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ABSTRACf

Epiderma l grow th factor (EGF), in pharmacolog ical concent rat ions, inhibits

the cellular prolifer atio n of MDA-468 humun breast cancer cells. tn this study, we

cha racter ized this unusua l phenom enon by means of cell cycle and Nor thern blot

analysis. Following EGF treatment , ce ll nu mber in Gt phase increased, with a

cuncom itan t dep let ion of cells in S and G2JM phases of the cell cycle, as revealed by

flow cytome tric a nalysis of DNA conte nt. DNA synthesis, as meas ured by

incor pora tion of (3HJ thymidine, was red uced to abou t 35% of that measured in

contro l cells afte r 48 hour s of EGF treat ment, confirming the earlier observation of

G J arres t. Moreover, DNA synthesis ret urned to norm al following the remov al o f

EOF from the growth ar rested cells. No rthe rn blot a na lysis revealed that EGF

trea tmen t did not alter the induction of curly 01 mar ker, c·D1Y£, nor expressio n of

the late 01 ma rkers, prolifera ting cell nuclear antigen and thymidine kinase.

However, EOF tr eunnent resulted in the cownregotat ton of p53 a nd histone 3.2

stead y-state mRNA levels. Increased leve ls of these gene transcri pts a rc observed at

the OtIS bo undary and in S phase, respectively. Th ese resu lts indicate d that EGF

reve rsibly blocks the ce ll cycleof MDA-468 cells at the G liS boundary.

The observa tion of lowere d mRNA levels of p53 (a point mutant , p53273.His)

led us to hypothesize its poss ible involvement in EGF ·med ia ted Gt arrest. Th e wild­

type p53 is ge nera lly rega rded us a tumour supp ressor and mutati ons in p53 are

common ly seen in a wide var iety of ca ncers. Since it has been suggeste d that this
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part icular mutan t p5327J.HiS, might have gained lin nttemnrive function lind act

positively to enhance cell prol iferation, W(: hypothesized that EG F-induccd G I arrest

might be med iated by changes induced in p53273.His. In onlet 10 lest this hypothesis.

an in-depth analysis of EG F effect on p53273.His was undertnken.

In our studies, no immediate effects of EGF-Irealment were observed with

regard to mRNA and protein levels, protein stability, and protein synthesis nf

p53273.His in MDA-468 cells. lnterestingly. un EGF-depe ndent alte red conformatio n

of p53 was indicated by immunofluorescence studies. These exper iments

demonstra ted a decrease d PAb 240 [mutant-speclfie unli-p53) reactivity of nuclear

p53273.His in EGF-t re liled ce lls, while PAb 180 1 lind PAil 1620 (pan-s pecific lind wild-

type -specific anti-pS3 antibod ies resp ectively) con tinued to detect the nuclear

presence of p5327.l.His. Further studies indicated II de creased pho..sphorylatinn of

p53273.His in EGF-t reated ce lls. The EGF-depcndenl cnnfnrmation shift and lowered

phosphory lation leve ls of nuclear p53273.His were detected early eno ugh to be

attr ibuted as causative of EGF-med iated ce ll cycle a rrest.

In orde r to obta in further con firma tion for the observed EGF-d epe:m.Jcnt

altered conforrnmion.nn d to test its Iunctionul significa nce.: in terms of transcriptional

regu lation by p5327J.His, D NA-binl1ing and trans nctlvation assays were performed.

We detected specific complexes of p5327.l.Hls with both CON and FRA

oligonucleotides, two of the known p53·DNA binding sites. Furthe rmore, in rruns'ent

tra nsfecrlon assays, these seque nces mediated p53-specifjc tran scriptional modulatio n,
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namely transactivation through CO N, and rep ression through FRA These

espenments, indicated a distinct function for pSJ213.Hb in MDA -468 cel13.

Inter estingly enough, EGF -treatm ent of MDA-468cells, resulted in increased DNA­

binding abiliry of pSJZ7J.Hi5 to both CON and FRA In addition, EGF pote nt iated

p53-mediated transcription from a minimal promo ter. Taken together, this study, has

provided signincant insights into EGF-med iated growth inhibitio n in MDA -468breast

cancer cells and furnished enough evidence to implicate the involvement of an

endogenous mutant pS3 in EGF signal transduction. Furthermore, the data presented,

suggest a novel a nd unique function for p5J 213.Hls which may be cell-type spe cific.
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1. INTRODUCTION

GROWTIl FACTOR SIGNAL TRANSDUCTION AND CELL CYCLE

REGUlATION

1.1 GROWTII FACfORS AND CANCER

The normal regulationofgrowthandthe proliferationof embryonicandadult

tissueinvolves a cascadeofmolecular eventsin response10the external environment.

Growthfactorsare short polypeptide hormones knownto mediate the interaction of

a cellwithits microenvironmentor immediate surroundings.These factorsbehave as

regulators of cell proliferation, and influence cellular differentiation. In general,

growthfactors function through interactionwitha specificcell membranereceptor

protein. This interactioninitiatesa series of molecular events through which the

signalpassesto the nucleus (Reviewed in Ullrich & Schlessinger, 1990;Pazin &

Williams, 1992). In the nucleus,sucha signalisgenerallyconsideredtobe responsible

for altenuions in cellular transcription, leading to the synthesis of proteins essential

for cell proliferationor differentiation.

Cancer, the uncontrolled proliferationof body cells, is widely considered to

involve the accumulation of genetic aberrations in a progressive manner (Vogelstein

& Kinzler, 1993). These geneticChanges, as revealedfrom studies of a widevariety

of cancers,often affect one or more componentsof growth factor signal transduction

pathways (Aaronson, 1991). For example,cverexpression of the epidermal growth

factor receptor (EGFR) is commonlyobservedin breast cancer as a result of gene



amplification (Gusterson, 1992). Ras, the product of a cellular proto- oncogene C-ffi!.

believed 10mediate many receptor-generated signals, is frequently found in activated

form in a number of tumours (Bishop, 1987). Studies with transforming viruses have

provided further insight into the relevance of growth factors in tumor igenesis. Several

transforming retroviruses encode products which are highly homo logous to various

growth factors or their receptors in activated forms. For example, the v-ill oncogene

of simian sarcoma virus encodes a prot ein similar or almost ident ical to the active

form of platelet derived growth factor (PDGF )(Doolillle ~ ill., 1983); v·ruill2.

oncogene of avian erythroblast osis virus encodes a truncated form of the EGFR

(Downward sa .l!1., 1984). This line of evidence suggested that constitutively active

components of growth factor signal transduction pathways may be the molecular

mechanism of viral transforma tion (Darnell ~ !!..I., 1986).

Similarly, several components of signal transduction pathways possess

transform ing potent ial when overexpressed in active forms under inYi1m conditions.

Cellular counterparts of many transforming oncogenes such as W, W; and mt have

turn ed out to be important elements in growth factor sigroalling (Heldin &

Wes termark, 1989). Overexpre ssed EGFR-IiJ:e piSSHER2Ineu transforms rodent

fibroblasts (Hudziak ~il..1987), whereas, a mutanl/activated form induces mammary

tumours in mice (Muller .tt ill.. 1988). Furthe rmore, recently Egan ~ BJ· (1993),

reported that a Drosophi la gene, 50S (Son of sevenless) believed to be a modulator

of Ras, transforms rodent fibroblasts (See also Section 1.2.3). Accordingly, growth



factorsandthe compo-emsof the signaltransductionpathways are an importantpart

of cancerresearch. A thorough understanding of molecular mechanisms of growth

factor signal transductionwill translate intoa betterknowledgeof tumorigenesis and

mayultimatelylead to thedevelopment ofstrategiesfor efficientcancer therapyand

prevention.

1.2 cnowm FACTOR SIGNAL TRANSDUCTION

1.2.1.Rettp lorJ and Immedia te early events

As introduced in Section 1.11 growth factors initiate a cellular response by

meansof binding to cell-surface receptors. Severalgrowthfactors, including thewell­

studied platelet derivedgrowthfactor (POGF)and epidermal growth factor (EGF),

interactwith receptorsbearing tyrosine kinaseactivity (Ullrich& Schlessinger, 1990).

Some other membersof the growthfactor family, bind to proteins lacking such

enzymatic function. Examples of such receptors are transfonning growth factor

(TGF)·p receptors I and II, receptors COl cytokines like interleukin (IL) 2, 11.6 etc

(Foxwell ~ ~" 1992). Nevertheless, receptors with tyrosine kinase activity are a

primaryfocusof research. Signaltransductionmediated byreceptor tyrosine kinases

is discussed in detail below.

Thereceptor tyrosine kinases ere membrane-localized protet-s withintrinsic

tyrosine kinaseactivity,These proteinshave an amino-terminal extracellular domain

linked bya short trans-membranedomain toa cytoplasmiccarboxyl-tenninaldomain.

The catalytic functionof the receptor residesin the cytoplrsmic domain,whereas the



extracellular portion is responsible for the ligand binding. Receptor s for various

growth factors differ in structure and the occurrence and distribut ion of receptors

dep ends on tissue type, and perhaps, determ ines the differential respon siveness of

cells to various growth factors.

Research $0 far has revealed several cellular events occurring immediately

following receplor binding (Reviewed in Ullrich & Schlissenger, 1990 : Pazin &

Williams, 1992). Briefly, binding induces receptor oligomerization and activates

rece ptor tyrosine kinase activity leading to an intermolecula r receptor

au tophosp horylation. This is thought to facilitate the binding and phosph orylation of

oth er cellular proteins to the activate d receptor. Such a complex o f proteins in

associatio n with the activated receptor is termed a "~igna lling tomplex" (signal

tra nsfer particle: STP). Some of the proteins associated with such a signalling

comple x have been identified. They include QTPase ~ctivating nrotein (GA P) of Ras

(Malloy mID.,1989; Ellis~ ill., 1990), phospholipase c-, (PLCy)( Ma rgolis ~ ill.,

1989), phosphoinositol 3' kinase (P I3K) (Coughlin !:till., 1989; Bjorge rJ. ill.,1990).

R an , the product of raft oncogene (Morrison ~ ltl., 1989), and c-src and related

cytoplasmic tyrosine kinases (Kypta .eJilL 1990).Recent studies have demonstrated

tha t many of these proteins contain st retches of amino acids having homologyto the

non-catalytic regions of c-src tyrosine kinase. Src homology(SH) domains, are lengths

of 100 (8H2) or 60 (SH3) amino acids, which mediate specific pr otein-protein

interactions (Pawson,1988; Carpente r ~nl.,l991 : Koch!:t i!J..,1 991: Pawson & Gish,



1992). 5H2 domains can interact with short peptide regions containing

phosphorylated tyrosine,while SH3 domainsare knownto interact with proline-rich

regions of proteins. A number of studies (Koch~ 11.. 1991; Lowenstein~ al.. 1992;

Montminy, 1993) have indicated that these domains are essential for the interaction

of ceUular proteins and activated growthfactor receptors. Further, SH3 domains arc

believed to regulate lhe cellular localization ofproteins through their interactionwith

components of cytoskeleton (Bar-Sagi~ ID" 1993). More recently, several studies

identified a cellular protein, p91 as a substrate for activated growth factor and

cytokine receptors (Silvennoinen~ ID., 1993; Ruff-Jamison ~.!!I..1993; Lame r~ .!!I"

1993), p91is a 8H2 domaincontainingproteinand apparently actsas a transcription

factor (Montminy, 1993). These studies, combined with suggested nuclear functions

of GAP-associated proteins(p190 andp62;section 1.2.2), have raised the hope that

perhaps a search for a direct link between growth factor receptor-associatedproteins

and nuclear events has finallysucceeded (Hall, 1992).

1.2.2 Res- a downstream mediat or

Res,a proto-oncogene prod uct,is a member of the smallguani ne nucleotide

binding protein (G protein) family. Incells, RaJoccurs ineither GTP· bound or OOP·

bound form. Ras.GTP isactive whereas GDP-bound RaJ isconsidered ;'0 be inactive

(Marshall,1991). The switch from OTP· to GOP·bound form is catalyzed by the

intrinsic GTPase activity of Ras itself.The importance of Ras in growth factorsignal

transduction was clearly demonstrated in a study from Smith ~ m. (1986). In their



report, the authors introduced specific antibodies against Ras into cells and st udied

their effect on mitogenesis and transfo rmation by various growth factors and

oncogen es. Th e antibodies effectively blocked growth factor-induced mitogenic

respo nses indicating chat Res was an important downstream mediator.

A cellular protein, GAP, enhances the intrinsic GTPa se activityof Ras several

fold (Trahey & McCormick, 1987). GAP , by activating Ras-GTl'ase activity,

promotes the conversion of Ras.GTP to Ras .GDP, thereby negativelyregulating Rns

function (Gibbs ~ m., 1990; DeClue ~ ~., 1991). GAP associates with activated

growth factor receptors and undergoes tyrosine phosphorylation (Molloy.d l!1.,1989).

Since increased levels of Ras.GTP were reported in growth factor-stimulated cells,

it has been suggested that interaction with activated receptor may tempora rily

inactiva te GAP (Downward .tl ill., 1990). One hypothesis is that recepto r-mediated

inactivation of GAP auows accumulation of Ras in an active Slate leading to the

stimulation of mitogenic events (Moran -'1 ill., 1991; Reviewed in Hall, 1990;

McCormick, 1990; Lowy<!M., 1991 ).

On the other hand, GAP is also implicated as a downstream effector of Ras.

Less-of -function mutations in the .effector region' of Ras, believed to be

responsibl e for its biological function, also disrupt its interaction with GAP

(Willumsen~m., 1986). In some instance s, both Ras and GAP are required to elicit

a respo nse, as ill case of reguJation of atria l K+ channels bymuscarinic receptors

(Yata ni~ ill.,1990). Furthermore, characterization of two GAP-associated pro teins,



p62 and pl90 indicates their possible role in mRNA processing (Wong !tl m., 1992),

and in transcriptional regulation respec tively (Settleman~!J!l., 1992).Taken together,

these reports support the notion of GAP as a downstream effector of Ras.

1.2.J Ras and GrbZ·Sosl

Elevated levels of Ras.GTP in response to growth factors also suggest the

posslbte existence of an activation factor for Ras, since conversion of Ras.GDP to

Ras.GTP is brought about by the exchange of guanine nucleotides. Indeed, in the

lower eukeryores, S.cerevjsiae and Drosophila proteins with such a function have

been identified. The se factors, CDC2S of yeast (Robinson ~ .!!.I., 1987) and Son of

sevenless (Sos) of flit's, are generally termed guanine nucleotide .e.xchange/release

[actors (GEF/GR F). Mammalian homologs of Sos/CDC25 have been identified in

mouse and humans (U ~ ill., 1993; Chardin ~ ID., 1993). Further studies have

iden tified their association with activated growth factor receptors mediated by a

cellular protein terme d growth factor receptor hinding protein 2 (Grb2; Lowenstein

!tt ill·, J992). Grb2 has a 5H2 domain flanked on eithe r side by SH3 domains. The

5H2 domain of Grb2 mediates its interaction with the activated growth factor

recep tors (Li ~ !!I., 1993; Skolnik ~ m" 1993). The 5H3 domains of Grb2 are

essential for its interaction with SosJ. Overexpression of Grb2 enhances Ras.GTP

levels (Gal e .£! !!I., J993). Thus, Grb2 acts like an adaptor molecule linking an

act ivated growth factor receptor to Ras. This molecular interaction leads to increased

ce llular Ras.GTP levels. Furthermore,~ 50S transforms rodent fibroblasts



(Egan~ iLl, 1993) indicating a role for a Res-ecwator (Sosl) in mitogenesis.

1.2.4 Pbosphor nosnor tcre over , PLC

Growth factor binding to a relevant recep tor in many fnetances increases the

cellular levels of inositol triphosphates (lP3) and diacylgly<:erol (Reviewed in Cook

& Wakelam, 1992). IP3 enhances the release of ea++ from the intracellular stores

(Reviewed in Taylor & Marshall, 1992), which in turn stimulates the activity of

several Ca++-dependent protein kineses and biochemical reactions. The elevated

levels of IP3 and diacylglycerol occur as a result of growth factor-depende nt increases

in the hydrolysis of membrane-associated phospholipids such as phosphotidylinositol

4,S-biphosphate (PIP2), phosphot idylcholine etc. The hydrolysis is mediated by a class

of enzymes collectively called phospholipases (PL). Phospholipase C y (PLCy ) is

known to form a complex with activated growth factor receptors (Margolis '" aI..

1989). Elevated levels of inositol phosphates have been shown to be a pre-reqcane

for mitogenesis in some instances (Matuoka tt!I.. 1988). A molecular interaction or

PLCy with an activated receptor is thought to increase the enzymatic activity of

PLC-y. This view was corroborated by in Yi!m studies (Nishibe ~ ill., J99O). The

phospholipid metabolites generated are thought to function as second messengers in

various systems. However, there is evidence contradicting this conclusion (Downing

~ i.I., 1989; Margolis .d aI., 1990) . For instance, Margolis d. aI. (1990),observed that

overexpression of PLC-y did not alter the ra te of DNA synthesis despite the

increase d intracellular IP) and Ca++ levels.



On the other hand, diacylglycerol in conjunction with increased cytoplasmic

ea++ levels appears to stimulate protein kinase C (PKC) activity (Reviewed in

Asaoka !<!ill., 1992). PKC acts on a variety of cellular proteins modulating their

function. The importance of diacylglycerol and PKC to mitogenesis has been

demonstrated by the stimulation of cell cycle entry upon microinjection of

diacylglycerol into BALB/c 3T3 cells (Suzuki-Sekimori ~ !!I., 1989). Transcription

factor activator protein 1 (API) activity is one example where protein kinase C.

depende nt dephosphorylation of API subunits increases its activity (Angel & Karin,

1991). Myristyloted alanine rich ~ kinase liubstra te (t..tARCKS) is an actin binding

prote in whose cellular localization is regulated by PKC (Gra ff!U ID., 1989;Th elen !<!

ID., 1991). PKC also phosphorylates growth factor receptors. This perhap s acts as part

of a negative feed-back mechanism for downreguleung receptor activity (Ullrich &

Schlessinger, 1990).

1.2.5 Ran kinase

Raft is a serine/threonine kinase often found in association with activated

growth factor receptors (Morrison ~ aI., 1989). Activation of Ran is observed in

response to growth factors. It has also been reponed that Raft and Ras interac t

through physical complex formation. Ras acts upstream of Ran since dominant

negative mutants of Ras block recept or-mediated activation of Raft. Rafl

preferent:~ :ly binds to Ras.GTP over Rqs.GDP (Z hr.ng~ ID., 1993; Vojtek ~ ill.,

1993). A similar cascade has been identified in the nematode~ (Han.d ill.,
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1993). Taken together, activation of Ras by growth factors leads to its association

with and activation of Raf!. The Ran activation mechanism is still unclear.

Interestingly eno ugh, an a isomer of protein kinase C also stimulates Raft by

phosphorylation (Ke lch ~ !!I.,1993).

Mitogen gctivated Rrotcin ,kinases (MAPK) were identified as the name

indicate s, by virtue of the ir act ivation by severa l mitogen s (Reviewed in Nishida &:

Gotch, 1993). MAP kinases are known to act downstream of Ras and Rafl. MAP

kinases are reg ulated by phosphorylat ion on both tyrosine and thre onine residue s.

Ran activates a dual specific kinase, MAPK kinase (a lso known as MEK) which in

tum activates MAP kinase s. Clon ing of seve ral MAPKKs and MAPKs suggests the

possible existe nce of multiple protein kinase casca des. Th e recruitment 3 !'] exte nt of

activati on of several ktnases may determin e the ultimate rcspon se to growth factors

and other mitogens. Severa l of the MAPK substr ates include those regulating early

gene responses includ ing Jun, Elkl , and those involved in protein synthesis such as

riboso mal ~6 subunit ~n3se (Rsk) etc. Identification of MAPK substrates and the

study of the effect of such an interaction is an active area of current research (Bleni s,

1993).

1.2.6 Phospholnositol 3' kinase

Phospb oinositol 3'kinasc (PI3K) is yet anot her component of the signalling

complex. Associat ion of PI3K with specific phosphotyrosine residues of receptor and

non-receptor tyrosine kinases has been reported (Escobedo '-l11., J991). PI3K is
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comprised of two subunits of 85 illa (p8S) and 110illa (pHO). pBS contains two

SH2 domains a nd is respons ible for specific interac tions with activated receptor and

non-receptor kineses. This enzyme phosphorylates the 0-3 posi tion of the inositol

ring, producing phosphatidylinosilol (PI) 3-phosp hate, PI 3,4.diphospha te, PI 3,4,5­

triphosphate a nd PI- 1,3,4,5, terraphosphate. The latter thre e prod ucts have been

associated with growth factor stimulation of cells (Au8cr a aI., 1989) and may act as

important components in yet-to-be identified signalling pathways.

Taken together, these observ..tions (detailed in this section, 1.2) indicate that

growth factors recr uit and modulate the activity of severa l ce llular protein kinases

through differe nt mechanisms. The substra tes of these enzyme are likely to be critical

components of cell proliferatio n and differentiatio n.

1.3 G PROTEI NS IN SIGNAL TRANSDUcnON

A classic G protein is heterc-tnmeric, consisting of a. fl and y subunits. G

protein s couple membrane bound receptors for mitogen s, horm ones and

neurot ransmitters to different enzymes located intra cellularly (Heple r & Gilman,

1992). A pro totypical example is G protei n coupling of p-ad renergic recep tors to

aden ylate cyclase which in turn modulates synthesis of cAMP. cAMP spec ifically

activates a cAMP..<Jependent prote in kinase (Prot ein kinase A). Protein kinase A can

affect the activity of transcription factors and per haps oth er regulatory cellular

proteins (Collins~ ill.,1992). Several mitogens such as thrombin and bombesin are

known to act thro ugh receptors coupled with G pr oteins. G proteins also activate
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differe nt isofonns of phospholipase:s leading to inc reased ph ospho inosilol turnover

(Seuwen & Pouyssegur, 1992;Liskovitch, 1992).

Ligand bind ing to a recep tor leads to a cha nge in receptor co nformatio n. This

induces coupling to G proteins.The interactionleads to the activationof G proteins.

A3 in case of Res, the a subunit of hete rotrimeric G-pro teins is bound to .GTP in

activated farm. U pon receptor coupling a nd GTP binding, the a subunit disassociates

from the fJy dimer and the recepto r. Free a subunit the n finds and activates the

appro priate e nzyme in the me mb rane (Re viewed in Gil man, 1987; Slrye r,1986).

Evidence exists to show that even the d isassociated /Jy dimer isactive 1><;a n;uu dater

of e nzyme act ivities (Clap ham & Neer, 1993). Th e downregulat ion of G protein

act ivity is mediat ed by the conve rsion of a subun it-bou nd GTP to GDP by ;nninsic

GTPase functio n.

Recent repo rts ind icate that G prot eirH:oupled rece ptors activa te MAPK in

a Raft -independent manner (Gardner ~~ 1993). This a lso seems to demonsuate

the possib ility of the exis tence o f multip le signal tra nsduction pathways lead ing to the

same finallarge t molecule. In many instances of growt h facto r signalling, involvemen t

of G pro teins has been demonstrated (Kru pinski .c.lW.. 1988; Church & Buick, 1988;

Cro uch ~ ill.. 1990). Recently, G pro te ins have also been shown to interact with

receptors with tyrosine kinase activity (Lefkowitz. 1993). This, in combination with

reports that qu esti on the sufficie ncyof known cellu lar eve n ts such as phosphoinosilol

turno ver (Jrnamura '-l.i!.l., 1990; Downing ~ .i!.!.. 1989 & 1991) a nd GAP regul ation
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of Ras (Church!tl ID., 1992)in mitogenesis, suggest that mitogenesis can be mediated

through mult iple pa thways.

1.4 CELL CYCLE

Howard and Pelc first described the cell cycle in 1951. and this cellular event

has been intensely studied since (Reviewedin Cross~ m.,1989).The eukaryoticcell

cycleissubdividedinto four distinctphases. Two of the phasesare characterizedby

readilyobservable events, DNA synthesisand mitosis.The periodof ONA replication

is termed a' nthctic phase (S phase) and the mitotic stage is known as M phase.

Separ aung t'iese two periods arc two phases that were initially cha racte rized simply

as time "gaps"; gap 1 (Gl phase) preceding the S phase; i,ap 2 ( G2 phase)

separating S phase and M phase. Detailed analyses of the cell cycle have now

revealed that these two gaps are functionalperiods during which important decision.

makingprocesses regarding cell proliferation take place. Cells can enter a third time

period of quiescence , termed GO, followinga final round of mitosis, when exposed

to extreme and inappropriate growth conditions or upon differen tiation. However,

transformed cells have reduced growth requirements due to the deregulation of cell

cycle control mechanisms, and they seldom enter GO(Reviewed in Pardee, 1989).

1.4.1 Cell cycle check points

The cell cycle can be envisionedas a complex set of inter-connected molecular

events leading 10 DNA replication,and ultimately, cell division. Several distinct check

points are believed to be essential for coordinated cell cycle progression (Reviewed
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in Hartwell & Weinert, 1989). Among these, controls at Gt-S and at G2·M

crucial.

1.4.1.1 G2·M

Cell cycle progression from G2 to M phase is known to be controlled by on

active serine/threonine kinase complex, initiallytermed mitosis/maturation nromoting

factor (MPF), whose catalytic component is a 34 kD protein, generallyknown as

p34cdc2kinase (OOc2), initially described as the product of the cdc2gene of the yeast,

Schizosaccharomyces l!ill!!lli< (Reviewed in Draena, 1990; Lewin, 1990). Hamologs

of the £!k2gene product have been identified in several species including humans

(Draetta & Beach, 1988). The kinase activity is dependent on the association of

p34cdc2 with anothe r classof proteins known as eyelins. Levels of these proteinsvary

in a cell cycle-dependent manner, hence the term cycltns. The cdc2/cyclincomplex

phosphorylatesa number of cellular proteins, modulatingtheir function. Forinstance,

phosphorylationof histone HI bycdc2appearsto inducechromosomecondensation;

phosphorylation of nuclear lamins by cdc2 precedes the dissolution of nuclear

envelope. Alist of other cdc2substrates includeSV40T antigen, the retinoblastoma

gene product (RB), and p53. The functicna' consequences of many of these

interactions remain unclear.

Kinaseactivityof cdc2peaks justprior to mitosis, initiating mitotic events, and

itsrapid i.nl\ctivationallowsthe cell to ed t frommitosis.Site-specific phosphorylation

of cdc2by other cellular kinesesalsodetermines the activityof the kinase complex.
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In addition, an association with different eyelins in a stage-specific manner may

determine the substrate specificityof the kinase.Studieshave indicated the existence

ofstage-specitic eyelins and these data correlatewitha differentialfunctionof p34cdc2

kinase (Reviewed in Hunter & Pines, 1991; Motokura & Arnold, 1993; Muller~!l..

1993).

1.4.1.2 Gl.S

Research also indicates the presence of more than one cde2 kinase, and at

least in frogs, evidence has confirmed that the Gl-S transition is controlled by a

different cdc2 kinase than that of G2-M (Fang & Newport,l991). Steven Reed, a

prominent yeast biologist, has proposed the possible existence of an S-phase

promoting factor (SPF), acting at the Gl·S boundary, or more appropriately, at

various check points in Gt , regulating the initiation of DNA replication (Reviewed

in Reed, 1991). This hypothesis seems correct since a number of cdc2-related klnases

and their eyelin partne rs have been isolated. Hence, they are now termed £Yclin·

dependent l!;inases (CDK). CDKl is the original p34a1c2kinase, while other cdc2·

relatives are named CDK2 through 5. Many of the CDKs bind differentially to the

different eyelins and interact in a unique manner with a variety of cellular proteins.

In frogs, CDK2 and not CDKI, is essential for DNA replication (Fang & Newport,

1991).

In S.cerevisiae (budding yeast), a critical check point in 01 (STARl) is

regulated by a homolog of p34tdc2 , CDC28. Activi.:y of CDC28 at START is
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determined by its association with th:ee novel G1 eyelins (Wittenberg !(! ill., 1990).

Other recently identified eyelins include C" 01·, 0 2-, D3· , E- and F·type eyelins.

Currently, the importance of each of these eyelins in cell cycle regulation is under

investigation (knownCDKsand eyelins are listed inPines, 1993; Motokura & Arnold,

1993).

1.4.2 Growth inblbitory mechantsms • yeast model

To achieve regulated cell proliferation, 011 the even ts described ab ove, must

be well coordinated. Any perturbation in these molecular events might result in

growth aberrations. Cells do not commit to DNA replication or 10 mitosis until

certain requirements such as cell size,are met. in other words, the cell cycle is a

delicate balance of positive and negative controls. At specific points in cell cycle.

negative regulationwillbe relievedwhile concomitant positive regulatorymechanisms

drive cell proliferation(Hartwell & Weinert, 1989).

