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Abstract 

Pygopus is a recently discovered downstream component of the Wnt signaling 

pathway required for ll- cateninff cf dependent transcription. It has been proposed to act 

as a downstream mediator of transcription through its indirect intemction with jl-catenin. 

Misactivation ofWnt signaling resulting in the overexpression of mitogenic Wnt target 

genes has been implicated in the progression of human cancer. In fact, abermnt Wnt 

signaling has been hypothesized to contribute to tbe formation of breast tumours. 

However, there are limited studies that conclusively address this question. Therefore, the 

purpose ofthis study was to examine tbe expression and requirement of the newly 

discovered Wnt signaling component Human Pygopus 2 (hPygo2) in this malignancy. 

To assess the expression ofhPygo2 in malignant breast cancer cell lines and 

tumours, I characterized antiserum which specifically recognized hPygo2 protein. 

hPygo2 was found overexpressed in the nuclei of breast tumour cells and tissue but not in 

nonnal breast cells and tissue. Knockdown studies using siRNA or antisense 

ol igonucleotides has demonstrated that bPygo2, but not jl-catenin, was required for the 

growth ofMCF-7 and MDA-MB-468 breast cancer cell lines and expression of the Wnt 

target gene Cyc/in Dl. Furthermore, I found that Pygopus I but not Pygopus 2 was 

required for mediating the Wnt signal through the key mediator,jl-catenin. These novel 

observations suggest that the requirement for nuclear overexpression of hPygo2 can be 

independent ofWnt/ll-catenin in the growth of breast carcinoma cells. Therefore, 



hPygo2 may be a more suitable therapeutic target tban elements of the canonical Wnt 

pathway for the treatment of breast cancer. 
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CHAPTER I 
INTRODUCTION 

1.1 Signal Transduction and Cancer 

Chapter 1: Introduction 

Signal transduction is a complex process that involves the relaying of messages 

from outside of the cell, into the cell and ultimately to specific target proteins that can 

mediate cellular responses. Signaling can be initiated by extracellular molecules known 

as ligands, or by mechanical stresses encountered by the cell. The signal or message is 

transduced from the outside of the cell into the cell by the activation or repression of 

specific intracellular signaling proteins. Inside the cell, further downstream proteins 

initiate the activation of specific target proteins which can mediate a number of cellular 

processes, such as: cell metabolism, cell morphology, cell migration, facilitative transport 

of ions and proteins, gene expression, and so on. Therefore, signal transduction is a 

mechanism for cells to respond to and interact with their environment. 

Signal transduction processes that ultimately result in proliferation, differentiation 

and survival are often mediated by extracellular messengers known as growth factors or 

mitogens. The binding of growth factors to their respective cell surface receptors results 

in the activation or repression of intracellular signal transduction cascades involved in the 

control of cell numbers. Activation or repression of signal transduction pathways that 

increase cell proliferation rates and promote cell survival are therefore important for the 

normal growth and development of an organism. On the other hand, aberrant activation 
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or repression of the same signaling pathways may cause the uncontrolled growth and 

proliferation of cells, which may result in cancer. 

The loss of the ability for a cell or clone of cells to properly regulate cell 

growth and division is one hallmark of cancer. Genetic mutations leading to uncontrolled 

cell growth can arise from a number of different signaling pathways (Vogelstein and 

Kinzler, 2004). Gain-of-function mutations can occur in signaling pathways that result in 

the overexpression of proteins involved in the promotion of cell growth. For example, 

activation of the oncogene c-myc through gain-of-function mutations, has been 

implicated in the progression of human cancer (Pelengaris and Khan, 2003). On the other 

hand, loss-of-function mutations can occur in signaling pathways that result in the 

underexpression of proteins which may act to promote the regular death and turnover of 

cells. For example, inactivation of the tumour suppressor Adenomatous Polyposis Coli 

(APC), through loss-of-function mutation has been identified as being a cause for familial 

adenomatous polyposis (F earnhead et a/., 200 I). 

In the context of cancer, it is clearly very important to understand the molecular 

mechanism of how signal transduction occurs and to identiJY mutations that lead to 

uncontrolled cell proliferation. Such knowledge is required to develop molecular and 

biological based treatments and therapies. My work presented in this thesis will 

concentrate on a newly discovered protein of the Wnt signal transduction pathway, 

known as Pygopus, and the possible role that it may play in cancer. 

2 



Chapter 1: Introduction 

1.2 The Wnt Signal Transduction Pathway 

The central role ofWnt signaling is to promote normal cell proliferation and cell 

migration in embryogenesis (Cadigan and Nusse, 1997) and in stem cell proliferation in 

adults (Willert eta/., 2003). Since Wnt proteins promote the growth of cells, they can be 

regarded as growth factors. The Wnt signal transduction pathway is very complex. For 

example, in humans, there have been 19 Wnt ligands that have been identified and each 

one likely mediates a different cellular response. In the following sections, I will 

concentrate on the classical canonical and non-canonical Wnt signaling pathways, as well 

as the newly discovered protein Pygopus and its role in the canonical Wnt signaling 

pathway. The regulation of the Wnt pathway is controlled at multiple levels but it is 

important to remember that Wnt signaling can also be regulated by many different 

proteins that are intermediates of other cell signal transduction pathways. Together, the 

cell must carefully orchestrate a variety of signals along with the Wnt signal in the 

normal growth and development of an organism. 

1.2.1 Canonical Wnt Signaling 

The canonical Wnt signaling pathway refers to the first discovered and most well 

known signaling pathway mediated by Wnt ligands. It involves the activation of the 

intracellular signaling intermediate J3--a~tenin and its subsequent transcriptional 

regulation of Wnt responsive genes. J3--eatenin was originally identified as a bridging 

molecule that links E-Cadherin and Actin to mediate cell to cell adhesion (Wheelock and 

Knudsen, 1991). Since then, it has been found that J3--eatenin is a key mediator ofWnt 

3 
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signaling, acting downstream of the ligand receptor complex (Peifer eta/., 1993). In the 

event of a Wnt signal, ~-catenin becomes activated and translocates to the nucleus to 

activate gene transcription. The critical function of Wnt signaling is to regulate the 

normal growth and proliferation of cells that form complex tissues. Consistent with its 

role in promoting tissue growth, the canonical Wnt signaling pathway positively regulates 

genes involved in cell growth and proliferation, such as Cyclin Dl (Tetsu and 

McCormick, 1999; Shtutrnan eta/., 1999) and c-myc (He eta/., 1998). Therefore, the cell 

must carefully regulate this signaling pathway in the absence of a Wnt ligand to control 

its growth and proliferation. 

In the absence of a Wnt signal or ligand, the pathway is negatively regulated in 

order to keep it in an inactive or "off" state (Figure 1.1). The binding ofWnt to its 

receptor causes a derepression of the pathway which attenuates the constiMive 

degradation of cytoplasmic [3-catenin allowing it to accumulate in the nucleus where it 

displaces (or replaces) transcriptional repressors ofWnt target genes. 

The repression of the Wnt pathway in the absence of signaling has been well­

documented and can occur at many levels in the pathway. At the cell membrane level, the 

cytoplasmic Wnt protein Dishevelled (Dsh), which is normally activated by the active 

Frizzled receptor/Wnt ligand complex, can be repressed by a number of proteins. For 

example, Frodo/Dapper (Dap) proteins have been shown to bind to Dsh and inhibit its 

binding to Frizzled (Cheyette eta/., 2002; Wong eta/., 2003). Naked has also been 

shown to bind to Dsh, thereby acting as antagonists of Wnt signaling (Roussel eta/., 

2001; Wharton, Jr. eta/., 2001). 

4 
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Figure 1.1 Regulation of jl-catenin in the absence of a Wnt sigual. In the absence of 

a Wnt signal, nuclear and cytoplasmic 13--<:atenin is recruited by APC, resulting in the 

assembly of the !3--<:atenin destruction complex, consisting of Axin, APC and GSK313. 

Specific N-terminal residues ofl3--<:atenin are phosphorylated by GSK313, targeting it for 

ubiqitination by 13-TrCP and subsequent degradation by the 26S proteasome. Wnt target 

genes are repressed by interacting complexes ofTCF/LEF, Groucho (Grg) and HDAC 

proteins. 



Degradation --------



Chapter 1: Introduction 

The inhibition or inactivation of Dsh ultimately results in the destruction of free 

cytoplasmic/nuclear 13-catenin. 13-catenin turnover is promoted by a protein known as 

APC, an intracellular scaffolding protein, which binds to free 13-catenin in the cytoplasm 

and the nucleus resulting in its nuclear export (Henderson, 2000; Neufeld eta/., 2000). 

APC acts as a trap for free 13-catenin and initiates its degradation by recruiting it to a 

multi protein destruction complex, which includes: Axin and Glycogen Synthase Kinase 

313 (GSK313) (Hart eta/., 1998). Assembly of the 13-catenin destruction complex is 

essential for the phosphorylation of 13--<:atenin mediated by GSK313 (Ikeda eta/., 1998). 

The phosphorylation at specific N-terminal residues marks !3-catenin for ubiquitination 

by the E3 ubiquitin ligase, 13-Transducin repeat-Containing Protein (13-TrCP), therefore 

targeting it for proteasomal degradation (Hart eta/., 1999). 

In the nucleus, the expression ofWnt target genes are repressed by a complex 

including T-Cell Factor/Lymphoid Enhancing Factor (TCF/LEF), whose function is to 

bind to specific consensus sequences at the promoters ofWnt genes, and the 

transcriptional repressor Groucho ( Grg) (Roose et a/., 1998; Cavallo et a/., 1998). The 

interaction between TCF and Grg recruits chromatin remodelling proteins, such as 

Histone Deacetylase (HDAC) to Wnt target genes resulting in the deacetylation of nearby 

Histones. This event results in the local condensation of chromatin and therefore, the 

repression ofWnt target genes (Chen eta/., 1999). 

!3--<:atenin activity can also be negatively regulated by a number of other proteins. 

For example, Inhibitor of 13-catenin (I CAT) (Tago eta/., 2000), as well as a protein 

known as Teashirt (Gallet eta/., 1999; Waltzer eta/., 2001) are among the few proteins 

6 
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that bind to and regulate (3-catenin turnover, and hence its transcriptional activity by 

promoting its degradation. 

Activation ofWnt signaling requires the presence of a Wnt ligand (Figure L2). 

Secreted Wnt ligands bind to seven pass transmembrane receptors, known as Frizzleds 

(Bhanot eta/., 1996). The activation ofWnt signaling is dependent on tbe ability of tbe 

Frizzled receptor to recruit transmembrane proteins of the low-density lipoprotein family, 

Low-density Lipoprotein Related Protein 5/6 (LRP5/6) upon Wnt ligand binding (Wehrli 

eta/., 2000; Tarnai eta/., 2000). This assembly oftbe Wnt activation complex is 

necessary for tbe initiation of signal transduction and results in activation or derepression 

of the cytoplasmic signaling intermediate Dsh, by an unknown mechanism (Klingensmith 

et al., 1994; Yanagawa eta/., 1995). At this point, the Wnt message can be transduced to 

either tbe canonical Wnt signaling pathway, or to the non-canonical Wnt signaling 

pathways (reviewed in section 1.2.2). 

In the context of canonical Wnt signaling, Dsh phosphorylation and activation can 

be mediated by a number of otber proteins including Casein Kinase I (CKI) (Peters eta/., 

1999) and Casein Kinase 2 (CK2) (Willert eta/., 1997). Dsh activation ultimately results 

in tbe inhibition of(3-catenin phosphorylation mediated by tbe Axin/APC/GSK3f3 

complex (Kishida et al., 1999). More specifically, tbe interaction ofDsh witb Axin and 

Fratl promotes the dissociation of Axin and GSK3f3 (Li eta/., 1999). By escaping 

GSK3f3 mediated N-terminal phosphorylation, (3-catenin is stabilized and accumulates in 

the cytoplasm. At this point, (3-catenin stability is further enhanced by tbe 

7 
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Figure 1.2 Activation ofthe classical canonical Wnt signaling pathway. Wnt ligands 

bind to Frizzled transmembrane receptors to activate Dishevelled which, in turn, inhibits 

the formation of the ~tenin destruction complex, responsible for the phosphorylation 

of ~-catenin. ~-catenin accumulates in the cytoplasm and is free to translocate into the 

nucleus to activate transcription. Nuclear ~tenin forms a complex with TCFILEF, 

CBP, Bcl-9 and Pygo. This complex interacts with the general transcriptional machinery, 

which is necessary for the transcription of Wnt target genes. 



====:::::::::::::::::::::::::: Cell membrane 
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phosphorylation of specific residues distinct from the phosphorylation sites of GSK3J3, 

which is mediated by CK2 (Song et a/., 2003 ). 

The stabilization of j3--catenin, results in its accumulation in the cytoplasm. 

Subsequently, it can translocate to the nucleus where it interacts with specific nuclear 

proteins to form an active transcriptional complex. The transcriptionally active 

j3.,;atenin complex includes many other proteins. TCF/IEF directly binds to 

Deoxyribonucleic Acid (DNA) enhancer sequences at the sites ofWnt target gene 

promoters (van De et a/., 1997), thought to occur by a mechanism that includes the 

displacement ofGrgffCF co-repressor complexes. Chromatin remodelling factors, such 

as the cAMP Responsive Element Binding Protein (CREB) Binding Protein (CBP) play a 

role in the transcription of target genes by acetylating nearby histone proteins, resulting in 

the decondensation of DNA to allow TCF/j3--catenin complexes and the general 

transcription machinery to gain access to the Wnt target gene promoter (Waltzer and 

Bienz, 1998; Takemaru and Moon, 2000) The recently discovered proteins, B-Cell 

Lymphoma-9/Legless (Bcl-9) and Pygopus (Pygo ), have been shown to be involved in 

the transcription ofWnt target genes. The exact role ofBcl-9 and Pygo in promoting Wnt 

dependent gene activation is currently unknown, although they have been proposed to 

play a role in chromatin remodelling as well, allowing access ofTCF/j3.,;atenin to the 

promoters of Wnt target genes (Kramps eta/. , 2002). 

