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ABSTRACT 

Orthogonal Frequency Division Multiple Access (OFDMA) has gained a lot of 

attention from many researchers of wireless communications. OFOMA represents a 

promising multiple access scheme for high-data rate transmission over wireless channels as 

. it combines the Orthogonal Frequency Division Multiplexing (OFDM) modulation and flexible 

and effective subcarrier allocation [1]. OFDMA inherits the favourable OFDM prosperities of 

high immunity to the multi-path fading and inter-symbol interference [2]-[3]. 

One main aspect related to OFDMA is scheduling. Scheduling in OFDMA systems is 

expected to manage multiple frequency subbands over time to deliver service to the 

system's users with specific quality requirements. Data rate, throughput, and fairness among 

users are key factors that specify how efficient a scheduling solu tion is. The Proport ional 

Fair (PF) algorithm is an appealing scheduling scheme to improve the fairness among users 

without sacrificing the efficiency in terms of average throughput of the system [4]. 

This thesis focuses on OFDMA systems that utilize the PF algorithm to schedule the 

available time and frequency resources among users. The thesis studies the performance of 

OFDMA scheduling in terms of the throughput, fa irness, and packet delay using computer 

simulations and analysis. 

Two dimensional (frequency and time) scheduling algorithms based on the PF 

algorithm are proposed, evaluated using computer simu lations. The proposed solutions 

utilize the PF criterion to achieve high system throughput while maintaining fairness among 

users in the system. In order to support multimedia bursty traffic, our solutions aJlow 

frequency domain sharing so that more than one user can share a subband in each time 

frame, where a subband is formulated by grouping a number of subcarriers. We compare 



the performance of the proposed solutions with other candidate OFDMA scheduling 

algorithms in the literature. Results show that the proposed schemes outperform the other 

schemes in terms of the throughput and packet delay with comparable fairness 

performance. 

It is worth mentioning that, to the best of our knowledge, the performance of PF 

scheduling scheme for OFDMA systems is not determined analytically in previous work 

available in the literature, and it is usually found by simulations only. Hence, we analyze the 

proposed PF scheduling schemes for OFDMA systems and evaluate its performance 

analytically. We derive closed-form expressions for the average throughput, throughput 

fairness index, and packet end-to-end delay. Computer simulations are used for verification. 

It is found that the analytical results agree very well with the results from simulations, which 

verifies the correctness and accuracy of the analytical solution. In our opinion, deriving 

analytical expressions that reflect the performance of the PF scheduling algorithm is a 

significant contribution because it provides deeper insight and ameliorates the 

understanding of the PF scheduling algorithm behaviour and mechanism for OFDMA 

systems. This faci litates the process of pursuing future work and further studying and 

developing more efficient solution for OFDMA systems. 
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CHAPTER 1 

Introduction 

Orthogonal Frequency Division Multiple Access (OFDMA) wireless systems have 

gained high attention by many researchers in the wireless communications field. The 

OFDMA systems show very appealing features in the wireless communications markel, as 

they can provide various advantages, such as high data rate, immunity to multipalh 

propagation, and flexibility and efficiency in resource allocation. 

Many Radio Resource Management (RRM) schemes. such as scheduling. Dynamic 

Subcarrier Allocation (DSA), Adaptive Power Allocation (APA) and Connection/Call 

Admission Control (CAG) were purposely left undefined in the wireless system standards, 

such as IEEE 802.16 [1], providing a hoi topic for research studies. Scheduling is one of the 

most essential and critical resource management schemes in OFOMA systems. 



The ultimate goal of scheduling schemes is to maximize the throughput and the 

Ouality of Service (OoS) in general given a set of available resources in terms of time 

frames and frequency subcarriers. DSA importance arises from the need to manage the 

limited radio resources in terms of the allocated number of orthogonal subcarriers to each 

user in dynamic basis. In order to minimize the interference and power consumption in the 

OFDMA systems, APA can be considered. The main idea of APA is to assign dynamically 

each subcarrier a specific level of power. Subcarrier power level is usually determined based 

on the Channel State Information (CSI) in order to reduce the transmission power and 

minimize the interference. However, several studies show that APA has little input on the 

performance of OFDMA systems compared to scheduling and DSA, [4J-[5). CAC is very 

critical because it decides whether to admit or reject new connection requests to prevent the 

system resources from being over used [4]. The CAC admits new connections and handed 

off connections, depending on the CSI, the loading conditions, and the available resources 

in order to guarantee a minimum level of OoS. 

1.1 General Background 

OFDMA systems strength and flexibility arise from the integration of Orthogonal 

Frequency Division Multiplexing (OFDM) modulation with DSA to support efficient use of the 

available frequency radio resources [2], [4] . In general, OFDMA systems have similar 

structures including the physical layer (PHY) and the Medium Access Control layer (MAC) 

with different variations for each standard [4]. In the first layer, PHY layer, OFDM is utilized 

as a modulation technique for providing a pool of parallel orthogonal narrowband subcarriers 

as shown in Fig. 1.1. 
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Fig. 1.1: Orthogonal Subcarriers in OFDM signal [6). 

These subcarriers can be utilized by the scheduled user in the system. By using OFDM, the 

data steam of a user is divided into a large number of lower rate data streams, and each 

stream is carried by a subcarrier thai is orthogonal to other subcarriers [7)-[10]. As 

mentioned above , The most important characteristic of OFDM is the high immunity to the 

multi-path frequency selective fading and the inter-symbol interference [2). OFDMA, which 

is used as a multiple access scheme, aUocates to each user in the system a group of the 

available orthogonal subcarriers. Hence, it is essential to have efficient subcarrier allocation 

in OFDMA systems in order to utilize these subcarriers efficienlly. 

The second layer, MAC layer, is responsible for supporting two network 

communication topologies [2], [4]: Point-to-MultiPoint (PMP) and mesh topologies as shown 

in Fig . 1.2. The PMP topology supports direct communications between the Subscriber 

Stations (SS's) to the Base Station (BS). On the other hand, the mesh topology supports 

communications between SS's with each other and also with the BS direclly or by means of 

relaying. Each SS acts as a possible relay stage for other SS's in the network [2]. The MAC 

layer should be able to support efficient radio resource sharing between different users with 

different levels of OoS requirements in the system. Therefore, the provision of efficient 



scheduling to grant different requests from different service classes is essential for the 

system performance [11 , 12]. 

RRM in OFDMA systems is a quality-aware management, in the sense that it 

considers the OoS requirements of existing users. Cross-layer design is implemented from 

the PHY and MAC layers to meet the OoS requirements. Thus, cooperation between the 

PHY and MAC layers should be considered (8]. The cooperation is achieved by sending the 

CSI from the PHY layer to the MAC layer, so that the Adaptive Modulation and Coding 

(AMC) can be applied on different subcarriers dynamically. The structure of OFDMA 

systems as shown in Fig. 1.3 is designated to control multiple users contending for available 

orthogonal subcarriers simultaneously. The OFDMA system contains N users with different 

data rate requirements. Subcarriers with different power levels are mapped to the requesting 

users in the subcarrier and power allocation block. The decision on the number of allocated 

subcarriers and power levels is affected by the CSI. The signals are transmitted after 

computing the Inverse Fast Fourier Transform (IFFT) and adding the Cyclic Prefix (CP) [2], 

[10]. The CP mitigates the inter-symbol interference because the CP duration exceeds the 

delay spread of the channel. At the receiver side, the CP is removed, and the Fast Fourier 

Transform (FFT) is computed. Finally the information is extracted for each user by using 

symbol to bit streams mapping based on the subcarrier allocation and power level 

information, which is available at the receiver side. This information can be provided to the 

receiver through feedback channels. Also, the CSI of each user should be fed-back to the 

transmitter in order to guarantee accurate and efficient RRM. 
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Fig. 1.2: OFDMA system topologies [2). 

Generally, the OFDMA system structure contains N users and M subcarriers. The wireless 

signals are transmitted over multipath fading channels. A number of replicas, with different 

amplitudes and arrival times of the original signal are received. Besides the direct line-of-

sight radio wave, there is a large number of reflected radio waves that received at the 

receiver with different time and phase. These multipath replicas can be added destructively 

or constructively depending on the relative phase of these multipath signals. Hence, the 

received signal experiences dynamic fluctuations (fading dips and up fading peaks). These 

dynamic fluctuations vary significantly from one frequency to another. In order to 

compensate for the dynamic changes due to multipath fading, the AMC is applied on 

subcarriers separately. AMC modulates and encodes the information in each subcarrier 

based on the Signal-to-Noise Ratio (SNR), independently. AMC improves the utilization of 



the OFDMA subcarriers because a subcarrier will not be used only if it appears in very bad 

channel conditions to all existing users in the system. 
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Fig. 1. 3: The structure of OFDMA system [10J. 

The ultimate objective of RRM in multi-user OFDMA systems is to maximize the 

total throughput with acceptable fairness behaviour. The secondary objective of RRM in 

multi-user OFDMA systems is 10 minimize the lolal transmitted power. On one hand, the 

throughput maximization goal musl be perused under the condition of limited number of 

subcarriers. On the olher hand, the total power that is allocated to users should not exceed 

the total transmit power available in the system. 

OFDMA systems allow users to share time and frequency resources. Sharing 

resources introduces the problem of contention for resources. Hence, scheduling is a 



mandatory requirement while designing OFDMA systems. Scheduling manages, 

multiplexes, and divides available resources between competing users in the waiting queue 

based on a certain scheduling policy. Scheduling policy represents the behaviour of a 

scheduler while deciding which request to serve next, and how many resources to grant to a 

request. Scheduling policy is important because it impact the performance of the system 

including the fairness among users. There is always a trade-off between fairness and 

aggregate performance. For example, Round-Robin (RR) scheduler divides the available 

resources among users equally but with low performance. On the other hand, opportunistic 

algorithms grant resources to the requests that maximize the system performance sacrificing 

fairness among users. II is important and critical requirement to design scheduling 

algorithms that provide high performance with fair treatment among the requests in the 

waiting queue. 

1.2 Proportional Fair Scheduling Algorithm 

A scheduling algorithm is an event planner that switches between many users or 

parties that competing simultaneously and asynchronously request access to the same 

resource. The resources can be expressed as time of service, such as time to run a job on a 

computer processor or time to use a transmission channel. 

In OFDMA systems, resources are divided into two categories, time and frequency. 

Time resources are expressed as time frames, where a time frame consists of time symbols. 

On the other hand, frequency resources are formulated as orthogonal subcarriers or 

frequency subbands, wh ich are constructed as group of orthogonal subcarriers. Also, 

OFDMA systems are expected to serve multiple users requesting resources simultaneously. 

So, scheduling in OFDMA systems should be capable of managing and mapping orthogonal 



subcarriers and time frames to multiple users in order to maximize the performance of 

OFDMA systems. 

The PF algorithm is an efficient scheduling solution that can guarantee fairness 

among competing users while achieving relatively high performance in terms of throughput. 

With this algorithm, the level of satisfaction (or starvation) of each user in the system is 

measured over time, and resources are assigned to users based on that. Moreover, the PF 

algorithm is flexible and can scale between fairness and efficiency. 

The general subcarrier allocation problem can be solved by selecting user i using the 

following PF criterion [13)-[15), 

(1.1) 

Where J is the index of the selected user, OJ}.. l) is the instantaneous data rate of user i on 

subcarrier j, and R~t) is the time average data rate of user i on subcarrier j. R~t) is updated 

for all users on each subcarrier as follows [15), 

I I . 
(1 -:r)R,(I - I) , ,~k , 

R,(l)=; I 
(l -:r )R, (I - I)+:rD'J (I) , ; = k , 

, , 

(1.2) 

where Te represents the observation window expressed in time frames. It should be noted 

that the value of Te can change the trade off between the throughput and fairness. larger 

values of Te imply that the scheduling algorithm selects users in a more greedy approach by 

averaging R~t) over large~ number of time frames to maximize the system's throughput with 

the cost of less fairness among users. On the other hand, smaller Te values indicate more 

fairness among users is applied by averaging R~t) over less number of time frames at the 

expense of throughput degradation. 



1.3 Literature Review 

Two main categories can be identified while studying the RRM of OFDMA systems in 

the literature. The first category investigates the OFDMA systems in order to maximize the 

system data rale, while the second category studies the possibilities of minimizing the total 

power consumption: 

1.3. 1 Rate Aware Algorithms 

One of the main goals of the RRM in OFDMA systems is to improve the efficiency 

and to maximize the lotal throughput. Many researchers studied this problem and proposed 

several solutions [2], [9] . [131 . [15]-[18). On most of the work, the problem was identified 

without considering the APA problem in order to reduce the complexi ty of the implemented 

solutions. The transmission power in such solutions is simply assumed to be equal for all 

users in the system. 