Yeast is one of the preferred eukaryotic systems to study the cell cycle. In

particular,~~ (budding yeast) serves as an excellentmodel ,

since major cell cycle decisions are made in G1, comparable to mammalian cells,

unlike fission yeast and amphibianembryoniccells inwhich mitotic control isprimary

(Sprague, Jr., 1991). The budding yeast forms specialized gametes for conjugation,

proliferate by means of buddingand may enter a quiescent GOstage under limiting

growth conditions. The major check point in late GI is termed START. Oncea cell

commits to continued celldivision by proceeding beyond START, it willdo so even
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under adverse conditions such as nutrient limitations. Thus START serves as a

control point analogous to restriction point (R point - a stage after whichcells

commit to DNA synthesis and have minimum requirementsfor mitogens and protein

synthesis; Muller !tl m" 1993) in higher eukaryotes.

A classic example of a growth inhibitory mechan ism can be provided by the

phe nomen on or growth arre st induced by mating pheromone in the budding yeast,

Saccharomyces cerevisjae (Fields, 1990;Herskowitz & Chang, 1991). These short

polypeptidepheromones induce G1arrest at STARTin yeastof the opposite mating

type by inducing the expression of certain genes that interfere in cell cycle

progression.Thepheromonesignal transductionpathwayinvolvesGprotein-mediated

activation of acascade of proteinkinases culminatingin Gl arrest.A number of gene

productstakingpart in thispathway havebeen identified. They function in the order

STES, STEII /STE7/FUSJ/KSS1 (these kineses are redundant in function), and

STEI2 (8 transcription factor). Such a cascade is believed to culminate in

pheromone-dependent alteration of cellular transcription (Reviewed in Sprague, Jr.,

1991). So far, at least two such pheromone-inducible genes, .EARl and .B.lS1have

been iden!ified and were demonstrated to act by inhibiling 01 cyclins (Chang &

Herskowitz, 1990; Elion .t1W., 1990). In higher eukaryotes, though such a direct

mechanism has yet to be discovered, there is wide speculation that the tumour

suppressor genes may act in a similar manner. Since the objective of this study isto

elucidate the molecular mechanisms involved in inhibition of proliferation of human
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tumour cells, a detailed account of the roleof tbe best studied and prototypictumour

suppressor, retinoblastoma gene, is given below.

1.5 RB· TIlE PARADIGM FOR TUMOURSUPPRESSOR FUNCflON

Each non-lethalgenetic abnormalityacquired bya potentiallytumorigeniccell

is believed to confer a selective advantage for cell proliferation. This results in the

clonal outgrowthof tumour cells. Such changes may either inducethe production of

gene products that promote mitosis, as in the case of activatingmutations in proto­

oncogenes, or nullifyone or more negative regulatorypathways,exemplified by allelic

loss followedby mutational inactivation of tumour suppressor genes (Bishop, 19&1).

Interestingly enough, intense research aimed at delineating the molecular

mechanisms underlying the initiation and progression of cancer, has revealed thai

many proto-oncogenes and tumour suppressor genes are key components of

regulatory pathways in the normalcellcycle(Travalig m.,1990). The productor the

retinoblastoma gene, plloR b (RB), a nuclear phosphoprotein and a classicexample

of a tumour suppressor, has been implicated in regulating the progression of cells

from G1 phase toS phaseof the cellcycle (Hamel~ ID., 1992). Completelossof RB

function is considered to be the molecular basis of retinoblastoma, a rare form of

childhood cancer of the retina.Elegantexperimentsemploying clonedRBBeneshave

demonstrated its function as a negative regulator of cellproliferation(Huang £.! !!l.,

1988; Goodrich ~ m., 1991). RB is differentially phosphorylated in a cell cycle­

dependent manner. More heavilyphosphorylated forms occur inlate Gland S phase,



19

while earlyGl cellscontain relatively under-phosphorylated loons of RB (Chen ~

11..1989). vlral transformingproteins sech as SV40T antigen preferentiallyassociate

with the under-phosphorylated form of RB (Ludlow~ 11.. 1989). Taken together, it

appears that the apparent negative ceOcycle regulationby RB may be blocked by

phosphorylation or through complex formation with viral transform ing proteins,

permittingunrestrictedGt -S progression (Weinberg, 1991b; Hamel S'1 l!h 1992).

Efforts to understand the RB functionin normal cellshave providedevidence

for its involvement in transcriptional regulation. RB repressestranscriptionfrom El F

and DRTFI transcription factors by means of a physical association (Reviewedin

Weinberg, 19918 & 1991b). Several genes including c-E. c-fQi, Bhl. and TOP·,e

have been shown to be negatively regulated by RB. apparen tly in a sequence­

dependent manner through a putativeRet inoblastoma Control E lemem (RCE) in

their promoters. Sincethe ~, of Rb function is a common feature of majority of

cancers studied (Lee &.Lee, 1991), perhaps in normalcells Rb negatively regulates

the cellcycleprogression by inhibiting certaincellcycleregulatorycomponents.This

viewhas been getting some attention recentlyas Dahan (1m). reported repression

of the cdc2promoter by Rb. In contrast. RB may also act positively to enhance

transcription as demonstrated in case of the Spl transcription factor (Kim ~ ill..

1992). However, direct DNA bindingof RB has not been demonstrated in these

instances, implying Ihmeffects maybe the resultof protein-protein interactions. In

support of this, RB has been reported to interact witha number of cellularproteins
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including eyelins A, 0 2 and 03, Myc and several uncharacterized polypeptides

(Giordano jj ill., 1991; Kaelin, Jr.~ 1!1., 1991; Kala ~ ill.tl993; Hall!<!ill" 1993b).

Though p33cdkl also appears to he a component of an RB·cyclin complex, the

interaction is likely of an indirect natur e, mediated by eyelins. Thus, a cell cycle­

dependent co mplex formation of RB with cyclins and CDKs and subsequent

phosphorylation of RB may act as a mechanism to inactivate RB function at

particular stages of the cell cycle (Weinberg,1991b; Hamel ~ ill., 1992).

1.5.1 RB In normal cell - The paradox

A story of RB research would not be complete without ment ion ing the

paradox it presents. Despite the fact that RB is Ubiquitously expressed in a variety

of normal cells and functions as a cell cycle regulator in experimental situations,

germ-tine mutationsin RB predispose onlyto certain tumours, including those of

retina, bone and soft-tissues. In principle, a gerrn-llne mutation in one of the alleles

for BQ resultsin the presence of a single wild-typeallele in all body cells. In theory,

all the actively proliferatingsomatic cells must then be exposed to the same rate of

mutation in the existingnormal B.!! allele. However, in individualswith RBgerm-line

mutations. tumours arising from highly proliferative tissues like gul, skin, or

haematcpoietlc system, are extremely rare (While !<.1 .i!l.. 1985; Gallie~ !!l., 1990).

This puzzling tissue specificity is further compounded by the observation thai RD-

deficient mice fail to complete term. This mid-term lethalitywas characterized by

defects in the central nervous system and baernatopoleucsystem (Lee '-l m.. J992).
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Nevertheless, it is clear that a number of reg ulated cell divisions have taken place

allowing the embryo to reach mid-term before the manifestation of RB deficiency.

These observations haveraised a fundamental question about the role of RB

in normal cells in riYg. It is essential (0 clarify the function of RB in normal cell cycle

progression. In light of the reports regarding RB-deficient mice, Ed Harlow

com ments " The suggestion that RB has an esse ntial role in all normal cell divisions

must now be abandoned - it just isn't that important ", This view was further

extended to propose a critical role for RB in differentiation (Har low, 1992).

However. this contradicts the convincing evidence implicating RB in cell cycle

reg ulation. To explain such a paradox , seve ra l arguments have been put forward.

Most convincing of them all is that of redundancy. Given the putative criti cal nature

of the G1check pointit is clearly plausib le tha t more than one protein m ay be acting

in the same manner. This: may also expla in the relat ively narrow tissue specificity of

RB t umours as o nly those cells in wh ich RB function is rate-limiting may become

tumorigenic bu t no t those with functional RB-like redunda ncy (Hamel ~ !!.!., 1992).

1.5.2 TGF.p a nd RB

Transforming growth factor-s (TGF-p ) is a growth factor with contrasting

effec ts on cell proliferation . Broadly spea king, TGF -,8 is regarded as a growth­

st imulator for mesenchymal cells and as a growth-inhibitor for ep ithe lial cells

(Review ed in Mo ses ~ ill., 1990). TG F.,8 apparently acts as an indirect mitogen for

mesenchymal cells (smooth muscle ce lls) by inducing PDGF-AA autocrine secretion



22

(Battegay ~ !! .. 1990). Moreover, it wasde monstrated tha t the slimula iton occurs

only at low conce ntrations, and a t higher concentrations TG F·p actua lly inhibits the

muscle cell proliferation. The growth inhibition was correla ted with decreased

expressio n of the poom subunit which mediates the responses 10 PDG F-AA.

TGF·p media ted growth inhibition in epith elial cells under bot h in Yi!m: a nd

in~ conditions has bee n studied extensively as well (Barna rd ~ !!.I., 1990; Moses

~ il..1990). TGF-,8 modulates the expression of several proto-oncoge nes such 85 c­

~ and some of the genes involved in the produ~1li:m of extracellular ma trix

such as 12lasminogcn i!ctivator inhibitor 1(PAl-I ) and fibronectin. There is convint;\ng

evidence that e-ID,Xk expres-cn is necessary for the proliferation of ker atlnocyte s

which are sens itive to growth inhibition by TG F-p. TGF·p ra pidly downr egula tes c­

rm:£both at the level of RNA and prote in (Ple tenpot ~ iJ.. 199Oa). Th is eve nt was

suggested to be respo nsible fo r TGF·p-induec:d growth inhibition. Interestingly

e nough, TGF·IJ fails to inhibit cells that arc transformed by DNA tumour viruses.

This obse rvation led to the suggestion tha t a commo n protein may be targeted by

both viruses a nd TGF·IJ. RB is one of the best candida tes since the DNA tumour

viruses are known to bind RB a nd presumably block its anti-prol ife rative activity.

Mor eover, the negative cell cycle regulat ion exerted by RB is ope rative in early O!

phase (Coope r & Whyte, 1989). Furthe r experiments have clearly ind icated the

involvement of RB in TGF·p signa lling mec hanism. In tra nsient transfection assays,

tumou r an tigens of DNA viruses blocked the TG F·IJ effects on c·~ express ion,



23

whereas mutants of tumour antigens that are defective in RB binding were unable

10 do so (Pietenpol !U ill., 1990b). It has also been shown that TGP.,e inhibits

phosphorylation of RB, and this was initially proposed to be the molecular

mechanism ofTGF-p -mediatcd growth inhibition (Laiho,g W., 1990). Howeve r, th e

kineticsofTGF·,e-induced suppression ofc·~ precedes that af RB phosphorylation.

Similarly, TGF.p -induced alteration in c-~ iY.n!! and PAl·} mRNA levels in S­

phase cells inwhich RB ispresumablyinactive (Zentella ~!!l.•1991). In addition, the

authors note that cells with mutant non-functional RB were equally responsive to

TOF-p. These reports have raised the concern that the preliminary hypothesis

implicating RB in TGF-p-mediated growth arres t may not be universal and may well

be cell/tissue-specific. Neverthe less, in some cell-types,convincingevidenceestablis hes

RB as an downstream effector of TGF-p , media ting the growth inhibition .

1.6 EPIDERMAL GROwm FAcroR

Epi derma l growth factor (EGF), is an importa nt member of the growth factor

family (Co hen g m., 1980; reviewed in Hu nter & Coope r, 1985; Carpenter & Cohe n,

1990). EOF is a short polypeptide, 53 amino acids long, which binds to a cell surface

protein of molecular weight 170 kD termed the EGF receptor (EGFR ). Elevated

levels of EGFRs were reported to be associa ted with several types of canc ers,

including breas t cancer , a nd were believed to be respons ible for decreased growth

factor and hormon e dependence of such tumou rs. EGFR also mediates the signa ls

from ano ther ligand, tra nsforming growth factor (TGF)-a, secre ted by many
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transformed cells and modulating their growth in an au tocrine fashion.

Due to its prominence in cancer biology {Heldin & Westermark, 1989;

Guste rso n, 1992), research has been able to provide valuable information regarding

the molecular mecha nisms of EGF·mediatcd signal transduction. As outlined ea rlier,

upon binding to FGFR, EGF induces receptor oligomerizat ion a nd activates re ceptor

tyrosine kinase ac tivity.Th is leads to recept or auto-phosphorylation, and at least in

some ce lls, the for mation of a signalling complex which may include GAP, P13K,

PLC y (Carpenter g !ll., 1991) and Grb2..$osl (Schlessinger. 1993). The precise

molecular linkage of the activated EG FR with nuclea r events mediating cell

prolife ration or d ifferentiation, remain obscure.

1.6.1 EGF and gro wth inhibition In MDA468: An Intrigu ing system

EGF is gen erally a potent mitogen for a variety of cells, both in culture and

invivo (Cohen~m.,1980). Elevated levels of EGFRs are commonlyassociated with

breast cancers (G usterson, 1992), indicating a critical role for EGF in transformation.

It has been suggested that increased EGFR levels may confer a growth advan tage in

situations of dec rease d EG F concentra tions (Gill~ ill., 1985). Studies with a cell llne

MDA·468 (or MDA'MB-468), established from pleural perf usion of a breas t cancer

patient (Pathak ~ fu, 1979), further supports the argument that EGF acts as an

import ant z-t erminam of tumour cell proliferat ion. MDA-468 cells, expre ss large

numbe rs of EGFRs, abou t 1-2 X loti/cell, as a result of gene amplification for the

EGFR (Filmus ~ ill.,198530and 1987b). Further studies demonst rated that EGF, in
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fact, induced inhibition of cellular proliferation at concentrations above 1 oM (Filmus

~m.,1985a). Interestingly, a similar observation was made with another cell-system,

A431, a human epidermoid carcinoma cell line (Gill &.Lazar, 1981). A431 cellswere

also shown 10overexpress EGFR:; upto 1 ~2 X l06/ceJl(Merlino!<!ID., 1984).Studies

with A431 cells. indicated that EGF-induced growth inhibition at nanomolar

concentrations, while stimulating cell proliferat ion et picomolar concentrations

(Kawamoto ~ ill., 1983)

Initial studies on this unusual phenomenon of growth inhibition induced by

EGF suggested a possible relationship betwee n the overexpression of the EGFR in

these cells with the arrest in cell proliferation. This view was bolstered by the

observat ion that a reduction in the number of available receptors either due to

specific antibody binding (Kawamoto ~ .ill., 1984), or due to the loss of gene

amplification (Filmu s tl.ill., 1985bj Gill !a ID., 1982), resulted in growth stimulation

in respo nse to EGF. The selection for cells resistant to EGP-mediated growth

inhibition, led to the isolation of severa l varian t EG F·resislant clones of both A431

and MDA-468 cells (Buss .tl.!!.!., 1982; Filmus.d ID., 1987b). Studies with these variant

clones indicated a correlation between number of EGFRs expressed and the degree

of EOF -mediated growth inhibition Taken together, it was thought that expression

of EGFRs over a threshold level result in growth-inh ibitory response to nanomolar

concentrat ions of EGF . This isconsistent with the not ion tha t growth inhibition might

be a result of cellular energy dep letion, since overexpressio n of EGFRs might be
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expected to amp lify the entire signal transduction pathw ay. This may utilize all the

available cellular energy within a short period of time leading to the cessation of

furt her pro liferative responses (Kawamo to ~ l!1., 1984).

On the other hand, a thorough review of the literature reveals several

inconsistencies. For example, clone # 29, a variant of the A431 cellline, expresses

about 106 EGFRlcell. yet is growth-stimulated by EGF even at nanomolar

concen tra tions (GilI.!<! aI.,1984;Kawamo to !<lill., 1984). Mo reove r, it was shown that

experimental reconstitutio n of large numbers of EGF Rs to levels similar to that in

MDA-468 cells in cells originallyexpressingfew or no EGFRs, resulted in hyper-

proliferation and a trans formed phenotype in response to nanomolar concentrations

o f EGF (Di Fiore ~ ill., 1987). Detailed a nalysis of EGF bindi ng and receptor

metabolism in parental an d variant clones of A431 cells re vealed no significant shifts

in the rate s of EGF bindin g to EGFR, internalization of EGFR. and the recept or

down-regu lation rega rdless of final outcome of EGF trea tm ent (Li fshitz~W., 1983).

Chu rch ~ i!l. (1989) , have repo rted thet biochemica l events, like cytoplasmic

alka linization through the Na+JH+antiport, be lieved to be an obligatory requireme nt

for mitogenesis, are neithe r necessary nor sufficient for EGF -med iated growt h

respo nse in MDA-468 cells. Furthermore, Church and Buick.(1988), dem onstrated

tha t EO P-induced gro wth inhibition in MDA-468 cells can be blocked by pertussis

toxin without alter ing the EGFR number. Pert ussis toxin is known to inhibit the

function of a subclass of G proteins by ADP-ribosylation. G -pro te ins act as amplifiers
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in thesignaltransductionpathways ofseveralhormonesandgrowthpromoting agents

(Section 1.3; reviewed in Neer & Clapham, 1988). Church and Buick (1988),

suggested the existence of more than one, and perhaps parallel, signal transduction

pathways and the involvement of a G-protein in at least one pathway obligatory for

the growth inhibitory response of MDA-468 cells to EOP. These reports suggests that

over-expression of EGFRs alone maynot be necessaryor sufficientto inducegrowth

inhibition in response to pharmacological concentrations of EOP.

Although, EGP·mediated growth inhibition in EGFR-overexpressingcells such

as MDA-468 and A431isan unusualphenomenon, interestingparallelscanbe drawn

with other systems utilized to study growth-inhibitory mechanisms. In yeast, .s.
~ pheromones (analogousto growthfactors) inducea 01 arrest to facilitate

mating (Section 1.4.2). The pheromonesignal transduction pathwayis mediated by

a 0 protein (Sprague, Jr., 1991).Interestingly, involvementof a 0 protein in EOF

signalltansduction in MDA-468cells isdocumented as well(Church & Buick,1988).

Since studies with~ indicatedthat pheromones modulate the expression

of cell cycle regulatory genes (Herskowitzand Chang, 1991), a similar pathway

involving EOF in MDA-468cellsmayaffect one or marc components of cell cycle

regulation.Furthermore,similartoTOp-p-dependent proliferativeresponses(Section

1.5.2), EOF elicits a bimodal response from MDA-468 and A431 cells, namely

growthstimulationat low(picomolsr)concentrations,and growth inhibitionat high

(nanomolar) concentrations (Gill & Lazar. 19C~ : Kawamoto~ m., 1984;Filmus~
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iI., 1985a). TGF.p is known to modulate the function of a tumour suppressorgene

RB, and thiseffect is believed to be important in growth inhibitionof keratinocytes

(Section 1.5.2). It is conceivable then, EGF maytarget a tumour suppressorgene in

MDA-468 cells to med iate the growth inhibitory effects. These suggestions while

speculativeat best. were considered in formulating the followinghypothesis.

1.6.2 Working hypothesis

This study was intended to investigate the molecular mecha nisms involved in

EGF·induced growth inhibition in MDA-468cells.The workinghypothesisfor Ihis

study is tha t,

MJI1lWlh inh ibil ion is medi ated , Dot by EGFR over-expression

Dtt !!, but by &D altered signalling mechani sm in cells that are

growth Inhib ited by EGF. This may involve EGF ·mediated actha tlon

of an existing protein (perhaps a kinase , phospbatase or pro tease),

tra nscri ptio n an d translation or a prolirerati on suppressing gene

and/or intervention in functioning of a growth promoting sene/gene

product ".

OUf inilial appro ach to this problem was simp le and straight forward.

Preliminary studies focused on the effect of EGF on ce ll cycle progressio n with an

aim 10 localize the EGFactions to a particular stage in the cell cycle. Thiswould then

be followed by examining the ro le oCgenes/gene produ cts thought to be involved at

that stage in cell cycle progression.



2. MATERIALS ANDMETHODS

U MATERIALS

2.1.1 Chemicals

Mithramycin,vinblastineandaphidicolin werepurchasedfromSigmaChemical

Company. (St.Louis, Missouri). A 10 X stocksolutionof milhramycin wasmade in

aqueous 25% ethanol containing 1 mgfml mithramycin and 150 roM MgQ2'

Vinblastinewasdissolvedin methanolto a concentrationof 0.5 Ilg/IJI. Stocksolution

of epbldtcolh. (1 lJg/i-Il) was prepared in 70% ethanol. Epidermal growth factor

(EGF) wasobtainedfrom Collaborative ResearchInc.(Bedford,Massachusetts), and

prepared 85 a stock solution of concentration3.3 X 10-6M. Scintillation cockrell,

Aquasol2 was purchased from NEN (Mississauga. Ontario). Protein A-Sepharose

fromAmersham(Oakville.Ontario),wasprepared as a 50% solutioninP&. A 10%

solutionof fixedStaphylococcal~) cellsuspension(Omnisorb)waspurchased

fromCalbiochem(San Diego,California). A proteinassaydyereagentwaspurchased

from Bio-Rad(Missfssauga, Ontario).

2.1.1 Radioisotope.

Thymidine [methyl)H].(sp.act. 82.4 Ci/mmoJ); adenosine 5' [o:)2p]

triphosphate,(sp.ect. 6000Ci/mmol)were purchased from NEN/DuPontResearch

Products (Mississauga, Ontario). Cytidine 5'-[a)2P]-triphosphate (sp.act. 300

Ci/mmol)wasobtained fromAmersham. L-eSSlmethionineof inY.im celllabelling

2'
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grade in aqueous solution (sp.act. 1028Ci/mmol) was purchased from Amersham.

Inorganic phosphate as Hr
12p0

4 in H20 (carrier free) was obtained from lCN

Radiochemicals (St.Lacrent, Quebec). Chloramphenicol, O-threo-[1.2. 14q (sp.aet

60 Ci/mmol) waspurchased from leN as well.

2.1.3 Cell culture reagents

Lelbovite-B (L-tS) media, modified with L-glutamine was from ICN/Flow

Laboratories (Mississauga, Onta rio), fetal bovine serum was purchased from

ICN/Flow and Gibco Labs (Bu rlington, Ontario). Penicillin & streptomycin 10,000

JU/ml and 10,000 pg/ml, were obtained from ICN/Flow. Materials for tissue culture

werepurchasedregularlyas follows;75cm1flasksfromFalcon(distributedbyBecton

Dickinson, Mississauga, Ontario), and Nunc, 100 mm dishes from Falcon, and

Corning, e-well plates from Falcon, and chamberedglassslides from Nunc.

2.1.4 Antibodies

PAb 1801(Ab 2; IgG1) a human-specific antibody, reactive with both wild­

type and mutant pS3 (Banks tt !!I., 1986), PAb 240(Ab 3; igG1) a mutant-specific

and conformation-dependent antibody (Gannon ~!l.. 1990), and PAb 421 (Ab 1:

IgGla ) a mammalian p53.specific antibodyreactive with both wild -type and mutant

forms of p53 (Harlow ~ .a!., 1981), were obtained from Oncogene Science

(Manhasset, New York). PAb 1620(obtained as hybridoma supernatent fluid) ,

human wild-typep53-specificantibody(Milner~ aI., 1987)was provided as a gift by

Dr.Hoechkoppcl, Ciba ,'}eigy, Switzerland. A mouse monoclonal antibody,IgGb ,
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raised against an MHC-eJass II antigen (anti I_Ak) was provided by Dr. George

Carayanniotis, Memorial Universityof Newfoundland, and was used as an antibody

controlin Western blot,bnmunoprectpltationand immunofluorescenceexperiments.

Thisantibodydoes not react withhumanMHCantigens. Fluorescein lsothiocyanete

(FITC)·conjugated anti-mouse, F(ab)'2·specific IgG, for use in immunofluorescence

experiments was purchased from JacksonImmunochemicals (distributed byBio/Can

Scientific, Mississauga, Ontario).

u.s Probe. ror Northern blot lDaJ)'.lolJ

acned cDNAsfor histone 3.2,proliferatingcellnuclear antigen (PCNA).and

thymidine kinase (TK) were used as probes . For histone 3.2, H3 .2-614, a subclone of

plasmid MM614, with XbaI -BglII fragment of MM614 cloned into puelS (Hurt .{t

iI., 1989), a generous gift from Dr. W. Marzluff(Dept. of Chemistry, The Florida

State University, Tallahassee, FL), was used. A construct, p3-Bam-FullPCNAn.z,

containing a cDNA for the full lengthhumanPCNAgene, along withits promoter,

kindly provided by Dr.R. Baserga (Dept. of Pathology, Temple University,

Philadelphia, Pennsylvania), was employed as a probe for peNA (Travali mill.,

1989). To probe mRNA for the TK gene expression, the plasmid, pSp6S­

Bma.Sma.TK, a gift from Dr. S. Conrad(Dept. of Microbiology and PublicHealth,

Michigan State University, East Lansing, MIl. containinga 1.2 kb BamHI-Smal

fragment from within the TK eDNA cloned into pSp6S was used (Roehl &

Conrad,l990). Oligonucleotide probeswereemployedfor pS3 (a 4O-mer; Oncogene
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Science),Co!Dl£ (a 3o.mer;NEN/DuPont),and c-tubulln blots (a 3().mer; Clontech).

2.1.6: OligoDuclootldes

The following oligoswere employed for electrophoretic mobility shift assays

(EMSA) and construction of p53-responsive elements. The aligos 5'·

GTCCGGACATGCCCGGGCAT-3' and S'-GGACATGCCCGGGCATGTCC_J' were

annealed 10obtain a double stranded fragmentwith S'-overhang, correspondingto

the CONfragment(Funknill., 1992)andthe latter oligoS'·GGACATGCCCOGGC

ATGTCC·3' is self-annealedto obtain blunt-ended double-strand-CON. A 33-base

sequence S'·TICfCCITOCCfOGACITGCcrGGCCITOCCIT·3' and

5'·AGAAAAGGCAAGGCCAGGCAAGTCCAGGCAAGG-3' were annealed to

obtain a doublestrandedfragmentwith 5' overhang,corresponding to the bases106­

138of fragmentA (FRA)(Kernst al, 1991b).5'·CCITGCCTGGACITGCCf GGC

CITGCCITITcr·3' was annealed with S'·AGAAAAGGCAAGGCCAGGCAAG

TCCAGGCMGG-3' to obtain blunt-endeddouble-stranded FRA The individual

oligosweresynthesizedand obtained fromOUGaS ETCtnc. (Wilsonville, Oregon).

A doublestranded oligowith sequence corresponding to an NFl bindingsequence

S'·AACCfAATIGCATA1TIGGCATAAGGTIT -3', for use as a non-specific

competitor in electrophoreticmobilityshift assays,wasa kindgift from Drs. A and

M. Pater, Memorial University of Newfoundland.
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1.1.7 CATassay reagents

The vector, pBLCAT2, contains a chloramphenicolacetyl transferase gene

underthecontrolof the herpessimplexvirus(HSV)thymidine kinase (TK)promoter

(Luckow& Schutz, 1987)wasa gitt from Drs. A and M. Pater. A polylinkerregion

upstream of the promoter region allowedus to clone p53-responsive elements in

front of the TK promoter generating CON-CAT and FRA·CAT . An expression

constructcontainingSV40T antigen eDNAregulated by SV 40 promoter/enhancer

regions(Changtl !!l., 1984)was elsegenerously providedby Drs. A and M. Pater,

Memorial University of Newfoundland.

N,N,·bis[2·hydroxyethylj-2-aminocthanesulfonic acid (DES) for DNA

transfection studies,was from Calbiochem. Acetyl coenzymeA (Acetyl CoA) was

purchased from SigmaChemical Co. Plates for thin layer chromatography(TLC)

were purchasedfrom FisherSci. (Ottawa,Ontario).

2.1.8 Molecular d OdiDe add bybridizatioQreaged*'

Restriction enzymesincluding Sail, PstI, and SmaI were purchased from

GibcolBRLThe source for modifying enzymes suchasT4 polynucleotidekinase and

T4 DNAligasewasGibcolBRL,add for AMYreversetranscriptase was Pharmacia

(Baie d' Orfe, Quebec). Appropriate reaction bufferswere provided along with the

above enzymes. Calf liver 28 Sand 18 S ribosomal RNA standards were obtained

fromAmersham. Nylon membranes (NYmAN) forNorthern blot analysiswerefrom

Schleicher & Schuell (distributed by Mandel Sci.Co.), nitrocellulose membranes
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(Optibind) for Western blot analysis were from Mandel Scientific Ca. (Keene, NH)

The sources for the following reagent-kits were,Stratagene (La Jolla, California)for

a total RNA·isolation kil, and a random primer kit (PRIME-IT):NENlDuPontfor

an end-labelling kit; Gibco/BRL for a nick-translation kii, and Amersham for a

Western blot detection kit for use with mouse monoclonal antibodies.

