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Abstract

The development of algorithins for extracting ocean wave information from X-band
nautical radar images is addressed. The algorithing are designed based on the three-
dimensional (3-D) fast Fourier transform (FFT) and two-dimensional (2-D) contin-
uous wavelet transform (CWT). First. in order to design the 3-D FEFT-based wave
algorithm, methods for extracting sea surface current information using least squares
(LS). iterative LS. and normalized scalar product (NSP) methods are examined. With
the results of mode classification of wave components from the iterative LS current
estimation process. an improved wave measurement algorithm is proposed in which a
modified band-pass filter is constructed to retain the contributions of the fundamental
wave only and to remove the harmonics and non-wave components for wave informa-
tion extraction. Noise components and aliasing effects are also eliminated based on
existing theories and techniques associated with 3-D FFT-based wave field analysis.
An alternative scheme for wave neasurement using the 2-D CWT is also presented.
The relationship of the scaling factor of the CWT and the minimum distinguishable
wavenumber is developed and its expression is presented with a calibration factor.
Empirical optimal values of the scaling parameter for variable wave conditions are
provided based on extensive simulated I:'(l(ldr {ests. Based on the existing techniques
employed in the classic 3-D FFT analysis. a look-up-table method and an iterative

niethod are proposed to determine the calibration factor. For the iterative method.
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a self-adaptive wavelet analysis algorithm for wave measurement is developed. The

designed wave algoritlins are first evaluated with the numerical simulation under var-
ious sea conditions. assuming shadowing modulation (SH) and tilt modulation (TM).
Then for further validation. the algorithuns arc applied to dual-polarized radar field
data collected on the east coast of Canada. Results derived from FFT- and CWT-
based algorithms are analyzed and compared with in situ TRIAXYS directional wave
buoy data collected in the same region. The comparisons reveal that the proposed
algorithms are practical and effective for retrieving ocean wave information from the

racdar data.
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Chapter 1

Introduction

1.1 Background of Study

Occan wave and current paranieters, including wave propagation direction. mean
period. peak frequency. and current velocity. provide iniportant information for the
safety and efficiency of operation and routing of warine traflic as well as for offshore
platform design and maintenance. Such information can be acquired by a variety of
niecans including visual observationus of the sea surface. buoy measurements, analysis
of svnthetic aperture radar (SAR) data. and inverting radar plan position indicator
(PPI) images. In practice. all methods will experience some limitations in monitoring
the niaritinie space. For example. results of visual observation are highly dependent
on the expericnce of the observers. Satellite data can provide wave field averaged over
a large area. but it is costly to obtain. Furthermore, satellite-borne sensors cannot
provide continuous ocean wave measurement of a specified area since it usually takes
hours or davs for a satellite 10 revisit the same area of the earth. Although moored
wave buoys record relatively accurate directional wave field information. they only

provide the local sea state conditions where the buoy is deployed and are of limited



utility to mobile ships [1].

Due to the interaction of the electromagnetic signal transmitted by the nautical
radar with ripples on the ocean surface. a backscattered signal is received by the radar
and becomes visible on the display unit. This signal is commonly referred to as sea
clutter [2]. and traditionally it was considered as undesirable noise for ship operation
and navigation purposes during the carly time of radar development. However, such
“noise” contains useful information about ocean waves and surface currents. The
correlation of the display unit clutter with the wave field was not addressed meaning-
fully until Wright proposed an approach for imaging ocean waves from sea chitter in
X-bhand radar images in 1965 [3].

Conventional nautical radar is installed on most vessels and scans the sea surface
with high temporal and spatial resolution. Also, it produces consecutive images of a
specified area which allows continuous sea state monitoring without directional ani-
bignity. It is not as casily daniaged as moored buoys which may experience collisions
with ocean traffic or be shaken under severe sea states. Therefore, using remote sens-
ing techniques to measure reliable dynamic ocean wave and current parameters from
PPI images of a nautical radar becomes a convenient and reliable solution for con-
tinuous and real-time sea state surveillance under a wide variety of ocean conditions
without incurring additional capital cost.

The Newfonndland and Labrador region encompasses over 29.000 kilometers of
coastline and St. John's is one of the oldest harbors in North America. Newfoundland
is famous for its traditional fisherv industry as one of the world’s three major fishing
grounds. Extensive ship and surface platform operations occur in the region due to
the substantial activity of the local oil industry, With this as a motivation for this
rescarch, algorithims are developed to provide reliable environmental information so

that these maritinie activities may be conducted safely and etficiently.




1.2 Literature Review

In the past forty years. remote sensing techuniques have evolved guickly and many
applications for the measurcment of the ocean waves and currents have been de-
signed. Significant efforts have been expended in the research of ocean wave monitor-
ing svstems such as synthetic aperture radar (SAR) [4]. side-looking aperture radar
(SLAR) [5]. and high-frequency (HF) radar [6]. Also. the wave and current measurec-
ment capabilities of typical nautical radars that operate in the X-band for sea surface
surveillance have been investigated. X-band radars, operating at wavelengths of 2.50
cm to 3.75 em. transmit an electromagnetic signal that interacts with the rough sea
surface and then receive the backscattered field (see Fig. 1.1). The backscattered sig-
nals are then converted to PPI images. Unlike the costly satellite surveillance or the
easilv damaged wave buoy instrument, the conventional nautical radars installed on
most vessels can provide high temporal and spatial resolution mapping of continuous
occan surface processes. During the 1960s. Ijima et al. [7] and Wright [3] presented
an approach [or imaging occan waves using a marine radar. Before that research. the
ocean backscatter was simply considered as a kind of noise since it obscured target
echoes in the marine radar image [8). Subsequent early research was conducted to
monitor ocean waves and estimate the wave direction. wave length, and wave period
from the radar images [9]-[12]. Ac that time, data was stored as analog signals on
filin.

In the 1980s. radar images were digitized for two-dimensional (2-D) Fourier trans-
form (FFT) analvsis and 2-D spectra similar to those obtained from buoy data were
derived [13]. [14]. These so-called radar image spectra demonstrated the possibility
of using nautical radar images for wave measurcment. However, a 180° directional
ambiguity was observed on the 2-D image spectrum obtained from the radar image.

and this could not be removed without obtaining wave direction information by other




Figure 1.1: An X-band nautical radar plan position indicator (PPI) image collected
on the cast coast of Canada on Dec.20, 2010

means. Atanassov ef al. [15] proposed a method to eliminate the directional ambiguity
by using two radar images for wave analysis. In 1985, Young [16] proposed a three-
dimensional (3-D) FFT-based algorithm to be applied to time sequences of digitized
radar images in order to eliminate the 180° ambiguity in phase. This method con-
sidered the changes of the sea clutter in both time and space. Before wave retrieval.
Young estimated current by a least squares (LS) method. Next, a two-dimensional
shell was constructed based on the derived current information and the Doppler-
shifted dispersion relationship between the wave vector k and angular frequency w as
given by

—
(k.0 :\/qm tanh(m h)—i—Ev‘zT (1.1)




where ¢ is the acceleration due to gravity (= 9.8 m/s). h is the water depth. and «

is the near surface current. By introducing this shell. energy that does not belong
to the wave field and falls outside the shell is eliminated. Compared with previous
research. Young's 3-D FFT analysis retrieved more accurate ocean wave spectra and
parameters. Later it was found that the derived 3-D image spectrum consists of three

major components:

1. wave energyv duc 1o the backscatter modulation:

o

. background noise due to the sea surface roughness:

‘)

5. higher harmonics of the wave energy due to radar imaging effects.

In Young's method. background noise and harmonic component effects were not
considered.  According to the Nyquist-Shannon sampling theorem, aliasing effects
may also occur when the sampling frequency of the radar system is small (as may
occur at low antenna rotation speeds). In 1998. Nieto Borge [17] proposed a solu-
tion to overcome the Nyquist limit issue for wave measurement, thus allowing wave
paranieters to be estimated from the radar image spectrum [18]. [19].

A comprehensive list of wave parameters and wave-related functions for wave ex-
traction was published by the International Association for Hydro-Environment En-
gineering and Research (IAHR) working group on wave generation and analysis for
maritime applications [20]. [21]. Among these wave parameters. ocean wave height
was also obtained from the radar imagery [22]. For nautical radar images, it has been
reported by Ziemer ef al. |23] that the significant wave height (H,) is proportional
to the signal-to-noise ratio (SNR) of the radar backscatter. Later. Nieto Borge [24]
presented an improved method for significant wave height estimation. Field experi-
ments were conducted for his algorithm validation [25]. [26]. For grazing incidence.

an alternative method to estimate H, based on shadowing statistics was designed by




Wenzel [27]. This method was validated by Henschel et al. [28]. and Buckley and

Aler [29]. [30].

The simulation of radar images has also been studied for the purpose of wave
algorithim development. For example, in 1995. Seemann and Ziemer [31] developed
an approach for computer simulation of imaging ocean wave fields. It was found
that the longer waves become visible in the radar images because they modulate the
sea clutter signals. Otlier features associated with the marine radar image may be

summarized as [2]. [32]-[34):
e range dependence
e azimuthal dependence with the wind direction
e wind speed dependence
e azimuthal dependence with the wave propagation direction
e wave tilt modulation (TN)
e shadowing modulation (SH). which occurs when higher waves are present
e wave hvdrodvnamic modulation (HM) due to the motion of the water particles

These features contribute extra encrgy components to the derived spectrum and sig-
nificantly affect energyv distributions of the wave field imaged by the marine radar.
Therefore. it is necessarv to consider these phenonmena both in the process of simulat-
ing the nautical radar images and in measuring the wave and current information. In
this process, HM deseribes the modulation of the cnergy of the ripples by the interac-
tion with the longer waves; TN is the modulation due to the changes of the effective

incidence angle along the long wave slope: and SH is the partial shadowing of the sea




surface from the radar antenna by higher waves [35]. [36]. Researchers also demon-
strated means of numerically simulating sea clutter images at grazing incidence by

applyving shadowing and tilt niodulation on an ocean surface generated with a spec-

ified wave spectrum [32], [37]. An alternative method for simulating marine radar

inages was proposed by Nomiyama et al. [1]. [38]. [39]. In their research. the PPI
images were generated based on calibrated normalized radar cross section (NRCS)
statistics [40]-[44].

In order to improve the wave measurement result. in 1997, Senet et al. [45]-[47] de-
veloped a new method to determine the near surface current velocity based on Young's
theory. They considered the aliasing effect as well as the harmonics in the spectral
analysis and perfornied the least squares (LS) method iteratively. Gangeskar [18]
introduced a weighted function into the LS method to compensate for the errors in

current estimation which increases the accuracy of the derived current velocity. Re-

cently. a novel strategy to retrieve current information with a maximization of the
normalized scalar product (NSPP) has been proposed by Serafino [49]. [50]. Conipared
to Senet s iteration method. large current velocity derived from Serafino’s method is
nore accurate for low speed antennas.

A complete 3-D FFT-based algorithm for wave and current information extraction
has been designed and successfully incorporated in the commercialized Wave Moni-
toring System (WalMoS) by Niceto Borge ef al. [51]-[53] at the German GKSS Research
Center. Geesthacht.

Comparisons of the results derived from the shipborne Wallos system with pitch-
roll buov data were reported by Alfonso et al. [54]. Data analysis from radars on a
floating production and offloading platforin (FPSQO) was conducted by Nieto Borge ef
al. in 2000 [55]. Results of this algorithm have also been compared with scalar wave

data [51] and directional waverider buoy data [56]. However. those comparisons are



mainly made at the level of spectral parameters in an illustrative way and only a few
examples of the directional spectra were provided. Later. a svstematic and extensive
comparison of the spectral analysis of ocean wave felds were presented by Izquierdo et
al. [57]-[59]. where the obtained statistics were listed in detail to quantify the degree of
agreement hetween the paranicters estimated [rom the data sets provided by different
Sesors.

Wave estimation methods have also been developed by research groups in Asia.
These include Hiravama et al. [60]-[63]. Iseki el al. [64]. Yoshimoto et al. [65]. and
Ishida [66). They developed algorithins for robust estimation of wave direction [39]. [1]
and significant wave height [67]. (68} using the PPI images. In 2010. the performance
of the Fonrier-hased algorithms was tested for various sea conditions and results were
derived by Cui ¢f al. [69]. [70] from dual-polarized marine radar data. The influence
of non-lincar ocean waves on X-band nautical radar observations was discussed by Li
el al. [T1].

In addition to the Fourier analyvses. more recently. the wavelet transform. which
allows the mother wavelet to be translated in the space domain and dilated in the
frequency domain [72]. [73]. has emerged as a useful. flexible. and efficient technigue
for wave analysis. In 1995. Carlsou [74] proposed the application of two-dimensional
wavelet analvsis for noise reduction and image enhancement in SAR inlages of the
sea surface. In 1997, D. Jordan of al. |75 addressed the implementation issues asso-
ciated with the continnous wavelet transform for digital time series analysis. Later.
Massel 76] demonstrated that the Morlet wavelet transfornt can be used for analyz-
ing one-dimensional signals of surface waves. Based on the TAHR list of sea state
paramcters [21]. Huang [77] clarified the existing wave paranieters and functions and
introduced new parameters in the wavelet analysis. Antoine et ol [78] discussed the

two dimensional wavelet analysis and its application in image processing. Wi ef al.



proposed using a 2-D continuous wavelet transform (CWT) to process X-band nan-
tical radar data. Mother wavelet selection and wavelet configuration for radar image
processing were presented in their rescarch. Image wavenumber spectra were success-
fullv derived from hoth simulated sea surface elevation maps and experimental radar

data [79}-[83].

1.3 Scope of Thesis

After reviewing the existing theories and techniques for wave measurenient, improved
algorithms for retricving ocean wave information using the 3-D FFT and 2-D CWT
are developed in this thesis.