9 
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1.2.2 Pygopus, a Novel Component ofthe Wnt Signaling Pathway 

As briefly mentioned in section 1.2.1, Pygopus is a novel component of Wnt 

signaling proposed to be required for Wnt dependent transcription. Pygopus was 

originally discovered in Drosophila by yeast two-hybrid analysis of proteins that were 

able to interact with another novel Wingless (Wg)/Wnt component, Legless/Bcl-9 

(Kramps eta/., 2002). Pygopus was also discovered by another group by a genetic screen 

of suppressors of an activated Armadillo (Drosophila 13-<:atenin homologue) phenotype 

in the Drosophila eye (Thompson eta/., 2002). The name "Pygopus" is also the name of 

a class oflegless lizards with scaly skin found in Australia. It was used to describe the 

phenotype of mutant Pygo flies, which lacked legs and antennae. Pygo mutants were 

strikingly similar to other Wg signaling mutants, which lead both groups to believe that 

Pygopus might be involved in transducing the Wg signal. Further characterization of 

Pygo revealed that it was indeed a component ofWg signaling in Drosophila. Mutants of 

Pygo were able to suppress direct Wg target genes, such as Ultrabithorax Band Distal­

less. In the Kao lab, Xenopus Pygopus was initially discovered to be involved in neural 

patterning.(Lake and Kao, 2003). Since then, Xenopus Pygopus has been shown to be 

required for body axis formation (Belenkaya eta/., 2002). Finally, in human colorectal 

carcinoma cells, Pygo was shown to be required for TCF-dependent transcription 

(Thompson et a/., 2002; Kramps et a/., 2002). Therefore, there is much evidence 

implicating a role for Pygopus proteins in vertebrates, as in Drosophila, as downstream 

mediators ofWnt signaling. 

Pygopus proteins (Figure 1.3) in general, are rich in proline and glycine residues 

and share several conserved amino acid sequences. At theN-terminus, there are two 

10 
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Figure 1.3 Structure and conserved domains of Pygopus proteins. Pygopus proteins 

from Drosophila ( dPygo ), Xenopus (Xpygo) and human (hPygo) share several conserved 

domains. At the C-terminus, Pygo family members share a conserved PliD domain, 

responsible for the protein-protein interaction with Bcl-9. At theN-terminus, Pygo family 

members share two conserved protein motifs. The NLS is responsible for mediating the 

nuclear localization ofPygo proteins. The NliD domain shares no homology to any 

known protein motifs. The NliD is conserved amongst Pygo protein family members and 

is hypothesized to be required for the activation ofWnt-dependent transcription. 
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conserved amino acid sequences present in all known Pygo family members: a nuclear 

localization sequence (NLS), as well as a conserved sequence known as theN-terminal 

Homology Domain (NHD) (Thompson eta/., 2002; Kramps eta/., 2002). The NHD 

shows no sequence similarity to any known protein domains or conserved sequences. The 

proposed function of the NHD domain is to act as a transcriptional co-activator, since the 

N-terminal region ofPygopus fused to a dominant negative form ofTCF can restore Wg 

signaling in Drosophila (Thompson, 2004). Further analysis of this domain including the 

proteins that bind to it, may reveal its exact function. The intervening regions of amino 

acids are rich in proline and glycine residues and show little sequence similarity between 

Pygo family members. At the C-terminus, Pygopus contains a highly conserved C4-H-C3 

zinc-binding domain. This domain is known as the Plant Homeodomain (PHD) (Aasland 

eta/., 1995), and it is thought to be involved in protein-protein interactions. The PHD 

domain has been implicated in the remodelling of chromatin, since it has been 

found in proteins that have known chromatin remodelling activity, including CBP 

(Bordoli eta/., 2001; Kalkhoven eta/., 2002). The only known function of the PHD 

domain in Pygopus is to mediate protein-protein interaction with Legless/Bcl-9, forming 

a bridge to the 13-catenin!fCF complex (Kramps eta/., 2002). Specific residues of the 

PHD domain ofPygo have been shown to be required for its binding to Bcl-9 and to relay 

the Wnt signal in normal development (Lin eta/., 2000; Townsley eta/., 2004). Given 

the fact that PHD domains are usually in proteins that have chromatin remodelling 

activity, Pygopus has been proposed to mediate the remodelling of chromatin to allow the 

TCF/f3.,;atenin complex to gain access to, and activate Wnt responsive promoters 

12 
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(Thompson eta/. , 2002; Kramps eta/., 2002), although there is no direct evidence to 

support this role. 

Limited studies to date outline the role ofPygopus proteins in Wnt signaling and 

normal development (Thompson eta/., 2002; Kramps eta/., 2002; Belenkaya eta/., 

2002; Parker eta/., 2002; Lake and Kao, 2003; Townsley eta/., 2004), but the exact roles 

of Pygopus proteins are still unknown. As well, the role of Pygopus in human cancer has 

not been directly addressed. While Pygo plays a role in Wnt signaling, aberrant Wnt 

signaling can contribute to formation of many types of tumours, as I will discuss in 

Section 1.2.4. 

1.2.3 Non-canonical Wnt Signaling 

As I have discussed in section I .2.1, the function of classical canonical Wnt 

signaling is to activate the key signaling intermediate, 13--catenin, and downstream 

TCFILEF responsive target genes. Non-canonical Wnt signaling (Figure 1.4), on the 

other hand, refers to other Wnt signaling pathways that have been identified after the 

initial discovery of the classical Wnt/~-catenin pathway. Non-canonical Wnt signaling 

can be divided into at least two distinct signaling pathways, the Wnt/Jun-N-terminal 

Kinase (JNK) and the Wnt/Ca2• pathways, both of which are mediated by a Wnt ligand 

binding to its frizzled receptor. 

The Wnt/JNK pathway, also known as the planar cell polarity pathway in 

Drosophila, involves the arrangement of cuticular cells that are lined up or polarized with 

respect to the body axis. It has been shown that the Frizzled receptor is required for this 
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Figure 1.4 Non-canonical Wnt signaling pathways. The binding ofWnt ligands to 

Frizzled receptors can also activate non-canonical Wnt signaling pathways responsible 

for planar cell polarity and convergent extension movements. The binding ofWnt to 

Frizzled can result in the intracellular increase in Ca2+ concentration, leading to the 

activation ofPKC, CamKII as well as a number of other proteins. The binding of Wnt to 

Frizzled can also result in the activation of the small GTPase, RhoA. Activation ofRhoA 

results in the activation ofthe c-Jun N-Terminal Kinase (JNK) pathway. 
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pathway, but the Wnt ligand that mediates this signal is currently unknown. The Frizzled 

receptor was found to be required for the polarity of wing hairs, or trichomes, in 

Drosophila (Vinson and Adler, 1987) and for the polarity of photoreceptor clusters, or 

ommatidia, in the Drosophila compound eye (Zheng eta/., 1995). This same pathway 

exists in the vertebrate Xenopus and was shown to regulate morphogenetic or convergent 

extension movements during gastrulation (Heisenberg eta/., 2000; Yamanaka eta/., 

2002). Non-canonical activation of Frizzled proteins can in tum, activate small GTPases, 

such as RhoA, which is a potent activator of the JNK pathway (Shulman eta/., 1998). 

Therefore, the activation of this non-canonical Wnt pathway appears to be very important 

for cell morphology, movements and adhesion during normal development. 

Activation of the non-canonical Wnt/Ca2+ signaling pathway ultimately results in 

an increase of intracellular Ca2+ ions, which can mediate a number of cellular responses. 

Frizzled protein receptors have a very similar structure to G-protein coupled receptors 

and it has been shown that activated Frizzled receptors can activate G-proteins resulting 

in the stimulation of phosphatidylinositol signaling and the subsequent intracellular 

release ofCa2+ ions (Slusarski eta/., 1997). Further study of Frizzled proteins and G­

protein signaling revealed that Frizzled receptors closely resemble G-protein coupled 

receptors (Barnes et a/., 1998). The increase in cytoplasmic Ca2+ concentration results in 

the activation of Protein Kinase C (PKC) and Calmodulin Kinase II (CarnKII) (Malbon et 

a/. , 2001; Malbon, 2004). It appears that the most important role ofCa2+ signaling in 

Xenopus embryonic development, for example, is in the formation of ventral structures 

and in its inhibitory effect on convergent extension movements mediated by canonical 

Wnt signaling, which is required for the development of dorsal structures (Kuhl, 2002). 
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1.2.4 Wnt Signaling and Cancer 

It is clear that Wnt signaling is important for the normal growth and development 

of an organism. Misexpression of Wnt signaling components in the early stages of normal 

development results in the formation of developmental defects, and in later stages of the 

growing adult, Wnt signaling is important for the normal growth and proliferation of cells 

and is therefore strictly regulated (Giles et a/., 2003 ). If this pathway becomes aberrantly 

deregulated in adult tissues, it may contribute to the uncontrolled growth and 

proliferation of cells, a primary characteristic of cancer. The normal function of Wnt 

signaling is to stabilize the key Wnt transducer, f3-catenin. Therefore, nearly all cancers 

that have identified mutations in Wnt signaling display an active nuclear form of 

f3-catenin, whose role is to promote the transcription of Wnt target genes. 

Overexpression ofWnt target genes, especially those involved in promoting cell cycle 

progression such as Cyclin D1 and c-myc (He et al., 1998; Tetsu and McCormick, 1999), 

can indeed contribute to the uncontrolled proliferation of cells. As well, there are many 

other documented Wnt target genes involved in cell movements and migration, such as 

several Matrix Metalloproteinases (MMP), such as MMP-7 (Brabletz eta/., 1999; 

Crawford eta/., 1999), and MMP-26 (Marchenko eta/., 2002). Overexpression of these 

genes may result in the ability of a cell to modiJY its extracellular environment and 

downregnlate cell-to-cell adhesion, characteristic of the malignant phenotype. 

Mutations in the Wnt signaling pathway have been identified and are thought to 

contribute to the malignancy of many tissue types. For example, Wnt mutations are most 

commonly identified in colorectal tissue. Loss-of-function mutations identified in APC 

are thought to be one of the main causes of a condition known as Familial Adenomatous 
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Polyposis (FAP). FAP is a cancer characterized by the fonnation of hundreds to 

thousands of colorectal polyps which are caused by the inactivation of the tumour 

suppressor APC (Groden eta/., 1991; Nishisho eta/., 1991), which then results in the 

accumulation of~tenin and overexpression ofWnt target genes. Gain-of-function 

mutations have been identified in (}-catenin in colorectal cancer cell lines (Morin eta/., 

1997), and it has been hypothesized to be mutated in approximately I 0% of all colon 

cancers. On the other hand, the frequency of Wnt mutation in other cancers is relatively 

low. For example, mutations in Wnt pathway components are extremely rare in breast 

tumours. Yet surprisingly, some breast tumours display nuclear (3-catenin and Wnt target 

gene expression. 

1.2.5 Wot Signaling and Breast Cancer 

Earlier work implicated a role for the oncogene Inti (renamed to Wnt-1 after the 

discovery of Wg in Drosophila) in promoting mammary tumours. Retroviral infection of 

mice with the mouse mammary tumour virus results in its integration into the Inti locus 

of the host genome, resulting in the overexpression of the Inti gene. This induced 

overexpression of Inti was hypothesized to contribute to the fonnation of mammary 

tumours (Nusse and Varmus, 1982). These initial studies drew much attention to the role 

ofWnt/(3-catenin signaling in breast cancer, and despite all of the subsequent studies, 

there is still little known about the causes of the deregulation of ~lenin in breast 

cancer (Howe and Brown, 2004). Therefore, there is a need to identil)' the molecular 

causes of aberrant (3-catenin expression and nuclear localization in breast cancer. 
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Presently, there is strong evidence implicating a role for Wnt signaling in breast 

cancer due to the expression of nuclear localized 13--{;atenin. Significantly, it has been 

shown that the overexpression of a constitutively active form of (3-catenin in transgenic 

mice results in the formation of mammary tumours (Michaelson and Leder, 2001 ). In 

humans, cytoplasmic and nuclear overexpression of 13--{;atenin staining was observed in 

approximately 60% of breast tumours and also correlated with poor patient prognosis 

(Lin et a/., 2000; R yo et a/., 200 I). But studies demonstrating the frequency of genetic 

~lenin mutation in breast cancer was very low (van De eta/., 2001), therefore the 

nuclear localization of ~tenin observed in breast tumours is unlikely due to a direct 

mutation of the ~atenin gene. Therefore, proteins that directly interact with and 

regulate 13--{;atenin are likely involved in its aberrant expression and nuclear localization. 

I will classify these proteins into two groups for further discussion. The frrst group are 

proteins that are known to be directly associated with the Wnt signaling pathway, and the 

second group are proteins which are indirectly involved in the Wnt signaling pathway. 

There are many examples of Wnt signaling components whose aberrant 

expression may be correlated with the overexpression and nuclear localization of 

~tenin. Wnt ligands have been found to be overexpressed in breast cancers. For 

example, Wntl overexpression in transgenic mice results in the overexpression of target 

genes and the formation of mammary tumours (Li eta/., 2003) and Wnt5a expression is 

upregulated in primary breast cancers (Lejeune eta/., 1995). The upstream 

13--{;atenin regulator, Dsh was also shown to be overexpressed in primary breast tumours 

(Nagahata eta/., 2003), but it has not been correlated with the expression and localization 
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of [3-catenin. The overexpression of CK2 resulting in the phosphorylation and increased 

stability of [3-catenin, is suspected of contributing to aberrant Wnt signaling in breast 

cancer(Landesman-Bollag eta/., 2001). Uncommonly, there have been few studies in 

breast cancer that have identified genetic mutations in Wnt signaling intennediates 

resulting in pathway activation. For example, the key [3-catenin regulators, Axin 

(Webster eta/., 2000) and APC (Furuuchi eta/., 2000) have been shown to be mutated in 

a low percent of breast cancers. Therefore, there are many examples of how the 

overexpression or activation ofWnt pathway components may contribute to the 

stabilization and nuclear localization of J}-catenin and furthennore, the development of 

breast cancer. 

On the other hand, it is possible that [3-catenin nuclear localization may be due to 

misexpression of J}-catenin regulators indirectly involved in Wnt signaling. For example, 

it has been shown that [3-catenin expression and activity is downregulated by p53 (Sadot 

eta/. , 2001). This finding may help to explain the presence of nuclear f3-catenin in breast 

cancers that harbour p53 mutations. Also, hypennethylation of the APC promoter has 

been described in a significant number of breast cancers (Jin eta/., 2001 ). Promoter 

hypennethylation due to aberrant regulation of DNA methyl-transferases, may possibly 

result in decreased APC expression. This evidence therefore implies that the 

misexpression of proteins indirectly involved in Wnt signaling may result in the increased 

stability or activation of p~atenin in breast cancer. 

Nuclear f3-catenin participates in the expression of Wnt target genes by the 

fonnation of transcriptionally active complexes at WntlfCF consensus sites and there are 
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several studies of Wnt target gene expression in breast cancer. For example, the 

expression ofWnt target gene Cyclin D1 has been shown to be upregulated by 

approximately 50% in breast tumours, both at the messenger Ribonucleic acid {mRNA) 

level (Buckley eta/., 1993) and also at the protein level (Bartkova eta/., 1994). 

