in Figu re 2.2 . From these expe riments we chose 0.3 mg of

protein per incu bation flask and an incubatio n time of 6 minu tes for all experiments.

O rni thine Te-an seur bamylase

aTC cutalyscs the trans fer of the carbamy l group h om carbamy l phosphate to

ornit hine . O'I'C \ \ ;1:> also measured in freeze /thawed broken mitochondrial preparat ions.

The mitoc hond ria were incubated at 3T(' in: orn ithine. .2.5 mMand 180 1/1,\,1

triethan olam ine. pl l j. e (Iinal concentrations). The reaction was started by the additi on o f

the substrate carba myl phos phate. 5.0 III.Hl final concentration) . The volume of

incubat ion was 0.3 1111and the reac tion was stopped upon addition of 0.3 ml pe rchton c

acid . As in the ( PS I assay . citrulline was quantitated in the deprote inized

supema tant Il'lervteld & Rape r. \976 ). The results ofa representative experiment to

assess both time and protein linearity are presented in Figu re 2.3 . Six minutes was

chosen as assay time and 20IJg as the protein amount. To avoid inaccurac y assoc iated

with transferring minute volume s. the mitocho ndria l extract was diluted wit h

homogen ization medium to a conce ntration of 0.2 rnglml andO. IOO011was added to each

flask
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Figure 2.2: Time and Pr otein Linear ity for Ca rbamyl Phosph ate Synthetase I.
The time lineari ty curve for CPS I used 0.30 mg of mitochondrial protein.
The protein linearity assessments were carried out for 6 minutes.
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Linearity With Time for OTC
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Figure 2.3: Time and Protein Linearity for Ornithine T ra nscarbamytase. Protein
linearity was carried our for 6 minutes. Time linearity assessments utilized
0.02 mg of mitochondrial protein.
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Argtntncsuccinare Syn thetase

The third enzyme of the urea cycle. which catalyzes the condensation of citru lline

and aspartate, was measured in liver homogenates using a slightly modified version of

Nuzum and Snodgrass ' method (1976). The modification of the method requi red using

labelled [l.jCj-ureid'l.;itrulline [H:NC·O i\:H(CH1)lCH(NH:)COOH]. The ('.e]-

arginincsuccinate \\;l S converted to labelled arginine, urea and CO: by successive

addition of AL, arginase and urease. Supplementary enzymes also had to be added to the

incubation for ATil regeneration.

The incubation medium cons isted 01'( final concentrations): dibasic potassium

phosphate . 50 m.H pH 7.5: aspartate, 5 /JIM: ATP,:! mi\J: magnesium sulphate. 2 mt-t:

PEP,:2 rnAI: ['.jC]-ureidocitrulline. 5 111 .\1. 3.7 kBqimmole: pyruvate kinase (Type II. rabbit

muscle). 3 units: :\ 1.(Type IV. bovine liver) 0.8 units: arginase (bovine liver). 5 units:

urease (Jack bean). 1~ units. The incubatio n was carried our at 37° C. As in a ll previous

enzyme assays. time and protein linearity assessments were determined. Representat ive

experiments can be seen in Figure 2,.1.The chosen protein amount in the AS assay was 3

mg and the time otincubation in subsequent experiments was 10 minutes. The incubation

total volume was LOIII I.

The incubation flasks were fitted with rubber caps which positioned centre wells
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above the incubation mixture. Each well contained OA ml NCS. a tissue soluhiliz er

comprised o f a mixture of quaternary ammonium hydroxides and toluene. NCS acted 3S a

sink for "CO: w hich W3 S liberated, from solution upon addit ion o f perchloric add at 1I~

end of incubation . The O .~ ml of acid \ \ 3S added to the incubation solutions through the

rubber cap via a 1.0 ml S ~ tinge and thus loss 10 atmosphere ....as prevented. OA ml ~CS is

in excess of the vo lume which is req uired to trap the liberated labelled CO: and the

incubated flasks rema in in the shaking water bath for 30 minute s post-ac id inje ctio n to

ensure trapping of all labelled gas. The centre wells .....ere then Immersed in 10 ml

toluene-omni fluor scinrillunt and left over night to allow dissipa tion of any

chemiluminescence . The following morning samples were counted in an l KB liqu id

scintillation cou nter mood 1 ~14. COUlltS per minute {cpm ] were converted 10

disintegrations per minute tdp m! via all internal standard .

Argininosuc cin 3te Lyase

Argininc succinate lyase cleaves arginincsoccinare into arginine and fumarate . Its

activity was also measured in liver homoge nate using the method of Nuzum and

Snodgrass «(976) with minor rnodifi cauo ns. The incubat ion coc ktail required . in final

concentra tions : argininosuccinate . 31 III,\,[: dibasic sod ium phosphate buffer. 89 mM. pH

7.0: EDTA. 44 mAl:at 37 ' C and pH 7.0 and arginase (Jac k bean). 100 units. The

reaction was started by adding the liver homogena te. The tota l vo'ume was 0.3 ml and the

reaction was term inated by acid precipitation using 0.1 ml )0 % perchloricacid . The
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product. urea. was measured in the deproreinized supernatant after cent rifuging samples

in a benchtop centrifug e (Geyer & Dabich. 1989).

The curves .....hich represent the experiments carried out to ascertain time and

protein linearity ranges are found in Figure 2.5. There is excellentlinearity with time.

However. linearit y with protein only occurred above 1.2 mg homogenate protein, This

was highly reproducible in all conditions employed although we do not understand ....by.

For routine assays we used 15 minutes and ~.O mg of homogenate prote in.

Arginase

The final enzym e of the urea cycle is found in abundance in the rat hepatocyte. its

maximal activity in vitro reponed as ~7000 IImoL'minlmg at 370 (Powers-Lee & Meister.

1988). For this reason liver homogenates. had to bediluted 1:42 w ith 0.5°'-0 bovine

serum albumin prior to assay in accordance with the method of Nuzum and Snodgrass

(\9 76).

The assay itself req uires two stages : a pre-incuba tion. 'activatio n' of the arginase

and an incubation ....hich determines the rate of arginase activity . The pre-incubation

involves adding 0.5 ml diluted homogenate to 1.0 ml 30 mM manganes e chloride (12 mM

final) and 1.0 ml 300 11/.\1 glycine (120 1Il,1"f final), vortexing and incubating at 55°C for

20 minutes. Upon complet ion of activation 0.1 ml of 'act ivated' homogenate is incubated

immediately. at 37°C with 375 m.\J arginine (125 mM linal). pH 9.8. It is appreciated that
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these are very unphysiological conditions but this is a standard arginaseassay. Reaction is

terminated with pcrchloric acid and urea is measured in the deproteinized supernatant

(Geyer & Dabich. 1989 )

Linearity with respect to homogenate protein concentration and time was

determined for arginase. Representati ve curves are shown in Figure 2.6. The time of

incubation was chosen to be 10 minutes. The accepted protein amount per flask was

0.005-0.020 mg homogenate. The protein determination was linear through 0.0 l~ rug in

this curve but another protein linearity determination for arginase carried out in our lab

has shown this ;\Ssay10remain linear through 0.03 mg of homogenate protein

(unpublished results).

N-Acetylglut a mat c Studies

Exogeno us N-Acct ylglutamate Incubations

These studies wert:conceived to assess the possible role played by the activator of

CPS I. N-Acetylgiutalll:lte (NAG). within our experimental situation.