The Hungarian method is presented in literature as the optimal solution for this 

problem. The Hungarian algorithm is implemented in [2]-[3], [9], [13]-[14], and [18]. This 

solves the assignment problem between users and subbands in order to achieve the 

maximum possible throughput. It allocates one subband to one user in every scheduling 

time in a fashion that guarantees maximum profit. The Hungarian algorithm grants resources 

to any user regardless how bad its transmission rate is. However, the optimal solution for 

this problem is computationally complex, as it solves the problem with a complexity of order 

0(t.f3) [2J. Many studies proposed near-optimal solutions which provides throughput dose to 

the optimal one, with lower computational burden [9]. In [9], a suboptimal subcarrier 



allocation algorithm with equal power distribution is presented. This algorithm aims to 

maximize the global throughput by permitting users to access subcarriers with the best 

channel conditions as much as possible. To attain fairness among users in [9], the user with 

the worst satisfaction has the highest priority to choose the subcarrier with highest 

transmission gain to be used in the next allocation iteration. Another suboptimal iterative 

solution is presented in [2] and [18]. The iterative algorithm in [18], called max-max 

scheduling algorithm, establishes a profit matrix which includes the achievable data rate on 

each subcarrier for each user. The algorithm iteratively finds the largest element in the 

matrix, and maps the corresponding user to the corresponding subcarrier. Then, the mapped 

user row and subcarrier column are removed from the profit matrix. This procedure is 

repeated until all the subcarriers are assigned to users. The iterative algorithm in [18) is very 

simple. However, many frequency resources can be wasted and not allocated due to 

removing the partially allocated subcarriers from the profit matrix, when same users do not 

have enough traffic to fully utilize the assigned subcarriers, particularly when they have 

bursty traffic. 

In [3], (9], and [13]-[14] , subcarrier allocation algorithms, based on the PF criterion , 

are presented. In 13], three subcarrier allocation algorithms are proposed. The main 

contribution of these algorithms is the modification of the conventional PF criterion presented 

in the previous section in order to meet the QoS requirements of users and attain fair 

treatment. The authors implemented the proposed algorithms by using different 

combinations of a data rate exponential weight moving average proposed in [19] and the 

data rate requirements of users. However, the three solutions in 13] do not effectively 

manage the resources in the frequency domain. All three solutions allow one user to access 

all frequency subcarriers at a scheduling decision. In this case, scheduling considers the 

10 



only OFDM technique and does not meet the requirements and abilities of OFDMA systems. 

Hence, no user diversity is considered. Allowing only one user to access all the frequency 

subcarriers at a given time frame eliminates the chance of other users with favourable 

transmission rate to access and utilize excess subcarriers because the current user is 

blocking other users. Such behaviour severally affects bursty traffic OoS requirements. It is 

obvious that it is more effective to utilize OFDMA when managing OFDM subcarriers, so 

subcarriers can be grouped into subbands and each subband can be accessed by different 

user, which triggers the multiuser diversity. 

1.3.2 Power Aware Algorithms 

In order to approach the power-aware solution, pre-defined performance 

specifications are required. The power minimization problem is solved under limited total 

transmit power or bit error rate constrains [9], [20]. 

One candidate solution to this problem is the use of greedy algorithms [17], [19]. The 

greedy algorithm proposed in [17] is applied after candidate subcarriers are assigned to 

each user. It iteratively computes, for all candidate subcarriers, the additional power that is 

needed to load an additional bit. The power increment is applied on the subcarrier with the 

lowest power demands, The algorithm finishes the power allocation when all bits are 

assigned to subcarriers. 

Another popular solution proposed in the literature is the water-filling solution [9] , 

[21], and [22]. The water-filling algorithm maximizes the capacity of each subcarrier under 

the condition of limited power. The general behaviour of the water-filling algorithm is as 

follows. The algorithm equally distributes the limited total power among subcarriers, and 

then iteratively compares the assigned power to subcarriers with their required power. If the 



power assigned to a subcarrier is larger than its required power, the algorithm takes the 

redundant power and assigns it to the subcarrier whose required power is (ess than the 

assigned power. This process continues until there is no extra power can be reassigned . 

In [23], a proportional fair power allocation algorithm is proposed. This algorithm is 

implemented with the objective of attaining beller fa irness than that achieved with the 

conventional water-filling algorithms. The authors in [23] implemented a power allocation 

algorithm that can measure the data rate satisfaction of the users. The rate satisfaction is 

reported by using a fairness metric that tracks the normalized increment of the data rate 

caused by incrementing the power on each subcarrier. Accordingly, the algorithm allocates 

more power to a subcarrier whose normalized incremental data rate is larger. 

Another approach in the literature to solve the power allocation problem is given in 

[8], [21), and (24). A utility functions, U(.) , is used to satisfy an equilibrium between the 

efficiency and fairness in the OFDMA systems. The main idea of implementing power 

allocation algorithms using the utility functions is performed by expressing the achievable 

throughput as a function of the transmission power f{x), such that an optimal power 

allocation can be solved based on the utility function U (f (x)) . 

1.4 Problem Statement 

OFDMA resources in terms of frequency and time are limited and expensive. 

OFDMA systems, such as IEEE 802.16, are expected to deliver high data rate services to 

multiple users (1]. Efficient scheduling algorithms can significantly improve OFDMA systems 

performance [4]. There have been increasing attempts to design and develop OFDMA 

scheduling algorithms that improve the utilization of OFDMA recourses and meet user OoS 

requirements. 



PF scheduling algorithm is an appealing solution for scheduling OFDMA lime and 

frequency resources. However, to the best of our knowledge, analytical studies for PF 

scheduling solutions proposed to schedule OFDMA systems resources have nol been 

proposed so far in the open literature. Scheduling algorithms based on the PF criterion are 

only addressed and developed by computer simulations. Therefore, there is necessary to 

develop analytical models thai represent PF scheduling solutions performance for OFDMA 

systems over wireless channels, where mullipath fading, shadowing , and path-loss are 

considered. 

1.5 Thesis Contribution 

This thesis aims to investigate the radio resource allocation in OFDMA systems in 

order to introduce scheduling schemes that can improve OFOMA system performance in 

terms of throughput, fairness, and packet delay. We build simulation tools to analyze the 

performance of the proposed solutions . 

We define critical factors that should be considered while developing scheduling 

algorithms for OFOMA systems. Considering multiuser diversity and frequency diversity is 

mandatory in OFOMA scheduling algorithm. Pursuing multiuser diversity and frequency 

diversity can dramatically improve the OFOMA system performance. Seeking short-term 

fairness among users in OFOMA systems dramatically decreases performance in terms of 

throughput without improving fairness among users. This thesis shows that performance can 

be improved by permitting opportunistic scheduling in the short-term while the long-term 

fairness among users is maintained. 
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This thesis proposes three scheduling algorithms for OFOMA systems, which are 

developed using the PF criterion . Our proposed algorithms exploit multiuser. time, and 

frequency diversity. The performance of the proposed scheduling algorithms is compared to 

other scheduling algorithms found in the literature. Our scheduling algorithms show better 

performance than the scheduling algorithms found in the literature in terms of throughput, 

fairness , and delay. 

Jt is worthy to notice thai few studies investigated the PF scheduling in OFDMA 

systems analytically. The literature lacks studies thai provide analytical models that analyze 

OFDMA systems with PF scheduling. An analytical method, which is based on the 

Gaussian approximation of the instantaneous data rate in a Rayleigh fading environment, is 

used to analyze the performance of PF scheduling in [25], However, this method is 

developed for single-carrier systems and is limited to the case of users with full buffers. We 

derive closed-form expressions for the throughput, fairness index, and average packet delay 

for the modified Max-Max scheduling algorithm in OFDMA systems under Rayleigh channel 

and bursty traffic conditions. We verify our analytical solution by comparing the analytical 

results with computer simulation results. 

1.6 Thesis Organization 

The organization of this thesis is as follows: 

1- In Chapter 1, general background on OFDMA systems and its resources 

management is provided. Also, literature review that presents solutions and 

approaches to solve the RRM in OFDMA systems is provided. 

2- In Chapter 2, the RRM in OFDMA systems is presented. Also the OFDMA system 

model including the wireless channel and the users' specifications are presented. 

J 



3- In Chapter 3, The Horizontal and Vertical scheduling algorithms that aim to 

schedule the OFDMA radio resources in joint frequency-time domains using PF 

criteria are proposed. The Horizontal scheduling algorithm manages the radio 

resources subband by subband; in other words, it allocates all the resources in a 

subband and then allocates all the resources in the next subband, and so on. The 

Vertical scheduling algorithm, manages subbands iteratively; the algorithm 

assigns sufficient resources from a subband to the selected users every 

scheduling decision. We compare our proposed algorithms with algorithms that 

peruse direct fairness among users, such as the Hungarian scheduling algorithm. 

Our algorithms show dramatical improvement in the system throughput without 

scarifying the fairness among users. 

4- In Chapter 4, we propose a scheduling algorithm that exploits the multiuser 

diversity in both time and frequency domains. The proposed algorithm utilizes the 

PF criterion to achieve fairness among users in the system. In order to support 

multimedia bursty traffic, our algorithm allows more than one user to share a 

subband in each time frame. We also provide analytical evaluation of the 

performance of PF scheduling algorithm in OFDMA systems. We derive closed

form expressions for the average throughput, Jain's fairness index, and packet 

delay as performance metrics. We verify the correctness and accuracy of the 

derived closed-form expressions through simulations. Analytical and simulation 

results are in very good agreement, which validates our analytical peeiormance 

analysis. 

5- In Chapter 5, conclusions are drawn and directions for future work are presented. 



CHAPTER 2 

Radio Resource Management in OFDMA Systems 

and System Model 

Introduction 

OFDMA system resources in terms of frequency subcarriers and time frames 

are critical and limited . OFOMA systems, such as those conforming to the IEEEB02.16 

standard, are expected to deliver high data rate services to multiple users concurrently 

with varying aos requirements. In order to meet the OoS requirements for different 

users, OFDMA systems should employ efficient RRM schemes. The users' OoS 

minimum demands need to be met under the condition of limited frequency subcarriers 

and time frames. Because OFDMA systems consider OoS requirements of existing 

users, cooperation between the PHY and MAC layers should performed [25]. The 



cooperation is achieved by sending the CSI from the PHY layer to the MAC layer, so 

that the AMC can be applied on different subcarriers dynamically [8], [21]. 

This chapter formulates the RRM problem in OFDMA systems. The main goal of 

RRM in such systems is to maximize the utilization of the limited orthogonal subcarriers 

and time frames. However, minimizing the transmit power consumption in OFDMA 

system is also another goal that can be pursued. Effective management of the 

available orthogonal subcarriers and time frames improves the system efficiency in 

terms of throughput, while minimizing the transmit power reduces the effect of the 

interference, which also slightly improves the system efficiency and reduces the cost of 

data transmission. In this chapter, we present the general throughput maximization 

and power minimization problems formulation. 

We also present the realistic system model we consider through this thesis. The 

wireless channel in our model considers the path-loss, Rayleigh fading, and 

shadowing, and is dynamic. The channel conditions change over time from user to 

user depending on the evaluated path-loss, multipath fading, and shadowing. Multiple 

replicas of the transmitted signal reflect and scatter on objects while propagating 

through the channel. Each replica can add destructively or constructively at the 

receiver depending on its phase. Shadowing is caused by barriers that exist for a long 

time between the transmitter and receiver. Shadowing also changes over time, but 

slower than multipath fading. Additionally, we present details of other OFDMA system 

requirements. and specifications we use throughout the thesis. 



2.1 General RRM Problem Formulation in OFDMA Systems 

The ultimate objective of RRM in multi-user OFDMA systems is to maximize the 

total throughput with acceptable fairness behaviour, and to minimize the total 

transmitted power. On one hand, the throughput maximization goal must be perused 

under the condition of limited number of subcarriers. On the other hand, the total power 

that is allocated to users should not exceed the total transmit power available in the 

system. The general formulation of the subcarrier and power allocation in the OFDMA 

systems can be described as follows [7], [17], and [27]: 

Maximiz e : i: f D ;., S i., ' (2.1) 
i - I i _ I 

Minimize : f f P , ., S i., ' (2.2) 
/ - l i - I 

subject to the following conditions: 
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C 4 : f f,S ;.i Pi.j ~ P, d ,d; , 
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where D1j is the data rate of user i on subband j and SIJ is a selection indicator that 

equals 1 or 0, with Sir1 meaning that the subband j is allocated to user i. PiJ is the 

transmit power reserved for user i at subcarrier j , P tota! is the total power, and Dqi is the 

minimum data rate required for user i. Due to limited number of subcarriers and 

transmit power in a system, conditions C1 and C2 are the constraints on the subcarrier 

allocation, while C3 and C4 are the constraints on transmit power on each subcarrier 

for all users. C5 is placed to guarantee the target OoS requirements for all users in the 

system. 

Solving this problem is very complex, so it is more feasible and effective to drop 

one of the optimization goals and solve for the other, This can be achieved by either 

assuming equal transmit power for all users, while perusing throughput maximization, 

or assuming that frequency and time resources scheduling is already performed while 

perusing transmit power minimization. The next two subsections present the 

throughput maximization and transmit power minimization problems formu lation, 

respectively. 