The 3-D FET-based algorithm for the retrieval of wave and current information
proposed by Nieto Borge [51]-[53] provides better results than the earlier studies. In
that algorithm, a band-pass filter based on the Doppler-shifted dispersion relationship
is constructed in order to remove the energy that does not belong to the wave field.
Also, aliasing effects are eliminated using a back folding strategy [51]-[53]. However.
the non-wave components. and fundamental and higher-order harmonic wave compo-
nents that fall in the pass band of the filter are all used for wave spectrum derivation.
and this may coutaminate the final results. Tu this thesis, the classic 3-D FFT-based
algorithm is improved with an enhanced band-pass filter. In the proposed band-pass
filtering process. sample points of fundamental components are preserved while all
the harmonics and non-wave components are eliminated.

As for the wavelet-based wave algorithin proposed by Wu et al. [79]-[83]. the nu-
merical simulation testing in their research was conducted on the sea surface elevation
map instead of simulated radar images. Also. modulation etfects, such as tilt and shad-

owing. were not considered. Most of their research was focused on non-homogeneous
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wave field wavelet-hased analvsis. The selection of the particular wavelet paramecters
nnder different wave conditions was not explored in detail. Furthermore. only image
wavenumber spectra were presented and studied [79]-[83]. In this thesis. both a look-
up-table-based and a self-adaptive 2-D CWT-based algorithm for extracting ocean
wave information from X-band nantical radar images are presented.

The organization of this thesis is as follows:

In Chapter 2. the current estimation techniques using LS. iterative LS. and NSP
nethods are examined. The theories and techniques used in the classic Fourier-
based wave analysis algorithins are reviewed. Based on the node classification results
obtained using the iterative LS current method. an improved algorithm for retrieving
wave information is then proposed. In this niethod. fundamental components are
discriminated from other sample points for the band-pass filtering process.

The theory of the wavelet transform and its application in wave field analysis
arc investigated in Chapter 3. The relationship between the scaling factor and the
minimum distinguishable wavenumber is derived. and its expression is presented in
ternis of a calibration factor. Empirical optimal values of the scaling parameter for
variable wave conditions are provided based on extensive simulated radar tests. Based
on the existing techniques emploved in the classical 3-D FFT method, an iterative
method for determining the calibration factor is designed. Look-up-table-based and
self-adaptive wavelet analysis algorithms for wave measurement are also proposed.

In Chapter 4. the proposed algorithms are first tested with simulated radar images
under various sea conditions. assuming shadowing (SH) and tilt modulation (TNI).
Then. for further validation, the algorithms are applied to both horizontally polarized
(H-pol) and vertically polarized (V-pol) radar field data collected on the east coast
of Canada. Results retrieved from both the 3-D FFT-based algorithm and the 2-

D CWT-based algorithm are presented, analyzed. and compared with in situ buoy



records.

Finally. conclusions and related future work are provided in Chapter 5.



Chapter 2

3-D Fourier-based Algorithms for

Wave Measurement

In the 3-D Fourier-based wave analysis. the temporal sequences composed of consec-
utive sea clutter inages from a nautical radar systeni are processed to obtain the
temporal and spatial change of the ocean wave field [84]. Without sea surface cur-
rent. the energyv of the ocean waves is localized on the dispersion shell on the image
spectrum produced by applying the Fourier transform to the radar image sequence.
However. if the radar images are collected from a moving vessel or if a non-zero near-
surface current is present, the dispersion shell will be deformed due to the Doppler
shift. as described in equation (1.1). Thus. the moving vessel and near-surface cur-
rent velocities should be determined before any attempt is made to retrieve the ocean
wave information [32]. In this chapter. the classic and modified 3-D FFT-based wave

analysis algorithms for retrieving current and wave information are discussed.
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2.1 3-D FFT-based Current Information Extrac-

tion Methods

The 3-D FFT-based algorithm for ocean wave and current information extraction
was initially proposed by Young et al. in 1985 [16], and later refined by Nieto et
al. [51)-[59]. The basic step-wise procedure. with corresponding rational. to extract

wave information fron the radar data may be summarized as:
e sub-image acquisition: to reduce the complexity of the algorithm computations

¢ inlage normalization: to eliminate main contributions of the static patterns in

space and time:
e 3-D FEFT analvsis on an image sequence: (o obtain 3-D image spectra:

e high-pass filtering: to remove non-stationary and non-homogencous components

near zero frequency:
e current estimation: to obtain near-surface current information:
e band-pass filtering: (o discriminate the wave energy from undesired components:

e conversion froni image spectra to wave spectra using an MTF: to mininize the

nou-linearity due to the radar imaging mechanism:
e derivation of wave spectra and paraeters such as
~ dircctional frequency spectra £(f, )
— frequency spectra E(f)
— mean wave direction ()

— overall mean wave direction 0,



— mean period Ty and peak frequency f,.

From the listed step-wise procedure, it is found that in order to determine the surface
current information. multiple processing steps, including sub-image acquisition and
normalization. 3-D spectral analvsis. and high-pass filtering, need to be employved first.
These are detailed in Section 2.2.1. This section focuses on the current algorithms
assuming that the high-pass filtered image spectra have been obtained.

Young el al. [L6] proposed a least squares (LS) method in which only the funda-
mental dispersion relationship is used for current estimation. and Senet et al. im-
proved this LS method by calculating the current velocity iteratively based on the
higher order harmonic dispersion relationship and an anti-aliasing scheme [17]. [47].
Serafino el al. presented another approach to determine the optimal current that
maxiniizes the normalized scalar product (NSP) [49], [50]. In this section. these 3-D
FF T-based current estimation methods are discussed briefly. Modifications of the lat-
ter two methods to improve the computational efficiency and accuracy. as suggested

bv Huang et al. [85]-[87]. are also presented.

2.1.1 The Least Squares Method

In [16] and [47]. in order to account for the Doppler shift, the vector sum of the
platform’s (e.g.. vessel's) velocity u, and the current velocity @, is defined as the
velocity of encounter .

U, = Us + U (2.1)

The Doppler frequency shift. induced by the near-surface current down to the pene-
tration depth of the waves. can be obscrved in the wave field imaged by the nautical
radar. The penetration depth for a single wave is approximately half of its wave-

length A/2 [17]. Stewart el al. [88] have shown that the component of the velocity of




encounter 4, in the direction of the wave vector A is a weighted mean current over

the upper layer of the ocean. This result can be extended to consider the full current
vector [16] as

0
0, = 2/;/ i) et d (2.2)
—d

where = is the vertical coordinate, d is the depth of the upper laver for surface current
determination, and @.(z) is the vertical velocity vector profile.

Young's least squares current regression approach is based on the fundamental
water dispersion relation of the ocean surface gravity waves, wave vector k and angular

frecquency w. This Doppler-shifted dispersion relationship is written as
wlk. ) =« +wp (2.3)

where the first terni ¢ is the intrinsic frequency. If the water is deep enough. ¢ can be
simplified as

_
<= \/gh (2.4)

The second terny, wp. is the Doppler frequency. defined as

o
<

wp = |t A:‘ cos O = ke, + kyuy {

where 6. is the angle between the wave and velocity vectors. Ay, ;. ky. wy are the
wavenumber and velocity compounents in the o and y directions, respectively. It is
observed from (2.5) that the Doppler frequency is affected by the velocity component
projected in the direction of wave vector L. The intrinsic and Doppler-shifted dis-
persion shells are illustrated in Fig. 2.1. The figure clearly shows that the dispersion

shell 1s significantly defornmied due to the velocity of encounter.
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Figure 2.1: (a) Intrinsic and (b) Doppler-shifted dispersion shell

The criterion for LS current estimation is written as [47]

2
Y= min (2.6)

N =
Q=3 (i — wik)

1=1

where N is the number of coordinates collected for the least squares fitting process.
w; is the ith sampled frequency component from inage spectrum [ (k;. k. w) after
high-pass filtering. and w(l?i) is the angular frequency calculated by (2.3) at the 7th

sanipled wave vector component. The ith Doppler term in (2.6) is defined as
wip = wi — wki) (2.7)
The current velocity (u,, «,) that minimizes Q% satisfies the following two equations

9Q*/ou, =0
(2.8)
JQ* o, =0



Equation (2.8) can be rewritten as

D.[‘]‘ D.Tl) “l‘ b.[‘
) = (2.9)
Dyr Dy, ty by
where
RS
D,. =Y k. (2.10)
=1
N
ny = D_z/.l‘ = Z A“I‘.I‘/{’L‘l/ (211)
i=1
N
Dy, =Dk, (2.12)
=1
N
b.r - Z/“IIW'ZD (2 13)
=1
N
by = > kywip (2.14)
i=1

where k. k;, are the ith wavenumber components in .r and y direction. respectively.

Equation (2.9) can be rewritten more compactly as

Dii, = b (2.15)

-

where the definitions of D, . and b are obvious. If D is invertible (i.e.. det(D) # 0).

the current vector is given by [47]

i =D (2.16)
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2.1.2 The Iterative Least Squares Method

Young's LS current estimation algorithm is designed using the fundamental dispersion
relationship (1.1). Higher harmonic components are not considered.  In addition.
weasures to overcome the aliasing etfect due to the low sampling frequency are not
included. Thus. the classic LS method needs to be improved to include the higher
harmonics and to overcomnte aliasing effects. The harmonic and aliasing effects are

discussed as helow,

Harmonic effects
Higher harmonic components are caused by non-linearity of the nautical radar imaging
and the non-lincarity of the ocean waves 47 . The harmonic eflects are depicted in

Fig. 2.2. In the figure. the BGN spectral energy is assumed as background noise.

{mage Spectrum
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Wave number 4 {rad'm’
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Figure 2.2: Iarmonic effects observed from the 2-D image spectrim (taken from Nieto
Borge el al. [2]).

By introducing the factor p+ 1 into (1.1). a harmonic dispersion relation of order



p is obtained for wave analysis. and may be writien as

+ k-, (2.17)

[t is obvious that the fundamental components without harmonics can be also ex-

pressed by (2.17) with p = 0.

Aliasing effects

If the radar is operated with a low antenna rotation speed. the wave signals collected
from the svstem may be undersampled. According to the Nyquist-Shannon sampling
theorem [89]-[91]. signals with a frequency [ whose absolute values are higher than
the Nvquist frequency fy will not be recovered. Such frequencies may be expressed
mathematically as

M>h:% (2.18)

where [, is the sampling frequency as determined by the antenna rotation speed.
As discussed in [17]. this aliasing effect can be eliminated by the property of 2wy
periodicity and the Hermitian property of the 3-D FFT. These properties may be

written, respectively, as
Ik kyw) = I(hp ky w + 2nws) (2.19)

1(1\'_,-, I‘U w') = 1(—k1:~ _1‘,,1/~ ‘—"’d) (22[))

where n is an integer. and

wy = 27 [ (2.21)



Iterative LS method

Based on the aforementioned harmonic dispersion relation and back-folding strategy
(see Fig. 2.3). a two-step LS current regression algorithm is proposed by Senet et

al. [45]-[47] as [ollows:
1. Apply Young's LS method to obtain a first guess of the current velocity.

2. Update the current velocity results iteratively with consideration of the funda-
mental and harmonic components. combining a strategy of reconstructing the

aliased dispersion shells.

In the first guess estimation. an energy threshold Try; is applied to separate the
spectral samples of the fundamental mode from the undesired components such as
non-linear samples. aliased signals. and the background noise. It is assumed that
all the saniple points after the thresholding process with Trg will be located in the
interval [0, wy,| with no aliasing etfects.

Once the first guess of the current velocity is obtained, the LS criterion in (2.6) is

revised for the iterative current estimation and may be written as

N7
Q* = Z(’w“ — wy (ko)) = min (2.22)

i'=1

where N’ is the number of coordinates collected for the iterative LS process, and wj
is the /th sampled frequency coniponent from the mrage spectrum [(l;-r. wir). With
a lower threshold T, most of the noise components are eliminated and the sample
poiuts (E;r,wi/) preserved arc fundamental and 1st harmonics. i.e. p = 0, 1. respec-
tively. Iu (2.22). pup‘,.(/;’,'/) is the pth order aliased wave frequency calculated from

(2.17) using the previous current velocity. and the frequency is folded within [0.wy]

by the 2wy periodicity and Hermitian property. r indicates the range of frequency



derived from (2.17) before aliasing.
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Figure 2.3: Back-folding strategy used to overcome the Nyquist limit.

The points preserved after the thresholding process are then classified as contri-
butions from the fundaniental. 1st-order. higher order harmonic components with
mapped frequencies w,(kv) (p = 0. 1. ...} or noise. For the 7'th sample (Ay.w;).

the classification is accomplished by evaluating the difference between the mapped

angular freguencies V‘J,)_,‘(l:,,/) (p=0.1)and wp. If

MIN{wi = wy, (b)) > Aw (2.23)

the 7/th sample point will be regarded as higher-order wave contributions or noise and
discarded. Aw is the frequency resolution deterniined by the sampling frequency.

The following equation is evaluated for mode classification:

E = “wi’ — “)l).r'(l:'l’)i — {CA.';'/ - wl_r(lzv’)‘
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If € < 0. the sample associated with w; is treated as a fundamental component:
otherwise. it is regarcded as a Ist-order harmonic component.

Once the mode ol every sample point is determined. the corresponding dispersion
relationship is used for current estimation. After a new current velocity is calculated
front the LS process. it is then used in (2.17) for another round of LS estimation. This
process is repeated until a preset termination criterion is satisfied.

In Senet’s rescarch. a fixed number of 10 iterations is applied to calculate the ve-
locity [47]. It was observed during the research that the number of iterations required
for an accurate estimation of velocity depends on the quality of the lirst guess [85].
Thus. a revised termination criterion is suggested to improve the efficiency and accu-
racy of the LS estimation [86]: if the iteration result converges to a specified value.

the iteration process can be terminated. This criterion can be written as

Up, = Up,_,

(2.25)

Hhy,, T Wy,

where u,,. u,, are the present values of the derived current velocities in the x and y
directions. and wu,, ,. u,, , arc the previous iteration results for the derived current
velocities in the » and y directions. 4 is the convergence condition. The value of
d = 0.005 m/s used throughout this thesis appears to be sufficient for all tested cases.
This value is determined by the resolution of the retrieved current from a series of
test data. as discussed in [86]. which guarantees the retrieved current information is
sutficiently accurate in the iteration process.