The inner mitochondrial membraneof coupled mitochondria is impermeable to

NAG but this molecule can. nevertheless. be introduced into mitochondria by a method

devised by Cheung et IIf. (1989). Using the mitochondrial uncouples. 2,4-dinitrophenol

(2,4-DNP), and the ATP synthase blocker. oligomycin. the isolated liver mitochondria

were incubated with varying concentrationsof NAG as well as exogenous ATP. The
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authors (Cheung t!r,d . \9 89) measured (he intramitochondrial concentrat ions of NAG

ach ieved by this type of incubation . Additions ofO. 0.5. and 5.0 m,HNAG to the med ia

resulted in internal '-:.-\G concentrations of: 0.0.3. and 4.3 mAl. respectivel y. The

mitochondria were pre-incub ated for \1)minutes at 30Q in the presence of (final

concentra tions] : 2 . ~-d initrophenol. 0.3 mAl: oligomycin. 10 ~ g.'m l : Tris-Hc t. pH 7.0. 50

m,\4: magne sium chlo ride. 5 m,\'/; ATP. 5 mM; N-acelylglutamate. varying concentrations:

the added mannitol conc entration was adjusted to achieve isoosmolarity in the incubation.

Immediate ly follow ing.the pre- incubation with NAG. citrull ine synthesis

by the mitochondria was determined . The reaction was started by add ing a cocktail

containing (final conc entrations ]: potassium chlorid e. 15 mM; ornithine . 10mst:

potassium bicarbonate. 15 mAl: ammoni um chloride. 10 mM: dibasic potassium

phosphate. 5 mM: ElH :\ .1 mM; TR IS-HC \. 50 mM; mannitol. 69 mAJand bovine serum

albumin . O . I ·~ W ' \(' \' Vo lume of iacub.nion .....as 1.0 mi. The reaction was terminated

wi th perch loric acid and citrulline was measu red in the dep rcteinized supernatant

(Herzfeld & Raper. 1\)70 ). Assessments lo r linearity with respect to time and protein were

carried out and the [iunl protein concentration chosen was 3.0 mg mitochon drial

protein/m! and lime o f incubation .....as : minutes .
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MiCtK:hondri al ~l ;) l rh .\'-At elYlgluI3ffiace Levels

The leve ls of mitochondrial matrix NAG were measured at the Kennedy-Krieger

Institute of Bahituorc b~ Dr, U sa Kratz. Liver mitochondria were isolated and quick

frozen in liquid nitrogen and stored at -80' C (low temperature freezer) until shipping,

Samples were sent ttl Baltimore in dry ice. Dr. Kratz analyzed the mitochondrial samples

for NAG by ion ratio gas chromatography mass spectrometry by solvent extraction and

trimethylsilyl derivirization. utilizing S · r Hd acetyl.L-3-[ ' IC jaspartate as an internal

standard.

T reatm en t or0 ..1;1

Experi mental dataarc reported as the mean of at least four experiments ±

standard deviation, Statistical analysis utilized rhe Students' unpaired t-test in

comparisons between 1\10test groups rsaline versus LPS animals) and the Students paired

HeSI was used \\ hen comparing results within the same group of animals (A-V

differences). A statist ically significant difference was deemed to bep<O.OS. Quantita tion

of urea andcitrulline from standard curves W:lS calculated by GraphPad (GrapnPad

Software. San Diego. California. USA) and paired t-tests were analyzed by InStal (also of

GraphPad Software package).
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Chapter 3: Stimulat ion or the Urea Cycle Arter Bacteria! Endotoxin

Auministration
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Int roduction

During times of metabolic stress. such as sepsis . negative nitrogen balance OCCUT5.

Administration of bacterial endotoxin elicits many of the effects seen in these

circumstances . Using a model that was previously refined (Qian. 1993) we injec ted fasted

rats with a single injection of LPS ( 0.3 mg/I OOg body weight) or with sterile . pyrogen­

free saline. The re were two questions: \ I) Is there an increased flux through the en~ mcs

of the urea cycle in rats which have been injected with endotoxin? And if so {2) what is

the nature of th is e ffect?

Proto cols

All animals used in these experiments were subjected to the same housing

conditions. The y experienced a 12 hour light/ I2 hour dark cycle (8 :00-20:00 light and

20:00-8:00 dark ) with free access to standard lab rodent chow and tap water for

approximately I week prior to experimentation. The anima ls in the LPS studies were pair

matched with a saline control of similar age and mass. Animals were depr ived of food for

a minimum of 12 hours prior to injection (between 17:00·20:00 food was removed).

£.coli endotoxin was injected by a single i.p. dose 01'0.3 mg/I OOg body weight. in sterile

saline, at 8:30 am. Fasted controls were injected with the vehicle alone . Animals were

sacrificed 24 hours after treatment for the in vitro studies. Plasma and tissue sample s for

substrate measurem ent were taken 18 hours after endotox in.

For the in I'h 'o experiments anima ls were housed in individual metabolic cages for
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96 hours . Urine \\3$ collect ed at 12 hour interva ls. Food ....as removed at 36 hours. and

the animal s were injected with LPS or saline at48 hours. The rats ....ere sacrificed at 96

hours.

Resu lts

Ur in:lry Urea Excretion 24 Houn Afte r LP S· T real ment

Fasted endoroxemic rats excreted nea rly three times as muc h urea as did the

paired fasted controls 11.13 :z:0.3..1 in the controls versus 2.93 =0.79 mmol urea/IOO!?

body weight in the LPS-treated rats}during the 1~·2~ hour interval after lPS inject ion

(Figure 3.1. 60·7~ hOUP.iI. Urea output remained signi ficantl y elevated until

app roximately 36 hours utter trearmem. Urea excretio n can be increased for a variety of

reasons: ( I) increased dieta ry protein intake (Polin , 1905); (2 ) increased mitochondrial

con tent of specitic amino acids. such as arginine or glutama te. which results in elevat ed

synthes is of N.A.:el~lg lU(a.mate (NAG) . the pos itive allosteric effector ofepS I

(Shigesade &. Tatib.ma. 1<)71 ); and (3 ) .:atabolic illnesses during which the liver may

have to deal with increased amo unts of amino acid s which are released from skeletal

muscle (Beisel. 1<)7:' ,.

Within the context o f this study there are seve ral poss ibilit ies that may accou nt for

the observed increase in urea cycle nux: ( I ) increases in the acti vities of the five urea

cycle enzymes; (21 increase s in substrate presentation to the liver for urea synthesis: (3)

increased uptake of ureagenic substrates by the liver. (4 ) activation a fflux-generating
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enzymets] o f the urea cycle . As these possib ilities are not mutually exclusive it may be

that there is cont ribuuou from any or all o f the m. Having fcund a 3-fold increase in urea

excretion in LPS-ITI."~ t.:d rats we focused on the next question : What is the basis for this

increase subsequent to lPS treatment?

Is There an lncreu-,e in Ureagenic Subs t rate Cc eeentran cns and Pr esenta tion to the

Liver After End ct uxin Adminlstrution?

Am monia

CPS I. the first enzyme otmc 111,;0;1 cycle. is ammonia-specifi c .

Ammonia levels were meas ured in arterialblood. hepatic portal veno us blood {both o f

wh ich supply the li\l."rl as well as in tbc liver and skeletal muscle . Because the effects of

endotoxin were det ermined to bemaximu m at 12-2.4hours afte r the insult we chose to

meas ure all ureagcuic substra tes at 1S h••urs. T able 3.1 presen ts the ammonia values

which were obtained trorn blood. as \\..:11 3 S liver and musc le. These values are in close

agreemen t with those obtained by prcviou s experi menters (Brosnan. 19681. Ammonia

levels in blood. fiver and skeletalmuscle were not different in the LPS-treated rats

compared with thc cont rols.
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Ta ble 3.1: Ammonia Len is in Whofe Blood, Qu ad riups l\1usd e and Liver Sa mpl es
18 Hou rs Arter Adm inisrra tien of Bucteria l Endolo'Cin or Sterile Saline. Blood was
sampled from the hepatic portal vein or the abdominal aorta. Results are presented as
means e standard deviations of ) or..l individual measurements: two-tailed n vetoes h\
unpaired t-Iest; ·p <0.05. There were no significant differences. . .

