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Abstract 

The main purpose of this thesis was to study the modification of carbon materials 

with anthraquinone (AQ) and dihydroxybenzene (DHB) functionalities, via diazonium 

chemistry and electrochemical oxidative polymerization of their amines, and to examine 

their usefulness as new electrode materials for supercapacitor applications. 

High surface area carbon materials have been widely used as electrode materials 

for supercapacitors. They store charges primarily through an electrostatic double layer 

charging mechanism which limits their energy density. The need for cost effective 

supercapacitors with high power and energy densities is crucial for many potential new 

applications. 

Modified electrodes were investigated by one or more of the following 

techniques: cyclic voltammetry, galvanic cycling, electrochemical impedance 

spectroscopy, scanning electron microscopy, attenuated total reflectance Fourier 

transform infrared spectroscopy and elemental analysis. 

The performances of the supercapacitors were evaluated by cyclic voltarnmetry 

and constant current discharging chronopotentiometry. Ragone plots were used to 

determine energy and power densities. 

Various diazonium coupling approaches were successfully implemented to attach 

anthraquinone, 3,4-dihydroxybenzene and 3,4-dimethoxybenzene to different types of 



carbon electrode materials including carbon fabric (Spectrocarb 2225), Vulcan XC72, 

Black Pearls 2000 and glassy carbon. 

AQ modified carbon fabric was used as a negative electrode with Ru oxide as a 

positive electrode in a 1 M H2S04 (aq) asymmetric supercapacitor. Better energy and 

power densities were achieved from this device using 64% less Ru compared to an 

expensive symmetric Ru oxide device of the same mass as a result of the extended cell 

voltage and the higher specific capacitance that the AQ modification provides. Replacing 

the Ru oxide electrode with DHB modified carbon fabric electrode resulted in doubling 

the energy densities compared to the symmetric unmodified carbon fabric device. 

An electrochemical oxidative polymerization approach was successfully used to 

prepare the following conducting polymers; poly(l-aminoanthraquinone ), poly( aniline­

co-1-aminoanthraquinone ), poly( dimethoxyaniline) on carbon electrodes. 

Interestingly, poly(l-aminoanthraquinone) films prepared from 6 M H2S04 (aq) 

solution showed unusual electrochemical behaviour. These films were extensively studied 

by cyclic voltarnmetry and impedance spectroscopy and it was found that the AQ 

electrochemical activity was strongly affected by the conductivity of the polyaniline-like 

backbone. Accordingly, a charge trapping phenomenon was recognized. 

11 



Acknowledgements 

I would like to thank my supervisory committee Dr. Chris Flinn and Dr. Paris 

Georghiou for their valuable guidance and advice. I would also like to thank all Pickup 

group members for their useful discussion. My special thanks are extended to Lee Stewart 

and David Murphy for helping me solve some computer problems. 

I wish to acknowledge the help provided by the Centre for Chemical Analysis, 

Research and Training (C-CART) and the Core Research Equipment and Instrument 

Training network (CREAIT) to analyse my samples and to get valuable instrumental 

analysis training. 

I highly appreciate the financial support from Memorial University, Defence 

Research and Development Canada (DRDC) and the Natural Sciences and Engineering 

Research Council of Canada (NSERC). 

I am particularly grateful to my parents, brothers and sisters for their 

encouragement and support. My grateful thanks are also extended to my friends who 

made the difficulties insignificant in my eyes. 

Finally, I would like express my very great appreciation to my supervisor Dr. 

Peter Pickup for his support, guidance and sharing his extensive knowledge to make my 

goals achievable. 

111 



Table of Contents 

Abstract . . . .. . . ... . . . . . . . .. . ...... . . .. . ..... . . . . . . ... . ... .. . . ..... . .. .. .. .. . . . .. . . . . .. . . ... ... .... .. .. . i 
Acknowledgement . ..... .. .. . ... ...... . . .. ....... . . . . ... ...... .... . .. . ... . ... .. . . . . ... .. . ..... .. .. iii 
Content .. . . . ... .. . . . . . ..... . . .. . . ..... .. . . .. .. . .. . . ... . . ... .. . ...... . .. . . .. .. . . ... .. .... . . .... . . ... iv 
List of Tables . . . . . ... . .. . . . . .. .. . ... . . . . ... .... . . .. . . . ..... . .. . ... . .. .. . .. .. ... . . .. . ... .. .. . ...... ix 
List of Figures . . .. . ... . . .. .. . . .... .............. . ..... .. . . . . . . . . .... . .. . . . .. .. .. ... .. .. . .. . . . . . . .. . x 
List of Schemes . . . .... . .. .. . . . .. . . .. . . . .. . .. .. .. ... . . . .. .. . . . . . . . . . . . . . ... .. . . .... . . . .. . . . .. . .. . xvii 
List of Abbreviations and Symbols .. . . ... . . . . .. . .... ... . .. . . .. .. . .. .. .. . . ..... . . ... ... . . .. .. xviii 

Contents 

Chapter 1. Introduction ................................................................................................... I 

1. 1. Background ......... ... ... ..... ... ..... .. ... ... ... ... .. .. ........ .. .... .... ....... ..... ........... .. ....... .......... ..... .. .. I 
1.2. Applications of supercapacitors .......... ..... ...... .. .. ...... ...... .... .... .. .. .. .......... .. .. .. ...... .. .. ... .. .. 4 
1.3. Definitions and equations .. ...... .... .......... .. .. .. .. .. .... .. .. .. .... .. .. .. .. .. .. .. ...... ...... .. .. .. .. .. .. .. ...... . 4 
1.4. Mechanisms of supercapacitors .. .... .. .. ..... .. .. .... .. ............ .... .... .... ........ .. .. .... .... .... .. .. ..... 10 

1.4.1. Electrochemical double-layer (ECDL) capacitance mechanism .... .. .... .. .. .. .... .. .. 1 0 
1.4.2. Pseudocapacitance mechanism .... ...... .... .. ........ .... .. .. .. ................ .. ......... ........ .... .. 12 

1.5. Classification of supercapacitors .. .. .. .. .. .... .... .. .. .. .... .. .. .. ...... .... .. .. .. ........ .... .... ........ .... .. 13 
1.6. Materia ls for supercapacitors .. ............ .... .. .. ...... .. .. .. .. .. .. ...... .. .. .... .. .. .. .. .. .... ...... .. .. .. .... .. 13 

1.6.1. Carbon materials .. ...... .. ........ .. .. ........ ... .. .. ...... .. .. .... .. .... ...... ..... .... .... ........ ........... .. 15 
1.6.1.1. Activated carbons .... ........ .. .. .. .. .. .. .. ............ .. ....... ...... .. ...... .. .. .. ........ .......... .. . 17 
1.6. 1.2. Carbon black .... .. .... ...... .. ..... ... .... .. .. ....... .......... ... ... .... ..... .. ........ .. ... ..... .. .. .. ... 17 
1.6.1.3. Nanostructured carbon ........... ..... .... ....... ..... ........... .. ... ........ ..... .. ... ... ... .. ..... . 18 

1.6.1 .3 .1. Carbon nanotubes (CNTs) .. ...... ...... .. .. .... .......... .. .. .. .. .. .. ...... .. ............ ......... 18 
1.6.1.3.2. Carbon aerogel .. .. .. ...... ...... .. .. .... .. ...... .... .. .... .. .. ........ .. .. ........ .. ...... .. .. ...... .. .... 19 
1.6. 1.3.3 . Graphene .. ...... .. .. ...... .. ...... .. .. .... ...... .... .. .. .. .... .. .... .. ...... .. .. ........ .. .. .. ...... .. ...... .. 19 
1.6. 1.3.4. Carbon nanotemplates .......... ...... .... ...... ............. .. .. .. .. .. .. .. .. .. .. .. ...... .... .. .... .. . 19 

1.6.2. Transition metal compounds (TMCs) ...... .... ...... ...... .. .... .. .. .... .. ........ .. .. .... .. .. .. ..... 20 
1.6.3 . Intrinsically conducting polymers (ICPs) ........ .. .. ...... .. .. .. .. ...... .. ........ .. .. .. .. ...... ... 20 

1.6.3.1 . Polymer-modified electrode (PME) .. .. ...... .. .. .. .. .. .. .. .. .... .... .. .. ...... ........ .. .. .. .. 22 
1.7. Chemically modified electrodes (CME) .... .. .. .. .. .. .. .. .. .. .. ........ .. .... .... .... .. .... .... .. .. .... .... . 23 

IV 



1.7.1. Carbon electrodes modified via diazonium coupling ......... .... .... ...... .......... .... ... .. 24 
1.7.1.1 . Chemical diazonium coupling ... ... ..... ....... ........... ....... .. .. ........... ................ .. 24 
1.7.1.2. Electrochemical diazonium coupling ... ...................... ........................ ......... 26 
1.7. 1.3. Diazonium coupling followed by Michael addition reactions .... ........ ... .... . 27 

1.7.2. Carbon electrodes modified with quinone polymers ... ...... .. .. ... ....... ........ .. .... .. .. .. 27 
1.7.3. Carbon electrodes modified by electrochemical polymerization ........ .. ........ .. .. .. 35 

1.8. Investigation ofporous electrodes ...... ........... ... .... .. .. ........... .. .... ... .............. .... ....... ..... 37 
1.8.1. Electrochemical techniques ... ..... ........ ... ... ... .. ......... ........... ..... ...... ..... ... ... ........... . 38 

1.8.1.1. Cyclic voltammetry (CV) ..... ... .. .... .... .... ..... ...... ....... .... .. ..... ... ........ ............ .. 38 
1.8.1.2. Electrochemical impedance spectroscopy (EIS) ... ..... .. ...... .... .... ....... .... ...... 39 

1.9. Objectives and th~sis outlines .. .... .............. ... .... .... ... ..... .... .......... ... .. .... ........... .. .... .. .... 39 
1.1 0. Thesis outline ............... .. ......... ... ................. .. .. .. ............ .......... ............. ...... ............... 40 

References ................................... . .... .. .. . .. .. ... ........ . ..... .. . . ..... . .. .. .. 41 

Chapter 2. Experimental ................................................................................................ 50 

2. 1 Introduction ........................ ... ...... ...... ..... ...... .. .... ...... ............ .. ........... .... ... ...... ........ ...... 50 
2.2 Electrochemical instrumentation ... .............. .... .... ...... ..... ......... .... .... ........... .. .... ..... .. ..... 50 
2.3 Electrodes and electrochemical cells ..... .... .... ............ .. ... ............ ........ ..... ... .... ..... .. ...... 52 
2.4 Specific capacitance of two-electrode versus three-electrode configuration ...... ... ...... 56 
2.5 Synthesis of modified carbon electrodes .... ..... .. ... ..... .... .. ....... .... .. ....... .......... ..... ... ..... . 58 
2.6 . Symmetric and asymmetric cell configuration ... ..... .... ............ ......... .. ....... .. ..... ..... .... 58 
2. 7 Characterization of modified electrode by electrochemical techniques ... .... ..... .......... 59 

2.7.1 Cyclic voltammetry ............................. ... .... .... ... ......... .. .... ........ ..... ...... .. _ ..... ......... . 60 
2.7.2 Constant current discharging ............ ... .......... ..... ............ .... ... ... ............ ... ... ...... .... 61 
2. 7.3 Electrochemical impedance spectroscopy .......... ...... .. .... ... .. .... ........ .. ............. .. .... 62 

2.8 Overcharge and overdischarge .. .... ......... ..... ... ........ .... .... .. ... .... ... .. .... ... .... ......... .. .......... 62 
References ........ . .. .. .. .... . . .. ... . ... . ... ..... . ... . ...... ..... .... . . .. . .. . .............. 64 

Chapter 3. An asymmetric anthraquinone-modified carbon I ruthinium oxide 
supercapacitor .............................................................................................. 65 

3 .1. Introduction .. ............ ......... .... .... ..... ..... ....... .... ....... .. ... .. .... ..... ..... ...... .... ..... ..... ........ ..... 66 
3.2. Experimental .... .. .. ...... ... .... ....... ... ........ .. ... .... .. ..... .......... .... ......... ..... ... .. .. ..... .............. .. 67 

3.2.1. AQ-modified carbon fabric electrodes (C-AQ) .. .. .. .. .... .. ... .. ...... ........... ......... ... .. 67 
3.2.2. Ru oxide electrodes ............ ... ..... ... ..... ....... ..... ...... ..... ...... ... .. ...... .. ... ............. ....... 67 
3.2.3. Supercapacitors ............ ... ..... .......... ..... .... ............ ........ .... .... ..... ... ........ .. ...... ........ 68 

3.3. Results and discussion .. ....... ... .... .. ...... ... ....... .. .. ... ..... ... .... .... ....... ... .... .... ........ ... ...... .... 68 
3.3 .1. Cyclic voltammetry of the individual electrode materials ...... ........ ................ .... 68 
3.3.2. Cyclic voltammetry of the supercapacitor .. .... ...... .. ...... .. .. ....... ........... .. ...... .... .. .. 70 

v 



3.3.3. Constant current discharging ................... .. ...... .. .. ............... ............................ ..... 71 
3.4. Conclusions ..... ................ .................... ........... .... .... ........ ............. ...... .............. ............ 76 

References ...... .... ... . .... . .. . ... ... . . .... . . .................. . . ... .. . . ........ ............ 77 

Chapter 4. An asymmetric supercapacitor with anthraquinone and 
dihydroxybenzene modified carbon fabric electrodes .............................. 77 

4.1. Introduction .. ..... ... ... .... ... ... ......... ........... .... ............ ... ..... .......... ................ ... ... .............. 78 
4.2. Experimental ..... ................. .. .. ... ................ .... ......... ... .. ... ....... ............. ............ ....... ..... . 80 

4.2.1. Materials ..... ........... ...... ...... ................ ............. .. ...... .... ..... ........... ........ ..... ... ..... .. .. 80 
4.2.2. DHB-modified carbon fabric electrodes (C-DHB) ....... ..... ......... ...... .. .. .... ...... .... 80 
4.2.3. Supercapacitors ...................................... .......... ... .... ........ ........... ..... .. .... ............. . 80 

4.3. Results and discussions .... ...... .... ...... .... ........... .. ... .. .. ... ............ .... ................ ............ .. .. 81 
4.3 .1. Cyclic voltammetry of the electrode materials ... .... ....... ................................. .. .. 81 
4.3.2. Cyclic voltammetry ofthe asymmetric supercapacitor.. ............................... .. .... 84 
4.3.3. Constant current discharging ... .... ..... ... .. .......... ... .... .... .... ....... ...... .... ... ......... .. ...... 85 

4.4. Conclusions .. ...... ....... ....... ........................ ..... ....... ..... ......... .... ............ ..... ........ ... ..... .... 87 
Refemces . .. .. .. . .. ... .. ............................. .. .... . . . . . . . .. . ..... . .... . .... . . ...... 88 

Chapter 5. Electrochemical preparation of poly(l-aminoanthraquinone) and its 
characterization ............................................................................................ 88 

5.1. Introduction ........ ....... ....... ........ ............. .. ... ... ..... .. ........... ................... ......................... 89 
5.2. Experimental ..... ....... .... .......... ............. .......... .. .... .... .... ........ ...... .... .......................... .... 92 

5.2.1. Chemicals .... .... .. ....... ..... ... .............. .... ... .... ...... ; .. ........... .. ... .... ..... .... .................... 92 
5.2.2. Instrumentation .. ..... .. ..... .... ............. .. .. ......... ..... .. ... .............. ........ .. .. .. .. .......... ...... 92 

5.3. Results and discussion ................ ..... ... .. ...... ... ...... .... .. ......... ... .... ... .... ..... .... ........ .... ..... 93 
5.3 .1. Electrochemical polymerization ... ..................... .. .......... ............. ... ............. ........ . 93 
5.3.2. Solubility ofthe 1-aminoanthraquinone monomer ... .. ...... ..... .... .... ... ...... .. .......... 93 
5.3.3. Potentiodynamic polymerization of 1-AAQ ....... .... ...... ............ ..... ... .............. .... 97 

5.3 .3 .1. Effect of potential window on potentiodynamic polymerization of 1-AA .. 97 
5.3.3.1.1. Potentiodynamic polymerization of 1-AAQ at 0.2 to 1.2 V .............. ... 97 
5.3.3.1.2. Potentiodynamic polymerization of 1-AAQ at -0.45 V to 1.0 V .. ... . .100 
5.3 .3.1.3. Scanning electron microscopy (SEM) of a poly(l -AAQ) film .... ....... 1 02 

5.3.3.2. Cyclic voltammetry ofpoly(1-AAQ) in 6 M H2S04 (aq) .......... ............. .. 103 
5.3.3.3. Impedance and charge trapping: Bilayer-like electrode behavior .. ....... .... 106 
5.3.3.4. Dependance on switching limits and preconditioning potentials .............. 122 
5.3.3.5. Capacitive properties ofpoly(l-AAQ) .... .......... ............. ... .... ..... ........... .... 126 
5.3 .3.6. Charging/discharging properties ofpoly(l-AAQ) ......... ......................... .. 129 
5.3.3.7. The nature ofpoly(1 -AAQ) film capacitance at -0.1 V ..... ... ............ ...... .. 131 

VI 



5.3.3.8. Impedance data fitting for poly(l-AAQ) ......................... ........ ........ .... ... ... 131 
5.3.3.9. FTIR spectra ofpoly(1-AAQ) ..................... ... .... ................ ........... ............ 134 
5.3.3.10. Proposed structure forpoly(l-AAQ) ......... .................. ..... ..... ............ .... .. 136 
5.3.3.11. Electropolymerization in mixed solvents .... ..... ....... .......... .. .. .. ..... .... ..... .. 139 
5.3.3.12. Potentiodynamic polymerization of 1-AAQ on porous carbon materials 

......... ......... .. ... ........ .. ... ....... .... .. ........... .. ..... .. .............. ............. ............ .... ........... 144 
5.4. Conclusions ...... ... ... ....... .. .. .. .. .... ...................................................................... .. ........ 146 

References ........... ...... ..... ... ........ ...................... . ... . .. . . . .............. .. 147 

Chapter 6. Electrochemical copolymerization of aniline with 1-aminoanthraquinone 
and its electrocatalytic activity towards 0 2 reduction ............................ 152 

6.1. Introduction ...... ........................................................................................... .. .. .......... 153 
6.2. Experimental .......................................... ..... ....................................... .... .... ............... 156 

6.2.1. Instrumentation ................................................................... ........ .... ................... 158 
6.3. Results and discussion ................ .... ........ .... ... .. ........... ...... .. .. ............. ..... .. ................ 158 

6.3 .1. Potentiodynamic polymerization of aniline and aniline with 1-AAQ .............. . 158 
6.3 .2. Study of scan rate effect .................. .... .. ... ... .. .. .............. .... ................ ............. ... 165 

6.3 .2.1. Scan rate effect on polyaniline ... ............ .. .............. ................... ................ 165 
6.3.3. The voltammetry ofthe ani-co-1-AAQ copolymer.. .................. .... ........ ........... 167 