Threshold selection is erucial in discriminating the components of interest from
the undesired signals. Here. the threshold for the lirst guess estimation T is selected
as 209 of the peak energy in the image spectrum. and for the iteration process. Tir

is chosen between 2% — 3% [47].



If the radar images are collected on a moving vessel. according to (2.1) the velocity

of encounter i, retrieved from the iterative LS method is the vector sum of the vessel's
velocity @, and the near-surface current velocity .. Usually. the vessel's velocity i
is available from navigation instruments such as a GPS device. Therefore, the true
velocity of the surface current i, can be obtained by subtracting @, from the derived

vector 1.

2.1.3 The Normalized Scalar Product Method

In addition to the LS and itcrative LS miethod. a novel strategy to retrieve the in-
formation of a high speed current was proposed by Serafino et al. [49]. Unlike the
iterative LS method. this method does not rely on the selection of the threshold for
sanmipling. and produces reliable results even when the velocity of encounter is very
large. The current inforniation is determined through the maximization of the nor-
malized scalar product (NSP) between the amplitude of the high-pass filtered image
spectrum [/ (A, by, w)| and the characteristic function Gk kyow, up uy). The char-
acteristic function can be written as

1 if [k + ke, + kyu, — (k)] < Aw/2
Gk hyow ity ) = ‘ o ‘ / (2.26)

0: otherwise.
The normalized scalar product V(u,. u,) is a function of velocity components. u,. and

i, and is defined as

v ) (L (kyhyw)| G hy, by, w, e 1y)) (
Ay, uy) = : ‘ '

o
o
-1
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where Pg and I%; are the power associated with the image spectrum |7(k,. k. w)| and

G(hp hy.w, gy,
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where N,. N, are the number of pixels of the sub-image in the & and y directions.
respectively. N, is the number of frames of the image scquence used for Fourier
analysis. By scarching for optimal values of the velocity components that maximizes
the normalized scalar product in (2.27). the near-surface current information can be
obtained.

In order to derive accurate current information, the NSP method requires a large
search range and a fine resolution of the velocity in the & and y directions for finding
the maximized normalized scalar product. Thus. a large number of computations
{(thousands of seconds) are usually expected in this method. To reduce the computa-
tional cost of this method. an improvement is suggested using variable search ranges

and resolutions [87] as follows:

1. Search for an approximate estimation of the current velocity (u,, iy,) with a

wide search range [—Uy, Uy] and a coarse resolution Auy.

2. Search for the optimal velocity components (u,, . u,,) with a narrowed range near
the velocity (i, i, ) derived in Step 1. (u,, € [1t,, — mDug. t,, + mAug), u, €
[y, — MAug. wy, + mAug)) and a higher scarch resolution Aw;, where m (=1
or 2) is the coefficient used to determine the search scope around the previously

derived velocity.
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3. Replace (i, ) with (w,,. 1y,) and Aug with Au;, and repeat Step 2 until a

satisfactory result is found.

It has been found numerically that satisfactory results of the optimal velocity com-
ponents will be derived after iteratively updating the search results two or three times

in Step 3. In this wayv. the computational complexity can be significantly reduced.

2.2 3-D FFT-based Wave Information Extraction

Algorithm

2.2.1 The Classic Algorithm

As summarized in Section 2.1. the classic 3-D FFT-based wave analysis algorithni.

based on [16]. [51]-[53]. will be provided in detail in this section:

Sub-image acquisition and image normalization

Radar images obtained from typical field installations are nsually of a large size and
not suitable for direct three-dimensional Fourier analysis due to the large computa-
tional burden which would be required. Thercfore. to efficiently extract wave informa-
tion it is snggested that Fourier analysis be performed on a carefully selected sub-area
instead of the whole radar image. Reichert [92] reported the azimuthal dependence
of the backscatter imaged by nantical radar on the wind direetion. Also, Nieto Borge
et al. [51] observed a distortion of wave fronts for positions close to the antenna due
to tilt modulation. Of course. the intensity of the back-scattered energy is inversely
proportional to the fourth power of the distance between the radar and the target [42].
Therefore. it is not practical to select the sub-image position either too close to or

100 far away from the antenna. The seleetion of sub-images for Fourier analysis is
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examined and tested in [38)-[1]. In this thesis, a series of radar images are simulated
with a size of 512 x 512 pixels and a resolution of 10.5 m/pixel. The radar antenna
is assumed to be at the center of the image. Sequences of 32 consecutive sub-images
with a dimension of 128 x 128 pixcls are acquired in the wave propagation direction
with a distance of 200 — 800 m fron the radar antenna as shown in Fig. 2.4, (It may
be noted that in Section 4.2 where ficld data is tested. sub-images with this same size
are selected close to the wave buoy. which is 1239.5 m from the radar (see Fig. 4.32)).

After acquiring the series of sub-images. it is necessary to normalize the sequence
S0 as to climinate the contributions of the static patterns in space and time present
in the data set [51]. If the image intensity at position (r,y) at time f is defined as
s(eyy. £). the mean intensity 5,(.r, y) can be easily caleulated from the image series. By
subtracting this mean intensity from the sub-image series (see Fig. 2.5). a normalized

lmage sequence Is obtained and may be written as:

splry ) =s(r oy ) =5 (r.y) (2.30)

Three dimensional Fourier analysis

After performing the 3-D Fourier analvsis on the normalized image sequence. a com-
plex spectrum £ (k. ky,w) is derived. Spatial frequencies (A, k) reflect the space-
wavenunber transform from the space domain (@ y). while angular frequency w re-

flects the time-frequency transform from the time domain .

According to the Hermitian propertv (2.20). a real-valued image spectrum R(k,, b, ¢

can be obtained from the complex spectruni as

1

= |F(ky ko)) 2.31
L.rLmiml ‘ ( A Y )1 ( )

Rk k. w)




Figure 2.4: Example of sub-image acquisition: a 128 x 128 pixels sub-image is ex-
tracted from a 512x512 simulated radar image, at the wave propagation direction 500
m away from the antenna (center of the original image).

Figure 2.5: Example of image normalization: on the left is the image before image
normalization: on the right is the image after normalization.

where Ty, is the total time duration of a sub-image sequence. and L. L, are the
lengths of the sub-image in the r and y directions. respectively [51}-[53].
High-pass filtering

Energy components at very low frequencies are not considered as part of wind or swell

wave fields. and thus a high-pass filter is applied to the derived spectrum to eliminate
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these non-stationary and non-homogeneous components. The high-pass filter uses an
empirical threshold of wy, = 27 x 0.03 rad/s [51] and is written as

B 0: if (K,w) € Qp.
H(F.w) = ( " (2.32)

1. otherwise
where Q. the spectral stop-band regulated by the threshold (as shown in Fig. 2.6).
is given by

O = {k € (k] < klwn)} % [—wmwinl (2.33)

with A(wy) being the wavenuniber solution of the still water dispersion relationship

(2.4) for the given wy, [51]-[53)].

Figure 2.6: High-pass filter: the cylinder represents the stop-band.

The high-passed image spectrum is obtained by applying the high-pass filter to
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the 3-D spectrum:

Iy kyyw) = Hkp iy ) - Blky. by, ) (2.34)

Current estimation

Once the high-passed image spectrum is obtained, near-surface current information
can be estimated. as discussed in Section 2.1. In this thesis. the iterative LS method is
selected for usc in the wave field analysis algorithm for FFT-based wave information

extraction.

Band-pass filtering

After obtaining the sea surface current information, a band-pass filter is constructed
based ou the Doppler-shifted dispersion shell (1.1) to remove the spectral energy due

to non-wave contributions. In [17], the band-pass filter is described as

T((=1) Ko i) O K < Ok

I’)(l])fl(’l::””[*wl,-) = (235)
0. otherwise
where
0k, = K@) = K, 20) (2.36)
Alr'k = ‘(Vl)l.l?mn - E(wi,.)‘ (237)

In (2.35). l(k’,n,l.vu,,) is the high-pass filtered image spectrum for the sampled wave
vector 1?,,,,, and frequency w;. w;, € [rwn. (r+1)wy] is the back-folded frequency with
integer number € [=3.2]. 0k, is the pass-band and A, k is the magnitude of the
vector difference between the sampled wave vector l?m,, and the calculated wave vector

IT'(qu,_) (see Fig. 2.7).
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Figure 2.7: Band-pass filter: the circle represents the pass-band.

Modulation Transfer Function (MTF)

Due to the radar imaging mechanisms such as shadowing and tilt modulation as well
as the nou-lincarity of the wave field. a non-linear difference can be observed between
the spectra derived from the radar image and those from the in sifu records for the case
of grazing iucidence. This difference can he minimized by introducing a modulation
transfer function (MTF) into the algorithm [23]. [36].

In [32]. the modulation transter funcetion is defined as

MR = Ey(k)/1(k) (2.38)

where 7,(k) is the 1-D wavenumber spectrum derived from the radar data and E, (k) is

the wavenumber spectrum derived from the buov records. A series of field data tests
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Figure 2.8: Comparisons of the input and derived spectra E(f) with/without MTF

were conducted in [32] using a WaMos II radar system and a pitch-roll WaveScan

M (l.')|2. After analyzing the collected data. a power decay law

buoy to determine

given by
il (2.39)

MR = &

was determined for the modulation transfer function. In that research. a mean value
of i = —1.2 was empirically determined and was later used in many data tests [51]-
[53. However, different ;¢ values should be determined for different wave analysis
algorithms (FFT/CWT) via data test calibratious and curve fittings (see Chapter 4)
Fig. 2.8 shows the comparisons of the input (solid line) and derived frequency
spectra E(f) without the use of the MTF (dot line) and the spectrum when the
MTEF is incorporated (dash line). It is observed from Fig. 2.8 that the wave spectrum
derived using the MTF agrees better with the input spectrum. Two peaks are also
seen on the spectruni derived without the N TF. This leads to produces large errors

in the caleudation of peak frequency and period. In addition. the retrieved spectrim

deviates significantly {rom the input in the high frequency band if the MTF is not



used.

Derivations of Wave Spectra and Parameters

After the band-pass filtering and MTFE process. a 2-D wave spectrum can be derived
as

Elh, k) = |F (ks k) (2.40)

where [ (k,.k,) is the 2-D image spectrum after the band-pass filtering.
The wavenumber-direction spectrum E'(k.#) and frequency-direction spectrum

E(w. ) are then determined from E(k;. k,) via the form

‘ o dkedk,
E(k.0) = E(heky)—2t = E(A,,A,,)-1A] (2.41)
- 1k
E(w.0) = E(k,6)=. (2.42)
dw

The 1-D frequency spectrum E(w) is obtained by integrating the 2-D frequency-

direction spectrum E(w, ) over the interval [0.27]

From the 1-D frequency spectruni. the spectral moment can be calculated as
l‘f.\. . - - 3
= [ E (2.14)
0

where [y is the Nyquist frequency.

Also. according to research from the IAHR working group [21]. the peak frequency
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can be caleulated by Dellt’s method as

[ TEU

fy == (2.45)
Irl ECDOd)
where [, and f, are the lowest and highest frequencies at which
E() =08 max{E(/)}. (2.46)
The mean period. obtamed from the spectral moments nig and s given as
) m -
Toy = 2m—. (2.47)
my
Mean wave direction is a function of frequency. written as
6(f) = atan(b(f)/a(f)) (2.48)

where a and b are the directional Fourier coeflicients [52]. If [, is the cut-off fre-
quency. overall mean wave direction 6, 1s then determined by averaging the mean

wave direction over all frequency compouents [ € [0, f.]. written as

ST B 0)k(f )sinbdbdf
11T B 0)k ([ )cosBdadf

ST

(2.49)

., = atan(

2.2.2 Enhanced Algorithm with Modified Band-Pass Filter

In the classic 3-D FFT algorithni, the band-pass filter is designed based on the

Doppler-shifted dispersion relatiouship to eliminate the aliasing eflects via a back-

folding strategy [17]. However. the (mdamental. harmonic wave components and
8 8

noise that [all in the pass-band are all used for derivation of the wave spectra and
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wave paranmeters. The contributions of noise and higher order wave components niay
lead 1o less accurate wave spectra and related parameters. Iu order to remove the con-
tributions from these undesired components, an enhanced algorithm with a modified
band-pass filter involving only the fundamental mode wave components is designed
in this thesis (see also [93]. [94]). This is accomplished based on the mode classifi-
cation results obtained from the iterative least squares current estinlation algorithm
proposed by Senet ¢f al. 147

Based on a series of data tests, it is determined that q}p(/:) € |—wy. 3wy can be
used to retrieve accurate near-surface current information in the iterative LS process.
Due to a low sampling frequency. aliasing effects occur and fold the sample ponrs
fromt [y, 3wy ] into [0.wx|. Therefore. it is desirable to identify the aliased sample
points and fold these components w[)(/?) € [—wn.3wn] to ;u,,,,.(l:,-/) € [0.wy] before
mode classification.

By determining the range of w,,(l:‘,f) and w),( —1:'1-/) using (2.17). .gpw,.(/?,/) 1s calculated
as follows:

—

1. if.u,,(l\",-«) € [nwy. (n+1)wy]. where n = 0.2, u,',,_r(/:',-/) = .,J,,‘,,(A",-l) = wy(ki)—nwy:

Tl
N
I

2.14f .u,,(——l?,v) € [mwy.(m + Dwy|. where m = —1. 1. w,,‘,.(i?,v) = Wyml—

—p( =k )+ (4 D
3. otherwise. this point is discarded.