Sample Saltne Conlro l LPS-T reat ed

Porta l Venous (J.t 7 :::0.070 0.18 :l:0.031

Blood (fJmoUml)

Abdominal Aort ic 0.05-4::t: 0.011 0.055 :::0.0 18

Blood (fJmol/ml)

Q uadric eps Muscle (",moUg) 0.~5 ::0.16 0.17 ± 0.01

Liver (Jimol/gl 0.09 :::0.08 0.66:: 0.::!4
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Fr ee Am ino Acid Concentra tions

Free amino acid concentrat ions were quan tified in samples .....hich were taken

from: (I) hepatic ponal venous whole blood and plasma; (2) abdominal aortic whole

blood and plasma: (3 ) freeze-clamped liver; and (4) freeze-clamped quadriceps muscle .

As this amounts 10 a large body of data the key data will besummarized and appended as

tables of individual free amino acid concentrations.

Table 3.2 presents a summary of the tota l free amino acid concentrations in

blood. plasma. skeletal muscle and liver. Total circu lating free amino acids were not

changed in the blood and ponal venous plasma of LPS· treated rats compared to controls .

Neithe r were there any diffe rences in the skeletal muscle of the treated rats. However. the

tota l free amino acid conce ntrations measured in arterial plasma and liver were

significantly increased in LPS-trcated animals.

There was a large net release of amine acids across the gut in the blood of both

conecl (-648.9 nmot'mt) and LPS-treated (·687A nmolim!) rats (Ta ble A. 2) presumably

because of the increased protein catabolism in their fasted state.

Blood and Plas ma Am ino Acids

II is generally believed that plasma. rather than erythrocyte s. is the vehicle for

amino acid exchange between tissues (Mun ro. 1970). However. there are studies which

report that red blood cells can play plasma-ind ependent and. often. opposing roles in

amino acid exchange in the liver and gut (Elwy n et al. 1968). The re is an increase in the
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T abl e 3.2: To ta l Free Amin o Acid Co ncent ra tions in Blood . Plasma, Skeletal
Mu scle a nd Liver 18 Hours Afln End otoxin Administration. Blood was collected
from the hepatic portal vein and from the abdominal aorta. Skeletal muscle and liver
samples were quickly excised and freeze-clam ped. Values a-e presented as means :::
standard deviation of 7 or 8 animals per group . An asterisk denot es a significant
difference as dete rmined bv unpaired t-test. (·p<O.05l

Samp le Salin e Co ntro l End otmin-Tr eated

Blood (nmol/rnl)

Hepatic Portal Venous ·H35 :::.Jo8 5027::: 1.:!1 .J

Abdominal Aort ic .4177 :::3% ·HI:!::: 1 ~ 19

Plasma <Dmol/mll

Hepatic Portal Venous 3829::: 382 ·UI6 .::: S27

Abdominal Aortic 35.46::: 3113 .4223 .±525·

Skeletal Mu scle
(nmoUgl 21519 :::468 :lOBO± :l306

livn
(nmol/g) 1367:1:::2059 19650 ± .4394·
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total concentration of antino acids in arterial plasma of LPS· treated rats (Ta ble 3.2).

There are also signifi cant increases in the circulating levels of key am ino acids alanine

{Tab le 3.3 ) and glutamine (Ta ble 3.4 ) the ma in end products of muscle protein

degradation (Fellg. 1975). The importance of these changes will be discussed in further

sect ions.

Liver Amino Acid s

The liver is the site o f ureagene sis and the main orga n of gluconeogenesis thus it

carries out signif icant amino acid catabo lism. Total free am ino acid concent ration is

significantl y increased in endctoxem ic rat livers (13672 10 2059 nmollg in contro ls. [9650

± ..1-394 nmo llg in LPS group ; *p<O.05: Table 3.2). T a ble A·3 gives data on the

individual live r amino acids. Glutamine is not increased in liver whereas alanine is

(Ta bles 3,3 a nd 304).

Key Amin o Acid s Durin g End oto xemta

Ala nine

Alan ine is the principa l gluccneogenic amino acid and participant in the glucose­

alanine shu tt le (Felig, 1973). ln muscle. alanine may be : (I) re leased via proteolysis or

(2) produced via transamination reactions. Muscle alan ine levels in LPS-treated rats were

significant ly increas ed (1()17 ± :W2 nmol/g in controls versus 1475 ± 333 nmo l/g in
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T abl e 3.3: Summa ry or Fre e Alanine Data Fro m Amino Ad d Analyse s 18 Hou rs
Post l PS or Saline Injection. Values are presented as means ± standard deviation. n=7
or 8. Statistical significance : A-V differences across the gUI were determined to be
significantly different from zero using paired t-rest. All other groups were subjected (0

unpaired t-test. ( -p<O.05. "'p<O.OI )

Sa mple Solline Co ntro ls LPS--Tr eal ed

Skeletal Muscle mmcl/gj 101 7~ ~O~ I·n s ± 333"

Liver (nmo\!g) 320 ~ 56 777 ,, -1.·.1.7 -

Hepatic Portal Venous 3q9 :::7-1. 6 1-1. ± 338-
Blood (nmo L'ml)

Abdom inal Aortic : 93 :::5: 506 :::: 5. -
Blood (nmol'ml)

A-V Blood (nmol/mll -102 ~ 121 -107± '''58

Hepatic Portal -1. 32 :::56 552 ± 113-
Plasma (nrnol'mll

Abdo minal Aortic 3-1.0" -I.: -1.96 ::: 10-1. · -
Plasma {nmol/ml}

A-V Plasma (nmolim \) -93 ~ 79 -S6 ± 42-
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Table 3.4 : Summary of Free Glutamine Conc entrations 18 Hours After Inj ection
With Sa line or Endotoxin. Values are presented as means e standard deviations. n=7 or
8. Statistica l evaluation of A-V values (across the gUI) was by paired t-test while all other
sample I!roups were compared by unpaired t·t est. (*p<O.05; ....p<O.OI ; ..... p<O.OOI I

Samp le Saline Controls lPS-Treated

Skeletal Muscle mmol/g ] 2-n8 ± 500 1819 ± 397*

Liver (nmol/g) 3972 ± 658 43 16 ± 46 1

Hepatic Portal Venous ~ I I :::68 651 ± lOS'"
Blood (omol/ml)

Abdominal Aortic 5 1S.:: 44 614 0:: 120
Blood (nmol/ml)

A-V Blood (nmc l/ml} 5.9::: 72 -37 ± 72

Hepatic Portal Venous 539 :::47 675 ± 92 ....
Plasma (Dmoliml)

Abdom inal Aortic 574 ± 82 799 ± 82......
Plasma (nmol/ml )

A· V Plasma (nmol/ml) 34.5 =: 114 124 ± 71"
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LPS·t reate d rats: ··p<O.OOI ). In the circulation. i.e.• in blood and plasma. there ....ere also

marked . significant incre ases of alanine in LPS-Irealed rats (T a ble 3.3 ). In the livers of

LPS-treated rats there was tw ice as much alani ne as in the cont ro l rats liver s (Tab le .3.3).

All of this is relevant to the effect( s) of end otoxin trea tment upon urea synthes is beca use.

as the anima l enempts to cope with disrupted fuel homeostasis the liver may bepresented

with more alanine and. in tum. more ammonia. As a substrate for CPS l amm oni a cou ld

stim ulate ureegen es ls.