6.3.3.1. Study scan rate effect of0.6:0.4 aniline:1-AAQ copolymer .. .... ..... .... ...... 168 
6.3.4. Comparison of ani-co-1-AAQ polymer versus polyaniline .............. ......... ..... .. 170 
6.3.5. The electrocatalytic reduction of 0 2 by the ani-co-1-AAQ copolymer ...... .. .. .. 171 

6.3.5.1. Cyclic voltammetry ............... ....... ....................... .................. ..... ......... ...... 171 
6.4. Conclusions ............... .. ........... ............ ... ................. ........ ......... ........ ...... ..... .... .... .... ... 172 

References .. ...... ..... .. ... . .. ....... ...... .. ... ... . .. .. .... . . . .. ... . . ... . . .. ... . ....... ... 1 7 4 

Chapter 7. Electropolymerization and hydrolysis of dimethoxyaniline on carbon 
electrodes ..................................................................................................... 177 

7.1 Introduction .... .. ...... .. ........ .... ................ ... ...... ....... .... .... ................. ... .. ..... ..... ....... ... .... 177 
7.2 Experimental ...... ...... ..... .. ... .... .. ............... ........... ...... ............... ... ... ... ... ........... ......... ... 180 

7.2.1 Preparation ofGCNulcan-PVDF and GC/BP-PVDF electrodes .. ...... .... .... .... .. 180 
7 .2.2 Electrochemical polymerization of 3,4-dimethoxyaniline .. ... ..... .... ..... ....... ..... .. 180 
7.2.3 Hydrolysis ofmethoxy groups in the film ......... .. .. .. .............. ........ .. ...... ...... .... .. 181 
7 .2.4 Instrumentation .... .. .... .. ........ ........ ....... .... .... ..... ... ..... .... .... ................... ..... ... .. .... .. 181 

7.3 Results and discussion ..... ................ .... .......... ..... ........................ ........ ..... .. ...... .......... 181 
7.3.1 Electropolymerization ofdimethoxyaniline on GC/CB-PVDF ..... .... ..... ... ....... . 181 
7.3.2 Impedance of GC/BP-PVDF/polydihydroxyaniline ... .... ............. ...................... 190 
7.3 .3 Galvanostatic charging/discharging stability ... .. ................................ ...... .......... 192 

Vll 



7.4 Conclusion .. .. .... .......... ............ .... .............. .... ................................. ............. ... .......... .. 194 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 196 

Chapter 8. Miscellaneous methods for modification of carbon electrodes with 
catechol and benzoquinonne moieties ...................................................... 196 

8 .1. Introduction ....................................................... .. ................................... ................... 197 
8.2. Experimental ......... .. .. ... ... .. .......... .......... ...... .. .... ................ .. ... ......... ...... .................... 201 

8.2.1. Modification of carbon black with 3,4-dihydroxyaniline ................................. 201 
8.2.2. Modification of carbon black with 3,4-dimethoxyaniline follow by 

demethylation ....... .. ... ...................... ....... ........ ........ .......... ... ..... ...... .. ........ 202 
8.2.3. Exploring nitrocatechol as a precursor for the modification of carbon with 1,2-

dihydroxyaniline .. .. ............ ...... ........... ...... ..................... ... ... ................. .... 203 
8.2.4. The electroreduction of 4-nitrocatechol followed by in situ diazonium coupling 

.. .. . .... .. ..... . ...... .. ................ . .. ..... .. . ................ . . . . . .. . . . ... .... 203 
8.2.5. Chemical modification of diamine followed by benzoquinone ................. ....... 204 

8.3. Results and discussion ............................................... .. ...... ....................... .. .. ............ 205 
8.3 .1. Modification of carbon black with 3,4-dihydroxyaniline ..... ..... .. ..................... 205 
8.3.2. Modification of carbon black with 3,4-dimethoxyaniline followed by 

demethylation ....................... .. ...... ................ .. .. .... ...... ........ ........ .. ............ 207 
8.3.2.1. Elemental analysis .... ... ....... ... .. ... ... .. ................................... .... .. ... .............. 208 

8.3.3. Exploring nitrocatechol as a precursor for the modification of carbon with 1,2-
dihydroxyaniline ...... .......... ... .. ... ... .................. .... ....... .. ..... ...... ... ...... ......... 209 

8.3.4. Electroreduction of 4-nitrocatechol in presence of nitrite ...... ........................... 212 
8.3.5. Modification of carbon black with aryl diamine followed by Michael addition of 

benzoquinone ............ .. ...................... ......... ................. ...... .... .. ... ... ............ 215 
8.4. Conclusions ....... .... ... ....................................... .. ... .... .. ...... ...... .... .. .... .. ........ .... .... ..... .. 217 

References ......... .. . ..... . . ........ . .. .. ........ . ........... .. ..... ..... ................. 220 

Chapter 9. Summary and future work ....................................................................... 223 

9.1. Summary ............ ... ....... ...... ............................. ... .. ..... .... .. .... ..... ... ... ........ ...... ... .......... 223 
9.2. Future work ... ..... .. ... .... ... ........... ......... ....... ............. .. .. ..... .. .... ...... ........ ... .. .. .. .. .... .... ... 227 

Vlll 



List of Tables 

Table 1.1 : Comparison of theoretical and experimental specific capacitance (Csp) values 
of some electrode materials ............................................... .... .... ..... .... .... ... ..... 14 

Table 4.1: Energy (Es) and average power (Ps) densities for . symmetric C/C and 
asymmetric C-AQ/C-DHB supercapacitors, for constant current discharging 
from 1.2 V. The combined electrode masses were 30.6 mg and 31.1 mg, 
respectively ................................................ ... ......... .. ... ....... .. ..... .... ........ .... .... . 87 

Table 5.1: Resistances and capacitances of poly(l-AAQ) film in 6 M H2S04 (aq) from 
series capacitance data in Figure 5.16 and Figure 5 .18 ...................... .......... 120 

Table 5.2: Estimated resistances of poly(1-AAQ) from Nyquist impedance plots at 
positive potentials (+ 0.1 V to + 0.7 V) in 6 M H2S04(aq), assuming that R:t 
and Ri are negligible, and RHigh =R5 •••• • •• • •••••••••• •• •• •••• ••••••• • ••• •• ••••• • ••• • •• •••• • •• •• • 121 

Table 5.3: Experimental and fitting parameters for the impedance ofpoly(l-AAQ) in 6 M 
H2S04 . ........ .... ......... ............... .......... ... ... ..... ...... .. .. ..... ... ........ ........ .. .. .. ........ 133 

Table 5.4: Proposed FTIR assignments for poly(l-AAQ) compared with the literature . . 
.. ............ ........... .. ... ........... ... ........ .... .. .. .... .... ........ ............ ..... ............ ............. 136 

Table 6.1: Peak potentials for anodic and cathodic peaks from electropolymerization of 5 
mM aniline in 4 M H2S04 at 100 m V /s using a potential window of -0.1 to 
1.2 V vs. SCE on GC. Numbers between brackets were acquired over 
potentials of -0.1 to 1.3 V vs. SCE ......... ....... ...... ...... .... .... ........... ......... ...... 161 

Table 8.1 : Elemental analysis of unmodified Vulcan XC72 compared to samples modified 
with DHB and indirectly with DMB followed by demethylation to form 
DHB . .... ..... .......... .. .... .. .. .... .... .. ..... .... ... .... .... .. ...... .. .... ... ... .... .. .... ..... ... ......... .. 209 

lX 



List of Figures 

Figure 1.1: Ragone plot shows a performance comparison between capacitors, 
electrochemical devices and the combustion engine. Reprinted with 
permission from ref I. Copyright 2004 Chemical Review. ..... .......... ...... .... .. ..... 3 

Figure 1.2: Cyclic voltammetry of a bare GC electrode in aqueous and nonaqueous 
media. Reprinted with permission from ref I 2. Copyright 2000 J 
Electrochimica Acta . ...................................... .. ...... .... .......... ...... .............. ... ..... 11 

Figure 1.3: Schematic diagram of an electrochemical double layer (ECDL) capacitor in 
the charged state ........ .. ................................................ ..... ... ............................. 12 

Figure 2.1: Schematic diagram for (a) the two-electrode cell (supercapacitor) and (b) the 
three-electrode cell. .......... ........... ...... ................................. .... .............. .... .. ..... 53 

Figure 2.2: A photo of a three-electrode electrochemical glass cell. ... .. ... ....... ......... .. ....... 54 

Figure 2.3: Photograph of a typical two-electrode cell consisting of a 50 mL glassjar. ... 55 

Figure 2.4: Typical electrochemical cell diagrams (a) two-electrode cell and (b) three-
electrode cell. ..... ..... ........ ........ ................ ....... ..................... ................. ....... ... .. 56 

Figure 2.5: Typical waveform of cyclic voltammetry repeated for two cycles ................. 60 

Figure 3.1: Cyclic voltammetry of an AQ-modified Spectracarb electrode (solid line; 14.8 
mg; 2 m V s - I), and unmodified Spectracarb electrode (dotted line; 14.3 mg; 20 
mV s- 1

) and a Ru oxide electrode (dashed line; 5.1 mg, 20 mV s- 1
) in 1 M 

H2S04 (aq) .......... ... .... ...... ........................ ......... .... ............................ ............. ... 70 

Figure 3.2: Cyclic voltammogram at 2 mV s-1 for an AQ-C (15.1 mg)/Nafion 112/Ru 
oxide (8.5 mg) supercapacitor in 1 M H2S04 (aq) ................ ......... .. ...... .. .. .. ... 71 

Figure 3.3: Constant current discharge curves at 10 rnA for an AQ-C (15.1 mg)/Nafion 
112/Ru oxide (8.5 mg) supercapacitor (Vinitiat = 1.3 V) and a Ru oxide (5 
mg)/Nafion 112/Ru oxide (5 mg) supercapacitor (Vinitiat = 1.0 V), both in 1 M 
H2S04 (aq) ....................... .................... ......... ........ ........... .... ... .. ... ... .... .............. 72 

Figure 3.4: Constant current discharge curves for an AQ-C (15.1mg)/Nafion 112/Ru 
oxide (8.5 mg) supercapacitor in 1 M H2S04 (aq) ..... ................................... .. 74 

Figure 3.5: Ragone plots for an AQ-C (15.1 mg)/Nafion 112/Ru oxide (8.5 mg) 
supercapacitor (solid points; Vinitiat = 1.3 V) and a Ru oxide (5 mg)/Nafion 
112/Ru oxide (5 mg) supercapacitor, both in 1 M H2S04 (aq) .......... .... ..... ... . 75 

X 



Figure 4.1: Cyclic voltammetry (20 mV/s) ofC-AQ (solid line; 15.7 mg), C-DHB (dotted 
line; 15.6 mg) and unmodified-C (dashed line; 15.3 mg) in (aq) 1 M H2S04. 
Currents have been normalised with respect to scan rate and electrode mass .. 
......... ............ .... ........ ................ .... ................. ....... ........ ............ ..... .. ...... .... ... ..... 82 

Figure 4.2: Cyclic voltammetry (two-electrode mode) in 1M H2S04 (aq) of a C-AQ (15.5 
mg)/Nafion112/C-DHB(15.6 mg) supercapacitor before (solid) and after 
(dashed) several charging and discharging cycles, normalised with respect to 
scan rate (20 mV/s) and the combined mass of the two electrodes ............. .... 84 

Figure 4.3: Constant current discharging curves at 0.2 A for asymmetric C-AQ(l5.5 mg)/ 
Nafion112/C-DHB (15.6 mg) (thick line) and symmetric C(15.3 mg)/C(15.3 
mg) supercapacitors in 1 M H2S04 (aq) .. ........ ......... .......... ...... ............ ...... ...... 86 

Figure 5.1: 1-aminoanthraquinone (1-AAQ) . .. ..... .. ..... .................... .................... ..... .. ...... 91 

Figure 5.2: Cyclic voltammograms of 1-AAQ solubilized in 6 M H2S04 at three different 
temperatures, at a scan rate of 50 m V /s, using the same glassy carbon working 
electrode. A constant amount of 0.0223 g 1-AAQ to 20 mL 6 M H2S04 was 
used for each test. ... ............. ..... ............... .... .... .... ........ .... ... .. ........ ... ......... ...... .. 95 

Figure 5.3: Comparison of electropolymerization of the same amount of 1-AAQ 
monomer (0.0223 g) solubilized at two different temperatures 75 °C (dotted 
line) and 90 oc (solid line) in 6 M H2S0 4 . ............................... .. .... ................ 95 

Figure 5.4: Mass of 1-AAQ dissolved versus mass added at room temperature ...... .... .... 96 

Figure 5.5 : Electro-oxidative polymerization of ca. 5 mM 1-AAQ in 6 M H2S04 on 
glassy carbon electrode scanned from 0.2 to 1.2V vs. SCE at a rate of 50 
mV/s . ......... .. ... ..... .......... ...... ... ........... .......... ........... ............ .... .... ..... .. .... .. .. .. .... 98 

Figure 5.6: Electro-oxidative polymerization of 1-AAQ (0.0223 g in 20 mL of 6 M 
H2S04) on a glassy carbon electrode scanned from -0.45 to 1.0 V vs. SCE at a 
rate of 100 mV/s. The experiment was done under a nitrogen atmosphere, (a) 
first four cycles, and (b) ten cycles ..... .... .... ........ ........................ ........ .... ....... 1 01 

Figure 5.7: Scanning electron microscopy (SEM) ofGC/poly(l-AAQ) ........................ 102 

Figure 5.8: Steady state cyclic voltammogram (after three cycles) of GC/poly(l -AAQ) in 
monomer-free 6 M H2S04 solution at 5 mV/s. Poly(l-AAQ) was prepared by 
cycling from -0.45V to 1.0 V vs. SCE ................................................... ....... 1 03 

X I 



Figure 5.9: (a) Cyclic voltammograms of GC/poly(l-AAQ) in 6 M H2S04 at various scan 
rates from 5 m V /s to 400 m V /s, (b) Plot of anodic peak current at ca. + 0.4 V 
vs. square root of scan rate ......... ..... ................... .......... ........... ..... .. ......... ....... 1 05 

Figure 5.10: Typical Nyquist plot, imaginary impedance (Z") versus real impedance (Z'), 
of a conducting polymer. ... ....... ................. .... .. ....... .. .. .. .......... ................. ...... 1 07 

Figure 5.11: Equivalent circuit for a typical conducting polymer. ........... ............... ........ 1 08 

Figure 5.12: (a) Typical Nyquist plot of GC/poly(1-AAQ) at +0.60 V vs. SCE in 6 M 
H2S04; (b) determining the film capacitance (CL) from Nyquist plot. ......... 11 0 

Figure 5.13: Selected plot of series capacitance versus real impedance of poly(l-AAQ) at 
0.2 V vs. SCE. CL is the polymer film capacitance; Rw and RL are the 
Warburg and the film resistances, respectively .................. ....... ..... ..... .......... 111 

Figure 5.14: Nyquist plots for GC/poly(l-AAQ) in 6 M H2S04 (aq) at potentials of -0.1 
V, -0.2 V, -0.3 V and -0.4 V vs. SCE. (a) Full range and (b) narrow range of 
impedances . .. .. .. ......... .......... ....... .... .... ............. .. ..... .... .... ....... ..... ............ .... ... 113 

Figure 5.15: Nyquist plots for bare GC in 6 M H2S04 (aq) at potentials of -0.1 V, -0.2 V, 
-0.3 V and -0.4 V vs. SCE .................................................... ..... .. ................... 114 

Figure 5.16: Series capacitance versus real impedance plots for poly(1-AAQ) at -0.1 V to 
-0.4 V and at potentials of -0.4 V for bare GC. ..... .......... ..... ........... .............. 115 

Figure 5.17: Nyquist plots for GC/poly(l-AAQ) immersed in 6 M H2S04 at potentials of 
+0.1 V, +0.2 V, +0.3 V +0.4 V, +0.5 V, +0.6 and +0.7 V vs. SCE, 
respectively .... .. ... .. ........... .... .... .. .. ...... .. .. .. ........................ .... ............... .... ..... .. 117 

Figure 5.18: Series capacitance versus real impedance at potentials of +0.1 V, +0.2 V, 
+0.3 V, +0.4 V, +0.5 V, +0.6 and +0.7 V vs. SCE . ........... ........................... 118 

Figure 5.19: Changing of RHigh and RLow with potential.. ..................................... ........... 121 

Figure 5.20: Hold and reverse study of cyclic voltammetry of poly(l-AAQ) deposited on 
a glassy carbon electrode in 6 M H2S04 and scanned at a rate of 50 m V s-1 

•• 

..... ....... ....... ............ .. ... ........ ........ .......... ... ............ ......... .......... .............. ... .. .. ... 125 

Figure 5.21: Limiting capacitance (from impedance) of GC/poly(l-AAQ) versus 
electrode potential compared with the capacitance of bare GC and GC/poly( 1-
AAQ) (from cyclic voltammogram at 5.0 mV/s) in 6 M H2S04 solution. 
Absolute values are presented for the negative scan cyclic voltammogram .... 
... .... ... ........ ........ .. .... ....................... .... .................. .. ...... .. .......... ..... .................. 128 

Xll 



Figure 5.22: Comparison of capacitance and charge versus potentials for 
GC/poly(1-AAQ) in 6 M H2S04 ......... ............. .... ... ..... .. ...... ...... .. ........ ......... 129 

Figure 5.23: Charging/discharging plot of GC/poly(l-AAQ) in 6 M H2S04 over a 
potential range between -0.45 V to 0.8 V . ......... ........................................... 130 

Figure 5.24: Series capacitance versus real impedance of GC/poly(l-AAQ) in 6 M H2S04 
compared to bare GC. All measurements were at -0.1 V vs. SCE. Various 
equilibrium time and potential were used as indicated ................................. 131 

Figure 5.25: Experimental and fitting of Nyquist plots for poly(1-AAQ) in 6M H2S04 
over the frequency range 1 0000 Hz to 0. 0 1 Hz. (a) at 0.1 V (b) and at -0.3 V . 
......................................................... .... ....... ..... ..... .......... .................. ....... ... .... 132 

Figure 5.26: ATR-FTIR spectrum of solid 1-AAQ monomer. ................ ......... .............. 135 

Figure 5.27: ATR-FTIR spectrum of poly(l-AAQ) deposited on GC electrode by 
potentiodynamic polymerization from 6 M H2S04 ................ ....... .......... .... .. 135 

Figure 5.28: Proposed structures ofpoly(l-AAQ) (a) in the totally reduced form and (b) 
totally oxidized form .............................................................. ................... .... 13 8 

Figure 5.29: Potentiodynamic polymerization at 50 m V s-1 of 1-AAQ on a glassy carbon 
electrode in mixed solvents, where 0.0223 g of 1-AAQ was preheated initially 
in 6 M H2S04 then 10 mL it was diluted with 10 mL of acetonitrile (1: 1 ) .... 140 

