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Abstract 

The development of algorithms for extracting ocean wave information from X-band 

nautical radar images is addressed. T he algorithms are designed based on the t hree­

dimensional (3-D) fast Fourier t ransform (FFT) and two-dimensional (2-D) contin­

uous wavelet transform (CWT). First. in order to design the 3-D FFT-based wave 

algorithm , methods for extracting sea surface current information using least squares 

(LS), iterative LS, and normalized scalar product (NSP) methods are examined. With 

the results of mode classification of wave components from the iterative LS current 

estimation process, an improved wave measurement algori thm is proposed in which a 

modified band-pass filter is constructed to retain the contribu tions of the fundamental 

wave only and to remove the harmonics and non-wave components for wave informa­

tion extraction. Noise components and aliasin~ pffpcts arP also PliminatPn based on 

existing theories and techniques <:~.ssociaLed with 3-D FFT-based wave field analysis. 

An alternative scheme for wave measurement using the 2-D CWT is also presented. 

T he relationship of t he scaling factor of the CWT and the minimum distinguishable 

wavenumber is developed and its expression is presented with a calibration factor. 

Empirical optimal values of the scaling parameter for variable wave conditions are 

provided based on extensive simulated radar tests. Based on the existing techniques 

employed in the classic 3-D FFT analysis, a look-up-table method and an iterative 

method are proposed to determine the calibration factor. For the iterative method, 
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a self-adaptive wavelet analysis algorithm for wave measurement is developed. The 

designed wave algorithms are first evaluated with the numerical simulation under var­

ious sea conditions, assuming shadowing modulation (SH) and tilt modulation (TM). 

Then for fur ther validation, the algorithms are applied to dual-polarized radar fi eld 

data collected on the easL coast of Canada. Results derived from FFT- and CWT­

based algorithms are analyzed and compared with in situ TRIAXYS directional wave 

buoy da ta collected in the same region. The comparisons reveal t hat the proposed 

algorit hms are practical and effective for retrieving ocean wave information from the 

radar da ta . 
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Chapter 1 

Introduction 

1.1 Background of Study 

Ocean wave and current parameters, including wave propagation direction, mean 

period, peak frequency, and current velocity. provide important information for the 

::;afety and efficiency of operation and routing of marine traffic as well as for offshore 

platform design and maintenance. Such information can be acquired by a variety of 

means including visual observations of the sea surface, buoy measurements, analysis 

of synthetic aperture radar (SAR) data, and inverting radar plan posit ion indicator 

(PPI) images. In practice, all methods will experience some limitations in monitoring 

t he maritime space. For example. results of visual observation are highly dependent 

on the experience of the observers . Sa telli te data can provide wave field averaged over 

a la rge area, but it is costly to obtain. Furthermore, satellite-borne sensors cannot 

provide continuous ocean wave measurement of a specified area since it usually takes 

hours or clays for a satellite Lo revisit the same area of the earth. Although moored 

wave buoys record relatively accurate directional wave field information , they only 

provide the local sea state conditions where the buoy is deployed and are of limited 

1 
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utility to mobile ships [1]. 

Due to the interaction of the electromagnetic signal t ransmitted by the nautical 

radar with ripples on t he ocean surface, a backscattered signal is received by the radar 

and becomes visible on the display unit. This signal is commonly referred to as sea 

clutter [2], and traditionally it was considered as undesirable noise for ship operation 

and navigation purposes during the early t ime of radar development . However , such 

"noise" contains useful information about ocean waves and surface currents. T he 

correlation of the display unit clutter with the wave field was not addressed meaning­

fully unt il Wright proposed an a pproach for imaging ocean waves from sea clutter in 

X-band radar images in 1965 [3]. 

Conventional nautical radar is installed on most vessels and scans the sea surface 

wiLh high temporal and spatial resolution. Also, it produces consecutive images of a 

specified area which allows continuous sea state monitoring without directional am­

biguity. It is not as easily damaged as moored buoys which may experience collisions 

with ocean traffi c or be shaken under severe sea states. Therefore, using remote sens­

ing techniques to measure relia ble dynamic ocean wave and current parameters from 

PPI images of a nautical radar becomes a convenient and reliable solution for con­

tinuous and real-t ime sea state surveillance under a wide variety of ocean condi t ions 

without incurring additional capital cost. 

The Newfoundland and Labrador region encompasses over 29,000 kilometers of 

coastline and St. John's is one of the oldest harbors in North America. Newfoundland 

is famous for its traditional fishery industry as one of the world 's three major fishing 

grounds. Extensive ship and surface platform operations occur in the region due to 

t he substantial activity of the local oil indust ry. With this as a motivation for this 

research , a lgori thms are developed to provide reliable environmental information so 

that t hese marit ime activities may be conducted safely and efficiently. 
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1.2 Literature Review 

In t he past forty years. remote sensing techniques have evolved quickly and many 

applications for the measurernent of the ocean waves and currents have been de­

signed . Significant efforts have b een expended in the research of ocean wave monitor­

ing systems such as synthetic aperture radar (SAR) [4], side-looking aperture radar 

(SLAR) [5], and high-frequency (HF) radar [6]. Also, the wave and current measure­

ment capabilit ies of typical nautical radars that operate in the X-band for sea surface 

surveillance have been investigated. X-band radars, operating at wavelengths of 2.50 

em to 3. 75 em. t ransmit an electromagnetic signal that interacts with the rough sea 

surface and then receive the backscattered field (see Fig. 1.1). The backscattered sig­

nals a re then converted to PPI images. Unlike the costly satelli te surveillance or t he 

easily damaged wave buoy instrument , the conventional naut ical radars installed on 

most vessels can provide high temporal and spatial resolution mapping of continuous 

ocean surface processes. During t he 1960s. ljima et al. [7] and Wright [3] presented 

an approach for imaging ocean waves using a marine radar. Before that research. the 

ocean backscatter was simply considered as a kind of noise since it obscured target 

echoes in the marine radar image [8]. Subsequent early research was conducted to 

monitor ocean waves and estimate the wave direction, wave length. and wave period 

from the radar images [9]- [12]. At that time, data was stored as analog signals on 

film. 

In the 1980s. radar images were digitized for two-dimensional (2-D) Fourier t rans­

form (FFT) analysis and 2-D spectra similar to those obtained from buoy data were 

derived [13], [14]. These so-called radar image spectra demonstrated the possibility 

of using na utical radar images for wave measurement. However , a 180° directional 

a mbiguity was observed on the 2-D image spectrum obtained from the radar image. 

and this could not be removed without obtaining wave direction information by other 
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Figure 1.1: An X-band nautical radar plan position indicator (PPI) image collected 
on the east coast of Canada on Dec.20, 2010 

means. Ata.nassov et al. [15] proposed a. method to eliminate the directional ambiguity 

by using two radar images for wave analysis. In 1985, Young [16] proposed a three­

dimensional (3-D) FFT-based algorithm to be applied to time sequences of digitized 

radar images in order to eliminate the 180° ambiguity in phase. This method con-

sidered the changes of the sea. clutter in both Lime and space. Before wave retrieval, 

Young estimated current by a least squares (LS) method. Next, a two-dimensional 

shell was constructed based on the derived current information and the Doppler­

shifted dispersion relationship between the wave vector k and angular frequency w as 

given by 

w(k, u) = g Jfl tanh (Jf l h) + k · ·u (1.1) 
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where g is the acceleration due to gravity (= 9.8 mj s) , his the water depth, and fZ 

is t he near surface current. By introducing this shell, energy that does not belong 

to the wave field and falls outside the shell is eliminated. Compared with previous 

research, Young's 3-D FFT analysis retrieved more accurate ocean wave spectra and 

parameters. Later it was found that the derived 3-D image spectrum consists of three 

major components: 

1. wave energy due to the backscatter modulation; 

2. background noise due to the sea surface roughness; 

3. highPr harmonics of t hP waw Plwrgy duP to radar imaging effpcts. 

In Young's method, background noise and harmonic component effects were not 

considPrPd. According to thP Nyquist-Shannon sampling t lworPm , aliasing pffpcts 

may also occur when the sampling frequency of the radar system is small (as may 

occur at low antenna rotation speeds). In 1998, Nieto Borge [17] proposed a solu­

t ion to overcome the Nyquist limit issue for wave measurement, thus allowing wave 

parameters to be estima ted from the radar image spectrum [18], [19]. 

A comprehensive list of wave parameters and wave-related functions for wave ex­

traction was published by the International Association for Hydro-Environment En­

gineering and Research (IAHR) working group on wave generation and analysis for 

maritime applications [20], [21]. Among these wave parameters , ocean wave height 

was also obtained from the radar imagery [22]. For nautical radar images, it has been 

reported by Ziemer et al. [23] that the significant wave height (H.s) is proportional 

to the signal-to-noise ratio (SNR) of the radar backscatter . Later, Nieto Borge [24] 

presented an improved method for significant wave height estimation. Field experi­

ments were conducted for his algorithm validation [25], [26]. For grazing incidence, 

an alternative method to estimate Hs based on shadowing statistics was designed by 
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Wenzel [27]. This method was va lidated by Henschel et al. [28], and Buckley and 

Aler [29], [30]. 

The simulation of radar images has also been studied for the purpose of wave 

algorithm development. For example, in 1995, Seemann and Ziemer [31] developed 

an approach for computer simulation of imaging ocean wave fields. It was found 

that the longer waves become visible in the radar images because they modulate t he 

sea clutter signals. Other features associa ted with the marine radar image may be 

summarized as [2], [32]-[34]: 

• range dependence 

• azimuthal dependence with the wind direction 

• wind speed dependence 

• azimuthal dependence with the wave propagation direction 

• wave tilt modulation (TM) 

• shadowing modula tion (SH), which occurs when higher waves are present 

• wave hydrodyna mic modulation (HM) clue to the motion of the water particles 

These features contribute extra energy components to the derived spectrum and sig­

nificantly affect energy distribu tions of the wave field imaged by the marine radar. 

T herefore, it is necessary to consider these phenomena both in the process of simulat­

ing the nautical radar images and in measuring the wave and current information. In 

this process, HM describes the modulation of the energy of the ripples by the interac­

t ion with the longer waves; TM is the modulation due to the changes of t he effective 

incidence angle along the long wave slope; and SH is the par tial shadowing of the sea 
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surface from the radar antenna by higher waves [35], [36]. Researchers also demon­

strated means of numerically simulating sea clutter images at grazing incidence by 

applying shadowing and t ilt modulation on an ocean surface generated with a spec­

ified wave spectrum [32], [37]. An alternative method for simulating marine radar 

images was proposed by Nomiyama el at. [1], [38], [39]. In their research, the PPI 

images were generated based on calibrated normalized radar cross section ( RCS) 

statistics [40]- [44]. 

In order to improve Lhe wave measurement result , in 1997, Senet et at. [45]-[47] de­

veloped a new method to determine the near surface current velocity based on Young's 

t heory. They considered the aliasing effect as well as the harmonics in the spectral 

analysis and performed the least squares (LS) method iteratively. Gangeskar [48] 

introduced a weighted function into the LS method to compensate for the errors in 

current estimation which increases the accuracy of the derived current velocity. Re­

cently, a novel strategy to retrieve current information with a maximization of the 

normalized scalar product (NSP) has been proposed by Serafino [49], [50]. Compared 

to Senet's iteraLion method, large current veloci ty derived from Serafino's meLhod is 

more accurate for low speed antennas. 

A complete 3-D FFT-based algorithm for wave and current information extraction 

has been designed and successfully incorporated in the commercialized Wave Moni­

toring System (WardoS) by ·ieto Borge el at. [51]-[53] at the German GKSS Research 

Center, Geesthacht . 

Comparisons of the results derived from the shipborne WaMos system with pitch­

roll buoy data were reported by Alfonso et al. [54]. Data analysis from radars on a 

Aoating production and otfloading pla tform (FPSO) was conducted by Nieto Borge et 

al. in 2000 [55]. Results of this algorithm have also been compared with scalar wave 

data [51] and directional waverider buoy data [56]. However, those comparisons are 
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mainly made aL the level of spectral parameters in an illustrative way and only a few 

examples of the directioual spectra were provided . Later , a systematic and extensive 

com pari ·on of I he spectral analvsis of ocean wave fields were presented by Izquierdo et 

al. [57]-[59]. where the obtained statistics were listed in detail to quantify the degree of 

agreement betwe n the parameters estimated from the data sets pro,·ided by different 

sensors. 

Wave estimation methods have also beeu developed by research groups in Asia. 

These include Hiraya ma et al. [60]-[63]. Iseki et al. [64]. Yoshimoto et al. [65]. and 

Ishida [66]. They developed algorithms for robust estimation of wave direction [39]. [1] 

and significant wave height [67]. [68] using the PPI images. In 2010, the performance 

of the Fourier-based algorithms was tc ted for various sea conditions and results were 

derived by Cui et al. [69], [70] from dual-polarized marine radar da ta. The influence 

of non-linear ocean waves on X-band nautical radar observations wa discussed by Li 

et al. [71]. 

In addition to the Fourier analyses, more recently. the wavelet transform. which 

a llows the mother wavelet to be translated in the space domain and dilated in the 

frequency domain [72], [73], has emerged as a u eful, flexible. and effi cient technique 

for wave analysis. In 1995, Carlson [74] proposed the application of two-dimensional 

wavelet analvsis for uoise reduction an l image enhancement in SAR images of the 

ea surface. In 1997. D. Jordan et. al. [75] addressed the implementation issues asso­

cia ted with the conLiuuous waveleL t ransform for digital t ime series analysis. Later. 

l\Iassel [76] demonsLruted that the MorleL wavelet t ransform can be used for analyz­

ing one-dimensional signals of surface waves. Based on the IAHR li t of sea state 

parameters [21]. Huang [77] clarified the existing wave pa rameters and functions and 

int roduced n v.r parameters in the wavelet <1na lysis. Antoine et al. [7 ] discussed the 

two dimensional wavelet analysis and its application in image proce -sing. Wu et al. 
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proposed using a 2-D continuous wavelet transform (CWT) to process X-band nau­

tical radar data. l\llother wavelet selection and wavelet configuration for radar image 

processing were presented in their research. Image wavenumber spectra were success­

fully derived from both simulated sea surface elevation maps and experimental radar 

data [79]- [83]. 

1.3 Scope of Thesis 

After reviewing Lhe existing theories and techniques for wave measurement, improved 

algorit hms for retrieving ocean wave information using the 3-D FFT and 2-D CWT 

are developed in this thesis. 

The 3-D FFT-based algorithm for t he retrieval of wave and current information 

proposed by Nieto Borge [51]-[53] provides better results than t he earlier studies. In 

that algorit hm, a band-pass filter based on the Doppler-shifted dispersion relationship 

is constructed in order to remove the energy that does noL belong to t he wave field. 

