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ABSTRACT

Air dried saprist Newfoundland peat, harvested from a private peat bog owned by

Traverse Nursery in Torbay, St. John's, was employed as the sole adsorbent in laboratory

batch and column experiments for the removal of Nickel and Cobalt cations from stock

solutions. The saprist peat type has not been widely investigated as an adsorbent, unlike

the fibrist peat. Characterization using non-destructive methods showed the peat as being

acidic, consisting of small, overlapped and collapsed cellular masses. The cation

exchange capacity was 70 meq/l OOg, with a wet bulk density of 0.65 g/cm3 and -90 %

organic content. The peat matrix was dominated by oxygenated functional groups and to a

lesser extent amine/amide groups which are all capable of complexing / co-ordination

with Ni2
+ and C02

+.

The response surface method of the Box-Behnken design showed that peat dose,

concentration, solution pH and contact time were the significant factors that influenced

the peat Ni2+ and C02
+ adsorption capacity with the interaction effect of the factors being

metal specific. The batch test investigation showed that the metal uptake reaction was a

pseudo-second order type and attainment of equilibrium was metal concentration and pH

dependent. Kinetic equilibrium adsorption over 12 h gave a maximum adsorption

capacity of 385 mg/g for Ni2
+ at a peat dose of 21 gIL, pH of 5.5 and Ni2

+ concentration

of 125 mg/L while for C02
+ it was 33.44 mg/g at a peat dose of 2g1L, pH of 8 and C02

+

concentration of 200 mg/L with regression coefficients near unity.



Equilibrium adsorption data gave good fits with both the Langmuir and

Freundlich isotherms from which corresponding adsorption parameters were determined.

The percent metal removed was nearly 100% for the two metals at solution pH 3,

especially at metal concentrations below 50 mglL while, between 35 % and 75% removal

were obtained at concentrations between 125 and 200 mg/L. Competitive sorption tests

showed that at higher concentrations and peat doses, more Ni2
+ and Co2

+ were removed in

the presence of Cd2
+, Pb2

+, and Zn2
+ with the order of removal being Pb2

+ > Ni2
+ > Cd2

+ >

Zn2
+ > Co2

+. Breakthrough was metal and flow rate dependent. The maximum adsorption

capacity of the 12.5 cm long peat bed was 72 giL and 24.7 giL for Ni2
+, at a flow rate of

1.0 Uh and 2.0 Uh respectively. For Co2
+, 17 gIL and 6.7 giL was the computed

maximum adsorption capacity at a flow rate of 1.0 L/h and 2.0 Uh. The adsorbent

exhaustion rate was metal and flow rate dependent with Ni2
+, at a flow rate of 1.0 Llh,

0.69 giL was computed and for Co2
+, at a flow rate of 1.0 Llh, 2.16 giL was computed.

The metal uptake mechanism on the saprist Newfoundland peat was strongly pH

dependent and based on the experimental data; complexation was the dominant reaction

at acidic conditions especially at pH -3.0, while ion exchange was the main reaction at

basic conditions. Kinetics and equilibrium sorption data especially desorption with 0.1 M

to 2 M HCI, showed that the two reactions occurred simultaneously at the pH of 5.5 and 8

for Ni uptake while, Co uptake occurred predominantly by ion exchange at pH 10 and by

complexation at pH of 5.5 and 8.
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CHAPTER ONE

INTRODUCTION

1.1 Preamble

Mining of high grade nickel (Ni) at Labrador, and the recovery of Ni and cobalt

(Co) from the refining effluents at Long Harbour by Vale (formerly Voisey's Bay Nickel

Company Limited) is one of the laudable initiatives of the Newfoundland and Labrador

(NL) government to improve the provincial economy. This mine is one of the 235 major

mines that constitute the Canadian mining industry which employs about 370,000

Canadians, accounting for over 4% of the national Gross Domestic Product. The

estimated annual wage of the Canadian mining industry is $17.38 billion providing a

market to 2,200 suppliers of goods and an investment of about $300 million in annual

research and development (Canadian Mining, 2008). Canada is known to have the second

largest deposit of mineral ores containing Ni and contributes about 16% of the total world

Ni mine production (USGS, 2008).

In NL, mining employs -2500 people, accounting for 8% of the Gross Domestic

Product of the provincial goods. With the Vale Ni mining, NL has become the second

largest supplier of Ni in Canada with -34% of the total Canadian Ni production (Waddle,

2004). From an economic view point, a project like the Vale Inco nickel mining at

Labrador is highly commendable. About 65% of the Ni consumed in developed countries

is used in the manufacture of austenitic stainless steel, and 12% goes into superalloys



(e.g., inconel 600) or nonferrous alloys (e.g., cupronickel). Both families of alloys are

valued for their corrosion resistance properties with the aerospace industry being a

leading consumer. Ni super alloys are also used in land-based combustion turbines, e.g.

electric power generation stations. The remaining 23% of Ni consumption is divided

between alloy steels, rechargeable batteries, catalysts and other chemicals, coinage,

foundry products, and plating (USGS, 2006a). There is therefore a large global Ni

market.

Co is mainly consumed in super alloys productions such as Haynes alloys, MAR­

M, and Airesist (-49%) aircraft gas turbine engines, 9% in cemented carbides for cutting

and wear-resistant applications, 15% in various other metallic uses, and the remaining

26% in a variety of chemical productions. The total estimated value of Co consumed in

the US in 2009 was $270 million (USGS, 2010). Identified world Co resources are about

15 million tons. Co-60 is an artificial isotope, an important gamma ray source extensively

used as a tracer and radio therapeutic agent (CDC, 2008).

1.2 The Problem

Vale Ni refining through the hydromet process at Long Harbour, Newfoundland,

uses the Ni concentrates from Ni Ore mined in Labrador (Voisey's Bay, 2007). The raw

Ni ore is obtained via open pit mining and flotation. The hydromet process surpasses the

conventional pyrometallurgical smelting process for the mining of high grade Ni in terms

of metal recovery and energy use (Taylor, 2007). The hydromet process generates

381,000 t/yr residue that is mostly acidic and requires neutralization before disposal.



Treated effluent to be discharged is estimated at 7, 220, 000 m3/yr. Lime is applied to

neutralize the acidic hydromet effluents from the refining process and the products are

deposited in a specially designed disposal facility for final discharge into the nearby

Sandy pond which is the immediate receiving body (Vale lnco, 2007). With an estimated

50,000 tons per year Ni mining capacity (Stefan, 2008), large volumes of fresh water will

be consumed during operations which will be contaminated with associated dissolved

metals. This has constituted a challenge with regards to environmental protection and

conservation.

Refining effluents after the lime treatment will still contain dissolved Ni and Co

ions, and their complexes, and other minerals/metals at levels far higher than permitted

values. For Ni, 0.5 mgIL is the concentration allowed (MMLERs, 2007) while no clear

effluent limit is available in the current Canadian government regulations for Co.

Consequently, adequate attention in terms of developing a proper treatment technology is

required. It is anticipated that there will be a greater amount of Ni and Co contamination

of the ground and surface water in the near future, through the discharge of treated and

untreated wastewater to the receiving water bodies surrounding the treatment site.

Mining and refining wastewaters are generally complex and complicated with the

presence of heavy metals and organic compounds and have been identified as one of the

major contributors to soil and water contamination (Couillard et aI., 2004). Higher

concentrations of metals have been associated with soils from various mining sites in

Canada (Parker and Dumaresq, 2002) and in water samples of closed mine sites

(Couillard et aI., 2004). Industrial discharge in 2002 of Ni along with cadmium (Cd), zinc



(Zn) and copper (Cu) in the US was reported to be approximately 0.5 x 106 t which was

about 42% of the total metal discharged by industries reported under the 2002 Toxic

Release Inventory (TRD (AI-Faqih et aI., 2(08).

1.3 Ni and Co in the Environment

Ni at elevated concentrations can be a toxic element which is normally widely

distributed in the environment (C;ift~i et aI., 2007) and its complexes are known to be

human carcinogens (rARC, 1990). Ni is also known to cause dermatitis, nausea, chronic

asthma and coughing. Ni is emitted to the atmosphere from volcanoes and windblown

dusts and from numerous man-made sources such as melting and blowing of solid Ni.

The Ni content of soil may range widely from 2 to 50 mg! kg of soil or more depending

on the mineral composition of the soil. The metal is highly mobile in plants and is readily

absorbed by plant roots (C;ift~i et al., 2(07). The carcinogenicity of Ni compounds

depends on their capacity to release ionic Ni, and on factors that promote localization of

hjgh concentrations of Ni ions at critical tissue sites such as the heart and lungs (rARC,

1990).

Intake of Ni varies depending on the source and level of contact. Average dietary

intakes are known to be between 400-500 l!g!day with a maximum of 2% of this value

being inhaled, especially in urban locations (De Zuane, 1997). The recommended WHO

limit for Ni in drinking water is 70l!g!L (WHO, 2006) while 15l!g!L is recommended by

USEPA (USEPA, 1996).



Co and its complexes are listed by the International Agency for Research on

Cancer (IARC) as agents with possible human carcinogenic effects. High human uptake

of cobalt can cause heart problems, vomiting and nausea and vision problems (IARC,

1990). Exposure through eating and drinking is known to be small, although, Co at a

concentration above 40 mglL could be harmful to plants depending on species (Ontario

Fact Sheet, 2001).

Contamination of the environment by toxic metals is a real and growing problem

for today's society (Blais et aI., 1976) and may not be fully controlled since society will

still rely on the use of these metals. The relative toxicity of metals when ingested by

mammals may follow the order: Ag, Hg, Ti, Cd > Cu, Pb, Co, Sn, Be > In, Ba > Mn, Zn,

Ni, Fe, Cr > Y, La> Sr, Sc > Cs, Li and Al (Evans, 1989). Most of these metals are found

in water around mines due essentially to the economic and technical challenges posed by

the treatment of the metal contaminated water especially in meeting the stringent

environmental regulations, where they exist. One major issue with these metals aside of

their eco-toxicity is their inability to biodegrade, unlike organic contaminants (Qin and

Wen,2007).

1.4 Research Objective and Scope

Nowadays, increased attention is focused on the development of effective and

inexpensive technologies capable of treating large quantities of wastewater. Adsorption

process can use readily available and highly efficient raw materials such as peat, and



other waste materials such as rice husk, and saw dust to separate or remove heavy metals

from waste effluents (Romlio et aI., 2007).

Poorly humified peats (fibric and hemic peat) have been widely investigated as

effective heavy metal adsorbent materials in metal contaminated water and wastewater

(Coupal and Lalancette, 1976; Bloom and McBride, 1979; Ho et aI., 1995, Crist et aI.,

1996; Ringqvist et aI., 2002). Peat is known to effectively adsorb about 30 metals

(Dissanayake and Weerasooriya, 1981). However, highly humified/decomposed (saprist)

peat has not been widely investigated as an adsorbent as it has mostly been used as an

horticultural amendment, to enhance the water holding capacity of sandy soils (Li et aI.,

2004) due to its high adsorptive capacities (Kuziemska and Quant 1998). Highly

decomposed peat is used in this study, as an adsorbent in the development of filter

columns which can be incorporated into existing treatment processes or operated

independently in the treatment of mining wastewater containing Co and/or Ni.

This study investigates through batch experiments, the adsorption capacity, rates,

kinetics, and controlling parameters, and proposes the uptake chemistry involved in the

Ni and or Co ions adsorption using the highly decomposed or saprist peat from a

Newfoundland bog. The efficiency of Ni and Co uptakes on this peat type in a

competitive sorption with other metals such as Cd, Pb and Zn was also investigated. The

adsorbent exhaustion rate was determined via column experiment at the breakthrough of

50% of the metals influent concentrations.



1.5 Thesis Organization

Chapter 2 is the literature survey, which is divided into four major sections. The

first section provides a background on the conventional and emerging techniques in heavy

metals removal from associated wastewaters. Section two of the survey covers the metal

adsorption process, adsorbent choice and its adsorption capacity. The third section is on

peat as a metal adsorbent and the fourth section is an introduction to the statistical design

of experiments.

In Chapter 3 of the thesis a detailed classification, characterization and

comparison study of fibrist and saprist NL peats is presented.

Chapter 4 presents the methods and materials used in the kinetics, equilibrium

adsorption, desorption and column experiments.

Chapter 5 presents the results and discussion of the Box-Behnken design and

kinetic experiments.

In Chapter 6 of the thesis, results and discussions of the batch equilibrium

adsorption and desorption, and competitive studies are presented.

In Chapter 7, the fixed bed leaching column results and discussion, and the metals

uptake chemistry on the saprist NL peat are reported.

Chapter 8 presents the conclusions and recommendations from the study.



CHAPTER TWO

LITERATURE REVIEW

2.1 Overview

The adsorption process, using activated carbon (granular or powdered) is being

substituted by low cost materials such as agricultural wastes, clay, saw dust and others.

This approach has emerged over the years, as a cost - effective alternative for the

treatment of metal contaminated water and wastewater. Peat is one of the abundant

natural materials with a high metal adsorptive capacity that can be used at an industrial

level. Information regarding the formation and distribution of peat, chemical composition,

ease of application and metal uptake rate and capacity are needed for treatment design

purposes. In addition, understanding of the chemistry of the metal uptake process, could

aid in sustained application.

Many studies have been done in order to understand peat types, formation

processes, uptake or removal efficiency and metal uptake chemistry for various metals in

municipal, industrial and mining wastewaters. In order to understand the state of the art of

peat as an adsorbent for metals removal in wastewater, a literature search and review have

been carried out and the results reported in this chapter.

2.2 Heavy Metal Contamination and Removal

Metals whose densities are> 5 g/mL are referred to as heavy metals (Alloway,

1995). Some of these metals are excessively released into the environment through



industrial activities such as mining and metal finishing (Rubio and Tessele, 1997; Ngah

and Hanafiah, 2008). Industrial wastewater treatment compared to domestic wastewater,

poses a more complex challenge because it is a mixture of varying compositions of

contaminants rather than a simple solution containing dilute concentration of

contaminants (Huang et aI., 1988).

The maximum contaminant level (MCL - levels above which there is a known risk

to health) in mg/L of heavy metals is very low, for example the MCL levels are for Hg

0.00003, Cd - 0.005, Pb - 0.006, As - 0.01, Ni - 0.20, and Zn - 0.80 (USEPA, 2009).

Above these values, severe health related issues have been reported. If heavy metals pass

through the wastewater treatment process, they will be returned to the environment where

they will persist and may follow various pathways in their dispersion which could be

difficult to monitor or contain (Mulligan et aI., 2001). Metals contaminated wastewaters

are generally treated by conventional techniques or one of the various emerging

techniques and, in some cases, a combination of treatment techniques is employed.

2.2.1 Conventional Metal Removal Technique

The conventional technique is based on the metal precipitation process (Higgins

and Sater, 1984; Patterson, 1989; Zhou et aI., 1999) which is accompanied by selected

separation processes for the precipitated phase. At the industrial level, contaminant

concentrations are high and methods such as precipitation, filtration and especially

membrane filtration, and addition of chemicals such as coagulants are very common. In

the conventional technique, metal decontamination involves pH adjustment (Pavlovic et



aI., 2007) with lime solution to convert soluble metal salts to insoluble hydroxide

precipitates that can be removed by gravity settling (Benjamin et aI., 1996) in a clarifier

(USEPA, 1982). The precipitates are removed as sludge, dried and bum to ashes or, and

added to soils (Blais et aI., 1976). Precipitation techniques can be enhanced

oxidation/reduction precipitation, or secondary / co-precipitation (Patterson, 1989).

The precipitation of dissolved heavy metals in wastewater is by directly adding

precipitating agents containing carbonate such as soda ash (NazC03), sodium bicarbonate,

(Na(HC03» or calcium carbonate (CaC03). Hydroxides and sulphides are also being used

as precipitants especially sodium hydroxide (NaOH) and calcium hydroxide (Ca(OH)z) or

slaked lime. Sulfide precipitation in an oxygen depleted solution is commonly employed

in the precipitation of Ag, Cd and Hg but odour and toxicity are two environmental

problems associated with this application (Wang et aI., 2004) although sulphides exhibit

high reactivity and low heavy metal solubility over a broad pH range (Bhattacharyya et

al.,1979).

Precipitation is a fairly rapid process which tends to be close to its equilibrium as

soon as it is initiated (Wang et aI., 2004). Metal concentration in the wastewater and the

solution pH are the two main factors that govern precipitation reactions (Pavlovic et aI.,

2007). During precipitation, the remaining concentration of the ionic species in solution is

controlled by the solubility of the solid phase present (Wang et aI., 2004).

Most often, carbonate is preferred to hydroxide in the precipitation of some metals

such as Cd and Pb (USEPA, 1982) because it is cheaper (Pavlovic et aI., 2007), and the

products of the reaction settle and filter better than hydroxide sludge at higher pH (Wang



et aI., 2004). Heavy metals do not precipitate at the same pH, but a range of 9.5 to II is

adequate in treating most mine and metallurgical wastewaters (Typliski and Labarre,

1980). Studies have shown that the precipitation of copper initiates at around a pH of 6,

while for other metals such as Ni, Zn, As, Pb and Sb, the pH range is between 7 and 10

(Zhou et aI., 1999; Pavlovic et aI., 2007). When the pH of a solution is adjusted, the ionic

equilibrium of the reaction involving a metallic compound is altered which could lead to

the production of insoluble precipitates of the metal (Pavlovic et aI., 2007). For example,

in the removal of a metal ion (M2+) from a wastewater, hydroxide, carbonate and sulphide

precipitation reactions can be represented by equations 2.1, 2.2 and 2.3.

Hydroxide precipitation: M 2+(aq) + 20H-(aq) <=> M(OH)2(S) J.

Carbonate precipitation: M 2+(aq) + coi-(aq) <=> MC03(S) J.

Sulfide precipitation: M 2+(aq) + S2-(aq) <=> MS(S) J.

2.1

2.2

2.3

The solubility product constant Ksp, which is the equilibrium constant for a

saturated solution and solid formation (precipitate) for equation 2.2, for example, is given

by equation 2.4.

Ksp = lM 2+ J[COi- J

lM(OH)2(,jJ is approximately 1 because it is a solid.

2.4

Table 2.1 is a summary of the solubility product constants of some selected metal

salts at 25°C.



Table 2.1: Solubility product constants of selected hydroxides, carbonates and sulfides

Metal Solubility product Metal Solubility product Metal Solubility product

Salt constantKsp Salt constantKsp Salt constantKsp

Cd(OHh 5.9xlO- CdC03 2.5 x 10- 14 CdS 2 x IO-l~

Co(OHh 5.92 x 10-1) CoC03 1.0 x lO- CoS 4x IO-l'

Cu(OHh 1.6 x 10- CuC03 2.5 x lO- CuS 6xlO-jO

Fe(OHh 8.7 x lO·j~ FeC03 3.1 x 10- FeS 6 x 10-

Mn(OHh 2.0 x 10- MnC03 2.24 x 10- MnS 3xlO- 14

Ni(OHh 5.8 x 10' NiC03 1.3 x 10- NiS 3 x 10-

Pb(OHh I x 10- PbC03 6xlO- 14 PbS 3 x IO-l~

Zn(OHh 4 x 10- ZnC03 1.6 x 10- ZnS 2 x IO-l)

Source: Meltes, (1963)

When the Ksp of a particular compound in solution is exceeded (super saturated),

precipitation of the compound is initiated. Carbonates generally have larger solubility

products compared with hydroxides; thus it is easier to exceed the solubility product

constant of hydroxides compared with carbonates in precipitating them out of solution.

Although carbonate precipitation is preferred in the precipitation of some metals,

hydroxide precipitation is mostly employed because of the ease of handling (Pavlovic et

aI., 2007) and the solubility of the precipitated phase that facilitates separation

(Baltpurvins et aI., 1996). Metal hydroxides tend to be colloidal in nature hence

coagulants may be added to facilitate settling (Wang et aI., 2004).



Large quantities of lime are consumed when metals are removed from industrial

wastewater (USEPA, 1982). The consumption depends on the solubility product constants

of the metals products, and is also connected with the competing reactions and re­

solubilisation of the precipitates if the pH is decreased or increased from the minimum

solubility point. Table 2.2 summarizes the addition and consumption of lime per kg of

metal removed and values are not based on the reaction stoichiometry of the metal

precipitated.

Table 2.2: Lime addition/consumption for metal precipitation

Stream Lime addition Stream Parameter Lime addition

Parameter (kg/kg) (kg/kg)

Aluminum (AI) 0.81 Iron (dissolved) (Fe) 1.28

Antimony (Sb) 4.53 Lead (Pb) 2.19

Arsenic (Ar) 1.75 Manganese (Mn) 3.51

Cadmium (Cd) 2.84 Mercury (Hg) 1.48

Chromium (Cr) 2.73 Nickel (Ni) 0.42

Cobalt (Co) 2.35 Silver (Ag) 3.23

Copper (Cu) 1.38 Zinc (Zn) 1.25

Source: USEPA (1982)

According to Zamlow et aI., (1990), while the lime precipitation method is simple

and inexpensive compared with carbonate precipitation, it has inherently associated

disadvantages. These include, generation of large volumes of sludge which are costly to



handle (Patterson, 1989) and hazardous to manage (patterson, 1989 and Eccles, 1999).

The precipitation layer in settling ponds is known to undergo inversion at about 4°C

requiring extra settling facilities during low temperatures; effluents generated are not

sufficiently low in heavy metal content, and metals not directly recovered as precipitates

are mostly wasted. Multiple basin configurations are needed for efficient operation and

also a sludge dewatering facility is required (Huang et aI., 1988). The chemistry of lime

precipitation is such that skilled operators are needed. Studies have also shown that

effluents containing low concentrations of heavy metal are not effectively treated by

precipitation (Brown et aI., 2000; Qdais and Moussa, 2004).

2.2.2 Alternate Techniques for Metal Removal from Wastewater

Due to the disadvantages associated with the use of the conventional metal

treatment method (precipitation), and the usual drive for efficiency and simplification of

operation, some techniques have emerged over the years, more capable of removing

heavy metals from water and wastewater. One of these techniques is based on the metal

adsorption process. Other technologies include filtration using different membranes such

as ultrafiltration, nanofiltration and reverse osmosis (Kurniawan et aI., 2005), sorptive

flotation (Zouboulis and Matis, 1997; Matis et aI., 2003), and photocatalysis (Papadama

et aI., 2007 and Wang et aI., 2008). These groups of heavy metal treatments which are not

related to precipitation are collectively referred to as emerging techniques (patterson,

1989) or classified as alternate techniques.



The most common adsorbent material is activated carbon (McKay et aI., 1999;

Annadurai et aI., 2002a; Babel and Kurniawan, 2003) which has limited application in

heavy metal contamination treatment due to its exorbitant cost (Bailey et aI., 1999).

2.2.2.1 Basics of the Adsorption Process

Adsorption is the binding of chemical species at a phase boundary such as the

surface of suspended particles (Benjamin et aI., 1996) or the process by which ions or

molecules present in one phase (the adsorbate) tend to condense and concentrate on the

surface of another phase (Sawyer et aI., 1994) generally known as the adsorbent. It is a

mass transfer process due to unbalanced surface forces or energy (Eckenfelder, 2000).

Adsorption can only occur if there is an affinity between the contaminant molecules and

the solid surface sites. This affinity can be through chemical mechanisms (chemisorption,

defined on page 30) or physical van der Waals forces (physisorption) (McKay and Ng,

2002).

Physical adsorption is due to molecular condensation in the capillaries of the solid

enhanced by the electrostatic forces. One of these forces is the London - van der Waals

force which is due to the instantaneous dipoles that exist around atoms or molecules

caused by small disturbances of electronic motions. The disturbances could create

temporary charges on the solid surface leading to adsorption (Reinbold et a!., 1979;

Griffin and Roy, 1985).

Chemical adsorption on the other hand is due to the formation of chemical bonds

between the adsorbate and the adsorbent or the formation of ion complexes (Voice and



Weber, 1983; Eckenfelder, 2000). In chemisorption, a molecule may lose its identity due

to the formation of a new compound by re-arrangement of the bonds to meet unsatisfied

valences of the solid surface (Voice and Weber, 1983). Adsorption is known to follow the

sequence below (Ruthven, 1984; Cooney, 1999):

I. Transportation via advection and dispersion of adsorbate to the fixed boundary

layer that surrounds the adsorbent (bulk solution).

2. Movement of the adsorbate across the fixed film boundary layer through diffusive

transport.

3. Attachment of the adsorbate to the adsorbent surface by a bonding process.

Eckenfelder (2000), reported that the rate of diffusion of solute molecules

controlled the overall adsorption within the pores of the adsorbent particles. This rate is

adsorbate concentration, molecular weight, and temperature dependent.

Studies have shown that if the solid surface (adsorbent) is properly selected and

the solution chemistry appropriately adjusted, adsorption-based processes are capable of

removing metals over a wider pH range and to a much lower residual level than processes

based on precipitation (Benjamin et a\., 1996). Many materials with high metal-binding

potentials have been investigated as possible and effective adsorbents applicable in

wastewater treatment. From these studies, the best adsorbent is metal specific. A group of

adsorbents popularly referred to as "low cost" adsorbents has become the focus of

research in recent years.



2.2.2.2 Low Cost Adsorbents for Treating Metal Contaminated Wastewater

Chitosan, a polymeric compound with many functional groups obtained by the

deacetylation of the shells of crabs and shrimps (Babel and Kurniawan, 2003), through

chemisorption reaction, has successfully removed Cd2
+, Hg2+, Zn2

+ and Ni2
+ in the

presence of a strong chelating agent like ethylene diamine tetra acetic acid (EDTA) (Jha

et aI., 1988). Natural Zeolites (activated and non-activated), have effectively removed

Pb2
+, Zn2+, and Cd2+, via ion exchange reaction; Ni2

+ removal using natural zeolites were

found not to be effective (Blanachard et aI., 1984; Zamlow et aI., 1990; Tiirkman et aI.,

2004). Smectite clays, through ion exchange and chemisorption reactions, have

effectively removed Zn2+, Pb2
+, AI2

+, and Cd2
+, but not as effectively as natural zeolites

(Brigatti et aI., 1996). Iron oxide coated sand and AI20 3 and Si02-Ti02, have effectively

removed by chemisorption uncomplexed and complexed metal cations of Cu, Cd, Pb, Ni

and Zn and Cr6+ and Ni2+ and Cd2+ (Benjamin et aI., 1996; Ismail et aI., 2008).

Sawdust, banana and orange peels, and coconut fibers are some of the natural

agricultural materials (wastes) that have been studied. Coconut husk fibers and palm

pressed fibers have been used in removing Cr6+ (Tan et aI., 1993), Zn2
+, and Cd2

+

(Babarinde, 2002) from water solutions with some good results. Sawdust has effectively

removed Cr6
+ (Zarraa, 1995), and 63% Cu under various wastewater conditions (Ajmal et

aI., 1998).95% Pb2
+, 93% Zn2

+, 80% Ni2
+, and 75% Cr6+, were all removed from an

industrial wastewater using chemically activated sawdust (Saravanane et aI., 2001) and

chemically modified sawdust from oak and black locust hardwood removed Cu2
+ and

Zn2
+ from stock solutions (Sci ban et aI., 2006).



Apple wastes, in packed beds could remove Cu2+ (Marafi6n and Sastre, 1991 and,

Lee and Yang, 1997), at various chemical treatment levels with promising results. Banana

and orange peels, have effectively removed Cu2+, Zn2+, Ni2+, C02+ and Pb2+ ions. At high

solution pH, about 7.97 mg/g of Pb2+ was adsorbed by banana and 7.75 mg/g by orange

(Annadurai et aI., 2002b). Chemically modified peanut hulls have also been used in the

removal of C02+ and Ni2+from stock solutions (Hashem et aI., 2005).

Fibrist peat over the years has emerged as one of the most effective metal

adsorbents and has been used in the removal of Hg2+, Cd2+, Zn2+, Cu2+, Fe2+, Ni2+, Ag+,

Pb2+ (Coupal and Lalancette, 1976) and some organic matters such as dyes (Leslie, 1974),

biological components and suspended solids in wastewater (Perez et al ., 2005).

2. 3 Main Factors for Adsorbent Choice

The choice of an adsorbent is determined by the contaminant concentration

(Tiirkman et aI., 2004) and the overall cost of treatment (Babel and Kurniawan, 2003;

TUrkman et a\., 2004) associated with the decontamination of the metal polluted

wastewater. Where adsorption is applicable, availability and cost of adsorbents also

determine the selection of materials. Cost is an important parameter for comparing

adsorbent materials (Bailey et a\., 1999), but cost information is seldom reported, and the

cost of individual adsorbents varies depending on the degree of processing and local

availability. While cost is scarcely consistent, the use of low-cost adsorbent materials has

been growing due to the simplicity in engineering application, and technical feasibility

(Babel and Kurniawan, 2003).



An adsorbent is "low cost" if it requires little processing, is abundant, or is a by-

product or waste material from another industry (Bailey et aI., 1999). Agricultural wastes,

though reported to be good adsorbents are not readily available all year. Where available,

decomposition due to microbial activities makes handling difficult, thus they have limited

applications. Table 2.3 is a summary of the cost per kg of some effective natural

adsorbents. Sphagnum peat moss is a natural, low cost, readily available material, and an

effective metal adsorbent.

Table 2.3: Prices of some selected natural adsorbents

Adsorbent Cost (US $/kg) Source

Chitosan 15.43 Babel and Kurniawan
2003

Activated carbon -2.54 (quality and production dependent) Dansons Inc., 2008*

Coconut husks 0.32 - 0.5 (treatment level dependent) L. Shawer, 2010*

Sawdust

Zeolites

-0.3 (wood type and packaging dependent) L. Shawer, 2010*

0.05 - 0.14 (quality and end use dependent) USGS, 2006a

Clay 0.022 - 0.375 (type and quality dependent) USGS, 2006b

Peat 0.024 - 0.052 (peat type dependent) USGS, 2006c

Chltosan IS generally claSSified as low cost adsorbent because the raw matenals used In

its production are low cost. *Personal Communication.



2.4 Adsorbent Capacity

The design of an adsorption process entails the evaluation of adsorption rates,

mechanisms of adsorption and equilibrium studies (Kadlec and Keoleian, 1986). The time

taken prior to the removal of a given amount of solute from solution is the rate of

adsorption and is determined by the kinetic study of the system. The ability or capacity of

an adsorbent for a solute, which determines the quantity of adsorbent to be used, is

estimated via an equilibrium study (AI-Duri, 1995).

The chemical kinetics of a reaction provides information on how fast the rate of

the chemical reaction occurs and the reaction conditions that can influence the outcome.

Some kinetics models based on the sorbent concentration include the Lagergren pseudo-

first order equation (Lagergren, 1898), the Ritchie second order equation (Ritchie, 1977),

the Blanachard et aI., second order equation (Blanachard et aI., 1984) and the widely

applied Ho et aI., pseudo-second order kinetics equation (Ho et aI., 1996). The Ho et aI.,

equation is based on the chemisorption (defined on page 30) of the adsorbent and the

monolayer coverage of the adsorbate. The linearized form is given by equation 2.5 and

the detailed derivation is given in Appendix A I.

(2.5)

In equation 2.5, ql and qe are the adsorbed quantities at time t in h and at equilibrium, in

mg/g, and K1,ads is the pseudo-second order rate constant in gmg·1h· l
. A plot of t versus

t/ql is linear with the slope being the reciprocal of the adsorbed quantity at equilibrium

and the intercept a combination of the pseudo-second order rate constant and adsorbed

quantity at equilibrium.



Adsorbent capacity can be evaluated using the batch or fixed bed column

experiments. Batch equilibrium tests are conducted on soil suspensions to study

equilibrium adsorption with individual or combined contaminants (Yong et aI., 1992).

Most studies have relied on the batch experiments to evaluate the effects of control

parameters such as solution pH, contaminant concentration and contact time of the

contaminant solution with the adsorbent.

