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Abstract

Age-structured models play a major role in mathematical biology. ccology. and epi-
demiology. Therefore, it is important and interesting to investigate these models and

their dynamics, In first part of this the

is, we consider the standard age-structure
model with diffusion:
du ou Pu

L T .
ot ga = P — e

where u(f,a..r) is the population density of the specics at t

ne £, age a, and location

FinQ(Q=Ror Q= [a.b] € R). The age-functions D(a) and d(a) are the age-

dependent diffusion and death rate

. respectively.  For this case, we constructed a
completely new model in terms of an integral cquation. To investigate the new model,
we consider two cases, the unbounded spatial domain case as well as the hounded

domain case. For the unbounded domain cas

L we investigate the existence of traveling

wave solution and the existence of spreading speed ¢, for different. choices of

h
functions.  For the bounded spatial domain case, we investigate the existence and
stability of positive steady state solution for different choices of birth functions. As

a hy-product, we also prove rigorous

v the exi

stence of real principal cigenvalue with

strongly positive cigenfunctions.

In the sccond part of this thesis, we present an age-size structured model o 1

resent. the dynamics of cell population in two comparative phases Gy




during the cell-division cycle.

resting phase) and P — Phase (the proliferation phas
Using this model, we derive a non-linear delay differential equation with a non-local
ity of cell population in the resting phase (Gy — Phase)

term to represent the der

bility of the zero solution of this delay differential

We also investigate the local
cquation. To do this, we investigate the analogous variational lincar delay difforen-

tial equation around the zero solution. Conclusively, we show that the lincar delay

differential equation admits a real cigenvalue, as well as a strongly positive real cigen-

functions. o support our mathematical results, we present o numerical simulation

for each case.
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Chapter 1

Introduction

1.1  Age-structured Models in Biological Popula-
tions

Simple models often provide a good understanding about a simple population. or
useful information about large and complicated populations. In 1798, T. R. Malthus
proposed a simple model of population dynamics. In this model, Malthus assumed
that the population growth rate is proportional to the size of the population. More
precisely, if N (1) represents the size of the population at time £ the governed differ-

ential equation is given as
N(t) =r- N(t), t >0, N(0) = Ny (L.1.1)

where the parameter 1 is the Malthusian’s parameter of the given population. In fact,
7= b—d, where b and d are the birth and death rates of the given population. The

above equation is a linear ordinary differential cquation. The solution of this cquation



is given by
(1.1.2)

It is casy to see that if b > d, then the population grows exponentially, while if b < d,

then the population dies out. This model does not take in account the effects of the,
crowding or the limitation of the resources. Frankly, this model is unrealistic. A
more realistic model was proposed by P. F. Verhulst in 1838, In this model, Verhulst
allowed the Malthusian’s parameter to depend on the size of the total population

itself. Vorhulst's model is given by the following differential cquation:

(1.1.3)

where - and K are positive constants. The birth rate - (1 — 5 depends on N (1)
The constant K is the carrying capacity of the environment. Usually, the carrying

able sustaining resources. The constant 7 is known

capacity is determined by the avail
as the interact. growth constant. Usually, the above equation is called the logistic
cquation. The above logistic cquation is a simple non-lincar ordinary differential

iables. The explicit solution of

cquation, and is casily solved by the separation of

this equation is given by:

Kt
—— LA
1) e
From this formula, it is easy to see that the solution N(f) converges to K when £ is

s to Ky while if

large. In fact, if Ny < K, then “¥ > 0 and so the solution inereas

> K, then Y < 0 and so the solution decreases to K. Commonly, we observe
that if Ny < /2, then the solution N(f) has a typical sigmoid character (sce Figure

L1).

In biology and ccology, one of the most important effects on the population dy-




T
Time Axis

logistic differential equation for different initial

values. The ¢

namics s the age distribution within the population. In fact. to include the age

effects in the mathematical models, to describe the dynamics of the populations

is

wpproach. For ey

ample, removing all women in the age between 15-10
years from the human population not only reduces the size of the population, but it

also reduces the birth rate to almost zero. Moreover, many animals cannot reprodu

wntil the individuals reach a certain maturity level (certain age). Another example is

the predation of animals; the predation could be heavier on some certain age groups.

For instance, in the population of fish, the larvac of fish or the mollusks I

e avery

low survival rate. Sometimes, in other species, the mature individuals™ s

wviving rate

becomes very low. An ¢

mple of this is African clephants, which become attractive

to the ivory poachers when they are old enough to have grown tusks

s0 one of the mos ics in the mod-

In epidemiology, age is a important character
cling of populations and infections discases. In fact, the discase may have different

infoction rates for different age groups. An example of this would be sexually-transited



discases (STDs) which are spread through individuals of a certain ages for instance,

most AIDS cases ocenr in young adults.  In another case, childhood discases, such

as measles, chicken pos, and rubella are spread mainly by contact between children
among themselves (sce Chapter 9 in [19] and the references therein)

In the cell population, a cell could be characterized by its age. its volume (size)

and the maturity of the cell [18, 39]. Thercfore, the age-structured models are playing

a major role in deseribing the dynamies of the cell growth, and in describing the

dynamiics of the cells’ proliferation process in many different comparative ph

e (see

chapter 5 of this thesis

Conclusively, many species have overlapping generations. - Also, the foeunditics

and survival rates of the species are completely age dependent. Thercfore, in many
cases, the age structure should be taken into account, in order to have more realistic

mathematical models. The carliest mathematical studics to incorporate the age effects

in mathematical models were made by Sharpe and Lottka in 1907-1911 [10]. Mck-

endrick in I

91], formulated a mathematical modal that is incorporating the age
effects. Later, in 1959 [39], Von Foerster investigated Mckendrick’s madel 1o study
the effects of age in cell population. To deseribe the Mckendrick model (Sharpe-
Lottka-Mckendrick model, or Mckendrick-Von Foerster model), we let n(f,a) be the
distribution function of the population. Then n(f, a) da is the approximate mumber
of the individuals at time £ in the age interval [a, a + da]. Hence. the total mumber of

the population at time f is given by
;\u):/ n(t,a)da. (1.15)
o

Here. we consider the age a to be ranging over [0,00), even though the age at death



is finite. Then by using the preserving law, we b

The rate of change of the number of individuals
= the number of individuals that enter at age a
—the number of individuals that leave at age a

the mortality rate.

Mathematically, we express this by

%f!!(/.u)dul =un(t,a) = n(t,a + da) — d(a)n(t,a)da, (1.1.6)

where d(a) is the age-dependent death rate. By dividing the above equation by da,

('I]Iu(/.n) = mtia)= :I’(("—"‘ +40) _ dayn(t.a) (1.1.7)
If we let da tend to zero, we get
n(t.a) + n,(t,a) = —d(a)n(t,a). (1.1.8)

At time £ = 0, we assume that the population distribution is given by:

n(0,a) = f(a), a>0

Morcoy

we let b(t, a) be a nonnegative fecundity rate of females at time £ and age
a (maternity function). More precisely, the function b(f,a) is the average number of

the offspring per female at time ¢ and age a. Then, the total mumber of offspring



produced by females over all ages at time { is given by

n(t.0) = B(1) = /\ b(t, a)n(t, a)da, (1.19)
o

which represents the boundary condition at age a = 0. This kind of boundary con-

dition is called a non-local boundary condition, because it depends on the integral
unknown solution in the problem
In summary, if we assume that the maternity function b(f,a) is time independent.

then the age-structured model is given by

ni(t,a) +na(t,a) = —d(@)n(t,a). a>0, >0,
n(0,a) = f(a), a0, (1.1.10)

/‘ b(a)n(t. a)da, >0
Jo

n(t,0)

One of the observations of this model is that if @ > . then n(f,a) is affected by the
initial population f(a) while if ¢ < a, then n(t,a) is affected by the entire population

18] (sce Figure 1.2). To have some analysis for this

and feeundity rate B(1) [82

model, we use the method of similarity [28, 81]. Therefore, we assume that
n(t,a) = Ula)e™, (L1.11)

where - is a parameter. In fact, the age structure n(f, ) is affected by r, which cither
wrows or decays with the time £, according to the sign of 7. 1f we substitute this in

Equation (1.1.10), we get
U'(a) = —(ba) + 1)U (a),

where the / means 2. The above ordinary differential equation is lincar, and can



n(t,0)=B(t}

nita)

Figure 1.2 Age-Structured Model, we observe that if @ > £, then n(f,a) is affected
by the initial population f(a) while if £ < a, then n(t,a) is affected by the entire
population and fecundity rate B(1).

casily be solved. The solution of this equation is given by:

Ua) = e P(a) ™,

where ¢ s the integration constant, and T'(a) = exp {— [ d(s)ds} . The function I'(a)
is called the survivor-ship function, and it represents the probability of a population

ber surviving to age a. If we substitute U(a) in equation (1.1.11), then we get

n(t,a) = e T(a)
Substituting n(f.a) in the non-local boundary condition, we get
17/ ba)l(a)e™"da = b(r). (1.1.12)

In fact, it is hard to solve the above integral cquation explicitly to cvaluate the



function over the interval

parameter . However, the function @(r) is decreasing
[0.5¢]. Therefore, the above integral differential equation has a unique solution (for

28)).

more analysis of this model, one can see 30, 70, 82, 90, 118,

As we mentioned, the age-structured models are playing a major role in biolog-

and cell populations. The above lincar age-

ical populations, epidemiology, ccology,

e-structured

structured model is one of the basie examples of the applications of the a
models in population demography (for non-lincar age-structured models and there

analysis. we refer the reader to an excellent book by Webb [128]). To ensure the

importance of age-structured models in cell population, ccology, and epidemioloy

we present some examples of age-structured models in these arcas,

Example. (Cell Population, Mckendrik’s-Von Foerster Model): As we mentioned

before, Von Foerster investigatod Mckendric’s age-structured model to incorporate the

ribe Mckendrik's-Von Foerster age-structured

effeets of age in cell population. To des
model for cell population, we let N(f,a) be the density of the cell population at time ¢
and age a. Then Mckendrik's-Von Foerster equation (shortly, Mckendrik's equation)
is given by:

n(t,a) + ng(t.a) = —An(t.a),

where,

A= N+

In fact, we write A in this form to emphasize that the loss of the cells occurs due

s (inthe

I of the cells (in the resting phase), and the synthesis of the c

to the de:

proliferation phasc). The non-local boundary condition at age a = 0 is given by:

n(t) = n(t,0) = ‘z/" A(a)n(t, a)da,
o



which represents the cellular birth rate. The multiplication by A, gives the fraction

of these cells that are dividing [10 he number two appears to the left side of the

due to the fact that the mother cell divids

inte S into two new daughter cells. To

impose the problem with an initial condition, we consider
n(0,a) = ny(a)
Finally, the total ccll population at any time ¢ is given by
Ny = /””u(l.u);/u.

For more models and analysis for the cell population, one can sec

90, 1006]

Example. (Ecology, Age-Structured Predator-Prey Model): Let n(f,a) be the popu-

Jation density of the prey at time ¢ and age a, and let d he an age-independent death

rate for the prey. This governs the age-time equation, which is
ny(t,a) +ny(t.a) = —dn(t.a).
We consider the maternity function
bla) = byae™™, by >0, 7 >0 (1.1.13)
Then the total mumber of offspring (cg. the prey cges) is given by
B(t) = /”‘ byae ™ n(t, a)da.

Now, let P(t) be the age-independent. population density of the predator. We assime



This will effect the

that the predator cats only the prey eggs (i.c., at age a = 0)
namber of offspring n(f,0) = B(f) (the cgg mumber will decrease). Therefore, we

consider

n(t,0) = B(t) — kB(1)P(t),
where the constant & is the predation rate. Since the right hand side could he negative,
then we let
M(1) := max {B(1) - kB(1)P(t),0}

For the predator population, we impose the well-known Lotka-Voltera cquation. i.c..

P4y = —sp() + eBU)P).
di

where 8 is the death rate. In summary, the governed age-structured predator-prey

model s given as:

n(toa) +n(ta) = —dn(t,a). ta>0,
Py=—8P(t) +eB(O)P(1), t>0,

d (£) + cB(1) P(1), = (i
n(t.0) = M(t)., t>0,

P0) = By
For more analysis of this model, we refer the reader to [S1, 82. 92, 93]

Example. (Epidemiology, Age-Structured SIR Model): Let S(t,a), I(t.a), and

R(t.a) be the population density at time £ and age a of the susceptible, infective,

and removed members, respectively. Then, the total population density s given by

1.a) + 1(t,a) + R(t.a)

10



The system of differential equations that deseribes the age-struetured SIR-model is

given as:

Sy(t.a) + S,(t,a) = —(u(a) + M. a))S(t.a), La >0,

Ii(t,a) + L(t.a) = M(t,a)S(t,a) — (u(a) +y(a) + 8(a))[(L.a), t.a>0,

Ry(t,a) + Ry(t.a) = —p(a)R(t,a) +~(a)I (L. a), ta>0,
(1.1.15)
where gi(a) is the death rate of susceptible, §(a) is the discase death rate infection,
(@) is the recovery rate, and A(f,a) is the infection rate. The initial conditions at

time £ = 0 are given by

5(0,a) = ¢a), 1(0.a) =

R(0,a) = 0.

he renewal condition (i.c., new births) is

S(1,0) = [ ba)n(t, a)da

This is true, since all the new borns arce su

ptible (i.c.. No fnfection or removed
among the new horns). The infection term A(f,a) could be selected to be intracohort

ixing

At.a) = f(a)(t.a)

This means that the infection can be transmitted only between the individuals of the

same age. The other choice is intercohort mixing
A(toa) :/ B(a,a)I(1,a)da,
o

where F(a, o) is the rate of infection from contact hetween an infective of age o with



Ha.a) = Bi(a)ha(a)

susceptible of age a. For more a realistic approach. we consid

is of scparable kind [19, 8]

Finally, we remark that the non-local boundary condition (1.1.9) involves a birth
function (maternity function). One of the most popular birth functions s the Nichol-
sou’s birth function. A special case of this function s the birth function that is given

in Equation (1.1.13). The general case of Nicolson's birth function is given in the

following formula:

by(u) = pu exp{—aut}, (1.1.16)

where the parameters a, p and g are positive constants. This function was first
proposed by Nicolson to deseribe the oseillatory fluctuations in population deusity of

the sheep blowfly “Lucilia cuprina” 95, 96]. Other popular birth functions arc the

sprice-budworms birth function and the logistic type birth function. These functions

are given as:
pu

L+au’

by(u) (L.L17)
and

pu(l - ,j 0<u<k,;

by(u) = (L.L18)

0. u> K
respectively. The parameters a,b, g and K, appear above are positive constants. In

coll population, we can regard the tra

sition rate of cells from the resting phase to the,

Mostly,

proliferation phase as a birth function of cells (see Chapter 5 of this the
this function is considered to be the Hill function. This function is given by the
following formula:

o
ba(u) = " " (1.1.19)

0"+ ur

where  and 0 are positive constants, whereas 7 s a positive integer. The graphs of

these functions are given in Figure 1.3,
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1.2 Traveling Wave Solutions and Spreading Speed

i epidemi-

A very basic clement in a vast number of phenomena in biology, ecology

ology is the appearance of the traveling waves in the spatial domain. For example,

waves of chemical concentrations, spread of pest ontbreak, spatial spread of epidenics
(g The spreading of rabics across Europe [98]), traveling waves in the predator-prey

models, and traveling wavefronts of a growing population and multispecics dynamics

with dispersal |

A traveling wave solution is a special kind of solution of the reaction-diffusion mod-

els, integro-differential equations, delayed-differential equations, and integral equa-

ch travels in

93, 108, 126, 134]. In fact, it is taken to be a wave wl

tions [21, 52,

1 domain without any change in its shape (sce Figure 1.4). To have a better

understanding of traveling waves concept, we consider the following reaction-diffusion
cquation
du
a

( DAu(t,x) + f(u), (

where D is the diffusion coefficient, A is the Laplacian’s operator, and the function
[ RY = R s the kineties function. For instant, we assume that f(u) admits two

(ie., f(E)) = f(E

assume that ['(Ey) > 0. A solution u(f,x) of Equation (1.2.1) is called a traveling

0), and Ey > Ey. Also, we

tionary points £y and

wave solution, if it is of the form u(f,x) = U(r £ ¢t) = U(2), where = = w4 ¢f, ¢ > 0,

speed (traveling wave specd. or

r € R, and £ > 0. The constant ¢ is called the wa

the speed of propagation), and the veritable = is called the wave variable.
In particular, the traveling wave solution, if it exists, is a wave traveling to the
vight (forward traveling wave), to the left: (backward wave), or for both sides (pulse

is called a periodic traveling wave solution, if

A traveling wave solution

there exists a positive constant w such that U(z + w) = U(z), for cach = € R, These



different kinds of traveling waves are shown in Figure 1.4 1.
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ottt i = O, T fact, this linear cqua
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of Korteweg-Del
solution of this lin
wmber [110]

nd ki the wave



The forward and backward traveling wave solutions satisfy the following asymp-
totic relations:

Jim UG =B 5 lim U) =

and
Jim UG) =B lim UG) = By
respectively. The pulse traveling wave solution satisfies the following asymptotic re-
lation:;
i U(z) = i (or )
I general, the traveling wave solution does not necessarily exist. To show this, we

illustrate the following example.

sume that

Example. We reconsider the above reaction diffusion equation, and we

the kineties function f(u) is identically zero. 1f we substitute u(t,) = U(r — f)
U(2) in the resulting cquation, then we get the following second order ordinary dif-
ferential equation:

DU"(z) + eU'(z) = 0,

able = The solution of

where the prime means the derivative with respect to the vag

this homogencons second order differential equation is given by

U(z) = A+ Be B,

where the constants A and B are the integration constants. The above solution, U/
is bounded if B = 0. Thercfore, U(z) = A, Ve > 0. This solution is a constant and

canmot. represent a traveling wave solution. In many cases, There exists a constant

¢ >0, such that the traveling wave solution exists when ¢ > ¢, while the traveling



ave solution docs not exist when 0 < ¢ < ¢*. In this case, we call ¢ the mininum

wave speed. To prove the existence of the traveling wave solution of a given model is

ome of the common techniques to prove the existence

not casy in the gen

technique,

of the traveling wave solution are the phase plane analy ymplotic
analysis techniques (perturbation methods), monotone operators and the existence of

bout these

the upper and lower-solutions technique. To have a good wnderstanding

techniques, we present the following demonstration exaniple:

Example. (Fishor's-Kolmogoroff Reaction-Diffusion Equation): Fisher's-Kolmogoroff

(commonly, Fisher's oquation) reaction diffusion cquation is given by

o)(1 = u(t,x)).

u(t,x) + u(t

[38], to study the spatial spread

This cquation was first proposed by Fisher in 1937

of & favored gene in a population. Later the traveling wave solution of this equation

Indecd, they proved that Fisher's

was investigated by Kolgomoroff et al. in 1937 [6

Next. we apply some

equation admits a traveling wave solution for h ¢ >
techniques to show the existence of the traveling wave solution for Fisher’s equation.

s technique:

First, we start them by the phase plane anal

(1) Phase Plane Analysis: We substitute u(t,r) = Ur + ) = U(z) in

2), then

we et following problem

U(z) = el'(2) +U(2)(1 = U(z)) =0, z€R,

Jim U(z) =0, Jim U(z) = 1, (1.2.3)
U'(do0) = 0.
Let V/ U then V0= 0" Hence, we get the following system of differential

cquations:



U'(z) = V(2) = [(UV),
Vi(z) = oV — UG- U) = L(UV).

The abo

ystem has two cequilibrium points, (0,0) and (1,0). To analyze the lincar

stability for the above system, we find the Jacobian’s matrix of this system. The

Jacobian’s matrix is given by

The cigenvalues of J(0,0) are

Thercfore, if ¢ > 2, then the equilibrium point (0,0) is unstable node, whe

¢ < 2, then (0,0) is an unstable spiral. The cigenvalues of J(1,0) are

Ma=

ek VAT
T2

Hence, the equilibrium point (1,0) is a saddle node. Therefore, If ¢ > 2, Then there

exists a positive orbit connecting the two equilibrinm points (0,0) and (1,0). This
orbit leaves out the equilibrium points (0,0), and it is connecting the equilibrium
point (1,0) along with its stable manifold. Henee, the asymptotic limits lim_0/(2)

0, andJim U(=) = 1 hold (see Figure 1.5). As we mentioned above, if 0 < ¢ < 2
then (0,0) is an wnstable spiral. Henee, the solution is oscillating and we cannot got

a positive orbit which is conneeting (0,0) and (0,1) (see Figure 1.6)



Figure 15: The phase plane analysis of Equation (1.2.1) when ¢
point (0,0) is an unstable node while (1,0) is a saddle point. This

by the function PPlaneS using Matlab.

The equilibrinm

figure is generated

Figure 1.6: The phase plane anal 2.4) when ¢ = 1. The equilibrium
point (0,0) is an unstable spiral while (1,0) is a saddle point. This figure is generated
by the function PPlane$ using Matlab.



We reconsider the equation

(2) Perturbation method

U"(z) = cU'(z) + U()(1 - U(2)) =0, z€R, ¢

lﬁ,}.\l/‘(:) =0, 1“!2“(5) =1

a solution of the above equation, then U(z + 2) is

We remark that if U(z) is

a solution of this equation. This is true since the above equation is autonomons

wssume that U7(0)

cquation. Thercfore, without loss of generality, we may
introduce a small perturbation in the above cquation, we introduce a new variable
s = =/e. and anew function g(s) = U(=) in the above equation. Using this change

of variables, cquation (1.2.5) reduces to

€g(s) = g'(s) + 9(s)(1 = g(s)). s€R, (1.26)
9(~00) =0, g(0) =, g(o0) =
< 1 The perturbed series of the solution g(s) is given by
9(5) = a0(s) + @($)e + ga(s)e® + -+ (127

Substituting this form in Equation (1.2.6) and then setting the coefficients of ¢".n =

0,1,2

L we get

90(8) = go(s)(1 = (), seR, R
go(—00) =0, ga(0) =4, go(o0) =1,
and
91(8) = gi + ()1 = 200(s)). sER,

g (=00) = g1(0) = gi(o0) = 0.
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By solving Equation (1.2.8), we get the following solution

go(s) =

We substitute this formula into Equation (1.2.9), and then we solve the resulting
cquation, to gt

le™
L te?

m(s) = (14 2 log

hen we get

+O().

where = = r+¢f, v € R, £ > 0. If we consider = = & — ¢, then the
solution for this case is

g
(L4277 (1 e

3+ O

The numerical simulation for these two solutions is given in Figure 1.7 and Figure

L8, respectively (for more details see, for example, [94, 133]).