Figure 5.30: Scan rate effect on poly(1-AAQ) in 6 M H2S04 following CV in Figure 5.29 . 
......... .......... .. .. .... ............................................................................................. 141 

Figure 5.31: Schematic representation of the complex proposed between AQ and a 
bridging nitrogen ... .......... ... ... ....... ......... ..... .. .. .... .......... ............... ........ .... ..... .. 142 

Figure 5.32: Cyclic voltammetry of poly(l-AAQ) coated GC electrodes in 6 M H2S04 
(aq) at 50 mV s-1

• The poly(1-AAQ) was deposited from 6 M H2S04 (·· · ··)or 
a 1:1 mixture of acetonitrile and 6 M H2S04 (- ). . .... .... ...... ............. ..... .... .. 144 

Figure 5.33: Electro-oxidative polymerization of ca. 5 mM 1-AAQ dissolved in 6 M 
H2S04 on carbon fiber paper (CFP) electrode scanned from 0.2 to 1.2 V vs. 
SCE at a rate of 100 mV/s .. ............... .... ..... .. .... ... ...... ............... .. .................... 145 

Figure 5.34: Electro-oxidative polymerization of ca. 5 mM 1-AAQ dissolved in 6 M 
H2S04 on carbon fiber paper (CFP) electrode scanned from -0.45 to 1.0 V vs. 
SCE at a rate of 50 m V /s. for ten cycles ....... ............ ....... ..... ... ...... ....... .... .... 146 

Xlll 



Figure 6.1: Potentiodynamic polymerization at 100 m V /s from -0.1 V to 1.2 V vs. SCE of 
aniline (a) in 4 M H2S04 and (b) in 6 M H2S04 ........ .. ............. .. ............. .. ... 160 

Figure 6.2: Potentiodynamic polymerization at 100 m V /s on GC in 6 M H2S04 of the 
following feed ratios of aniline:1-AAQ (a) 0.0:1.0, (b) 0.2:0.8, (c) 0.4:0.6, (d) 
0.6:0.4, (e) 0.8:0.2 .......................................................................................... 165 

Figure 6.3: Cyclic voltammograms of GC/polyaniline in 4 M H2S04 at scan rates (a) 10 to 
1 00 m V s -I and (b) 1 00 to 600 m V s -I, and (c) the corresponding peak current 
vs. scan rate at 0.5 V vs. SCE .............................. ..... ...... ....... ..... ............ ... .... 166 

Figure 6.4: Cyclic voltammograms at 75 mV/s of ani-co-1-AAQ copolymers in 1 M 
H2S04 prepared from two different feed ratio of 0.8:0.2 and 0.6:0.4 aniline:1-
AAQ compared to bare GC ........... .............. ....... .. ..... .. ........... .. .. .. .......... ... ... . 167 

Figure 6.5: (a) Cyclic voltammograms of0.6:0.4 aniline:1-AAQ copolymer in 4 M H2S04 
(aq) from 10 to 100m V s-1

. (b) The corresponding peak current vs. scan rate at 
potential 0.5 V vs. SCE ..... ......... ...... .......... ......... .. ............... ...... .. ........ .... ... .. 169 

Figure 6.6: Cyclic voltammograms of GC/polyaniline (dotted line) and a 6:4 aniline: 
1-AAQ feed ratio GC/copolymer (solid line) in 4 M H2S04 at 75 mV s-1 

... 170 

Figure 6.7: The cyclic voltammograms of the reduction of 0 2 by 0.6:0.4 aniline-co-1-
AAQ copolymer modified GC in 0.5 M H2S04 (solid line) compared to bare 
GC in 0.5 M H2S04 (dotted line). All solutions were saturated with 0 2 • ..... 172 

Figure 7.1: Structures of 3,4-dihydroxyaniline and 3,4-dimethoxyaniline ... ....... ..... .. ..... 180 

Figure 7.2: Cyclic voltammograms at 50 mV s-1 of 5 mM 3,4-dihydroxyaniline in 1 M 
H2S04 on GC at (a) 20 min and (b) 60 min after preparation of the solution . 
................................. .... ........................... .............. .... .. .. .. .............. ........... ...... . 183 

Figure 7.3: (a) Cyclic voltarnmetry of electropolymerization of 0.2 M dimethoxyaniline 
on GCNulcan-PVDF in 0.5 M H2S04 at 2 m V s-1

, first two cycles. (b) Same 
as (a) for 10 cycles .. ...... ........ ...... .. ...... ...... ..... .... ... ...... ... ............ .. ............... .. . 185 

Figure 7.4: The hydrolysis of GC/ Vulcan-PVDF/ polydimethoxyaniline film by potential 
sweep at 5 m V s-1 in 0.5 M H2S04 (aq) . ........ .. ... .... ... ..... ...... .............. ....... .. .. 186 

Figure 7.5: (a) Cyclic voltammogram of GCNulcan-PVDF/polydihydroxyaniline vs. 
GCNulcan-PVDF in 0.5 M H2S04 at 5 mV s-1

• (b) Scan rate effect on the 
polymer at rate of 10m V s-1 to 120m V s-1 

•• •••• ••••• ••••• •• •••••• •• •••••••••• •••••• •• ••• •• •• 188 

XIV 



Figure 7.6: (a) Cyclic voltammetry of electropolymerization of 0.2 M dimethoxyaniline 
on GC/BP-PVDF in 0.5 M H2S04 at 2 m V s-1

• (b) The hydrolysis of GC/ BP­
PVDF/ polydimethoxyaniline film by potential sweep at 5 mV s·1 in 0.5 M 
HzS04 (aq) ........................... .... ... ...... ........ ... ..... ..... .. ..... ..... ............................. 189 

Figure 7.7: Scan rate effect ofpolydihydroxyaniline from 5 mV s·1 to 100 mV s·1 
• ••••• • 190 

Figure 7.8: Nyquist plots for of GC/BP-PVDF/polydihydroxyaniline in 1 M HzS04 (a) at 
0.0 V (solid line) vs. SCE and +0.35V (dotted line). (b) Enlarged scale of (a). 
(c) Series capacitance versus real impedance .. .. ... ... ........................ ... ......... .. 191 

Figure 7.9: (a) Stability of a GC/BP-PVDF/polydihydroxyaniline electrode during 
charge/discharge in 1 M H2S04, under N2 for 500 cycles. (b) Capacitance 
versus cycle number calculated from the discharge current of 1. Ox 1 o· A. ... 193 

Figure 8.1: Structures of (I) 3 ,4-dihydroxyaniline ( 4-aminocatechol), 
(II) 3,4-dimethoxyaniline (4-aminoveratrole) and (III) 1,2-dihydroxy-4-
nitrobenzene (4-nitrocatechol) ............................................. ... ........ ....... ........ 200 

Figure 8.2: Cyclic voltammetry of Vulcan XC72 modified with 3,4-dihydroxyaniline 
(0.00094 g) at 50 mV/s in 1M H2S04 .............. ............. .................... ........... 206 

Figure 8.3: Possible coupling of the dihydroxybenzene moiety . ... .................................. 206 

Figure 8.4: Cyclic voltammograms of Vulcan XC72 modified with 3,4-dimethoxyaniline 
followed by demethylation into 3,4-dihydroxyaniline at a scan rate of 20 m V 
s·1 in 1 M H2S04 , 0.26 mg of modified Vulcan XC72 was loaded ......... ...... 207 

Figure 8.5: Cyclic voltammogram of 4-nitrocatechol on GC in 1 M H2S04 at 50 mV/s . 
............................................................................................. ......... ....... .... ...... . 210 

Figure 8.6: Cyclic voltammetry of a Vulcan carbon electrode in 1 M H2S04 at 50 m V s·1 

following the cyclic voltarnmetry in a 4-nitrocatechol solution shown in Figure 
8.5 .... ...... ......... ...... .... ........... ............. .. .......... .... ... .. ......... ................ ...... .. ....... . 211 

Figure 8.7: Cyclic voltarnmogram at 50 m V s·1 of electrochemical reduction of 1.03x1 04 

mole of 4-nitrocatechol on GC electrode in a solution contains 2.00x 104 mole 
ofNaN02, ((18 + 2) mL; acetonitrile + 1 M HCl) and 0.1 M BU4NPF6········212 

Figure 8.8: Cyclic voltammograms in 1 M H2S04 solution for Vulcan following grafting 
with nitrocatechol. (a) Scan rates are from 50 to 100 mV s·1

• (b) Scan rates are 
from 50 to 500 mV s·1 

• ••• •••• •••••••••••••• •••••••• •• •••• •• •••••••••••••••••••••••••••••••• •••• ••••••••• 21 4 

XV 



Figure 8.9: Linear plot of cathodic peak current at ca. 0.56 V versus scan rates for Vulcan 
XC72 following grafting with nitrocatechol, measured in 1 M H2S04 ......... 215 

Figure 8.10: Cyclic voltammogram at 50 mV/s of GCNulcan-ABA-BQ in 1 M H2S04 . 
..... ............... .... ............... .............. .... .... .. .... .................. .... .. ....... ..... .. ... ..... .. ..... 216 

Figure 8.11: Cyclic voltammogram of GCNulcan-ABA-BQ in 1 M H2S04 at scan rate 
from 20 mV/s to 100 mV/s . ....... .. .............. ................ ..... .. ..... ..... .. .... ............. 217 

XVI 



List of Schemes 

Scheme 2.1: Block diagram of typical electrochemical instrumentation system .. 51 

Scheme 4.1: Possible grafting of 4-aminocatechol to carbon .. .... ...... ............ .... .... 83 

Scheme 5.1: Oxidation step of 1-AAQ to form a radical cation ... .............. ... ..... ... 99 

Scheme 5.2: Some resonance structures of 1-AAQ monomer radical cation . ..... .. 99 

Scheme 8.1: Proposed reduction pathway of 4-nitrocatechol in aqueous acid ... 21 0 

XVll 



List of Abbreviations and Symbols 

1 ,5-DAAQ 1 ,5-diaminoanthraquinone 

1-AAQ 

A 

ABA 

AQ 

ATRFTIR 

BQ 

c 

C-AQ 

CB 

C-DHB 

CFP 

CL 

CME 

CNT 

CPEs 

C sp 

C sp-2E 

C sp-3E 

1-aminoanthraquinone 

ampere 

4-aminobenzylaniline 

anthraquinone 

attenuated total reflectance Fourier transform infrared 

benzoquinone 

capacitance 

carbon fabric modified with AQ 

carbon black 

total electrochemical cell capacitance 

carbon fabric modified with DHB 

double layer capacitance 

carbon fiber paper 

film capacitance 

chemically modified electrode 

carbon nanotubes 

carbon paste electrodes 

Specific capacitance 

specific capacitance of 2-electrode cell 

specific capacitance of 3-electrode cell 

XVlll 



cv cyclic voltammetry 

DHA 3, 4-dihydroxyaniline 

DHB 1 ,2-dihydroxybenzene 

DMB dimethoxybenzene 

E/ amplitude of the potential oscillation 

Eo , formal potential 

EA elemental analysis 

ECDL electrochemical double-layer 

EIS electrochemical impedance spectroscopy 

Epa anodic peak potential 

ESR equivalent series resistance 

F farad 

H2AQ reduced form of anthraquinone 

current 

I' amplitude of current oscillation 

zc charging current 

I CPs intrinsically conducting polymers 

iF Faradaic current 

IPE ideal polarized electrode 

o-BQ a-benzoquinone 

ORR oxygen reduction reaction 

PANI polyaniline 

XIX 



p-BQ 

PME 

PVDF 

Q 

R 

Ret 

SCE 

SEM 

SWCNT 

TMCs 

v 

v 

Vulc-ABA 

Vulc-ABA-BQ 

Vulcan-DHB 

Z' 

Z" 

p-benzoquinone 

polymer-modified electrode 

polyvinylidene difluoride 

electric charge 

gas constant 

charge transfer resistance 

electronic resistances 

ionic resistances 

sum of Re and Ri 

uncompensated resistance 

saturated calomel electrode 

scanning electron microscope 

single-wall carbon nanotube 

transition metal compounds 

applied potential across the electrode 

scan rate 

Vulcan XC72 modifed with 4-aminobenzylaniline 

Vulcan XC72 modifed with 4-aminobenzylaniline followed by 
benzoquinone 

Vulcan XC72 modifed with dihydroxybenzene 

real impedance 

imaginary impedance 

XX 



-----------------------------------------------------

n 

<p 

ohm 

phase angle between the potential-current oscillations 

XXI 



Chapter 1 

Introduction 

1.1. Background 

Over the past few decades, issues like global warming, environmental pollution, 

fossil fuel depletion and their effect on the economy have lead scientists to pay more 

attention to natural energy sources such as the sun and the wind as cheap, 

environmentally safe and renewable energy resources. 1
·
7 However, these resources are not 

effectively available in all regions all the time. Therefore, alternative energy/power 

devices that store energy when it is available and retrieve it on demand have become of 

. 1 . 2 8 pract1ca Importance. ' 

There are three promising electrochemical energy devices which are currently 

being developed to store and/or convert energy in a sustainable and environmentally 

friendly way. These include fuel cells, batteries and supercapacitors. 1
'
6
'
7
'
9
'
10 Each of these 

is an electrochemical cell that consists of two electrodes immersed in an electrolyte 

solution and are separated from each other by a porous separator that allows ions to pass, 

but not electrons. 

A common feature among these devices is that the transport of electrons and ions 

is necessarily separated from each other in a closed electric circuit. 1
'
3
'
11 Electrons are 



transported to or from an electrode via external conductors while positive and negative 

ions are transported within the electrolyte solution and through the separator to the 

oppositely charged electrode. In such a cell the energy storage or consumption occurs at 

the electrode/electrolyte interface. 1
•
12 

These devices use different materials and have different mechanisms for energy 

storage and conversion. 1
•
9

•
1° Consequently, they have different performances. Fuel cells 

and batteries are excellent energy storage devices, but they suffer from low power 

characteristics. However, supercapacitors are excellent power devices with lower energy 

storage characteristics than batteries and fuel cells. Moreover, supercapacitors can store 

h h . h d . 1 . I 12 muc 1g er energy compare to conventwna capacitors. ' 

Practically, the performance for any given energy storage system can be predicted 

from its Ragone plot (Figure 1.1 .1
) which relates the specific energy to the corresponding 

specific power of that system. This figure shows that the combustion engine dominates 

over the electrochemical devices in terms of both specific energy and specific power. This 

difference inspires researchers to improve each electrochemical system individually or in 

combination to compete with combustion engines or to become even better. From the 

consumer and the industrial point of view, these systems need to have high efficiency, 

low volume, low mass, and be inexpensive.8 
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Figure 1.1: Ragone plot shows a perfonnance comparison between capacitors, 
electrochemical devices and the combustion engine. Reprinted with permission 
from ref I . Copyright 2004 Chemical Review. 

The differences observed between these electrochemical devices are related 

directly to the physical and chemical properties of their electrodes. 1
-
3
'
12 The high energy 

encountered in fuel cells and batteries is related to the transfonnation of full electron(s) 

per atom of the electroactive electrode material during the bulk redox reactions.4 The 

occurrence of the redox reactions within the bulk electrode is responsible for the low 

power densities in both devices.2 

On the other hand, the energy and power density of supercapacitors are related to 

their fast capacitive and/or pseudocapacitive characteristics. Considering that the average 

charge density for a planar electrode is 30 ~C cm-2 and an atom density of 1015 atoms per 

3 



cm2 then the charge density will be 0.18 moles of electrons per moles of atoms (i.e. 0.18 

electron per atom) can be stored at 1 V potential in a double layer mechanism.4 However, 

pure capacitive electrodes show the highest power density and the longest cycle lives of 

ca. 106 cycles.4
'
13

'
14 Pseudocapacitance electrodes have lower power density than pure 

capacitance electrodes due to the relatively slower kinetics of the redox reaction involved. 

For companson, redox reactions can be present in both supercapacitors and 

batteries. However, in contrast to batteries, the redox reactions in supercapacitors are not 

concomitant with phase changes,. 15 In addition, power densities for supercapacitors are 

higher than that for batteries because the charge delivery process from the surface (in 

supercapacitors) is always faster than that from the bulk (in batteries)? 

1.2. Applications of supercapacitors 

Since the first commercially available supercapacitors by the NEC Company 

appeared in Japan in 1971 , the application of supercapacitor technology becomes an 

. . 1 . 2 s 1 b"l 1 . 2 16 1 1 mcreasmg y growmg area. orne examp es are: mo 1 e e ectromcs, ' pu se aser 

technology2
'
16 and power tools.3 Recently, due to environmental issues, supercapacitors 

have been introduced to the field of transportation such as in hybrid electric vehicles and 

electric vehicles. 17 

1.3. Definitions and equations 

A Supercapacitor, also known as an electrochemical capacitor, IS an 

electrochemical device that has very high specific capacitance compared to a 

4 



conventional capacitor, and has the ability to store and deliver charges very rapidly as a 

result of ion adsorption and/or fast surface redox reaction(s) at the electrode/electrolyte 

interfaces.4 

An Electrolyte is any ionic material which maintains a pure ionic conductivity 

between electrodes in a given electrochemical cell. 1 

A Separator is a porous barrier that allows ionic species to pass between 

electrodes but does not allow electrons to pass. That is, it allows ionic conductivity to be 

established without the danger of electrical shorting. 1 

An Ideal polarized electrode (IPE) is an electrode in which changing the potential 

across it, within a certain potential window, does not allow charge to pass across the 

electrode-electrolyte interface.18 Consequently, charges are accumulated at the 

electrode/electrolyte interface in the same manner as they do in conventional capacitors.18 

Current (i) is the rate of flow of electrons (or coulombs) that pass through a given 

point in a conductor, and has a unit of ampere (A), where one ampere is equivalent to one 

coulomb per second (C/s).18 The current can flow within electronic conductors, wmc 

conductors and/or across the interface between them. 15 

The current across an interface, which consists of two different conductors, may 

refer to a charging current and/or faradaic current. 15 

5 



Charge transport is a macroscopic movement of charges within a single phase 

only. 

Charge transfer is a microscopic process and it represents the flow of faradaic 

current within a single phase or at the interface between two boundaries and results in a 

change in the oxidation state of the corresponding species. 15 This process can occur at any 

interface between two phases: solid-liquid, solid-solid, and solid-gas. 15 The redox 

reaction that is involved in a charge transfer step may result in neutralization, formation 

of ions from neutral species, or simply alteration between two different oxidation states. 15 

According to this process, diffusion generally occurs to and/or from the electrode 

interface due to either consumption of the reactants or formation of the products. 15 An 

exception is when the electroactive groups are part of modified electrode films. 

Faradaic current (iF) is the current passed due to the occurrence of a reduction or 

oxidation reaction at the electrode/electrolyte interface, i.e. it represents the rate of the 

d 
. 18 re ox reactiOn. 

Charging current (ic) is the current that occurs due to changes in the accumulation 

of charges electrostatically at the electrode/electrolyte double-layer interface upon 

changing the potential. Generally, one electrode has an excess of electrons while the other 

electrode has a deficiency of electrons. 18 The amount of charging current is proportional 

to the capacitance of the electrode. 