Batch experiments are conducted by adding a known concentration of

contaminant to a known mass of adsorbent for a fixed time. They are less time ­

consuming and are thus attractive. These tests have been applied, in studying adsorption

kinetics (Zhipei et aI., 1984; Gosset et aI., 1986; Viraraghavan and Dronarnraju 1993;

Crist et aI., 1996) and adsorption thermodynamics (Gosset et aI, 1986). Sparks (2003)

however, reported that the batch test is not a panacea for kinetic analyses although it is

widely applied. This might be due to the fact that, in wastewater flowing systems, the

contact time between the adsorbent and adsorbate is not long enough for the attainment of

equilibrium and consequently data obtained in batch experiments are not generally

adequate (Zhou et aI., 2004).

In addition to obtaining the adsorption kinetics, adsorption isotherms are

developed using batch tests. According to Warith (1996), isotherms give the

mathematical relationship between the equilibrium concentration of contaminant in

solution, and the amount adsorbed. These isotherms are valuable predictive relationships

that could be used in estimating the attenuation capacity of the contaminants. At

equilibrium, there is a distribution of solute between the liquid and solid phase with the



distribution ratio (liquid to solid phases) being a measure of the position of the

equilibrium in the adsorption process usually represented by isotherms (Allen, 1987).

Column experiments are highly promising in removing metallic impurities from

wastewater (Naumova et aI., 1995) and therefore are explored in large scale treatment

techniques and in the evaluation of adsorbent potentials. There are two ways by which

influent can enter into a column. One is by upflow and the other by downflow. The

downflow method is most common as it has an added advantage of adsorbing

contaminants in a single step and is easy to operate (Zhou et aI., 2004).

In column experiments, adsorption occurs as soon as the contaminant solution

flows through the column. With continuous flow in a downward column, the equilibrium

adsorption zone will move down the column. At the exit, the contaminant concentration

in the effluent increases with time and eventually equals the initial concentration. This is

the adsorption breakthrough point (Zhou et aI, 2004) and in geo-environmental

engineering, it is the point where 50% of the influent concentration is detected at the

column exit (Yong et aI., 1992). The concentration is taken at 50% of the influent value

because saturation of the adsorbent bed usually occurs at this point and the flow can be

regarded as being in steady state (Shackelford, 1993). At the breakthrough, the column

operation can be stopped for maintenance.

2.4.1 Adsorption Isotherms

The adsorption capacity can be calculated in terms of the equilibrium adsorbate

capacity given by equation 2.6.



(2.6)

where, qo is the adsorbent phase capacity for the adsorbate at equilibrium (mg adsorbate/g

adsorbent), Co and Co are the initial and final equilibrium concentrations of adsorbate

after adsorption has occurred (mgIL), V is the volume of the adsorbent (L) and M is the

mass of the adsorbent (g). A general formula represented by equation 2.7 for the

adsorption isotherm has been proposed by Jaeger and Erdos (1956).

KC,
q,= A+BC~

(2.7)

In this equation, qs (mg/g) is the adsorbed quantity per unit mass of adsorbent and Cs

(mgIL) is the solid phase solute equilibrium concentration and, K, A, Band D are the

isotherm constants.

Among the most commonly used adsorption isotherms are the Langmuir and

Freundlich isotherms. Each isotherm is developed on different assumptions such that the

application to a batch study depends on the prevailing solution conditions. The Freundlich

isotherm is a better model compared to the Langmuir isotherm when dealing with dilute

metal solutions (Kalymkova et aI., 2008).

The Langmuir isotherm is based on four main assumptions: adsorption occurs at

specific local sites on the adsorbent surface, the adsorbing site can only bind one

molecule at a given time, the energy of adsorption is approximately the same from site to

site, and there is no attraction between adsorbed adjacent molecules. A complete

monolayer of adsorbed species is obtained in this case. The isotherm is given by equation

2.8



(2.8)

where qm (mg/g) is the maximum value that q tends toward as Ce (concentration at

equilibrium in mg/L) becomes large and is also referred to as Langmuir monolayer

saturation capacity (Conney, 1999). Ho et aI., (1995) reported that, this constant is a

strong parameter for comparing adsorption because it is an indication of the maximum

adsorption capacity. The other constant b is the Langmuir isotherm constant which

represents the ratio of the rate of desorption to that of adsorption, during adsorption. The

two constants (qm and b) are determined from a linearized form of equation 2.8 given by

equation 2.9.

~=--..!.-+_I-
q. q", bq",Ce

(2.9)

When I/qe is plotted against liCe a straight line is obtained with slope lIbqm and

intercepts I/qmon the I/qeaxis.

One important parameter that is usually evaluated through the determination of

the Langmuir constant is the separation factor R*. This factor was first developed by

Poots et aI., (1978), to predict the favourable nature of an adsorption. R* is given by

equation 2.10.

R,=_I­
l+bCo

(2.10)

where, b is the Langmuir constant (Umg), and Co is the initial metal concentration

(mg/L). Ni or Co adsorption is favourable if 0 < R* < I, unfavourable if R* > I (b is



negative when there is no site coverage in the adsorbent), irreversible if R* = 0 and is of

linear isotherm ifR*= I

The Freundlich isotherm is an empirical relationship that predicts adsorption in

the liquid phase (Cooney, 1999) on heterogeneous surfaces (Al-Duri, 1995) and is

represented by equation 2.11 which is usually operated in the linearized form as given by

equation 2.12.

q=KC;

logq = 10gK +~logC,

(2.11)

(2.12)

where K is the Freundlich isotherm constant expressed in mg(I-lIn) kg-I L lfn when q is

expressed in mg kg-I and Ce in mgL-1(Chen et aI., 1999). K is a measure of the adsorbent

capacity and l/n the Freundlich exponent a dimensionless parameter, is the heterogeneity

factor ranging from 0 to 1 (AI-Duri, 1995), and Ce is the adsorbate concentration at

equilibrium. Kumar and Bandyopadhyay (2006) referred to these two constants as a

measure of relative adsorption capacity. Both constants are dependent on some ambient

factors such as temperature and pH. A plot of log q vs log Ce gives a straight line with

slope as I/n and intercept as log K (Cooney, 1999). This isotherm is known to be

mathematically correct and accurate but does not converge to Henry's law at low surface

coverage and when q approaches zero, equilibrium cannot be described (Cooney, 1999;

Chiou, 2002).

Other adsorption isotherms that have been employed include the Redlich-Peterson

isotherm that requires extra manipulations to determine the isotherm constants (AI-Duri,



1995; Cooney, 1999), and the Dubinin-Radushkevich isotherm that can be used in the

estimate of adsorbent porosity and the energy of adsorption (Kapoor et aI., 1989) though

these two particulars isotherms were not good fits for the data obtained in this study.

2.4.2 Breakthrough Curves in Column Experiments

The breakthrough curve is used in column experiments to determine the time of

exhaustion of the adsorbent bed (Cooney, 1999). The time of adsorbent exhaustion is a

linear relationship in which the adsorbent bed depth and contact time, generally referred

to as service time, are monitored. The bed depth service time (BDST) model was

developed by Bohart-Adams (1920) and is based on the surface reaction theory. This

model can be used to investigate the performance of adsorbents in columns under various

conditions (Walker and Weatherley, 1997).

The Bohart-Adams model has been widely modified by many researchers and one

of the simplified forms is given by equation 2.13a (Hutchins, 1973; McKay and Bino,

1990; Goel et aI., 2005; Sze et aI., 2008). It is often applied in the estimation of the time

taken to attain the breakthrough of a pre-determined exit concentration for a given initial

solution concentration. For this research, breakthrough was the time (h) or volume (L) at

which 50% of the initial metal concentration was detected at the column exit.

In equation 2.13a, Co is the initial concentration of solute in mglL, Ct is 50% of

the initial concentration of solute at breakthrough in mgIL, k is the adsorption rate



constant in Umg.h, and measures the rate of solute transfer from the fluid phase to the

solid phase (Cooney, 1999), No is the adsorption capacity in mglL, H is the bed depth of

the column in m, v is the linear flow velocity of feed to bed in rnIh, and t is the service

time of the column in h. Equation 2.13a can be re-arranged as shown in equation 2.13b.

In(~)=kC t-N k!iCo () 0 v
(2.13b)

For purely advective transport of a non-reactive contaminant, the breakthrough can be

determined by a plot of relative concentration (C/Co) versus the pore volume (Bowders et

aI., 1985; Marshall et aI., 1996) (see Appendix A2 for details of this method).

2.5 Peat as a Metal Adsorbent

Peat possesses a unique combination of chemical and physical properties that

enable it to filter, coalesce and adsorb contaminants making it a useful and suitable

material in wastewater treatment (Perez et aI., 2005). Peat is a complex matrix of

macromolecules that are easily dispersed in water, resulting in a negatively charged

colloidal system. The extent of decomposition of peat influences the particle size

distribution and its physico-chemical properties (Andreasson et aI., 1988).

One of the earliest investigations in Canada in which peat was used for adsorbing

heavy metals w.as that of Coupal and Lalancette (1976), which followed the work of

Leslie (1974) in which peat was used in the treatment of dye house effluent. Because of

the polar character of peat, the specific adsorption potential for dissolved solids, such as

metals and polar organic molecules, is quite high (Brown et aI., 2000). One study reported



that, about 30 metals from the periodic table could be absorbed by peat (Dissanayake and

Weerasooriya, 1981).

Bloom and McBride (1979) investigated the removal of Mn2+, Fe2+, Co2+, Ni2+,

Zn2+, La3+, Ae+ and Ca2+using acid treated peat. A natural peat bog was used in treating

effluent containing Cu2+, Ni2+, Co2+ and Zn2+ from a nearby mine (Egger et aI., 1980).

Zhipei et aI., (1984) studied the removal of Pb2+, Cd2+, Zn2+, Ni2+ and Cr2+ with finely

divided Chinese peat. Ca-impregnated peat was used in the removal of Cu2+, Cd2+, Zn2+

and Ni2+, and Pb2+ (Gossett et aI., 1986). Viraraghavan and Dronarnraju (1993) studied

the removal of Cu2+, Ni2+and Zn2+with horticultural peat.

These studies showed the high metal removal capacity of peat as a metal

adsorbent in the treatment of metal contaminated water and wastewater. Removal

efficiencies between 84% and 99% were obtained for Hg, Cd, Zn, Cu, Fe, Ni, Ag, Pb and

some organic matter (Coupal and Lalancette, 1976). Untreated natural peat bog was

reported to have removed 100% of Cu and 30% of Ni from a mining effluent (Egger et

aI., 1980). Chemically modified peat (to improve the sulfo content of a Russian peat by

sulphate treatment) removed - 90% Pb from a mixture of municipal and storage-battery

wastewater (Kertman et aI., 1993). Metal removal efficiencies between 72% and 98% for

a wastewater containing Pb, Ni, Ga, B, Zn, In, Fe, Cd, Co, Mn, V, Mo Cr and Cu have

also been reported using peat from the Tomsk region in Russia (Naumova et aI., 1993).

28



2.5.1 Peat- Metal Adsorption Chemistry

Most plant - derived materials like peat contain organic compounds such as lignin,

cellulose and humic acids as major constituents of their decomposition products. Organic

constituents are polar functional groups such as aldehydes, amines, carboxyls, hydroxyls,

ketones, and phenolic acid groups with the hydrogen and carbon in their molecular

structure and could be involved in heavy metal adsorption (Bloom and Mc Bride, 1979;

Qin et aI., 2006). The stronger the polar groups in an adsorbent, the higher the potential

for metal and polar organic molecules adsorption (Qin et aI., 2006). This is the case with

peat.

The functional groups are usually involved in reactions leading to metal uptake by

the adsorbent. The two most reported reaction mechanisms found in low cost adsorbents

such as peats are: Ion exchange and Complexation (Brown et aI., 2000). In some cases,

the two reactions have been interchangeably used to explain the mechanism of peat metal

uptake (Kadlec and Keoleian, 1986).

In ion exchange, a solid material, carrying exchangeable cations or anions, is used

in an operation in which the ions can be exchanged for a stoichiometrically equivalent

amount of other ions of the same sign when there is contact (Helfferich, 1962). Cation

exchangers are carriers of exchangeable cations while anion exchangers are carriers of

anions. When a material is capable of exchanging anions and cations it is known as an

amphoteric ion exchanger (Helfferich, 1962).

According to Zagorodni (2007), the ion exchanger is a phase containing an

osmotically inactive (carrier cannot migrate from the phase where it is located) and



insoluble carrier with the electrical charge (matrix). Ion exchange is most often a

reversible process (Helfferich, 1962). Figure 2.1 shows a typical ion movement in an ion

exchange process.
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Fig. 2.1: Schematic steps of ion exchange (adapted from Zagorodni, 2007)

An ion exchange reaction is a competition between the resin (exchangeable ions

carried by an ion exchanger) counterions and solution counterions for functional groups

of the material (Zagorodni, 2007). Bel' kevich et aI., (1980) reported that ion exchange in

peat is due specifically to the presence of a group of compounds that contained carboxyl -

COOH, phenolic hydroxyls - OH, heterocyclic amine - =NH, and thiol - SH. In

compounds containing these groups, hydrogen of the functional groups are exchanged

with metals and - 50 % of this exchange reaction occurred in the humus substances,

while about 30 - 40% occurred in the readily hydrolysable substances and lignin.

Bloom and McBride (1979) showed that the carboxylic group in an acid treated

peat was responsible for the binding of Cu, Mn and Ni in wastewater containing the



cations of these metals with the release of the H+ ion. This reaction was also confirmed in

a Ca-impregnated peat study (Crist et a!., 1996). The ion exchange reaction could be

represented by equation 2.14 (Blais et aI., 2003).

R-Caz+(Mg z+)+Mez+~ R-Mez++Caz+(Mg z+) (2.14)

In equation 2.14, Me2
+ is the metal cation and R is the matrix of the Ca or Mg cations-

impregnated peat adsorbent.

In complexation reactions, inner-sphere (metal ions bind directly to the ligands

without water molecules) or outer-sphere (metal ions bind to water molecules and both

are bonded to the surface of the ligands) type complexes can be formed by bonding

between metal ions due strictly to the electronic interactions between the metal ions and

the ligand (Sposito, 1984; Sparks, 2003). In this form of bonding, the d-orbital electrons

of the metal atom accept electron pairs (i.e. the metal acts as a Lewis acid) from a ligand

(the Lewis base) to form a covalent bond and each ligand replaces one of the hydration

shell water molecules in the reaction (Koretsky, 2000).

The complexation reaction, between a hydrated metal ([M(HzO)Jn+) and a ligand

(C1
) to form an outer - sphere complex (Sparks, 2003), could be represented by equation

2.15 given below.

(2.15)

In the above equation, n+ refers to the charge on the metal ion, x is the coordination

number, and a and b are stoichiometric coefficients. In solutions, free metal ions are

actually aqua complexes, with the water being a ligand that binds metals; hence, every



complexation reaction in water is effectively a ligand-exchange reaction (Morel and

Hering, 1983).

Many studies (Egger et aI., 1980; Ringqvist and Holmgren, 1998; Ringqvist et aI.,

2002) have supported the peat-metal ion complexation reaction. One study (Ringqvist et

aI., 2002), showed that monovalent cations are held primarily by simple cation exchange

while multivalent cations have the potential to form co-ordinate linkages.

Other reactions that have been suggested but supported to a lesser extent as

possible metal uptake routes on peat include chemisorption and surface adsorption. In

chemisorption, ions are not specifically exchanged, but electrons are exchanged and this

could result into metal-peat binding at the surface of the peat (Evangelou, 1998; Brown et

aI., 2000). Cooney (1999) reported that heat is usually involved in chemisorption.

Surface adsorption on the other hand is a physical process where positively

charged ions are attached to a negatively charged surface without the exchange of

electrons or ions (Brown et ai, 2000). Cooney (1999) suggested that surface adsorption

involves no heat.

2.5.2 Peat Formation

Peat with its natural constituents provides, a unique material for developing

knowledge on the mechanisms and factors influencing metal binding onto organic matter

(Twardowska and Kyziol, 2003). Peat is a spongy vegetable substance composed of

mosses and aquatic plants in different stages of decomposition (Kerr, 1905), or partially

fossilized plant matter (Perez et aI., 2005). It is a natural resource like wood or other



biomass and can be considered as a bio-fuel in the energy context (Smuts, 1996). It is

formed in the poorly oxygenated water of marshes, bogs, and swamps. When the rate of

plant matter production and accumulation in the water is greater than the rate of

decomposition, the resulting vegetation is slowly and easily oxidized by microorganisms

to form peat (Spedding, 1988; Perez et aI., 2005). Smuts (1996) reported this to be the

pre-requisite for the formation of peat. Figure 2.2 summarizes the peat, lignite and coal

formation stages.

Biomass

(e.g. leaves, ferns, mosses, etc)

Higllpressureltemperature

Peat Lignite -t Coal

Time 10,000 years - 40 million years

Fig. 2.2: Schematic representation of peat, lignite and coal formation (adapted from

Spedding, 1988; Smuts 1996).

Peat is accumulated, through the successive growth and decay of plants, and the

replacement of one type of bog vegetation by another. The rate of growth and

accumulation of peat is variable, but very slow (Dachnowski, 1912). The processes of

formation and accumulation occur in the first few meters of the earth and several factors

affect the characteristics of the peat, such as the nature of the vegetation, regional climate,

water pH, and degree of metamorphosis (Brown, 2000; Perez et aI., 2005).

Sphagnum mosses, true mosses (Bryales), sedges and woody plants are the most

important peat forming plants with Sphagnum mosses being regarded as the most

versatile. Cells of sphagnum mosses are thin-walled with large cavities which assist the



absorption and transportation of water from the ground. These cells have lignified walls,

built up in different forms, but mostly as rings, spirals or plates. Absorption of water by

sphagnum mosses is a mechanical capillary system which is maintained even by the dead

plants in the form of peat (Puustjiirvi and Robertson, 1975).

Milling is the most common means of peat harvesting nowadays. Usually, a

peatland is drained by ditching at 20 to 40 m intervals and the surface vegetation

removed. The soil surface is harrowed repeatedly to a depth of 5 to 10 cm, breaking up

the dried peat that is collected by vacuums in North America. This method enhances

sustainability as 5 to 10 cm of peat may be removed from the top per year over several

decades (Campbell et aI., 2002).

Peat deposits are not limited by climatic conditions, and are found where large

amounts of biomass are available and decomposition of residues is inhibited (Gondar et

aI., 2005). Three factors control peat formation and deposition: (1) physical properties of

the biomass; (2) humicity or the decomposition degree of the organic substance; and (3)

the nature of the elements such as the metals comprising the deposit (Aaby and Berglund,

1986). Thus, peat deposits have been reported in South Africa and some other African

countries like the Benin Republic, although the largest peat deposits are found in the

Northern hemisphere.

2.5.3 Peat Distribution (Global and Local)

On a country-by-country and peat to land ratio basis, Canada is second to Finland

(CSPMA, 2007) although the largest peat deposits of the world are located in Russia



(Spedding, 1988). Canada's peatlands are among the most extensive in the world and the

least threatened by development pressures (Irish Peatland Conservation, 2007). Figure 2.3

depicts the global peat and peatland distribution while the distribution of peatland by

province or territory in Canada is given by Table 2.4 with Newfoundland and Labrador

being the sixth largest peatland province.

Newfoundland peatlands though comparatively small are a significant portion of

the great peatland ecosystem that stretches around the world. Studies have shown that

bogs (wetlands that accumulate acidic peat) and fens (wetlands that are supplied by

surface/or groundwater) dominate Newfoundland's peatlands with the inherent nutrients

from the parent-forming plants aiding the formation of this peatland (Pollett and Wells,

1977) and contributing to its characteristics. This might not be the case with peatlands

elsewhere.



Fig. 2.3: World's extensive peatland distribution (Adapted from CSPMA, 2007)

Table 2 4· Peatland distribution in Canada
Province or Territory Peatland Area

HaxlO % of Total Land Area

Alberta 18 27.2

British Columbia 4.9 5.1

Manitoba 19.2 29.5

New Brunswick 0.2 4.4

Newfoundland and Labrador 5.4 13.4

Northwest Territories and Nunavut 16.9 4.9

Nova Scotia 0.4 4.9

Ontario 31.3 29.3

Prince Edward Island <0.01 < I

Quebec 11.2 7.2

Saskatchewan 4.9 7.5

Yukon 1.1 2.3

Canada (Total) 113.4 11.4

Source: Adapted from Daigle and Gautreau-DaIgle (2001)



2.6 Peat Characterization and Classification

Peat application, on an industrial, agricultural or domestic/small scale requires a

form of characterization and or classification (Bohlin et aI., 1989). Due to differences in

the environment in which peat is formed and the variation in vegetation involved in

formation, classification of peat has remained a difficult task (Spedding, 1988).

Classification often refers to the natural composition and location from which the peat is

harvested. Characterization of peat on the other hand though reported to be a well

investigated area (Bohlin et aI., 1989; Norden et aI., 1992), cannot be said to be as simple

as stated.

Peat can be highly humified or poorly humified, an indication of the level of

decomposition or formation that the parent biomass has undergone. Peat could in simple

terms, be classified as: fibric, hemic, or sapric. Fibric peats are the least decomposed,

hemic peats are somewhat decomposed, and sapric peats are the most decomposed (Crum

and Planisek, 2004; Perez et aI., 2005).

Since 1922, the von Post scale (FAO, 2008) has been a useful means of

classifying peat. This method is based on the physical appearance of peat, its water

content and the presence of fibers. Peat on the von Post scale is classified into 10 different

classes, based on the observed results after pressure is applied by hand and the extruded

matter physically examined. On the von Post scale, peat in class lH is incompletely

decomposed and class IOH means completely decomposed peat as shown in Table 2.5.



Table 2:5: The Von Post scale for peat classification

Scale Physical Plant Structure Expressed Peat Peat Retained
Number Description Fluid Lost

Consistency/Colour

HI Completely Colourless,
unhumified clear

H2 Virtually Yellow-
unhumified brown

clear
H3 Littlehumified Noticeably None Not porridge - like

turbid
H4 Poorlyhumified Very None Somewhat porridge

turbid - like
H5 Fairlyhumified, Plain, but Strongly Some Very porridge-

distinct structure somewhat turbid like
obscured

H6 Fairlyhumified Indistinct but -1/3 Very porridge-
still clear like

H7 Quite well Much still - 1/2 Gruel-like, very
humified visible dark

H8 Wellhumified Vague -2/3 Only roots and
fibrous matter
remain

H9 Almost Almost none - all Homogenous
completely visible
humified

HID Completely None visible All Porridge
humified

Source: Adapted from Bozkurt et aI., (2001)

Peat can be characterized with respect to the bog or vegetation from which it is

taken. Characterization can also be on the basis of the metal, organic and inorganic

contents. Peat characterization usually presents more detailed information which is

desirable, compared to classification. There is however no unique method of peat



characterization as methods chosen are influenced by investigations planned and the

number of parameters to be examined before application.

Nowadays, a complete peat characterization in its natural state could be done by a

combination of one or more of the following analytical methods: (i) X-ray diffractometry

(XRD) - for crystallographic study (Bloom and McBride, 1979; Summa and Tateo, 1999;

Romao et aI., 2007) (ii) Scanning electron microscopy (SEM) - for surface morphology

(Coupal and Lalancette, 1976; Fox and Edil, 1996; Romao et aI., 2007), (iii) Fourier

transform infra red (FTIR) spectrometry - for functional groups identification (Durig et

aI., 1988; Romao et aI., 2007), (iv) 13carbon nuclear magnetic resonance (NMR)

spectrometry - for functional groups identification (Preston et aI., 1989; Almendros et aI.,

2003) (iv) Particle Size Distribution (PSD), (v) Determination of Metallic Content of peat

using Inductively coupled plasma atomic emission spectrometry (ICP-AES) (Ho and

McKay, 1998), (vi) Degree of Decomposition (von Post scale), and (vii) Moisture and

Ash Contents (Smuts, 1996; Gondar et aI., 2005).

2.7 Statistical Design of Experiment

Many of the peat-metal adsorption studies have been conducted with the method

of keeping one or two factors constant and varying the factor of interest. An elegant way

of conducting experiments with minimal use of materials and reduced bias is to employ a

statistical design of the experiment. In statistical design of an experiment, a set of

experiments is conducted in a randomized format. In this method, the individual effects of

factors known as main effects and the interdependent effects of factors known as



interactions are obtained. The parameters of interest under investigation are known as the

responses. Three ways of conducting the design of an experiment are: screening, full and

fractional factorial and response surface methods (Montgomery and Runger, 2003).

Screening in design of experiments is used to reduce the experimental runs when

little is known about the responses. While the main effects are evaluated, interaction

effects cannot be evaluated with screening. However, factors that has significant effects

on the responses can be isolated from the less important factors. Factors are run on two ­

level designs or low and high levels as defined by the range of each factor (Czitrom,

1999).

In full factorial design, all treatment combinations of the factor levels are used in

evaluating the response variables. These types of experimental designs are more efficient

than one factor at a time designs (Czitrom, 1999). The design allows for the testing of

linear and non-linear behaviour in the factors by duplicating experiments at mid point

conditions of the factors. However, in this design, it is difficult to differentiate between

main effects and interactions as the complexity of the experiment increases. Fractional

factorial design provides a reduction in the number of experiments without the loss of

information (Montgomery and Runger, 2003).

Response surface design is used to obtain precise information about factor effects

and especially magnitude and direction. They are most often three-level designs that

allow the estimation of linear, two factor interactions and non-linear effects of all factors

under investigation. They are employed when there is an indication of non-linear

behaviour or when a factorial design experiment reveals the presence of non-linear



behaviour. They are useful in identifying optimum conditions (Montgomery and Runger,

2003).

The design of experiment by any of the above method involves the use of

statistical packages that can be found in MINITAB, Design Expert and others. In this

study, Design Expert 8.04 was employed first, in a full factorial design to screen the

experimental factors, and followed by the use of the Box-Behnken design of the surface

response method.

2.8 Summary of Literature Search

Peat, especially the fibrist type is a promising adsorbent for treating metal

contaminated water and wastewater. Various studies have shown that many parameters

are involved in the chemistry of the metal uptake on the fibrist peat. Solution pH and

initial metal concentration in solution have been reported (Coupal and Lalancette, 1976;

Ho et aI., 1995; Kalymkova et aI., 2008) to be capable of influencing the amount of metal

removed from metal contaminated water. Solution temperature (Viraraghavan and

Dronamraju, 1993; Kalymkova et a!., 2008) has also been reported as an influencing

parameter when peat is used as a metal adsorbent.

Peat, though it has been studied as a good adsorbent for metal uptake in metal

contaminated water, the understanding of the uptake mechanisms, sequence of reactions

and extent of uptake has been inadequately reported and most times reports are

contradictory when available. These contradictions need to be clarified, if peat is to be



used on a large scale, as one of the most viable adsorbent materials for metal removal

from metal contaminated water and wastewater.

The study reported in this thesis seeks to clarify these issues and as well, list the

performance of the saprist Newfoundland peat (referred to as NL peat by the author) used

in the study. It also seeks to compare the single ion Ni and Co uptake performance of the

saprist NL peat against multiple ions uptake as widely done with the fibrist peat. One of

the significance of the use of this peat type is in the management of peat vegetation

because itis a non-renewable natural material.



CHAPTER THREE

PEAT CHARACTERIZATION

3.1 Chapter Overview

Characterization methods, results and comparison of poorly decomposed peat

(fibrist or horticultural) and highly decomposed (saprist) peats obtained from the same

bog in Torbay, St. John's, Newfoundland, Canada, are reported in this chapter. The

combination of selected facilities and analytical techniques utilized at Biology, the

CREAIT, Chemistry, and Earth Science departments of Memorial University of

Newfoundland (MUN), St. John's campus were used to determine the metal content of

the virgin peats, the surface morphology, and inherent functional groups. The cation

exchange capacity and physical properties of the peats associated with their use as

adsorbents, and the peats' particle size distribution by dry granulometry were also

determined and presented.

3.2 Physico-chemical Properties of the Newfoundland Peats

3.2.1 Peat Harvesting, Storage and Sample Preparation

Horticultural (fibrist) and highly decomposed (saprist) peats were harvested on

14th August, 2008 from a natural peat bog owned by Traverse Nursery, in Torbay, St.

John's NL. Figure 3.la is a typical sphagnum moss plant and Figure 3.1 b is the cleared

natural peat bog. According to Pollet et aI., (1968) peatlands in this area belong to the



largest single peatland area of the Avalon Peninsula. The horticultural peat was harvested

at - 4 cm from the surface after clearing some partly decomposed plant materials while

the saprist peat was harvested at about 1.6 m from the surface of the bog.

Fig. 3.1 a: Sphagnum moss plant Fig.3.1 b: Cleared natural peat bog

The peat samples were transferred on site into large high density polypropylene

bags for storage in the Environmental Engineering Laboratory, Faculty of Engineering

and Applied Science, MUN, St. John's. The wet bulk density of the samples was

determined immediately on arrival at the laboratory. 1500 g of peat samples were

weighed and spread on plastic trays for air drying at room temperature. Air drying was

the chosen option not only to lower the moisture content of the peats but also to maintain

an approximate equilibrium with the air of the laboratory thereby reducing possible

changes in the moisture content of the sample during experiments.

Dried peat samples were thoroughly mixed by removing pebbles and

undecomposed woody materials by hand-picking, followed by the separation into particle



sizes by dry granulometry. The air dried peat samples are as shown in Figures 3.2a and

3.2b. These air dried peat samples were used in the crystallographic, morphologic and

functional groups identification studies.

Fig.3.2a: Air dried saprist NL peat Fig.3.2b: Air dried fibrist NL peat

3.2.2 Cation Exchange Capacity of Newfoundland Peats

One of the most important parameters for consideration in the choice of a material

as an adsorbent is the cation exchange capacity (CEC). The capacity of soils to adsorb

and exchange cations expressed in milliequivalent per 100 grams of soil is known as the

CEC. It is a significant parameter in the determination of the metal retention capacity of a

soil.

The CEC values of the fibrist and saprist NL peats were determined in triplicates

by the pH 7.0 calcium acetate (CH3C02hCa - calcium chloride (CaCh) method

(Sheldrick, 1984) and the average values are reported as shown in Table 3.1. This method

was selected because of the high organic content of the peat samples and in such cases,

the pH dependent changes are known to be high. The CECs of the peats were obtained
4S



prior to air drying of the NL peats. The exchangeable Ca in meq/lOOg in the peats was

obtained using equation 3.1 (Shelderick, 1984).

J1g/mLmeasured x __1_00__xvolume of extract (mL) x dilution
equivalent weight. of Ca x 1000 weight of soil

(3.1)

3.2.3 Other Physico-Chemical Parameters of Newfoundland Peats

The other physico-chemical properties that can influence peat in the metal

adsorption process include the peat pH, moisture content, fiber content, ash content and

bulk density. Each of these parameters was determined using applicable ASTM methods

for soils by reporting the average of the triplicate samples. Table 3.1 summarizes the

values of these properties for the two Newfoundland peat types.

Table 3.1: Physico-chemical properties of the fibrist and saprist NL peats

Parameter Method of Evaluation Values
FibristPeat Saprist Peat

Degree of Decomposition Von Post 3H 7-8H

pH (in de-ionized water) ASTM 02976-71 4.2 4.2

Moisture content (%) ASTM 02974-07A 82 86

Fibercontent(%) ASTM 01997-91 75 69

Ashcontent(%) ASTM 02974-07A 16

Organicmatter(%) ASTM 02974-07A 84 91

Fresh bulk density (glcm ) ASTM 04531-86 0.60 0.65

Dry bulk density (glcm ) ASTM 04531-86 0.21 0.28

pH 7.0 CEC (meq/lOOg) Calcium acetate/chloride 45 70



From Table 3.1, saprist Newfoundland peat has a larger CEC, dry bulk and fresh

bulk densities (the dry bulk density was determined after air drying while the fresh bulk

density was determined just after harvesting the peats), organic matter content and

moisture content compared with the fibrist ewfoundland peat. This trend is connected

with the composition of the saprist peat particles which was determined by the high level

of decomposition resulting in fine and smaller materials compared with the fibrist peat

particles that were coarse and larger in size. The two peat types are however rich in

organic content which could be one of the reasons why the Newfoundland peat is mainly

used in gardening in the US and Canada.