2.2 METIIODS

1.:1.1 Cell culture

MOA-468, a human breast cancer cellline (A kind giftfrom Dr. Ron Buick,

Ontario Cancer Institute,Toronto). was maintainedinLeibovitz·IS modifiedmedium

supplemented with 10% FBS, .sO IV/ml penicillin and 50 ~wml streptomycin. Cells

were routinely grown in 100 mm plat es and or 75 cm2 flasks. As cell cycle

distributionandEGF effectsweregreatly influenced by celldensityas well as culture

conditions (Gill& Lazar, 1981), the seeding densitywas adjusted (4xl03 cells/cm2;

Gill& Lazar, 1981; Lifsh i tz~!!.!., 1983) so that the cellswere alwayskept under 50%

contluency throughout the experiments and the culture medium was changed every

48 h. A concentration of Ja-a M of EGF wasemployed in our studies. It has been

demonstrated byseveral groups that, this concentration (l O·s M) of EGF produces

maximumgrowthinhibition (Gill & Lazar, 1981; Barnes, 1982;Lifshitz~ .w.o1983;

Filmus !<! aI., 1985 and 1987b)
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2.2.2 Flow q'tometric Inalysis or DNA content

Ce lls were plated at an initial density of 3x loS cells/tOOrom plates. After 24

h of equilibration. EGF was adde d to a final concen tratio n of 10-8 M. The medium

± EOF was changed every 48 h. At 48 h intervals, cells were harvested by

trypsinization,washed once withphosphate buffered saline (PBS), and fixed with 25%

ethanol. Duplicate cultures were further treated with vinblastine (lpg/ml) for 24 h

prior to harvesting. Fixed cells were stored at 4·C prior to floweyt ometric analysis.

O ne hour prior to assay, the cells were centrifuged at 1000 rpm in a tab le top

centrifuge (model IEC·H N-S1I/ DAMON·JEC). and resuspended in a solution

contain ing 100 pg/mJ milhramycin and 15 roM MgClz in aqueou s 25% eth anol

(Cri ssman & Tobe y, 1974). After 20 min of incubat ion on ice, samples wer e filtered

through glass wool and passed through a 26-gauge needle to remove clumps,

transferred to rinsed glass test tub es and held on ice until analysiswas carri ed out in

a Coulter EPICS-C fluorescence-ac tivated cell sorte r (FACS) fitted with a 5-watt

argon laser, set at an excitat ion wavelength of 457 nm (Crissman & Tobe y, 1974).

Appro ximately 20,000 cells were analyzed per sample. The frac tion of cells in

differe nt phases of the cellcycle was determined by "DNAF IT" analysis, using Coulter

Cytologic Softwar e which follows a multirec tangular model for S phase and calculates

the percentage of cells in Gl , S and G2/M fraction s.
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:z.2.3 DNAIProteln synthesis assays

MDA·468 cells were grown in e-well plat es at a seeding dens ity of 3 X 104

cel1s/well. Twenty-fourhours after plating, EGF was added to a finalconeenrratton

of 10,8 M. A t the indica ted intervals, following EGF addition, eHJ thymidine (2.5

~Ci/mi) was added and incubation was continued for 24 h prior to harvesting. At the

end of this time, triplicate samples of labelled cells were washed twice with PBS,

harvested by trypsinization, and precipitated by tee-cold 10% trichloroace tic acid

(TeA). The p recipita te was filtered using glass fibre filters and washed 3X with 10%

TeA. The TCA precipitable radioactivity was co unted by liquid scintillation in a

Beckman cou nter (Model LS 3801) using S ml of scintillation cocktail (AqU8so1 2;

NEN) per sam ple. At each interval, cells from unlabe lled parallel cultures were

counte d in duplicates, using a haernoeyto rneter. The incorporated radioactivity was

sta ndardize d to 106 ce lls. Thr oughout the expe riment, media ± EGF was cha nged

every 48 h. To observe the effect of EGF withd rawal, the media was removed after

48 h of EGF treat ment and the monolayer was was hed with PBS an d further

incubated with fresh media without EGF. DNA synthesis was then measu red in a

man ner identical 10 that described above.

To exa mine EGF effect on tota l protein synthesis, cells that are plated and

EGF-treated as described for DNA synthesis experime nts, were labelled fJ r 1 h with

J.SS-me thion ine (25 1JCilrnl) pr ior to harvesti ng. Harvesting of cells,TCA pre cipita tion

a nd standa rd ization of counts were carried out as described above.
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:U .4 Radialabelllng of probes for Northern blot anal)'sis

The eDNA probes were 32p labelled using [a.J 2P].dATP and a random

priming technique. For this purJY.lse, PRIME·IT. a random primer kit (Stratagene)

was used . Th e techniq ue is essentially th e same as described byGauli an!a!.l. (1973),

and Tabor .!aill. (1987) . Oligonucleotide probes were radiolabell ed by means of a

3' end labelling technique employing a kit (NEN/Dupont)whichisessentiallysimilar

to the one described by Chang & Bollum (1971) , and Johnson ~ w.. (1986) .

2.2.5 Northero blot analysIs

Total R NA was isolated from MDA-468 cells ± EGF, using a guanid inium

thlocyanate-phencl-chlcroform single step extraction method (RNA isolation kit;

Stratagene). 20 ~g of total RNA was denatured with glyoxaVDMSO and

electrophorese d in a horizontal 1% aga rose slab gel. The RNA was the n transf err ed

to a nylon membrane (NYfRAN) in neutral buffer, 0.01 M NaHzP0 4 ,and

hybridiz ed to a rad iolabelled probe un der the standard conditi ons as descr ibed by

Semb rook gj nl.(1989) . Th e 28 Sand 18 S ribosomal RNA from calf liver were used

as markers. The prehyb ridizatlon , hybridization and washing for cDNA probes were

carried out under standard highstringency conditi ons essentially as described ear lier

(Sambrook mID" 1989). For oligonucleotide probes, the conditions we re as per the

spe cificatio ns of memb rane manufactu rer. Autoradiography was performed at -70·C

using Kodak XAR film.
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2.J .6 ImmunoOuorescence experim ents

Ce lls grown on chambered glass slides were serum starved fo: 48 h be fore

treating with complete medium with serum z: EGF. At the indicated intervals,

monolayers on the slides were washed 3X with PBS, and fixed with metb anobecet one

(1:1) at -20 "c for 10 min. After fbdng, slides were either air dried and stored at -70·

C or stained immediate ly. Cells were washed 3X with PBS and blocked with 3%

bovine seru m albumin in PBS (PBS/BSA) for 30 min at room temperature (RT) .

After rinsing 3X with PBS, cells were incubated at RT for 60 min with either a

control antibody (anti-MHC) or an anti-p53 antibody (PAb 1801 or PAb 240) at

5IJglml concentration in PBS/BSA After 3 washes with PBS, slides were stained with

fluorescein isothiocyanate (FITC).conjuga ted anti-mouse IgO (F(ab)'z specifte;

Jackson Immunochemicals) at 1:50 dilution in PBS/BSA for 30 min at RT. Following

staining, cells were washed extensivelywith PBS followed by a final rinse with dou ble

distilled water, mounted with 50% glycer ol and observed under a fluorescent

microscope. Photogra phs were taken using Koda k ektac hro me 400 film.

For PAb 1620 staini ng, cells were prepared essentially in a identical manne r

except thai fbdng was carr ied out with 3% BSNPBS at 37°C. For the experiments

with aphidicolin , cells were treated (5 ~g/ml final concentration) for 24 h pr ior to

fIXing.
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2.1.7 Meta bolic laMlllnC

In YiY2 labelling with 3SS-methionine for protein synthes is experiments was

done as follows. Cells were treate d with 10-3 M EGF after 24 h of plating.

i) Labe lling with % mc thionine (100 .uCilmI) was carried out for appro xima tely 10

h (overn ight) at the e nd o f EGF-treatment (Fig .4.4)-

ii) Labelli ng with"S-meth ionine (100 .uCitml) was carri ed o ut during the last 3 h of

EOF treatment, in methionine-free media (Fig.4.S).

At the end of this pe riod. cells were lysed a nd immun opr ecipitated using PAb 1801

as desc ribed below (22.9).

For pulse-chase expe rimen ts, cells were labe lled ove rnight (12-15 h) with

lSs-methionine (100 .uCitrol) in methionine-free med ia . followed by exte nsive

washing with complete media a nd incuba tion was con tinued ± EGF in comp lete

media with serum. Ce lts were lysed at the indica ted intervals a nd immunoprecipitated

with PAb 1801 as described below (229).

For phosphoryla tion experi ments, cells were incuba ted with H3_32PO... (0.25

mCilrnl) in ph osphate-free DMEM media with 20 mM HEPES [pH 8.01 du ring the

final 3 h of EGF treatment. At the end of labelli ng. ce lls were lysed and

lmmu nop recipltated using the app rop riate antibody as described below in 229.
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1.1.8 Western blot analysi s

Appropriately trea ted ce lIs were harvested by trypsinizat ion . Arter washing

once with PBS. cells were res uspended with cell-homogen ization bu ffer (20 mM

Trts.HCl IpH7 .4], 5 mM Eth ylen e glycol.bis-(,s-aminoeth yl et her)N,N'-te traace tlcacid

(EGT A), 1~g/ml l..eupeptin, 10 J'g/ml Ap rotinio, 1 mM Phe nylmethylsulfonylfluoride

(PMSF) . Cell suspen sions were then subjec ted to five cycles of ultrasonification (30

sec ON and 30 sec OFF). Comp lete cell lysis was cunfirmed by microscop ic

examin ation. Pr o tein concen trat ions wer e then de termined by Lowry's co lorimetric

assay (Lowry~ ID., 1951).

100 IJg of tota l protein was run on 8% 5OS·PAGE, transferred to

nitroc ellulose (O plibind, Mandel ScLCo.) using a semi-dry transfer method (Hoefe r),

The nitrocellulose filter was incubated overnight in 10% dried milk mem brane

blocking age nt (Blotti ng detecti on kit, Amers ham ) at 4°C with consta nt rota tion.

Western bio i a nalysis was then perfo rmed with PAb 1801, followed by an alkaline­

phos pha tase d etection system (Amersham).Th e pr imary anti·pS3 antibody, PAb 1801

was used at 10 ""glml for 1 h at roo m tempe ra ture, and the second antibody,

biotinyla ted goat anti-mouse IgG, was used a t 1:250 dilution for 20 mins at roo m

temperature. Fo llowed by incuba tion with strep tavid in-a lkaline phospha tase conjugate

(1:3000) for 20 mlns. Th e enzyme substrate was p repared byadding I dr op of Nitro­

blue tetrazoliu m, and S·Bromo-~-chloro-3·indolyl phosphate in dimeth yl formamid e

to 10 ml of diethanonmine bu ffer (100 roM diethanola mine [pH 9.5], 5 mM MgCJz).
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The filterwas incubated with the above enzymesubstrate for 10-.20mins followedby

thorough washing. TBS buffer (20 roM Tris.HQ IpH 7.6], 137 mM NaO) was used

for washing filter in between incubations and for diluting the reagents. 0.1 % of

Tween 20 in TBS was used to prepare blocking soJulion.

2.2.9 Immu noprecipitation

Cells were washe d 2X with PBS before harvest ing. 3SS-meth ionine labelled

cells were harvest ed by trypsinization . H3•3ZP0
4 labelle d cells were harvested by

scraping with the lysis buffer. Trypsinized cellswere lysed witb 0.5 mllysis buffer (50

mM HEF:!S [pH 7.5J, 150 mM NaC~ 10% Glycerol, 1% Triton X-1OO, I.S roM

Mg02, 1roM Ethylene glycol-bis-(/3-aminoethyi ether)N,N'·tetraacetic acid {EGTA],

10pg/mlLeupeptin , 10 pglmlAprotinin, 1roMPhenylmethylsulfonylfluoridc [PMSFJ.

200 J.lMSodiu m onhovanadate,lO roM 'Ietrasodium pyrop hosphate, 100 roMSodium

fluoride; {the last three components were included in experime nts studying prot ein

phosphorylation} M argolis !tl.!!l.. 1989) for 30 min on ice, and cent rifuged 30 min at

J4,OOO rpm in an Eppendrof Microfuge (Mod el S415C) at 4°C. Cells harvested by

scraping with lysis buffer were also incuba ted on ice for 30 min prio r to

centrifugation. The supernatant was recovered and treated with 1-2 jAg of p53

an tibody for at least 1 h at o'"C followed by 30 ",I of 50% pro tein A-Sepharose (or

a 10% Staphyl ococcal cell suspension , Omnisorb by Calbiochem, where indicate d)

with rotatio n ar 4°C. The immun oprecipitates were then recovered by centrifugatio n

for 30 sec at 14,000 rpm, washed 3X with 0.5 n:l of wash buffer (20 roM HEPES
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[Ph 7.5], 10% Glycerol, 0.1% Triton X·too, 150 mM NaCl, 1 mM Sodium

orthovanadate; Margolis .m iI., 1989) followed by a final wash in PBS and

resuspension in 30 1'1of 10 X 80s-digestion buffer. The samples were then boiled

for 5 min, pelleted, and th e supernatant was recovered and electrophorese d on 80S­

PAGE. The samples were always adjusted for equal rad ioactivity. At the end of

electrophores is, gels were dried in a Bio-Rad gel drier, and ectoradlographed using

2.2.10 Nuclear extrad prepara tion

Semi-confluent plates [approx, 3 X 106celis/tOOmm dish) after 24 h of plating

were furth er incubated =t:EGF (10.8 M) for the indicated durations. At the end of

the trea tment, plates were washed 3X with ice-cold PBS. T he cells were scraped with

1.5 rot of Buffer A per 100 mm plate (20 mM Hepes [pH 7.6], 20% glycerol, 10 mM

NaCl, 1.5 mM MgCl2> 0.2 mM EDTA, 0.1% Triton X.lOO, 1 mM rrrt; 10/lg/ml

leupep tin, 100 pg/ml aprotinin, 1 mM PMSF; Lassar !tlnl .,1991). The cell suspension

was then centrifuged a t 2000 rpm at 4GC in a microfuge. The pellet (nuclei) was

resuspended in 0.5 ml of Buffer B (essentially identical to Buffer A except NaCI at

0.5 M concentration ). The suspension was rocked gently for 1 bat 4GC followed by

centrifugation at 10,000 rpm for 5 min. The supern atan t was recovered and the

protein concentrations of the extracts were estimated using a Bio-Rad protein assay

dye reagent (Bradford, 1976). The nuclear extract was sto red in small aliquots at •

70·C.
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2.2.11 Nuclear elllmci preparation rrom radlalabelled cells

The cells cultured ±EGF (10-8 M) were labelled with 3SS-methionine or Hr

32P04 during the last 2 h of incubation prior to harvesting.At the end of the

labelling period, cells were washed 3X with ice-cold PBS followed by scraping with

10 mM EDTA {pH 8.0] in PBS. Cells were pelleted bycentrifugation at 2000 rpm at

4°C. Th e pellet were resuspended in Buffer B (components are listed in section

2.2.10) at 50 ~U pellet from one 100 mm plate . The suspension was gently rocked at

4"C for 1 h followed by centrifugation at 10,000 rpm for j min at 4·C The

supe rnatant was subjected to scintillation counting. Equivalent counts were used for

Immunoprecipttenon exper iments.

2.2.11.1 Immunopreclpilation from nuclear extracts

Equivalent counts of each sample of extracts as prepared in 2211, in 40 pi

volume (Volume adjust ed with Buffer B of 2.2.10) was incubat ed with 350 pi of

nuclear extract immunoprecipitation buffer (10 mM Hepe s [pH 7.6], 250 mM NaQ,

0.25% NP-40, 5 mM EDTA, 10 Jtglml le upeptin, 100 jJglml aprotinin , 1 mM PMSP;

Lassar !U !!I., 1991), 1.0 pg of anti-p53 antibody and 25 pI of 50% protein A-

Sepharose. The incubation was carried out at 4"C for 90 min with gentle rocking.

The immunoprecipitates were then recovered by centrifugation at 10,000 rpm for 2

min at 4°C.The Sepharose pellet was washed 4X with RIPA buffer (10mM Tris.HQ

[pH 7.4],150 roMNaCI, 1% NP·40, 0.5% sodium deoxycholate, 0.1% 50S, 10pglml

leupeptin, 100pglrnla protinin, 1 roMPMSF; Lesser~m.,1991). The samples were
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then boiled with 10 X 50S-digestion buffer for 5 min and centrifuged. The

supernatant was separated on a 10% 50S-PAGE.The gels were dried at SO·C for

1 h and exposed to Kodak XAR film at -70·C.

:z.z.11 Electro phoreti c mob ility sbUl as Silys

The EMSA is a standard technique to lest and identify the proteins tha t

specificallybind to known DNA sequences. The principle of the assay basically

involves a binding reaction, comprising a radiolabelled, double-stranded DNA

fragme nt of known seq uence an d a protein source such as nuclear extra cts or purified

proteins. The reaction mixture is then separated on a non-denaturing gel. Since

unbo und labelled DNA migrat es faster than the prote in-DNA com plexes in a native

gel, if any proteins bind to DNA. shifts in the mohilityof labelled-DNA fragments cnn

be de tected because of the bo und proteins. Th e spe cificity o f the rea ction can be

assesse d throug h specific compe tition byantibo dies or by unlab elled DNAfragme nts.

Equi molar concen tratio ns of oligos corresponding to CON or FRA (section 2.1.6)

were mixed in annea ling bu ffer (40 mM Tris.HCI [pH 7.5], 20 mM Mg Q 2' 50 mM

Nael; Sequ enese buffer , United Stat es Biochemical Corporations, Cleveland, Ohio).

The mixture was then heat ed to 70·C for S mi ns and a llowed to coolslowly to 4-C,

to yield corresp -ndlngdouble strand DNA elements. 0.5 /Ag of doub le s tranded o ligos

(CON or FRA) with 5'-over hang, were incubated with 20 un its of AMV reve rse

transcriptase, 5 /AI dNl P mix (excluding dATP or dCfP, de pending o n the iso tope

used/BRL nick-translation kit), 5.0 J.Il3ZP-dATP eZp-dCl'P was used for CON o nly,
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in some experiments) in reverse transc ripta se buffer at 37·C for 1 h. Th e oligos were

then pre cipitated with etha nol ( l/lOlb volume of 3 M Sodium ace ta te [pH S.4]. and

2 volumes of abso lute eth anol) at -70·C for 1 h. Pre cipita tedJ1abeJled oligos were

recovere d by centrifuga tion at 14,000 rpm for 30 mins at .ac. Labe lled oligos were

washed twice with 70% e thanol, air dried for 15-30 mins, resuspended with sterile

d.HzO.Al tquots of the samples were cou nte d in a scintilla tion counter.

The binding reaction s were performed with nuclear extracts equivale nt of 3-5

/.18 of protein in binding buffer A ( 1 mM MgCl2' 0.5 mM dithiothr e itol (OTT), 7%

glycerol, 10 mM HEPES (pH 7.4J; protocol was a kind -gift fro m D r. S. Ben chimol,

Ontario Cancer Institute, Toronto). sonicate d salmon sperm DNA 1.0 Pg, and 25,000

cpm of end -labelled probe. The reac tion wa s carried out at room tem per ature for 30

mins. Th e binding reactions for experi men ts studying effe cts of PAb 1620 on p53·

DNA com plexes (F ig. 5.5 & 5.6) we re performed in binding buf fer B (12% glycerol,

12 mM HEPES (pH 7.9J, 4 roM Tr is.HCl (pH 7.9J, 60 mM KCI, 1 roM EDTA, 0.6

roM DIT, bovine serum albumin 300 #g/m l; Chodis h .d. .!!I" 1988), Appropriate

antibo dies were incuba te d with nuclear extr act prior to the binding reaction for 15

min on ice, add ed at the beginning of the reac tio n, or added at the end of the

binding re action for 30 more minutes of incubation o n ice as indica ted . Appropria te

compe titors were included in the binding re action wher ever indicated. Th e co mplexes

were resolved o n a 4% native polyacrylamide gel. A pr e-run at 100 V was performed

for 2 h at 4·C wit h buf fe r recirculation followed by the electro phoresis of the
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samples for ] ·4 h with 0.5 X THE (0 .045 M Tr is borate , 0.001 M EDT A lpH aD})

at 4"C with buffer recirculation. At the end of the run, the gels wer e dried 8t SO· for

1 h and exposed to Kodak XAR film at _70GC.

2.2.13 Construction or pSJ-rtsponslve plasmlds

Equim olar concentrations of appro priate oligos (Section 2.1.6) were annealed

as described abo ve (Section 2.2.12) to obta in blunt-ended double strand oligos. These,

olfgos corre spon ding to CON a nd FRA were 5' phosphoryl ated using T4 kinase and

ATP (C1ibcoIBRL). S··phosphorylated oligos were inserted into the [ ..II site of the

vector pBLCAT2 (F ig. 2.1). To facilitate this procedure, pBLC AT2 wasfiest digested

with Sail restriction enzyme producing protruded termini, which were filled in by

reverse transcription (AMV reve rse transcriptase from Pharm acia). Thus blunt -ended

pBLCAT2 was incubated with calf intestin al phosph atase (37°C for 1 h) in order to

deph osph orylate its 5' termini . 5' phosphorylated, blunt-ended oligos were incubated

overnight at 16°C, with Sail digested, blunt-end ed and deph osphorylated pBLCAT2

and T4 DNA ligase. Th e ligated plasmids were then used to transform co mpeten t­

limli (strain XL-Blue) ce lls. The drug [arnpjcillinj-resjstant colonies were screened

for insert s by restriction analysis. Clones with inserts were then grown on a larger

sca le to prepare sufficien t amounts of plasm/cis. The plasmids were isolated using

elhi dium brom ide-cesium chloride centr ifugation meth od (Sambroo k ~ m.,1989).

The cons tructs were tested once again by restr iction analysis and amount of DNA

pr esent was estimated by spectra -photometry.



FIG. 2.1 A sehemanc diagram ot p53-responsive CAT-eonstructs
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2.2.14 DNA t ra a srectlon • Calcium phospbate pl'"tCipitat ion method

Semi-confluent plates,24 h after plating,were employedfor transfection. Cells

received fresh medium with serum 3-4 h before tra nsfection to ensure the optimum

growth. A solution containing appropriate plasmids used for trans fection was

prepared as fo llows. For a 100 mm plate, 621011 of 2 M eaQ2 ' 5· 10 Ilg DNA (CAT·

constructs 5 ,LIg, and internal control RSV.p gal 2 ,LIg) and d.HzO up to 500 ,LIt. Also

pr epare d 500 pi of 2X BES-buffered saline (SO roM N,N,-bis{2-hyd roxyethyl]-2­

aminocthllUt'sulfonicacid{BES}. 280roMNaCl, 1.5mMNazHP0 4 ,2H20;Sambrook

~ ill.,1989) per 100 romplate . The calcium phosphate precip itate was then allowed

10 form by mixing the DNA solution with BBS. The solution was then vortexed and

kep t at RT for IS ruins. The precipitate (1.0 mVl00 mm plate) was pipett ed ge ntly

o nto the cells. Incubation was continued at 37°C. 18-24 h la ter, ce lls were wash ed

twice with seru m free rr.edium or PBS. The p lates received nor ma l med ium ::!= EGF

(JO-8M) with serum and were incubated for anot her 48 h. Cells were harves ted and

the extracts were used for assaying CAT activity as described below.

2.2.15 Chlora mpht:nicol acetyl tra nsfera se assay

Tran sfected cells were harvested at the end of incubat ion with media ± EGF

(48 h) with Tr is.EDTA.NaO (0.04 mM Tris.HO [pH 7.4J, 1 mM EDTA, 150 mM

NaC I). Cells wer e collected by scrapi no:and were transfe rre d to chilled mic rofuge

tubes. Cells we re then pelleted by brief cen trifugation at 4
ft C. Th e pellets were

resuspended in 100 pi of 0.25 M Tris.HCI [pH 7.8). The cell suspensio n was subjected



50

to three rounds of freezing and thawing (liquid nitrogen for 3 min and 37·C for 3

min). The supernatant was recovered after a brief centrifugation at 4·C for 5 min.

20 ~I of the cell extract was mixed with 20 ~J CAT -assay p re-mix (4 mM Acety l CoA,

I ,uCi 14C.Chloramphenicol, 0.7 M Tris.HCI (pH7.8); Gorman ~ W., 1982). The

reaction was carried out at 37"C for 1 h. At the end of the incubation, 0.5 ml of ethyl

aceta te was added and the samples were centrifuged for 30 sec. The upper organ ic

phase was recovered care fully and dri ed in a SpeedVac under vacuum for 3{)"60min.

IS III of ethyl ace tate was then added 10 each tube, mixed thoroughly by vortexlng.

The samples were charged onto a Kodak TLC plate. TLC was conducted in

chloroCorm:meth anol (95:5) until the liquid reached 1" below the top. TLC plates

were the n exposed to KodakXAR film. CAT activity was meas ured as % conversion

of chlo ram phenicol to ace tyl-chloramph enicol. This was do ne bycou nting radioa ctivity

from portions of TLC plate corresponding to both unconverted and converted forms

in a Be ckman scintillation counter .

Aliquots of cell extra cts were estimated for protein concentrations by Bin-Rad

pro tein- estim ati on kit. CAT activities were then standardized to protein

concentra tions. An internal contr ol, RSV -p gal was used in all the expe riments. The

s -galactoeldase act ivity (as described by Sarnbrook sj !l.,1989), however, seemed to

be influen ced by EGF-treatment. In our experi me nts, we observed a n approximate

50% increase in p-gl..lactosidase activity in EGF-tre ate d sam ples. Standardization of

CAT values in case of EGF -effect s o n a minimal promo ter , to both protein
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concentrations and p-galactosidase activities, gave the results qualitatively similar to

the presented data . However , this procedure, when followed for CON-CAT and

FRA·CAT, gave values that are 50% lower upon EGP-treatment. as compared to

untreated cells. These differences more or less corresponded to the EGF-dependent

increase in p-galaclos idase activity, hence they were not included in the results.



3. CIIARACfER IZATION OF EGF· INDUCED GROWTH ARREST IN MOA·468

UUMAN BREAST CANCER CE LLS

3.1 INTRODUCTI ON

3.l.t Flow cyto metry

Th is phase of the study of EGF-mediated growth inhibition was carrie d out

in ord e r to have a clear picture of eve nts at the cellular level. Th e effect of EGF on

cell cycle progres sion was studied by Il ow cytometry. FJnw cytom etry for cell cycle

analysis requi res the cells to be stained with a dye that hinds ttl DNA. The stained

cells are then pas sed in a liquid stream thro ugh H sensing area and a laser bea m of

specific wavelengt h. T he DNA·bound dye fluore sces at a particular wave length,

prod ucing light scalier . T his scattered light is collec ted by detectors and produ ces a n

electronic signa l which is propor tiona l 10 the amoun t of light be ing scatte red. The

strength of the scattered light depe nds o n the amount of dye prese nt in the cell. The

amoun t of dye incorporated into DNA will be proport ional ttl the amoun t of DNA

prese nt in the cell . Thus the slgnuls pro duced are directly proportional to the cel lula r

DNA conte nt. As cells move from G I to S the 2N DNA conte nt starts increas ing a nd

becomes 4N by the e nd of S phase. So, with now cyuunetry, it is possible tu

diffe rentia te po pulations of cells in GI, with 2N DNA content, and GU M with 4N

DNA conte nt. T he S phase cells conta in DNA in between 2N a nd 4N (Fre shney,

1987).
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3.1.2 Cell cycle-dependent gene ellpressio n

Cell cycle studies of EGF·m edl,ated growth inhibition in A431 human

epidermoid carcinoma cells by Macleod ~!I. (1986), indicated that the cell cycle

was reversibly blocked at 01 and 02 phases. Cell cycle studies will help in locating

the specific EGP·induced event responsible for the arrest by providing information

concerning the temporal location of the blockade in the cell cycle. Furthermore. since

progression of cells thro ugh the cell cycle is strictly governed at a numbe r of contro l

points by the modulated expression of a variety of cell cycle-depen dent genes in Gl

and 02 (Pardee , 1989), examination of the expression o~ these genes can be used to

further characterize the growtharrest.The expression of the proto-oncogene c-!IlY£

is known 10 be induced both in early 01 and in respons e to EOF (Kelly~ m., 1983;

Muller £1w.., 1984). Similarly, other genes are exp ressed at higher levels late in 01.

For example, in serum-stimulated cells the transcription of proliferat ing cell nuclear

antigen (PCNA), an ancillary factor for DNA polymerase Of increases rapidly in late

G I (Liu s;! ill., ~ 989), followed closelyby increased mRNA levels for thymidine kinase

(TK), an enzyme involved in salvage pathways fo r nucleotide biosynthesis (Coppock

& Pardee ,1987). Elevated levels of p53 expression occur ~ t t~e G lISboundary (Reich

& Levine, 1984; Lalande, 1990). The histone genes, whose products are necessary for

organization of chromatin, show higher mRNA levels in S phase of the cell cycle and

their expression is believed to be coupled with DNA synthesis (Hirschhorn £1 w..,

1984). In th is study, we have characterise d the EGF-induce d growth inhibition in
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MDA ·468 human breast cancer cells in terms of cell cycle distrib ution an d cell cycle­

dep endent gene expression.