(3) Monotone Operators and Upper-Lower Solutions Technique:

We re-consider Equation (1.2.2), To apply the upper-lower solutions technique to
this equation, we wish to define a monotone operator 7" on the space of bounded and
continous functions on B (i.c.. on the space € = BC(R, R)). To do this, we rewrite
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Figure 1.7: The asymptotic solution for Fisher's equation, the wave variable rtet

Figure 1.8: The asymptotic solution for Fisher's equation, the wave variable reet



ation (1.2.2) as

W= g~ But [Butu(l - )] (1.2.10)

= e — But F(u),

where 3> 0 is sufficiently large so that F(u) is a monotone increasing function

Substitute u(f,x) = U(x + et) = U(z) in the above equation, we get
'(z) = U"(z) = BU(2) + F(U(z)) (1.2.11)
T'he homogencous part of the previous equation is given by

U"(2) = eU'(2) - BU(

The roots of the corresponding characteristic cquation are

These roots are real and distinet. with opposite signs. Using the constant variation

formula, the non-homogencous solution of Equation (1.2.11) is given by

I

Since F(u) is monotone, then the operator 1" is monotone, i.c.,

DE@Gy)dy|.  (1.2.12)

(To)(z) = CRE@y+ [

T =Ty whenever ¢ >y

“To show that Equation (1.2.11) has a solution, it is cnough to show that the operator
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T has a fixed point [83]. This is true sinee 76 satisfies

" — c(T¢) — B(T¢) + F(¢) = 0 (1.2.13)

To show that 7" has a fixed point, we try to find an upper and lower-solution (¢ € C is

called an upper solution of 7

milarly, 6 € C is callod a lower solution of
T if ¢ < T(6)). I such a pair of solutions exists, then we can perform the following

scheme:

<

Since this sequence is a monotone decreasing sequence, then it has a limit ¢*(i.c..
lit, o 9 = ¢*). Henee, by applying the Leshesgue Dominated Convergence Theo-

rem, T has a fixed point. To show the existence of a monotone traveling wave solution

of (1.2.11), we are looking for a special kind of upper and lower solutions. I fact.
we require @ to be a non-decreasing function, and satisfies the following asymptotic

relations:

lim ¢ =0 and

¢ =1

This condition implics that ¢* is monotone. Also, we require ¢ to be non-zero. This

condition implies that ¢* is not identically

0. To show that 7" admits a pair of upper
and lower solutions, it is sufficient to show that the original differential cquation (1.2.2)
adumits a pair of upper and lower solutions (supe

ubsolutions) (sce Lomma 2.5 and

Lemma 2.6 [83]). A function 6 € C is

alled an upper solution of (1.2:2). if & is twice

continuously differentiable on R except at finite points
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=0/ (2) +0(2)(1 = B(2)) S0, V2 # 2, i = 1,2,-+ n. A similar definition

and ¢
holds for the lower solution ¢, if we reverse the inequalities. To construct a pair of

upper and lower solutions of Fisher’s equation, we consider the lincarized equation

U"(z) = U'(z) + U

The roots of the characteristic equation of this second order differential equation a

If ¢ > 2, then 0< Ay < Ay Let 0 < ¢ < Tand M > 1. then

5(z) = min {1, *

and

(=) = max {0, (1 = Met)eM

arc a pair of upper and lower solutions of Fishers equation (cg. sce [31]). For more
analysis of the existence and stability of the traveling wave solution for different

. 46, A7, 55. 79, 83,

mathematical models, we refer the reader to [3, 7. 8, 31, 35, !

81,97, 98, 99, 100, 101, 109, 114, 115, 116, 119, 123, 124, 136, 138, 116, 118]

Asymptotic Spreading Speed.
To clarify the concept of spreading speed, we reconsider the reaction diffusion

cquation (1.2.1); ie., we consider the reaction-diffusion cquation

du

—(t,2) = DAu(t,x) + f(u), (1.2.14)
o



where (f,.0) € R* x R and the kinetic function f: R* — R* satisfies f(0) = f(1) = 0,

and [(0) > 0. During their study of the above reaction-diffusion equation in 1975

[7]. Aronson and Weinberger introduced the concept of asymptotic spreading speed

onson and Weinberger proved the

(shortly, spreading specd). Indoed, in 1978 [8]

following theorem:

Theorem 1.2.1. Let u(t,) be a non-zero solution of the reaction diffusion cquation
(1.2.14) with initial condition u(0,.x) which has a compact support. Then the following
assertions hold:

i) i Iiv‘u‘ ’uH,.r) =0, Veée (' 00),

i) dimu(ta)=1, Vee (0.¢).
tco.lsiget

They called ¢ the asymptotic spreading specd. Also, they proved that ¢*

for Fisher’s equation. As a result of this theorem, we observe that if p € (0, 1), then

Jim “*
s

wniformly for cach p € [a.b] € [0, 1]. The quantitics 2% satisfy the relation u(f, 1)
p. and they represent. the distance from the origin to the right and to the left, re-

spectively. That why it is reasonable to call ¢* the asymptotic spreading speed (see

Figure 1.9). We also observe that if u(f, ) represents a population (cg. an infected

*, then he will out-

population) at spatial point = and one leaves with a speed ¢
run the population (will not be infected); while if one leaves with a speed ¢ < ¢,

ke the observer (will be infected)[31]. Figure 19 shows

then the population will ov
the evolution of the soltion with the time £ in one dimensional spatial space. To
demonstrate the evolution of the solution, and the spreading of the solution in higher

dimensional spaces; we illustrate the following example:
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Figure 1.9: The asymptotic spreading specd.

Example. (A Lincar Reaction-diffusion Equation in two Dimensic

al Space, Target
Waves). In this example, we consider the following linear reaction-diffusion cquation

in two dimensional space:

au(t.x) = DAu(t.x) + au(t.x), a >0, reR%:
u(0,x,y) = Md(x)d(y).

where 8(.r) is the der

delta function. Fortunately, we can apply the Fourier transfor-
mation technique (eg. sce [28]) to this linear RD-cquation. Therefore, the analytical

solution for this cquation is given by:

M e +y?
utoa.y) = o e al = = 0

where M is a constant. The graph of the solution is a series of cirenlar waves, which

propagate from the origin (see Figure 1.10). This kind of waves t

in all directions

of the spatial space, and it is called the target waves (target. pattrens)[50, 69]
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Figure 1.10: The evolution of Equation (1.2.15) solution with the time ¢
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Finally, we remark that after the carly work of Aronson and Wicherger in 1975

the concept of spreading speed has been considered in many studies (cg. [32. 35, 65,

9

66, 75, 76, 77, 78, 119, 120, 127. 129, 130, 131. 1 115]).

1.3 Thesis Layout

We divided the t chapters. T the first chapter, the introduction, we
presented some basic concepts about the age-structured models and their application
in mathematical biology. Also, we presented some basie concepts about the travling
waves, and the asymptotic spreading speed. I the following chapters, we present

some useful concepts and results. i chapter 3, we derived a new age

in chapter
structured model in terms of an integral equation. We show that this integral cqua-
tion admits a unique (up to translation) traveling wave solution. Also, we show the

ling speed . Tn Chapter 5, we consider an age-size structured

existence of spr

model over a bounded domain in @ € R . We derived a new model in terms of an

integral equation. We show that this integral cquation admits a principle cigenvalue

and a principle cigenfunction when the given birth function is linear. Also, we show
the existence of positive steady state solution for this integral equation when the birth
function is non-linear. In addition, we prove that the positive steady state solution is

stable, provided that the principle cigenvalue Ay is positive. In chapter 5, we construct

an age-structured model related to the cell eyele differentiation. From this model, we

derive a delay differential equation with a nonlocal term. We show that the resulting

fon admits & unique principle cigenvalue, as well as

linear delay differential equi
principle cigenfinction. For the nonlinear delay differential equation we show that

positive steady state solution, we also show that this steady

this cquation adwmits

state solution is stable provided that the principle cigenvalue Ay is positive and the
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transition function is

monotone. In the last chapter, we present a nonlocal reaction

diffusion model related to the cells adhesion phenomena. we present a- numerical

simulation for this reaction diffusion cquation, and present some future work.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter, we present some useful coneepts and theorems that we use in this the-

Krien-Rotman Theorem, some con-

sis. These concepts involve the ordered cones
copts from infinite dynamical systems and monotone dynamical systems, the parabolic
maximum principle and comparison theorems. We start this chapter by introducing

the concept of ordered Banach spaces and ordered cones,

2.2 Ordered Cones and Krien-Rotman Theorem

At the bey

nning of this seetion, we recall some basic concepts from functional analysis.

We start by defining the metric space and the complete metric spacc:

Definition 2.2.1. (Metric space): A metric space is a pair (X.d). where X is a set
and d is a metric on X. By a metric d on the set X , we mean the real valued function

d: X x X —RY, such that for any vy, € X, the following propertics hold:
(1) (Positivity): d(r,y) > 0, and d(x,y) =0 if and only if + = y
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(2) (Symmetry): d(x.y) = d(y..r)

(3) (Triangle inequality): d(r.y)+ d(

) < dir

Sometimes, d is called a distance function

Definition 2.2.2. (A limit of a sequence): A sequence {a, })" | in a metric space X

is said to be convergent if there is x € X, such that
Jim d(, ) =0
In this case, we call - the limit of x,. and shortly, we write
Jim =
Definition 2.2.3. (Cauchy sequence): A scquence {2, ), in @ melyic space X is

said o be a Cauchy sequence if for cach ¢ > 0 there cxists natural number N(¢). such

that

(s

W) < ¢ whencver nym > N(c).

Definition 2.2.4. (A complete metric space): A metric space X is called complete
metric space if and only if cvery Cauchy sequence in X is convergent in X (that is

the limit is in X ).

Definition 2.2.5. (Norm): Let X be a real (or, complex) vector space. The norm on

X is a real valued function ||.|| : X — R*, which satisfics the following conditions:
(1) (Positivity): |lc]| > 0, and |l+]] = 0 if and only if = 0,

(2) (Scalar multiplication): |lax|| = o] [l#]|. a € R (o1 a € C).

(3) (Triangle inequality): ||« + y|| < ||| + [[y]l. Vo.y € X
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Definition 2.2.6. (Banach-spacc): A normed space X is a vector space X with a

norm defined on it. A Banach space X is a complete normed space

Let *

" be apartially ordered relation on the space X. We recall that the relation

“< is partially ordered if and only if
(1) (reflexive): < forall € X

(2) (antisymmetric): If &+ < y and y < . then « = y.

(3) (Transitive): If o < yand y < = thenr < =

Definition 2.2.7. (Ordercd melric space and ordered Banach space): An ordered
metric space X is a metric space X with an order relation defined on it. Similarly,

an ordered Banach space X is a Banach space with an order relation defined on it.

Definition 2.2.8. (Order Cone)[141]: Let X be an ordered Banach space and let K

be a subsct of X. Then K is called an order cone if and only if
(i) K is closed, nonempty, and K # {0} .

(i) fora,be R, ab>0,r,y€ K =ar+bye K

(i) x € K and —x € K = =0,

As a notation, we mean by & < g if and only if 4~ € K, <y if and only if
y—a € K\{0}, and x < y if and only if y— o€ K (K is the interior of the cone

). Also, we denoted by [a, By to the ordered interval [a, by = { € X[ a < r < b}

Definition 2.2.9. (Generating. total, and solid ordered cones): An ordered cone K

is called generating if and only if X = span(K) (i.c.. X = K = K). K is called total
if and only span(X) is a dense subset in X (i.c., X = K = K ), and K is called solid

if it has a non-cmply interior (i.c.. K* # ).
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X be an ordered Banach space, and let K be

Definition 2.2.10. (Normal cone): Lef
a ordered cone in X. Then K is called normal if and only if there exists a number

0 such that,

llel < ellyll  whenever 0 < <y, Va,y € X.

L we are interested

Example 2.2.1. In the applications and throughout this thes

in the space of continuous functions X = C(M) (with the supremum norm, i.c.,
A1) which

sup, 37 [¢(0) ). where N = [0, 7] and its positive ordered cone €'

consists of all nonnegative real valued functions over the closed interval [0.7]. i.c..
Cy(M) = {f € C(N) : [(2) 20 on NI} The relations “f < g", *[ < g". and

are define on this space as follows:

[<g if andonlyif f(x)<g(x) forallxe N,

[ <g ifand onlyif f(x)< g(x) Jor some x € M.
and

[ <q if and onlyif [(x)<g(x) forall x XL
respectively. Morcover, the positive cone K = C4([0,7]) is a gencruting, solid, and

normal cone.

Definition 2.2.11. [1/1].

(1) The operator T = D(T) € X — Y is called monotone increasing if and only if

v <y implics that Tw < Ty, Va,y€ D(T).



The operator is called strictly (resp., strongly) monotone increasing if and only

if the symbol “<” is replaced by “<” (resp.. “<”).

(2) The operator T is called positive if and only if T(0) > 0 and

>0 implies that T >0, Va,y € D(T)

The operator is striclly (resp., strongly) positive if and only if *>" is replaced
by > (resp., ©>7).

Theorem 2.2.1. (Krien-Rotman Theorem) [141]. Let X be a real Banach space with

an order cone Xy € X. Let T X — X be a lincar compact operator with spectrum

o

hold:

L and let g = (1) = sup((a(1) be the spectral radius of T Then the following

(i) Assume that T is positive and that T has a nonzero point in its spectrum. Then
Xo > 0 and Ny € o(T). Morcover, there cxists an eigenvector x € X, corre-

sponding 1o Ny,

(ii) Assume that X4 # ¢ and T is a strongly positive operator. Then T" has cxactly
one cigenvector with x> 0 and x| = 1; the corresponding cigenvalue is Ny
which is algebraically simple. Furthermore, v 3 0. Also, |\| < o for cvery
Aea(T)

Definition 2.2.12. A lincar operator T from a Banach space X to a Banach space Y
is called compact if and only if it maps cvery bounded set in X to a relatively compact
setin Y. A sel B is said to be relatively compact in a Banach space X if and only if

B=

Defi

fon 2.2.18. The operator T is a completely continwous operator if and only

if it is continuous and compact



Remark 2.2.1. We know that the operator T+ X — Y is compact if and only if
it maps cvery bounded sequence in X to a sequence in Y which has a convergent
subsequence. Thercfore, when the operator T is defined on the space of continuous
Junctions over a compact set C({a,b]), we use the Ascole-Arzela’s Theorem fo prove
that T is a compact operator. The Ascole-Arzela’s Theorem is given in the following

theorem.

Theorem 2.2.2. (Ascole-Arzcla’s Theorem) Let K be a compact subsct in B and let §
be a family of functions in C(IK,R). Then § is uniformly bounded and cquicontinuons

on K if and only if every bounded sequence in § has a convergent. subscquence
“The definition of "uniformly hounded” and "equicontinuous™ are given in the following
defiition:

Definition 2.2.14. A set of functions § is called uniformly bounded if and only

if there exists M > 0, such that |f . < M, Vf € §. Morcover, the set § is

cquicontinous if and only if for cach > 0, there exists () > 0 such that

[f(x) = J(w)] < e, whencver

=yl < 8(0), and f € §.

Remark:

(i) Throughout this thesis, we mean by X = C([a,b]) the space of all contimions

real valued functions over a closed interval [a, ] with the supremum norm |||
Morcover, we mean by Xy = Cy([a,b]) its positive ordered cone. This cone
consists of all nonnegative functions in X and it has a non-cmpty interior (X7 #

). The interior of X, consists of all strictly positive function in X.

(if) We mean by ¥ = Cy([a.b]) the space of all continuous real valued functions

over a closed interval [a,8], that vanish at the boundary, i.c., at a and b We




(iii)

2.3

cquipped this space with the supremum norm || .. Moreover, we mean by Y,

1l the nonnegative

4 ([a,B]) its positive ordered cone. This cone consists of
functions in V. Since the functions in this space vanish at the houndary, this

cone has an empty interior.

Since the interior of the cone Y, is empty. To define a strongly positive relation,

we need a different space from ¥, so that its positive cone has a non-cmpty

interior. Thercfore, we consider the space Z = Ctla, b, the space of contimions
real valued functions which vanish at the boundary (at a and b), and have a

contimons first derivative.  Also, we consider its positive ordered cone Z,

Cyyla,b]. This cone consists of all nonnegative functions in Z. This cone, Z,.

| strictly

s a non-cmipty interior. In fact, The interior of this cone consists of

positive functions on (a,b), vanish at the boundary a and b, and have a strictly

finite positive derivative at a and a strictly finite negative derivative at b, We

equipped this space with the following norm:

¢ |6/ ()]

b

Infinite Dynamical Systems

We begin this section by presenting some basic definitions. Let (X, d) be a metric

space and 7' :

+ X be a continous map. For any » € X, the positive orbit

through  is defined by:

yHa) = U 1)

w0
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Similarly, the negative orbit through a s defined by:

v (@) = U ().

F(r) Uy (). The w-limit set at o, (), is

The full orbit i is y(x)

w(w) = {y € X| T" () = y, as m — o0} .

Similarly, the a-limit set at #, a(x), is

g as g — —o0}

a(x) = {y € X| T"(x)

1, and A'is called invariant if 7'(A)

Aset A is called positively invariant if 7(A) ¢

A
cfinition 2.3.1. (Attractor. Global attractor) A bounded set A is said to altract I3

in X if
lim sup {d(1"(x), A)} = 0.
L sup

A subset A in X is called an altractor for T if A is a nonempty. compact, and

invariant, and A altracts some open neighborhood U of itself. A global attractor for

T is an attractor that attracts cvery point in X .
56 Let X be a complete metric space, and let

efinition 2.3.2. (Dissipative maps)
X = X be a continuous map. Then

(1) T is called point dissipative on X if there exists a bounded sct B attracts cach

point in X under T

(2) Tis called compact dissipative on X if there exists a bounded sct 13 altracts cach

compact st in X under T



Definition 2.3.3. (Measure of non-compactness and Kuratowski measure of non-
compactness)[122). Let X be a complete melric space X. A function 5 B Cug
— Ry (B Cpaa X means that B is a bounded subsct of X ) is called a @ measure of

non-compactness if it satisfics the following conditions:
(1) (Regularity) 3(A) = 0 if and only if A is precompact (A is compact).
(2) (Ivariant under closer) 3(A) = 3(1).

(3) (Semi-additivity)3(A U B) = max {H(A), 4(B)}

The Ki i measure of non-compactness is defined as follows:

a(A) =inf {r: A has a cover of diameter < r}

For more properties of the measure of non-compactness. one can see 1

Definition 2.3.4. (a-condensing and a-contraction maps). Let X be a metric space,

and let T

— X be a continwous map. Then T is called a-condensing if T
maps the bounded sets to the bounded sets, and a(T(A)) < a(A) for any nonempty
closed bounded set A in X with a(A) > 0. The same definition holds for the o
contraction maps of order k € [0,1), if we replace the statement a(T(A)) < a(A) by

a(T(A)) < ka(A)

Notation

L. Let X be a metric space. throughout this thesis. we mean by Xy be

an open set in X and 20Xy be its complement. i.c.. X = XoU DX (roughly speaking.

Xy is the boundary of Xo in )

Theorem 2

L. (Theorem

8 [36]). Let T2 X — X be a compact and point

dissipative map. Then there is a connected global attractor A
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X — X is said to be uniformly persistent

Definition 2.3.5. [144]. A function T :
with respect to (Xo,0Xo) if there cxists > 0 such that lim d(1"(x.0X0)) > o for

— X s said to be weakly uniformly persistent with respeet to

T

all v € Xy
(Xo.0Xo) if we replace “inf” with “sup” in the limit
Theorem 2.3.2. (Theorem 1.3 [144]). Let T : X — X be a compact map, and
assume that Xy is positively invariant. Also, assume that T has a global attractor A

Then weak wniform persistence implics uniform persistence.

Definition 2.3.6. [56] A semiflow on a space X is a continuous map b(1) : X xR'

X which satisfies the following conditions

(i) @y = Iy where Iy is the identity on X
(ii) B0 b, = by,

(iii) 2 X — X is continuous in (1,.r)

3. (Theorem 1.7 [134]). Let ®(t) : X — X, t >0, be an autonomous

Theorem 2.
semiflow with ®(1)Xo € Xo, for all { = 0. Assume that

(1) ©(t) : X — X is point dissipative.
I

(2) @(t) : X — X is compact for cach t > 0; or alternatively, (1) =
a-contraction with its contraction function k(t) € [0.1),Yt > 0. and 3*(U) is

strongly bounded in Xo:

strongly bounded in Xo provided that U is
(3) (1) : X — X is uniformly persistent with respeet to (Xo, dXo)

Then there exists a global altractor Ay for &(1) in Xy that altracts strongly bounded

sets in Xo. Moreover, ®(1) has a stationary cocristence state xy in Ay (i.c.. ry € Xy

and (t)y = o, ¥ > 0).

10



For the existence of a global attractor Ay, sce also Theorem 3.2

Definition 2.3.7. Let K be a subset of an ordered space X. Then K is called order

convex if [u,v]x C K whenever u,v € K, and u

Definition 2.3.8. Let [ : U — U be a continuous map (U is nonempty, closed. and

convez set). Then
(1) [ is said to be subhomogencous if f(\r) > M (x) for all + € U and A € [0.1].
(2) [ is said to be strictly subbomogencous if f(\r) > Nf(x) for all & € U,z 3 0
and A € (0.1).
(3) [ is said to be strongly subbomogencous if f(Ar) > A[(x) for all & € Uyx >0

and A € (0,1).

Theorem 2.3.4. (Lemma 1 [143]) Let cither V = [0,b]x with b >0 or V' = P (I’
is the positive cone of X). If f:V — V is continuous, strongly positive, and strictly

sublomogencous on V. then [ admits at most one positive fired point in V'

Theorem 2.3.5. (Hirsch Attractively Theorem. Theorem 3.3 [62]). Let X be an
ordered Banach space. Assume that monotone semiflow d(t) on X admits an attractor
K. such that K contains one cquilibrium point p. Then cvery trajectory atlracted to

K converyes to p.
2.4 Maximum Principle and Parabolic Compari-

son Theorems

In this seetion, we define the uniformly parabolic operators and we state the Maxi-
wum Principle, in addition to the comparison principle. We start by the meaning of

wniformly parabolic operator



Definition 2.4.1. [104]. The differential operator

du Du
o

Llu] = aa, 1)

is said to be parabolic at the point (x,0) if a(x,t) > 0. The operator L is uniformly
parabolic in a domain D of the x.t—plane, if there is a positive constant ju such that

a(e.t) = p for all (a,t) in D

Definition 2.4.2. [102] The boundary of an open set 2 is said to have the outside
strong sphere property if Jor every point xy € O there exists a closed ball 13 outside
Q such that BOOQ = {xy}. A similar definition holds for the inside strong sphere

property.

Notation 2.4.1. [102] Let 2 be a bounded subsct of R". Then Define Dy := Q5 (0.T)
and Sy = 08 x (0. T). On the other hand, by C*2(Dy) we mean the set of functions
with continuous first derivative with vespect to t. and continuous sccond derivative

with respect to x

Theorem 2.4.1. (Maximum Principle)[102]. Let w € C"*(Dy) such that

w— Lw >0 (a.0)€ Dy

If w attains @ minimum valuc mg al some point in Dy, then w(t. ) = mo throughout

Dy. If 9 has the inside strong sphere property and w attains a minimum at some

point (ty,x0) on Sy, then the normal dervivative dw/On < 0 at (o, o) whenever w is

nol a constant.
Remark 2.4.1. If we let Dy = (0,T] x (a.b), then the normal derivative of the

solution w(l,x) al the boundary points should be strictly negative, in case they are

12



local minimum. This cquivalent to w, > 0 at & = a and w, < 0 al + = b (when
Q= (b))
Theorem 2.4.2. (Comparison Principle). Let u, v € C'2(Dy) be two solutions to
the equation.

wy = Lw = f(t,x,w).

If u(0.0) < o(0,), then u(t.r) < o(t,x) throughout Dy

For more details about the maxinmm principle and comparison theorenss, one can see

[102, 104).



Chapter 3

Populations Dynamics with
Age-dependent Diffusion and
Death Rates on Unbounded

Domains

3.1 Introduction

Spatial movement and temporal maturation are two important characters in most of
biological systems; modeling the interaction between them has attracted considerable

attention recently [2, 46, 47, 48, 49. 64, 66, 80, 97, 98, 99, 100, 113, 115, 119, 139]. One

of the most important methods applied is the Smith-Thicme age-structure technique

113]. In this approach, species population is divided into two groups: mature and

immature. At different ages, the standard model with age structure and diffusion is



incorporated ( see [90]):

Du | Ou

= 311
o N da { )

Here u(f.a.) denote the density of population of the species at time £ > 0, age a > 0,

and location . € R. D(a) and d(a) are the diffusion and death raf

s, respectively, at

age a. Let r > 0 be the maturation time for the species and A; > 0 be the life span

of the species. The total matured population at time f and location r is given by

"
w(t,x) = / ull, a,x)da, (3.12)

Since only the mature can reproduce, one can assume

u(t,0,x) = blw(t,r)). (3.1.3)

where b(.) is the birth function. In [115]. So, Wu, and Zou assume that the diffusion

and death rates, D(a) and d(a), of the mature population are age independent. ic..