2.2 Throughput Maximization Problem Formu lation 

One of the main goals of the RRM in OFDMA systems is to improve the 

efficiency and maximize the total throughput. Many researchers studied this problem 

and proposed several solutions [3] , [16]-[18] , and [27]. However, in order to reduce the 

complexity of the implemented solutions, this was investigated without considering the 

power minimization. The transmission power in such solutions is simply assumed to be 

" 



equal for all users in the system. The throughput maximization is formulated as a 

maximal bipartite matching problem as follows 117], 

Maximize : L,'., f D "j S i,) ' 
j ~ I 

subject to' 

CI : t,S,.) = 1, 'iJ E{ I, 2,3, .. . ,M ), 

C 2 IS;,} =0 1, 'V i E {l , 2, 3, ... , N }, 
j - I 

C 3 : P i,} = Protoll N , 'i i ,}, 
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i _ I j - I 

2.3 Power Minimization Problem Formulation 

(2.3) 

In order to approach the power minimization, pre-defined performance 

specifications are required . The power minimization problem is solved under limited 

total transmit power or bit error rate constrains [9). The power allocation optimization 

problem under fixed subcarrier allocation is described as follows [9] , [27J: 

Min imiz e : ff.D i.JP (2.4) 
~ I 1- 1 

subject to: 
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2.4 OFDMA System Model 

In this thesis, we consider a single cell downlink scenario for an OFDMA 

wireless system. The smallest data entity which the base-station can handle is a data 

packet. We consider fixed size packets. The traffic of the users is assumed to follow 

Poisson traffic model [6]. The inter-arrival time between packet requests is modeled as 

a random variable with an exponential distribution. The user's location in the cell is a 

random variable following uniform distribution. 

Each subband contains a number of adjacent subcarriers, which are highly 

correlated in frequency domain. In time domain, the frame duration is divided into time 

symbols. Fig. 2.1 shows the frequency-time resources of the OFDMA system. As 

shown in this figure, the minimum allocable resource unit is represented by the 

intersection between a symbol in time domain and a subband in frequency domain. 
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Fig. 2.1. Frequency-time OFDMA resources. 
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The goal is to allocate the resource units to users with time and frequency 

diversity in order to maximize the total system throughput with reasonable fairness 

among users. Moreover, AMC is used to enhance the subbands efficiency. The 

suitable modulation level and coding rate are decided depending on the CSI for each 

subband. Table 2.1 shows the AMC schemes used in this thesis along with the 

corresponding SNRs. 

Path loss, shadowing, and small scale fading are considered in the SNR 

calculation. Correlated Rayleigh fading is a$sumed between subcarriers. In order to 

meet the target Bit Error Rate (BER) in the system, we consider the worst case 

subcarrier fading in each subband for the SNR and link budget calculations. Although 

the worst case subcarrier fading is considered in a subband, the overall SNR 



calculation does not significantly change because the fading difference between 

subcarriers within a subband is insignificant because the fading is highly correlated. 

Table 2.2 shows default simulation parameters that are used in this thesis. 

Table 2.1. AMC Schemes. 
Modulation Code rate Bits/symbol SNR (dB) 

format 

BPSK 1/4 1/4 -2.9 

BPSK 1/2 1/2 -0 .2 

QPSK 112 1 2.2 

8PSK 1/2 3/2 5.2 

8PSK 2/3 2 8.4 

64QAM 1/2 3 11 .8 

64QAM 2/3 4 15.1 



Table 2.2. Simulation Parameters. 

Parameter Value 

Bandwidth 20 MHz 

Carrier frequency 2GHz 

Number of subcarriers 256 

Number of subbands 32 

Transmit power OdBW 

Noise power · 130dBW 

Path loss exponent 

Shadowing standard deviation 10 dB 

Number of users 32 

Packet size 180 bits 

Frame duration 2 ms 

Symbol duration 16IJs 

Cell radius 1500 m 



2.5 Correlated Rayleigh Fading Generation 

In RRM for OFDMA systems, a frequency resource represents a group of 

orthogonal subcarriers to be allocated to users. We group a certain number of 

subcarriers into a virtual frequency subband, with the subband as the smallest entity to 

be allocated to a user in the frequency domain. Grouping subcarriers into subbands is 

more practical and reduces the computational complexity and burden of scheduling 

solutions when compared to considering a single subcarrier as the smallest entity. 

Because frequency subcarriers are relatively narrow in terms of frequency bandwidth, 

a user might need to access several subcarriers to transmit or receive a single data 

packet. Hence, it is reasonable to group the frequency subcarriers into virtual 

subbands to minimize computational burden. 

Clustering frequency subcarriers into virtual subbands cannot be achieved 

arbitrarily. Because of the dynamic wireless channel , subcarriers experience different 

multipath fading at different times. In order to formulate a consistent frequency 

subband, the group of the selected subcarriers should experience similar multi path 

fading conditions, so that an AMC scheme can be selected for all of them. Applying 

the same AMC on subcarriers with different channel conditions affects the performance 

and reliability of the OFDMA system. Note that the AMC scheme which corresponds to 

the worst subcarrier channel conditions is selected. Th is yields a reduction in the 

performance because some subcarriers might experience high channel gain compared 

to other subcarriers in the same subband, and a lower AMC selected on that subband 

does not efficienlly utilize those subcarriers. By applying the AMC scheme which 

corresponds to the best subcarrier channel conditions in the subband to the whole 



subband, a higher AMC scheme will be applied to subcarriers experiencing bad 

channel conditions, which increases the BER and reduces the OFDMA reliability. 

The frequency subcarriers considered in this thesis have correlation in the 

frequency domain. The fading affecting the frequency subcarriers have cross 

correlation because of the small coherence bandwidth of the wireless channel [28]. A 

frequency selective Rayleigh faded channel is modeled based on [28]-[30]. The 

frequency selective Rayleigh subcarriers are generated with correlation between them 

in the frequency domain where the complex valued correlation is formulated as 

function of frequency separation between the subcarriers. In order to minimize the 

BER and improve the OFDMA system reliability, we consider the worst case subcarrier 

fading in each subband for the SNR and link budget calculations. Although the worst 

case subcarrier fading is considered in a subband while selecting an AMC scheme, the 

overall SNR calculation does not Significantly change because the fading difference 

between subcarriers within a subband is insignificant because the fading is highly 

correlated. 

2.6 Jain's Fairness Index 

Jain's fairness index is utilized in this thesis to measure the fairness of the 

scheduling algorithms for OFDMA systems over a period of time. The Jain's fairness 

index is a number that expresses how fair is a resource distribution among users who 

contend for the same resources within one system. Theoretically, its maximum value 

reaches 1 when all users are assigned exactly the same share of resources, and its 

minimum value reaches 0 when all resources are aSSigned to one user only. The 

Jain's fairness index can be expressed as [31 ] 
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where Xi represent the resources allocated to user i, the number of users in the system 

equals N . The Jain's fairness index is evaluated every t ime Xi is updated in the 

system. Averaging the Jain's fairness index overtime guarantees accurate results that 

reflect the fairness of the system. 



CHAPTER 3 

Downlink Frequency-Time Scheduling Algorithms 
for OFDMA Systems 

I ntrod uction 

In this chapter, we study the scheduling problem in the OFDMA systems. We 

investigate the performance and limitations of candidate OFOMA scheduli~g algorithms 

found in the literature, and we propose two OFDMA frequency-time scheduling 

algorithms thai aim to maximize utilization of the lime and frequency resources in the 

OFDMA systems with acceptable fairness among users competing in the OFDMA 

system. 

The RR, Hungarian, and Max-Max scheduling algorithms are presented as 

candidate solutions for scheduling the OFDMA time and frequency resources. We 

study the RR algorithm as a base line for comparison purposes. The RR algorithm 



allocates equal proportions of resources to all users in cyclic fashion to attain equal 

fairness among users. The Hungarian algorithm can be utilized to solve either the cost 

minimization or profit maximization problems. In our case, the Hungarian algorithm is 

employed to solve allocation maximization problem (maximize profit). The Hungarian 

algorithm allocates resources (frequency subband and time symbols in the OFDMA 

systems case) to users in a pattern that guarantees maximum possible throughput , 

under certain conditions. The Hungarian algorithm maps all the available resources to 

all users requesting service in every admission decision in a way that guarantees the 

maximum global utilization. The Max-Max scheduling algorithm is a two dimensional 

matrix-based heuristic version solution of the Hungarian algorithm that aims to 

iteratively allocate resources to users in order to deliver near optimal performance with 

lower complexity. The Hungarian algorithm and its heuristic versions, such as the Max

Max scheduling algorithm, cause performance degradation because such solutions do 

not exploit multiuser diversity. Multiuser diversity means that there is likely that a user 

exists with a very good channel conditions at any time, which can improve the 

throughput in a wireless system with users faded independenlly. Also, such solutions 

pursue short-term fairness (fairness with in one time frame only) by allocating all 

requesting users which does not improve the long-term fairness (fairness within over 

many time frames) among users and severely decreases the throughput. In addition, 

the Hungarian and Max-Max scheduling algorithms schedule subbands to users in a 

one-Io-one fashion, where a subband cannot be accessed more than one user within a 

time frame and a user cannot access more than one subband within a time frame . Not 

allowing subband sharing leads to low subbands utilization because a user sometimes 

does not need all the resources of the subband in order to meet Ihe OoS requirements 



which leaves the remaining resources (frequency subcarriers and time symbols) 

unutilized. 

We propose two algorithms in order to solve the above issues (multiuser 

diversity, fairness, and subband sharing). The two scheduling algorithms are 

developed to schedule the OFOMA system's frequency subband and time frames with 

the goal of maximizing throughput with acceptable fairness among users. These two 

algorithms are referred to as the Horizontal scheduling and Vertical scheduling 

algorithms. The former manages subbands one by one, while the latter manages the 

subbands in a cyclic fashion. The efficiency of the proposed algorithms is investigated 

by computer simulations in terms of throughput and fairness expressed by the Jain 's 

fairness index. Simulations show that the proposed algorithms outperform the one-to

one scheduling algorithms found in the literature in terms of throughput, with improved 

fairness. 

3.1 The Round-Robin (RR) Algorithm 

The RR scheduling algorithm is a simple scheduling algorithm that allocates 

equal portions of resources (time and/or frequency) to users in a circular order. Fig . 

3.1 shows the RR scheduling system containing one server station serving multiple 

requests cyclically from different queues. The RR algorithm is very simple and does not 

have priority criterion to differentiate between users. Also , RR is not capable of sensing 

the requesting users' demands and conditions in terms of traffic (arrival) rate and 

channel conditions, respectively. 
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Fig. 3.1. RR scheduling system. 

Therefore, the RR scheduling algorithm cannot consider different users' channel 

conditions and service demands while allocating resources, which severely decreases 

the system throughput. A large percentage of resources in terms of time symbols and 

frequency subbands are wasted because the RR server can allocate resources to 

users with bad wireless channel conditions. Accordingly, the RR scheduling algorithm 

does nol exploit multiuser diversity. Sometimes users are not able to utilize the 

resources at all due to their extremely bad channel conditions. Other times a small 

percentage of the allocated resources can be utilized when the channel conditions 

allow low data rate transmission. Based on that, we conclude that the RR scheduling 

algorithm delivers very low throughput. Also the RR algorithm cannot guarantee equal 

treatment among users in wireless systems, although it allocates resources equally to 

users, due to the variation in the wireless channel conditions over time and users. 

31 



3.2 The Hungarian Algorithm 

The Hungarian algorithm is a solution to find a maximum or minimum weight 

matching in bipartite graph matching problems. Given the gain matrix thai expresses 

the possible throughput achieved by every user in subbands, the Hungarian algorithm 

solves for the mapping pattern that guarantees the maximum throughput as follows: 

(1 ) If the gain matrix is nol a square then add dummy columns or rows to make it a 

square , 

(2) Subtract the entries in each row in the matrix from the maximum entry in that 

entire row. 

(3) For each column , subtract the minimum entry in each column from every column 

entry. 

(4) Cover all rows and columns thai contain zeroes in the matrix with minimum 

number of vertical or horizonlallines. 

(5) If the number of lines equals the size of the matrix, then solution exists. If the 

lines covering all of the zeroes are fewer than the size of the matrix, then find the 

minimum entry that is not covered by a line. Subtract it from all non-zero entries 

and add illo any entry lies at any intersection of the drawn lines. 

(6) Iterate over the previous step until there is a solution where a solution exists at 

matrix entries with zero values. 

We present here an example that clarifies how the Hungarian algorithm works to 

obtain the solution for the maximization problem. The following 4 x 4 matrix represents 

the gain matrix where the rows represent the users, the columns represent the 
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subbands, and the values in the matrix entries reflect the achievable throughput of 

each user in each subband. 