3.2 RESULTS

3.:1.1 Cell cycle analysis

Treatment of MDA·468cellswith 10-8M EGF resulted In marked growth

inhibition when compared to control, untreated cells (Fig.3.t), confirming earlier

studies (Film us .tl lli., 1985a). Flow cytomet ric ana lysis of MDA ·468 cells revealed

perturbati ons in the cell cycle distribution in response to the growth inhibitory

concentrations ofEGF. Figure3.2showsrepresentative DNAhistogramsafter 4days

of EGF trea tment . EGF treatment resulted in accumulation of cells in G1 phose of

the cell cycle with a concomitant depletion of cells in S and G2/M phases as

compared to the untreated cells (Fig.3.2A and 3.2B). Table 3.1 showsthe average

percentage of cells in different phases of the cell cycle following EGF treatment of

2-6 days in duration, from a minimum of five experiments. The data indicate that

EOF treatment has resulted in arrest of the cell cycle in G1 phase. To confirmthis

apparent 01 arrest, cells were treated withvinblastine (1~g/ml), a mitotic inhibitor.

Vinblastine inhibits polymerizationof mitoticspindles, therebyarresting the cells in

mitosis and blockingthe re-entry of cells into G1. In cells progressing from Gt to

mitosis,vinblastinewould blockthe M toG1transition, resultingin depleted Gland

an increase in the number of cells in M phase. As expected, the control cells

displayed a greater G2/M population,with depleted Gl and S phases,upon



FIG. 3.1 Effect of EGF (10-8 M) on proliferation of MDA-468 cells. Cells were

seeded at 3xlcP cells per l00mm plate and treated with EGF after 24 h of plating.

Cells were harvested lit 48 h intervals after EGF treatment, by trypsinization,and

counted using a huemocytorneter us described in Materials and Methods. . -.

control cells; 0 -·0 EGF-treated cells.
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FIG. 3.2 Cell cycle analysis. Representative FACS-generated, DNA histograms of

MDA·468cells,cultured in the absence(A,C)and in the presence ofEGF (10-8M)

(B,D), after 4 days of treatment. The control, as well as EGF-treated cells, were

stained with mithramycin, and 20,000cells were analyted by flow cytometry as

described in Materials and Methods. Duplicate cullures (CoD)were incubated with

vinblastine for 24h prior to analysis. Media ± EGF were changed every 48h and the

seeding density wasadjusted for optimumEGF effects (As detailed in 2.2.1).
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Table. 3.1 The cell cycle distrib ution orJ\.1DA-468 cells in respo nse to EG F. The

DNA histograms generated from the FACSanalysis of EGF-treated, as well as

control untreatedcells, fromthe experimentsdescribed under Fig.3.2. legendand in

Materials and Methods, wert: analyzed and the fraction of cells in G1, Sand G2/M

were estimatedas outlined in Materials and Methods.



(,0

Length 01EOP
Trcatmeol(days) 0,' °aM

44.1 ± 4.6b 29.8 i .5.6 26.0 :1:6.0

0+ V" !S.2 t 5.4 8.2 toI.S 76.1 t 4.8

SO.1 . 2.1 26,9:t:4.2 20.4 t 5.7

ltV" 34.0 . 4.6 26.13 t 8.2 39.1 t9.6

60.6 i 3.1 18.9t 2.5 20.5:1:3.1

4 + V" S6.S.3.4 U.St 3.5 32.1:1:4.8

sa 4.3.2 20.8:t: 2.2 20.9:t 3.0

6 + V" 5J.6 t 3,4 18.4 . 3.6 28.7:1:3.9

tTheDNA histograms generateducmFACS analysis of control and EGF·lrealed (lO-IM)
cellsfromexperimentsasdescribed inMalerialsandMethods., wereconeeted andthefraction
of cellsin OJ,S and G2/Mwere esflmeted bycomputeranalysis as outlined in Materials
and Methods.
bOata are % of lolal cellsanalyzed;mean 1:S.E,M. from a minimumof S experimentsin
each cese.
cVinblastine (llJglml)24 hr. prior to assay.
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vinblastine treatment for 24 h (Figs. 3.2A and 3.2C; Table 3.1). However, EGF­

treated cells retained a significantly higher 01 population even after vinblastine

treatment (Figs.3.28 and 3.2D; Table 3.1)confirming the earlier observation that

EGF blockedthe cellcycle in G 1 phase.

3.2.2 DNA synthesisassays

The cell cycle arrest, observed as an accumulation of cells in 0 1, could be

detected by flow cytometric analysisafter 4 days of EGF treatment (Table 3.1).

However, it is likelythat EOP-inducedchanges at the molecular level are initiated

at a pointsignificantly earlier than this. Toaddress this question, DNAsynthesis by

MDA·468cellsinresponse 10 EGF wasstudied. Figure3.3displaysthe effectofEGF

on DNA synthesis, as measuredbythe incorporation of eH] thymidine. There was

a significant reduction in DNA synthesis which couldbe detected as earlyas 24 h

after EOFaddition,Thisdrop assumeda plateau after 48h, which corresponded to

approximately35% of the DNA synthesisasmeasuredin control cells. After48h of

exposure, the removal of EGF from the medium resulted in the return of DNA

synthesis levels to normal,i.e., similar to untreated cells, in about 72 h (Fig.3.3).

These findings suggests that EGF reversibly blocksDNA synthesis and cell cycle

progression.



FIG. 3.3 Effect or EGF on DSA synthesis or MDA-468 cells. Cellswere plated at

3xl04cells per well in 6-well plates, and were treated with EOF'for the indicated

intervals after 24 h of equilibration. Cells were labelled with {"HI thymidine (2.5

~Ci/ml) and incubated for 24 h prior to harvesting. Atthe end of labelling, cells were

harvested by trypsinizationandTCA·precipitable countswere determined.To correct

for varying cell numbers during the course of the experiment,parallel unlabelled

cultures were counted using a baemocytorneter, and the incorpor ated radio activity

wasstandardized to uP cells. The data are shownas percentllgeof Incorporat ion of

control cultures in the absence of EGF', ± stderror.ot mean fromthree individual

experiments. 0-0 EGF ( 10-3M) treated cells; . -e Cells Iromwhich EGF WlIS

removed after 48 h of EGF treatment.
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3.2.3 Protein syntbe sls assays

A time course study of EOF effects on total pro tein synthesis was carried out.

To this end, cells were labelled with 3SS-methionine in the presence or absence of

EGF for various intervals. At the end of this treatment, cells were harvested and

TCA-precipitable rad ioactivity was measured. Fig. 3.4 depicts the res ults from such

an experiment. It Isclear that BOF downmodulates total proteinsynthesisby about

12 h of tre atment. Up to 6 h EGF had no significant effect on pro tein synthesis.

Maximum effect of abou t 50% inhibition, wasapproac hed by 12 h and reached a

plateau thereafter. Approximately 50% of pro tein synthesis was observed in growth.

inhibited cells even after 48 h of EGF treatment. The drop in the total protein

synthesis was the ea rliest detectable cellular event associated with growth inhibition.

3.2.4 Alterati ons in gene expression

Since FACS analysis indicated that EGF induces growth arrest duri ng GI, we

examined the levels of transcription of certain genes which are known to be regula ted

in 0 t phase of the cell cycle. We examined the mRNA levels for c-!JW:.an ear lyG I

marker, pe NA, TK and p53 as late G 1 markers and histone 3.2 as a S phase specific

marker.

Northern blot ana lysisof total RNA under various EGF·trea tmenl condit ions

is shown in Fig.3.5. Cells were serum starved for 4 days prior to the EGF ·trea tment

in an a tte mpt to minimise the background expression levels due to serum. While

serum starvation dramat ically redu ced the c-~ expression, no significant



FIG. 3.4 Effect or EGF on total protein syntbesls. Cells were plated at 3xl04 cells

per well in 6-well plates, and were treated with EGF (10-8 M) for the indicated

intervals after 24 h of equilibration. Cells were labelled with 3SS-methionine (25

JlCi/ml) and incubated for 1 h prior to harvesting. At lhe end of labelling cells were

harvested by trypsinization andTeA-precipitable countswere determined. To correct

for varying cell numbers during the course of the experiment, parallel unlabelled

cultures were counted using a haemocytometer , and the incorpor ated radioactivity

was standa rdized to 10" cells. The data are shown as percentage of incorpor ation of

control cultures in the absence of EGF , The figures are from a representative

experiment carried out in dup licate.
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FIG. 3.5 Effect or EGF on cell cycle dependeot gel.e express ion. Exponentially

growing ce lls were serum starved for four days (lan e 1), following which the cells

wer e further incubated with the media containing serum, in the absenc e (lanes 2,3)

and in the presence of lcrs M EGP (lan es 4,5), for indicated durati ons ( The time

points tested for c-myc expressionwere 0.5 h-Ianes 2 & 4-, and 1 b-lanes 3 & 5; rest

were checked at intervals of 24 h- lanes 2 & 4, and 48 b- lanes 3 & 5). 20 Ilg of total

RNA was a pplied 10each lane, and gen e expression was examined.bY Northern blot

analysis with ezp] labelled prob es as outlined (Sectio n 22.4). Calf liver 28 S and 18

S RNA were used as standards.
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downmodulation was observed fur oth er markers. T he EG F treatmen t of MDA·468

cells resulted in marked a lte ratio ns in the transcr iption of these cell cycle-depe nde nt

gene.~. As repo rted earlier (F ilmus mill., 1987a). c-nu:£ was induce d byser um a lone

a nd its exp ression was further enha nced in EG F-trea led cells. H igher levels ofm RNA

for PCNAwere a lso observed afte r 24 h ofEGF treat me nt. Howeve r. mrs effect was

transient stnce ce lls treated for longe r pe riods, i.e.• for 48 h showed similar levels as

compared to contro l cells. The steady state mRNA level of the TK gene was

unaltered in response to EGF trea tment. Another la te 0 1 marker , p53. 11 tumour

suppresso r gene, be lieved to playa role in the G 1 to S transition, was downregu lated

in response to EGF. The low levels of mRNA for histon e 3.2, indicated a

considerable reduction in the number of cells ente ring S pha se. T he variations in

expressio n seen in these blots were confirmed by measuring levels of the

p roliferatio n-independent gene , e- tubulin, as contro l for RNA loade d (No t shown) .

3.3 DIS CUS SION

Flow cytometric analy sis o f DNA content in MDA-46 8 ce lls gro wth-inhibited

hy pharmncologlcnl conce nrrauons (lO-RM) of EGP Indicated that the cell cycle was

blocked in G I phase. This evidence was corrcoora ted and extended by the

demonst rat ion o f its re versibility, and by examini ng e H] thymidine upta ke in EGF­

treated ce lls. MD A-468 may contai n II subpopulatior. of cells which are resistant to

EG F·indu ct:d growth inhibition. It hilSalso bee n observed that MDA·468 l' CUS are

heterogenous with respect to number of EGFRs expressed per cell. In f::'::I, this has
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allowed the isolation and charact erization of varian t cell lines that behave in more

normal, proliferative manner in the presence of exogenous BOP (Fi/mus ~ .1!.1.,

1987b). This phenomenon may account for the fact that the DNA histograms do not

show complete dep letion of S and G2IM phase cell popula tions (F ig.3.2; Table 3.1),

and for the observat ion tna t the rate of DNA synthesis does not go below 30% of

contr o l in eHlthymidine incorporation assays (Pig .3.3), even when both expe riments

werecarriedout over 6 daysof EGF treatment(Table.Lf). The reversible nature of

the event demonstrates that it is not a function of EGP -mediate d toxicity affecting

cell viability. This conclusion was corr oborated by EGF effects on total protein

synthesis. Although. EGP· trea ted cells displayed immedi ate reduction in overall

protein synthesis in 6-12 h. these cells con tinue to display significant levels of protein

synthesis as compared to untreated cells. This clearly confirms that these cells are

complete ly viable. tn fact, more direct evidence for the viability of cells growth-

inhibited by EGF has already been re porte d by MacLeod !<!W. (1986), by a dye-

exclusion test . The y obse rved that more than 90% of A431 cells were viab le under

the culture conditions used, and there was no significant difference between the

viability of untr eated and EGF· .reared cells.

The manifestations of EG F·mediated growth inhibition are slightly different,

depen ding upon whether it is examined by means of FACS analysis or by .l3H]

thymidine upt ake . Spe cifically, the decreas e in DNA synthesis rates can be observed

after only 24 h ofEGF treatment, whereas 4 dayswere required befor e pronounced
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differences in cell cycle distribution were observed. The exact reason for this

difference is obscure, but a number of characteristics of both the cell line used and

the assaysperformed may account for it. The approximatedoublingtime of MDA·

468 cells observed under our experimental conditions was about 48 h or more

(Fig.3.1). It is known that in a normal cell cycle distribution of an asynchronous cell

population. approximately 40-50% of cells will be in different stages of 01 and at

teast 8 h of continuous EGF presence is essential before its effecton DNA synthesis

is observed (Carpenter & Cohen, 1976). The ability to de tect an accumulation in 01

over and above contro l levels winthen beexpec ted to take a reasonably long time.

Parti al synchronization of MDA-468 cell popu lation by serum starvation had little

effec t on the observed BOP-effects on cell cycle progression (Not shown). This was

not unexpected considering the ability of MDA-468 cells to grow under minima l

seru m requirement. Moreover. EOP-treatment apparently allows the first cell cycle

10complete before causing growth inhibition (G ill& Laza r, 1981) perhaps due to the

requirement for the continuous presence of EGF for more than 8 h. Thes e

observations may explain why release from serum starvation resulted in a more or

less asynchronous popu.etlon. Other more efficient method s of synchronization

typically involve intervention in the cell cycle by means of chemicals were not

thoro ughly tested for fear of any unknown effects on the EGF-med iated growth

inhibition.
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It is conceivable that clon ing of MDA·4(18cells may Improve the EGF· d fccls

quantitat ively, we expected to see mea surable changes eve n witho ut cloning, since

EGF produces a detectable effect in a heterogenous populatio n. However, cloning

homogeno us population of MDA ·468 eel's was being curr ied nu l simultaneously by

others in the laborat ory. On the other hund, the levels of BGFR expression mny

changein a celldependingon itsexposure to EGF/cultureconditionsand hencemay

result in het erogene ity even in 11 ho mogeno us pop ulatio n ove r few passages (G ill &

Lazar , 1981; Lifshit z gill., 19H3). However, we were able to detect early effe cts of

EGF at the molecu lar level. (3H] thymidi ne incorp orat ion measures changes in the

rate of ce llular proliferation by assaying a more preci se molecular blnlog lcnl event ,

l.e., DNA synthesis. As such, it is not surpri sing that chan ges here occur pr ior 10

those that are manifes ted by ulte nnio ns in the distribution of ce ll popu lations.

However, by examining O J- and Sphuse specific gen e expr ession, we we re able to

assay the effect of EGF trea tment on cellular pro life ra tion in lin eve n more precise

manner.

As cells ente r G I phas e, increa ses at the level of transcription of a numbe r of

gen es are observed. Thes e initial G l-phuse -speciflc cha nges in gene expression

include rapid alterations in the expre ssions of a nu mber of "immed iate curly genes"

( La u & Nathans, 1987), including c-iilli a nd c-.m:t£(Kelly !<.! ill., 1983; Muller ~ ill.,

1984). While both can be induced within 90 min o f serum or growth factor addition

to eithe r GO-arrested or cycling cells (Church & Buick, 1988), the function of these
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gene productsin the cellular responses to EGF in MDA-468cells is not understood

Nonethe less, Ihe EGF· med iated augmen tation of c-.IDlk mR NA levelsshown here

(Fig.3.5)dearlydemonstrates that the growth (actor initiates earlysignal transduclion

events in the MDA -468 cell line, and the block: in cell growth occurs after passage

Into G I. N cells continue through Gl and approach S phase, elevations in

tra nscript ion levels of gen es which encode enzymes for DNA synthesis including TK

and PCNA (8 cofactor for DNA polymerase 6) arc observed. In addition, the

expression of the tumour suppressor gene, p53, has been shown to increase in late

01 phase (Re ich & Levine, 1984; I...alande,l990) . In MDA·468 ce lls. treat ed with

growth inhibito ry concentra tions of EGF, there was a trans ient induction of PCNA

expression (Fig.3.S). These data suggest ~hat the cells are progressing into late G I,

although the significance Dfhigher mRNA levels for PCNA of such short duration is

not clear. TK mRNA levels remainedunaltered under the same treatment. It has

been previously shown that TK gene expression can not be augmented by EGF

(Jaskulski .t! ill·, 1988) and that TK mRNA levels can be regulated by both

transcriptional and post-lranscriptional mechanisms (Coppock & Pardee, 1987).

However, the fact lhat TK expression in EGF·lreated cells is not reduced relative to

untreated cells, suggests cell cycle transit up to late G1. Histone 3.2, being a core

histone, is involved in chromatin organizationand is expressed at higher levels in S

phase (Hirschhorn~ iI ., 1984). In fact, the reduced histone 3.2 mRNAlevels further

corroborate our FACS data showingEGF-dependent depletion of Sand G2JMcell
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populations.Lastly p53expresstouwasdownregulated in MDA·468 groW1h~inllibiled

cells,indicating that the EGF·jnduced block in cellcycletransit occurs prior to p53

expression, l.e.. at the OtIS boundary.

While the ac tual mechan ism of EGF -med iated growth lnhibltlon remains

elusive, we believe that data reported here, combined with that available in the

literature, do provide uswithsome important clues.Firstly, our data suggest that the

EGF·inducedblock in:MDA-468 cell cycleoccursonly in 01. This differssubstantially

from similar work carried out in A431 cells (MacLeoc\ ~ sl, 1986),where EGF·

dependentgrowthinhibitionwasdue to cell cycle transit interruption in both Gland

02 phases. While, the precise reason for this difference between A431 and MDA-468

cells are unclear, it strengthens the notion that overexpressionof EGFRs alone, a

common feature of these two cell lines, is unlikely to be the sole mechanism

responsiblefor the EGP-induced growthinhibition. Secondly, it is likely the down­

regulation of the structural protein, histone 3.2, is a result of cell cycle transit

blockade rather than the cause. As causative,inhibition of histone 3.2 transcription

may lead to accumulation of cells in S phase due to its requirement for genome

organization. However, given that there is no evidence suggesting a cell cycle

regulatoryrole for histone, the observeddecreased mRNA levels of histone 3.2,were

interpreted as decreased transit of cells through S phase.
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On the othe r hand , our data indicating an EG P-de pe nde nl down-regulation

of p53 gene trunscr tption may be more important. Severa l reports clearly

demonstrated that II tumou r suppressor, RB can act as a mediator for TGF-,a

induced gro wth inhibition (Section 1.5.2). MDA-468 ce lls are hom ozygously del eted

for ··'l,B, and possess a single allele for p53 with a point mutation at codon 273

(Barlek ~ ill.,1990). Inter estingly, p53, another well-studied tumour suppressor gene,

has also been implicated in cell cycle regulation li t Gj-S transition (Re viewed in

Levine ~ ill., 1991). Furthermore, rep orts suggest a possible role for p53 in TGF·,B

mediat ed growth inhibit ion similar to RB, in a var iety of cell type s (Gin sberg ~ aI.,

1990). Given the tota l lack of RB function in MDA·46 8 cells, the pre sence of a

dominant mutant allele of p53 in MDA -468 cells (Nigro ~ ill., 1989; Bartek !a ill.,

1990; Chen ~ ill., 1990), combined with the proposed GJ regulatory ro le by p53, we

suggest that EOF effects may be mediated by the mutant p53. Th e molecular

pathways may be similar to that of TOF·,a and RB in kerannccyres (Se ction 1.5.2).

We pursued this line of evide nce further 10 deli neate a role of p53 in EGF·media ted

G 1 arrest in MDA-468 cells.



4. AN INVESTIGATION OF EGF EFFECfS ON p531N MDA-468 HUMAN

BREASTCANCERCELLS, IMPLICATIONS FOR GI ARREST

4.1 INTRODUCTION

4.1.1 Background

The previous studies of EGF-mediated growthinhibition in MDA·468cells

providedan essentialbasisfor the experiments detailed in this chapter. Specifically,

the observation that EGF~treated MDA-468cellsdisplay lower levels of mRNAfor

a mutant p53 (Fig.3.5, page 68) suggested thai this may play a role in growlli

inhibition. Wild-type p53 is regarded as a tumour suppressor and is believed to

functionas a negative regulatorof cellproliferation inlateGI phase, whereas certain

mutations in p53 are oncogenic (Reviewed in Lane & Benchimol, 1990; Levine~

n.!.,1991;Michalovitz~~l..1991;Donehower& Bradley, 1993). It is welldocumented

that RD, a prototypic tumour suppressor may be involved in growth factor(TGF-P)­

inducedgrowthinhibition (Section 1.5.2). However,RB is not likelyto be criticalin

MDA-468 cells,since theyare homozygously deleted for RB(Bartek~ ill., 1990). In

a model similar to TGF.p and RB, we hypothesizeda putativerole for p53in EGF­

inducedgrowth inhibition.

76
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4.1.2 p53 his tory - a tortuous story

Lane and Crawford, in J')79, iden tided p53 as a protein found in ussoclation

with the transforming protein T antigen of DNA tumour virus SV40 (La ne &

Crawford, 1979; Linzer & Levine, 1979). p53 is 11 nuclear phos phoprotein , nnd d raws

its name from its appare nt molecular weight. There nre several regions of the p53

prot ein which are highly conserved among differe nt species, including humans,

rodents and amphibians . These conserved domains a re the refore believed ttl he

critica l in deter mining p53 function (vogelstetn & Kinzler, 1992; Doncho wer &

Brad ley, 1993).

Studies to characterize p53 indicated that p53 alone could immorta lize rat

embryo fibroblasts and co uld COOPCfUIC with lin activate d 1".!!li gene in trunaformmlon

exper iments (Jenk ins !:.lill., 1984; Eliyahu!<l ill.,19lW; Rnvinski & Benchimol, 19RX).

Th is led to the suggestion that cellu lar pS3 may function as an oncogene. However ,

this initial notion of p53 as an oncogene was in contrast to the observation of

Benchimol and others that several of the tum our-der ived celllines were devoid uf any

detectable pS3 protein (Mowat ,!;!!!,l., 1985). In addition, uue rnpts to reproduce the

results from the previous transfor mation studies were not successful using II eDNA

clone isolated from normal cells (Finlay !:.lill., 1989). These contrasti ng views were

finally reconciled when the eDNA clones used for the initiul studies were found to

carry muta tions (Eliyuhu ,!;! ill., 19H8; Hinds,!;! ill., 1989). More thorough

investigations from a number of gro ups esta blished that norma l (wild-type ) pS3
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lacked any transformingability. Interestingly, p53 eDNA clones from normal cells

suppressed the transformation by other oncogenes (Finlay~m., 1989; Eliyahu!<!RI.,

1939). Furthermore, severalgroups reported that over-expressionof exogenous wild­

type p53 in tumour cell lines was actua lly incompatible with cell prolifera tion (Merce r

!tl !I., 1990;Baker £1gl., 1990;Chen ltlID·, 1990; Chen !<!ID., 1991;Johnson ~ ill.,

1991). This was cited as the explanation for the inability to obtain stable clones of

celts expressing wild-type pS3 (Diller !tl ill., 1990). Taken toge ther, these data

conclude p53 as a 'tumour suppr essor ' ana logous to RB (Section 1.5).

4.1.3 pSJ in cancer

In 1989, vogelstetn and colleagues discovered that the p53 gene was frequent ly

affected in cotorectat cancers (Baker ~ nJ... 1989). This observation has been

extended to a variety of other malignancies (Nigro s:1!.!l., 1989).Delet ions, and more

commonly, missense mutations in the p53 gene, have bee n reported in a majority of

tumours examined (Vogelstein, 1990; Hollstein ~ ill., 1991). Numerous reports

published prior 10this had indicated that the p53 gene was mutated in many tumour.

derived cellsas well (Listed in Quartin ~!.!l., 1991). These observations together with

the earlie r reports that wild-type p53 was incompatible with tumour cell proliferation

(Merce r n al., 1990;Baker tt i!l,1990; Diller ~ §1,1990), provided strong support

to the notion that wild-type p53 was actua lly a tumour suppressor, and its loss by

deletion or inactivation through mutation was associated with transformation and

malignancy.This was further corrobor ated by the observation that transgenic mice
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bea ring exogenous mutant pS3 were highly susceptible 10 tumorigene sis and

deve loped multiple tumours ea rly in life (La vigueur I! @1.. 1989).

Anoth er line o f evidence comes fro m the study of DNA tumou r virU5CLSince

p53 was first ide ntified by its associa tion with T ant igen of SV40. exp lana tions had

bee n sought for such an interaction. Interes tingly enou gh, differen t proteins of o the r

tumour viruse s interac t with pS3as well. For instance, E6 protein of high risk human

papilloma viruses HPV 16/HPV 18 (Werness ~ aI., 1990), and Elb prote in of

Adenovirus 5 (Sarnow ~ ID" 1982), were known to interact with p53. Moreover ,

proteins of these viruses were known to bind 10 another prototypic tumour

suppressor, RB (DeCa prio ," ill.. 1988; Whyte ~ l!l.. 1989; Dyson ~ ill.. 1989). This

led to the suggestion tha t viral proteins may be eliminating a restraint on cell

proli feration through binding a nd inactiva tion of lumour soppressors such 2S pS3 and

RD. Th is view was furthe r co nfirmed when mu tan ts o f these viral proteins which

failed to b ind RB or pS3, were found to be defect ive in transform ation assays . Th e

molecular mechanisms underlying such vira l protein and pSJ intera ction are di fferent

for each virus. It is known that SV40 T antige n increase s the steady stat e levels o f

pS3. whereas E6 of the HPVs enhances its degradation (O ren ~ BI., 1981; Reich ~

i!..I., 1983; Scheffner ,g AI.. 1990). SV40 T an tigen, Btb of AdS a nd E6 of the HPVs

were repor ted 10 inh ibit pS3-rnedia ted tran sactivation function (Sega wa .t! AI., 1993;

Yew & Berk, J992: Lechner £1 ID., 1992). Th ese repor ts de fine a molecular

mec hanis m by which DNA viruses bring abo ut trans forma tion throug h inactivat ion
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of negative regulators (p53, RB) of ce ll proliferation.

4.1.4 Wlld .type pSJ: Biological function

4.1.4.1 Cell cycle nguJalion

A large body of evidence suppo rts the hypothe sis that p53 regulat es cellular

entry into S phase and progression of DN A replicat ion (Mercer ~ !l1., 1984).

Schaulsky g ill. (1990), dem onstrated a cell cycle-depe ndent alterati on in subcellular

localization of p53 in normal fibroblasts by means of an immunofluorescence

technique. The auth ors observed that p53 enters the nucleus just prior to the G1/S

transition and remains in the nucleus during S phase . In contrast, p53 was absent in

the nuclei of mitot ic cells. Reports have ind icated the involvement of p53 in both

norm al a nd tran sformed cell G lIS tran sitions (Steinme yer ,g nL1990; Deppert~ aI..

1990). Studi es with a temperature-sensitive mutant p53 protein, further strengthen

this finding. The p5313S.Vat mutant is transforming in association with m a t 37GC,

but suppresses tra nsformation at 32.5"C. In addition, cells transfected with this

mutant were shown to be growth inhib ited in late G1 phase at 32.5"C. The cell cycle

block was reversible upon temperatur e shift to 37GC. Furthermore, employing

conformation-specific antibodies, it has been demonstrated that a majority of this

temperature-sensitive form of p53 was in mutant conformation (PAb 240 reactive)

at 37"C, where as the wild-type form (PAb 246 reactive) predominated at 32SC.

Such temp erature-induced shift in th e confo rma tion of p53, followed by the relocati on

of such a n altered p53 into the nucleu s, was attribu ted 8S the cause of G1 arrest in
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the cell cycle (G insberg ~ ID. 1991a; Martinez!<! m., 1991; Micha lovitt!<1 ill, 1991).

Milner & Watson (1990), reported loss of certain wnd-type-spectnc epnopes

(recog nized by PAb 246) of p53 in quiesce nt cells, stimu lated by se rum to e nter the

cell cycle. They suggested that the alteration in pS3 protei n conformation lead to loss

of a negative regulatory function. Milner, in 1991, prep-sed a conformationa l

hypoth esis 10expla in the biology orpS3. Accord ing to this theory (M ilner, 1991), the

regulation of p53 biological function OCCUfS at the level of pro tein confor mntion. By

means of certain post-translational modifications, endogenous wild-type pS3 can

assume a 'pro moter ' form to stimulate cell cycle p rogression but it also can beco me

a 'suppressor ' to negatively regulate the cell cycle. In tumou r ce lls, mutatio ns a lter

the abi lity of p53 to undergo such conforma tiona l shifts and these mutant forms of

p53 a re pennanently locked in 'promoter' form. Milner 's grou p provided evidence

that muta nt p53 can force the wild-type form to assume a muta nt conformat ion upon

co-trans lation, suggest ing a mechanism for the complete loss of wild-type p53 function

with the muta tion in only a single allele (Milner & Medca lf, 1991). While this theory

has bee n rigorously tested, the available data a re still debatable. Evidence ha th in

suppo rt, and in contras t, is equivoca l (Zerraho ~ .!!.I.t 1992; Mosner & Deppen,

1992).

