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ABSTRACT 

Research has shown that local fatigue occurring in an exercised limb can result in force 

loss in the same muscle of the non-exercised limb. This proposed cross-over effect of 

fatigue has been identified in muscles of the upper and lower limb and also in muscles 

that are not directly related to the fatigue (i.e. right quadriceps femoris fatigued and 

effects are noted in left and right biceps brachii and dorsal interosseous muscle). Studies 

published to date have also examined the effects of age and gender on cross-over fatigue. 

Not all studies, however, have confirmed the existence of cross-over fatigue in the non­

exercised limb. The discrepancy in results (i.e. some studies finding cross-over fatigue 

and others not) may be attributed to the variety of outcome measures examined, the 

intensity at which the fatiguing contractions were performed, the type of fatiguing task 

and the specific muscle studied. 

So far most studies have examined strength deficits created by this cross-over 

fatigue. Little attention has been paid to the effect of this type of fatigue on the body's 

ability to control movement. To the best of our knowledge there is only one study which 

has examined the effects of cross-over fatigue on balance. These researchers fatigued the 

quadriceps femoris on one side and measured balance of the non-fatigued leg during 

single leg standing pre- and post-fatigue protocol. Their study showed that balance, while 

standing on the non-exercised leg, was disturbed after the fatiguing protocol. At present it 

remains unknown whether these changes in non-exercised limb balance were due to the 

alterations in quadriceps femoris function or whether the fatigue affected the activation 

patterns and force production of other lower limb muscles. Based on this unanswered 

question this thesis aimed to replicate the previous balance related fatigue research, while 

adding a full analysis of lower limb muscle activity to assess how knee extensors fatigue 

on one side affected the non-exercised leg standing balance and muscle activation 
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patterns. The fatigue protocol incorporated 15 consecutive isometric contractions of 16 

sec each, which were performed at 30% peak force for the dominant knee extensors. The 

experimental protocol consisted of pre-fatigue balance trials, warm-up exercises, 

maximum voluntary isometric contractions, fatigue protocol, and post-fatigue balance 

trials. The pre- and post-fatigue balance trials consisted of transition from double to single 

leg standing and single leg standing trials. The study found no cross-over fatigue effects 

and it is hypothesized that the intensity and the duration of the fatigue protocol 

incorporated in the present study might have accounted for the lack of cross-over fatigue 

effects. 
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1.0 Overview 

There are a variety of factors which are known to influence the ability of humans to 

generate purposeful, effective and efficient movements. These factors include attention, 

degree of proficiency with the motor skill, strength, endurance, flexibility, accuracy, 

speed and adaptability (Allen, 2007). In addition to these factors, fatigue has also been 

shown to affect the ability to perform motor tasks. As a consequence of fatigue, muscle 

properties such as action potential propagation, extracellular and intracellular ions and 

numerous intracellular metabolites may be affected (Allen et al., 1995). Additionally, a 

reduction in shortening velocity, slowing in the time course of relaxation (Fitt, 1994 and 

Allen et al., 1995) and reduction in force have been observed (Martin and Rattey, 2007). 

The decline in performance associated with muscular fatigue can be attributed to both 

peripheral (muscular) (Gandevia, 200 I and Taylor et al., 2000) and central (neural) 

factors (Boyas et al., 20 II). Fatigue can also be either global or localized. The marathon 

runner at the end of a race will have full body fatigue while a person who has just 

completed a set of 20 repetitions of biceps curls will experience fatigue isolated primarily 

in the elbow flexors. In the case of a localized muscle, the effects of fatigue are easily 

recognized. The individual will experience a loss of force, typically indicated by a 

decrease in maximum voluntary isometric contraction (MVIC) (Bigland et al., 1995). In 

addition to this localized effects of fatigue, research has also shown that local fatigue 

occurring in one limb can result in a decrement in force production in the same muscle of 

the other non-fatigued side (Post et al., 2008). 

This presence of cross-over fatigue has been identified in intrinsic hand muscles, 

(Zijdewind and Kernell, 2001), elbow flexors (Todd et al., 2003) and quadriceps femoris 

(Rattey et al., 2006, Mclean and Samorezov 2009 and Paillard et al., 201 0). Studies 

published to date have also examined the effects of gender (Martin and Rattey, 2007) and 
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2.0 What is fatigue? 

Fatigue has been characterized in a variety of ways based on the task. Fatigue is 

sometimes described as an external measurable impairment in force, torque, power, or 

performance (Behm, 2004). Fatigue may be caused by frequent and persistent high 

intensity or maximal contractions and has been defined as a momentary drop off in 

functioning ability (Asmussen and Mazin, 1978), or a decline in the force generating 

capability of the muscle (Degens and Veerkamp, 1994). On the other hand, during 

prolonged contractions of submaximal intensity, fatigue may be observed as an 

augmentation in the apparent effort required to maintain the desired force (Enoka and 

Stuart, 1992). Regardless of its cause the effects of fatigue are well documented. Deficits 

in force production in the fatigued muscle (Degens and Veerkamp, 1994), decreased 

power (Behm, 2004), decreased firing frequency of the motorneurons (Bigland et al., 

1983) and decreased muscle activity (Zijdewind et al., 1998) have been reported. Fatigue 

has also been shown to have negative effects on balance and stability (Paillard et al., 

(20 1 0) and Paillard, 20 12) indicating that fatigue can impact performance well beyond 

the specific or individual fatigued muscle. Fatigue is recognized to occur either in the 

periphery (i.e. distal to the neuromuscular junction) or centrally (spinal cord and brain). 

2.1 Peripheral fatigue 

Peripheral fatigue has been described as a task-dependent, exercise-induced attenuation in 

one's capability of producing the intended force (Bigland et al., 1995 and Gandevia et al., 

1995). As described by Gandevia (200 I), during motion the primary motor cortex causes 

an activation of the muscles via excitation of the motorneurons in the spinal cord. The 

axon of the motorneurons in the spinal cord, carry the action potentials to the 
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neuromuscular junction and then further transmission of action potentials to the muscle 

occur, leading to the muscle contraction. This contraction requires both mechanical and 

metabolic changes at the muscle level. Peripheral fatigue is thought to result due to these 

metabolic changes. Specifically a rise in inorganic phosphate (Pi) and a decrease in Ca2+ 

concentration have been found to play a role in decreasing the force capacity of the 

myofibril during fatigue (Boyas and Guevel, 20 II). An increase in the amount of Pi has 

been shown to effect the force generating capacity of the myofibrils by affecting the 

sensitivity of myofibrils to calcium ion (Ca2+) and thus affecting the cross-bridges 

(Westerblad et at., 2002). Also, the increase in Pi might affect the cycles involved in 

contraction-relaxation mechanism (coupling mechanism) (McLester, 1997), thus further 

contributing to fatigue. In addition to changes in Pi concentration, the decrease in force 

production during prolonged contractions is also due in part to a decrease in the 

concentration ofCa2+ (Vander Laarse et at., 1991). A muscle action potential travelling 

across to the t-tubule and then to the sarcolemma is required for the release of Ca2+ from 

the sarcoplasmic reticulum. In order for action potential propagation to continue a 

constant supply of energy from the hydrolysis of adenosine triphosphate (A TP) is 

required from the ATP driven Na+/K+ pump. As a result, a decline in the concentration of 

A TP during prolonged activity/fatigue may affect the activity of Na + /K+ pump and may 

alter the propagation of action potential, which will further affect the release of Ca2+ 

(Leppik et at. , 2004). 

Along with the amount ofCa2+, the muscles' blood supply also plays an important 

role in regulating the force output (Sahlin et at., 1998). Blood supply is important because 

it ensures the muscle will get the required substrates and also help rid the muscle of waste 

metabolites. During contractions, however, blood vessels are compressed and as a result, 

muscles can sometimes become ischemic during isometric contraction. This may further 
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result in inadequate supply of oxygen and may even encourage more anaerobic pathways. 

Also, the inadequate supply of blood will result in the accumulation of metabolites such 

as Pi and H+ (responsible for the drop in force generating capacity) (Sjogaard et al., 

1988). 

2.2 Central fatigue 

The factors described above are all thought to contribute directly to the occurrence of 

peripheral fatigue. On the other hand, central fatigue occurs due to events occurring 

proximal to the peripheral nerve. Central fatigue has been defined as an exercise-induced 

attenuation in the ability of the CNS to drive muscle maximally or can be characterised as 

a decline in the level of voluntary activation (VA) of a muscle (Taylor et al., 2006). The 

decrease in VA observed with central fatigue can involve any or all of the spinal and 

supraspinal mechanisms responsible for force production. As fatigue can occur due to the 

changes occurring either at the spinal cord or supraspinal levels, it is necessary to 

understand the adaptations that occur at these levels during fatigue. 