Also, aliasing; pffect.s are eliminat<Jrl using a back folding strategy [51]-[53]. However , 

t he non-wave components, and fundamental and higher-order harmonic wave compo­

nents t hat fall in t he pass band of the filter are all used for wave spectrum derivation , 

and this may contaminate Lhe final results. In this thesis , the classic 3-D FFT-based 

algorithm is improved with an enhanced band-pass filter. In the proposed band-pass 

fil tering process, sample points of fundamental components are preserved while all 

t he ha rmonics and non-wave components are eliminated. 

As for the wavelet-based wave algorithm proposed by Wu et al. [79]-[83], the nu­

merical simulation testing in their research was conducted on the sea surface elevation 

map instPad of simulat.Pd radar images. Also. modulation pffects, such as t ilt. and shad­

owing, were not considered. Most of their research was focused on non-homogeneous 
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wave field wavelet-based analysis. The selection of the particular wavelet parameters 

nncl.Pr cl.iftpn·nt wave ronditions was nor t>xplored in detail. Furthermore, only image 

wavenumber spectra were presented and studied [79]-[83]. In this thesis, both a look­

up-table-based and a self-adaptive 2-D CWT-based algorithm for extracting ocean 

wave information from X-band nautical radar images are presented. 

The organization of this thesis is as follows: 

In Chapter 2, t he current estimation techniques using LS, iterative LS, and NSP 

methods are examined. The theories and techniques used in the classic Fourier­

based wave analysis algori thms are reviewed. Based on the mode classification results 

obtained using t he iterative LS current method. an improved a lgorithm for retrieving 

wave information is t hen proposed. In this method, fundamental components are 

d iscriminated from other sample points for the band-pass fil tering process. 

The theory of the wavelet tra nsform and its application in wave field analysis 

are investigated in Chapter 3. The relationship between the scaling factor and the 

minimum distinguishable wavenumber is derived, and its expression is presented in 

terms of a calibration factor. Empirical optimal values of the scaling parameter for 

variable wave conditions are provided based on extensive simulated radar tests. Based 

on the existing techniques employed in the classical 3-D FFT method, an iterative 

method for determining the calibration factor is designed. Look-up-ta ble-based and 

self-adaptive wavelet analysis a lgorithms for wave measurement are also proposed. 

In Chapter 4 , the proposed algori thms are first tested with simulated radar images 

under various sea conditions, assuming shadowing (SH) and t ilt modulation (TM). 

T hen, for further validation, the algorithms are applied to both horizontally polarized 

(H-pol) and vertically polarized (V-pol) radar field data collected on the east coast 

of Canada. Resul ts retrieved from both the 3-D FFT-based algorithm and the 2-

D CWT-based algorithm are presented , analyzed, and compared with in si t'u buoy 
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records. 

Finally, conclusions and related fut ure work are provided in Chapter 5. 



Chapter 2 

3-D Fourier-based Algorithms for 

Wave Measurement 

In the 3-D Fourier-based wave analysis. the temporal sequences composed of consec­

utive sea clutter images from a nautical radar system are processed to obtain t he 

temporal and spatial change of the ocean wave field [84]. Without sea surface cur­

rent , the energy of the ocean waves is localized on the dispersion shell on the image 

spectrum produced by applying the Fourier transform to the radar image sequence. 

However. if the radar images are collected from a moving vessel or if a non-zero near­

surface current is present, the dispersion shell will be deformed due to the Doppler 

shift , as described in equation ( 1.1) . Thus, the moving vessel and near-surface cur­

rent velocities should be determined before any attempt is made to retrieve the ocean 

wave information [32]. In this chapter, the classic and modified 3-D FFT-based wave 

ana lysis algorithms for retrieving current and wave information are discussed. 

12 
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2.1 3-D FFT-based Current Information Extrac­

tion Methods 

The 3-D FFT-based algorithm for ocean wave and current information extraction 

was initially proposed by Young et; al. in 1985 [16], and later refined by Nieto et 

al. [51]-[59]. The basic step-wise procedure, with corresponding rational, to extract 

wave information from the radar dat.a may be summarized as: 

• sub-image acquisit ion: to reduce the complexity of the algorithm computations 

• image normaliza tion: to eliminate main contributions of the static patterns in 

space and Lime; 

• 3-D FFT analysis on an image sequence: to obtain 3-D image spectra: 

• high-pass fi ltering: to remove non-stationary and non-homogeneous components 

near zero frequency; 

• current estimation: to obtain near-surface current information ; 

• band-pass filtering: to discriminate the wave energy from undesired components; 

• conversion from image spectra to wave spectra using an MTF: to minimize the 

non-lineari ty due to the radar imaging mechanism; 

• derivation of wa ve spectra a nd parameters such as 

directional frequency spectra E(J, () ) 

frequency spectra E(f) 

mean wave direction e(.f) 

overall mean wave direction f1w 
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- mean period Tot and peak frequency f 11 . 

From the listed step-wise procedure, it is found that in order to determine the surface 

current information, multiple processing steps, including sub-image acquisition and 

normalization, 3-D spectral analysis. and high-pass filtering, need to be employed first. 

These are detailed in Section 2.2 .1. This section focuses on the current algorithms 

assuming that the high-pass filtered image spectra have been obtained . 

Young et al. [16] proposed a least squa res (LS) method in which only the funda­

mental dispersion relationship is used for current estimation , and Senet et al. im­

proved this LS method by calculating the current velocity iteratively based on the 

higher order harmonic dispersion relationship and an anti-aliasing scheme [17], [4 7]. 

Serafino el al. presented another approach to determine the optimal current that 

maximizes the normalized scalar product (NSP) [49], [50]. In this section, these 3-D 

FFT-based current estimation methods are discussed briefly. Modifications of the lat­

ter two methods to improve the computational efficiency and accuracy, as suggested 

by Huang et al. [85]-[87], are also presented. 

2.1.1 The Least Squares Method 

In [16] and [47], in order to account for the Doppler shift, the vector sum of the 

platform's (e.g., vessel's) velocity Us and the current velocity Uc is defined as the 

velocity of encounter 'Lie· 

(2 .1) 

The Doppler frequency shift , induced by the near-surface current clown to the pene­

tration depth of the waves, can be observed in the wave field imaged by the nautical 

radar. T he penetration depth for a single wave is approximately half of its wave­

length A/2 [4 7]. Stewart et al. [88] have shown that the component of the velocity of 
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encounter fie in the direction of the wave vector f is a weighted mean current over 

the upper layer of the ocean. This result can be extended to consider the full current 

vector [16] as 

(2.2) 

where z is the vertical coordinate, d is the depth of the upper layer for surface current 

determination, and iic(z ) is the vertical velocity vector profile. 

Young's least squares current regression approach is based on the fundamental 

water dispersion rela tion of the ocean surface gravity waves, wave vector k and angular 

frequency w . This Doppler-shifted dispersion relationship is writ ten as 

(2 .3) 

where the first term <, is Lhe intrinsic frequency. If the water is deep enough , <, can be 

simplified as 

(2.4) 

The second term, W D, is t he Doppler frequency, defined as 

(2.5 ) 

where ef,
7 

is the angle between the wave and velocity vectors. kx, Ux, ky , u y are the 

wavenumber and velocity components in the x and y directions, respectively. It is 

observed from (2.5) that the Doppler frequency is affected by the velocity component 

projected in the direction of wave vector k. The intrinsic and Doppler-shifted dis-

persion shells are illustrated in Fig. 2.1. The figure clearly shows that the dispersion 

shell is significantly deformed due to the velocity of encounter. 
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Figure 2.1: (a) Imrinsic and (b) Doppler-shifted dispersion shell 

The criterion for LS current estimation is written as [4 7] 

N - 2 

Q2 
= 2)lw;- u:(k;)l )-+min 

i=l 

16 

0, 

(2 .6) 

where N is the number of coordinates collected for the least squares fi t ting process, 

w; is t he ith sampled frequency component from image spectrum I (kx, ky,w ) after 

high-pass filtering, and w(k;) is the angular frequency calculated by (2.3) at the ith 

sampled wave vector component. The ith Doppler term in (2 .6) is defined as 

(2.7) 

The current velocity (ux, ·uy) that minimizes Q2 satisfies the following two equations 

8Q2 j 8ux = 0 

dQ2 Jauy = o 
(2.8) 



Equation (2.8) can be rewritten as 

where 
N 

2:= 2 D xx = k . 
~:r 

i = l 

N 

D xy = D y.t = L k ;xk iy 
i= l 

N 

bx = LkixWiD 
i = l 

N 

by = L k ;yWiD 
i=l 
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(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

where k ;,. . k ;y are t he ith wavenumber components in x and y direction. respectively. 

Equation (2.9) can be rewritten more compacLiy as 

(2.15) 

where the definitions of D , iie, and bare obvious. If Dis invertible (i.e., det(D ) =f 0), 

t he current vector is given by [47] 

~ D- 1 b~ 
lie= (2.16) 
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2.1.2 The Iterative Least Squares Method 

Young's LS current estimation algorithm is designed using the fundamental dispersion 

relationship (1.1). Higher harmonic components are not con ·idcred . In addition. 

measures to overcome the aliasing effect due to the low sampling frequency are not 

included. Thus. the classic LS method n eels to be improved to include the higher 

harmonics and to overcome aliasing effects. The harmonic and aliasing effects arP 

discussed as below. 

H armonic effects 

Higher harmonic components c.-u e caused by non-linearity of the nautical radar imaging 

and the non-linea rity of the ocean waves [47]. The harmonic effects arc depicted in 

Fig. 2.2. In the figure , the BGN spectral energy is assumed as background noise. 

Image Spectrum 

.{).2 0 0.2 

Wave number~ (radfm} 

-40 

logarithmiC Scalt> (dB] 

First 
Harmomc 

Wave Field 
Components 

BGN spectral 
Energy 

Fip;ure 2.2: Harmonic effects observed from the 2-D image spectrum (taken from Nieto 
Borge et al. [2]). 

By introducing the factor p + 1 into (1.1), a harmonic dispersion relation of order 
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p is obtained for wave analysis, and may be written as 

(2.17) 

It is obvious that the fundamental components without harmonics can be also ex-

pressed by (2.17) with p = 0. 

Aliasing effects 

If the radar is operated with a low antenna rotation speed , the wave signals collected 

from the system may be undersarnpled. According to the Nyquist-Shannon sampling 

theorem [89]-[91]. signals with a frequency I whose absolute values are higher than 

the Nyquist frequency .f N will not be recovered. Such frequencies may be expressed 

maLhematically as 

II I> fN = J.~ 
2 

(2.18) 

where .fs is the sampling frequency as determined by the antenna rotation speed. 

As rl.isrussPrl. in [17]. this aliasing effPrt ran he eliminaterl. hy the property of 2wN 

periodicity and the Hermi tian property of the 3-D FFT. These proper ties may be 

written. respectively, as 

(2.19) 

(2.20) 

where n is an integer , and 

WN = 27r f N (2.21) 



20 

Iterative LS method 

Based on the aforementioned harmonic dispersion relation and back-folding strategy 

(see F ig. 2.3), a two-step LS current regression algorithm is proposed by Senet et, 

al. [45]-[47] as follows: 

1. Apply Young's LS method to obtain a first guess of the current velocity. 

2. Update the current velocity results iteratively with consideration of the funda-

mental and harmonic components, combining a strategy of reconstructing the 

aliased dispersion shells. 

In the first guess estimation , an energy threshold T FG is applied to separate the 

spectral samples of the fundamental mode from the undesired components such as 

non-linear samples, aliased signals, and the background noise. It is assumed that 

all the sample points after the thresholding process with T FG will be located in the 

interval [0, WNy ] with no aliasing effects. 

Once the first guess of the current velocity is obtained , the LS criterion in (2.6) is 

revised for the iterative current estimation and may be writ ten as 

(2.22) 

where N' is the number of coordinates collected for the iterative LS process, and wi' 

is the i'th sampled frequency component from the image spectrum I (k;' .wi' ). With 

a lower threshold Trr, most of the noise components are eliminated and the sample 

points (ki' ,wi') preserved are fundamental and 1st harmonics, i.e. p = 0, 1. respec­

tively. In (2.22) . wp.r(ki') is the pth order aliased wave frequency calculated from 

(2.17) using the previous current velocity. and the frequency is folded within [0, wN] 

by the 2wN periodicity and Hermitian property. r indicates the range of frequency 



derived from (2 .17) before aliasing. 

3 

(t) 

(f) .Vy 

--·-·---·---~f.------------·..-
/ 

/ 
/ 2 ·-·· ·--···---·-·----·--·--·-···-··---·- ------ ····-·-·--/ ····----··--·-

/ 
/ 1 -----·--------···+---...------.--

- .. - / _____ J k 
0 ----~~~~~------ r 

-1 

Figure 2.3: Back-folding strategy used to overcome the Nyquist limit . 
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The points preserved after the thresholding process are then classified as cont ri-

butions from the fundamental, 1st-order, higher order harmonic components with 

mapped frequencies wp,r(ki') (p = 0. 1, ... ) or noise. For the i'th sample (ki' · wi') , 

t.he classification is accomplished hy evaluating t lw difference hPtween the mapped 

angular frequencies '.;.Jp.r(ki') (p = 0, 1) and w ;- . If 

(2.23) 

the i' t h sample point will be regarded as higher-order wave contributions or noise and 

discarded. 6 w is the frequency resolution determined by the sampling frequency. 

The following equation is evaluated for mode classification: 

(2.24) 
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If ~ < 0, the sample associa ted with w;' is t reated as a fundamental component : 

otherwise, it is regarded as a 1st-order harmonic component. 

Once the mode of every sample point is determined, t he corresponding dispersion 

relationship is used for current estimation. After a new current velocity is calculated 

from the LS process, it is then used in (2 .17) for another round of LS estimation. This 

process is repeated until a preset termination criterion is satisfied . 

In Senet's research. a fixed number of 10 iterations is applied to calculate the ve-

locity [47]. It was observed during the research t hat the number of iterations required 

for an accuraLe estimation of velocity depends on the quality of the firs t guess [85]. 

Thus, a revised termination cri terion is suggested to improve the efficiency and accu-

racy of t he LS estimation [86]: if the iteration result converges to a specified value, 

t he iteration process can be terminated. T his criterion can be written as 

(2.25) 

where U x ,, uy, a re the present values of the derived current velocit ies in the x and y 

directions. and u x., _
1

, uy,_
1 

are the previous itera tion results for the derived current 

velocit ies in t he x and y directions. 5 is the convergence condition. The value of 

5 = 0.005 mjs used throughout this thesis appears to be sufficient for all tested cases. 

T his value is determined by the resolu tion of the retrieved current from a series of 

test data, as discussed in [86], which guarantees the retrieved current informa tion is 

sufficiently accurate in t he iteration process. 