Once all the possible [requencies w,(b,) and wy(—k;) are folded to wy, (ki) €
10,y ]. mode classification is performed by comparing the difference between the

folded frequencies and the sample fregnency w,r via minimization as follows:

= -
it "d().n(l‘.l’)‘ . Wit W’l.n(l“l')‘ '

MIN

‘*"11 - *}().111(_/:/’) . !W'ﬂ - W'l,r?)(_kl’)}) (250)



Meanwhile. the order of the harmonics and the range of each sample point are
indicated with a flag F;(p. r) to enable back-folding of the sample points wy € [0.wy]
to w;, € [—wx.3wn] for refining the band-pass filter (2.35). During the back-folding
process. only the points of the fundamental mode (p = 0) that fall in the pass-band
of the filter in (2.36) are kept for wave information extraction. That is, the (p # 0)
contributions are discarded. In this way. fundamental mode contributions are retained

and used as filter inputs in order to derive more accurate band-passed spectra.



Chapter 3

2-D Wavelet-based Algorithm for

Wave Measurement

In the previous chapter. the classic 3-D FFT-based wave analysis algorithms for ocean
wave and current information retrieval are presented. In this chapter. an alternative
strategy in which a 2-D continuous wavelet transform (CWT) is applied to a single
frame of the nautical radar image to extract ocean wave inforniation is presented.
The theory of the 2-D wavelet transformi is first reviewed. Next. the application
of the 2-D CWT for wave field analysis is discussed. This includes the selection

and siniplification of a mother wavelet, discretization and sampling of the wavelet

function for radar image processing. and the determination and calibration of the

required wavelet parameters.

36
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3.1 2-D Wavelet Transform and Its Application for

Wave Field Analysis

3.1.1 2-D Wavelet Transform

As stated in [77]-[81]. the 2-D wavelet transform (WT) decomposes a signal into a
series of wavelets which are scaled. shifted. and rotated versions of the so-called mother
wavelet (see Fig. 3.1). If an image is given as s(¥) = s(a,y). where s and ¥ = (2, y)
represent the intensity of the pixel and its coordinates in the image. respectivelv. its

2-D WT. IV, may be defined as [78]. {79]

H'((:, f.a) = ('\f,]/chl . /

U (@ rop(F = b))s(9)d* (3.1)
JR2

Here b = (by.b,) is a shifting parameter that indicates the shifted position of the
wavelet in the space domain: a is a non-dimensional scaling parameter that is re-
lated to the dilated spatial frequency (wavenumber) of the space domain, while a™'
normalizes all the dilated wavelets to equalize their energy: and W™ is the complex
comjugate of the mother wavelet function W. 6 is a rotation factor which defines a
rotation matrix r_, that rotates the wavelet by angle ¢ in the space domain. This
rotation matrix may be written as [79]
cosf)  sinf)
g = (3.2)
—sinfl  cosf!
where 0 < § < 27, Finally. to guarantee the invertibility of the WT. the normalization

constant. Cy. must satisfy the admissibility condition as found in {79]
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Figure 3.1: Decompositions of a signal into various wavelets in (a) the space domain
and (b) spatial frequency domain (taken from Wu et al. [79]).

3.1.2 2-D CWT for Radar Image Processing

The selection of the mother wavelet

The mother wavelet function ¥ in (3.1) needs to be specified before the wavelet
transform. The extraction of ocean wave parameters and the directional frequency
spectrum requires the specification of a directional mother wavelet [79]. Here, the
Morlet wavelet, which can be considered as a band-pass filter with an adjustable
pass-band, is chosen as the mother wavelet [75], [79]. In the space domain and spatial

frequency domain, the Morlet wavelet function can be written as [79]

v(y) = 051472 jiko-F _ ,—05|44]" 054~ Rof* 5
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and its FT is

o

| (3.4)

BE) = e[e " R L sl mesfa R

Here. ~ is the coordinate in the space domain. A = diagle™"7. 1. (¢ > 1) is a 2 x 2
anisotropic diagonal matrix 78], and the vector ko = (Ko, . ko) controls the peak
position of the wavelet function. The secoud term of the Morlet wavelet function in
(3.3) and (3.4) is considered as a correction term and it is negligible for ‘l:'()! > 5.6 [78].
Furthermore. it is discnssed in [78] that the mother wavelet can be considered as a
band-pass [ilter and the pass-hand hecones narrower as ¢ lnereases,

I {79]. the mother wavelet of equation (3.1) was simplified Tor the pnrpose of radar
image processing by adopting Ky = (6.0) and ¢ = 1. which enables \il(l?) = W(k,. ky) to
be svummetrical in the o and y directions. In the space domain and spatial frequency

domain. the simplificd nother wavelet can be written as

and
‘I’(,l:) = —(l.,’;‘I:AEU‘Z. (56)

Equations (3.6) and (3.5) are also known as Gabor functions [95]. which are widely
used in inage processing. This is because the functions can be used to model the
perceptive field of primates” primary visual cortex. Also. these simplified functions
significantly reduce the computational complexity in the wavelet analysis [78]. Fig. 3.2
illustrates the real and imaginary part of the simplitied Morlet wavelet (Gabor) fune-

tion W(~) in the space domain. Fig. 3.3 shows the simplified Morlet wavelet (Gabor)
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Figure 3.2: Gabor function U(¥): (a) real part in 3-D perspective; (b) real part in
2-D intensity plot; (c) imaginary part in 3-D perspective; (d) imaginary part in 2-D
intensity plot

Figure 3.3: Gabor function \il(E) in the spatial frequency domain. The energy peak
is located at (k.. k) = (6,0).




function ¥(4) in the spatial frequency domain.

Configurations of the 2-D CWT for radar image processing

In order to apply the selected non-dimensional continuous Morlet wavelet function to
dimensional digital radar image analysis. the 2-D CWT function requires the process
of both discretization and sampling. First. the continuous wavelet function in (3.1)

can be rewritten discretely in the form [79)]

NNy
Wib,, by, by oa,) = Cjo"ﬁa;l Z Z '\D*[(L;l‘l',gm(.l'l, — b g — by

p=1g=1

$(rp. yq ) ATAY (3.7)

with W being a function of the discrete shifting (b,,.b, ), rotation (f,,). and scaling
factors (a,): (. y,) ave the sample points on the radar image: the subscripts . v, m.
n. p. and ¢ are the diseretization indices; N, and N, are the total sampling numbers
in the r and y directions of the image; and Ar, Ay are the radar image resolutions
in the r and y dircctions. respectively. Equation (3.7) is computationally intensive.
To reduce the algorithm cxecution time. it is desirabte to perform the CWT in the
spatial frequency domain (the Fourier space). This converts the convolutions into

multiplications [79]. with the result written as

A’ : k’
Hv(,b.r,,- by,.- ﬁnw (I/H,) — V7() )an Z Z b K £ by b w) - P [a”r (),u(}’., k;/,,)]
p=1 g=1I

SN K AKLAK, (3.8)

where § is the Fourier transform of the image intensity s. and “x" indicates com-
plex conjugation. As previously mentioned. b= (k. k y) 18 the wave vector in non-

dimensional space. and after the wavelet transform, k" = (A, k) is the wave vector in
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N

Nyt N N“*/I y N Nk; r A\"A.;I AL ‘th
AR AR and k) € [——E Ak AR, wit

dimensional space. where £, € [—
(K%, ky,) indicating the sampled components of k7. Ny, and Ny are total numbers of
the sampled wavenunber in the r and y directions. respectively. Usually Ngo = N,
and Nk_;l = N, [79]. Ak and Ak;/ are the wavenumber resolutions in the dimensional

spatial frequency doniain. written as [79]

AL = 2n 3.9

T N,Ar (3:9)
27

Al = ) 3.10

o (3.10)

In (3.8). it is observed that the transformed wavelet can be obtained by scaling.
shifting, and rotating the mother wavelet. After dilation and rotation with parameters
a and r_g. respectively. the corresponding peak wave vector in dimensional space is

A&’ which satisfies

ko = ar_o(k') . (3.11)

From equations (3.2) and (3.11)
ko, = a(k,cosf + k] sind) (3.12)
ky, = a(—K.sin0 + k cost) (3.13)

Therefore. the 2-D CWT. W (b,,b,,0.a), can be written as a function of the shifting
factor b = (b, b,) and transformed wave vector k. Once the shifting factor is specified

as by, a 2-D wavenumber spectrum W (A7) at point by is determined as

W (byby. 6.a) = W (b k) 25 W(k). (3.14)
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Figure 3.4: Sampling of the wavelet function: [—D, D] <> [0, N;Az|. 2D is the length
in non-dimensional space; N;Ax is the length in dimensional space.

The derived image spectrum W (k') is dimensional. Thus, ¥* in (3.8) needs to be
sampled, and this process converts the non-dimensional wavelet into a dimensional
one. As discussed earlier in this section, the matrix r_y is applied to control the
direction of the wavelet function and kg, is set to zero so that ko, controls the peak
spatial frequency in the spatial frequency domain [79]. The sampling process and
the determination of the corresponding wavelet factors may be simply conducted on
the k, axis, where the rotation angle # = 0. In the space domain, if the sampling
resolution is Ar m and the total number of sample points is N,, the total length
to be transformed by the mother wavelet used for image analysis in dimensional
space is simply X’ = N,Az m. If the total length of the mother wavelet in non-
dimensional space is X = 2D, this non-dimensional mother wavelet is mapped into
N, points during the sampling process (see Fig. 3.4). This may be formally represented
as [75], [80]

(=D, D] & [0, N,Az] . (3.15)



The non-dimensional length of the mother wavelet can be determined as

20 =2 x 350, (3.16)

where o, is the standard deviation given in [75] as

g, = (./7%7(‘1: — 1) W ()P dr)? (3.17)

with the peak position ry on the r axis of the space domain being given by

e | (2) P da
Iy

()P (3.18)

The minimum number of sample points can be calculated in terms of the Morlet

wavelet's non-dimensional length as [75]

2D
N, = 7(16()_,. +/—2In(n)) (3.19)

where 7 is a parameter defined in [75] as

Uk, )
\ (Ko, .

n= (3.20)

Equation (3.20) indicates that 5 is the ratio of the wavelet value at the cut-off

wavenumber k. and that at the peak wavenumber A, . and the value of 7 is commonly

set to 0.01 by Chung et al. in [79]. [80].



Figure 3.5: The selection of 7

3.2 The Discussion of the Scaling Factor and 2-D

CWT Wave Algorithms

In order to obtain the wave field spectrum from the wavelet analysis as indicated in
(3.8) and (3.14). wavelet parameters b. #. and a need to be specified. In an carlier
section, the determination of the shifting and rotating factors have been discussed.
In this section. the selection of the scaling factor for wavelet analysis will be explored

in more detail.

3.2.1 The Discussion of the Scaling Factor

In [96]. the relationship of the scaling factor and the desired wavenumbers is deduced
based on the assumption that the scaling factor. a,,. takes the form of a geometric
progression [75] and is related to the range of the wave spectrum. From (3.9) and

(3.10). it may be observed that the spatial frequencies are inversely proportional to
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the total lengths of the radar image in the o and y directions. With 6 = 0. it can be
shown from (3.11) and (3.15) that
A'()J_ . 1/_\' . _\‘V.S-AJ'

c = = 3.21
[, (Kcos0 + AjsinQ); - 1/A7 2D ( )

Thercfore, the expression ol the sampled wavenumber in dimensional space is written

as
I QD/\'U_, (3 929)
T, NJAE o
The scaling factor a,, is obviously determined from (3.22) to be
2Dk, ,
a, = —— (3.23)
NACK,

Given that the sampled wavemunber range of the image spectrum on the &, axis is

(3.24)

the maxinmm value of the scaling [actor can be determined by considering (3.22) with
A set Lo a minimum value given as

ky = Ak (3.25)

Soren

with kg, st to a value of 6. Clearly. the maximumn value of a, may then be written
as
2D-6

g 3.26
nay JVHA,’I'D)AA".; ( )

where 3 is a calibration parameter that regulates the value of ¢y, Therefore. we

conclude that after the sampling process. the minimum distinguishable value of the




A7

wavelmber 4, of the dimensional spectrum can be specified by an appropriate
selection of the maximum scaling factor. or. more specifically. by the selection of the
calibration factor 7 that refines the values of a,,,,-

[t is known that with a decreasing mean wave period. Ty, the peak frequency
(wavenuniber) inereases and the whole spectrum shifts to larger (spatial) frequency
components. [ this case. the corresponding minimum distinguishable frequency and
wavenumber will keep increasing. Therefore. it is reasonable o assume that if Ar
and N, arc fixed. for a sea state with a smaller mean wave period. a larger calibration
factor .3 should be used. as indicated by (3.25). A failure to select an appropriate
3 may result in a less accurate or completely incorrect derivation ol wave spectra
and parameters. Fig. 3.6 shows examples of one-dimensional frequency spectra E(f)
derived using the 2-D CWT and using, different 5 for simulated radar images with
Ty = 105, Ar = 10.5 m. and .V, = 128, It is observed from Fig. 3.6 that the derived
spectrum using 3 = 3.2 agrees best with the input E(f). If a snialler 3 of 1.4 is used.
a false peak is observed on the left of the spectral peak. If a larger .3 of 5.4 is used.
the derived spectrun is shifted 1o the right compared with the input E(f). Clearly.
the Ty derived from the spectra in Fig, 3.6(a) and (¢) are less accurate. As indicated
in Section 3.1.2. the 2-D CWT analysis in the frequency domain is essentially the sum
of a series of band-pass filtered signals. The image function s is processed with the
modified band-pass filters. which are defined by the transformed wavelet functions.
The scaling factors control the bandwidths and peak positions of the wavelet series.
[ [75]. it is observed that the larger the scaling factor. the closer the peak position
will be to the origin, as shown in Fig 3.7. Therefore. an underestimated 3 in (3.26)
results in an overestitnated «,,,,. which generates nudesired signals at small frequency
conponents.  This results in a redundant energy component (a false peak). On the

contrary. an overestimated J will canse missing energy (right-shifted) in the derived
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Figure 3.6: An example of CWT derived 1-D spectra E(f) using different 3 at T = 10
s, Ar =105 m, N, =128: (a) §=14; (b) §=3.2; (c) =54.
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spectrunl.