Supraspinal fatigue has been identified by using transcranial magnetic stimulation 

(Sacco et al., 2000) and has been reported to be responsible for about 20-25% of the 

decrement in force with fatigue (Taylor et al., 2006). This force decrement might occur 

because of reduced excitatory signals provided by the motor cortex during prolonged 

exercise (Boyas and Guevel, 2011). The amount of brain neurotransmitters has also been 

associated with the decrease in excitation of the corticospinal descending tract. Increased 

concentration of certain brain neurotransmitters such as tryptophan (Newsholme and 

Blomstrand, 1995), y- aminobutyric acid (GABA) (Tergau et al., 2000), acetylcholine 

(Conlay et al., 1992) and adenosine (Davis et al., 2003) during exercise have been found 

to affect supraspinal functioning, by decreasing the recruitment of motor units and further 
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resulting in central fatigue. The concentration of neurotransmitters and the muscle's force 

production ability have also been reported to decrease the activity of muscle afferents 

during fatiguing contraction, thus further leading to a decrease in cortical activity 

(supraspinal inhibition) (Gandevia, 2001). 

In addition to possible supraspinal contributions to central fatigue, events 

occurring in the spinal cord can also contribute. There are five main factors hypothesized 

to be involved when fatigue occurs at the spinal level - motorneuron firing rate, small 

diameter muscle afferents (group III and IV), reflex induced muscle stiffness, feedback 

about intramuscular tension and renshaw cell inhibition (Gandevia, 200 I ; Boyas and 

Guevel, 2011 ). The details of the mechanisms surrounding each of these spinally linked 

mechanisms of central fatigue are beyond the scope of this review. The reader is directed 

to the review by Gandevia (2001) for details. 

Clearly the reduction in force production observed during fatigue is a multi­

factorial process. In all likelihood the occurrence of fatigue may involve both peripheral 

and central factors. The discussion above has focused on factors underlying the 

occurrence of local fatigue (i.e. prolonged quadriceps femoris contractions induces 

quadriceps femoris fatigue). In addition to this local fatigue, global effects of fatigue have 

also been observed. In the case of local muscle fatigue, one of the most common global 

effects is cross-over fatigue. 

2.3 Cross-over fatigue 

Cross-over fatigue results in a decrease in force production of the homologous muscle of 

the non-fatigued limb (Todd et al., 2003). Commonly it occurs involuntarily and in many 

cases goes unnoticed by an individual. Research examining cross-over fatigue has 
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examined its existence in upper and lower limbs, as well as attempted to quantify the time 

course of the muscle force deficits. Although inconclusive, there is some evidence to 

suggest that unilateral fatigue of lower limb muscles can negatively impact upper limb 

function (Takahashi et al., 2011) and vice-versa (Kennedy et al., 2013). This review will 

focus only on fatigue that crosses from lower limb to lower limb or upper limb to upper 

limb - the reader is referred to (Takahashi et al., 2011 and Kennedy et al., 20 13) for 

details of cross-over fatigue that occurs between upper and lower limbs. 

2.3.1 Upper limb cross-over fatigue 

Only a few studies have focused on the effect of cross-over fatigue in the forearm flexors 

and intrinsic hand muscles (Todd et al., 2003; Post et al., 2008 and Zijdewind et al., 

1998). Todd et al. (2003) examined the effect of a contralateral contraction on maximal 

voluntary activation and central fatigue for the elbow flexors using both alternating and 

unilateral intermittent muscle contractions. Their study demonstrated a 2.9% cross-over 

effect of central fatigue between limbs when four 1-min sustained maximum voluntary 

isometric contraction (MVJCs) of the elbow flexors alternating between the left and right 

arms were performed. However, the unilateral intermittent contractions produced no 

cross-over fatigue. Post et al. (2008) observed an average decrease of 10% MVIC in the 

first dorsal interosseous muscle of the non-exercising hand, in a group of men and women 

after two different fatiguing protocols. These fatiguing protocols consisted of either two 

minutes of sustained MVIC or a submaximal intermittent exercise performed at 30% of 

MVIC, both of which were maintained until exhaustion. Their results suggested that 

maximal effort contraction may lead to a more marked decline in VA. They concluded 

that the central fatigue generated during a single-sided upper arm task was strong enough 

to decrease the force output in the non-exercised arm. Zijdewind et al. ( 1998) used 30% 
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MVIC contractions to fatigue the first dorsal interossei. Only minor cross-over effects of 

fatigue were found for the homologous contralateral muscle. From the aforementioned 

literature, it is clear that there is a disparity in the consistency of cross-over fatigue effects 

in the upper limb. Thus, further research is needed to illuminate this phenomena. 

2.3.2 Lower limb cross-over fatigue 

Evidence of cross-over fatigue in the lower limb has been reported (Rattey et al., 2006; 

Martin and Rattey, 2007; McLean and Samorezov, 2009; Berger et al., 20 I 0 and Paillard 

et al., 20 I 0). The study by Rattey et al. (2006) analysed the effect of unilateral voluntary 

muscular fatigue of quadriceps femoris on the contralateral limb. They found the force 

generating and peripheral parameters of fatigue (M-wave properties and the twitch 

torque) were unchanged for the non-exercised leg (MVIC was decreased but not 

significantly). Despite the lack of change in force, the VA and integrated 

electromyography of the quadriceps femoris were found to have dec! ined significantly in 

the non-exercised leg after unilateral fatigue. Rattey et al. (2006) suggested that the 

central fatigue might have crossed to the non-exercised side, but did not disturb force 

generating ability. They concluded that the decrease in the maximum voluntary force in 

the fatigued limb may have been a combination of both periphera l and central changes, 

but on the non-exercised side it was just the central changes that contributed to the 

decrease. The other study by Martin and Rattey (2007) showed a significant average 

decrease in non-fatigued quadriceps femoris activation of about 9% in men and 3% in 

women after a I 00-second sustained maximal isometric knee extension. 

In addition to research that has identified cross-over fatigue, some research in this 

area has been unable to confirm the existence of such fatigue. For example Grabiner and 

Owings (1999) studied the effects of eccentrically and concentrically induced unilateral 
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fatigue of knee extensor on the fatigued and the non-fatigued limbs. Their study found the 

concentric MVIC force on the non-fatigued side did not change after the concentric 

fatigue protocol. When eccentric fatiguing contractions were performed, however, 

eccentric MVIC force on the non-fatigued side actually increased. The study suggested 

that the eccentric MVICs may be resistant to fatigue although further research is needed 

to confirm this. Regueme et al. (2007) studied a unilateral exhaustive rebound exercise 

incorporating calf muscles on a sledge apparatus. The study was unable to find the 

existence of cross-over effects after the exhaustive stretch-shortening type exercise. 

Similarly Elmer et al. (20 13) concluded that high-intensity single-leg cycling did not 

compromise maximum cycling power for the contralateral limb and as well as for the 

maximum isometric handgrip force. Studies conducted by McLean and Samorezov, 2009; 

Berger et al., 20 10 and Pai liard et al., 201 0 have also found evidence of cross-over fatigue 

in the form of disturbances in posture. The reader is referred to the posture section for 

more details on these studies. 

Based on the literature the existence of cross-over fatigue can not be definetively 

confirmed. There have been a number of studies that have found evidence of its 

occurence and others that have been unable to quantify any effects. The discrepancies in 

the literature can likely be explained by the variety of outcome measures examined, the 

type of fatiguing task incorporated, the intensity and the duration at which the fatiguing 

contractions were performed, and the specific muscle investigated (Enoka and Stuart, 

1992, Zijdewind 1998; Rattey et al., 2006; Martin and Rattey, 2007; Paillard et al., 2010 

and Elmer et al., 20 13). Thus, more research is required in this area to better understand 

the mechanisms or factors responsible for causing such discrepancies. 
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2.3.3 Gender and cross-over fatigue 

One of the reasons for the lack of consistency in research investigating cross-over fatigue 

may lie in the fact that there appears to be an effect of gender. Martin and Rattey (2007) 

have reported gender differences with respect to cross-over fatigue. After the sustained 

contractions of the dominant leg, Martin and Rattey (2007) reported that men experienced 

a greater decrement in voluntary force during fatigue (about 13%, compared to 8% in 

women) in the non-fatigued leg. Also greater deficits in non-fatigued quadriceps femoris 

activation were found in men as compared to women (about 9% versus 3%). Although 

this research seems to suggest that males are more susceptible to cross-over fatigue than 

females, the relationship is not straight forward, as Martin and Rattey (2007) suggested 

that differences in fatigue rates between males and females may have contributed to their 

results. 