Dia) =D, and d(a) =

dy,

Based on this assumption, they substitute (3.1.1) into (3.1.2) to derive

e+ u(t, 7 ), (3.1.0)

where u(f, 7,.¢) is called the maturation rate and it can be solved from (3.1.1) and the

boundary condition (3.1.3), with a formula given by

wltir,z) = [‘ et = rop) fule — w)dy.



where
¢ *l'x])[f [ 4I,(u)4lu]. a= [ Dyayia,
i o

and

where Dy(a) and d;(a) are the age-dependent diffusion and death rates of the imma-

ture individua As such, a non-local reaction diffusion with delay can be obtained:

ow Pu
=D,
o~ Do

= dhwte /‘ Wt = o) ful — p)dy. (3.1.5)

In their paper, they investigated the existence of traveling wave solution for the

above equation when the birth function is taken as the Nicholson’s blowflies birth
function (b(u) = pue=). Recently, there have been some further studics on this
model. In [89], Mei and So investigated the stability of traveling wave solution in the
case of Nicholson’s blowflies birth function. Liang and Wu in [76] investigated the

ve solutions for different birth functions. Thieme and Zhao

istence of traveling

in [119] considered the following general stage-structure model

Ot + Dyu = dy(a)dgu — py(a)u, O<a<r, z€R"

u(t, 0,

S(uw(t,0)), t>-r, x€R",

Dyt = dy Dty = g(wn) +u(tor,r), >0, xR,

where f(u,,) and g(u,,) are the birth and death fanctions, Dy(a) and d(a) are the
diffusion and death rates of the immature population, and Dy, and d,, are age inde-
pendent diffusion and death rates of the mature population. They investigated the
existence of traveling wave solutions of this model, when the spatial domain is the

whole real line R, For more studies of these models over unbounded domains, we

16



mention Al-Omari and Gourley [2], Gourley and Kuang in [16]. Gourley and So in
[19], Gourley, So, and W in [18], and Ou and Wu in [99].

Overall, all the above papers study the models with a crucial assumption that
the diffusion and death rates of the mature population are constants so that Equation

above scem to fail if Dy, (a) and

(3.1.5) can e casily derived . Actually, all model
1,,(a) arc not constants, because equation (3.1.5) is not valid anymore if both D,,(a)
and d,,(a) are age-dependent. Thercfore, a natural question to ask is how o study
the population dynamies if the coefficients are not constants. We aim in this chapter
to answer this question when the spatial domain is unbounded while the next chapter

is devoted to answer this equation for the bounded domain case,

The chapter is organized as follows. We start in scction 2 by establishing the

new model, and obtain the global existence of the solution in section 3. In section 4

we investigate the existence of traveling wave solutions. In section 5, We investigate

al

the existence of spreading speed ¢, Finally, in seetion 6, we present a numg

simulation.

3.2  The Derivation of the New Model

“To derive the model, we re-consider equations (3.1.1) (3.1.3). We fix s > 0 and define

afunction ¢ by o(s,a.x) = u(s + a,a,x). Then we obtain the following

o M P
2 ) + St ay
a o Bath®

t=ats

2 at s,a.x) — d(a)ula + s,0,0)

e

ca.x) = d(a)o(s,a.r).




By applying the Fouricr transformation to the following cquation:

:;T', = ”(")fT_,‘z La,x) — d(a)o(s,a,r), (3.2.2)
we get
La,w) = — [1)(..)&?(.\ a,w) + d(a)V (s,a, w-)].
Hence,

Vs, a,w) = K(s,w) exp [7 [(n(u w’m(z))./{] = Ba)K (s w)e 0,

where
o) = 4 D(E)dE, fa) = n'x])[f /ﬂ ./1:)115].

and K (s.w) = F{b(w(s,x)}. By taking the inverse transformation, we then obtain

o(rar) = FUV(raw)

= Bla) [FUK(w)}« F e 0]
Aa)

= D [ bw(s,p)) e
\ﬁm.(u) /\ (w(s,y))

where for the last equality, we have made use of the relation

F et

Thus, it follows

altia,r) = ot - a,a,r) =

JinaG



Then we substitute Equation (3.2.3) into Equation(3.1.2) to get

o= 1a(s)

w(t,z) = /" /‘ bt — 5,3)) " A(s)dyds. (3:2.1)

Vima(s)
which is an integral equation

Remark 3.2.1. Equation (3.2.3) is only valid for t > a. As such, equation (3.2.4) is
technically true for t > Ar. However, we will concentrate on the long-time behavior of

(3.2.4), and it is meaningful to study this cquation for all 1> 0.

3.3 Global Existence of the Solution

In this section, we investigate the global existence of the solution of the integral

equation (3.2.4). To simplify the equation, we change the variables in Equation (3.2.1)
plify i il

Hence, we get

\ poo
w(t,x) = / /\”("'("""‘7‘””V|m»(~)

= [ / b(w(t = 5,0 — ) K(s,p) dyds ,
-

—4/1a(s)

A(s) dyds (3.3.1)

where
0, s<rors>
Ksy) = 8)_ i~ fialal), #< i< Ay 2 (332)
[1ra(s)
As) = uxp{f /",/(gm} .
and

ala)= /” D(E)E.
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So. Equation be written in the following form;

3.1)

w(t, /‘ /‘ F(w(t — 5,2 — y), 5.5) dyds
h S

In the following sections, we shall study the above integral equation and investigate

the existence of the traveling wave solution as well as the uniquencss of the traveling
wave solution. In fact, we will consider three kinds of birth function b(.). First, as an

illustration, we will consider the Nichlson's blowflies birth function

bo(u) = f(u) = pue,

where p, g, and a are positive constants.
To start, we may first choose ¢ = 1. In this case, for simplicity, we may assume
a = p =1 after some scalings of the variables. Now, Fu,s,y) = [()K(s.9).

e We now use

where K (s.y) is the kernel given in Equation (3.3.2) and f(u)

the properties of two functions f(u), K(s,u), and some results in [119] to prove the
existence, as well as the uniqueness of the traveling wave soltion of Equation (3.3.1)

*, where ¢ is the minimal wave specd

for cach ¢ >

Now, to obtain the global existence of solutions of (3.3.1), we introduce the known

s in [119]. Suppose that the following conditions (A) are assumed

resull

(A1) A / K(s,y)dz dy < 0o; in this casa dofine &* /“/‘ Fela, )ik iy

(A2) 0 < F(u, < u K (s,x), Vs > 0, 0 € R,

(A3) Forevery compact interval [ in (0, 00), there exists an e > Osuch that F(u, s, x)

CRK(s,a) Vuel,s>0mdreR



every ¢ > 0, there exists a 8 > 0 such that

Flus,r) > (1= QuK(s.x),

for all u € [0.8], s > 0, and x € R

ists a A > 0 such that

(A5) For every w > 0, there

— Ploys,a) < Au— o] K(s.) .

|F (s,

for cach u.v € [0, 4 >0, and x € R.

Then the following proposition from [119] olds
Proposition 1. (119 Let (A) hold. Then, for every Boreal measurable, nonnegative.,
and bounded function ug(t, ), there ezists a unique measurable solution u : Ry xR —
g
R, of the nonkincar equation u(t,x) = u(t, x) + / / Fu(t — 3,7 — y), 3,4) dy ds
AN
and u is bounded on [0,7] X R, for cvery r > 0. Furthermore, the following results

hold under additional assumptions:

a) The solution u is bounded if there exist ¢y, > 0 such that c¢\k* < 1 and

Flu,s,2) < (e + cau) K(s, ), for all us >0 and & € R.

B) 17> 0 and lim wole ) = 0 wndformly for € (0,1}, then the same holds for

u

Remark 3.3.1. The kernel K (e, y) which is given in Equation (3.2.3) satisfics

/u\ /,1\ K (s, drds < 0o



In fact,

[ Lo = [

Now, we turin to prove the existence of solution for the integral equation in (3.3.1) for

the given birth fnction b(u) = ue

Theorem 3.3.1. With the birth function given by b(u) = ue™, Equation (3.9.1) has

a unique bounded solution.

Proof. To prove this result, we have to check the satistaction of conditions (A)
(A1): In fact (A1) holds by the assumptions and by Remark (3.3.1)

(A2): Since 0 < ¢™ < 1 for every u > 0, we have 0 < u ¢ < u. Thus, 0 <
we K (s,0) < ul(s,x), Ya,s > 0 and € R,

(A3): Lot I = [a,0] be a compact interval in (0,00). We have f'(a) = ¢ (1~ u)
So. f takes its maximum at u = 1, since f(u) is increasing on the interval [0, 1] and

J 106 < 1 det e = fla); ifa > 1, let « = f(b); and

decreasing on the interval [1,5

ifa < 1and b > 1, let = min{f(B), f(e)}. Hence, f(u) = uc™ > ¢, for all uw & I

Thercfore, F(u,x,s) = f(u)K(s,x) > ek (s.x), for all u € I s > 0, and x € R

(A4): Notice that F(u,s,x) > 0, for all u,s > 0, and « € R. Thus, the inequality
in (A4) holds for every ¢ > 1. Now, let ¢ < 1 and § = u,(ﬁ) > 0. Sinee e is
decreasing on [0, 8], we get the result dircetly

(AB5): f(u) is contimous and its derivative exists for all w > 0. Therefore the

inequality in (A5) holds by applying the mean value theorem. Since f(u) = ue * takes

its maximum value at u = 1, we have we™ < 1 for u > 0. Therefore, ue™"

8



where ¢; > 0 and satisfies ¢

< 1. Indeed such ¢ exists since k* is finite in our

assumption. This completes our proof. [
The global existence of solutions of (3.3.1) for other birth functions in the sections

below can be obtained by a similar approach. We will omit the details.

3.4 Existence and Uniqueness of Traveling Wave
Solutions

3.4.1  Case 1:b(u) = ue "

At the beginning of this scction, we introduce the following assumptions:

(B) Let k- R, x R — R, be a Boreal measurable function such that
o= [T K(spdyds € (1,
B0 k= [T Ksdus € (1)
2! suel il i@ N Mov (s, y)dy ds < i
(132) 3 Ao, such that _/“ _[\. K(s,y)dyds < oo
(B3) 30> a1 > 0,p> 0 such that K(s,) > 0, for s € (a1,a3) and € [0, ]

(B1) K(s.) i

stropic in , in the sense $(r) = ¢(y) whenever [¢] = [y], where

¢:R" =R

Remark 3.4.1. The kernel K(s,.x) which is given in Equation (3.2.3)satisfics the

conditions (B2). (B3) and (BB4). 1L is casy to see that (BI) holds if 1 < I
"

/ A(s)ds.

3

Definition 3.4.1. (Traveling Wave Solutions). u(r,t) is called a traveling wave so
lution of the integral equation in (3.3.3), if u(re,t) = vl + ct). The constant ¢ is
called the wave speed and the solution v(.) is called the traveling wave front solution

or traveling wave profile.



Tto prove our main theorem in this section, we introduce the following conditions
[119]

(C) Lot [+ Ry — Ry be a continuous function such that

(C1) f(0) = 0 and 3u* > 0 solution of u = k*f(u) such that k*f(u) > u, for

we (0,ur).
(C2) f(u) is differentiable at u = 0, f/(0) = 1, and f(u) < u for any u € [0,u’]
Also, we introduce the following theorems:

Theorem 3.4.1. [119] Let Fu.s

= [(w)K (s.x), and assume that the condilions
(B) and (C) hold. Supposc that [ is increasing on [0, "], and f(u) > u ~ au®
Vu € [0,u”], for some a > 0. Then there is a constant ¢ > 0 so that for any ¢ > ¢*.
the equation

ult,x) = [ /“ Fu(t = 5,0 y), 5 y)dyds

has a traveling monotone wave solution connceting O and u* with specd c.

Theorem 3.4.2. (119] Let F(u,s.x) = [(u)K (s, x). and assume thal the conditions

(B) and (C) hold. Suppose that f is increasing on [0,u’

and
1f () = F(0)] < Ju = 0], Va0 € [0,07]
Then, for ¢ > ¢ the equation
u(t.z) = A [: F(u(t = 5,2~ ), 5, y) dyds

admits at most one increasing traveling wave solution u(x + ct) connecting O and u*

up to translation.



See also referen

[31] and [33] for the results similar to the above two theorems,

Now, we can dircetly apply these two theorems to study the existence and uniquencss
of an increasing traveling wave solution for our equation in the case b(u) = ue~*. We
can obtain the following theorem.

Theorem 3.4.3. There is a constant ¢ > 0 so that for ¢ > ¢*, cquation (3.3.1)

has a unique, up lo translation, monolone traveling solution conneeting u = 0 and

wt = (k). provided that 1 < k* < «

Proof.

To prove the existence, we apply Theorem 3.4.1. Notice that the
conditions (B) hold by the assumption. “To check the satisfaction of conditions in (C')
We notice f(u) = u ¢~ is continuous, f(0) = 0, and u* = In(k*) is a solution for

w= k" f(u). Morcover, for every u € (0,u*) = (0, In(*)). we have

u<In(k*) & " <k & e u<kue =k f(u).

Therefore, condition (C1) holds. Nex

+ for the condition (C2). it is obvions to see that

[ is differentiable at w = 0 with f/(0) = 1, and f(u) = u ™ < u, for all u € (0.4

since e < 1, for u € [0,u*].Morcover, / is increasing provided that k* < ¢ which

implies that f(u) is increasing in u € [0, u*]. Also, if we let g(u) = ¢+ u — L. then

g/(u) = 0 for all w > 0. This implics that f(u) > u — u*, Vu € [0.u’]. This completes

onr proof for the existence part

Uniiqueness: To prove the uniqueness, we need to check the validity of the following
inequality

1) = J()] € Ju = o], Va0 € 0,u7] .

To do this we notice that f(u) is continuous and differentiable on [0, «*]. So. it suffices

to show that [[/(u)] < 1. Actually, ['(u) = (1 — u)e™, and ["(u) = (u — 2)c".

[(u) is decreasing on [0,2]. However, 1 < &* < ¢, implies that 0 < In(k") < 1,
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and so f’(u) is decreasing and positive on [0, u*] € [0, 1]. Therefore, 0 < f'(u*) <
F(u) < J/(0) = 1, Vu € [0,u]. Henee, the inequality holds by applying the mean

value theorem. 1

Theorem 3.4.4. [119] Let the conditions (A) and (B) hold. Then for cach ¢ € (0.¢")

there cxists no traveling wave solution of the cquation

u(t,

v),—_/“ _/ﬂr(w $&—1)ssy) dyda
with speed ¢

3.4.2  Case 2: by(u) = puc """,

Now, we consider other cases of birth function in our model. To prove the existence

and uniqueness of traveling wave solution, we state first the following theorem

Theorem 3.4.5. [119] Let (A2) and (BB) hold. Assume that F(..s,x) is increasing
in [0.u*] for cach (s,x) € Ry x R, and F(u,s,x) > (u~ bu")K(s,0),Vu € [0.4],
(s.2) € Ry x R for appropriate § € (0,u*], @ > 1 and b> 0. Then for cach ¢ > ¢*

there cxists a monotone traveling wave solution of the equation
u(t,z) = [ [ F(u(t — 8,2 — y), 8, y) dy ds
-

connecting 0 and u* with speed c.

Consider the birth function b(u) = pue, where a,p, andg > 0. In condition
(Ch), we require f/(0) = 1. Thercfore, we denote f(u) = we=", The constant. coefli-
cient p in the birth function can be ineluded into the kernel function K (s, ). After

this setting, for b(u) = pue ™ we still can prove the following theorem which gives



the ¢

istence

and uniquencss, up to translation, of traveling wave solution of Equation

(3.3.1)

Theorem 3.4.6. There crists a constant ¢* > 0 so that cquation (3.3.1) has a unique

monotonc traveling wave solutions with speed ¢ > ¢, connecting u = 0 and u*

[ (k)] "™, provided that 1 < ph* < Vo,

Proof. We notice that F(u, s.r) is increasing in u on the interval [0.u*]. since /(1)

is increasing on [0, u Furthermore, F(

&) = (1= bu") K(s.x), Vu € [0.0],

(sox) € Ry x R, and for any & € (0.u'], where 0 = ¢ + L and b = a. Moreover,

conditions (A2) and (1) hold. Thus, by Theorem 345 there exists a monotone
traveling wave solution of Equation (3.3.1). The uniqueness, up to translation, of the
monotone traveling wave solution comies by applying Theorem 3.4.2. We remark here
that the incquality in Theorem 3.4.2 holds by the Mean Value Theoren. Indeed, we
have | f{(u)] < 1 [
3.4.3  Case 3t bo(u) = 00

I this subsection we consider the birth function b(n) =~ where a, p, and g > 0

1+ au
; 5o that f(0) = 0, f/(0) = 1. The cocflicient p is o

In fact we let f(u) =

ain
au

put into the kernel function k.

milarly we have the following theorem for this case.

Theore

3.4.7. There is a constant ¢ > 0 so that for cach ¢ > ¢, cquation (3.3.1)

admits a unique, up to translation, inereasing traveling wave solution connecting u = 0
. Ve
Pk — 11"

' q
. provided that 1 < pk* < 00 if ¢ < 1 and | < ph* < L‘
@ -

ifq > 1. On the other side, for ¢ € (0,¢*), cquation (3.3.1) has no positive traveling

and u*

waves.

Proof. Again the proof comes by applying Theorem 3.4.5 and Theorem 3.1.2. 1



0
3.4.4 Case 4: by(u) = pu(l — %)
X

Now we Consider
ul

pu(l — 0<u<k

b(u) =
0, u> N,

and we let

S(u) =

For this case we have the following theorem:

Theorem 3.4.8. There is a constant ¢* > 0, so that for ¢ > ¢*, cquation (3.3.1) with

the birth function by(u) has a unique, up to translation, monotone traveling solution
Va
) . 1 1+
connecting u = 0 and u* = K (1 - - L where 1< pk* <~ On the other
q

I
side. for ¢ € (0.¢*), equation (3.3.1) has no positive traveling waves

Proof. Again the proof comes by applying Theorem 3.4.5 and Theorem

Remark 3.4.2. To show that (3.3.1) admits a monotone traveling wave solution with
speed ¢ = ¢, we apply Theorem 3.4 [119]. As a direct vesult of this theorem, we have

the following resulls:

Theorem 3.4.9. For ¢ = ¢*, and the birth function by(u). Equation (3.5.1) admits a

) Va
monotone traveling wave solutions connecting u =0 and u* I}Vn.(,yk')[ . provided

that 1 < pk* < M1,

Theorem 3.4.10. For ¢ = ¢*, and the birth function by(u), Equation (3.5.1) admits
i

X . L k-1
a monotone traveling wave solution conneeting u = 0 and u [ E

a
7-1

. provided
a

that 1 < ph* < 00 if g < 1 and 1 < pk* < ifq>1



Theorem 3.4.11. For¢ = ¢, . and the birth function by(u). Equation (3.3.1)admits
Vi
. . 1
a monotone. traveling solution connecting u = 0 and w* = K (1) when
pr*
144
1<phr < —4

a

Remark 3.4.3. We consider the above birth functions due to their wide use in Math

cmatical Biology, especially, for the cascs ¢ = 1 in by(u), q = 2 in by(u), and q = 1

in by(u). cwample, sce [125]. Morcover, when the diffusion and death functions
are age independent, ic. D(a) andd(a) are constant rates, it is casy to sce that the
conditions (A) and (B) hold for the above four cases. In fact, this casc was studicd

in (79, 115] and our resulls can cover this particular case.

3.5 Non-monotone Traveling Wave Solutions

In the previous scction we showed that the integral equation (3.3.1) admits a mono-

tone traveling wave solution which connecting u = 0 and u = . for all ¢ > ¢,

ing function on [0, 7).

provided that f(u) (the birth function) is monotone incre
The case is different, when the birth function f(u) is non-monotone. In this case, the

resulting integral operator is non-monotone operator, and therefore, we can not get

the existence of monotone traveling wave solutions. In fact, the munerical simulation
for this casc shows the existence of a non-monotone traveling wave solution connect-

g u = 0 and u = u* (with a spike at « = u*) for some eascs. Analytically, Fang

and Zaho [36] proved, using Schanuder’s Fised Point Theorem, the existence (as well
as the uniquencss up to translation) of a sueh traveling solution which connecting
w=0,¥e > ¢, (see Theorem 3.1 [36]). This traveling wave solution cxists provided
that the conditions (A) and (1) hold, in addition to the conditions in Theorcm 3.1.5

and Theorem 3.4.2. Also, they showed that such asolution does not exist provided

that ¢ € (0,¢%) (see Theorem 2.2 [36]). For the case ¢ = ¢, they showed that for a

59



positive small mumber 3, there exists a traveling wave profile (U7, ¢*) connecting 1 = 0

with U(0) = 4 and U(€) < A, V& < 0. Morcover, they showed that all these traveling
wave solutions conneeting u = 0 and « = «* under certain conditions. To apply their
results to our model, we need first to put some assumptions on the birth function

F(). We assume that f(u) satisfies the following conditions:

() Assume there exists a positive constant A such that

(1) [ € C([0,M),[0,M]), [(0) = 0. f'(0) > 0, and [ is Lipschitz continous on
[0.21)

(F2) f(u) < J'(0)u, Ya € [0, M], and there exists u* € [0, M] such that £ f(u*) = u",

K f(n) > u, Y € (0,ut), and k* f(u) < u, Vu € (u*, M].

(F3) L s strictly inere

wing for « € (0, M), and f(u) satisfics the property (P):

that is for any v, w € (0,M] and 0 < u* < w, v > k*f(w), and w < & [(1v). we

have v = w.

Remark 3.5.1. We remark that a function f(u) satisfics the property (P) if one of

the following holds (sec Lemma 2.2 [65] and Lemma 3.1 [147)).
(P0) f(u) is non-decreasing on [0, M]
(P1) uf(u) is strictly increasing on (0, M)

(P3) [(u) is non-increasing for u € [u*, M), and L2 i strictly decreasing for all

we (0,0

Following the same argument in [63], we define the following continuons functions:

JH(u) = max f(0), Vu € [0.01] and () = min (), Vo€ [0.01]

G0



Morcover, we denote by u}, to the positive solution of k*f* (u) = u, and by u* to the

positive solution of & f~ (u) = u. Then we have the following inequality:

O<ut <u' <uy <M

Theorem 3.5.1. Let f(u) in Equation (3.3.1) be the birth function by (u). and assume

that 1 < k*p < ¢*/1. Then the following assertions hold:

1) admits a unique (up to translation) traveling
1a

(1) For any ¢ > ¢*, Equation (3.:
wave solution connccting u =0 and u* = [' 11,(,4")]
(1) For ¢ = ¢ and for a small positive number 3, there caists a traveling wave
profile (U.¢*) connecting u =0 and u = u* with U(0) = 3 and U(€) < 3, V€ <

0

(111) For ¢ € (0.¢") there is no traveling wave solution (U
Proof. To prove this theorem, we need to check the validity of condition (F). Tn the
proof of Theorem 345, we showed that conditions (F1) and (F2) hold. To check

the validity of condition (3), first, we remark that f(u)/u is strictly decreasing on

S maximum at @ 1”%’)‘1 and

[0.0c]. Morcover, f/(0) = p > 0, and f(u) takes

J(@) = p(k)t. Assume that 1< k'p < ¢

< then f(u) is monotone increasing on
[0. 7). Hence, we consider M = u*, and therefore, (P0) holds. Now, we assume A*p >
e T this case, we consider M = f(@), and hence, wy = M, u* = f(M) = £ %

Let

n(uy = LELCD) e exp {=a (0 + (e )}

u

Then by clementary caleulations, the function h(u) is strictly decreasing on [0, 0] if

< pk* < es. Therefore, (P2) holds. Hence, the above assertions hold by Theorem

‘

and Theorem 3.1 [36] 1
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Theorem 3.5.2. Let f(u) in Equation (3.3.1) be the birth function by(u), and as-

) o a > max (25 and ke f) < ()

where pk* > 1 and @ is the value where f(u) takes its mazimum. Then the following

sume that q € (0,max (2, ;f

assertions hold:

(1) For any ¢ > ¢, Equation 1) admits a unique (up to translation) traveling

)w

(1) For ¢ = ¢, and for a small positive number 3, there crists a traveling wave

wave solution connecting u =0 and u* = (l"

profile (U

i
conneeting u =0 and u* = (P2 with U(0) = 3 and U(€) <

B, V€ <0
(111) For ¢ € (0.¢") there is no traveling wave solution (U, )

Proof. To prove this theorem, again, we need to check the validity of the condition
(F). In the proof of Theorem 3.4.6, we showed that conditions (F1) and (F2) hold. To

chock the validity of condition (F3), first, we remark that f(u)/u is strictly decreasing

nd

on [0, 00]. Morcover, f'(0) = p > 0, and f(u) takes its maximum at @ =

W0

Sy = M Assume that g € (0, 1], then f(u) is monotone increasing on [0, 00),

and hence, (P0) holds if we consider M = u*. Now, if we assume 1 < ¢ < 2, then

wf(u) is increasing function on [0,00). Hence (P1) holds with A7 = u*. Morcover.

i1 < pkt < 24 (e g € (15)), then wt < @ Hence, if we let M = u”,

then (P0) holds. conclusively, if ¢ € (0,max (zﬂ"—,)] then cither (P0) or (1)

holds. 1f g > max (2, 45), then h(u) == uf(u) = 27 is monotone inere

2, ing
on [u. fr _,)”]v Hence, if we consider M = k* (@), then (P1) holds provided that
ke f (@) < ()" Hence, the above assertions hold as a result of Theorem 2.2 and
Theorem 3.1 [ 1

In the following theorem, we consider the logistic birth function by(u) with ¢ = 1
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Theorem 3.5.3. Let f(u) in Equation (3.3.1) be the birth function by(n) with = |
and assume that | < pk* < 3. Then the following assertions hold:
(1) For any ¢ > ¢, Equation (3.3.1) admits a unique (uwp lo translation) travcling

)

and for a small positive number 3, there erists a traveling wave
= K (1= 5) with U(©) = 3 and

wave solution connecting uw = 0 and u* = K (1

(1) For ¢ = ¢,
profile (U,e*) connceting w = 0 and u*

(111) For ¢ € (0,¢*) there is no traveling wave solution (U, ¢)
milar to the proof of the above two theorems.