Threshold selection is crucial in discriminating the components of interest from 

the undesired signals. Here, t he threshold for the first guess estimation T FC is selecLed 

as 20% of t he peak energy in the image spectrum, and for the iteration process, Trr 

is cho en between 2% - 3% [47]. 
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If the radar images are collected on a moving vessel, according to ( 2.1) the velocity 

of encounter Ue retrieved from the iterative LS method is the vector sum of the vessel's 

velocity U8 and the near-surface current velocity 'Lie. Usually, t he vessel's velocity U8 

is available from navigation int;truments such as a GPS device. Therefore, the true 

velocity of t he surface current uc can be obtained by subtracting 778 from the derived 

vector Ue· 

2.1.3 The Normalized Scalar Product Method 

In addition to the LS and iterative LS method, a novel strategy to retrieve the in-

formation of a high speed current was proposed by Serafino et aL. [49]. Unlike t he 

iterative LS method, this method does not rely on the selection of the threshold for 

sampling, and produces reliable results even when the velocity of encounter is very 

large. The current information is determined through the maximization of t he nor-

malized scalar product (NSP) between the amplitude of the high-pass fi ltered image 

spectrum II (k.r , ky , w) l and the characteristic function G(kx, ky , w , ux, uy)· The char-

acteristic function can be written as 

(2.26) 

The normalized scalar product V(ux, ·uy ) is a function of velocity components, Ux, and 

uy. and is defined as 

( ) (If ( kx, ky 1 W) I , G ( kx, ky 1 W 1 Ux, 1Ly)) 
V U .n Uy = 

vPs ·Fe 
(2 .27) 
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where PE and Pc a re the power associated with the image spectrum II (kx , ky. w)l and 

(2.28) 

(2.29) 

where Nx. Ny are the number of pixels of the sub-image in the :r and y directions. 

respectively. N1 is t he number of frames of the image sequence used for Fourier 

analysis. By searching for optimal values of Lhe velocity components that maximizes 

the normalized scalar product in (2.27) , the near-surface current information can be 

obtained. 

In order to derive accurate current information, t he NSP method requires a large 

search range and a fine resolution of the velocity in the x and y directions for finding 

t he maximized normalized scalar product. Thus, a large number of computations 

(thousands of seconds) are usually expected in this method. To reduce the computa-

t iona! cost of this method. an improvement is suggested using variable search ranges 

and resolutions [87] as follows: 

1. Search for an approximate estima tion of the current velocity (ux0 , uYO) with a 

wide search range [ - U0 , U0] and a coarse resolution 6 uo. 

2. Search for the optimal velocity components ( Ux,, uyJ with a narrowed range near 

the velocity (ur
0

, Uy
0

) derived in Step 1, (u r, E [ux0 - m 6 uo, U.c0 + m 6 uo], Uy, E 

[uy
0 

- m 6 uo , u
110 

+ m6u0]) and a higher search resolution i'l'l.ti , where m ( = 1 

or 2) is the coefficient used to determine the search scope around the previously 

derived velocity. 
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3. Replace (ux
0

, 'Liy0 ) with (ux;, uyJ and 6 uo with 6 ui , and repeat Step 2 until a 

sa tisfac tory result is found. 

It has been found numerically that satisfactory results of t he optimal velocity com­

ponents will be derived after itera tively updating the search results two or three t imes 

in Step 3. In t his way, the computational complexity can be significantly reduced. 

2.2 3-D FFT-based Wave Information Extraction 

Algorithm 

2.2.1 The Classic Algorithm 

As summarized in Section 2.1 , the classic 3-D FFT-basecl wave analysis a lgorithm, 

based on [16], [51]- [53], will be provided in detail in this section: 

Sub-image acquisition and image normalization 

Radar images obtained from typical field installations are usually of a la rge size and 

not suita ble for direct three-dimensional Fourier analysis clue to the large compu ta­

t ional burden which would be re4uired . Therefore. to efiiciently extract wave informa­

tion it is suggested that Fourier analysis be performed on a carefully selected sub-area 

instead of t he whole radar image. Reichert l92] reported the azimuthal dependence 

of t,he backscat ter imaged by nautical radar on the wind direction. Also, Nieto Borge 

eL al. [51] observed a distort ion of wave fronts for posit ions close to the antenna clue 

to t ilt modula tion. Of course. t he intensity of the back-scattered energy is inversely 

proportional to the fourth power of the distance between the radar and the target [42]. 

T herefore. it is not practical to select the sub-image position either too close to or 

too far away from the antenna. T he selection of sub-images for Fourier analysis is 
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examined and tested in [38j- [1]. In this thesis, a series of radar images are simulated 

with a size of 512 x 512 pixels and a resolution of 10.5 mj pixel. The radar a ntenna 

is assumed to be at the center of t he image. Sequences of 32 consecutive sub-images 

with a dimension of 128 x 128 pixels are acquired in the wave propagation direction 

with a distance of 200 - 800 m from the radar antenna as shown in Fig. 2.4. (It may 

be noted that in Section 4.2 where field data is tested, sub-images with this same size 

are selected close to the wave buoy, which is 1239.5 m from the radar (see Fig. 4.32) ). 

After acquiring the series of su b-images, it is necessary to normalize the sequence 

so as to eliminate the contributions of the static patterns in space and time present 

in t he data set [51]. If the image intensity a t position (:r:, y) at time t is defined as 

s(.r, y , t) , the mean intensity s1.(.r, y) can be easily calcula ted from the image series. By 

subtracting this mean intensity from the sub-image series (see Fig. 2.5), a normalized 

image sequence is obtained and may be written as: 

Sn(.T , y , t) = s(.r, y, t ) - St(.T . y) (2.30) 

T hree d imensional Fourier analysis 

After performing the 3-D Fourier analysis on the normalized image sequence, a com-

plex spectrum F (kx, ky ,w) is derived . Spatial frequencies (kx, ky) reflect the space-

wavenumber transform from the space domain (.r , y). while angular frequency w re-

fleets the time-frequency transform from the time domain t. 

According to the Hermitian property (2.20), a real-valued image spectrum R (kx, ky, w), 

can be obtained from the complex spectrum as 

(2.31) 
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F igure 2.4: Example of sub-image acquisition : a 128 x 128 pixels sub-image is ex­
t racted from a 512 x 512 simulated radar image, a t the wave propagat ion d irection 500 
m away from the antenna of the ori · 

F igure 2.5: Example of image normalization: on the left is the image before image 
normalization ; on the right is the image after normalizat ion . 

where Ttotal is the tota l t ime dura tion of a sub-image sequence, and Lx, Ly a re the 

lengths of t he sub-image in the x and y directions, respect ively [51]-[53]. 

H igh-pass filtering 

Energy components a t very low frequencies a re not considered as par t of wind or swell 

wave fields . a nd thus a high-pass filter is applied to the derived spectrum to eliminate 
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these non-sta tionary and non-homogeneous components. The high-pass fi lter uses an 

empirical threshold of w1.h = 2n x 0.03 rad/ s [51] and is written as 

_ { 0; if (k. w) E Dp, 
H (k: ,w) = 

1; otherwise 
(2.32) 

whPn' Dp , the spectral stop-band regulated by the threshold (as shown in Fig. 2.6). 

is given by 

(2.33) 

with k (wth ) being the wavenumber solution of the still water dispersion relat ionship 

(2.4) for the given Wth [51]-[53]. 

OJ 

Figure 2.6: High-pass filter; the cylinder represents the stop-band. 

The high-passed image spectrum is obtained by applying the high-pass fil ter to 
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the 3-D spectrum: 

(2.34) 

C urrent estimation 

Once the high-passed image spectrum is obtained, near-surface current information 

can be estimated, as discussed in Section 2 .1. In this thesis, the iterative LS method is 

selected for use in the wave field analysis algorithm for FFT-based wave information 

extraction. 

Band-pass filtering 

After obtaining the sea surface current information, a band-pass fi lter is constructed 

based on the Doppler-shifted dispersion shell (1.1 ) to remove the spectral energy due 

to non-wave contribu tions. In [17], the band-pass filter is described as 

: _ { J ( ( - 1) ,. kmn . :..J;) . 
h apa(kmn 1 Wi,.) -

0, 
(2.35) 

otherwise 

where 

(2.36) 

(2.37) 

In (2 .35) , I (kmn· wi) is the high-pass fil tered image spectrum for the sampled wave 

vector kmn and frequency wi · w.;,. E [TwN, (T + 1)wN] is the back-folded frequency with 

integer number ,,. E [-3, 2]. !Ski,. is the pass-band and !J.i, k is t he magnitude of t he 

vector difference between the sam]Jled wave vector kmn and the calculated wave vector 

k(wi,) (see Fig. 2.7) . 
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{J) 

Figure 2.7: Band-pass filLer: Lhe circle represents the pas-band . 

Modulation Transfer Function (MTF) 

Due to the radar imaging mechanisms such as shadowing and LilL modulation as well 

as the non-linearity of the wave field . a non-linear difference can be observed between 

the spectra derived from the radar image an I those from the in situ records for the case 

of gTazing incidence. This difference can be minimized by introducing a modulation 

t ransfer function U,ITF) into t he algori thm [23]. [36]. 

In [32]. Lhe modula tion t ransfer function is defined as 

(2.38) 

where J,.(k ) is t he 1-D wavenumber spectrum derived from the radar data and Eb(k) is 

t he wavenumber spectrum deri vee! from the buoy records. A serie,· of field data tests 
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Figure 2.8: Comparisons of t he input and derived spectra E(f) with/ without MTF. 

were conducted in [32] using a WaMos II radar system and a pitch-roll WaveScan 

buoy to determine I J\1 ( k) 12 . After analyzing the collected data, a power decay law 

given by 

(2.39) 

was determined for the modulation transfer function. In that research, a mean value 

of jj = - 1.2 was empirically determined and was later used in many data tests [51]-

[53]. Howe,·er , different f.L values should be determined for different wa\·e analysis 

a lgorithms (FFT j CWT) via daLa test calibrations and curve fi ttings (see Chapter 4). 

Fig. 2.8 shows the comparisons of Lhe input. (solid line) and derived frequency 

spectra E(f) without the use of the MTF (dot line) and the spectrum when the 

MTF is incorporated (dash line) . It is observed from Fig. 2.8 that t he wave spectrum 

derived using the lVITF agrees better with t he input spectrum. Two peaks are also 

seen on the spect.rum derived without the MTF. T his leads to produces large er rors 

in the calculation of peak frequency and period. In addition, the retrieved spectrum 

deviates significantly from the input in the high frequency band if the MTF is not 
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used . 

Derivations of Wave Spectra and Parameters 

After the band-pass filtering and MTF process, a 2-D wave spectrum can be derived 

as 

(2.40) 

where I (kx, k11 ) is the 2-D image spectrum after the band-pass fi ltering. 

The wavenumber-direction spectrum E(k , B) and frequency-direction spectrum 

E(w, B) are then determined from E (kx, k11 ) via the form 

(2.41 ) 

~ dk 
E (w, B) = E(k, B) dw. (2.42) 

The 1-D frequency spectrum E(w) is obtained by integrating the 2-D frequency­

direction spectrum E (w, f1) over the interval [0, 2n] 

E(w) = fo2

"' E(w, B)dB 

From the 1-D frequency specLrum, the spectral moment can be calculated as 

mn = { IN f" E(J )df 
Jo 

where .fN is the Nyquist frequency. 

(2.43) 

(2.44) 

Also, according to research from the IAHR working group [21]. the peak frequency 
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can be calcula ted by Delft 's method as 

. fh2 J E(f)df 
}p = fh2 E(f)df 

(2.45) 

where }'1 and h are the lowest and highest frequencies at which 

E(f ) = 0. max{E(f)} . (2.46) 

The mean p riod . obtained from the ·peel ral moments m 0 and m,. is given as 

(2.47) 

Mean wave direction is a fun cLion of frequency, writ ten as 

B(J) = atan(b(J)/a( f )) (2.48) 

where a and b are t he directional Fourier coeffi cients [52]. If f c is t he cut-off fre-

quency, overall mean wave direction 8w is then determined by averaging the mean 

wave direct.ion over a ll frequency components I E [0. f cJ, written as 

JJ" J:_" E(f, B)k(f)sinBdBdf 
f) = a tan( ) 

w Jrf' J:_" E(f, B)k(f)cosBdBdf 
(2.49) 

2.2.2 Enhanced Algorithm with Modified Band-Pass Filter 

In the class ic 3-D FFT algori thm, the band-pass fi lter is designed based on t he 

Doppler-shifted dispersion relationship to eliminate the aliasing effects via a back-

folding stra tegy [17]. However , t he fundamentaL harmonic wave components and 

noise that fa ll iu the pass-band are a ll used for derivation of t he wave spectra and 
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wave parameters. The contributions of noise and higher order wave components may 

lead to less accurate wave spectra a nd related parameters. In order to remove the con­

tributions from these unde::;ired component::;, an enhanced a lgori thm wit.h a modified 

band-pas::; filter involving only the fundamental mode wave component::; is designed 

in this thesis (::;ce also [93]. [94]) . This is accomplished ba.·ed on the mode classifi­

cation results obtained from the it rat ive least squares current estimation algorithm 

proposed by Senel el al. [4 7]. 

Ba ·ed ou a series of data tests. it is deLermined tha t wp(k) E [-wN ,3wN] can be 

used to retrieve <lccura te near-surfa e current information in the itera tive LS process. 

Due to a low sampling frequency, aliasing effects occur and fold the ample points 

from [-wN,3wN] into [O.wN]· Therefore, it. is desirable to ident ify the aliasecl sample 

points and fold these components wp(k) E [-wN, 3wN] to wp,,.(k;') E [0, wN] before 

mode cia ·sification. 

By determining the range of wp(k;') and wp( - k;' ) using (2.17), wp,,.(k;' ) is calculated 

as follows: 

2. i[ wp(- ki') E [mwN, (m + 1)t.v·N], where m = -1. 1, wp.r-(k;' ) = wp.m(-k;') = 

-wp( -f:,,) (m + 1)wN; 

3. otherwise. this point is discarded. 

Once a ll t he possible frequencies wp(k;') and wp( -k;') are folded to wp.r(k;') E 

[0, WN], mode classification is performed by comparing the dift"crencc between the 

folded frequencies and the sample frequency w;' via minimization as follows: 

.AII;V(Iw;' - Wo. 11 (k;' )I, W;' - W t ,n (k;' ) I, 

lw;• - ..vo.m( - k;') I , lw;' - WI.m( -ki') I) (2.50) 
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Meanwhile, the order of the harmonics and the range of each sample point are 

indicated with a flag F;(p,r) to enable back-folding of the sample points w;' E [O,wN] 

to wi, E [-wN, 3wN] for refining the band-pass filter (2.35). During the back-folding 

process, only the points of the fundamental mode (p = 0) that fall in the pass-band 

of the filter in (2.36) are kept for wave information extraction. That is, the (p -=/= 0) 

contributions are discard d. In this way. fundamental mode contributions are retained 

and used as filter inputs in order to derive more accurate band-passed spectra. 