G luta mine

Glutamine is also a primary gtuconecgenic amino acid and its cataboli sm may

prov ide ammonia d irectly to CPS I iHa ussi ngert! tal. 1992: ~eijer. 1985). Therefore . it is

also pa rticula rly relevant to these studies . G lutamine concentrations were affected POSI­

LPS as sho wn in T ab le 3..& . Muscle glutam ine conce ntration signi ficantly decreased in

LPS-lrealed rat muscle (:;478 ± 500 nmol/g in contro l versu s 18 19 ± 397 nmollg in LPS

gro up: · p<0 .05). In hepat ic portal venou s bleed. me ami no acid co ncentration was

elevat ed (51 1 :!: 68 nmo l/m l control. 651 =108 nrnol/rnl LPS group : ··p<O.OI ) but nOI in

the arterial supply . Glutamine co ncentra tions were markedly e levated both in hepatic

porta l venous (539 :1: 47 nmol/ml control. 675 ± 92 nmol/ml LPS group : · · p<O.Ol l and

abdominal ao rtic plas ma 1574 ± 82 nmol/ml control. 799 ±82 nm ol/ml LPS grou p:

· · ·p>O.OOI ). The con centration of glutamine was not chan ged in rat liver 18 hou rs post­

treat ment. however .
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ln rats. the liver receives a greater supp ly of amino acids within 24 hours of injection with

endotoxin. particu larly the gjoconeogenic amino acids, glutamine and alanine and these

may have an effect upon the rate of urea synthesis during endotoxernia .

Are Th e Urea Cycle Enzymes In cre ased in Tota l Activity?

Urea Cycle Enzyme Activi ty In Vitro 24 Hours After lPS Injection

T ab le 3.5 shows the activities of the urea cycle enzymes in livers from rats

injected with either LPS or vehicle (sterile saline). There was no change in the activity of

any of these enzymes suggesting that changes in total enzyme amount cannot explain the

increased urea synthes is seen after LPS administration.

Flux.Through th e Mitochundriul Urea Cycle Enzymes

There was no measurab le differe nce in the activities of the individual enzymes of

the urea cycle (Ta ble 3.5) yet there was a nearly J-fo ld increase in urea synthesis in vivo

(Figure 3. t ) subsequent to endotoxin injection. The enzyme activities are expressed per

milligram of protein . Qian (1993) has shown. in this laboratory. that livers from LPS·

treated rats have 18% more protein than do livers from controls. Therefore. it is possible

that the total potent ial activity of these enzymes in the lPS-tteated rats are increased by

about 18%, This would contribute to the increased urea production in vivo in the LPS·

treated anima ls but can, in no way, account for a J·fold increase, Direct assay of the flux
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Ta ble 3.5 : Summary of the Values Obtained Through Direct Meas urement of the
Five Urea Cycle Enzymes 2.. Hou rs Afte r LPS Administ ra tion. Values are presented
as means ~ standard deviations. na-l. There were no significant differences subsequent to
endotoxin administration as determined by unpaired t-test.

Enzy me Cont ro l Endotoxi n

Ca rba myl Phosp hate 47.1 ± 26.0 47.3 :1: 21.3
Synt helase(CPS I)
nmol/ min /mg"

O rnith ine (OTC ) 2.6: 1.2 2.7 ± 1.2
Tra nscerbamylase
!!mol /mi n/mg '

Arg ininosucd na te 2.4 : 0.36 2....: 0.32
Synthetase (AS)
nmoUmin/mgt

Arg tntnosucct nate 34.2 :1:9.7 35.8::1: 12.7
L}'ase(AL)
nmoUmin/mgt

Arginase 22.6 ± 2.2 21.6 ::1: 3.9
e moUmin/mg±
t Denotes mg of mitochondrial protein: : denotes mg of liver homogenate protein..
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through CPS I and OTC in intact LPS-lreated rat liver mitochondri a resulted in flux rates

double those of the control (Figure 3.2) even though the total activities of CPS I and

OTC assayed in vitro were unchanged under these conditions . This increased flux in

intact mitochondria suggests that there may have been activat ion of the

intramitochondrial portion of the urea cycle after LPS injection.

We next carried OUI a series ot'exp eriments to exam ine further this doubling of

citrulline synthesis in intact mitochondria (Figure 3.2; 18.23 ± 8.59 controls; 3SA7 =

12.60 nmol/min/mg LPS-treated. · p<O.05). CPS L though not shown to increase in total

activity as a resu lt of LPS injection. is subjec t 10allosteric modulation by N­

acetylgl utamate (NAG).Therefore. we examine d the effects of LPS on mitochondr ial

NAG levels as well as the relationship between NAG and flux through the urea cycle.

N· Acetylglu ta ma te: Increased Activatio n orCPS I After LPS?

Mitoch ond ria l NAG Concentrations

Mitocho ndrial NAG was measured by GC-MS to assess directly whether there

might bean increase in this key regulatory molecule in endoroxe rnic rats. Figure 3.3

shows a significan t elevat ion of NAG in the mitochondria of LPS-treated rats 24 hours

post-inject ion (0.32 ± 0.080 controls: OA6 ± 0.15 LPS-treated. nmoVmg; · p<0.05). Om:

value was excluded from the LPS group. The mitochondri a from this rat had the lowest

NAG content cf' all the animals (0.18 nmoVmg) and also had a very low rate of citrulline

synthesis (6.06 nmolJminlmg) in the intact mitochondria . Thi s may have resulted from a
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faulty injection ofLPS.

Exogenous N. Acery lgl ula ma le Stu d ies

Figure 3 .~ presents the citru lline synthes is rates by mitochondria in me prese nce

of 0-10 m,Hexo genou s NAG. These mitochondria were uncoupled to faci litate NAG

entry . At zero exogenous NAG the liver mitochondria from endotoxin-treated rats

synthesized citru lline at do uble the rate of the sa line contro l anima ls (1~.~8 % 6046 in

contro ls versus28.84 :::9.82 in LP$-treated rats: nmoilmin/mg ; ·p<O.OS) which recall s

our da ta from Figure 3.2 in wh ich the:rate of citrull ine synthesis is doubl ed in LPS·

treated rat liver mitoch ondri a. The rate increased in both grou ps but the increase was

greate r in the mitochondria from the sa line-injected rats such that there were no longe r

signi ficant differences betwee n the groups (3S .6~ ; II AJ in co ntrols versus ·e.S9 :::

11.23 in LPS-treate d rats: nm o Vminlm g) at 10mMNAG. There is a lso a sign ificant

positive relationshi p between citru lline synthesis rates and intramitochond rial NAG levels

(Figu re3.5; r=O .610. · p<O.05). Thus. increased intramitochondria l NAG may be

respon sible for the ac tiva tion of flux through the urea cycle through its effect on CPS I.

Discu ssion

Much wor k has focuse d upon the processes which lead to muscl e los s du ring

endotoxe rnia. The foc us o f this work was 10evaluate hepat ic response to eleva ted ami no

nitrogen influx due to protein catabo lism in muscle during endotoxemia. Am ino acids
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may be: ( I) ox idize d: (2) used as gluco neogenic precursors : and (3) used for synthes is of

proteins as well as a variety of other functions. Within the liver, during endotcxemic

stress, amino acid s may meet any or all of these fate s. Protein synthes is generall y involves

acute phase prote in synthesis (Wan nem acher, 1977 ). Oxi dation and gluconeogen esis

liberate amino nitrogen. Th is is handled by the urea cycl e (Krebs & Hense leit . 1932).

Urinary Urea Excretion

Injection of rars with LPS resulted in a ] · fo ld increase in urea excretio n (Figu r e

3.1) 24·]6 hours later. Total urea production over the first 24 hours in the metabolic

cages was identical in both grou ps (control: 3.52 ± 0.922; l PS·treated : ] .49 =0,551

mmol/IOO g body weigh~~ hours ). During 60- 84 hours . or 2448 hou rs afte r injection

....ith LPS or saline there .....as marked increase s in urinary urea excretion (cont ro l: 1.9Q .:

0.92~ ; LPS-treated : ~ .60 :::l.42 mmol urea/ I00 g body wei ght/24 hours ). Thi s ill 1';1"0

experiment answe red our first question : Is there an increased fluxthrough the enzymes of

the urea cycle in rats which have been injected with endotox in? Yes. clearl y. ureageu esis

is stimulated in endotoxemic rats. but the nature of the effect was unknown.

Is There an Increase in Ureagentc Substra tes Post-LPS ?