6 



Charging occurs when the positive terminal of a DC power source is connected to 

one electrode of a supercapacitor, while its negative terminal is connected to the second 

electrode. The flow of charges in this process allows the potential of the negative 

electrode to move to a more negative limit and the potential of the positive electrode to 

move to a more positive limit. 1 

Capacitance (C) is a measure of the ability of the supercapacitor to store electric 

charge (Q) when a potential difference (Ll V) is applied between the two electrodes. It has 

units of farad (F) and is given by Eq. 1.1. 15 

!lQ 
C = llV Eq. 1.1 

In fact each electrode-interface behaves as a capacitor. Therefore, a supercapacitor 

is effectively two capacitors connected in series to each other and according to that the 

total capacitance is given by Eq. 1.2, where C cell is the total capacitance for 

supercapacitor, C1 and C2 are the individual capacitance for each electrode11
• 

1 1 1 
-=-+­
Ccell C1 Cz 

Eq. 1.2 

Specific capacitance (Csp) is the capacitance in farad per mass of material in 

grams (F/g). For a two-electrode cell, the total mass of the two electrodes is considered 

while in a three-electrode cell only the mass of the working electrode is considered. In 

general the (specific) capacitance can be elucidated experimentally from cyclic 

voltammetry, constant current discharge, or impedance techniques.11 
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Cyclic voltammetry (CV) is a transient electrochemical technique in which the 

potential of a stationary working electrode that is immersed in an unstirred solution is 

scanned linearly with time until it reaches a certain potential where the scan is reversed 

linearly. 18 

A Cyclic voltammogram is the observed current versus potential plot that is 

obtained in a cyclic voltammetry experiment. 18 The capacitance can be determined at any 

instant by Eq. 1.3. where, i is the current in amperes (A) at any given potential and v is 

the scan rate in volts per second (V/s). 

i 
C=­

v 
Eq. 1.3 

Constant current discharging is a chronopotentiometric technique used to 

discharge the cell at constant current from one potential value to a lower one. 

Energy is the ability of a physical system to do work. It is determined by Eq. 1.4. 

1 
E = - CV 2 

2 

E, C, and V are the energy, capacitance and initial voltage, respectively. 

Eq. 1.4 

Energy density indicates the ability of a single electrode or the whole 

supercapacitor to do work. It is normally expressed as gravimetric watt-hours per 

kilogram (W.h.kg-1
) or volumetric watt-hours per litre. 
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Power indicates how quickly stored energy can be delivered from a 

supercapacitor. 

Power density indicates how quickly stored energy can be delivered from a single 

electrode or the whole supercapacitor. It is normally expressed as gravimetric watt per 

kilogram (W.kg-1
) or volumetric watt per litre. 

A Ragone plot is plot of power density versus energy density. 

Electrochemical impedance spectroscopy (EIS) is a technique in which the 

electrochemical cell is exposed to a small-amplitude perturbing sinusoidal voltage signal 

and measuring the corresponding sinusoidal current over a selected range of 

frequencies. 18 It is represented mathematically as a complex quantity (Z) given by Eq. 

E' . 
Z =-e-N 

I' 
Eq. 1.5 

Eq. 1.6 

Where, E' is the amplitude of the potential oscillation, I' is the amplitude of 

current oscillation, j shown in Eq. 1.6 is an imaginary unit, and <p is the phase angle 

between the potential-current oscillations. This complex formula can be written in terms 

of two real quantities Z' and Z" as in Eq. 1.7 and Eq. 1.8.15 

E' 
Z' = ycosqJ Eq. 1.7 
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E' 
Z"=--sinm I' 't' 

Eq. 1.8 

Where, Z' and Z" are also called real and imaginary impedance, respectively. 

Moreover, the absolute value of impedance is evaluated by Eq. 1.9. 15 

E' 
IZI = .J (Z') 2 + (Z") 2 = 7 Eq. 1.9 

The phase angle is given by Eq. 1.10. 15 

cp = tan-1 (Z"/Z') Eq. 1.10 

A Nyquist plot also known as a complex plane impedance plot is a plot of the 

imaginary impedance versus the real impedance for a given electrode or cell. 

1.4. Mechanisms of supercapacitors 

There are two types of mechanisms that control the charge storage in 

supercapacitors. These include electrochemical double-layer (ECDL) capacitance and 

pseudocapacitance. Practically, a given electrode may have one or both mechanisms.4 

1.4.1. Electrochemical double-layer (ECDL) capacitance mechanism 

Electrochemical double-layer (ECDL) capacitance is based on a pure electrostatic 

(non-faradaic) accumulation of charges (electrons and ions) at the electrode/electrolyte 

interface (e.g. carbon double-layer interface). This process is very fast and highly 

reversible because it causes no chemical changes. Consequently, excellent cycle life (ca. 
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106 cycles) and power density are achievable.4 The double-layer interface at any electrode 

consists of either an excess of electrons with an excess of positive ions or a deficiency of 

electrons with an excess of negative ions. 13
•
14 The source of such phenomena is the 

application of an external potential that causes charge to flow to, or from, the electrode. 

The capacitance of these kinds of capacitors is generally independent of the applied 

potential. 15 ECDL behavior is typically characterized by a rectangular shape cyclic 

voltammogram as shown for glassy carbon (GC) electrode in nonaqueous media, see 

Figure 1.2.12 
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Figure 1.2: Cyclic voltammetry of a bare GC electrode in aqueous and nonaqueous 
media. Reprinted with permission from ref 12. Copyright 2000 J Electrochimica 
Acta. 

A simplified sketch of an electrochemical double-layer (ECDL) capacitor in the 

charged state is shown in Figure 1.1. Positive and negative ions are evenly distributed in 

the electrolyte solution before charging. As the terminals of the capacitor connected to the 
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power supply, the charging process begins quickly. The positive ions in the electrolyte 

solution are attracted electrostatically to the high surface area carbon electrode that is 

connected to the negative terminal of the power supply and the negative ions are attracted 

to the second carbon electrode which is connected to the positive terminal. 

Carbon 
electrode 

lon permeable 

----~1~--1 -

Current 
collector 

Electrolyte ions 

(D e 

Figure 1.3: Schematic diagram of an electrochemical double layer (ECDL) capacitor in 
the charged state. 

1.4.2. Pseudocapacitance mechanism 

Pseudocapacitance is based on surface electron transfer (faradaic) process at an 

electrode (e.g. metal oxides or conducting polymers).4 However, it is different from the 

electron-transfer mechanism that normally occurs in batteries. This is because there is no 

12 



phase change accompanymg the electron-transfer reaction. 15 Moreover, it IS 

distinguishable from pure capacitance because there is no physical charge accumulation 

on the electrode/electrolyte interface due to this electron-transfer reaction. 

1.5. Classification of supercapacitors 

There are different ways to classify supercapacitors. The first way is according to 

the electrode material, which can be generally one of the following: carbons, metal 

.d 1 . .d 2 d . I 2 4 19-21 A d . d. h oxi es, meta mtn es, or con uctmg po ymers. ' ' secon way IS accor mg tot e 

electrolyte used, which can be aqueous, organic, or ionic liquid. 12
'
13 A third way is 

according to the electrode configuration, which can be either symmetric or asymmetric. 

The asymmetric configuration, where the two electrodes are made of different materials, 

is generally better than the symmetric one in terms of energy and power densities. This is 

because each electrode can be designed for operation over its optimum potential range to 

maximize the cell voltage.5'
22

-
28 

1.6. Materials for supercapacitors 

There are some key features that must be fulfilled in any material to be a practical 

candidate as an electrode material for supercapacitors. These include a high specific 

surface area of ca. more than 1000 m2 g-1
, with an optimized pore size distribution and 

minimum internal resistance, high cycle life, high electrochemical stability during 

cycling, wide operating potential window, high conductivity, good wettability and good 

h . I . 2 4 29 mec amca properties. ' ' 
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These features are generally present in a wide range of materials such as carbons, 

metal oxides, metal nitrides, and conducting polymers. Examples are given in Table 1.1. 

Sarangapani et al. 29 reviewed some common electrode materials and made some 

comparisons between their experimental and theoretical performances.Z9 Carbon-based 

1 d h b 
0 l 0 0 d 0 h l" 2 II 13 14 30-36 R l e ectro es ave een extensive y mvestlgate m t e 1terature. ' ' ' ' ecent y, 

Simon and coworkers reported the benefit of combining a battery-like electrode, such as a 

lithium electrode, with a carbon electrode to obtain a high energy supercapacitor.2 Zhao et 

al. addressed the role of nanostructured materials and their composites in the redox-based 

supercapacitors. 8 

Table 1.1 : Comparison of theoretical and experimental specific capacitance (Csp) values 
of some electrode materials. 

Theoretical C5p, 
Experimental 

Material References 
Fi g 

C5p, Fi g 

Polyaniline 2000 160- 815 37-40 

Polypyrrole 620 530 21 

Polythiophene 485 -- 21 

PEDOT 210 92 21 

Mn oxide 1370 1145 41 , 42 

Ru oxide 2000 716 35, 43 

Ru oxideiCNT 2977 1715 8 

CNT 977 20-180 35 
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1.6.1. Carbon materials 

The electronic configuration of elemental carbon determines its physical, chemical 

and electrochemical properties.44 There are four different solid allotropes for pure carbon 

with different hybridizations. These include diamond (tetrahedral, sp3 hybridization), 

graphite (hexagonal sheets, sp2
), carbyne (linear, sp1

), and fullerene (spherical, tubular, or 

ellipsoidal, distorted sp2
).

11 Carbons with sp2 and distorted sp2 hybridization have been 

widely used, and commercially available, as synthetic electrode materials due to their 

inherent electrical conductivity resulting from n-electron delocalization. 11
'
45 Moreover, 

the presence of n-electrons indicates the possibility of chemical modification without 

losing the entire skeleton structure.45 However, graphitic-type carbons are 

electrochemically stable, and behave as ideally polarizable electrodes in aqueous and non-

aqueous electrolyte solutions, see Figure 1.2. 12 In practice, the presence of some 

unavoidable oxygenated groups on the surface of the carbon electrode lead to reversible 

redox reactions in aqueous media, see Figure 1.2. The ideally polarizable carbon 

electrodes are ideal for electrochemical double-layer ECDL capacitors in which high 

reversibility and high cycle stability (ca. 106 cycles) are desirable for maintenance-free 

devices4
'
12 such as those operating in deep oceans.3

'
4
'
12 

There are many other reasons that make graphitic carbon useful for 

supercapacitors. These include: high surface area, controlled pore structure, 13
'
14 good 

· · II h. h b·1· II 46-48 d 1 · 1 1 4 46 0 corrosiOn resistance, 1g temperature sta 1 1ty, ' an re atlve y ow cost. ' ne 

15 



major limitation of carbon materials is that their specific capacitance is low compared to 

pseudocapacitance materials such as metal oxides or conducting polymers. 12 

Many forms of engineered porous graphitic carbons have been investigated as 

electrode materials for supercapacitors. 13·14·46·47 These fall between amorphous forms 

(disordered hexagonal layers) to graphite (ordered hexagonal layers).11 Examples are 

activated carbon 11 carbon black 13·14 carbon nanotubes 8·32 fullerene 2·30 graphene 8·30·31·48-, ' ' ' ' 
50 carbon aerogel,2 template carbon,8 onion-like carbon,2 and carbon fabric.2·13·30 These 

materials can be utilized as powder, felt, woven cloth, fiber or as carbon paste made from 

one form of the carbon mentioned above and a liquid binder such as mineral oil (paraffin 

oil).2,tt ,t3,t4,5t 

Carbon paste electrodes (CPEs) are of interest because they have umque 

physicochemical and electrochemical properties. CPEs are easy to make and have high 

stability and conductivity. Although the mineral oil which is used as a binder has a 

massive resistivity (20-50 ohms), the corresponding carbon paste is highly conductive.51 -

53 The reason for this phenomenon is unknown. 51 More importantly, CPEs have versatile 

and controllable electrochemical behavior. First, the polarization characteristic of CPE 

can be controlled by controlling the nature and/or the ratio of the paste components. 

Second, CPEs have a small background current over a potential window of -1 V to + 1 V 

vs. SCE. Finally, CPEs surfaces can be modified to alter their kinetic properties. 51-53 
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1.6.1.1. Activated carbons 

As mentioned above, various forms of carbon have been widely investigated as 

supercapacitor materials. The most widely used form is activated carbon because it can be 

easily produced,2•
11

•
13

•
14 with high surface areas (i.e. up to 2500 m2/g), 11 and at a relatively 

low cost. 13
•
14 The particle size of activated carbon is relatively large, ca 20-30 Jim in 

diameter.45 However, due to the activation process, the particles are highly porous with 

various pore sizes forming a mixture of micropores ( < 2 nm), mesopores (2- 50 nm) and 

macropores (> 50 nm). 14
•
15 Controlling the pore size distribution is crucial to the 

performance of the ECDL capacitors. Practically, this can be carried out by controlling 

the carbon precursor, the activation method (i.e. chemical or physical)13 and the activation 

d. . h . d I I 13 14 H h b con ttlons sue as temperature, time, an pressure. · · owever, t e est ways to 

control the pore size distribution are procedures using templates such as the use of silica 

templates. 13
•
14

•
54 Commercially, activated carbon-based electrodes have limited thickness 

due to their relatively low conductivity.2 Therefore, carbon black, which has lower 

specific area, is generally added to increase their conductivity.2 

1.6.1.2. Carbon black 

Carbon black is produced by thermal decomposition of any carbon precursor in an 

inert atmosphere.45 As a result, amorphous spherical particles having diameters of ca. 50 

nm are formed which may aggregate to form higher particle sizes of about 250 nm.45
•
55 

Depending on the carbon precursor and decomposition conditions a number of different 
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forms of carbon black are commercially available, such as Vulcan X72R and Black Pearls 

2000.45 

1.6.1.3. Nanostructured carbon 

Recently, a new trend in improving supercapacitors is to utilize nanostructured 

carbons such as carbon nanotubes,2'
32

'
56 carbon aerogels,47

,4
8 graphene8

'
48

-
50 and carbon 

nanotemplates. 8 

1.6.1.3.1. Carbon nanotubes (CNTs) 

Although carbon nanotubes (CNTs) have moderate specific surface areas of ca. 

200 to 2000 m2 g·1
, they are considered to be promising as electrode materials for 

supercapacitors.8 They yield flexible, open porous structures with narrow pore size 

distribution ranges.8 As a result, low ionic resistivity and high power density electrodes 

are obtained.8 Recently, Futaba et al. fabricated a high-density single-wall carbon 

nanotubes (SWCNT) solid to form flexible micro-electrochemical devices. 56 

There are three maJor achievable benefits from CNT composites with 

d . . 1 h 1 .d d . 1 8 13 14 F. pseu ocapac1tance matena s sue as meta ox1 es or con uctmg po ymers. ' ' 1rst, 

they protect the electrode from volume changes during charging/discharging cycles, 

because they are flexible.8 Second, the addition of a conducting binder with high weight 

loading such as carbon black is not necessary.8 Finally, CNT can be used without a 

current collector. 8 
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1.6.1.3.2. Carbon aerogel 

Carbon aerogels are low-density continuous carbon networks15 prepared from 

polycondensation of resorcinol and formaldehyde utilizing a sol-gel process followed by 

pyrolysis. 11 They can be produced as monoliths, thin films, and powders. 11 As continuous 

network aerogels, they can be used as electrode materials without a binder which allows 

aerogel carbon electrodes to have lower ionic47 and electronic resistance13
'
47 than 

activated carbon and carbon black electrodes. 8 

1.6.1.3.3. Graphene 

Graphene consists of one atom-thick carbon sheets.31
'
48

'
50 It has very high surface 

area >2600 m2 g-1 48
'
50 and small resistivity compared to activated carbons.47

'
48

'
50 These 

two significant properties are responsible for the high energy and power density of 

graphene-based electrode supercapacitors. The thickness is not problematic because the 

electrical conductivity of ca. 2x102 S m-1 is high enough.31
'
50 Recently, high performance 

supercapacitors were obtained by covalently bonding aminoanthraquinone to graphene.52 

1.6.1.3.4. Carbon nanotemplates 

CNTs, aerogels, and graphene, are fairly expensive nanomaterials? '8 Therefore, as 

cheaper alternatives, hard nanotemplates made of silica,8 metal oxides2
'
4

'
8 or polymer 

beads are used to obtain carbons with controllable pore size distribution.8 
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1.6.2. Transition metal compounds (TMCs) 

Transition metal compounds (TMCs) are promising candidates for supercapacitor 

1. . d h . . bl "d . 4 42 43 57-60 H d h . "d . app 1catwns ue to t e1r var1a e ox1 at10n states. ' ' ' y rous rut emum ox1 e IS 

considered to be the best material for supercapacitors with the highest theoretical 

capacitance of about 2000 F g" 1 over a wide potential window of ca. 1.4 V. 8 In addition, it 

has a metallic electric conductivity and high chemical stability.2'
4

'
8
'
43 However, its 

widespread application is limited by the high cost of ruthenium itself.2
'
4

'
43 Recently, Liu 

and Pickup studied and optimized a variety of preparation methods of some potential 

ruthenium-based materials.43
'
57

'
59

'
60 Other inexpensive metal oxides and metal nitrides 

h b "d 1 . . d 2 4 8 ave een w1 e y mveshgate . ' ' 

1.6.3. Intrinsically conducting polymers (ICPs) 

In 2000, the Nobel Prize in chemistry was given to Alan G. MacDiarmid, Alan J. 