2.3.4 Posture and cross-over effect 

Some authors have examined the effect of local muscle fatigue on postural control 

strategies and/or muscle activation during postural tasks when standing on the non­

fatigued limb (McLean and Samorezov, 2009; Berger et al., 2010 and Paillard et al., 

201 0). McLean and Samorezov (2009) examined the effects of unilateral fatigue induced 

by single leg squats on non-fatigued limb performance during single-leg landing in elite 

female athletes. They reported that the non-fatigued limb exhibited an increased stance 

hip internal rotation moment. The study concluded that this increased moment occurred 

due to the effects of cross-over fatigue and might have occurred to counteract the 

deteriorating effects of fatigue on ligamentous injury during landing and have further led 

to promote beneficial postural adjustments. The study by Berger et al. (201 0) analyzed 

the effects of unilateral ankle muscle fatigue on postural control. During the fatiguing 
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protocol, a sequence of 10 toe-lifts immediately followed by 10 knee flexions until 

exhaustion with the exercised leg was performed. These authors reported a decrease in the 

muscle activity of the tibialis anterior (TA) on the exercised side while finding increased 

activation in T A on the non-exercised leg. Also a trend toward a decrease in muscle 

activity of triceps surae was found in both legs. These alterations lead to an increase in 

the agonist/antagonist EMG ratio leading the authors to suggest that changes with the 

contralateral agonist/antagonist contractions could lower the risk of further injury of the 

fatigued muscles. These finding suggest that the effects of cross-over fatigue may extend 

beyond the homologous muscle. The other study in this context (Paillard et al., 201 0) 

showed that ipsilateral fatigue not only affects force production on the non-fatigued side 

but it also affects the ability to complete a functional task like standing on one-leg on the 

non-fatigued side. These authors fatigued the quadriceps femoris muscle and compared 

postural stability pre- and post-fatigue while individuals stood on the non-fatigued limb 

with their eyes closed. Their results showed that individuals' postural stability, as 

quantified using center of pressure (CoP) measures, declined significantly when 

participants were asked to stand on the non-fatigued leg. 

From the above literature, it is clear that the effects of cross-over fatigue are not 

just limited to the homologous muscle of the fatigued limb, but can have a substantial 

impact on the non-fatigued limb and posture as well. One interesting question arising 

from the literature is the mechanism by which unilateral fatigue of an isolated muscle 

impacts postural control. Although the work of both Paillard et at., 2010 and others 

(McLean and Samorezov, 2009 and Berger et al., 2010) reported changes in postural 

control, they did not investigate the neuromuscular control strategy changes that lead to 

these alterations in posture. Specifically, it is surprising that cross-over fatigue in the 

quadriceps femoris (not an anti-gravity muscle) should have dramatic effects on posture 
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given the relatively small role the quadriceps femoris plays in quiet standing balance 

(Masani et al., 20 13). As this thesis will probe the issue of the effects of unilateral 

quadriceps femoris fatigue on postural control, what follows is a brief review of the 

literature related to postural control. 

2.4 Postural control 

In order to study the effects of unilateral fatigue on postural control during quiet standing, 

it is important to have a general understanding of postural control and the strategies the 

body uses to maintain it. Postural control or balance during quiet standing is defined as 

one's ability to sustain the body's center of mass (CoM) within the base of support (BoS) 

(Winter, 1995). Although during quiet standing an individual may appear stationary, in 

reality they are undergoing postural sway. The reason for the continuous movement ofthe 

CoM remains unknown, and there is no consensus as to whether sway is beneficial or 

detrimental. Postural sway is detined as the continuous movement of body's CoM within 

the BoS (Winter et al., 1993). This continuous movement of CoM is controlled by CoP 

displacement, which is considered as a point of application of the net vertical ground 

reaction forces (GRF). This CoP displacement is further controlled by the activation of 

the muscles (gluteus medius (Gmed), TA, gastrocnemius medialis (GM), peroneus longus 

(PL)) (Van Deun et al., 2007). This is the reason why postural sway is commonly 

analyzed through the CoP displacement (Amiridis et al., 2003). 

During daily activities, balance is continuously being challenged. Disturbance of 

balance might occur due to gravitational or other destabilizing forces acting on the body, 

or from environmental forces in contact with the body. There are two different movement 

strategies, fixed support or change in support that are used by individuals when they are 

exposed to a perturbation that threatens their stability (Horak, 1987). Fixed support 
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strategies can occur at the ankle or the hip. An ankle strategy attempts to compensate 

antero-posterior sway perturbations of the CoM by rotating the body around the ankle 

joint and some part of the hip strategy may also develop (Horak, 1987). The sagittal plane 

hip strategy involves the movement of the CoM by flexing or extending the hip joint. This 

happens when a person stands on a narrow BoS (heel-toe stance) or when the 

counterbalancing torque at the ankle joint is insufficient (Horak, 1987). On the other 

hand, change in support strategies involve a change in the size of the BoS. This can be 

carried out by taking a step with the feet or by reaching to grab something with the hands. 

This strategy ensures that the CoM remains in the now larger BoS support, therefore 

allowing the individual to remain balanced. It was once believed that the choice of 

strategy (i.e. fixed vs. change in support) depended upon the intensity of the postural 

disturbance (Horak, 1987). More recent literature (Maki and Mcllory, 2006) has found 

that the choice of strategy is not based on the size of the perturbation but that there are 

many factors (i.e. BoS at the time of perturbation, any secondary tasks being undertaken, 

effects of previous perturbations, individual 's perception of risk etc.) that contribute to it. 

In addition to these reactive strategies that the body uses to maintain balance, the 

CNS also uses anticipatory reactions to help maintain postural control. These reactions, 

known as anticipatory postural adjustments (APA's) can occur in response to internally 

(Benvenuti et a!., 1997) or externally created perturbations (Santos et a!., 20 I 0). As these 

perturbations have the potential to lead to changes in CoM position, the body must 

respond if balance is to be maintained. The unique aspect about APA's however is that 

the 'reaction' to the perturbation occurs before, or in anticipation of, the perturbation 

(Loram et a!., 2005). The APA's serve two main functions (a) they minimize the 

displacement of CoM, by producing forces opposite to the direction of the applied force 

(Bouisset and Zattara, 1987) and (b) APA's also encourage carrying out ofthe voluntary 
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movements (Beraud and Gahery, 1995). The postural adjustments made with respect to 

the arm (Bouisset and Zattara, 1987) and during trunk movements (Oddsson, 1988) have 

been studied extensively. 

2.4.1 The role of sensory information in maintenance of postural control 

In order for the neuromuscular control system to be able to execute the strategies above 

and to maintain balance, it has to depend heavily on the information arising from sensory 

structures. In particular, sensory components such as vestibular, somatosensory and 

vision play an important role in controlling balance and posture (Horak, 2006). The 

vestibular system detects the changes in linear and angular acceleration of the head as 

well as detects the direction of gravity. On the other hand the somatosensory system 

detects the change in position and velocity of all body segments and as well as the 

direction of the gravity (Winter, 1995). The visual component has been found to play the 

most significant role in regulating postural stability. 

2.4.2 The effect of vision on postural stability during quiet stance 

Many researchers have reported a decrease in postural stability (observed as larger 

variability in CoP and as increased postural sway) in the absence of visual input (Oie et 

al., 2002; Speers et at., 2002, Corbeil et al., 2003 and Vuillerme et at. (200 I, 2006). 

Vision also helps in minimizing the destabilizing effect that occurs due to fatigued muscle 

and also alleviates the effect of muscular fatigue on postural stability (Vuillerme et al., 

2001). Corbeil et al. (2003) examined the involvement of vision in regulating postural 

control under muscular fatigue while individuals were in different stance situations. They 

found an increase in sway velocity with fatigue, for both eyes open and eyes closed 

conditions. Whereas when vision was provided, Vuillerme et at. (200 I, 2006) found no or 
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very small change in postural sway with fatigue. The discrepancies between these two 

studies could be due to differences in the nature of muscle fatigue and various stances 

(single limb versus double limb stance) used by the authors. Vuillerme et a!., (2001) 

showed that the availability of vision helps in controlling posture, which might have been 

affected as a consequence of calf muscle fatigue, suggesting that inputs from the sensory 

system played a significant role in controlling posture. Thus, from the above studies it can 

be concluded that removing vision affects balance irrespective of whether fatigue is 

present or not. Clearly based on the research outlined above, the absence of vision 

presents the neuromuscular control system with the increased challenges when it comes to 

maintaining balance. A similar challenge is posed by changes in BOS. 

2.4.3 The effect of BoSon postural stability during quiet stance 

Reductions in BoS have been shown to result in negative effects on postural stability 

particularly as task complexity is increased (Era et a!., 2006). Matsuda et a!. (20 I 0) also 

reported standing on one leg as a less stable condition than standing on two legs. They 

examined the differences between CoP sway in one-legged and two-legged stances for 

typical male adults and male soccer players. Bisson et a!. (20 1 0) studied the effects of 

plantar flexor muscle fatigue on various postural tasks such as feet together, semi-tandem 

and single-leg stance on force plate. They found the CoP variation to be greater for the 

single limb stance and observed an increase in the postural sway variables as task 

difficulty increased. 