Ammo nia

The true substrate for CPS I is ammonia (Cohen et al, 1985). We measured the

level of ammonia in the liver as .....ell as in the blood. vessels which supply the liver. There
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were no changes subsequent to the injection of LPS (Table 3.t ). Ammonia was nOI

increased in the livers of endctoxern ic rats therefore it does not ap~ar to beexerting a

push upon the urea cycle .

Amino Acid s

Amino acids arc important prttUTSors for urea synthesis. In fact. an increase in

ureagenesls will only occur if there is an increase in the amino acid concentration in the

liver (Meijer et al, 1985) even if the enzymes of the cycle are activated or increased.

Total Fre e Amino Ad ds

Endotoxin treatment did not significantly alter the 12IJ1 free amino acid

concent rations in: arterial blood. portal venous blood. pona l plasma or skeletal muscle

[Table 3.2 ). There was a significant increase in the total concentration of amino acids in

the livers from endctcxemi c rats (-]OC!'I) and in abdominal aortic plasma from these f;1!S

(_161
/ . ) . There were also important differences in individual amino acid concent rations in

each of these sources . specifica lly alanine and glutamine. The specific changes in each of

these tissues will bediscussed in subsequent sections.

Skeleta l M uscle Amino Acids

The skeleta l muscle did not show a significant change in its total free amino acid

pool after injection of endotoxin {T able 3.2 ). There is evidence for increased muscle
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proteolysis during febrile stales (Baracos et al. 1983) and influx of amino acids is

impaired in muscles of endotoxemic and septic rats (Hesselgren et at, 1986a ). There are

significant alterations in the intramuscular levels ofalanine and glutamine.

Alanine is significantly elevated (-30%) in the quadriceps of LPS· trealed rats

(Ta ble 3.3). Regulation of the alanine movement in muscle is, in part. via transporters.

During severe infection t sepets and endotcxemia }alanine influx via system A is impaired

by 90% in rat soleus muscle within 16 hours of immune challenge (Hasselgren esal.

198b3). System A transport of alanine into muscle. which is stimulated by insulin in

normal rats (Karlstad & Sayeed. 1985)exhibits insulin resistance in endotoxemic rats

(Hasselgren et 01. 1986c ). Cortisol and epinephrine. are elevated in rats in the catabol ic

states noted and may further depress transport via system A twarters et aJ. 1986). Thus

increased alanine release would require increased alanine concentrations in muscle cells,

which is observed.

Glutamine conce ntration. also an important glucogcnic and ureagen ic amino acid.

was significantly decreased (- 36%: Tab le 3.") in LPS·tr eated rat muscle. Glutamine is a

fuel for intest inal cells (Souba. 1991). whose absorption of glutam ine is impaired in

septic ralS(Salloum et 01. 1991). and for immunocytes [Ne.....sholme et al. 1985). During

endoroxemia. the demand for fuels for immunocytes increases. Glucose , which may also

be used by these cells, becomes limiting 50 there is extra demand for glutamine. Dietary

supplementation of glutamine improves survival rate in septic mice (Adjei et al, 19941.

As there are no protein stores per se the bulk of the necessary glutamine must come from
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muscle in endotoxemi c rats . Thi s is also true under such catabolic states as sepsis tRoth et

al. 1982) and after surgery (Vinnars Ifl al, 1975) during which musc le glutami ne deple tes

and muscle mass is decrease d.

A positive relationship has been found betwee n intramusc ular glutamine

concentration and the nile of muscle protein synthes is (Jepson et 01. 1988; MacLennan t'l

al , 1987). It is hypothesize d that dep let ion of intramusc ular glutamine results in decreased

protein synthetic rates and net loss of mass. In rats . extenso r digitorum longus (EDL J

musc les exh ibit greatest glutami ne loss during endotoxemia (James et al, 1993;

Hasse lgren n al. 1986c) . Our observation of dec reased muscle glutamine in a situation

where there is known to be net muscle proteolys is (Jepson et al. 1988) is cons istent with

these literature reports. The bas is of this is not known . However decreased intramuscular

glutamine may result from : ( I) decreased muscle glutamine synthetase activity which is

unlikely under these circumstances (Wannemacher. 1977 ); (2) decreased musc le

proteo lysis. hence less glutamine in the free am ino acid pool. Thi s does not occur since

proteolysis is elevated in musc le in response to endotoxin [Jepso n et at. 19861: (3)

increased glutaminase activ ity: in rat muscle glutaminas e activity is significantly lower

than that of glutamine synthe tase [Muhlbacber et al. 1984); (4 ) increased glutamine efflux

due to alterations in the transport er (Babij et al. 1986a; Jepson et al, 1986: Renn ie et al,

1986). The fact that muscle glutamine concentration is decreased. whereas that of alanine

is increased. points to some spec ificity to the loss of glutamine - it is not due to a

generalized effect on amino acid transport. Transport of glutamine across sarcolemmal
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membranes is via system N'" (Ahme d et al. 199 3) which has characteristics distinct from

the liver glutamine transpo rter N (Kilberg et al, 1980), Hwnan N"' is similar to rat 1'1­

(Hunda l n of. 1986).

The actual mechanism of glutamine uptake is one of co-transport of glutamine end

sod ium (Ahmed et ol. 199] ) in a 1:1 ratio [Hundal et al , 1986 ). 1..""Na uptake via N" by

huma n muscle vesicle s is increased in the presence of excess glutamine . Glutam ine

trans port ma y depend upon me electrochemical gradients ofboth Na and glutamine

(Hundal et al , 1986: Hundal et 01. 1987). Further. uptake of glutamine by human

sarco lemmmal vesicles is decreased unde r a variety of circumstances (such as when

osmol arity of surrounding medium increases or if pH of the med iwn dec rease s) (Ahmed

et at. 1993), However. influx of glutamin e is accelerated if there is a negative poten tial on

the inside of cells (Ahmed et al. 199])or if there is an inwardly directed Na ' gradient .

During severe illnesses there arc significant increases in int ramuscular Na". Ca". and

decre ased K' (Askanaski et al. 1980). 11is postulated mat this influx of Na'. by means yet

unkno ....n, rna)" ' short-circuit' Na' /glutamine co-tran sport . N- also exhibit s glucoco rticoid

sensitivity in perfused rat hindlimb (Babij et ol, 1986b; Kayali et al, 1987) as glutamin e

influx decreases signi ficantly, LPS and live bacteria inject ions in rats also result in

decreas ed glutamine transport (Lynn et at. 1986). This discus sion focuses on decreased

glutami ne transport into muscle cells which may result in net glutamin e loss if outward

glutam ine transport is not affected. It must also be recognized that there may bean

acceleration of outward glutamine transpo rt. a process which is little understood.
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Liver Amino Acids

The liver is a key site for amino acid metabolism. It is the site of ureagenesis

(Krebs & Henseleit. \ 932) and of the bulk of gluconeogenesis . Both of these pathways

are vital during catabolic states such as endotoxemia. The liver also synthesizes acute

phase proteins at an accel erated rate in immune-challenged anima ls (Beisel. 1977;

Wannemache r et at. 1974). Amino acid concentrations within the liver are ofspecitic

importance to the effecus) of bacterial endotoxin injection on urea synthesis in rats.

The total conce ntration of amino acids was significantl y increased (T a ble 3.2 ) in

liver while there were no differences in the total concentrati on of amino acids measured

in the blood vessels that supply the liver. Transpon of amino acids into the liver increases

in endotcxemic rats (Inoue et al. 1993) as docs blood flow to the liver LA ugsten 1.'/al.

1991). Endotoxin administration results in an increase in rat hepatocyte vo lume (Qian &

Brosnan. 1996) which. in tum, may stimulate amino acid uptake. protein synthesis. and

ureagenesis from amino acids (Haussingee & lang, 1991; Halesrrap. 1989).