An addi tional link to cell cycle regulation is provided by the fact that pB is

known to be a substra te for p34cdc2kinase (CDKI) in YiJrg (Bischoff !<!iI., 1990).

CDKI is believed to be an important regula tor of the eukaryotic cell cycle (Section
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1.4.1.1). St udies by Milner ~ !!!.(1990), indicated a physical nssociation between p53

and p34cdC2 in the interphase stage of transformed cells. Phospho rylation by CDKI

also seems to dire ct nuclea r tran slocation of p53 (Ad dison !Out.,I990).Other kineses,

such as the D NA·d epend en t pr otein kinase (DN APK) (Lees -Miller ~ .ill., 1990) a nd

casein kinase II (Meek ~ m., 1990) are known to phosphorylate p53 as we ll.

Mutations in one of the casein kinase H sites (serine 386) was shown to abo lish the

anti-prolifera tive activity of pS3 (Milne ~ ill., 1992). In contrast, a series of

experi me nts pe rfor med by Slingerland .!ll !!..!. (1 993). tested the effe ct of mut ations in

specific p53 domains, including the CDKI sites, the nuclear localization signals, the

oligome riza tio n dom ain and so on, in transformation and trans form atlo n-soppreseton

assays. and raised concerns about the significa nce of the above kinases in p53

function . None of these mutations affected the functi on of p53 to a significant exte nt.

O ne clea r findin g, however, was that monomeric forms of p53 ar e capable of

tran sform ation su ppressio n, where as oligomerization was essential only for

tra nsformatio n activity. Thi s raises the possibility that different mol ecular me chanisms

arc responsible for separat e p53 functi ons . It still rema ins uncle ar how this would

take place in a normal cell.

Cell cycle regulation by p53 resides in late 01 phase, prior to a restriction

point ( R point; Lin s;! ID., 1992). Several rep orts have now established that bo th in

norm al, and tum ou r cells, loss of p53 function abrogates a chec k point operating in

late 0 1 (Ha rvey .a. m.,1993; Tsukada ~l!l., 1993; Kuerbjtz~Al., 1992). The kine tics
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of p53express ion pr eced e tha t of G I-S progre ssion in synchro nized cell populations

(Deppert !<1 !!l., 1990; Steinmeye r !<lID., 1990). In summary, pS3 seems to he a key

componen t of cell cycle regulat ion specifically in 0 1, prior to the R point

(Donehower & Bradl ey, 1993).

4.1.4.2 Apoptosls and "guardian of the genome"

The seemingly well-accepted concept of pS3 as a negative regulator of cell

cycle, was recently challenged by the observat ions from transgenic mice studies

carried out by Allan Bradley's group. Bradley and colleagues developed a p53.

deficient strain of mice by a homologous recombination-based gene knock-out

technique (Doneho wer ~ m., 1992). Th ese mice, even withou t a functiona l p53

protein, developed normally to full term withou t any gross a bnorma lities. However.

the p53- deficient offspring were a ll dead by 10 mont hs of age . Increase d tumour

suscep tibility was observed, as 75% of these anima ls develo ped tu mo urs in various

tissues as early as 6 months of age. Based o n these data, pS3 can be interpreted us

non-essen tial for re gulation of normal cell cycle progre ssion. Instead, pS3 de ficiency

may ma nifest as a long-term effect .

Th is prompted Lane to propose an alternative function for p53. As he suggests

in his "G uardia n of the Genome" theory, in a norm al cell, p53 ope ra tes as a negative

regula tor, ac tivated by DNA damage (La ne, ]992). Signa ls from dam aged DNA are

thought to act on pS3 whieh in tur n respo nds by ac dvating a distinct set of gene s.

T hese gene pro duc ts may be respo nsible for D NA repair as well as tran sient
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inhibition of rep lication and cell cycle progression. Evidence to this e nd is beg inning

to acc umulate. A var iety of DNA damage -inducing agents including y-r adiat ion, X­

rays, and cisplatin induce the accumulation of p53 protein by a post-transcriptional

mechanism (Kastan ~ ill., 1991; Kastan ~ i!l..1992; Fritsche ~ &.,1993; Hall !<!ill.,

1993a). Certain genes associated with DNA damage suchas GADD4S(growth RrreS!

.!2NAgamage) are spec ifically induced by wild-type p53 upo n irradiat ion [Kaste n sa
ill., 1992). Therefore, p53 seems to be an import ant effector of II DNA-damage

response pathway responsible for maintaininggenomic integrity.Following l\ genomic

insult, p53 activ ity is upregulated, which in tum blocks cell cycle progression in G1.

In turn this allows the cell to repair the genomic damage. Lack of such a funct ion in

cells of p53 defici ent mice, or in tumour cells with mutant p53, may allow the cells

to proliferate des pite the damaged DNA causing acc umulatio n of genetic aberrations.

This is reasoned to be a factor in tumorigenesis in young p53-deficient mice (La ne,

1992; Or en, 1992).

In certai n cell types, however, such a DNA-damage response pat hway seems

to result in a d ifferent end point. These cells unde rgo programmed cell deat h, or

-apoptosts' in response to DNA damage- inducing agents. While, this response has

been shown to be mediated by more than one pa thway, cellular p53 is known to be

an impo rtant mediator in at least one of the mecha nisms (Shaw ~ ill., 1992; Lowe

;1!!l., 1993; Clarke ~ill·, 1993). Thus, evidence is acc umulating that p53 is a p rotein

requir ed for det ermination of cell fate upo n a geno mic insult. It suggests p53 ac ts as
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a "gate-ke eper" of sorts, mediating apo ptosls or a tran sient halt in G l-S p rogression,

depending on the signals received from the damage d DNA.

4.1.5 Wild.type pS3: Biochemical function

4.1.5.1 Ancilla ry replication factor

It is inter esting to note that p53 was repo rted to assoc iate with replication

origins along with othe r known accessory proteins involved in DNA replication

(Willcock & Lane, 1991). T his prompted the authors to specu lat e a possible role for

p53 in DNA replica tion. p53 has RNA-bind ing activity and pro motes anneali ng of

single stran ded RNAs and DNAs (Oberosler ~ .!!I" 1993). This activity wa s originally

observed as an ann-helicase activitywhich blocked SV40 T antigen-mediated DNA

repli cat ion (St urab eche r g W., 1988). T he notion tha t p53 may have a ro le in DNA

replica tion was bolstere d by a recent report that repl icat ion pro tein A (RPA) was

assoc iated with and inhibited by wild-type a nd mut ant forms of p53 (D utra fa Ill.

1993). RPA is a single-st ra nded DNA binding p rote in comp lex, be lieved to be

essential for unwindi ng of DNA origins and initiat ion of DNA replication (Fai rma n

& Stillman, 1988). The significance of such an interaction is ye t to be de te rmined .

4.1.5.2 pS3 as 0 tmnscription factor

Some authors have suggested p53 may act as a transcript ion factor . Resear ch

indicat es the pr esen ce of a potent transcription al activat ion d omain in the amino­

term inal region of p53 an:': that some mutant a lleles may have lost th is ability

(Raycroft ~W., 1990; O 'Rourke .IUW., 1990; Fields & J ang, ]990). A DN A binding
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domain has a lso been iden tified at the carboxyl terminal domain of wild-type p53

(Foord ~:a!.. 1991). Furthe rmore, DNA binding orw ild-type p53 hasbeen observed

in a sequence-speeilic mann er as well (Kern !ll iI., 1991b. Barganett i ~ 11.. 1991;

Funk !tl m.. 1992; Zuberman t.!!l .. 1993). Tak en together , one of the btochemical

ro les for p53 appears to be thai of a transcription facto r. Recently, certain genes

regulated by p53 have bee n discovered Kasta n !ll 111. (1992), reported the p53.

med iated induct ion of~ in response to V-irradiation. Severa l reports list

various promoters affected by p53 including those associated with proliferating cell

nuclea r a ntigen (P CNA)(Me rccr S:~ .k;1., 1991; Subler tl W., 1992), long termi nal

regions of Ro us sarcoma (RSV) and cytomegato virus (CMV), SV40 (Ja ckson !ll ill..

1993), retinoblastoma (Shiio -'.1 i!l., 1992), mdm2 (Barak !ll1!l.. 1993), inte:rleulcin-6

(Sant hanam ~ 11.. 1991), p · act in, c-fos, c-jun, pS3 (Deb ~ il.. 1992; G insberg ~ !l..

1991b; KJey~ !l.. 1992) muscle creat ine kinase (MCK) (Weint raub ~ ill..1991) and

MQB1JChin ~ !l.. 1992). Furtherm ore., pS3 has bee n reported to interac t with

com ponents of basal transc ript ion a pparatus, such as TATA binding protein (TBP )

an d CCAAT binding factor (CBF) (Se to ~!l.. 1992; Ragimov ~ Dl.. 1993; Agoff~

ill., 1993). Th erefo re, it is co nceivable that pSJ can alte r the expression of specific

ge nes. Those specifically a ltered may depend on cell-type . In a given ce ll-type, some

pro moters may be more sensitive 10 p53 tha n o thers. p:-:3-specific gene expression in

ce lls and their ro le in 01·5 progress ion or in tumour suppression re mains to - e

elucidated.



B7

4.1.' MutatWoI in p5J: FUDdiodat oonseq ut n<eJ

Studies performed by several investigators indicated that different mutant

alleles of the pS3 gene have different biological aoo biochemical properties

(Reviewed in Levine " AL l99 I; Michalovitz £1!I .. 1991; Ore n, 1992; Doneh owcr

& Brac!ley, 1993). However, ingeneral. most of them are transforming along with Ihe

I.i!! oncogene, fail 10 bind SV40 T ant igen, have longer half-lives, and possess

diffe ren t conforma tions than the wild-type protein. A majori ty o f the mutant s fail 10

react with PAb 1620 . whereas they lire re cognized by a no ther antibody PAb 240.

Th ese a ntibod ies hove bee n well chara cterized a nd this pa ttern of d ifferent ial

antibod y-reactivity of pS3 has been extensively util ized (M ilner £1W., 1987; Finlay £1

i!I.. 1988; Ga nnon ~ !l .. 1990; M ichalovi tz £111.. 1990; Milner & Medca lf, 1990;

Milner ~ ll .. 1991; Levine £I.!.!.. 1991; Martinez ~ 1.1.. 1991). Severa l of the above

reports have tested and validated the interpretation of p53 phenotype based un

antibody-reactivity by sequend ng the gene . Therefore it has been a common practice

in p53 research to base conclusions concerning the phenotype based on antibody

reactivity, even though rare exceptions to this pattern are known (Gannon" 11..

J9JO; Bartek ~ .l!1., 1990).

The observation thai a =:-ajorityof tumour cells carry mutations in p53 led to

several hypotheses to explain the possible mechanisms of inactivation of pS3. The

most well-accepted one is that of dominant-negative action of mutants over wild-type

pSJ (R eviewed in v ogetsrein & Kinzler, 1992; Oren, 1992). Briefly, mutant pS3
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molecules are capa ble of forming o ligom ers with wild-type ones, thus interfe ring with

their runcnon (Milner $Uill..1991; Milner & Medcalf, 1991). Thi s could either re tain

the wild-type p53 in the cytoplasm. or simply the oligomers with mut ant molecules

lack the normal function . This the ory was used extensively as an explanatio n for the

toleration of a single wild-type pS3 alle le along with a mut ant pS3 alle le in some

types of transformed cells (Oren, 1992). The oligomerization/sequestration theo ry

implying nea r total inact ivation of wild-type pS3 by a mu tant allele, however, failed

to exp lain the need for the loss of rema ining wild-type p53 alle le, commo nly observe d

duringthe later stagesof tumour progression. More detailed studies raised concern

as oligomerization-defective p53 molecules see med to b e equally effective as

transformation suppressors, as compared to the oligomerization-competent ones

(Slinger land !U ul., 199.3). Therefore, a convincing theory rega rding the functional

consequences of muta tions in p53 gene remains to be deline ated. In suppo rt of this

notion are some of the recent systematic studies which revealed that different

muta tions have different function al consequences as well (Ch en ~ ID., 1993b; Miller

~ ill., 1993). There fore, it may be essent ial to functionally lest for the effect of

changes in the p53 gene to fully understand its ro le in tran sformation and tumour

progression.

On the other hand , interact ion wilh other cellular pro teins may determine

some functions of p53. Recently, one such cellular protein has been identified

(Momand.tl ill., 1992; O liner!<! ill.,1992). The cloning and further cbarectertea .Ion
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oft his prote in, MDM2 (mOI1~~ .doubl!:minute 2), delineated a pathway regulating p53

function. It was shown that .m..Y..m1 can be induced by pS3 at the transcriptional level

(Wu !<!ill., 1993j Barak ~ !!I, 1993). MDM2 can interfere with p53 transactivution

function through physical binding (Momand~ !!I.,1992), which completes an auto-

regulatory loop. Several types of tumour cells tolerating wild-type p53, have been

reported to overexpress MDM2 (Reifenberger .c.! i!..I., 1993). There may be other

cellular factors affecting pS3function in several ways. More recently, several of these

cellular proteinsassociated with pS3were identified (Maxwell& Roth, 1993). Furth er

characterization of these interactions is essential for total understandin g of p53 lind

its role in can cer.

4.1.6.1 Arg 273 his ~ an atypical mutant: "Pseudn wild~type·

In MDA-468 cells, studies have demonstrated the presence of a single allele

for p53 with a point mutation at codon 273 (Nigro~ !!l.1989j Bartek gill., 1990).

This muta tion has resulted in substitution of the amino acid arginine for histidine.

Histidine 273 mutant p53 (p5327J.Hls) appears to have peculiar properties, unlike the

majority of mutant p53 proteins. It is more analogous to wild-type in its ubilily In bind

SV40 T antigen (Levine ~m., 1991), to trensacnvate heterologous promolers when

expressed as a GAL4 fusion protein (F ields & Jang, 1990), to react with wild-type

specific antibody 1620 (Milner ~ i!b 1987) and most interestingly, its nuclear

localization irrespective of cell cycle stage (Bartek ~ !!.l.t 1990; Ginsberg ~ !!l.,

1991a). However it has a longer half-life ( >7-8 h), a t.d possesses transforming
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potential in co-operation with activated m (Hinds ~ m., 1990), feature s that are

shared by other mutant alleles (Re viewed in Levine £1ill. 1991, Michalovitz !<!.!!l.t

1991). Moreover, p53273.HIs has been reporte d to have reduced non-specific DNA

binding and to be unable to bind sequences specifically recognbe d by Wild-typep53

(Kern £1ID·, 19918; Kern £1!!l., 1991b, Bargonetti~ !!l.. 19)1). However, these

reports are basedon comparison studieswithwild-type p53under in Yi!m conditions

and have not addressed the possibility of an altered sequence-speci ficity for mutant

pS3. Sequenc es recently ident ified are recognized by certa in muta nt p53 molecules

to the same extent as the wild-type p53 for transcriptional activity. For instance,

p53273.HIsretains the ability to transactivate through a conse nsus sequence identified

by Funk <.Ill!, (1992).

Upon an extensive review of the literature, it is clear that the effect of

mutatio ns in p53 is still unclear. The re exists a definite likelihood that some of the

transformingmutant allelesof p53remainactiveastranscription factors inducing the

expression of genes essent ial for cell cycle progression, and in tum , drive cell

proliferation.

4.1.7 Worki ng h)'pothesis

In the context of a pseudo wild-type p53 (pS3273.HIs) in MDA-468 celts,

observat ions of its lowered mR NA levels in EGF- trea ted MDA· 468 human breast

cance r cells suggested that specific EG F-me dia lcd altera tion in pu tative proliferat ion-

promot ing p53 function might be responsible for the G1 arr est . Although it is
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plausi ble that EGF signal tra nsduction may not involve pS3, given the known G1

regula tory role of p53. the ;:.resence of a functional mutant p53 in MDA-468 cells,

and evidence for the existence of similar molecular pathways mediating growth

inhibit ion (TGF-,e and RB; Section 1.5.2), we conside red it would be essential to test

this hypothesis.

n We envision 8 distinct function for pS3'Z73.Hi1 In MDA-468 cells,

one that Is essential for their cell cycle peogressloe, Any

modulation of such an activity by EGF would arrest the

cell cycle of MDA-468 «Usn.

To exa mine this possibility. we initialed an in-depth ana lysis of EG F effects

on p53 in MDA·468 human breast cancer cells. It was reported earlier that no

significant changes in p53 transcription were observed within2 h of EGF-treatment

(F ilmus !tl !!l.t 1987a). It is conceiv able that EGF-d ep endent alterations in pS3

function may instead occur at tra nslationaVpost-translational levels. Therefore, we

studi ed various aspects of p53 express ion that may have functional con sequences

including steady stale protein levels, protein synthesis, protein stability, subcellular

localization and phosphorylation state.
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4.2 RESULTS

4.1.1 Nortb ern blot analysis

A time course experim ent utilizing Northern blot ana lysis (FigA.l ) indicated

the down-regulation of p53 mRNA levels are not appa rent until at least 18 h after

treatment with EGF begins. Repr obing of the filter with c -tubulin , revea led that the

decrea sed signal in lanes 2, 6 and 1 arc actually due to reduced amount s of RNA

loaded in those lanes (Not shown) . Our earlier studies indicated that one of the most

read ily measurable indicators of growth inhibition was a decrease in ove ra ll prot ein

synthesis. This drop occurs significantly within 6-12 h of EGP tre atment (Fig.3.4).

Therefore, to be causat ive any change in pS3 must prece de, or be simulta neo us with,

this per iod. The refore, it is apparent that EGF effects on p53 steady sta te mRNA

levels may not be causative for 0 1 arr est .

4.2.2 Western blot aDalysis

Examina tion of cellular protein levels for p53 was carried out by Western

blottin g using PAb 1801, a human-speclfle monoclonal antibody known to rea ct with

bo th wild-type and mutant p53 (Banks sa .!!I., 1986). PAb 1801 reacted specifically

with at least thr ee proteins other than pS3. While a 40 kd band may be a by-produ ct

of p53, no clea r explanat ions for other higb..r molecular weight bands are known.

Cells treated with EOF for at least 48 h contained significan tly lower levels of p53

(FigA .2 Left panel) . h 'wever, there was no apparent alteration in the levels of pS3

in responseto shorter EGF treatment intervals (Fig04.2 Rjght panel). The protein



FIG. 4.1 Eflect of EGF tin pSJ steady state mUNA levels. Total RNA (20 ~gllalle)

isolated from unt re ated cells (lanes 1-5), and EGF (l()"KM j-treat ed cells (lanes 6·1)

were examined by Northern hie" analysis. An end-fahelled p53 oligu probe was

utilized for hybrid ization. The durations of EGF·trea l mcnt tested were 6 h ( lane 6),

12 h (lane 7), 18 h (lane 8) and 24 h (tane 9). The corresponding control snmpte s for

oh, 6 h, 12 h, 18 h and 24 h (lane )-5 resp ectively) wer e also examined. CHlf livcr 28

Sand ]8 S RNA were used as standards. The urrow indicates the p53 tra nscript of

approx . 3.0 kb.
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FI G. 4.2 Errect oIEGF on p53 stcady srole pn lte in levels. The: tmnl pnse ln sample s

(100 ~&'Iane) isolated from MDA -4f>8cd ls cultured =EG F ( 10-8M), were:separated

on a n 8% 50 S-PAGE. The p53 prot e in leve ls were exa mined by Western blnt

analysis utilizing alkalin e-phosphat ase detection system.

Left pa nel: Sa mples, in lanes 1 & 3 lin: from co ntrnllunt re:nted cells; in lane s 2 & 4

are from celts. EGF-trea ted for 48 h.

Right Panel: Samples are from cells, EGF-trea ted for, 0 h-lanes I & 3; 3 h-lane 4;

6 h-lane S; 9 h-la ne 6; 12 b-lan e 7; and 24 b-tanes 2 & 8.

Lanes 1 & 2 of both pan els were blotted with II co nrrol unttbody (anti-MHC) while,

lanes 3 & 4 of left pa ne l and lanes J -g were blo tted with PAb 1801 (llnti-p53). T he

arrow indicates the spectre ba nd cc rrespondtng to pS3.
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levels seem to reflectdecreasedmRNA levels observedafter about 18-24 h of EGF

tre atment. A drop in p53 protein levels might be expected to take consider able time

to be appa rent given the long haJr·life (>7·8 h; Hinds £! m., 1990),r this protein.

4.1.3 Pufse-chase experiments

Though data on pro tein levels are indirect evidence for the absence of any

dramatic effe ct on protein stability, a confirmation can be made by a pulse-chase

experiment . Standard pulse-chase experiments clearly indicated no shift in the protein

stability in resp onse to EGF treatment (Fig. 4.3) . Any significant shift in the stability

of p53 would have resulted in alterations in the amounts of immunoprccipitatcd­

labelled- p53 . A chase of up to 24 h, following over-night labelling of cells with 3SS-

methion ine , revealed that equal amounts of lab elled p53 protein we re present as

indicated by immun oprecipitation with PAb 1801, irrespe ctive of EGF treatment

(Fig.4.3; co mpare Janes 3,5,7 with 2,4 and 6 resp ectively). Therefore, EGF treatment

has not affected the stability of the p53 protein . The multiple bands observed other

than pS3we re app aren tly due to the non-specific adsorption to Stap hylococcal cells

used to recover immun oprecipitates .

4.2.4 pS3 pro tein synthesis

Since we were inter ested in detecti ng any and all effects of EGF on cellu lar

p53 status, possible ch- Iges in p53 protein synthesis were investiga ted as well. Ce lls,

briefly labell ed with 35S-methionine in the presence or absence of EGF , were

sonicated and homogenates were immunop reclpitated with YAh1801. Th ough newly



FIG. 4.3 ElTeet of EGF on p53 stnbllily. MDA·468 cells (lx106 ce lls!100mm plate)

were labelled overn ight (10 h) with 35S-me thionine ( 100 .uci/ml). The labelling was

fullnwed t'~! u incubati on in 35S-methionine-free media in the absence (lan es 2, 4, &

6) or in the prese nce (lan es 3, 5, & 7) of EGF (l O·8M). for the indicated Intervals.

At the end of this incubation (chase) , cells were lysed lind immunoprecipitated with

PAb ISO) (linti-p53 ). Eq uivalent counts of the irnmunop reclpi tated samples were then

separated on an 8% SDS-PAG E. The durations of the chase tested were , 0 b-lanc

I; 6 h-lan es 2 & 3; 8 h-lanes 4 & 5; 24 h-lan es 6 & 7. Th e a rrow indicate s the specific

band correspo nding to p53.
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FIG. 4,4 EdmJnAtion or EGF erred 011 p53proteiDsynthesis. MDA-468cells. afte r

24 h of plat ing, were treat ed with ± EGF (10-8 M) for the indicated intervals.

Labelling was carried out af te r the indicated duration of EG F-treatme nt with 3SS_

methion ine (100 ~Cilml) for a pprox. 10 h (overnight). Labe lled ce lls were then lysed,

immunoprecipitated with 2 Ilg oCe ither a control a ntibody (anti-MHC; lane 1) or

PAb lSOI(an tj-p53; lanes 2-S).lmmunoprecipitatcs were collected byStaphylococcal

cell-suspension (10% Om nisorb). Eq uivalent counts of samples wer ., separated on a

8% 50 S-PAGE. Lanes 2 & 4 represent samples {rom 24 h and 48 h untreated cells

rcspectively, lanes 3 & 5 rep resent samples from 24 h and 48 h EGF-treatcd cells

respectively, Sample in lane 1 wasfrom 24 h ULtreated cells. The arro w indicates the

specilic band correspo nding to p53.
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FIG. 4.5 ElullmlnallOd or short-term EGr t ffect 00 pS3 protein synlhes is. MDA­

468 cellswere treated with EG F (10-8 M) for the indicated intervals . Labellingwith

35S_mt:lhionine (100 j.lCi/ml) was carr ied out durin g the last 3 h of incuba tion. Cells

were then lysed and immunoprecipitated with 1 p.gof eitber a contro l antibody (anti­

MHC;lane 1), or PAb 1801 (anti.p53; lanes 2-10). The samples collected on protein

A.Sepharose, were adjusted to equivalent counts and separated on a 10% 50 S­

PAGE. Lanes 1 & 2 - 0 h samp le labell ed prior to the beginning of EGF-treatmenL

Lanes 3, S, 7 & 9 correspo nd to 3 h, 6 h,9 h & 12 h samples from untreated cells.

Lanes -I,6, 8, & 10 correspond to 3 h. 6 h, 9 h & 12 h samples from EGP -trea ted

cells. The arrow indicates the spe cific band corresponding to p53 .
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synthesized p53 protein levels were significantly lower after 24 h of EGF treatment

(Fig.4.4; lane 3) no immediate effect was obvious until 12 h (FigA.5; lane 10). This

reduction in p53 proteinsynthesisfollowingEOF addition likelyreflects the reduction

in total pr otein synthesis which occurred between 6-12 h following Ev P·tre al menl

(Hg.3.4 ).

Thus, the data from Northern blot, Western blot, pulse-chase, and protein

synthesis experiments , indicate that EOF has no immediate effect on p53 status at

the level of transcription, trans lation or stability that might be attributed as a cause

of EGP-mediated 0 1 arrest.

4.2.5 Immunoneorescence studies

Th e pr oposed cellular site of acuon for p53 is the nucleus and it has been well

documented that the function of p53 can be affected by its subcellular localization

(Section 4.1.4.1). Hence, we examined the subcellular localization of pS3 in MDA -468

cells in cycling and EGF -treated condition s. To this end , we made use ot thre e

monoclonal anti bodies in immunofluore scence studies: a human- specific PAb 1801

which rea cts with both wild-type and mutan t p53 (Banks ~.!!l., 1986); PAb 240 which

specifically rea cts with muta nt pS3 (Gannon.t! it..1990); and, the wild-type specific

PAb 1620 (Milner Stl.@l., 1987). All these antibodie s are known to reac t with the pS3

prot ein in MDA-468 cells, both in immunoprecipitation an d immunofluorescence

react ions (Bartek ~ i!l.,1990; Milne r 1<1 i!l., 1987). The se antibodies produce a strong

nuclear staining in immunofluorescence reac tions.



FIG. 4.6 Examination or $ubc:ellular localization of pS3 in response 10 EGF. Serum

starved MDA-468 cells grown on glass slides were incubated with serum containing

medium ± EGF (10.8 M) for 24 h. At the end of this duration, cells were fixedwith

meth anol:acetone (1:1), blocked with 3% BSNPBS, and incubated with the anti- p53

antibodie s (5 -"glml). Cells were then stained with FITC-conjugated an ti-mouse

immunoglobulin (1:50). The p53 localization was detected by fluorescent microscope

at 125X (40X x l.25X x 2.5X) magnification. Panel s a, c, & e were untreated cells;

pan els b, d, & f were EGF-treal ed cells. Primal)' anti-p53 antibodie s used were

pa nels a & b - PAb 240 (mutant-specific); panels c & d - PAb 1801 (pa n-specific) ;

panels e & f · PAb 1620 (wild-type-specific). Parall el chambers were sta ined with no

primary antibody and with a irrelevant antibody (anti-MHC) as controls in every

individual experim ent (Not shown). Sta ining with PAb 240 was repeated over 12

times (inde pendent of each other) , and consistent staining pattern was observed.
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In serum -starved cells, antibodie5 PAb 1801 and PAb 240 displayed a

chara cteristic nuclear signal a long with bright cytoplasm ic siaining, which re mained

unaltered upo n stimulation with serum. The purpose of seru m starvation wnJ 10

minimise the background sta ining with p53 entlbodles $0 that any EGF effec ts woutd

be easily detected . Tbe experi ments were carri ed out with o r without serum starvat ion

and no changes in the staining patternwasobserved. However, the addition of EGF

to the media elicited a differential staining pattern with the two antibodies. With

PAb 1801, EGF treatment did not significantly alter the nuclear signal though the

pattern appe ared to be slightly different and less intense than that of untreated,

proliferating cells (Fig.4.6; c and d). The cells were examined up to 72 h in the

presen ce or absence of EGF. The result s were consistent and no significant shiflSin

the intrace llular distribution were observed during this period. On the othe r hand,

PAb 240. a muta nt-specific antibody, failed co produce nuclear signals in EGF­

trea ted cell.... while sta ining crt<'plasm to an extent similar (,) that of control cells

(F ig.4.6; compar e b with a). This intriguing lack of nuclea r staining became apparent

as ear ly as 6 h post-EGF treatmen t and wasobserved in 70-75% of the popu lation

withi> 24 h of EGF treatment. Contr ol untreate d cells continued to display the

characte ristic nuclear signal along with cytoplasmic staining. The observation was

consistent over a number of repeated experiments (not less than 12 repe titions).

Withd rawal of EGF from the med ia after 48 h of EGF treat ment resulted in

reappearance of the nuclear signal in 18-24 h (F ig.4.1; a and b). This observation is



FIG. 4.7 Specificity flf EGF·dTeds on PAb 240 reactivity.