Heeger, and Hideki Shirakawa for their efforts in the discovery and development of 

intrinsically conducting polymers. 19
'
61

-
66 Plastic materials were considered insulators 

before the discovery of conducting polyacetylene by Shirakawa and coworkers in 1977.61 

ICPs, also known as synthetic metals or plastic electronics, have since become widely 

used in electrochemical studies and applications such as supercapacitors,2'
4

'
20

'
2 1

,
63 fuel 

cells, 63
'
65

'
68

-
71 batteries, 63

'
72

,7
3 sensors 73

-
76 and solar cells. 77 

The electrical conductivity in CPs can be changed from low to high depending on 

h . d . . F I h . b d d 11 d 63 66 73 79 t e1r opmg properties. ortunate y, t ese properties can e tune an contro e . ' ' ' 
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In aromatic-type CPs, the electronic conductivity can be explained through the movement 

ofpolarons (radical cations) and bipolarons (dications) along the polymer chain.72
•
73 

In a supercapacitor cell composed of two ICP electrodes, 1t electrons are accepted 

and are released for one of the electrodes during the charging while the opposite occurs 

for the other electrode resulting in a reversible doping-undoping process.4
•
63

•
66

•
73 There are 

two doping processes in CPs named p-doping and n-doping. 63
•
64 

p-doping: 

(Polymer) + xA- H [(Polymert+ xk] + xe Eq. 1.11 

n-doping: 

(Polymer)+ yC+ + ye- H [(Polymer)Y- yC+] Eq. 1.12 

Aromatic-type CP have several advantages that make them promising as electrode 

materials in supercapacitors. They have high theoretical capacitance,4'
21 high 

conductivity, are easy to prepare, and are relatively cheap.21 

On the other hand, there are two major disadvantages for CPs. First, the cycle life 

of CP is poor compared to carbon-based electrodes, due to doping or undoping of anions 

or cations which result in volume change over a few thousand charge/discharge 

cycles.4
•
21

•
63 Second, the charge/discharge rate is low even for nanostructured CPs. 
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1.6.3.1. Polymer-modified electrode (PME) 

A polymer-modified electrode (PME) is an electrode in which a polymer phase 

exists between ionically- and electronically-conducting phases (i.e. the electrode and the 

electrolyte system). 15 Consequently, there are six main regions that must be considered 

when studying conducting polymer films.78 Three of them represent the pure bulk regions 

which include the electrode, the bulk electrolyte system, and the bulk polymer film. 78 The 

other three regions are the interfacial regions between the electrode/electrolyte, 

electrode/polymer, and polymer/electrolyte. A proper utilization of any modified 

electrode depends on understanding the charge transport and transfer that can occur in the 

bulk regions and at the interfacial regions. Moreover, controlling film thickness and 

tuning oxidation states of the polymer can be done by electrochemical techniques.63
•
64 For 

example, PANI polymers have a wide range of specific capacitance (ca. 44-270 F g-1
) 

depending on the morphology, preparation conditions, and film thickness. 

A unique characteristic feature of polymer modified electrodes is that there is no 

mass transfer of reactant and product to or from the electrode since the electroactive 

species are inherent components of the polymer chains.80 Thus, studying such electrodes 

will give a deep understanding of the charge transfer and charge transport within the 

electrode films. 
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1.7. Chemically modified electrodes (CME) 

A chemically modified electrode (CME) is an electrode whose surface is modified 

with a thin film, usually in the range of nm to ,urn thickness, of selected chemicals in 

d 1 h h . 1 1 h . 1 . 1 h . d . d 15 18 80 81 or er to a ter t e c em1ca , e ectroc em1ca , optlca , or ot er properties as esue . · · · 

There are two main reasons behind modifying a particular electrode. First, it is 

essential in some applications to alter the inherent electrode properties with more 

favorable ones.15
•
18

•
80

•
81 Second, it is helpful in fundamental studies to understand some 

interfacial properties of certain systems. 15 

Generally, an electrode can be modified by one of the following: covalent 

bonding, adsorption of insoluble materials or polymer coating, or chemisorption.81 

Murray addressed some of the benefits of using electroactive molecules attached 

chemically and/or non-chemically to an electrode in his 1980 paper.81 The most stable 

modified electrodes are obtained via covalent bonding. A general way to achieve a 

covalent carbon-carbon bond is via diazoniurn coupling. 82
-
85 

Our interest in this work is to modify carbon materials with quinone moieties for 

supercapacitor applications.22
·
28 There are many other potential applications for quinone 

modified carbons, such as catalysis of the oxygen reduction reaction86
-
89 and as 

anticorrosion coatings. 19 
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1.7.1. Carbon electrodes modified via diazonium coupling 

It is highly desirable to modify carbon electrodes to improve their mechanical, 

chemical, and electrochemical properties.83
.
85 Carbon electrode materials with sp2 

hybridization can be readily modified with a wide range of organic species through 

covalent bonding, if a suitable organic modifier is used.90
•
91 

1.7.1.1. Chemical diazonium coupling 

The formation of a new carbon-carbon bond between two compounds through the 

reactions of aromatic diazonium salts is well known.90
-
93 This idea can be extended to 

react the aromatic diazonium salt with graphitic-type carbon electrode to modify it with 

the desired functional group. In general, the modification of the electrode surface can be 

carried out as desired by changing the functional group in the p-position of a phenyl 

diazonium ion.90 

The formation of a diazonium salt is based on the reaction between nitrous acid 

and any salt of a primary aromatic amine; see Eq. 1.13. 92
·
93 

Eq. 1.13 

Where X = Cl, Br, HS04, N03, etc. The "Ar" refers to a mono- or poly-nuclear 

aromatic unit, and "HX" refers to any mineral or organic strong acid. Sparingly soluble 

arylamines can be diazotized in a mixture of glacial acetic acid and a mineral acid.92 

Theoretically, two equivalents of mineral acid is a minimum requirement to accomplish a 

diazotization reaction. Practically, however, an excess is used to prevent the formation of 
24 



a triazene (Ar-NHN=N-Ar) due to the reaction of the resulting diazonium ion with the 

arylamine. 92
•
93 

The first diazonium salt was prepared by Griess in 1858.93 Since then a vast 

number of diazonium salts have been prepared as intermediates for further reactions, or 

have been separated as final products.92
-
94 Aryl diazonium salts are an excellent 

alternatives to the use of silanes and thiols for covalent binding of species to 

electrodes. 83
'
94 

The formation of mono- or multi-layers through diazonium coupling depends on 

the experimental conditions.83 Adenier et al. reported that dipping a glassy carbon 

electrode into a solution of 4-nitrobenzene diazonium tetrafluoroborate leads to the 

spontaneous formation of a multilayer coating.95 Other systematic studies to modify 

carbon black under various conditions via chemical diazonium coupling revealed the 

formation ofless than one layer.96 

Surfaces modified with aryl diazonium salts have some common features such as 

the formation of covalent bonding, the formation of mono or multilayers and the presence 

of the azo groups within the layers.94 However, diazonium coupling starting from an 

amine instead of a diazonium salt can also result in the formation of a C-N covalent bond 

as reported by Buttery in 1999.97 Both the pre-synthesized diazonium salts and the in situ 

preparation of diazonium salts provide similar results in terms of formation of covalent 

bonding, which addresses the advantage of using the in situ approach.94 
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There are five main methods to perform diazotization. These include the direct 

method, indirect method, Witt method, Griess method, and Knoevenagel method.92
•
93 

Moreover, diazotization of substituted primary amines can also be conducted in dilute or 

concentrated acidic media, depending on the basicity of the corresponding arylamine. 

Weaker basic arylamines need a more concentrated acid than do stronger basic 

arylamines.92
•
93 Diazotization reactions can be carried out in aqueous or organic 

media. 92
·
93 

1.7.1.2. Electrochemical diazonium coupling 

In 1992, Delamar et al. reported a new strategic approach for the modification of 

carbon materials through electrochemical reduction to overcome the drawbacks of the 

previously known oxidation approach.82 The oxidation approach resulted in a high 

background current due to the corrosion of the carbon modified electrode. 

This corrosion was explained as being due to the formation of some undesirable 

functional groups- such as quinone, · ketone, hydroxyl, and carboxylic acid - upon 

oxidation. Unfortunately, the reaction of these groups with the organic modifier is often 

uncontrolled, leading to corrosion. 82 

In contrast, the electrochemical reduction of the aryl diazonium salts approach 

forms stable covalent bonding with the surface and provides a highly resistant surface 

towards corrosion. Pinson et al. reviewed the attachment of organic layers to carbon 

electrodes via reduction of diazonium salts and discussed the mechanism of such 
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attachment. 83 The authors also highlighted that the formation of mono or multilayers is 

controlled by the experimental conditions. Recently, Ceccato et al. reported that the 

formation of conducting organic films of high thickness is possible if the aryl diazonium 

salt contains an electroactive group such as anthraquinone or a nitro group, probably due 

to their mediating effect during the electroreduction.98 

1.7.1.3. Diazonium coupling followed by Michael addition reactions 

The reaction of a primary diamine with excess benzoquinone in the presence of an 

oxidizing agent such as peroxyacetic acid is known to form polyaminoquinone via a 

Michael addition reaction. 99 In addition, the primary diamine can be covalently bonded to 

a carbon electrode through diazoniurn coupling. 100 Therefore, a promising methodology 

to obtain covalently bonded benzoquinone moieties to a carbon electrode can be carried 

out by a two-step approach. In the first step, one end of the primary diamine is attached to 

a carbon electrode through diazonium coupling. 109 This step leaves the other end of the 

diamine available to react with benzoquinone via a Michael addition reaction in the 

second step. 

1.7.2. Carbon electrodes modified with quinone polymers 

Many publications concerning polymer modified electrodes have appearedsince 

the first that report in 1978. 101 Exploiting different types of electroactive polymers as 

modified electrodes is based on the electrochemical behavior of the electroactive site(s) in 
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the respective polymer. This redox behavior may resemble that of the monomer precursor 

or may be significantly changed due to the polymer structure as a whole. 102·103 

Quinones are organic compounds that contain an unsaturated six-membered ring 

with two ortho- or para- carbonyl groups. Examples are: p -benzoquinone (p-BQ), 

a-benzoquinone (o-BQ), naphthaquinone (NQ), anthraquinone (AQ) and 

phenanthraquinone (PQ). 104 The simplest electroactive unit among organic molecules is 

the BQ/H2BQ couple. Introducing this couple to a polymer chain is of considerable 

. . 1 1" . 104-114 Importance to many potentia app 1catwns. 

Here are some potential applications and findings. For example, Degrand and 

Miller successfully bound dopamine chemically to poly(methacryloyl chloride) to form a 

pyridine-soluble quinone polymer which was irreversibly adsorbed on a carbon electrode 

and showed a catalytic effect towards the oxidation of nicotinamide adenine dinucleotide 

(NADH). 115 They found that the catalytic efficiency was maximum at critical film 

thickness and was relatively independent of pH. 115 The thicker polymer film was 

experimentally observed to have a slower catalytic electron transfer with additional 

diffusion processes. However, the outermost layers can be charged when using a mixture 

of aqueous/organic media instead of only aqueous media which facilitates the polymer 

chain movement leading to easier quinone desorption from the electrode so new H2BQ 

sites can reach the electrode. 115 

Kinetics and theoretical modeling of the polymer-modified electrode were 

developed by Laviron, 116 Saveant. 117 Some factors that complicate the film behaviour are 
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film swelling, film thickness, electrolyte diffusion phenomena, adsorption, polymer chain 

. d h . I Ill mot10n, an c anges m ayer structure. 

Funt and Hoang synthesised a series of soluble pendant AQ-polystyrene polymers 

with different AQ spacing. 102 For example, 2-anthraquinone carbonyl chloride reacted 

with aluminum chloride in dry nitrobenzene to form the soluble poly-(p-(9, 10-

anthraquinone-2-carbonyl)-styrene ]-co-styrene (PAQ). 102 Cyclic voltammograms of these 

polymers showed symmetric reversible peaks at the same potential as for the model 

compound 2-(p-ethylbenzoyl)-9,10-anthraquinone (EBAQ) with a peak current linearly 

dependant on the square root of the scan rate, indicating the absence of interference 

between AQ sites. 

Another trial by Funt and coworkers was made to stabilize P AQ on a Pt electrode, 

following deposition from toluene, by irradiating the electrode with ultraviolet (UV) 

irradiation.103 The cross-linkage formed in this way stabilized the film and made it 

inactive in aqueous media. The redox peaks were still identical to the model compound 

EBAQ with a peak current linearly dependant on the scan rate indicating the behaviour of 

an adsorbed film. This modified electrode was utilized in the reduction of oxygen in non-

aqueous media through a one-electron transfer mechanism. In contrast, Miller prepared a 

pendant AQ polymer very similar to PAQ but using an amino (-NH-) group instead of the 

( -CH(phenyl)-) in the main polymer backbone. 11 5 The presence of the amino group makes 

the polymer chain more hydrophilic and so the film becomes electroactive in aqueous 
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media. The reduction of oxygen mediated by AQ that occurs through a 2e-/2H+ 

mechanism. 

The early work done by bonding quinones to polystyrene or polyethyleneimine is 

only suitable to form thin electroactive films. Gater et al. reported an interesting routine 

electrochemical procedure to form thick electroactive films of 3-2000 monolayers of 

poly(l ,5-diamino anthraquinone) (PDAAQ) on Pt or glassy carbon electrodes.11 3 This 

procedure involves applying a constant potential (1.1 V vs. SSCE) for a few minutes in 

acetonitrile/tetraethyl ammonium perchlorate solution of the DAAQ monomer, with a low 

speed rotation of the working electrode of 20-70 rpm. Cyclic voltammograms of the 

polymer film in a monomer-free electrolyte showed the presence of two reversible 

quinone peaks in addition to the anodic oxidation peaks for the amine polymerization. A 

linear relation between peak current and scan rates from 20 - 500 m V /s indicates a rapid 

charge transfer within the polymer film. A prewave was also observed in the cyclic 

voltammograms. 

Gater et al. agam extended their method to adhere a senes of 

aminonaphthaquinone and aminoanthraquinone polymers, and studied their 

electroactivity in aqueous solutions over various pH ranges. 118 The redox peaks of Q/H2Q 

were shifted to negative potentials as the pH increased and electroactivity was maintained 

only in the acidic aqueous media. Chronoamperometric studies of these polymers showed 

that reduction of Q was much faster than the corresponding oxidation of H2Q in aqueous 

acids. 
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Yamamoto et al. reported the first electro-oxidative polymerization of 

hydroquinone usmg a concentration of no less than 50 mM to form 

poly( dihydroxyphenelene) on a Pt electrode m nitromethane or other solvents with 

tetraethyl ammonium perchlorate solution using 1.5 V vs. Agl AgCl. 111 Yamamoto 

proposed that the protonated benzoquinone cation formed electrochemically reacts with 

hydroquinone to form the polymer. The polymer showed reversible peaks at 0.7 V vs. 

Ag/AgCl in aqueous 70% HC104 solution. Chemical polymerization to form poly 

(dihydroxyphenylene) was reported by Sadykh-zade and Razimove, independently. 119 

Organometallic polycondensation of haloaromatic compounds in the presence of 

zero-valent Ni complexes were successfully used to prepare rr-conjugated quinone 

polymers, including polyanthraquinones. 11 0 These polymers were soluble in various 

organic solvents. A series of substituted polyanthraquinone polymers were chemically 

synthesised by Yamamoto et al. starting from certain dichloro monomers, such as 

dialkoxy AQ, dihydroxy AQ, diamino AQ, and dinitro AQ, using polycondensation with 

zero-valent Ni complexes. 109 Such polymers were soluble in organic solvents with an 

average molecular weight of ca. 3100-8600 g mor1
• These polymers showed potential 

applications for electronic and optical devices. Poly( 4,8-dinitro-1 ,5-anthraquinone) was 

used to construct a photovoltaic cell. 

A novel method for preparation of poly(alkylaminoquinones) was reported by 

Nithianandam and Erhan as anti-corrosive coating. They used a strong oxidizing agent 
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(i.e. sodium periodate) which permits the use of equimolar quantities of H2Q and the 

d
. . 120 tamme. 

Naoi et al. reported their method to design new materials for supercapacitors.121 

Their attempts of electropolymerization of 1,5-DAAQ instead resulted in oligomer. 

Nevertheless, this oligomer showed promising characteristics. Their method can be 

explained based on the following findings. Polyaniline is well-known to have high 

chemical and redox stability in aqueous acidic media122
"
125 and it has a high theoretical 

specific capacitance of2000 F/g.38 These advantages make it a useful candidate for use as 

an electrode material for energy-storage devices, such as supercapacitors and batteries. 

However, its practical specific capacitance is relatively low, ranging from 160 F g·1 to 

815 F g·1
•
121 The theoretical specific capacitance of benzoquinone, calculated based on a 

potential range of 0.1 to 0.2 V, ranges from 8934 F g·1 to 17870 F g·1
•
37 By comparison, 

the specific capacitance of anthraquinone ranges from 9280 F g·1 to 4640 F g·1
• Although 

benzoquinones have the highest specific capacitance they also have serious drawbacks 

such as instability and the solubility of their corresponding H2BQ in aqueous media 

which prevent BQ from having good electrochemical cyclability. Such drawbacks of 

P ANI and BQ can be reduced if a suitable combination of these materials can be made. 

Another advantage of such a combination was the enhancement of the electron-transfer 

rate between PANI and BQ due to the H-bond formation between PANI/BQ intermediate 

complexes. In addition, the composite of P ANI and BQ exhibited improved electronic 

and ionic conductivity in acidic media due to the n-eelectron being free to move in two 
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dimension and concurrent poroton movment during electron transfer. Consequently 

enhanced specific power density is obtained. 

Li et al. synthesised poly( 1 ,5-diaminoanthraquinone) (PDAAQ) chemically using 

various oxidizing agents (Cr03, K2Cr207, K2Cr04, or KMn04 as oxidants in acidic DMF) 

and various conditions.114 A novel method was reported to obtain ca. 30 nm nanoparticles 

ofPDAAQ. They found that the solubility ofvarious PDAAQ samples was dependent on 

the polymerization conditions. Consequently, the polymerization could be controlled to 

match a certain application. 

Quinones are naturally-occurring compounds that are very important in 

photosynthesis and phosphorylation processes since they have the ability to trap the 

energy of the excited electrons upon exposure to light. Some of these compounds were 

reviewed by Hodge et al. 104 A comparison of some quinone polymers showed that AQ is 

more likely to be used in electronic devices since it does not contain the active olefin 

bonds that are present in BQ or NQ. Consequently, AQ has more thermal and chemical 

stability. 

Recently, novel quinone polymers were registered in Japan in a 2009 patent. 126 

These polymers were chemically bound to a gel through an aminoacyl group. The gel 

facilitates a fast electron-transfer reaction when swelling (i.e. there is no electronic 

interference between quinone groups). Chemically bound aminoacyl groups provide a 

chemical stability to the polymer and form intramolecular H-bonding with carbonyl 

groups. In this way, the electron-transfer reaction is not limited by proton diffusion. 
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Catechol was electropolymerized on ordered mesoporous carbon (OMC) for the 

first time to form a nano-composite film. 127 This composite was used in sensors to 

electrocatalyse NADH oxidation. However, such films can be used to catalyze any 

dehydrogenation processes in biofuel cells and supercapacitors. 

Studying the kinetics of electropolymerization is important for investigation of the 

nature of the polymerization reaction and how the physical properties can be improved. 128 

Electropolymerization of 1-AAQ at a Pt electrode in aqueous and nonaqueous solutions 

was reported by Badawy and coworkers who extensively studied the kinetics. 129
•
130 In 

their study the polymerization process was assumed to be primarily due to charge-transfer 

at the electrode surface. In nonaqueous media the polymerization process was found to be 

first-order in monomer concentration, while it was zero-order in electrolyte and low 

levels of water. 

So: 

Ratepolymerization = k[AAQ] Eq. 1.14 

Where, k is the heterogeneous rate constant. While in aqueous media, the rate of 

polymerization was found to also be first-order in the concentration of monomer. 