There were live amino acids which were significantly increased [T able A·3). Three of

these, glutamate, alanine. citrulline. have specific roles in ureagenesis. Glutamate and

ammonia are hydro lysis products of glutami ne. Glutamate may also stim ulate production

of NAG and this will be discussed further in a later section. Citrulline is an intermediate

in the urea cycle.

LPS·treated rat livers contained approxima tely twice as much alanine as did the

control rat livers (T able 3.3 ). Studies have shown that nearly 50010 of the total amino acid
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uptake by liver is alanine (Felig, 1973). As the key glucogcni c substrate during

endoroxemia (Wann emacher, 1977). there is increased alanine demand TO ameliorate the

hypog lycaemia (Rayfield et al. 1973) and 10 supply obligate glucose-requiring tissues. In

post-absorpt ive rats alanine catabolism favours glucose produclion over oxidat ion to CO:

by 87% iF elig. 1973).

In pcsr-ebscrpt ive man glutamine is taken up by liver in amounts comparable to

alanine (Marliss et al, 197\). Glutamine was not found to besignificantly increased in rat

liver after administration oflPS (T able 3....I. However . Pacini et ol. (1992)determinoo

that glutamine delivery 10 the liver doubled in endo toxemic rats without resulting in

increased Iive r glutamine concentrations. In periporta l rat bepatocytes starvation and l PS

treatment stimulate glutamine uptake independently (1.6 and 2.6 fold. respective ly) and

synergistically (6.6-foldl (Fischer et at, 19(7). It is also known that hepatic glutaminase is

activated in response to endotoxin injection in rats (Ewart eral. 1995) and glutamate

levels are increased (Pacini et al. 1992; Ta ble A-3). Cell swelling may stimulate hepat ic

glutaminase activity as well as ureagenesis (Helestrap. 1989; Haussinger et 01. I99:!). In

effect . there is likely an elevated glutamine uptake but concurrent acceleration of

glutamine catabolism .

Regulation of liver amino acid uptake following endotoxin treatment involves

transport and may involve hormones andlo r cytokines. l PS treatment of rats results in a

time- and dose-depen dent increase in transpo rt of amino acids in hepatocyte plasma

membrane vesicles (Inoue et al, 1995). The effects include: system A (S-fold). N (2.5-
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fold), ASC (2.6-fold), y' and b" (2·(0Id). TNFa injection in rats resulted in increases in

systems A. N and ASC (Pacitti et al. 1993). lfrats were pre-treated with anti -1l'JF«

antibodies prior to endotoxin adrnin isnation (Inoue et ol. 199~), there was a marked

decrease in amino acid transport via decreased Vmax. Systems L, asc and n were

unchang ed by LPS injection.

Regula tion of the effects of LPS on amino acid transport is likely to involve

glucocortic oids. as well. Pre-treatment of rats with RU38486, a potent glucocorticoid

antagoni st. prior to endotoxi n insult attenuated transpo rt activit y 20-60% (Inoue et 01.

1995). also via decreased Vmax.

T he Enz ym ts of rhe Urea Cyele

Flux through Uteentire cycle is increased afte r endotoxin administration. as

urinary urea excretion triples in the LPS·t reated rats (Figu re J , l ), This was not found to

result from increased tota l act ivity of any o f the urea cycle enzymes . including the

mitocho ndria l enzymes CPS I and OlC (Ta ble 3.5). However , citru lline synthesis was

doubled in mitochondri a iso lated from LPS injected animals (F igu r e 3.2). It was possible

that elevated citrulline synthes is resulted from activation of CPS I after administration of

LPS.

CPS I is an ATP-req uiring enzyme (2 ATP. Mi') and is subject 10 allosteric

activati on. N·acety lglutamat e (NAG) is formed in the mitochondrial matrix from acetyl

CoA and glutamate by N.acety lglutarnate synthetase (EC 2.3.1,1). This enzym e is also
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alloste rically ac tivated by arginine [Tatibana & Shigesada. 1976). In isolated rat liver

mitochondria citrulline synthesis may be regulated by NAG (Meije r & VanWoerkom.

1978) while citrulline synthesis has been postulated as the key regu latory step in

ureagene sis in isolated hepa tocytes (McGivan et al, 1976). Spec ificall y. CPS I has been

hypothe sized to be flux-generat ing for the urea cycle (Wanders et al. 1984: Meijer et d/.

1985b) as it is insensitive to feedback by carbam yl phosphat e (Meije r et al , 1990 ).

There has been much work on the actual binding o f NAG to CPS I (McCudde n &.

Powers -Lee. 1996: Rodriguez-Aparicio et al, 1989; Rubio et at. 1983) and the nature o f

its allosteric effect. When NAG binds near the carboxyl terminus of CPS I (McCudden &

Powers- lee. 1996) a binding site for the MgATP used to 'activate' bicarbonate is

exposed. It is possi ble. therefore , that increased mitochondrial NAG concentra tion

subsequent to LP$ treatment may stimu late urea synthesis in the prese nce of ele vated

substrates. such as am ino acids (Tables 3.2 and A·3 ). Ourwork has shown a signi ficant

increase in mitochondrial NAG subseq uent to LPS-treatment (Figu re 3." ; control; OJ:! ~

0.080 nmol/mg versus l PS-treated : OA6 ± 0.15 nmol/mg ]. We hypoth esize that an

accumula tion o f NAG may stimulate CPS I and. hence , urea syn thesis. Other stud ies

using intact. iso lated rat live r mitochondria appear to support these findings. A pos itive

correlation was detennine d between mitochondrial NAG and citrulli ne synthesis in

control mitochon dria (Beliveau-Carey et al. 1993) and a similar relationship was shown

in this study for mitochondria from control and LPs-treated rats (Figu re 3.5). Also . in

mitoch ondria. citrul line synthesis was linearly dependent on NAG content up to about 1.5
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mM {intramitochondrial] under various hormonal and nutritional conditions (Rabier et ul,

1985: Hensgens n al. 1980). In ow GC·M S-de lermined concentrations. the concentration

of NAG was always well below 1.5 nlM. (Values obtained from Dr. Kratt were presented

as nmoVmg as well as nmoUml for each mitochondrial sample).

Increases in mitochondria l NAG levels may beaffected. in part. by: ( I)

mitochondrial glutamate levels (liver glutamate was found to increase by .J6% in

endotoxin-treated rats: Tab le A-J ); and (2) possible inhibition of NAG efflux into cytcscl

(Meijer et al, 1982). We did not measure acetyl CoA but its level is unlikely 10 increase

under these circumstances (Wime r et ui, 1995). Also. total liver arginine (the al losteric

activator of NAG synthetase) was not found to be increased in this study. We could nor

measure mitochondrial arginine.

Glucagon. which is elevated in endotoxe rnic and septic rats (Watters et 01.1986).

has been shown 10 increase liver NAG content by 30% in vim in rats (Meijer &. Van

Wocrkom. 1978). Also.lhere was increased citru lline synthesis in mitochondria isolated

from the livers of glucagon-injected rats (Meijer & Van w oerkom. 1978). In addi tion

they found a positive correlation between the rate of ereagenesis in hepatocytes and the

NAG content of mitochond ria isolated from these hepatccytes . Interesting ly, NAG has

also been found to activate glutaminase (Meijer &. Verhoeven. 1986). We propose that Ihe

elevated ureagenesis in whole animals as well as the increased citrulline synthesis in

isolated mitochondria results from at least two main sources of regulation: I) increased

mitochondrial NAG. thus increased available CP S I cata lytic sites ; and 2) increased
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availability ofweagenic substrates .
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Summary and Conclusio ns
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S um m jlry a nd C ond usions

I. A sing le intraperiton eal injection of E.roli LPS (01 27: 88 ) at a sublethal dose {Jmg. kg}

signi ficant ly stimulates flux through the urea cycle in vivo. Urinary urea excretion.

effectively, triples (1. 13 ± 0.34 cont rols versus 2.93 ± 0.79 lPS ; mmol urea/ IOOgbody

weight) . Th is tripling is observed from 12-24 hours post treatment and the elevation

remains for 36 hours post- injection .