Panels a & b : MDA-468 cells grown on gJ: ISS slides were treated with EGF (10.8 M)

for 48 h. After 48 h, med ium with EGF was removed, cells were washed with PBS

and furthe r incubated with fresh medlcm e EGF (10.11 M) for additional 24 h. Cells

were the n examined by immunofluorescence with PAb 240 (mutant-specific anti-p53;

5 Itg/mt). Panel a - cells conti nued to receive EOF (tota l durat ion of EGF.lreatment

72 h); pane l b - cells from whicb EGF was withdrawn for 24 h.

Ponels e & d : MDA-46Rcells treated with ± aphidi colin (5 Itg/ml) were examined

by immunofluorescence by PAb 240. Panel c ~ untreated cells; pane l d - cells treated

with ap hidicolin for 24 h.
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consistent with the observed resumptionof DNA synthesis followingEGF withdrawal

after 2448 h (Fig.3.3), and confirms the reversibl e natur e of the cell cycle arres t. To

test ',';hether this alteration in staining pattern with PAb 240 is specific to EGF or is

an indirect result of growth inhibition, a nother 01 arrest- inducing agent , aphidicolin

was employed. Aphidicolin is a specific inhibitor of DNA polymerase-a and induces

a laic G1block in the cell cycle (Huberman, 1981; Lalande, 1990). In MDA·468 cells,

treatment with aphidicolin (S ~g/ml) for 24-48 h resulted in an 80% drop in DNA

synthesis, indicating that a majority of cells are cell cycle arrested.

Immunofluorescence of such growtharrested cellswith PAb 240 did not reveal any

significant shift in the pS3 nuclear staining pattern (Fig.4.7; c and d). This observation

confirmed that the loss of PAb 240 reactivity in response to EG F was not a non­

specific reaction to 01 arrest but specific to the EGF treatment.

Th e contrasting results obtained with PAb lSOI and PAb 240

immunoflu ore scence of EGF-treated MDA-468 cells were intriguing.While PAb 1801

clearly indicated the presence of pS3in the nucle us of EOP-treat ed cells, this was not

detected by PAb 240. We wished to determine, whether another contormation­

specific ant ibody PAb 1620 would react with the nuclear p53 in EGF4reated cells.

PAb 1620, a wild-type specific antibody, stained only nuclei an d in particular, the

nucleoli, with high intensity in the absence of EOP (Fig.4.6; c) . This observation is

similar to those by Benchimol and colleagues in cells transfec ted with pS3-expression

constructs (Slinger land s1iI., 1993). EGP treatment did not further alter the staining
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pattern (panel "f" of Fig.4.6 displays increased nuclear staining, however was not a

consistent observation upon repe tition) . Tak en together then , the

immunofluorescence data demonstrated that EGF -trea ted cells continued to carry

nuclear p53 that is reactive with PAb 1801 and PAb 1620 but not with PAb 240. The

data indicates a EGF-induced shift in the conformation of nuclear p53. Alternatively,

it can be interpreted as decreased nuclear translocation of a population of p53 that

is reactive with PAb 240, assuming the existence of two conformationally distinct p53

popu lations in MDA-468 cells as suggested by Bartek £tW., (1990).

4.2.6 EGF effects on phosphorylati on status or pD.

Immunofluorescence stud ies indicated a shift in the nuclear localization or a

possible change in conformation of p53. ~ ~"'('.e protein phosphorylation is believed to

alter both, in directi ng nuclear trans location of p53 and altering pro tein conformation

(Addison !<!!I., 1990; Barford, 1991; Karin & Smeal, 1992), the effect of EGF on the

phcsphorylation sta tus of p53 was studied. Metabolic labelling of cells with 32p_

H3P0 4 and subsequent immunopr ecipitation of pS3 from whole cell extracts with

PAb 1801 revealed significant differences in the phosphorylation levels of pS3 in

response to EGF (Fig.4.8). EGF caused a dramatic reduction in amounts of pS3

phosphorylation within 3 h (Fig.4.8; lane 3). However, at 6 h post-treatme nt, EGF ·

treated cells displayed similar p53 32p content as compa red to untreated, contro l ceUs

(Fig.4.8; lane 4 and 5). Immceopreclpna uon from whole cell extracts may have

diluted any changes associated with nuclear p53. Therefore, we further tested



FIG. 4.8 Examination or phosphorylation status or p53 In response to EGF. MDA­

468 cells (1x106cells/l00m m plate) were trea ted with EOF (~ i).g M) for the indicated

periods. Cells were labe lled with H3-32p04 (0.25 mCi/ml) for final 3 h during EGF-

treat ment. EGF-trea ted cells and the correspon ding untreated/control cells were then

lysed, and Immunoprec fpitated with 2 ~g of eithe r a control antibody (anti -MHC) or

PAb lS01 (a nU-p53) an tibodies. Immunoprecipitates were collected on pro tein A­

Sephe rose beads, adjusted to equivalent counts and sepa rated on a 10% SDS-PAGE.

(Immunoprecipitatio ns conducted with extracts from equal number of control and

EGF-treated cells displayed qualitatively similar picture) . The arrow indicates the

specific band correspo nding to p53. Lanes 1 & 2 - untrea ted cells 3 h; lanes 4 •

untr eated cells 6 h; lanes 3 & 5 - EOP-treat ed ~11s

3 h & 6 h respectively.
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FIG.4 .9 Phosphoryla lilln su uus of lli!.£!.£!!.r.pS3I n response 10 EGF. MOA-468cells

(lx Uficells/IOOmm plate) were treated with EGF (10.8 M) for the indicated peri ods.

Cells were labelled with H3) 2p04 (0.25 rnCi/ml) for the final 2 h during EGF­

treatment. Nuclear extracts of labelled-cells were prepared HS described in Cha pter

2 (2.2.11). Equivalent counts of the extracts were used for immunoprecip itation with

I #g of eb ber a control antibo dy (a nti·MHC; lane I), or PAb 1801 (anti-p53; lanes

2-8). The pro tein A-Sepharose collected samples were then separated on a 10% SOS­

PAGE. Th e arrow indicates the specific ba nd corresp onding to p53. Lanes 1 & 2-

oh (labe lled for 2 h prior to the commence ment of EGF -treat ment): lanes 3, 5, &

7 · untrea ted cells cor respon ding to 2 h, 4 h, ami 6 h, respectively; lanes 4, 6, & 8­

EG F-trea ted cells corr esponding to 2 h, 4 h, and 6 h, respectively.
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phosphorylation of nuclea r pS3 a lone. Hi 2P044Jabelied nocleer extracts were

immuno prccipita led with PAb 1801 (FigA .9). This reveale d that nuclear p53 was

phosphorylated to ejesser extent upon EG F·trcalmenl compa red to untreated cells.

Th is wa s obvio us within 4 h of EGF addition (Fig.4.9; lanes 5 and 6) and consisten t

even afte r 6 h (Fig.4.9; lanes 7 and 8).

4~7 Nuclear tra oslo....Jtlon of pSJ

The changes in pS3 phosphorylation observed ea rly during the course of BOF

treatme nt may be respo nsible for BOP ·ind uced conformational change . O n the other

hund, th is may simply reflect an altered nuclear tren stcceuon of a popu lation of p53

(PAb 240 reactive) resulting in low levels of nuclear pS3 phosphoprot ein in EGF·

treated cells. To test whether EG F induces a block in nuclear tra nslocation, pS3

immuno precipitat ions with PAb 1801 from nuclea r extracts prepared from cells

briefly labelled with 35s- methionine, duri ng the last 2 h of EGF- treatment, were

performed. Results (FigA.tO)fai led to demonstrate any significant d ifferences in the

nuclear conten t of the ne wly synthesized (therefore. JabeUed) pS3 prot ein up to 6 h

after EGF-treatmenl. We interpret thislb indicative of no significant changes in the

nuclear translocati on of the newly synthesized pS3 in the presen-e of EGF .

4.3 DISC USSION

We have previouslycharacterized BGF-mediated growth inhibition in MDA­

468 cells as a reversible 01 arrest alar near the OI lS bo undary in the cell cycle

(Chapter 3; Prasad & Church, 1991). Observations of lowered mRNA levelsfor pS3



FIG.4.1O Effecls of EGF on nuclear levels of ~.D.!!Y!! synthesized p53. MDA-46R

cells (lXl 06 cells/100mm plate ) were treated with EO P (J1r 8M) for the indicated

periods . Cells were labelled with ;\SS·methinnine (Wn J.lCi/ml» for the final 2 h

dur ing EOF-treatme nt. Nuclear extracts oflabelled-cells were prepared as described

in Chapter 2 (2.2.11). Equivalent counts of the extracts were used for

immunoprecip itat ion with 1 ~g of either II coru rola nubody (an ti-MHC; laue 1), nr

PA b 1801 (an ti-pS3; lanes 2-8). The protei n A-Sepharus e collected samples were then

separated on a 10% 5DS·PAGE. The arrow indicates the specific band corres ponding

to p53. Lanes I & 2 - 0 h (la belled for 2 h prior to the cornmence me nr of EOF·

treat ment); lanes 3, 5, & 7 • untreat ed cells corresponding to 2 h, 4 h, and 6 h,

respectively; lanes 4, 6, & 8 - EGF·trealed ce lls correspon ding til 2 h, 4 h, and 6 h,

respectively.
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11.
in BOF-treated cells and the documented 01 regulatory role of pS3 (Section 4.1.4.1)

led us to hypothesize its involvement in BOF-mediated G1 arrest. MDA·468 cellsare

homozygouslydeleted for the retinoblastoma gene and harbour a single allele for pS3

with a point mutat ion at codon 273 (Ni;>,ro ~ !!t., 1989; Bartek!U .!!.I.,1990). This left

us with a distinct possibility that loss of negative regulation byRB and wild-type pS3.

toget he r with an added dominan t oncogenic function elicited by the pers iste nt mutnnt

p53 allele, may be driving the cell cycle of MDA·468 cells continuously. Perhaps

EGF, through modulation of this mutant pS3. might induce the 01 arrest. This

portion of the studywas initiated to investigate the possibilityof p53 being the target

for EGF in MDA-468 cells.

We observed the down-regulation of mRNA levels for pS3 after about 18 h

of EGF treatment (FigA.l) . However, an immediate EGF effect observed in MDA­

468 cells was reduction in overall protein synthesis, which was maximum within 12

h of trea tment (Fig.3A). Therefore, the effect on pS3 mRNA levels does not likely

constitute a cause of growth inhibition. Moreover, our experiments indicate little

alteration in p53 protein levels or stability,in response to EGF (Fig. 4.2 & 4,3). This

was a reasonable observation considering the apparent over-expression and longer

half life (>7-8 h) of mutant pS3 (Hinds ~ .!!I., 1990). pS3 protein synthesis was found

to be reduced within 12 h post-treatment with EGF. However, as mentioned earlier,

the red uction in overall protein synthesis was maximum prior to this period . Thus, the

reduction in p53 protein synthesis may simply reflect the decrease in overall protein
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synthesis as a result of growth inhibition.

Our results make it clear that any change in pS3judged 8 putat ive cause of

growth inhibition must then be post-trans lational and would be expected to reverse

the function of the native pS3 protein. Here we report such a change could be

reflected in an altered antibody-reactivity of nuclear p53, as detected by a mutant­

spe cific antibody, PAb 240. in respo nse to EGF (FigA.6;a a nd b). This occurs early

enough to be attributed as causat ive., and is reversible upon withdrawal of EGF

(Fig.4.7; a and b). Moreover, this observation is specificto EGP-treatment and not

a non-specific resu lt of cell cycle a rrest as indicated by immunofluor escence of

aphidicolin-treated cells (Fig.4.7; c and d). Considered alone, this might simply be

interpreted as a block in nuclear translocation of mutant p53 by EGf, thereby

removing an essential driving force for cell cycle progression. However. results with

a pan-specific antibody, PAb lSOI, adds another dimension to the observation.

Detection of nuclear p53 with PAb 1801 in EGf·treated cells raised an important

question as to whether or not p53 so detected was in the wild-type conformation,

being non-reactive with mutant-specific PAb 240. Indeed, nuclear p53 was recognized

and detected bya wild-type specific antibody PAb 1620,both in untreated and EOP­

treated cells. Intriguingly, PAb 1620 stained nucleoli preferentially in untr eated cells

with only a faint staining of the rest of the nucleus. There was absolutely no

cytoplasmic staining with PAb 1620. In EG F-treated cells however, increased stainil'i

of the entire nucleus was apparent. Since immunofluorescence is only semi-
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quantitative at best, we can not readily interpret this as a major shift in the

abundance of pS3 with wild-type conformation . However , it was clear that in EGF

treated ce lls, nuclear p53 retains only a wild-type spec fftc (detected by PAb 1620)

epi tope an d not a PAb 240 reactive one.

The se intriguing observations led us to hypothesize a molecular mechanism

that may be respo nsible for EGF-induced growth inhibition in MDA-468 cells. BOF

clearly induces a change in the conforma tion of nuclear p53, leading to a loss of a

species exp ressing th e mutan t specific epit ope . MDA-468 cells may therefor e have

two distin ct popu lations of p53 molecules, bot h mutant a nd wild-type con forma tions,

despite the presence of single, genotypica lly mutan t allele. A dynamic equilibrium

betwee n the two in the nucleus would de termine the G I-S progression. EGF

treatme nt might be envisioned to shift the equilib rium inhibit ing cell cycle

progression. This type of phen ome non is no t unprecede nted (Barte k £t ill., 1990;

Milner, 1991). Furthermore . Milner ~ ID ( 1993), have re ported that certain types of

transformed cells carry high levels of pheno typically wild-type forms of p53 despite

the presen ce of mutat ions in p53 gene .

It is conceivable that a post -translational modification of the protein such as

phosphorylation. may mediate the above changes (Addison ~ ill., 1990; Barfc rd,

1991; Ullr ich ~ ID., 1992). Indeed, immunoprecipitation of pS3 from 32p_

orthophos phate lab elled MDA-468 cells, indicated a considerabl e redu ction in the

levels of p53 phosphoprotein upon EGF tre at ment Under the co nditions used for
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gel-ele ctropbore sts no mobility shift was obse rved due to altered ph osph orylation . To

our knowledge, there are no reports indicating such a mohility shift for p53 upon

different ial phosphorylation in 1-0 gels, unlike RB. Serine IS, a potential site for

DNA PK, has shown to be differentially phosphorylated in mutant s, yet no major

change in apparent molecular weight s were observed be twee n mutant s and wild-type

p53 (Ullrich ,g BI., 1993). Similarly, other reports indicate differential site-specific

phosph orylation of mutants and wild-type p53 in 2·0 gels, yet no mobili ty shifts were

detected in )·0 gels (Ullrich !:.1.!!l., 1992; Milner ~ J!!., 1993). This, along with no

changes in p53 levels as indicated by 3SS-methionine labelled cell­

immun oprecipitations., led us 10 suspe ct tha i the decre ased phos phorylation o f pS3

was significant. It is conceivab le tha t these changes may no t be reflected in a major

shift in the molec ular weight. A Lowe r level of phosphorylation of nuclear pS3 in

EGF-treated cells is an important indicator of the possible molecular mechani sm of

alte red p53 confor mation and function. The identification of the sites involved , ",!ong

with the possible ktnases affected in this EGF-induced phen omen on, wiUfacilitat e the

deline ation of the molecular pathw ays involved.

We do no t, however, have any direct molecular confirmation of the existence

of two pop ulat ions of p53 in MD A-468 cells. PAb 240 weakly rea cts with pS3273.Hb

in immunoprec ip italion expe rime nts. While p53273.HIs is reactive with the wild- type

spe cific antibody, PAb 1620, we preci pitated similar am ounts of protein with PAb

1620 in eac h of three sequen tial immunoprecipitations . Similar seq uential
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irnmunoprecipitstion from the nuclear extract failed to bring down detectable

amo unts of pro te in with conforma tion-specific antibod ies (both PAb 1620 a nd PAb

240), perhaps due to the higher salt concentrations employed for preparation of

nuclear extracts.

Alteme twely, pS3271.His in MDA· 468 cells may be in a d istinct/u nique

conform ation. Th is may explain its pec uliar proper ties. p53273.Hlsmight ret ain its

wild-type conformation, 1:15recognized by PAb 1620, but may also have an altered

confo rm at ion rele vant to othe r epitopes. Th is might result in a poo rly-recognizab le

PAb 240 epitope. Th e observed differen ces in PA b 240 immunofluorescence could

be a n indication of furth er chan ge in the con forma tion of pS321J.HIs. Moreo ver, loss

of PAb 240 rea ...tivity might occur as a result of ep itope masking due to post ­

transla tion al modifica tions such as phosph orylation. We do not think this is the case,

howeve r, since p53 can be immunopre clplta ted from whol e cell extracts with PAb

240, a lbeit poorly, fro m both untre ated and EGF-treated ce lls (Not shown).

There for e, we favour the conforms dona l cha nge explan ation, given that there is no

evidence for the existence of two popu la tions o f pS3 in MO A-468 cells or e pitope

masking by phosphorylation.

Th e literature concerning the ultimate functio nal consequ e nces of mu tati ons

in p53, rem ains obscure. The initial notion of a mu tant pS3 inac tivating its wild-type

counterpart upon co-existence in the ce ll has recently bee n refut ed by fun ctional

assays. It was report ed that pS3 mon omers a re e ffective as transformation
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suppressors (Slingerland .d !I., 1993). In a separate report it was shown that

oligomerization-defective mutants arc transcriptionally active, although their DNA

bindingabilitywasverylow(Taruninaand Jenkins. 1993). Moreover, certain mutants

remain functional, indicating that not all the mutations culminate in loss of function

of p53. For instance, p53273.His binds at least one of the identified pS3 response

elements (CON from Funk ~ ID., 1992), and retains the ability to transactivate

transcription through it (Chen c.1 aI., 1993b).

Many studies aimed at elucidating biochemical functions ofwild-type p53, have

included p53273.His in the experiments, since it is one of the commonly observed

("hot-spot") mutations in tumour cells (Levine ~ lli.,l991; Vogelstein & Kinzler,

1992). This app roach provided a large body of information regarding the effect of

Arg273His mutation in p53. Interestingly enough, pS3273.His potent iates the

transcription from a GAlA-pS3 (wild-type) fusion protein in co-transfecticn

exper iments (Miller ~ ill..1993).This was shown to be mediated byoligomerization

of the mutant pS3 and the fusion protein. Thus, it is possible that in case of co­

existence in a cell, pS3273.His may increase certain activities of a wild-type p53.

HO'....ever, p53273.H~ apparently inhibits the DNAbinding of wild-type p53 alone to

some other DNA sequences (Kern~ Bb 1OOtb; Bargonetti m.!l1....,1991). It is clear

that sel:juencespecificityfor p53 DNAbinding is very relaxed. Many of the sequences

identified by CASTing, or antibody hybridization, seem to be affected by the

presence of certain antibodies employed in the technique. The sensitivity of certain
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DNA sequencesmaybe de te rmined in a cell type-d epe nde nt manner. Such sequences

arc difficultto identify. Thus, as Oren suggests, there remains a possibility that p53,

actsthrough unidentified responsesequences(Oren, 1992).On the other hand, p53

can also mediat e its effec t thro ugh interactio n with compo nen ts or besat tra nscrip tion

machinery such as TBP and CBF (Sato sa ill., 1992; Agoff kl !I ., 1993). Effects of

p53273.His on these aspects of p53 functions are unclear at present.

Given the 0 1 regulation by p53 (Section 4.1.4.1), we hypothesize that

p53273.His functio n is critical for cellcycleprogression. Our results demonstrate that

EG F-mediated changes in pS3 conformation may be th rough altered phosphorylat ion .

We further speculate that this change might have profound effects on p53271.HIs

function. This in turn might mediate a 0 1 block in the cell cycle of MDA·468 cells.

A similar, novel role for p53273.His , was proposed by Benchimol and collea gues

recently (Slingerland d !l ., 1993). They observed that this mutat ion is weakly

transforming in rat embryo fibroblasts (REF) along with EJ-ras, depen ding on the

promoter used for its expression. Furthermore, they observed that, p53273.HIsretai ned

cert ain wild-type like characteristics such as nuclear localization and suppression of

transformation induced byras and E7 transforming pro tein of human papilloma virus.

Th is and the previous observation of p53273.HIs_induud transformation of p53-null

Saos2 cells (Chen .tl !l .,1990), together, prompted the authors to speculate a novel

function for p53273.His. We believe that a novel role may be determined by the cell­

type rather than by the intrinsic properties of the prote in itself. Experimen ts
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5. ANALYSIS OF p53 FUNCfiON AS A TRANSCRIPTION FACTOR IN

RESPONSE TO EGF IN MDA-4QI CELLS.

5.1 INTRODUcnON

5.1.1 Background

A detailed a nalysis of the effects of EGF on pS3 in MDA-468 cells has

indicated a shift in the conforma tion of nuclear p53 molecules . Spe cifically, we

suggest that G l-5 pr ogression is essentiall y depen dent upon pS3 function, and in tum

on its conformation. It is essential, however , to obtain confirmati on for the EGF ­

dependent cha nge in the p53 conformation by more sensitive techniqu es. In addition,

function al information concerning the obse rved shift in conformation of p53

molecules upon EG F treatm ent ofMDA-468 cells will be invaluab le in unde rstanding

how it is involved in EGF -mediated G 1 arres t. In this cha pte r, we a ttempt to address

this by means of a de ta iled study of specific DNA binding and transcription al

ac tivation by p53273.HIs in MDA -468 cells.

5.1.2 p5J. a transc ription fador

5.1.2.1 'fransactivatloD by p53

Studies aimed at elucidating the biochemical activities of p53 provided

conclus ive proof fo r its role as a transcription (actor . The zbllitt of a cellular prote in

to regulate transcription specifica lly resides in its intr insic DNA-b inding activity in a

127
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seque nce-dependent manner and potential to modulate transcription upon binding

10such sequences. Initial work from Kern ~!!l. (1991a), indicated non-spe cific DNA

binding activity intrinsic to pS3. The authors also noted th at a series of mutants of

p53 have reduced or no DNA binding activity. In addition. two group s indepe nden tly

reported that the amino-terminal acid-rich region of p53 possessed a potent

transcriptional activation domain(Raycraft g ID., 1990;Fields and Jang, 1990). These

investigators made use of chimeric proteins generated by fusing the amino-termina l

domainof p53 to the DNA-binding domainof GAlA, a yeast transcription factor.

This fusion protein transactivated a template with GAlA sites. In these functional

assays also, some of the mutants tested negative for transcriptional activity. Furth er

characterization of the domains required for transactivation narrowed the region to

22 a mino acids located between cede ns 20 and 42 (Unger ~ .w.., 1992; Miller ~ l!I.,

1992). Thus , these studies provided sufficient information to suggest a biochemica l

role for p53 as a transc rip tion factor.

5.1.2.2 Specific DNA.bindlng sites roc pS3

The above reports elicited furt her atte mpts to obtain confirmatory evidence

for a regulatory role of p53 in transcription. This led to th e identification of DNA·

sequences spec ifically bound byp53. Vogelste in and coUeagues (Kern.tl ill., 1991b),

reported ident ification of two separate sequences 8J spe cific-siles for p:t:l DNA ­

binding. These seq uences were found in associat ion with n'bosomal gen e cluste rs

(RGq which contai ned two or more TGCCf repe ats.Th e TGCCf repeats appea red
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to be important for specific interaction with pS3. More or leu simultaneously,

Weintraub and co-workers,in theirstudyof transcriptional regulation of the muscle

creat inine kinase (MCK) ge ne. observed that wild-typepS3 activat ed transc ription

through MCK enhancer /promoter sequences (Weintraub -'.! ill.. 1991). The p53­

mediated transactivation was later demonstra ted to be dependent on a SO-base

sequencewithin the MCKenhancer/promoter andwas boundspecificallybywild·1ypC

p53(Zambelli.d il..1992). Interestinglyenough, the SO-basesequence contained two

TGCcr repea ts as identified by Kern ~ .I!!. (1991b). These studies were soon

followed by a number of others identifyingadditional specificsites for p53·medialed

transcriptional regulation (Funk.tl Ill.. 1992;EI-Oiery d m·,1992; 2'.auberman" lll..

1993). Attempts to identify genomic p53-responsive elements, indicated a loose

consensussequence required for DNA bin(fing (EJ-diery~!h 1992). It appean pS3

binds to two repea ts of the sequence S'·PuPuPuC(AlT)(T/A)GPyPy Py-3' separated

by 0-13 bases. Th e role of p53 ln transcrip tional regulation was further confirmed by

in vitro studies employingimmuno-purifiedp53 protein and a sequence,associated

with n"bosomal gene clusters (ROC). conformin g to the above consensus (Farmer '"

Bl,I992).

Det ailed analysis of p53 revea led that the carboxyl-termi na ldomainis required

for DNA-b inding activity (Foord ~ ill., 1991), and this was fo und 10 be influen ced by

a varie ty of cellular mechani sms (Hupp ~ ! }., 1992), including phosphory lation,

tryptic digestion, and antibody CPAb421)-binding. A ».amino acid deletion of the
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carboxyl-terminal, partial cleavage by tryps in, binding of PAb 421 10 a ce rbosyl­

terminal epitope , phosphorylation bycase in kinase II, all resulted in activat ion of the

DNA-binding ability of p53 . The a uthors suggested that these and pe rhaps o ther as

yel unknown mod ifications, may convert th e latent DNA-bindin g activityof ce llular

p53into an active one. Intriguingly, itwas alsoobserved that cellular pS3,in nuclear

extract preparations, bound to DN A whereas inmm translated· p53 failed to do so

(Funk ~ ill., 1992). This observat ion stre ngthens the notion of Hupp.tl !!l. (1992),

that tra nscrlptlonal activity of p53 maybe influenced by int erac tion with other cellular

factors. Such a regulation of p53 activity by biochemical events in a cell-type

depend en t manner , is an a ttract ive hypothe sis, but, rem ains to be confirmed.

5.1.2.3 Regulation of transcription by pSJ

Since the first indi cations that p53 could act as a tra nscr .atlon fac tor, a

plethora of studies have re ported the e ffec ts of pS3 on various promoters (Gins berg

~i1., 1991b: Santhanam !!! iI., 1991). Wild-type pS3 actively potentiat es transcription

from pr omot ers with p53~responsive elements. Examples of cellular genes act ivated

by p53 include~~and~ (Zambeui ~ ID.., 1992; Kesten tt .!!l., 1993,

Wu £1W., 1993). As menti oned earlier, a 50-base sequence: in the 5 ' region of~

&'-:0" ill a pS3-responsive e lement (Zambeni gill., 1992). In the ca se of GADD4S

a seque nce distant iyrelated to a pS3·respon se element, was ide ntified in the fit intron

(Kastan ~ aI., 1993). The 5' reg ulatory regions of the m.d.D:a gene also cont ain a

sequence related to a p53-respons e element (Wu £1AI., 1993) .
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In the absence of pS:J..responsive elements, wild-type pSJ represses

transcri ption. p5 3 wasreport ed 10 downre gulatc tra nscription fro m va rious pr omoters

such as those associa ted with the ge nes coding for PCNA (Merur~ .a}., 1991:Subler

£1!l.. 1992), e-ros, c-jun, s- actln, heat shock protein 70 (hsp 70). pS3 (Ginsberg U

§.I.t 1991b; KJey g m.,199':.)multip le dru g resistan ce (MDR)( Chin a W" 1992). RB

(Shiio ~ ID.,1992), inte rlc ukin-6 (Sanlhanam~ kI.. 1991), viral regul at ory regions of

Rous sarcoma (RSY) a nd qtomegalo viruses (CMY). SV 40 (Jac kson ~ ill" 1993),

human immunod eficiency (HIV), he rpes simplex (HSY 1) viruses (Deb ~ W" 1992;

Subler ~ ID.p 1992). Rec ently, it was dem onst rated that wild-type p53 bind s to the

TATAA binding protein (TBP), a component of transcription factor 110 (TFIID)

(Sate £!.i!l.. 1992). It is this interaction that is thought to be responsible for the

almost universal repression of transcri ption by -:ild.type p53. More recent stud ies,

however, have indicated an enhanced binding of pS3to 8 pSJ·r espo nsive e lement in

the pr esence of TBP (TFI ID) (Ch en ~ il.. 1993a). Wild·typc pS3 inhibited DNA

binding of TBP but not that of TFHD. Th us, specific interactions with basal

transcriptio nal machinery may be impo rtant for the obse rved effects of p53. Th is

notion is support ed by a report demonstrating interaction of pS3 with CCAAT

binding factor (CBF) involved in the repressio n of hsp70 gene expression (Agoff la

m.,1993).
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In summary, wild-type p53 is capable oftransactivation through p53·respons ive

elements and inhibiting transcription from promoters lacking such sequences.

Ho....ever, while mutations in p53, in general, fail to demonstrate transcriptional

regulat ory activity (Raycra ft g .!l1., 1991; Kern g W.O 1992), except ions , once again ,

have been described . pS324&Trp and p53273.HIs have been shown to be equally active

as wild-type from certain p53·response elements (Raycraft ~ ill., 1991; Chen ~ l!1.,

1993b). Since, MDA-468cells harbour p53273.HIs, reports concerning its DNA-binding

and transactivatlon are discussed belowin detail.