X = 

Now we apply slep (2) on the matrix: 

[M" 29 - 15 
X= 

34 - 19 

40 - 21 

so the matrix will be: 

Now we apply step (3): 

["" 14 - 11 
X= 

16 - 11 

19 - 11 

[

15 

15 

19 

21 

17 25 

17 26 

22 33 

25 35 

26

1 
29 

34 

40 

26- 17 

29- 17 

34 - 22 

40- 25 

11 

14 12 

16 13 

19 15 

9 - 9 

12 - 9 

13 - 9 

15 - 9 

26-25 

29 - 26 

34 - 33 

40 - 35 

1- 1 

31 - 1 

21 - 1 

51 - 1 

M "I 29 - 29 

34 - 34 

40- 40 

"" 0 - 0 

0 - 0 

0 - 0 

For step (4), it is clear Ihallwo lines only are needed to cover all zeros in the matrix; 

one line covers the first row and the other line covers the fourth column: 



[

0 0 0 0 

3 3 2 0 
x = 

5 4 1 0 

8 6 4 0 

Now step (5) is applied and then a check for solution existence is carried oui. We can 

cover all zeros by two lines only (first row and fourth column): hence we continue with 

step 5 by subtracting x (3,3) from all the non-zero entries : 

[

0 0 0 0 

2 2 1 0 
x = 

4 3 0 0 

7 5 3 a 

The minimum number of lines that can cover the zeros is 3 {first row, third column , and 

fourth column). so we repeat slep (5): 

[

0 0 0 0 

1 1 0 0 
x = 

3 2 0 0 

6 4 2 0 

After checking for solution we find Ihallhe minimum number of lines covering all zeros is 

3 (first row, third column , and fourth column), so we repeal step (5) again " 

x = 

o 
o 

o 0 



Now we can nol cover all zeros by less than 4 lines. So a solution exists with two 

possibilities as follows (solution exists at the zeros locations): 

x(I , I) + x(2,2) + x(3,3) + x(4,4) = 105 

x(I,2) + x(2,1) + x(3,3) + x(4,4) = 105 

The final result shows thai the optimal assignment has two patterns and both of 

them yield a maximum profit equals 105. 

As we notice from the previous example, the Hungarian algorithm guarantees 

resource allocation to all users in every scheduling decision. It allocates one subband to 

one user, which does not take into account the multiuser diversity. The Hungarian 

algorithm ensures optimal resource assignment under the condition of one-la-one 

mapping between users and subbands. However, this condition dramatically decreases 

the expected throughput of OFDMA systems. 

Even though one-to-one mapping algorithms, such as the Hungarian method 

guarantee one subband to every requesting user, fair treatment among users in the 

OFDMA systems is not guaranteed. Pursuing short-term fairness in such systems is 

impractical due to different wireless channel conditions among users. It is clear that 

granting OFDMA resources in terms of time and frequency to users in bad channel 

conditions wastes the resources and decreases the system throughput without 

improving the fairness among users. 

High computational complexity is another drawback of the Hungarian algorithm. 

The Hungarian algorithm is a very cumbersome algorithm to implement with complexity 

of O(n3) (2]. We notice from the previous example that the algorithm requires three 

iterations with heavy computational burden to solve a gain matrix of size 4x4 only. The 
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simulation results we present in the simulation section prove that the Hungarian 

algorithm is not the best solution for OFOMA resources allocation problem because it 

does not fully utilize the OFOMA resources. 

3.3 The Max-Max Scheduling Algorithm 

In this section , we explain a heuristic algorithm to replace the Hungarian 

algorithm. As indicated in the previous section, the Hungarian algorithm is 

computationally expensive . Therefore , suboptimal scheduling algorithms such as Max

Max scheduling algorithm that deliver performance close to the Hungarian algorithm's 

performance with lower complexity are important {18]. 

The Max-Max scheduling algorithm establishes a gain matrix which contains the 

instantaneous data rate for all users on all subbands. The matrix dimension is NxM, with 

N represents the number of users , and M the number of subbands. A subband is 

allocated to the user with the highest achievable throughput rate ; then the user's row 

and subband's column are deleted. This operation is repeated until all subbands are 

allocated to all users. Here is how the assignment problem for the matrix presented in 

the previous section is solved using the Max-Max scheduling algorithm. 

By finding the maximum value in the matrix and eliminating the corresponding 

user and subband we obtain the following two assignment patterns. First, the algorithm 

chooses x(4,4) and elim inate user 4 and subband 4 from the next iteration x (3,3) is 

chosen and user 3 and subband 3 are eliminated . In the next iteration two scenarios 

can appear. The algorithm may choose x (I ,2) (or x (2,2)). Then, in the next iteration, 

the algorithm chooses x (2,1) (or x (1, 1) ) depending on the previous iteration's decision. 
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17 

@] 
25 

26 

26 

29 x =~ l ~~ 25 

22 @] 34 

35 §] 
and 

15 @] 25 26 

@] 17 26 29 
X= 

@] 19 22 34 

2 1 25 35 ~ 
respectively. 

In the previous example the Max-Max scheduling algorithm provides the same 

performance of the Hungarian algorithm. However, this is not guaranteed all the lime, 

especially with large matrices. Below we show another cost matrix where the Hungarian 

and the Max-Max scheduling algorithm solutions are different. The Hungarian algorithm 

guarantees the optimal assignment pattern under one-Io-one assignment condition; 

hence its performance in terms of total achievable profit is higher than the Max-Max 

scheduling algorithm. The following gain matrix (y) is solved as follows: 

['" 
22 65 ,'. 15 60 

Y ~ 33 10 30 15 

40 5 15 30 

The Hungarian algorithm solution is: 



JO [n] 65 

15 [§Q] JO 
y = 

[n] 10 30 15 

40 15 [lQ] 

y (1 , 2) + y (2 , 3) + y(3 , 1) + y (4 ,4)=145 

Whereas the Max-Max scheduling algorithm solution is: 

10 22 ~ 
15 ~ 60 10 

y = 
[j] 33 JO 30 

@Q] 15 30 

y (1,3) + y (2 , 2) + y (3 , 4) + y (4 , 1) =125 

The Hungarian algorithm provides a total profit of 145, while the Max-Max 

scheduling algorithm provides a tolal profit of 125 only, 

On one hand, heuristic algorithms such as the Max-Max scheduling algorithm 

reduce the computational complexity. On the other hand , such solutions inherit the 

Hungarian algorithm drawbacks. As in the Hungarian method case, heuristic algorithms, 

including the Max-Max scheduling algorithm , do nol exploit the multiuser diversity and 

long-term fairness. Also such solutions apply one-Io-one mapping between users and 

subbands, which does not improve the system fairness due to wireless channel state 

variation over time. Simulation results for the Max-Max scheduling algorithm are 

presented in the simulations section. 



3.4 Proposed Frequency-time Scheduling Algorithms for OFDMA 

Systems 

In this section, we propose two OFDMA scheduling algorithms that aim to 

schedule the OFDMA subbands and time frames in joint frequency·time domains using 

PF criterion in order to solve the short-term fairness problem and permit opportunistic 

behaviour of the scheduling solution while allocating resources to users in order to 

exploit the multiuser diversity. The two proposed scheduling algorithms schedule the 

resources to users in a many-la-many fashion where a frequency subband can be 

shared by more than one user. Meanwhile, a user can be assigned more than one 

subband during a time frame. We expect that subband sharing can significantly increase 

the subband utilization. We assume that it is possible to find at least one user who can 

utilize the excess time symbols of a subband to transmit or receive at least one packet. 

Allowing subband sharing should not have negative impact on the fairness among users 

because a subband is not shared unless the first selected user to access available 

resources does not have any traffic to send at least one packet. On the contrary. sharing 

subbands can improve the fairness because users can access the unused resources 

during a time frame instead of holding it by one user who does not have enough traffic to 

fully utilize the resources. 

The first algorithm, which is referred to as the Horizontal scheduling algorithm. 

manages the radio resources subband by subband; in other words, it allocates all the 

time symbols in a subband and then allocates all the time symbols in the next subband, 

and so on. The second algorithm, which is referred to as the Vertical scheduling 
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algorithm, manages subbands iteratively: the algorithm assigns sufficient number of time 

symbols from a subband to the selected users every scheduling decision. 

The performance of the proposed Horizontal and Vertical scheduling algorithms is 

compared to that of previously discussed one-to-one algorithms, namely: the Hungarian, 

Max~Max, and RR scheduling algorithms. Simulation results show that the two proposed 

scheduling algorithms outperform the one-to-one scheduling algorithms in terms of 

throughput with nearly the same fairness behaviour 

Starting from the throughput maximization problem formulation presented in 

Chapter 2, we develop our solution in order to exploit multiuser diversity and allow 

subband sharing among competing users as follows [17]: 

N M 

maxI LDi .j Si.), 
i _I j - I 

subject to: 

C I: ~s" = I, 'ij E {1,2,3, ... ,M} , 

c2:fs;J = 1, '7i E{I,2,3, ... ,N}, 
j - I 

C3:Pi.j =~OIrJI N, Vi,l' , 

C4:I IIJ'.jSi.j :z. IJqi· 
i _I j - I 

(3.1) 

In order to overcome the throughput reduction and to guarantee fair treatment 

between users, we formulate the subband assignment problem as a many-to-many 

assignment problem. The first condition (C1) and the second condition (C2) are 

dropped. Hence, the subband scheduling problem is no longer maximal bipartite 



matching assignment. In order to guarantee fairness among users, we replace the 

condit ions (C1 and C2) with a PF scheduling criterion, expressed as [15} 

(3.2) 

where Rd..t) is updated for all users on each subband as [15] 

(3.3) 

with Tc 1- O. For the case of greedy behaviour, no observation window is being 

considered (Tc=O), so we consider R~n) is equal to D~n) , 'V n. 

This PF criterion is used to develop the two proposed scheduling algorithms as 

explained in the next section . 

3.5 Horizontal Scheduling Algorithm 

The Horizontal scheduling algori thm allocates time symbols subband by subband 

within a time frame as show in Fig . 3.2. The flowchart of the Horizontal scheduling 

algorithm is shown in Fig. 3.3. First, the AMC levels are separately selected for users on 

each subband based on the SNR values. The AMC scheme is selected for each user on 

all subbands based on the SNR values in order to calculate the spectral efficiency. The 

instantaneous data rates, D;jt), are evaluated for each user i,i = 1,2,3, ... ,N, on each 

subband j,j '" 1,2,1 ... ,M .. Based on the PF rule in equation (3.2), all users contend to 

access the resources (time symbols) subband by subband . The scheduler starts with the 

first subband, and then schedules the time symbols of the subband in the time domain to 



one or more users. After the subband is completed, the scheduler moves to the next 

subband, and so on. A subband is completed if the scheduler does not receive service 

requests during the frame time from any user, no time symbols remained, or the 

remaining time symbols in a subband cannot support at least one data packet. The 

wireless channel is dynamic and its conditions change over time. The achievable 

instantaneous data rate of each user should be determined at the beginning of every 

time frame. Thus, the instantaneous data rate , Dljt), is updated after finishing the 

current time frame. 

On the other hand , the historical data rate, Rljt), is updated at the end of a time 

frame based on equation (3.3). 

------ Time Frame 

Fig. 3.2. The Horizontal scheduling algorithm allocation . 



1 =a:..~ 1 
l 

Fig. 3.3. The Horizontal scheduling algorithm flowchart. 



3. 6 Vertical Scheduling Algorithm 

Fig. 3.4 demonstrates the allocation by the Vertical scheduling algorithm. The 

algorithm assigns resources subband by subband within each time symbol. First the 

algorithm allocates sufficient number of time symbols from each subband to the 

scheduled user, and then assigns time sufficient number of symbols to the next 

scheduled user. When the algorithm assigns one time symbol from all available 

subbands it moves in time and assigns lime symbols to users in the next iteration. 

As show in Fig. 3.5, the AMC levels are selected based on the SNR values and 

then the instantaneous data rate, Ddt), for all users is calculated. The vertical 

scheduling algorithm allocates the needed number of resource units to one user from 

different subbands at each scheduling decision. The scheduler starts with the first 

subband and continues based on an RR fashion, and then a user is chosen based on 

the PF criteria in equation (3.2). After scheduling one user resource demands, the 

schedu ler proceeds to the next available resources in the subbands during the time 

symbol in the current iteration and chooses a user to be scheduled, and so on. If a user 

utilizes the entire subband within a time symbol, then he will access the subbands again 

in the next iteration (subbands in the next time symbol). 