Overexpression ofCyclin Dl in the mammary gland of transgenic mice results in 

abnormal cell proliferation and the formation of mammary adenocarcinomas (Wang et 

a/., 1994). It has also been shown that a number of breast cancer cell lines exhibited high 

levels ofWnt dependent transcription correlating with the overexpression of the target 

gene Cyclin Dl (Lin eta/., 2000). It appears that not only Cyclin Dl is reqnired for 

tumourigenesis mediated by aberrant Wnt signaling, since Cyclin Dl knockout mice are 

susceptible to the formation of tumours mediated by the overexpression ofWntl (Yu et 

a/., 2001). Together, these results suggest that the activation ofWnt target genes may be 

necessary for the formation of mammary tumours. Further studies will be needed to 

demonstrate what other downstream Wnt targets alone or in combination, are necessary 

for mammary tumourigenesis. 

1.3 Expressional Knockdown Strategies using an Antisense Approach 

As I have discussed in section 1. I, cancers can arise from single cells that lose their 

ability to properly regulate cell growth and proliferation. This may result from genetic 

mutations in a cell either causing the underexpression of genes which are normally 

expressed at high levels, or from the overexpression of genes which are not normally 

expressed at high levels. A relatively new and important therapeutic approach to 

specifically target genes that are overexpressed in a disease state is to reduce or block 

20 



Chapter 1: Introduction 

their expression. Many cancer cells and twnours have been shown to overexpress genes 

that lead to uncontrolled growth and proliferation, so reduction in their activities may be 

an important molecular therapeutic approach. 

Single genes and the information that they carry are stored in the form of DNA. In 

the living cell, the flow of genetic information from DNA to messenger ribonucleic acid 

(mRNA) and then to protein has been coined as the "central dogma" of molecular 

biology. The "knocking" down or reduction of the expression of a particular gene using 

an antisense approach usually involves targeting its mRNA and therefore inhibiting 

protein production. Antisense molecules specifically bind to the message or mRNA of a 

particular gene resulting in its degradation or the blocking of translation of that mRNA. 

There are a number of different ways to reduce the expression of a gene. In this thesis, I 

concentrated on the use of antisense oligonucleotides and short interfering RNA (siRNA) 

as tools for reducing the expression of a protein. 

Antisense oligodeoxynucleotides (ON) are usually short (15-25 bases), single 

stranded DNA molecules that are complementary to a given mRNA sequence. ON bind 

in a sequence specific manner by Watson and Crick base pairing to the complementary 

mRNA, resulting in the formation of an RNA-DNA duplex. There are several well 

known processes by which antisense ON can interfere with the production of protein 

from an mRNA (Figure 1.5). The binding of an antisense ON to its target mRNA 

sequence can result in ribosomal stalling during translation of mRNA into protein. 

Another well known mechanism by which the antisense ON can interfere with protein 

production is mediated by the nuclease, RNase H (Green eta/., 2000; Baker eta/., 2001; 

Crooke, 2004). RNase His a ubiquitously expressed enzyme in prokaryotic and 
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Figure 1.5 Knockdown of gene expression by antisense oligonucleotides. When 

introduced into tbe cell, antisense oligonucleotides base pair to the complementary 

sequence of a target mRNA, resulting in a decrease in protein production. The formation 

of a DNA/RNA complex is recognized and degraded by the intracellular nuclease, 

RNaseH. Inhibition of translation can also occur due to ribosomal stalling at the site of 

the DNA/RNA complex. 
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eukaryotic cells. In humans, RNase HI recognizes and cleaves the RNA strand of an 

RNA-DNA duplex, resulting in degradation of the mRNA species (Wu et al., 1999). 

Therefore, the use of antisense ON can exploit known mechanisms of RNA regulation to 

experimentally manipulate the down regulation-of gene expression. 

The discovery that double stranded RNAs have inhibitory effects on gene 

expression, or RNA interference (RNAi), was first demonstrated in Caenorhabditis 

elegans (Fire et al., 1998). In fact, RNAi has been found to be a useful tool and 

mechanism in mammalian cells to knock down gene expression. In the cell, double 

stranded RNA (dsRNA), that either occurs naturally or is introduced, is specifically 

recognized by an RNase III ribonuclease, known as Dicer (Bernstein et al., 2001) (Figure 

1.6). This enzyme is responsible for the Adenosine Triphosphate (A TP)-dependent 

cleavage or processing of dsRNA into siRNAs, which are 21-23 nucleotide duplexes of 

dsRNA. siRNAs are then incorporated into an RNA induced silencing complex (RISC), 

where they are unwound in an ATP--dependent manner. Target mRNAs are then recruited 

to the antisense siRNA and are cleaved by the RISC, which initiates the degradation of 

the RNA (Denli and Harmon, 2003; Dykxhoom eta/. , 2003; Shi, 2003). 

The use ofRNAi has evolved as a useful method to knock down gene expression 

in manunalian cells. For example, it has been shown that this may be particularly useful 

for the study of overexpressed genes. siRNAs directed against J3-catenin are effective at 

inhibiting the growth of human colon cancer cells which display activating mutations in 

Wnt signaling and overexpression ofj3-catenin (Verma eta/. , 2003). Therefore, the use 

of siRNA to reduce gene expression in humans likely represents a new therapy based 

future treatment of disease. 
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Figure 1.6 Mechanism of RNA degradation by RNA interference. The generation of 

siRNA can result in the degradation of a target mRNA. Double stranded RNA ( dsRNA) 

molecules are cleaved into short interfering RNA (siRNA) by the RNaseiii enzyme 

known as Dicer, in an A TP dependent manner. A TP is also necessary for the unwinding 

of the siRNA by the RNA induced silencing complex (RISC). The antisense strand of the 

siRNA is displayed by the RISC, binds to the target mRNA and is cleaved by the RISC. 

This process results in the degradation of mRNA and the inhibition of protein production. 
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1.4 Thesis Rationale 

Misexpression of Wnt signaling has been implicated in the progression of human 

cancer. Misexpression or mutations in Wnt signaling components results in the activation 

and nuclear localization of the key signaling intermediate, 13-catenin. Nuclear 

p-catenin then interacts with a multi protein complex to activate the expression of Wnt 

target genes. Indeed, the overexpression of Wnt target genes is associated with the 

malignant phenotype as was discussed in Sections 1.2.4 and 1.2.5. Many cancers display 

the active nuclear localized form of !3-catenin, as well as Wnt target gene overexpression. 

This has been most commonly identified in colorectal cancers that frequently harbour 

activating mutations in Wnt signaling intermediates, although a significant number of 

breast cancers also exhibit Wnt signaling activation by nuclear f3-catenin expression (Lin 

eta/. , 2000; Ryo eta/., 2001) by an unknown molecular mechanism. 

Pygopus, a novel component ofWnt signaling, has been shown to be a 

downstream mediator ofWnt signaling (Thompson eta/. , 2002; Kramps eta/. , 2002). To 

date, a limited number of studies have outlined the role ofPygopus proteins in Wnt 

signaling and normal development (Thompson eta/., 2002; Kramps eta/., 2002; 

Belenkaya eta/., 2002; Parker eta/., 2002; Lake and Kao, 2003; Townsley eta/., 2004), 

but there have been no studies that directly implicate a role for Pygopus in human cancer. 

It has been previously shown that knockdown ofPygopus in colorectal carcinoma cells 

by RNAi resulted in a decrease ofTCF/13-catenin driven transcription (Thompson eta/., 

2002), therefore confirming its role in Wnt signaling. Other than this requirement, it is 

not clear whether or not the cells required Pygo for their growth or survival. 
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It has been hypothesized that aberrant Wnt signaling contributes to the malignancy 

of breast cancer and that nuclear ~tenin has been observed in a large number of breast 

cancers. The purpose of this thesis was to determine the expression and requirement of 

Pygopus in breast cancer, given the central role of the canonical Wnt signaling pathway 

in this malignancy. My hypothesis is that the overexpression ofPygopus may contribute 

to the growth of breast cancer cells. Therefore, the objectives of my study were: 

I. To design a protein antigen against the non-conserved regions of the human 

Pygopus2 (hPygo2) protein and use it to immunize rabbits. The resulting antiserum will 

then be collected and characterized. 

2. To examine the expression of human Pygopus family members as well as the 

expression of other downstream Wnt components which have been shown to interact with 

Pygopus in a variety of normal and cancer cells, including breast cell lines and tumours 

3. To address the requirement ofhPygo2 in the growth of human cancer cells 

including breast cancer cells by designing antisense ONs to specifically target hPygo2, 

but not the closely related family member, human Pygopus 1 (hPygo 1 ). 

4. To address the role ofhPygo2 in the regulation ofWnt dependent transcription 

in breast cancer cells. 

My results are the first to demonstrate the expression ofPygopus in breast cancer. 

I have found that hPygo2 mRNA and protein are expressed at high levels in the nuclei of 

malignant breast cancer cells and at low levels in normal breast cells and tissue. Tbis 

expression of hPygo2 was strongly correlated with the expression of the key Wnt 

signaling mediator ~tenin, but not with other newly discovered components of the 

pathway, including hPygo1 and Bcl-9. I have also demonstrated that hPygo2 but not 
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j3-{:atenin was required for the growth of human cancer cells, including the two breast 

cancer cell lines MCF-7 and MDA-MB-468. Furthermore, the reduction of cell growth 

due to hPygo2 knockdown was accompanied by a reduction in the cell cycle regulatory 

protein and Wnt target gene, Cyclin 01. Finally, I have demonstrated that hPygol but not 

hPygo2 functions as an activator of the Wnt signaling, indicating an alternative role of 

hPygo2 outside of the canonical Wnt signaling pathway in the mediation of breast cancer 

cell growth. 
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CHAPTER2 
MATERIALS AND METHODS 

2.1 Production of hPygo2 Antiserum 

2.1.1 Production of Purified GST fusion hPygo2 Proteins 

Regions encoding amino acids 1-45 and 74-312 ofhPygo2 (accession number 

NM _138300) that were selected for antibody production lacked the conserved NHD and 

PHD regions, therefore reducing the potential for cross reactivity with other proteins that 

contain these protein domains. The regions were also tested for antigenic sites using the 

online program "Antigenic" (http://bioweb.oasteur.fr/seganaVinterfaces/antigenic.html), 

which can be used to predict antigenic sites within a protein, based on the hypothesis that 

regions of hydrophobic residues that are located on the surface of a protein are more 

likely to be antigenic (Kolaskar and Tongaonkar, 1990). hPygo2 inserts were PCR 

amplified with the following primers: hPygo2 (1-45) (F: 5'-

GTCCCCCACTCCATGGCCGCCTCG; R: 5' -TCATCGCTTCTTTTCTGGACTCTTC) 

hPygo2 (74-312) (F: 5' -GCATCCAACCCTTTTGAAGATGAC; R: 5'­

TCAGCCAGGGGGTGCCAAGCTGTTG) from l.MA.G.E. Consortium {l.LNL) 

hPygo2 complementary DNA (eDNA) clones (CioneiDs: 41570072 and 3627860) 

obtained from Incyte Genomics Inc. PCR products were ligated in frame with the 

Glutathione S Transferase (GST) tag in the EcoRJ andXhol restriction sites ofpGEX-

4Tl {Amersham) using T4 DNA Ligase (Invitrogen). The resulting plasmids were then 
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midi-prepped (grown in 150 ml Luria-Bertani media containing 50 Jl!Yml ampicillin at 

31'C overnight, and harvested by the alkali-lysis method (Birnboim, 1983)) using the 

Qiagen Hi Speed Plasmid Midi Kit. DNA sequencing was performed by the 

dideoxynucleotide chain termination method (Sanger eta/., 1977), using the USB 

Sequenase Version 2.0 kit (Amersham) to confirm specificity. The resulting purified 

GST fusion proteins were synthesized and isolated from BL-21 Codon Plus RP, 

competent E. coli cells (Stratagene) (a gift from Dr. G. Paterno) and purified over 

Glutathione Sepharose 4B beads (Amersham) as per the GST Gene Fusion System 

(Amersham) protocol. Proteins were then concentrated using Centricon-10 protein 

concentrators (Amicon), resuspended in Phosphate buffered saline (PBS) and stored at-

70"C. Purified proteins were analyzed by 10% sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (SDS-PAGE) then staining gels with Coomassie blue (Sigma) or by 

western blotting with an anti-GST antibody (Santa Cruz). Approximate protein 

concentration was determined using the BioRad reagent as per the manufacturers' 

instructions. 

2.1.2 Production ofhPygo2 Antiserum 

Preimmune serum was collected prior to immunization of New Zealand White 

rabbits (Charles River Laboratories). The purified GST-hPygo2 fusion proteins were 

reconstituted using the Ribi Adjuvant System (Corixa), as per manufacturer's protocol. 

Two rabbits per protein construct were injected with approximately 40Q )lg of the 

appropriate GST fusion protein. Injections were performed in three week intervals, the 
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first two injections were intramuscular and subsequent injections were subcutaneous. 

After the third boost, serum was collected as described (Ryan and Gillespie, 1994). 

Briefly, approximately 20-30 ml of blood was collected into a 50ml sterile Falcon Tube 

by ear artery catheterization. Sodium azide was added to a final concentration ofO.Ol% 

to prevent microbial growth and the blood was incubated at room temperature for 6-8 

hours to allow a clot to form. The resulting serum was isolated by centrifugation on a 

clinical centrifuge and stored at -20°C. 