In addition to examining the effects of size of BoS on balance, researchers have 

also examined how dynamic changes in size of BoS affect postural control. One such 

dynamic change is the transition from double to single limb support. This transition is 

essential for the beginning of the human locomotion (Carlsoo, 1966). There are many 
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other studies which have examined postural control during the transition from double to 

single support (Bisson et at., 20 I 0, Matsuda et al., 20 I 0, Mann et at., 1979, Rogers and 

Pai, 1990, Hughey and Fung, 2005). During the transition from double to single leg 

support, the decrease in BoS leads to displacement of the CoM. As the body's weight is 

supported on one limb during these kinds of transitions, adjustments in the postural 

control system are required to transfer the body's CoM to the new BoS. Rogers and Pai 

(I990) found the early recruitment of the Gmed of the flexing limb during the transition 

from double to single limb. Hughey and Fung, (2005) examined lower limb muscle 

activation during the transition from double to single leg stance. They found maximal 

activation of the adductor muscles occurred during limb unloading and activation of 

tensor fascia latae occurred during limb loading. These observed muscle activations likely 

reflect the mechanical adjustments required to overcome the change of CoM during the 

shifts occurring from double to single leg standing. Van Deun et al. (2007) studied the 

lower limb muscle activation during the transition from double to single leg standing in 

chronic ankle instability and control participants. The study found that the initiation of the 

muscle activity (Gmed, tensor fasciae latae, vastus lateralis medial hamstrings, TA, PL, 

and GM) in control participants occurred before the start of the transfer from double to 

single leg stance. Also, the study found that the control group was able to change the 

muscle recruitment order frequently for the eyes open and eyes closed condition. This 

signifies that the control group has the tendency to alter their muscle activation pattern as 

per the changing situation. 

2.5 Fatigue and postural sway 

Muscle fatigue affects postural stability by increasing static postural sway (Ledin et al., 

2004). Studies have shown that muscular fatigue generated either at the trunk (Vuillerme 
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et al., 2008) or ankle (Vuillerme and Nougier, 2003) can result in deficits in postural 

stability. Studies have also shown that fatigue can negatively impact APAs (Morris and 

Allison, 2006) resulting in decreased stability. All of these effects are similar in that they 

occur in the muscle group that has been fatigued. Vuillerme et al. (2009) studied postural 

adjustments in response to unilateral hip abductor fatigue on the dominant leg with 

double-legged standing and found greater CoP displacements in the non-fatigued limb. 

This can be considered as an adaptive process, which might have occurred due to the 

weakened capability ofthe fatigued limb to control posture effectively. Allison and Henry 

(2002), studied the influence of trunk muscle fatigue and found early onset of APA in 

trunk muscles (transversus abdominis, internal oblique, rectus abdominis and external 

oblique and longissimus). Additionally their study suggested that this early onset of APAs 

may provide muscular contraction for a longer time, thus rendering more time for the 

critical force to reach a level required to maintain postural stability. 

As discussed previously, however, the effect of fatigue on posture is not restricted 

to the fatigued muscles. Paillard et al. (20 I 0) fatigued the quadriceps femoris on one side 

and measured postural control ofthe non-fatigued leg using a force plate during single leg 

standing before and after the completion of the fatiguing protocol. They showed that the 

ability to balance on the non-fatigued leg was disturbed after the fatiguing protocol. 

Confirmation of cross-over fatigue was supported by the increased CoP sway area, 

however no decrease in the values of MVJC of the contralateral quadriceps femoris were 

found. On the other hand, reduction in the MVIC of the ipsilateral quadriceps femoris was 

noted. The most interesting finding about this study was that by fatiguing the quadriceps 

femoris on one limb these authors were able to show deficits in standing balance on the 

other side. This occurred despite the fact that the quadriceps femoris is not a primary 

postural muscle during quiet standing (Masani et al., 20 13). At present it remains 
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unknown as to whether these changes in balance performance of the non-fatigued limb 

were due to the alterations in quadriceps femoris function or whether the effects of fatigue 

were more global, affecting the activation patterns and force production of many other 

lower limb muscles. Thus, there is a need to examine the mechanisms responsible for 

affecting the postural control on the contralateral side. 

2.6 Conclusions 

The decrease in performance related to muscular fatigue can be attributed to both 

peripheral and central factors. The factors contributing to peripheral fatigue can range 

from altered concentration of W, Pi and Ca+2
, impairments of Na+/K+ pump to the 

metabolic disruption sensed by the chemoreceptors. This metabolic fatigue sensed by 

chemoreceptors can relay information back to the CNS and lead to what is known as 

global or cross-over effects. A variety of studies have examined this cross-over effect of 

fatigue. Some of these have demonstrated the existence of cross-over fatigue while others 

have failed to find it. These discrepancies may depend on factors ranging from the type of 

muscle involved in the fatiguing protocol, intensity at which contractions were performed 

the experimental procedures to the dependency of muscle fatigue on the performed task. 

So far the evidence of cross-over fatigue has been reported with respect to upper body, 

lower body and age. The only study (Paillard et al., 201 0) conducted so far with respect to 

posture was able to find changes in postural control. But the weakness of this study was 

that they did not examine changes in neuromuscular control resulting in these variations 

in posture. The study by Paillard et al. (20 1 0) showed that balance performance of the 

non-fatigued leg was disturbed after the fatiguing protocol. Their research certainly 

provided added insight into the effects of fatigue on the non-fatigued leg. But at present it 

remains unknown whether those changes in the non-fatigued limb balance were due to 
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alterations in quadriceps femoris function or whether the fatigue affected the activation 

patterns and force of many other lower limb muscles. Thus, there is a need to examine the 

mechanisms, which could have led to the alterations in postural control of the non­

fatigued side. Also, the appearance of the cross-over fatigue effect is not assured as the 

evidence from the literature is conflicting. 
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Chapter 3. EFFECT OF UNILATERAL KNEE 
EXTENSOR FATIGUE ON NON-FATIGUED 
LIMB'S STANDING BALANCE, MUSCLE 

FORCE AND ACTIVATION 
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3.0 Abstract 

Local fatigue occurring in one limb can result in decreased force production in the 

homologous muscle as well as in other muscles of the non-fatigued limb. Local fatigue 

has also been shown to influence balance. The objective of the present study was to 

examine the effect of unilateral knee extensor fatigue on the non-fatigued limb's standing 

balance, muscle force and activation. Sixteen healthy male subjects were recruited for the 

study. The experimental protocol consisted of pre-fatigue balance trials, warm-up 

exercises, maximum voluntary isometric contractions, knee extensors fatigue protocol, 

and post-fatigue balance trials. The fatigue protocol consisted of 15 consecutive isometric 

contractions of 16 s each, which were performed at 30% peak force for the dominant knee 

extensors muscle. These contractions continued until a 50% decrease in knee extensor 

force was observed. Pre- and post-fatigue balance assessment consisted oftransition from 

double to single leg standing and also single leg standing trials, all of which were 

performed bilaterally and in randomized order. The study found no significant changes in 

the non-fatigued limb's muscle force, activation, muscle onset timing or the postural 

stability parameters. Results of this study suggest that the fatigue protocol did not result 

in any cross-over fatigue. While the lack of change in non-fatigued limb force production 

is in agreement with some of the previous literature in this area, the lack of effect on 

postural measures directly contradicts earlier work. It is hypothesized that discrepancies 

in the duration and the intensity of the fatigue protocol may have accounted for this 

discrepancy. 
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3.1 Introduction 

Balance can be affected in diseases such as Parkinson disease (Schoneburg et al., 20 13), 

multiple sclerosis (Dibble et al., 20 13), injuries (Hertel, 2000), aging (Vellas et al., 1997) 

and during muscle fatigue (Kanekar et al., 2008; Bellew and Fenter, 2006). Muscular 

fatigue, which has been defined as "any exercise-induced reduction in the ability to exert 

muscle force or power, regardless of whether or not the task is sustained" (Bigland and 

Woods (1984), p. 691) is one of the many factors that can impair balance (Yaggie and 

Armstrong, 2004). Fatigue can be characterized by decreased force production of the 

fatigued muscle (Degens and Veerkamp, 1994), a reduction in the ampl itude of muscle 

activation (Zijdewind et al., 1998), decrease in firing frequency of the motorneurons 

(Bigland et al., 1983) or decreased power (Behm, 2004). Muscle fatigue is also believed 

to affect joint position sense by increasing the threshold of muscle firing rate and by 

disrupting the afferent feedback, thereby impairing proprioceptive and kinesthetic 

feedback (Macefield, 1990; Gribble and Hertel, 2004). 

Fatigue can be further characterized as peripheral or central. Peripheral fatigue 

occurs due to changes occurring distal to the peripheral nerve. On the other hand, central 

fatigue has been defined as an exercise-induced attenuation in the ability of the central 

nervous system (CNS) to drive muscle maximally or as a decline in voluntary muscle 

activation (Taylor et al., 2006). The effects of fatigue can either be localized or global 

(Rattey et al., 2006). Some research has shown that local fatigue occurring in one limb 

can result in decreased force production in the homologous muscle (Martin & Rattey, 

2007) and as well as in the distant muscle (Takahashi et al., 20 11 , Kennedy et al., 2013) 

of the non-fatigued limb. This cross-over effect of fatigue has been identified for upper­

(Humphry et al., 2004) and lower-limbs (Rattey et al., 2006; Martin & Rattey, 2007; 
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McLean & Samorezov, 2009; Paillard et al., 2010). Despite this evidence of cross-over 

fatigue the majority of studies have not found evidence of its occurrence (Zidjewind et al., 

1998, Grabiner & Owings, 1999, Todd et al., 2003, Regueme et al., 2007, Strang et al., 

2009, Place et al., 2004, Ross et al., 2007, Ross et a!., 20 I 0, Elmer et al., 20 13). Hence 

there is a conflict in the literature that needs further exploration. 