3.2.4 Particle Size Distribution of the Peats

Particle size distribution or dry granulometry of the air dried peats was determined

by sieving triplicate dried peat samples over a series of mechanically stacked sieves of

selected sizes. The sizes selected were based on the ease of separation of the peats. The

size distribution was obtained using USA standard test sieves (ASTM II specification) of

4.75 mm, 2 mm, 850 llm, 425 llm, 300 llm, 150 llm, 75 llm and < 75 llm diameters. The

sieves were arranged placing the 4.75 mm diameter and 2 mm diameter sieves on top for

the horticultural and saprist peats respectively with a collecting pan placed at the bottom.

Each peat sample was placed onto the upper sieve and shaken on the WS E-Tyler

vertical shaker for 15 minutes with vibration amplitude between 2 and 3 mm. Peat

fractions above the sieves' diameter were retained on the corresponding sieve while sizes

below passed onto the next sieves. The process of separation was repeated three times for



three different air dried peat samples and the average values recorded for the samples as

shown in Table 3.2.

Table 3.2: Dry granulometry results of the fibrist and saprist NL peats

19

15 13

Average % Retained Average % Retained

(Fibrist Peat) (Saprist Peat)

Sieve No. Seive Size (Jlm)

4750

2000

20 850

40 425

50 300

60 250

100 150

200 75

<75

45

2*

52

15

6*

*Matenalless than <75 f.lm mostly dust lost dunng the partIcle size analySIS

Table 3.2 showed that the saprist NL peat contained over 50% by weight of 850 f.lm

particle sized peat grains. However, further examination of this fraction during the dry

granulometrystudy, showed that it contained lumped fine particles thatre ultedinlessthan2%of

the total saprist peat material (retained in sieve No. 20) when the lumps were broken up by hand.

Thus the lumped fine particles of the saprist NL peat affected its particle size distribution as

shown in Table 3.2. The fibrist peat on the other hand, had more undecomposed material

(between 4.75 and 2.00mm) compared with the saprist peat. Particle size distribution could

influence the porosity and make the fibrist NL peat more porous than the saprist NL peat.



3.3 Instrumental Analytical Characterization of the NL Peats

Peat surface analysis is an important step towards identifying the inherent

characteristics that could influence peat use as a metal adsorbent. Air dried virgin

Newfoundland peats were therefore subjected to analytical characterization using X-ray

diffractometry (XRD) for crystallographic study at the Earth Sciences department,

Scanning electron microscope (SEM) for morphological and surface profile study at the

Biological department and, Fourier transform infra red spectroscopy (FfIR) and 13C

Nuclear magnetic resonance (NMR) for the identification of functional groups at the

CREAIT, in the Chemistry department. Inductively coupled plasma mass spectrometry

(ICP-MS) available at the Earth Sciences department, was employed for the

determination of initial metallic content and was the only method that involved the

destruction of the peat samples. All the departments are at the St. John's campus of MUN.

3.3.1 Peat Crystallographic Study

Adsorption in peat has been reported to be influenced by the presence of

impurities (Couillard, 1994; Twardowska and Kyziol, 2003). If inorganic matters are

present in a significant proportion, the understanding of the organic matter metal uptake

chemistry could be difficult because of the stronger affinity of the inorganic materials for

metals. Peat is generally organic in composition and amorphous in nature while most

inorganic matters are crystalline in nature. This difference in composition was used in the

crystallographic study of the Newfoundland peats.



The powder X-ray diffractometer (XRD) technique has been used in the

identification of multiple phases in microcrystalline mixtures such as rocks, determination

of crystalline structure of identified compounds and, identification and analysis of clay

materials and recognition of amorphous materials in mixtures (Pecharsky and ZavaJij,

2003).

From each of the main twelve particle size fractions shown in Table 3.2

(excluding dust), a statistically infinite amount of randomly oriented powder particles

were packed on a vertically placed stud of the Rigaku Rotaflex D/Max 1400 rotating

anode powdered x-ray diffractometer with Cu-Ku radiation source operated at 40 kV and

100 rnA from RigakulMSC (Japan) equipped with an X-ray stream 2000 low temperature

system. A coherent beam of monochromatic X-rays of known wavelength (1.54A) were

generated by high energy electrons in a sealed vacuum tube through the Cu (Ku) pure

anode. X-rays diffracted by the specimen were measured and a pattern specific to the

various crystalline structures were obtained. The interaction of x-rays with the samples

created secondary diffracted beams which were related to the interplanar spacings in the

material according to the Braggs law given by equation 3.2.

nA. = 2dSin(} (3.2)

where, n is an integer, Ie is the wavelength of the X-rays in A, d the interplanar spacing in

Agenerating the diffraction and 8 is the diffraction angle.

The diffraction maxima or peaks were measured along the 28 diffractometer circle

which had a fixed x-ray tube and the specimen moving at half the rate of the detector to



maintain 6-26 geometry. The diffractograms obtained were matched through the JADE

data software.

The diffractograms obtained as shown in Figure 3.3a for the saprist Newfoundland

peat of particle size:s 425 flm (representative of all other fractions for the two peats), and

Figure 3.3b for the fibrist Newfoundland peat of particle size < 75 flm. The

diffractograms for all other fractions of particle sizes for both peat types were similar to

Figure 3.3a except for fibrist Newfoundland peat of particle size < 75 flm. As shown in

Figure 3.3b, identifiable peaks that showed the presence of calcium and silicon oxide

minerals were obtained for this case.

The hump-shaped peak occurring between 18° and 32° is a unique characteristic of

peat (Romao et aI., 2007). The spectrum showed that the Newfoundland saprist peat was

completely amorphous as no mineral peak was identified while the Newfoundland fibrist

peat at < 75flm contained identifiable inorganic fractions. Some studies have reported the

presence of known minerals in peat such as quartz and feldspar in a New York woody

peat (Bloom and McBride, 1979) and calcite, kaolinite and quartz in an Alder-peat from

Poland (Twardowska and Kyziol, 1996); but no known minerals especially clays were

detected in the Newfoundland peat particles except for the fibrist NL peat particles of size

<75flm.



Figure 3.3a: Diffractogram of saprist NL peat fraction :s 425 /lm

10: Secondt,ail I
File:LESS75.MOI

Figure 3.3b: Diffractogram of fibrist NL peat for fraction:s 75 /lm (1 is associated with

the peaks for silicon oxide and 2 associated with the peaks for calcium)
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3.3.2 Peat Surface Morphology

Surface characteristics of peat influence properties such as porosity, permeability

and water holding capacity. The surface profile and morphology of solid matters can be

studied using Scanning Electron Microscopy (SEM) (Bozolla, 2007). In SEM, the lenses

act as condensers in a demagnification series to focus on extremely small spots (Egerton,

2005). This is highly essential in understanding the peats' pores orientations.

Samples from each fraction obtained in the dry granulometry stages were spread

over a carbon taped stud, coated with 550X Sputter Coater for gold to obtain -15nm thick

coating on the peat. This process, in the opinion of the author, greatly enhanced the

resolution of the micrographs since biological specimens such as peat are known to yield

poor signals on conventional SEM (Egerton, 2005). The Hitachi-S570 SEM was operated

at 20 rnA in a 0.2 mbar vacuum that allowed generated electrons to reach the specimen

after -2.5 minutes resulting in signals that included secondary and backscattered

electrons, X-rays, light and heat.

Secondary electrons gave information on the specimen topography while, light

and heat provided insight on the composition of the material being probed (Egerton, 2005

and Bozzola, 2007). As the probes struck the specimen, each point impacted provided

information displayed on a monitor. Image quality, presented as micrographs, depended

on the signal strength and overall yield of secondary electrons from the specimen. Areas

that appeared darker in the micrographs were due to fewer secondary electrons.

Micrographs of the twelve different size fractions for the two Newfoundland peat

types specimen were obtained at different magnifications. Different magnifications on the



Hitachi-S570 SEM were employed so as to obtain the best possible resolution for the

twelve specimens from which the twelve fractions for the dry granulometry (Table 3.2)

were obtained. Figures 3.4a and 3.4b are the micrographs of fibrist and saprist

Newfoundland peats at a magnification of 1000 times and at different scales.

Figure 3.4a: Micrograph of fibrist NL peat (Magnification X 1000)

Figure 3.4b: Micrograph of saprist NL peat (Magnification X 1000)



The micrographs showed that pores in the fibrist peat were more distinct

compared with those of the saprist peat. The microstructures of the peats showed highly

inter-connected fibres with large and thick cell wall pores in the fibrist NL peat while, the

saprist NL peat contained collapsed and overlapping pores. Each pore in the peat type

consisted of a unique internal cellular arrangement. The pore structure in the saprist peat

could be due to the compressive forces from the decomposed particles with light and

fragile cell walls, while that of the fibrist peat could originate directly from the plant

forming materials. Coupal and Lalancette, (1976) reported this pore structure in a fibrist

peat to be cellular. Bozkhurt et aI., (200 I) reported that a higher decomposition (in saprist

peat) reduced the pore fraction, leading to smaller particles being packed together,

increasing the bulk density of the material. This is evident as the fibrist peat had the lower

bulk density and moisture content, compared to the saprist peat (Table 3.2).

At higher peat decomposition level, pore sizes tended to be smaller and

inseparable (powder-like) resulting in a compact peat matrix with reduced permeability,

leading to higher water holding potential. The fibrist peat should therefore have a higher

porosity which could be one reason why it is favoured in gardening and horticulture; but

in the adsorption process, its residence time could be shorter reducing its ability to

quickly trap metals from the percolating wastewater.

3.3.4 Identification of Functional Groups

The ability of a soil to hold metals is influenced by the presence of organic matter

which is made of various functional groups. The identification of these functional groups



is one major step in understanding the chemistry of metal uptake by soil organic matter.

Chemical compositions of peats can be identified by Fourier Transform Infra-Red (FTIR)

and Nuclear Magnetic Resonance (NMR) spectrometry. The FTIR spectrometry is

capable of identifying the presence of organic functional groups which can then be used

in the classification of the parent material. Organic compounds such as carbohydrates,

lignins, celluloses, fats and/or lipids, and proteinaceous compounds have been identified

based on the vibrational characteristics of their structural bonds (Artz, et aI., 2008). These

techniques have been applied in the study of extracted humic fractions from various peats

with variations in·the functional groups reported (Niemeyer et aI., 1992; Baran, 2002; Li

et aI., 2004; Gondar et aI., 2005; Fong and Mohamed, 2007).

The FTIR microscope accessory allows spectra from a few nanograms of material

to be obtained quickly, with little sample preparation and low operation cost. In some

cases, thin films of residue are identified with a sensitivity that rivals or even exceeds

electron or ion-beam-based surface analysis techniques. FTIR is based on the principle

that some molecules absorb light in the infra-red region of the electromagnetic spectrum

(Smith, 1996) with the wavelength of the absorption being a function of the bond types in

the molecule (Griffiths and de Haseth, 1986). The essential components of the FTIR are

shown in Figure 3.5.

Figure 3.5: Essential components of FTIR spectrophotometer
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The interferometer is the unique feature of the FfIR. This component helps to

superimpose the released waves from the infra red source making them easy for

interpretation (Smith, 1996).

The Bruker TENSOR 27 FfIR equipped with a MIRacle ATR accessory coated

with crystallized ZnSe with absorbance range from 4000 and 650 em') was used. A few

particles of each of the air dried homogenized fibrist peat of sizes 425, 250, 150 and 75

J-lm, and saprist peat of 850, 425, 300, 150 and 75 J-lm (4.75 and 2.00 mm of the fibrist

peat and 4.75mm of the saprist peat were left out because they were mostly

undecomposed materials) were analyzed.

Each sample from the selected particle size fractions was placed on the pressure

tip, compressed onto the sampling area at the center of the ZnSe crystal plate, and was

scanned for one minute in transmission mode double sided forward/backward at a spectral

resolution of four wavenumbers. The equipment incorporates a KBr beam splitter which

transmits - half of the radiation from the source, and reflects the other half through the

aperture set at 6 mm through to the detector. Final spectra were obtained from the

interferogram through a Fourier transform presenting a quantitative analysis.

Spectra for the various fractions of the peats were similar in profile and shape.

Thus the fibrist and saprist NL peats from the same peat bog could consist of the same

functional groups. The spectra in Figure 3.6 (similar for all fractions of both peat types)

and the probable functional groups present in the peats are summarized in Tables 3.3

following matches with Lange's Chemistry Handbook (2005) or as otherwise indicated.



Figure 3.6: FfIR spectra of saprist or fibrist NL peats

The functional groups in the fibrist and saprist NL peats are dominated by the

presence of oxygenated organic species such as carboxylic acid - RCOOH, alcoholic and

phenolic hydroxyls - ROH and ethers - ROR in addition to amines - RNHz, or RzNH and

or amides - R-CO and where R could be an aliphatic, straight chain, branched chain or

heterocyclic. All these groups contain active electron sites in their primary structures and

their fluctuating polarization can allow their electrons to be positioned at different

locations in their structures to be shared by incoming metals deficient in electrons.

Reactions involving electron movement or influenced by opposite charges may therefore

govern the peat metal binding chemistry.



Table 3.3: Probable functional groups present in the saprist NL peat samples

Wavenumber
(cm-')
3518

3352
3270
2918
2850

2360
2341
1620

1412

1375

1242
1150
1034

Probable Functional Group Assigned
and Band,cm-'

Primary amines (aliphatic) 3550-3300·
Secondary amines 3550-3400
Normal polymeric OH stretch
Ammonium ion 3300-3030
Carboxylic acids -COzH, OH stretching 3000-2500
Carboxylic acids -COzH, OH stretching 3000-2500
Methylene (CHz) C-H asymmetric/symmetric
stretch'

AliphaticCN
Primary amines (aliphatic) 1650-1560·
C=C conjugated with aromatic ring 1640-1610
n, 13 unsaturated carbonyl compounds 1640-1590
Ammonium ion 1430-1390
Vinyl C-H in- lane bend'
=C(CH3h Alkane residues attached to C '" 1380
Nitro C-NOz aromatic 1380-1320 (s)C
Aromatic ethers, aryl -0 stretch (<I>-O-H)
Tertiary alcohol C-O stretch
Hydroxyl O-H primary aliphatic alcohols 1085­
1030d

-0-CH3ethers - 1030
Peroxides -0-0- 1150-1030' e Alkyl

Comparable Studies

Nieme eretal., 1992

Oremetal.,1996
Oremetal.,1996
Niemeyeretal.,1992

Oremetal.,1996

Oremetal.,1996

Artz et aI., 2008
Niemeyeretal.,1992
Orem et aI., 1996 and
Artz et aI., 2008

915 Silicate ion
845 Nitro C-NOz aromatic 865-835c

825 Peroxides -0-0- 900-830e

767 -CHz- Rocking vibration
720 Saturated CHz c 720 Artz et aI., 2008
667 Hydroxyl O-H primary aliphatic alcohols 700-600

John Coates 10 EncyclopaedIa of Analytical ChemIstry (2000)
• primary amine bands at 3550-3300 and 1650-1560
b ammonium ion bands at 3300-3030 and 1430-1390
Cnitro C-NOz aromatic bands at 1380-1320 and 865-835
d primary aliphatic alcohols bands at 1085-1030 and 700-600
e peroxide bands at 1150-1030 and 900-830



Solid state 13C NMR was also employed in this research to support and provide

additional information on the functional groups present in the air dried NL peats. In

NMR, the samples are usually placed in a magnetic field and excited through pulsations

from the radio frequency input. The magnetic fields after re-alignment induce an output

radio signal that generates a spectrum. Fourier analysis of the complex output produces

the monitored spectrum. Several pulsations were carried out allowing for the

identification of signals from background noise (Teng, 2005).

Solid state 13C NMR of the peats from a size fraction of:oS 425 !l m was undertaken

to identify dominant functional groups. This was done partly because fractions :oS 425 !lm

were selected for use in the Ni and Co uptakes experiments. The spectra were obtained at

298 K using a Bruker Avance II 600 spectrometer, equipped with an SB Bruker 3.2 mm

MAS triple-tuned probe operating at 600.33 MHz for I hand 150.97 MHz for 13c.

Chemical shifts are referenced to tetramethylsilane (TMS) using adamantane as an

intermediate standard for 13C. The samples were spun at 20 kHz for the 13C NMR spectra.

Cross-polarization spectra were collected with a Hartmann-Hahn match at 62.5 kHz and

100 kHz with Ih decoupling. The recycle delay was 2 s and the contact time was 2000

The spectra obtained were similar for both the saprist and fibrist NL peats. Figure

3.7 was one of the spectra and a summary of the identified functional groups are given in

Table 3.4; these are similar to the functional groups identified with the FTIR. In NMR,

functional groups are identified based on their chemical shift 8 (ppm) range defined by

equation 3.3 (Duer, 2004).



Chemical shift (0)
frequency of signal- frequency of reference

Spectrometer frequency
(3.3)

Figure 3.7: 13C NMR Spectra of a fibrist or saprist NL peat

Table 3.4: Probable functional groups in fibrist and Saprist NL peats from 13C NMR

Chemical shift

range o(ppm)

18.05 - 40.06

56.28-84.15

100.37 - 129.43

Probable functional

groups

CH3 (in long polymeric

chains)

Amine Carbon,

Alcohol,ethers,

methoxyl

Phenol, N-substituted

aromatic

Similar Studies

Preston et a!., (1989), Baldrock et a!.,

(1992), Mao et a!., (2000).

Preston et a!., (1989), Baldrock et a!.,

(1992), Mao et a!., (2000), Almendros et

a!., (2003).

Preston et a!., (1989), Mao et a!., (2000).

150.78 - 173.38 Carboxyl, amide, esters Preston et a!., (1989), Mao et a!., (2000),

Almendros et a!., (2003).



From Figure 3.7 and Table 3.4, the I3C NMR spectrometry provided further

insights to the functional groups present in the saprist NL peat. These functional groups

included the carboxyl, amide, esters, phenol, alcohols and ethers. The presence of long

chain polymeric methylene (- CH2 -) was also detected.

While the FTIR spectrometry can be employed independent of the I3C NMR

spectrometry, and vice versa, the combination of the two analytical tools have given a

clearer functional groups analysis of the saprist and fibrist NL peat as the results

summarized .in Tables 3.3 and 3.4 corroborated each other. The two techniques also have

the added advantage of being non-destructive and peat samples can therefore be reused.

The two techniques showed that peats from the same bog are likely to consist of the same

functional groups but in different proportions depending on the degree of decomposition.

Functional groups such as carboxyls, phenols, amines and amides are known to

react with metals and have been identified to be present in the saprist NL peat. Therefore,

Ni and Co uptakes by this peat would be influenced by the availability and ease of

accessibility of the functional groups by the metal ions when the peat is used as an

adsorbent.

The presence of amine and amide groups in the NL peats could be a reason why

these peats (especially the fibrist peat) are mostly employed in gardening in Canada and

the US rather than heating as obtained in Europe especially in Ireland and Finland.



3.3.5 Peat Metallic Content

Inductively coupled plasma mass spectrometry (ICP-MS) is a simultaneous multi-

element and the fastest growing trace element detection and evaluation technique. The

major components of most designs are the nebulizer, spray chamber, plasma torch, (used

to generate positively charged ions rather than photons) and detector. Ions produced are

directed towards the mass spectrometer via an interface which is a vacuum maintained at

a pressure of 267 Nm-2
(- 2 Torr) considered also as the most important part of the ICP-

MS (Thomas, 2004).

With the ICP-MS technique, the virgin peats were destroyed to release the metals

present in them. In this research, the air-dried homogenized saprist and fibrist peats were

each crushed in a mortar, acidified with 14.55 N RF and 8N RN03 and left on a hot plate

for several days until completely digested. 6N RCI and 8N RN03 were then added to

dissolve the samples further. Finally 8N RN03 was added and diluted with nano-pure

water according to the rock dissolution procedure used in the Earth Science department at

MUN the samples were finally analyzed with a model ELAN DRC-2 ICP-MS.

Two random samples of the fibrist and saprist peats from the peat bog were

analyzed and the instrument took duplicate readings for each samples with average of the

duplicate for each sample reported. The metal concentrations in each peat sample are

presented in Table 3.5. Some metals were detected at concentrations below I mglkg and

included As, Ni, and Pb. The presence of these metals could be due to both natural and

anthropogenic sources; the results however show that these peat soils have a natural

affinity for the detected metals with calcium and iron being the predominant metals.



Table 3.5: ICP-MS results of NL peats

Metal Concentration (mg/g)

FibristPeat Saprist Peat

Ca 2743 2392

~4Fe 971 1012

Ti 98 34

Zn 88 15

Sn

Mn 27

52Cr NO"

Ni 0.7

Cu 0.3

Se NO"

" not detected

From Table 3.5, the fibrist NL peat had more Ca, Ti, Zn and Mn and less of Ni

and Cu compared to the saprist NL peat. The saprist NL peat had more Fe compared with

the fibrist NL peat. An equal amount of Sn was detected in both peat types with no 52Cr

and 77Se in the fibrist peat. It is however interesting to note that more Ni was detected in

the saprist peat compared to the fibrist peat while no Co was detected in either peat types.

The detection and proportions of the metals could be related to the location of the peat

bed within the peat bog, the characteristics of the parent forming plants, microbial

activities and the bog surrounding soils characteristics.



3.4 Chapter Summary

Fibrist and Saprist Peats from a Newfoundland peat bog were characterized and compared

where possible, using analytical techniques that are mainly non-destructive (except in the

determination of the ash content and the metallic content by ICP-MS) to determine the

physico-chemical properties, and surface morphology and identify functional groups in

the peat material. The characterization study showed that the saprist peat was denser, and

finer, and had a larger organic and moisture content, and CEC compared with the fibrist

peat. The surface morphological study showed that the fibrist peat had more identifiable

pores while the saprist peat had collapsed and overlapped pores that were not easily

identified. FTIR and I3C NMR studies showed that the two peats contained similar

functional groups. Metallic content analysis of the virgin peats showed that the fibrist peat

had larger Ca, Ti, Zn and Mn contents while the saprist peat had larger Fe, Ni, and Cu



CHAPTER FOUR

EXPERIMENTAL METHODS USING SAPRIST PEAT AS

ADSORBENT

4.1 Chapter Overview

Adsorption is influenced by many factors such as solution pH, concentration of

contaminants, method of contact of the adsorbent with the contaminant, residence or

holding time of the adsorbent, quantity of adsorbent, adsorbent surface area and others

(Ruthven, 1984; AI-Duri, 1995; Cooney, 1999; Yong, 2001). The evaluation of the

impact of these factors has usually been done on a one-factor basis. This involves the

determination of values of a parameter on the adsorbed quantity with all other factors

constant. However, the complexity of industrial wastewaters and the interplay of factors

are such that this simple approach might be inadequate.

This chapter reports on the materials and the batch and column experiments

conducted using the saprist NL peat as an adsorbent. This peat type was selected because

it was the adsorbent of interest from the physico-chemical analysis reported in Chapter

Three of this study; it was nearly a homogeneous material which can provide added

understanding to the metal uptake chemistry. The conditions of the experiments were

based on the response surface method using the Box-Behnken design after screening of

the factors. The kinetic experiments and the adsorption isotherm studies were then based

on the significant factors determined from the Box-Behnken design of the experiment.



4.2 Materials

The test adsorbent used was the untreated air dried highly humified or saprist NL

peat with particle size fractions :s 425 11m which had been kept in sealed dry plastic

containers after the dry granulometry and characterization studies. Saprist peat particle

size fractions> 425 11m were not used because these fractions contained large proportions

of undecomposed materials.

The stock adsorbates used in the study were prepared from analytical grade nitrate

hexahydrates M(N03)z.6HzO (M is either Ni or Co) supplied by Anachemia Chemicals,

Canada. The solutions' pHs were adjusted by the addition of 0.25 M sulphuric acid from

Anachemia Chemicals, to lower the pH or a pH 10 solution containing potassium

carbonate-potassium borate-potassium hydroxide buffer 0.05M from Fischer Scientific,

Canada to increase the solution pH. The pH was measured with an AT! Orion model 3000

VWR brand pH/mY/temperature meter from VWR Scientific, Canada.

4.3 Methods

The research consisted of:

I. Design of experiment: To simultaneously evaluate the reaction conditions that

could influence metal adsorption efficiency;

2. Kinetic study: To establish metal adsorption reactions order and equilibrium rates;

3. Batch study: To determine sorption parameters through the use of established

adsorption isotherms;



4. Desomtion study: To investigate and evaluate the degree of metal desorption on

the adsorbent; and

5. Fixed bed column study: To determine the breakthrough, the active mass transfer

zone and the bed Ni and Co sorption capacities.

4.3.1 Response Surface Design - Box Behnken Design

Six reaction factors, namely, initial metal concentration, stock solution pH, time

of contact, agitation level, peat dose, and peat particle size were investigated in a

screening step using batch tests with a two-level full factorial design with two replicates

and two mid-points. The factors were designated as low (-), mid-point (0) and high (+).

Stock metal solutions of 50, 125 and 200 mg/L were prepared and solution pHs adjusted

to 3, 6.5 and 10. Air dried saprist peat of masses 0.08, 0.84 and 1.6 g of particle sizes ~

425 )Jm, > 850 )Jm and the thoroughly mixed fractions (~425 to> 850 )Jm) were weighed

on an analytical balance into plastic serum bottles to which 40 mL of prepared metal

solutions of 50, 125 and 200 mg/L were added, before being capped and thoroughly

shaken.

The bottles were agitated on a 5900 Eberbach reciprocal shaker bed at low (45

rpm) and high (80 rpm) levels for 12, 18 and 24 hours. At the end of the selected times,

samples were removed from the shaker bed, allowed to settle and filtered with 45 )Jm

quantitative filter paper from Anachemia Chemicals, Canada. The filtrates were acidified

with a drop of 0.25 M sulphuric acid and stored in sample bottles kept in a dark cupboard

for analysis of the metal content. The storage environment was to first, inhibit the actions



of any photo-sensitive bacteria and also to prevent possible precipitation of metals in the

solution prior to analysis.

Since the screening experiment determined that agitation level and peat particle

size were insignificant, the experimental procedure was repeated for the Box-Behnken

response surface design with only four significant factors (because they had larger

percentage contribution, > 10%), viz, initial metal concentration, stock solutions pH, peat

dose and contact time.

4.3.2 Kinetic Experiments

Kinetic tests of Ni and Co adsorption conducted in triplicate were carried out in 50

mL plastic serum bottles containing 0.08, 0.16, 0.84 and 1.6 g air dried saprist peat of

particle sizes S 425 /-lm and 40 mL of 25, 50, 125 and 200 mglL of Ni or Co stock

solutions adjusted to pHs of 3, 5.5, 8 or 10 (pHs 5.5, 8 and 10 were buffered). The serum

bottles were quickly capped and thoroughly shaken.

The capped bottles were agitated on the 5900 Eberbach reciprocal shaker bed at a

low speed of 45 rpm. At 0.5, 1.0, 1.5,2.0,3.0,4.0,5.0,6.0,8.0, 10, and 12 h periods,

serum bottles were removed from the shaker bed. Samples were filtered with 45 /-lm

quantitative filter paper from Anachemia Chemicals, Canada. The filtrates were acidified

with a drop of 0.5 M sulphuric acid, labelled and stored in sample bottles kept in a dark

cupboard for analysis of the Ni or Co content. Two blank experiments were carried out to

estimate the effects, if any, of the serum bottle and the filter paper on Ni and Co sorption
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and also to detennjne if there was any signjficant Ni (no Co in the virgin peat) elution

fromthesapristNLpeat.

4.3.3 Batch Equilibrium Experiments

These tests were conducted in 50 rnL plastic serum bottles which contained 0.08,

0.16, 0.84 and 1.6 g of air dried saprist peat of particle size fraction :s 425 11m. Stock

metal solutions of Ni or Co concentrations of 12.5, 25, 50, 125 and 200 mglL, adjusted to

the desired pHs of 3, 5.5, 8 and 10, were added to the bottles, and the bottles were capped

and thoroughly shaken.

The capped bottles were agitated on the 5900 Eberbach reciprocal shaker bed at

45 rpm for 24 h. The agitation time of 24 h was considered adequate for equilibrium

based on the kinetics data and also, it is generally the duration in most equilibrium studies

(Ho et aI., 1995; Ho and McKay, 1999; Ringqvist et aI., 2002; Kalymkova et aI., 2008).

Serum bottles' contents were filtered with 45 11m quantitative filter paper from

Anachemia Chemicals, Canada. The filtrates were acidified with a drop of 0.25 M

sulphuric acid, labelled and stored in sample bottles kept in a dark cupboard for analysis

of the Ni or Co contents.

Competitive sorption on the NL saprist peat was investigated by preparing 200,

100, 50, 25 and 12.5 mglL equal mass solutions of Cd, Co, Ni, Pb and Zn using the

chloride of each metal supplied by Anachemia Chemicals, Canada. The solutions were

pH adjusted to 5.5 by adding a few drops of 0.25 M sulphuric acid. 0.08, 0.16, 0.84 and

1.6 g of air dried saprist peat were weighed into serum bottles and 40 rnL of the solutions



added. Bottles were capped and thoroughly shaken on the 5900 Eberbach reciprocal

shaker bed at 45 rpm for 24 h. Filtration and determination of filtrates concentrations

were carried out as with the single ion system.

4.3.4 Desorption Study

After each batch adsorption test was concluded, the peat-metal material on the

filter paper was gently washed off into a 100 mL conical flask with - 25 mL of water.

The flask was well shaken and the contents divided into 5 other 100 mL conical flasks.

Each flask containing - 5 mL of peat-metal solution was treated by adding 40 mL of 0.1,

0.2, 0.5, I, and 2 M HC\. Each mixture was thoroughly shaken and allowed to settle for 2

h. Each mixture was decanted and the Ni and Co concentrations present were analyzed.

4.3.5 Fixed Bed Column Experiments

Vertical, downward flowing fixed bed column experiments were carried out in

fabricated Plexiglass columns 14 cm long, 6 cm internal diameter and at room

temperature. A constant I L- head aspirator bottle was used as the solution tank and was

repeatedly filled with the metal stock solutions. A variable speed peristaltic pump with

flow rate between 250 mUh and 2500 mUh was used to suck out water at the column

exit (see the schematic and experimental set up in Figures 4.1 a and 4.1 b).

The columns were charged with 110 g of air dried NL saprist peat of fraction ~

425 Ilm. Ceramic plates of pore size 60 microns and thickness of 0.5 cm were placed at



the top and the bottom of the column to prevent migration of the peat particles. This gave

an effective peat depth of 12.5 cm which was later subdivided into 7 sections of approx. 2

cm depth. Two blank fixed bed column experiments were carried out: I) without peat to

investigate the effect of the Plexiglass material and ceramic plates on Ni and Co sorption;

and 2) with peat but with no metal in the influent to investigate if there was any

significant elution of the initial Ni in the peat into the effluent. The fixed bed column

experiments were conducted in duplicate for Ni and Co single metal systems and for the

blank tests.

Metal stock solutions at a concentration 100 mglL, adjusted to a 5.5 pH, were fed

to the top of the column and the pump speed adjusted such that I L or 2 L of the metal

solution passed through the bed in I h which gave an equivalent flow rate of 1.0 Uh and

2.0 Uh with an approximate residence or holding time of 3 and 1.5 minutes within the

peat fixed bed. Effluent from the column was collected at the end of each I L volume of

treated solution, acidified with a drop of 0.25 M sulphuric acid, labelled and stored in a

sample bottle kept in the dark for analysis of the metal concentration.