Chapter 3 

2-D Wavelet-based Algorithm for 

Wave Measurement 

In the previous chapter, the classic 3-D FFT-based wave analysis algorithms for ocean 

wave and current information retrieval are presented. In this chapter, an alternative 

stra tegy in which a 2-D continuous wavelet transform (CWT) is applied to a single 

frame of the nautical radar image to extract ocean wave information is presented. 

T he t heory of t he 2-D wavelet transform is first reviewed. Next, the a pplication 

of the 2-D CWT for wave field analysis is discussed. T his includes the selection 

and simplif-ication of a mother wavelet , discretization and sampling of the wavelet 

function for radar image processing, and the determination and calibration of the 

required wavelet parameters. 

36 
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3.1 2-D Wavelet Thansform and Its Application for 

Wave Field Analysis 

3.1.1 2-D Wavelet Transform 

As stated in [77]-[81], the 2-D wavelet transform (WT) decomposes a signal into a 

series of wavelets which are scaled , shifted , and rotated versions of the so-called mother 

wavelet (see Fig. 3.1). If an image is given as s(,:Y) = s(:r: , y), where sand 1 = (:r: , y) 

represent the intensity of the pixel and its coordinates in the image, respectively, its 

2-D WT, W , may be defined as [78]. [79] 

(3. 1) 

Here b = ( bx, by) is a shifting parameter that indicates the shifted posit ion of the 

wavelet in the space domain; a is a non-dimensional scaling parameter that is re­

lated to the dilated spatial frequency (wavenumber) of the space domain. while a.- 1 

normalizes all the dilated wavelets to equalize their energy; and I]J * is the complex 

conjugate of t he mother waYelet function W. (J is a rotation factor which defines a 

rotation matrix r_0 that rotates t he wavelet by angle () in the space domain . This 

rotation matrix may be written as [79] 

( 

cos() 

r _g = - sin{t 
sin() ) 

cos() 
(3.2) 

where 0 :::; (J < 21T . Finally, to guarantee the invertibility of the WT, the normalization 

constant , CIT, . must satis f~y the admissibility condition as found in [79] 



fa) 

,._ n, .~. ,.a. ~ ' l ____ ---- -- --·------... --- ---.,.. -- ~ ----- --------- --------=---.:::::::::.:-- + . ~:~if_'-=--·-- ---------- ---
~ - --------

------- -------------- .--

t b , t k ) 
,.~ .• Jo., ----------:-

----~·--- --- --- ·---­-..._,_ -- ·-------- -----
,. --~--

--------
(, b,.~-< , ... 1~~~-------- -.... .. _ 

--o:;_::::.. 

~­ ----- ____ .. _,...-

+ ---_:::=-

-----· 

38 

Figure 3.1: Decompositions of a signal into various wavelets in (a) the pace domain 
and (b) spatial frequency domain (taken from Wu et al. [79]) . 

3.1.2 2-D CWT for Radar Image Processing 

The selection of the mother wave let 

The mother wavelet function \[1 iu (0.1 ) needs to be speci!ied b fore the wavelet. 

t ra nsform. The extraction of ocean wave parameters and the directional frequency 

spectrum requires the specificat ion of a dir ctional mother wavelet [79]. Here. the 

Morlet wavelet , which can be considered as a band-pass filLer with an adjustable 

pass-band , is chosen as t he mother wavelet. [75], [79]. In the space domain and spatia l 

frequency domain. the l\lorlet wavelet function can be written as [79] 

(3.3) 
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and its FT is 

(3 .4) 

Here. i' is the coordinate in the space doma in. A= diag[c 05
, 1], (r 2:' 1) is a 2 x 2 

anisotropic diagoua l matrix [78], and the vector k0 = (kox, ko,,) controls the peak 

position of the wavelet function. The second term of the Morlet wavelet function in 

(3.3) and (3.4) is considered as a correction term and it is negligible for lfo l2: 5.6 [78]. 

Furthermore. it is discussed in [7 ] that t he mother wavelet can be considered as a 

band-pa:::;s filler and t he pass-band becomes na rrower as t increases. 

ln [79], the mother wavelet of equation (3.4) was simplified for the purpose of radar 

image processing by adopting k0 = (6, 0) and f = 1, which enables ~ (k) = ~ (kx, ky) to 

be symmetrical in the r and y dire tious. In the space doma in and spatial frequency 

domain .. the ·implified mother wavelet can be written as 

(3.5) 

and 

(3.6) 

Equa tions (3.6) and (3.5) are al·o known as Gabor functions [95]. which are widely 

used in image processing. This is becau. ·e the functions can be used to model the 

perceptive field of prima tes' primary visual cortex. Abo, these t>implified functions 

significantly reduce the computa tiona l complexity in the wavelet analysis [78]. Fig. 3.2 

illustra tes the real and imaginary part of l he simplified Morlet wavelet (Gabor) func­

tion w(,:Y) in the space domain. Fig. 3.3 shows the :::;implified l\lorlet wavelet (Gabor) 
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function ~ (k) in the spatia l frequency domain. 

Configurations of the 2-D CWT for radar image processing 

In order to apply t he selected non-dimensional continuous Morlet wavelet function to 

dimensional digital radar image analysis, the 2-D CWT function requires the process 

of bot h discretization and sampling. First, the continuous wavelet function in (3. 1) 

can be rewritten discretely in the fo rm [79] 

N x Ny 

W(bx,, by"' em , a,) = c;0
·
5a;;: 1 L L .\lf*[a;;: 11'- o,.(x]J- bx,, Yq- by.,)] 

p= l q=l 

wit h W being a function of the discrete shifting ( bx, , by.,) , rotation (em) . and scaling 

factors (an); (.xp, yq) are the sample points on the radar image; the subscripts tt, v, m, 

n , p. and q are t he discretization indices; Nx and Ny are the total sampling numbers 

in the .r and y clirPctions of t.lw imagP; and D.x, D.y are the radar image resolutions 

in t he x and y directions, respectively. Equation (3.7) is computationally intensive. 

To reduce the a lgorithm execution time, it is desirable to perform the CWT in the 

spatial frequency domain (the Fourier space) . This converts the convolutions into 

multiplications [79], with the result writ ten as 

Nkj. Nk~J 
W(b . b . e a ) = c-0·5a '\"" '\' ei(&".,k',f'+by, k;,"J ·~* [a r -ri (k' k' )] 

Xu · Y ~~ rn, n \11 nLL n 1n Xp' Yq 
p= l q= l 

where s is the Fourier transform of the image intensity s , and "*" indicates com­

plex conjugation. As previously mentioned , k = (kx, ky) is the wave vector in non­

dimensional space, and after the wavelet transform, f.! = (k~, k~ ) is the wave vector in 
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N, N ., Ne Ne 
dimensiona l space, where /;;~ E [--r6.k~, -r t.. k~] and k~ E [--fL6.k~, -t-6.k~], with 

( k~P' k~,) indicating the sampled components of ft. Nk~ and Nk~ a re total numbers of 

the sampled wavenumber in the x and y directions, respectively. Usually Nk~ = Nx 

and Nk;
1 

= Ny [79]. 6.k~ ancl 6.k~ are the wavenumber resolutions in the dimensional 

spatial frequency domain. written as [79] 

(3.9) 

(3.10) 

In (3.8) , it is observed that the transformed wavelet can be obtained by scaling, 

shifting, and rotating the mother wavelet. After dilation and rotation wi th pa rameters 

a and r -IJ: respectively, the corresponding peak wave vector in dimensional space is 

iJ which satisfies 

(3.11) 

From equations (3.2) and (3. 11) 

k = a(k/ cosB + k1 sinB) 0, X Y (3.12) 

kou = a( -k~sin (;/ + k~cosfJ ) (3.13) 

Therefore, the 2-D CWT. W (bx, by, f), a), can be wri tten as a fu nction of the shifting 

factor b = ( bx, b11 ) and transformed wave vector iJ . Once the shift ing factor is specified 

as b0 , a 2-D wavenumber spectrum W (k1 ) at point b0 is determined as 

(3.14) 
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Morlet Wavelet 

-2 -1 .5 

Figure 3..!: Sampling of the wavelet function: [-D, D] +-+ [0. N5 b.1·]. 2D is the length 
in non-dimensional space: N 5 b..x· is the length in dimensional space. 

The derived image spectrum Hl (/2 ) is dimensional. Thus. l]j • in (3.8) needs to be 

sampled , and this process converts t he non-dimensional wavelet into a dimensional 

one. As discussed earlier in t his section, the matrix T _ 0 i applied to control t he 

direction of the wavelet function and ko is set to zero so t hat ko cont rols the peak y T 

spatial frequency in the spatia l frequency domain [79]. The sampling process and 

the determina tion of Lhe corresponding wavelet factors may be simply conducted on 

the k.r axis. where Lhe rota tion angle 0 = 0. In the space domain, if Lhe sampling 

resolution is b...r m ami the total number of sample points is N,, . the total length 

to be t ransformed by the mother wavelet used for image analy ·is in dimensional 

space is simply X ' = 8 b..T m . If the Lolal length of the mother wavelet in non-

dimensional space is X = 2D. this non-dimensional mother wavelet i · mapped into 

Ns points d uring the sampling process (sec Fig. 3.4). This may be formally represented 

as [75]. [ OJ 

[-D. D] +-+ [0. N 5 b..x ] . (3.15) 



The non-dimensional length of t he mother wavelet can be determined as 

2D = 2 x 3.5a . .r 

where ax is the standard devia tion given in [75] as 

with t he peak posit ion .r:0 on the x axis of t he space domain being given by 

f~x x lw(x)l
2 

dx 
.To = .ex; l\fl (_y)l2 dx 
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(3.16) 

(3.17) 

(3.18) 

The minimum number of sample points can be calculated in terms of t he Morlet 

wavelet 's non-dimensional length as [75] 

?D ,.---
Ns = ~(ko.r. + J-2 1n(rJ)) 

II 

where TJ is a parameter defined in [75] as 

- ~ ~ ( kcJ I 
TJ - I ~ ( koJ I. 

(3.19) 

(3.20) 

Equation (3.20) indicates that "I is tlw ratio of t he wawlPt valuP at t lw cur-off 

wavenumber kc_, and that aL the peak wavenumber k0T, and the value of TJ is commonly 

set to 0.01 by Chung et al. in [79], [80]. 
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3.2 The Discussion of the Scaling Factor and 2-D 

CWT Wave Algorithms 

In order to obtain the wave field spectrum from the wavelet analysis as indicated in 

(3.8) and (3.14). wavelet parameters b. e, and a need to be specified . In an earlier 

section, the determination of the shifting a nd rotating factors have been discussed. 

In this section, the selection of t he ncaling factor for wavelet analysis will be explored 

in more detail. 

3.2. 1 The Discussion of t he Scaling Factor 

In [96]. t he relationship of the scaling factor and the desired wavenumbers is deduced 

based on the ansumption Lha L the scaling factor , an, takes the form of a geometric 

progression [75] and is related to the range of t he wave spectrum. From (3.9) and 

(3.10) . it may be observed t hat the spatial frequencies are inversely proportional to 
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the total lengthfi of the radar image in the :r and y directions. With 8 = 0, it can be 

shown from (3.11) and (3.15) that 

1/ X 
1/ X' 

(3.21) 

Therefore, the expression of the sampled wavenumber in dimensional space is written 

as 

/,;~. = 2Dko.T . . 
a,N5 !':1x 

The scaling factor a, i obviously determined from (3.22) to be 

(3.22) 

(3.23) 

Given that the sampled wavenumber range of the image spe trum on the kx axis is 

(3.24) 

the maximum va lue of the scaling factor can be determined by consid ring (3.22) with 

k~ set to a minimum value given as 

k.r' = ,31:1/,;'_ 
O tlll X 

(3.25) 

with ko., set Lo a value of 6. Clearly, the maximum value of an may then be written 

as 
2D · 6 

(3.26) 

where f} is a ca libration parameter thaL regula tes t he value of a max · Therefore, we 

conclude that a fter t he ampling process. Lhe minimum distinguishable value of the 
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wavennmhcr h;~""" of the dimensional spectrum can be specified by an appropriate 

selection of the maximum scaling factor , or, more specifically. by the selection of t he 

calibration factor J that refines the values of amax · 

It is known that with a decreasing mean wave period. To 1• the peak frequency 

(wavenumber) increases and the whole spectrum shifts to larger (spatial) frequency 

components. In thi · case, t he corresponding minimum distinguishable frequency and 

wavenumber will keep increasing. Therefore, it is reasonable to assume tltat if !':lr 

and NT are fixed, for a sea state wiLh a smaller mean wave period, a larger calibration 

factor p should be used. as indicated by (3.25). A failure to select an appropriate 

8 may result in a less accurate or ompletely incorrect derivation of wave spectra 

and parameters. Fig. 3.6 shows examples of one-dimensional frequency spect ra E(f) 

derived using the 2-D CWT and using different f3 for simulated radar images with 

T01 = 10 s, t::...T = 10.5 m. and Nx = 128. lL is observed from Fig. 3.6 that the derived 

spectrum using a= 3.2 agrees be. t with the input E(.f ). If a smaller jJ of 1.4 is used. 

a false peak is ob ·erved on the left of the spectral peak. If a larger /3 of 5...1 is used . 

t he derived spectrum is shifted t the right compared with the input E(J). Clearly. 

the T01 derive l from the spectra in Fig. 3.6(a) and (c) are less accurate. As indicated 

in Section 3.1.2, the 2-D CWT analysis in the frequency domain is essentially the sum 

of a serie of band-pass filtered signals. The image function s is processed with the 

modified band-pa:s filters, which arc defined by the transformed w:welct functions. 

The scaling factors control t he ba ndwidth · and peak positions of Lhe wavelet series. 

In [75]. it. is observed that th larger t he scaling factor. the closer the peak position 

will be to Lhe origin. as shown in Fig 3.7. Therefore, an underestimated 8 in (3.26) 

results in an overestimated ama.r · which generates undesired signal · at small frequency 

component . This results in a redundant energy component (a false peak). On t he 

contra ry. an overestimated 3 will ca use missing energy (right-shifted) in the derived 
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E(f) at T01 =10s. P=1.4 

0\ ~ - - - Outpul l 
0.9 --Input 

I ' ' 
0.8 i• \ 

0.7 /'f \ 
• 0.6 I I ' I , I 

CE I 1\,' 
w 0.5 i ' l ' 
c I t \ ' 
w 0.4 \ I 

I I I 
i 

\ 0.3 I 
I 

0.2 I 
I 

0.1 I 
I ) ..... 

0 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

Frequency (Hz) 

E(f) at T0 1=10s, P=3.2 

0.9 

0.8 

0.7 

• 0.6 . 
E 

c 

~ 0.5 

w 0.4 

0.3 

0.2 

0.1 

0 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

Frequency (Hz) 

E(f) at T01=10s. /l=5.4 

• 
0.9 

( I 

I ' \' 
I I' 

0.8 I t ,, 
I I \ I 

0.7 I I \ 11 
I I I I 

• 0.6 / I ~ I ~ 
/ ' I c 

I I 

~ 0.5 I I \ I 

w 0.4 I I \ I 

I 
\ I 

0.3 
I 1 

0.2 I 
I 

I 

0.1 
I 

... -
0 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
Frequency (Hz) 

Figm·e 3.6: An example of CWT derived 1-D spectra E(f) using different [3 at To1 10 
s, 6-x = 10.5 m, Nx = 128: (a) (3 = 1.4: (b) (3 = 3.2; (c) [3 = 5.4. 
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spectrum. 