Aside from the cross-over effect of fatigue on muscle force, fatigue has also 

shown to negatively influence balance. There is only one study that has examined such 

effects of unilateral fatigue (Paillard et al., 20 I 0). Paillard et al. (20 1 0) demonstrated 

cross-over fatigue effects on balance reporting increased sway area of center of pressure 

(CoP), although no decrease in the non-fatigued quadriceps femoris maximum voluntary 

isometric contractions (MVIC) was noted. 

Although Paillard et al. (20 1 0) provided initial insight into the effects of unilateral 

fatigue on contralateral limb balance, it remains unknown whether the balance changes in 

the non-fatigued limb were due to alterations in quadriceps femoris function or whether 

the effects of the fatigue were more global, affecting the activation patterns and force 

production of many other lower limb muscles. Also, it is not clear how fatigue in a non­

postural muscle such as the quadriceps femoris (Masani et al., 20 13) could have such a 

profound effect on non-fatigue limb balance. Based on this, the main objective of this 

study was to examine the effect of unilateral knee extensor fatigue on non-fatigued limb's 

standing balance, muscle force and activation. From the results obtained by the Paillard et 

al. (20 1 0), it was hypothesized that knee extensors fatigue would result in reduced 

balance while standing on the non-fatigued limb and would also affect muscle force and 

activation patterns in lower limb muscles. 
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3.2 Methodology 

Participants 

Sixteen healthy male subjects with a mean age 24.9 ± 5 years, mean height 183 ± 7.7 em 

and mean weight 86.4 ± I 0 kg were recruited for the study. Only individuals who 

engaged in lower body resistance exercise for at least 2 days/ week for a minimum of 20 

minutes were recruited. Additionally, participants who had no history of balance 

disorders over the past 2 years, or neurological or musculoskeletal impairment I injury I 

medical conditions that might affect their postural stability were eligible to participate. 

This information was determined from the Physical Activity and Medical Questionnaire. 

The study was approved by the Interdisciplinary Committee on Ethics in Human 

Research. 

Experimental Design 

Procedure 

Participants came to the lab for a single testing session. They were asked to complete the 

consent form and two questionnaires (PAR-Q and Physical Activity and Medical 

Questionnaire) to determine if they were able to take part in this study. Then the dominant 

leg of the participants was determined by asking them which leg they would use to kick a 

ball. In this study, fifteen out of sixteen participants were right leg dominant. 

Participants were then fitted with bipolar surface electromyography (EMG) 

electrodes on their non-dominant leg. These electrodes were used to record muscle 

activity from eight lower limb muscles: tibialis anterior (TA), peroneus longus (PL), 

gastrocnemius medialis (GM), hamstrings, vastus lateralis (VL), vastus medialis (VM), 

gluteus maximus (Gmax) and gluteus medius (Gmed). Before electrode placement, skin 

surfaces were shaved, abraded using sand paper, and cleaned with alcohol to decrease the 
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resistance offered by dead surface skin and tissue oils. Disposable Ag/AgCI disc electrode 

(three em in diameter) pairs (Kendall Medi-trace I 00 series, Chikopee, MA) were placed 

between the respective motor point and the tendon of the muscle with an inter-electrode 

distance of2 em. Tape was applied over the electrodes to minimize any movement of the 

electrodes during the contractions. The ground electrode was secured at the distal one­

third of the iliac crest on the dominant side. Electrodes were placed according to the 

recommendation of Criswell (20 II). As Criswell didn't describe electrode placement for 

PL, these electrodes were placed over the muscle belly at the sight of the strongest signal 

intensity ( 4 em lateral to the shin of tibia, and approximately one-third to one-fourth 

proximally the distance between the knee and the ankle). A Biopac Systems MEC I 00 

amplifier (Santa Barbara, CA), with an input impedance of 2m MQ and common mode 

rejection ratio of> II 0 dB minimum (50/60Hz) was used to collect all EMG. The signals 

were sampled at a rate of 2000 Hz and then digitized using a 12-bit analog-digital 

converter (BIOPAC MP 150). 

The experimental protocol consisted of pre-fatigue balance trials, warm-up 

exercises, MVIC, fatigue protocol, and post-fatigue balance trials (See protocol outl ine in 

Figure 3.1 ). Prior to beginning this protocol, participants performed familiarization trials 

to become acquainted with the two-legged and single leg standing trials that would be 

used in the study. The stance width during natural two-legged standing was determined 

and was marked with surgical tape for reference. This stance was used as the starting 

point for all subsequent balance trials performed. 

Pre- and post-fatigue balance assessment consisted of transition from double to 

single leg standing and also single leg standing trials. All balance trials were performed 

on both right and left sides using a randomized selection order. During all balance tests 

subjects stood on a force platform (AMTI, Watertown, MA, USA) which was connected 
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to a six channel ampl ifier and an analog-to-digital converter. The force plate recorded 

ground reaction forces (GRF) and moment of force along X, Y and Z axis. 

Pre-fatigue balance 
trials 

J~ 
MVICs: Bilateral knee 

extensors and non-
fatigued hamstrings 

(MVIC PRE) 

~ 
Fatigue protocol 

~ 
MVICs: Bilateral 
knee extensors 
(MVIC POST I) 

~ 
Post-fatigue balance 

trials 

~ 
MVICs: Non-

fatigued knee flexors 
and extensors (MVIC 

POST II) 

Figure 3.1: The general outline ofthe protocol involved in the study. 

The signa ls were sampled at a rate of2000 Hz. The initial stance position was the 

same for both the pre- and post-fatigue balance test: barefooted and weight evenly 

distributed across both feet. Participants were asked to stand in such a way that a single 
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foot was placed on the force plate. Also, they were instructed to stand naturally and try to 

maintain their balance. As stated above, two types of balance trials were performed -

single leg standing and a transition from double to single leg standing. For the single leg 

standing balance trials, the participants were asked to stand on a single leg and once they 

were balanced they were asked to close their eyes. Once their eyes were closed they were 

asked to maintain their single leg stance for a period of 30 seconds. Data collection for 

these trials did not begin until the person was stable with their eyes closed. During this 

trial, they were also asked to place their little finger, on the side of their non-supporting 

limb, on the edge of a chair placed immediately adjacent to the force plate. They were 

instructed to use the chair for minimal support - this was done to ensure participants 

could maintain the full 30 seconds stance required for this condition. The position of the 

chair was marked with tape for reference and remained in the same position for all 

balance testing during that session. The participants were asked to stand such that the 

knee of the non-stance leg was flexed at an angle of about 45·. During trials where 

participants transitioned from double to single leg stance participants were asked to 

maintain an initial 3 seconds of double-leg stance and then shift as quickly as possible to 

single leg stance. Once they achieved a single leg stance, they were asked to maintain 

their balance for five seconds. For these double to single transition trials, they were asked 

to keep their eyes open and rest both hands on their hips. The trials where participants 

touched their foot to the floor or otherwise lost their balance were discarded and another 

trial was collected. Force plate and EMG data were recorded throughout all balance tests. 

Maximum Voluntary Isometric Contractions (MVIC) 

Following completion of the pre-fatigue balance test, participants were asked to perform a 

5 minute warm-up on a cycle ergometer (I kilo pound resistance at 70 revolutions per 
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minute). Next the MV!Cs for all eight muscles on the non-dominant side and quadriceps 

femoris/knee extensors on the dominant side (MVIC PRE) were performed. For all 

MV!Cs participants were asked to contract maximally against the resistance provided. For 

T A, participants were in supine lying position with their arms across the chest and were 

asked to perform maximum dorsiflexion against researcher's resistance. While in the 

same position participants were asked to produce maximal ankle eversion against 

researcher's resistance in order to elicit an MVIC from PL. For the GM, subjects were 

asked to stand in single limb stance on the non-dominant leg. Participants were then 

asked to perform a heel raise while using a chair to maintain balance. The researcher 

provided resistance to this motion by applying downward force on the participant' s 

shoulders. For the MVIC of Gmax, participants lay prone and produced maximum hip 

extension while keeping their knee in flexion. For the Gmed participants were in a side 

lying position and were asked to produce a MVIC of their hip abductors. Muscle 

activation data recorded from these MV!Cs was used to normalize EMG collected during 

balance trials. 