Increasing the concentration of sulfuric acid inhibited the rate of polymerization as 

indicated by the negative slope of the charge density with respect to sulfuric 

concentration. 
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1.7.3. Carbon electrodes modified by electrochemical polymerization 

Several basic orgamc monomers and many of their substituted forms can be 

relatively easily electropolymerized on various electrodes. Examples are pyrroles, 131
-
133 

thiophenes122 and anilines. 131
'
134

-
137 A film is generally produced on the electrode only if 

the polymerization process is faster than the monomer diffusion process away from the 

electrode surface.80 Two types of films can be distinguished based on the nature of the 

monomer under investigation. These are electroactive and nonelectroactive polymer 

films.80 

Electroactive polymer films are usually produced when the polymer remam 

electroactive at the monomer oxidation potential. Therefore, the polymer/solution 

interface facilitates further film growth as in the case of polypyrrole films.80 This type of 

electropolymerization is important in controlling the film thickness and coating uniformly 

on the irregular electrode surface. In contrast, polymer fi lms that are nonelectroactive at 

the monomer oxidation potential are characterized by a rapid growth film at the 

beginning, followed by a slow electropolymerization until no further film growth can 

occur due to the passifying effect, as is the case of phenols. 80 

Polyaniline (P ANI) is a very attractive conducting polymer because of its 

chemical stability in air, 137 electrical conductivity, 131 high theoretical specific capacitance 

ca. 2000 F g-1 21
'
135 and ease of preparation from aqueous solution. 135

'
137 However, films 

produced by electropolymerization are thin and brittle134 which limit their use as electrode 

materials. 138 
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There are two powerful procedures to alter the characteristics of polyaniline. The 

first is by making a composite with another conducting material such as high surface area 

carbon.38'139 The second is by copolymerizing aniline with another substituted aniline 

monomer.138'14° Copolymerization is a powerful approach to achieve desirable 

electrochemical properties that may be very different from the homopolymerization 

approach. 

To facilitate film growth, the addition of a porous conductor is effective.141 

Aniline monomer is efficiently electropolymerized on high porosity carbon electrodes 

such as activated carbon,141 carbon nanotubes39 and graphene.50 Interestingly, a 

synergistic effect was reported in the polyaniline/carbon composite in these studies. 

Faradaic and capacitive currents ofthe composite were several orders of magnitude larger 

than for polyaniline alone.3840 Moreover, it was found that other conducting polymers 

such as polypyrrole and polythiophene have no such effect when combined with carbon.39 

The resistance of the P ANI/ AC was also lower than that of pure P ANI or pure activated 

carbon.39, 141 ,142 

There are two approaches to electropolymerize aniline onto high surface area 

carbon, either loading the high surface area carbon onto a glassy carbon electrode 

followed by electropolymerization of an aniline aqueous acidic solution, 146 or 

electropolymerization of a dispersed solution mixture of aniline and high surface area 

carbon. 142 Because the preparation of P ANIICNT composites in organic media is 
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challenging, the copolymerization of aniline with substituted aniline in organic media 

may extend the characteristics of P ANI/CNTs composite. 

Regardless of the above approaches, electropolymerization on carbon can be 

carried out by three main electrochemical techniques: 143 potentiodynamic, constant 

current, and constant potential polymerization.67 The potentiodynamic technique is good 

for monitoring polymerization of new monomers and for indicating the formal potential 

of monomer and its polymer71 while polymerization at constant current allows for better 

control of the film thickness. 65 

Carbon electrodes have been successfully modified with quinone polymers. For 

example, 5-hydroxy-1 ,4-naphthoquinone was electropolymerized on graphite144'145 while 

5-amino-1 ,4-naphthoquinone was electropolymerized on glassy carbon.146 The presence 

of the hydroxyl group in the monomer resulted in the formation of an electroactive 

1 fil b . d . t44-t46 H h f · po ymer 1m, ut 1t was non-con uctmg. owever, t e presence o an ammo group 

in the monomer resulted in the formation of an electroactive and conducting polymer 

film.I 46 

1.8. Investigation of porous electrodes 

All porous electrodes regardless of their structures can be studied by 

electrochemical techniques. However, porous electrodes have different characteristics 

than planar electrodes. As an example, diffusion within porous electrodes depends on the 

morphology and pore size distribution. 147 Semi-infinite diffusion within porous electrodes 
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can be observed under certain conditions while under different conditions the porous 

electrode is considered a series of microelectrodes. 147 

1.8.1. Electrochemical techniques 

There are many electrochemical techniques that can be employed to investigate 

the electrochemical behaviour of porous electrodes. The most widely used techniques in 

this work are cyclic voltammetry and electrochemical impedance spectroscopy. 

1.8.1.1. Cyclic voltammetry (CV) 

Cyclic voltammetry is frequently used to acquire qualitative information about a 

given electrode. Significant thermodynamic and kinetic information of redox species can 

be rapidly obtained.63 Single or multiple cycles can be useful to monitor redox positions, 

coupled chemical reactions and adsorbed species.63
'
66 Moreover, specific capacitance and 

surface concentration can be calculated. 66 

Electropolymerization of a particular monomer was controlled primarily by the 

cyclic voltammetry in a three-electrode cell. This technique is useful to obtain significant 

information about the formal potential of the monomer, the onset potential of 

polymerization and the development of fi lm formation upon cycling can be monitored. 

Moreover, the CV can be used to monitor the effect of changing any particular 

experimental condition on the modified electrode. 
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1.8.1.2. Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS) is a powerful technique to extract 

information about chemically-modified electrodes. These information includes: double­

layer capacitance, pseudocapacitance, potential-dependant diffusion coefficient, rate of 

charge transfer, rate of charge transport, and solution resistance. 63
•
64

•
148

-
153 EIS has the 

ability to distinguish between charge-transfer and charge-transport in conducting 

polymers and membranes.151
•
152 Moreover, a negligible morphology change occurs during 

the EIS measurements because a small amplitude is used.63
•
64

•
150 

Equivalent circuit models can help to understand the electrochemical behaviour of 

a given electrode. The transmission line models have been used to explain the 

electrochemical processes occurring at porous electrodes.147
•
151

-
152 For electrodes with 

pseudocapacitance character, modified transmission line models have been used. 148
•
149 

Another model called the redox model is accepted to investigate conducting polymers. 

1.9. Objectives and thesis outlines 

There are several objectives for the work described in this thesis: 

1. To explore various methods of quinone attachment to carbon electrodes by: 

a. Chemical and electrochemical modification of different carbon electrodes 

with anthraquinone, dihydroxybenzene, and dimethoxybenzene precursors 

through diazonium coupling followed by characterization with 

electrochemical and non-electrochemical methods. 
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b. Synthesis and characterization of electrochemically-grafted nitro 

compounds; and 

c. Study the coupling of 1 ,4-diaminobenzene and 4-aminobenzylamine 

followed by Michael addition of benzoquinone. 

2. Synthesis and characterization of poly(l-aminoanthraquinone ). 

3. Studying charge trapping in polymer films of poly(1-aminoanthraquinone) m 

aqueous acids. 

4. Synthesis and characterization of copolymers of aniline and 1-

aminoanthraquinone. 

5. Synthesis and characterization ofpoly(3,4-dihydroxyaniline). 

6. Demonstrate the chemically modified electrodes in asymmetric supercapacitor 

configuration. 

1.10. Thesis outline 

1. Introduction 

2. Experimental 

3. An asymmetric anthraquinone-modified carbon/ruthenium oxide Supercapacitor 

4. An asymmetric supercapacitor with anthraquinone and dihydroxybenzene 

modified carbon fabric electrodes 

5. Electrochemical preparation of poly(1-aminoanthraquinone) and its 

characterization on carbon electrodes 
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6. Electrochemical copolymerization of aniline with 1-amioanthraqunone on carbon 

electrodes and its electrocatalytic activity towards 0 2 reduction reaction 

7. Electrochemical polymerization of dimethoxyaniline on carbon electrodes 

8. Miscellaneous methods for modification of carbon electrodes with catechol and 

benzoquinone moieties 

9. Summary and future work 

References 

(1) Winter, M.; Brodd, R. Chern. Rev. 2004, 104,4245-4269. 

(2) Simon, P. ; Gogotsi Y. Nat. Mater. 2008, 7, 845-854. 

(3) Burke, A. J Power Sources 2000, 91,37-50. 

( 4) Conway, B. E. In Electrochemical supercapacitors: scientific fundamentals and 
technological applications; Plenum Press: New York, 1999; pp 698. 

(5) Miller, J. ; Simon P. Science 2008, 321,651 -652. 

(6) Gogotsi, Y.; Simon, P. Science 2011, 334,917-918. 

(7) Rolison, D. R.; Nazar, L. Mat. Res. Soc. Bull2011, 36, 486-493 . 

(8) Zhao, X.; Sanchez, B. ; Dobson, P.; Grant, P. Nanoscale 2011, 3, 839-855. 

(9) Armand, M.; Tarascon, J. Nature 2008, 451, 652-657. 

(10) Cericola, D.; Novak, P. ; Wokaun,A.; Kotz, R. Electrochim. Acta 2012, 72, 1-17. 

(11) Pandolfo, A. G. J Power Sources 2006, 157, 11-27. 

41 



(12) Katz, R. Electrochim. Acta 2000, 45, 2483-2498. 

(13) Frackowiak, E. Phys. Chern. Chern. Phys. 2007, 9, 1774-1785. 

(14) Frackowiak, E.; Beguin, F. Carbon 2001, 39, 937-950. 

(15) Bard, A.; Inzelt, G.; Fritz, S. In Electrochemical Dictionary; Springer: 2008. 

(16) Huggins, R. Solid State Ionics 2000, 134, 179-195. 

(17) Verbrugge, M.; Liu, P .. J Electrochem. Soc. 2006, 153, A1237-A1245. 

(18) Bard, A. J.; Faulkner, L. In Electrochemical methods: fundamentals and 
applications; John Wiley: 2001. 

(19) Skotheim, T. A.; Reynolds, J . R. In Handbook of conducting polymers. Conjugated 
polymers: processing and applications; CRC Press: Boca Raton, 2007. 

(20) Villers, D. T.; Jobin, D.; Soucy, C.; Cossement, D .; Breau, L. ; Belanger, D. J 
Electrochem. Soc. 2003, 150, A747-A752. 

(21) Snook, G. A.; Best, A. S. J Power Sources 2011, 196, 1-1 2. 

(22) Algharaibeh, Z .; Pickup, P. Electrochem. Commun. 2011, 13, 147-149. 

(23) Duffy, N .; Pandolfo, A. Electrochim. Acta 2008, 54, 535-539. 

(24) Khomenko, V. ; Beguin, F. J Power Sources 2010, 195,4234-4241. 

(25) Khomenko, V.; Beguin, F. J Power Sources 2006, 153, 183-190. 

(26) Khomenko, V. ; Frackowiak, E.; Beguin, F . Applied Phys. A 2006, 82, 567-573. 

(27) Long, J. W. ; Belanger, D.; Brousse, T.; Sugimoto, W. ; Crosnier, 0. Mat. Res. Soc. 
Bull. 2011, 36, 513-522. 

(28) Algharaibeh, Z.; Liu, X. ; Pickup, P. J Power Sources 2009, 187, 640-643. 

(29) Sarangapani, S.; Tilak, B.; Chen, C. J Electrochem. Soc. 1996, 143,3791-3799. 

(30) Ghosh, A.; Lee, Y. Chern. Sus. Chern. 2012, 5, 480-499. 

(31) Huang, Y.; Liang, J.; Chen, Y. Small 2012, 8, 1805-1834. 

42 



(32) Liu, C.; Cheng, H. J Phys. D 2005, 38, R231-R252. 

(33) Noked, M. Soffer, A.; Ambach, D. J Solid State Electrochem. 2011, 15, 1563-1578. 

(34) Simon, P.; Gogotsi, Y. Math. Phys. Eng Sci. 2010, 368, 3457-3467. 

(35) Zhang, L. L.; Zhao, X. Chern. Soc. Rev. 2009, 38, 2520-2531. 

(36) Tan, C. W.; Tan, K. H.; Ong, Y. T.; Mohamed, A. R.; Zein, S. H. S.; Tan, S. H. E 
Environ. Chern. Lett. 2012, I 0, 265-273. 

(37) Li, H.; Wang, J.; Chu, Q.; Wang, Z.; Zhang, F.; Wang, S. J Power Sources 2009, 
190, 578-586. 

(38) Hu, C.; Li, W. ; Liu, J. J Power Sources 2004, 137, 152-157. 

(39) Gupta, V.; Miura, N. Electrochim. Acta 2006, 52, 1721-1726. 

(40) Gupta, V. ; Miura, N. J Power Sources 2006, 157, 616-620. 

(41) Lang, X. ; Hirata, A. ; Fujita, T.; Chen, M. Nature Nano. 2011, 6, 232-236. 

(42) Toupin, M. M.; Brousse, T.; Belanger, D. Chern. Mater. 2004, 16, 3184-3190. 

(43) Liu, X.; Pickup, P. J Solid State Electrochem. 2010, 14,231-240. 

( 44) Brady, J. In General Chemistry: Principles and Structure; 5th; Wiley: 1990. 

(45) Dicks, A. J Power Sources 2006, 156, 128-141. 

( 46) Kinoshita, K. Ed.; In Carbon: electrochemical and physicochemical properties; 
Wiley: 1988. 

(47) Inagaki, M. ; Konno, H. ; Tanaike, 0. J Power Sources 2010, 195, 7880-7903 . 

(48) Stoller, M. ; Park, S. ; Zhu, Y.; An, J. ; Ruoff, R. Nano Lett. 2008, 8, 3498-3502. 

(49) Wu, Q. ; Sun, Y.; Bai, H.; Shi, G. Phys. Chern. Chern. Phys. 2011, 13, 11193. 

(50) Kaiser, A.; Skakalova, V. Chern. Soc. Rev. 2011, 40, 3786-3801. 

(51) Svancara, 1.; Vytras, K. ; Kalcher, K.; Walcarius, A.; Wang, J. Electroanalysis 2009, 
21' 7-28. 

43 



(52) Zima, J.; Barek, J.; Vytras, K. Crit. Rev. Anal. Chern. 2009, 39, 204-227. 

(53) Shamsipur, M.; Golabi, S.M.; Sharghi, H. ; Mousayi, M. F. J Sold Sate Electrochem. 
2001, 5, 68-73. 

(54) Pognon, G.; Brousse, T.; Belanger, D. Carbon 2011, 49, 1340-1348. 

(55) Leitner, K. W.; Gollas, B.; Winter, M.; Besenhard, J. Electrochim. Acta 2004, 50, 
199-204. 

(56) Futaba, D. D. N.; Hata, K.; Takaeo, Y.; Hiruoka, T. ; Hayamizu Y.; Kakadate, Y. ; 
Tanaike, 0.; Hatori, H.; Yumura, M. Nat. Mater. 2006, 5, 987-994. 

(57) Liu, X.; Pickup, P. J Power Sources 2008, 1 76, 410-416. 

(58) Deng, W.; Ji, X.; Chen, Q.; Banks, C. E. RSC Adv. 2011, 1, 1171-1178. 

(59) Liu, X.; Trisha, H.; Kopac, M.; Pickup, P. Electrochim. Acta 2009, 54, 7141-7147. 

(60) Liu, X.; Pickup, P. J Electrochem. Soc. 2011, 158, A241-A249. 

(61) Shirakawa, H.; Edwin, L.; MacDiarmid, A.; Chiange, C.; Heeger, A. J Chern. 
Soc.,Chem. Commun. 1977, 578-580. 

(62) MacDiarmid, A. Angew. Chern. Int. Ed. 2001, 40, 2581-2590. 

(63) Inzelt, G., Ed.; In Conducting polymers: A new era in electrochemistry; Springer; 
2005. 

(64) Lyons, M., Ed.; In Electroactive polymer electrochemistry; Springer; 1994; Vol. 1. 

(65) Stenger-Smith, J. Prog. Polym. Sci. 1998, 23, 57-79. 

(66) Heinze, J.; Frontana, B.; Ludwigs, S. Chern. Rev. 2010, 110, 4724-4771. 

(67) Jagur-Grodzinski, J. Polym. Adv. Techno!. 2002, 13, 615-625. 

( 68) Jagur-Grodzinski, J. Polym. Adv. Techno!. 2007, 18, 785-799. 

(69) Shirakawa, H. ; MacDiarmid, A.; Heeger, A. Chern. Commun. 2003, 1-4. 

(70) Yin, Z.; Zheng, Q .. Adv. Energy Mater. 2012, 2, 179-21 8. 

(71) Li, C.; Bai, H. ; Shi, G. Chern. Soc. Rev. 2009, 38, 2397-2409. 

44 



(72) Goto, H.; Yoneyama, H. ; Togashi, F.; Ohta, R.; Tsujimoto, A; Kita, E.; Ohshima K. 
J Chern. Educ. 2008, 85, 1067-1070. 

(73) Inzelt, G.; Pineri,; Schultze, J.; Vorotyntsev, M. Electrochim. Acta 2000, 45, 2403-
2421. 

(74) Hatchett, D. W.; Josowicz, M. Chern. Rev. 2008, 108, 746-769. 

(75) Long, Y.; Li, M.; Gu, C.; Wan, M.; Duvall, J.; Liu, Z.; Fan, Z. Prog. Polym. Sci. 
2011, 36, 1415-1442. 

(76) Barsan, M. M.; Brett, C. M. A.. Electrochim. Acta 2008, 53, 3973-3982. 

(77) Cheng, Y.; Yang, S.; Hsu, C. Chern. Rev. 2009, 109, 5868-5923. 

(78) Rubinson, J. F.; Koyinamura, Y. Chern. Soc. Rev. 2009, 38, 3339-3347. 

(79) Inzelt, G. Chern. Biochem. Eng. Q. 2007, 21, 1-14. 

(80) Murray, R. Ann. Rev. Mater. Sci. 1984, 14, 145-169. 

(81) Murray, R. Ace. Chern. Res. , 1980, 13, 135. 

(82) Delamar, M.; Pinson, J.; Saveant, J. JAm. Chern. Soc. 1992, 114, 5883-5884. 

(83) Pinson, J; Podvorica, F. Chern. Soc. Rev. 2005, 34, 429-439. 

(84) Allongue, P.; Desbat, B.; Fagebaume, 0.; Hitmi, R. ; Pinson, J. JAm. Chern. Soc. 
1997, 119,201-207. 

(85) Downard, A. Electroanalysis 2000, 12, 1085-1096. 

(86) Griese, S. ; Kampouris, D. ; Kadara, R.; Banks, C. Electroanalysis 2008, 20, 1507-
1512. 

(87) Zhang, G.; Yang, F. Phys. Chern. Chern. Phys. 2011, 13, 3291-3302. 

(88) Tu, X.; Huang, Z.; Jia, X.; Ye, M. Microchem. Acta 2008, 162,219-225. 

(89) Tu, X.; Huang, Z.; Yang, Q.; Yao, S. Electroanalysis 2007, 19, 181 5-1821. 

(90) Toupin, M.; Belanger, D. J Phys. Chern. C 2007, Ill , 5394-5401. 

(91) Toupin, M. ; Belanger, D. Langmuir 2008, 2 4, 191 0-1917. 