The instantaneous data rate, Dijt) , is updated at the end of every time frame. The 

AMC level is adapted depending on the new channel conditions, so the instantaneous 

data rate, D,j,t), is updated. The average data rate is updated for all users as in the 

Horizontal scheduling algorithm. The scheduler proceeds to the next time frame if 

remaining resources in all subbands cannot send or receive at least one packet, or no 

service requests arrived from any user. The vertical scheduling algorithm provides more 



frequency-time diversity than the horizontal scheduling algorithm. The Vertical 

scheduling algorithm switches between different subbands in frequency domain over 

time symbols every scheduling decision which causes more frequency diversity. On the 

other hand, the horizontal scheduling algorithm proceeds to different subbands in the 

frequency domain only when a subband is completed. 
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Fig. 3.4. The Vertical scheduling algorithm allocation. 
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3.7 Simulation Results 

The simulation results for the throughput and fairness are conducted with 

different values of the observation window Teo where Tc equals 0, 1000, 3000, and 5000 

time frames. Tc equals 0 means that the algorithm is greedy and no historical information 

is considered and the scheduling algorithm schedules users with a greedy behaviour. II 

is obvious that dropping the historical information will improve the throughput but 

decrease the fairness among users. 

The throughput of the proposed Vertical and Horizontal scheduling algorithms is 

presented in Fig. 3.6. As we notice , the larger the observation window, Te. the higher the 

throughput. Also , it is evident that the Vertical scheduling algorithm outperforms the 

Horizontal scheduling algorithm, due to its diversity when it schedules resources in the 

frequency domain, because the Vertical scheduling algorithm has more freedom to 

select the best subband for every user. 

The Jain's fairness index is used to measure the fairness of the proposed scheduling 

algorithms. The fairness of the proposed scheduling algorithms is presented in terms of 

Jain 's fairness index in Fig. 3.7 and Fig. 3.8. II is shown that both algorithms have nearly 

the same fairness with slight improvement of the vertical scheduling algorithm over the 

Horizontal scheduling algorithm. We notice that the smaller Te the betler the fairness 

because the PF scheduler impose more fairness among users by using less number of 

time frames to calculate the average data rate, R~t) , in equation (3.3). Also, it is evident 

that the higher the traffic load the lower the fairness because more packets will be 

blocked on the users' buffers. 

The Hungarian, Max-Max, and RR scheduling algorithms are also simulated, and 

their performance compared with these of the proposed algorithms. The efficiency of the 
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aforementioned algorithms in terms of throughput is presented in Fig. 3.9 . The 

Hungarian solution outperforms the Max-Max scheduling algorithm in terms of 

throughput with the same fairness performance. The RR algorithm provides very low 

throughput, as this algorithm does not consider the channel state information when 

assigning subbands to users. Also , it is clear that the throughput of the Hungarian and 

the Max-Max scheduling algorithms is significantly lower than those of the Horizontal 

and Vertical scheduling algorithms. This throughput results show how the one-to-one 

mapping between users and subbands degrades the system throughput. It is more 

practical and efficient to allow opportunistic scheduling of users requests, and then 

compensate for users who starve for service when their channel state improves. It is 

obvious that scheduling users with low channel conditions does not improve the 

fairness, and severely impacts the performance in terms of throughput. Also the 

throughput reduction of one-to-one algorithms happens due to preventing subband 

sharing among users, which can waste considerable amount of resources. 

The fairness of the three one-to-one algorithms is presented in Fig . 3.10. The 

Hungarian algorithm and the Max-Max scheduling algorithm show same the fairness 

behaviour, while the fairness provided by the RR is higher. Our two proposed scheduling 

algorithms show preferable fairness treatment to users compared to the Hungarian and 

the Max-Max scheduling algorithms due to the integration of the PF criterion, which 

improves the long-term fairness . Even though the RR algorithm pursues absolute 

fairness among users, we notice that the Jain's fairness index does not reach unity. This 

easily can be explained due to different wireless channel conditions from user to user 

which leads to different loading of the assigned subbands for each user. 



Although the one-to-one algorithms guarantee a subband for each user within a 

time frame, the two proposed scheduling algorithms show slightly better fairness in 

terms of the Jain's fairness index. The proposed scheduling algorithms impose a short-

term greedy behaviour, but the long-term fairness is maintained using the PF criterion . 

When a user; is prevented from accessing resources, his priority index, J, in equation 

(3.2) increases due to the weight added to his historical data rate, R/ (t) in equation (3.3). 

Also, the proposed algorithms exploit time scheduling within each subband, which is not 

applicable in the one-to-one scheduling algorithms. It is evident that pursuing ultimate 

fairness among users in the OFDMA systems by using the one-to-one solution is not 

efficient and can degrade the throughput. Simulation results show that the many-to-

many algorithms outperform the one-to-one algorithms in terms of throughput , without 

sacrificing the fair treatment among users. 
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Fig. 3.6. Throughput versus traffic loads of the Vertical and Horlz.ontal algorithms. 
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3.8 Conclusions 

Scheduling is an important RRM component in the OFDMA systems. Dynamic 

subcarriers scheduling should consider both frequency and time domains in order to 

improve the performance. Imposing short-term fairness constrains does not improve 

long-term fairness behaviour of the OFDMA systems, but rather degrades the 

performance. In this chapter, we have proposed two joint frequency-time subband 

scheduling algorithms and investigated their performance in terms of throughput and 

fairness. Furthermore, their performance is compared with thai of one-Io-one scheduling 

algorithms. 

Simulation results prove that with the one-la-one scheduling algorithms, which 

pursue direct fair treatment, the throughput performance is severely affected , without 

improving the long-term fairness. The two proposed Horizontal and Vertical scheduling 

algorithms outperform the one-to-one algorithms in terms of throughput and fairness 

among users. Also, the proposed scheduling algorithms are flexible and their behaviour 

can be controlled using only one parameter, namely the averaging window size, Te. Our 

proposed scheduling algorithms can trade off between fairness and throughput using the 

averaging window, Tc. 
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CHAPTER 4 

Performance Analysis of Proportional Fair 
Scheduling inOFDMA Wireless Systems 

Introduction 

In this chapter, a third OFDMA scheduling algorithm thai utilizes the PF criterion and 

exploits the multiuser diversity in both time and frequency domains is proposed. Also the 

performance of the two dimensional (lime slot and frequency subcarrier) PF scheduling 

algorithm for OFDMA wireless systems is analyzed analytically and by simulations. 

The proposed modified Max-Max scheduling algorithm in this chapter aims to exploit 

the multiuser diversity in both time and frequency domains efficienlly. Also , the proposed 

algorithm utilizes the PF criterion to achieve fairness among users in the OFOMA system. 

In order to support multimedia bursty traffic, the modified Max-Max scheduling algorithm 



allows more than one user to share a subband in each time frame. The proposed algorithm 

generates a gain matrix that is employed to iteratively assign the available subbands to be 

shared among different users concurrently. We modify the Max-Max scheduling algorithm 

in [18) in order to efficiently utilize resources in time and frequency domains taking fairness 

into account. The performance of our proposed algorithm is compared with other OFOMA 

scheduling algorithms in the literature. Results show that the proposed algorithm 

outperforms other algorithms in terms of throughput, fairness, and packet delay. 

This chapter also analyzes the performance of the proposed modified Max-Max 

scheduling algorithm, both analytically and by simulation. Closed-form expressions for the 

average throughput and throughput fairness index are derived. Computer simulations are 

used for verif ication. The analytical and simulation results agree well with each other, which 

verifies the correctness and accuracy of the analytical expressions. 

4.1 The Proposed Modified Max-Max Scheduling Algorithm 

In this section, a modified Max-Max scheduling algorithm is proposed in order to 

exploit multiuser diversity, improve fairness, and meet the bursty traffic requirements for the 

OFOMA systems. The multiuser diversity is exploited by allowing the user that has the best 

channel conditions to access the system resources. Fairness between users is maintained 

by applying the PF criterion over time. Furthermore , the bursty traffic is dealt with by 

allowing subband sharing within the frame duration. 

The proposed Horizontal scheduling algorithm handles the resources subband by 

subband. The scheduler moves from one frequency subband to another when all the time 

resources are utilized. The proposed Vertical scheduling algorithm shows more freedom in 



the frequency domain as it iterates over frequency subbands and allocates time resources 

to different users each single iteration. Results in Chapter 3 show that our proposed 

Vertical scheduling algorithm outperforms our proposed Horizontal scheduling algorithm 

due to more freedom in the frequency domain. This idea has motivated us to develop a 

scheduling algorithm with better frequency diversity than the Vertical scheduling algorithm. 

The proposed modified Max-Max scheduling algorithm aims to provide more 

freedom in the frequency domain by trying to allocate time symbols of each subband to the 

user that maximizes the utilization on that subband. The proposed modified Max-Max 

scheduling algorithm does not iterate over frequency subbands sequentially. Instead of 

allowing users to compete to access a frequency subband each iteration , it allows users to 

compete over all available frequency subbands each iteration. The proposed Max-Max 

scheduling algorithm estimates the achievable throughput for each user on every frequency 

subband, and schedules users based on the PF criterion. Exploiting more freedom in the 

frequency domain is expected to improve the OFMDA system uti lization. 

Considering the efficiency and the bursty traffic requirements of the OFDMA 

systems, it is more suitable to allow subband sharing among users. More than one user 

can share the same subband. In order to exploit multiuser diversity, users with bad channel 

conditions are prevented from accessing subbands until their CSI is improved. However, 

queuing some users within a frame duration does not affect the long-term fairness because 

the queued users already experience bad channel conditions and cannot benefit from the 

available subbands anyways. With the PF criterion, the scheduler compensates for service 

starvation of a user when either the user is queued for a specific time or its channel 

conditions are improved in the next time frames. 

In order to overcome the throughput reduction and guarantee fair treatment for all 

users, the conditions (C1 and C2) in equation (3.1) in Chapter 3 are dropped. Hence, the 



subcarrier scheduling problem is no longer a maximal bipartite matching assignment, and a 

user can access more than one subband and a subband can be shared by more than one 

user. In order to guarantee fairness among users, we use the PF scheduling criterion 

described in equations (3.2) and (3.3) in Chapter 3. This PF c-riterion is integrated into the 

proposed modified Max-Max scheduling algorithm in order to guarantee fair treatment 

among users. The PF criterion compensates for the selVice shortage of users; also, it gives 

more priority to users which have better instantaneous data rates in order 10 maximize the 

throughput. 

The Max-Max algorithm is modified as follows. First, a granted user will not be 

excluded in next scheduling iteration unless its queue is empty. Second, a subband will not 

be excluded in the next scheduling iteration unless it is fully utilized. Third , the PF criterion 

is implemented to evaluate ranking of users on the subbands based on the instantaneous 

and time average data rates. 

The proposed algorithm is divided into two stages. In the first stage, the 

instantaneous data rates of user i and subband ~ at time t, D;j, t), are evaluated for each 

user on each subband. A gain matrix that reflects the ranking of all users on all subbands is 

generated and updated based on the PF rule given in equations (3.2) and (3.3). In the 

second stage, the modified Max-Max scheduling algorithm is applied on the gain matrix as 

follows. In each iteration, the algorithm selects the user with the highest rank among all 

users on all subbands. After the user and subband are selected, the unused time symbols 

in the subb~nd are reselVed for that user depending on its traffic load and channel 

conditions. The scheduled user's traffic demands and the achieved throughput are 

updated. A user will be removed from the gain matrix if its queue is empty. A subband will 

be removed from the gain matrix if the remaining part cannot support at least one packet 

for any user. Finally, at the end of each iteration, the time average data rate, Riot), for each 
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user is updated based on (3.3). The algorithm terminates the iterations if all the subbands 

are consumed or all the users are satisfied. Moreover, at the beginning of every frame 

duration, the new instantaneous data rates, D;,J) , are evaluated, and combined with the 

time average data rate, Rtf) , to build a new gain matrix. The flow chart of the modified Max

Max scheduling algorithm is presented in Fig. 4.1 . 

" 



Fig. 4.1. The modified Max-Max scheduling algorithm flowchart . 



4.2 Performance Analysis of Proportional Fair Scheduling in 

OFDMA Wireless Systems 

The fonowing sections of this chapter analyze the performance of the proposed 

modified Max-Max scheduling algorithm and evaluate its performance analytically. I derive 

closed-form expressions for the average throughput, average packet delay, and throughput 

fairness index. 

An analytical method, which is based on the Gaussian approximation of the 

instantaneous data rale in a Rayleigh fading environment, is used to analyze the 

performance of PF scheduling in [25]. However, this method is developed only for single-

carrier systems and limited to the case of users with full buffers. I adopt the methodology in 

[25] and build on it to develop an analytical solution for the PF scheduling in OFOMA 

systems. In the following three sections, closed-form expressions are derived for the 

average throughput, throughput fairness index, and mean packet delay of our proposed PF 

scheduling scheme for OFOMA systems. 

According to the PF scheduling algorithm that I developed in the previous section for 

OFOMA systems, the user with the index 

(4.1) 

is ranked first among the N users on subband j, j=1,2,3, .. M. The time average data rate is 

updated at the end of a time frame n-1 for each user i on all the available subbands as 

l( 1-7;-' )R,(n - I), i "'k, 

AI 

R i (II) = (l _~-l )Ri(II - 1)+~-1 j; Dij (II), i = k, 

j~j(") (4.2) 



where S~n) represents the set of subbands assigned to user i during time frame n. Tc is the 

averaging window expressed in time frames. Tc controls how much historical information is 

taken into account when sharing the resources among multiple users, and can be chosen 

to achieve a desirable throughput-fairness trade-off. 