Proof. The proof of this theorem
First, we remark that the validity of the conditions (F1) and (I2) have been shown

i Theorem 3.4.7. To check the validity of condition (F3), we remark that f(u)/u is

strictly decreasing on (0, K. Morcover, f/(0) = p > 0, and f(u) takes its maximum at
<2, then f(u) is monotone increasing

= UK Assume that 1< pk*
02 < pht < 4, we lot

7= % with f(i1)
. and hence, (PO) holds if we consider AI = u*.

on [0, %
M =K and we define
[P () I;T (K2 =) = ph (K = w)®)

u

Then by clementary calenlations, the function h(u) is strictly decreasing on [0, 4*]

and hence, (P2) holds. Therefore, the above assertions

provided that 2 < pk* <

hold by Theorem 2.2 and Theorem 3.1 [36]
3.6  Asymptotic Spreading Speed
In this section, we prove that the integral equation (3.3.1), with the birth fnctions

Dy(u). ba(u), and by(u), admits o spreading speed ¢ The spreading of speed is defined
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as follows:

Definition 3.6.1. [120]. A number ¢ > 0 is called the asymptotic spreading specd
(spreading specd) for a function u(t,x) : Ry x R — Ry. if the following statements
hold:

(1)l a(t
1o || 2t

-, and for some ¢ > 0.

(2) it

Remark 3.6.1. (Spreading Specd) [120]. The spreading speed is given by

* = inf {e>0:K(e,\) < 1, for some A >0},
where

K(e,A) = /‘ [“ NI K (s )dyds.

For our model K(c, \) s given by

K(e, ) = ‘A‘ /, Ao y
= /"/“*(7‘)(.\,(
e \\/m i

Remark 3.6.2. If we assume that (B) holds, then there exists ¢ and X solve the

y)dyds

i /1a(s)} e XD dyds,

cquation K(c* . \*) = 1. Morcover, ¢* and \* can be uniquely determined by solving the

Jollowing system (see Lemma 2.2 and Proposition 2.3 [120]):

K(e\) =1,
4K (e, A) = 0.

ix

Definition 3.6.2. [119]: A function ug(t.r) : Ry x R — R, is admissible if for cach
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¢ and X satisfy that K(e,N) < 1. we have

wo(t, ) < 4N > 0, Ve € R, and some y > 0,

Remark 3.6.3. For the given birth functions by(u), ba(u). and by(u). we showed that
the conditions (A) and (B) hold. Morcover. we showed in the previous scetion that

the condition (F) holds under certain conditions. Therefore, by applying Theorem 2.1

[36]. we have the following results:

Theorem 3.6.1. Let f(u) in Equation (3.3.1) be the birth function by (u), and assume
i, Then the following assertions hold:

that 1 < pk* < ¢

(1) For every admissible function uy(t, ), u(t.x) satisfics

Ll =0, Ve o

ssume that uy(t, x) satisfies the property that uy(t.x) > n > 0, ¥t € (1y.1). x| <

(1) :
0, wherety > 0y 2 0. Then,

lim  u(tor) =u', Ve<d,
el et

where u* = [5|u(m-')]“.
Theorem 3.6.2. Let f(u) in Equation (3.3.1) be the birth function by(u). and as-

ALY and k1) < (s

sume that g € (0, max (_714“—)] or q > max

where pk* > 1 and @ is the value where f(u) fakes its mazimum

Then the following

assertions hold:



u(t,x) satisfics

(1) For cvery admissible function uy(t,x

0, Vet

lim a(t.x
s
| <

ssume that ug(t,x) satisfics the property that ug(t.x) >y > 0. VI € (1).1). |

(1
0, wherety > 1, > 0. 1
lim  u(tx) =u', Ve<
oo Jaf<et
where u* =
Theoren Let f(u) in Equation (3.3.1) be the birth function by(u) with q = 1.
Then the following assertions hold:

and assume that 1 < ph* <

(1) For cvery admissible function ug(t, r). u(t.x) satisfics

(1) Assume that wo(t, ) satisfies the property that ug(t,x) > 1> 0, VI € (t1,2). || <

. where ty > 1, > 0. Then,

| dm s

i Co K-k
where w' = K(1 - 52).
4. From the above theorems and the vesults in the previous scction, we

Remark
remark that the minimum wave speed coincide with the spreading speed ¢*
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3.7  Numerical Simulation

In this seetion, we present a numerical simulation to investigate the long time hehavior
of the solution w(t.r). In this simulation, we consider the Nichelson's blow-flics
function f(u) = pue=". By applying the composite Simpson’s rule, we can evaluate

the integral in Equation (3.1.2

To evaluate the solution u(f.a,x) at the mesh points

a.i 2 LN, we solve the reaction diffusion equation (3.2.2) using the method

of lines. In this simulation, we distingnish two cases: the constant case (death and

diffusion rates are age independent), and the age-dependent case:

Case I: In this case, we consider the diffusion and death rates to be constants. This
nmerical simulation shows that Equation (3.3.3) admits a monotone traveling wave

solution. We apply our technique for the values L 100, r =03, A=3,p=1,

D=4, and d = 1 (see Figure 3.1(a) and Figure 3.1(b)).

10, 03,6 1,04 00 A5 103,054,611 ang AL
Z o3
1 / A
asi L |
| it | lo
= o i [
H Il ‘ fn
o [ |
o | | |
o J
: o ’
L ol is X
() Traveling wave solution. The values of (b)) A Two dimensional graph shows the
the paramcters are L= 100, r = 0.3, A= traveling wave solution. The values of the
3.p=1,D=1 andd=1 paramcters are L = 100, = 0.3

3p=1. D=4 add=1

Figure 3.1: Traveling wave fronts for the constant casc.



Case 2 To investigate the effect of age dependence on the solution we add an exponen

tial variation to the diffusion and death rates. Indeed, we consider D(a) = D+«

wd d(a) = d+ ¢ In this case, we choose L = 100, 7 = 0.3, A =3, p = 0.5, D = |
and d = 1 (sce Figure 3.2(a)). Also, we consider aa) = ¢ and 5(a) = « (i
the diffusion and death rates are linear) with the parameters L = 100, r = 0.3, A = 3,

p =05 D=1 and d = 1 (scc Figure 3.2(b)). Figure 3.3 shows a non-monotone

¢ 3.4 shows the spreading

traveling wave solution for the above two cases, and |
of the solution in both direction

L=400, =03,d= 08,0 1, g, A LE100,703,6 1,051, 05 and <3,

Tme hisT

Tme axs T Spatal s X

1) Traveling wave solution when D(a) (1) Traveling wave solutions when a(a)

Do andd(a) = d e The values of ¢ P+ and J(a) = ¢4, The values of the
the paramceters are L = 100, r = 03, A parameters are L~ 100, = 0.3,
3op=1. D=1, andd =05 3, p =05, D=1, andd =1

Figure 3.2: Traveling wave fronts for age-dependente case.



Figure 3.3

0.

(b) Non-monotone traveling wave solutions
and (a) = ¢ The
100, 1

1

when a(a) = ¢
s of the parameters are 1
1= 5D o d

() Non-monotone traveling wave solution
when D(a) = D and d(a) = d. The val
nes of the parameters are L = 100, 1

value
0.3, D=4, add =1 3

0.4
Non-monotone traveling wave solution. The initial condition is o(r)

£ <0 gla) =1, 0

TreasT f
Spac)

ToekiT Sy
() Spreading of the solution when D(a) (b) Spreading of the solution when o(a)
D and d(a) = d. The values of the param- =0 aud #(a) = ¢ The values of the
cters are 03, A =3 p parameters are L = 100, r = 0.3
LD wdd = 1 B p=05 D=1, add=1
Figure 3.4: The spreading of the solution w(t,+) in hoth directions. The initial condi
tion is o(x) “‘A‘\\){ r* 4}



Chapter 4

Populations Dynamics with
Age-dependent Diffusion and

Death Rates on Bounded Domains

4.1 Introduction
I this chapter, we reconsider the age-dependent structured model

du O

D@2 i) LL1)
o da (@) gz — e :

Again u(f,a,.r) represents the density of population of the species at time £ > 0, age
a > 0, and location x € [a,b] C R. The functions D(a) and d(a) are the diffusion
and death rates, respectively, at age . The total matured population at time ¢ and
Jocation « is given by

W
witor) = [ ult.a,yda (11.2)



and the initial data at a = 0, is given by

u(t, 0,2) = bu(t,x)), (1.1.3)

where > 0is the maturation time of the species, A; > 0/ is the life span of the

species, and b(.) is the birth function.

Under the assumption that the diffusion and death rates of mature population are

constants, Liang, So, Zhang, and Zou [80], considered the above model on a hounded

domain. In their paper, they investigated the long tine hehavior of the solution wsing

e-structure

numerical simulation. Xu and Zhao in [139] considered the following

model:

reQCR"

D+ Dyu = di(@)A,u — puy(a)u,
a(t,0,0) = f(un(t,x)), t>-r, x€QCR",

Dyt = dy A gtty, = gluy,) +ult,r,x), >0, reQCR

where f(u,,) and g(u,,) are the birth and death functions, Dy(a) and d;(a) are the

diffusion and death rates of the immature population, and D, and d,, are age in-
dependent diffusion and death rates of the mature population. In this paper, the
anthors investigated the existence and the stability of a strongly positive steady-state
solution.

In this chapter, we investigate the model (4.1.1) (4.1.3) when the spatial domain
is hounded, and the diffusion and death rates are age dependent. We organize this

ablishing the new model on honnded

chapter as follows: We start in section 2 by

domain. I section 3, we investigate the existence of principal cigenvalue and the

corresponding cigenfunction when the birth function is linear. In section 3, we inves-

tigate the existence of a steady state solution when the birth function is nonlincar. In



section 5, we concentrate on the long time behavior of the solution. i.c.. we investigate

the stability of the solution. In section 6. we present a numerical simulation. Finally,

section 7 is devoted to show the existence of positive steady state solution when the

birth funetion f(u) is nonlinear positive function.

4.2 Age-Structured Model on Bounded Domains

In this section, we consider the model (4.1.1) (4.1.3) when the spatial domain €
is a finite and closed interval in R. Lot u(f.a,x) denote to the density of species
population at time ¢ > 0, age a > 0, and location x € = [0, 7]. We rewrite the
model (4.1.1)-(4.1.3) in the following cquations:

du du

9*u
= — 2
o 9 = Dl — d@, (2.1

A
w(t .r}*/ u(t, e, z)da

and

u(t,0.x) = blw(t.r)). (1.2.3)

To derive new models for this case, we should impose the above model with boundary

conditions. For this study, we consider the Neumann boundary conditions as well as

the Dirichlet boundary conditions. Tn the following analysis, we derive a new model
subject. to the Neumann boundary conditions. Since the same analysis can be done
for the derivation of a new model subject to the Dirichlet houndary conditions, we
omit the details. Now, we consider the model (4.2.1)- (4.2.3) subject to the Newmann
boundary conditions:

d

)
“u(ta,0) = 0 and ~—u(t,a,7) =0, £ >0, a > 0. (4.2.1)
D D




Wefix s > 0 and then we define a function (s, a,) = u(s-+a,a,). Hence, we obtain

o [ou o
= = |=(tn,2] =(t,a.2
2a Fhea) + glbas)

=ats

(a+ s.a,x) — d(a)ula + s, a,.r)

La,x) — d(a)e(s, a,x)

We re-arrange the above equation with the Neumann boundary conditions as:

o

da

iy

/;(”)Zf; (s a,2) — d(a)o(s,a

(5,0,0) = 0, and

£ Gts,a,x) =10 (12.6)
O

0.

To solve the above BVP (Boundary Value Problem), we apply the separation of
variables technique. Thercfore, we let (s, a,x) = A(a)X () and then substitute it

into (4.2.5) to get

A(@)X () = D{a)A(@)X"(x) — d(a)A(a)X () (

=

The corresponding cigenvalue problem for the BVP in (1.2.5) (

EX
CC X =0, O<c<m, (1.2.8)
e

X'(0)=0, X'(x)=0. (1.29)

The solutions of (1.2.8) and (4.2.9) are

Xu(x) = cosnx, n



and their corresponding cigenvalues are

A=n, n=0,12--
Morcover, the solutions of the differential equation
Aa) + (d(@) + n*D(a)) Aa) = 0 (4.2.10)
are given by
Au(a) :/‘,,(.»)J(u)t'xp{fulr\(u)}. n=01,2--, (1.2

where

..(u)—/’“u({w:. 4(..):“.,{ /””d(f)d(}

Thus, we have
o(s.a,x) = Z(,,(.s)‘f(u)('x|){7n‘n(u)}tl»u r (4.2.12)
=

To evaluate the coefficients ¢, (s) in the above equation, we use the initial condition
0(s.0,2) = b(w(s,r). Let @ = 0 in (1.2.12). then we have

blaw(s,0)) = v(s.00r) = 3 e (s) cos

Thercfore, it follows

= 7'[ A bo(s. ),

and

/'I,(u-(....))(-.Nmn». =12 B

ke



On the other hand,
altya,e) = o(t—a,ar)
= B S calt—a)
15:7')‘4"11(11'((fl!.]/)'(li»!nzy
M/”‘h[u-{/ a.y)
x {I b L[uv\u (i — y) + cosne + y)] e ”"”},/:/

p {—na(a)} cosnr

" bt — a, y)Fola, v, y)dy,
o

where

w0l cosmr cosny

s

Ki(ary) = M(l

1f we substitnte this into Equation (1.2:2). we get the following integral equation:

. N
:/ / buw(t — a.y) Ky (@, y)dyda, ©> A (d.2.13)
b

1) subject to the Dirichlet boundary conditions:

Now, we consider Equation (1.2

120, az0. (1.2.14)

u(tya,0) =0, u(t,a,x

Similarly, we apply the separation of variables techmique to the following boundary

value problem,
- .
il 4,)Lﬂ(~_z._..-; d(ayv(s,a,x),

da



subject to the boundary conditions

v(s5,a,0) =0, v(s,a,7)=0 (1.2.16)
Then, we obtain
u(t,a,x) = v(t—a.ar)
= Bla) Y ealt = a)exp{=n*a(a)}sinna
st
. @ /”” o(t — a,y) (Z‘ s s .._./) dy
20(a)

=t 7/’1,(“-(/7”._.,))

%

L [cosn(x — y) — cosnlr + g)] @y

= /h (w(t — a, y))Kala.x, y)dy.
where

2 J(..)

- 3 e i sinny
st
Ha
= '(' Z[(uwr o= y) — cosn(x + )] e O
T oam

If we substitute Ky into B

ation (

we get the following integral equation

w(t,x) = /"" f“?h(u'(l —ay)

y)dyda.
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4.3 The Existence of a Principal Eigenvalue and
Principal Eigenfunction

In this section, we show that the integral equations (41.2.13) and (4.2.17) admit a
positive (nonmegative and not identically zero) temporal-spatial steady state solution
with a form MV () when the birth function is lincar i.c., f(w) = pw. To do this,
we assume that w(f, @) = MV () and we substitute it into Equation (1.2.13) and

Equation (1.2.17), we get

A -
W () ,/ / MW () (a0, y)dyda (13.1)
and
A w
W) = / [ MW () Ra(a,, y)dyda, (13.2)
b

respectively. Now, we define

Ki(2y) ’W'(r(,(/\; +2 30 1 (A) cos mrcos ,.,,). (13.3)
L =t
where
\ . i
(A / G ('\””(”””"'“'”u/u. Y(a) /” d(§)dE; n=0,1,2, . (1.3.0)

Similarly, we define

K, y) i" 3P (A) sin e sin ny, (13.5)
T o=l



where T,(A), 1 = 1

i given in Equation (1.3.4). Morcover, we interclia

the order of the integrals in Equation (13.1) and Equation (1.3.2) to get

W) = TL(W) () = Ky + W / W () K (. )y, (43.6)
o
and
W) = 1)) = Ky W = [T W) Kot n)d, (137
o

where Ky(r.y) and Ka(r.y) are given in Equation (4.3.3) and Equation (1.3.5), re-

spectively

Assumptions and Notations: We assume that the diffusion function D(a) is a

continuous, positive, and bounded function on its domain.  Let myy and Ay be

its infimum and supremum, respectively. fe. mp = infazm0 D(a) and My =

supy arly. sume the death function d(a) is a contimons and

o D(a). Simil

nonnegative bounded function on its domain. Also, we let my and My be its infimum

and supremum, respectively. Morcover, we assume that A > —my in the case of Neu-

mann boundary conditions and A > —(my + mp) in the case of Dirichlet houndary

conditions.Under these assumptions, we have the following notes:

(1) T,(\) satisfies the inequality

(M) o~ Ot )
< S —
S e

¢
Xt My + My

(4.3.8)

(2) By using the right inequality above and the houndeduess of the sine and cosine
functions, it is casy to sco that the series in Equation (4.3.3) and Equation
(43.5) converge uniformly and absolutely (For the convergence of the Fourier

)-

series, one can see Chapter 2 [22]

Our goal now is to show that the linear operators in Equations (1.3.6) and (1.3.7) are



compact and strongly positive operators over appropriate function-spaces. so that we

can apply the Krien-Rutman Theorem (see Theorem 2.2.1). The proof of compactness
will be given for T3 while we omit the proof of Ty. First. we introduce the following

useful concepts and results:

Definition 4.3.1. (Degenerate Kernels) The Kernel K(r,y)

Eitia;()b;(y) is

said to be degenerate. If a;(x) and by(x) belongs to Lafa,b]. and {a,(x)}7" is lincarly

independent. A similar assumption hold for {b,(r)}"" .
Theorem 4.3.1. [63] Consider the Lyfa,b] space, and let K be a degencrate kernel

Then the integral operator

Ko= iu,(:) /’vlu(!/)ul!/)'/y.
&

is compact operator if a,(x) and by(x) are in Lofa,b] for all j
Therefore, we state and prove the following theorem

Theorem 4.3.2.

ume that \ > —my in the case of Newmman boundary conditions

and X > —(my-+mp) in the case of Dirichlet boundary conditions. Then the operators

in Equation (4.3.6) and Equation (4.3.7) are compact lincar operators:

Proof. The proof will be for T define the following sequence of compact operators

K0

S (A) sin e / sinny 6(y)dy.
=1 0

Indeed, it is compact by the above theorem.
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Clait: K6 —

Ko~

=20 (i""W”‘“”-"»*i"".wtv) i:“n(/\)wlllm~|umh!(l/|ll:’)
2w

=

? ([ S

xlé(lly,

(Z (A sin e sinngo(y) — 3 Tu(A) sin e sin .,J,u(,,;)]././
ot b=

tl.'/) 7

Morcover, The above integrand

In

sinny — 37 T, (A) sin e sin m,l
=]

inequality.

he last inequality comes by Holder

is dominated by an integrable function for cach m, this is true by using lequality

(4:3.8). Henee, by the dominated convergence theorem, we have

as m — oo

Thus, the set of compact operators (K0}, converge to Ty, This implics that 75
is o compact linear operator. Similarly, we can show that 7} is compact [

Remark 4.,

1. To prove that Ty is a strongly positive operator, we consider the space

(o = () € X [o(e) > 0}

of functions X = C ([0.7)). with its positive cone K -

The cone K has a nonempty interior, and ils interior consists of strictly positive

o = {d(x) € Xy |p(x) > 0}. In the following

Sunctions over [0,7). i

theorem, we show that Ty is positive, i.c.. T,X, € X,. Morcover, we show that Ty is
a strongly positive operator, i.c., TyX, \ {0} € X{.

Theorem 4.3.3. Assume that A > —my. Then the lincar operator 1y is a strongly

positive operator over the space X,
Proof. The proof will be in two parts. In the first part, we show that 7} is positive.
I the second part, we show that T} is a strougly positive operator.
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From Equation (4.2.17), we have

g = /\ /“f,:f(u;(’h' [H.

B /,‘ll"f(u), S (;/" {

Since pi(a) e M > 0, it is enough to show that

) cos r(v.\u_u] o) dyda

0 cos t-mn_l/] .w(,/)lm) du.

0 cos e cos W,] Su) dy

is positive (resp.. strongly positive). We notice that the expression (1.3.9) is the

explicit solution of the following boundary value problem:

v [l
G0 = D@3,

HL 0. s =0, 0 H
r (0.0 = 5 (ma) =0, a€0.00);
V(,0) = o(x), r € [0.7]. 6(r) € X,

Positivity: Let o(x) € Xy be a nonnegative, we want to show that V(r.a) has no

hof is

negative values on D = [0,7] x [0, 4] (where D = (0,7) x (0.4)). The y

iction. Suppose V(r,a) has a negative value at some points ¢ = (,a)

by contrs

0.7] x [0, Af], then V(ar,a) has a negative minimum at some points p = (g, ay) €

), 7] % [0, Al It is casy to sce that ag # 0 (as well as @), since this contradicts

the assumption ¢(r) > 0. Morcover, p ¢ (0.7) x (0. 4], since this contradicts the

maximum principle in Theorem 2.4.1. Therefore, p = (rg.a0) € {0.7} x (0.A4]
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However, such choice contradicts the boundary conditions. In fact,

av v
dn|, _,— Or

dv
dn

=0 and

i)\'l

0 ‘14!

which contradicts the maxinum principle (Theorem 2.4.1). Tn fact, the normal deriva-

tive at such points shall be strictly negative (by Theorem 2.4.1). Therefore, there is

1) € [0,7] x [0, 4] and V() < 0. So T maps the cone K =

1o such point ¢ =
into itself i.e., 71X, C Xy

ty: In this part, we want to show that V(r, a) is strictly positive pro-

rong P

vided that the initial data ¢(r) is not identically zero. i.c., ¢(F) # 0 for some T € [0

t, we assume that V(rg.ag) = 0 for some

Again, the proof is by contradiction.
points p = (. aq) € [0,7] x (0. 4. In the above paragraph we showed that V(r,a)
cannot. have negative values. So, if such a point exists then it would be local mini-
. According to the maximum principle this point canuot be in (0,7) x (0, 1.
Morcover, if p = (29, a0) € {0,7} x (0. 4], then the normal derivative at p should be

¥ negative according to Theorem 2.4.1, which contradicts the houndary condi-

strict

0and & = 7 is zoro). Therefore, V(r,a) > 0 for

tions (the normal deri

cach (a,a) € [0.7] x (0, 4], Morcover, we notice that V(x,a) cannot be identically

zor0 i ¢(r) is not. identically zero due to the Fourier series representation of the so-

Tution (not all the coefficients are zeros in the Fourier representation). In addition, it

canmiot he constant if ¢(x) s not constant due the same reason. Henee, L maps the

continnous functions that are not identically zero to a strictly positive function. i.c.