At breakthrough, the column set up was dismantled and - 0.5 cm of the top layer

of each of the seven marked zones was collected for metal analysis. The columns were

marked from the top to the bottom with tiny f1exi plastics placed inside the packed peat

beds for identification. From the single ion-fixed bed column results, the top layer (-0.5

cm) of each zone of the spent saprist peat was collected into a 100 mL beaker sealed for

ICP-MS analysis to determine the Ni and Co accumulation on the selected layers and the

distribution of the metals along the column depth.
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Fig 4.1 a: Schematic diagram of the saprist NL peat column set up

Fig. 4.1 b: Fixed bed column set up as conducted
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4.4 Analysis of Metal Concentrations

Residual metal concentrations in the acidified and stored samples from the batch

and column tests were analyzed using a Varian SpectrAA-55 flame atomic absorption

spectrometer and an air-acetylene flame. The spectrometer was operated at a slit width of

2 nm, a lamp current of 4 A for Ni or 7 A for Co, an air flow of pressure of approx. 60 psi

and an acetylene flow pressure of - 76 KNm-2 (II psi). For measurement of the Ni

concentration, the wavelength of the lamp was set at 232 nm while for Co, it was 240.7

nm. Reported values of the metals were based on calibration of standard solutions

(usually between 100 - 1.75 mgIL) which were usually made before any analysis was

undertaken.

A blank solution was aspirated. This was to set to zero to stabilize the equipment.

The equipment was then calibrated at the appropriate range of the metal solutions. The

metal samples were then aspirated and the READ button pressed to read off the mean

absorbance value of the samples given at a maximum of 3 % relative standard deviation

(RSD) with any value> 3% RSD rejected and the run repeated.

Tests conducted, results obtained and the subsequent analyses are presented in

subsequent chapters (five, six and seven).



CHAPTER FIVE

BOX - BEHNKEN DESIGN, KINETIC RESULTS AND DISCUSSION

5.1 Chapter Overview

This chapter presents all the results obtained from the Box-Behnken design and

kinetic experiments carried out during the research. Metal concentrations in treated

effluents were analysed by Flame Atomic Absorption Spectrometer (FAAS) using a

varian model SpectrAA 55 atomic spectrometer available at the MUN Chemistry

department, and reported as percent metal removed or adsorbed quantity of metal in the

saprist NL peat. Results from the blank samples were also analyzed to check the stability

of the experiment and the consistency of the FAAS equipment. The trends observed for

each experiment and discussions of the probable Ni and Co uptake mechanisms through

analysis of the data are reported.

5.2 Response Surface Method (Box - Behnken Design)

The Box - Behnken surface response design with four factors was selected for the

design after the two-level factorial screening experiments showed that the particle size

and agitation levels were statistically insignificant in determining metal adsorbed by the

saprist NL peat at a 5% confidence level. The percent metal removed was also noted to

be non-linear thus the model obtained from the factorial design would not be adequate.

This necessitated the use of a second order response surface method employing the Box-



Behnken design that excluded the particle size and the level of agitation. The four factors

investigated and their levels during the experiment are summarized in Table 5.1

Table 5.1: Independent factors, units and levels for the Box-Behnken design

Factor (treatment) Units Levels

Low (-1) Mid (0) High (+1)

Metal concentration mglL 50 125 200

Peat dose

Time of contact

giL

12

21

18

40

24

pH 6.5 10

The percent of metal adsorbed on the NL saprist peat was fitted to a second-order

polynomial function given by equation 5.1,

Y,.t =130+ 'f.13iZ i+ 'f.BiiZ i7+ 'f.BijZiZj+E,.t (5.1)
, I I<J)

where Y was the percent metal adsorbed, Z was the factor, ~i, was the linear effect, ~ii

was the quadratic effect, ~ij was the interaction effect or cross product effect between ith

and jth factors, and E was the random error or noise.

The Box-Behnken response surface design input and response (metal removed, %)

was as shown in Table 5.2 where metal sorbed in % was defined by equation 5.2. The

analysis of variance (ANOYA) was then used to obtain the polynomial second order

predictive model for the removal of Ni or Co by the saprist NL peat.



(
C'fflu,nt]Metal sorbed, % = 1--- 100
C/n/t/al

(5.2)

Table 5.2: Box-Behnken design with 3 levels and 4 variables

Run No. Coded Factors Metal Removed, %
Metal Cone. (mgIL). Peat dose (gIL) Time (hr) pH Co Ni

I 50 2 18 6.5 45 98.04

2 200 2 18 6.5 30 58.7

3 50 40 18 6.5 93.8 98.8

4 200 40 18 6.5 84.6 99.6

5 125 21 12 3 77.2 93

6 125 21 24 3 78.7 94.4

7 125 21 12 10 94.6 23.7

8 125 21 24 10 94.8 26.2

9 50 21 18 3 86.4 94

10 200 21 18 3 73.6 79.7

11 50 21 18 10 96.2 32.8

12 200 21 18 10 93.5 23.4

13 125 2 12 6.5 36.3 69.9

14 125 40 12 6.5 87.9 99.6

15 125 2 24 6.5 33.4 70.8

16 125 40 24 6.5 88.9 83.6

17 50 21 12 6.5 89.6 95.5

18 200 21 12 6.5 78.8 80.5

19 50 21 24 6.5 90.4 96.1

20 200 21 24 6.5 74 87.3

21 125 2 18 3 33.1 31.7

22 125 40 18 3 87.3 97.3

23 125 2 18 10 54.9 17.5

24 125 40 18 10 95.7 30.4

25 125 21 18 6.5 81.3 78.8

26 125 21 18 6.5 78.6 88.9

27 125 21 18 6.5 80.7 91.4

28 125 21 18 6.5 80.2 90.2

29 125 21 18 6.5 79.4 99.7



The number of experimental runs was obtained from equation 5.3 as,

Number of runs=(~Jx22+nc (5.3)

where k was the number of factors (4 in this experiment) and nc was the center point (5

was chosen in this experiment). The term 22 is from the two-level factorial on which Box-

Behnken design is based (Myers and Montgomery, 2002). With 4 factors, the design is

exactly rotatable (Box-Behnken designs are generally not rotatable except with 4 and 7

factors) (Myers and Montgomery, 2002; Box et aI., 2005). The choice of 5 center points

was to approach a stable design which is generally rotatable. In rotatable design, the

variance of the predicted response is constant at all points that are equidistant from the

center of the design (imagine the design to be a cube) (Box et aI., 2005).

The predictive model equations were developed after satisfying the necessary

statistical conditions. These were: I) normal probability plot of the studentized residuals

to check for normality of residuals; 2) studentized residuals versus predicted values to

check for constant error; 3) externally studentized residuals to look for outliers or

influential values; and 4) suggestions for any transformations.

From the ANDYA, the models obtained were significant for the selected factors

that had Prob > F values (test for comparing lack of fit variance with pure error variance)

less than 0.05. The Adjusted R-squared being 0.9911 and Predicted R-Squared as 0.9811

for the % Co sorbed and for the % Ni sorbed, Adjusted R-squared was 0.9242 and the

Predicted R-squared was 0.8217. The Adjusted and Predicted R-squared values were

within 0.2 of each other which is the acceptable margin. The detailed ANDYA results for

Ni and Co uptake by saprist NL peat are presented in Appendices B I and B2.
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Equations 5.4 and 5.5 given below are the predictive model equations for Co and

Ni respectively and provided the solutions and values to the coefficients in equation 5.1

with A as the metal concentration, B as the peat dose, C as the time of contact and D as

the pH of the metal solution. AB was the interaction between the metal concentration and

the peat dose, AD was the interaction between the metal concentration and the pH, and

BD was the interaction between the peat dose and the pH.

Co sorbed, % =+80.44 - 5.58A + 25.46B + 7 .78D + 2.53AD - 3.35BD

+ 1.91A2 -18.72B 2 + 5.67D 2

Ni sorbed, % = +91.50-7.17A+13.55B-28.0ID+ 1O.03AB-13.18BD

-8.51B 2 -34.99D 2

(5.4)

(5.5)

The interaction plots between peat dose/Ni concentration, and pH/peat dose for Ni

sorption are depicted in Figures 5.la and 5.lb, while, the optimum conditions for these

interactions are shown in Figures 5.2a and 5.2b.



(a) (b)

Figure 5.1: Interaction of factors on % Ni sorbed (a) peat dose (gIL) and Ni ion

concentration (mgIL) and (b) peat dose (gIL) and pH (red and black are the low and high

values while green is the mid-point for the factors).

Figure 5.lc: Cubic plot of the Box-Behnken design for the sorption of Ni2
+ (red is the

mid-point of the factors)

Figure 5.1 a shows that a large % of Ni was removed at low Ni concentration (50

mglL) and a large peat dose (40 giL), while Figure 5.lb shows that a large of % Ni was



removed at low solution pH (3) and at large peat dose (40 giL). Figure 5.1c is the cubic

representation of the Box-Behnken design for the sorption of Ni2
+ on the saprist NL peat.

Ni concentration/peat dose interaction was one of the interactions observed for Ni

uptake. At 2 giL peat dose, an increase in Ni concentration decreased percent Ni removed

from the solution from 66 to 32% (see Figure 5.1c). This was because more Ni ions were

available as the concentration was increased without a corresponding increase of

available active sites. It has been reported that the water held by the peat matrix is not

thermodynamically bound to the peat but by capillary forces that exist between the water

molecules and the peat matrix (Forsberg and Alden, 1989); thus metal ions diffusion due

to concentration could determine the uptake of metals. At higher Ni concentrations, there

existed a diffusion gradient which could have led to the binding of the kinetically

energized Ni ions in the solution. Since the corresponding sites for complexation have not

been increased, less of the highly energized Ni ions were adsorbed at high concentration

of 200 mg/L.

On the other hand, at a low concentration, the increased peat dose increased the

percent Ni uptake from 66 to 99% (see Figure 5.lc) because more than enough active

sites were available and the metal ions could bind with the nearest sites with less energy

requirements. At a large peat dose, an increased Ni concentration increased the percent Ni

sorbed from 99 to almost 100 (see Figure 5.1c) which could be partly due to the mobility

of the ions, and the corresponding increase in the active sites on the saprist NL peat that

provided binding sites.



From the cubic plot of Figure 5.1 c, the percent Ni uptake decreased from 66 to 37

at a 2gIL peat dose when pH was increased from 3 to 10. At peat dose of 40 gIL, the

percent Ni uptake decreased from 100 to 18% as pH was increased from 3 to 10. When

pH was increased from 3 to 10, the percent Ni uptake decreased from 37 to 2% at a peat

doseof2 giL.

As the peat dose was increased, the available active sites were increased thus

binding was increased. But as pH was simultaneously increased especially above pH of 7,

more hydroxyl ions become available in the system which may have resulted in the

formation of metal hydroxides. The continuous dissociation of the Ni hydroxide could

have created a local repulsive environment between the negatively charged active sites

and the hydroxyl ions. Generally, a double layer is formed on a surface because electrons

are beyond the limits of the lattice formed by the positive ions. When this metal layer

comes in contact with a negatively charged adsorbent layer, the layer is thickened

lowering the migration of the positively charged ions to the surface of the adsorbent

(Sparks, 2003). The thickening of the diffuse double layer at larger peat dose and pH

could have contributed to the reduced percent Ni uptake at basic pH (above pH 7). The

strength of the interference of the repulsion from the diffuse double layer within the peat

matrix could also depend on the stability of the Ni hydroxide that was formed. At a higher

peat dose of 40 giL (larger coverage of the diffuse double layer), and pH of 10 (more

hydroxyls), the repulsive forces could have accounted for the reduced uptake of Ni as

observed at an increased pH and peat dose.



In solution, chelation effect is observed when there is a preferential formation of a

chelate complex (MX) where the metal ion M coexists with the polydentate ligand X

(ligand with multiple donor sites) and the monodentate ligand L (ligand with single donor

site) whose concentration should be equivalent to that of X in relation to the donor atom

(Frausto da Silva, 1983). At a lower pH of 3, a high percent Ni uptake was reported

because the chelation effect could have been pronounced. According to Crist et a\., (1996)

the chelation effect could release protons (H+) from a carboxylic acid group when a

divalent metal ion binds to an adjacent phenolic OH or an adjacent carboxylic acid as

shown in equation 5.6. Large chelation effects, where they exist, are known to occur at

lower values of pH (Frausto da Silva, 1983).

(5.6)

One of the goals of this study was to achieve a high percent Ni or Co uptake at a

reduced quantity of the saprist NL peat consumed. It was therefore necessary to optimize

the uptake conditions as represented by the significant factors that influenced the percent

Ni or Co uptake. If minimum peat dose is the desired goal for an optimum % Ni removal,

using the multiple response optimization approach, the optimization tool in the software,

Design-Expert® 8.04 (Stat-Ease, Inc,), could be used to predict the experimental

conditions needed. Table 5.3 summarizes the results of the optimum % Ni removed for

two scenarios using Design-Expert® 8.04.

83



Table 5.3: Summary of % Ni removed for two optimization cases

Case Constraints Goal Lower Upper Solutions
Limit Limit

Conc. (mg/L) in range 50 200 -100 % Ni removed at Ni

Peat dose (giL) minimize 40 conc. of 50 mglL, peat

pH in range 4.5 6.5 dose of 14 giL and pH 5.3

Conc. (mg/L) maximize 50 200 - 100 % Ni removed at Ni

Peat dose (giL) minimize 40 conc. of 200 mg/L, peat

pH in range 4.5 6.5 dose of 28 giL and pH 4.9

In Table 5.3, the pH range for the two cases was set between 4.5 and 6.5 because

mining wastewaters are generally known to be acidic (Dickerson and Brooks, 1950;

Drury, 1999) with pH values within the given range. The optimization results suggested

that a minimum peat dose of 28 giL was required for the maximum sorption (-100%) of

Ni at the initial Ni concentration of 200 mglL and pH 4.9. On the other hand, a minimum

peat dose of 14 giL was required if the initial Ni concentration is minimized (50 mglL) at

apHof5.3.

For Co uptake, the interactions between pH/Co concentration and pH/peat dose

are depicted by Figures 5.2a and 5.2b.



(a) (b)
Figures 5.2: Interaction of factors on % Co sorbed (a) pH and Co ion concentration

(mg/L), and (b) peat dose (giL) and pH (red and black are the low and high values while

green is the mid-point for the factors).

A:COCODC A+:200.00

Figure 5.2c: Cubic plot of the Box-Behnken design for the sorption of C02
+ (red is the

mid-point of the factors)

Figure 5.2a showed that high % Co removal was achieved at low Co concentration

(50 mglL) and low solution pH (3). Figure 5.2b showed that high % Co was removed at



high peat dose (32 gIL) and high solution pH (10). Figure 5.2c shows the cubic plot of the

Box-Behnken design for C02
+ sorption on the saprist NL peat.

As indicated in Figure 5.2(a), Co concentration/pH interaction was one of the

interactions observed for Co uptake on the saprist NL peat. At a low Co concentration (50

mglL), the percent Co sorbed increased from 41 to 58 as pH was increased from 3 to 10

(see Figure 5.2c). This could be due to chemistry of the uptake. In solution, a double layer

exists between the surface of the solid and the bulk solution due to the action of charges

of the ions in solution and on the solid surface. The thickness of this layer is dependent on

the concentration of ions in the solutions and increase in the solution pH could have

nullified the increase in the thickness of the diffuse double layer around the peat surface

due to increase in the concentration of Co. Increase in Co concentration to 200 mglL led

to increase in Co sorption from 25 to 52% as the pH was increase from 3 to 10.

As indicated in Figure 5.2(b), the second interaction observed was peat dose / pH,

and at low peat dose, the percent Co retained increased from 25 to 52% as pH was

increased from 3 to 10 (see Figure 5.2c). At the low peat dose, Co tends to actively

occupy the available active sites even as pH was increased because Co uptake could be

through complexation at pH of 3 and this changed to ion exchange at pH of 10. At pH of

3, the percent Co retained increased from 41 to 98% as peat dose increased from 2 to 40

giL (see Figure 5.2c). This is because more active sites were made available and

complexation of the Co with the functional groups on the saprist NL peat could have been

rapid.



Co uptake according to equation 5.4 was optimized for two cases of experimental

conditions using Design-Expert® 8.04 and the results are summarized in Table 5.4. The

optimization results could provide additional operational information when using the

saprist NL peat as a Co adsorbent.

Table 5.4: Summary of % Co removed for two optimization cases

Case Constraints Goal Lower Upper Solutions
Limit Limit

Conc.(mglL) in range 50 200 -94 % Co removed at Co

Peat dose (giL) minimize 40 conc. of 50 mglL, peat

pH in range 4.5 6.5 dose of 27 gIL and pH 6.5

Conc.(mglL) maximize 50 200 - 90 % Co removed at Co

Peat dose (giL) minimize 40 conc. of 104 mglL, peat

pH in range 4.5 6.5 dose of 30 gIL and pH 6.5

Table 5.4 shows that an optimum % (-94) of Co could be sorbed at a minimum

peat dose of -27 gIL and at a Co concentration of 50 gIL and a pH of 6.5. If a maximum

Co concentration within the range used in the experiment was desired, a minimum peat

dose of - 30 giL would be required at a maximum Co concentration of 104 mglL at pH

6.5.

Co and Ni are members of the d- block of the transition elements. The chemistry

of the d- block elements are influenced by the valence electron and some other electronic

parameters. Some selected Co and Ni basic chemical data are as summarized in Table 5.5.



Table 5.5: Some selected basic chemical data for Co and Ni

Chemical data

Valence electron

Co Ni

[Ar]ds [Ar]ds

First Ionization energy, kJlmol 758 737

Atomic radius, pm 116 115

*Ionicradius(M+),nm 75 69

Electron gain energy Ea
, kJ/mot -64 -112

*Hydration energy, kJ/mol -2051 -2134

Electronegativity,XJ, 1.9 1.9

Sources: Jones (2001) and *Barrett (2003)

where [Ar] is the electronic configuration of argon (l s2 2s2 2p6 3s2 3p6)

For the Ni and Co sorption by the saprist NL peat, hydrolysis of the metal ions

played a significant role leading to the interactions discussed. Hydrolysis of metal ions

can be considered in two steps as shown in equations 5.7. and 5.8.

(5.7)

(5.8)

The overall reaction can be represented by equation 5.9.

(5.9)

Metal ions that are easily hydrated will be least adsorbed. The ease of hydration of

a metal ion could be obtained from the hydration energy. Co has a slightly lower

hydration energy compared to Ni and is therefore expected to be the more adsorbed metal



because lower heat of hydration favours easy bond formation. Co also has a larger atomic

and ionic radii compared to Ni which could favour electron sharing with electron donors

leading to more adsorption. This however was not the case suggesting that uptake

mechanisms of the two metals were affected by the interactions between some of the

experimental factors.

For the purpose of this research, the author has defined adsorption as either a

physical or chemical phenomenon. The physical adsorption or physisorption occurs with

less interaction between the cation and the peat matrix and is mainly due to the weak

forces of attraction between the negatively charged peat surface and the positively

charged cation. In chemical adsorption or chemisorption, exchange of electrons is

involved and this can be through ion exchange or a complexation reaction between the

cation deficient in electron and the ligands with the exchangeable proton (H+) or

functional groups capable of donating electrons for sharing. Similarly, removal, retention,

uptake, and sorption are all words used by the author in this study to refer to adsorption of

Ni or Co by the saprist NL peat.

5.4 Results and Discussion of the Kinetic Study

The kinetic study of the Ni and Co uptake on the saprist NL peat was discussed in

terms of the time taken to attain equilibrium and fitting of the adsorption data to the

pseudo-second order kinetic model with the determination of the kinetic constants.



5.4.1 Equilibrium Time for Kinetic Study

The time taken to attain equilibrium at the various experimental combinations is

summarized in Table 5.6 while the kinetic data obtained for the Co or Ni uptake are

presented in Appendixes C and D.

Table 5.6: Time (h) to attain equilibrium during kinetic study of Ni2
+ and Co2

+ uptake

Metal Peat dose (gIL)
pH Conc. 2 IO 21 40

(mg/L) Ni Co Ni Co Ni Co Ni Co
25 8 6 IO 2 5 2 3 1.5

3 50 8 1.5 6 1 6 1 4 1.5
125 10 8 I 6 1 5 I
200 6 5 8 1 8 1
25 6 1.5 2 1.5 2 1 1 I

5.5 50 5 1.5 5 1.5 4 1 3 1
125 8 8 12 2 6 I 3 1
200 10 6 8 1 4 I
25 6 1.5 3 1.5 1.5 1 3 3

8 50 4 1.5 12 1.5 1.5 5 5 4
125 8 1 5 12 4 12 2 4
200 8 1 8 1 5 1 3 5
25 3 4 1 3 4 2 3 1.5

IO 50 5 2 4 4 3 3 1.5 1
125 10 2 6 5 4 4 3 IO
200 IO 1.5 8 6 5 5 6 1

[-] mdlcates no expenmental result

From Table 5.6, the shortest Ni removal equilibrium time was 1.0 h at a pH of 10,

Ni concentration of 25 mglL and a peat dose 10 gIL, and at pH of 5.5, Ni concentration of

25 mg/L and at a peat dose of 40 gIL. For Co, the lowest recorded equilibration time was

1 h at all peat doses though this short equilibration time occurred more frequently at

higher peat doses and lower pHs. An equilibrium time of IO h was observed at a pH of



10, Co concentration of 125 mg/L and a peat dose of 40 giL. Table 5.6 also showed that

the uptake of Co was more rapid compared to the sorption of Ni on the saprist NL peat at

the experimental conditions selected which might not be unconnected with the overall

uptake mechanism of the metals.

The equilibrium times could be related to the mechanisms of metal uptake for Ni

uptake, which seems to be mainly through ion exchange while Co sorption was through

complexation. Bunzl (1974) reported that the kinetics of ion exchange is slower in nature,

and with Ni uptake being slower as shown by this study, the uptake is suggested to be

through ion exchange. The attainment of equilibrium as shown in Table 5.6 was

dependent on pH, peat dose and metal concentration.

The equilibrium time obtained for Ni and Co on the NL saprist peat is longer than

the time reported in most studies in which horticuiturallfibrist peat was the adsorbent.

Viraraghavan and Dronamraju (1993) reported 2 hours as the equilibrium time for Cu, Ni

and Zn on dried (103°C) Saskatchewan horticultural peat. Ho et aI., (1995) reported about

1.5 hours as the equilibration time for an Irish peat used in the adsorption of Ni. AI-Faqih

et aI., (2008) reported an initial rapid uptake of 100 minutes within which most of the Cd,

Cu, Ni and Zn adsorption took place in a single system study. In this study, on saprist NL

peat, the uptake time was found to be longer for different values of pH, peat dose and

metal concentration.

The relative longer equilibrium time observed could also be attributed to the small

particle size of the peat that enhanced the external surface area and increased the binding

sites. Although with this peat type, larger surface area per unit mass was available, the



smaller pore size between the particles, and the resultant compression between the

overlapped and collapsed cell walls of the peat material could have reduced the porosity

which reduced the uptake at shorter contact times (see the micrographs of the saprist peat

on page 51). Similarly, because the saprist peat particles were small and air dried,

swelling of the pores was reduced and this could have affected the hold up and uptake of

the metal ions at shorter contact times, a view corroborated by Gosset et aI., (1986) that

the level of drying could lower the degree of swelling and the metal binding kinetics.

Variations in the equilibrium times for both Co and Ni uptake could also be due to

the modes of uptake mechanism of the ions from the solution to the surface of the saprist

peat and these modes could have been affected by solution pH, metal concentration and

the peat dose. The uptake mechanism could have been physical adsorption when

attainment of equilibrium was fast - I h or chemical adsorption when attainment of

equilibrium was slow> 1.5 h.

5.4.2 Pseudo-second Order Kinetics of Ni and Co Uptake

The adsorption data for Ni and Co uptake by the saprist NL peat were fitted to the

pseudo-second order kinetic equation developed by Ho et aI., (1996) (equation 2.5, page

20). Kinetics data obtained at peat doses of 2 and 10 giL for Co concentrations of 125 and

200 mglL at pH of 3 and 5.5 were inconsistent as the values of the uptake by saprist NL

peat gave large fluctuations; hence they were omitted in the subsequent analysis. The

pseudo-second order kinetic plots are shown in Figures 5.3a to 5.6d for Ni sorption and,

from Figures 5.7a to 5.lOd for Co sorption.

92



The kinetics parameters from the pseudo-second order plots are summarized in

Table 5.7 for Ni sorption at Ni concentrations of 25,50, 125 and 200 mgIL for pH of 3,

5.5, 8 and 10 with peat doses of 2, 10, 21 and 40 gIL.

These experimental conditions were selected based on some of the earlier studies

of metal adsorption on fibrist peat (Gosset et aI., 1986; Ho et aI., 1995; Ho et a\., 1999)

and on the results of the response surface method using the Box-Behnken design carried

out in this study.
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The kinetics of a reaction controls the reaction rates which in turn determines the

holding or residence time, and governs the efficiency of the overall reaction. The kinetics

of the Ni uptake was fitted to the pseudo-second order kinetic equation and since this

equation was based on chemisorption as the adsorption mechanism, Ni uptake could be

mainly due to chemical bonding via complexation and/or ion exchange with the active

sites on the saprist peat. This observation is consistent with the equilibrium times

obtained, viz; (i) in cases where attainment of equilibrium by Ni solutions were generally

> 1.5 h - this could have been due to ion exchange in which exchangeable cations and

protons on the peat were involved at pHs> 5.5; and (ii) in cases where complexation with

ligands were involved at pH of 3

The kinetics data obtained for Ni sorption at the selected conditions satisfied the

pseudo-second order kinetics equation in most of the cases, but did not satisfy the

equation at the smaller peat dose of 2 giL; this could have been aided by intra-particle

diffusion of the Ni ions. At larger peat dose, the data obtained suggested chemical

bonding either by ion exchange or complexation as the likely Ni uptake mechanism. The

equilibrium adsorption, qe in mglg, equilibrium rate constant, K1,ad in gmg'lh'l, and the

regression coefficient, r2
, at the kinetics conditions are summarized in Table 5,7 and were

used in providing the basis for uptake mechanisms.



Table 5.7: Estimated pseudo-second order kinetics parameters for Ni2
+ adsorption at the selected experimental conditions

pH I Peat Cone. 25 mg/L Cone. 50 mg/L Cone. 125mg/L Cone. 200 mgIL
dose (gIL) qe Kl.ad R

2
qe Kl.ad R

2
qe K 1•ad R2

qe Kl.ad R
2

2 5.16 0.14 0.913 1.47 0.48 0.972

10 1.86 1.43 0.999 3.29 1.43 0.997 6.21 0.58 0.997 9.76 0.49 0.999

21 1.07 26.47 1 2.01 12.71 1 3.99 5.62 I 6.05 0.7 0.999

40 0.59 -502.3 1 1.16 67.88 I 2.62 15.64 1 3.89 12.25 I

I
2 4.98 3.05 1 7.26 1.79 0.999 10.59 1.17 0.999 9.24 0.08 0.983

5.51 10 2.24 -34.31 1 30.86 0.18 0.999 82.64 0.11 0.999 10.27 0.54 0.998

21 1.13 980.8 I 2.16 -143 1 384.6 0.01 0.999 6.75 1.42 1.0

40 0.6 -632.9 I 1.2 59.02 1 1.11 0.004 0.999 4.11 45.65 1

~ 4.31 6.41 1 6.49 0.65 1 10.02 1 1 8.14 0.07 0.98

10 1.97 9.99 1 3.27 2.88 1 6.67 0.68 1 10.82 0.17 0.997

21 1.07 46.86 1 2.05 16.23 1 3.9 2.3 1 6.2 0.003 1

40 0.58 321.931 1.13 39.16 I 2.7 4.47 I 3.81 28.73 1

I
2 2.67 -19.29 1 2.42 1.8 0.998 5.8 0.59 0.999 8.14 0.07 1

101 10 1.11 59.3 1 1.28 9.28 1 2.88 5.51 1 10.82 0.17 0.999

21 0.53 241.29 1 0.66 23.97 1 1.7 7.49 1 1.99 11.27 1

40 0.29 194.98 1 0.39 96.39 1 1.22 27.1 1 1.32 26.47 1



As indicated in Table 5.7, the amount of Ni sorbed at equilibrium given by qe

(mg/g) was highest with a value of 384.6 at pH of 5.5 at peat dose 21 giL for Ni

concentration of 125 mglL with the corresponding equilibrium rate constant (gmg·1h· l
) of

the pseudo-second order, being the lowest at 0.01. The regression coefficient was nearly

unity for almost all the combinations investigated.

At pH of 3 and at constant peat dose, the adsorbed Ni at equilibrium qe, in mg/g,

increased as concentration was increased while, the equilibrium rate constant, K1.ad in

gmg-1h- l
, decreased except at the peat dose of 40 gIL where a negative value was

computed. Increased concentration favoured more Ni sorption at all peat doses employed

and complexation of Ni ions with the active sites could be the uptake mechanism. Chen et

aI., (1990) reported that where applicable, the higher the initial concentration, the stronger

the occurrence of complexation reactions.

At pH of 5.5, at constant peat dose, adsorbed Ni at equilibrium increased as

concentration was increased up to a Ni concentration of 125 mg/L and significantly

decreased at 200 mg/L Ni concentration. Based on earlier discussions, a switch in Ni

uptake mechanism could have been encountered with complexation reaction being the

dominant route up to 125 mg/L Ni concentration and a change to ion exchange at 200

mg/L except around the peat dose of 40 gIL where ion exchange could have dominated

from a Ni concentration of 125 mg/L. This observation was justified by the equilibrium

rate constant, K1,ad values, which did not show a consistent pattern as Ni concentration

was increased compared with the K1,ad at pH of 3. The attainment of equilibrium was



reaction driven and if more than two reactions were involved in the reactions, the values

of the rate constants could have been significantly affected by the dominant reaction.

At pH of 8, Ni adsorbed at equilibrium qe, increased as concentration was

increased at constant peat dose but no consistent pattern was manifested in the values of

the equilibrium rate constant. At pH of 10, Ni adsorbed at equilibrium increased as

concentration was increased at constant peat dose with decreased equilibrium rate

constants. The values were however generally larger than the corresponding equilibrium

rate constants at pH of 3. Therefore the Ni uptake mechanism at pH of 8 and 10 were

suggested to be mainly chemisorption via ion exchange.

The release of protons, most likely in the carboxylic group in peat, was reported to

be accompanied by a decrease in pH (Ho et a!., 1995). Also, complexation reactions have

been reported to be less dependent on solution pH (Chen et a!., 1990). An attempt was

therefore made using the solution pHs to identify the mechanism of Ni uptake at various

conditions. This was accomplished by monitoring the pH of the filtrates for each

concentration at the corresponding peat dose and pH prior to the determination of the Ni

contents. The average pHs over 12 h where significant changes were noticed are shown in

Table 5.8 (no significant changes were noticed at pH 3 and so not reported).

Table 5.8: Average Ni2
+ filtrate pHs at various peat doses

Conc. Av. of pH at peat dose (gIL) Av. of pH at peat dose (gIL) Av. of pH at peat dose (gIL)
(mg/L) 2 10 21 40 2 10 21 40 2 10 21 40

25 5.3 I 5.3 I 5.3 I 5.2 7.7 I 7.6 I 7.6 I 7.5 9.6 I 9.6 I 9.6 I 9.5
50 5.3 I 5.2 I 5.1 I 5.0 7.7 I 7.6 I 7.6 I 7.3 9.6 I 9.5 I 9.5 I 9.4
125 5.2 I 5.2 I 5.1 I 4.9 7.6 I 7.5 I 7.5 I 7.3 9.4 I 9.4 I 9.3 I 9.3
200 5.2 I 5.1 I 5.0 I 4.9 7.6 I 7.5 I 7.4 I 7.1 9.4 I 9.3 I 9.3 I 9.3

where pH ,pH and pH are the average pHs at tmtlal pHs of 5.5, 8 and 10, respectively



From Table 5.8, it was evident that slightly lower pHs were obtained as the Ni

concentration increased and also as the peat dose was increased. This trend could be

attributed to the level of ion exchange that took place at these experimental conditions

and because no significant changes were noticed at pH of 3, Ni uptake on the saprist NL

peat could have been via complexation at pH of 3 and through a combination of ion

exchange and complexation at pH 5.5, 8 and 10.