Since the traffic is assumed to be bursty, the best user (chosen by (4.1 )) might have 

empty buffer. In this case the subband assigned to the best user should be given to the 

second best user if it has non-empty buffer. If not, the subband is assigned to the third best 

users and so on, where the ranking of users is based on the same criterion used in (4.1) 

(D;f,n)/Rl..n-1 ). As such, (4.2) is mod ified as follows 

M 

R ; (n) = (l - Tc-1 )R ; (n - I) + a;Tc-1I l i~ (1/ )O ij (n) 
j .. 1 

M 

+ u ; (1- a i )Tc-I I I i; (II)O ij (n ) 
j - I 

M 

+ a ; (1- a i )2Tc- II I .; (II)O ij (n) 
j z l 

M 

+ .. . + a i (1- a i)N - lTc - I L I t (II )O ij (/1 ), 
j~1 

(4 .3) 

where, l~ (n) , c= 1,2 ,3, ... N , represents a selector indicator which equals 1 if user j is ranked 

c-th on subband j , and equals 0 otherwise, and U i is the probability that the buffer of user i 

is not empty. The terms in the right hand side of (4.3) represent the potential achievable 

throughput for a user. The first term reflects the average throughput achieved by the RR 

algorithm, while the remaining N terms represent the additional average throughput 

provided by the proposed scheduling algorithm when compared with RR. The first term (out 

of the remaining N terms) represents the additional average throughput when user i is 



ranked first and subbands assigned to it. The second term (out of the remaining N terms) 

reflects the additional average throughput when user i is ranked second and subbands are 

assigned to it because the user ranked first has empty buffer, and so on. 

The proposed PF scheduling algorithm in the previous section consists of two steps: 

In the first step, all users in the system are ranked . A resource matrix that contains the 

ranking of all users on all subbands is generated based on equation (4.1). The 

instantaneous data rate, D;J.,n), represents the efficiency factor, whereas the lime average 

rate combined with Tc represents the fairness factor. As such, the ranking of the users 

reflects both the channel gain and users' satisfaction . In the second step, scheduling is 

performed based on the ranking and demands of the users on one hand, and the resource 

availability on the other hand. The algorithm iteratively serves the user with the highest rank 

among all users on all subbands. 

A user will be excluded from the waiting users' list if all waiting packets are served. 

This algorithm allows subband sharing in time domain, where different time symbols in the 

subband can be utilized by different users. A subband will be eliminated from the resource 

matrix if the remaining resources cannot support at least one packet for any requesting 

user within this time-frame. This algorithm tracks the satisfaction levels of all users at the 

end of each time-frame by updating the time average data rate, R~n) , using equation (4.2). 

4.2. 1 Derivation of the Closed-Form Expressions for Throughput 

It is shown that assuming a linear relationship between the instantaneous data rate, 

D,J"n) , and the SNR is unrealistic under Rayleigh fading environment [25]. Actually, it is 



demonstrated that it is more realistic to assume that the D ;j follows a Gaussian distribution 

with mean and variance given respectively as [25] 

(4.4) 

aod 

(4.5) 

where E[.] denotes the average operator and log is the logarithm in base 2. According to 

the PF algorithm presented in (4.1) and (4.2). the throughput of user i in subband j can be 

expressed as 

I I .II I .II 

R;(Il)=(I-r;)R,(1I -1)+r; f;/~ (II)Dij (n)+r; ~':(n)Dij (l1) 

+~ I'; (II)Dij (n)+ ........ +~ "f)i" (n)Dij (II) 
T~ J~l 7;. j=l 

By calculating the mean value for both sides of the previous equation. we can write 

I J .1/ I .1/ 

£[Ri (n)]=(I -r:)E[Ri(n - J)]+r; E[f:?~. (II)D!i (II)]+~E[~/: (II)Dii (II)] 

I .1/ J .1/ 

+~ E[~/~l (1/)Dij (n)] + ....... +~ E[~/i" (n)Dij (II)] 

One can express the average achievable throughput of user i on all the available subbands 

in the time-frame n as 



E[R, (n)] = (I - T,- ' )E[R, (n - 1)] + a,T,- 'E[I I ; (n)Dij (n)] 
) - 1 

M 

+ a , (I - a , )T,-' E[~> J(n )Dij (n) ] 
' 0' 

M 

+ a , (I - a , )'T,-'EC2: I ; (n)Dij (n)] 
) - 1 

+ ... + a ; (I -a; )N-1Tc- IE[I./ ,7 (lI)D ij (/I )], 
i~1 

(4.6) 

where ' : represents the probability of user i ranked N-th to be scheduled on subband j is 

expressed asu i (I- a;),1 -I . This means that all users ranked first have empty queues, while 

user i has request in its buffer. 

Under the assumption that a, is equal for all users, as these have the same traffic rate D~', 

one can write 

E[I/ ' ij (nJD, {n)]=a(I - a)'-'E[ID, {n)11' , (n) = l]xJ;(I' , (n) = I), 
)=1 j " ] 

and Now (4.6) can be fe-expressed as 
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+ ... +a(l-aj"-'T,-'E[ID'j (II) I / ;' (n) = 1]P, (I : (n) = I), 
j - I 

where P,(lj(I/)=I) is the probability that user j is ranked c-Ih on subband j and during time 

frame n. Under the assumption of stationary throughput and independent subbands, one 

can further express (4.7) as 

M 

E[R,] = aE[ID, (n) 1 J; (II) = I]P, (I; (II) = I) 
i : l 

M ~ ~ 
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J EI 
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+ ... + a(l - a)N-' E[ID, (n) l / : (n) = I]P, (I : (n) = I) 
i =1 

Further, by applying the Bayes' theorem, (4.8) can be rewritten as 

(4.8) 
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L +a(I - a)"-'2:J xlD (x)P,(I; (n) = IIDij (n) =x)dx , 
j~L':I:J ' 

where fo,(.) denotes the probability density function (pdf) of Oq. By assuming independent 

Dij, and based on the PF selection criterion presented in (4.1) and (4.2), I can determine the 

conditional ranking probabilities as follows 

tv R (11) 
P,(I; (n) = IIDij (n) =x) = n Fo/'t-( )), 

I~I .I"; i IT 

(4.10) 

where f;".lp (') is the cumulative distribution function (edf) of Oij. By using (4.10) and the 

Gaussian pdf of Oij, and under the assumptions that, r; --+«> , one can show thai R/ is an 

ergodic process (such thai its time average equals the statistical average). Now, by 

assuming Tc ..... oo I have 



tR, (I ) 
lim .!!..J!!l =lim R/(n - I) =.lim R/ (n - 2) '" .... = lim~= lim-' · '-
Tc-->'" Ri (n) T.-'" Ri(I/ - I ) T,""« R, (n - 2) r. _"" Ri (l) T . ... '" ~Ri (!) 

Hence, 

where Avrg{ .) is the time average . For stationary R, r assume thai R is a first order ergodic, 

so that the l ime average equals the statistical average, as 

Now (4 .10) can be re-written as 

Now these expressions can be substituted into (4.9) so this equation can be expressed as 

E[R, l - a L f xxfo, i. I(X)X n Fo, I' ) --x d.\ • - M [ "' , • [EI R,] 1 .J 
i -' ....., 1_ .1.1 E[R, l 

+a(l-aii:[j x 4". , ., (Xi[ I - F,. , . ,( ~ [[; ' ]]'·lJ x fj F""" ( ~[[; ' ]]x l d, 1 
j - I ", i 1- .1_ ' i 

'~ [ ·f . [ . (E[R,] lJ 'n·' · (E[R,] 1 1 +a(l- a) L. xxID, •• ,(·') I - FR.". ) -.--x x 1'0, '"1 - . - x (b; 
i_' __ t[ R1 ] / . 1_1 E[ /() 



By assuming Gaussian distribution of the instantaneous traffic rate, the previous equation 

can be expressed as 

EIRI EIDJ ( EIRJ 1 
Nowassume E[R; 1 = E[D; ] , so FR., I.) E[R; l X(YO"/lij + E[D,. J) can be re-written as 

( E[R,] ( )) (E[D. ]cr~ J F~(~) ~xyafli +E[D~ ] =F;o.,) ---xy 
E[R,J E[R, Jo;" 

Furthermore, I assume proportional relationship between the mean and variance of all 

users in the system [25], so the previous expression can be approximated as 

(4. 12) 

where F(o,I)(.) represents the standard normal edf with zero-mean and unity-variance. 

Hence, after some manipulation, one can further express (4.11 ) as 
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M oc _yl/2 1 

£[R ; ]=U2)crD jj J y e ~ F.~'J)' (y)dy +£[Dij ]] F(~;iJ (y)dF(O.1) (y )J 
j KI -<c ,,2n 0 

M '7l _yl l2 

+ a(l-a)~)crD(/ f y e ~ (I-F(0.1) (y »f{~;i2 (y )dy 
j _ 1 __ ,,2n 
, 

+ £[D ij ]1 (l - F(O.lj (Y »F(~.;)2 (y )dF(O,I)(Y )] 
o 

.1/ '" _ },1 / 2 

+ a(l - a)2L [O"Dij f ye ~ (l-F(o,,) (y))2F(;;j3 (y )dy 
j - I -«> ,,2 l! 

, 
+ £[DV J! (I -F(o.1)CV » 2 F(~;i3 (y )dF(o.1) (Y)] 

M '" - Y' 12 

+". +O,(l-O,)"'-1 2)OD. J Y e ~ (I-F(O,lj (Y» '" I dy 
) ,,1 _ 00 ,,2n 

+ E[Dij ]J (1 - F(o.I) (Y »N-l dF(o,1)(Y )], 
o 

It is straightforward to show that 

Then, one can easily find thai 

, ! (1- F(O.ll(y»F(~.i/ ( y)dF(o . IJ(Y) = N(: - I) ' 

and, finally, through the mathematical induction we can write 

(4 .13) 

f; (l - f(OJl(y»H f(~,1 (Y):lf(OJ) (y) =(i - !)I(N -i)V Nl, II = !, ... ,N, (4.14) 



Thus, equation (4.13) can be expressed as 

N .II "" _,112 

E[R ,]= 2)a(l -a/-' 2)crD, f ye r:c- (I - F,".,, (y)/ - 'I';~,)'(y )dy 
; EI jEt --«> ..;2j[ 

+ E[Dij ](i - I )~~ -i )!ll , 
(4.15) 

where u represents the rank of user ion subband j. The probability of the non-empty buffer 

for any user, 0 , can be expressed based on the average throughput and the traffic rate as 

(4 .16) 

where 1-1 and A are the service and arrival rates of the user, respectively. By substituting 

(4.16) into (4.15), £IRd simply becomes 

As £IR1] represents the throughput of user i, i= 1, 2, 3, .. , N, in the system, the 

average throughput of the entire system can be expressed as 

(4.18) 
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4.2.2 Derivation of the Closed-Form Expressions for the Fairness 

Index 

System fairness while allocating resource to different users is an importanl 

requirement for successful scheduling solutions. Given a resource scheduling algorithm, a 

fairness index is a real number that measures how fair or unfair the system resources are 

shared among the competing users. Jain's fairness index is a well known quantitative 

metric thai is widely used in wireless communications to measure fairness. Jain's fairness 

index can be expressed as (31) 

(4.19) 

where Xj is the amount of resources accessed by user i among N competing users. 

Based on the result for the average throughput for user i, j= 1, 2, 3, .. , N, as given in 

(4.18), it is straightforward to express the Jain's fairness index of the users' throughput as 

[tE[R, ]]' 

J(E[R , ],E [R , ],E[R , ], .. ,E[R ,v ]) = -',-;'~~

L: E [R , l' 
i .. J 

(4.20) 

4.2.3 Derivation of the Closed-Form Expressions for Average 

Packet Delay 

RRM for bursty traffic OFOMA systems is important because several services have 

bursty traffic. Accessing OFOMA resources by different users causes some users requests 
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to be held in queues for certain time until a free resource is allocated. This time is referred 

to as the packet delay. Mean packet delay is an important metric for measuring the 

effectiveness of scheduling resources because services such as video and voice streaming 

should not exceed specific packet delay levels to meet its OoS requirements. 

In this section, the average packet delay in M/G/1 queue for the proposed modified 

Max-Max scheduling algorithm is derived I start the derivation from the proportional 

fairness criteria equation as 

(4.21) 

and R,' (n) can be expressed as 

(4.22) 

Now both sides of (4.22) are squared and averaged to express E [R /(Il) ] as 

E [R " (n)J=(T~~ IJ E[R,'(n-l)l+t ta'(I -ol'''·''E[tDij (n)l;(n)J + 2~.; 1) 

ErR i2 (n - 1))E [~a(l- aY -I ~Dy (1I)1 ~ (II) 1 
By assuming stationary Ri, 



In order 10 find E [R,IJ . we can determine E[fDij (II)I;(nl]' as 
;-, 

(4.23) 

[
M ]' where Uij is the index of user ion subbandj. Now E L. D ij(n )/ ; (n ) can be is written as 
i -' 

£[~D' (Il)l; (Il)J = ~£ (D:I; ) + ~ ,t£(D,D./;I; ) 
K"j 

We further simplify E[f D1j (/l )/;(/ll]' as 
i - I 

[
M ]' Finally E L J)ij (Il ) / ~( II ) can be written as ;-, 
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(4.24) 

Now I simplify the fjrst term of (4.24), !P,(l; .. I) f x211}, (x II; == I) dx 
i - I ..... 