2.1.3 lmmunoprecipitation of in vitro Translated hPygo2 Protein 

35S labeled hPygo2 protein was prepared using the coupled transcription­

translation cell free system (Promega), as per manufacturer's instructions, using 

pCS2+/hPygo2 (see plasmids section 2.4.1) as a template. For immunoprecipitation (IP), 

in vitro translated hPygo2 protein was combined with 10-20 J!( of preimmune or immune 

serum in IX Triton IP buffer (10 mM Tris pH 7.5, 1% Triton-X-100, lOmM EDT A, 

0.002% sodium-azide, 20mM Methionine, lmM phenylmethylsulfonyl fluoride, 10 

J!g/ml aprotinin, 10 J!g/mlleupeptin and 50 J!g/ml Nor-P-tosyi-L-Iysine chloromethyl 

ketone) and rotated overnight at 4°C. After overnight incubation, 50 J!l of a 50% slurry of 

Protein A Sepharose (Amersham), prepared as per manufacturer's protocol, was added 

and furtber incubated for lhr at 4°C. Finally, beads were washed three times with ice cold 

IX Triton IP buffer and three times with an ice cold !50 mM solution ofNaCI. Proteins 

were eluted in protein sample buffer and analyzed by SDS-PAGE. Exactly one balf of in 

vitro translated hPygo2 protein was used as a positive control. 
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2.2 Cell Culture 

All cell lines, except normal endocervical (HEN) and normal ectocervical (HEC) 

cell lines (Tsutsumi eta/., 1992), were purchased from the American Type Culture 

Collection. T98G and Sk-N-Sh cells were maintained in Minimal Essential Media (Gibco) 

supplemented with 10% fetal bovine serum (FBS) (Gibco). MDA-MB-231 cells were 

maintained in Leibovitz's L-15 Medium (Gibco) supplemented with 10% FBS. HEN and 

HEC cells were maintained in Keratinocyte Serum Free Media (Gibco ). Sk-Ov-3, Es-2, 

HeLa, Caski, Hs-574, BT-20, Bt-474, MCF-7, MDA-MB-157 and MDA-MB-468 cells 

were all maintained in Dulbecco's Modified Eagle's Medium (DMEM) (Gibco) 

supplemented with I 0% FBS. Hs-578Bst and Hs-578T were both maintained in DMEM 

supplemented with 10% FBS with IOJ-lg/ml insulin_ Hs-578Bst cells were further 

supplemented with 30ng/ml Epidermal Growth Factor. All cells were maintained in a 

humidified atmosphere with 5% C02 at a temperature of37"C, except MDA-MB-231, 

which were maintained in a humidified atmosphere with 0% CO, at a temperature of 

37"C. 

2.3 Expression Analysis 

2.3.1 Northern Analysis 

Total RNA was extracted from cell lines using the Nucleospin RNA II Kit 

(Clontech Laboratories Inc.). Approximately 5J-1g of total cellular RNA from all cell lines 

was run on a formaldehyde gel and transferred to Gene Screen TM hybridization 
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membranes (Dupont). RNA was then UV crosslinked to the membranes and dried. A 

PCR product ofhPygo2 was generated with hpygo2 (74-312) primers described in 

section 2.1.1, and was purified with a DNA gel extraction kit (Millipore). The purified 

PCR template was then radioactively labeled with a32P~ TP by random priming 

(Prime-a-Gene; Promega), according to the manufacturers protocol. Blots were 

hybridized at 60" C using ExpressHyb (Clontech Laboratories Inc.), washed at high 

stringency (60°C in 0.1%SDS and O.IXSSC) and reprobed with glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) (pTRI-GAPDH; Arnbion) under the same 

hybridization conditions to ensure equal loading and transfer of RNA 

2-3.2 RT-PCR Analysis 

Cells in culture were harvested by trypsinization and briefly washed with ice cold 

lXPBS. Total RNA was extracted from cell lines using the Nucleospin RNA II Kit 

(Clontech Laboratories Inc.). Reverse Transcription-PeR (RT-PCR) was performed 

essentially as described (Lake and Kao, 2003). Briefly, RNA was reverse transcribed 

using MML V reverse transcriptase (Invitrogen). PCR cycling parameters included: 

denaturation at 94 "C for 4 minutes, hybridization of primers to target sequences for 4 5-60 

seconds, at temperatures specified in Table 2.1, and elongation at 72"C for 45-60 seconds. 

During the last cycle instead of 45-60 seconds, elongation occurred for 7-10 minutes. 

PCR products were electrophoresed on 1-1.5% agarose gels and photographed under UV 

light. Equal levels of eDNA used in the PCR reactions were achieved by normalization to 

GAPDH levels. Primers used in the analysis included those complementary to hpygo2 
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(74-312), hPygo1 (accession numberNM_015617) F: 5'­

GCCACGACAACCAAGAGGTG; R: 5'-CCAGTACAGATCCGATGAAACC, Bcl-9 

(accession numberNM_ 182557) F: 5'-GATGTTGTCCTGGTGTCTTG; R: 5'­

GGTCACGACACTGCAGTGCTC and GAPDH (Ju eta/., 1995) All primers for RT­

PCR were synthesized by Invitrogen. 

Table 2.1 Primer Hybridization Conditions 

Primer TA*("C) N** Reference 

hPygo2 60 30 

hPygol 60 30 

Bcl-9 55 30 

GAPDH 55 23 Ju et al., 1995 

• Annealing temperature 

••Number of annealing/elongation cycles 

2.3.3 Immunoblot Analysis 

Total protein from tissue culture cells was extracted in protein sample buffer. 

Approximate concentration of protein was determined using the Biorad assay reagent. 

Approximately 50 J!g of total cell lysate was separated by SDS-PAGE and transferred to 

nitrocellulose membranes (Hybond-ECL "'; Amernham). Blots were probed with the 

following antibodies: monoclonal GST (Santa Cruz), monoclonal and polyclonal 

j3--<:atenin (Santa Cruz), monoclonalj3-Actin (Sigma), monoclonal Cyclin OJ (BD 
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Biosciences), and polyclonal hPygo2. As a positive control for hPygo2, in vitro translated 

hPygo2 protein was prepared using the coupled transcription-translation cell-free system 

(Promega). Blots were then visualized by enhanced chemiluminescence (Amersham). To 

confimt equal loading of protein, blots were reprobed with f3-Actin. 

2.3.4 Immunocytochemistry 

For immunofluorescent analysis Hs-574-mg, Bt-474 and MCF-7 cells were fixed 

in 4% paraformaldehyde (30 minutes) rinsed in PBS twice and 0.2% triton-X 100/PBS 

(!PBS) for I 0 minutes. Cells were blocked in I 0% normal donkey/goat serum prior to an 

overnight incubation with primary antibodies in 1.5% normal sera/PBS. After a 30 to 

40 minute wash in 0.2% lPBS, cells were incubated 30 minutes with secondary 

antibodies in 1.5% normal sera. For hPygo-2, biotinylated donkey anti-rabbit (Amersham) 

and for 13-Catenin, Cy3 donkey anti-mouse (Jackson ImmunoResearch Laboratories, Inc.) 

was used. After a 30 to 40 minute wash in 0.1 - 0.2% lPBS, cells were incubated in 

streptavidin fluorescein (Amersham) in 1.5% normal sera/PBS for 30 minutes. Cells were 

washed in 0.1-0.2% lPBS 30 to 40 minutes before mounting in I 0% glycerol/PBS or 

Vectashield (Vector Laboratories, Inc.). Images were collected using confocal 

microscopy (Olympus). 

2.3.5 Immunobilltocbemilltry 

Breast tumour sections were obtained from the Memorial University Division of 

Laboratory Medicine. Immunohistochemistry was carried out as previously described 
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(Rorke et a/., 2001). Briefly, tumour sections were deparaffinized in Xylene and then 

rehydrated in a graded ethanol series to distilled water. Endogenous peroxidase activity 

was blocked in a 3% solution of H20 2 and then washed briefly in distilled water. To 

retrieve/unmask the antigen, sections were incubated in a boiling solution of 10 mM 

Citrate buffer, pH 6.0 and then cooled and washed with a running tap water bath. Slides 

were then washed with PBS and placed in a humid chamber. Slides were blocked in a 

10% normal goat serum/PBS. All antibody dilutions were made up in a solution of 1% 

bovine serum albumin in PBS. Pre-immune and hPygo2 primary antibodies were added 

at a predetermined dilution and incubated overnight at 4°C. Slides were then rinsed with 

PBS and incubated with a biotinylated goat anti-rabbit IgG (Zymed) secondary antibody, 

rinsed again with PBS and incubated with an HRP-streptavidin antibody (Zymed). Slides 

were rinsed in PBS and incubated with a solution of DAB (Sigma) and H20,, until a 

brown colour developed. Slides were again, rinsed with PBS and counterstained with 

Ehrlich's hematoxylin (Sigma) and destained in water, acid alcohol (70% ethanol, 1% 

concentrated HCI), tap water, and Scott's Tap Water Substitute (2-3.5g/L Sodium 

bicarbonate, 20 giL Magnesuim sulfate). Slides were then dehydrated in a graded ethanol 

series to Xylene, then mounted with Permount (Sigma) and allowed to dry overnight. 

2.4 Functional Analyses 

2.4.1 Plasmids 

Mammalian hPygo2 expression constructs were produced by subcloning hPygo2 

from pOTB7/hPygo2 (engineered by Dr. B. Lake) and insertion into pCS2+ (a gift from 
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Dave Turner). The full length hPygo2 construct (pCS2+/hPygo2) was prepared by 

releasing the hPygo2 insert from pOTB7/hPygo2 and ligating it into the EcoRI and Xhol 

restriction sites of pCS2+. pCS2+/hPygo2 was sequenced with the USB Sequencing Kit 

(Amersham) to confirm specificity. 

Gal-4-hPygo2 fusion proteins were constructed by PCR amplification of different 

regions of hPygo2 (primers given in Table 2.2) followed by the insertion into the EcoRI 

and Xho/ restriction sites of pCMV-Tag2b (Stratagene ). hPygo2 inserts were then 

subcloned from pCMV-Tag2b into the EcoRI and Hindlll restriction sites of pMG4 to 

make N-terminal Gal-4-hPygo2 fusion proteins. All plasmids were sequenced with the 

USB Sequencing Kit (Amersham) to confirm correct insert sequences. hPygol and Bcl-9 

expression constructs were prepared by PCR amplification from a human mammary 

carcinoma eDNA (Clontech). hPygol was then ligated into the BamHI and EcoRI 

restriction sites of pCMV-Tag2b and Bcl-9 was ligated into the Hindlll and Sal/ 

restriction sites ofpCMV-Tag2c. A full length expression construct of j}-catenin S37A 

was prepared by RT -PCR amplification of (3-catenin from the ovarian cancer cell line 

TOV-112D, which harbors a homozygous (3-catenin missense mutation resulting in an 

amino acid substitution of a Serine residue to an Alanine residue at amino acid position 

37 (Wu et a/. , 2001) and inserted into the BamHJ and Cia! restriction sites of pCS2+. 

Primers used included hPygol (accession numher NM_Ol5617) F: 5'­

GCCACGACAACCAAGAGGTG; R: 5' -CCAGTACAGATCCGATGAAACC, 
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Table 2.2 Primer Sequences and PCR Conditions for Gal-4-bPygo2 Constructs 

Construct Upstream primer (5'-3') Downstream primer (5'-3') TA* N** 

Gal-4- GTCCCCCACTCCAT- TCAGCCAGGGGGTG- 60 

bPygo2-1 GGCCGCCTCG CCAAGCTGTTG 

Gal-4- ATGGCTCCAAAGAAG- TCACCCATCGTTAGC- 60 

bPygo2-2 AAGCGTAAGGTACAG- AGCC 

CCTCCCCCAGGCTTGG 

Gal-4- ATGGCTCCAAAGAAGA- TCAGCCAGGGGGTG- 60 

hPygo2-3 AGCGTAAGGTAGCATCC- CCAAGCTGTTG 

AACCCTTTTGAAGATGAC 

Gal-4- GTCCCCCACTCCATG- CCAAGGAA TGGAGG- 65 

bPygo2-4 GCCGCCTCG GGCTGCAAC 

Gal-4- ATGAAGAGTCCAGAA- CCAAGGAATGGAGG- 65 

hPygo2-5 AAGAAGC GGCTGCAAC 

Gal-4- ATGAAGAGTCCAGAAA- TCACCCATCGTTAGC- 60 

hPygo2-6 AGAAGC AGCC 

• Primer annealing temperature 

**Number of annealing/elongation cycles 

Synthetic nuclear localization sequence is in bold 

Synthetic stop codon is underlined 

Bcl-9 (accession number NM _ 182557) F: 5' -GATGTTGTCCTGGTGTCTTG; R: 5 '­

GGTCACGACACTGCAGTGCTC and f3--eatenin (accession number NM_001904) F: 

5'-ATGGCTACTCAAGCTGATTTGATGG; R: 5'­

CCTAAAGGATGATTTACAGGTCAG. All plasmids were sequenced with tbe USB 

Sequencing Kit (Amersham) to confirm correct insert sequences. 

37 

35 

35 

35 

35 

35 
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2.4.2 Transfection of Plasmid Constructs 

All transfections with plasmid constructs were performed with 

Lipofectamine/Pius (Invitrogen), as per manufacturer's protocol. Growth media was 

replaced every 24 hours. 

For western analysis of Gal-4-hPygo2 protein constructs, HeLa cells were seeded 

at a density of 7.5 x 104 cells/well in twelve well plates. 0.5 J.Lg of plasmid were 

transfected and total cell protein was extracted 48 hours after transfection. Approximately 

50 1-1g of the protein extracted was used for western analysis. 

2.4.3 Antisense Oligonucleotides and siRNA 

Antisense oligonucleotides (Table 2.3) (Invitrogen) against hPygo2 were designed 

to contain three phosphorothioate bonds at each terminus to enhance nuclease resistance. 

All oligonucleotides were designed avoiding Guanine quartets (GGGG) and repeated 

Cytosine Guanine (CG) sequences which may result in non-specific antisense effects 

(Green eta/., 2000; Baker et al., 2001). 

J3-catenin siRNA and non-specific control siRNA were purchased as a 

l3~tenin siRNA/siAB 1M Assay Kit (Upstate). 

38 



Chapter 2: Materials and Methods 

Table 2.3 Antisense Oligonucleotide Sequences and Binding Positions 

Oligonucleotide 

Non-specific 

Mismatch5 

Sequence (5'-3') 

T*T*T*GCGCCGTTTCTT*C*T*C 

G*!;;*C*TGAGCIAA TCATT*G*G*I 

Binds RNA 
(nt position on 

eDNA 

G*A*G*CTGCAGCAACCACA*A*A*G 55-74 

2 G*G* A *CCCGGGTT AGCGGCA *G*C*G 144-164 

3 C*C*A*CCTCCCTCCAGCTTG*T*C*C 198-219 

4 G*G*A*GGACTAAAGTTTT*G*A*C 687-705 

5 G*G*C*TGAGCAAA TCGTT*G*G*G 807-825 

6 G*A*A*AAGCAGTAGAAGCA*G*G*T 967-986 

7 C*T*C* ACGGA TGT AGAC* A *G* A 1340-1357 

8 C*C*T*CTGGCCAGAAAC*T*T*T 1817-1835 

9 C*T*C*TTCTACCTTTGAG*T* A *C 2434-2452 

10 C*A*C*TGTATCTTGAGC*T*G*G 2720-2737 

Mismatches are underlined 

* indicates a phosphorothioate bond 

2.4.4 Transfection of Oligonucleotides and siRNA 

All transfections with oligonucleotides and siRNA were performed with 

Oligofectamine (Invitrogen) as per the manufacturer's instructions, replacing the growth 
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media every 24 hours. For HeLa and MCF-7 cells, hPygo2 antisense/control 

oligonucleotides were transfected to a final concentration of250 nM and all siRNAs were 

transfected to a final concentration of tOOnM. For MDA-MB-468 cells, hPygo2 

antisense/control oligonucleotides were transfected to a final concentration of 67.5 nM 

and all siRNAs were transfected to a final concentration of 25oM. For RT-PCR analysis, 

HeLa cells were seeded at a density of 1.5 x to' cells/well in six-well plates and were 

harvested 24 hours after transfection for RNA extraction. For Western analysis, MCF-7 

and MDA-MB-468 cells were seeded at a density of to' cells/well in twelve-well plates. 