7y maps X\ {0} into X9, This implics that 7} is a strongly positive operator. 1

As a consequence of the above two theorems we have the following theorem:

Theorem 4.3.4. Assume that X\ > —my. Then the operator Ty = C([0, 7)) — C([0, 7))

has a positive principal cigenvalue p(\) which depends on X. The cigenvaluc is simple
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and the corresponding cigenfunction is strictly positive.

Proof. The proof is a dircet result from Theorem 4.3

. Theorem 1.3.3, and the sccond
part of Krein-Rutman Theorem. 1

Next, we prove that 7 varies continuously in A. This leads p(A) to vary contin-
uously with A. In fact, this allows us to find Ay > —my such that its corresponding
principal cigenvalue satisfics p(Ag) = 1. Morcover, the principal cigenvalue p(Ag) = 1
lias a positive cigenfunction ¢(x). Thercfore, the cquation (T30)(x) = 6(r) hold. To
find such Ay, we wish to find Ay and Ay such that p(A;) < 1and p(Az) > 1. Then by

the Intermediate Value Theorem we can find Ay such that p(Ag) = 1.

Theorem 4.3.5. Assume that \ > —mg. Then the operator Ty(A) varics continuously

with \

Proof. Recall that

/ " Ky (e p)b(y) dy,

0

where

»

Ki(a,y) = o(A) +2 3 T(A) cos nrcos m,)

To show that 7y varies continuously with A, it suffices to show that

F(A) =

(I],(,\) +2 i Iy (A) cos nrcos m/)

is continons in A First, we show that I',(A) is continuons in A, for cach n =

0,1,2,---

Re-call that

A
() = / exp{= (A +(a) + n*a(a)) } da
for any given A > —mg. We can choose & > 0 such that A — & > —my. Let ¢ > 0, and
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< 8. Thercfore,

choose A and A such that

Tu(N) = T(R)| =

‘/"U.\'p{f(,\u +3(0) + nta(@)} = exp {~(Ra+5(a) + n*a(a) ) da

< |

. /‘l'('xp{f(ﬂu)i»n"u(u))}lt da _ i

da

i R
< M, jl 'ﬂ""|./u (1.3.10)

< where M, = exp {—(my + n*mp)r} .

for cach n = 0,1,

Now, f(A.a) = exp {~Aa} is contimons on the compact set [A— 6, A+ 0] x [r, A
Thus, it is wniformly contimous, Thercfore, for ¢/201, (A, — r) there exists a 8 >

such that 6y < & and

A

A

<

whenever

@

‘1 ™ .\u‘ ”

—
SN (A1)

Combining this and ( , we get

[Pu(h) = Tu)] < 6 whenever [~

L Also, Ty(A) is

Since the sum in F(A) converges uniformly in A, then it is contim
contimous, which implics the continuity of F(A). To finish the proof, we let ¢(r) €
€4(10,7]) be sueh that [6()]| = sup eaéle) = 1. F() is contimons, so for cach

« >0, there exists a & > 0 such that

<4

|/<'(,\)~/<'1X)y<'1. whenever  [A )



Morcover,

- U (FNol) — F(Ro(0) m/l
o
< / [FO)6w) ~ F(Row)|dy

< (L "'v('\"""x'|~"”) (A (',"w))"m/)l'

€
< m-=¢

[1iNé = Ti (N9

whenever

Thus,
< whenever [\ 3] <&

[

Therefore, T4(A) is contimons in A. 1

Now. we turn to prove that T is a strongly positive operator. To do this we
consider the space of continuous real valued functions that vanishes at the houndary
and have a continuous first derivative. Indeed, we consider the space Y = CJ([0, 7])
We also consider its positive order cone Yy = {¢(x) >0 [ ¢(x) € Y}, In fact, the
cone Yy has a nonempty interior. The interior of Yy (as a notation Y7) contains all
the functions that are strongly positive on (0, 7). vanish at the houndary, and have a

strictly negative normal derivative at the boundary ( see [62], page 43)

Remark 4.3.2. We consider the space Y = CA([0,7)) with the following norm

Tl = nmax [96)]+ mas. [4/(2)] (13.11)

eliin] €lon]

Theorem 4.3.6. Assume that X > —(m + mp). Then the operator Ty in Equation

(4-3.7) is a strongly positive operator over the space Y



Proof. Re- T as:

A .
T = / "‘L[ 3 e i e ~’mn_:/]: ) dijda
L &

Ll 1
u :
. [ phla)e *"(

since p3(a) e~ > 0, it suffices to show that

[’ 30 Gin e sin m/} o) dy

& =t

2 e
Lé = V(r,a) = :/ {Z 0 i ﬁi..m,} o(y) dy
g

is strongly positivity. To this end, we consider the space Y = CJ([0.7]) and its
positive order cone K = ¥, Morcover, we notice that the expression in Equation

(1:3.12) is the explicit solution of the following boundary value problem:

av >V

o = PO

V(0,a) = V(m,a) =0, a€[0,00); (1.3.13)
V(a,0) = o), v € [0.7], () € X,

Positivity: Let ¢(x) € Yy be a nonnegative function. We want to show that V(r.a)
has no negative values in D = [0,7] x [0, 4] (where D = (0,7) x (0,4,)). The

proof is by contradiction. Suppose that V(r.a) has a negative value at some points

q = (x.a) € [0.7] x [0, 4], then V(2,a) has a negative minimum at some points

ro.ag) € [0.7] x (0, Af]. Tt is casy to see that ay # 0, since this contradicts the

p=
initial data. Morcover, p ¢ (0,7)x (0. A, since otherwise, it contradicts the maxinum

principle (Theorem 2.4.1). Thercfore, p = (xg,ay) € {07} x (0, A]. However, This

choice contradicts the houndary conditions. In fact, we have V(0,a) = V 0.
Hence, there is no point ¢ = (7,a) € 0,7] x (0,00) such that V(g) < 0. Thercforc.
Ty maps K =Y, into itsclf, ie. TY, C V.
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Strong Positivity: To prove that T3 is a strongly positive operator. We want to prove

that V(. a) is strictly positive on (0,7) x (0. A, provided that the initial data ¢(r)

Again, the proof is by

ero.

is notidentically . 0(T) # 0 for some T € [0,

contradiction. Assume that V (g, ag) = 0 for some p = (rg,ag) € (0.7) x (0.4 In
the above paragraph, we showed that V(r,a) cannot have a negative values. So. if

sueh a point exists, then it would be a local minimum. By the maximum principle

this point. canmot. be in (0,7) x (0, A, In fact, if (+9.a0) € (0.7) x (0, A, then the
solution is identically zero on [0,7] x (0. A4;] due to the maximum principle, but.this
coutradicts the initial data and the continuity of the explicit form of the solution.
Indeed, the above series representation cannot be zero if ¢(x) s not identically zero,
Also. the solution cannot be a constant since the solution V(ar, a) is continuous and

zero at the boundary. Morcover, the normal derivative of V(a.a) is strictly negative

according to the maximum principle. Since V(r,a) is a solution of (13.13), then
V, () is continuons. Therefore, Ty maps Yy into its interor. Hence, Ty is a strongly
positive operator. 1

Theorem 4.3.7. Assume that X > —(my + mp). Then the operator Ty has a posi-

tive principal cigenvalue p(N); the corresponding cigenfunction is ive and not

identically zero.

Theorem 4.3.6 and the second

Proof. The proof is a direet result from Theorem 4.3,

part of Krein-Rutman Theorem ]

Theorem 4.3.8. Assume that X > —(my + mp). Then the operator Ty varics con-
tinwously with .

Proof. The proof is similar to the proof of Theorem 4.3.5. 1

iscussion and Examples: Following the same argument in [15], we wish to find A,

and Ay such that p(A;) < Land p(A2) > 1. 1f we can do that, then by the Intermediate

o
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Value Theorem we can find Ag such that A, < Ao < s and p(Aa) = 1. This is true
since p(A) varies contimously in A, Using inequality (13.8), T,(\) — 0 as A —

20 Vi = 0,1,2,+++, and so T(A) — 0 as A — 0o, Therefore, |73 — 0 as A

oo,

Hence, p(A) — 0, and so there exists a Ay such that p(A) < 1. To find Ay such

that p(A2) > 1 is not e

in the general case. Therefore, we consider the following

examples.
Example 4.3.1. We consider the death and diffusion ratcs to be constants, i.c.,
d(a) = d and D(a) = D. Then

_exp{-(A+d+n’D)r

(Y (A+d+n2D)

Vn=0,1,2,-

It is casy to sec that Ty(A) = 00 as A — —d* (resp. T'(A) = 00 as A — —(d+D)")
Therefore, the operators Ty(N) (To(N) is unbounded. Thus, p(A) — oo as A — ~d*
(resp. as N — —(d + D)* ). Therefore, there exists Ny such p(A2) > 1. Since there
crists p(A) < 1, as a consequence of the above discussion, there cxists Mo such that

p(\) = 1. Thus the equations Ty(¢)(x) = ¢(x) (

O)(x) = ¢(x)) holds. Also, the

Junction ¢(x) is positive (resp. nonnegative and not identically zcro).

Example 4.3.2. Assume that X > 0. and re-call that

Aa) = / d(s) ds.
o
Morcover, let my and M, to be its infimum and supremum, vespectively. Then

exp {~01,) < exp {~()} < exp {-m, )}



Therefore, Ty(N) is bounded below by

exp{~(\r+ M)} /A

Henee, Ty(X) s unbounded as X — 0. Therefore. there exists Ny near 0 such that

pA2) > 1. T

is implics the cxistence of No € (M. Xa] such p(\o) = 1. Thercfore. the

cquation Tyd(x) = d(x) holds, where ¢(x) is pe

ve. Similarly, the operator cquation
Typ(x) = d(x) holds, where ¢(x) is nonnegative and not identically =cro.

I the pre

ous analysis, we showed the ¢

stence of a principal cigenvalie

determine Ay, we have the following theorems.

Theorem 4.

.9, Bquation (A.3.1) admits a principal cigenvalue Ny with a corre-

sponding cigenfunction W () =

The eigenvalue Ny can be determined by solving

the following cquation:
o) =1,

where

\

Po() = [ exp (= (a2 @)} da,
and
= 8 '3
Aa) = [ ey

Proof. Let W(x) = L € [0,

i Equation (43.1). By using the fact that the

functions {cos

o are orthogonal, we get the result direetly. ]

Theorem 4.3.10. Equation (1.3.2) admits a principal cigenvalue No with a corre-

sponding cige

function W(r) = sinnr,x € [0,7). The cigenvalue Ny can be deter

mined by solving the following equation:

N =1
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where
"
) / exp{~ (Aa+7(a) +a(a)} da

The functions 3(a) and a(a) are given in the following formula:
rla) = [',l(smg. and afo) = /“"nm./g_
respectively.
Proof. let W(x) = sinn,a € 0,7], in Equation (13.2). Again, by using the fact
that the functions {sinnr} ¥ are orthogonal, we get. the result dircetly. ]
4.4 Existence of Steady State Solution for Nonlin-
ear Case

T this scetion, we consider Equation (4.2.13) and Equation (4.2.17) with a nonlincar
birth function b(u) ( eg. bw) = pue=", where p,q, and s are positive constants). To

show the

xistence of steady state solution, we assume that w(f, x) is free of the time

variable £, i.e., w(t,r) = w(r). Substitute this into ke

nation (1.2.13) and Equation
(4.2.17), to get
w(z) = /" / bw(y)) (a2, y)dyda,

and
w(z) / " A b(w(y))Kola, x, y)dyda

For the special case bw(r)) = puo(e)e O e have we got

w(z) /" /"1 pw()e O (a, 2, y)dyda,
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and

)= / & /“ " (e IR

1,x.y)dyda.

© the above equations with respect to the variable a, we get

w(z) = [ ()= K7 e,y )y, (141)

(e y)dy. (1.1.2)

wte) = [ ol K

The kernel functions K7 (r, ) and K3, y) are given by

3 cucos nacos ,.,/> .

and
Kj(x.y) 3 i nasin ny,
™
am
where

n ) .
w,,,/ e OEHa) oy (a) / d(E)dE, =01,

Jo

As o remark, we notice that the constants ¢, n= 0, 1,2, satisfy the inequality

o (VA
- < 113
My + b,y = (i3}

Therefore, the above two series conve uniformly and absolutel

Hence, Ki(r.y)

and K3 (e, y) are continuons in the variables x and y.

Remark 4.4.1. As we showed in Theorem 4.3.3 and Theorem [.3.6, we can show

that the corresponding linear integral operators with the kernel functions K;(r.y) and

y) are strongly positive.  Thercfore, K

L) is positive on [0.7] % [0,
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K3(e,y) is positive on (0,7) x (0.7)

We rewrite the nonlinear integral equations (4.4.1) and (4:4.2) in abstract form as

the following;

w(x) = Ny(w)(z) == / w(y)e O K (2, y)dy, (1.0.1)
o
and
w(z) = Ny(w)(z) i= /"..‘(,,)« S 3 (o, )y, (1.4.5)
o

Our aim no

L is to show that the above integral cquations admit a positive (rosp
a nomnegative and non-zero) solution. For this purpose, we consider the following

general nonlinear integral cquation:

w=N():= / K (e, ) f )y, (1.1.6)
o

where K () and f(u) are the kernel functions and the birth function, respectively.

Now, we assume that f(0) = 0. In this case, u = 0 is a solution for the nonlincar
integral equation (1.4.6). To prove that N has a positive solution we wish to apply
Krasnosel'skii’s Fixed-point Theorem. The Krasnosel'skii's Fixed-point. Theorem is

given in the following theorem:

Theorem 4.4.1. (Krasnosel'skii Fived-point Theorem) [53, 67 Let X be a Banach
space, and let K C X be a cone in X. Assume that .8 are two open subscls of
X with 0 € Q, @ € Qy and let T2 K0 (2 \ ) — K be a completely continuous

operator, such that cither

(i) ITull < flull. w € K00

s and |Tull > [lull, w e K0 0Q: o
(ii) I Tull > llull, w € K 00, and | Tull < [lull, u € K N0y,
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Then T has at least one fived point in K 0 (0 \ )

For a generalization of Krasnosel'skii’s Fixed-point Theorem, one can see [71]. To
o further in our proofs, we need to impose the kernel function K (+,y) and the birth
function f(u) by some assumptions. Hence, we assume the following:

Assumptions:

(K) We assume that K, y)

stics one of the following conditions
(K1) K(a,y) is & continuous and positive function on [0, 7] x [0, 7], or

(K2) N (x.y) is a continous and nonnegative function on [0, 7] x [0.7].

() We assume that f(u) satisfics the following condition:

(F1) f(u) is

continuous, nonmegative and bounded funetion. Morcover, we assume
that f(u) is differentiable on u € [0,00). £(0) = 0, //(0) = 1, and lim f(u)/u =
0.

Lemma 4.4.1. Assume that K1 (or K2) and FI hold. Then the operator in Equation

(4:4.6) is positive. i.c., it maps the cone of positive functions Xy = {¢(x) € X |o(x) > 0}

into itself.

Proof. First, we show that N maps C ([0, 7]) into itself. Let i, e a sequence in [0, 7]

such th

. converges to . Then

IN6(e) = Nota)l = | [ K s@as— [T K@nremy
< [TIR GG = K @)y
< Wl [ IR G =~ Kol dy
8

Now.
|K (e y) = K(e,g)| < K (@, )| + |K (e, y)] < 2M
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where A = e ()l Using the Dominated Convergence Theorem, we ave
s efoo]

i V¢

No@)| < [Ifll, Jim /W\I\'(.r,,.v) — Ko, p)dy
= I/l /’ lim |K () = Ko, y)| dy

0.

The last equality comes by the continuity of K (). The positivity of the operator N

comes direetly from the assumptions on K (. ) and f(u) to he nonmegative functions
[

Lemma 4.4.2. Assume that KI (or K2) and FI hold. Then the operator N

€4([0,7]) = C,([0,7]) is a continuous operator.

Proof. Let (), converges uniformly to ¢(x). Then é(x) € Cy ([0, 7]). This is true
sinee € ([0,7]) s a closed subset of the complete Banach space C([0, 7). Thercfore,

C([0.7]) is complete. Next, for cach « € [0, 7], we have

= [ Kt s s = [ Ko
< [T IR ) - K @] dy
< A [T 1) - @A)l dy

< const. | — éll..

The last inequality comes by applying the Mean Value Theorem on f(u). Thercfore,
1N~ Nl < const. 6 — ]

which implies the continuity of .
Remark 4.4.2. To prove the compactness of the operator N. we apply the well-nown
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Ascoli-Arzela’s Theorem. i.c., we have to show that T(B) is uniformly bounded and

cquicontinuous in Y, where B is any bounded subsct of X. In our case. X = C([0. 7]

Lemma 4.4.3. Assume that K1 (or K2) and FI hold. Then the operator N

C([0.7]) = Cy ([0 7)) is compact.

Proof "To prove this result, we apply Ascoli-Arzela’s Theorem. So. let (6,),c be

wniformly hounded sequence in €y ([0, 7). .., th ists 7 such that ||, (0)]] < A7

for cach n € N and for each o € [0,7]. Consider the family F = {No, [n e N}.
To apply Ascoli-Arzela’s Theorem, we need to show that F s wniformly hounded
and eqicontimous. To prove that F is wniformly bounded is obvious. In fact, it

comes from the boundedness of the functions K(r,y) and f(u). Indeed, we have

[Nou| < 7M|f]l.. To prove that F = {Neb, [n € N} is cquicontimons, for given

g € (0.7, we estimate

NG (a:

) = K (v )] f(ou(n)dy

Nl = |1
< W [ 1K) = Koy, (1)

Therefore, K (. y)

Re-call that K (. y) is continuous on the compact set. 0, 7] x [0,

cach ¢ > 0, tl XSty

is uniformly continous. Thus, for

& >0, such that

K (2 ) = K(am)| < whenever [[(e2,y) — ()| < 0.

‘
Tl
Combining this and (4.4.7), we gt the result. 1
Using the above sequance of lemmas, we can prove the following theorem

Theorem 4.4.2. Assume that K1 (or K2) and FI hold. Then the operator N
Cy([0,7]) = Co([0,7]) is completely continuous.
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Proof. The proof is a direct result from Lemma 4.4.2 and Lemma 4.1.3. 1

Remark 4.4.3. The Kernel function K(x,y) is positive by assumption (K2) on

Theorem 4.4.3. Assume that K1 and F1 hold. Morcover, assume % > 1. Then
there exist two distinet positive real numbers r and R and a positive solution u(x) of

Equation (1.4.6). Furthermore, this solution satisfies the inequality r < [[u] < R

Proof. o prove this theorem, we apply Krasnosel'skii’s Fixed-point Theorem. W

have showed in Theorem 4.4.2 that N is

completely continnous operator from
€, [0.7] into itself. To complete the proof we need to check the validity of one of
the conditions in Theorem 441 In fact, we camnot apply Krasnosel'skii's Fixed-
point Theorem on the cone K = C ([0, 7]). Therefore, we define a smaller cone (see
19))

Ky {u(.r)C N

m
in u(z) > M
oo wle) 2 o ““”}

laim: The operator N maps the cone Ky into itself. Tn fact, we have

Nu(z) > ,..[_/(uw))d;/

> % /”"/(un,/)),nn K (e, y)dy

o]

m ol "

> ﬁ)l‘ﬁ‘.‘y.ﬁ Ty K (@ y)dy
m - "

5 _
ymli; [) S(u(@)K (x.y)dy
m o
SNl

Hence,
i Nu(r) > % | Nul|
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Therefore, the operator N maps Ky into itself. Since lim M = 0. then there exists
i

a sufficiently large positive real number /2 such that

1
[w) < g=u Vu [R.oc).

Let
Q= {u(r) € Ky | [lu]l < R}

Then Va € 9, [Juf| = R, we have

Nu(x) < ‘\I/Wf('l(m)'l.'/
o
< A\lﬁ_/:u(.u)«h/

<l

Thercfore, | Nul| < flull.

Sw)
m

0

Loand 2 < 1 Therefore.

According to the assumptions, we have

there exists a sufficiently small positive real mumber r such that f(u) > 2u; Vu €

[0.7]. Let
Q= {u(r) € Ky | lufl <r} .

we have

Then Ya € 9, [Jul = r,

Nu(r) > m/ﬂ”/(’li!/i)"u
b4 ﬂ/”" u(y)dy

m
Mom x
> — X — ||u dy
2 X, A

=l



Thus, by Krasnosel'skii's Fixed-point. Theorem, N has a
1

Thercfore, [[Null > ]

positive solution u(xr). This solution satisfics r < [[u]|

Corollary 4.4.1. Assume that m*/M > 1. Then the integral equation in (1.1.1) has

a positive solution

Proof. The proof is a direct result from Theorem 4.4.3 and Remark 111 1

In the case that K. y) is nonnegative, then m = 0 is the minimum value of

K (r.y). and hence, the above result is not applicable anymore. Therefore, we miake
the following modification remark to show the existence of a nonnegative and not
identically zero solution

7).

Remark 4.4.4. Assume that K(r,y) is symmetric and positive on (0.7) x (0,

Morcover, we assume that K (r. y)

Then K (x,y) takes its mazimum on (0,7) % (0,

takes its mazimum al a point of the Jorm (xe,x0). Then there exists a closed neigh-

) = O, + 6] x [2g = 8,00 + 8] such that

borhood at (rg,x0), say G :

x0 — 8,20 + 0. Yy w € [0.7].

K,

9> %I\(u'.y}: VreG

where m = win K(e,y) (sce

Consider the space
Cy = {d(x) € C([0,7]) | $(0) = ¢() = 0} ,
and its positive cone
K =CH([0,7]) = {o(x) € Co| () > 0}

98



Define the cone

Ko= {um € I\".V.Lu. >3 n,,-,u}‘

> 1. Then we can prove the following theorem.

Theorem 4.4.4. Assume that K2 and F1 hold. Morcover, assume that K (x.y) sat-
isfics the conditions in Remark §.4.4 and 25 > 1. Then there cxist two distinct
positive real numbers r and R such that the integral equation in (4.1.6) has a nonncy-

ies the inequality r < |ul] < R

ative non-zero solution u(x). This solution sat

Proof. First, we show that N maps the cone Ky into itsell. In fact,

Nu(z) = _/;/\’(.».V)/(..w)w,,

> K G )y
Ml
3 NVu), Vee G vze

Thercfore,

i o) = min Nu(r) > % |Nul|

Hence, N maps Ky into itsclf

According to the assumptions, lim f(u)/u = 0. Thercfore, there
ciently large real munber R such that f(u) < Zzu, Vo € [R,x]

Let
Q= {u(r) € Ky | |lull < R}
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Then Yu € 90y, [lul = R, we have

xw»g)dem@
o
»
< ‘“W[, uly)dy

< lull =R

[(u Yos?
Henee, [|Nul| < [Jull. Also, by the assumptions, we have |.n~,"157’ — Land 2% > 1
o

a sufficiently small positive real number r such that f(u) >

Therefore, there exists
Fakztty Y € [0,7]. Let

Q= {u(x) € Ko | flull <}
Then for all w € 9, [Juf] = r, we have

Nu(z) = A K (e, y)f )y
> [ K )y
> m /(_I(u(.'/))rl.u

mM
2 I
/” u(y)dy

= 20m?

M
- 20m [ )y

M m
> — _ U
2 g Xy el [

=l

Fixed-point Theorem there exists

Hence, [[Null > [Jull. Therefore, by Krasonels
a positive solution u(r) € Ko. This solution satisfies r < [[ufl < R
Corollary 4.4.2. The integral operator in Equation (1.0.5) has a nonnegative non-
zero solution solution provided that 26m*/M > 1, where § is described in Remark
444
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proof The proof is a direet result from Theorem 4.4.4 and Remark 441, In fact, the

kernel K3(r. y) is symmetric and takes its maximum at (3, 5) 1

Now, we re-consider the integral cquation (4.1.6), and we assame f(0) # 0. In

this case, 1= 0 is ot a solution for this integral equation. Therefore, we can apply

Schaefer’s Fixed-point Theorem (see Theorem 4.4.5) to prove the existence of a non-

negative solution for this integral equation. To do this, we impose the kernel function

K (ar,) and the birth function f(u) by the following assumptions:
(K1) The kernel K (x,y) is continuous and positive on [0, 7] x [0, 7], or

) is continons and nomegative on [0,7] x [0, 7]

(K1%) The kernel /(.