5.1.3 DNA bindin g abili ty of p53.273.HJs

Th e mutant pS3273.HIswas initially thought to be unable to specifically bind

DNA The sequences fbi identified by Kern g ill. (1991b) and Bargonetti!<! .aI.

(1991), were not bound by p53273.His. In fact, the authors observed that pS3273.Hb

interfered with the DNA-binding of wild-type pS3 under in Yi!I2 conditions. The

authors hypothesized that a lterations in DNA-binding may be the ultimate effect of

mutations leading 10 the loss-of-function phenotype . Interestingly, a consensus

sequence described by Funk ~ aI. (1992), was bound by p53273.His equally well as

wild-type p53. This observati on und erscores the necessityfor a cautious interpretation

of results and care in gene ralization. Thus, it is conceivable, that certain pS~ soutants

may rem ain active through sequences that remain to be identified.
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5.1.4 Transcriptional activati on by p5327J.Ha

One of the preliminary studies that demonstrated the existence of a potent

trensacrfveuon domain in p53 actually utilized p53273.HIs(Fields & Ja ng, 1990). The

study clearly indicated that this particular point mutation has not affected the

transectivation function of p53. However,l ater studieswiththe specific p53-response

elements identifi ed by Kern ~ ro. (1991b), and Bargonett i m. ill. (1991), argued that

the Arg273His mutation had detrimental effects on p53 sequence-specific DNA

binding and transcription (Farm er ~ m., 1m). In contrast, p53273.HIs was

demonstrated to transaet ivale transcrip tion thr ough specific-binding to the sequence

(CON) identified by Funk!<!'!y. (Chen!<1ID., 1993b), to an extent similar to wild-type

pS3. Anot her re port of part icular interes t described the effect of p53.Z1l.Hls on the

transcriptiona l activity ofGAlA-p53 fusion proteins (Miller n!!.l., 1993). In this study,

the aut hors showed that co-expression of p53Z73.HiS,enhanced the transactivation

function of GAU-p53 (wild type) by five-fold. The authors went on to de monst rate

that th is was med iated by oligomeriza tion of the fusion pro tein and the mut ant p53.

Thus, it appears that p53273.His, can indeed bind specifically to D NA, can modulate

transcripti on indepen den tly, and ca n a lter the transactivat ion function of wild type

p53 as well.
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5.1.5 Work ing bypothesll

Since immunofluorescen ce experiments have dem onstrated that EGF-trcale d

cells display Joss of PAb 240 epitope in nuclear pS3, while retaining PAb 1620

react ivity (Fig.4.6), we hypothesized that EGF may be shifting the pS3 confonnation

10wild type form. Thisputative EGF·jnducedchange in p53 conformation, perhaps

due to alte red phosphorylation (F ig. 4.8 & 4.9; and Section 4.3), might result in an

altered pS3 function. In order to confirm an EGF-mediated alteration in p53

conformation, as well as to determine any concomitant EGF·depe ndent change in

function of pS3as B transcription factor , two differe nt pS3- responsive sequences have

bee n utilized. They are the CONsensus sequence described byFunk ~!!!. (1992), and

fragment A (FRA) as reported initially by Kern ~ BI.(1991b). As mentioned above.

p53213.His has bee n shown to bind to and to transa ctivate from th e CO N sequence

alone.

• We hypothesized that a n EGF·induced change in p53

conformation could be detected by different binding

cbaracterislics of pS32'13.Hi1 to tbe twoSpKJnc DNAbind ing

sites. This EGF·lnduced p53 aclivity, may be responsible for

the Ind~' :t1on or genes associated with th e Gt arrest".

To test the transcriptional activity of p53 through CON and FRA.its DNA
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binding ability was determined by electrophoretic mobility shift assays (EMSAs).

Further, we asked whether or not EG F modifies the transcription from a minimal

promoter bear ing a TATA box molif, and from promoters containing these pS3

response elements, in MDA468 breast cancer cells. The experimental approach

chosen basically detects any EOP.dependent functional alterations in p53273.Hls

mediated from two of the known pS3.responsive elements. The alternat ive

explana tion for the observed changes in PAb 240 reactivity (FigA.6) and decreased

phosphorylation (FigA.8 & 4.9) upon EOF treatment, phosphorylation-mediated

epitope masking,mayalsoresult in altered transcriptional activityof pS3, since it has

been well established that phosphorylation can modulate the activity of a number of

transcription factors (Angel & Karin, 1991; Barfor d, 1992; Karin & Smeal, 1992). The

experiments used here, would dete ct any functional consequences of EGF.dependent

altered phosphorylation of p53273.His in MDA-468 cells.

5.2 RESULTS

S.2.1 p53213.HiI form••peclnc complext . with CON aDd FRA

Nuclear extracts from MDA-468 cells were tested for the ability to form

specific complexes with the p53 response elements. Equal amounts of protein from

nuclei of unt reated or EGF-treated MDA· 468 cells were incubated with end-l abelled

double -strand ed oligos corresponding to CON lind FRA. A 6 h EGF treatm ent was

employed in all the EMSAs since we wished to detect any functional a ltera tion in p53

that might occur prior (0 the earliest manifestati ons of growth inhibition



FIG. 5.1 Analysis or DNA-binding ability of pS32"13.His in response to EGF ~ I,

Nuclear extrac ts (3 ~g) from untre ated/control (even numbered lanes), and EGF~

treated (odd numbe red Janes) MD A·468 cells were analyzed for mobility shifts of

end-labelled oligos representin g p53-specific sites . Lane 1 - blank with no nuclear

extract; lanes 2, 3 & 8, 9 ~ no furth er addition s; the anti-p53 antibodies included in

the bind ing react ion are PAb 421 (0.1 ~g) - lanes 4, 5, 10 & 11, and PAb 1620 (1.0

J,lgprotein equiva lent of hybridoma supernatent fluid) - lanes 6, 7, 12, & 13. The

figure is an 18 h exposure of the aut oradiograph . * is a non-specific complex which

was competed out by unlabelled oligo corr esponding to NF l she(Nol included) .

Further this complex did not react with a ny of the four a nli·p53 antibodies tested.

Solid arrow heads indicates specific p53-DNA complexes, a nd antibody- supershifted

complexes ar e denoted by open arrow heads. Fre e probe has run off the gel.
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(downregulation of Iota1protein synthesis; Fig.3.4, page 66). In contrast to published

reports, we measured comparable levels of mobility shifts for both CON and FRA

in ~;DA·468 nuclear extracts (Fig 5.1). The fastest migrating complex (denoted by

an *) was non -speculc since none of the anti-pS3 antibodies altered its mobility a nd

was comple tely competed out with excess of cold/unlabelled Don-specificNFl double­

stranded oligo(Not shown). However,the two slower migratingcomplexes (denoted

by solid arrow heads ) contained pS3 molecules. This was confirmed by addition of

unti-p53 antibodies to the reaction. PAb 421 not only supershifted the complexes

(denoted by open arrow heads) but also significantly enhanc ed the DNA binding of

p53 (Fig S.I.lanes 4 & 5; lanes 10 & 1]) . This increase in DNA binding was more

pronounc ed with the CON probe than with FRA. PAb 1620 (wild-type specificl

conformation-dependent) was used at 1.0 Ilg concentration as the reagent was a

hybridoma supernatent fluid and not a purified form unlike other antibodie s used in

the study. Inclusion of PAb 1620, however, slightly reduced the specific complexe s

(Fig.5.1, lanes 6 & 7, lanes 12 & 13). Incre:.sed concentrations of up to 5 1"& ofPAb

1620 abolished the specific complexes (Not shown)

Interestingly, EGF trea tment enhanced the formation of specific complexes

with bOI~ CO N and FRA In the case of FRA, the faster running complex was more

pronoun ced (The lower solid arrow head; compare lane 3 with 2), whereas with

CON, the slower migrating band was increased in EGf·treated cells (The upper solid

arrow head; compa re lane 8 '" 9). We went on to test further whether increased



FIG. 5.2 Analysis or DNA-bind ing ability or p53273.His In response to EGF • II.

Nuclear extracts (5 ~g) from untreate d/control (even numbered lanes), and EGF­

treated (odd numbered lane s) MDA-468 cellswere analyzed for mobility shifts of an

end-labe lled oligo representing p53-specific site, CON. Lane 1 - blank with no nuclear

extract; lanes 2 & 3 - no further additions; the anti-p53 antibodies included in the

binding reaction are PAb 421 (0.1 ~g) -lanes 6 & 7 and PAb 1620 (1.0 ~g protein

equivalent of hybridoma supemarem fluid) - lanes 8 & 9; and 50 fold excess

unlabelled CON· lanes 4 & 5. The figure is a 3 day exposure of the aut oradiograph.

* isa non-specific complex. Solid arrow hea ds indicatesspeci ficp53-DNA complexes,

and antibody-supershifted complexes are denoted by open arrow heads. Free probe

has run off the gel.
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concentrationsof nuclear extract proteins from untreatc.dcellswould correspondingly

e nhance the slower migra ting complex. Fig 5.2 is an oeer-eaposed autoradiograph of

an EMSA with CON carried out with UpproximalCly twice the prolcin-concentraHon

of tha t used in Fig.5.I . Th is, however, did nol signifICantly e nhance the Ilower

migrat ing complex in untreated cells (Fig .5.2; upper solid BITOVt' head; lane 2).

Anothe r interesung observation was that both pS3-CON and pS3·FRA complexes

from EGP-treated cells were relativelymore resistant to PAb 1620-inducedabolition

than tha t from untreat ed cells. (Fig.S.I; compare Janes 6 & 1 and lanes 12 & 13).

PAb 1620 was included from the beginning of the reaction, a nd at the conce ntra tions

used (1 ",g), we antic ipated that it would interfere with the binding to a similar extent

in spile of th-, increased DNA binding obse rves upon EOP-tr ealment. This Jed us to

conduct further cha racterizatio n of the comp lexes.

5.1.2. Reactiri ty or pS3-DNA com plexe. wlib . atJ. pSJ aa Ubodle.

After clearly identifying the specificityof pS3complexesin FMSAs,it wasof

interest to determine the:nature of these complexes. To this end.a seriesof EMSAs

in the presen ce:of differe nt pS3an tibodies alone. or in combin ation, were performed

5.2.2.1 Reactivity with PAb 421

PAb 421 supershifted the complexes in both control and EGF-treated cells to

the same extent (open arrow head in Fig 5.1, lanes 4 & 5; lanes 10 & 11; Fig.5.2,

lanes6 & 7). The antibodysupershiftwas associated with an increase:inDNA-binding

by several fold. This had been reported earlier (Hupp '" w..,1992). In fact. many



FIG.5.3 Anal' I" o r Immunoreacti vity oI p53-DNA compleJtrrom coatrol and EGF·

trutrcl ee tts , I. Nuclear extracts (3 Ilg) from untrea ted/control (even numbered

lanes), and EGF·treated (odd numbered lan es) MDA-468 cells were analyzed for

mobility sh if15 of an end-label led oligo representing pj3-specifJCsite, FRA. Lan e I ­

blank with no nuclear extra ct; lanes 2 & 3 - no furt her additions; the anti-pS3

ant ibodies included in the binding reaction are PAb 421 (O.llJg), PAb 1620 (1.0 "'8

protein eq uivalent of hybrido ma supernatent fluid), PAb 1801 (0.1 ",g),and PAb 240

(0.1 ,.,.g). Th e figure is a 24 h exposure of the autoradiograph. * is a non-specific

complex. Solid arro w heads indica tes specific pS3-DNA complexes, and antibody­

supers hifted complexes are denoted byopen arrowhea ds. Free probe has run off the

gel The gap between lane 9 and 10 is an unloaded lane.
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laborat ories have used PAb 421 in their react ions in order to detect any mobility

shifts at all (HupP !Ui!l., 1992; Funk,;! .i!J.., 1992; Price & Claderwood, 1993; Hopp­

SIeyer & Butz, 1993). The prestnce of PAb 421 in the reactions did not, however,

f1ighlightany major difference betwe en untreated and EG F·trealed cells.

5.2.2.2 Readhily with OOIItonnatlon-speclftc antibodies (PAb 240and PAb 16.20)

PAb 240 interfered with the specific p53-DNA interaction resulting in

decreased complex formation (Fig. 5.3 & 5.4, lanes 10 & 11). The interference was

observed 10 a greater extent in untreated cells (lane 10) than in EGF-treated cells

(lane 11). Incubation withPAb 240 inconcentrations five times higher than that used

in Fig.S.3 and SA, almost completely abolishedthe specific complexes from untreated,

but not from EGF -lreated cells (Not shown). No supershift was observed with PAb

240. This was confirmed with longer exposures (Not shown).

PAb 16~O had similar effects on pS3-DNA complexes (Fig.S.l , lanes 6 & 7 and

12 & 13; Fig.S.2, lanes 8 & 9). The EGF effect of making complexes more resistant

to abolition was observed with both CON and FRA However, when PAb 240 or PAb

1620, was included with PAb 421 in the binding reaction, II .~imilar EGF-dependent

reduction in antibody-reactivitywith p53-DNA complexes was only observed with

FRA (Fig. 5.3, lanes 8 & 9 and lanes 4 & 5 respectively). However, no such

differentialantibodyreactivitywas observed with CON, as PAb 421greatlyenhanced

the pS3 binding alone (Fig.5.4, lanes 8 & 9 and lanes 4 & 5).



FIG. 5.4 Analysis oflmmunoreadirl ty ofpSJ-DNAcomplex from control and EGF­

treated cells • II . Nuclear extracts (3 pg) from untreated/control (even numbered

lanes), and EGF -trea ted (odd numbered lanes) MDA·468 cells were analyzed for

mobility shifts of an end labelled oligo repr esenting p53·spec ific site, CON . lane 1 ­

blank with no nuclear extract; lanes 2 & 3 - no furt her additions; the anti-pS3

ant ibodies included in the binding reaction are PAb 421 (0.1 pg) , PAb 1620 (1.0 pg

protei n equiva lent of hybridoma supematent fluid), PAb 1801 (0.1 j.lg),and PAb 240

(0.1 /-Ig). The figure is a 24 h exposure of the autc radiograpb. * is a non-specific

comp lex. Solid arrow heads indicates specific p53·DNA complexes, and antibody­

supers hifted complexes are denoted byope n arrow heads . The free probe has run off

the gel.
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5.1.2.3 Reactivity with PAb 1801

PAb 1801supershifted CON:-pS3 complexes withoutincreasingthe binding

(lower/smaJler open arrow head; Fig 5.4, lanes 12 & 13). No such shift was observed

with FRA-p53 complexes (Fig.5.3, lanes 12 & 13). In fact, PAb 1801 abolished the

specific FRA-p53 complexes. Thiswas confirmedwith longerexposures (Not shown).

Inclusion of PAb 421 alor.g with PAb 1801, double shifted the complexes

(Upper/larger open arrow head ; Fig.5.3 & 5.4, lanes 6 & 7). No difference in the

magnitude of this double shift was observed upon EGP-treatment (Fig.5.3 & 5.4,

lane s 6 & 7).

5.2.3 Effect of PAb 1620 on formation and stability of p53.DNA complexes

Since PAb 421 enhanced the DNA binding, we tested the effects of various

anti-p53 antibodies on p53.CON complexes in the presence of PAb 421 (Fig.5.S).

We used CON for this purpose , since the p53-CON complexes, unlike p53-FRA,

showed little EOF-dependent change in the presence of PAb 421 and a

conformation-spc..:ific. antibody (Fig 5.4; lanes 4 & Sand 8 & 9). In Fig.5.Sonly super­

shifted complexes are shown for the sake of simplicity. The lower{smaller arrow head

(lane 3 & 10) indicates the p53-CON-PAb 421complex. Inclusion orPAb lS01 in the

binding reaction aiong with PAb 421.double shifted the complex (Up perilarger arrow

head, lanes 4 & 11). BOF treatment did nor produce any major change in this

pattern (Comp are Janes 4 & 11).



FIG.5J FJrecuor PAb 1'10oa formaUoa ofpS3-DNA oomples:lD lbe preseece of

PAb 411. Nuclear extract s (5 " g) from untrea ted/control (lanes 2-8), and E G F­

treated (lanes 9-J5) MDA ·468 cells were ana lyzed for mcb ility shilu of end-labelled

oli:::n representing pS3-speclfic slte, CON. Lane 1 • blank with no nuclear extract ;

lanes 2 & 9 - no further additions; the anti-pS3 antibodies included in the binding

reac tion arc PAb 42J (o.IIJS), PAb J620 (1.0 "g protein equivalent of hybridoma

supern atent fluid), PAb lSOI (0.1 pg) ,and PA b 240 (0.1 pg); unlabelled CON in 50

fold excess (lanes 6 &13), and in 100 fold excess (lanes 7 & 14): unlabelled non­

spec lftc competitor (sequence described in Chapter 2.1.6; page 32) in 50 fold excess

(lane s 8 s: 15). The competitors (PAb J801. P .-\b 1620. PAb 240 and unlabell ed

oUgos) were pre-incuba ted for IS' on ice, with the nuclear extrac t. Followed by

addition of PAb 421 and incubation with the binding buffer & labelled CON (50.000

cpm) for 30' at RT. All reactions were incubated for 30' on ice afte r the binding

react ion. Th e figure is a 24 h exposure of the autoradiograph. Only antibody

supers hirted complexes (open arrow heads) are shown.
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In contrast. when PAb 1620wasincubated along with PAb 421 and CON. an

intermed ia te shift of part of the complex was obse rved (middle arrow head, lane 5).

The tota l amo unt of pS3-DNA complexes inclusive of diffe rent species in the

presence: of PAb 1620, WaJ considerably lower than the total amount supenhifted

with PAb 421 (compare lane 3 and lan e S. and with the double shifted band by PA b

1801; lane 4). Th is indicated that some of the p53-CON-PAb 421 compl ex was

abo lished ~y PAb 1620. incubation with PAb 240 resulled in a similar interm ediate

complex. In this case, however. the remainde r of the primary complex was not

significantly altered (PAb 240 experiment was no r shown). The intermediate shift may

be due to the intera ction of antibod ies with a part of the complex. In EGF-treated

ce lls, incubation with PAb 1620 prod uced a similar pa ttern as untreat ed cells (middle

a rrow hea d, Jane 12). However, the lower complex :. . c,\.(X) N·PAb 42 1) remained

largely unaffected (JowerlsmaIJer arrow head, lane 12) t e, the total amount of pS3­

a ntibody comp lex was not reduced in the presence of EGF, indicating reduc ed

rea ctivity of the pS3 p-csem to PAb 1620 upo n binding to CON. This observa tion is

consistent with a conformational shift in p53 upon EGF·tr eatmenL The specifICityof

the complexes was confirmed with incubati on with a n excess of un labe lled CON

(lanes 6, 7, 13, an d 14) and a non-specific o ligo (lanes 8 .& 15).

In our experiments, we observed that both sequence of addition a nd the

incubation condi tions seemed to influence the EGF effect on PAb 1620 reactivity with

the p53-CON -PAb 421 complexes. Further studies (Fig 5.6) indicated that if PAb



FIG. 5.6 ElTect ofPAb 1620 on format ion and stability or pSJ.DNA complex In tbe

presence or PAb 411. Nuclear extracts (5 ~g) from untreat ed/control (lanes 2-4,8,

& 10), and EGF -treated (lanes 5-7, 9, & 11) MDA-468 cells were analyzed for

mobility shifts of an end-labelled oligo repr esenting p53-specilic site, CON. Lane 1 •

blank reaction with no nuclear extract; the an ti-p53 antibodies included in the

binding reaction are PAb 421 (0.1 Ilg), PAb 1620 (1.0 Ilg protein equivalent of

hybridoma supe rnatent fluid), & PAb 1801 (0.1 ~g). PAb 421 was included in the

binding reaction simultaneously with the probe (CON; 50,000 cpm). PAb 1801(lanes

3 & 6), and PAb 1620(lanes 4 & 7) were pre-incubated with nuclear extracts (15' on

ice). In other reactions, PAb 1620was added simultaneously with the probe and PAb

421 (lanes 8 & 9), or included after the binding reaction (3D' at RT). All the reactions

were further incubated for 30' on ice. The figure is a 24 h exposure of the

autoradiograph. Onlyant ibodysupershifted complexes(open arrow heads) are shown.
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1620 wasadded simulta neously with PAb 421 there seeme d to be little difference

betwe en unt reated an d EGP·t rea ted samples, in terms of PAb 1620 reactivity with

the complexes (lanes B/untreated, a nd 9/EGF ·treated). A pre-incubation orPAb 1620

produced a moderate difference (lanes 4funtreated, and 7IEGF-treated) . whereas

inclusion of PAb 1620after the formation of specific DNA comp lexes with PAb 421

had the greatest effect on the comp lexes (lanes IO/untreated, and IJ/EGF·trea led).

This again. seems to indicate that EGF decreases the portion of p53 in wild-type-like

conformation, in a compl ex with CON and PAb 421.

Taken together, the DNA binding studies demonstrate that endogenous

p53273.His of MDA-468 cells specifically inte racts with both FRA and CON

sequences. Furthermore, EGF treatment enhances this inte raction. The reactivity of

p53-DNA complexes with vario us ant ibodies indicate a sequence-dependent

conformation of p53 induced upon DNA binding ; FRA -p53 is abolished byPAb 1801

(Fig 5.3; lane 12 & 13) while CON -p53 is supe rshifted (Fig 5.4; lanes 12 & 13).

In addition, EGF trea tment resulted in lower reacti vity of FRA-p53 (Fig 5.3; lane s

4 & 5) and PAb 421-CON-p53 to PAb 1620 (Fig 5.5 and Fig 5.6).

5.2.4 Transcriptiona l activity or pS3273.His

Most of the informatio n concerning the function of p53273.His is from

trnnsfection studies employing exogenou s pS3 constructs. Therefore, we wished to

establish the transcriptional activation function of endogenous pS3273.Hli in MDA-468

cells.Since we were able 10 observe comparable levels of DNA binding 10both CON



FlG.5.7 ExamlnatloD orp5J-respoD5e elemeat-mediated traDscriptlonalactivity.

MDA-468 cells (2'1106 ceJlsJl00mm plate) were transfected with 5 JIg of minimal

promoter-CAT (MP-CAT/pBLCAT2), the CON-CAT, and FRA-CATas described

in Chapter 2 (2.2.13; Fig.2!, page 48). SV40 T antigen (5 IJgllOOmmplate) was co-

transfected as a contr ol. CAT activitywas measured 48 h post- transfection and was

equalized to protein concent rations. RSV-,Bgal construct (2 IJglOOmm plate) was

used as interna l control. Standardi zation of CAT values to fJgal activitywas not done

as it appeared that both EG F and T antigen affecte d RSV promoter significantly.

The % conversion (CAT activity) by MP-CAT was standar dized to 1.0 and the

remaining values were correspondingly adjusted.
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and FRA in the absence of PAb 421, it was essential to determ ine the functional

consequences of the observed DNA binding activity. To th is end, the p53 response

DNA elemen ts were cloned upstream of a minima l promoter regulating a

chloramphenicol acetyl tran sferase (CAT) reporte r gene (pBLCAT2). This vector

contains a minimal promoter with a TATA box from the herpes simplex virus

thymidine kinase gene (Luckow &:Schutz. J987). In transient lransfection assays

carried out in MDA-46Bcells,CONsequencesconferred about an H-fold activation

of transcription whereas FRA sequences displayed abo ut a lo-fold rep ression of

transcription compa red to that from vector alone (Fig. 5.7). This was an interesting

observation given that no FRA-mediated modulation of transcription has been

reported, although previous reports have indicated transactivation by pS3273.HIs

through CON (Chen !Uill., 1993b). Co-transfectkm of SV40 T antigen eDNA driven

by the SV40enhancer/promoter blocked both activation a nd repression, confirming

the involvement of pS3 in this process.

5J:.s Efl'eet or EGF OD lraDuctil'lltiODor p53273.Hl1

After establishing a functionof pS3273.Hi5in MDA-468 cells, it was essential

to determine whether or not EGF- inducedchanges in DNA binding were reflected

in altered transcript ional activityof p53273.HIs. EGF treatment (48 h) of MD A-468

cells, transiently trenstected with pBLCAT2 atone, consistentlyresulted in increased

CAT activity.The average figures are shown in Fig.5.S. There was an approximate

4-fold activation of transcription through the minimal promoter in the presence of



FIG.5 .B Effects orEGF on pS3.response element-mediated lranscripllonal aCll"lty.

MDA-468 cells (2xlcP cells/l00mm plate) were Iransfected with 5 1J8 of minimal

prom oter-CAT (MP-CAT/pBLCAT2). the CON-CAT, and FRA -CAT as described

in Chapter 2 (2.2.13; Fig 2.1, page 48) . The cells were incubate d ± EGF (10-8M) for

48 h after transfection. CAT activity was measured 72 h post-tran sfection and was

equ alized to protein concen trations . RSV-p gal construct (2 ~gll00mm plate) was

used as internal control. Standardization of CAT values to f3gal activity was not done

as it app eared that BGF affected RSV promot er significantly. The % conversion

(CA T activity) by individual construct in the absence of EGP, was standardized to 1.0

and the remaining values were corres pondingly adjusted.
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EGF. We observed no such EGF-ind uced change in the presence of SV40 T antigen

in co-trarsfectiou experiments indicating that the activation was in fact media ted by

I- -:1 (Not shown). TIle vectors with p53-response e leme nts, howeve r, d id not show any

significant shifu in the CAT activity upon EGF trea tment .

5.3 DISCUSSION

We have studied the effects of EGF on pS3 stalus and function in MDA-468

hu man breast ca ncer cells. EGF in high conccntr at ions(l o-S M) induc es a re versible

la te G 1 arrest, together with a reduction in steady state mRNA leve ls for p53. Since

these cells contain an apparent gain-at-function mutant (pS3213.HiS) with unusual

functions. a n in-dep th study was undertaken. In the previous chapte r (Chapler 4),

EO F-induced shifts in the vntibody-reaetivityof the pS3protein wer e described. The

apparent confo rmational shift, as indicate d by alte red reac livity with confo rmation-

speciEc antibodies., may be mediated through alte red phosphorylation. In Ihis chapter,

studies 10determine the biochem ical function of pS3m His in MOA-468 cells, a nd

the effects orEG F trea tme nt on those functions, were out lined.

We provide evidence that en dogenous p53273.111s forms specific complexeswith

two of the p53 response DNA ele ments (CON a nd FRA) with re la tively the same

efficiency. Moreover, th is DNA binding has a transcriptional modu lation effect. In

MDA-468 cells, pS3273.HiI activa tes transcription from cnN a nd re presses through

FRA. EMSAs de monstra ted a considerable incre ase in the p53 DNA binding activity

in respo nse to EOF (Fig.S.t and 5.2). Furthermo re, we obse rved EGF incre ased pS3
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transc rtp' lonal activity through a minima l promoter, but not through C.'ONand FRA

(Eg.5 .S).

TIle observedEGF-dependemstabilization of pS3-CON·PAb421 complexes

va ried with the reaction conditions (Fig.5.6). Th e simul taneous incubation of PAb 421

and PAb ]620 resulted in modera te or no EGF-effect at all. Pre-incubation or co­

incubation with PAb 1620 may sequester a part of the populatio n of p53 molecules,

inhibiting formation of the comp lexes despite PAb 421-dependent increased DNA

binding. We have consistently observed red uced reactivity of pre-formed pS3.CON.

PAb 421 complexes to PAb 1620 in EOF-treated cells , indicati ng tha t EOF induces

a shift in pS3 conformation thai is distinguishable upon DNA binding. Recently, it

was shown that p53, upon DNA binding, can lose reactivity with PAb 1620. The

authors sugges ted that it may assume a mutant con forma tion (Halazonetis~ ID.,

1993). Ou r observation o f decreased PAb 1v20 reactivity of pS3·DNA com plexes

from EGF-treated cells (Fig.5 .5 and 5.6), then, can be interpreted as a behaviour

characteristic of wild-type p53. This is consisten t with our immu nofluorescence data

(FigA.6) which impliedan EGF-dependenllossof mutant-specific epitope (PAb 240)

a nd persistent wild-type-specific ep itope (PAb 1620).

Alte rna tively, the EGF-dep , :ndent reduct ion in PAb 1620 rea ctivity of p53­

DNA complexes might also be due to an increased DNA-b inding efficiencyof p53

in response to EGF. Thismay have been reflected as a increasedresistance to PAb

162o-induced abolition of the p53·DNA complexes. In either case, it is a
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demonstration of an BOP-induced altered Interaction of p5327J,HIswith specific p53-

response elemen ts.