The pseudo-second order plots of Co sorption at various peat doses, pHs and

concentrations are shown in Figures 5.7a to 5.lOd and the computed pseudo-second order

kinetics parameters are summarized in Table 5.9.
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Figures 5.7a to 5.7d showed that the Co uptake kinetics satisfied the p eudo­

second order kinetic equation at all the experimental conditions with regression

coefficient values, r, nearly unity except at pH of 3, for Co concentration of 25 mglL and

at peat dose of 2 giL. No consistent Co uptake data was obtained at peat dose of 2 and 10

giL at a Co concentration of 200 mg/L, and at peat dose of 2 giL for Co concentration of

125 mglL. Peat dose of 2 giL and Co concentration of 125 mglL gave higher Co sorption

kinetics data than peat dose of 10 and 21 giL. Since the pseudo-second order kinetic

equation was based on the assumption that uptake is through chemisorption (Ho et aI.,

1995) which can either be ion exchange and/or complexation, then, Co sorption at the

above experimental conditions from the data obtained, seems to suggest chemisorption as

the main uptake mechanism.

At pH of 5.5 graphically illustrated by Figures 5.8a to 5.8d, Co uptake kinetics

data showed a consistent pattern for all peat doses and Co concentrations except at Co

concentration of 200 mg/L where no consistent kinetics data were obtained for peat doses

of 2 and 10 giL. At pH 8 shown by Figures 5.9a to 5.9d, no abnormal Co sorption pattern

was obtained. Figures 5.IOa to 5.lOd showed that Co sorption kinetics was nearly the

same for all concentrations and peat doses. Also at pH of la, Co uptake showed nearly

the same behaviour for all peat doses and concentrations used.

The kinetic constants from these plots are shown in Table 5.9.



Table 5.8: Estimated pseudo-second order kinetics parameters for Co2
+ adsorption at the selected experimental conditions

pH I Peat Cone. 25 mgIL Cone. 50 mgIL Conc.125mg/L Cone. 200 mg/L

dose (giL) qe K1,ad R2 qe K1,ad R2 qe K1,ad R2 qe K1,ad R2

2 1.02 -1.55 0.872 1.37 -1.93 0.969

10 1.64 -14.24 0.998 2.73 -3.71 0.999 5.28 -2.15 1
I I

21 0.99 203.7 1 ·1.9 -86.69 1 4.09 -4.42 1 6.15 -14.6911

40 0.55 -223.8 1 1.07 -16.56 1 2.52 -54.18 1 13.76 133.72 11

I
2 4.24 7.33 0.999 5.48 4.33 0.999 9.34 1.43 1

5.51 10 2.1 225.82 1 3.63 252.82 1 6.3 4.5 0.998

21 1.09 132.11 1 2.07 63.05 1 4.45 13.31 1 6.22 14.36 T1

40 0.58 -98.83 1 1.14 80.14 1 2.63 26.3 I 3.77 -41.3411

~ 4.71 -0.09 1 6.87 2.08 1 12.2 1.29 1 33.44 1.12

10 2.18 10.22 1 4.18 8.8 1 8.31 2.3 1 14.04 1.37

21 1.11 29.63 1 2.23 34.65 1 4.8 4.57 1 7.17 4.42

40 0.59 313.831 1.2 162.85 1 2.9 10.61 1 4.5 3.75

I
2 0.67 121.77 0.981 0.68 2.08 0.975 0.58 2.14 0.981 0.86 1.36 0.991

101 10 0.76 5.09 0.996 0.69 3.61 0.997 0.86 0.41 0.925 0.96 1.06 0.995

21 0.83 3.03 0.999 0.7 7.25 0.999 0.69 3.13 0.998 0.8 2.96 0.997

40 0.48 49.22 1 0.77 8.48 1 0.68 5.36 0.999 0.97 2.96 0.998



From Table 5.9, at pH of 3, and at constant peat dose, the Co adsorbed at

equilibrium, q. (mg/g), increased as the Co concentration was increased. At this pH,

negative values of the equilibrium rate constants, K (gmg-1h- l
) were also computed. The

negative values of equilibrium rate constants could be related to the sorption mechanism

as suggested by the time taken to attain equilibrium. With Co, :s 1.5 h was the time

needed to attain equilibrium at most reaction conditions (refer Table 5.6, page 86), and

where negative values of equilibrium rate constant were reported, the times to attain

equilibrium were generally low compared to other times with positive equilibrium rate

constants. The negative value of K also implies that the concentration of the peat and Co

formed during the reaction was decreasing or being consumed as the reaction proceeded.

The product formed when Co reacted with the saprist peat could be migrating out of the

peat matrix leading to its concentration being reduced at the corresponding pH.

Increase in the initial concentration has been reported to increase the strength of

the complexation reaction (Chen et aI., 1990). At pH 3 the maximum Co sorbed at

equilibrium increased as the initial concentration was increased. Co uptake at pH of 3 is

therefore suggested to be through complexation of Co on the active sites of the saprist NL

peat.

At pH 5.5, the Co adsorbed at equilibrium, q. (mg/g) also increased with increased

Co concentration at constant peat dose. The q. at pH of 5.5 for Co concentration of 25 and

50 mg/L were lower than that of Ni at the same pH and concentration; and at other

concentrations no consistent pattern was obtained which was the trend for other pHs and



conditions. At pH of 5.5, the equilibrium rate constant values were positive except at

concentrations of 25 and 200 mgIL for peat dose of 40 giL.

At pH 8, qe values increased as concentration was increased at constant peat dose.

The equilibrium rate constant values at this pH for all peat doses were positive. For

constant peat dose and concentration, the qe increased as pH was increased to 8.

Complexation is therefore suggested as the dominant Co uptake mechanism at the pH of

8. The qe values for Ni uptake did not show this consistent pattern as pH was increased to

8 at constant metal concentration and peat dose. The maximum Co sorbed at equilibrium

qe, was 33.44 mglg at pH of 8 with the corresponding pseudo-second order rate constant

being 1.12 gmg· 1h· 1
•

At pH 10, qe values did not show a consistent pattern when concentration was

increased and in addition, the values obtained where generally smaller than those reported

for pHs of 3, 5.5 and 8 at constant metal concentration and peat dose. The irregular

pattern of the values of qe was similar to the pattern obtained with Ni uptake at pH 10.

Therefore Co uptake at pH of 10 couid be mainly due to ion exchange.

As previously stated for Ni, ion exchange via the release of proton was the

dominant metal uptake mechanism by the saprist NL peat especially at pHs> 3. For the

sorption of Co, when the pHs of the Co filtrates for each concentration at the

corresponding peat dose were monitored during the experiment, no significant change in

pHs was obtained except at pH of 10. Table 5.10 is a summary of the pH values obtained

during the experiment. A decrease in pH values would have been obtained if ion



exchange was the dominant uptake mechanism at all the solution pHs, but this was not 0;

thus it seems Co sorption was predominantly by complexation.

Table 5.10: Average C02
+ filtrate pHs at various peat doses at initial pH of 10

Average pH at the peat doses (giL)

Cone. (mg/L) 10 21 40

25 9.7 9.6 9.5 9.5

50 9.7 9.5 9.4 9.4

125 9.6 9.5 9.4 9.4

200 9.6 9.4 9.4 9.3

From Table 5.10, a general decrease in pH was observed as the Co concentration

and peat dose were increased. This was similar to the trend obtained for Ni concentrations

and suggested similar reaction mechanisms at the pH of 10 which would be mainly ion

exchange. In this case, two protons (W) were exchanged for everyone C02
+ sorbed and

the released protons migrated into the solution decreasing the pH.

5.5 Summary on Kinetics of Ni or Co Adsorption on Saprist NL Peat

The Idnetics of Ni or Co sorption in saprist NL peat was discussed in this chapter.

The data showed that different uptake mechanisms were involved in the sorption of these

metals. From the chemical properties of Ni and Co, Co should be adsorbed more

compared to Ni because, large ionic radius of Co favoured more adsorption as covalent



bonds are easily fonned. Similarly lower heat of hydration of Co would favour easy bond

fonnation. Co had a larger atomic radius and lower heat of hydration compared to Ni.

This could have been the reason for the rapid adsorption of Co as shown by the

equilibrium times in Table 5.6. For most of the experimental conditions investigated in

this study, the adsorption of Ni was generally larger than that of Co; this is most likely

due to the combination of ion exchange and complexation reactions in the Ni adsorption

compared to complexation only in Co adsorption.

The uptake of these two metals therefore could mainly be a function of their

chemistry. Co and Ni are members of the borderline metals (others are Fe2+ and Cu2+) that

are known to react with ligands such as ROH, RC02H, NR3 (Jones, 2001), where R is an

alkyl group such as methyl - CH3, ethyl -C2HS, etc. The reactivities of these metals with

ligands are not easily quantifiable in any sequence because they are influenced by the

ligand environment such as its size and position.

The adsorption of the two metals in saprist NL peat satisfied the pseudo-second

order kinetics equation which was based on chemisorption as the dominant mechanism.

Data obtained showed that a combination of ion exchange and complexation could have

accounted for the uptake of Ni at pH of 3 and 5.5. As the pH was increased, the reaction

became predominantly ion exchange. On the other hand, Co sorption was through

complexation reaction at pHs of 3, 5.5 and 8, and the uptake mechanism became more of

ion exchange at pH of 10.



Ni or Co sorption was a function of concentration, peat dose and solution pH.

According to Poots et aI., (1978), when the adsorbed metal quantity is plotted against the

square root of the time, the graph should be linear through the origin if mass transfer only

controls the adsorption kinetics. The data obtained for Ni and Co uptake failed this check

(see appendix E, plots El to E32), and this showed that mass transfer process alone did

not control the overall sorption of Ni or Co on the saprist NL peat but also chemical

reactions that involved the exchange of ions and/or the sharing of electrons.



CHAPTER SIX

BATCH ADSORPTION AND DESORPTION

6.1 Chapter Overview

Batch adsorption isotherms are very useful in the evaluation of adsorbent capacity

as they provide information on the interaction between the adsorbent and adsorbate,

helping in process optimization and or design. This chapter reports only the adsorption

isotherm models that were fitted by the experimental data. Competitive sorption using Cd,

Pb and Zn was also carried out and finally, desorption results in % of the metal sorbed

during the batch adsorption experimental are also reported.

6.2 Batch Tests - Adsorption Isotherms

The average concentrations of the triplicate batch adsorption tests conducted over

24 hours at five Ni2
+ or Co2

+ concentrations (200, 125,50,25 and 12.5 mgIL) at various

peat doses and solution pHs were used to calculate the Ni or Co sorbed. This approach

was similar to that of Ho et aI., (1995). The average raw data of the effluents and

corresponding metal adsorbed are presented in Appendix F. A maximum metal

concentration of 200 mg/L was selected because it was the highest of the concentrations

during the kinetics study and is mostly used in related studies (Ho et a!., 1995; Ho and

McKay, 1999). The unit of mgIL (equivalent to part per million, ppm when solution is



dilute with a density of 1.0 glcm3
) is the normally reported unit in the industry and has

been maintained in this study. The minimum peat dose of 4 gIL was chosen because the

kinetics study showed that the peat dose of 2 gIL was unstable at the Ni concentrations of

25 and 50 mglL at pH of 3 and at Co concentrations of 125 and 200 mglL at pHs of 3 and

5.5 and gave large fluctuations of values. The fitting of the batch tests results to some

commonly used isotherms such as the Elovich model, Fractional Power model, and the

Dubinin-Radushkevich isotherm, was attempted but the data only fit the Langmuir and

Freundlich isotherms.

6.2.1 Langmuir Isotherm

The Langmuir isotherm relates the adsorptive capacity of the adsorbent to the

coverage of the active sites given by the Langmuir monolayer saturation capacity and

also, the level of desorption at specified conditions. The Langmuir isotherm plots for the

five Ni concentrations (200, 125,50,25 and 12.5 mg/L) at pHs of 3,5.5,8 and 10 and at

a temperature of 22°C with varied peat doses are shown in Figures 6.la to 6.ld. The

summary of the Langmuir parameters from the Langmuir isotherm model (equation 2.9,

page 23) is presented in Table 6.1 for Ni adsorption by the saprist NL peat.
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The Langmuir model gave good fits for the batch experiments carried out at

different peat doses and pHs as shown by the regression coefficient, r2
, which were near

unity. The Langmuir constants given by b, in Umg and the Langmuir monolayer

saturation capacity qm, in mg/g at the various conditions for Ni uptake on the saprist NL

peat are summarized in Table 6. I.

Table 6.1: Langmuir parameters for Ni2
+ adsorption over the range of Ni2

+ concentrations

at specified peat doses and pHs

Peat dose pH 3

(gIL) b* 10-3 qm

10

21

40

20.58

0.999

From Table 6.1,' the Langmuir monolayer saturation capacity, qm generally

decreased with increasing pH at constant peat dose. At the pH of 3, qm increased as the

peat dose was increased. For other pHs, no consistent pattern was observed. This might

be connected with the uptake mechanism which had been suggested (Chapter 5) to be

predominantly a complexation reaction at pH of 3 and a combination of ion exchange and

complexation as pH was increased from 5.5 to 10. At pH 3, larger values of qm was



obtained compared to other pHs. The maximum qrn was obtained at peat dose of 40 giL at

pH3.

At pH of 10, negative values of the Langmuir monolayer saturation capacity, qrn,

were obtained for all peat doses except at 40 gIL. Although, a negative value of qrn was

not accounted for in the development of the equation, it could possibly imply that Ni

uptake at pH 10, was by electronic exchange since the solution could have been saturated

with electrons released from hydrolysable functional groups in the celluloses and lignins

at this pH. Coupal and Lalancette (1976), have reported that at higher pHs (>8.5), peat is

not stable in terms of its physical strength. This physical instability could have

contributed to the negative values of the qrn at lower peat doses until 40 giL

The ratios of desorption to adsorption given by the Langmuir constant, b in Umg,

were generally low for all the experimental conditions which showed that desorption of

Ni from the saprist NL peat during the experiments was not pronounced. This could be

due to the ability of the peat to hold firmly the Ni in solution when bonded to the matrix

of the peat.

The Langmuir isotherms for the Co2
+ concentrations range (200, 125,50,25 and

12.5 mglL) at 22°C for different peat doses and pHs are shown in Figures 6.2a to 6.2d and

the Langmuir constants are summarized in Table 6.2.
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The adsorption data for the Co2
+ concentrations range gave good fits for the

Langmuir isotherm at pHs of 3, 5.5, and 8 but poor fits were observed at pH of 10 with

the regression coefficients as low as 0.1227 at a peat dose 10 giL as seen in Figures 6.2a

to 6.2d.The Langmuir constants, b in Umg and Langmuir monolayer saturated capacities,

qm in mglg at the indicated peat doses are summarized in Table 6.2

Table 6.2: Langmuir parameters for Co2
+ adsorption over the range of Co2

+

concentrations at specified peat doses and pHs

Peat dose pH 3 pH 5.5

(giL) b*IO·3 qm r2 b*IO·3 qm

pH8

10

21

40

60.980.982

95.200.890.520

From Table 6.2, the Langmuir monolayer saturation capacity, qm in mglg,

increased to maximum values as the peat dose was increased from 4 to 10 giL for pHs of

3,5.5 and 8. A general decrease was observed in qm for peat doses from 10 to 40 gIL for

all the pHs studied. The peat dose of 10 giL at pHs of 3,5.5 and 8 gave the highest qm.

This could imply that the coverage of the active sites on the peat by the Co ions through

the dominant reaction mechanism was optimum at this peat dose.

The lowest qm was observed at a peat dose of 10 giL at pH 10. Low values of the

qm at pH 10 also corresponded to larger Co desorption to adsorption ratios given by b in



L/mg compared to the values observed at other pHs. In fact, the largest qm, 60.98 mglg

observed at pH of 5.5 at peat dose of 10 giL had the lowest desorption to adsorption ratio.

This could imply that the stronger the mechanism of Co adsorption, the less likely for

desorption to occur. Co could therefore be forming more stable complexes with the

ligands in the peat matrix and these complexes might be less reactive at the pH of the

environment.

As the pH was increased, qm decreased except at pH 5.5 where increases in qm

were observed from pH 3 at peat doses of 10 and 21 gIL. The relative consistent pattern

of the qm values for Co sorption on the saprist NL peat compared to that of Ni could be

related to one, rather than multiple uptake mechanisms. Uptake mechanisms were thus,

suggested to be a function of the metal chemistry as well as the metal concentration, peat

dose and solution pH.

The qm for Ni was larger than that of Co at pH of 3 for all peat doses. At pHs of

5.5 and 8, Co had a larger qm at peat dose of 10 giL; at pH of 10, Co had a larger qm

compared to Ni. Large values of qm is an indication of the level of coverage of the active

sites by the cation which was governed by the reaction path (adsorption mechanisms).

The chemical properties of Co (Table 5.3) favoured the larger values of qm

observed at pH of 10 compared to Ni. With ion exchange suggested as the predominant

adsorption mechanism at this pH, the slightly larger ionic radius and lower hydration

energy of Co compare to Ni would enhance easy exchange of electrons with its d-orbital

with the available ligands leading to slightly more uptake. On the other hand where larger

Ni uptakes compared to Co were observed, a combination of ion exchange and



complexation could have influenced and accounted for the values of the qm' The

equilibrium adsorption from the Langmuir isotherm for Ni and Co was influenced by the

peat dose and the solution pH.

6.2.2 Freundlich Isotherm

The Freundlich isotherm relates the adsorptive capacity of the adsorbent to the

concentration of the contaminant through the constant known as the Freundlich isotherm

constant. Ni and Co adsorption data on the NL saprist peat were fitted to the Freundlich

isotherm for all the peat doses and pHs used at the five metals' concentrations of 200,

125,50,25 and 12.5 mglL. The plots obtained are presented in Figures 6.3a to 6.3d for Ni

uptake and Figures 6.4a to 6.4d for Co sorption on the saprist NL peat.
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Fig.6.3b: Freundlich adsorption isotherms for N?+ at pH 5.5
and specified peat doses.
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+ at pH 10

and specified peat doses.



The Ni batch adsorption data gave good fits (regression coefficient, r2
, being

closer to unity) with the Freundlich adsorption model with data obtained at pH of 3 giving

better fits than other pHs investigated as shown in Figures 6.3a to 6.3d. The Freundlich

parameters for Ni adsorption at the experimental conditions are summarized in Table 6.3

with the Freundlich isotherm constant K expressed in mg(I-l/n) kg'1 Ll/n and the Freundlich

exponent, lin being dimensionless.

Table 6.3: Freundlich parameters for Ni2
+ adsorption over the range of Ni2

+

concentrations at specified peat doses and pHs

Peat
dose

(giL)

10

21

40

pH3

KxlO-3 lin

0.9681.000

pH5.5

KxlO-3 lin

pH8

KxlO-3 1/n

0.925

pH 10

From Table 6.3, the Freundlich isotherm constant K, a measure of the adsorbent

capacity, increased as the pH increased from 3 to 8 for the Ni concentration except at pH

of 5.5 for peat dose 40 gIL where it decreased and at peat dose 21 gIL where the

maximum K value was observed.

At constant pH, increased peat dose led to decrease in K as observed at pH 3

except for peat dose of 40 gIL, and pHs of 8 and 10; but at pH of 5.5, a maximum K of



1.183 mg(I-lfn) kg-I L lfn at peat dose 21 giL was observed followed by a large decrease at

peat dose of 40 giL. This trend could have been influenced by the natural pH of the

saprist NL peat which was 4.2 (Table 3.1, page 43) and also, by the uptake mechanism.

Uptake is generally known to be higher at and around the natural pH of the adsorbent

(Schwarzenbach et aI., 2003) while complexation is less pH dependent compared with ion

exchange. Thus, as complexation became less dominant at pH > 3, less Ni was sorbed.

The Freundlich exponent (lin) increased as peat dose was increased. This implied

that the bonds sites at larger peat doses were more than sites at lower peat doses. Also the

strength of the bond could be stronger and Ni held more tightly than at lower peat doses.

This fact was corroborated by the Langmuir constant, b, which measures desorption to

adsorption ratios, which have been observed to be generally lower at larger peat doses

(Table 6. I). The regression coefficients were lower in values compared to those of the

Langmuir isotherms especially at a peat dose of 4 gIL. Peat being a biomass could react

with metals well beyond the 24 h used as bench-mark during this study. This could be one

reason why the Langmuir and Freundlich isotherms gave good fits for the same data with

the Langmuir isotherm providing better fits based on the value of the computed

regression coefficients over the pH, concentration and peat dose ranges.

The Freundlich isotherms, for Co adsorption over the concentrations range, with

varied peat doses and pHs, are shown from Figures 6.4a to 6.4d.





The Co adsorption data gave good fits for the Freundlich isothenn at pH of 3,5.5

and 8 but not at the pH of 10 where regression coefficients were low especially at peat

doses of 10 and 21 gIL as seen in Figures 6.4a to 6.4d. The Freundlich parameters for the

Co adsorption at the experimental conditions are summarized in Table 6.4 with the

Freundlich isothenn constant K expressed in mg(l-Ifn) kg-I L lfn and the Freundlich

exponent, lin being dimensionless.

Table 6.4: Freundlich parameters for Co2
+ adsorption over the range of Co2

+

concentrations at specified peat doses and pHs

Peat
dose

(giL)

10

21

40

pH3 pH 5.5

0.999

pH8

KxlO-3 lIn

0.8360.970

59.04

pH 10

Kx10-3 lin

From Table 6.4, the Freundlich isothenn constant K decreased as the peat dose

was increased from 4 to 40 giL at pH of 3. The values of K increased at peat doses of 10

and 21 giL between pHs of 5.5 and 10. The Freundlich isothenn constant at pH of 3

showed a consistent pattern compared to other pHs as the peat dose was increased. At

constant peat dose, the Freundlich isothenn constant had lower values at pH of 5.5

compared to other pHs of 8 and 10 where it was much higher. The maximum K value of



0.3223 mg(l-I1n) kg-I Llfn for Co over the concentrations range was however, obtained at

peat dose 4 gIL and at pH 3.

At constant peat doses, the influence of pH on the K values did not follow a

consistent pattern like the adsorption of Ni (refer Table 6.3). At a lower peat dose of 4

gIL, the largest K was reported at pH 3. However at peat doses of 10 and 21 gIL, larger K

values were observed at pH 10, while at peat dose of 40 gIL, the largest K was observed

at pH 8. The inconsistent pattern could have been as a result of the selective reaction

between the Co and the different functional groups present in the peat which could have

led to the formation of different Co-peat complexes at different peat doses and pHs.

Kalymkova et aI., (2008), suggested that at higher peat decomposition, more fulvic acid

(the fraction of humic matter soluble at all pH) compared to humic acid (humic matter

that can be precipitated at pH I) is present and, the hydroxyl functional group is more

reactive compared to the carboxylic functional group at certain pH levels. The reactivity

of the hydroxyl group and the presence of amine and or amide as determined from the

functional groups identification in this study could have influenced the Co-peat

complexes formation. The influence of these functional groups might not be pronounced

in the adsorption of Ni, hence more consistent adsorption patterns were observed.

The Freundlich exponent for the Co adsorption generally increased as peat dose

was increased except at pH 10 where the pattern was inconsistent. This trend corroborated

that of the Langmuir isotherm model for the Co adsorption where an inconsistent

Langmuir constant, being a measure of desorption to adsorption was observed at pH 10.



The increase in the Freundlich exponent suggested that the bond strength between the

available active sites and Co ions increased as peat dose was increased.

From the 24 h, Ni and Co adsorption test results, the percents of initial Ni and Co

adsorbed at the various peat doses and pHs were obtained and summarized as shown in

Table 6.5.

Table 6.5: Percent of initial concentration of Ni2
+ and Co2

+ adsorbed at various conditions
Cone. Percent of initial metal concentration adsorbed

pH (mgIL) Nil COl Ni2 Co2 Ni3 Co3 Ni4 Co4

200 36.5 27.5 66.5 52.7 83.6 59.8 90.8 75.5

125 56.3 43.9 76.3 69.0 87.0 81.5 94.1 88.8

3 50 80.4 51.0 91.4 77.8 96.0 86.6 98.0 93.0

25 95.6 86.0 98.0 93.2 99.2 95.6 99.6 97.2

12.5 92.8 80.0 96.8 90.4 98.4 96.0 99.2 98.4

200 15.3 15.0 52.6 46.0 80.4 74.5 88.0 80.8

125 60.0 24.8 67.8 58.4 85.2 67.2 91.0 76.6

5.5 50 68.0 23.6 75.0 57.6 76.0 79.2 88.0 86.4

25 78.8 21.2 92.0 8\.2 97.2 9 \.6 98.4 94.0

12.5 69.6 26.4 90.4 65.6 96 90.4 97.6 94.4

200 14.1 11.8 36.8 30.4 70.1 60.5 74.6 64.3

125 42.5 19.6 49.4 44.8 78.4 66.0 80.8 69.1

8 50 5\.6 20.4 60 49.5 83.5 70.9 86.3 73.5

25 63.4 20.9 70.2 62.1 88.2 84.8 90.2 81.4

12.5 68.9 21.3 80.3 63.8 90.0 86.2 93.1 86.8

200 13.2 1.7 17.1 4.5 21.1 7.3 26.6 9.0

125 18.0 \.8 23.0 3.44 28.8 11.52 39.0 21.12

10 50 32.0 5.8 38.0 13 48.0 39.6 56.0 61.6

25 43.2 10.4 42.8 35.2 43.2 73.6 43.6 79.2

12.5 I\.2 4.8 12.0 35.2 17.6 72.0 2\.6 72.8

Superscnpts 1,2,3 and 4 are the peat doses at 4, 10,21 and 40 gIL respectively.



From Table 6.5, the percent of Ni or Co sorbed generally decreased as metal

concentration was increased at a constant pH and peat dose although this trend was not

usually observed between the two lowest metal concentrations. This may have been

because of the interaction between the experimental factors (metal concentration, solution

pH and peat dose) which could have been pronounced at these two concentrations

compared to others.

At constant metal concentration and pH, the percent metal sorbed increased as the

peat dose increased. This trend was due to increase in active sites as the peat dose was

increased. For both metals, at a constant peat dose, percent metal sorbed generally

decreased as pH was increased with only two exceptions (at 25 mg/L Co at pH 8 and 25

mglL Ni at pH 10). The largest percent of metals sorbed was obtained at pH of 3 and at

peat dose of 40 giL. This could have also been possible since adsorbents are known to be

more effective around their natural pHs (Schwarzenbach et aI., 2003).

The percent of Ni sorbed was generally higher than that of Co with only few

exceptions. These exceptions were: i) at pH 5.5 for peat dose of 21 giL and for metals

concentration of 50 mglL; ii) at pH 10 for peat dose of 21 giL and at metals

concentrations of 25 and 12.5 mg/L; and iii) at pH 10 for peat dose of 40 gIL and for

metals concentrations of 50, 25 and 12.5 mg/L.

6.3 Separation Factor R* for Ni or Co Sorption

From the Langmuir isotherm, separation factors R*s, for Ni and Co were

calculated. The R* was used to check if the Ni and Co adsorptions under the experimental



conditions were favourable or not. This factor was calculated from equation 2.10 (see

page 24).

R·=_I­
l+bCo

(6.1)

where, b is the Langmuir constant (Umg), and Co is the initial metal concentration

(mgIL). Ni or Co adsorption is favourable if 0 < R* < I, unfavourable if R* > I,

irreversible if R* = 0 and is of linear isotherm if R* = I. Table 6.6 summarizes the

separation factors obtained at the experimental conditions for Ni and Co uptake on the

saprist NL peat using the b values from Tables 6.1 and 6.2 for Ni and Co respectively.

Table 6.6: Calculated separation factors for Ni and Co adsorption

Peat dose

(gIL)

Niseparationfactor,

R*atpH

5.5 10

Co separation factor,

R*atpH

5.5 10

0.437 0.373 0.255 0.358 0.316 0.576 0.463 0.427

10 0.705 0.571 0.402 0.343 0.600 0.816 0.684 0.022

21 0.364 0.686 0.755 0.382 0.667 0.684 0.603 0.050

40 0.551 0.828 0.761 0.395 0.786 0.753 0.635 0.123

From Table 6.6, it can be concluded that Ni or Co uptake by the saprist NL peat

was favourable since the experimental conditions gave 0 < R* < I. This peat is therefore a

good adsorbent for the treatment of wastewater containing Ni or Co over a wide pH range

and at 10 fold peat changes.



6.4 Desorption of Adsorbed Metals

The extent to which the sorbed Ni or Co concentrations were held by the saprist

NL peat was investigated with various concentrations of HCI. Desorption with water and

HCI have been used in proposing the adsorption mechanisms of some peats from China

(Zhipei et aI., 1984) and when significant desorption was obtained with HCI, the

adsorption mechanism was suggested to be ion exchange. The Ni or Co desorption results

were reported as a percentage of the amount of metal desorbed compared with that

initially adsorbed.

No significant Ni desorption was observed at pH 3 and no Co desorption at pHs of

3,5.5 and 8. Ni however, showed significant desorption at all other pHs> 3, while Co

was desorbed at pH 10 only (see Table 6.7). Maximum desorption of - 97% of the

initially sorbed Ni was reported at pH 10 for a peat dose of 40 giL (see Table 6.7). For

Co, - 84% desorption was obtained at pH 10 for a 40 giL peat dose (see Table 6.7). The

detailed desorption results are presented in Appendix G.

Table 6.7: Percent Ni2
+ and Co2

+ desorbed by the addition of HCI on the peat-metal
material

pH Ci HCI % of Co Cdesorbed at 40 giL % of Ni Cdesorbed at 40 giL peat
(mgIL) (M) peat dose dose

C\ C2 C3 C4 Cs C\ C2 C3 C4 Cs
12.5 0.1 38.5 143.8 I 49.6 I 54.2 158.5 60.1 163.8168.61 74 177.3
25 0.2 42.8 I 50.1 I 55.4 I 59.2 1 63 69.6175.5179.9183.7186.5

10 50 0.5 50.6 I 62.5 I 66.7 I 65.4 169.1 78.5 I 81 187.2190.5193.5
125 1 61.7167.21 71 172.5175.7 82.4 I 88.6 I 94.2 I 95.4 T96.9
200 2 67.1 170.9177.3180.1 183.5 87 I 92 196.1 196.8197.5

where Cl was the Initial metal concentration, and C" C2, C3, C4 and Cs were the

concentrations of 12.5, 25, 50, 125 and 200 mgIL.



With Ni, desorption was observed at all solution pHs except at pH 3. At low pH,

the reactive potential of functional groups in an adsorbent is unchanged but as the pH is

increased, neutralization is introduced changing the reactivity and affinity of the

functional groups with metals (Gupta et aI., 2009). At pH 3 for Ni and Co, and at pHs of

5.5 and 8 for Co, the likely uptake reaction was complexation. At other pH (5.5, 8 and 10

for Ni and 10 for Co) ion exchange was the dominant uptake mechanism. With ion

exchange, two carboxylic H+ ions were exchanged by one Ni2+ or Co2+ ion where

applicable. This exchange step was then reversed in the presence of the H+ (as HC\), and

the extent of reversal was indicated by the percent of the Ni2+or Co2+ obtained.

6.5 Competitive Sorption Test

Wastewaters are generally complex in nature containing many cations, anions and organic

compounds. The ability of the saprist NL peat to treat solutions with more than two

cations was tested with a simulated wastewater containing Cd, Co, Ni, Pb and Zn. Five

equal mass concentrations (200, 125,50,25 and 12.5 mglL) of Cd2+, Co2+, Ni2+, Pb2+ and

Zn2+ was investigated in a competitive batch sorption test at an adjusted pH of 5.5 and at

4, 10,21 and 40 gIL peat doses. The percent of the initial metal concentration sorbed is

presented in Table 6.8, and the raw results and the calculated metals sorbed are presented

in Tables G I and G2 of appendix G.