(1) Assume that £(0) # 0, f(u) is continuous, nomegative, and bounded function

Morcover, we assume that f(u) is differentiable function on u € [0, 00).

1 in the following theorem:

I'he Schacler’s Fixed-Point Theorem is gi

Theorem 4.4.5. (Schacfer’s Fived-Point Theorem)[111] Let X be a Banach space

and let T = X — X be a completely continuous operator. Then one of the following

hold:
(i) The equation & = XT'x has a solution for X = 1, or
(ii) The st & = {a € X |¢ = N, A € (0, 1)} is unbounded.

Assume that K1 (or K1°) and F1 hold. Then the integral equation

Theorem 4.4.

in (1.1.6) has a positive (nonnegative and not identically =cro).

Proof. "To prove this result, we apply Schacfer’s Fixed-point Theorem. We showed

in Lemma 441 that N maps (4 ([0, 7]) into itsell.  Morcover, ) completely

“To complete the proof, we need to show that

contimons operator by Theorem 1

S = {o(r) € CL ([0, 7)) [o(x) = MT o) (). X € (0,1)}
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L we have

is hounded. Let ¢(x) € & and let A € (0. 1). Then for cach € [0,

[0 = NG|
< I(No))]

< [u\‘[..- NIG)ldy

Ml

N has a fixed point in

Therefore, the first condition of Theorem 4.4.5 holds. So,
C([0,7]). s, it has a positive (nonmegative and not identically zero) solution

In the next section, by using the infinite dynamical systems approach. we will
extended the existence results of a nonnegative and not.identically zero steady state

solution of the previous nonlinear integral operators, as well as its stability

4.5 Stability

In this section, we investigate the long time behavior of the solution. Following the

same argument in [139], we will prove that the positive steady state solution exists
and is stable, provided that the principal cigenvalue Ay of the corresponding linear
integral equation is positive. In fact, we will consider the nonlinear integral operator
that correspond to the Dirichlet boundary conditions. i.c.. the nonlinear integral

ame result for the nonlinear integral

cquation (4.1.5). Similarly, we can prove the
«quation that corresponds to the Newmann boundary conditions. i.c.. the nonlinear
integral equation (4.4.1)

Let X = C}([0.7]) be the space of continuous functions that vanishes at the

and have a continuous first derivative with the norm defined as in (1.3.11).

boundary
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Also. we let

XNy = {ox) € X ¢(x) > 0}

be its positive cone. Xy has a nonempty interior and so we ean define a strongly

positive r

ation on this space (sce seetion (3)). Let ¥ = C([ty — Apto]. X). where

1 = Ay is fixed (Technically, we may assume fo = 0). Let Yy be its positive cone. i
Yy = C([to— A, o], X4). For convenience, we identify each ¢ € Y, as a fnetion from
[to — Awta] % [0.7] to R as follows: é(s.x) = ¢(s)(x). In the following analysis we

consider the Nichelson’s blowflies function. i.c., f(w) = pwe™™,p > 0.5 > 0. Using

the method of steps (see [134]) we can show that. the solution w(f.x, ) of

w(t,z) = / " / F(w(t — a, y))Ka(a, . y)dyda
b
w(t,0) = w(t,7) =0 , t> 6

w(s,r) =d(s,.x) >0 to

o, x€[0,7]

globally exists for any ¢

Y. Morcover, this solution is unique since f(w) is a
Lipschitz function. So, we can define the semiflow ®(f) = w(f,a.0) = Yy — Y.
Morcover, the birth function f(w) and the kernel function Ka(a.r.y) are continons

and bounded for V1 > fy. Hence the semiflow (1) : Y -

Y, is compact for Vi > f,,
To prove the main result in this section, we introduce a sequence of concepts and

lemmas. We start with the following lemma:

L

mma 4.5.1. For any ¢ € Y, the semiflow solution w(t..r, ¢) is uniformly bounded.

Furthermone, the semifiow (1) : Yy — Y, admits a connected global attractor on Y,

Proof. The proof is a dircet result from the boundedness of the birth function and

the kernel function. Indeed, we have

H/ & / f(w(t — a,2))Ra(a, 2, y)dyda
o

< I lle Ma(A —7) =TT,
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Thercfore, limsup w(t,x,¢) < M, Vo € Yy, Vi > ty— A Tence, the semiflow
v
(1) Yy — Yy is point dissipative. Therefore, the semiflow (1) : Yy — Yy admits a

comnected global attractor on Yy, which attracts every bounded set in Yy (by Theorem

3.1) 1

Re-consider the linear cigenvalue problem

M §
w(z) = / / pe N w(y)Ka(a, v, y)dyda (15.1)
b o
= /u‘(//)l\'v_y(/\./.u]dr/
o
with its corresponding principal cigenvalue A, Then, we have the following remark

Remark 4.5.1. Since the birth function f(w) satisfies [(w) = pwe* < puw. Then

the nonlincar integral equation

a.r,y)dyda

w(t,+) v[h‘/‘;w/[u'(/ a, )k

s dominated by the lincar integral equation. Therefore, If Ny is negative, then lin [lw(1.0) |

[

Lemma 4.5.2. Let Y, €Yy |o A0} and assume Ny > 0. Then the semiflow is

uniformly persistent. i.c., there erists 8§ > 0 such that
lim inf dist(®(1)6,DY0) > 81, Voo € ¥y

Proof. According to Theorem 4.6 in [121], it suffices to show that zero is a uniform

weak repoller for ¥y, .., there exists a dy > 0 such that
liinf [P0 > 8 Vo€ V.
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To prove this we follow the

une argument in the proof of Theorem (3.1) [139]. The

proof is by contradiction, Let us consider the cigenvalue problem (4.5

). Since
this equation admits a positive cigenvalue Ay (sce section (3)), then there exists a

sufficiently small mumber ¢ > 0, such that the following cigenvalue problem

w(z)={i—¢ /YU‘[r/)I\';(,\ 2. )dip
o

admits a positive ¢

cnvalue A, with a corresponding cigenfunction ¢, (). Morcover

J'(0) = p. Therefore, there exists §, such that
J(w) > p(1 = Jw, Vw € (0,6,
Let 6y = 8,. Assume there exists ¢y € Yy such that
T s [4(0)60]] < 8.
Then there exists a £ > £y such that
llw(t, .. gl < do, VE>1'—to (1.5.2)
Therefore, w(f,r,¢o) € (0,8,) and so w(t, r) satisfies

flw(t.x)) > p(l = w(t,x), t >t .x€

Sinee w(l, o) > 0.V > tg,Yar € (0,7), then there exists 7 > 0 such that w(!’ +

so, Qo) = nw (s,0),s € [ty — A fo] and & € [0,7], where w,(t,.0) is the solution of
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the following linear problem

w(t,z) = (1 - ()/"/”w(/ a, )R
Jo
Go(l,0) = do(t. ) =0,

a,r,y) dyda,

il
w(s,x) = do(s, r). S € [tlo— Arto]. x € [0,

Using the Inequa

) and the comparison principle (see Lemma 3.2 [120]). we
have

w(t e, o

> (= 1) = e,
which is unbounded when £ — oo. This is a contradiction
Theorem 4.5.1. Assume that Xy > 0. then

i :
w(t.r) / /" F(w(t - a.y))
w(t,0) = w(t.7) =0

1.0, y) dyda
121024
w(s.x) = p(s.x) 2 € (0,7).5 € [ta— Arto]

admit at least one positive steady state ¢ (x).
Proof. Consider the following problem

w(t, x) = / " / F(u(t — a,y)) s
. Jo
w(t,0) = w(t, ) =0

1..y) dyda

210> A (4.5.3)
w(ty, x) = () € [0, 7]

Let () © Xy — Xy be its corresponding semiflow. Then @y(f) is compact. point
dissipative, and uniformly persistent

Therefore, by Theorem

cquilibrium solution ¢,(x) € X \ {0} and satisfics Po(6,(x)) = ¢ ()

Rem:

3, Po(f) has an

.5.2. Using the mazimum principle, we showed in Theorem .36 that we
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can generate a strongly positive relation on the space X = C3((0.7]). Therefore, the

semiflow (1) : Z — 7 (Z = {¢lx) € Vy |9l < L}) is strongly positive ¥t > 2
Morcover, f(w) is increasing in w, for cach w € [0.Y]. Henee, the semiflow (1)

Yy — Y, is strongly monotone.

Remark 4.5,

The function f(w) is a strict sublincar function. i.c.. [(aw) <

af(w), Ya € (0.1). Therefore, ®o(t) : Xy — Xy is strictly sublinear. Since dy(1)

+ s strongly monotone. Then the steady state solution ¢(.) is unique (sce
Lemma 1 [143]).
Remark 4.5.4. Since ®(t) : Yy — Yy is compact, point dissipative, and uniformly

persistence with respect to Yo. Then, by Theorem 1.3.9 [14], there exists ¢* € int(Y,)

and § > 0, such that Yo € Yy, w(t,v,0) > de(a

L V> 1(¢), x € [0,7] for some
().
Theorem 4.5.2. Assume that Ny > 0. Then the unique positive steady state solution

() satisfics limy . |lw(t, .,

9.()lly =0 for any non-zero ¢ € ¥,
Proof. The steady state solution ¢, (x) is unique by Remark 1.5.3. Morcover, d(1)

Yy — Yy is compact for ¢ > fy. niformly persistent and point dissipative. Morcover

@(f) admi

x comnected global attractor, say Ay As a consequence of the proof of

Theorem

[139]. the global attractor A, contains only the unique equilibrinm point

Ou(x). Therefore, by Hirsch attractive theorem (sce Theorem 2.3

5), every solution
converges to the unique equilibrium point. Morcover, every omega limit w(6) is an

cquilibrinm point for all ¢ € ¥y and 6(t..) 0. Henee, w(6) = o, 1

4.6  Numerical Simulation

T this seetion, we present a mumerieal simulation to investigate the long time hehavior

of the solution w(f,x). In this simulation, we consider the Nichelson’s blow-flies
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birth function f(u) = pue . We present this simulation for the Dirichlet houndary
conditions case, and Neumann’s houndary conditions case. This simmlation shows
that the solution w({. x) cither converges to the zero solution or to a nonegative and

not. identically zero solution in the case of Dirichlet hounda

v conditions case. Also,
it shows that the solution w(f. ) cither converges to the zero solution or to a positive

homogencous solution in the case of Neummann boundary conditions.

For the numerical scheme, we apply the composite Simpson’s rule to evaluate the

integral in Equation (-

To evaluate the solution u(f.a.r) at the mesh points

i = 1,2, N we solve the reaction diffusion equations (4.2.5) using the method

of lines. Here, we also distinguish two cases: the constant case (death and diffu

sion rates are const

ants), and the age dependent case. In each case we consider the

Dirichlet boundary conditions and the Newmann boundary conditions.

Case 1 (The constant case). We consider the diffusion and death rates to be constants,
The numerical simulation for this ease takes place in Figure (4.1). This simulation
shows that the solution converges to the zero solution or to a nonnegative and nonzero
solution (resp. positive solution)

o

150

2 (The age dependence case). In this case, we consider D(a) = D+ ¢ and

d(a) = d + ¢ . The simulation for this consideration takes place in Figure (1.2)

Also, we consider the diffusion and death rates to he linear function (i.c.. D(a) = Da

—da?

and d(a) = da). Her

L afa) = e P and f(a) = The simulation for this case

takes

place in Figure (1.3)

Remark 4.6.1. In the case of age dependence, we considered the death rate d(a)
da, since it represents a rough attempt lo estimate the human population death rate
Indecd. the oviginal formula is given by d(a) = '% ( ;’) where Ay is the life limit (see

[64])
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Figure 4.1: The behavior of the mature population w(f,r) for large time ¢
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Chapter 5

Age-size Structure Model of Cell
Cycle and its Applications to the
Human Tumor and Periodic

Hematological Diseases

5.1 Introduction

Phroughont the years, many mathematical models (and their numerical simulations)
were derived to investigate the dynamics of perodic hematological diseascs, due to the
fact that they exhibit interesting dynamic hehaviors. The most familiar hematologi
cal discases are periodic auto-immune hemolytic anemia (AIHA), ceyelical thrombocy
topenia (CT), eyelical neutropenia (CN), and periodic chromic myclogenous leukemia
(PCML). "The anto-immune hemolytic ancmia (AIHA) results from an abnormality
in the production of auto-antibodics, which in turn attack and destroy the red blood

cells (RBC). AIHA is characterized by the oscillations in the erythroeyte count, with



an oscillation period of 16-17 days (sce [16, 40, 85, 105]). Cyclical thrombocytopenia
(CT) results from the reduction in the mumber of platelets in the blood. CT is char-
acterized by oscillations in platelets number, usually ranging from 1x 10° platelets/1
10150 — 150 x 10" platelets/L (the normal values). The oscillation period for CT is

within 20-40 day [26.

10, 117). Comparatively, eyelical neutropenia (CN) results from

the reduction in the number of neutrophils present in the blood, usually ranging from

the normal values 2 x 107 cells/L to less than 0.5 x 10” cells/L. The oscillation period

for CN is about 3 weeks

ee [10, 59, 60, 61, 86]). One of the most interesting dynam

ies of hematological diseases is seen i the dynamics of leukemia, which is the cancer

of the blood or bone marrow. Lenkemia is characterized by an abnormality in the

proliferation of blood cells. Particularly of interest is periodic chronic mycelogenons

leukemia (PCML), which is characteri:

e by periodical oscillations in circulating coll
mumbers that occur in leukocytes. Usually, the oscillations in the number of lenko-
eytes ranges between 30 x 107 cells/L and 200 x 10” cells/L with an oscillation period

of 40-80 days (sce [10, 41]). A remarkable characteristic seen in these hematological

discases is that they are characterized by oscillations in the number of one or more
cireulating blood cells, with periods that can last from days to months (sce [10. 59])
In an attempt to provide better understanding of the dynamics of hematological

diseases and the mechan

1 of human tumor growth in general, it is important to

study the dynamies of the human cell division cycle. Basically, the cell division cycle
is divided into two main phase: the resting phase (Gy — Phase) and the proliferation
phase (7 — Phase). The Proliferation phase is divided into further four phases: the
first growth phase (G — Phasc). the synthesis phase (5 — Phasc). the second growth
phase (G — Phase), and the mitosis phase (M — Phase)[5]. The real change of the
coll size oceurred in the proliferation phase (P — Phase), which is duc to the DNA

duplication in tl

ynthesis phase (see Figure 5.1).

113



Since a good mathematical understanding and modeling of tumors plays a major

rule in elinical data analysis and manipulating relevant. treatment. protocols, many

previous and current formulated mathematical models have investigated the cell di-

vision cyele, [, 5. 11, 12, 13, 14, 3. 86, 87. 90, 106, 107]. One

of the carliest mathematical models derived to investigate the cell division cycle was

developed by Bell and Anderson [17). This model is given as:

ON(ar) | ON(avr) | O(F(a0)N (1 a.x))

B = = = ~(P(a.x) + D{a.x)).

The total cell population at age a = 0 is given by

N,0,2) =4 [ Pla.20)N(t,a,20)da

N(t,a,x) is the total population of the cells at time f, age a, and volume (size)
r. The functions F(a, ). P(a,x), and D(a,x) represent the rate of cell growth, the
proliferation rate, and the death rate of the cells at age a and size a, respectively. This
model was also investigated by Beyer [18], where he considered the funetion (e, )
to be linear and age independent. Since this model does not take in account the four
comparative phases in the proliferation phase, or even between the proliferation phase

atical models have recently been ereated to deal

and the resting phase,

1y math

with this. Basse et al. [12] derived a model to describe the cell division eycle in the

comparative phases (G, S, Gz, and M-Phascs). This model is give

D ABA (2,0) — (y + i )G (),

2et) = DIRS — g2 — S (e, t) + kG, t) = (e, 15 T)

S — (a,5T3) — (b +

D) — Gy, t) — bM (s t) — pag M 1),
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where Gy (1), S(r.t), Gal
5.6

r.t), and M(a. 1) are the density of cells at time £ and size

£ in the phases Gy and M, respectively. The symbols i, fis, jice,, and jia

represent the death rates of the cells in the phases G Gy, and M, respectively.

the growth

The symbols b, D, g, ki, and k; are the division rate, diffusion rate,

rate of cells, transition rate from Gy — Phase to S — Phase, and the transition rate

from S — Phase to Gy — Phase, respectively. The term 1(e, £ Ts) represents the sub-
population of cells entering the S — phase (7 represents the time that the cell spends

in the S — Phase in hours) and are ready to exit to Gy — Phase (see section 2.1 [12])

Begg et al. [15] modified the above model in three comparative phases, Gy, S, and

to be age dependent. In fact, they considered the following mod

a,t)dt,

S, 0,1) = /‘ ke (. @) Gy, a, ),
h
G, 0,1) = S(e, T 1),

DS,(0,a.1) = gS(0,a,1) = DS, (La,t) — gS(la,t) = 0,

re the diffusion rate, the growth rate of

where the parameters D, g, i, fis, and i,
colls, the death rate in Gy — phase, the death rate in § — phase, and the death rate in
Gy — phase, respectively, The size-time dopendent functions ky (e, 1) and ka(r, 1) are

the transition rates from Gy ~phase to S—phase, and the transition rate from S phase

to Gy —phase, respectively. In this paper, the authors investigated the existence of the

age-size steady state solution (SASD). In these two studies, the authors considered



the cell eyele in the proliferation phase. In fact, they did not consider the full cells”

division cyele, nor the relation hetwoeen the resting phase and the prolifes

ation phase

Drobnjak et al. [34] presented a mathematical model to represent the blood cells’

division cycle in humans. In their model, they consider two comparative phascs,

o — phase and P — phase. They consider the blood cells population to be age-

time-size dependent, i.c., N(t.r,) (the density of cells population in Gy — phase) and

ime-size functions.

P(t.r,m) (the density of cells population in P — phasc) are age

ion term, as wel

In their study, they neglect the effect of the diffu the cells” growth

term.

In this study, we derive a new age-size model to describe the cells” division eycle

sting phase and the proliferation

between the two comparative phases, which are the

phase. Using this model, we derive a delay deferential equation with a non-local term

to represent. the total population of cells in the resting phasc. Since it is important

to know when the number of cells decay to the zero solution (for example, the tumor

colls i humans), we investigate the stability of the zero solution for the resulting
delay differential equation with a non-local term. Indeed, we show the existence of a

nomnegative cigenfunction for the analogous

Principal with a corresy

ational linear differential equation. We organize this s follows: in section

chapter

var
2, we deseribe the new model. In seetion 3, we derive a delay differential equation
with a non-local term. T section 4, we show the existence of a Principal cigenvalue,
as well as the existence of the Principal cigenfunetion for the analogous variational
lincar differential cquation. In seetion 5, we investigate the existence and stability of

steady

the positive ¢ solution. I section 6, we present a munerical simulation
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5.2 The New Mathematical Model

In this section, we present a mathematical model of cell production to deseribe

the development of cells through the cells division cycle.  In this model, we de-

seribe the development of the age and the size of the cells in the two distinguished
phases, Go-Phase and P-Phase, during the cells’ division cycle (sce Figure 5.1).

mbols

Introducto i S;

The TransitonRate |

- 1 —l

Pi 0, = fiNu, vy
e Tow New Daughter Cells / \
] The
M e Second ol Restiing
Ly ovpkne Symessphae powtphae Moo phse s
G, s G, M
e The Proliferation Phase P————+  \-antt, 0, 59=2 Pl 1, 2) -
Prolifertion Time: 1
Apopiosisof the Cells The Desth Rate
Rate ¥ 8
Figure 5.1: A graph shows the life cyele of a human cell
o n(f,a,x) is the density of cell population in Gy — phase at time £, age a, and

size x.

o P(t,a,x) is the density of cell population in P — phase at time £, age a, and size

& is the death rate of cells in Gy — phase,

o 5 is the death rate (due to apoptosis) of cells in P — phase.



o 7 is the time that the cell spends in P — phasc.

o N(x.1) is the total cell population in the resting phase at time ¢ > 0 and size

v € [0.7/2]. In fact, N(t,x) is given by the following equation:

N(t,a) = [ altya,)da

© 3(N) is the transition rate of the cells from the resting phase to the proliferation

phasc. Tn this study, we consider this rate to e a funetion of N. In particular, we

consider the Hill fanction 3(N) = 722 More precisely, we consider (V) =

=z

wee the function A(N) can he sealed to S(N) by changing the variables

TINT

Indeed, we can let N = 5.
Assumptions

o We assume that n(f, 0,z

e Duc to the reality we have n(t, 00, x) = 0;

o we assume that P(f,0,) = B(N)N;

e of the cell does not change in the resting phase. In

o We assume that the
fact, this is a biological reality, since the size of the cell and the DNA doubling
oceur in the proliferation phasc. Indeed, in the first growth phase (G-phasc).

Synthesis phase (S-phase), and second growth phase (Gy-phase);

not differen-

o Weassume that the cells with very small size are not present and ca

tiate. We expi this mathematically by the boundary condition P(f,a.0) = 0.

Morcover, we assume that the cells in the proliferation phase cannot live to a size

L. We express this mathematically by the boundary condition P(a.t, L) = 0.
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@ To ensure that the cells always have a positive DNA content, we consider the

zoro flux houndary conditions [12], i.c..
or
DE=(1.a,0) — gP(t.a,0) = 0
or
o For mathematical analysis, we may consider

D21 0,1y~ gP(t.a,1) =0,
or

ar
Gyl =0

e Also, for mathematical analysis, we may consider the Neumann boundary con-
ditions
ar or

(e 0) = 5ot 1) = 0.

The symbols D and g appear in the above houndary conditions represent the diffusion
and the growth rates of the colls, respectively.
Under these assumptions, the partial differential cquation that is governed by the

P-phase is the following reaction diffusion equation [12]

o or > or
C L (taya) = Do (toayx) — gt aya) — 4 P(1,a,x)
a a. O

(t,a,) s introduced here to compare the model ontputs DNA profile
dircetly with those obtained experimentally [12]. To simplify the mathematical eal-
culation, we assume L = 7. Therefore, the above equation holds V2 > 0, Va € [0.7].

and Var € [0, 7).
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Due to conservation law, the partial differential equation that is governed by the

resting phase is

an
ot

(tva,z) + 22 (t,0,2) = ~Buft, a,2) - BNIn(t, a,2);
da

and it s valid V¢ > 0, Va > 0, and Vr € [0, 3]. Morcover, we assume that the cell size

in the Gy phase cannot exceed §. Thercfore, we assume that N(f,z) = 0,Va € [ x]

5.3 The Delay Differential Equation with a Non-

local Term

P apr § -
DYt~ g5-(tar) —1P(ta (5.3.1)

and

"_)T'I’(m;.rj + 2 (ta,7) =

dn(t,a,x) = B3(N)n(t,a,x), (7

an
da

where equation (5.3.1) holds V& > 0, Va € [0,7], and Va € [0,7]. Equation (¢

holds Vt > 0, Va > 0, and Va

0.3]. As a part of the discussion above we cquipped

(5.3.1) with one of the following boundary conditions:

1. Dirichlet boundary conditions:

P(t.a,0) = P(t,a,7) =0

Roben’s boundary conditions:
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(a) o
D (t,0) = gP(t,a.0) =0,

(5.3.4)

D‘%u.m) — gP(t.a,m) = 0.