In addition to the MVICs described above, MVICs were also performed for knee 

extension and flexion. As force production in these muscles was used to assess the extent 

of fatigue in both dominant and non-dominant limbs, both muscle force and EMG were 

recorded during these trials (See Figure 3.2). For the knee flexors only data from the non­

dominant limb was collected. Participants stood facing a bench with the non-dominant 

knee slightly bent and their foot touching the ground. Their ankle was inserted into a 

padded strap which was then attached to a Wheatstone bridge load cell through a high 

tension wire. They were asked to flex their knee as hard as possible against the strap for a 

period of four seconds. Knee extension MVICs were performed for both the dominant 
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and non-dominant leg. Participants sat on a bench with their hips and knees flexed at 90° 

and their chest, hips and upper legs restrained with straps. The participants were then 

asked to perform an isometric knee extension as hard as possible against the strap 

attached to a load cell for four seconds (while placing their arms across their chest). For 

all the MVICs, two trials each lasting four seconds were performed with a two minute rest 

between each trial. Verbal encouragement was provided throughout the collection of 

MVICs. 
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Figure 3.2: Force (top trace) and raw EMG signals of hamstrings, VL and VM recorded 
during MVJC of the non-fatigued knee extensors. 
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Fatigue Protocol 

Following completion of the MVIC trials, the fatigue protocol was carried out. 

Participants remained in the position used for the knee extension MVIC with the same 

padded strap and load cell affixed to their dominant leg. Participants were then asked to 

perform an isometric knee extension contraction at 30% of peak MVIC force. In order to 

ensure force was maintained at the desired magnitude, subjects were provided with visual 

feedback of the generated force during their fatiguing tasks. The fatigue protocol 

consisted of 15 consecutive 16 s isometric knee extension contractions. Each contraction 

was followed by a 4 s recovery. Following the 15 contractions, an MVIC (MVIC POST I) 

was performed to assess the fatiguing effects. If force production had dropped by at least 

50% of MVIC then fatigue was considered to have occurred and the isometric 

contractions were stopped. If fatigue had not occurred then the above procedure was 

repeated until a 50% reduction in force was observed. If volitional fatigue occurred 

during the 15 contractions (i.e. participants could not maintain the 30% MVIC force 

required) then participant's contractions were stopped and an MVIC (MVIC POST I) was 

performed. Once fatigue was determined to have occurred, a knee extension MVIC 

(MVIC POST I) was performed on the non-fatigued side to record any potential cross­

over effect of the fatiguing contractions on the dominant side. This MVIC POST I was 

performed approximately I 0 s after the completion of the fatigue trials. 

Participants then immediately did the post-fatigue balance trials, which were 

performed similar to the pre-fatigue balance trials. Following these balance trials another 

series of non-fatigued limb knee extension (MVIC POST II) and flexion MVICs (MVIC 

POST II) were performed. This was done approximately I 0 minutes from the end of the 

fatiguing protocol. 
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Data analysis 

Force 

Force data from the load cell was assessed to determine the effect of fatigue on both the 

fatigued and non-fatigued leg. This was performed by calculating peak force (N) and 

F100 (N) (MacDonald et al., 2013) during the knee extension MVIC trials. FIOO was the 

force developed in the first I 00 milliseconds of MVIC and was calculated for the time 

period where the first deflection of the baseline activity of force was observed to the 

period of initial 100 milliseconds of force developed. The MVIC with the highest peak 

force was used to assess both the effects of fatigue on force production and for the 

calculation ofF l 00. 

Ground reaction force data 

All GRF data was processed using custom designed software (MA TLAB 20 13a; Visual 

Basic 6.0). Initial processing was done to determine CoP location in both the anterio­

posterior (AP) and medio-Iateral (ML) directions. This was done using formula as 

provided by Robertson et a l. (2004). For the single leg standing trials a variety of sway 

parameters were determined in order to help quantify the effect of fatigue on postural 

stability. Details of the sway parameters calculated can be found in Table 3.1. Briefly, 

CoP velocity and length in the ML and AP directions were determined as were the total 

CoP length and mean sway velocity over the duration of the 30 s trial. In addition CoP 

range (AP and ML) and standard deviation (SO) were determined as was the total sway 

area. All measures were determined as per Bigelow (2008) with the exception of total 

sway area, which was calculated based on Duarte and Zatsiorsky (2002). 

For trials where participants were asked to move from double to single leg 

standing, GRF data was used to determine when participants began to transition from 
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double to s ingle leg standing. Motion onset was determined as per Sims and Brauer 

(2000). The start of motion was considered as the point of time when the vertical forces 

underneath the stepping leg dropped below the mean force - 3 SD for more than I 00 

frames (Sims and Brauer, 2000). Mean and SD were determined over a 2 second period 

during the double leg stance portion of the trial (see Figure 3.3). This movement start 

time was considered time zero and was used as a reference point for all muscle onset 

times determined during this task as described below. 
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Figure 3.3: Figure depicting the vertical force during the double to single stance trials. 
Black horizontal and dotted horizontal line represents the mean - 3SD of the vertical 
force during double limb standing portion of the trial. (a) start of the motion as 
determined by when the vertical force was less than the (mean-3SD), (b) point at which 
the force becomes minimum and (c) point at which the transition from double to single 
limb stance was considered complete. 
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T able 3.1: Sway parameters used during single leg standing. m is meters and a ll other 
abbreviations a re defined in the table. 

Sway Formula Units 
parameter 
Medial I {CoPt.td ,..,.. - {CoPMd min I, where (CoPMl) .m .. and (CoPMd min m 

lateral range represents the maximum and minimum values attained by 
covered by medial lateral CoP during single leg standing. 

CoP 
(Range"'d 
Anterior I {CoP A,).,.,.,- (CoPAF) """I, where (CoPAP) .,.~, and (CoPAP) .,.,;. m 
posterior represents the maximum and minimum va lues attained by 

range anterior posterior CoP during single leg .standing. 
covered by 

CoP 
(RangeAP) 

I:~: ~{(CoPm}n+l - (CoP~1 ),./ +{(CoP AF)tl+l- (CoP AF)n}z 
m/sec 

Mean 
velocity (V,.J T 

Where, T is t he total time period of the trial and n is the data 
point of interest. 

Average 
I "'-\(GoPML)n+l - (CoPML)

11
J 

m/sec 
medial 
lateral 

n- 1 

T 
velocity 
(Vm~Mli ) 

Average I:~:>(CoPAP\+1 - (CoPAP)n} 
m/sec 

anterior 
posterior T 
velocity 
\VmiAPiJ 
Total 

{(CoP~1L)n+l - (CoPML)J + {(GoPAP)n+l- (CoPp_p),J
2 m 

distance 
travelled by 

CoP(L) 
Medial (CoPHt)n+!- (CoPr.fl.)n m 

lateral CoP 
distance 

(lengthML} 
Anterior (CoPAP)nH- (CoPAP)l! m 
posterior 

CoP distance 
(lengthAP) 
Root mean 1 L~=1(CoPi)2 , where i = 1, 2, 3, 4, .... N and N is the total 

m 
square of -

T 

CoP(RMS) number of data points. 
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Electromyography 

All EMG data was analyzed using custom designed software written in Visual Basic 6.0. 

Prior to analysis all EMG data was high pass filtered at 20 Hz to eliminate motion 

artifacts produced because of movement of the cables (De Luca et al., 20 I 0). Following 

this filtering, all raw EMG signals were first normalized using data collected during the 

MVIC trials. A 50 millisecond moving window was used to determine root mean square 

(RMS) of MVJC EMG for each muscle. The peak RMS for each muscle was determined 

and was used to normalize all EMG data collected during the study. This amplitude 

normalized EMG was used for all calculations of EMG amplitude and on-set timing 

described below. 

EMG Amplitude: EMG amplitude was quantified by calculating integrated EMG (iEMG, 

mv) (Behm et al., 200 I) for all muscles during the single leg standing trials. For these 

trials amplitude normalized EMG was integrated over the full 30 sec duration of the trial. 

ln addition iEMG was determined for hamstrings, VL and VM during non-fatigued limb 

knee extensors and hamstrings MVIC trials. The iEMG was calculated over a one sec 

period starting 0.5 sec before and ending 0.5 sec following the peak force attained during 

the MVIC trial. For trials where peak force occurred at the end (i .e. no 0.5 sec window 

existed after the peak was reached), iEMG was calculated using the one sec prior to the 

time when the peak force occurred. 

Muscle activation timing: EMG collected during the double to single leg trials was used 

primarily to assess the effects of the fatiguing contractions on muscle onset timing. 