Table 6.8: Percent of initial concentration of metal cations adsorbed in competitive batch

adsorption test at pH 5.5

Peat dose Initial conc. % of initial metal conc. adsorbed

(giL) (mglL) Cd Co Ni Pb Zn

200 5.5 96.6 1.5

125 24 97.5

50 46 28 48 99 40

25 68 56 68 99.6 60

12.5 87.2 76.8 84 100 84

200 9.5 17 98.2 7.5

125 47 34 54 99.3 39

10 50 72 62 72 99.6 66

25 88 80 88 100 83.2

12.5 95.2 89.6 92.8 100 91.2

200 41.5 33 55.5 99.4 37.5

125 74 62 78 99.5 68

21 50 88 82 88 99.6 85.6

25 95.2 92 94 100 93.2

12.5 97.6 94.4 96.8 100 96

200 65.5 58 75.5 99.6 62.5

125 85 81 88 99.5 83.6

40 50 84 78 84 99.8 80.8

25 97.2 94.8 96.8 100 95.6

12.5 98.4 96.8 97.6 100 97.6

From Table 6.8, Pb was the most adsorbed with 100% reported at all the peat

doses at metal concentrations of 12.5 and 25 mglL. The sequence of adsorption was
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generally Pb2
+ > Ni2

+ > Cd2
+ > Zn2

+ > C02
+ at most peat doses with few exceptions

depending on the metal concentration. For Ni or Co, the percent uptake slightly increased

during competitive sorption when compared with a single ion system at peat doses greater

than 4 giL (Table 6.5, page 128).

With the competitive sorption at pH 5.5, it was evident that not all the active sites

in the saprist NL peat were covered by the single ion system and this showed that this

peat type is an efficient universal metal adsorbent. Competitive sorption data obtained at

the experimental conditions did not fit the Langmuir or Freundlich adsorption isotherms.

Competition could have enhanced the coverage of a large proportion of the active sites

present in the saprist NL peat. An active site is made up of low and high metal affinity

sites. The low affinity sites are occupied at high concentrations of metal while the high

affinity sites are occupied at low metal concentrations (Kalymkova et aI., 2008).

Competition between metals could have led to the occupation of both sites at constant

metal concentration as shown by the high metal uptake percentages.

6.6 Chapter Summary

The equilibrium sorption of Ni and Co by a saprist NL peat at different

experimental conditions was investigated in this chapter. The Freundlich and Langmuir

isotherms were used to assess the capacity of this peat and the trends observed were

related to the metal uptake mechanisms at the various experimental conditions.



Ni was generally adsorbed more than Co due to a likely combination of ion

exchange and complexation reactions especially at acidic pH (3, and 5.5). At pH of 8 and

10, ion exchange dominated the uptake mechanism resulting in lesser uptake of Ni when

compared with Ni sorbed at pHs of 3 and 5.5. Co on the other hand could have been

adsorbed via complexation only with the Co sorbed being less than that of Ni at most

experimental conditions.

For both metals, sorption was dependent on metal concentration, solution pH and

peat dose. Adsorbed metals at equilibrium increased with increased metal concentration.

Two active sites containing different ligands could have existed in the peat. Kalymkova et

aI., (2008) reported that high metal affinity sites on the peat were occupied at low metal

concentration while low metal affinity sites were occupied at high metal concentration.

Increased metal concentrations, however, led to the decrease in percent metal uptake, a

trend also reported Viraraghavan and Dronrnraju (1993).

Increased peat dose provided more active sites which would be occupied by the

cations. This was reflected in the percent of metals sorbed which increased with

increasing peat doses, consistent with the conclusion of Sharma and Foster (1993), viz; as

peat dose was increased, active sites become unsaturated leading to a higher removal

efficiency. Competitive sorption test also showed that more sites were occupied in the

presence of multiple cations.

Higher metal uptakes were reported at lower pHs which could have been due to

the natural pH of the saprist peat. With complexation being less dependent on pH



compared to ion exchange, results suggested that at pH 3, complexation was dominant

while ion exchange was dominant at pH 10.



CHAPTER SEVEN

FIXED BED LEACHING COLUMN RESULTS AND DISCUSSION

7.1 Chapter Overview

This chapter presents the results and discussion of the fixed bed leaching column

for the uptake of 100 mg/L of Ni and Co at pH 5.5. Bed depth service time (BDST)

equation was used to determine the adsorbent capacity and the adsorbent exhaustion rate.

The cumulative Ni or Co accumulation on the layers within the fixed bed column to

determine the active metal transfer zones, and the possible Ni or Co uptake mechanisms

are also presented.

7.2 Fixed Bed Ni and Co Column Results

The column experiments provided an estimate of the adsorption capacity during

continuous operations and the determination of the breakthrough points for Co and Ni

adsorption on the saprist NL peat. In soil sorption processes, the breakthrough point is

defined as occurring when the effluent concentration equals 50% of the initial influent

concentration (Yong, 200 I)

The Ni and Co influent pH 5.5 and concentration of 100 mg/L were chosen

because the pH of lOO mg/L of Ni or Co solution at the room temperature of - 22°C was

nearly 5.5 (100 mgIL of Ni had a pH of 5.6 and 100 mglL of Co had a pH of 5.3) and

both required minimal pH adjustment before use. The breakthrough curves are presented



in Figures 7.1a and 7.1b while the raw average effluent concentrations for 100 mg/L

initial concentration of Ni at pH 5.5 at two flow rates on the saprist NL peat fixed bed

column experiments are presented in Tables HI and H2 of Appendix H.

Z
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Fig. 7.1 a: Breakthrough curve for Ni2
+ adsorption at pH 5.5, conc., 100 mg/L, 22°C and at

a flow rate of 1.0 Lih (data points at every 1 L).
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Fig. 7.1 b: Breakthrough curve for Ni2
+ adsorption at pH 5.5, conc., 100 mg/L, 22°C and at

a flow rate of 2.0 LIh (data points at every 1 L).
139



The breakthrough for the 100 mg/L Ni concentration at pH 5.5 with the

continuous downward flow of 1.0 L/h was obtained at 153 hours after 160 L of the

solutions had been used while at a downward flow of 2.0 Uh, the breakthrough point was

attained at 34 hours and after 63 L of the Ni solution had been treated. Maintaining the

flow in a column experiment with the application of the HOST equation is known to be a

limitation of the column experiment (Hutchins, 1973). The use of the variable speed

peristaltic pump connected to the column exit helped maintain the linear flow. The pump

speed was varied to maintain flow as the experiment progressed, but this contributed to

the change in the breakthroughs which did not correspond exactly to the flow rates. Since

breakthrough at a lower flow rate occurred after a larger volume had been treated, a lower

flow rate that would allow more retention of Ni is therefore recommended for the design

of adsorption column.

During the continuous downward flow fixed bed column experiment, Ni sorption

gradually increased as the volume of influent increased. However, at some points, there

were sharp decreases in the Ni effluent concentration corresponding to 11,21,29,39,49,

83,90, 102, 124 and 140 L of the influent Ni solution. The sharp decrease in Ni effluent

concentrations was pronounced at the lower downward flow rate of 1.0 Uh. Peat bed

saturation will certainly require the consumption of a large volume of the 100 mgIL Ni

concentration at pH 5.5, if attainable.

The pH of the Ni effluent concentration of the column corresponding to the points

of decrease as monitored are presented in Table 7.1. Initial pH was 5.5 and the general pH

of the effluent Ni concentration at the column exit was - 5.2.



Table 7.1: pH of Ni2
+ concentrations at the column exit

From Table 7.1, the pHs at the points of decrease on the breakthrough

curve in Figure 7.1 a suggest that ion exchange was pronounced and significant at these

points, compared to a general decrease of pH 0.3 otherwise. The overall retention trend

suggests that a combination of ion exchange and complexation of Ni with the active sites

could have accounted for the larger Ni uptake. The above trend corroborated the earlier

suggestions from the kinetics and equilibrium batch and desorption studies where

decrease in pH was attributed to ion exchange and relatively constant pH was attributed to

complexation.

The breakthrough curves for the 100 mglL initial Co concentration at pH 5.5 on

the saprist NL peat in a continuous downward fixed bed column at flow rates of 1.0 and

2.0 Uh are presented in Figures 7.2a and 7.2b while the raw average Co effluent

concentrations are shown in Table H3 and H4 of Appendix H.
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Fig. 7.2a: Breakthrough curve for Co2
+ adsorption at pH 5.5, conc., 100 mgIL, 22°C and

at a flow rate of 1.0 Uh (data points at every 1 L).
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Fig. 7.2b: Breakthrough curve for Co2
+ adsorption at pH 5.5, conc., 100 mgIL, 22°C and

at a flow rate of 2.0 Us (data points at every I L).



The breakthrough for the 100 mgIL Co concentration at pH 5.5 was obtained at 56

hours after 51 L of the Co solution had been used at a downward flow of 1.0 Uh. At the

downward flow of 2.0 Uh, the breakthrough point was attained after 10 hours and 25 L of

the 100 mgIL Co concentration solution had been used.

It was evident that less Co was retained compared to Ni at both flow rates

although the two metals were retained more at the lower flow rates. At lower flow rate,

the holding time of the solution in the column was higher and this allowed some measure

of equilibrium to be attained leading to larger retention of the metals. At the higher flow

rate, contact with the peat matrix was shorter and equilibrium attainment was far less;

thus less retention was observed.

Ni and Co retentions could have been influenced by the uptake mechanisms and

the products formed during the reaction. Although, Co was expected to be adsorbed more

due to its larger ionic radii and lower heat of hydration (Table 5.3, page 83) compared to

Ni, the products formed by the peat-Co interaction at the pH of 5.5, could have reduced

the availability of more active sites for the Co uptake while Ni may not have behaved in

the same way. Also at this pH (5.5), the kinetics investigation in this study suggested a

likely combination of ion exchange and complexation for Ni uptake and these two

reactions could have led to more Ni retention. Table 7.1 suggested that, ion exchange

could have occurred at some zones along the column height during the sorption of Ni

because of the drop in the effluent pH. These points also corresponded to the observed

sharp declines in the profile of the Ni uptake at lower flow rate. With Co, lower flow rate

did not give any significant effluent pH change.



At lower downward flow rates < 0.5 Llh, the experiment was discontinued after

300 L of 100 mglL Ni at pH of 5.5 had been treated; the breakthrough point was not

achieved at this time. Ni concentration in the effluent of the column decreased to about

0.08 mglL with the first 20 L of the solution after which gradual increase was noted. This

experiment was discontinued partly because of the large clogging effect noticed within

the column that significantly reduced the flow and also because of the low exit

concentration which was < 24 mglL even after 300 L of solution had been treated.

Although a lower flow rate of 0.5 Uh is desirable as more volume of the metal

contaminated solution can be treated, the porosity of the saprist peat needs to be enhanced

to maintain the flow rate. If porosity cannot be enhanced, a flow rate of 1.0 Llh is

recommended for the adsorption column because better contact would be enhanced than

at higher flow rates and more metal solution can be treated.

The saprist NL peat capacity in the column was determined using the simplified

form of the equation 2.12 (page 25) given as equation 7.1 used in similar studies (Sharma

and Forster, 1995; Volesky et aI., 2003; Goel et aI., 2005; Aksu and Giinen, 2006; Malkoc

etal.,2006).

(7.1)

where, Co and Ct were the influent and effluent concentrations (mgIL), with the Ct being

the 50% of the Co, k was the rate constant (Umg.h), No was the adsorption capacity of the

peat bed (mglL), H was the effective height of the column (m), t was the time taken to

attain the breakthrough (h) and v was the linear flow rate (m/h) obtained by dividing the



actual flow rate (cm3/min) by the column cross sectional area (cm2
). A plot of In(%o)

against t was used to determine k and No at the breakthrough for the two flow rates for Ni

and Co retentions. The results are summarized in Table 7.2. The plots in terms of volume

treated are shown in Appendix I.

Table 7.2: Summary of Breakthrough constants from a simplified Bohart-Adams model

Ni + Co +

Flow
rate

BV tso kxlO-6 No*IO' AER r2 BV tso kxlO-6 No*IO' AER
(Uh) (L) (h) (Umg.h) (gIL) (L) (h) (Umg.h) (gIL)

(mg/L) (mg/L)

160

In Table 7.2, BY is the breakthrough volume (L), tso is the breakthrough time (h)

and AER is the adsorbent exhaustion rate which is defined as the mass of adsorbent in

column (g) per the treated volume (L) of liquid at breakthrough.

From Table 7.2, the kinetic rate constant, k, increased as the flow rate was

increased. This implied that during the column test, the rate of transfer of Ni ions into the

peat matrix was larger as the flow rate was increased. Similarly, the rate of Co ions

transfer from solution to the peat matrix increased as flow rate was increased. With wide

variations in values, the trend suggested that the adsorption mechanism of each metal was



not the same on the saprist NL peat. With small particle sized materials, cross linking of

the material matrix is enhanced and intra particle diffusion is reduced during the ion

exchange process. Ni was therefore suggested to be sorbed via ion exchange in the

column. For Co, complexation with the ligands present at the active sites of the peat could

have dominated the sorption reaction and as the flow rate was increased, the Co ions were

quickly snatched from the solution thus giving a larger kinetic rate constant at higher flow

The adsorption capacity of the peat bed, No, for Ni and Co decreased as the flow

rate was increased. The observed trend could be related on one hand, to the attainment of

equilibrium. At lower flow rate, longer contact between the peat matrix and metal ion was

enhanced and equilibrium could be attained which led to lower adsorbent exhaustion rate

in Ni and Co uptake in the peat column. On the other hand, variation in the uptake

mechanism and products formation could have contributed to the observed values. While

more Ni was sorbed, less Co was sorbed despite the promising nature of the initial Co

uptake. The products that were formed by the peat-Co interaction could have gradually

inhibited the sorption rate as the reaction progressed.

The AER as computed in Table 7.2 decreased as flow rate was increased. For Ni,

0.69 gIL at a flow rate of 1.0 Uh was computed, while for Co, 2.16 giL at a flow rate of

1.0 Uh was computed. AER is one of the parameters that determine the capital and

operating costs of a treatment system (the other is the empty bed residence time EBRT­

time taken for liquid to fill empty column) (McKay and Ng, 2002). Low flow rate is

therefore recommended for design purposes to achieve lower capital and operating costs.



The retentions of Ni and Co on a fixed saprist NL peat bed could be explained by

the simplified Bohart-Adams model, since the regression coefficients were reasonable

ranging between 0.79 and 0.99, with the sorption of Co giving higher regression

coefficient values.

7.3 Effective Mass Transfer Zone

In fixed bed column adsorption, the zone that is first acted upon by the

contaminant solution is referred to as the upstream and is always the point where a high

initial concentration of the contaminant interacts with the column bed. This zone in a

downward fixed bed column is expected to move downward as the bed gets saturated

(Hutchins, 1973; Cooney, 1999) with the sorption of the metal in the solution by the

active sites on the saprist NL peat. The behaviour of the movement of the saturated zone

along the fixed bed is largely influenced by the establishment of equilibrium between the

contaminant in solution and the fixed bed. The area covered by this equilibrium

movement is the mass transfer zone which is often difficult to measure. Naja and Volesky

(2006) suggested that the mass transfer zone (MTZ) is the region where the highest

concentration of the contaminant in the solution phase is reduced to the lowest

concentration i.e. the zone where sorption is most effective in the adsorbent.

In this study, the ratio of the accumulated metal concentration (Caee) at the

selected depth to the initial metal concentration (Co) was plotted against the column depth

(H) from the inlet to determine the effective mass transfer zone along the column. Figure



7.3 depicts the results obtained for a flow rate of 1.0 Uh. The raw data from the analyzed

spent saprist peat are presented in Appendix J.
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Fig. 7.3: Comparison of the mass transfer zone for Ni2
+ and C02

+ column experiments at

pH 5.5 for 100 mg/L metal concentration at flow rate of 1.0 Uh

Figure 7.3 shows that there was a decrease in the accumulation of metal retained

along the column depth (with values given, representing the top layer of each marked

depth). Exchange equilibrium is therefore not maintained along the column for the saprist

NL peat for the adsorption of Ni and Co. Crist et aI., (1996) expressed a contrary view

using Ca-impregnated peat of similar organic content and pH. They stated that

equilibrium was maintained, and increase in metal concentration was reported along the

column depth. In this study, the metal concentration was observed to slightly decrease

along the column depth except at the thin layer at the top of the column. It is evident from

this study also, that within an adsorption zone in the column, only the top layer was
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actively involved in metal retention because more of the metals' concentration was

detected at this layer. This fact is corroborated by similar studies where it was reported

that the retention of pollutants in peat was on the surface where a filtering layer was

formed by accumulation which increased the retention capacity of particles (Perez et aI.,

2005), and Egger et aI., (1980) reported that the trace metal concentration in a natural peat

bog decreases as depth in the peat bog increases. The overall transfer zone pattern was

similar for both Ni and Co as seen in Figure 7.3 with a steeper decrease observed at 2 cm

followed by a slight decrease along the depth to the column exit.

Figure 7.3 suggests that the column top layer accounted for more uptake of Ni and

Co than any other section. With this profile, a single long fixed bed column might not be

an economical use for the saprist NL peat. Multiple columns with shorter heights

operating in parallel (receiving the metal solution at the same time) or series (cascade

arrangement) is recommended. This will allow for the efficient use of the peat.

7.4 Effect of Column Height on Ni and Co Retentions

The breakthrough for Ni and Co uptakes was tested at a flow rate of 1.0 Llh with

three different column heights (5.5, 12.5 and 26.5 cm). Figure 7.4 show~ the profile of the

breakthrough time (tso) versus the height of the column used. The data obtained during

the study is presented in Appendix K. Foster and Sharma (1995) report,ed that if a plot of

breakthrough time and column height passed through the origin, then, one uptake

mechanism of the metal was involved in the adsorption. In Fig. 7.4, the data points did



-.-. Ni

not pass through the origin suggesting that more than one uptake reactions was involved

in Ni and Co retentions on the saprist NL peat.
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Fig. 7.4: Profiles of breakthrough time (tso, h) against column height (H, cm) at pH of 5.5

From Figure 7.4, high Ni and Co uptakes were obtained at the highest peat bed

height. This is due to the increased surface area and equivalent increase in the available

active sites. Thus a longer breakthrough time was observed with the highest peat bed and

larger percent of Ni and Co retentions obtained at this height, although more of Ni was

retained compared with Co.

Figure 7.4 gave a nearly linear profile with the three column heights used for Ni

compared with that of Co but did not pass through the origin in both cases which

suggested that more than one uptake mechanism was involved in the Ni and Co sorption

on the saprist NL peat at the pH of 5.5 in the fixed bed column. This observation

corroborated earlier suggestions in this study in which the metals uptake mechanisms on



the saprist NL peat have been suggested to be dominated either by ion exchange or

complexation, and a combination of both reactions depending on the solution pH.

7.5 Summary on Column Experiments

The column experiments were conducted with Ni or Co solution at pH 5.5 because

the pH of the 100 mg/L concentration of the metals was nearly 5.5. Also, from the

optimization results (see Table 5.4 page 83), a concentration of -100 mgIL of Co was

desirable for minimum peat dose and for comparison 100 mg/L Ni concentration was

selected. In chapter 5, the batch kinetics study suggested that at pH 3, Ni and Co were

predominantly sorbed by complexation. As the pH was increased, a combination of

complexation and ion exchange was responsible for Ni uptake while Co was sorbed by

ion exchange at pH 10. Results from the batch equilibrium adsorption experiments in

chapter 6 corroborated the suggestions made in chapter 5. The results of the Ni and Co

desorption tests with different concentrations of HCI in chapter 6 were significant in

terms of the sorption mechanisms inferred especially with the change in metal solutions

pH.

The results obtained in the column tests showed that more than one uptake

reaction mechanisms were responsible for the retention of Ni at the selected pH 5.5 while,

the retention of Co was mainly by a single mechanism. This was inferred based on the

pHs of the effluent from the saprist NL peat column and the breakthrough pattern

obtained for the two metals especially at a flow rate of 1.0 Uh (Figures 7.la and 7.2a).



The conclusions drawn from the column experiments were therefore in tandem with those

made in chapters 5 and 6.

7.6 Ni and Co Uptake Mechanisms

The uptake mechanisms for Ni and Co on the NL saprist peat were proposed

based on the trends of results and observations made during the investigations, thus

providing suitable explanations for the most likely chemistry of the sorption mechanisms

leading to the removal of the metals. Chemisorption through ion exchange or

complexation of the metal ions was the main uptake mechanism. While it is difficult to

completely isolate metal uptake mechanisms, effort is made to justify the proposed

uptakes within the scope of the experiments conducted for the chosen conditions.

The uptakes of Ni or Co could be described by the percent sorbed or the adsorbed

quantity per mass of peat. For convenience, the percent sorbed was selected for the

analysis of the uptake mechanism by the functional groups present on the surface of the

saprist NL peat. Ni and Co retentions started at pH 3, and steadily increased to an

optimum pH of 5.5 and 10 for Ni and Co respectively. This observation was consistent

throughout the study using batch tests (in kinetic, equilibrium adsorption and desorption

studies, and the Box-Behnken design).

At a solution pH of 3, there was no significant decrease in effluent solution pH

during the batch tests with Ni or Co. This trend was the same for Co at all other solution

pHs except at pH 10 where significant decrease in pH was observed. Ni uptake however,

showed a decrease in solution pH at pH 5.5, 8 and 10. Decrease in solution pH is an



indication of the release of a proton with a corresponding increase in solution acidity (Ho,

et aI., 1995). Bond formation via the oxygenated functional groups accompanied by the

release of a proton is therefore suggested as the main route for metal uptake on the NL

saprist peat at these pHs with complexation either being slow or dormant.

The desorption test with various concentrations of HCI showed that a significant

amount of Ni was desorbed when absorbed at pH 5.5, 8 and 10, and for Co, at pH 10

(Tables FI and F2 of Appendix F). The percent metal removed increased with the

concentration of HCI and the peat dose. Desorption was very poor at pH of 3 which

suggested that the uptake of Ni at this pH was not completely ion exchange. Desorption

test is a strong indication of ion exchange as suggested by Zhipei et aI., (1984). Thus ion

exchange is the dominant mechanism by which Ni was removed by NL saprist peat at the

solution pHs of 5.5, 8 and 10 and at pH 10 for Co.

Ni uptake at pH 3 and Co uptake at pHs of 3, 5.5 and 8 is suggested to be

primarily through complexation. During metal-peat complexation, the carboxyl, phenolic

and possibly amine/amide functional groups are attacked by the positively charged metal

ions leading to an initial peat-metal complex, a dinuclear intermediate (an intermediate

with two metal ions attached to ligands that are linked, forming a singular compound) by

which the removal of the ions took place. At these solution pHs, no significant change in

pH was noticed.

Possibly accompanying the complexation reaction at pH 3 also, was the

protonation of the sorption sites on the peat leading to the decrease in the ability of the

material to retain initial metals resident in the peat. The sites vacated by the unretained



metals could have been occupied by the incoming cations of Ni or Co and this led to their

removal in the solution. Thus at pH 3, initial metals present in the peat and deprotonation

of carboxylic group caused by electronic re-arrangement could have combined to

provides sites that were occupied by the attacking Ni and Co ions. If this is the case, all

sites capable of complexing are first occupied before sites capable of exchanging protons

get involved in metal uptake.

Kadlec and Keoleian (1986), suggested that carboxylic acid and phenolic

hydroxyl groups in peat are the functional groups capable of complexing with metals such

as Cu2+, Pb2+, and Zn2
+. In addition to these groups, the saprist NL peat contained

nitrogen functional groups (amine and amide) and these could have acted as ligands

which chelated or coordinated with Ni and Co, and enhanced their uptakes even at low

solution pH. According to Henry et aI., (1992), the potential of an anion to complex a

cation is a function of the charge transfer of the metal-anion intermediate bond, which is

determined by electronegativities of the intermediate complex, the anion and its

protonated form. Ni is known to be slightly more electronegative compared to Co (Ni is

1.80 and Co is 1.75) (Henry et aI., 1992) which could have accounted for higher Ni

uptake at pH 3 compared to Co. At low pH, the solution is positively charged and when it

came in contact with the peat surface which was initially negatively charged,

complexation took place via the surface functional groups that led to the removal of Ni or

Co.

As pH steadily increased, the peat surface which was originally negatively

charged became surrounded by more hydroxyls with some functional groups at the active



sites being deprotonated. The ease of deprotonation could have been affected by the metal

concentration and this could have affected the quantity of metal adsorbed. At pH 10, more

of Ni and Co was adsorbed on the saprist NL peat with significant change in the

equilibrium pH of the monitored filtrates.

The consistency of the adsorption data of Co over the pH range and peat dose, was

an indication that uptake reactions have primarily followed a single reaction path which

was possibly a change from complexation at pH 3 to ion exchange as the pH was

increased. In the case of Ni, ion exchange and complexation reactions occurred

simultaneously with the complexation reaction being the dominant at solution pH of 3. As

the pH was increased, ion exchange became the main reaction. This was supported by the

lack of 100 % Ni or Co desorption at the related pHs.

In ion exchange, the peat surfaces retained Ni or Co ions by the deprotonation of

the active sites. The reaction is summarized in two steps by equations 7.2 and 7.3.

2SP-COH +M 2+ H (SP-CO)2M +2H+ (7.2)

SP-cOHi+ +M 2+ H SP-COM 2++2H+ (7.3)

where C is carbon, 0 is oxygen, H is proton or hydrogen, SP is the peat surface, and M2
+

is theNi orCo ion.

On the peat surface (SP), a carbon-oxygen complex binds the metal ions by

displacing protons. Equation 7.2 is the suggested route at low pH (acidic) while equation

7.3 is the suggested route as the pH was increased (basic pH).



CHAPTER EIGHT

CONCLUSIONS AND RECOMMENDATIONS

8.1 Chapter Overview

Conclusions and recommendations from this study are based on the use of

untreated saprist Newfoundland peat as the adsorbent for Ni2
+ and C02

+ from wastewater.

Peat characteristics are known to be uniquely related to the location of harvest;

consequently variations in the conclusions drawn from this study might be encountered.

The study employed saprist Newfoundland peat as the adsorbent for Ni and Co retention

from a simulated water. Kinetics experiments in batch mode were pseudo-second order,

and equilibrium adsorption tests fitted the Langmuir and Freundlich isotherms from

which the adsorptive capacity of the saprist peat was computed.

Desorption tests showed that Co was predominantly sorbed by complexation of its

ion with the active sites through the presence of ligands in the peat matrix while Ni was

sorbed by a combination of ion exchange and complexation depending on the solution

pH. Competitive sorption tests showed that not all the active sites were occupied in a

single ion system and competition enhanced the adsorption of Ni and Co especially at

lower metal concentrations. Continuous downward flow column experiments suggested

that more Ni was sorbed compared with Co, at a flow rate of 1.0 Uh. The use of a

monovalent metal would present a completely different observation compared to the

trends reported in this study.



8.2 Conclusions

The following were the conclusions drawn from the research:

I. Saprist NL peat that was characterized using analytical techniques (XRD, SEM,

FfIR, and I3C-NMR) and the techniques did not involve the destruction of the

material. This study showed the presence of highly oxygenated functional groups

and amine/amide groups that could be involved in ion exchange or complexation

of metals. ICP-MS results showed that the peat contained several metals,

especially Ca, Fe, and Mn in proportions> 100 mglL.

2. The application of the response surface method through the Box-Behnken design,

statistically showed that interactions of concentration/peat dose (50 mg/L and 14

gIL or 200 mglL and 28 g/L), and peat dose/pH (28 gIL and pH 4.9) were

important in the optimum Ni adsorption by the saprist NL peat. On the other hand,

the interactions of concentration/pH (- 100 mglL and pH 6.5), and peat dose/pH

(-30 giL and pH 6.5) were vital in the optimum Co adsorption by the saprist NL

peat.

3. From the interactions of the factors in the Box- Behnken design and by

monitoring the effluent pHs during kinetic and desorption tests of Ni and Co

sorptions, the data obtained suggested that more than one reaction was involved in

the metal sorption chemistry on the saprist NL peat depending on the solution pH,

concentration and peat dose.

4. From the response surface method using the Box-Behnken design, optimum batch

operational conditions for Ni retention was at a peat dose between 25 and 40 giL



for solution pH of 3 and Ni concentration ~ 50 mgIL. For optimum Co uptake, a

peat dose of 32 gIL for a solution pH of - 6 and Co concentration of 25 mglL are

the desirable operational conditions.

5. Kinetic tests showed that Co was more rapidly sorbed compared with Ni and

generally attained equilibrium after I h, although more Ni was sorbed over the 12

h experiment time compared with Co. The maximum Ni adsorbed at equilibrium

in a 12 h study, 385 mglg, was obtained at a solution pH of 5.5, peat dose of 21

giL and a Ni concentration of 125 mglL and for Co, the maximum adsorbed

quantity was 33 mglg at pH 8, a peat dose of 2 giL and Co concentration of 200

mglL.

6. The equilibrium adsorption over a 24 h period showed that the data fitted

Freundlich and Langmuir isotherms with regression coefficients near unity.

Adsorption efficiencies increased with peat dose at low metal concentrations and

pH 3 but the adsorbed quantity per unit mass of peat used decreased with

increasing peat dose. The maximum Langmuir monolayer saturation capacity of

the peat for Ni was 61.35 mglg at solution pH of 3 and for a peat dose of 40 giL;

while, the corresponding value for Co, it was 60.98 mglg at pH of 5.5 and for a

peat dose of 10 giL. For the Freundlich isotherm constant, a maximum value of

1.18 mg(l-n)kg-1L1/n at solution pH of 5.5 and for a peat dose of 21 giL was

computed while for Co, it was 0.32 mg(l-n)kg-1L1/n at solution pH of 3 for a peat

dose of 4 gIL.



7. The competitive sorption test at a constant solution pH 5.5, showed that the peat

maintained its metal removal capacity with a multi-metal system and Ni and Co

adsorptive capacities were enhanced at metal concentrations ~ 50 mglL at peat

doses ~ 21 giL.

8. The fixed-bed column experiments with a 6 cm diameter, 12.5 cm effective peat

depth, flow rates of 1.0 and 2.0 L/h which gradually decreased as the peat matrix

became saturated, and a solution pH 5.5 for 100 mg/L Ni and Co were reasonable

operational parameters that gave a breakthrough for Ni at a volume of 160 Land

for Co, at 51 L at the lower flow rate. The breakthrough showed that lower flow

rates would enhance better contact and retention of the metals.

9. The modified Bohart-Adams model gave maximum adsorption capacity of 35.6

gIL at flow rate of 1.0 Llh for Ni adsorption at a constant solution pH 5.5. The

maximum adsorption capacity of 2.5 giL at a flow rate of 1.0 Llh was computed

for Co also at a constant solution pH 5.5. The AER for Co was generally more

than twice that of Ni, which suggested that capital and operating cost of treating

Co using the saprist NL peat would be higher for Co compared to Ni.

10. The column experiment showed that more metal adsorption took place at the top

layer than at the bottom and not all the layers within the peat depth were actively

involved. With a slower flow rate, a higher contact time with the peat surface was

achieved and a larger volume of metal solution was treated (160 L for Ni and 56 L

for Co).



II. Monitored effluents pH at the end of each litre of solution showed a decrease at

some points (> 0.5 units), which corresponded to a possible change in the

dominant reaction. This trend was obvious with Ni sorption compared to Co

sorption. The decrease in pH was attributed to ion exchange as the dominant

sorption reaction.

12. The trend of results at various solution pHs and the desorption tests (no desorption

at pH of 3 for both metals) suggested that Ni uptake on the saprist NL peat was a

combination of ion exchange and complexation while, Co was sorbed mainly by

complexation at solution pH below 10 and above this pH, ion exchange dominated

the uptake chemistry. Ion exchange gave higher percentage of metal removal

results compared to complexation.

13. The research showed that metal adsorption on the saprist NL peat was metal ion

specific and concentration specific, solution pH specific and peat dose dependent

while; the uptake chemistry was metal ion and solution pH dependent.