)
op
D2 (4,4,0) = gP(t, a,0) = 0.

apP

t.a,m)=0.
7 (t,a,m)

3. Newmann boundary conditions:

P apP
([_)T(I.u.U) -

(t.a,7) =0. (5.3.6)

dr

First, we consider the model in equations (5.3.1) (5.3.2) subject to the Dirich-

let boundary conditions. To derive a new delay differential equation with a non-

local term, we integrate (5.3.2) with respect to the age variable a over the interval

[0,5¢). Then, by using N(t,x) form (Equation (5.2.1)) and the biological reality that

n(t,00,x) = 0, we get

Ny(t.x) = —(6+4B(N))N + n(t.0,z)

—(6+ BN)N +2P(t,7,2x) (5.3.7)
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To find a formula for P(t,7,2r), we fix s > 0 and define the function u*(a,x) =

P(a+ s,a,x). By substituting u*(a.x) in Equation (5.3.1), We get:

wi(a,x) = Pla+s,a,x)+ Pula+sa,x)
= DPu(a+s,a,x) = gPla+s,a,2) = yP(a+s,a,1)
= Dut,(a.7) — guc(a,2) — yu(a,z).
Equivalently,
uy(a,2) = Duj (a,2) — gui(a,z) — yu(a,x). (5.3.8)

“To simplify the above equation, we consider the following transformation:

w(a,x) = w(a,)ha, x) = u"(d,.r)o.\'p{
This transforms Equation (5.3.8) to the heat equation:

wy(a,x) = Dw},(a,7) —

w'(a,0) = w*(a,7) = 0.
To find a closed formula for w*(a, ), we apply the separation of variables techmique
to (539). We let w(a,x) = A(a)X (x) (for simplicity, we quit the symbol s). Then

we get the following Boundary Value Problem (BVP):

X"(x) + ¢’ X (x) =0

X(0) = X(x) =0.

The cigenvalues for this problem are




and the corresponding eigenfunctions are
Xo(x) =sinnw; n=1,23--.

The resulting IVP (Initial Value Problem) in the age variable a is:
A'(a) = —p*DA(a) = —n*DA(a).

P8 n=1,2,3

where the solution of this problem is A, (a) = C,(s)

w(a,x) can be written in Fourier series representation as:
w'(a,x) =Y Culs)e™™ P sinna,
=

Using the initial condition P(,0,x) = S(N)N we have

w?(0,) = B(N(s,0))N(s,2) ¢ = f(N(s,)) e,

Thercfore, the coefficients C, (s) are given by:

J(N(s,9))eY sinnydy.
T do

2 d =
wlaa) = = 3 e P sinne [ F(Ns, ) sinnydy.
T o

Recall that

P(t,a,x

w < a

=u'""(a,x) = lh(u;.r)iv’”l”" sin n.t‘/ FIN(t = a,y))et

-+, Therefore,

(5.3.10)

B sinnydy.



Hence,

5 o e y
P(t.7.20) = Zh(r,26) Y eV sin 2nz (7SN = 7.9)e B sinnydy.
E Jo

=t

. Then the above equation can be written

Since £(0) = 0 and N(t,2) =0, Var € |

as:

Pltr20) = 200200 3 e Prsinane [ V0 ) sy
7 e /

2 w2 5
;/.(T,zx:)ﬁ K ap)e 27 [Nt = 7,y))dy.

By substituting this in Equation (5.3.7), we get the following delay differential cqua-

tion with a nonlocal term:
Ni(tow) = —(8 + BIN(L ) )N (1, 2) + 20 (1, 2), (5.3.11)
where the nonlocal term is given in the following formula:

Wt ) = 2h(r.20) /”" KX (.y) e f(N(t = 7,9))dy, (5.3.12)
= J

D7 in 2 sin ny, (5:3.13)

»7(%“) r} (5.3.14)

Applying the same technique to Equation (5.3.1) subject to the boundary conditions

K!(ayy)

and

h(r,22) = vxp{

(5.3.4), (53.5), and (5.3.6), we have the following delay differential equations (DDE)



with a nonlocal term:

Nilt,x) = =5 + BN(L )N (t,a) + 20 (1), i =2,3,4, (53.15)

where

2 .
W () = h(r, z..-)A Ki(e,y) e f(N(t—7,9))dy, i=2,3,4

.4 are given in the following cquations:

The kernel functions KE

)i

N o~ ’—vv‘ D
Kay) =Y — o (22) u(v). 5.3.17
) = 2 @y 0 0 o

where
o=
H‘Iv
and
2
=
() = )
cosnr + 55 sinnar,
in the case i =
x o2 Dr
Ka,y) = (22) 1 (y), (5.3.18)

= XTI

where a,s are the solutions of the following equation:

. g
anaym = —2—
2Da,
and
g
() = cosaa + 57— sinaya.
at o
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and lastly, in the case of i = 4,

é(l— 3 e P cos e um,_:/). (5.3.19)
" n=l

5.4 Existence of a Principal Eigenvalue and the Lo-

K,

cal Stability of the Zero Solution

In this section, we investigate the stability of the zero solution of the non-linear delay
differential equation with a non-local term (5.3.11) as well as the delay differential
cquations with a non-local term that are given in Equation (5.3.15). To do this, we
study the dynamics of the corresponding variational linear differential equation (see
Equation (5.4.3)). In fact, we show that the variational linear equation admits a
principal cigenvalue with a corresponding positive (nomnegative and not identically
zero) cigenfunction.  Re-consider the following nonlinear delay differential equation

with a nonlocal term:

Ni(t.x) = =5N(t,x) — J(N(t,))
+jh(7.2«)/ '
o

) eBY [(N(Ly)dy, £>0, z € (0,3),
: (5.4.1)
>0,

s € [-7,0], x € (0,3).

where f,(N(t.) = f(N(t = 7,2)) and K (z,y) is given in Equation (5.3.13)
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The variational equation abont zero is given in the following equation:

Nilt,) =

—6N(t,2) - F(O)N(t,2)
s
+;‘/y(r.2,»)/'(n)[ KMz, y) Y N(t — 7,

y)dy,
N(t.0) =

>0, x€(0.5).

10,
N(s.x) = &(s,2) 2 0,

s€[-7,0], z€(0,3)

12
We notice that f(0) = 5. Morcover, if we assume that N(f,) = 0+ 6(x) exp (M) (0

is the zero solution), then we have the following cigenvalue problem:

AN(x) = —(8 + B)N(x)

</2 =
+ (7, 20)e N / KMa,y) e N(y)dy, € (0,3
e s 3

(5.4.3)
N(0)=N(3) =
e simplicity, we also consider the following lincar differential equation
Nilt,x) = 6N (t,2) = F(O)N(t,x)
=2 .
+2h(r,22) (0 KMx,y) e3Y N(t,y)dy, t>0, x€(0,5),
e )/(; ¢ ) % (5.4.)
N(t.0) = N(t,5) =0, t>0,
N(0,x) = £(x) > 0, x€(0,5).
The lincar cigenvalue problem of (5.4.4) is given by
AN(z) = —(5 + B)N (=)
< .
+'¢‘/.(r.2.r)/ KMa,y) eBY N(y)dy, e (0,5 (5.1.5)
o
N(0) = N(Z) =0.

Remark 5.4.1. In the later analysis, we will show that the lincar equation (5.4.3). as

well as the linear cquation (5.4.5), admits a unique cigenvalue with a corresponding
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gative and not Iy 2ero eig ion (In the case of Dirichlet boundary
conditions). Morcover, we will show that these two cigenvalues have the same sign.
Henee, these two equations have the same dynamics at the zero solution. In fact, this

simplifis the investigation of the stability of the zero solution (sce section 5).

To go further in our analysis, We re-write the lincar cquations (5.4.3) and (5.4.5)

e, y) e N(y)dy,

and

(r, 2.:’)5‘(})/1“ Kl(x.y)

Y N(y)dy,

where F()) =

To analyze the above two linear integral

S and F() =

3 m b

cquations, we write them in abstract form as:

L)) =

/2
1 200F ) [ K1) 3 o)y, (5.4.6)

Jo

and

Ly6) () = T KM, y) eV G(y)dy. (5.4.7)

To show that the above lincar integral operators admit principal cigenvalues Ay and

Ao, respectively, we apply the Krien-Rotman Theorem (sce Theorem 2.2.1). The
fore, we need to prove Ll and Lj are compact and strongly positive operators on

appropriate function spaces. We start by the following lemma:

Lemma 5.4.1. Assume that A > —(3+ ). Then the lincar operators LY and L map
the space X = C([0,7/2)) into itsclf. Morcover, the lincar operators L\ and L map
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the space Z = C3([0,7/2)) into itsclf.

proof The proof will be for ! while the proof for L} is similar. Let ,, be a scquence

in [0,7/2) and i, converges to - in ([0,7/2]). Then

1 /2 =
Li(e) ~ L) < ;F(A)[h(r,z:-,,)7/:(1.2.:-)\‘ / K. p)em? o(y)dy]

+ MW K, )Y ply)dy — [/J KX,y f:v(y)rl.u|
o Lp) h(r,20)]
=
< AMEW) 16l 7. 20) (7 20)
B0 I 20 W [ 162 ) — K]

The kernel function K} (x, y) is a continuous function on the compact set [n. ] x [n

Therefore, it is bounded. Let M = max A KN y). Then K (a,y) — KMo, p)| <

e

20, Hence, the integrand above is dominated by an integrable function. More-
over, the function h(r, ) is contimuous. Thercfore, by the continuity of & and Domi-
nated Convergence Theorem, the right hand side in the above inequality s zero when
1 — oo, This shows that L! maps the space X = C( [n. 1]) into itself.

Now, we prove that L} maps the space Z = C3([0,5]) into itself. First, we notice
that KH0,y) = K}(Z,y) = 0. Thercfore, p(a) i= L (@)(x), ¢ € Z, A > —(8 + A);
vanishes at the boundary. To complete the proof, we need to show that ¢/(x) exists
and continuous on [0, 5]. Let

w2 )
0 / K y) e py)dy.
0

Then,

/2 9 g
V)= [ SE K ) e o).
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exists and is continuous. In fact, it is exist since 2K (x,y) exists and is bounded.

To prove the continuity we follow the same argument above. Thercfore,

has a continuous deriv:

Theorem 5.4.1. Assume that X\ > —(8 + ). Then the linear operators L' and L}
are compact operators over X = C( [n. g]). Morcover, L} and L} are compact over
the space Z = CJ([0,7/2])

proof We prove that L is compact. To do this we apply Ascole-Arzela Theorem
c([o.3))

irst, we show that L1B is

Therefore, we want to show that for cach uniformly bounded set B in X'

Then LLB is uniformly bounded and equicontinuous in X.

auniformly bounded set, provided that B is uniformly bounded. Since B is uniformly

bounded, then there exists 3 such that [|é], < M., Vé € B. Now, we have

L) = %1»(,\)/,(7. M KX (a,y) 7Y o(y)dy]

o],

< 2NN FQ) ()l o

= 2M M F(N) h(r, )l = M.

Therefore, 1B is uniformly bounded. Sccond, we prove that LB is cquicontinous

set. Given xy, 5 € [m ;]. € B, and let € > 0. Then

() = Li((aa)|

(A) (7, 221) = h(T, 2a)|

< »

x / K} (a1, y) 3 ¢(y) — K} (w2, y) ¢ 'v’(!/Jltler
o

< 2N |h(r,200) = h(r, 209)| | K2, ) = K2 s, )|

< 2lq whenever |y — ] < 6.
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For the last cquality, we choose ¢ and ¢ to be ¥ and ¥, respectively. This is
true by the uniform continuity of the functions h(x) and K(x,y). Thercfore, L} is

compact operator over the space X. To complete the proof, Let B be a uniformly

bhounded st in the space Z, and let 37 be its uniform bound (i.c.. |||, < 37, for

all ¢ € B). We showed in the previous lemma that o/(x) exists and contimous on

. we show that L} i

[0, LLA)(@(x)), ¢ € BA > —(6 + B). Fi

., where () :

uniformly bounded in Z-norm. As we showed in the first part, we have

F) I )l +

[oa)| = [LE N (@())] < 201
Also, we have

/(@) = %F()\) (7, 22)0' () + 0(x)l (7. 22)|

MEO) [1A(7. )l M’ + [K(7, )]l M) =

© M’ = max, ez 2 K2 (,y). Combining these two incqualitics together, we

il = Wl + 11l < Ny + Mo = Ny

Finally, we remark that f(u) is continuous and bounded function. Morcover, the

as well as its derivative. Hence,

function h(r, 2 is contimuous function over [0, 7/2

h(7,2¢) and (7, 22) are uniformly continuous. In addition, the kernel function func-

tion KX (xr,y) is of C%-class in & and y on the compact set [0, 7/2]x [0,7/2]. Therefore,
#(x) and its derivative ¥/(x) are uniformly continuous over [0, /2] x [0,7/2]. There-
fore, by following the above procedure, we can show that (LLB) (the 7 means the

derivative with respect to ) is cquicontinuous family over the space Z. We showed

in the previous lemma that L} maps the space Z into itself (Indeed, it maps the
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space X into the space Z). Morcover, the space Z is a closed subspace of X (i.c., the

convergence of any sequence in LB s again in Z). Hence, LY is compact over Z. 1
Now, we consider the heat equation

wala, ) = Du.(a,

w(a,0) = w(a,7) =0, a€l0,7] (5.4.8)

w(0,x) = po(x) >0, relon],

and we let w(a,x) be its solution. Then we have the following lemma:

Lemma 5.4.2. Assume that ¢o(x) € Ci([0.7]). Then w(a,a) > 0, V(a,x) €
[0.7] x [0,7]. Morcover, if o € Cif((0.7]) and not identically zero, then w(a,x) >
0, Y(a,x) € (0.7] x (0,7).

o ([0.7]). First, we show that w(a, x) cannot have negative

proof. Let ¢o(x) € Yy =
values on [0,7] x [0, 7], provided that the initial condition ¢o(x) is nonnegative. The
proof is by contradiction. Let ¢g(x) € Yy be a nonnegative function and assume that

Phen, w(a. r)

w(a.x) has a negative value at some points ¢ = (@.7) € [0,7] x [0.7]

 to see

Lias a negative minimum at some points p = (ag,x0) € [0,7] x (0, 7). It is

assumption ¢(x) > 0. Morcover, p ¢ (0,7] x

that ay # 0, since this contradicts the
(0,7), since this contradicts the maximum principle (Theorem 2.4.1). Therefore, p =

ch choice contradicts the boundary conditions,

(a9, 20) € (0.7] x {0, 7} . However

since w(a,0) = w(a,x) = 0. Therefore, there is no ¢ = (@,¥) € [0,7] x [0, 7], and

w(q) <0.
Sccond, we show that w(a,x) is positive (0,7] x (0, 7). provided that the initial

condition ¢(x) is a nomegative function and not identically zero. The proof is by

contradiction. Let ¢o(x) € Yy be a nonnegative function, and not. identically zcro

0. In the above paragraph

Let p = (ag. xo) € (0,7] x (0,7) be such that w(ag, xq
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we showed that w(r, a) camnot have negative values. Therefore, if such a point exists
then it is a local minimum. According to the maximum principle, this point cannot be
in (0,7] % (0,7). In fact, if p = (ag, 29) € (0,7] x (0, 7)., then the solution is identically
zero on (0, 7] x [0, 7]. This contradicts the initial data and the continuity of w(a, r)
“This completes the proof. 1

In the next theorem, we will show that the operators L} and Ly are strongly

positive operators. In fact, the cone Yy = Cif [0, 7/2] has an empty interior. Therefore,

we consider the space C3[0,7/2] and its positive cone Z, = C3, [0,7/2]. This cone

s a non-empty interior, and so we can define a strong positive relation on this cone

(sce the assumptions above).

Theorem 5.4.2. Let X > (8 + ). Then the integral operators LY and L} are

strongly positive operalors over the space Z.

Proof. The proof will be for the operator L! while the proof of L} is similar. We

showed in Lemma 5.4.1 that L} maps the space Z into itself. Next, we show that L}

is positive. i.c., LL maps Z, into itself. We re-call that

LY@) () = ~h(r, 2x) F(\) /“"/" KM, y) 3B py)dy.

Since 2h(7,2e)F(A) > 0. Then it is enough to show that

” <2
Li(x) = L K, y) i g(y)dy

is a nonnegative provided that ¢(x) € Z; is nonnegative, or equivalently, to show

that

w(r,a) =Y eV sinna /2 &= Y sin ny ¢(y)dy (5.4.9)

=t
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is nonnegative. To do this, we consider th following expression:

B9 sinny o(y)dy, (5.4.10)

wia,x) = Y P sinm .»/‘

o
amt

where ¢(x) € Z;. The above expression is the explicit solution to the heat equation

(5.4.8) with the following initial function:

o(x)exp{~ghr}. z€ [u. ]

0. ze g

wy(z) = (5.4.11)

This function belongs to the cone Cf (0, 7]), and satisfies the Dirichlet boundary

conditions. According to Lemma 5.4.2 the expression (5.4.10) is nonnegative on [0

Hence, it is nonnegative on [0,

and so the expression (5.4.9) is nonmegative on [0, 5]

Therefore, L is positive.

To prove that L is strongly positive we need to show that L! maps the non-zero
clements in Z, into its interior. Let ¢(x) € Zy and ¢(x) # 0. Then the function
d@)expl-ga}, we o,

wolx) = (5:4.12)
0. zels

3 sem

belongs to the cone Cgf ([0,7]) and not identically zero. Using the same argument

above and Lemma 5.4.2, the expression

B9 sinny o(y)dy,

wir,x) =Y e sinna /
" o

is strictly positive on (0, ). Morcover, the normal derivative at the boundary points

is strictly negative according to the maximum principle. Therefore, L maps Z, into

its interior. Hence, the operator L] is strongly pos} 1
¥ 4 gly p



Theorem 5.4.3. Let A > —(8 + ). Then the operator LY admits a principal cigen-

value p(A) with a y ive and not identically cigenfunction ¢(r) €

Z, = C},(0.5)). Similarly, the operator L admits a principal cigenvalue p(\) with

and not i ly eig ion §(x) € Zy = C3 . ((0,5])

Proof. The proof is a direct result from Theorem 5.4.1, Theorem 5.4.2, and the second

part of the Krien-Rotman Theorem. )

Remark 5.4.2. We remark that the principal cigenvalues p(A) and p(A) are alge-
braically simple duc to the Kiien-Rotman Theorem. Morcover, p(A) and j(\) ar
depending on X In the neat theorem, we will show that L} and L vary continuously

with X, In fact, this allows p(A) and p(A) to vary continuously with \, sec [1].

Theorem 5.4.4. Let A > —(3+ ). Then the operators LY and LY vary continuously

with X over the space Y. Morcover, L} and L} vary continuously with X over the space

Proof. The proof will be for L! while the proof of L} is similar. Let A, X' > —(§ + )

and ¢(x) € Y. Then

[EENata) - L)) = thr.m [ Kie) et oty
E A

x

1F(A) = POV

A

2 [l Woll 1F) ~ FOO).-

F(N) is continuous in . Thercfore, for ¢ > 0 with =, there exists d > 0 such

that
:
F(A) = F(N)| < —————, whenever  |A = N| < 8.
|F(A) I()\)1<2 Tile whenever |\ = N'| < &,




Hence,

L)L) = LEXN)o@)] < e 6ll . whenever  |A =] < b,

Thercfore,

[ = L2 < € whenever A= X < .

This completes the proof of the first part. To prove the sccond part, that is L) varies

LWg(x) = Lh(r,20)0(x),

continuously with A over the space Z, we define ¢y (x)
for a given ¢(«) € Z. The C'- function 0(x) is defined as in the proof of Lemma
5.4.1. We denote by ¢4 () the first derivative of () with respeet to x. Using these

notations and following the above argument, we have
[9a(e) = g (@)] < 2M ||l 19l [ F(A) = F(X)].
Hence, for ¢ > 0, and by the continuity of F(A), there exists 8 > 0 such that
€ /) q
[Uae) = dae(a)] < 5 0]l whenever A= N| < 8. (5.1.13)

We also have

[0AG) = 5 (@) < 2(M [[] |y + M BN Nl 1F(A) = FOOL

where M’ = max K} (x,). Hence, by the continuity of F(A), there exists & such
[07/2) D

that
[h(2) = dhu(2)] < }2 léll, whenever [A— X < 8 (5.4.14)

Let & = min {8y, 82}, and by taking the maximum over [0,7/2] of Equation (5.4.13)
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and Equation (5.4.14), we have

(@) — ()] < & hongvar [A—X] <4 5.4.15
42?.‘3.‘,%\"’*(-') ()] < 510l whenever A= | <, (5.4.15)
and
c
o Ity = fall 2 Silldlls whenaver [N =] <8 5.1.16
'!wk\mm(,) V@)l < 5lloll, whenever A= X] <. (5.1.16)

‘ombine Equation (5.4.15) and Equation (5.4.16) together and re-write vy(«) in L!

form, we got

[Es ) - L:(A’)qb(.r)ny < |lgll, whenever [A—N| <&

Hence,

i - Li()\’)Hy < whenever [\ — N[ <.

“This completes the proof. [
Remark 5.4.3. We remark that F(\) — 0, as A — oo, and F(A) = 00, as A —

~(8+ ). Therefore, p(A) = 0, as A = 0o, and p(A) — o0, as A — —(§ + ).
This

is true,

since p(A) varies continuously with A (Remark 5.4.2) and the relation

Lig(x) = p(Né(x) hold. Hence, there exi

s A and Ny such that p(\) > 1 and
P(N) < 1. So, there exists Ny > —(§+3) such that p(\) = 1, this is true by the Mean
Value Theorem. Hence, there crists a nonnegative and not identically zero solution
o), such that LX(\)é(x) = p(\)d(x) = 6(x). Similarly, the same conclusion holds

Jor the operator LY.

there exis

s o > (0 + ) such that p(No) = 1 with a

sponding gative and not identically zero cigenf t

. Morcover, the

cigenfunction ¢(x) satisfies the equation Ly(No)d(x) = (o)

Remark 5.4.4. Since the functions F(\) and F(\) are decreasing functions in \.
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Then p(A) and j(X) are decreasing functions in . This truc by using the comparison

principle of the spectrum (sce Corollary 7.2 [141]).

These two remarks allow us to state the following theorem:
Theorem 5.4.5. There exists a unique N > —(8 + ) (resp. Mo > —(8 + 1)) cor-
responding to o principal cigenvalues p(\o) (resp. p(Ao)) of magnitude one. The
corresponding cigenfunction ¢(x) (resp. ¢(x)) is nonnegative and not identically
zero, and it satisfies the operator equation L:(Mo)d(x) = p(No)d(x) = () (resp.
Li(a)(x) = p)o(x) = o) ).

Proof. The existence of Ay comes from Remark 5.4.3 while the uniquencss of Ay comes

from Remark 5.4.4.

ibe in Theorem 5.4.5. Then Ny

Theorem 5.4.6. Let Ay and Ny > —(5 + 3) as des

and Ay have the same sign.

Proof. First, we remark that F(0) = F(0). Thercfore, L} and L} share the same

is true according to the

principal cigenvalue at A = 0. i.c., p(A = 0) = H(A = 0). Thi

uniqueness of the principal cigenvaluc, In fact, if p(A = 0), HA = 0) > 1, then Ao, Ay

are positive. Morcover, if p(A = 0), HA = 0) < 1, then Ay, Ay arc negative. This is

completes the proof 1
Now, we consider the delay differential cquations in (5.3.15). We let Lt ,4
to be their corresponding linear operators with delay and we lot L, i = 2,3.1 to

be their corresponding linear operators without delay. In the following «

e these operators. In fact, we have almost

follow the same argument above to analy:
the same results, but we have a slightly difference in the proofs of the theorems and

the choice of the the function space. We start by the following lemma:

Lemma 5.4.3. Assume that A > —(5+ ). Then the lincar operators L: and Liy, for

i=2,3,4, map the space X = C( [n. g]) into itself.
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Proof. The proof is similar to the proof of Lemma 5.4.1 )

Theorem 5.4.7. Assume that X > —(8 + 3). Then the lincar operators L, and

Li, fori = 2,34 are compact operators over the space X = C([0, 7])

Proof. The proof of this Theorem is similar to the proof of Theorem 5.1.1. 1
Now, we re-consider the heat cquation
wa(a,x) = Dw,,(a,x), where (a,x) € [0.7] x [0,7] (5.4.17)

subject to one of the Robin's houndary conditions,

w,(a,0) = g5w(a,0) =0, ael0,7],

(5.4.18)
wi(a,7) = gw(a,x) =0,  ael07]
wy(a,0) = Hw(a,0) =0, €[0,7],
1, (a,0) = w(a,0) aelo.) o

w,(a,7) =0, ae 0.7,

or the Nenmann houndary conditions

we(a,0) =0, a€(0,7],

5.1.20)
we(a,m) =0, acl07]

Let w(a, ) be the solution of the heat equation (5.4.17), subject to one of the above

boundary conditions and to an initial data w(0,x) = ¢y(x) € X = C((0.7]). Then,

we have the following lemma for w(a

Lemma 5.4.4. Suppose that ¢o(x) > 0. Then w(a,x) > 0, ¥(a,x) € [0,7] x [0, 7]

Moreover, If ¢o(x) > 0 and not identically zero, then w(a,z) > 0, ¥(a,x) € [0,7] x

[0.7].
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Proof. Let ¢o(x) € Xy = C*([0.7]). First. we show that w(a. x) cannot have negative

values on [0, 7] x [0, 7], provided that the initial condition ¢(x) is nonnegative. The

proof is by contradiction. Let o(x) € Xy be a nonnegative function and

me

w(a. ) has a negative value at some points q = (a@.7) € [0,7] x [0,7]. Then, w(a,r)
has a negative minimum at some points p = (ag, x0) € [0, 7] x (0,7]. It is casy to sce

that ag # 0, since this contradicts the «

sumption ¢(x) > 0. Morcover, p ¢ (0,7] x
(0.7). since this contradicts the maximum principle (Theorem 2.4.1). Thereforc,
= (w0.a0) € {0.7} x (0.7]. 1 p = (o, aq) € {0} x (0,7]. then the derivative at this
point is strictly positive, according to the maximum principle. However, this choice

contradicts the boundar;

conditions, since w,(a,0) = Fhw(a,0) < 0. Therefore,

true, then there

p = (20, a0) € {7} x (0.7]. If this ists a’ such that 0 < a’ < a,
and w(a’,x) = 0. Now., the initial condition ¢(r) is nonnegative, and the solution
w(a, x) is continous and nonnegative on [0, @] x [0.7]. Therefore, this point, (a', o)
is a local minimum of w(a,x) on [0,a] x [0, 7]. Hence, the derivative at this point
must be negative but we have w, (', 20) = gw(a’,xy) = 0, which is a contradiction.