Protein was extracted at 48 and 72 hours respectively. HeLa cells were seeded at 7.5 x 

t04 cells/well in six-well plates, and were harvested 48 hours after transfection. Finally, 

for cell growth analysis cells were seeded in triplicate at a density of7.5 x t04 cells/well 

for MCF-7 and MDA-MB-468 cells and 5 x t04 cells/well for HeLa in twelve-well plates. 

Cells were counted 48 and 72 hours after transfection using trypan blue exclusion (Sigma) 

with a hemacytometer. 

2.4.5 Luciferase (TOPFLASB) Wnt Reporter Assay 

Approximately t8 hours prior to transfection, MCF-7 cells were seeded in 

triplicate at a density of 1.5 x to' cells per well in t2-well plates. Cells were transfected 

using the Lipofectamine Plus reagent (Invitrogen). 0.5 jlg of either pTOPFLASH-Luc, a 

positive control reporter plasmid containing TCF/LEF-1-binding sites, or with 

pFOPFLASH-Luc, a negative control plasmid having mutant binding sites, were 

transiently transfected along with molar equivalents of pCS2+ or pCS2+/ 
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!3-catenin S37A, in combination with pCMVTag2b, pCMVTag2blhPygol, 

pCMVTag2blhPygo2 or pCMVTag2clhBcl-9. 

Cells were harvested 48 hour.; after transfection by trypsinization, followed by 

two washes in IX PBS. Luciferase assays were performed on celllysates using a 

Monolight 2010 Luminometer (Analytical Luminescense Laboratory) with the Luciferase 

assay reagent (Prom ega), according to the manufacturers' instructions. Briefly, cell 

pellets were resuspended in 50-100111 of IX reporter lysis buffer, incubated on ice for 30 

minutes and then centrifuged at 16000 x g for 2 minutes at 4 •c. Soluble supernatant was 

collected and stored at -70°C until needed. I 0-20 !11 of cell lysate was then added to 

100 111 ofluciferase assay reagent and then luciferase activity was determined 

immediately. The values obtained in relative luciferase units (RLU), were normalized to 

the total amount of protein in the sample. Each experiment was performed in triplicate 

and was repeated three times. 
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Chapter 3: Results 

There are a limited nmnber of studies to date outlining the role ofhmnan Pygopus 

2 in hmnan cancer. Therefore, the main objectives of my experiments were to: (I) 

generate and characterize an antibody directed against hPygo2, (2) examine the 

expression ofhPygo2 and other Wnt signaling components in a nmnber of cancer cell 

lines and breast tumours, (3) address the requirement and functional role of hPygo2 in 

cancer cell growth, and finally to (4) address the role ofhPygo2 in the transcription of 

Wnt target genes. 

3.1 Production and characterization of hPygo2 antibodies 

For the production of an hPygo2 antibody, purified hPygo2 proteins were made 

which could be used as antigens to generate polyclonal antibodies when injected into 

rabbits. 

3.1.1 Production of purified GST-fusion hPygo2 proteins 

In order to purifY different antigenic regions ofhPygo2, GST -fusion proteins of 

hPygo2 were prepared. The GST epitope was then used to affinity purifY the resulting 

GST-hPygo2 fusion proteins. Following the purification and concentration steps, the 

GST -hPygo2 fusion proteins were then analyzed by SDS-PAGE (Figore 3.1 ). Purified 

GST migrated to its expected size of approximately 30 kDa. The GST-hPygo2 (1-45) 
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Figure 3.1 Production of purified GST-bPygo2 fusion proteins. The protein maps of 

the GST-hPygo2 fusion proteins, GST-hPygo2 (1-45) and GST-hPygo2 (74-312) are as 

indicated Purified proteins were separated by SDS-PAGE and stained with Coornassie 

blue. GST migrated to approximately 30 kDa and GST-hPygo2 (1-45) migrated to 37 

kDa. GST-hPygo2 (74-312), on the other hand migrated to 60 kDa, with protein 

degradation/truncation products migrating to approximately 32-37 kDa. Sizes of 

molecular weight markers are indicated. 
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fusion protein migrated as a single band to approximately 35 kDa. The full GST -hPygo2 

(74-312) fusion protein on the other hand, migrated to approximately 60 kDa, although 

protein degradation/truncation products were detected and were between 30-35 kDa in 

size. To confirm that all proteins that were produced were indeed GST-fusion proteins, 

western analysis was performed with an antibody against GST (Figure 3.2). All GST­

hPygo2 fusion proteins migrated to the same sizes as determined in Figure 3.1. This 

analysis also confirmed that the degradation/truncation products in the GST -hPygo2 (74-

312) lane were indeed GST fusion protein products and not due to contaminating 

bacterial proteins. The absence of other bands indicated that both GST -hPygo2 fusion 

proteins were indeed pure and therefore could then be used for injection into two rabbits. 

GST-hPygo2 (1-45) was used for injection into two rabbits (named: Puddin and Thumper) 

and GST -hPygo2 (74-312) was injected into two different rabbits (named: Hausenpfeffer 

and Smidgen). 

3.1.2 Characterization of hPygo2 antibodies 

3.1.2.1 Immunoprecipitation orin vitro transcribed/translated hPygo2 protein 

To test the ability of the hPygo2 antisera to bind to hPygo2 protein, 

immunoprecipitation was performed using in vitro transcribed/translated 35S-labeled 

hPygo2 protein. As can be seen, immune sera from all four rabbits was able to bind to 

and pull down approximately 50% oflabeled hPygo2 protein (IP: first bleed; Figure 3.3 

a). In contrast, pre-immune serum (IP: pre-immune) used at the same dilution as the 
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Figure 3.2 Western analysis ofGST-hPygo2 fusion proteins. Western analysis was 

performed on the purified GST-hPygo2 fusion proteins using an antibody that recognizes 

GST. All purified proteins migrated to their expected sizes. The degradation products of 

GST-hPygo2 (74-312) were also recognized by the anti-GST antibody, indicating that 

they contain GST and are likely degradation/truncation products of the GST-hPygo2 (74-

312) protein. Relative positions of molecular weight markers are indicated 
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Figure 3.3 Confirmation of the ability of the hPygo2 antiserum to bind to hPygo2 

protein. In vitro transcribed/translated hPygo2 was immunoprecipitated with the hPygo2 

antiserum collected. 50% of the labeled hPygo2 protein was loaded on the gel as a 

positive control. Rabbit serum used is as follows: 1 Puddin, 2 Thumper, 3 Hausenpfeffer, 

4 Smidgen (a) lmmunoprecipitation ofhPygo2 with first bleed immune serum. 

Preimmune serum was used as a negative control. (b) Immunoprecipitation using first 

and second bleed immune serum. 
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immune sera did not bind to the hPygo2 protein. These results indicate the immune sera 

contains antibodies that specifically interact with the labeled hPygo2 protein. 

I also compared the ability of first and second bleed hPygo2 antisera to bind to 

and immunoprecipitate hPygo2 protein (Figure 3.3 b). As can be seen, levels ofhPygo2 

protein irnmunoprecipitated by the Thumper, Hausenpfeffer and Smidgen antisera did not 

significantly change between the first and second bleed. Puddin antiserum, on the other 

hand, showed a significant increase in its ability to bind to the labeled hPygo2 protein. 

3.1.2.2 Western analysis of bPygo2 protein 

The hPygo2 antiserum was previously shown to bind to non-denatured hPygo2 

protein (Section 3.1.2.1). I next wanted to determine if the antiserum against hPygo2 was 

able to interact with denatured protein using western analysis to be used for future 

experiments. 

The hPygo2 antisera from all four rabbits were able to detect the denatured 50 

kDa in vitro transcribed/translated hPygo2 protein by western analysis (Figure 3.4 a). 

There was some non-specific banding that occurred at higher and lower molecular 

weights than hPygo2 in all of the immunoblots. The lower molecular weight banding in 

the blots probed with Hausenpfeffer and Smidgen antisera are likely truncations of the 

hPygo2 protein, as they were also present when the blots were exposed to reveal the 

relative position of35S-labeled hPygo2 protein (Figure 3.4 b). Hausenpfeffer antiserum 

gave the lowest amount of non-specific banding and was used for further experiments. 
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Figure 3.4 Test of immune serum for western analysis. In vitro transcribed/translated 

35S labeled hPygo2 protein was separated by SDS-PAGE and immunoblotted with 

immune serum that was collected from all four rabbits. (a) Western analysis of in vitro 

translated hPygo2 protein with Puddin, Thumper, Hausenpfeffer and Smidgen immune 

serum. All antibodies recognize a band that corresponds to hPygo2 at approximately 50 

kDa. (b) After the chemiluminescent signal had been reduced, the nitrocellulose 

membranes from (a) were dried and exposed to film to reveal the 35S labeled hPygo2 

protein hPygo2 appears as a band at approximately 50 kDa. The relative position ofthe 

49.5 kDa molecular weight marker is indicated. 
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To confirm the ability of the Hausenpfeffer antiserum to detect different portions 

of the hPygo2 protein, HeLa cells were transiently transfected with different regions of 

the hPygo2 protein fused to Gal-4 (Figure 3.5 a). The transfected Gal-4-hPygo2 

constructs were detected in HeLa cell lysate by immunoblorting with the Hausenpfeffer 

antiserum, targeting the hPygo2 protein (Figure 3.5 b). The hPygo2 antibodies present in 

the Hausenpfeffer antiserum detected all Gal-4-hPygo2 tagged proteins, except for the 

transfected Gal-4 tagged PHD region ofhPygo2 (Gal-4-hPygo2-2). This result was 

consistent with the design of the antigen which did not include the PHD region. The 

Hausenpfeffer antiserum, designed to interact with amino acids 74-312 ofhPygo2, 

strongly recognized hPygo2 mutants that were truncated at amino acid number 95 (Gal-4-

hPygo2-4, Gal-4-hPygo2-5). This result indicated that the antiserum strongly interacts 

with a region ofhPygo2 containing amino acids 74-95. Expression of the Gal-4-hPygo2 

constructs was confirmed by immunoblotting for the Gal-4 epitope (Figure 3.5 c), using 

an antibody against the Gal-4 protein. The Gal-4 antibody detected all transfected Gal-4 

tagged hPygo2 fusion proteins including the PHD region ofhPygo2 (Gal-4-hPygo2-2), 

confirming that this tagged hPygo2 protein was indeed present in the HeLa cell lysate. 

The Hausenpfeffer antibody was also tested for its ability to interact with endogenous 

hPygo2 protein by western analysis of total whole cell lysate from cultured breast cancer 

cell lines. Immunoblotting freshly extracted total cell lysate from Bt-474 and MCF-7 

breast carcinoma cells with Hausenpfeffer antiserum showed little or no non-specific 

antibody binding (Figure 3.6), but with strong binding to a band at approximately 
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Figure 3.5 Ability of Hausenpfeffer immune serum to recognize different regions of 

hPygo2. Different regions of hPygo2 fused to Gal-4 and were transiently transfected into 

He La cells. Protein was extracted and analyzed for the expression of the transfected 

constructs. The same amount of protein was loaded onto each gel. (a) Gal-4-hPygo2 

fusion protein constructs that were transfected into HeLa cells. (b) Western analysis of 

Gal-4-hPygo2 constructs using Hausenpfeffer antiserum. (c) Western analysis ofGal-4-

hPygo2 constructs using an anti-Gal-4 antibody. The Gal-4 antibody recognizes all Gal-

4-hPygo2 protein constructs. 
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Figure 3.6 HausenpfefTer immune serum recognizes endogenous cellular bPygo2. 

Whole cell lysate from Bt-474 and Mcf-7 cells was extrncted and analyzed for the 

endogenous expression ofhPygo2. In vitro transcribed/translated hPygo2 (hPygo2) was 

used as a positive control. A 50 kDa hPygo2 band was detected in both cell lines, with 

little or no non-specific binding. 



Whole 
Cell Lysate 

~" ~ ~ ~ 9.~ 
<b ~ ~ 

~hPygo2 



Chapter 3: Results 

50 kDa. This band most likely represented hPygo2 since it co-migrated with in vitro 

transcribed/translated hPygo2 protein used as a positive control. 

These results indicate that the antibodies present in tbe Hausenpfeffer immune 

serum specifically interact with denatured synthetically produced as well as 

endogenously produced hPygo2 protein by western analysis, with little non-specific 

antibody binding. 

3.2 Expressional analysis of bPygo2 in cancer 

3.2.1 Expressional analysis of hPygo2 in various cancer cell lines 

3.2.1.1 Expression of hPygo2 mRNA and protein in various cancer cell lines 

To study the role of hPygo2 in cancer, the expression of its mRNA was 

determined in a variety of cell lines derived from normal and malignant tissues. A 

specific probe against hPygo2 was developed, which excluded conserved regions, and 

was used for northern blot analyses to detect hPygo2 mRNA (Figure 3.7 a). Messages 

were highly expressed in ovarian (Sk-Ov-3, Es-2), cervical (HeLa, CaSki), 

neuroblastoma (Sk-N-Sh), breast cancer cell lines (Bt-474, MCF-7), and normal 

ectocervical (HEC) cells. Alternatively, hPygo2 mRNA expression was very low in 

neuroblastoma (T98G), normal endocervical (HEN) and a "normal" breast (Hs-574) cell 

line. To confirm equal loading and transfer ofRNA the same blot was reprobed for the 

"housekeeping" gene GAPDH. 