8.3 Original Contributions

Fibrist peat has been widely investigated as a metal adsorbent. This study is the

first attempt at using air dried NL saprist peat characterized in its natural state, as an

adsorbent for Ni and Co in batch and column experiments. This study established that

optimum reaction conditions exist for the maximum uptake of Ni and Co at minimum

peat dose. For Ni, the peat dose/concentration and, solution pH/peat dose should be

optimized while for Co, solution pH/concentration and, peat dose/solution pH should be



optimized. The saprist NL peat - metal reaction was strongly influenced by the solution

pH and large adsorbed metal quantities were obtained under acidic conditions.

The saprist peat contained a large number of active sites as shown by the

competitive sorption at pH 5.5 and the percentages of Ni and Co retained were near those

at single ion uptake on the peat. The study established that the adsorbent exhaustion rate

of the saprist NL peat for Ni was lower than that of Co at a solution pH of 5.5. Desorption

with 0.1 M to 2 M HCI and other data during the batch and column experiments

suggested that the metals were retained by chemisorption with complexation being the

possible route at acidic conditions and ion exchange at basic conditions.

8.4 Recommendations

The use of the saprist NL peat as a Ni and Co adsorbent was investigated in this study.

While the availability, application and capacity of the peat to remove metals from

wastewater cannot be argued, further studies are needed in order to maximize the

potential of this adsorbent to reduce or eliminate under utilization and wastage during

applications. The following are recommended:

1. Untreated saprist Newfoundland peat was used in the study. Impregnation with

acid, Ca2
+, Fe3

+ and or a monovalent metal or acid washing is suggested. This will

further increase the homogeneity in the saprist NL peat.

2. Adsorption trends in terms of the Freundlich and Langmuir parameters were not

established under certain conditions investigated. This might not be unconnected



with some materials that could be present in the peat interfering with the peat­

metal chemistry. Further investigations to ascertain the level of this interference

are suggested.

3. Functional groups identified by FTIR and 13C-NMR could be masked by

appropriate masking agents to gain further insight into the sequence of metal

uptake reactions.

4. Column experiments showed that adsorption was not effectively distributed along

the depth of the column. To reduce peat wastage or under utilization, the peat

should be treated by aeration to allow oxidation of the matrix. Counter flow

aeration is recommended as this will allow the dispersion of the solution

increasing contact with overlapped active sites and improve overall column

efficiency. The impact of this form of additional treatment step should be

investigated.

5. Saprist Newfoundland peat contained extremely small particle sizes. There was a

continuous collapse and overlapping of these particles when packed. This reduced

porosity and increased clogging. The mechanism of peat clogging and overall

peat-solution hydrodynamics should be studied to improve the column efficiency

6. Shorter columns either in parallel or series are recommended for use since the

cumulative metal adsorbed decreased down the peat bed.
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Appendix Al

The derivation of pseudo-second order kinetic equation (Ho et aI., 1995) for an

adsorption reaction follows the Langmuir equation and essentially assumed that

chemisorption is the main route of metal uptake on the adsorbent surface. The rate of

pseudo-second order reaction may be dependent on the quantity of metal ion qt, at any

time t, and the quantity at equilibrium, qe, a function of temperature of the system, initial

metal concentration, the adsorbent dose and the interaction between the metal and

adsorbent.

If the sorption of Metal M on peat surface P can be represented as:

Then the rate expression can be given as:

d~), =k[(P)o - (p), y (3)



Where P and HP are the polar sites on the peat surface, and (P)(, (HP)( are occupied active

sites on the peat, (P)o and (HP)o are the equilibrium available sites. Equation 4 can then be

reduced to quantity adsorbed if assumed to be equivalent to the occupied sites.

(5)

Where k is the rate constant in (glmg hr), qe is the amount of metal adsorbed at

equilibrium in (mg/g) and q( the amount of metal adsorbed at any time t. Equation 5 is re-

arranged to Equation 6 by separating variables.

[q, ~q~J = kdt (6)

Integratung equation 6 with boundary conditions set at t =0 to t =t and q( =0 to qt =qt.

(7)

Equation 7 is referred to as the integrated rate law of the pseudo-second order reaction.

This equation can further be re-arranged and the linearized as in equation 8 used in the

study.

(8)



AppendixA2
Breakthrough curves are temporal variation in the concentration of a solute at different

effluent end of the column of porous materials and can be measured by using laboratory

column by:

I. Establishing steady-state fluid flow conditions.

2. Continuously introducing at the influent end of the column a liquid containing a

solute at concentration Co and;

3. Monitoring the solute concentration at the effluent end

In this approach, the effect of retardation is considered and the abscissa for the

breakthrough curves has been defined in terms of pore volumes instead of time. One pore

volume is the volume of water that completely will fill the void in along a column length.

The number of pore volume of flow (U) is equal to the cumulative volume of flow

through the sample divided by the volume of void space in the material.

u = v,nAt
LAn

Where, L is the length of the column, A is the cross-sectional area, t is the time, Vs is the

seepage velocity of pore fluid, n is the porosity.

When the relative concentration (CICo) is plotted against U, an S shaped curve is obtained

and various transit points can be identified corresponding to the behaviour of the

contaminant along the column during adsorption (Bowder et aI., 1985; Marshall et aI.,

1996).
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Source
Model
A-Cone
B-Peatdose
D-pH
AB
BD
B2
D2

Residual
Lack ofFit
Pure Error
Cor Total

AppendixBl

Response 1 % Ni Removed
ANDVA for Response Surface Reduced Quadratic Model

Analysis of variance table [Partial sum of squares - Type III]
Sum of Mean F p-value
Squares df Square Value Prob > F

21878.95 7 3125.56 49.76 < 0.0001 significant
616.91 1 616.91 9.82 0.0050
2204.86 1 2204.86 35.10 < 0.0001
9413.60 1 9413.60 149.86 < 0.0001
402.80 1 402.80 6.41 0.0194
694.32 1 694.32 Jl.05 0.0032
499.77 1 499.77 7.96 0.0102

8449.80 1 8449.80 34.52 < 0.0001
1319.13 2 162.82
1096.59 17 64.51 1.16 0.4939 not significant

222.54 4 55.64
23198.08 28

Std. Dev.
Mean
C.V.%
PRESS

7.93
73.50
10.78

4137.13

R-Squared
Adj R-Squared
Pred R-Squared
Adeq Precision

0.9431
0.9242
0.8217

19.969

Final Equation in Terms of Actual Factors:

%Metal Removed = +0.85363 -0.24348 * Conc +2.11096 * Peat dose +33.28979 * pH
+7.04211 E-003 * Conc * Peat dose -0.19812 * Peat dose * pH
-0.023572 * Peat dose2 -2.85628 * pH2



The Diagnostic Plots

Normal Plot of Residuals
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Figure IIA.I: Normal probability plot of the studentized residuals to check for normalty
of residuals
Residuals randomly scattered. Check is OK!

2.

Residuals vs. Predicted
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Figure IIA.2: Studentized residuals versus predicted values to check for constant error
Residuals have no unique shape especially funnel shape. Check is OK!



3.

Figure IIA.3: Externally Studentized Residuals versus Run
No significant outliers of influence. Check OK!

4.
Box-Cox Plot for Power Transforms

Figure IIA.4: Box-Cox plot for power transformations

Box-Cox plot suggested no power transformation. Check OK!



Appendix B2

Response 1 % Co Removed
ANOVA for Response Surface Reduced Quadratic Model

Analysis of variance table [Partial sum of squares· Type III]

Source
Model
A-Cone
B-Peatdose
D-pH
AD
BD
A'
B'
D'

Residual
Lack ofFit
Pure Error
Cor Total

Sum of
Squares
11917.20

372.97
7777.52
726.96

25.50
44.89
24.45

2357.14
216.19

76.61
72.08
4.53

11993.81

Mean F p-value
df Square Value Prob > F

8 1489.65 388.90 < 0.0001 significant
1 372.97 97.37 < 0.0001
1 7777.522030.47 < 0.0001
1 726.96 189.79 < 0.0001
1 25.50 6.66 0.0179
1 44.89 1l.72 0.0027
1 24.45 6.38 0.0201
1 2357.14 615.37 <0.0001
1 216.19 56.44 < 0.0001
20 3.83
16 4.50 3.98 0.0955 not significant
4 1.13
28

Std. Dev. 1.96
Mean 75.82
C.V.% 2.58
PRESS 226.30

R-Squared 0.9936
Adj R-Squared 0.9911
Pred R-Squared 0.9811
Adeq Precision 62.414

Final Equation in Terms of Actual Factors:

% Co Removed = +50.05389 -0.22159 * Conc +3.84514 * Peat dose -3.93667 * pH
+9.61905E-003 * Conc * pH -0.050376 * Peat dose * pH
+3.38919E-004 * Conc2 -0.051852 * Peat dose2 +0.46277 * pH2
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The Diagnostic plots

Design-Expert$Software
%MetalRemaved
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Normal Plot of Residuals
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Inlemally Sludenlized Residuals

Figure lIB.l: Normal probability plot of the studentized residuals to check for normalty of
residuals
Residuals randomly scattered. Check is OK!

2.
Residuals vs Predicted
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Figure lIB.2: Studentized residuals versus predicted values to check for constant error
Residuals have no unique shape especially funnel shape. Check is OK!



3.

Residuals VS. Run

Run Number

Figure IIB.3: Externally Studentized Residuals versus Run
No significant outliers of influence. Check OK!

4.

Box-Cox Plot for Power Transforms

~18
.
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.
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Figure IIB.4: Box-Cox plot for power transformations
Box-Cox plot suggested no power transformation. Check OK!
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AppendixC
fable Cl: Average NC' eoneentratlon lm (fL) measured dunng KinetIc study at pH j

Time Cone. 25 mglL Cone. 50 mgIL Cone. 125 mgIL Cone. 200 mglL
(hr) Peat dose (gIL) Peat dose (gIL) Peat dose (gIL) Peat dose (gIL)

2 10 21 40 2 10 21 40 2 10 21 40 2 10 21 40
0.5 24.90 7.80 4.00 2.06 49.8 18.42 10.32 5.16 113.72 71.40 49.11 23.93 199.00 117.60 91.70 53.06
1 24.86 7.50 3.23 1.69 47.44 22.34 9.80 4.00 116.90 71.60 46.04 22.42 196.40 112.80 83.70 46.03
1.5 23.87 7.46 3.03 1.62 48.60 19.18 8.16 4.43 109.12 70.80 44.23 22.11 197.20 113.60 86.30 50.06
2 24.86 7.12 2.75 1.60 49.60 20.07 8.23 4.21 106.76 72.70 43.95 21.76 196.00 114.00 88.60 47.23
3 24.90 6.75 2.72 1.44 49.40 20.02 8.10 3.89 110.80 68.10 42.72 20.13 196.50 113.20 84.90 45.04
4 23.54 6.84 2.85 1.63 49.70 20.04 8.67 3.66 112.88 67.40 42.27 21.22 195.80 109.80 84.40 47.85
5 24.06 6.70 2.50 1.50 49.80 20.08 8.47 3.84 109.30 67.50 40.88 20.10 195.20 103.20 83.60 43.22
6 23.86 6.59 2.50 1.46 49.90 17.25 7.63 3.76 112.08 70.70 40.44 20.90 194.80 107.80 80.50 45.98
8 21.77 6.81 2.60 1.46 46.80 19.35 7.63 3.68 109.20 63.50 42.09 20.83 194.80 105.00 74.80 41.15
10 23.82 6.09 2.59 1.64 49.66 17.26 8.24 3.94 104.60 63.50 42.99 20.25 194.60 103.40 74.80 45.30
12 23.4 6.70 2.50 1.60 46.80 17.30 7.71 3.71 104.80 64.10 41.01 20.24 195.10 104.20 75.00 45.84

- ~~-

Time Cone. 25 mgIL Cone. 50 mgIL Cone. 125 mgIL Cone. 200 mgIL
(hr) Peat dose (gIL) Peat dose (gIL) Peat dose (gIL) Peat dose (giL)

2 10 21 40 2 10 21 40 2 10 21 40 2 10 21 40
0.5 7.80 3.10 1.702.0 24.50 12.10 4.40 3.40 83.20 52.70 41.60 17.40 181.10 110.90 66.90 35.50
1 6.50 2.80 2.20 0.70 22.80 9.80 4.60 2.80 83.50 51.10 29.30 15.80 181.40 106.70 68.60 36.60
1.5 5.90 2.60 1.30 0.70 22.20 10.20 4.90 2.60 84.40 50.90 30.20 16.30 182.60 107.40 64.90 36.90
2 5.30 2.30 1.20 1.10 22.20 10.50 4.90 2.30 83.30 48.90 30.70 15.40 178.60 102.30 63.00 37.10
3 5.30 2.60 1.20 1.00 22.60 9.80 4.50 1.80 86.90 47.30 30.60 13.20 176.20 105.10 67.10 36.10
4 5.70 2.30 1.20 0.90 22.00 8.50 4.10 1.80 84.00 47.60 28.50 14.20 174.60 105.70 67.40 35.00
5 5.50 2.30 1.30 1.10 21.30 7.10 4.70 2.00 83.50 45.70 29.10 14.50 172.80 105.60 62.00 35.90
6 5.10 2.50 1.20 1.10 19.70 8.70 4.60 2.10 82.90 46.70 27.60 15.00 173.00 96.50 59.20 35.80
8 5.20 2.50 1.20 1.00 21.60 7.90 4.70 1.90 82.40 46.50 27.80 14.60 168.20 102.20 58.50 36.80
10 5.20 2.60 1.40 0.90 21.50 8.30 4.70 2.00 82.80 48.00 28.20 14.40 165.90 97.70 59.30 35.50
12 5.20 2.60 1.30 1.10 21.00 7.60 4.60 1.90 83.10 47.20 28.00 14.00 166.40 98.20 59.70 35.80



lable Lj: Average NC' concentration tm L) measured dunng 1<lnetJe study at pH 1\

Time Cone. 25 mgIL Cone. 50 mgIL Cone. 125 mgIL Cone. 200 mgIL
(hr) Peat dose (gIL) Peat dose (gIL) Peat dose (gIL) Peat dose (gIL)

2 10 21 40 2 10 21 40 2 10 21 40 2 10 21 40
0.5 8.60 6.30 3.00 2.40 30.10 22.60 10.00 6.20 89.40 71.00 52.00 29.60 187.00 124.10 80.50 51.80
I 8.46 6.35 2.80 2.20 28.50 21.80 8.50 5.60 88.00 70.20 50.85 28.00 186.00 120.70 78.20 50.50
1.5 8.51 6.28 2.42 1.80 28.35 19.55 6.10 4.37 88.50 68.40 51.20 26.50 184.60 118.30 76.70 49.00
2 8.19 6.00 2.45 1.88 27.20 17.40 6.70 5.15 87.25 67.50 48.60 22.40 184.70 116.90 74.30 48.60
3 8.10 5.25 2.80 1.85 26.50 18.15 7.20 5.48 87.10 64.90 46.52 17.50 182.10 112.50 72.50 47.0
4 7.90 5.47 2.71 1.94 24.30 18.90 7.50 5.62 86.00 62.00 43.70 18.10 178.40 110.60 70.90 47.70
5 7.81 5.71 2.55 1.90 25.70 17.95 7.64 5.20 84.70 59.50 44.80 18.70 176.50 107.00 70.10 48.10
6 7.72 5.50 2.50 1.97 25.10 17.65 7.05 4.90 85.75 60.40 44.95 17.70 174.30 102.00 71.00 47.50
8 7.78 5.42 2.49 1.88 24.90 17.50 7.20 4.80 84.80 59.90 44.20 17.90 170.20 95.40 71.40 48.00
10 7.76 5.36 2.45 1.88 24.70 17.80 7.00 4.85 85.90 59.70 43.80 18.00 172.00 96.80 70.50 48.20
12 7.91 5.40 2.47 1.90 24.40 17.48 6.80 4.91 85.10 59.80 43.85 17.80 171.80 95.70 70.30 47.60

Table C4: Average Ni·... concentration (mgII ) measured during kinetic stud at pH 10
Time Cone. 25 mgIL Cone. 50 mgIL Cone. 125 mgIL Cone. 200 mglL
(hr) Peat dose (gIL) Peat dose (gIL) Peat dose (gIL) Peat dose (gIL)

2 10 21 40 2 10 21 40 2 10 21 40 2 10 21 40
0.5 14.30 14.30 14.00 13.60 41.80 38.70 36.90 34.90 107.50 100.00 94.20 79.00 176.40 167.00 160.8 149.8
1 14.30 14.10 14.20 13.40 42.00 38.30 36.80 35.10 106.40 98.30 90.80 78.80 176.00 166.50 160.5 150.1
1.5 14.40 14.20 13.70 13.60 41.90 38.10 37.00 34.90 107.10 97.00 92.10 78.50 176.10 167.20 159.2 148.3
2 14.40 13.70 13.60 13.50 41.80 38.00 36.80 34.30 106.20 97.10 92.40 76.30 175.40 167.00 160.0 148.1
3 14.10 13.60 13.60 13.30 41.40 37.30 36.10 34.80 104.00 96.70 89.80 76.80 175.20 166.80 159.2 147.2
4 14.20 13.80 13.50 13.30 40.40 37.20 36.40 34.50 102.50 96.40 89.20 76.30 174.00 166.40 158.7 147.9
5 14.30 14.10 14.00 13.60 40.10 37.40 36.20 34.30 103.40 97.20 89.00 76.50 174.10 166.20 158.4 147.2
6 14.20 14.10 14.00 13.40 41.00 37.40 36.30 34.60 102.50 96.20 90.10 76.40 174.00 165.10 158.6 147.8
8 14.40 14.10 13.80 13.30 40.80 37.30 36.10 34.40 102.80 96.40 90.00 76.60 173.90 164.50 158.4 147.8
10 14.40 13.90 13.80 13.40 40.60 37.20 36.10 34.40 102.10 96.20 89.80 76.40 173.80 166.10 158.4 147.5
12 14.30 13.80 13.70 13.40 40.36 37.30 36.20 34.50 102.60 96.50 89.40 76.50 173.90 164.80 158.6 147.4



Table C5: Average Co2
+ concentration (mgIL) measured during kinetic study at pH 3

Time I Conc. 25 mgIL I Conc. 50 mgIL I Conc. 125 mgIL I Conc. 200 mgIL
M ~~~ ~~~ ~~~ ~~~

2 10 21 40 2 10 21 40 2 10 21 40 2 10 21 40
0.5 20.30 9.40 4.80 3.40 46.90 23.70 10.80 7.10 70.20 38.50 25.80 71.30 53.50
I 19.50 8.00 4.20 3.10 44.40 20.70 9.60 6.30 68.50 36.70 21.80 68.10 49.30
1.5 18.40 8.90 4.40 3.00 42.60 21.20 9.60 5.50 70.10 37.00 22.40 71.70 49.30
2 18.50 7.90 4.10 3.00 42.90 21.50 9.90 5.90 69.90 37.10 23.90 72.40 49.90
3 19.10 8.40 4.40 3.10 43.80 21.80 9.80 6.50 70.40 36.90 23.50 68.90 52.40
4 18.80 8.00 4.20 3.00 43.70 21.30 10.40 6.50 70.50 37.00 23.60 68.90 49.40
5 19.40 8.10 4.10 3.20 43.70 21.10 10.20 5.50 68.90 37.30 24.40 70.70 51.70
6 18.50 8.00 4.10 3.20 42.90 22.40 9.60 6.20 71.20 36.70 24.20 7.00 47.50
8 21.40 9.00 4.30 3.10 43.20 22.20 10.20 6.70 72.20 38.30 24.40 71.20 50.30
10 21.70 9.10 4.20 3.10 44.90 22.30 10.60 7.00 71.90 39.80 23.70 71.50 49.90
12 19.60 8.20 4.20 3.20 44.60 22.80 9.80 7.10 71.80 38.50 24.00 70.30 49.80

laDJeLO:Average LO-· concentratIon ~mg,tL) measureo ounn KInetIC sruoy at PH J.J

Time Conc. 25 mgIL Conc. 50 mgIL Conc. 125 mgIL Conc. 200 mgIL
(hr) Peat dose (gIL) Peat dose (gIL) Peat dose (gIL) Peat dose (gIL)

2 10 21 40 2 10 21 40 2 10 21 40 2 10 21 40
0.5 8.40 4.40 2.50 2.00 30.30 14.50 7.20 5.10 91.00 67.50 36.50 22.10 73.30 55.20
1 8.20 4.00 2.00 1.60 29.10 13.60 6.40 4.10 89.30 64.30 31.30 19.40 69.10 47.10
1.5 7.90 3.80 2.50 1.60 27.30 13.40 6.80 4.60 89.40 63.30 33.80 21.20 70.70 48.50
2 8.30 4.00 2.01 1.70 28.10 13.70 6.40 4.30 89.00 61.00 32.50 20.50 69.20 47.30
3 8.20 4.00 2.30 1.60 27.60 13.50 6.60 4.30 88.60 62.40 32.30 19.80 69.20 47.40
4 8.30 3.80 2.00 1.60 28.50 13.80 6.60 4.40 88.90 63.00 31.90 19.70 70.20 48.70
5 8.00 4.10 2.20 1.80 29.30 13.30 6.90 4.55 87.50 63.10 31.90 19.90 69.90 49.20
6 8.40 4.05 2.36 2.00 28.80 14.20 6.50 5.10 89.10 62.60 32.10 20.90 70.40 49.40
8 8.60 3.90 2.20 1.90 27.90 13.60 6.65 4.65 87.30 62.40 31.60 20.90 69.30 49.10
10 7.90 3.90 2.24 2.00 27.80 13.80 6.54 4.42 88.10 62.80 32.00 19.80 69.70 49.30
12 8.00 4.00 2.10 1.80 28.30 13.60 6.50 4.25 87.90 61.70 31.70 19.60 69.30 48.80

191



lable C/: Average Co-' eoneentratlon tm giL) measurea aunng kInetic stuay at pH 15

Time Cone. 25 mglL Cone. 50 mgIL Cone. 125 mglL Cone. 200 mgIL
(hr) Peat dose (gIL) Peat dose (gIL) Peat dose (gIL) Peat dose (gIL)

2 10 21 40 2 10 21 40 2 10 21 40 2 10 21 40
0.5 6.80 3.90 2.18 1.86 26.00 10.6 4.71 3.06 82.40 50.70 31.00 14.90 75.00 69.40 54.60 31.80
I 6.60 3.56 1.74 1.58 25.10 9.57 3.15 2.18 76.20 41.10 24.36 9.25 66.58 59.80 49.40 20.55
1.5 6.15 3.20 1.81 1.21 22.30 8.25 3.40 2.25 76.80 43.50 26.52 11.10 67.80 63.00 51.85 25.30
2 6.27 3.28 1.83 1.26 24.20 8.63 3.70 2.28 77.60 44.00 26.78 11.20 68.50 63.50 52.00 26.00
3 6.30 3.41 1.76 1.35 22.90 8.74 3.54 2.32 77.10 44.80 26.30 10.60 68.53 63.10 51.66 25.31
4 6.35 3.41 1.75 1.33 22.40 8.49 3.39 2.36 77.50 43.20 26.00 10.80 67.36 62.05 51.30 24.60
5 6.25 3.27 1.74 1.29 22.80 8.49 3.19 2.28 77.29 43.00 25.50 10.30 67.60 62.18 50.80 23.90
6 6.19 3.20 1.74 1.29 23.10 8.33 3.17 2.19 77.35 43.20 25.32 9.35 67.15 61.50 50.65 22.18
8 6.21 3.24 1.77 1.25 23.10 8.36 3.21 2.20 76.84 42.80 24.90 9.31 66.82 60.25 50.10 21.50
10 6.18 3.25 1.76 1.22 22.70 8.28 3.25 2.25 76.41 42.30 24.58 9.26 66.60 59.80 49.80 20.90
12 6.16 3.22 1.76 1.22 22.50 8.26 3.20 2.21 76.25 42.10 24.40 9.28 66.75 60.10 49.49 20.58

Table C8: Average Co·T concentration (m L) measured during kinetic study at pH 10
Time Cone. 25 mglL Cone. 50 mgIL Cone. 125 mgIL Cone. 200 mgIL
(hr) Peat dose (gIL) Peat dose (gIL) Peat dose (giL) Peat dose (gIL)

2 10 21 40 2 10 21 40 2 10 21 40 2 10 21 40
0.5 23.80 19.80 14.20 6.40 48.50 45.10 38.00 25.80 124.00 122.50 118.60 105.00 198.70 196.10 188.9 170
I 24.00 19.20 13.10 6.30 48.50 44.90 38.20 24.60 124.10 122.80 116.00 104.00 198.20 195.60 188.3 170.2
1.5 23.60 18.10 12.40 6.40 48.10 44.80 37.80 23.50 123.40 122.80 113.50 103.00 196.80 193.90 187.2 170.1
2 23.10 18.60 8.20 6.20 47.20 44.50 36.50 21.20 122.80 122.00 112.90 102.00 197.50 193.80 186.7 168.8
3 22.90 17.10 10.50 5.60 47.40 44.20 35.20 20.80 122.80 121.50 112.80 101.00 197.60 193.00 186.7 168.5
4 22.40 17.60 9.80 6.00 48.10 43.10 36.40 19.60 123.40 119.20 110.90 98.10 197.50 192.50 185.1 164.5
5 22.60 18.10 8.80 5.80 47.80 43.70 36.00 20.20 123.10 118.20 111.80 99.80 197.20 192.40 183.2 162.5
6 22.40 17.90 8.60 5.60 47.90 43.80 35.50 19.80 122.80 119.00 111.40 98.20 196.90 191.00 183.9 162.5
8 22.80 17.60 8.40 5.80 47.50 43.70 35.20 19.80 122.90 118.50 110.90 98.50 196.80 191.20 183.9 162.8
10 22.60 17.80 8.40 5.60 47.30 43.40 35.80 19.90 122.90 118.20 111.20 98.60 196.80 191.10 183.7 162.9
12 22.50 17.30 8.20 5.70 47.40 43.20 35.40 19.70 122.80 118.40 111.20 98.30 196.80 191.30 184.0 162.5
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AppendixD

iaOleUi:Average aOSOrbeo Nr· at vanous peat ooses at ptt j ounng Daten KInetIc test
Time Cone. 25 mgIL Cone. 50 mgIL Cone. 125 mglL Cone. 200 mgIL
(hr) Ql Q2 Q3 Q4 Q, Q2 Q3 Q4 Q, Q2 Q3 4 q, q2 q3 q4

0.5 0.025 1.720 1.000 0.574 0.050 3.158 1.890 1.121 2.8205.3603.6142.527 0.250 8.240 5.157 3.674
1 0.035 1.750 1.037 0.583 0.640 2.766 1.914 1.150 2.025 5.340 3.760 2.565 0.900 8.720 5.538 3.849
1.5 0.283 1.754 1.046 0.585 0.350 3.082 1.992 1.139 3.970 5.420 3.846 2.572 0.700 8.640 5.414 3.749
2 0.035 1.788 1.060 0.585 0.100 2.993 1.989 1.145 4.560 5.230 3.860 2.581 1.000 8.600 5.305 3.819
3 0.025 1.825 1.061 0.589 0.150 2.998 1.995 1.153 3.550 5.690 3.918 2.622 0.875 8.680 5.481 3.874
4 0.365 1.816 1.055 0.584 0.075 2.996 1.968 1.159 3.030 5.760 3.940 2.595 1.050 9.020 5.505 3.804
5 0.235 1.830 1.071 0.588 0.050 2.992 1.978 1.154 3.925 5.750 4.006 2.623 1.200 9.680 5.543 3.920
6 0.285 1.841 1.071 0.589 0.025 3.275 2.018 1.156 3.230 5.430 4.027 2.603 1.300 9.220 5.690 3.851
8 0.808 1.819 1.067 0.589 0.800 3.065 2.018 1.158 3.950 6.150 3.948 2.604 1.300 9.500 5.962 3.971
10 0.295 1.891 1.067 0.584 0.085 3.274 1.989 1.152 5.100 6.150 3.905 2.619 1.350 9.660 5.962 3.868
12 0.400 1.830 1.071 0.585 0.800 3.270 2.014 1.157 5.050 6.090 4.000 2.619 1.225 9.580 5.952 3.854

Where q" q2, q3 and q4, in mg/g, are the peat doses at 2, 10,21 and 40 gIL

!aOleUL: Avera~e aOsorOeO Nr· at vanous peat ooses at ptt ).) ounng Oaten KInetIc test
Time Cone.25mgIL Cone.50mgIL Cone. 125mgIL Cone.200mgIL
(hr) ql q2 q3 q4 q, q2 q3 q4 q, q2 q3 q4 q, q2 q3 q4

0.5 4.300 2.190 1.110 0.575 6.375 3.790 2.171 1.165 10.450 7.230 3.971 2.690 4.725 8.910 6.338 4.113
1 4.625 2.220 1.086 0.608 6.800 4.020 2.162 1.180 10.375 7.390 4.557 2.730 4.650 9.330 6.257 4.085
1.5 4.775 2.240 1.129 0.608 6.950 3.980 2.148 1.185 10.150 7.410 4.514 2.718 4.350 9.260 6.433 4.078
2 4.925 2.270 1.133 0.598 6.950 3.950 2.148 1.193 10.425 7.610 4.490 2.740 5.350 9.770 6.524 4.073
3 4.925 2.240 1.133 0.600 6.850 4.020 2.167 1.205 9.525 7.770 4.495 2.795 5.950 9.490 6.329 4.098
4 4.825 2.270 1.133 0.603 7.000 4.150 2.186 1.205 10.250 7.740 4.595 2.770 6.350 9.430 6.314 4.125
5 4.875 2.270 1.129 0.598 7.175 4.290 2.157 1.200 10.375 7.930 4.567 2.763 6.800 9.440 6.571 4.103
6 4.975 2.250 1.133 0.598 7.575 4.130 2.162 1.198 10.525 7.830 4.638 2.750 6.750 10.350 6.705 4.105
8 4.950 2.250 1.133 0.600 7.100 4.210 2.157 1.203 10.650 7.850 4.629 2.760 7.950 9.780 6.738 4.080
10 4.950 2.240 1.124 0.603 7.125 4.170 2.157 1.200 10.550 7.700 4.610 2.765 8.525 10.230 6.700 4.113
12 4.950 2.240 1.129 0.598 7.250 4.240 2.162 1.203 10.475 7.780 4.619 2.775 8.400 10.180 6.681 4.105
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Time Conc. 25 mgIL Conc. 50 mgIL Conc. 125 mgIL Conc. 200 mgIL
(hr) ql q2 q3 q4 q, q2 q3 q4 q, q2 q3 q4 q, q2 q3 q4

0.5 4.100 1.870 1.048 0.565 4.975 2.740 1.905 1.095 8.900 5.400 3.476 2.385 3.250 7.590 5.690 3.705
1 4.135 1.870 1.057 0.570 5.375 2.820 1.976 1.110 9.250 5.480 3.531 2.425 3.500 7.930 5.800 3.738
1.5 4.123 1.870 1.075 0.580 5.413 3.045 2.090 1.141 9.125 5.670 3.514 2.463 3.850 8.170 5.871 3.775
2 4.203 1.900 1.074 0.578 5.700 3.260 2.062 1.121 9.438 5.750 3.638 2.565 3.825 8.310 5.986 3.785
3 4.225 1.980 1.057 0.579 5.875 3.185 2.038 1.113 9.475 6.010 3.737 2.688 4.475 8.750 6.071 3.825
4 4.275 1.950 1.061 0.577 6.425 3.110 2.024 1.110 9.750 6.300 3.871 2.673 5.400 8.940 6.148 3.808
5 4.298 1.930 1.069 0.578 6.075 3.205 2.017 1.120 10.08 6.550 3.819 2.658 5.875 9.300 6.186 3.798
6 4.320 1.950 1.071 0.576 6.225 3.235 2.045 1.128 9.813 6.460 3.812 2.683 6.425 9.800 6.143 3.813
8 4.305 1.960 1.072 0.578 6.275 3.250 2.038 1.130 10.05 6.510 3.848 2.678 7.450 10.460 6.124 3.800
10 4.310 1.960 1.074 0.578 6.325 3.220 2.048 1.129 9.775 6.530 3.867 2.675 7.000 10.320 6.167 3.795
12 4.273 1.960 1.073 0.578 6.400 3.252 2.057 1.127 9.975 6.520 3.864 2.680 7.050 10.430 6.176 3.810