Therefore, there is no point ¢

7) € [0,7] x [0, 7], and w(q) < 0.
Second, we show that w(a, ) is positive on [0, 7] x [0, 7], provided that the initial
condition ¢(x) is nonnegative and not identically zero. Again, the proof is by contra-

diction. Let ¢g(x) € Y be a nonnegative and not identical

cro function in X, Let

P = (ag, x0) € (0, 7] x [0, 7] be such that w(p) = w(ay,

0. In the above paragraph

we showed that w(x, a) cannot have a negative value on [0, 7] x [0, 7. Thercfore, if such

a point exists then it would be a local minimum. According to the Maximum Princi-
ple, this point cannot be in (0, 7] x (0, 7). In fact, if p = (ag, o) € (0,7) x (0,7), then
the solution is identically zero on (0, 7] x [0, 7] but this is incorrect unless ¢o(x) is zero.

Morcover, the point p

(g, 29) cannot be on {0, 7} x (0,7]. In fact, this contradicts

the boundary conditions, since w, (ag, 0) = g5w(ag,0) = 0 = Fuw(ag.

w,(ao,
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but w,(ag.0) > 0 and w,(ay, 0) < 0 according to the maximum principle. Thercfore,
there is no point p = w(ag, z9) € [0.7] x [0,7] and w(p) = w(ao. xo) = 0. Similarly,

we can prove the result for Robin's boundary conditions (5.4.19), and the Neumann

boundary conditions (5.4.20). 1

Again, we re-consider the heat equation (5.4.17) subject to Robin’s or the Neu-
mann boundary conditions that are given in cquations (5.4.18), (5.4.19), and (5.4.20)

ies one of the

Morcover, we let ¢(x) € Xy = C4([0. 5]) and we assume that ¢(x) sa

boundary conditions (5.4.18), (5.4.19), or (5.4.20) at « = 0. Then the function

o) exp{—g5a}, we[0,5],
],

tive function and satisfies the required boundary conditions. This function

o) = (5.4.21)

0, z€

is a nonne

could be discontinuous at = = 7/2. Let ti(a,x) be the solution of heat cquation

(5.4.17) on (0.7] x [0,7] with initial data d(a,x). Then, by applying the above

lemma, and by using the same argument in the proof of prove Theorem 5.6 in [1

we have the following result for @(a

Lemma 5.4.5. Suppose that ¢o(x) € Cy([0,7/2]). Then tia.x) > 0. V(a.:

[0.7] x [0.7/2]. Moreover, If ¢o(x) > 0 and not identically zero, then w(a,x) >

0. V(a,) € (0,7] x [0.7/2].

Theorem 5.4.8. Let X > —(5 + ). Then the integral operators L. and Ly are

strongly positive operators on the space Cy ([u;]) Jor each i = 2,3,4

Proof. The proof will be for the operator L2 while the proofs of L3, L, L2, L, and L{

are similar. We showed in lemma 5.4.3 that L2 maps the

ace X = ('([u.g]) into
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itsclf. Next, we show that L2 is positive. i.c., L2 maps X, into itsclf. We re-call that

L3(6)(x)

/2 -
0

(. 20) F(A) / K2(x,) 787 o(y)dy.

Since 4h(r, 20)F(A) > 0. Then it is cnough to show that

"
Lo@) = / K2(x,y) TV o(y)dy
o

is nonnegative provided that ¢(x) € X is nonnegative, or equivalently, to show that

0 ~n*Dr
¢
w(r,a) =) () B, (y) o (y)dy (5.4.22)
.,gu It () 110,51 A
is nonnegative. To do this, we consider th following expre
X pntha ,
w(a,x) = 77/”("')/ i (y) dly)dy. (5.4.
P o

,,Zu llma ()11

fon is the explicit solution to the heat equation

where 6(x) € X,. The above expr

(5.4.17) with the following initial function:

) exp{ -

() = (5.4.21)

0. ze (]

Therefore, w(a, x) is nonnegative on [0, 7] x [0, 7] due to Lemma 5.4.4. Hence, w(a, r)
is nomnegative on [0, 7] x [0,7/2]), and so w(r, x) is nonnegative on [0,7/2]. Hence,
L2 s positive. Similarly, w(r, x) is strictly positive on [0,7/2] provided that ¢(x)
is nonnegative and not identically zero. So, the operator L2 is a strongly positive

operator. i.c., L maps the nonnegative and not identically zero functions in X, into

its interior. This completes the proof. ]
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Theorem 5.4.9. Let A > —(5+8). Then for cach i = 2,3,4, the operator Lt admits

a principal ci Pi(A) with a corresponding positive Gl € Xy =
C4(10,51). Similarly, for cachi = 2,3,4, the operator Ly admits a principal cigenvalue

2u(l0.

B(N) with a corresponding positive cigenfunction §(x) € Xy =

Proof. The proof is a direct result from Theorem 5.4.7, Theorem 5.4.8, and the second

part of the Krien-Rotman Theorem. 1

Theorem 5.4.10. Let X > —(8 + ). Then for each i .4, the operators L(\)

and Ly(A) vary continuously with \

Proof. The proof of this theorem is similar to the proof of Theorem 5.4.4. 1

Theorem 5.4.11. For each i = 2,34, there ex

ts Ny > —(5 + B) such that the

corresponding principal cigenvalue p(Ny) = 1. Morcover, the corresponding posilive

cigenfunction ¢(x) satisfies the equation Li(N))é(x) = p(Ny)é(x) = 6(s) for cach i =

4. The same result holds for the operators Ly for cachi =2,3,4

sult from Theorem 5.4.10 and Remark

Theorem 5.4.12. Let Ny and Xy, for cach i = 2,3,4, as described in the above

theorem. Then for each i =2,3,4, Ny and Xy, have the same sign.

Proof. The proof is similar to the proof of Theorem 5.4.6 1

Remark 5.4.5. As a conclusion of Theorem 5.4.5 and Theorem 5.4.11. We remark

that if Ny for alli = 1,2,3,4 (resp. . for alli = 1,2,3,4 ) is negative, then the zero

solution is locally stable.
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5.5 Existence and Stability of Steady-State Solu-
tion

In this section, we present our conjuncture for the existence and stability of steady

state solutions of the Equations (5.3.11) and (5.3.15), respectively. First, we rem,

if the transition rate from G- phase to P-phase is constant, then the resulting delay

differential equations (5.3.11) and (5.3.15) arc linear. As a result of the above analysi

Equation (5.3.11) ( resp. Equation (5.3.15)) admits a nonnegative and not identically

zero (resp. positive) steady state solution ¢,(). Due to the properties of the solution

of these lincar cquations, if Aj (or equivalently, \p) is negative for cachi = 1,2,3,4,
then the total cell population N(1,z) converges locally to the zero solution for large
time ¢ If f(N) is non-lincar and A (or equivalently, A) is positive for cachi =

1,2,3,4. We conjecture the existence of a nonnegative and not identically zero (resp.

ate solution ¢y(x), = € [0,7/2], for the Equations (5.3.11) and

positive) steady «

5), respectively. Morcover, we conjuncture that ¢,(x) is globally stable under
some certain conditions,

To show the existence of steady state solution for the non-lincar case, i.c., when

J(N) is a non-lincar function is not casy. This problem is still open. In the following

e solu-

analysis, we present a technique to show the existence of a such steady s

s the lack of the

tion and its stability. The main problem in the following ana
compactness of the semiflow solution ®(t) (due to the absence of the diffusion term)

of Equations (5.

3.11) and (5.3.15), respectively. The results in the following analysis
are correct if we can show that the semiflow ®(f) is a-contraction with a contraction
function k(t) € (0,1),¥t > 7 (sce Definition 2.3.4). However, to show that ®(f) is

a-contraction this is not casy. Thercfore, we keep this as an open problem, Instantly,

if we assume this is correct, i.c., the semiflow ®(f) is a-contraction, then the follow-
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ing analysis shows the existence and the stability of a nique strongly positive steady

state solution under some certain conditions. To go further in our analysis, we impose

the function f(N) with the following assumptions:

wption

FI: Assume that f(N) € C1(R",R"), f(0) =0, f/(0) > 0, and f(N) is a sublincar
c.. f(BN) > 8f(N), for all N> 0, and § € (0,1).

function.

We re-consider the space of continous functions X = C3([0, 3]), with its positive
cone:

Xy = {6(x) € X |o(x) > 0} .

Also, we consider the space of functions ¥ = C([~7.0], X), with its positive conc
Y, = C([-7.0], X,).

Remark 5.5.1. Using the same argument in the proof of theorem 2.1 in [139). we
can show that Bquation (5.4.1) admits a unique solution N(t,x,¢) on [~7,00). for
all ¢ € Y. Moreover, by applying Corollary 8.1.3 in [134], Yy is positively invariant.
i.e., for any ¢ € Yy the unique solution N(t,x,6) € Yy. Hence. we can define a

e, ¢),Vs € [-7,0], x € [0,7/2]

semiflow B(t) : Yy — Yy by (©(1)6)(s,2) = u(t + s,
As we mentioned above, the semiflow (1) : Yy — Yy is not compact for all t > 7.
Under the assumption that b(t) is a-contraction, we can prove our main results in
this section.

Remark 5.5.2. Let g(N) = 6N + [(N), where f(N) satisfies the assumption FI.

s a non-

Then g € CYR*,R), g(0) = 0, and ¢'(0) > 0. Morcover, there e
negative number M. such that for all L > M, J(L) = g(L) < 0, where J(N) =
exp {=(& + )7} maxyejon [(v). Using the same technique in the proof of Theorem

t.2,6) < M for all x € [0,%]. Hence,

2.1 in [139). we can show that limsup, ...
(1) : Yy — Y, is point dissipative.
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Remark 5.5.3. Since (1) : Yy — Yy is a-contraction for all t > 7, and point
dissipative. Then, by the above remarks, the semiflow (1) admits a connected global
attractor which attracts cach bounded set in Yy (by the continuous time version of

Theorem 1.1.2 [144], sce also the proof of Theorem 3.1 in [142]).

In the following lemma, we show that the zero solution is a weak repeller for
Yo={oev*:6(0,) #£0},

in the sense that there exists do such that limsup, . [®(t)6]| ¢ > do, V¢ € Yo In fact,

this implies that ®(#) is uniformly persistent with respect to ¥y (See Theorem 4.6 in

[121]). We mean by the uniform persistence of the semiflow (f) with respect to Yo,

that there exists & > 0 such that

liinf dist(()0. %) > b1, Vo € Yo,

where 9Yj

YA Y,

Lemma 5.5.1. Let Yy as described above and assume that Ny > 0. Then the semiflow

(1) : Yy — Yy is uniformly persistent.

Proof. To show that ®(f) is uniformly persistent it is cnough to show that the zero

is uniform weak repeller for Yp, sce Theorem 4.6 in [121]. i.c., we have to show that

there exists a & > 0 such that

lim inf [D(6] > &, V6 €

We can prove this by following the same argument in the proof of Theorem 3.1 in

[139]. The proof is by contradiction. Let us consider the eigenvalue problem (5.4.3).
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positive cigenvalue Aj, sce section (4), then there exists

Since this equation admi

a sufficiently small number ¢ > 0, such that the following cigenvalue problem

AN(t,2) =
<2 .
x(/'((\)fr)/‘; KXw,y) e3Y N(y)dy = € (0,7/2),

SN (L) = (f'(0) + ) N(t ) +

N(0) = N(x/2) =0,

admits a positive ci A with a cor ing cigenfunction 6, (x). Morcover,

'(0) = 3. So, there exists § > 0 such that
FIN) > (f(0) =N and [(N) < (f'(0) + N, VN € (0,5,)

Let 8 = 6./k (k is a positive constant that satisfies the relation [l < & [.[ly)-

s ¢ € Yy such that

Assume there ¢
Timsup |01l < .
e

Then there exists a ' > 7 such that

IV )l < KNG b0l <0 V20 =7

Thercfore, N(t,, o) € (0,6,), Vt = ' —7. Hence, N(t,a.) satisfics the following

inequality:

(5.5.3)

o2 .
x (/’(O)fr)/ KX(a,y) e N(y)dy, t>1 x€(0,7/2)

o

Since N(t.w.go) > 0. V¢ > 0.¥r € (0,7/2), then there exists 5 > 0 such that

7



N(t'+5,2.60) = 1N, (s,2), s € [~7,0] and & € [0, 7], where N,(t,) = ¢, ()™ is the
solution of the linear differential cquation (5.5.1). Using the Inequality (5.5.3) and

the comparison principle, we ha

N(ty, o) = N, (t = ') = ngy)ec™ 1),

which is unbounded when ¢ — oo. Th

is a contradiction. 1

Remark 5.5.4. We remarked (Remark 1) that the semifiow (1) : Yy — Yy is

a jon ion), and point dissipative. Also, we showed in the previous

lemma that the semiflow ®(t) is uniformly persistent for Yy. Similarly, we can show

that ®(t) : Xy — Xy is a-contraction (assumption), point dissipative, and uniformly

persistent. Hence, by

there exists al least one steady state solution. Following the

same argument in the proof of Theorem 3.2 in [139). The strongly positive steady state

solution () is unique provided that f(N) is a strictly subhomogencous function; and

Therefore, we have the following existence theorem.

Theorem 5.5.1. Assume that FI holds, and Ny > 0. Then the non-lincar delay
differential equation (5.4.1) admits a unique steady state solution ¢,(x) with ,(x) €

(0, M),V € (0,7/2).

Remark 5.5.5. If we assume that Ny > 0, and the transition function f(N) is a
strictly monotone function on [0,00), then the semiflow ®(t) is strongly monotone

Similar to the proof of Theorem 3.2 [14;

we can show that the unique steady state

solution ¢, () is globally stable; and Hence, we have the following result

Theorem 5.5.2. Assume that Ny > 0, and [(N) satisfics the condition (F1). Morc-

over, assume that f(N) is monotone increasing function on [0,00). Then the unique
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positive steady state solution ¢,(x) satis

limyaog IN(t . 8) = D)y =0

Jor any non-

o ¢ €Yy \ {0}

Remark 5.5.6. The above results hold for the delay differential cquations that are

given in Equation (5.3.15).

5.6 Numerical Simulation

In this section, we present a numerical simulation to investigate the long time behavior
of the solution N(t,x). In this simulation, we consider the Hill function f(N) = {2
To evaluate the non-local term that is given in the Equations (5.3.11) and (5.3.15),

we apply the composite Simpson’s rule. To estimate the solution N(f, ) at the mesh

1

points N, we solve the the delay differential equation that is given in

Equation (5.3.11) and Equation (5.3.15) using the method of lincs. This numerical

simulation shows that the solution N(t,) cither converges to the zero solution (sce

Figure 5.2), or o a positive solution (nonnegative and not identically zero in Dirichlet

boundary conditions case)(sce Figure 5.3).
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Chapter 6

A Non-local Reaction Diffusion
Model for Adhesion in Cell

Aggregation and Cancer Invasion

6.1 Introduction

It is thought that the selective adhesion s responsible for cortain types of tissue
breakdown, as well as it is recognized as a factor in the invasion and metastasis
of tumor cells. Basically, a cell-cell adhiesion is a biological phenomenon describing
the binding of one cell to another through cell surface proteins known as adhesion
molecules (CAMs) [6, 42]. The carliest mathematical studies for this phenomenon
were done by Graner and Galzier in 1992-1993 ‘15, ')I]. where they adopted the Pott
model in physics to a biological cell population. Recently, in 2006, Armstrong et al

have derived mathematical model to describe the cell adhesion phenomenon. This



model is given in the following non-local reaction diffusion equation:

;'munkmunn. (6.1.1)

where

"
g(n(t,x + y))w(y)dy
r

Here, ¢ is a constant of proportionality related to viscosity, D is the diffusion rate,

is a positive parameter reflecting the strength of adhesion force between the cells, and

R describes the radius over which cells can sense their surroundings. The function

g(n) is given in the following formula

n(l=n/M), n<M,

9(n) =
0, ouw.,

here the constant M represents the crowding capacity of the population. The function

w(y) is considered to be an odd function with

>0,y>0,
wly) =
<0,y <0.

For the simplicity, we consider

1L ~R<y<0,
w(y) = (6.1.3)
“L0<y<R

Using the following scaling

ap RN
D
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Equation(6.1.1) is non-dim

onalised to
%..(:_J») - d’%nu,n = %("('-w) K(n(t,2)), (6.1.9)
where
.
K(n(t,z)) :u/ g(n(t,x + y))e(y)dy,
i
and the non-dimensionalise logistic force function g(n) is g(n) = n(1 — n). Using the

linear stability, the anthors showed that the homogencous steady

state solution U is

wnstable provided that

L4 X
mk < 1 - cos(k),

where the constant & is the wave number.
Since the above model does not take into account the cell division as well as the

cell lose. Sherratt et al. [110] modified Armstrong model by adding a cell kinetics

function f(n) (f(n) represents the cell division and cell lose). The new model is given

by the following non-local reaction diffusion equation:

2 it = DLty - Lt Kt 1)) + (o), (6.1.5)
o I or
where

ag

i
K(n(t,x)) = 5 ‘Hq(H(L. +y))w(y)dy.

The parameters ¢, D, a and R are as described above. The functions g(n) and w(y)
were given in Equation (6.1.2) and Equation (6.1.3), respectively. The standard choice
of the fanction f(n) is the logistic function. i.c., f(n) = pn (1 = n/ng), where i is

a positive constant. Again, to non-dimensionalisc this cquation the authors used the



following scaling:

. PR CapM R
2 =5 ==t
The non-dimensionalise problem is given as:
(i ] !
= LRLE oY : ax 4 y)(2 = n(t,x + ). 0} sig
) —ag [,.(»...)an(,.(:, v+ )2 — n(t,x + 1)), 0} sign(y) dy

+ pn(l—n/ng) (6.1.6)

11y < 2, then n = ny is a homogeneous steady state solution for this equation. The
linear stability shows that n = ng is unstable provided that

10+

fong(1 = ng) > S0’

where 0 € (0,7/2) is the solution of tanf = ’—"Tﬂtﬂ [110]. In this paper, the authors
also supported their results by a numerical simulation (see section 3, [110]). Now, it

is natural to ask the following questions

1. How the solution pattern looks if we replace the Numann's boundary conditions

by Dirichlet boundary conditions? Do we have a nonnegative and not identically

zero solution for this problem?

2. If R is large, what about the existence of traveling wave solution for this model?

6.2 Numerical Simulation

In this section, we present a numerical simulation to the rea

ction diffusion equation

(6.1.6). 1f we assume that mg < 2, then Equation (6.1.6) becomes as the following;



[n(l.r) _[)l [ty + )2 nt,x + y))] sign(y) dy

+ pn(l—n/ng)
o ) !
Fafr -a‘—_ u(u)/il F(n(t,2))sign(y) d

+ pn(l = n/ng)

Fnltz) n;% [n(t, 2)K (n(t,x))) + pn(1 = n/ng). (6.2.1)

In this numerical simulation, we use the method of lines to approximate the solu-

tion n(t,) of the above equation. To have more description to our mumerical scheme,

+2)-discretization of the interval [~1,1]. Then

we let g = —1,++ x40 =1 be (

the difference formula for Equation (6.2.1) is given by:

m(t ) = )+ n(t, @)
R [ R 1) + it ) K]~ i)
+ [;;(/‘..-A)<17““’;7"))].

where

!

Kt = [ ottt ) sign(s) dy.
To approximate the above integral, we expand f(n(t, + ) at @ using Taylor's
expansion (cg. sce [44]). Then we have

P it + 04,

St +y) =3 Jlde

im0

where s is an even integer. Multiply this equation by sign(y), and then integrate over
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the interval [—1,1] (recall that sign(y) is odd function). we get

i

iy ))) sign(y)dy

2it1

1 1
‘/7]!(H(/v-"+!/))v~'r!/”(.'/)lly ~ L(
i gein
=2 Z d:

I SR

y
2j+1)!

Ay

oo [

1)

1 den

(2j +2)l datiD

(f(n(t.o)).  (6.2.4)

Consider the first term of the above approximation, and then substitute in Equation

(6.2:2), to get the following difference formula:

Mgy — 2 + My
n(t,ay) = %
= g7 (1= ) (g = ey’
= g e (1= ) (g = )
o

g e (1= 1) (s = )]
" [n('-n) (1 = "(’”7"))] (6.2.5)

— 1. We can evaluate n(t, o) at k= 0,1, N, N + 1 by using the

e

where k
boundary conditions at 2 = —1 and x = 1. To solve this non-linear ODE system, we

use the function ODE15S in MATLAB. The results of this simulation take place in

Figure 6.1, Figure 6.2, Figure 6.3, and Figure 6.1



1, and Rex

J=1. w001, ng

Figure 6.1: Dirichlet boundary conditions case. The values of the parameters arc
R=m p=1 a=00L and no = 1. The initial condition is ¢(x) 1+ sin(3

) r < 7. In this case, the solution n( ges to a nonnegative and not

lentically zcro solution for la

t,) conver

ic rge time ¢

=05, 4=0.4,ng=0.1, and
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The values of the parameters are

Figure 6.2: Dirichlet boundary conditions casc.
R=m p=05 a=04 and ng = 0.1. The initial condition is ¢(x) = 1 +sin(3 —
In this case, the solution n(t,x) CONVETEes the zero solution for

7r), -1 <a <1

large time ¢



1, and R=40
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Spatial Axis

Figure 6.3: Traveling wave solution. The values of the parameters are R = 40, i =
1, a =1, and ng = 1.. The initial data is ¢(x) =0, x >0, and ¢(x) =1, x <0,
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As a conclusion, the numerical simulation shows that the reaction diffusion cqua-
tion (6.1.6) admits a nonnegative and not identically zero steady state solution, as

it shows that Equation (6.1.6) admits a traveling wave solution

6.3 Discussion and Future Work

As we mentioned in the previous section. The numerical simulation shows that the
non-local reaction diffusion equation (6.1.6) admits a nonnegative and not identically

zero steady state solution, when the boundary conditions are of the Dirichlet type,

Also, it shows that (6.1.6) admits a traveling wave solution. Therefore, for the future
work, we expeet to prove this analytically. In fact, we wish to investigate the following

problens:

1. The existence and stability of a nonnegative steady state solution for Equation

(6.1.6), when the boundary conditions arc of Dirichlet type.

2. The existence of a traveling wave solution of Equation (6.1.6), provided that R

is large (i.c., The domain is unbounded).
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