To confirm the expression of hPygo2 at the protein level, western analysis was 

performed on total cell lysate that was extracted from the cell lines that were used for the 
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Figure 3.7 Expression of hPygo2 and downstream Wnt components in various 

cancer cell lines. (a) Expression of hPygo2 mRNA determined by northern analysis, 

using a probe that specifically recognizes the hPygo2 message. Loading levels of mRNA 

were assessed by reprobing blots with a probe that specifically recognizes GAPDH 

mRNA. The relative positions of the 28s and 18s ribosomal RNAs are indicated. (b) 

Expression of hPygo2 and 13-catenin protein levels determined by western analysis of 

total cell lysate. In vitro transcribed and translated full length hPygo2 protein (hPygo2) 

was used as a positive control. Loading levels of protein were assessed by reprobing blots 

for 13-Actin. (c) Expression ofPygo binding partner Bcl-9. Total RNA was analyzed by 

RT-PCR using primers specific to Bcl-9. Levels of RNA were standardized by RT -PCR 

analysis for GAPDH. -RT, (negative control), without reverse transcriptase. 
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analysis of hPygo2 mRNA (Figure 3.7 b). In vitro transcribed/translated hPygo2 was 

used as a positive control for hPygo2 protein expression. Tite 50 KDa hPygo2 protein 

was expressed at high levels in the ovarian cancer (Es-2), breast cancer (Bt-474, MCF-7), 

cervical cancer (CaSki), and normal ectocervical cells (HEC). hPygo2 was expressed at 

higher levels compared to the mRNA in T98G cells, and expressed at lower levels 

compared to the mRNA in HeLa and Sk-N-Sh cells. Interestingly, hPygo2 was expressed 

at the highest levels in breast cancer cells (Bt-474, MCF-7) and at very low levels in the 

"normal" breast Hs-574 cells, suggesting that the high level of hPygo2 expression may 

play an important role in the breast tumour cells. Finally, the analysis of endogenous 

hPygo2 mRNA and protein shows that its expression was consistently higher in CaSki, 

Bt-474 andMCF-7 and consistently lower in Hs-574 (Figure 3.7 a, 3.7 b). 

3.2.1.2 Expression of hPygo2 strongly correlates with fl-catenin but not Bcl-9 

Pygopus was proposed to be required for the transcription from Wnt responsive 

genes by an interaction with fl-cateuin mediated through Bcl-9 (Thompson eta/., 2002; 

Kramps el a/. , 2002). Therefore, in an attempt to correlate the expression of known Pygo 

binding partners, (3-catenin protein expression was examined and compared to the 

expression of hPygo2 protein. Examination of P--<:atenin protein expression (Figure 3.7 

b), demonstrated that it very closely resembled that of hPygo2 (Figure 3.7 a) in most of 

the cell lines studied, with (3-catenin expression being the highest in Sk-Ov-3, Es-2, 

HEC, CaSki, T98G, Bt-474 and MCF-7 cells. (3-catenin was expressed at lower levels in 

HeLa and Sk-N-Sh cells. Again, the expression ofp~catenin was lower in the normal Hs-
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574 breast cells compared to the breast cancer cells. This result indicates that the 

expression of[}-catenin strongly correlates with the expression ofhPygo2, and it may be 

related to the co-operative function shared by these two proteins. 

Given that Pygopus interacts with the J}-catenin complex through Bcl-9, the 

relative expression levels of Bcl-9 were assessed by RT -PCR in a variety of cell lines 

(Figure 3.7 c). Bcl-9 mRNA was expressed highly in one cervical (HeLa), two ovarian 

(Sk-Ov-3, Es-2), and two neuroblastoma (T98G, Sk-N-Sh) cell lines, while it was 

expressed at lower levels in all of the other cell lines examined. Surprisingly, there was 

little correlation in the expression ofBcl-9 with the expression ofhPygo2 and 1}-catenin. 

3.2.2 Expressional analysis of bPygo2 in breast cancer 

3.2.2.1 bPygo2 is overexpressed in breast cancer cells 

To identifY a potential requirement in the malignancy of breast cancer, hPygo2 

expression was determined in a variety of cell lines derived from both normal and 

malignant tissues. hPygo2 protein levels were highest in the breast cancer cells Bt-474, 

MCF-7, MDA-MB 23 I and MDA-MB 468, levels were lower in the breast cancer cells 

Hs-578 T, Bt-20 and MDA-MB 157 as well as the normal breast cells Hs-574 and Hs-578 

Bst (Figure 3.8). hPygo2 protein levels were consistent with P-catenin protein expression 

in all cancer cell lines tested, except MDA-MB-231 which showed reduced J}-catenin 

and higher levels of hPygo2, as well as the normal breast cell lines Hs-574 and Hs-578 

Bst, which showed higher levels of[}-catenin than hPygo2 (Figure 3.8 a). Therefore, this 
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Figure 3.8 Expression of bPygo2 and downstream Wnt proteins in various breast 

cancer cell lines. Expression of: hPygo2, ~tenin and Cyclin Dl by western blot 

analysis of total cell lysate of the various breast cancer cell lines. In vitro transcribed and 

translated full length hPygo2 protein (hPygo2) was used as a positive control. Loading 

levels of protein were assessed by reprobing for 13-Actin. 
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result supports my hypothesis that the upregulation ofhPygo2 may play an important role 

in breast cancer. 

Finally, the average expression of the cell cycle regulatory protein and Wnt target 

gene, Cyclin D I was also examined in the breast cancer cell lines by western analysis 

(Figure 3.8 a). Cyclin Dl protein was expressed at the highest levels in the normal breast 

cell lines Hs-574, Cyclin Dl was also highly expressed in Bt-474 and MCF-7 malignant 

breast cell lines. Surprisingly, there was little correlation ofCyclin Dl with hPygo2 and 

~--atenin. 

3.2.2.2 bPygol and Bcl-9 expression does not correlate with bPygo2 in breast cancer 

cells 

The interaction ofPygo proteins with ~-catenin was shown to be mediated by 

Legless/Bcl-9 (Thompson eta/., 2002; Kramps eta/., 2002). Therefore, I assessed the 

relative expression levels of hPygol, hPygo2 and Bc/-9 in the breast cancer cell lines 

examined by RT -PCR (Figure 3.9). hPygo2 expression was highest in the breast cancer 

cells Bt-20, Bt-474, MCF-7, MDA-Ma 157, MDA-MB 231 and MDA-MB 468. hPygo2 

was expressed at lower levels in Hs-578 T and the normal cells Hs-574 and Hs-578. 

hPygol expression was highest in Hs-574 and Hs-578 normal breast cells and MCF-7, 

MDA-MB-157 and MDA-MB-231 breast cancer cells, while Bc/-9 expression was 

highest in MDA-MB-157 and MDA-MB-231 breast cancer cells. My results demonstrate 

an upregulation of hPygo2 in 6 of the 7 breast cancer cell lines analyzed. This trend was 

not observed with hPygo I, nor Bcl-9. These results suggest that a functional role of 
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Figure 3.9 Expression of human Pygo and Bcl-9 RNAs in breast cancer cell lines. 

Expression of hPygol, hPygo2 and Bc/-9 was analyzed by RT-PCR in breast cancer cell 

lines. Levels of RNA were standardized by RT-PCR analysis for GAPDH. -RT, negative 

control, without reverse transcriptase. 
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bPygo2 in breast cancer may not require its interaction witb tbe ~tenin transcription 

complex tbrougb Bcl-9. 

3.2.2.3 ~catenin and bPygo2 do not co-localize in MCF-7 and Bt-474 cells 

Since the expression ofhPygo2 in breast cancer cell lines correlated witb the 

expression of 13-catenin. It is possible, however, tbat the J3--catenin in these cells 

localizes to a different subcellular compartment than hPygo2. To address this possibility, 

I used indirect immunofluorescence and confocal microscopy to determine the 

subcellular localization of hPygo2 and 13--<:atenin in the normal and malignant breast cell 

lines (Figure 3.1 0). N. a negative control, preimmune serum was used at the same 

dilution as the hPygo2 immune serum, and showed no significant staining. Endogenous 

hPygo2 protein was predominantly localized to the nuclei of both breast cancer cell lines 

that I analyzed (Bt-474 and MCF-7) but to the cytoplasm and weakly to tbe nuclei of the 

normal breast cell line (Hs-574). Unlike hPygo2, the majority of 13--<:atenin was 

associated with the plasma membrane of the normal and cancer cell lines. Some weak 

perinuclear staining of hPygo2 and 13--<:atenin was observed in all cell lines, which may 

indicate a possible hPygo2 and 13-catenin interaction. These observations indicate that 

the majority of hPygo2 and 13--<:atenin were localized to different compartments in the 

breast cancer cells. 
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Figure 3.10 Expression and subcellular localization ofhPygo2 and JH:atenin in 

breast cell lines. The expression ofhPygo2 (green) and j3-catenin (red) were determined 

in normal breast (Hs-574) cells and malignant breast cancer (Bt-474, Mcf-7) cells using 

immunoflourescence and confocal microscopy. Preimmune serum was used at the same 

dilution as hPygo2 immune serum for a negative control. (Magnification= 200X) 
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3.2.2.4 hPygo2 is expressed in malignant breast tumours 

The expression of hPygo2 in archived surgical breast tumour specimens was 

determined by immunohistochemical analysis. I obtained 22 archived breast tumour 

sections, most of which were invasive ductal carcinomas, and I normal breast section and 

stained them for hPygo2 protein (Figure 3.11). Tumor cells were differentiated from 

normal cells based on irregularities in cell morphology (Kumar eta/., 2003) and were 

examined by a clinical pathologist (Dr. D. Robb). In 14 (64%) of tumours, there was 

staining ofhPygo2 in malignant cells, but not in the surrounding non-tumour cells. Of the 

14 positively stained specimens 6 (43%) had distinct nuclear and cytoplasmic hPygo2 

staining (Figure 3.10 d), whereas the remaining 8 (57%) tumours had only cytoplasmic 

hPygo2 staining (Figure 3.10 b, c). hPygo2 could not be detected in a normal breast tissue 

section (Figure 3.10 a). I also obtained 41ymph node sections from breast tumour patients. 

Two out of four contained metastatic tumour cells which stained positive for hPygo2 in 

the nucleus and cytoplasm, the remaining two did not contain tumour cells and did not 

stain with hPygo2. Thus, the expression ofhPygo2 in the malignant cells of these 

tumours confirms the results found in established breast cancer cell lines and further 

supports the hypothesis that hPygo2 may play an important role in breast cancer. 

3.3 Functional Analysis of bPygo2 

3.3.1 Design of an antisense oligonucleotide capable of hPygo2 knockdown 

It is possible that full length antisense constructs cause non-specific antisense 
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Figure 3.11 Immunohistochemical analysis of hPygo2 in breast tumours. (a) Normal 

breast tissue negatively stained for hPygo2 (brown). (b-d) Infiltrating ductal carcinomas 

stained with hPygo2 immune serum used at the same dilution which the pre· immune 

serum showed no staining. (b)Weak cytoplasmic hPygo2 staining, (c) strong cytoplasmic 

hPygo2 staining, (d) Strong nuclear and moderate cytoplasmic hPygo2 staining. Tumour 

sections were counterstained with hematoxylin (blue). Scale= I 00 micrometers. 





Chapter 3: Results 

effects in cell culture by fonning double stranded RNA or by containing G-quartet 

sequences (Burgess eta/., 1995). To more specifically target the expression ofhPygo2, I 

therefore designed smaller antisense molecules avoiding sequences that may cause non­

specific effects. I designed ten antisense ONs that bind to non-conserved regions of the 

hPygo2 mRNA (Figure 3.12), the relative positions to which they bind the hPygo2 eDNA 

are shown in Figure 3.12 a. In order to detennine which ON would be useful to knock 

down the expression of hPygo2, all ONs were first tested by transfecting them into HeLa 

cells. Twenty four hours after transfection, the relative levels of hPygo2 mRNA was 

detennined by RT-PCR analysis (Figure 3.12 b). A number ofONs reduced the levels of 

hPygo2 rnRNA (ON #3, 5, 8 and I 0), compared to the transfection reagent control 

(Oiigofectarnine) and an ON designed against Xenopus Pygopus 2 (Non-specific oligo). 

Spot densitometry was perfonned and expression of hPygo2 was normalized to the 

expression of the "housekeeping" gene GAPDH. Since ON #5 was found to have the 

greatest ability to knock down the expression of hPygo2 mRNA, it was therefore used in 

subsequent experiments. 

3.3.2 bPygo2 is required for tbe growth of BeLa cervical cancer cells by specific 

knockdown of bPygo2 using antisense ON 

A single oligonucleotide (ON#5, hereon referred to as a-hpy2), which had the 

greatest ability to knock down hPygo2 mRNA expression, was chosen for further 

analysis in HeLa cells. a-hpy2 was transfected along with two control ON, one 

63 



Chapter 3: Resufts 

64 



Figure 3.12 Identification of an antisense oligonucleotide capable of knocking down 

hPygo2 expression. (a) Antisense oligonucleotides were designed against the full 

hPygo2 eDNA sequence, avoiding conserved sequences such as the NHD and PHD 

domains. (b) Antisense oligonucleotides were transfected into HeLa cells at a 

concentration of250nM. RNA was extracted 24 hours later and RT-PCR analysis was 

performed to access the relative knockdown of hPygo2 RNA levels. Densitometry was 

performed, standardizing the relative hPygo21eve1s to the relative GAPDH levels. RT-, 

(negative control), without reverse transcriptase. 
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complementary to Xenopus Pygopu.• 2 (Non-specific) and another ON complementary to 

the u-hpy2 ON with a 4 base-pair sequence substitution (Mismatch). Knock down of 

hPygo2 using the u-hpy2 ON, was accompanied by a significant decrease in cell numbers 

at 48 and 72 hours after transfection compared to reagent alone (Oiigofectamine) and the 

control ON (Figure 3.13 a). Most of the reduction in cell growth occurred at 48 hours 

after transfection, while cell number doubled by 72 hours after transfection, most likely 

due to the normal proliferation ofuntransfected cells. In order to confirm the knockdown 

of hPygo2 mRNA and protein by the u-hpy2 ON, RT -PCR as well as western analysis 

were used (Figure 3.13 b, c). Specific knockdown ofhPygo2 mRNA expression was 

achieved 24hrs after transfection of u-hpy2 compared to the control ON, without 

affecting the expression of the alternate, but related, Pygo family member hPygol (Figure 

3.13 b). The introduction of u-hpy2 into He La cells also resulted in a knock down of 

endogenous hPygo2 protein 48 hours after transfection with tbe u-hpy2 ON (Figure 3.13 

c). These results suggest that specific knockdown of hPygo2, but not hPygo I results in a 

decrease in cell numbers of exponentially growing HeLa cells. 