As in [96]. based on a serics of simulated data tests. the empirical values of .3 for
sea conditions with varving Ty are shown in Table 3.1. Here. only the wave fields with
tvpically observed Ty, are provided. Moreover. tlie values of 3 provided in Table 3.1
are obtained at a specitic image resolution of Ar = 10.5 m and sub-image length of
N, = 128 According to (3.25). 3, for different Ax,, and N, should be modified as

N, A,

3, = 1
N Ar

(3.27)
Therefore. once the radar image resolution and the size of the sub-image are provided.
an appropriate value of 5 for the 2-D CWT analysis can be determined from Table 3.1

and (3.27). according to the mean period of the wave field to be examined.

2.5 , - ' ,

---a=1
a=1.5

—a=2.5

)l
—
5L

% 2 4 6 8 10

Ficure 3.7: Morlet wavelet )\il(l.): functions with different scaling factor a. As a

increases. the corresponding center frequency decreases (closer to the origin). and the
magnitide increases.
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Table 3.1: 3 tor Ditferent Ty, with Az = 10.5 m, N, = 128

Toy (s) 3
16 1.4-1.6
14 1.7-2.0
13 2.1-2.2
12 2.3-2.4
11 2.5-2.9
10 3.0-3.4
9 3.5-3.9
3.9 4.0-4.5
3 4.5-5.2
7.5 5.2-5.7
7 5.8-6.5
6.5 6.6-7.3
6 7.4-8.4

Knowing a,,,, (or 3) is not sufficient to determine all the scaling factors. As
previously discussed, the Morlet wavelet in the spatial frequency domain can be re-
garded as a band-pass filter whose width decreases as the scaling factor increases. It

is therefore assumed that a, takes the form ol the geometric progression [75]
a, = A"t n=1.2.....N, (M>1) (3.28)
where n = 1 corresponds to the wavelet. without dilation (mother wavelet). Thus,
Qin = ] = 1 . (3.29)

The base Al in (3.28) is given as [75]

’L“'I)l

A L
kg + hy,

(3.30)

where &, indicates the peak location of the 1-D wavelet withont dilation as in (3.29)
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kp, = ko, = 6. (3.31)

and L, is a proportionality constant which is derived from the scale resolution y as
[75]
ke = —y—21In(y). (3.32)

The scale resolution x € (0.0,1.0) is defined in [75] as the ratio of the peak energy
of a wavelet with a given scaling factor (a,,.) to that with the previous scaling factor

(¢, _,). the result being

T i
\ijmzk Qs ‘

= (3.33)

LI]])rfuk' Un,_ g
x near 1.0 or 0.0 represents a high or low resolution wavelet series. respectively. For
ocean wave analysis. it is determined from simulated and field data tests that an

appropriate range of this parameter is given by x € [0.9.0.95].

3.2.2 A Look-up-table-based 2-D CWT Wave Analysis Algo-

rithm

!

After the 22D CWT analysis. a complex spectrum of a radar image W (kL k) is

obtained. Similar to (2.31). a real-valued image spectrum can be obtained from the
Hermitian property (2.20) and written as
2
N N
L W)

I(K K

= 3.34
My Lv,- . Ly ( )

where W (AL A7) is the complex spectrum derived by the 2-D CW'T analysis as stip-

ulated in (3.8). (3.14). L,. L, are the total lengths of the radar image in the r and y

directions. respectively. Technigues similar to those used in the classic 3-D FFT-based



algorithm [51}-[53] are emploved to obtain wave spectrum and parameters. To apply
the wavelet method for wave extraction. the kev is to select a proper calibration factor
3. A simple look-up-table-based 2-D CWT wave analyvsis algorithim [93] is proposed

to include the following steps:

L. sub-lmage acquisition and normalization:

o

determination of appropriate .J from Table 3.1 and (3.27) based on the provided
information of Ar. N,. and measured wave period iy using other instruments

such as buov:

3. 2-D CWT analysis on a single [rame of radar iimage to obtain the image spectrum

LK R

4. 2-D CWT analvsis on multiple frames to obtain an averaged spectrum [ (K. k) ):

<t

high-pass filtering (empirical threshold wy, = 27 x 0.03 rad/s):

6. conversion from image spectra to wave spectra using the MTE:

derivations of wave spectra and parameters.

3.2.3 A Self-Adaptive 2-D CWT Wave Analysis Algorithm

Although accurate ocean wave spectra and parameters can be derived from the look-
np-table-based method. the calibration factor .3 required for the 2-D CWT cannot be
selected until Ar. N,. and Ty, are specificd. Typically, the image resolution Ar and
sub-image size N, are available [rom the system specifications. while the value of Ty,
must be obtained from other instruentation such as a wave huoy. However. here.
an iterative algoritlhim, which enables the svstem to automatically seleet an optimal
calibrationi factor 3 without a in situ buoyv reference. is proposed.  The selection

process involves the following:
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Figure 3.8: Flow chart of the self-adaptive 2-D CWT-based wave analysis algorithm.




Chapter 4

Results and Analysis

In Chapter 2 and Chapter 3. the FET-based and CWT-based wave analysis algorithins
are presented. In this chapter. the proposed algorithms are validated using both
simulated radar data and dual-polarized radar field data. In the former case. radar
images arc simulated for various conditions using a revised Picerson- Moskowitz (P-M)
spectrum {97 assuming shadowing and tilt modulations [32], [38]-[1]. For the field
test, both Lorizontally polarized (H-pol) and vertically polarized (V-pol) radar data
were collected on the east coast of Canada. In situ TRIAXYS directional wave buoy
and acoustic Doppler current profiler (ADCP) records that were gathered in the same

area are also available for data comparison.

4.1 Simulated Data Test

In this section, numerical sinmlations of the occan surface and radar images are first
discussed (also see {44]). Then, results derived using both the FE'T and CWT al-
gorithms applied to the generated radar images under different circumstances are

presented and analvzed.




4.1.1 Nautical Radar Image Simulation
Simulation of ocean surface

Based on the inverse Fourier transform of the ocean wave power spectruni. the ocean
surface clevation p(r. y.t). where (. y) and [ are the position and time coordinates.
respectively, can be deseribed as a superposition of sinusoidal wave components of
varving amplitudes. angular frequencies and random phases [38]-[1] and may be cast
as

iON

oy l) = Z L A, sin(eil — krcos ) — kysin; +a;) (4.1)

i=1 =1
where A, is the amplitnde for the wave component having angular {requency w;.
direction 6. and wavenumber k;. A random phase dy. uniforly distributed on the
interval [0, 27). is also introduced in order to generate a realistic occan surface with
irregular waves. The amplitude in equation (4.1) may be expressed as

Ay = 25(wi 0,)dwdd (+2)

u

where S(w,.#;) is the ocean wave power spectrim that is used to simulate the ocean
surface. Various [orins. such as the Neumann Spectrum. the Wallops Spectrum. the
PAL Spectrum. and the Mitsuvasu Spectriin [43]. [69] are suitable candidates for
the ocean power spectrum. The non-directional wave spectriin impleniented in this
thesis is from the 15th International Towing Tank Conference (ITTC) based on a

Pierson Moskowitz (P-\) spectrum [38]-[1] and is given as

011, Tow\ ™ ey" /
Stw) = BTy () i (4.3)

where w is the angular frequency. H, is the significant wave height. and Ty is the

mean period. The directional characteristios of the wave spectrum are accounted for



by using a distribution function given by

Q?‘dil M (d+1 0y, 0 — ew
D(f) = 2T Hda ) cos™(——=

7 T(2d+ 1) 2 ) (44)

where ' is the Gamma function, #,, is the wave propagation direction. and d is a
so-called spreading paranieter that is used to describe the degree of distribution.
As discussed in [69]. the selection of this spreading parameter is determined by the
wind speed and peak frequency of the wave field. As is usually the case in many

investigations, in this thesis, d is assigned a value of 2. Thus,

S(w.0) = S(w)D(#) = S(w)— cos*(——=

Shadowing modulation

For far ranges and horizontal polarization. the electromagnetic waves from X-band
marine radar reach the ocean surface at large incidence angles, nearly grazing the
surface. Therefore. the surface is partially shadowed by higher ocean waves. This
effect, known as shadowing modulation, 1s depicted in Fig. 4.1, From that figure. a
geometrical optics approximation can be made as follows: the incidence angle at the

ocean surface elevation 1) is

Oo(n) = tan ' [R(n)/(A — n)] (1.7)



where R(1) is the horizontal range from the radar to the observation point, and .\

is the antenna height over the sea level. As depicted in the figure. with respect to
the antenna, a point with elevation 5 will be in the shadow of a higher wave with

clevation 7' at the same azimuthal angle when the incidence angles are related as

where

Oo(n') > (1)

¢\(n) = tan”'[R(1/)/[A = 1|

The shadowing [actor can be described by |32]

Ush(”) =

Sea Le:vel

.

il R(n'y < R(n).and 65(1)") > ty(n)

otherwise.

Shaidowed |
Waves‘

3
>

Figure 4.1: Shadowing and tilt modulation [32].




Tilt modulation

Tilt modulation results from changes in the effective incidence angle along the long
wave slope, and it can be simulated by using the scalar product of the exterior normal
vector to the ocean surface 7i(n) and the vector 7(n) from the illuminated ocean surface

7 to the antenna as shown in Fig. 1.1, Analytically,

nin) = (p, x /7,1/)/ ||/7.1' X ﬁu” (4-11)

where
or = (1,0,0n/0x) (4.12)
fy = (0.1.0n/9y) (4.13)

are the 3-D tangent vector compounents on the surface 132]. The tilt factor o () can
be determined from

(). ifu(y) >0
o) = g ) (4.14)

0. otherwise

with

) =n(n)-7(n) (4.15)

The values of 0., (7). o, (n) are then applied to the generated sea surface and coded

with 256 gray levels [32].

4.1.2 Simulated Data Results and Analysis

To verify the proposed 3-D FFT-based and 2-D CWT-based wave analysis algorithms,
sinmlated nautical radar images generated under various wave conditions are used.
The sinmlation parameters for the radar images are listed in Table 4.1. An example

of the simulated images is shown in Fig. 4.2, Fig. 1.2 (a) shows the generated sea
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{b) Scan Converted Elevation Map

(c) Shadowing Modulated Image (d) Shadowing & Tiit Modulated Image at t=0s

Figure 4.2: Resultant images incorporating the P-M spectrum and using shadowing
and tilt modulation: (a) Generated ocean surface elevation; (b) Elevation map after
scan conversion; (c) Shadowing modulated image; (d) Tilt and shadowing modulated

image
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surface clevation using the I'TTC-recommended P-M spectrum. The main propagation
direction is 45° from true North. Fig. 4.2 (b) depicts the gencrated sea surface nsing
the scan conversion technique. which transforms the radar data from a range-azimuth
{polar) format to an x-v (Cartesian) format for display. The resolutions in range and
angle are assigned as 10.5 m and 1°. respectively. Fig. 1.2 (¢) shows the image with

shadowing modulation and Fig. 4.2 (d) is the simulated radar image incorporating

both shadowing and tilt modulation.

Table 4.1: Simulation Parameters

Electromagnetic wave frequency 10 GHz
Antenna augular speed 48 r.pan.
Polarization Horizontal
Antenna height 20 m
Range resolution (Aur) 10.5 m
Image Size 512 x 512 pixels
Dircectional distribution Cosine squared

Onee images are simulated for a variety of surface conditions. the next step involves
the application of current estimation algorithms. including least squares (LS), iterative
LS. and nornalized scalar product (NSP) methods. Subsequently. with the effects of
the currents removed. the enhanced 3-D FET-based and 2-D CWT-based algorithms

way be applied to obtain wave parameters.

4.1.2.1 Results of surface current estimation

In this section. results of the estimated near-surface current velocity (velocity of en-
counter) and direction derived under a variety of conditions are presented. First. the
current algorithms are applied to siimulate radar data for cases which differ on in mean
periocd. Ty, Then. tests are conducted on simmilated data generated with wave fields
having various angles hetween the wave and current directions,

In IFig. 4.3, the distance between the center of the original radar image and the




62

center of the sub-image (segment “OC”) is defined as the sub-iniage distance, and is

symbolized as D,y The angle between the wave direction and the segment "OC" is

defined as the sub-image direction and is written as G.

wave
direction

Figure 4.3: Sub-inmage acquisition for wave field analysis.

Figs. 4.4 - 4.6 present the results of the derived velocity of encounter and direction
from the simulated radar images with Ty = 8 s, 10 s, and 12 s. respectively. The
significant wave height of the wave field is specified as Hy = 3.5 m. The wave direction
is ¢, = 270° with respect to (w.r.t) true North. The input velocity of encounter. ;.
ranges from 0 to 15 m/s. in steps of 0.5 m/s. The direction of the surface current from
true North is 8, = 90°. The sub-image sequence used for current and wave analysis
is acquired at the wave propagation direction (6., = #,). 500 m away from the radar
antenna (D, = 500 m). In Figs. 4.4 - 4.6. the (black) solid line represents the input
velocity of encounter parameters; the (green) dotted line with circles represents the

derived velocity of encounter information using the LS method; the (red) dashed line
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with diamonds indicates the derived velocity of encounter information using the itera-
tive LS method: and the (blue) dash-dot line with asterisks shows the derived velocity
of encounter information using the NSP method. It is observed from the figures that
Young's LS method {16] provides rough approximations of the velocity of encounter.
As mav be observed in Fig. 4.4, crrors in the retrieved current may reach as high
as 2 ni/s. Senet’s iterative LS method [47] provides more accurate results and the
maxinni error of the velocity of encounter and direction are around 0.15 m/s and
7°. Similarly. Scrafino’s NSP method [49] also provides highly accurate results. with
niaximum error of retrieved velocity of encounter of about 0.10 m/s and maxinm
error of the retrieved current direction of 67, As discussed in Section 2.1.3. the accu-
racy of the original NSP method relies on a large range and a fine resolution of the
velocity for the two-dimensional search. and thus it requires significant computation.
which takes more than 1000 seconds. while the iterative LS method only needs tens of
seconds to process the same dataset. In order to increase the speed of the algorithm.
the improved NSP current estimation algorithm that uses variable scarch ranges and
resolutions as referred to in Section. 2.1.3 is applied in this thesis [87]. After the
modification. the processing time is reduced to less than 300 seconds.