IP, (I ; 0 I) j X '10, (x II; 0 I) dx 0 
j - I _'" 

I a' (l -a)'''-'' I P, (I; 0 1) j X 'I", (x I I; 0 I) dx 
i . 1 i _I __ 

Then it can be written as 

Ip,(I; 0 1) I x 'rD. (x II; 0 1) <Ix 0 
j-I ...., 

I a'(l -a)"'-"I Ix '10, (x )P, (1: 0 liD, ox ) d, 
(4.25) 

h i j _ l _ 

Now 1',( /; : I IDij::X ) can be expressed as 

For stationary first order ergodic Rio the time average equals the statistical average , thus 

(4.26) 



By substituting (4.26) into (4.25) , ~P, ( / ~ =1) LX}'I). (x I l ~ =1) dx can be written as 

IJ: (/; "1) J X] ,_ (x 11; "1) me" 
J EI ...., 

It is reasonable to assume that [251 

E[ R , ], E [D ,;!, 

E [R , ], " E [D , ]" 

Also proportional relationship between the mean and variance is assumed [25 j, where Dij is 

a Gaussian with zero mean and unit variance, hence 

(4 .27) 

Substitute (4.27) into (4 .26) and manipu late it as follows 

IJ:(1; "1) J X] ", (x 11; "1) dx " 
j - I -«) 

Then this equation can be rewritten by solving (YOD• + £[Dij 1)' 



I P,(/ ; = 1) J X'lD, (x II; = I) dx = 
j ml __ 

~a' (I-a)"H'~a' f·Y'f (Y)X(I - P (y))' -' p N-' (Y)dX L.. L. /)~ fJ~ (0.1) (0,1) 
I ~ I J gl __ 

, 
+E [Dij r f Y YD. (y )>«1-00.1)0' )tl 0~I~i (y) dT 

Finally ~P, (/~ =1) 1X1"", (x IJ~ =1) (Ix becomes 

IF:(i; =1) J x%, (x II; =1) de = 
j..J ~ 

Ia'(l-a)"-')I o;" J y'/", (Y )x(I -F,.,,(Y)t' F,~,7 (y)dx 
; £ 1 } £I -«> 

+2av• E[Dv J1)/0. (y )X(I -0o.,j()I)( F(~,1 (y)dr 

+ (i - I)E [D, ] 

N1J(N-i)! 

Now I solve the second part of equation (4.24) as follows 

Then previous expression can be re-wrilten as 

(4.281 
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Now I simplify the second part of equation (4.23), 

[
N M 1 2(7; - I)E ~a(I -aY-'~O, (")I; (") 02(7; -I)E[R, [xE[R, [02(7; - I)E[R, [' (4.30) 

Now we substituting (4.30) and (4.31) in (4.23) yields 

2(T, - I)E[R,)' = ta'(I-a)''''''f",,' 1 Y'!'" (y )x( I- F,",, (Y)r r;;,;' (y)ix 
; &1 j~l -, 

+2" E[oJ "f f ( ,)x( I-F (»)"F"(y )d +('-I)E [O,J 
iJ. ~ _:1: D, ) (0.1 ) V (OJ) Y N !/ (N - i)! 

~a' 1 a """~(" "f ye"''' (1 F )"'F:"" +(i- I)E [O,J] 6' (-) f;: D,....", Jm - (0.1) 0') (0.1) 0'}try N!/ (N-i) ! 
(4.31) 

~(" Of ye" '" (I F )"'F' " ,+ (i - I)£[0' )]+2T I)E[R)' f:. D"_ Jm -10.1) 0') (O.I)(Y )d) N!I(N - i)! ( 0- , 
h, 

Thus it is possible to calculate the throughput variance as 

(4.32) 
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(4.33) 

where OJ .. is the average time spent in the system per packet for user i and £ [Ril is the 

throughput of user i. So now the packet delay in M/G/1 queue per user can be expressed 

(4.33) 

4.3 Numerical and Simulation Results 

Various analytical and simulation results are presented in this section for the 

proposed modified Max-Max scheduling algorithm. Also simulation results are presented for 

the Orthogonal Frequency Division Multiplexing Proportional Fair (OFDMPF) scheduling 

algorithm proposed in [3J. 

The OFDMPF scheduling algorithm can be basically considered in the same 

category of my modified Max-Max scheduling algorithms. Both algorithms aim to schedule 

the OFDMA resources to multiple users by utilizing the PF criterion. However, my proposed 

modified Max-Max scheduling is designed in order to handle the OFDMA resources 

efficiently in both the frequency and time domains. The OFDMPF algorithm does not show 

degree of freedom in the frequency domain because all the orthogonal subbands in the 

frequency domain can be accessed by only one user at anytime. Hence, I expect that my 

proposed modified Max-Max scheduling algorithm will outperform the OFDMPF scheduling 

algorithm in terms of throughput, fairness, and packet delay. On the other hand, I compare 



the results of the proposed modified Max-Max scheduling algorithm analytical and 

simulation results. 

The throughput of the proposed modified Max-Max and the OFDMPF scheduling 

algorithms is presented in Fig . 4.2. As expected. results in Fig. 4.2 show that the larger the 

observation window, Te, the higher the throughput for both algorithms because the 

algorithms try to schedule users with better CSI . Both algorithms show dramatical 

throughput increase compared to the one-to-one algorithms presented in Chapter 3 as 

these two algorithms exploit multiuser diversity. However, the proposed modified Max-Max 

scheduling algorithm shows better performance compared to the OFDMPF algorithm as it 

efficiently utilizes the resources in the frequency domain, and can handle efficiently the 

bursty traffic because of the subband sharing. 

The Jain's fairness index of the proposed modified Max-Max and OFDMPF 

scheduling algorithms is presented in Fig. 4.3 and Fig. 4.4, respectively. Both algorithms 

show approximately the same values of Jain's fairness index with slight improvement for 

the proposed Max-Max scheduling algorithm over the OFDMPF scheduling algorithm. Also , 

we notice that as the observation window, Te. increases. the fairness decreases because 

the PF criterion gives more priority to users with higher data rates which causes other users 

to wait for longer time. Meanwhile , these two algorithms show slightly better fairness index 

compared to the Hungarian and Max-Max algorithms presented in Chapter 3 due to the PF 

criterion implementation. It is evident that imposing short-term fairness in OFDMA systems 

by applying Ihe one-Io-one scheduling algorithms reduces the system throughput 

dramatically, without improving the fairness. 
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Fig. 4.3. Jain's fairness index of the proposed modified Max-Max algorithm. 
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Fig. 4.4. Jil in's fairness index of the OFOMPF algo rithm. 

Now results to validate the derived closed form expressions for the proposed PF 

modified Max-Max scheduling algorithm are presented . 

Fig. 4.5 and Fig. 4.6 show the analytical and simulation results for throughput and 

Jain's fairness index respectively for the Max-Max and the throughput using simulations 

and the derived closed from expressions. where the observation window Tc equals 5000 

The analytical results and the simulation results for the throughput in Fig. 4.5 agree very 

well. Both the analytical and simulation curves increase when the traffic loads increase until 

it reach the throughput saturation point of 60 Mbps around traffic load equals 300 Mbps. 



l-A~"«"J 
~----- Slm ..... allon 

o!c-o ------;;;;;--~-'*"""-~""c-~""c--;;);;--

0.' 

Tralli<:loa<ls(Mbps) 
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Fig . 4.6 shows the Jain 's fairness index for the proposed Max·Max scheduling 

algorithm using analysis and computer simulations where the observation window Te 

equals 5000. As we can see the analytical results and the simulations agree very well . The 

fairness decreases as the traffic load increases until the system reaches the saturation 

point around traffic load equals 300 Mbps, and the Jain's fairness equals 0.4 

approximately. 

Fig. 4 .7 and Fig. 4 .8 show the throughput and Jain 's fairness index respectively for 

the proposed modified Max·Max scheduling algorithm analytically and by simulations. 

Different number of users is considered with fixed traffic rate per user equals 10 Mbps, 

where the observation window Te equals 5000. As we can see the analytical results and the 

simulations agree very well. As the number of users increase, the system traffic load 

increases so the throughput increase until it reaches the throughput reaches the saturation 

of 60 Mbps when the number of users equals 32 which means total traffic load equals 320 

Mbps. 

Fig. 4.8 shows the Jain's fairness index for different number of users with fixed traffic 

rate per user equals 10 Mbps for the modified Max·Max scheduling algorithm analytically 

and by simulations where the observation window Te equals 5000. It is obvious that the 

analytical results and the simulations agree very welL The fairness decreases as the 

number of users increase where the lowest Jain 's fairness index value equals 0.4 

approximately when there are 32 users in the system with total traffic load equals 320 

Mbps. 
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Fig. 4.9 shows the system throughput versus different number of users for the 

proposed Max-Max scheduling algorithms analytically and by simulation where the 

observation window Tc equals 5000. Variable traffic rate per user is considered with fixed 

total traffic rate in the system equals 50 Mbps which is divided equally among the users in 

the system. The analytical results and the simulations agree very well. Slight throughput 

improvement is noticed when the number of users increases even though the traffic load is 

fixed. This trend can be easily explained based on the multiuser diversity. When the 

number of users increases the probability of scheduling users with higher channel gain will 

increase, which improves the overall system throughput. We notice the throughput reaches 

27 Mbps when the number of users equals 32, while it reaches only 25 Mbps approximately 

when the number of users equals 8. 

Fig. 4 .10 shows the system Jain's fairness index versus different number of users for 

the proposed Max-Max scheduling algorithms analytically and by simulation where the 

observation window Tc equals 5000. Variable traffic rate per user is considered with fixed 

total traffic rate in the system equals 50 Mbps which is divided equally among the users in 

the. The analytical results and the simulation results agree very well. We notice that as the 

number of users increases, the fairness decreases due to the higher competition among 

users. When the number of users increases, the probability of more users will be blocked 

from accessing the system resources during a time frame will increase which negatively 

affects the system fairness in terms of Jain's fairness index. We notice form Fig. 4.10 the 

Ja in 's fairness index equals 0.68 when the number of users is 8 while it equals 0.62 when 

the number of users equal 32. 
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Fig. 4.9. Throughput VS. users for the proposed modified Max-Max algorithm analytically 
and by simulation. 

Trallie Ioad-_"'_"_"'-'--r===~=~ll 

c::::::::J Analyt iCai I .. 
_ SimUlalion 

-

"',. 
Fig. 4.10. Jain's fairness index vs. users for the proposed modified Max-Max algorithm 
analytically and by simulation. (Traffic load"'50 Mbps) 

85 



Throughput and Jain's fairness index results are presented in the next six figures for 

different traffic loads in order to understand the behavior of the proposed Max-Max 

scheduling algorithm in OFDMA systems with different subbands number. The bandwidth is 

fixed and the number of subbands created using the available bandwidth is «hanged in 

terms of orthogonal subcarriers. The behavior of the OFDMA system is investigated under 

low (50 Mbps), moderate (250 Mbps), and high (450 Mbps) traffic loads. 

Fig . 4.11, Fig . 4.12, and Fig. 4.13 show the throughput with different number of 

subbands for the proposed Max-Max scheduling algorithms analytically and by simulation 

under low traffic load (50 Mbps), medium traffic load (250 Mbps), and high traffic load (450 

Mbps), respectively. The observation window, Te, equals 5000. The available frequency 

bandwidth is divided into different number of subbands to study the behavior of the system 

with different numbers of subbands and subbands' size. 

As we can see the analytical results and the simulations agree very well. We notice 

also the throughput reaches the maximum when the number of subbands equals 64 in the 

three figures. The throughput equals 42 Mbps, 58 Mbps, and 60 Mbps for low, medium, 

and high traffic rates, respectively. We notice also that the throughput decreases when the 

number of subbands is too small or too large. When the number of subbands equals 8, the 

throughput equals 14 Mbps, 50 Mbps, and 55 Mbps for low, medium , and high traffic rates, 

respectively. II is obvious that the number of subbands created from the available 

bandwidth affects the performance of the OFDMA systems in terms of throughput. 

It is noticeable that moderate number of subbands guarantees besl performance of 

OFOMA systems. The performance degradation of the OFOMA system when the number of 

subbands is too large and too small can be explained as follows. When the number of 

subbands is too small, the number of subcarriers per a subband is larger. So using the 

AMC for all the subcarriers based on the subcarriers with worst channel conditions will 



waste the resources of many subcarriers with favorable channel conditions. So it is beUer 

to group less number of subcarrjers to avoid the underutilization of subcarriers with higher 

channel gain. 