3.3.3 bPygo2 is required for the growth of MCF-7 and MDA-MB-468 breast cancer 

cells 

Since I have shown that hPygo2 mRNA and protein are expressed at relatively 

high levels in breast cancer cells compared to normal breast cell lines (Figure 3.8, 3.9), I 

hypothesized that the high levels of expression ofhPygo2 in breast cancer cells may be 

required for their growth. 
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Figure 3.13 Knockdown of endogenous bPygo2 using antisense ON in BeLa cervical 

cancer cells. Reagent control (Oiigofectamine), antisense Xenopus Pygopus2 (non­

specific), and four base mismatch (mismatch) controls are indicated. (a) Knockdown of 

hPygo2 by antisense ON results in a decrease ofHeLa cell numbers 48 and 72 hours after 

transfection. Cell number was assayed by direct counting with a hemacytometer using 

trypan blue exclusion. (b) RT-PCR analysis showing specific knockdown of hPygo2 

mRNA without affecting expression of the related Pygo family member, hPygo/. RT-, 

(negative control), without reverse transcriptase. (c) Western blot analysis showing 

knockdown of endogenous hPygo2 protein. Levels of eDNA and protein were 

standarrnzed using GAPDH and 13-Actin. Experiments were performed in triplicate. 
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Transfection of the u-hpy2 ON into MCF-7 cells resulted in a considerable 

reduction of cell numbers (Figure 3.14 a) 48 and 72 hours after transfection with the 

hPygo2-specific u-hpy2 ON, compared to the cells transfected with the NS and MM 

control ONs. At 72 hours after transfection, cell numbers were reduced to 52%, compared 

to 93% with the NS control or 83% for the MM control. The reduction in cell numbers 

was preceded by a significant downregulation ofhPygo2 protein 48 hours after 

transfection, compared to the non-specific and mismatch control ONs while 

~tenin levels remained unaltered (Figure 3.14 b). Further analysis of the Wnt target 

gene and cell cycle regulatory protein Cyclin Dl (Figure 3.14 b), showed that its levels 

were decreased after transfection of the u-hpy2 oligonucleotide suggesting that the 

reduction ofMCF-7 cell number may be due to a reduction of cell growth due to cell 

cycle arrest. 

Similarly, transfection of the breast cancer cell line, MDA-MB-468 with the 

hPygo2 specific ON and control ONs resulted in a significant reduction in cell growth 72 

hours post-transfection. Cell numbers were reduced to less than 50% of controls after 

transfection of the u -hpy2 ON (Figure 3.15 a). hPygo2 protein levels, and to a lesser 

extent j3--;;atenin, were found to be reduced 72 hours after transfection, (Figure 3.15 b). 

3.3.4 jl-eatenin is not required for growth of MCF-7, nor MDA-MB-468 cells 

It was previously shown that MCF-7 cells exhibit Wnt dependent transcription 

and expression of the Wnt target gene, Cyclin D1 (Lin eta/., 2000). Therefore, to confirm 

the involvement of hPygo2 in the canonical Wnt pathway in these cells, I analyzed the 
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Figure 3.14 Knockdown of hPygo2 in Mcf-7 breast cancer cells using antisense ONs. 

Reagent control (Oligofectamine), antisense Xenopus Pygopus2 (non-specific), and four 

base mismatch (mismatch) controls are indicated. Cells were counted with a 

hemacytometer using trypan blue exclusion (a) Growth ofMcf-7 cells 48 and 72 hours 

after initial treatment with antisense ON. Growth is given as the% control transfected 

with transfection reagent alone. (b) Western analysis ofhPygo2, Cyclin Dl and 

~--catenin 48 hours after hPygo2 knockdown by antisense ON. Results indicated are 

based on three experiments performed in triplicate. 
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Figure 3.15 Knockdown of bPygo2 and 11-catenin in MDA-MB 468 cells using 

antisense ONs and siRNA. Reagent control (Oligofectamine), antisense Xenopus 

Pygopus2 (non-specific), and four base mismatch (mismatch) control ONs, along with 

Non-specific control siRNA and 13---<:atenin siRNA are indicated. (a) MDA-MB-468 cell 

growth was assayed at 72 hrs after transfection. (b) Western analysis ofhPygo2 and 

j3--catenin 72 bours after knockdown ofhPygo2 and 13---<:atenin. Protein levels were 

standardized by reprobing blots with 13-Actin. Results indicated are based on three 

experiments performed in triplicate. 
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requirement ofp"""atenin for cell growth in MCF-7 cells by knocking down its 

expression with commercially available siRNA. Since p"""atenin and hPygo2 proteins 

were expressed at high levels in these cells, I hypothesized that growth would be reduced 

following knockdown ofp-Catenin, as was the case for the knockdown ofhPygo2. 

Surprisingly, the depletion ofP-Catenin, was not accompanied by a reduction in 

cell numbers when compared to non-specific siRNA controls 72 hours after transfection 

(Figure 3.16 a). Knockdown of approximately I 00% of Jl~tenin protein levels with 

~atenin siRNA was confirmed by western analysis (Figure 3.16 b). Expression levels 

of hPygo2 and Cyclin D I remained unchanged after ~atenin knockdown when 

compared to reagent alone (Oligofectamine) or a non-specific siRNA (Figure 3.16 b). 

Thus, Jl"""atenin is not required for cell growth, nor for the expression of the Wnt target 

gene Cyclin Dl in MCF-7 cells. 

The knockdown of P~tenin in MDA-MB-468 cells similarly showed no 

reduction in cell numbers 72 hours after transfection compared to the reagent and non­

specific controls (Figure 3.15 a). A reduction in P~tenin protein levels was confirmed 

by immunoblotting siRNA treated MDA-MB-468 cell lysate harvested 72 hours post­

transfection (Figure 3.15 b). 

The lack of requirement for P~tenin in the growth of MCF-7 cells is consistent 

with our observation that it is predominantly localized to the cytoplasm and membrane 

compartments ofMCF-7 and to the membrane compartment ofBt-474 cells (Figure 3.10) 
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Figure 3.16 Knockdown of P-catenin in Mcf-7 cells using RNAi. Reagent control 

(Oligofectarnine) and non-specific siRNA controls are indicated. (a) Growth ofMcf-7 

cells 72 hours after initial treatment with 13-catenin siRNA. (b) Western analysis of 

hPygo2, Cyclin D I and 13-Catenin 48 hours after 13-catenin knockdown by RNAi. Protein 

levels were standardized by reprobing blots with 13-Actin. Results indicated are based on 

three experiments performed in triplicate. 
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and therefore, is not present in a transcriptionally active Wnt complex to promote cell 

growth. 

3.3.5 hPygol but not hPygo2 can induce the activation ofWnt-dependent 

transcription 

To directly address the role ofPygopus proteins in the transcription ofWnt target 

genes, I performed transcription assays in MCF-7 cells using the TOPFLASH vector 

(Figure 3.17). TOPFLASH contains multiple TCF/LEF binding sites which control the 

expression of the reporter gene, Luciferase. The amount ofLuciferase protein transcribed 

and translated can then be measured with a luminometer. As a positive control, a 

constitutively active mutant form ofl3-catenin (S37A) was used which contained a 

missense mutation resulting in an amino acid substitution replacing a Serine residue with 

Alanine. This mutant has been shown to be resistant to proteasomal degradation due to 

lack of phosphorylation at this residue which normally targets 13-catenin for degradation 

(Wu et a!. , 2001). 

Transfection of S37A into MCF-7 cells resulted in an activation ofWnt dependent 

transcription greater than three-fold, while co-transfection ofhPygo2 or Bcl-9 did not 

show an activation of Wnt dependent transcription above this level. In fact, transfection 

ofhPygo2 and S37A resulted in a slight decrease ofWnt dependent transcription. In 

contrast, co-transfection ofhPygol and S37A resulted in an approximate 9 fold increase 

in the Luciferase reporter compared to an empty vector control. These results confirm 

that hPygol is likely the Pygo family member that is involved in the transcription ofWnt 

target genes. 
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Figure 3.17 bPygol but uot bPygo2 mediates canonical Wnt signaling transcription 

in Mcf-7 cells. Mcf-7 cells were transiently transfected with molar equivlents of either 

FOPFLASH (Mutant Tcfbinding sites) or TOPFLASH (Tcfbinding sites) Wnt reporter 

luciferase constructs, in conjunction with constitutively active 13-catenin S37A, hPygol, 

hPygo2 or Bcl-9. Relative luciferase units were determined and normalized to total 

cellular protein. Means and standard deviations indicated are based on three experiments 

performed in triplicate. (a and b, p < 0.005 (p ~ 0.0025); a and c,p < 0.005 

(p ~ 0.0018)] 
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CHAPTER4 
DISCUSSION 

Chapter 4: Discussion 

Although poorly understood, aberrant Wnt signaling has been implicated in the 

progression of breast cancer (Michaelson and Leder, 2001; Li eta/., 2003; Hatsell eta/., · 

2003; Howe and Brown, 2004) . Therefore, the main objectives of this thesis were to 

evaluate the expression and requirement of the novel Wnt signaling family member, 

hPygo2, in breast cancer. With an antibody raised against non-conserved regions of 

hPygo2, I was able to determine its expression in normal and malignant cell lines and 

tumours. To address a possible functional requirement for hPygo2, I designed antisense 

oligonucleotides that specifically knocked down its expression. Interestingly, my results 

indicate a role for hPygo2 in the growth of breast cancer cells, independent ofj3-catenin. 

This finding may help provide insight into novel hPygo2 functions. These results also 

suggest that hPygo2 may be a more suitable therapeutic target than 13--catenin for tbe 

treatment of breast cancer. 

4.1 Development of bPygo2 antisera 

One of the initial objectives of this thesis was to produce an antibody against 

hPygo2. The antibody could then be used as a molecular tool to study the expression of 

hPygo2. In chapter 3.1 of the results section, I have shown the successful production and 

characterization of an antibody that specifically recognizes hPygo2. In general, all 

antibodies were able to bind specifically to the native hPygo2 protein compared to the 

preimmune sera used as a negative control as shown by immunoprecipitation and by 
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immunoflourescence. The preimmune sera, however, was not used as a negative control 

for the western blots that were performed. This would have been a good negative control 

to confinn the specificity of the antibodies used to identiry denatured hPygo2 protein. 

The Hausenpfeffer immune serum was raised to avoid cross reactivity with 

conserved protein motifs present in the Pygo2 protein which may be present in other 

cellular proteins. For example, the PHD domain was proposed to mediate protein-protein 

interactions (Aasland eta/., 1995), and has since been shown to be present in many other 

proteins. It was important to avoid raising antibodies that would cross react with this 

domain since I wanted them to specifically interact with hPygo2. Therefore, I designed 

the Pygopus protein antigen to exclude all conserved amino acid sequences. 

4.2 Antisense oligonucleotide and siRNA design 

The ability of antisense ONs to inhibit protein production was first discovered in 

1978, when a short 13 nucleotide antisense ON was used to inhibit tbe translation of viral 

proteins and therefore inhibit the replication ofRous sarcoma virus (Stephenson and 

Zamecnik, 1978; Zamecnik and Stephenson, 1978). Since then, the use of antisense ONs 

has become a common method to knock down the expression of a protein. This is a 

particularly useful method to specifically target overexpressed gene products that may 

play roles in the malignancy of a given cancer. 

There are a number of potential problems associated with the use of antisense ON 

and a number of considerations must be taken into account in the design and use of 

antisense ON with regard to tbe mRNA structure, ON sequence and modifications. 
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The three dimensional structure resulting from folding and post transcriptional 

modification of an mRNA is complex. Therefore, the efficacy of an antisense ON is 

mostly dependent on its accessibility to the target sequence. Complex algorithms are 

useful in predicting efficient antisense ON sequences, but they cannot exactly predict 

how mRNA is folded or arranged in the cell, so effective antisense ON design is typically 

done stochastically. 

When choosing the sequence for an antisense ON, it is important to carefully 

consider the antisense ON sequence. This will have a direct impact on the formation of 

secondary structures within the antisense ON. The less secondary structure that there is 

present the less likely that the ON will interact with itself instead of interacting with its 

target sequence. Other considerations must also be made with regard to the antisense ON 

sequence. For example, it is also important to avoid repeated CG sequences as well as 

GGGG sequences. In eukaryotes the cytosine adjacent to a guanine is usually methylated. 

Therefore, unmethylated CG sequences in vivo can initiate the activation of an immune 

response, as it has been shown that unmethylated CG sequences in mice result in B-cell 

activation and the secretion of antibodies (Krieg eta/. , 1995). Also, antisense ON 

containing GGGG may also result in non-specific effects. For example, it was found that 

antiproliferative effects of antisense ON for c-myb and c-myc in smooth muscle cells was 

caused by a non-antisense mechanism likely due to the presence of a GGGG sequence 

(Burgess eta/., 1995). These examples illustrate the importance of the antisense ON 

sequence chosen for experimentation. 
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Lastly, it is possible to chemically modify ON. This is an important consideration 

to take into account when designing an antisense ON. The halflife of the ON will have 

direct consequences on its efficiency to reduce levels of gene expression. In the cell, the 

nuclease family of enzymes function to degrade DNA molecules. Therefore, many 

antisense ONs that are used today contain modifications that enhance their nuclease 

resistance. Although many modifications of antisense ON exist, one of the most popular 

modification of antisense ON is the replacement of phosphodiester bonds with 

phosphorothioate bonds (Green eta/., 2000). In an antisense ON, phosphorothioate bonds 

greatly enhance the half life of an antisense ON to resist nuclease mediated degradation 

More recently, antisense ON containing 2' -0-methyl groups have been shown to have 

greater stability and higher affinity for target RNA molecules (McKay eta/., 19%). 

Therefore, 2' ..0-methyl modified antisense ON directed against hPygo2 may have 

improved antisense effects compared to phosphorothioate ON used in this study. Indeed, 

the use of antisense ON is an efficient way to down regulate certain gene products in a 

disease state. There are many examples studying the effects of antisense ON and there are 

some antisense ON which have entered clinical trials, such as an antisense ON targeting 

Protein Kinase Ca (McGraw eta/., 1997). 

4.3 Role of hPygo2 in breast cancer 

To date, canonical Wnt signaling has a poorly understood role in breast cancer. 

Wbile J3-catenin has been reported to have nuclear/cytoplasmic staining in 

approximately 60% of breast tumours in two independent studies (Lin eta/., 2000; Ryo et 
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a/., 2001), mutations in Wnt pathway components that activate !3--catenin occur at 

relatively low frequencies (Polakis, 2000; Smalley and Dale, 2001; Giles eta/., 2003). It 

has been suggested that overexpression ofWnt ligands or reduced expression ofWnt 

antagonists may lead to the nuclear stabilization of j}-catenin in mammary 

carcinogenesis (Howe and Brown, 2004 ). The absence of a conclusive answer to this 

apparent discrepancy necessitates an understanding of the true requirement for Wnt and 

!3--catenin nuclear complexes in breast epithelial malignancy. 