The error analvses of the current estimation algorithms are given in Table 4.2,
AV, and AV, are the mean difference and standard deviation between the retrieved
velocity of encounter and the input value. AD,, and AD,, are the meau difference
and standard deviation of the current direction. From the table. it is observed that
the mean difference of the vesults derived from the .S method are larger than those
from the iterative LS and NSP methods. It is also easy to conclude from the standard
deviations that the iterative LS and NSP methods provide more aceurate and robust
current estimation results conpared with those from the LS method. In this thesis. a

fine search resolution of X, = 0.02 /s is used in the NSP current estimation. If a
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finer resolution is used. better results with smaller mean difference and standard de-
viation are expected to be obtained. but this will require a longer processing time. In
addition. it is observed from the table that errors in the results do not change signif-
icantly with mean period Ty, Thus, the accuracy of the current retrieval algorithms
does not appear to be affected by the mean period of the wave field.

Table 1.2: Error Analyses of the Derived Velocity of Encounter Using Different Algo-
rithms at 7, = 8. 10. 12 s.

Ty (s) | Algorithms | AV, (m/s) | AV (m/s) | AD,, (°) | ADy (°)
LS -0.0534 ().8330 -2.4165 11.6681
8 Iterative LS -0.0030 0.0741 0.1435 1.8320
NSP (.0039 (1.0680 0.3632 1.5832
LS -0.0890 0.4283 -0.3423 9.0164
10 [terative LS (0.0130 0.0013 ).5362 2.7169
NSP -0.0002 0.0630 (0.5266 2.6708
LS -0.2473 0.4717 1.0458 7.3867
12 [terative LS 0.0047 0.082% ).3167 1.2848
NSP 0.0001 (0.0630 (.4505 1.6009

Simulated data with different angles between the wave and current directions are
tested next. 1n this test. the mean period of the simulated data is lixed as Ty, = 12
5. The sub-tmage sequence nsed in the wave analvsis is also acquired at the wave
propagation direction (6., = #,). 500 m away [rom the radar antenna (D, = 500
m}. The signilicant wave height of the wave field remains at 3.5 m. The direction of
the surface current is90° from true North. The wave directions in the data test are set
to be 8, = 2707, 210°, 180°. and 120° from true North. Thus. the angles between the
wave and current directions are #,.,, = 180°. 150°. 90°. and 30°. respectively. Results
for the velocity of enconnter and direction are provided in Figs. 4.7 - 1.9. The range
of the input velocity of encounter is 0 to 15 m/s in steps of 0.5 m/s. The LS method
is found to provide rough approximations of the velocity of encounter. More aceurate

results are derived by the iterative LS and NSP methods.
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Figure -1.4: Results of derived velocity of encounter from the simulated radar images
with Ty, = 8 s: (a) Derived velocity of encounter: (b) Errors of the derived velocity
ol encounter: (¢) Derived current direction.



Figure 4.5: Results of derived velocity of encounter from the simulated radar images

with Ty = 10 s.
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Figure 4.7: Results of derived velocity of encounter from the simulated radar images

with 6,, = 180°.
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Figure 4.8: Results of derived velocity of encounter from the simulated radar images

with #,, = 1507
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Figure 4.9: Results of derived velocity of encounter from the simulated radar images

with 6, = 90°.
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Table 4.3: Error Analyvses of thie Derived Velocity of Encounter Using Diflerent Algo-
rithms for 8,., = 180°. 150°. 90°. and 30~.

B (¢) | Algorithms | AV, (m/s) | AV, (m/s) | AD,, (°) | ADy (°)
LS -0.0130 0.2623 0.0074 9.7464

130 Iterative LS 0.0097 0.0303 (0.2130 2.1380)
NSP -0.0052 0.0479 0.4493 2.2001

LS -0.1082 0.3578 0.1226 6.8352

150 Iterative LS 0.0101 0.0337 0.3141 1.3509
NSP -0.0052 0.0479 0.3104 (.9857

LS (.1099 0.4161 -1.2248 10.3881

90 [terative LS 0.0112 0.0274 0.4216 2.0205
NSP -0.0013 (.0630 0.2965 0.9934

LS 0.2728 0.4189 0.0374 8.8776

30 Iterative LS -(1.000 .0318 0.2660 1.6836
NSP 0.0045 0.0375 (0.2339 1.0701

The error analyses for the current estimation algorithms with differing #,., arce
listed in Table 4.3. From the table it ¢an be also observed that the iterative LS
and NS> methods provide more accurate and robust current estimation results with

sutaller standard deviations than those retrieved from the LS method.

4.1.2.2 Wave information results

Once the eurrent information is obtained. a band-pass filter is constructed using (2.35)
- (2.37) to retrieve ocean wave information from the radar images. As discussed in
Chapter 2, an enhanced 3-D FFT-based wave extraction algorithni, based on the
results of mode classification in the iterative LS process, is applied in this thesis.
Then. a 2-D CWT-based algorithm. as described in Chapter 3. is used f{or wave
analyvsis. Results from both algorithms are provided and compared.

Fig. 4.11 illustrates the comparison of the wavenumber spectra derived at each
stage in 3-D FFT-based wave analvsis. Fig. 4.11 (a) is the inlage spectrum [(k, . k,)

after the Fourier analysis and high-pass filtering process.  Au energy distribution
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Figure 1.11: Comparison of wavenumber spectra derived at each stage in the 3-D FI'T
wave analvsis: (a) Image spectrum [(k, . &,) after the Fourier analysis and high-pass
filtering process: (b) Iimage spectruny I, (A, &, ) after band-pass filtering: (¢) Wave
spectrum E(k, &, after the MTFE process.



which roughly describes the wave field is represented by this spectrum, and the non-

stationary and non-homogeneous components near zero frequency are eliminated by
the high-pass filter. Fig. 4.11 (b) is the image spectrum lpgpq (k. k,) after both the
high-pass and band-pass filtering process. The simulated wave field contains a velocity
of encounter u = 3 m/s and this introduces Doppler [requency components into
the energy spectrum. As discussed in Chapter 2. a band-pass filter is designed to
remove the non-wave components. Compared with Fig. 4.11 (a), it is ohserved that
some energy components which are far away from the dispersion shell are renioved
in Fig. 4.11 (b). Fig. 4.11 (¢) presents the wave spectrum after the modulation
transfer function (MTT) process. On comparing with Fig. 4.11 (a). (b), it is obvious
that most components due to the non-linearity of the radar imaging mechanism are
removed from the spectrum in the Fig. 1.11 (c¢).

Once E(k,.k,) is obtained. various other wave spectra and parameters can be
derived as discussed in Section 2.2.1. In this thesis. the following wave information is

derived:
e directional frequency spectra E(f.0)
e frequency spectra E([)
e nican wave direction (/)
e wave direction 6,

e uiean period Ty,

peak frequency f,

In order to investigate the performance of the proposed wave analysis algorithins
under different circumstances, simulated radar data with different velocities of en-

counter . different mean periods Ty, and different selections of sub-image positions




=
t

are tested. For the FFT-based method, 32 frames of consecutive radar inmages are
used.  The velocity of enconnter is estimated with the iterative LS method. The
parameter nsed in the modulation transfer function (MTEF) process for the Fourier
analysis is modified nusing the curve fitting techniques in [32] and may be written as
—0.98, if |kl < ¢

(4.16)

p=
—1.2,  otherwise

Compared with the original MTF with g = ~1.2 [32]. [51}-[59]. this modified NITF

expression retrieves a better energy distribution for the high frequency components

of the wave ficld at different sea counditions (see Fig. 4.12).

1
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Figure 4.12: Comparison of the derived £([) with original and modificd MTF in the
3-D FFT-based simulated data test.

Having considered the FFT approach. attention is next focused on the wavelet
algorithm. Based on the discussion in Chapter 3, the paranieters assigned for the
wavelet analysis are determined and listed in Table 4.4. The calibration parameter 3

that regulates the value of scaling factor a,,,, is automatically selected. as proposed
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in Fig. 3.8. Once 3 is determined, a 2-D CWT is performed on the input radar image
sequence and an averaged spectrmm E(A,. k,) is obtained. In this process. a 180°
anibiguity is observed and it is mamially eliminated for wave information extraction
using information gathered from other instrumentation. The parameter used in the

MTF process for wavelet analysis is also modified as

L k| < e 2T

I

=
il
N

/l
—1.2. otherwise

1
— Input
- - - Original MTF (1 =-1.2)
0.8 - - Modified MTF (4 = —1.4)]
Eos
}
< 04
0.2
0 N
0 0.1 02 03 0.4

Frequency (Hz)

Figure 4.13: Comparison of the derived E( /) with original and modified MTF in the
2-D CWT-based simulated data test.

Table 4.4: Wavelet Parameters Configuration

| v | 0.9
I 0.01
[)() (1. 1)

N, 128

L;—)’(. 1.4

AJ | 0.2
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As shown in Fig. 4.13. the modilied MTT suppresses the overestimated energy
within the high (requency band and leads to an improved spectrum (the dash-dot
curve) compared 1o that derived with the original MTF process (the dash curve).

Fig. 4.14 presents the comparison of the results derived from the classic 3-D FFT
algorithm ax described in {32] and the modilied 3-D FFT algorithin proposed in this
paper. From Fig. 4.14 (a). it is observed that the energy of the higher harmonic compo-
nents are eliminated in the modified 3-D FFT derived frequency spectrunt. Also. the
mean wave direction spectrum, #( f ). are recovered more accurately using the proposed
modified 3-D FEFT method. as shown in Fig. 4.14 (b). Fig. 4.14(¢)(d)(e) illnstrate the
modified 3-D FFT derived. classic 3-D FFT derived. and input directional-frequency
spectra. E(f.0)). Bv comparison it is found that energy distributions derived from
modified 3-D FET algorithm are closer (o the input spectrum.

The proposed 3-D FFT-based and 2-D CW T-based wave extraction algorithnis are
first tested with simulated radar images with velocities of encounter of « = 0m/s. 1.5
m/s. 3.0 m/xand 5.0 m/s. The sub-hmage sequence used in the wave analysis is still
acquired at the wave propagation direction (fe,, = ). 500 m awayv [rom the radar
antenna (D, = 500 m). The significant wave height of the wave field is H, = 3.5
nm. The wave and current directions. ¢, and 0,. are both 210° {rom true North. The
mean period of the wave field is 12 s

Figs. 4.15 - 4.18 (a) show the input and derived 1-D frequency spectra. and the
peaks of E(f)ppp and E(f)cwr agree well with those of Ej,(f). Figs. 4.15 - 4.18
(b) indicate that the mean wave direction spectra. #( f). are recovered correctly using
both methods. Figs. 4.15 - 4.18 (¢)(d)(¢) illustrate the FFT derived. CWT derived.
and input directional-frequency spectra E(f.6#). It is observed {rom these spectra that
the energy distributions derived {rom the Fourier and wavelet analysis are similar to

the input spectra.
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Figure 4.14: Comparison of derived spectra using the proposed modified 3-D FFT
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Mean wave direction spectrum 8(f); (¢) Modified 3-D FFT derived directional fre-
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Figure 4.17: Comparison of derived spectra using 3-D FFT and 2-D CWT wave
analysis under velocity of encounter © = 3.0 m/s.
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Figure 4.18: Comparison of derived spectra using 3-D FFT and 2-D CWT wave
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Table 4.5: Retrieved Wave Parameters Using FIFT- and CWT-based Algorithims at
velocities of encounter v = 0 m/s. 1.5 m/s0 3.0 my/s. and 5.0 my/s.

Parameters Input Data
Uy, (1)) 1.! 3.0 5.0
B, () 2 210 210
O, (7) 210 2 210 210
To1,, (%) 12.03 12.03 12.03 12.03
I, (Hz) 0.0650 0.0650 0.0650 0.0650
Output Data
Algorithms | FFT | CWT | FI'T | CWT | FI'T | CWT | I'I'T | CWT
gy (m1fs) [ 00116 | nja | 1478 | u/a | 3.0048 | n/a | 19370 | n/a
O, (%) 339.63 | m/a | 20984 | u/a [ 20887 | n/a | 209.74} n/a
Oy () 21543 | 219.73 | 205.70 | 213.65 | 216.62 | 22G.38 | 213.89 | 212.15
Tor,,, (s) 12,61 | 11.67 | 12,00 | 11.97 | 11.91 | 10.98 | 1142 | 12.89
fpon (Hz) [ 0.0700 | 0.0649 | 0.0700 | 0.0649 | 0.0700 | 0.0700 | 0.0655 | 0.0600

Table 4.5 compares the derived velocity of encounter with the input values for
the 3-D FFT-based and 2-D CWT-based wave results under different velocities of
encounter. Accurate occan wave parameters can be obtained from both methods as
listed in the table. Since the wavelet analvsis does not inelude the process of band-
pass filtering to compensate for the Doppler-shifted frequeney due to the velocity of
encounter. it is usually considered that the 2-D CWT-based wave analvsis algorithm
cannot retrieve accurate results in the case ol a considerably large velocity of en-
counter. However. from Figs. 4.15 - L 1R and Table 4.5 it is observed that retrieved
wave parameters from the wavelet analvsis are close to the results from the FFT anal-
vsis as well as to the input data for velocity of cncounter « € [0,5] m/s. In addition.
the standard deviations of the input and the CWT-derived wave direction. mean pe-
riod. and peak frequency are caleulated 1o be 9.7586°, 0.7027 s, and 0.0035 Hz, which
are close to the respective values of 5.1704°. 0.4254 5. 0.0043 Hz derived from the FET
analvsis.