As in [96]. bat>ed on a seriet> of t>imulated data test:; . the empirical values of 1) for 

sea conditions with varying T01 are shown in Table 3.1. Here, only the wave fields with 

typically observed T01 are provided. l\ Ioreover. the values of /? provided in Ta ble 3.1 

are obtained aL a specific image resolution of b..T = 10.5 m and sub-image length of 

Nx = 128. According to (3.25). /3,, for different 6.xn and Nx, should be modified as 

(3.27) 

Therefore. once the radar image resolu tion and the size of the sub-image a re provided. 

a n appropria te value of /3 for the 2-D CWT analysis can be determined from Ta ble 3.1 

and (3.27) , according to the mean perio I of the wave field to be examined. 
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Figure 3.7: l\lorlet wavelet j{[J (f) [ functions with ditfpn•nt scalinp; factor a. As a 

increases, Lh corresponding center frequenc.v decreases (closer to the origin), and t he 
magnitude increases. 



50 

Table 3.1: ;J for Different T01 with 6 x = 10.5 m, Nx = 128 

To1 (s) {3 
16 1.4-1.6 
14 1.7-2.0 
13 2.1-2.2 
12 2.3-2.4 
11 2.5-2.9 
10 3.0-3.4 
9 3.5-3.9 

8.5 4.0-4.5 
8 4.5-5.2 

7.5 5.2-5.7 
7 5.8-6.5 

6.5 6.6-7.3 
6 7.4-8.4 

Knowing arna:r (or (3) is not sufficient to determine all the scaling factors. As 

previously discussed, the Morlet wavelet in the spatial frequency domain can be re-

garded as a band-pass filter whose width decreases as the scaling factor increases. It 

is therefore assumed that an takes the form of the geometric progression [75] 

an = Jvr- 1
, n = 1,2, ... , Na (M > 1) (3.28) 

where n = 1 corresponds to the wavelet without dilation (mother wavelet). T hus, 

(3.29) 

The base M in (3.28) is given as [75] 

(3.30) 

where kp
1 

indicates the peak location of the 1-D wavelet without dilation as in (3.29) 
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so that 

(3.31) 

and kd is a proport ionalitv constant which is derived from the scale resolution x as 

[75] 

kd = - J -2 ln (x ). (3.32) 

The scale resolution x E (0.0, 1.0) is defined in [75] as the ratio of the peak energy 

of a wavelet with a given scaling factor (anr) to that with the previous scaling factor 

( anr- l) 1 the result being 

I ~ peal.:_ a nr I 
X = I~ I" 

1]1 peal.:_ a"r- J 

(3.33) 

X near 1.0 or 0.0 represents a high or low resolution wavelet series, respectively. For 

ocean wave analysis, it is determined from simulated and field data tests that an 

appropriate range of t his parameter is given by x E [0.9, 0.95] . 

3.2.2 A Look-up-table-based 2-D CWT Wave Analysis Alga-

rithm 

After the 2-D CW T analysis, a complex spectrum of a radar image W(k~, k~) is 

obtained. Similar to (2.31 ), a real-valued image spectrum can be obtained from the 

Hermitia n property (2.20) and written as 

I 1

2 
v\1 k' k' 

I ( k' k' ) = ( X 
1 y) 

X ' y L:r . Ly 
(3.34) 

where W(k~, k~) is t he complex spectrum derived by the 2-D CWT analy is as st ip­

ulated in (3.8) . (3.14). Lx. L y are t he total lengths of the radar image in the x and y 

directions, respectively. Techniques similar to those used in the classic 3-D FFT-based 
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algorithm [51]-[53] are employed to obtain wave spectrum and parameters. To apply 

the wavelet method for wave extraction. the key is to select a proper alibration factor 

(3 . A simple look-up-table-based 2-0 CWT wave analysis a lgorithm [93] is proposed 

to include the following steps: 

1. sub-image acquisition and normalizaLiou: 

2. determination of appropriate p from Table 3.1 and (3 .27) based on the provided 

informa tion of D..:r. Nr. and mea::;urcd wave period Tot using ot her instruments 

such as buoy: 

3. 2-D CWT analysis on a single frame of radar image to obtain the image spectrum 

I (k~ , k~ ); 

4. 2-D CWT analysis on multiple frames to obtain an averaged spectrum l(k~, k~); 

5. high-pas filtering (empirical threshold Wth = 21r x 0.03 rad / s); 

6. conversion from image spectra w wave spectra using the t-.ITF; 

7. derivations of wave spectra and parameters . 

3.2.3 A Self-Adaptive 2-D CWT Wave Analysis Algorithm 

Although a cura te ocean wave spectra and 1 arameters can be derived from the look­

up-La ble-basccl method. the calibration factor J required for the 2-0 CvVT cannot be 

selech"cl unril D...r. Nr, and Tot are specified. Typically, rhe imagc n• olution D.x and 

sub-image size Nr arc available from the ·ysLcm ::;pecificatiom;, while t he value of T01 

must be obtained from other instrumentation such as a wave buoy. However , here, 

an iterative algorithm, which ena bles t h system to automatically select an optimal 

calibra tion factor (3 without a in sil'u. bno:v reference, is proposed. The selection 

process involve · the following: 
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Figure 3.8: Flow chart of the self-adaptive 2-D CWT-based wave analysis algorithm. 



Chapter 4 

Results and Analysis 

In Chapter 2 and Chapter J . the FFT-based and CWT-based wave analysis algorithms 

are presented. In this chapter , the proposed algorithms are validated using both 

simulated radar data and dual-polarized radar field data. In the former case, radar 

images are simulated fo r various conditions using a revised Pierson- Moskowitz (P-M) 

spectrum [97] assuming shadowing and tilt modulations [32], [38]- [1]. For the field 

Lest , both horizontally polarized (H-pol) and vertically polarized (V-pol) radar data 

were collected on the east coast of Canada. In situ TRIAXYS directional wave buoy 

and acoustic Doppler current profiler (ADCP) records that were gathered in the same 

area are also availa ble for data comparison. 

4 .1 Simulated Data Test 

In this section, numerical simulations of the ocean ::>urface and radar images are fir::>t 

discussed (also see [44]). Then, results derived using both the FFT and CWT al­

gorithms applied to the generated radar images nnder different circumstances are 

presented and ana lyzed. 

55 
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4.1.1 Nautical Radar Image Simulation 

Simulation of ocean surface 

Based on the inverse Fourier transform of the ocean wave power spectrum, the ocean 

surface elevation t7(x, y, t ). where (.r. y ) and tare the position and time coordinates, 

respectively, can be described as a superposition of sinusoidal wave components of 

varying amplitudes, angular frequencies and random phases [38]- [1] and may be cast 

as 
.\1 N 

TJ (.T. y.t ) = "L 2: A.0 ·in (:.u; t - k,.r: cos e1 - k;y sin o1 8ij) (4. 1) 
i=l j=l 

where Aii ic the a mplitude for t he wave component having angular frequency wi. 

direction e1, and wavenumber k;. A random phase 15ii. uniformly distributed on the 

interval [0 , 27r), is also introduced in order to generate a realistic ocean surface with 

irregular waves. The amplitude in equation ( 4.1) may be expressed as 

(4.2) 

where S(w;, e1) is the ocean wave power spectrum that is used to simulate the ocean 

surface. Va rious forms, such as the Neumann Spectrum, the Wallops Spect rum, t he 

P-l\1 Spectrum . aud the \lit suyasu Spectrum [43]. [69] arc suitable candidates for 

the o can power spectrum. The non-directional wave spectrum implemented in this 

t hesis is from the 15th Interna tional Towing Tank Conference (ITTC) based on a 

Pierson- l\1o kowitz (P- t\'1) spectrum [3 ]- [1] and is given as 

0.11 2 (TotW)-5 _0.44(~)- 1 

S(w) = -?-H~To 1 -- e 2
" 

~7r 27r 
(4.3) 

where w is the augular frequency. H., is the significant wave height . and T0 1 is t he 

meau period. The directional characteristics of the wave spectrum are accounted for 
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by using a distribution function given by 

(4.4) 

where r is the GcUllllla fuuctiou, Hw is the wave propagation direction, and d is a 

so-called spreading parameter LhaL is used to describe the degree of distribu tion. 

As discussed in [69], the selecLion of this spreading parameter is determined by t he 

wind speed and peak frequency of the wave field. As is usually the case in many 

investigations, in this thesis, d is assigned a value of 2. Thus, 

(4.5) 

The overall directional wave spectrum is then written as [38]-[1] 

4 e-e 
S(w. fJ) = S(u.:)D(fJ) = S(w)- cos4 (--w) 

37r 2 
(4.6) 

S hadowing modulation 

For fa r ranges and horizontal polarization, t he electromagnetic waves from X-band 

marine radar reach t he ocean surface a t large incidence angles, nearly grazing the 

surface. Therefore, the surface is partially shadowed by higher ocean waves. T his 

eHect, known as shadowing modulation, is depicted in Fig. 4.1. From that figure, a 

geometrical optics approximation can he made as follows: the incidence angle a t t he 

ocean surface elevation TJ is 

(4.7) 
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where R( T) ) is t he horizontal range from t l1e radar to thP observation point , and A 

is t he antenna height over the sea level. As depicted in the figure, wi th respect to 

the antenna, a point with elevation 17 will be in the shadow of a higher wave with 

elevation TJ1 at the same azimuthal angle when the incidence angles are related as 

where 

The shadowing factor can be described by [32] 

(J sh ( T)) = { 
1, 

Antenna 

I 
I 
I 
I 

Ia 
~-

1 
Sea LejVel 

I 
I 
I R' 

R 

otherwise. 

I 
I 
I 

Shal::lowed· 
I . . 

WfJves 

Figure 4.1: Shadowing and tilt modula tion [32]. 

(4.8) 

(4.9) 

(4.10) 
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Tilt modulation 

Tilt modulation results from changes in the effective incidence angle along t he long 

wave slope, and it can be simulated by using the scalar product of the exterior normal 

vector to the ocean surface fi( TJ) and the vector 7( ry ) from the illuminated ocean surface 

TJ to the antenna as shown in Fig. 4.1. Analytically, 

( 4.11 ) 

where 

(4.12) 

(4.13) 

are the 3-0 tangent vector components on the surface [32]. The tilt factor CJJ.iu(TJ) can 

be determined from 

if t.(rJ) > 0 
(4.14) 

otherwise 

with 

t( 'fJ ) = fi( TJ ) · T(TJ) ( 4.15) 

T he values of CJsh(rJ) . CTtiu.('rJ) are then applied to the generated sea surface and coded 

with 256 gray levels [32]. 

4 .1.2 Simulat ed Data R esults and Analysis 

To verify t he proposed 3-D FFT-based and 2-D CWT-based wave analysis a lgorithms, 

simulated na utical radar images genera ted under various wave condit ions are used. 

The simulation parameters for the radar images are listed in Table 4. 1. An example 

of the simulated images is shown in Fig. 4.2. Fig. 4.2 (a) shows the generated sea 
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(a) Generated Sea Surface Elevation (b) Scan Converted Elevation Map 

(c) Shadowing Modulated Image (d) Shadowing & Tilt Modulated Image at t=Os 

Figure 4.2: Resultant images incorporating the P-M spectrum and using shadowing 
and tilL modulation: (a) Generated ocean surface elevation ; (b) Elevation map after 
scan conversion; (c) Shadowing modulated image: (d ) Tilt and shadowing modulated 
image 
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surface elevation using the ITTC-recommended P-M spectrum. The main propagation 

direction is 45° from true North. Fig. 4.2 (b) depicts the generated sea surface using 

the scan conversion technique, which transforms the radar data from a range-azimuth 

(polar) format to an x-y (Cartesian) format for display. The resolutions in range and 

angle are assigned as 10.5 m and 1°, respectively. Fig. 4.2 (c) shows the image with 

shadowing modulation and Fig. 4.2 (d) is the simulated radar image incorporating 

both shadowing and tilt modulation. 

Table 4.1: Simulation Parameters 

Electromagnetic wave frequency 10 GHz 
Antenna angular speed 48 r.p.m. 

Polarization Horizontal 
Antenna height 20m 

Range resolution ( ~1.·) 10.5 m 
Image Size 512 x 512 pixels 

Directional distribution Cosine squared 

Once images are simulated for a variety of surface conditions, the next step involves 

the application of current estimation algorithms, including least squares (LS) , iterative 

LS, and normalized scalar product (NSP) methods. Subsequently, with the effects of 

the currents removed , the enhanced 3-D FFT-based and 2-D CWT-based algorithms 

may be applied to obtain wave parameters. 

4.1.2.1 R esults of surface current estima tion 

In this section , results of the estimated near-surface current velocity (velocity of en-

counter) and direction derived under a variety of conditions are presented. First, the 

current algorithms are applied to simulate radar data for ca:::;es which differ on in mean 

period. T01 . Then , tests are conducted on simulated data generated with wave fields 

having various angles between the wave and current directions. 

In Fig. 4.3 , the distance between the center of the original radar image and the 
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center of the sub-image (segment "OC'") is defined as the sub-image distance, and is 

symbolized as D sub · The angle between the wave direction and the segment "OC" is 

defined as t he sub-image direction and is written as esub· 

Figure 4.3: Sub-image acquisition for wave field analysis. 

Figs. 4.4- 4.6 present the results of the derived velocity of encounter and direction 

from the simulated radar images with T01 = 8 s, 10 s , and 12 s, respectively. T he 

significant wave height of the wave field is specified as Hs = 3.5 m. The wave direction 

is ew = 270° with respect to (w. r. t) t rue North. The input velocity of encounter, Uin , 

ranges from 0 to 15 m js, in steps of 0.5 mj s. T he direction of the surface current from 

true North is eu = 90°. The sub-image sequence used for current and wave analysis 

is acquired at the wave propagation direction (&sub = Bw), 500 m away from the radar 

antenna (Dsub = 500 m). In Figs. 4.4 - 4.6, the (black) solid line represents the input 

velocity of encounter parameters; the (green) dotted line with circles represents t he 

derived velocity of encounter information using the LS method; the (red) dashed line 
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with diamond::; indicate::; the derived velocity of encounter information using the itera­

t ive LS method: and the (blue) dash-dot line with asterisks show::; the derived velocity 

of encounter information using the SP method. It is observed from the figures that 

Young's LS method [16] provides rough approximations of the velocity of encounter. 