Regarding the second case where number of subbands is too large where few 

number of subcarriers are grouped to create a subband. The performance degradation is 

explained as follows. Performance degradation occurs because of the increasing of unused 

fractions of subbands at the end of time frames. There is high probability that a time frame 

finishes and there are subbands that are not fully utilized because there is no user that can 

benefit from the reminder of a subband to send or receive one packet. So when the number 

of subbands increases, the number of subbands that are not fully utilized at the end of time 

frames increase, so the performance decreases. We notice when the traffic rate is high 

(Fig. 4.13), the utilization of subbands increases, so the effect of number of subbands on 

the system throughput is low. The lower the traffic the more the subbands number affects 

the system throughput. It is obvious from Fig . 4.11 (low traffic rate) that throughput is lowest 

when the few number of subbands (8 subbands) are used or a large number of subbands 

(256 subbands) are used. 

Fig. 4.14, Fig . 15, and Fig . 16 show the Jain 's fairness index with different number of 

subbands for the proposed Max-Max scheduling algorithms analytically and by simulation 

under low traffic load (50 Mbps), medium traffic load (250 Mbps), and high traffic load (450 

Mbps), respectively. The observation window, Te , equals 5000. The available frequency 

subcarriers are divided into different number of subbands. Jain's fairness index simulation 

and analytical results agree very well. We notice the number of subbands does not affect 

the fairness of the system because all users suffer from the degradation of subbands 

utilization. In other words , the chance of accessing the resources will be affected equally for 

all users in the system. 
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Fig. 4.14. Jain 's fairness index vs. subbands for the proposed modified Max-Max algorithm 
analytically and by simulation. (Traffic load=50 Mbps) 
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Fig. 4.17 shows the packet delay versus traffic loads for the proposed Max-Max 

scheduling algorithm where the observation window Tc equals 5000, 3000, and 1000. It is 

evident that the traffic loads increase, the competition between users becomes harder, 

which causes more packets to wait longer time in the users queues. Also we notice that 

when Tc increases the packet delay increase. That can be explained as follows. When Tc 

increase the scheduler tries to maximize the system throughput by forcing greedy treatment 

among users by allocating less number of users who have favorable channel conditions. 

That behavior blocks more packets for requesting users, which increases the average 

packet delay in the system. 

Fig. 4.18 shows the packet delay versus traffic loads for the proposed Max-Max 

scheduling algorithm analytically and by Simulation, and the packet delay for the OFDMPF 

scheduling algorithms where the observation window Tc equals 5000. As we notice, the 

analytical curve agrees very well with the simulation curve. Also we notice slight 

improvement of the proposed Max-Max scheduling algorithm over the OFDMPF scheduling 

algorithm. We notice on high traffic load (650 Mbps) our proposed scheduling algorithm 

mean packet delay equals 3.75 seconds while the OFDMPF scheduling algorithm mean 

packet delay equals 3.45 seconds. 

It is worth to notice that there is a small difference between the analytical and 

simulation results. This result difference can be explained based on the following factors: 

1- Simulation time: it is expected that as the simulation increases, the analytical and 

simulation results converge and the gap between then decrease. 

2- Analytical approximations: As per Section 4.2 , some analytical approximations 

have been introduced while deriving the analytical model. Such approximations 

simplify the model in cost of minor results deviations. 
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4.4 Complexity Comparison 

Complexity of scheduling algorithms is an important factor that should be taken into 

account. We compare the complexity of our proposed modified Max-Max scheduling 

algorithm with the Hungarian scheduling algorithm and the Max-Max scheduling 

algorithm in this section. 

A. Comparison with the Hungarian scheduling algorithm: 

Our proposed modified Max-Max scheduling algorithm calculation burden can be 

expressed by two factors. The first factor is calculating the ranking of users on a time 

frame. This calculation is performed using the PF criterion. Equation 4.1 and ",quation 

4.2 show that the calculation of users' ranking is fair ly simple . The other factor that 

brings complexity is the fact that we introduce subband sharing among users. This 

requires multiple iteration of to allocate users to unutilized subband resources within 

a time frame . However, these iterations do don't require heavy calculations as the 

ranking of users is already evaluated, so the algorithm only needs to allocate the 

unused resources to the next best user ranked on a subband. On the other hand, the 

Hungarian scheduling algorithm requires iterative matrix manipulations and 

calculations in order to rank users on subbands (refer to Section 3.2 for calculations 

steps and example). 

B. Comparison with the Max-Max scheduling algorithm: 

Our proposed modified Max-Max scheduling algorithm involves subbands sharing 

where iterations are performed to fully utilize subbands within a time frame . As we 

stated before, these iterations are not computationally expensive as it only requires 

selecting the next pre-ranked user on non-fully utilized subband. It is worth to notice 

9) 



that this minor computational complexity of our algorithm is cost that paid to 

dramatically increase the system performance in terms of throughput. Fig 3.9 and Fig 

4.2 show how much throughput gain our proposed algorithm can achieve over the 

Max-Max scheduling algorithm. We can notice that at the saturation state our 

proposed algorithm can achieve throughout up to 48Mbps when Tc=1000 and 

60Mbps when Tc=5000 while the Max-Max scheduling algorithm can achieve 

throughput equals 22Mbps only. 

4.5 Conclusions 

In this chapter, I propose the modified Max-Max scheduling algorithm that allows 

multiple users to share a subband concurrently, in order to exploit multiuser diversity and 

guarantee effective scheduling of the multimedia traffic from multiple users. Simulation 

results prove the efficiency of this scheduling algorithm in wireless systems that involve 

multiple users with multimedia traffic requirements. The one-Io-one solulion, represented 

by the Hungarian, Max-Max, and RR scheduling algorilhms, does not exploil multiuser 

diversity. Also, this cannot support the bursty traffic requirements from multiple users, as it 

pursues a direct fair treatment, which severely affects the throughput, without improving the 

long-term fairness among users. 

In this chapter also, the PF scheduling is investigated for OFOMA wireless systems 

The main contribution of this work is the analytical evaluation of the performance of PF 

scheduling algorithm in OFOMA systems. I derive closed-form expressions for the average 

throughput, Jain's fairness index, and average packet delay as the performance metries. 

The PF under OFOMA systems performance is investigated for a broad range of the traffic 

load and the number of subbands. In addition, I verify the correctness and accuracy of the 



analytical solution through simulations. Analytical and simulation results are in good 

agreement, which validates my analytical performance analysis. 

" 



CHAPTERS 

Conclusions and Future Work 

This thesis investigates the performance of scheduling solutions for OFDMA 

systems. OFDMA systems, such as IEEE802.16 (WiMAX), are multiuser systems 

that aim to support users with high data rates. As the OFOMA systems are built on 

OFDM, they inherit the favourable characteristics of OFDM, such as its immunity to 

inlersymbol interference and frequency selective fading. OFDMA scheduling 

algorithms are expected to schedule OFDMA resources dynamically, in both lime and 

frequency domains, among multiple users in order to improve OFDMA systems 

performance. The OFDMA scheduling algorithms that we proposed are able to 

manage radio resources for systems with multiple users and high data rate 

expectations, such as the WiMAX systems. 



The radio channel is dynamic and is characterized by multi path fading due to 

scattering and reflection from terrain objects; every orthogonal OFDM subcarrier is 

subject to flat fading. This thesis models the dynamic radio channel by considering 

Rayleigh fading, shadowing, and path loss, The Rayleigh fading samples generated in 

this thesis are correlated in the frequency domain, The correlation between fading 

samples in different subcarriers is derived as a function of the frequency separation , 

By considering the correlation among subcarriers, grouping of adjacent subcarriers 

into subbands is reasonable , as grouped subcarriers experience similar channel 

conditions, The AMC level for a subband 's subcarriers is selected based on the 

subcarrier that has the worst CSI in order to maintain transmission reliability, 

Selecting the AMC scheme based on the worst CSI is reasonable, and does not 

reduce the subband utilization because the subcarriers within a subband are highly 

correlated in the frequency domain, 

The thesis investigates the design and performance of scheduling algorithms 

for OFDMA systems, Multiuser OFDMA systems contain resources in both time and 

frequency domains, Hence, exploiting diversity in both time domain and frequency 

domain is an important aspect for designing efficient OFDMA scheduling algorithms, 

Our results show that exploiting diversity in both time and frequency domain 

dramatically improves the frequency subband and time frame utilization. Simulation 

results for the Horizontal and Vertical scheduling algorithms show that the more 

diverse the scheduling solution in the frequency domain, the better the system 

performance. Also , the results for the proposed modified Max-Max scheduling 

algorithm and the OFDMPF scheduling algorithm show that frequency diversity 

improves the OFDMA system performance. 
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Scheduling radio resources in OFDMA systems with multiple users should 

consider another degree of freedom in terms of frequency and user diversities by 

allowing dynamic assignment of frequency and time to different users. Multiuser 

diversity is a very critical aspect in OFDMA scheduling algorithms. The thesis shows 

that scheduling schemes with short-term fairness constraints severely degrades the 

OFDMA system performance without improving the long-term fairness among users. 

Results prove that allowing opportunistic scheduling dramatically improves the 

throughput without sacrificing the long-term fairness among users. 

The thesis introduces two OFDMA scheduling algorithms in the third chapter, 

namely, the Vertical and Horizontal scheduling algorithms. These are designated and 

implemented with the goal of exploiting time and frequency diversity while scheduling 

resources to users. Also, multiuser diversity and long-term fairness are considered. 

The two scheduling algorithms introduce subband sharing between users as an 

efficient technique for maximizing the utilization resources. Subband sharing 

minimizes the probability of resource wasting. The Horizontal scheduling algorithm 

schedules a subband's time symbols to users until all the subband symbols are 

occupied, then the scheduler moves to the next subband. On the other hand, the 

Vertical scheduling algorithm shows more flexibility in the frequency domain. It 

manages subbands iteratively, where the algorithm assigns sufficient resources from 

a subband to the selected users every scheduling decision. Both scheduling 

algorithms maintain long-term fairness among users. However, the Vertical scheduling 

algorithm is more efficient in terms of throughput and fairness due to beller frequency 

diversity. The results for the RR, Max-Max, and the Hungarian algorithms prove that 

short term-fairness dramatically decreases the OFDMA system throughput when 

compared with the proposed Horizontal and Vertical scheduling algorithms. 
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The thesis proposes a third OFDMA scheduling algorithm in the fourth chapter. 

The modified Max-Max scheduling algorithm exploits the multiuser diversity in both 

time and frequency domains. Also, the proposed algorithm utilizes the PF criterion to 

achieve fairness among users in the system by generating profit matrix of all users on 

the available OFDMA subbands. The algorithm iteratively selects the user with the 

highest rank in the profit matrix among all users on all subbands. The modified Max

Max scheduling allows subband sharing when a subband is not fully utilized by 

another scheduled user. The simulation results of the proposed Max-Max scheduling 

algorithm and the OFDMPF scheduling algorithm prove that frequency diversity and 

subband sharing can improve the OFDMA systems performance in terms of 

throughput, fa irness, and packet delay. 

The thesis finally investigates analytically the performance of the PF scheduling 

in OFDMA wireless systems. We derive closed-form expressions for throughput, 

fairness, and packet delay as performance metrics . The Gaussian approximation of 

the instantaneous data is used in the derivation. We verify the correctness and 

accuracy of the analytical solution through simulations. Analytical and simulation 

results are in good agreement, which validates our analytical performance analysis. 

We study the performance of scheduling algorithms for OFDMA systems in 

terms of throughput, Jain's fairness index, and packet delay under different traffic 

loads, number of users , and number of subbands. All simulation and analytical results 

agreed very well. One noticeable result is the behaviour of the scheduling algorithms 

for the OFDMA system under different numbers of subbands. We conclude that the 

number of subbands in OFDMA systems is a critical factor that affects the 

performance. It is evident that dividing the available subcarriers into subbands with 

average size can guarantee the best performance. This finding can be explained as 



follows. On one hand, grouping a large number of subcarriers to create a small 

number of subbands degrades the performance due to low correlation among 

subcarriers within a subband. On the other hand, dividing the available frequency 

resources in terms of subcarriers into large number of subbands increases the unused 

portions of subbands at the end of time frames due to insufficient resources to 

transmit a packet for any user. 

As future work, we suggest the following topic: 

Extend the analytical model to consider multi-cell OFDMA systems where 

interference from other cells ' users is taken into account 

Power control should be considered and associated with the scheduling 

algorithms. Note that in the thesis power is equally distributed among users. 

Our proposed scheduling algorithms are iterative algorithms. The iterative 

algorithms have lower complexity compared to the Hungarian algorithm. Many 

authors proposed iterative solutions in literature to reduce complexity of 

solutions. However, I did not have the chance to focus on studying the 

complexity mathematically during my program. This could be an interesting 

topic to focus on in future work. 
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