Next, the 3-D FFT-based and 2-D C\WT-based wave analvsis algoritlins are tested
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with simulated data of diffevent mean periods, Ty, = 8 10, 12, and 14 5. The sub-
inlage sequence used in the wave analvsis is acquired at the wave propagation direction
(Ocuty = 6. 500 m away from the radar antenna (D, = 500 m). The wave direction
is #,. = 270° from true north. The significant wave height of the wave field is H, = 3.5
n. The velocity of encounter of the wave field is « = 0 m/s.

Table 4.6: Retrieved Wave Parameters Using FFT- and CWT-based Algorithms at
Mean Period Ty = 8 s, 10 s, 12 s and 14 s.

Parameters Inpnt Data

Tor,, (s} 8.03 10.03 12.03 14.03
Wi, (1/s) 0 0 0 0

b, ) ! :

O, (%) 270 270) 270) 270
Jor (Hz) 0.0997 0.0797 0.0650 0.0551

Output Data

Algorithms FI'T CWT FFT CWT | FFT | CWT | FI'T | CWT

Tor., (3 876 9.14 9.91 918 | 11.65 | 11.77 | 1318 | 13.82

Uy (m1/s) | 0.0141 n/a 0.0205 n/a [ 0.0124 | n/a | 0.010L| n/a

Bu (O | 2812037 | n/a | 1594181 | n/a | 7887 | nja | 3432 | n/a

Bl ) 270.78 | 280.83 | 2068.04 | 274.69 | 276.42 | 291.84 | 264.98 | 260.44

S (Hz) | 0.0938 [ 0.0948 [ 0.0800 ] 0.0849 [ 0.0747 | 0.0651 | 0.0653 | 0.0518

Figs. 1.19 (a) - 4.22 (a) present the input and derived 1-D {requency spectra. E(f).
Both Fourier and wavelet derived speetra recover the energy distribution correctly.
However. it is observed that a second peak near 2 f, appears in the wavelet derived
spectra for Ty = 100 120 and 14 s (see Figs. 4.21 - 4.22 (a)). This mayv be explained
by the effect of wave nonlinearity: 79]. In addition. as suggested in Chapter 3. a scale
resolution. y. regulates the resolution of the wavelet series. If an underestimated y is
used. sowe energy compouents may 1ot be retrieved successfully. Thus. based on sim-
ulated and field data tests. it is recommended that y € [0.9.0.95] be used throughout

the ocean wave analysis. However, this high-scale resolution way also result in a sec-
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Figure 4.19: Comparison of derived spectra using 3-D FFT and 2-D CWT wave
analysis with mean wave period Tp; = 8 s: (a) Normalized frequency spectrum E(f);
(b) Mean wave direction spectrum 6(f); (c) 3-D FFT derived directional frequency
spectrum E(f,6); (d) 2-D CWT derived directional frequency spectrum E(f,6); (e)
Input directional frequency spectrum E(f,8).
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Figure 4.20: Comparison of derived spectra using 3-D FFT and 2-D CWT wave
analysis with mean wave period Ty, = 10 s.
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Figure 4.21: Comparison of derived spectra using 3-D FFT and 2-D CWT wave
analysis with mean wave period Tp; = 12 s.
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Figure 4.22: Comparison of derived spectra using 3-D FFT and 2-D CWT wave
analysis with mean wave period Tj = 14 s.
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ond peak. In this thesis, the second peaks are suppressed by the modified MTF (4.17).
Thus. in some cases they cannot been observed (see Figs. 4.15 - 4.17 (a)). Figs. 4.19
(b) - 4.22 (bh) show the comparison of the mean wave direction spectra 8(f). It is
demonstrated from the figures that the derived mean wave direction spectra derived
from both methods are close to the input curve. Figs. 4.19 (¢)(d){(e) - 4.22 (¢)(d)(e)
show the directional-frequency spectra E(f. ) retrieved from the Fourier and wavelet
analysis as compared with the input spectra. It is observed from the comparisons that
both the 3-D FFT-based and 2-D CWT-based wave analysis algorithms can be used
to recover accurate energy distributions of wave fields with different mean periods.

The comparison between the input and retrieved wave paraneters using the 3-D
FFT-based and 2-D CWT-based wave analysis algorithms is found in Table 4.6. It
ix obvious from the table that both methods give reliable wave parameters from the
simulated radar images for different mean wave periods.

After the analysis of wave information extraction using the 3-D FFT-based and 2-
D CWT-hased algorithms for various velocities of encounter and mean wave periods.
the impact of the selection of sub-image position are investigated. As discussed in
Chapter 2. for the sinmlations. the sub-iniage patches are selected with dinlensions of
128 x 128 pixels at the wave propagation (6, = 6,,) with a distance of 500 m from the
radar antenna (D, = 500 m). Next. to examine their impact on the derived wave
mformation, two groups ol sub-image sequences are selected from different positions
(different directions and distances) on the same series of generated radar nmages.
Such discussions have heen made in [1]. [69]. The radar images are generated with
a velocity of encounter of u = 1.5 m/s. 6, = 270° from true North. The wave
propagation direction 6, is also chosen to be 270° from true North. The mean period
of the wave field is taken as 10 s and a significant wave height of 3.5 n1 is used. In the

data test. the first group of sub-image sequences is selected from the original radar
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image series with a fixed distance Dy, = 500 n1. and the directions of the sub-image
are chosen as A, = 07, 457, 90°. and 180°. The second group of sub-image sequences
is selected from the original radar image series with a fixed direction of 85, = 0°, and
the distances from the origin are taken to be D, = 200 m, 500 1, 800 m. and 1100
ni.

Figs. 4.23 (f) - 1.26 (f) present the sub-iniage sequence position for the first group
test. It is obvious from the 1-D frequency spectra E{f) as depicted in Figs. 1.23 (a)
- 4.26 (a) that the best results are obtained at f,, = 0°. which is the case when the
stiib-images are acquired at the wave propagation direction. When the sub-images are
not selected at the wave direction. a second peak is often observed in the retrieved
frequency spectrum. as shown in the FE'T curves for the cases when 6., = 45°. 180°.
In these cases. the derived peak frequency is less accurate. as indicated in Table 4.7
which lists the derived wave and cwrent parameters at different selections of sub-
image direction 6,,;,.

Table 4.7: Retrieved Wave Parameters using FFT- and CWT-based Algorithms with
the Selection of Sub-image Sequence at D, = 500. 04, = 0°, 45°, 90°, and 180°

Parameters Input Data
O (7) 0° 45° 90° 180°
Dygyp (m) 500 500 500 500
Wiy (11/3) 1.5 1.5 1.5 1.5
O () 770 270 270 270
b, (7) 270 270 270 270
Tor. (3) 10.03 10.03 10.03 10.03
Jp,, (Hz) 0.0797 0.0797 0.0797 0.0797
Output Data
Algorithms | FI'T | CWT | FFT | CWT | FFT | CWT | FFT | CWT
Ut (m1fs) | 15221 | n/a [ 1.5035 | n/a | 1.4954 | n/a | 1.5196 | n/a
Oupe (°) 1267971 n/a | 26785 u/a | 269.75| n/a | 26959 | n/a
O, (°) | 268.11 | 271.08 | 245.86 | 255.91 | 267.15 | 279.56 | 273.91 | 271.64
Tov., (5) | 1045 | 1069 | 10.85 | 10.95 | 10.50 | 10.54 | 1049 | 10.41
fooer (Hz) | 0.0846 | 0.0847 | 0.0700 | 0.0794 | 0.0804 | 0.0600 | 0.0810 | 0.0700
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Table 1.8: Retrieved Wave Parameters Using FI'T- and CW T-hased Algorithms with
the Selection of Sub-image Sequence at 6., = 07, Dy, = 200 m. 500 . 300 m. 1100

111.

Parameters Input Data

Doy (1) 200 500 800 1100

ot ) 0 0° 0° 0°

Wiy (n1/s) 1.5 1.5 1.5 1.5

B, (°) 270 270 270 270

O (7) 270 270 270 270

T, (%) 10.03 10.03 10.03 10.03

I, (Hz) 0.0797 0.0797 0.0797 0.0797

Output Data

Algorithms | FFT { CWT | FFT | CWT | FFT | CWT | FFT | CWT
oy (M/s) | 15279 nja | 15221 uja | 1.5081 | n/a | 1.4992 | n/a
Ouper (°) 127285 mjfa [ 267.97 | n/a | 26621 | un/a | 26851 | n/a
By 7 26572 | 27530 | 268.14 | 271.08 | 276.42 | 268.72 | 268.97 | 27147
Tor., (%) | 1033 | 978 [ 1045 | 10.69 | 10.69 | 11.06 | 10.90 | 11.74
Jpowr (Hz) | 0.0850 | 0.0807 | 0.0846 | 0.0847 | 0.0846 | 0.0700 | 0.0848 | 0.0747

Figs. 4.27 (f) - 4.30 (I) present the sub-image sequence position for the second
group test as noted above for the case involving a fixed 6,,, = 0° but various values of
D . By comparing the derived spectra of E(f). 0(f). and E{f.0) from sub-images
at different distances as shown in Figs. -1.27 - 1.30. no obvious advantages can be
observed at any distance D,,,. It appears that the cholce of the sub-image distance
has Hittle ipact on the wave spectra derived from either method.

The wave and current parameters derived from sub-images at different distances
are next investigated (see results in Table 4.3). It is observed that reliable current
information and wave direction can be derived for different sub-image distances. How-
ever. if the sub-images are acquired far away from the radar antenna. it is found that
an overestimated mean period is obtained. The best result for mean period is derived
at D = 200 m. This makes sense because the further the ocean waves are away

from the radar antenna, the more likely theyv are to be shadowed by higher waves
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Figure 4.23: Comparison of derived spectra using 3-D FFT and 2-D CWT wave
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(see Fig. 4.1). Also. the intensity of the radar image will be very low near the edge
since the back-scattered cunergy is inversely proportional to the fourth power of the
distance between the radar and the target [42]. Thus. the ocean wave information
retrieved [rom sub-images near the edge of the original image is expected to be less
accurate. On the other hand. it is not recommended Lo select sub-images too close
to the radar antenna because of the severe distortions of wave fronts due to the tilt

modulation [51].

4.2 Field Data Test

Having tested both the FI'T- and CWT-based algorithms using simulated data. they
arc next applied to H-pol and V-pol field data collected on the east coast of Canada.
The impact which polarization has on the results is considered. and outcomes are

compared with information gathered from in silu instrumentation.

4.2.1 Experimental Data Collection

Dual-polarized radar field data collected on Dec. 15 and Dec. 20, 2010 at Skerries
Bight near the St. John's Harbor on the cast coast of Canada were used lor wave
analvsis. Data from a TRIAXYS wave buov and an acoustic Doppler current profiler
(ADCP) collected at the same time were used as the ground truth [86]. [93]. The
ADCP provided current information for 50 bins starting at approximately 1.75 m.
With the extent of each bin were set being 1 m. the niaximum depth for current
measurement is about 52 m. The accuracy of the ADCP was £0.04 m/s and £3° for
current speed and direction. respectively. The ADCP current results were averaged
every hall an hour [85].

The radar and buoy sites are shown in Fig. 4.31. It is assumed that the water is
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deep enongh for thie deep water dispersion relationship (2.4). A tvpical V-pol X-band
nautical radar image collected on Dec. 15 is provided in Fig. 4.32. The white box
of dimensions 128 x 1238 pixels shown on the figure depicts a tvpical sub-image used
for wave retrieval. The center of this sub-inage indicates the position of the moored

wave buov. Detailed information on the radar and buov is given in Table 4.9.

Table 1.9: Radar and Buov Data Information

Radar System Specification

Collecting date

12,15/2010: 12/20,/2010

Starting time

16:30:02 (GMT): 13:30:57 (GMT)

Radar location

47.5934N 52.6634W

Polarization

Dual Polarization

Auntenna angular speed 48 r.p.m.
The radar range resolution 751 m
Generated Image Size 1024 x 1024 pixels
Buoy Information

Collecting date

12/15/2010: 12/20/2010

Starting time

16:30:00 (GMT): 13:30:00 (GMT)

Buov location

47.3362N 52.4210W

In the 3-D FFT-based analvsis. 30 sequences consisting of 32 consecutive radar
sub-inlages were used for current and wave information extraction. For the given
radar operating paranieters. this correspouds to a period of 20 minutes for each data
set. The parameter nsed in the MTFE process for FET-based field data analvsis is

modilied as

—0.96. if k| < o2
| (1.18)

\
=
I

-1.2.  otherwise
Based on the inforimation provided. the parameters assigned for the wavelet anal-
vsis are determined and listed in Table 4.10. As deseribed in Chapter 3. an initial

value of 5y = L4 ad A7 = 0.2 are used for Ar = 10.5 n1 and .V, = 128, As listed in

Table 4.9, the radar range resolution is Ar = 7.51 ni. Therclore. the corresponding




Table 4.10: Wavelet Parameters Configuration

ko | (6.0)
\ 0.9
n (.01
by | (1.1)
N, | 128
J | 1.001
A5 10143

Figure 4.31: Radar and buoy sites

starting 3, and Aj3 used in this field data test can be calculated from equation (3.27)
to be 1.001 and 0.143. respectively. The MTF expression for the 2-D CWT-based
field data test is provided as

—1.42. if [k,,] < =275
a | (4.19)

—1.2.  otherwise
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Figure 4.32: An example of V-pol X-band nautical radar plan position indicator (PPI)
image [rom Dec 15, 2010 and the sub-image selection for wavelet analysis.