45 



(92) Zollinger, H. In Diazo chemistry 1: aromatic and heteroaromatic compounds; VCH 
Verlagsgesellschaft mbH: 1994; Vol. I. 

(93) Saunders, K. H. In The aromatic diazo compounds; Edward Arnold: 1985. 

(94) Mahouche-Chergui, S.; Gam-Derouich, S.; Mangeney, C. ; Chehimi, M. M. Chern. 
Soc. Rev. 2011, 40,4143-4166. 

(95) Adenier, A.; Cabet-Deliry, E.; Chausse, A. ; Griveau, S. ; Mercier, F .; Pinson, J.; 
Vautrin-Ul, C. Chern. Mater. 2005, 17,491-501. 

(96) Smith, R.; Pickup, P. Electrochirn. Acta 2009, 54, 2305-2311. 

(97) Buttry, D.; Donnet, J.; Rebouillat, S. Carbon 1999, 37, 1929-1940. 

(98) Ceccato, M.; Bousquet, A. ; Hinge, M .. ; Pedersen, U.; Daasbjerg, K. Chern. 
Mater.2011, 23, 1551-1557. 

(99) Mather, B. D.; Viswanathan, K. ; Miller, K.; Long, T. Prog. Poly. Sci. 2006, 31 , 487-
531. 

(100) Lyskawa, J.; Grondein, A.; Belanger, D. Carbon 2010, 48, 1271-1278. 

(101) Fukui, M.; Kitani, A.; Degrand, C. ; Miller, L. JAm. Chern. Soc. 1982, 104,28-33. 

(102) Funt , B.; Hoang, P. J Electrochern. Soc. 1984, 131, C328-C328. 

(103) Hoang, P.M.; Holdcroft, S. ; Funt, B. J Electrochem. Soc. 1985, 132, 2129-2133. 

(104) Hodge, P.; Gautrot, J. J Polym. Int. 2009, 58, 261-266. 

(105) Gautrot, J.; Helliwell, M. ; Raftery, J. ; Cupertino, D. J Mater. Chern. 2009, 19, 
4148-4156. 

(106) Gao, M.; Wang, X.; Zhang, G. ; Liu, L. J Phys. Chern. C 2007, 111, 17268-1 7274. 

(107) Takada, K. ; Ober, C. ; Abruna, H. Chern. Mater. 2001, 13,2928-2932. 

(108) Nishiumi, T.; Yamamoto, K. Macromolecules 2003, 36, 6325-6332. 

(109) Yamamoto, T. Synlett 2003, 425-450. 

(110) Yamamoto, T. Macromolecules 1998, 31, 2683-2685. 

46 



(111) Yamamoto, K.; Nishide, H.; Tsuchida, E. Bull. Chern. Soc. Jpn. 1990, 63, 1211-
1216. 

(112) Shen, D.; Meyerhoff, M. Anal. Chern. 2009, 81, 1564-1569. 

(113) Gater, V. K. J Electroanal. Chern. 1987, 235, 381-385. 

(114) Li, X.; Hu, L.; Huang, M. Chemistry 2007, 13, 8884-8896. 

(115) Degrand, C.; Miller, L. JAm. Chern. Soc. 1980, 102, 5728-5732. 

(116) Laviron, E. A. J Electroanal. Chern. Interfacial Electrochem.1980, 112, 1-9. 

(117) Peerce, P. J. ; Bard, A. J Electroanal. Chern. Interfacial Electrochem. 1980, 114, 
89-115. 

(118) Gater, V. K.; 1iu, M.; Love, M.; Leidner, C. J Electroanal. Chern. Interfacial 
Electrochem. 1988, 257, 133-146. 

(119) Sadykh-zade, S.; Ragimov, A.; Suleimanova, S.; Liogon'kii, V. Vyskomol. Soedin. 
Ser. A 1972, 1248. 

(120) Nithianandam, V. S. ; Erhan S. Polymer 1998, 39, 4095-4098. 

(121) Naoi, K.; Suematsu, S. ; Hanada, M.; Takenouchi, H. J Electrochem. Soc. 2002, 
149, A472-A477. 

(122) Zotti, G.; Cattarin, S.; Comisso N. J Electroanal. Chern. 1987, 235, 259-273. 

(123) Kang, E.; Neoh, K. ; Tan, K. Prog. Polym. Sci. 1998, 23, 277-324. 

(124) Huang, J. ; Kaner, K. JAm. Chern. Soc. 2004, 126, 851-855. 

(125) Zengin, H. ; Kalayci, G. Mater. Chern. Phys. 2010, 120, 46-53 . 

(126) Hiroyuki, N. ; Kenichi, K. ; Motoshige, S. Quinone Polymer Electrode, Charge 
Storage Material and Battery Cell. JP 2009217992 (A), Sep 24, 2009. 

(127) Bai, J.; Bo, X.; Qi, B.; Guo, L. Electroanalysis 2010, 22, 1750-1756. 

(128) Badawy, W. A.; Medany, S. S. Int. J Chern. Kinet. 2011, 43, 141-146. 

(129) Ismail, K. ; Azzem, M.A.; Badawy, W. A. Electrochim. Acta 2002, 47, 1867-1873. 

47 



(130) Badawy, W. A.; Ismail, K.; Medany, S. S. Electrochim. Acta 2006, 51, 6353-6360. 

(131) Gao, Z.; Ivaska, A. J Electroanal. Chern. 1994, 364, 127-133. 

(132) Lyons, M.; Fitzgerald, C.; Bannon, T. Analyst 1993, 118, 361-369. 

(133) Wegner, G.; Wernet, W.; Glatzhofer, D.; Ulansk, J.; Krohnke, C.; Mohammadi M. 
Synth. Met. 1987, 18, 1-6. 

(134) Cao, Y.; Heeger, A. Synth. Met. 1992, 48, 91-97. 

(135) Kang, E.; Tan, K. L.. Prog. Polym. Sci. 1998, 23,277-324. 

(136) Horvat-Radosevic, V.; Kvastek, K. J Electroanal. Chern. 2008, 613, 139-150. 

(137) Li, D.; Huang, J.; Kaner, R. Ace. Chern. Res. 2009, 42, 135-145. 

(138) Palaniappan, S.; Manisankar, P. J Polym. Res. 2011, 18, 311 -317. 

(139) Oh, M.; Kim, S. J Nanosci. Nanotech. 2012, 12,519-524. 

(140) Lu, J.; Wang, L.; Lai, Q.; Chu, H.; Zhao, Y. J Solid State Electrochem. 2009, 13, 
1803-1810. 

(141) Tarnai, H.; Hakoda, M.; Shono, T.; Yasuda, H. J Mater. Sci. 2007, 42, 1293-1298. 

(142) Gajendran, P. ; Saraswathi, R. Pure Appl. Chern. 2008, 80, 2377 

(143) Cosnier, S., Ed.; In Electropolymerization: concepts, materials and applications; 
Weinheim: Wiley-VCH, 2010. 

(144) Pham, M.; Hachemi, A.; Dubois, J. J Electroanal. Chern. 1984, 161, 199-204. 

(145) Pham, M.; Dubois, J. J Electroanal. Chern. Interfatial Electrochem. 1986, 199, 
153-164. 

(146) Pham, M.; Piro, B.; Bazzaoui, E. ; Hedayatullah, M. ; Lacroix, J. ; Navak, P.; Haas,O. 
Synth. Met. 1998, 92, 197-205. 

(147) Demenech, A ., Ed. ; In Electrochemistry of porous materials; CRC Press; 2010. 

(148) Gabrielli, C. ; Haas, 0.; Takenouti, H. J Appl. Electrochem. 1987, 17, 82-90. 

(149) Ferloni, P.; Matragostino, M.; Meneghello, L. Electrochim. Acta 1996, 41, 27-33. 

48 



(150) Musiani, M. Electrochirn. Acta 1990, 35, 1665-1670. 

(151) Pickup, P. J Chern. Soc. , Faraday Trans. 1990, 86, 3631-3636. 

(152) Ren, X. ; Pickup, P. J Electroanal. Chern. 1997, 420, 251-257. 

(153) Albery, W. J .; Chen, Z.; Horrocks, B.; Mount, A.; Wilson, P.; Bloor, D. Faraday 
Discuss. Chern. Soc. 1989, 88, 247. 

49 



Chapter 2 

Experimental 
2.1. Introduction 

This chapter deals with practical aspects of the work that is considered throughout 

the entire thesis. In general, a supercapacitor is a device composed of two electrodes, one 

is designated as the negative electrode while the other as the positive electrode. The 

negative electrode acts as a cathode during charging but as an anode during discharging, 

while the positive electrode acts as an anode during charging but as a cathode during 

discharging. 1
•
2 However, a new electrode material or modified electrode should be 

examined in a three-electrode cell configuration to investigate its electrochemical 

characteristic before its application in a real (two-electrode) device. 

2.2. Electrochemical instrumentation 

For any electrochemical system there are four basic components that should be 

present in order to complete the electrochemical process as shown in Scheme 2.1.3 In 

general, these include the potentiostat, the function generator, the data-handling system 

and the electrochemical cell. The first component is the potentiostat which is an analog 

device that is especially designed to control the potential of the cell instantaneously. The 

second one is the function generator which is responsible for perturbing the 

electrochemical cell and converting the signal from digital-to-analog (D/A), as required. 

Electrochemical techniques can be classified into large amplitude perturbation (e.g. cyclic 
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voltammetry) or small amplitude perturbation (e.g. electrochemical impedance 

spectroscopy). The third component is the data handling system in which the signals (e.g. 

current, potential, time) that resulted from the electrochemical cell according to the 

perturbation step can be measured and displayed. Data handling along with signal 

generation are mainly carried out by a microprocessor which is conveniently controlled 

by suitable software through a personal computer. Before this step the signals from the 

electrochemical cell should be amplified and converted from analog-to-digital (AID) 

signals. The last component is the electrochemical cell where the electrochemical 

processes take place. 

Microprocessor Function - • Signal generation generation 
Computer .. 

• • Data acquisition • D/A 

t 
A/ D convertor 

t .. Potentiostat 
Electrochemical or 

cell .. Galvanostat 

Scheme 2.1 : Block diagram of typical electrochemical instrumentation system. 
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2.3. Electrodes and electrochemical cells 

The research described herein has been focused on carbon-based electrode 

materials. For fundamental studies, glassy carbon (GC) with a flat shiny surface has been 

used as the working electrode (WE). For this purpose the GC working electrode was 

polished with an aluminum oxide (alumina; 0.3 J.lm) slurry on a polishing cloth, then 

washed with deionized water before being used. A glassy carbon rod (Structure Probe 

Inc. (SPI); 10 x 3 mm, 0.0707 cm2
) was sealed into a glass tube with epoxy cement. Other 

glassy carbon electrodes which were sealed in Teflon were also used. 

Various types of commercially available carbon materials were examined and/or 

modified. These include: activated carbon (carbon cloth; Spectrocarb 2225), Vulcan XC 

72, Black Pearls 2000, carbon fiber paper (Toray™ TGP-H-090) and glassy carbon. 

These materials, except GC electrodes, were subjected to modification with some 

potential redox centres in different ways, without any pretreatment. However, in order to 

load carbon black (CB) onto carbon fiber paper, a small amount of CB was ground and 

mixed with appropriate amounts of 5.14% Nafion solution (DuPont) in methanol. Such a 

mixture was exposed to sonication to form uniform slurry. A drop or two of that slurry 

was loaded onto the CFP and the solvent (i.e. methanol) was allowed to evaporate. 

A platinum wire was used as a counter electrode (CE) in all experiments. In 

addition, two types of reference electrodes (RE) were routinely used. One was a 

silver/silver chloride (Ag/ AgCl saturated in KCl) electrode which has a potential of 0.197 
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V vs. normal hydrogen electrode (NHE). The second one was a saturated calomel 

electrode (SCE), Hg/Hg2Cb which has a potential of 0.242 V vs. NHE. 

Two types of electrochemical cells were used in this work. In each case the 

electrochemical cell was connected to a potentiostat and was controlled by suitable 

software using a personal computer. The first type was a two-electrode cell (i.e. analogue 

to a supercapacitor packaged cell) composed of two working electrodes as shown in 

Figure 2.1 (a). The second type was a three-electrode electrochemical cell which is 

composed of a working electrode, a reference electrode and a counter electrode as shown 

in Figure 2.1 (b). As a rule, in the case of the two-electrode setup the whole cell potential 

was measured while in the case of the three-electrode setup only the half-cell potential 

(i.e. potential of working electrode vs. potential of the reference electrode) was measured. 

Therefore, reactions at the working electrode can be best monitored in the three-electrode 

Potentiostat Potentiostat 

WERE, RE: CE 

(a) Two-electrode cell (b) Three-electrode cell 

Figure 2.1 : Schematic diagram for (a) the two-electrode cell (supercapacitor) and (b) the 
three-electrode cell. 
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The three-electrode glass cell was designed in a way that allows close proximity 

between the working electrode and the reference electrode through a Luggin capillary to 

minimize the ohmic drop.3 The flow direction of the inert purge gas (i.e. nitrogen 

99.99%) was controlled by a T-shaped stopcock as shown in Figure 2.2. Before any 

electrochemical measurement, the gas was passed through the electrolyte solution for 20 

min to purge off any dissolved oxygen, while during the measurement the T-shaped 

stopcock was opened in such a way to maintain the inert gas above the solution in order 

to avoid disturbing the solution and to prevent oxygen gas diffusion from the environment 

into the electrolyte solution. 

Figure 2.2: A photo of a three-electrode electrochemical glass cell. A working electrode 
was centreed in the middle, a counter electrode was positioned on the left side. A 
reference electrode was positioned on the right side and was in contact with the 
electrolyte solution through a Luggin capillary pointed close to the working 
electrode. A T -shaped stopcock was used to control nitrogen gas flow. 

The components of a typical two-electrode cell are shown in Figure 2.3. It was 

constructed by sandwiching an electrolyte separator (e.g. Nation ™ 112) between two 
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working electrodes (e.g. two 1 cm2 carbon cloth electrodes). This separator allows the 

protons to pass through but not the electrons. Two titanium (Ti) plates that were fixed into 

polycarbonate blocks were used to make electrical contact. A carbon fiber paper disc 

(Toray™ TGP-H-090) was placed between each electrode and its Ti current collector to 

minimize the contact resistance. 5 After assembly of all these parts, the whole cell was 

immersed in an electrolyte solution such as aqueous 1 M H2S04 containing a reference 

electrode, and become ready for measurement. Air was not excluded from the cell and all 

electrochemical measurements were done at room temperature. 

For carbon black powder-based electrodes, Nafion solution was used as a binder 

and to improve the wettability of the electrode which leads to improved electrode 

capacitance.5 However, it has lower conductivity within the porous carbons than the 

conductivity of, for example, aqueous 1 M H2S04 and consequently leads to higher 

resistance.5 Therefore, the amount ofNafion solution was optimized. 

Figure 2.3: Photograph of a typical two-electrode cell consisting of a 50 mL glass jar, two 
identical polycarbonate square blocks, two titanium plates, two carbon fiber paper 
discs squares, two carbon electrodes (i.e. carbon cloth) and one colorless Nafion 
membrane. 
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2.4. Specific capacitance of two-electrode versus three-electrode configuration 

Determination of the specific capacitance m F g-1 is crucial to evaluate the 

effectiveness of an electrode material for supercapacitor applications. Determining Csp 

based on cyclic voltammetry must be performed after the electrode reaches a steady state 

cycling response.4 However, it is unacceptable to report a specific capacitance without 

referring it to its cell configuration. This is because the calculated values can differ by a 

factor of four from one another as explained in the following descriptions. 6 

Figure 2.4 (a) shows a schematic diagram for a two-electrode cell in which the 

two electrodes are connected in series with each other. The total capacitance can be 

written as in Eq. 2.1. 

RE CE 
Electrodel Electrode 2 Working electrode 

-H IJ--- -H-
cl c2 c 

(a) (b) 

Figure 2.4: Typical electrochemical cell diagrams (a) two-electrode cell and (b) three­
electrode cell. 

Eq. 2.1 
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Assuming that these electrodes are identical and have the same mass (m), their 

capacitances also will be identical (i.e. C 1 = C 2 = C) and the total capacitance is given 

as in Eq. 2.2. 

1 
CzE = 2 C Eq. 2.2 

Therefore, the total specific capacitance (Csp-zE) can be calculated as in Eq. 2.3. 

Csp- 2E = ~: = ~ (~) Eq. 2.3 

However, in case of a three-electrode cell as is shown in Figure 2.4 (b), only one 

working electrode is considered and the total capacitance is only the capacitance of that 

working electrode as in Eq. 2.4. 

Eq. 2.4 

Consequently, the total specific capacitance (Csp-3E) can be simply calculated from 

Eq. 2.5. 

c3E c 
Csp- 3E =-=­

m m 
Eq. 2.5 

In summary, the specific capacitance calculated based on the three-electrode cell 

is four times the one calculated based on the two-electrode cell as shown in Eq. 2.6. 

Csp-3E = 4 X Csp- 2E Eq. 2.6 
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2.5. Synthesis of modified carbon electrodes 

As a general rule, anthraquinone moieties have been used to modify carbon for 

use as negative electrodes (anode during discharge) in this work while dihydroxybenzene 

moieties have been used to modify carbon for use as positive electrodes. In this work, 

several procedures for modification of carbons as electrode materials for supercapacitors 

were examined. 

A standard three-electrode electrochemical cell was used throughout the 

experiments. A glassy carbon electrode with a surface area of 0.071 cm2 was used as the 

working electrode. Before each experiment the electrode was polished with an aluminium 

oxide (0.05 11m) slurry on a polishing cloth to obtain a flat shiny surface. A platinum wire 

was used as the counter electrode while a saturated calomel electrode (SCE) was used as 

a reference electrode. All electrochemical experiments were conducted under a nitrogen 

environment after purging the solution with nitrogen gas for 20 min to ensure the absence 

of oxygen. 

2.6. Symmetric and asymmetric cell configuration 

It is of major importance to consider which cell configuration is best to use in 

order to obtain the maximum possible performance out of the electrodes. The energy 

density of a supercapacitor depends on the capacitance and the square of cell potential. 1
'
7
-
9 

It is well known that a symmetric cell configuration generally results in a device with a 

narrow operating cell potential which cannot be extended.4 
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There are two well-known approaches to extend the potential of a supercapacitor. 

The first approach is to use an organic electrolyte which has a higher potential window 

than aqueous media. This is useful, but suffers from some practical drawbacks. These 

include high resistivity which implies lower power density,4 low capacitance, 10 high cost 

cells in which moisture must be avoided, and finally, it is not safe to use organic solvents 

from an environmental prospective.4
• 

11 The second approach is to utilize an asymmetric 

configuration in which two different electrodes that work appropriately over two different 

potential windows are combined.4
•
12

-
15 This approach is promising since the potential 

window can be extended and adjusted for aqueous media. 11
-
13 Moreover, the asymmetric 

configuration may have lower equivalent series resistance (ESR) than the corresponding 

0 13 symmetnc one. 