Muscle onset was determined based on the protocol established by Hodges and Bui 

(1996). As per these authors all data was first full wave rectified and was low pass filtered 
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at 50 Hz. The mean and SD of the EMG during the double leg stance portion of the trial 

was first determined over a 2 sec period. This 2 sec period was considered to represent 

quiet stance and therefore minimal muscle activity was observed. Muscle onset was 

determined to have occurred once the level of muscle activity exceeded the mean + 1 SD 

for at least I 00 milliseconds. As per Hodges and Bui (1996) muscle activity was 

determined using a 100 milliseconds moving average full-wave rectified and filtered 

signal (see Figure 3.4). All onset times were expressed with respect to the onset of motion 

as described above. Due to errors in the estimation of muscle onset times by the 

automated computer process all onset times were subsequently checked manually to 

ensure their accuracy. The individual doing the manual checking was blind to the trial 

condition to prevent any bias in assigning an onset time to each muscle. 
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Figure 3.4: Figure depicting the EMG onset for TA during the transition from double to 
single limb stance on the non-dominant limb. Horizontal dotted line represents the mean 
+ I SD of the double limb stance TA muscle activation. EMG depicted was first full-wave 
rectified and high pass filtered. A I 00 millisecond moving window was then use to 
calculate a moving average of the rectified and filtered EMG signal. Muscle onset was 
determined to have occurred once EMG exceeded the mean + 1 SD (see text for more 
details and has been represented as vertical dotted line). 
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Statistical Analysis 

A priori statistical power analysis was conducted which determined that approximately 

sixteen subjects would provide an alpha of p < 0.01 with a power of 0.8. The data was 

examined to assess differences in force, iEMG, muscle onsets and sway parameters prior 

to and following the fatigue protocol. Paired t-tests were used. Significant differences 

were detected at p < 0.05. To infer the magnitude of the outcomes, effect sizes (ES) were 

calculated (Cohen, 1990). The following formula was used to calculate the ES as per 

Cohen ( 1969): 

Pre-post ES = Post mean- Pre mean/ Pre Standard Deviation. 

Cohen (1969) considered an ES of less than 0.2 as trivial, 0.2-0.41 as small, 0.41-0.70 

as moderate and greater than 0.70 as large. As some of the data was not normally 

distributed, a Wilcoxon signed rank test was also performed. 

3.3 Results 

Force 

Significant changes pre- and post-fatigue were detected for the fatigued side peak force (p 

< 0.0001 and F100 (p = 0.04) (Figure 3.5 (A)). The peak force and FlOO were 

significantly decreased by 44.82% (ES = 2.54, large) and 39.96% (ES = 0.59, moderate) 

respectively for the fatigued limb post-fatigue protocol (MVIC POST I). There were no 

significant changes in peak force and FIOO for the knee extensors on the non-fatigued 

limb (Figure 3.5(B)) when pre- and post-fatigue extensor force was compared. Although 

knee extensor force data was collected following the post-fatigue balance tests this data 

was not examined statistically due to the lack of difference found immediately post 

fatigue. 
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F igure 3.5: (A) Knee extension peak force and F I 00 (mean ± SO) for the fatigued limb 
and (B) non-fatigued limb pre- (MVIC PRE) and post-fatigue (MVIC POST I) 
respectively.* represents statistical significance of p < 0.05 for post-fatigued versus pre­
fatigued leg conditions. 

iEMG 

During both, the knee extensors and hamstrings MVICs on the non-fatigued side, fatigue 

had no effect on the magnitude of either hamstrings, VL or VM activation. Similarly no 

significant changes were observed in iEMG of these muscles during the pre- and post-

fatigue single leg standing trials on the non-fatigued side (See Table 3.2). 
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Table 3.2: iEMG (mean (±SO)) of the non-fatigued limb during single limb standing pre­
and post-fatigue. Units (task voltage/MVC voltage).s 

Muscle Pre non-fatigued leg Post non-fatigued leg 

TAN 1.07 ± 0.83 0 .94 ± 0.56 

PL 3.25 ± 1.65 2.91 ± 1.26 

GM# 3.41 ± 1.52 2.88 ± 2.2 

Hamstrings H 0.22 ± 0.17 0.32 ± 0.54 

VL 0.53 ± 0.46 0.47 ± 0.39 

VM# 0.34 ± 0.38 0.25 ± 0.28 

GmaxH 0.19 ± 0.15 0.22 ± 0.14 

Gmed 1.38 ± 1.1 1.2 ± 0.87 

# denotes the variables which were not normally distributed and were analyzed using 
Wilcoxon rank test. The test revealed no significant results. 

Double to single leg standing parameters 

There were no significant changes with the pre- to post-fatigue muscle onsets during the 

transition from double to single leg standing on the non-fatigued side (Figure 3.6). 

Furthermore, prior to fatigue it took participants 0.43 sec to transition from double to 

single leg stance. This did not differ statistically from the 0.47 sec post-fatigue (p = 0.4). 
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Figure 3.6: Muscle onset t ime estimated during the transition from double to single limb 
standing on the non-fatigued side. All times are reported with respect to the start of 
motion with positive times indicating muscle onset occurred after the start of motion. See 
text for details on how motion start was determined. The muscle onsets for TA, PL, GM, 
hamstrings, Gmax and Gmed were not normally distributed and were analyzed using 
Wilcoxon rank test. The test revealed no significant results. 

Stability during single leg standing 

On the fatigued side, the fatigue protocol lead to an increase in the total length covered by 

CoP, CoPAP, CoP velocity and the total sway area. CoP length increased by 1.63% (p = 

0.002) although the effect size (0.12) was trivial (Table 3.3). CoP AP length (Table 3.3) 

and CoP velocity (Table 3.3) demonstrated similar trivial effect sizes (0.14 and 0.12 

respectively) as they increased by 2.43% (p = 0.007) and I .63% (p = 0.002) following the 

fatiguing contractions. Sway area demonstrated the largest increase at 27.89% (p = 0.01 , 

ES = 0.66, moderate, Table 3.3). The only significant change observed on the non-

fatigued side was the CoPML range which was 15.38% greater (p = 0.04, ES = 0.38, small) 

post-fatigue than pre-fatigue (Table 3.3). All other postural sway measures values 

remained unchanged following the fatigue protocol (see Table 3.3). 
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Table 3.3: The sway parameters (mean±SD) calculated during the single limb standing 
on the fatigued and the non-fatigued limb pre- and post-fatigue. 

Pre-fa tiguerl leg Post-fatigued leg Pre non-fatigued leg Post non-fatigued leg 

Range CAP) 
# 0.05 ± 0.01 0.05 ± 0.02 0.05 ± 0.02 0.06 ± 0.02 

(m) 
Range NLl 0.02 ± 0.01 0.02 ± 0.01 0.020247 ± 0.0083 0.023362 ± 0.0075 .. 

(m) 

v # 0.267442 ± 0.037 0.271804 ± 0.0365' 0.27 ± 0.03 0.28 ± 0.03 

(m/sec) 

Length # 8.02± 1.11 8.15± 1.1 * 8.2 ± 0.78 8.31 ± 0.92 

{m) 

Length (AP) # 5.35 ± 0.94 5.48 ± 0.99. 5.45 ± 0.73 5.58 ± 0.78 
(m) 

Length r..n.l 4.03 ± 0.56 4.1 ± 0.46 4.18 ± 0.55 4.17± 0.64 
(m) 

SDAP # 0.01 ± 0.002 0.01 ± 0.003 0.01 ± 0.002 0.01 ± 0.003 
(m) 
SD~n. 0.004 ± 0.001 0.004 = 0.002 0.004 ± 0.002 0.004± 0.001 
(m) 
Area 457.61 ± 193.79 585.25 ± 341.82* 505.34 ± 295.55 596.85 ± 335.73 
(m2) 

RMS # 4. 13xJ0·5± 1.05x10·5 4.29x 1 0·5 ± 1.27x 1 0·5 4.22x 1 0·5 ± l.06x1 0·5 4.67x!0·5± 1.32xi0·5 

(m) 

* Significant difference (p < 0.05) for fatigued leg pre- versus post-fatigue. 
** Significant difference (p < 0.05) for non-fatigued leg pre- versus post-fatigue. 
# denotes the variables which were not normally distributed and were analyzed using 
Wilcoxon rank test. The test revealed no significant results. 

3.4 Discussion 

This study investigated the effect of unilateral knee extensor fatigue on standing balance, 

muscle force and activation in the non-fatigued limb. Muscle fatigue was induced by 

isometric knee extension contractions performed at 30% of MVICs. The most important 

findings of this study were the absence of any cross-over fatigue effects. More 

specifically, the non-fatigued limb showed no significant reductions in muscle force, 

activation or muscle onset timing and no disturbances in the postural stability parameters. 
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The aforementioned results contradict the study hypothesis. The significant 

decrease in the peak force and F I 00 with the fatigued limb clearly indicated that the 

fatigue protocol did lead to ipsilateral fatigue. However, the ipsilateral fatigue did not 

produce global effects in the form of cross-over fatigue in the non-fatigued limb. In the 

literature, cross-over fatigue effects have been observed as a decrease in voluntary muscle 

activation (VA) (Rattey et al., 2006), decrease in force (Martin & Rattey, 2007) and an 

increase in postural sway (Paillard et al., 20 I 0) of the non-fatigued limb. The findings of 

the present study are similar to published studies that have found no evidence of cross­

over force deficits associated with ipsilateral fatigue (Zidjewind et al., 1998, Grabiner & 

Owings, 1999, Todd et al., 2003, Regueme et al., 2007, Strang et al., 2009, Place et al., 

2004, Ross et al., 2007, Ross et al., 2010, Elmer et al., 2013). The study by Zidjewind et 

al. (1998) used a very similar protocol with 30% MVICs regularly interrupted with 

MVICs and brief rest periods in the right first dorsal interosseus muscle (FDI) until 

failure and found no evidence of cross-over force deficits. 