It has also been suggested that sequence-specific DNA binding itself may

induce a conforma tional change in the p53 prote in (Halazonetis £1 !!.I., 1993) This

flexible nature was attr ibuted to wild-type p53, with a majority of mutants thought to

be locked in a pa rticular conformation . We suspec t, however, that p53273.Hls might

be more similar to wild·type. In EMSM , - .he different p53-DNA complexes

differentially reacted with PAb l S01. PAb 1801 abolished p53-FRA bu t supe rshifted

p53-CON comp lexes. T his is cons istent with the notion that pS3 may assume differen t

conformatio ns upon DNA binding in a seque nce-depe ndent manner [Halazonetis sa

ill., 1993). Thus, in the p53·CON complex, the PAb 1801 epitope rem ains available

for the reaction, whereas in case of p53-FRA, the ep itope may be required for or

masked upon DNA -binding. Antibody binding to p53 in this latter case, may interrupt

DNA-binding. T his is an indication tha t p53 might assume differe nt conformations

in a seq uence-depe ndent manne r upon DNA binding. In the presence of PAb 421,

a doub le shift of p53-FRA-PA b 421 was prod uced by PAb 1801 (Fig.S.3). Gre ater

affinity of p53 to FRA in the prese nce of PAh 421, may overcome the inte rference

by PAb 1801, th us reta ining both PAb 421 and PAb 1801 in the p53-FRA complex.

On the other hand, PAb 421 might induce a change in p53 conforma tion, one that

makes it more efficient for DNA binding. This putative PAb 421·jnduced altered

conformation may result in free PAb 1801 epitope . It is conceivable then, that the
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PAb 1801 interac tion with p53 will be tolerated, resulting in a do uble shift.

Another imeresting observation strengthening the notion of sequence­

dependent changes in pS3 conformation upon DNA -binding, was the degree orpAh

162()..induced abo lition of p53·DNA complexes. TIle PAb 162o-mediated abolition

was near comple te for pS3·FRA·PAb 421 (Fig.S.3, Janes 4 & 5), while the same for

p53·CON·PAb 421 was only partial (Fig .SA. lanes 4 & 5). This indicates that th e

p53273.HiS domain with PAb 1620 ep itope , may be relatively mo re critical for the

interac tion with FRA than that with CON . This is consistent with the idea that only

wild-type pS3 interacts with FRA, while bo th wild-type and some of the mutants

interac t with CON .

In the EMSAs, more than one specific pS3·DNA comp lex was consistently

observed. The se slowe r migrat ing complexe s have been reported by others before and

they were believed to be higher orde r oligomers of p53 (Zauberman ~ .aI., 1993).

In EGF-treated MDA·468 cells, p53 may be capable of forming more higher orde r

oligomers that bind to CON, unlike untreated cells. Such higher orde r oligomers ,

however, form comp lexes with FRA (Fig.5.1, upp er solid arrow) in the absence of

EGF . While the significance of these differences , rema in to be resolved , they may

be impo rtant in determining ' he function of p53.

DNA hinding studies from Miller t1 aI.,indicated that the presence of a single

p53 molecule with a strong DNA binding domai n was sufficient to retain dimers in

a complex with DNA (Miller ~ ill., 1993). Our EMSAs suggest that PAb 1620 and
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PAb 240 bindi ng may interfere with pS3 DNA binding. Based on the suggest ion from

Mille r ~!!J. (1993),11 is plausib le that such an interaction with one , bu t not both. of

the p53 molecules may be tolerated. In othe r words, let us assume that the simple

p53.DNA complex is a dimer, as has been reported earlier (Hupp sa .!!l., 1992;

Tarunina & Jenkins, 1993). Thus, an interaction with 8 dimerwould explain a partial

shift of the p53-CON-PAb 421 to an intermediate level by conformation-specific

antibodies. Increased DNA-binding efficiency perhaps induced by PAb 421 may

create a strong enough interaction of p53 with CON, that binding of an interfe ring

antibody (PAb 1620 or PAb 240) to one of the p53 molecules, may be tolera ted. This

may account for an inte rmediate shift of p53-CON-PAb 421 comp lexes by PAb 1620

and PAb 240 (Fig.5.S & 5.6). Interaction of interfering an Iibodies (PAb 1620 or PAb

240) with both p53 molecules of the d imer may abo lish the pS3.DNA in teraction.

EMSA stud ies have indicated an increase in the DNA binding ab ility of p53

in EGF-trealed cells. As previous st udies indicated no cha nge in the p53 pro tein

levels immediately following EGF treatment (Chapter 4.2.2), this increased activity

must be due to change in affinity, perhaps secondary to alt ered phosp hory lation and

a change in confor ma tion. An observati o n linking a growt h facto r with p53 has not

been previously reported to ou r knowledge. Kastan ~!J.. (1992), demon strated an

increase in the formation of a specific comp lex of p53 with a DNA seq uence distantly

related to a p53 consensus sequence (5'- PuPuPuC(Nr)(T/A)G PyFJPy-3') in the

~ gene in respo nse to irradiation. However, this increase correlated with an
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accumulation of p53 protein observed upon irradiation. Interestingly, while these

complexes did not react with PAb 1801, an enhanced binding was observed with PAb

421. A more recent study demonstrated the formation of specific complexes of

endog enous pS3 with CON sequence (Price & Claderwood, 1993). The authors

further reported, with the aid of PAb 421, an increased DNA-binding activity in

response to irradiation . Once again however, the increased activity corresponded to

increased cellular p53 prote in levels. In light of this, the observation that EGF

enh anced p53273.HIsDNA binding activity in the absence of increased p53 content

is intriguing . This, we suggest, may be due to altered affinity of p53 for DNA upon

conformational change.

Published reports in the literature concerning pS3273.HIsDNA-binding and

transactivation are confusing at best. It has been reported previously, that p53273.His

was unable to bind 10and transacnvate from the FRA sequence (Kern S1m., 1991b;

Bargonetti ~ ill.,1991; Farmer ~ .i!!., 1992). In fact, p53273.HIs was found to inhibit

the wild-type complex formation with this sequence (Kern tl !I., 1991b). In contrast,

it has been shown that p53273.His reacts differently with CON sequence . The mutant

not only binds fa CON but was also able to transac.tivate transcription from this

sequence (Funk ~ .!!.I., 1992; Chen £t m., 1993b). Furthermore, wtld-rype p53 was

reponed to form complexes wilh TBP and repress transcrip :ion from a TATA box

containing a minimal promoter. Recently, Carol Prives and colleagues, have reponed

that wild-type p53 and TFIID Of purified 1 BP co-operate for DNA binding (Chen
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~ ill.,1993a). The article showed that wild-type p53 inhibits TBP bind ing to TATA

motif but not that of the TFnD holoprotei n. The authors suggest that wild-type pS3

mediated modulation of transcript ion may well be due to mechan isms other than

inhibition of TBP DNA-binding. In other words, the tra nscriptional e ffect of p53 may

be mediated by a modificat ion of TFIlD function thr ough interactions other than

DNAbinding. The presence ofp53 in the pre -initiation complexalongwithTBP, may

alter the interaction of other TAFs (TBP associated factors) in the co mplex with ' he

cellular proteins affecting transcription. These cellular proteins may be other

pro mote r/enha nce r binding proteins such as Sp l, CREBP, and CBF. The specificity

and outcome of such inte ractions may be dete rmined by cell-type . This may be

reflected as eithe r repression, activation or no change, de,' '10 ' ,;f, on the type of the

promoter and the cell-type.

Levine a nd colleagues (Zambetti~m.,19(2), in their attempts to characte rise

the pS3-rcsponse el ement in the MCK enhance r, obse rved repression of transcription

from {oBLCATI by wild-type but no t bya m utant p53, introd uced into p53.null Saos2

cells. They reported however, that inclusion of the MCK enhancer sequences into

pBLCA1'2 activated transcription upon tra m fection into pS3-nuJlSo as2 cells even in

the absence of exogenous p53. They interpreted thi s obse rvation as the actions of

other cellular fac tors on the MCK enhancer (Zembetti ~ !I., 1992). In BHK cells,

with intact endogenous p53, exogenous ly introd uced wild-type p53 re pressed

transcrip tion from pBLCAT2 (Yuan!<1 Ill., 1993). Int erestingly enough, inclusion of
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a p53-response element (RGC'FRA) into pBLCAT2 relieved this pS3-induced

repress ion. A m utant p53 (p5J I3S.VaI) activated transcription from pBlCAT2 but had

no effect thro ugh ROC sequences (Yuan n 11.. 1993).

We have observed a unique transcriptiona l activity of p53213.Hi5in MD A-468

celts. Our experim ents clear ly dem onstrated increased transcription from CON , and,

interestingly, an active repression from FRA sequences inse rted in pBLCAT2

(Fig.S.8). These omervat iOI1Ja re intriguing given the apparent sequence-depende nt

differe nces in pS3 conform ation indicated by th e EMSAs (Fig. 5.3 & S.4). Taken

together, these dat a indicate that p53273.His can mediate specific and unique effects

in a sequence-dependent manner. Inclusion of SV40 T ant igen in the tra nsfectlon

studies was aimed al sequestering p53 from :fansactiva lion and DNA binding.

p53ID .His is known 10 possess T ant igen binding ability similar to wild-aypep53

(Levine t!!l.. 1991).II has bee n demonstrated tha t SV40T antigen abroga tes DNA­

binding and transcri pt ional activity of pS3 (Segawa ~11-. 1993). Alth ough. the effects

of SV40 T antigen on pS327J.HIshave not been re ported, given the charac teristics of

p53ID.HiI, we assumed it to be similar to that of wild-type p53. In MDA-468 cells,

SV40 T antigen co-espr esskm abrogated transcript ion from CON a nd FRA and from

the minimal promoter as well (Fig.S.7). Th is would seem to c:onfinn that pS3273.HIs

is involved in transcriptional modulat ion from bot h minimal pro moter, and p53-

responsive eleme nts.
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Interestingly,EGF altered the activityof 8 minimal promoter. SV 40T anligen

also activated transcriptio n from the minimal promo ter in the absence of EGF

(Fig.S.7).This maybe due to the release ofp53273.HIs.mediated repression. EOF may

have a similar effect on p53-mediate d repression of a minimal promoter . On the

other hand, this was not the case with FRA-CAT. SV 40 T antigen relieved the

repression by abou t 10 fold, whereas, EOF had no effect on FRA·media ted

rep ression. This implies that the molecular mechanisms ..If transcriptional repression

by FRA may be different than that through a minima l promoter. It is conceivable

that EGF·induced changes in conforma tion may affect only cer tain specific protein­

pro tein interactions. These may include interaction with one or more components of

the basal transcription machinery such 8S TBP, CBF or Sp l, since the TK promoter

in pBLCAT2 contains a TATAA motif, CCAAT motif and a GC rich Sp! motif

(Luckow & Schutz, 1987).

In this context, we suggest a novel function for pS3273.Hbin MDA·468 cells.

a combination oftransactivation and rep ression effects. While p53273.Hb alone retains

sequence-dependent DNA binding and transactiva tion functions, tile cellu lar

environment may dete rmine which one of these activities is essent ial for that

particu lar cell cycle stage. pS3273.Hls is capable of transcript ional repression of a

minimal promoter, transactivation th rough CON and active repression through FRA.

Th is combination of activities may be respo nsible for the observed gain-of-function

phenotype of this mutan t. Alternatively, p53273.Hlsmay be exert ing a critical function
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through sOoas-yet-unidentified seq uence. Th is sugges tion is part iculaIy seductive

beca use EGF apparently had little e ffect on the lrall5Criptionai activity through CON

and FRA. Another alternative mechanism for EGF-de pendent modulation of p,53

function could involve its interaction with ro mpo ne nts of basal transcription

machine ry. It is conc eivable EG F· mediated canfo nnational chan ge of p5327J.Hls in

MDA·468 cells might result in significant changes in its interaction with cellular

proteins as indicated by altered transcription from a minimalpromoter.

Our experimentshave provided significant insights into the role of a peculiar

mutant p53213.Hls in MDA·468cell proliferation. We suggest, this novel function is

essential for G l-S progression. EG F·tr eatment has profound effects on co nform ation

of pS3and in tum on its transcnptionalactivity. 'Thismay lead to deregula tion of the

cellcycle events.These suggestions,though speculative.are not entirely unfounded.

Severa l 5tudies have dearly de monstrated the ro le of p53 in proliferation and

tumori ge nicity of MDA-468 cells. One such , tudy i ndicated tha t exogenow ly

introd uced multiple copies of wild-type p53 abo lished the focus Iormai.onability of

MDA-468 cells (Casey ~!I.. 1991). A mor e care ful approach utilizing retroViral­

mediat ed single copy transfe r of wild-type pS3 into MDA-468 cells resu lted in slightly

d ifferent resulu (Wang" aI., 1993). Wild-type p53 as a single co py had little effect

on cell proliferation in cultu re, but inhibited anchor age-independen t growth and

tumorigenici ty 10 a significant extent. Taken toget her . the ettects of wild-type p53

ap pear to be dependent o n its level of expr ess ion in the cell. Wild-type pS3 was not
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able to override a proliferativefunctionJ£orcein low levels. however, wasable 10exert

negative regulation at higher levels.EGF in high concentrations. mimics the effects

of high levels of wild-type p53 o n proliferation and anchorage-indepcnde nt growth

of MDA468 cel l! (Filmus "-l ll .. 19858; Fllm ua"' AI.. 1987b; Churc h de.Bukk. 1988,

Church ~.till.. 1989). Moreover, a clear indicationthat p53273.HIImight be of gain-or·

function phenotype.supports our suggestio~ thai pS3273.HIsdocs have a novel role

in cell proliferation.

Previous studieshave indicatedsignificantalterationotvarlouscellular protein

k ineses in A431 cells upon nanomolar concentrat ions of EOF treatment. These

k ineses include CDKI and casein kinase II (Hall~ AI., 1991; Ackerman ~!l.. 1990).

Inte rest ingly enough, these enzymes are believed to be modu lators of pS3 activity

through sitc-speciflCphosphofylation (Section"'.4.1). Th us. MDA-468 ceUsand their

unusual response to high concentrations of EGF provide a use ful model to study and

unders tand the molecu lar mecha nisms involved in EGF-med iated altera tions in a n

endo genous muta nt pS3 and in t urn iu rol e in trans formation and tumori genes is.



6. SUMMA RY AND nrrt1RE DIRECI10NS

U BACKGROUND

Thisstudy wasinilLated with the goalof unde rstanding the molecula r pathways

involved in EG F-med iated growth inh:bition in MDA-468 human brea st ca ncer ce lls.

These cellsoverexpress EGFRs and a re negative for estroge n recep tors. While initia l

studies clearly demonstra ted a correla tion between the number of cell-surface:EGFRs

and a growth-inhibitory respon se (Kawa moto ~ !.I., 1984), more current work has

demonstrated that this was clearly insufficient and altered signal transducti on

pathways may be more likely the cause of growth -inhibition (Di Fiore ~ i!l.. 1987;

Church k! w.., 1988i Ch urch & Buick, 1988). Th e objective of this proj ect was to

delineate the signal transduction pathway that lead to an alte red gene exp ression in

MDA-468ce lls upon treatment with growth inhibitory concentrations of EGF.

'-2: GENEkAL EXPERIMENTAL STRATEGY

In gene ral, the approach was to charact erize the EG F-depe nd ent growth ­

inhibition in M DA-468 cells. To this end, the following expe rimentJI: were employed.

a) Ce ll cycle analysis, to det ermine the stage at whict: cells are affect ed by EG F.

F1ow-cytometric an alysis of DNA was used for this purpose (Section 3.2.1).

b) Assays for DNNprotein synthesis in orde r to determine the effect of EGF a t the

molecular level. Met abolic labelling of cells witn suitable radioactive precurs ors

followed by an est imation of total DNA/protein synthesis a ided in det ection of

170
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immediat e effects of EGF on cellular processes (Section 3.2.2 & 3.2.3).

c) Gene-expression studies to test for the effects of EGF on cell cycle-dependent

genes aimed at obtaini ng informat ion essentia l 10co nnrm and corroborate the dala

from flow cytometry, Standard Northern blot analysis of tota l RNA isolated from

untreated and EG F·t reated cells provided enough data to narrow the growth.

inhibition to a small period during the cell cycle (Section 3.2.4) .

d) Examination of effect s of EG F on p53 statu s was initiated after careful

delibe rati on of the litera ture and the data from the above experiments (Section .1.1).

To this end a pane l of monoclonal antibodies was used in imrnunopr ecipitation,

immunofluorescence, and Western blot techniques (Section 4.2).

e) Analysis of p53 function as tra nscrip tion factor was carried out by testing for its

DNA binding activity an d transactivation abilities. For this purpose, electrophoretic

mobility shift assays and DNA-transfecti on followed by ch loramphenicol acetyl

transfe rase assays were employed (Section 5.2).

6.3 RESULTS AND CONCL USION

In summary, the experim ents were successful ir. characterizing the EGF­

dependent growth inhibitio n as a reversible late G 1 arrest occurring near the GUS

boundary of the cell cycle (Section 3.2). The earl iest detec tab le effect of EOF on

cellular processes was that observed with total protei n synthesis . Between 6-12 h

following EGF treatment tota l protein synthesis dropped dramatically (abou t 60 % of

that of untre ate d cells). The results from the cell cycle-dependent gene expression
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studies ind icated the possible involvement of a tumour suppressor gene. pS3, in £OF­

inducedG 1arrest,Since, p53 wasan excellent candidate gene involved in regulation

of cell prolifera tion near G IJS boundary, furthe r studies were unde rtaken to cr itically

examine the EGF effects on pS3.The experiments to study the effects of EOF on

cellular p53ID.His indicated no signifw:ant shifu in the prote in levels, protein

synthesis, or stability. However, we demonstrated an altered conformation and

phosphorylation status of p53173.HIs in response to EGF. Further studies

demonstra ted the specific DNA-bind ing ab ility of en dogeno us pS3273.His to CON

(Funk~ ill., 1992)and FRA (Kern~ .!!l. 1991b) sequences. Interestingly, p53273.Hts

retain s a transcription mod ulation effect through both CON a nd FRA in contrast to

the earlier reports (Kern ~ J!I.. 1992). EGF treatment of MDA-468 cells resulted

increased DNA-binding 10 CON and FRA and in potentiation of tran script ional

activation from a minimal promoter containing TATAA boxmot if.

Fr om the above data and with the current unders tanding of growth factor

signal transd uction, cell cycle regula tion and bioJogicallbiochemi ca1 ro les of pS3 in

ca ncer, the following conclusions were drawn . Endogen ous p53W .Hif exists In a

unique conformation in MDA-468 cells. It bea rs a strong PAb 162D-rea ctive e pitupe

(wild-type) and a wea k PAb 24D-reactive (mutant) epttope . p53 molecules with this

unique confor matio n, are capable of DNA binding and tra nscript iona l mod ulation.

EGF in high concentrations induce s a change in con forma tion of endog enous

p53273.His. Altere d phosphory lation in response to EGF , may mediate the



113

confonnat ion change. The EGF-dependenl changes increase DNA binding and

certa in transactivation activities of p53273.His. Taken toget her, we have provided

evidence for an immedia te effect of EGF on endogenous pS3271,His and its Iunctksn

in MDA-468 ce lls. The rcsult5 also demonstrate a novel funct ion for p53273.His in

MDA-468cells. Theobserved unique confonnation of pS3273.Hismaybe responsible

for its d istinct transcription modul at ion activilies observed in a sequence-dependent

6.4 IMP LICA'l10NS OF ALTE RED pS3Z73.HlS CO NFORMATION AND

FUNcnON IN EGF·DEPEN DENT Gl ARREST OF MDA-468 CELLS

6.4.1 p53 and ~II cycle

Wild-type pS3 is known to be an important regulator of a check-point in late

Gl phaseof the ct Ucycle (Reviewed in Levine U w.. 1990; O ren, 1992). Exogenously

introduced p53 expression constructs induce a Gl arrest (Chen!ii.lli.. 1991;Chen~

ill..1990;Diller .tl!l.. 1990). This check-point apparently operates in tumour cells

carry ing muta nt p53 as well (Steinmeye r ~ ~.. 1990; Deppen ~ !J., 1990).

Exogenously introdu ced pS3m.HI5 into pS3-null Soas2 ccl1s, were n .; .forming

(Che n S .!!l., 1990). This, an d othe r known peculiar prope rties of p53273.ftl5, indicate

a gain-or-function effect for this mutation. Some of the additional characteristics of

this mutant include ret'.ntion of nuclear localiza tion (Ginsbe rg " ill., 1991a; Barte k

.L1. §.I., 1990), retention of sequence-spectt icDNA binding ability (Funk ~ ill., 1992),

ability to tran sacuve te from cert a in sequen ce s (Chen " ill., 1993b), ability 10
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poten tiate wild-typep53 transactfvarion function (Miller!tl !!I.,1993) and so on. These

pr operties along with its increased half-life (>7-8 h; Hinds~ .t1.,1990). may result in

an altered function for p53273.His. This could be important in cell cycle progression

and transformation.

6.4.2 Novel funelion for pS3273.His In MDA-468«lis

OUf results clear ly add to what is already known concerning the unusual

functions of p53273.His. In MDA-468 cells, p53273.His is capable of specific-DNA

binding and sequence-dependent transacuvauon, The observations of this study

confinned the previously observed p53273.HiS interaction, both DNA-binding and

transactivation, with the CON sequence. On the other hand, p53273.Hi., from MDA·

468 cells, was also capable of specific binding with FRA sequences. In addition,

p53273.His in MDA-468 cells, actively repressed transcription from FRA sequences.

Reports published so far, have demonstrated that pS3273.Hlslacks these properties.

This suggests a novel function (or p53273.Hls, perhaps influenced bycell-type specific

biochemicaVmolecular interactions in MDA-468 cells. The interaction with other

nuclear proteins involved in transcription, or with yet-to-be identified DNA

sequences. may determine the ultimate effect of p53273.HIS on gene expression.

With the help of the existing information about wild-type pS3 and pS3273.HIs,

we suggest that p53273.HIs possesses a novel function in MDA-468 cells. This, as we

observed, may be a combination of transactivation, and repression activities

dete rmined by specific DNA sequences. Alternatively, this novel function may well
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be med iated through an-as-yet -uniden tified DNA sequence. The results p resented in

Chapter 5, demonstrate that pS3271.Hlsin MDA·468 cells retained certain wild-type

functio ns such as transactivation from CON , and rep ression of a minimal promoter,.

In addition it has gained other (unctions, such as repression from FRA-

The distinct effects of p53273.His in a seq ue nce-depende nt manner, suggests

a critical role for this mutant p53 in gene expression. We suggest such a role is

essential for cell proliferation and transformation. The observed EGF.dependen t

increase in specific DNA ·binding functions of p53273.HIswith CON and FRA, and

EGF -induced modulation of p53273.Hisactivity through the minima l promoter, may

be indicators of an alte ration in such a putative, essential role. An EGF~jnduced

change in the confo rmatio n might be responsible for this altered p53273.His function.

Abrogation of critical p53273.His functions might have profound effects on cell

proliferation, resulting in G1 arres t.

The results of this study, though obtained from an established cell line, has

significant re levance for the development of therapeutic approac hes to cure breast

cancer. By ident ifying the cellular genes or gene products involved in the EGF­

induced cell cycle arrest, it is conceivable tha t it can be target ed through

pharmacological means in a breast cancer patient. Indication of a role for p53 in

EGF·dependent growth inhibition is intriguing, as a number of studies have indicated

high incidence of p53 mutations in breast cancer cells isolated from patients.

Approaches to alter/restore the function of p53 in these cells may lead to the
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cessation of continuous cellproliferation.

6.5 FIJTlJRE DIRECTIO NS

6.5.1 ConRnnlltiun or tbe puta ti,e cri tical role of p53213.HiI

The experiments described in this study have undoubtedly provided 5igniflCani

information regarding the function of endogenous pS3n3.Hlsin MDA·468 cells.The

results also indicated EGF-depe ndent modification of certa in functions of p5317J.H I~.

This led U$ 10 suggest a critical role for p53213.HIt in MDA-468 cell proliferation. This

suggestion is based on our own observation of novel functioning of p53273.Hls in

MDA·468 cells togethe r with the emting knowledge in the literature of the possible

gain-of-function phenotype of this mutation. This suggestion can be tested

experimentally by the following approaches.

6.5.1.1 Indua loD or p~encienq: Anti-sense technology can be employed to

create a p53-defJCienl status in MDA-468cells,Sevcral laboratories have used this

app roach to induce defICiency of a parti cular gene-of-interest (lzant &:. Weintraub.

1984;Shohat .dm.. 1987).These experiments can be carried out by introducing p5J

eDNA constructs into MOA-468 cells by standard transfection procedures. The p53

eDNA cloned downstream of a strong promoter in an anti-sense or ienta tion would

allow synthesis of transcripts in an ant i-sense orientation. This will remove all sense-

transcriptsavailable for translation, thus creatinga pS3.cJeficient status . Isolation of

clones of stably transfected cells will further a id in testing the effects of p5J in cell
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prol iferation and transformation.

Since we suggest an essential role for p53Z73.His in cell cycle progression,

abroga tion of such a role may interfe re with the selection of stab le clones carrying

p53 anti-sense constructs. This problem might be circumvented by e mploying an

inducible promoter to direct anti-sense transcript synthesis. The anti-sense pS3

synthesis can be temporarily induced with appropriate inducer. after the selection of

clones containingtransfectedDNA.

6.5.1.2 Inhib iting pSJ activity: In our experiments, we have obs erved inhibitio n of

pS3·mediat ed sequence-dependent trensacdvatlon by SV40 T antigen. This may

interfere with the pu tative critical function of p53273.Hls, abrog ating cell cycle

progressi on . It willbe of consid erable interest 10 study the effects of SV40 T a ntigen­

mediated loss of pS3 function s on cell cycleprogression. Use of SV40 T antigen may

serve as a n alternative a nd/or corroborative study. This can be achieved by

introducing eDNA constru cts of SV 40 T antigen into MDA-468 cells, preferabl y

regu lated by an inducible promoter. Stabl e clones carrying SV 40 T an tigen constructs

can then be used to study the effects of T antigen-mediated abrogation of pS3

transactivation functions. Stan dard cell prolife ration assays, ce ll cycle analysis and

meas urement of DNA synthes is will indicate whe ther or not T an tigen-me diated loss

of pS3 activity is critica l for cell pro liferation.
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6.5..2 Ident incation or putative Dovel pSJ.bindiDI seque DC'es in MDA-468 cells

As we have suggested, authentic pS3273.His fun ction may be mediated by an

unidentified sequence. The consensus binding-site for p53 indicates 8 very loose

sequence requirement, and there may be several p53-responsive elements yet to be

identified.MDA-468cells provide an attractivesource ofa p53with novel properr.es.

Th ey can be emp loyed to identify other physiologically important p53-response

elements. Identification of such novel p53.response DNAelements undoubtedlywill

pro vide significant insights into the function of p53273.Hls• In add itio n this willfurther

our understandingof the biology of wild-type p53.

The techniques employed by other groups are a reaso nable point at which 10

start . CASTing, a technique involving immunopurification of p53 comple xes with a

mixture of PCR-amplifiable degene rate oligonucleotides, as described by Funk ~ ill.

(1992), or a PeR-based techniq ue following isolation of genomic clones from MDA·

468 cells bound by p53273.His to identify essential sequence, used by Vogelstein's

group (EI-Diery ~ !!I., 1992)to yield degene rate sequences can be used to detect

novel sequence s. These oligos can be incubated with nuclear extracts of MDA-468

cells. followed by isolation of those bound by p53 usinganti-p53 antibod ies. PAb 421

can be used alone or in combination with other antibodies . Amplification of the

sequences bound by p53 using peR and sequencing will identify the p53-response

elements. These techniques, however, do not guarantee the isola tion of those
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sequences at which antibodies interfere with DNA·binding. Usage of antibodies in

d ifferent combinations may overc ome this problem to a certain exte nt.

6.5.3 ClonlnglldentUicalion of genes altered by p53

EO F-dependent G 1 arre st in MDA-468 cells may be medi at ed by a ltered gene

expression. Such an alteratio n may either be mediated by a change in p53213.HIs

function or alternatively, indu ce the observed cha nges in p53 itself. Th is can be tested

by identifyinggeneswhose expression isspe cifically altered in EGF-treated cells. Such

an approac h employing the 'differential d isplay' techniqu e (Liang & Pard ee, 1992),

is already underw ay in our laboratory. The identification of such gen es provide s more

opportunities to test the pS3 role in EG F-induced 0 1 arres t. Since, it is plausible that

EGF -med iated changes causing G 1 arres t co uld be occurrin g in genes othe r than p53,

the appro ach suggested he re will address this co ncern as well.

Identifica tion of these genes will furnish import ant sequence informa tion tha t

might provide clues regarding promoter/enh ancer regions. Such sequence s can be

tested for pS3-responsive elements in mobility shift assays and transacrivatlon assays.

Altern atively, the effect of p53273.HIson the expr ession of such genes can be tested

in pS3-nuli cell-systems such as Soas2 cells with exogenously introdu ced p5 3

expression constructs. The examination of express ion of these genes in pS3-deficient

MDA·468 cells. generated byenu-sensetechnoJogy, will further confirm the role of

pS3 in G1 arrest.
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These studies will provide evidence, not only to confirm the suggested rote for

pS3nJ.His in tumour cell pro liferation, but also will be invaluab le in elucidatin g the

molecular mechanismsofEGF-medialed growthinhibition.RcsultJfrom thesestudies

will be of immense importance in ide ntifying a path way involving EOF, EGFR,

pS3273.HIs. the down-stream effectors and 01 arrest.
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