2. There are elevated circu lating concentrations of ureagenic substrates , particularl y

alanine and glutamine. Liver free amino acid tota ls are also significantly increased after

endotoxin adminstration (13672 ± 2057 controls versus 19650 =4394lPS; nmo l/mg ).

An increased delivery of ureagenic amino acids such as alanine and glutamine will

contribute to the stimulation of flux through the urea cycle in the LPS-treated rats.

Ammo nia levels remain unchanged subsequent to endotoxin trea tment.

3. The urea cycle enzymes. them selves. are not chan ged in tota l acti vity subsequent 10

treatment .

4. Citrulline synthesis rates of intact isolated mitochondria from l PS-treatcd rat livers

(35,47 ± 12.60 nmc l/min/mg; p<0.05) are twice those of saline-treated control rat liver

mitochondria (18 .23 ± 8.59 runol/min/ mg). This sign ificant stim ulation of flux through

the mitochondrial enzymes is not due to increased CPS I nor OTC tota l activity as these
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remain unalte red post-Ll'S .

5. GC-MS measuremen t of mitochondrial matrix NAG determined that mitochondria

isolated from the livers of LPS·lr eated rats have significantly increased NAG

concentrations relative to the mitochondria isolated from saline-treated control rats lO.J IS

~ O.OSOcontrols w rsus 0.4 59 "%. 0 .146 LPS-treated; nmolzmg, p<O.05). NAG accumulate s

in the mitochondria of LPS· trealed rats within 24 hours of injeclion and will. in

conjunction with the elevated ureegenic substrate concentration in the liver. contribute 10

the increased flux through the urea cycle.

6. Exogenous NAG activa tes citrulline synthesis in uncoupled rat liver mitochondr ia. AI

NAG conc entrations of 2.0 m,\{-) 0.0 m.\t the difference between the two groups'

citrulline synthesis rates disappea rs. Al 10 roM external NAG the rates o f citru lline

synthesis were 35.6 ± 11.4 nmo l/min/mg and 42.6 ~ 11.2 nmc lzrniwm g. respectiv ely . in

the control and LPs-injected rats .

7. Citru lline synthesis rates of mitochondria are positively corre lated with the NAG

content of each mitochondrial preparat ion ( r-......().610. p<O.05). NAG. which is increased in

mitoc hondria from LPS-t reated rats. stimu lates flux through the mitochondrial enzymes

of the urea cycle in vitro andcontri butes 10the elevated flux through the cycle proper in

vivo,
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T able A- I: S um mar) of Enzymi c Ana)'s Uti lized in Ihis St udy
Estab lished Prote in and Time Intern !s for Marker Enzyme s and for the Enzymes of the
Urea Cvcle.
E!lZ)mc Protein 1m2) Time tminuh:s)
Glutamate lJ.I) /] } -! ~

Dehydrogenase

Flux Through ). 0

Mitochondrial
Enzymes

CPS( 0.3

OTe 0.02

Argininosuccuune 3.0 10
Synthetase

Argininc soccina re ~ .O 15
Lyase

Arginase I.o- ~j 10

.V·Accty lgIUl3m3tc 3.0 10
preincubat ion

Citrulline Synthesis 3.0
(exogenous NAG I
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Table A-1 : A rte ria-Venous Free Amino Add C oncen tr ation Differ ences Across the
Intest in e in Whole Blood of Salin e- Versus LPS -Treated Rat s 18 hours Post­
injection. Blood samples were taken from the abdom ina l aorta or the hepatic porta l vein.
Values a presented as means ± standard deviation. Statist ical significance was determin ed
by pa ired t· test to be tlilfen: nt fronl uro. ·p<O.05, and is denoted by an asterisk. (n=8. )

Ami no Acid

Taurine
Aspartate
Threonin...
Serine
Asparagine
Glutamate
Glut amin e
Proline
G lycine
Alanine:
Citrulline
Valine
Cystine
Methionine
Isoleucine
Leucine
Tyrosine
Phenvlalnnine
Tryp~ophan
Orn ithine
Lysine
Histidine
Arginine

\~v Ce ntro!
[nmol/ml]

-127,7=(103.7 \-
-133.2::01321.7)
-25.2=(53.2)
-27.' ) =(28.3)
l A ::( 22.3)
-16 ..1- =(-t2.3 )
5.9 ,=InA l
5.6 -:: (50.8)
-65.3 :: (7 7.2)
-102,2 .::(12Ull
-5.S " (29 )
-8.7 :::(44.9)
1.0 ::(\5)
-8. 13 ±(\ 1.2)
-6.7 .::;( 18.51
-7.2 .::(33,7)
-13.9 =C!2.7)
-7A= (I -t.3)
1.56 =(1 2.71
-9.1 :::(19.2 )
-75.0 :::{88.2)
-5 ..2-t :::(1 I. I )
-18.8:(4951
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A~V lPS~Treated

(nmol/ml)

-86.8 :::(297.2)
-67.9 ±( 299.6)
-26.6 : ( 1-t3.81
-19.2 ± (8-t.2)
19.2 ±.(8-t.2)
-23.7 :(69.3)
-37.7 :(72.4)
-25 .6 :1:(\50 A)
-58.9 : (\ 98)
- 107.6 ± (58)
-30.2 :1: (60.2)
--t1.5 = (121.4 )
] .87 : (\0 .7)
-9,9 ±( 28.7)
-10.8 : (22.4 )
- 1] .8 = (57.5)
-7,4 :::( 4 8 )

-11.0 ± /46.6)
-4. 12 : (15.1)
- L5.7 ± (59.4)
-71.6 : (360.8)
-7.90 : (49.0)
-32.6 ± (33. 1)*



T abl e .-\-3: Fr ee Amino Acid Co nce n tra tions Determined in Ral Live r 18 Hou rs
After Saline- or LPS-T re:llm~n t . Liver sample s were freezed clamped and stored in
liq uid nitroge n prior 10 analysis. Values are presented as means e standard deviations.
n:8. Si l!nilicance is dO:lcmlined b\ unp.1ired t-test and denoted with an asterisk . (*P<O.05l

Amin u ,\ d d Cunt rol LP 5-T rcal td
tnm uUg ) (nmol/g)

Taur ine ~~ : 7 ~ (1 255 ) 4175 ± (l 894)*
:\S P::II't;lI-": ~.'\ NA
Thr eonine )8 ~ " 1139 ) 94.h(731)
Serine bOl ~ (17 3) 1194.:1: (826)
A sparagme 38 :: 1:51 51 %(3 1)
Glut amate 1051 :: t19 5) 1831 r (50W
Gluta mine 43 1(1: 146 1) 3972 %(658)
Proline ~ =(j lt 1J4 ~(56)

Glyc inc IIW : (: 44) 1519 ±(72 1)
Alanine 3211 , 450 ) 771 %(447) ·
Citrull inc 77 ~ t 19 , 138 :: (61)*
Valin..: 138 ~ I-Ib l 142 ± (49)
Cystinc 5: :: lI b l 51± ( 18)
Methionine 48 ~ 119 \ 59 :l ( 9)
Isoleucine (N 'l-ll l 93 ± (3 1)
Leucine I:-l , 1:'0 1 126:t (] 4)
Tyrosine 7: ' 4311 72 .:I: (] 5)
Phenvlalanine 49 ~ 1..5 , 62 :t:(28)
Tryptophall J:~ :: 1181 13 =(I91
Ornithine Ill: :.( 58) 306 :t (164 )
Lysine -131 :( 81 ) 617 ± (225) *
Histidine 31N :(55) 414 :l:(68)
Arginino: 3: ,t 4tll 10. (381
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Table A~4: Fr ee Amino Acid Ce ncentratic ns in Skeleta l Musd~ of Saline-T re ated
v ers us l PS·T re:ue tJ Ral~ 18 Houn Pos t-Iej eet ton. Skeletal muscle was dissected from
rat quadriceps. Values arc expressed as means e standard deviations: 7 or 8 animals per
group. An asterisk denotes statistical significance as determined by unpaired r-rest.uw o­
tailed : ·p <O.U51.