----- - ---------- -- ---- -~- -

Time Conc. 25 mgIL Conc. 50 mgIL Conc. 125 mglL Conc. 200 mglL
(hr) q, q2 q3 q4 q, q2 q3 q4 q, q2 q3 q4 q, q2 q3 q4

0.5 2.675 1.070 0.524 0.285 2.050 1.130 0.624 0.378 4.375 2.490 1.467 1.150 5.900 3.300 1.867 1.255
I 2.675 1.090 0.517 0.290 2.000 1.170 0.629 0.373 4.650 2.670 1.629 1.155 6.000 3.350 1.881 1.248
1.5 2.650 1.080 0.536 0.285 2.025 1.190 0.619 0.378 4.475 2.800 1.567 1.163 5.975 3.280 1.943 1.293
2 2.650 1.130 0.543 0.288 2.050 1.200 0.629 0.393 4.700 2.790 1.552 1.218 6.150 3.300 1.905 1.298
3 2.725 1.140 0.542 0.293 2.150 1.270 0.662 0.380 5.250 2.830 1.676 1.205 6.200 3.320 1.943 1.320
4 2.700 1.120 0.548 0.293 2.400 1.280 0.648 0.388 5.625 2.860 1.705 1.218 6.500 3.360 1.967 1.303
5 2.688 1.090 0.523 0.285 2.475 1.260 0.660 0.393 5.400 2.780 1.714 1.213 6.475 3.380 1.981 1.320
6 2.700 1.100 0.526 0.290 2.250 1.260 0.652 0.385 5.625 2.880 1.662 1.215 6.500 3.490 1.971 1.305
8 2.660 1.090 0.532 0.293 2.300 1.270 0.662 0.390 5.550 2.860 1.667 1.210 6.525 3.550 1.981 1.305
10 2.650 1.110 0.532 0.290 2.350 1.280 0.662 0.390 5.725 2.880 1.676 1.215 6.550 3.390 1.981 1.313
12 2.675 1.120 0.538 0.291 2.410 1.270 0.657 0.388 5.600 2.850 1.695 1.213 6.525 3.520 1.971 1.315



Time Cone. 25 mgIL Cone. 50 mgIL Cone. 125 mgIL Cone. 200 mglL
(hr) q, q2 q3 q4 ql q2 q3 q4 q, q2 q3 q4 q, q2 q3 q4

0.5 1.175 1.560 0.962 0.540 0.775 2.630 1.867 1.073 5.480 4.119 2.480 6.129 3.663
1 1.375 1.700 0.990 0.548 1.400 2.930 1.924 1.093 5.650 4.205 2.580 6.281 3.768
1.5 1.650 1.610 0.981 0.550 1.850 2.880 1.924 1.113 5.490 4.190 2.565 6.110 3.768
2 1.625 1.710 0.995 0.550 1.775 2.850 1.910 1.103 5.510 4.186 2.528 6.076 3.753
3 1.475 1.660 0.981 0.548 1.550 2.820 1.914 1.088 5.460 4.195 2.538 6.243 3.690
4 1.550 1.700 0.990 0.550 1.575 2.870 1.886 1.088 5.450 4.190 2.535 6.243 3.765
5 1.400 1.690 0.995 0.545 1.575 2.890 1.895 1.113 5.610 4.176 2.515 6.157 3.708
6 1.625 1.700 0.995 0.545 1.775 2.760 1.924 1.095 5.380 4.205 2.520 6.190 3.813
8 0.900 1.600 0.986 0.548 1.700 2.780 1.895 1.083 5.280 4.129 2.515 6.133 3.743
10 0.825 1.590 0.990 0.548 1.275 2.770 1.876 1.075 5.310 4.057 2.533 6.119 3.753
12 1.350 1.680 0.990 0.545 1.350 2.720 1.914 1.073 5.320 4.119 2.525 6.176 3.755

Time Cone. 25 mgIL Cone. 50 mgIL Cone. 125 mgIL Cone. 200 mg/L
(hr) q, q2 q3 q4 ql q2 q3 q4 q, q2 q3 q4 q, q2 q3 q4

0.5 4.150 2.06 1.071 0.575 4.925 3.550 2.038 1.123 8.500 5.750 4.214 2.573 6.033 3.620
1 4.200 2.100 1.095 0.585 5.225 3.640 2.076 1.148 8.925 6.070 4.462 2.640 6.233 3.823
1.5 4.275 2.120 1.071 0.585 5.675 3.660 2.057 1.135 8.900 6.170 4.343 2.595 6.157 3.788
2 4.175 2.100 1.095 0.583 5.475 3.630 2.076 1.143 9.000 6.400 4.405 2.613 6.229 3.818
3 4.200 2.100 1.081 0.585 5.600 3.650 2.067 1.143 9.100 6.260 4.414 2.630 6.229 3.815
4 4.175 2.120 1.095 0.585 5.375 3.620 2.067 1.140 9.025 6.200 4.433 2.633 6.181 3.783
5 4.250 2.090 1.086 0.580 5.175 3.670 2.052 1.136 9.375 6.190 4.433 2.628 6.195 3.770
6 4.150 2.100 1.078 0.575 5.300 3.580 2.071 1.123 8.975 6.240 4.424 2.603 6.171 3.765
8 4.100 2.110 1.086 0.578 5.525 3.640 2.064 1.134 9.425 6.260 4.448 2.603 6.224 3.773
10 4.275 2.110 1.084 0.575 5.550 3.620 2.070 1.140 9.225 6.220 4.429 2.630 6.205 3.768
12 4.250 2.100 1.09 0.580 5.425 3.640 2.071 1.144 9.275 6.330 4.443 2.635 6.224 3.780



-- ~~-~

Time Cone. 25 mgIL Cone.50mglL Cone. 125 mgIL Cone. 200 mgIL
(hr) q, q2 q3 q4 q, q2 q3 q4 q, q2 q3 q4 q, q2 q3 q4

0.5 4.550 2.110 1.087 0.579 6.000 3.940 2.157 1.174 10.650 7.430 4.476 2.753 31.250 13.060 6.924 4.205
1 4.600 2.140 1.108 0.586 6.225 4.043 2.231 1.196 12.200 8.395 4.792 2.894 33.355 14.020 7.171 4.486
1.5 4.713 2.180 1.104 0.595 6.925 4.175 2.219 1.194 12.050 8.150 4.690 2.848 33.050 13.700 7.055 4.368
2 4.683 2.170 1.103 0.594 6.450 4.137 2.205 1.193 11.850 8.100 4.677 2.845 32.875 13.650 7.048 4.350
3 4.675 2.160 1.107 0.591 6.775 4.126 2.212 1.192 11.975 8.018 4.700 2.859 32.868 13.690 7.064 4.367
4 4.663 2.160 1.107 0.592 6.900 4.151 2.220 1.191 11.875 8.183 4.714 2.855 33.160 13.800 7.081 4.385
5 4.688 2.170 1.108 0.593 6.800 4.151 2.229 1.193 11.928 8.200 4.738 2.868 33.100 13.780 7.105 4.403
6 4.703 2.180 1.108 0.593 6.725 4.167 2.230 1.195 11.913 8.179 4.747 2.891 33.213 13.850 7.112 4.446
8 4.698 2.180 1.106 0.594 6.725 4.164 2.228 1.195 12.040 8.220 4.767 2.892 33.295 13.980 7.138 4.463
10 4.705 2.180 1.107 0.595 6.825 4.172 2.226 1.194 12.148 8.275 4.782 2.894 33.350 14.020 7.152 4.478
12 4.710 2.180 1.107 0.595 6.875 4.174 2.229 1.195 12.188 8.290 4.790 2.893 33.313 13.990 7.167 4.486

Time Cone. 25 mgIL Cone. 50 mgIL Cone. 125 mgIL Cone. 200 mgIL
(hr) q, q2 q3 q4 q, q2 q3 q4 ql q2 q3 q4 ql q2 q3 q4

0.5 0.300 0.520 0.514 0.465 0.375 0.490 0.571 0.605 0.25 0.250 0.305 0.500 0.325 0.390 0.529 0.750
1 0.250 0.580 0.567 0.468 0.375 0.510 0.562 0.635 0.225 0.220 0.429 0.530 0.450 0.440 0.557 0.745
1.5 0.350 0.690 0.600 0.465 0.475 0.520 0.581 0.663 0.400 0.220 0.548 0.550 0.800 0.610 0.610 0.748
2 0.475 0.640 0.800 0.470 0.700 0.550 0.643 0.720 0.550 0.300 0.576 0.588 0.625 0.620 0.633 0.780
3 0.525 0.790 0.690 0.485 0.650 0.580 0.705 0.730 0.550 0.350 0.581 0.605 0.600 0.700 0.633 0.788
4 0.650 0.740 0.724 0.475 0.475 0.690 0.648 0.760 0.400 0.580 0.671 0.673 0.625 0.750 0.710 0.888
5 0.600 0.690 0.771 0.480 0.550 0.630 0.667 0.745 0.475 0.680 0.629 0.630 0.700 0.760 0.800 0.938
6 0.650 0.710 0.781 0.485 0.525 0.620 0.690 0.755 0.550 0.600 0.648 0.670 0.775 0.900 0.767 0.938
8 0.550 0.740 0.790 0.480 0.625 0.630 0.705 0.755 0.525 0.650 0.671 0.663 0.800 0.880 0.767 0.930
10 0.600 0.720 0.790 0.485 0.675 0.660 0.676 0.753 0.525 0.680 0.657 0.660 0.800 0.890 0.776 0.928
12 0.625 0.770 0.800 0.483 0.650 0.680 0.695 0.758 0.550 0.660 0.657 0.668 0.800 0.870 0.762 0.938
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Table Fl: Average final concentration of Ni2
+ measured during 24 hours Adsorption

lnitialNi
I pH I Cone. (mgIL)

200
125

10 I 50
25
12.5
200
125
50
25

12.5
200
125

5.5/ 50
25
12.5
200
125
50
25

12.5

Cone. (mgIL) at various peat doses (gIL)
2 10 21 40

173.6 I 165.8 I 157.8 I 146.9
102.5 I 96.2 I 89 I 76.3
34.0 31.0 26.0 22.0
14.2 14.3 14.2 14.1
11.1 I 11.0 I 10.3 I 9.8

171.8 I 126.4 I 59.8 I 50.8
71.9 I 63.3 I 27.0 I 24.0
24.2 I 20.0 I 8.3 I 6.9
9.2 I 7.5 I 3.0 I 2.5
3.9 I 2.5 I 1.25 I 0.9

169.4 I 94.8 I 39.3 I 24
50.0 I 40.3 I 18.5 I 11.2
16.0 12.5 12.0 6.0
5.3 2.0 0.7 0.4
3.8 I 1.2 I 0.5 I 0.3

127.1 I 67 I 32.9 I 18.4
54.6 I 29.6 I 16.2 I 7.4
9.8 I 4.3 I 2.0 I 1.0
1.1 I 0.5 I 0.2 I 0.1
0.9 I 0.4 I 0.2 I 0.1



Table F2": Average final concentration of Co2
+ measured during 24 hours Adsorption

lnitialNi Cone. (mgIL) at various peat doses (gIL)
pH Cone. (mg/L) 2 10 21 40

200 196.7 191 185.4 182
125 122.8 120.7 110.6 98.6

10 50 47.1 43.5 30.2 19.2
25 22.4 16.2 6.6 5.2

12.5 11.9 8.1 3.5 3.4
200 176.4 139.2 79 71.4
125 100.5 69 42.5 38.6

8 50 39.8 25.3 14.6 13.3
25 19.8 9.5 3.8 4.7

12.5 9.8 4.5 1.7 1.7
200 170.0 108.0 51.0 38.5
125 94.0 52.0 41.0 29.2

5.5 50 38.2 21.2 10.4 6.8
25 19.7 4.7 2.1 1.5

12.5 9.2 4.3 1.2 0.7
200 145 94.6 80.4 49
125 70.1 38.8 23.1 14.0

3 50 24.5 ILl 6.7 3.5
25 3.5 1.7 I) 0.7

12.5 2.5 1.2 0.5 0.2

206



Table F3: Competitive Sorption of Cd2
+, Co2

+, Ni2
+, Pb2

+ and Zn2
+ at pH 5.5

Peat dose Initial Cone. Final Cone. (mglL) Adsorbed metal, q (mg/g)
(giL) (mg/L) Cd Co Ni Pb Zn Cd Co Ni Pb Zn

200 196 198 189 6.8 197 I 0.5 2.75 48.3 0.75
100 91 97 76 2.5 98 2.25 0.75 6 24.375 0.5

2 50 27 36 26 0.5 30 5.75 3.5 6 12.375 5
25 8 11 8 0.1 10 4.25 3.5 4.25 6.225 3.75

12.5 1.6 2.9 2 0 2 2.725 2.4 2.625 3.125 2.625
200 181 188 166 3.6 185 1.9 1.2 3.4 19.64 1.5
100 53 66 46 0.7 61 4.7 3.4 5.4 9.93 3.9

10 50 14 19 14 0.2 17 3.6 3.1 3.6 4.98 3.3
25 3 5 3 0 4.2 2.2 2 2.2 2.5 2.08

12.5 0.6 1.3 0.9 0 1.1 1.19 1.12 1.16 1.25 1.14
200 117 134 89 1.3 125 3.952 3.143 5.286 9.462 3.571
100 26 38 22 0.5 32 3.524 2.952 3.714 4.738 3.238

21 50 6 9 6 0.2 7.2 2.095 1.952 2.095 2.371 2.038
25 1.2 2 1.5 0 1.7 1.133 1.095 1.119 1.190 1.110

12.5 0.3 0.7 0.4 0 0.5 0.581 0.562 0.576 0.595 0.571
200 69 84 49 0.8 75 3.275 2.900 3.775 4.980 3.125
100 15 19 12 0.5 16.4 2.125 2.025 2.200 2.488 2.090

40 50 8 11 8 0.1 9.6 1.050 0.975 1.050 1.248 1.010
25 0.7 1.3 0.8 0 1.1 0.608 0.593 0.605 0.625 0.598

12.5 0.2 0.4 0.3 0 0.3 0.308 0.303 0.305 0.313 0.305



Appendix G
Table G 1: Initial Ni2

+ adsorbed and percent desorbed after HCI was added at various peat doses

pH Ci Cadsorbed (mgIL) HCI % of Cdesorbed at 2 gIL peat dose % of Cdesorbed at 10 gIL peat dose
(mg/L) 2g/L IOg/l 21g/L 40g/ L (M) C, C2 C3 C4 Cs C t C2 C3 C4 Cs

12.5 0.6 4.4 9 9.1 0.1 17.2 23 42.7 55 68 28.4 31.8 48.1 71.4 73.8
25 2.6 8.8 18.4 19.8 0.2 21 28.4 49.5 63.5 74.5 35.6 39.3 55.6 75 77.2

10 50 2.9 6.5 19.8 30.8 0.5 30.5 34.8 56.7 78 83.7 39 44.6 72 80.3 80.4
125 2.2 4.3 14.4 26.4 1 36.2 40.7 66 82 84.5 46.7 51 74.5 85.8 88.8
200 3.3 9 14.6 18 2 42.6 50 72 82.8 85.2 50.1 55 74.8 86.1 90
12.5 2.7 8 10.8 10.8 0.1 12.9 16 37.3 43.7 49.1 12.5 25 50 125 200
25 5.2 15.5 21.2 20.3 0.2 17.5 21.7 42 48.5 53.7 16.8 19.7 41 48.2 52.1

8 50 10.2 24.7 35.6 36.7 0.5 20.2 32.4 46.8 57.5 60.2 21.7 24.9 45.4 53.5 58.6
125 24.5 56 82.5 86.4 1 27.6 35.5 53.8 63.8 68.5 29.5 36.2 50.6 62.8 69.7
200 24.6 60.8 121 128.6 2 31.3 40.8 60.5 69.1 75 35 41.8 56.9 67.1 73.9
12.5 3.3 8.2 11.3 11.8 0.1 4 9.5 13.8 15.8 17.5 12.6 16.3 23.4 26.4 28.5
25 5.3 20.3 22.9 23.5 0.2 7.4 14.7 17.2 20.5 21.2 17.2 20.5 28.6 29.7 30.3

5.5 50 11.8 28.8 39.6 43.2 0.5 11.5 17.4 21.2 23.1 27.3 22 27.4 33.9 36.3 36.7
125 31 73 80 95.8 I 14.2 19.3 24.5 26 29.1 29.4 31.5 36.4 38.4 40.1
200 30 92 149 161.5 2 17.3 21.8 27.5 29.1 32.4 35 38.2 40.5 42.1 44.6

where Cl, C2, C3, C4 and C5 are the metal concentrations at 12.5,25,50,125 and 200 mgIL respectively.



Table GI (contd).

pH Ci Cadsorbed (mgIL) HCI % of Cdesorbed at 21 gIL peat dose % of Cdesorbed at 40 gIL peat dose
(mg/l) 2g/l 109/L 21g/l40g/ I (M) C1 C2 C3 C4 Cs C 1 C2 C3 C4 Cs

12.5 0.6 4.4 9 9.1 0.1 50.4 56.2 64 70.6 50.4 60.1 63.8 68.6 74 77.3
25 2.6 8.8 18.4 19.8 0.2 68.7 73.7 77.8 79.2 68.7 69.6 75.5 79.9 83.7 86.5

10 50 2.9 6.5 19.8 30.8 0.5 75.3 79.5 85.4 87.1 75.3 78.5 81 87.2 90.5 93.5
125 2.2 4.3 14.4 26.4 1 80 87 89.2 92.4 80 82.4 88.6 94.2 95.4 96.9
200 3.3 9 14.6 18 2 84.7 89.5 94.1 95.8 84.7 87 92 96.1 96.8 97.5
12.5 2.7 8 10.8 10.8 0.1 43.6 47 52.4 60.6 62.1 48.9 51.6 56.5 63.7 66.5
25 5.2 15.5 21.2 20.3 0.2 51.8 54.2 58.1 65.7 68.7 54.3 59.5 63.1 68.5 74.2

8 50 10.2 24.7 35.6 36.7 0.5 62.3 65.4 69.7 74.5 76.9 64.5 67.6 70.4 78.9 80.7
125 24.5 56 82.5 86.4 I 67.1 70.5 73.5 77.5 82.6 68.5 71.2 75.8 80.6 84
200 24.6 60.8 121 128.6 2 70.2 76.8 79.1 84.8 87 73.2 78.7 82.5 85.1 88.2
12.5 3.3 8.2 11.3 11.8 0.1 28.1 30.5 33.9 32.4 36.5 35.7 38 40.1 42.7 44.8
25 5.3 20.3 22.9 23.5 0.2 32.4 35.7 37.5 38.5 40.5 39.4 42.9 43.5 46.5 47.3

5.5 50 11.8 28.8 39.6 43.2 0.5 37.6 39.1 40.2 42.8 46.7 42.5 46.1 46.9 48.2 49.4
125 31 73 80 95.8 1 40.2 42.3 44.6 46.5 48.1 45.8 47.5 49.4 50.7 51
200 30 92 149 161.5 2 45.2 47.7 49.5 50.1 51 50.4 52.4 53.6 54.5 55.2

where C1, C2, C3, C4 and Cs are the metal concentrations at 12.5,25,50, 125 and 200 mgIL respectively.



Table G2: Initial Co2
+ adsorbed and percent desorbed after HCI was added at various peat doses

pH Ci Cadsorbed(mglL) HCI % of Cdesorbed at 2 gIL peat dose % of Cdesorbed at 10 giL peat dose
(mg/l) 2g/l lOgIL 21gIL 40gl L (M) C1 C2 C3 C4 Cs C1 C2 C3 C4 Cs

12.5 0.6 4.4 9 I 9.1 0.1 14.3 I 18.2 I 21 I 27.3 I 29.5 19 123.1 129.9 I 35.8 I 45
25 2.6 8.8 18.4 I 19.8 0.2 17.5 I 20.8 I 24.5 I 29.1 I 33.9 22.5 I 29.2 I 34.6 I 39.4 I 48.5

10 50 2.9 6.5 19.8 I 30.8 0.5 20.1 123.7 128.4 I 33.8 I 37.1 27.3 133.7 I 39.1 143.5 I 55
125 2.2 4.3 14.4 I 26.4 1 24.3 I 29 I 31.8 I 38.4 I 42.3 29.5 I 38.4 I 43.5 I 53 I 60.3
200 3.3 9 14.6 I 18 2 28.5 I 32.5 I 35.1 I 45.6 I 48.5 34.2 I 45.7 I 52.1 I 61.2 I 67

Cj Cadsorbed (mgIL) HCI % of Cdesorbed at 21 gIL peat dose % of Cdesorbed at 40 gIL peat dose
(mg/l) 2gj 10 IL 21g/l40GJL (M) C1 C2 C3 C4 Cs C1 C2 C3 C4 Cs

12.5 0.6 4.4 9 I 9.1 0.1 31.8 I 39.2 I 44.5 I 49 I 52.3 38.5 I 43.8 I 49.6 I 54.2 I 58.5
25 2.6 8.8 18.4 I 19.8 0.2 38.5 I 43.6 I 49.2 I 55.2 I 58.5 42.8 I 50.1 I 55.4 I 59.2 I 63

10 50 2.9 6.5 19.8 I 30.8 0.5 44.9 I 48.5 I 56.3 I 63.9 I 68.3 50.6 I 62.5 I 66.7 I 65.4 I 69.1
125 2.2 4.3 14.4 I 26.4 1 51.7 157.3 164.3 I 68.1 172.3 61.7 167.2 I 71 172.5 175.7
200 3.3 9 14.6 I 18 2 60.4 I 66 170.1 173.4 I 75.8 67.1 170.9 I 77.3 I 80.1 183.5

where C1, C2, C3, C4 and Cs are the metal concentrations at 12.5,25,50, 125 and 200 mgIL respectively.



AppendixH

Table HI: Average column effluent concentrations at flow rate 1.0 Uh for the determination of Ni2
+ breakthrough point.

Vol.(L) C(m /L) CICo Vol.(L) C (mg/L) CICo Vol.(L) C (mg/L) CICo Vol.(L) C (mg/L) CICo
I 4.37 0.0437 28 29.19 0.2919 55 34.58 0.3458 82 41.95 0.4195
2 8.71 0.0871 29 26.4 0.264 56 34.85 0.3485 83 36.42 0.3642
3 13.45 0.1345 30 29.49 0.2949 57 35.5 0.355 84 39.24 0.3924
4 16.32 0.1632 31 29.48 0.2948 58 35.13 0.3513 85 38.88 0.3888
5 18.51 0.1851 32 29.87 0.2987 59 33.29 0.3329 86 36.76 0.3676
6 20.25 0.2025 33 31.95 0.3195 60 33.62 0.3362 87 38.48 0.3848
7 23.31 0.2331 34 33.31 0.3331 61 34.71 0.3471 88 38.2 0.382
8 24.08 0.2408 35 33.55 0.3355 62 35.92 0.3592 89 39.19 0.3919
9 25.39 0.2539 36 36.88 0.3688 63 35.54 0.3554 90 39.39 0.3939
10 26.79 0.2679 37 34.13 0.3413 64 33.1 0.331 91 38.11 0.3811
11 17.81 0.1781 38 33.05 0.3305 65 33.77 0.3377 92 38.23 0.3823
12 19.69 0.1969 39 30.85 0.3085 66 35.74 0.3574 93 44.16 0.4416
13 22 0.22 40 34.72 0.3472 67 34.37 0.3437 94 43.07 0.4307
14 23.89 0.2389 41 36.12 0.3612 68 36.01 0.3601 95 42.1 0.421
15 25.34 0.2534 42 33.23 0.3323 69 35.08 0.3508 96 42.93 0.4293
16 25.63 0.2563 43 31.47 0.3147 70 36.07 0.3607 97 43.89 0.4389
17 25.52 0.2552 44 34.98 0.3498 71 36.86 0.3686 98 45.19 0.4519
18 26.46 0.2646 45 31.75 0.3175 72 37.68 0.3768 99 44.41 0.4441
19 27.61 0.2761 46 35.65 0.3565 73 36.15 0.3615 100 47.78 0.4778
20 24.22 0.2422 47 36.57 0.3657 74 35.87 0.3587 101 44.91 0.4491
21 22.24 0.2224 48 33.54 0.3354 75 37.29 0.3729 102 40.78 0.4078
22 23.79 0.2379 49 29.61 0.2961 76 36.26 0.3626 103 40.01 0.4001
23 24.92 0.2492 50 34.27 0.3427 77 39.1 0.391 104 40.51 0.4051
24 24.4 0.244 51 35.37 0.3537 78 40.25 0.4025 105 42.04 0.4204
25 27.35 0.2735 52 35.78 0.3578 79 4 \.4 0.414 106 41.62 0.4162
26 28.46 0.2846 53 35.14 0.3514 80 38.84 0.3884 107 40.44 0.4044
27 30.63 0.3063 54 36.13 0.3613 81 39.04 0.3904 108 40.1 0.401



Table HI (contd.)
Vol.(L) C (mg/L) CICo Vol.(L) C(mg/L) CICo

109 43.51 0.4351 136 44.2 0.442
110 42.5 0.425 137 40.8 0.408
111 43.47 0.4347 138 40.7 0.407
112 43.48 0.4348 139 42.7 0.427
113 42.8 0.428 140 39.2 0.392
114 42.46 0.4246 141 42.5 0.425
115 45.5 0.455 142 41.2 0.412
116 42.8 0.428 143 52.8 0.528
117 44.2 0.442 144 51.8 0.518
118 42.1 0.421 145 48.6 0.486
119 40.3 0.403 146 50.5 0.505
120 41.3 0.413 147 49.05 0.4905
121 40.5 0.405 148 49.43 0.4943
122 44 0.44 149 51.53 0.5153
123 40.5 0.405 150 49.78 0.4978
124 39.1 0.391 151 48.27 0.4827
125 38.2 0.382 152 49.03 0.4903
126 41.6 0.416 153 50.8 0.508
127 41.7 0.417 154 51.84 0.5184
128 42.8 0.428 155 53.8 0.538
129 39.2 0.392 156 53.4 0.534
130 40.5 0.405
131 42.9 0.429
132 42 0.42
133 39.1 0.391
134 41.1 0.411
135 51.4 0.514



Table H2: Average column effluent concentrations at flow rate 2.0 L/h for the determination of Ni2
+ breakthrough point.

Vol.(L) C (mgIL) C/Co Vol.(L) C (mgIL) C/Co Vol.(L) C (mgIL) C/Co
0 0 0 28 13.2 0.132 56 39.1 0.391
1 5.7 0.057 29 13.7 0.137 57 42.3 0.423
2 6.1 0.061 30 13.7 0.137 58 42.1 0.421
3 5.9 0.059 31 15.6 0.156 59 42.6 0.426
4 5.8 0.058 32 15.9 0.159 60 45.8 0.458
5 6.6 0.066 33 16.3 0.163 61 47.5 0.475
6 6.9 0.069 34 16.5 0.165 62 49.2 0.492
7 7.5 0.Q75 35 16.9 0.169 63 50.2 0.502
8 6.8 0.068 36 15.4 0.154 64 50.7 0.507
9 6.8 0.068 37 15.4 0.154 65 51.4 0.514

10 7.3 0.073 38 15.7 0.157
11 7.8 0.078 39 15.9 0.159
12 8.6 0.086 40 15.9 0.159
13 7.9 0.079 41 17.4 0.174
14 7.8 0.078 42 17.9 0.179
15 7.6 0.076 43 19.6 0.196
16 8.8 0.088 44 21.8 0.218
17 9.4 0.094 45 23.1 0.231
18 9.1 0.091 46 25.6 0.256
19 10.3 0.103 47 25.4 0.254
20 10.6 0.106 48 25.1 0.251
21 11.7 0.117 49 28.6 0.286
22 10.5 0.105 50 29.1 0.291
23 10.4 0.104 51 30.5 0.305
24 10.7 0.107 52 31.8 0.318
25 11.5 0.115 53 33.5 0.335
26 11.8 0.118 54 35.7 0.357
27 12.6 0.126 55 37.9 0.379

213



Table H3: Average column effluent concentrations at flow rate 1.0 L/h

for the determination of Co2
+ breakthrough point.

Vol.(L) C(mg/l) CICo Vol.(L) C (mg/L) CICo
0 0 0 28 28.4 0.284
1 1.6 0.016 29 29.7 0.297
2 1.9 0.019 30 32.7 0.327
3 2.3 0.023 31 33.5 0.335
4 3.2 0.032 32 34.8 0.348
5 4.1 0.041 33 35.4 0.354
6 5.7 0.057 34 40 0.4
7 6.3 0.063 35 40.4 0.404
8 7.1 0.071 36 41.4 0.414
9 7.9 0.079 37 43.7 0.437

10 9.8 0.098 38 44.3 0.443
11 10.3 0.103 39 45.9 0.459
12 10.9 0.109 40 46.2 0.462
13 11.4 0.114 41 46.8 0.468
14 13.5 0.135 42 47.5 0.475
15 14.7 0.147 43 47.8 0.478
16 14.9 0.149 44 48.4 0.484
17 15.6 0.156 45 48.9 0.489
18 15.9 0.159 46 49.5 0.495
19 16.1 0.161 47 49.7 0.497
20 18.6 0.186 48 50.6 0.506
21 19.3 0.193 49 51.1 0.511
22 21.2 0.212 50 51.7 0.517
23 22.8 0.228 51 52.8 0.528
24 24.5 0.245 52 54.3 0.543
25 26.1 0.261 53 55.8 0.558
26 26.8 0.268 54 59.2 0.592
27 27.9 0.279



Table H4: Average column effluent concentrations at flow rate 2.0 L/h
for the determination of Co2

+ breakthrough point (contd.)

Vol.(L) C(mg/l) C/Co
0 0 0
1 0.91 0.0091
2 1.8 0.018
3 2.6 0.026
4 2.9 0.029
5 3.5 0.035
6 4.2 0.042
7 5.4 0.054
8 5.7 0.057
9 6.3 0.063
10 9.1 0.091
11 9.4 0.094
12 9.1 0.091
13 11.8 0.118
14 13.7 0.137
15 16.3 0.163
16 18.6 0.186
17 21.5 0.215
18 21.8 0.218
19 25.9 0.259
20 34.1 0.341
21 35.3 0.353
22 41.4 0.414
23 47.1 0.471
24 48.5 0.485
25 50.6 0.506
26 51.5 0.515



Appendix I
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Plot II & 12: Breakthrough curves for Ni adsorption at pH 5.5, conc., 100 mglL, 22°C and at a flow rate of 1.0 & 2.0 L/h.
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Plot 13 & 14: Breakthrough curves for Co adsorption at pH 5.5, conc., 100 mgIL, 22°C and at a flow rate of 1.0 & 2.0 L/h.



Appendix J

Table J: Ratios of metal concentration to initial influent concentration at specified column depth

Column Height, I Ni Cone. Co Cone. CICo-Ni CICo-Co

H (em) (mg/L) (mglL)

0
I

25.85 24.78 0.2585 0.2478

22.4 19.97 0.224 0.1997

21.7 19.63 0.217 0.1963

21.2 19.52 0.212 0.1952

21 19.35 0.21 0.1935

10 T 19.08 18.44 0.1908 0.1844

12 18.34 17.05 0.1834 0.1705
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AppendixL

0.5 24.9 49.7 125 200 25.1 50 125 200
1 25.1 50 125 200 25.1 49.7 125 200

1.5 25.1 50 124.8 200 25 50 125 200
2 25 50 124.8 200 24.9 50 124.8 200
3 24.9 50 125 200 24.8 49.5 125 200
4 25 49.5 124.9 200 25 50.1 125 200
5 25 50 124.9 200 25 50 125.8 200
6 24.8 50 125 200 25 50 125 200
8 25 50 125 200 25.1 50 125 200
10 24.9 50 125 200 25 49.5 125 200
12 25 50 125 200 25 50.1 125 200

125 124.9 124.8
50 49.8 50
25 24.8 25.1

12.5 12.6 12.6
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