However, the present findings are in opposition to several studies that have 

reported cross-over fatigue effects (Rattey et al., 2006, Martin & Rattey, 2007). Rattey et 

al. (2006) and Martin and Rattey (2007) used a I 00-s sustained MVIC of the dominant 

limb knee extensors to induce fatigue. Rattey et al. (2006) found a decrease in VA and 

iEMG in the contralateral limb and a decrease in MVIC which was not significant. 

However, Martin and Rattey (2007) found reductions in force and VA in the contralateral 

limb. One possible reason for the lack of agreement between Rattey's (2006) work and 

that of the present research may be related to the intensity of the fatiguing contraction 

used. In contrast to the work conducted by Rattey et al. (2006) and Martin and Rattey 

(2007), who used maximal contractions, fatiguing contractions were maintained at 30% 

MVIC (submaximal) in the present study. Cross-over fatigue is felt to depend upon the 
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intensity at which the isometric contractions are maintained (Kennedy et al., 20 13) and is 

also thought to depend on the occurrence of central fatigue (Enoka and Duchateau, 2008). 

Work by Bigland et al. (1986) suggests that perhaps the intensity of contractions used in 

the present study may not have been sufficient to create the central changes required to 

see cross-over effects. Specifically, Bigland et al. (1986) used repeated voluntary 

submaximal contractions which were maintained at 30% MVIC to identify neuromuscular 

fatigue. The study reported decrease in force, however central activation was preserved 

suggesting that submaximal contractions, like those used in the present study, may not be 

sufficient to induce central changes. Similarly, Kennedy et at. (20 13) concluded that the 

energy required to drive the muscle (forearm muscle) maximally might lead to more 

severe central alterations as compared to the submaximal contractions. Thus, the work 

conducted by Bigland et at. (1986) suggests that the submaximal intensity contractions 

(30% MVIC) in the present study might have led to a preservation of the central 

activation. This is in contrast to the work conducted by Rattey et al. (2006) and Martin 

and Rattey (2007), where the fatiguing contractions were maintained at MVIC and might 

have led to central changes. While this argument of intensity of contraction influencing 

the occurrence of cross-over fatigue makes sense based on the work of B igland et al. 

( 1986) but the other research suggests the relationship may not be as straight forward as 

this. For example Place et al. (2009) reported that low intensity sustained contractions are 

often related to central alterations, whereas maximal contractions have been related to 

peripheral changes. Clearly more work is necessary to delineate contraction intensities 

and durations related to central or global fatigue effects. 

One of the primary reasons for undertaking this study was to expand the work of 

Paillard et at. (20 1 0). The present study was designed to allow for a more detailed 

examination of non-fatigued limb muscle activation changes, in an effort to better 
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understand the mechanism underlying the postural control change that these authors 

demonstrated. The present study failed to show any cross-over effect of fatigue on 

standing balance - a direct contradiction of the results of Paillard et al. (20 I 0). Evidence 

of cross-over fatigue was supported in the Paillard study (20 I 0) by the increased CoP 

sway area, though there was no decrease in the non-fatigued quadriceps femoris MVIC 

force. The present study found no effect of ipsilateral fatigue on sway measures, force or 

muscle activation. These contradictory findings between Paillard et al. (20 I 0) and the 

present study may be related to differences between the fatigue protocols. Contraction 

intensity differences between the protocols (I 0% versus 30% in the present study) might 

have been a factor. In the previous paragraph it was suggested that higher intensity 

contraction were needed to produce cross-over fatigue. Based on this, and the contraction 

used in the present study and the work of Paillard et al. (201 0), it is surprising that 

Pail lard et al. (20 I 0) found cross-over effects. This suggests that there is likely some 

other mechanism, other than contraction intensity that needs to be explored. Examining 

the protocols used in this and the Paillard study (20 I 0), an additional factor that has to be 

considered is the duration of the fatiguing contractions. In the present study, 15 

consecutive contractions of 16 s each were executed at 30% peak force until a 50% 

decrease in force occurred. Paillard et al. (20 I 0) utilized I 0 sets of 50 repetitions at 10% 

peak torque resulting in a longer duration of contractions. Specifically, it was estimated 

that Paillard's (20 I 0) protocol would have resulted in individuals contracting for 

approximately 33 minutes at 10% MVIC. In the present study, on average, individuals 

contracted for 3.5 minutes at 30% MVIC. It is possible that the difference in fatigue 

duration could be a factor that led to the contradictory results. Support for this hypothesis 

can be found in the work of Behm and St-Pierre (1997). These authors examined the 

effects of the duration of fatigue protocols on quadriceps femoris muscle activation 
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properties. They reported that longer duration protocols (approximately 19 minutes at 

25% MVIC) differentially affected muscle activation properties when compared to 

shorter duration fatiguing contractions (approximately 4 minutes of 50% MVIC isometric 

contractions). Behm and colleagues (1997) suggested their results were indicative of 

greater central inhibitory (muscle inactivation) responses for the longer duration 

contractions. Rattey et al. (2006) have shown that such central responses can lead to 

reflex impulses at the medullar level which can potentially affect contralateral function. 

Similarly, Hortobagyi et al. (2003) have shown that disturbance in the homologous motor 

drive during prolonged fatiguing contractions can inhibit the contralateral motor pathway. 

Collectively these results suggest it is possible that the prolonged contractions in the 

Pai liard et at. (20 1 0) study had a greater capacity to alter contralateral muscle function 

leading to the alterations in posture on the non-fatigued limb post-fatigue. In the present 

study, the short fatigue protocol duration may not have been sufficient to induce changes 

in the contralateral limb. Replication of the present study, using a longer duration fatigue 

protocol, is required to confirm this hypothesis. 

While a main area of interest of this study was to examine the cross-over effect of 

fatigue on postural control, the results also add to the body of knowledge on cross-over 

fatigue effects on muscle force production. This study is one of many (Zidjewind et al., 

1998, Grabiner & Owings, 1999, Todd et al., 2003, Regueme and Nicol, 2007) that have 

failed to find an effect of ipsilateral fatigue on either contralateral force or muscle 

activation. As has been discussed above, it is hypothesized that the lack of evidence of 

cross-over fatigue may be related to either the duration of fatiguing contractions, the 

intensity of the contractions or in all likelihood some combination of the two. In order to 

understand how factors such as contraction intensity and duration can influence the 

presence or absence of cross-over fatigue, the inhibitory and excitatory effects of muscle 
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contraction must be understood. According to the motor outflow theory, ipsilateral 

voluntary muscle activation patterns are likely to cross-over to the non-fatigued 

homologous muscles (Post et al., 2008) through transcallosal connections (Bonato et al., 

1996). Unilateral motor activity (unilateral knee extension incorporated in the present 

study) has been proposed to activate excitatory paths interconnecting the ipsilateral and 

contralateral primary motor cortex, referred to as motor irradiation (Zidjewind et al., 

1998). However, the theory of default bilateral interaction states that throughout the 

unilateral contractions the activation of the non-targeted muscle group can be actively 

inhibited (Post et al., 2008). In the present study, it is possible that these competing 

inhibitory and facilitating effects might have balanced contralateral responses resulting in 

no significant changes in the force and postural sway parameters on the non-fatigued 

limb. Clearly, further research is needed to determine the exact mechanisms underlying 

the cross-over effects offatigue and the factors that determine if and when it occurs. 

3.5 Limitations 

Limitations to the study include the use of only male participants. As a previous study by 

Martin and Rattey, (2007) has examined the effects of gender (Martin & Rattey, 2007) on 

cross-over fatigue, it would be interesting to understand the effects of cross-over fatigue 

on female population too. Also, the idea of placing the little finger on the edge of the 

chair during the single leg standing balance trials might be a factor that contributed to the 

lack of change in non-fatigued limb balance. Work by Bolton et al. (2011) has shown that 

even light finger pressure has the ability to alter postural sway. In the present study, 

however, the use of finger touch to assist with balance was maintained for all conditions 

and both limbs, thus the effect would be the same for all conditions. Based on this fact it 
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is felt that the results would have been unlikely to change even if the chair has not been 

used. 

3.6 Conclusion 

No evidence of reductions in force, muscle activation, muscle co-ordination or 

disturbance in the postural stability parameters were noted for the non-fatigued limb. 

However, significant changes were noted for the fatigued side with MVIC, CoP sway 

area, total length covered by CoP, CoP AP length as well as the mean velocity covered by 

CoP. Posture can be dependent upon the extent and onset of muscle forces to compensate 

for disruptions to the CoG. It can be concluded that the lack of changes in non-fatigued 

force, F I 00 and stability parameters contributed to the lack of change in non-dominant 

postural sway parameters. Briefer fatigue duration than a previously published similar 

study (Paillard et al. 201 0) or the use of submaximal intensity contractions as compared 

to MVIC (Rattey et al., 2006; Martin & Rattey, 2007) may have contributed to the lack of 

cross-over fatigue effects. 
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