As may be ob::;crved in Fig. 4.4. errors in t he retrieved current may reach as high 

as 2 mj::;. Senet's iterative LS method [4 7] provides more accurate results and the 

maximum error of the velocity of encounter and direction are a round 0.15 m/ s and 

7°. Similarly. Serafino's SP method [49] also provides highly accurate results. with 

maximum error of retrieved velocity of encounter of about 0.10 m/ s and maximum 

error of the retrieved current direction of 6°. As discussed in Section 2.1.3. the accu­

racy of t he original NSP method reli c::; on a large range and a fine re::;olu t ion of the 

velocity for the two-dimensional search , and thus it requires significant computation, 

which take more t han 1000 seconds, while the iterative LS m thod only needs tens of 

seconds to process the same dataset. In order to increase the speed of the algorithm. 

the improved TSP current estimat ion algorithm that uses variable search ranges and 

resolutious as referred to in Section. 2.1.3 is applied in t his Lhcsi [ 7]. After the 

modification, the processing time is reduced to less than 300 seconds. 

The error analyses of the current estimation algorit hms are given in Table 4.2. 

6. II,, and 6. v~d are the mean difference and standard deviation between the retrieved 

w locity of encounter a nd the input va lUt-' . 6.Dm and 6.Dsd are the mean difference 

and standard devia tion of the currem direction. From the table, it is observed that 

the mean difference of the results derived from the LS method are larger than those 

from the iterative LS and NSP methods. I t is also easy to conclude from the standard 

deviations that the iterative LS and NSP methods provide more accura te and robust 

current estimation results compared with those from the LS method . In this thesis. a 

hne search resolution of D.ui = 0.02 m/ s i · used iu the SP current estimation. If a 
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finer resolution is used, better results with smaller mean difference and standard de-

viation are expected to be obtained, but this will require a longer processing t ime. In 

addition, it is observed from the table that errors in the results do not change signif-

icanLly with mean period T01 . Thus, the accuracy of the current retrieval algorithms 

does not appear to be affected by the mean period of the wave field. 

Table 4.2: Error Analyses of the Derived Velocity of Encounter Csing Different Algo­
rithms at T01 = 8, 10. 12 s. 

To, (s) Algorithms ~Vm (m/ s) ~ Vsd (m/ s) ~Dm (0
) ~Dsd (0

) 

LS -0.0534 0.8330 -2.4165 11.6681 
Iterative LS -0.0030 0.0741 0.1435 1.8320 

NSP 0.0039 0.0680 0.3632 1.5832 
LS -0.0890 0.4283 -0.3423 9.0164 

10 Iterative LS 0.0130 0.0613 0.5362 2.7169 
NSP -0.0002 0.0630 0.5266 2.6708 
LS -0.2473 0.4717 1.0458 7.3867 

12 Iterative LS 0.0047 0.0828 0.3167 1.2848 
NSP 0.0001 0.0630 0.4505 1.6009 

Simulated data with different angle::; becween the wave and current direction::; are 

tested next. In this Lest. the mean period of the simulated data is fixed as T01 = 12 

s. The sub-image sequence used in Lhe wave analysis is also acquired at the wave 

propagation direction (B.mb = Bw), 500 m away from the radar antenna (Dsnb = 500 

m). T he significant wave height of the wave field remains at 3.5 m. The direction of 

t he surface current is90° from true North. The wave directions in the data test are set 

to be Bw = 270°, 240°, 180°, and 120° from true North. Thus, the angles between the 

wave and current d irections are ()wn = 180°. 150°. 90°, and 30°, respectively. Results 

for the velocity of encounter and direction are provided in F igs. 4.7 - 4.9. The range 

of the input velocity of encounter is 0 to 15 m/ s in steps of 0.5 m j s. The LS method 

is found to provide rough approximations of the velocity of encounter. More accurate 

re::;u]ts a re derived by the iterative LS and NSP methods. 
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Figure 4.4: Results of derived velocity of encounter from the simulated radar images 
with T01 = 8 s: (a) Derived velocity of encounter ; (b) Errors of the derived velocity 
of encounter; (c) Derived current direction . 
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Figure 4.5: Results of derived velocity of encounter from the simula ted radar images 
with To 1 = 10 s. 
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F igure 4.6: Results of derived velocity of encounter from the simulated radar images 
with T01 = 12 s. 
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Figure -1 .7: Results of derived velocity of en ounter from the simula t d radar images 

with (J""' = 1 0°. 
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Figure 4 .8: Results of derived velocity of encounter from the simulated radar images 
wit h ()w"U = 150°. 
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Figure 4.9: Results of derived velocity of encounter from the simula ted radar images 
with ewu = goo. 
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Figure 4.10: Resul ts of derived velocity of encounter from the simulated radar images 
with Bw-u = 30° 



72 

Table .J .J: Error Analyses of the Derived \'Plocity of Encounter l -sing Different Algo­
rithms for Bwu = 1 0°. 150°. 90°, and 30°. 

Bwu (0
) Algori thms !:::. Vm (m/ s) !:::. Vsd (m/ s) !:::.Dm (0

) !:::.D.sd (0
) 

LS -0.0130 0.2623 0.0074 9.7464 
1 0 Iterative LS 0.0097 0.0303 0.2130 2.1380 

NSP -0.0052 0.0479 0.4493 2.2001 
LS -0.1082 0.3578 0.1226 6.8352 

150 Iter aLive LS 0.0101 0.0337 0.3141 1.3509 
NSP -0.0052 0.0479 0.3104 0.9857 
LS 0.1099 0.4161 -1.2248 10.3881 

90 lLerative LS 0.0112 0.0274 0.4216 2.0265 
NSP -0.0013 0.0630 0.2965 0.9984 
LS 0.2728 0.4189 0.0374 8.8776 

30 Iterative LS -0.0001 0.0318 0.2660 1.6836 
NSP 0.0045 0.0375 0.2339 1.0701 

The error analyses for the cunt'nL estimation algorithms with differing 8wu are 

listed in Table --1.3. From the table it can be also observed that the iterative LS 

and SP methods provide more accurate and robust current estimation results with 

smaller standard deviations than those retrieved from the LS method. 

4 .1.2.2 Wave in fo rmation res ults 

Once the current information is obtained, a band-pass fil ter is constructed using (2.35) 

- (2.37) to retriev ocean wave information from the radar images. As discussed in 

Chapter 2. an enhan eel 3-D FFT-basecl wave extraction algorithm. ba ·eel on tlw 

results of mode classification in the iterative LS process, is applied in Lhis thesis. 

Then. a 2-D CWT-based algori thm. as described in Chapter 3, is used for wave 

analysis. Results from both algori thms are p rovided and compared . 

Fig. 4.11 illustrates the comparison of the wavenumber spectra derived at each 

stage in 3-D FFT-based wave analysis. Fig. 4.11 (a) is the image spectrum I (k.x . ky ) 

after the Fourier analysis and high-pass fi lL ring process. An energy distri bution 
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Figure 4.11: Comparison of wavenumber spect ra derived at each sLage in the 3-D FFT 
wave analysis: (a) Image spectrum I (k:r, ky) after the Fourier analysis and high-pass 
fi ltering process: (b) Image spectrum ha11a(k r, ky ) after band-pass fil tering; (c) Wave 
specLrum E(kx , /,;11 ) after the MTF process. 
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which roughly describes the wave field is represented by this spectrum, and the non­

stationary and non-homogeneous components near zero frequency are eliminated by 

the high-pass fil ter. Fig. 4.11 (b) is the image spectrum ha11a(kx, ky) after both the 

high-pass and band-pass filtering process. T he simulated wave field contains a velocity 

of encounter u = 3 m/ s and this introduces Doppler frequency components into 

the energy spectrum. As discussed in Chapter 2, a band-pass fi lter is designed to 

remove the non-wave components. Compared with Fig. 4.11 (a), it is observed that 

some energy components which are far away from the dispersion shell are removed 

in Fig. 4.11 (b). Fig. 4.11 (c) presents the wave spectrum afLer the modulation 

t ransfer function (MTF) process. On comparing with Fig. 4.11 (a), (b), it is obvious 

Lhat most components due to the non-linearity of the radar imaging mechanism are 

removed from the spectrum in t he Fig. 4.11 (c). 

Once E(kx, ku ) is obtained, various other wave spectra and parameters can be 

derived as discussed in Section 2.2.1. In this thesis, the following wave information is 

derived: 

• directional frequency spectra E(f, fJ) 

• frequency spectra E(.f) 

• mean wave direction e(f) 

• wave direction ew 

• mean period T01 

• peak frequency f 71 

In order to investigate the performance of the proposed wave analysis algorithms 

under different circumstances, simula ted radar data with different velocities of en­

counter 7L. rlittenmt rnPan JWriorls T01 , and rliften'nt selections of sub-image positions 
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are tested. For the FFT-based method, 32 frames of consecutive radar images are 

used. The velocity of encounter is estimated with the iterative LS method. The 

parameter used in the modulation transfer function (MTF) process for the Fourier 

analysis is modified using the curve fitting techniques in [32] and may be written as 

{ 

- 0.98, if lkd :::; e-2 75 

p. = 
- 1.2, otherwise 

(4.16) 

Compared with Lhe original MTF with p. = -1.2 [32], [51]- [59], this modified MTF 

expression retrieves a better energy distribution for the high frequency components 

of t he waw field at different sea conditions (see Fig. 4.12) 
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F igure 4.12: Comparison of the derived E(J) with original and modified MTF in the 
3-D FFT-based simulated data test. 

Having considered the FFT approach , aLLention is next focused on the wavelet 

a lgorithm. Based on Lhe discussion in Chapter 3, the parameters assigned for the 

wavelet analysis are determined and listed in Table 4.4. The calibration parameter 8 

that regula tes the value of scaling factor amax is automatically selected , as proposed 



76 

in Fig. 3 .. Once (3 is determined , a 2-D CWT is performed on the input radar image 

sequence and an averaged spectrum E (k.,., k11 ) is obtained. In this process. a 180° 

ambiguity is observed and it is manually eliminated for wave informat ion extraction 

using information gathered from other instrumentation. The parameter used in the 

1\ITF process for wavelet analysis is also modified as 
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Figure 4.13: Comparison of the derived E(f ) with original and modified MTF in the 
2-D CWT-based simulated data test. 

Table cl .4: Wavelet Pa rameters Configuration 

ko (6. 0) 

/\ 0.9 
,., 0.01 

bo ( 1' 1) 
N.c 128 
f3o 1.4 

6.J 0.2 

I 
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As shown in Fig. 4.13, the modified MTF suppresses t he overestimated energy 

within the high frequency band a nd leads to an improved spectrum (the dash-dot 

curve) compared to that derived with the original MTF process (the dash curve). 

Fig. 4.14 presents the comparison of the results derived from the classic 3-D FFT 

a lgorithm as described in [32] and the modified 3-0 FFT a lgorithm proposed in this 

paper. From Fig . 4.14 (a), it is observed that the energy of the higher harmonic compo­

nents are eliminated in the modified 3-D FFT derived frequency spectrum. Also. the 

mean wave direction spectrum. B(f). are recovered more accurately using t he proposed 

modified 3-D FFT method. as shown in Fig. 4.14 (b) . Fig. 4.1-l(c)(d )(e) illustrate the 

modified 3-D FFT derived, classic 3-0 FFT derived. and input directional-frequency 

spectra E(f. 0). By comparison it is found that energy distributions derived from 

modified 3-0 FFT algorithm are closer Lo the input spectrum. 

The proposed 3-0 FFT-based and 2-D CWT-based wave extraction algori t hms are 

first tested with simulated radar image · with velocit ies of encounter of u = 0 m j s. 1.5 

m j s. 3.0 m/ ·. and 5.0 m js. The sub-image sequence used in the wave analysis is still 

acquired at the wave propagation direction ( ()sub = Ow) . 500 m away from the radar 

antenna (D 8 ub = 500 m ). The significant wave height of Lhe wave field is H.~ = 3.5 

m. The wave and current directions. f1w a nd f7u, are both 210° from t rue North. The 

mean period of the wave field is 12 s. 

Figs. 4.15- -1.1 (a) show t he input and derived 1-D frequency ::;pectra. and the 

peaks of E(J)FFT and E(.f)c \\7 agree well with those of Ein(J) . Figs. 4.15 - 4.1 

(b) indica te that the mean vvave di rec tion ·pectra. B(J). are recovered correctly using 

both methods. Figs. 4.15- 4.18 (c)(d )(e) illustrate the FFT derived. CWT derived, 

and input directional-frequency spectra E(f. B). It is observed from these spectra that 

the energy distributions derived from the Fourier and wavelet analysi · a re similar to 

the input -pectra. 
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Figure 4.16: Comparison of derived spectra using 3-D FFT and 2-D CWT wave 
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Figure 4.18: Comparison of derived spectra using 3-D FFT and 2-D CWT wave 
analysis under velocity of encounter ·u = 5.0 m js. 
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Table 4.5: Retrieved Wave Parameters sing FFT- and CWT-based Algorithms a t 
velocities of encounter u = 0 mjs, 1.5 m/s, 3.0 mj s, and 5.0 m js. 

Parameters Input Data 
Uin (m js) 0 1.5 3.0 5.0 

eUin (O) - 210 210 210 
ew,.,. (0

) 210 210 210 210 

Toti, (s) 12.03 12.03 12.03 12.03 
f 71,, (Hz) 0.0650 0.0650 0.0650 0.0650 

Output Data 
Algori thms FFT CWT FFT CWT FFT CWT FFT CWT 
Uout (mjs) 0.0116 n/ a 1.4781 n/ a 3.0048 n/ a 4.9870 nj a 

eUoul (O) 339.63 n/ a 209.84 n/ a 208.87 n/ a 209.74 n/ a 
fJw,,, (0

) 215.43 219.73 205.70 213.65 216.62 226.38 213.89 212.15 
Tot.,.,, (s) 12.61 11.67 12.00 11.97 11.91 10.98 11.42 12.89 

!Pout (Hz) 0.0700 0.0649 0.0700 0.0649 0.0700 0.0700 0.0655 0.0600 

Table 4.5 compares the derived velocity of encounter with the input values for 

the 3-D FFT-based and 2-D CWT-basecl wave results under different velocities of 

encounter. Accurate ocean wave parameter can be obtained from both methods as 

listed in the table. Since the wavelet analysis does not include the process of band­

pass filtering to compensate for the Doppler-shifted frequency clue to the velocity of 

encounter, iL is usually considered that the 2-D CWT-based wave analysis algorithm 

cannot retrieve accura te results in the case of a considerablv large velocity of en-

counter. However. from Figs. 4.15 - 4.18 and Table 4.5 it is observed that retrieved 

wave parameters from the wavelet analysis are close to the results from the F FT anal­

ysis as well as to Lhe input data for velocity of encoumer u E [0, 5] m/ s. In addition, 

the standard deviations of the input and Lhe CWT-clerived wave direction. mean pe-

riocl , and peak frequency are calculated Lo be 9. 7586°, 0. 7027 s, and 0.0035 Hz. which 

are close Lo the respective values of 5.1704°, 0.4254 s. 0.0043 Hz derived from the FFT 

analysis. 

ext , the 3-D FFT-based and 2-D CWT-based wave analysis a lgorithms a re tested 
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with simulated data of different mean periods, T01 = 8, 10. 12, and 14 s. The sub-

image sequence used in Lhe wave analysis is acquired at the wave propagation direction 

(Bsub = Bw), 500 m away from the radar antenna (Dsub = 500 m). The wave direction 

is Bw = 270° from true north. The significant wave height of the wave field is Hs = 3.5 

m. The velocity of encounter of the wave field is u = 0 m/ s. 