Amino .-\cid Cont rol (nmol/g) LPS-T rea ted (nmoUg)

Taur ine g?: ..j .,.. !} 11 Q615 '!- 2284
Aspartate 38lJ:::55 518 :::63-
Threonine 430 : -, 490 =1.4
Serine 5gb : ' 11) 498 ± 64-

Asparagine I I : ~ ~: 1::!7:1: 25
Glutamate 1:49 :.- :0 4 1261 ± 198
Glutamine :4 78 :.- 500 1819:1:397-
Proline 151 ~ bo 21O± 31

Glycine 39-1 1 :.- <)06 2478:1:429-
Alanine 1017 ~ 202 1475:to333-
Citrullin e 147 .:.38 85 :::22-
Yaline JblJ :. 3-1 207:1:40

Cysuoc 38 :.-!)..; ] 8 ±-6.2
Methionine 51 e Iu 89 = 21-
lscleuciuc 9-1 :. 10 109= 18
Leucine I ~J :.- : 11 164 :1: 33-

Fyrcsinc 119 :.- : 6 121:1: 18
Phenylalanine 61 ::. lJA 93 1: 23-
Tryptophan 8.8 :::7.1 16 ± 8.6
Ornithine 77 ;: IU 72 = 24

Lysine 88: :1: 33 561 ±2 19-
Histidine 153.:::31 146± 22
Arginine :94 :1: 98 177 ± ] 8-
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T a ble A-5 : Fr et' Amino Acid Co ncentr ation' Il rl er mined in II r patie Por tal Venou s and Abd ominal Aortic Ulood in
Sa line-Treated v ersus I.PS-Trt altd Rats. valu es are presented as means + standard deviations. Statistical significance is
denoted hy an 3s!e rjsk ' 0' "8 Two -ta iled p Yi''' ''' by I!!mairrd I-IC" '-9<00"
Am inn..A..cid. \ l>duDlina L'\ nrli cl nmolimU Il f pa lic rlltlaL~l'n n lJ s tn mnl/mll

u " 1rn l ! I' S CUlllrn! II 'S
1;11 11 in..: ,W i· i111~ , 11" , 1 1 .:' ~ 1 H~ ' t l)' l l ..C .1 1 ( l ~ :;,

i\ ' P; II I; ~I C 24 ~: \ 1 I h , ~2 : t ltl h l .1 ~ .:' ~ ( 2 12 ) 292 1 (U19)
tluconinc 241' l ll i l ~·I l n~ SI ~ (, 3 1410 27 1 I ( " ~l

SI,.·ri lll,.· 2.li · (Un P IS , 1 ~ 7 ) 2~n I C ·H 21 7 I (4.'i)
" ,p ara g im: ·11 • 17.111 -IS , 12.1) ..W ' 11(,) :":" t flS I
( i1111:11lIah: 201,. (-IS) 1(1:: ' (lS) ::::0 ' ( 11) I S:" I (.'in)
(Ihumuinc :"I S I (·U ) hl .1 · \ 1.20 ) .'il l t ( M~ ) (lS I I ( lOR)·
" lUlin..: IJI ' 1.'i.11 12S ~ 11J2) 1.28 ' ( Ill, 1.'i4 I (720 )
(,l ydll l' J M I I.1S) J on t iS:") 426 I (1 :"1 ]:"R f (77)
Alanine .21)\ ' ( .'i2) .' (Jf> , (2."11· .'199 ! (74) 6 14 ! (.:!] IW
Cill'llllinl' Il l · 0 .0 1 72 I (42 ) 70 ! C~ I 10.2 I { .2~W

Vali m' 11>7 , (h~ 1 I(,(, ! 17 11 ISfl ! , 4S ) .207 I ( ~·H

( " -,lill l' 1."" ( I:: ) IX l (1 .1} lit I (X ,il ) H t ( .'i..11
MClhioninc .17± (.U ) 5)1 ( 17)· ·~ 5 ! ( 8 "' ) 63 1(1 5 )
Isoleucine 78 1' ( 15) 74 -1(7) 86 ±( 9.2) 85 t (7 .)
Leucine 11-l -f( 24) [34 " (40) 120 ±(1 S) 148 ±( 2W

~'~;~~ill~ianine ~~ : :ij8,' =i:g~:. ~~ : g~J) ~~ ~ ~iM·
6~fN;fn~an ~::g.?) iri{~ B~ ) ~j : ~~5~) i~st~~fd)
~l:Ndine ~ ;3±~~~) :?/eJ5;0) ~~3i~A~J/ ~r±~~~r: )
A rc inin c 20 7± l1 hl UI1 ± t'\ 91 207 ± / 16 1 IHJ ±{ .l9l

"'





T a ble .-\- ";" : Arterte-Vene us Free Ami no Add Ce ncentrati c n Diffuences in Pla sm:ll
Fro m ~;Ili o e- Vers us L PS-Treat ed Rats 18 Houn Posl -lnjKtion . Plasma samp les
were o btained from blood taken from the abdominal aorta. and the hepat ic porta l vein.
values arc repre sen ted as means -=standa rd de viations. n"'8 . An asterisk denot es a
diff erence which is sigll ificanl l~ differen t from ze ro as determined by paired t-test.
( -p<O.t1:' I

AminuA o:id

Taurine
Aspart.uc
Th reonine
Serino:
Aspur.rgiuc
Glul:un'll<.:
GIU{:llll ill..:
Prolin e
Gl ycine
Alanine
Cilrullill":
Valin..:
Cystine
Meth ionine
Isoleucine
Leucine
Tyrosine
Phenyl.rlauiue
Tryptophan
Omitluuc
Lysine
Histidine
Arginine:

:\- \ 'Ctlnl r ol
lomol/ml)

-2'1\) -=142.0)
-0.(14 '" 155 9)-
-4:>.0 ", t }J .n-

-0.75::: 124.6)
-2A6", (7.: I )
-27.3::: (06.3)
~-U : (I I·U )
-lI d :1 20.6 )
-51.S "' t-l2.2)-
- <) :. S: t ~'U ) -

·15.1:1 : : .1)
-._.I S-=.d 7.lJ)
2.S:' -= d-i .11
--i.1<).'= t~.7: )

·5.2:' : 1 10.0)
10... : 121.61
-3.<)1 :::112.9 }
-3.-1-1.:( 17.2)
-1.1.;:::(17.2)
-: .SS::: tI 8.b)
-30 .2: to l).2 )
-:. tl7 -=. 119.1)
-u.; » -=12-1.0 )

115

A-V LPS -Treated
(nm ol/ mt)

-4 1.1 :::120A)-
-6.22 ± (2.54)-
12.2 ± (14.3) ­
20.5 ± (10.6)
2.83 ± (4.7 1)
-5.06 ± (8.35)
124.1 ± (70.8)­
-9.58 ±(1 1.\) -
-17.4 =(\ 3.] )-
-56A :t {42.·W
-16.0 :t (9 .56)-
14.6:t (l O.-i)
0.12 :t (l 7.-I)
2.08 = (5.19)
~.6 1 :(5.68)
8.71:0.9)·
3.39 :t (4 .1-1)
4.11 :t (5.08)
5.67< (4.63)·
0.13 ± (4.86)
15.1 ±( 21.0)
2.98:t (3.65)
14.0 ± (9.37)-



-Wluusoever thy Ium d fi n detlt to do, do it with thy migh t; fo r there is no
work. nor device, I/or kn owledge. /Jor ....isdom, in the grove, whither thou
goest. "

Solomon
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