My results are the first demonstration of the potential requirement for the protein, 

hPygo2, in cancer. I have shown that hPygo2 protein, which is normally present at lower 

levels in the cytoplasm of normal adult cells, is found at higher levels in the nuclei of 

certain cancer cells, potentially representing a key step in the progression of this disease. 

Nuclear localization ofPygopus is important for its proposed function as a transcriptional 

activator (Thompson eta/., 2002; Kramps eta/., 2002). It is possible that hPygo2 may be 

sequestered in the cytoplasm in normal cells by another cytoplasmic anchoring protein, as 

is the case for the cytoplasmic retention ofl3--<:atenin in the absence of a Wnt sigoal. On 

the other band, when cells are actively dividing, hPygo2 may be recruited to the nucleus, 

to function as a transcriptional regulator thereby activating the expression of genes 

involved in promoting cell cycle progression or repressing genes involved in apoptosis. 

More work is required to address the functional sigoificance ofhPygo2 in normal 

breast cells. This could be done by constructing a nuclear localization deficient hPygo2 

protein, which could be used as "bait" in order to examine cytoplasmic interacting 

proteins. The identification of key cytoplasmic interacting proteins may help to elucidate 
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the role ofhPygo2 in normal breast cells. Also, knockdown ofhPygo2 with antisense ON 

could also be performed in normal breast cells. Tbereby confirming, whether or not, that 

the growth reduction of the breast cancer cell lines examined was specific to a cancer cell 

and not to a normal cell. 

My data also indicate that hPygo2 was required for the growth of mammary 

carcinoma cells (MCF-7, MDA-MB 468) and for the expression of the Wnt target, and 

cell cycle promoting gene Cyclin Dl in Mcf-7 cells. The Cyclin Dl protein is a positive 

regulator of cell cycle and required for G I to S phase transition (Coqueret, 2002; Stacey, 

2003). The increased expression ofCyclin Dl in actively dividing cells promotes cell 

cycle progression by forming a complex with Cyclin Dependent Kinase 4 (CDK4). This 

complex has been shown to increase phosphorylation of the Retinoblastoma protein 

(pRb), therefore promoting cell cycle progression through the Gl phase (Kato eta/., 1993; 

Ewen eta/., 1993). Therefore, the reduction ofCyclin Dl by hPygo2 antisense suggests 

that the cells may be arresting in the G I phase of the cell cycle and may be due to a 

decrease in the phosphorylation of pRb. 

Along with growth reduction and a reduction of Cyclin D 1 protein, hPygo2 

siRNA treatment of MCF-7 cells, resulted in a decrease in the expression ofCyclin A (K. 

Kao, unpublished observations). Cyclin A, which is involved promoting inS phase of the 

cell cycle by binding to CDK 2, thereby activating proteins involved in DNA replication, 

may also result in growth arrest (Yarn eta/. , 2002). It is possible that the reduction in 

Cyclin A, a gene that is not directly regulated by Wnt signaling, is due to a cascade effect 

involving the downregulation of Cyclin D 1. For example, a decrease in the levels of 
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Cyclin D I results in a decrease in E2F transcription factor activity (Johnson, 1995). A 

reduction in the E2F transcription fuctor can then lead to a decrease in the expression of 

Cyclin A (Schulze eta/., 1995). Therefore, the decrease in Cyclin A after hPygo2 siRNA 

treatment may he a secondary effect resulting from the knock down of Cyclin D I. This 

could he addressed by a knockdown ofCyclin Dl with antisense ON or siRNA to 

determine iflevels of Cyclin A are affected. Also, it is possible that hPygo2 may he 

directly or indirectly regulating the transcription of Cyclin A by an undetermined 

mechanism. Therefore, these results suggest that the knockdown ofhPygo2 may he 

resulting in the growth arrest of the cancer cells examined. Although, more work is 

required to confirm that the reduction in cell numbers was not due to apoptosis. 

4.4 bPygo2 and fl-catenin may function independently in breast cancer cells 

Pygo proteins overexpressed in breast cancer may play an additional role than the 

proposed mediation of canonical Wnt signals. This hypothesis is consistent with studies 

demonstrating transcriptional activity of DNA tethered Gai4-Pygo2 fusion proteins 

(Belenkaya eta/., 2002; Townsley eta/., 2004) and ofPygo2 constrocts lacking 

p-catenin binding sequences that are either fused to dominant activating TCF (Thompson, 

2004) or expressed on their own (Lake and Kao, 2003). In fact, a Gai-4-Pygo2 fusion 

protein tethered to a Gal-4 binding site can activate transcription in ovarian cancer cells 

that do not express f3-catenin (K. Kao, unpublished observations). Therefore, hPygo2 

may he recruiting a number of other proteins to activate transcription in the absence of 

!3-catenin, indicating another possible functional role ofhPygo2. Also I have shown that 
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hPygol mediates the Wnt signal through !3--<:atenin, while hPygo2 does not (Figure 3.17). 

These results, therefore, support a model in which human Pygo2 probably acts as a 

transcription factor, by recruiting other proteins in a !3--<:atenin independent manner, and 

that human Pygol, like Drosophila Pygo, is likely dedicated to the Wnt signaling 

pathway through 13--<:atenin. 

In further support of this model, my results demonstrated that the expression 

levels of hPygo2 correlated with the expression of 13--<:atenin but not its only known 

binding partner, Bcl-9. The breast cancer cell line MCF-7, used in this study, was 

previously shown to exhibit Wnt-dependent transcription, Cyclin OJ expression, as well 

as 13--<:atenin/TCF complex forrnation (Lin eta/., 2000). The Wnt-dependent 

transcriptional activity of this cell line has also been compared to a number of other 

breast cancer cell lines, including one that contains a mutation in APC (DU4475) which 

results in constitutive Wnt activation and transcription. Compared to these APC-deficient 

cells, the MCF-7 cells have a relatively low, almost basal level ofWnt activity (van De et 

al., 2001 ), in contradiction to that reported by Lin. My results confirrn those obtained in 

the forrner study (van De et. al., 2001) and it is therefore not surprising that Bcl-9 

expression does not correlate with that of !3--<:atenin and hPygo2. 

These findings, as well as the lack ofBcl-9 expression in MCF-7 cells, supports 

my hypothesis that hPygo2 may have an independent function from !3--<:atenin. IfWnt 

signaling were actively occurring in these cells, which is unlikely, I would have expected 

Bcl-9 to be present to tether Pygo to the 13--<:ateninffCF complex (Kramps et al., 2002). 
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Therefore, I suspect that canonical Wnt signaling may be absent or occur at low levels in 

these cells, given that the expression ofBcl-9 is limiting. 

In further support of my hypothesis, inhibition of J}-catenin by ICAT 

overexpression had no effect on HeLa cell growth (Sek:iya eta/., 2002), consistent with 

my observations using 13--<:atenin siRNA in MCF-7 cells. These data suggest that at least 

in two cancer cell lines, canonical Wnt signaling does not appear to be important for cell 

growth. Indeed, it has been found that hPygo2, but not 13--<:atenin was required for 

survival of at least one other epithelial ovarian cancer cell line, TOV-21 G (K . .Kao, 

Manuscript in preparation). It has also been previously reported a requirement for Pygo2 

in the transcription of the non-Wnt responsive genes in Xenopus embryos (Lake and .Kao, 

2003). These data further imply an additional functional role ofhPygo2, independent of 

J}-catenin. 

The proposed function of Pygo in mediating the remodeling of chromatin may be 

too simplistic, since DNA tethered Pygo shows transcriptional activity (Belenkaya eta/., 

2002; Townsley et at., 2004). It is also well known that the histone acetyltransferase, 

p300/CBP is associated with the j3--<:atenin!TCF complex and likely functions to regulate 

chromatin structure at Wnt promoter sites (Hecht et a/., 2000). In fact, p300/CBP also 

contains a PHD domain which has been shown to he an essential component of the 

acetyltransferase domain ofp300/CBP (Kalkhoven eta/., 2002). Therefore, the 

requirement of the PHD domain ofPygopus as well as its putative chromatin remodeling 

function in the transcription ofWnt target genes seems to be redundant in the 

transcription of Wnt target genes. 
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It has been previously shown that levels of Wnt signaling determined by 

transcription assays showed a strong correlation with the expression ofCyclin Dl in 

breast cancer cells including MCF-7 (Lin eta/., 2000). Because, as I have shown, 

f3-catenin is not required for the expression of Cyclin D I in these cells, the expression of 

Cyclin Dl may not be a true indication of canonical Wnt signaling. This result is 

consistent with immunohistochemical studies of infiltrating ductal carcinomas tbat were 

shown to exhibit a divergence of Cyclin Dl and j3-catenin expression (Lim and Lee, 

2002). Indeed, Cyclin Dl expression has been shown to be required for cell growth and 

is regulated by other non-Wnt dependent proteins in MCF-7 cells, such as estrogen 

receptor (Watts eta/. , 1994) and Peroxisome Proliferator-activated Receptor :y (PPARy) 

(Yin eta/., 2001; Qin eta/., 2003). My results suggest tbat Cyclin Dl may not be strictly 

regulated by J3- catenin in MCF-7 cells, as Cyclin D I is likely regulated by many other 

factors in these cells. 

Reduction ofhPygo2 on the other hand, did result in a decrease ofCyclin DI 

(Figure 3.14), which leads one to question the role ofhPygo2 in its expression. Since 

Cyclin Dl is a known Wnt target gene, it is possible that hPygo2 may directly regulate its 

expression independently ofJ3-Catenin. Since Cyclin Dl expression is regulated by 

factors (estrogen receptor and PPARy) other than j3-catenin, I hypothesize that hPygo2 

might be either directly or indirectly involved in the regulation of these factors in the 

transcriptional regulation of the Cyclin Dl gene. Futhennore, hPygo2 may regulate the 

turnover ofCyclin DI by a post translational mechanism independent of transcriptional 

regulation. 
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4.5 Conclusions 

In conclusion, I have confirmed my hypothesis that the overexpression of hPygo2 

may contribute to the growth of breast cancer cells, which I have demonstrated through 

expressional knockdown of hPygo2. Wnt-dependent transcription was shown to require 

Pygopus in colorectal cancer cells (Thompson eta/., 2002), and, while not assayed, 

growth of these cells is predicted to be inhibited by Pygo knockdown consistent with that 

shown for j3--<:atenin (Rob eta/., 2001; Sekiya eta/., 2002; Verma eta/., 2003). Not all 

cancers likely involve deregulation of the j3--<:ateninlhPygo2 complex. Divergence of 

these components, however, suggests the potential for a more global involvement of Pygo 

proteins than j3--<:atenin in cancer. This would make Pygo a more suitable therapeutic 

target, and necessitate a greater understanding ofPygo functional protein associations. 

4.6 Future directions 

The expression ofPygopus in malignant cell lines and tumours, suggests that 

there may be a correlation between hPygo2 expression and disease. To confirm this 

finding, a study utilizing a larger patient population would be needed. Factors such as 

patient survival, disease-free survival as well as information on how the patient was 

treated for their disease could be correlated with hPygo2 expression to determine if 

hPygo2 could be used as a prognostic marker. 

There has been no work demonstrating the transcriptional regulation ofhPygo2. 

This is an important question to consider since hPygo2 expression was upregulated in 
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cancer. Is the overexpression ofhPygo2 in breast cancer due to its constitutive 

transcriptional up-regulation? To address this question, I analyzed the promoter region of 

hPygo2 and found that there are consensus sites for the transcription factor E2F (Data not 

shown). Many cancers downregulate the pRB pathway resulting in E2F activation and 

the transcription of genes involved in cell cycle progression (Yamasaki, 2003), this may 

partially explain the high levels of expression of Pygpus in cancer. Experiments to further 

explore this finding could include cloning the promoter region ofhPygo2 into a 

promoter-less expression vector to regulate the expression of a reporter gene such as 

Luciferase. To further characterize a possible transcription factor-DNA interaction, 

chromatin immunoprecipitation could be used, alone or in conjunction with 

electrophoretic mobility shift assay to determine which regions of the promoter that the 

hypothesized transcription factors bind. A functional demonstration of the transcriptional 

regulation ofhPygo2 by E2F could he performed by knockdown or overexpression of 

E2F followed by western blotting for hPygo2 to monitor protein expression changes. 

Legless/Bcl-9 is hypothesized to interact with Pygopus in Drosophila (Kramps et 

a/., 2002), and I have shown that hPygol, but not hPygo2, is required for Wnt dependent 

transcription. It would therefore be interesting to study the interaction of Bcl-9 with both 

human Pygo family members. Since I have shown that Bcl-9 does not activate Wnt 

dependent transcription, I hypothesize that its interaction with Pygopus may he restricted 

to hPygo2. This could be easily confirmed by co-immunoprecipitation experiments to 

identifY the protein interactions. 
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Finally, in order to directly address my hypothesis that hPygo2 may act 

independently of f3--<:atenin, proteomics could be used as a tool to identify hPygo2 

interacting proteins. Using the antibodies that I have produced to immunoprecipitate 

hPygo2 from MCF-7 cells followed by proteomic analysis would be a great method to 

identify proteins that interact with bPygo2. Candidate hPygo2 interacting proteins would 

have to be further confirmed to interact, and analyzed to determine the functional 

significance of the protein-protein interaction. 

Identification of known proteins that interact with hPygo2 could be identified by 

immunoprecipitation of hPygo2 from cells followed by separation of proteins by high 

resolution, twn dimensional gel electrophoresis. Proteins spots stained with Coomassie 

Blue could then be isolated and digested with a specific protease, such as trypsin. Trypsin 

digestion yields a peptide "fingerprint" which contains specific peptide fragments of a 

larger protein. The peptide "fingerprint" of the mass/charge ratios of the peptide 

fragments could then be determined by matrix-assisted laser desorption/ionization time of 

flight, also known as MALDI-TOF mass spectroscopy. Database analysis of the 

mass/charge ratios of peptide fragments could then be used to identify the interacting 

protein. 

Identification of unknown proteins that interact with hPygo2 could be identified 

in the same way as stated above, except that tandem mass spectroscopy could be used. 

Tandem mass spectroscopy ultimately can lead to the determination of amino acid 

sequence present within the mixture of hPygo2 interacting proteins. Amino acid 
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sequences could then be used to identifY predicted proteins present within the human 

genome and hence, identifY unknown predicted proteins that internet with hPygo2. 
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