Table 4.6: Retrieved Wave Parameters Using FFT- and CWT-based Algorithms at 
l\ lean Period T01 = 8 s, 10 s, 12 s, and 14 s. 

Parameters Inpu t Data 
To, ,.., (s) 8.03 10.03 12.03 14.03 

1Lin (m/s) 0 0 0 0 
Bu., (0

) - - - -

etu,. (0
) 270 270 270 270 

fr"' (Hz) 0.0997 0.0797 0.0650 0.0551 

Output Data 
Algorithms FFT CWT FFT CWT FFT CWT FFT CWT 

To, ,,, (s) 8.76 9.14 9.94 9.48 11.65 11 .77 13.18 13.82 
Uout (m/s) 0.0141 n/ a 0.0205 n/a 0.0124 n/ a 0.0101 n/ a 

Bu,., 1 (
0

) 281.2937 n/ a 159.4181 n/a 78.87 n/ a 34.32 n/ a 
etum.t (0

) 270.78 280.83 268.04 274.69 276.42 291.84 264.98 260.44 
f 11,.,, (Hz) 0.0948 0.0948 0.0800 0.0849 0.0747 0.0654 0.0653 0.0548 

Figs. 4.19 (a) - 4.22 (a) present the input and derived 1-D frequency spectra. E(f). 

Both Fourier and wavelet derived spectra recover the energy distribution correctly. 

However , it is observed that a second peak near 2fr appears in the wavelet derived 

spectra for T01 = 10, 12, and 14 s (see Figs. 4.21 - 4.22 (a)). This may be explained 

by the effect of wave nonlinearity [79]. In addition. as suggested in Chapter 3, a scale 

resolu tion, '( , regula tes the resolution of the wavelet series. If an underestimated /\ is 

used. some energy components may not be retrieved successfully. Thus. based on sim-

ula ted and field data tests. it is recommended that x E [0.9, 0.95] be used throughout 

the ocean wave analysis. However. this high-scale resolution may also result in a sec-
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Figure 4.21: Comparison of derived spectra using 3-D FFT and 2-D CWT wave 
analysis with mean wave period T01 = 12 s. 
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Figure 4.22: Comparison of derived spectra using 3-D FFT and 2-D CWT wave 
analysis with mean wave period T01 = 14 s. 
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ond peak. In this t hesis, the second peaks are suppressed by the modified MTF (4.17). 

Thus, in some cases they cannot been observed (see Figs. 4.15 - 4.17 (a)). Figs. 4.19 

(b) - 4.22 (b) show the comparison of the mean wave direction spectra ()(j) . It is 

demonstra ted from Lhe figures that the derived mean wave direction spectra derived 

from both methods are close to the input curve. Figs. 4. 19 (c)(d)(e)- 4.22 (c)(d )(e) 

show the directional-frequency spectra E (f. e) retrieved from the Fourier and wavelet 

analysis as compared with the input spectra. It is observed from the comparisons that 

both t he 3-D FFT-based and 2-D CWT-based wave analysis algorit hms can be used 

to recover accurate energy di,;tributions of wave fields with dif-ferent mean periods. 

The comparison between the input and retrieved wave parameters using t he 3-D 

FFT-based and 2-D CWT-based wave analysis a lgorit hms is found in Table 4.6. It 

is obvious from the table t hat both methods give reliable wave parameters from the 

simula tPo radar images for diffPrenr, nwan waw periods. 

After Lhe analysis of wave informa tion extraction using the 3-D FFT-based and 2-

D CWT-based algorit hms for various velocit ies of encounter and mean wave periods, 

the impact of the selection of sub-image position are investigated. As discussed in 

Chapter 2, for the simulations, the sub-image patches are selected with dimensions of 

128 x 128 pixels at the wave propagation (fJ,ub = Hw) with a distance of 500 m from the 

radar antenna (Dsub = 500 rn) . Next, to examine their impact on the derived wave 

information, two groups of sub-image sequencPs arP selecterl from rliffPrPnt positions 

(different directions and distances) on the same series of generated radar images. 

Such discussions have been made in [1], [69]. The radar images are genera ted with 

a velocity of encounter of u = 1.5 m j s. Bu = 270° from true orth. T he wave 

propagation direction ()w is a lso chosen to be 270° from true North. T he mean period 

of the wave held is taken as 10 s and a significant wave height of 3.5 m is used. In the 

data test, the first group of sub-image se4uences is l:lelected from the original radar 
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image series with a fixed distance D suh = 500 m, and the directions of the sub-image 

are chosen a::> fl•ub = 0°. 45°, goo, and 180°. The second group of sub-image sequences 

is selected from the original radar image series with a fixed direction of Bsuh = oo, and 

the distances from the origin are taken to be D sub = 200 m, 500 m, 800 m, and llOO 

m . 

Figs. 4.23 (f) - 4.26 (f) present the sub-image sequence position for the first group 

test. It is obvious from the 1-D frequency spectra E(f ) as depicted in Figs. 4.23 (a ) 

- 4.26 (a) that the best results are obtained at Bsub = 0°, which is the case when the 

sub-images are acquired at the wave propagation direction. When the sub-images are 

not selected at the wave direction, a second peak is often observed in the retrieved 

frequency spectrum, as shown in the FFT curves for the cases when fisub = 45°. 180° 

In these cases. the derived peak frequency is less accurate, as indicated in Table 4. 7 

which lists the deriwd waw and current parameters at different selections of sub-

image direction Bsub· 

Table 4.7: Retrieved Wave Parameters using FFT- and CWT-basecl Algorithms with 
Lhe Selection of Sub-image Sequence at D sub = 500. Bsub = 0°, 45°, goo, and 180° 

Parameters Input Data 
e sub (

0
) 

oo 45° goo 180° 
D sub (m) 500 500 500 500 
Uin (m/ s) 1.5 1.5 1.5 1.5 

Bu ;.,. (
0

) 270 270 270 270 
Bw,. (

0
) 270 270 270 270 

T01 ,, (s) 10.03 10.03 10.03 10.03 
Jp, , (Hz) o.o7g7 o.o7g7 o.o7g7 o.o7g7 

Output Data 
Algorithms FFT CWT FFT CWT FFT CWT FFT CWT 
Uout (m/ s) 1.5221 n/ a 1.5035 n/ a 1.4g54 n/ a 1.5196 n/ a 

eUo n l (o) 267.g7 n/ a 267.85 n/ a 26g.75 n/ a 26g.5g n/ a 
fiw,, 1 (

0
) 268.14 271.08 245.86 255.91 267. 15 279.56 273.g4 271.64 

Tol 0 ,.1 (s) 10.45 1Q.6g 10.85 10.95 10.50 10.54 10.49 10.44 
f]Jm,1 (Hz) 0.0846 0.0847 0.0700 o.o7g4 0.0804 0.0600 0.0810 0.0700 
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Table 4.8: Retrieved Wave Parameters Using FFT- and CWT-based Algorithms with 
the Selection of Sub-image Sequence at Bsub = 0°, D sub = 200m. 500 m .. 800 m. 1100 
m . 

Parameters InpuL Data 
D sub (m) 200 500 800 1100 

Bsub (
0

) 
oo oo oo oo 

'Uin (mjs) 1.5 1.5 1.5 1.5 
Bu;, (

0
) 270 270 270 270 

e w;, (
0

) 270 270 270 270 
To1,, (s) 10.03 10.03 10.03 10.03 
/ p.,. (Hz) 0.0797 0.0797 0.0797 0.0797 

Output Data 
Algorithms FFT CWT FFT CWT FFT CWT FFT CWT 
Uout (mjs) 1.5279 n /a 1.5221 n j a 1.5081 n/ a 1.4992 n/ a 

e tLout (O) 272.85 nja 267.97 n/ a 266.21 nja 268.51 n/a 
eWm<t (o) 265.72 275.80 268.14 271.08 276.42 268.72 268.97 271.4 7 

T01 0 , 1 (s) 10.33 9.78 10.45 10.69 10.69 11 .06 10.90 11.74 
]p,.,, (Hz) 0.0850 0.0807 0.0846 0.0847 0.0846 0.0700 0.0848 0.0747 

Figs. 4.27 (f) - 4.30 (f) present the sub-image sequence position for the second 

group test as noted above for the case involving a fixed Bsub = oo but various values of 

D .mb· By comparing the derived spectra of E(f). B(f), and E(f, B) from sub-images 

a t. different distauces as shown in Figs. 4.27 - 4.30, no obviou advantages can be 

observed at any distance Dsub· It appears that the choicf' of the sub- image distance 

has little impact on the wave spectra derived from either method. 

The wave and current parameters derived from sub-images at different distances 

a re next investigated (see results in Table 4.8). It is observed that reliable current 

information and wave direction can be derived for different sub-image distances. How-

ever, if the sub-images are acquired far away from the radar antenna, it is found that 

an overestimated me~:m period is obtained. The best result for mean period is derived 

aL D sub = 200 m. This makes sense because the further the ocean waves are away 

from the radar antenna, the more likely they are to be shadowed by higher waves 
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(see Fig. 4.1). Also, the intensity of the radar image will be very low near the edge 

since the back-scattered energy is inversely proportional to the fourth power of the 

distance between the radar and the target [42]. Thus, the ocean wave information 

ret rieved from sub-images near the edge of the original image is expected to be less 

accurate. On the other hand, it is not recommended to select sub-images too close 

to the radar antenna because of the severe distortions of wave fronts due to the t ilt 

modulation [51]. 

4.2 Field Data Test 

Having tested both the FFT- and CWT-based algorithms using simulated data, they 

are next applied to H-pol and V-pol field data collected on the east coast of Canada. 

T he impact which polarization has on the results is considered , and outcomes are 

compared with information gathered from in situ instrumentation. 

4.2.1 Experimental Data Collection 

Dual-polarized radar field data collected on Dec. 15 and Dec. 20, 2010 at Skerries 

Bight near the St. John's Harbor on the east coast of Canada were used for wave 

analysis. Data from a TRIAXYS wave buoy and an acoustic Doppler current profiler 

(ADCP) collected at the same time were used as the ground truth [86], [93]. T he 

ADCP provided current information for 50 bins star ting at approximately 1. 75 m. 

With the extent of each bin werE.· set being 1 m, the maximum depth for current 

measurement is about 52 m. The accuracy of the ADCP was ± 0.04 mjs and ± 3° for 

current speed and direction, respectively. The ADCP current results were averaged 

every ha lf an hour [85] . 

The radar and buoy sites are shown in Fig. 4.31. It is assumed that the water is 
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deep enough forth deep water dispersion relationship (2.4) . A typical V-pol X-band 

nautical radar image collected on Dec. 15 is provided in Fig. 4.32. The whi te box 

of dimensions 128 x 128 pixels shown on the figure depicts a typical sub-image used 

for wave retrieval. The center of this sub-image indicates the position of Lhe moored 

wave buoy. Deta iled information on Lhe radar and buoy is given in Table 4.9. 

Table 4.9: Radar and Buoy Data Information 

Radar System Specification 
Collecting date 12/ 15/ 2010; 12/ 20/ 2010 
Starting time 16:30:02 (GMT); 13:30:57 (GMT) 

Radar location 47.5934N 52.6634W 
Polarization Dual Polarization 

Antenna angular speed 48 r.p.m. 
T he radar range resolution 7.51 m 

Generated Image Size 1024 x 1024 pixels 

Buoy Information 
Collecting date 12/ 15/ 2010; 12/ 20/ 2010 
Starting time 16:30:00 (GMT); 13:30:00 (GMT ) 
Buoy location 47.3362N 52.4210W 

In the 3-D FFT-based analysis. 30 sequences consisting of 32 consecutive radar 

sub-images were used for current and wave informaLion extraction. For the given 

radar operating parameters. this corresponds to a period of 20 minutes for each data 

set. The parameLer used in the .t\lTF process for FFT-based field data analysis is 

modified as 

{ 

- 0.96, if lk.c11 l 'S e- 2 2 

J..L = 
- 1.2, otherwise 

(4.18) 

Based on the information provided. the parameters assigned for the wavelet anal-

ysi · a re determined and listed in Table 4.10. As described in Chapter 3. an init ial 

value of Jo = 1.-! and !:1(3 = 0.2 are used for !:1x = 10.5 m and Nr = 128. As listed in 

Tahle 4.9. the radar range resolution is !:1x = 7.51 m. Therefore. the corresponding 
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Table 4.10: WaveleL Parameters Configuration 

ko (6, 0) 

X 0.9 

1/ 0.01 

bo (1, 1) 
N X 128 

Po 1.001 
D,fJ 0.143 

Figure 4.31: Radar and buoy sites 

starting (30 and !:. (J used in this field data test can be calculated from equation (3.27) 

to be 1.001 and 0.143, respectively. The MTF expression for the 2-D CWT-based 

field data test is provided as 

(4.19) 
- 1.2, otherwise 
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Figure 4.32: An example of V-pol X-band nautical radar plan position indicator (PPI) 
image from Dec.15, 2010 and Lhe sub-image f:lelection for wavelet analysis. 

4.2.2 R esult and Discussion 

ear-surface current information if:> e Limated first from the Fourier analysis. using 

the LS. iterative LS and NSP methods. For the field data collected from a land-based 

radar. Lhe vessel'f:l velocity 'Us = 0, and thus the retrieved velocity of encounter 'I.Le is 

t he true value of the near-surface current velocity 'I.Lc. The ADCP record measured 

from the f:lecond bin ( 2. 75 to 3. 75 m below Lhe f:lea surface) is used af:l ground t ruth . 