4.2.2 Result and Discussion

Near-surface current information is estimated first from the Fourier analyvsis. using
the LS. iterative LS and NSP methods. For the field data collected from a land-based
radar. the vessel's velocity @, = 0. and thus the retrieved velocity of encounter i, is
the trme value of the near-surface current velocity @,.. The ADCP record measured
from the second bin (2.75 to 3.75 m below the sea surface) is used as ground truth.
The comparison of the derived results of the current speed and direction from the
H-pol and V-pol radar data and ADCP record on Dec. 15 and 20. 2010 are shown
in Figs. 4.33 - £.36. On Dec. 15, the cenrrent speed and direction obtained from
the ADCP record were 0.35 mi/s and 5747 respectively: on Dec. 20, the speed
and direction measured [rom the ADCP were 0.47 m/s and 97.4°, respectively. In
Figs. 4.33 - 1.36. the (black) solid line represents the ADCP record: the (green) dot

line with circles represents the derived current information using the LS method: the
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(red) dash line with diamonds indicates the derived current information using the
iterative LS method: and the (blue) dash-dot line with asterisks shows the derived
current information using the NSP method. It is obvious {rom the figures that the
LS wmethod provides only a rough estimation of the current information with large
errors appearing in both speed and direction. The iterative LS and NSP methods
generate more acenrate and stable surface current than those obtained using the LS
method. Results from the iterative LS and NS> methods also show good agreement
with cach other and with the ADCP record. However. by comparing the H-pol and
V-pol results (Figs. 4.33. 4.35 vs. Figs. 4.34, 4.36), it is observed that the derived
current information {from the V-pol radar data is more accurate. The large error in
the results derived from the H-pol data may be due to the low sea state during the
nmeasurcinent period [85]. Although the iterative LS method determines the current
imforniation based on the first guess of the LS estimation, it is observed from the
figures that the results of the iterative LS method are not affected when the initial

guess from the classical LS is poor.

Table 1.11: Error Analyses of the Derived Current Information of the Field Data Test

Data (s) Algorithms | AV, (m/s) | AV (m/s) | AD,, (°) | ADy (°)
LS -0.1765 0.1107 109.8837 | 135.9728

Dee.15 H-pol | Iterative LS -.2964 0.0210 78.0619 | 47.5012
NSP -0.2967 0.0231 72.0796 | 26.3543

LS 0.5183 0.6293 60.0588 | 106.3091

Dec. 15 V-pol | Iterative LS 0.0313 0.0571 12.7988 | 14.4612
NSP 0.0120 0.0386 13.9047 16.4557

LS -0.1330 0.2589 78.0894 | 86.7100

Dee.20 H-pol | Iterative LS -0.2709 0.0391 76.6812 36.6118
NSP -0.2713 0.0517 59.2753 | 10.9942

LS 0.1125 -9.5439 1.0458 65.1157

Dee.20 V-pol | Iterative LS -0.0446 0.0559 -6.6970 8.9025
NSP -0.0507 0.0661 -7.4697 9.9323

The error analyses result is listed in Table 4.11. where AV, and AV, are the mean
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difference and standard deviation between the retrieved current speed and the ADCP
record. AD,, and AD,; are the mean difference and standard deviation of the current
direction. From the data collected on Dec. 15. it is observed that the mean difference
in the current speed derived nsing the LS method on the H-pol data (—0.1765 m/xs)
is slightly smaller than the mean ditference in current speed using the iterative LS
(—0.2964 m/s) and NSP (—0.2967 m/s) methods. This is because the current speed
is underestimated with the iterative LS and NSP methods from the H-pol data. while
the LS method provides a rough estimation and the derived points are distributed
ot1 both sides of the ADCP data, resulting in a better AD,,. However. it is obvious
from the derived current direction that the results of the LS method are not reliable.
with a difference of over 109.88. For this [-pol data. the differences m the current
directions obtained from the iterative LS and NSIP> methods as compared with that
from the ADCP record are still quite large. being 78.07° and 72.07°. respectively.
However. from the table. it may be observed that the iterative LS and NSP methods
produce much more accurate results {rom the V-pol data. The mean current speed
diferences of the iterative LS and NSP methods are =0.0313 m/s and —0.0120 m/s.
respectively, and both are better than those from the LS estimation (—0.5183 m/s).
The direction differences of the LS. iterative LS and NSP methods are 60.05%, 12.79°.
and 13.90°. respectively. A similar analysis can be observed from the results of the
radar data collected on Dec. 20, The mean current speed ditferences of the H-pol data
are —0.2709 m /s and —0.2713 m/s for the iterative LS and NSP methods. respectively.
Much smaller mean speed ditferences of —0.0446 /s, and —0.0507 m/s. respectively.
are derived from the V-pol data. The current direction differences of the H-pol data
are 76.68% and 59.27° for the iterative LS and NSP methods. For the V-pol data.
the mean direction differences of the two algoritluns are onlv =6.69" and —7.46". In

addition. from the comparisons of standard deviation. it is found that the iterative
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LS and NSP methods provide robust current estimation results. with much smaller
Al than that from the LS method.

During the ficld data test. a 20-minute racdar time series was used for both 2-D
CWT and 3-D FFT analysis. The results were averaged to acquire the directional-
frequency spectrum E(f.6) in each case. For hoth methods. wave parameters calceu-
lated from these two averages are listed in Table 4.12, in which the in ity wave buov
results are also included. 1t is obvious that the wave direction. ,.. and peak frequency.
[p- retrieved using both methods are close to those from the buoy record. The mean
periods derived from the radar data using both algorithms are slightly larger than the
i situ Hhuoy recorded value.

Table 4.12: Comparison of Derived Parameters from Dual-pol Radar Data and Buoy
Records

I Wave parameters l Wave direction ] Alean period | Peak frequency I

Date Dec. 15, 2010
3-D FFT (H-pol) 63.25” TA2 s 0.1053 Hz
2-D CWT (H-pol) 61.39° 7.78 s 0.1096 Hz
3-D FFT (V-pol) 63.72° 7.93 s 0.1053 Hz
D CWT (v-pol) 73.30° T71s 0.1047 Hz
Buov Record 60.47° 6.39 s 0.1025 Hz
Datce Dec. 20, 2010
3-D FFT (H-pol) 38.11° 10.76 s 0.0850 Hz
2-D CWT (H-pol) 61.62° 10.45 s 0.0796 Hz
3-D FFT (V-pol) 39.23° 11.0 s (.0804 Hz
2-D CWT (V-pol) 62.56° 10.42 s 0.0794 Hz
Buov Record 53.63° 942 s 0.0746 Hz

The surface current velocity cannot be obtained from the 2-D CW'T based algo-
rithm. Thus. the hand-pass liltering process that is designed to eliminate the energy
oftset due to surface current in the 3-D Fourler analysis is not applicable in the wavelet
analvsis. However, in this data set. the wavelet analvsis provides similar results to

x4

the Fourier method because the currents. as discussed in [85]. are relatively small

(i =~ 0.35 m/s on Dec. 156 and v =~ 0.47 m/s on Dec. 20) so that they will not
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significantly atfect the wave field energy distribution.

Figs. 1.37 - 4.40 show the spectra derived fromn both the 2-D CWT and 3-D TEF'T
algorithms using the dual-polarized radar data collected on Dee. 15 and 20. 2010.
The wave buoyv infornmation recorded at the same time is also sketched in the figures.
It is clear that a second peak near 0.18 Hz appears in the Dec. 15 buov record of
the 1-D frequency spectra ((a) in Figs 4.37. 4.38). The energy of this second peak is
detected by the enhanced 3-D FFT-based algorithm which considered the aliasing and
harmonic effects in the wave field analvsis. However. this second peak is not shown
in the recovered curve from the 2-D CWT-based algorithni. This is nainly because
the band-pass filtering process is not applied in the wavelet analvsis to back-fold the
aliased cnergy components due to the Nvquist limit.  Also. the introduction of the
modified MTF function as described in (4.19) Iurther suppresses the energy near the
frequency components of 2f,,. In addition. it is observed from Fig. 4.37 and Fig. 4.38
(a) that both methods fail to recover the energy of the higher frequency components
(f > 0.28 Hz). This results in the overestimated niean wave period.

[t is demonstrated by comparing the mean wave direction spectra ((b) in Figs. 4.37
- 4.40) that the wave directions retrieved using both niethods are close to those ob-
tained front the buoy data. However. by comparing the derived mean wave direction
spectra. it is observed that wavelet analvsis produces better results in 8(f) for both
large and small frequency components.

In general. the 2-D directional-frequency spectra ((¢)-(e) in Figs. 4.37 - 4.40) de-
rived by both methods recovered the energy distribution correctly. The peak frequen-
cies of the radar-derived spectra using both methods are also within 0.01 Hz of those
obtained from the huov reference.

In sunmmary. it is verified through the comparison of V-pol and H-pol derived

results that vertically polarized trausmission provides better current information. The
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wave results extracted from V-pol data and H-pol data do not differ significantly.
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Figure 4.40: Comparison of Dec.20 results from buoy and V-pol radar data.




Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, current and wave information extraction algorithms for use with nautical
radar data are reviewed. Then, improvements and new algorithms are presented. Both
simulated and field data have been used in the validation of the techniques.

Firstly, the least squares (LS), iterative LS, and the normalized scalar product
(NSP) surface current estimation methods are investigated. The iterative LS method
is improved by introducing an adaptive iteration termination criterion to reduce the
number of iterations while improving the efficiency and accuracy of the current esti-
mation. The accuracy of the NSP method relies on a large range and a fine resolution
of the velocity for the two-dimensional search; Thus a large number of calculations are
usually expected in this process. To reduce the computational cost of this method,
an improvement is suggested using variable search ranges and resolutions.

Secondly, the classic 3-D FFT-based wave analysis algorithm is studied. However,
the non-wave, fundamental and higher-order harmonic wave components that fall in

the pass band of the required filter are all used for wave spectrum derivation in existing
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algorithms. In this thesis. an enhanced algorithin nsing a modified band-pass filter
to extract ocean wave information of fundamental components from nautical radar
inlges is proposed based on the mode classification results for the iterative LS current
estimation.

In addition. a new strategy to retrieve ocean wave information from nautical radar
images based on 2-D continuous wavelet transform (CWT) analysis is also proposed.
The research explores the wavelet selection and parameter configuration. It is observed
from a series of simulation tests that the selection of scaling parameters significantly
atfects the derived wave field results. Thus, the relation of the maximum wavelet
scaling parameter a,,,, to the minimum distinguishable wavenumber is deduced, and
empirical values of the calibration factor. 3. which refines the optimal a,,,, under
varying wave conditions, are provided. A look-up-table-based wave analysis algorithm
is first proposed with the knowledge of the empirical optimal values of calibration
factor with reference to wave period from other instrumentation. Then a self-adaptive
wave analysis algorithm is designed using an iterative verification process involving
the tabulated calibration factors for different states without given Tg;.

Lastly. both simulation and dual-polarized field data tests are used for the algo-
rithm verification and analvsis. In the simulated data test, radar images arc gen-
erated under different circuinstances assuming shadowing and tilt modulation. It is
concluded from the simulation that accurate and robust current estimation can be
obtained from the iterative LS and NSP methods for different current velocities, and
mean wave periods. Also. the ocean wave spectra and associated parameters derived
from both 3-D FFT-based and 2-D CWT-based wave algorithms agree well with the
input data and. in particular. can be retrieved for different current speeds and mean
wave periods. [t is also observed that the position of the sub-image sequence may

atfect the retrieved ocean wave mtormation and it is suggested that the optimal posi-
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tions of the sub-image sequence for wave analysis are selected at the wave propagation
direction. 200 — 800 m away {rom the radar antenna for the sinulated data test. Data
were used from a two-dav ficld test which involve both H-pol and V-pol X-band radars
on the Canadian East Coast. A TRIAXYS wave buov and ADCP record collected at
the same time near the radar antenua were also available as ground truth for analysis.
Current velocity results show that both the iterative LS and NSP methods can be used
to retrieve reliable current inforiation. Also. the V-pol data allows for better current
estimation than that does the H-pol data, even under low sea state conditions. Wave
spectra parameters using both the 3-D FFT-based and 2-D CWT-based wave algo-
rithms are close to those obtained from the buoy reference. It appears that reliable
ocean wave information can be retrieved from both the H-pol and V-pol data using
niodified modulation transfer functions. It is concluded from the results that the key
to the retrieval of accurate wave information with the 2-1) CWT-based method is the

proper selection of the calibration factor and modulation transfer function.

5.2 Future Work

In this thesis, the field data is collected from a ground-based radar system under a
low sea state within a limited time span. A further validation with longer data sets
collected during a variety of sea states and ship speeds should be conducted. Also.
as discussed in Chapter 2. the thresholds used in the LS and iterative LS current
estimation are selected empirically. Tt is necessary to further explore an adaptive
threshold selection method under varving conditions in order to improve the accuracy
and robustness of the results.

In the 2-D CW'T wave analysis, the effect of current velocity on the performance

of the algorithin is not considered. Also. directional anbiguity inherently exists in
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the wavenumber spectrum obtained from the 2-D CWT analysis. In this thesis, the
ambiguity is removed by referencing the buov data. Ongoing work suggests that a
3-D wavelet analysis for the estimation of currents and the possible elimination of the

wave directional ambiguity should be explored [82].
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1. sub-image acquisition and normalization:

2.

generation of an image spectrum by applying 2-D CWT on a single frame of the

normalized sub-image using an initial /.

3. derivation of a 1-D frequency spectrum E( f) and calculation of the mean period.
Ty,. and application of an empirical threshold to E(f) to check whether any
point other than the major peak lies above the threshold line to the left of the
major peak in the derived £(f): if such a point is detected. it will be identified

as a false peak.

(a) if any false peak is detected. go back to step (2), increase the value of 3 by

A7 and repeat steps (2).(3):

(b) if no false peak is detected. compare the calculated Ty, with the mean

period that corresponds to 3 using Table 3.1 and (3.27):

i. if the difference of the two mean periods is larger than a preset thresh-
old ¢. increase the value of 3 by A3 and repeat steps (2). (3):

ii. if the difference is smaller than the specified threshold ¢. 3 is identified
as an appropriate value for wave field analysis. This value may then be
used (o process the 2-D CWT on the whole radar image sequence and
the derived 2-D directional-frequency specira E(f.6) may be averaged
for wave information extraction. In this research. if To; < 10s. ¢ = 0.5;

otherwise. ( = 1.

The complete self-adaptive wavelet-based algorithm for the extraction of ocean wave

information is depicted in Fig. 3.8.