The compa rif:lon of the derived ref:lults of Lhe current speed and direction from the 

H-pol and V-pol radar data and ADCP record on Dec. 15 and 20. 2010 are shown 

in Figs. 4.33 - <!.36. On Dec. 15, the current speed and direction obtained from 

the ADCP record were 0.35 m/ s and 57.4°, respectively: on Dec. 20, the speed 

and direction measured from the ADCP were 0.47 m/ s and 97.4°, respectively. In 

Figs. 4.33 - 4.36. Lhe (black) solid line represents the ADCP record; the (green) dol. 

line with circlcf:l repref:lents the derived current information using the LS method: t he 
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(red) dash line with diamonds indicates the derived current information using the 

iterative LS method; and the (blue) dash-dot line with asterisks shows the derived 

current informat ion using the NSP method. It is obvious from the figures that the 

LS method provides only a rough estimation of the current information with large 

errors appearing in both speed and direction. The iterative LS and NSP methods 

generate more accurate and stable surface current than those obtained using the LS 

method. Results from the iterative LS and NSP methods also show good agreement 

with each other and with the ADCP record. However , by comparing the H-pol and 

V-pol results (Figs. 4.33, 4.35 vs. Figs. 4.34, 4.36) , it is observed that the derived 

current information from the V-pol radar data is more accurate. The large error in 

the results derived from the H-pol data may be due to the low sea state during the 

measurement period [85]. Although the iterative LS method determines the current 

information based on the first guess of the LS estimation, it is observed from t he 

figures that the resul ts of the iterative LS method are not aHected when the initial 

guess from the classical LS is poor. 

Table 4.11: Error Analyses of the Deri vecl Current Information of the Field Data Test 

Data (s) Algorithms 6 V,n (m/ s) 6 Vsd (m/ s) 6Dm (0
) 6Dsd (0

) 

LS -0.1765 0.1107 109.8837 135.9728 
Dec.15 H-pol I tera Li ve LS -0.2964 0.0210 78.0619 47.5012 

NSP -0.2967 0.0231 72.0796 26.3543 
LS 0.5183 0.6293 60.0588 106.3091 

Dec.15 V-pol Iterative LS 0.0313 0.0571 12.7988 14.4612 
NSP 0.0120 0.0386 13.9047 16.4557 
LS -0.1330 0.2589 78.0894 86.7100 

Dec.20 H-pol Iterative LS -0.2709 0.0391 76.6812 36.6118 
NSP -0.2713 0.0517 59.2753 40.9942 
LS 0.1125 -9.5439 1.0458 65.1157 

Dec.20 V-pol Iterative LS -0.0446 0.0559 -6.6970 8.9025 
NSP -0.0507 0.0661 -7.4697 9.9323 

ThP Prror ana.lys(JS result is listed in TablP 4.11. whPre 6Vm and 6 Vsd are the mean 
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Figure 4.33: Results of derived surface currents from the Dec.l 5 H-pol data: (a) 
Derived current speed: (b) Errors of the derived current speed; (c) Derived current 
direction . 
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Figure 4.36: Results of derived surface currents from the Dec.20 V-pol data. 
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difference and standard devia tion between the retrieved current speed and the ADCP 

recorc!. 6.Dm and 6.Dsd are thlJ meau c!ifferenre and standard c!Pviarion of the current 

direction . From the data collected on Dec. 15, it is observed that the mean difference 

in the current speed derived using the LS method on the H-pol data ( - 0.1765 m/ s) 

is slightly smaller than the mean diiference in current speed using the iterative LS 

( - 0.2964 m/s) and NSP ( -0.2967 m/s) methods. This is because th current speed 

is underestimaled with the itera tive LS and NSP methods from the H-pol data, while 

t he LS melhod provides a rough estimation and the derived points are distribu ted 

on both sides of the ADCP data, resul tinv, in a better 6-Dm. However, it is obvious 

from the derived current direction t hat the re ults of the LS method are not reliable, 

with a c!itff'n:'nrf' of oVf'r 109.88°. For this H-rol rlata, the difi .. erences in thP current 

directions obtained from the iterativ LS and NSP methods as compared with that 

from the ADCP record are still qui te la rge. being 78.07° and 72.07°, respectively. 

However. from the table. it may be observed that the iterative LS and NSP methods 

produce much more accurate results from the V-pol data. The mean current speed 

difference::; of the iterative LS and NSP method::; are - 0.0313 m/ s and -0.0120 m/ s, 

respectively, and both are better than those from the LS estimation ( - 0.5183 m/ s). 

T he c! in·ct.ion c!itf(•rences of the LS , it.('rat.ivc LS and NSP methods are G0.05°, 12.79°. 

and 13.90°, re::;pectively. A similar ana lysi · can be observed from the results of the 

rarlar da ta collf'r tPrl on DPc. 20. The mPan curr0nt spPeci rlifferpncPs of tlw H-pol rlata 

are - 0.2709 m/ -.3 and - 0.2713 rn j s for the iterative LS and NSP methods, respectively. 

1\ Iuch smaller mea11 speed differences of - 0.0446 m/ s, and - 0.0507 m/ s. respectively. 

are derived from the \!-pol data. T lw cuncnt direction difference.., of tbe H-pol data 

are 76.6 o and 59.27° for the iterative LS and NSP methods. For the V-pol da ta , 

t he mean directiou differences of the r.wo a l!!,orithms are only - 6.69° and - 7.46°. In 

addition. from Lhc comparisons of standard deviation. it is found that the iterative 
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LS and SP methods provide robust current estimation results , with much smaller 

6. Vsd than that from the LS method. 

During the field data test , a 20-minute radar Lime series was used for both 2-D 

CWT and 3-D FFT analysis. The results were averaged to acquire the directional-

frequency spectrum E(f, B) in each case. For both methods, wave parameters calcu­

lated from these two averages are lisLed in Table 4.12, in which the in situ wave buoy 

results are also included. It is obvious that the wave direction , Bw, and peak frequency. 

JP , retrieved using both methods a re close to those from the buoy record. The mean 

periods derived from the radar data using both algorithms are slightly larger than the 

1:n silu buoy recorded value. 

Table 4.12: Comparison of Derived Parameters from Dual-pol Radar Data and Buoy 
Records 

I Wave parameters I Wave direction I .tviean period I Peak frequency I 
Date Dec. 15, 2010 

3-D FFT (H-pol) 63.25° 7.42s 0.1053 Hz 
2-D CWT (H-pol) 61.39° 7.78 s 0.1096 Hz 
3-D FFT (V-pol) 63.72° 7.93 s 0.1053 Hz 
2-D CWT (V-pol) 73.30" 7.74 s 0.1047 Hz 

Buoy Record 60.47" 6.39 s 0.1025 Hz 

Date Dec. 20, 2010 
3-D FFT (H-pol) 38.ll 0 10.76 s 0.0850 Hz 
2-D CWT (H-pol) 61.62° 10.45 s 0.0796 Hz 
3-D FFT (V-pol) 39.23° ll .O s 0.0804 Hz 
2-D CWT (V-pol) 62.56° 10.42 s 0.0794 Hz 

Buoy Record 53.63° 9.42 s 0.0746 Hz 

The surface current velocity cannot be obtained from the 2-D CWT ba eel algo-

rithm. Thus, the band-pass filtering process that is designed to eliminate the energy 

offset due to surface current in the 3-D Fourier analysis is not applicable in the wavelet 

analysis. However, in this data set, the wavelet analysis provides similar results to 

the Fourier method because the currents, as discussed in [85], are relatively small 

(v ~ 0.35 m/ s on Dec. 15 and u ~ 0.47 m/ s on Dec. 20) so that they will not 
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significantly affect the wave field energy distribution . 

Figs. 4.37- 4.40 show the spectra derived from both the 2-D CWT and 3-D FFT 

algorithms using the dual-polarized radar data collected on Dec. 15 and 20, 2010. 

The wave buoy information recorded at the same time is also ketched in the figures. 

It is clear that a second peak near 0.18 Hz appears in the Dec. 15 buoy record of 

the 1-D frequency spectra ((a) in F igs 4.37, 4.38). The energy of this second peak is 

detected by the enhanced 3-D FFT-based algorithm which considered the aliasing and 

harmonic effects in the wave field analysis. However, this second peak is not shown 

in the recovered curve from the 2-D CWT-based algorithm. This is mainly because 

the band-pass filtering process is not applied in the wavelet analysis to back-fold the 

aliased energy components due to the Nyquist limit. Also, the introduction of the 

modified MTF function as described in ( 4.19) fur ther suppresses the energy near the 

frequency components of 2fp· In addition, it is observed from Fig. 4.37 and Fig. 4.3 

(a) that both methods fail to recover the energy of the higher freq uency components 

(f > 0.28 Hz) . T his results in the overestimated mean wave period. 

It is demonstrated by comparing the mean wave direction spectra ((b) in Figs. 4.37 

- 4.40) that the wave directions retrieved using both methods are close to those ob­

tained from the buoy data. However, by comparing the derived mean wave direction 

spectra. it is observed that wavelet analysis produces better results in 8(!) for both 

large and small frequency components. 

In general, the 2-D directional-frequency spectra ((c)- (e) in Figs. 4.37 - 4.40) de­

rived by both methods recovered the energy distribution correctly. The peak frequen­

cies of the radar-derived spectra using both methods are also within 0.01 Hz of those 

obtained from the buoy reference. 

In summary. it i:,; verified through the comparison of V -pol and H-pol derived 

results that vertically polarized transmission provides better current information. T he 
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wave results extracted from V-pol data and H-pol data do not diff.er significantly. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

In t his thesis, current and wave information exLracLion algorithms for u ·e with nautical 

radar data are reviewed . Then. improvements and new algori thms arc presented. Both 

simulated and fi eld data have been us d in the validation of the techniques. 

FirsLiy. the least squares (LS). iterative LS, and the normalized calar product 

(NSP) surface curr nt estimation methods are investigated . The iterative LS method 

is improved by introducing an adaptive it era tion termination criterion to reduce t he 

numher of it.Pra t.ions whilP improving tlw Pfti <'ien<'y and a<'<'ura<'y of t hP <'urrent Psti­

mation. The accuracy of t he SP met hoc! relies on a la rge range and a fine resolution 

of the velocity for thP two-dimensional search : Thus a la rge number of calculations are 

usually expected in t his process. To reduce the computational co t of this method. 

an improven1ent is suggested using variable search ranges and resolu t ions. 

Secondly, the classic 3-D FFT-basccl wave a nalysis algori thm is studied. However, 

the non-wave, fundamental and higher-order harmonic wav components Lhal fall in 

the pass ba11d of the required fi lLer are all used for wave spectrum derivation in existing 
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algorit hms. In this t hesis, an enhanced algorithm using a modified band-pass fi lter 

to extract ocean wave information of fundamental components from nautical radar 

images is proposed based on the mode classification results for the iterative LS current 

est imation. 

In addition, a new strategy to retrieve ocean wave information from nautical radar 

images based on 2-D continuous wavelet t ransform (CWT) analysis is also proposed . 

T he research explores the wavelet select ion and parameter configuration. It is observed 

from a series of simulation tests that the ::;election of scaling parameters significant ly 

affect:-; t lw derived wave held results. Thus, the relation of t he maximum wavelet 

scaling parameter amax to t he minimum distinguishable wavenumber is deduced, and 

empirical values of the calibration factor , ji. which refines the optimal amax under 

varying wa ve condit ions, a re provided . A look-up- table-based wave analysis algorithm 

is first proposed with t he knowledge of the empirical optimal values of calibration 

factor with reference to wave period from other instrumentation. Then a self-adap tive 

wave analysis algorithm is designed using an iterative verification process involving 

the talmlatecl calibration factors for different states without giYen Tot · 

Lastly, both simulation and dual-polarized field data tests are used for the algo­

rithm verification and analysis. In t he simulated data test, radar images are gen­

erated under different, circumstances assuming shadowing and tilt modula tion. It is 

concluded from the simulation that accurate and robust current estimation can be 

obtained from the iterative LS and NSP methods for dif-ferent current velocities, and 

mean wave periods. Also, the ocean wave spectra and associated parameters derived 

from both 3-D FFT-based and 2-D CWT-based wave algorithms agree well with the 

input data and, in particular. can be retrieved for diH.erent current speeds and mean 

wave periods. lL is abo observed that the position of the sub-image sequence may 

affect the retr ieved ocean wave information and it is suggested that the optimal posi-
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tions of the sub-image sequence for wave analysis are selected at the wave propagation 

direction , 200 -800 m away from the radar antenna for the simulated data test. Data 

were used from a two-day field test which involve both H-pol and V-pol X-band radars 

on the Canadian East Coast. A TRIAXYS wave buoy and ADCP record collected at 

the same time near the radar antenna were also available as ground truth for analysis. 

Current velocity results show that both t he iterative LS and NSP methods can be used 

to retrieve reliable currenL information. Also, the V-pol data allows for better current 

estimation than that does the H-pol data, even under low sea state conditions. 'Nave 

spectra parameters using both the 3-D FFT-based and 2-D CWT-based wave algo­

rithms are close to those obtained from the buoy reference. It appears that reliable 

ocean wave information can be retrieved from both the H-pol and V-pol data using 

modified modulation tra nsfer functions . It is concluded from the results that the key 

to the retrieval of accurate wave information with the 2-D CWT-based method is the 

proper selection of the calibration factor and modulation t ransfer function. 

5.2 Future Work 

In this thesit;, the field data is collected from a ground-based radar system under a 

low sea state within a limiLecl time span. A further validation with longer data sets 

collected during a variety of sea states and ship speeds should be conducted. Also, 

as discussed in Chapter 2. the t hresholds used in the LS and iterative LS current 

estima tion are selected empirically. It is necessary to further explore an adaptive 

threshold selection method under varying conditions in order to improve the accuracy 

and robustness of t he results . 

In the 2-D CWT wave analysis , the effert of rurrent velocity on t he performance 

of the a lgorithm is not considered. Also, directional ambiguity inherently exists in 



120 

the wavenumber spectrum obtained from the 2-D CWT analysis. In this thesis, t he 

ambiguity is removed by referencing the buoy data. Ongoing work suggests that a 

3-D wavelet analysis for the estimation of currents and the possible elimination of the 

wave directional ambiguity should be explored [82]. 
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1. sub-image acquisition and normalization; 

2. generation of an image f:lpectrum by applying 2-D CWT on a single frame of the 

normalized sub-image using an initia l /30 ; 

3. deriva tion of a 1-D frequency f:lpectrum E(f) and calculation of the mean period. 

T01 , and application of an empirical t hreshold to E(f) to check whether any 

point other Lhan the major peak lies a bove the threshold line to the left of the 

major peak in t he derived E(f) : if such a point is detected , it will be identified 

as a false peale 

(a) if a ny false peak is detected, go back to step (2) , increase the value of j3 by 

6.(3 and repeat steps (2),(3); 

(b) if no false peak is detected, compare the calcula ted T01 with t he mean 

period that corresponds to j3 using Table 3.1 and (3.27): 

1. if t he difference of the two mean perioclf:l if:> larger t han a preset thres!J­

old (, increase t he value of j3 by 6./3 and repeat steps (2), (3); 

n. if the difference is smaller than the specified threshold (, ;3 is identified 

as an appropriate value for wave field analysis. This value may then be 

used t.o procef:ls the 2-D CWT on the whole radar image sequence and 

the derived 2-D directional-frequency f:lpecLra E(f, e) may be averaged 

for wave information extraction . In this research, if Tot < 10 s, ( = 0.5; 

otherwise. ( = 1. 

T he complete self-adaptive wavelet-based algorithm for the extraction of ocean wave 

information is depicted in Fig. 3.8. 