Khomenko et al. reported that increasing the cell potential for a manganese 

oxide/activated carbon capacitor resulted in increase in the specific capacitance but may 

result in a decrease in the coulombic efficiency and may destroy the capacitive behaviour 

of the cell. 12 Therefore optimization of the cell potential based on coulombic efficiency is 

recommended. 

2.7. Characterization of modified electrode by electrochemical techniques 

The benefits of using an asymmetric configuration over symmetric ones can be 

recognized by some electrochemical techniques.4 These include cyclic voltammetry, 

constant discharge current and electrochemical impedance spectroscopy. 
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2.7.1. Cyclic voltammetry 

Cyclic voltammetry was performed with a RDE4 potentiostat (Pine Instrument 

company) controlled by CV3 (Colin Cameron) software or alternatively by an EG&G 

273A potentiostat controlled by CorrWare software. 

In cyclic voltammetry the potential is swept from a certain potential V 1 to another 

potential V 2 at a specified scan rate, then the potential sweeps in the reverse direction 

from V2 to V1 as shown in Figure 2.5. This waveform can be repeated multiple times 

where each complete cycle requires 2 t1• The current response recorded based on this 

perturbation changes continually according to the electrochemical behavior of the 

electrode material. 

v 2 ------------------------------------------------- ---------- ------ ------ -

potential 

tl 2 tl 3 t l 4 t l 

time 

Figure 2.5: Typical waveform of cyclic voltammetry repeated for two cycles. 

Because the current response hysteresis depends on the potential, the specific 

capacitance also depends on the potential window used. 
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2.7.2. Constant current discharging 

Constant current discharge was performed usmg an EG&G model 273A 

(Princeton applied research) instrument with CorrWare software as the data acquisition 

software. 

Constant current discharging, also known as chronopotentiometry, is a technique 

where a constant current is used to fully charge the electrochemical cell to a certain 

voltage followed by constant current discharging (i.e. voltage decay with time). This 

technique has been recommended to calculate the cell capacitance using Eq. 2.7.4 

i(t) 
C = dV 

dt 
Eq. 2.7 

Where, i(t) is the constant discharge current and dV/dt is the slope of the discharge 

curve. Thus, it is used as a proof for the improvement of discharging characteristics after 

modification. Furthermore, the specific energy and specific power of the supercapacitor 

device can be calculated from the discharge curve at a particular current. Consequently, 

Ragone plots can be drawn to evaluate and to compare the performance ofthe device(s).1 

However, the energy density or the power density of commercial devices depends on the 

components of the packaged supercapacitors not only the electrode materials.4 

Typical evaluation of cell resistance can be obtained by constant current discharge 

by taking into account the initial iR drop divided by the applied current as in Eq. 2.8. 
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V = iR Eq. 2.8. 

2.7.3. Electrochemical impedance spectroscopy 

Electrochemical impedance spectroscopy (EIS) experiments were performed by 

combining a Solartron Frequency Response Analyzer (model 1250) with the Solartron 

Electrochemical interface (model 1286). This combination can provide the appropriate 

frequency ranges between a low frequency limit up to a frequency higher than the self­

resonance frequency (i.e. from ca. 0.001 Hz up to ca. 5 kHz for electrochemical 

capacitors). 

Data acquisition was done by ZPlot and ZView 2 software (Scribner Associate 

Inc.). Impedance was used to estimate the cell resistance and consequently evaluate the 

ability of the cell to provide power through measuring the equivalent series resistance 

(ESR). However, in commercial supercapacitors (i.e. in the packaged form) the cell 

resistance depends on all components of the cell not just the electrode resistance. 

Therefore, the two-electrode cell tested in this work does not fully match the commercial 

one and validation is necessary. 

2.8. Overcharge and overdischarge 

There is no problem of overdischarge of a supercapacitor but when it is 

overcharged it may be destroyed.4 Although the maximum obtainable energy from a 
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capacitor is when it is fully discharged, it is practically recommended for a supercapacitor 

not to be discharged below half of its maximum operating voltage. This is obvious since 

the energy is directly proportional to the square of the cell voltage. Consequently, only 

quarter of the total energy will be obtained at half of maximum cell potential.4 

Furthermore, most applications require high voltage. 
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Chapter 3 

An asymmetric anthraquinone-modified 
carbon/ruthenium oxide 

supercapacitor 
This work has been published in the J Power Sources 2009, 187, 640-643 . This 

paper was written in part by Dr. Peter Pickup. The work reported was conducted mainly 

by Zaher Algharaibeh. Ru oxide electrodes and data for the symmetric Ru oxide 

supercapacitor were provid~d by Xiaorong Liu. 

Abstract 

An asymmetric supercapacitor with improved energy and power density, relative 

to a symmetric Ru oxide device, has been constructed with anthraquinone-modified 

carbon fabric (Spectracarb 2225) as the negative electrode and Ru oxide as the positive 

electrode. The performance of the supercapacitor was characterized by cyclic 

voltammetry and constant current discharging. Use of the anthraquinone-modified 

electrode extends the negative potential limit that can be used, relative to Ru oxide, and 

allows higher cell voltages to be used. The maximum energy density obtained was 26.7 

Wh kg- 1 and an energy density of 12.7 Wh kg- 1 was obtained at a 0.8 A cm-2 discharge 

rate and average power density of 17.3 k W kg - I. The C-AQ/Ru oxide supercapacitor 

requires 64 % less Ru relative to a symmetric Ru oxide supercapacitor. 
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3.1. Introduction 

Electrochemical capacitors (supercapacitors) are being developed for use in high 

power electronic devices and electric vehicles. 1
-
5 Asymmetric or hybrid supercapacitors 

in which the two electrodes are constructed with different materials are attracting 

increasing interest because each electrode can be designed and optimized for potential 

excursions in only one direction.6
•
7 This can significantly extend the operating voltage of 

the device. 

We report here on an asymmetric device with an anthraquinone-modified carbon 

fabric (C-AQ) negative electrode (cathode during charging) and a Ru oxide positive 

electrode. We have previously shown8 that anthraquinone-modified carbon fabric is an 

attractive electrode material for the negative electrode of high power supercapacitors with 

an aqueous sulfuric acid electrolyte. The redox activity of the AQ provides extra charge at 

high cell voltages, increasing the energy and power density of the device. Ru oxide is also 

an excellent electrode material for high power supercapacitors, due to its very high 

specific capacitance and low resistance. 1
•
9

-
17 However, the inferior low potential limit of 

Ru oxide relative to C-AQ makes AQ-C/Ru oxide asymmetric devices potentially 

superior to symmetric Ru oxide/Ru oxide devices. The C-AQ/Ru oxide device also has 

the advantage of lower cost because of the lower mass of Ru required. 
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3.2. Experimental 

3.2.1. AQ-modified carbon fabric electrodes (C-AQ) 

AQ-modified Spectracarb 2225 carbon fabric was prepared following a slightly 

modified version of our previously reported method.8 Two 1 cm2 discs (ca. 14 mg each) 

of Spectracarb 2225 carbon fabric (Engineered Fibers Technology) were added to Fast 

Red Al salt (0.135 g; Acros; anthraquinone-1-diazonium chloride 0.5 ZnCh) in acetone 

(15 mL). Water (3 mL) and 50 wt. % hypophosphorous acid (2 mL; Aldrich) that had 

been cooled in an ice bath were then added. After 30 min in the ice bath with occasional 

stirring, the Spectracarb discs were collected by filtration, washed well with de-ionized 

water and then dried at 110 °C for 20 min, and weighed. 

Cyclic voltammetry (Pine RDE4 Potentiostat/Galvanostat) was obtained for an 

AQ-modified electrode in a supercapacitor (see below) by using an Ag/ AgCl reference 

electrode and an unmodified carbon fabric counter electrode. 

3.2.2. Ru oxide electrodes 

Ru oxide electrodes with a carbon fiber paper support and 5% Nation binder were 

prepared by Xiaorong Liu as previously described.16 Cyclic voltammetry of the Ru oxide 

on carbon fiber paper was recorded in a conventional glass cell with an EG&G 23 7 A 

Potentiostat/ Galvanostat. 
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3.2.3. Supercapacitors 

Supercapacitors were constructed by sandwiching an electrolyte separator 

(Nation™ 112) between a C-AQ electrode (1cm2; 15.1 mg) and a Ru oxide electrode (1 

cm2; 8.5 mg Ru oxide + 5.0% Nation). Ti plates in polycarbonate blocks were used to 

make electrical contact, and the whole cell was immersed in 1 M H2S04(aq) containing a 

Ag/AgCl reference electrode. A carbon fiber paper disc (TorayTM TGP-H-090) was 

placed between the C-AQ electrode and its Ti current collector. Air was not excluded 

from the cell. 

Voltammograms of the C-AQ/Nafion 112/Ru oxide supercapacitor were obtained 

in two electrode mode (i.e. with the cell acting as a supercapacitor) by connecting the 

reference lead of the potentiostat (EG&G 273A) to the counter electrode lead. For 

constant current discharging experiments (EG&G 273A), also in two electrode mode, the 

supercapacitor was charged for a period of ca. 5 min at a cell voltage of 1.3 V. 

3.3. Results and discussion 

3.3.1. Cyclic voltammetry of the individual electrode materials 

Figure 3.1 shows cyclic voltammograms of an AQ-modified carbon fabric 

electrode, an unmodified carbon fabric electrode, and a Ru oxide electrode in 1M H2S04 

(aq). These voltarnmograms have been normalized with respect to the scan rate and 

electrode mass to provide a specific capacitance (F g - I) scale. Redox peaks due to the 

AQ, which are absent in the voltammogram of the unmodified carbon, can be seen at a 
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formal potential of ca. -0.11 V. The average specific capacitance due to the carbon 

fabric, measured between -0.25 V and 0.8 V, was 199 F g - I , while an average of 482 F 

g- 1 was obtained between 0 and -0.25 V for the C-AQ due to enhancement by the redox 

capacitance of the AQ. Even though this enhanced capacitance occurs over only a narrow 

potential range, it can provide a disproportionate increase in power and energy density 

when the C-AQ is used as a negative electrode.8 

Ru oxide provides a much higher specific capacitance than carbon between 0.0 V 

and + 1 V, with an average of 770 F g - I seen in Figure 3 .1. However, its electrochemistry 

becomes slow and its capacitance decreases at potentials below 0.0 V. It can be seen from 

Figure 3.1 that the C-AQ electrode complements the Ru oxide electrode, when used as the 

negative electrode, by extending the negative potential range and by providing enhanced 

capacitance at potentials below 0.0 V vs. Ag/ AgCl. 
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Figure 3.1: Cyclic voltammetry of an AQ-modified Spectracarb electrode (solid line; 14.8 
mg; 2 mV s-1

), and unmodified Spectracarb electrode (dotted line; 14.3 mg; 20 
mV s- 1

) and a Ru oxide electrode (dashed line; 5.1 mg, 20 mV s-1
) in 1 M H2S04 

(aq). 

3.3.2. Cyclic voltammetry of the supercapacitor 

Figure 3.2 shows a cyclic voltammogram of an AQ-C/Ru oxide supercapacitor 

with the Ru oxide as the working (positive) electrode. Since this voltammogram was 

recorded in staircase mode, with a long step-time (1 s) determined by the instrument, the 

currents do not provide an accurate measure of the true specific capacitance. However, 

the voltammogram does accurately reflect the voltage dependence of the capacitance. The 

broad peaks centred at ca. 0.8 V are due to the reduction (positive scan) and reoxidation 

(negative scan) of the AQ groups on the surface of the C-AQ electrode that is driven to 

negative potentials as the supercapacitor is charged. The positions of these peaks can be 

changed by pre-setting the initial potentials of the electrodes relative to a reference 
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electrode by employing an external counter electrode. For the experiment reported here, 

both electrodes were initially set at ca. +0.3V vs. Ag/AgCI. 
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Figure 3.2: Cyclic voltammogram at 2 mV s-1 for an AQ-C (15.1 mg)/Nafion 112/Ru 
oxide (8.5 mg) supercapacitor in 1 M H2S04 (aq). 

3.3.3. Constant current discharging 

The additional charge storage and release represented by the broad peaks in Figure 

3.2 improves the discharge characteristics of the supercapacitor at high cell voltages as 

shown in Figure 3.3, which compares 10 rnA discharge data for an AQ-C/Ru oxide 

supercapacitor and asymmetric Ru oxide supercapacitor. The slopes of these curves are 

inversely proportional to the capacitance of the device, and the initial slope is smaller for 

the AQ-C/Ru oxide device than the symmetric Ru oxide device because of the greater 

electrode masses employed. This is addressed below in a comparison of the specific 

capacitances of the two devices. 
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Figure 3.3: Constant current discharge curves at 10 rnA for an AQ-C (15.1 mg)/Nafion 
112/Ru oxide (8.5 mg) supercapacitor (Vinitial = 1.3 V) and a Ru oxide (5 
mg)/Nafion 112/Ru oxide (5 mg) supercapacitor (Vinitial = 1.0 V), both in 1 M 
H2S04 (aq). 

The effect of the AQ groups is seen in Figure 3.3 as a lower slope in the discharge 

curve at high voltages where the AQ groups are being oxidized. The higher slope at 

potentials below ca. 900 m V approximates the slope that would be seen over the full 

discharge for an asymmetric supercapacitor with an unmodified carbon electrode and a 

Ru oxide electrode. A key advantage of the AQ-C is that the enhanced capacitance due to 

the AQ groups maintains a higher cell potential during the first 30% of the discharge and 

so provides maximum benefit in terms of energy and power density. 

The specific capacitance obtained for the C-AQ/Ru oxide supercapacitor from the 

initial slope (0- 100 s) ofthe 10 rnA discharge curve (Figure 3.3) was 159 Fg- 1
, while the 

average specific capacitance for discharge to OV was 109 F g - I. These values are based 
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on the mass of active materials on both electrodes (i.e. the combined masses of Ru oxide, 

carbon fabric, and AQ). The symmetric Ru oxide supercapacitor (Figure 3.3) had an 

average specific capacitance for full discharge of 193 F g - I. Asymmetric carbon fabric 

device would have a specific capacitance of ca. 50 F g - I, based on a specific capacitance 

of ca. 199 F g - I per electrode. An asymmetric unmodified-C/Ru oxide device would have 

a specific capacitance of ca. 95 F g - I based on the slope below 900 m V in Figure 3.3 for 

the C-AQ/Ru oxide device. It is clear from the comparison of these capacitances that the 

C-AQ electrode offers an attractive high voltage performance, particularly in light of its 

much lower cost relative to Ru oxide, and is much better than unmodified carbon. 

Discharge curves at higher currents are shown for the C-AQ/Ru oxide 

supercapacitor in Figure 3.4. The influence ofthe AQ electrochemistry on the initial slope 

is still pronounced at 0.1 A and is clear, although less distinct, at 0.8 A. This indicates that 

the AQ electro-chemistry is sufficiently fast to significantly increase the energy density of 

the device at high discharge rates. 
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Figure 3.4: Constant current discharge curves for an AQ-C (15.1mg)/Nafion 112/Ru 
oxide (8.5 mg) supercapacitor in 1 M H2S04 (aq). 

Ragone plots for the AQ-C/Ru oxide supercapacitor are shown in Figure 3.4, 

together with data from Ref. 17 (over a slightly larger range of currents) for a symmetric 

Ru oxide (10 mg total) device with a Nafion 112 separator. The maximum energy density 

for the AQ-C/Ru oxide supercapacitor was 26.7 Wh kg- 1 and an energy density of 12.7 

Wh kg- 1 was obtained at a 0.8 A discharge rate and average power density of 17.3 kW 

kg - I . The AQ-C/Ru oxide device provided slightly higher energy densities than the Ru 

oxide device at currents below 0.7 A. It also provided higher power at all currents used. 

To properly compare the power densities of the two devices, the results should be 

scaled to the same mass, since power is theoretically independent of the electrode mass. 

In practice, the increasing resistance of the electrodes causes the power (and energy 

density) to drop as the electrode mass is increased, so scaling of the results for the 
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symmetric Ru oxide device to a mass of 23.6 mg, as shown in Figure 3.5, will 

overestimate the performance of a 23 .6 mg device. However, it is clear from doing this, 

that both the energy and power densities are higher for the AQ-C/Ru oxide device than 

they would be for a 23.6 mg symmetric Ru oxide device. Importantly, there would also be 

a 64% reduction in the mass ofRu required (i.e. 8.5 mg vs. 23.6 mg ofRu oxide) . 
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Figure 3.5: Ragone plots for an AQ-C (15.1 mg)/Nafion 112/Ru oxide (8.5 mg) 
supercapacitor (solid points; Vinitial = 1.3 V) and a Ru oxide (5 mg)/Nafion 112/Ru 
oxide (5 mg) supercapacitor (open circles; Vinitial = 1.0 V; data from Ref. [17]), 
both in 1 M H2S04 (aq). The open triangles show the data for the symmetric Ru 
oxide device with the power values divided by a mass of23.6 mg. All values were 
calculated for discharge to 0.0 V. 

The better performance of the AQ-C/Ru oxide supercapacitor is largely due to its 

higher operating voltage of 1.3 V relative to 1.0 V for the symmetric Ru oxide 

supercapacitor. Although it may be possible to operate the symmetric device at higher 

voltages, 17 the reduced Ru requirement will still make the AQ-C/Ru oxide an attractive 

alternative. There is also significant scope for improving its performance by use of larger 
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area electrodes, minimizing contact resistances, 17 and increasing the loading of AQ on the 

carbon support. 

3.4. Conclusions 

The AQ-C/Ru oxide supercapacitor described here provides higher energy and 

power densities than a symmetric Ru oxide device with the same mass, and requires 64% 

less Ru. In part, the better performance is due to the higher operating voltage. However, 

the peak shaped redox capacitance of the AQ is also a crucial factor, as is the fact that this 

capacitance occurs in a potential region close to and beyond the negative potential limit of 

Ru oxide. Thus the AQ-C electrode has an inherent advantage over Ru oxide as a 

negative electrode since its negative limit of ca. - 0.4 V is lower than that of ca. - 0.2 V 

for Ru oxide. 

Acknowledgments 

This work was supported by Defence Research and Development Canada, the 

Natural Sciences and Engineering Council of Canada (NSERC) and Memorial University. 

76 



References 

(1) Conway, B. E. In Electrochemical supercapacitors: scientific fundamentals and 
technological applications; Plenum Press: New York, 1999; pp 698. 

(2) Kotz, R. Electrochim. Acta 2000, 45, 2483-2498. 

(3) Winter, M.; Brodd, R. Chern. Rev. 2004, 104,4245-4269. 

( 4) Huggins, R. Solid State Ionics 2000, 134, 179-195. 

(5) Burke, A. J Power Sources 2000, 91,37-50. 

(6) Wang, Y.; Xia, Y. J Electrochem. Soc. 2006, 153, A450. 

(7) Khomenko, V.; Frackowiak, E.; Beguin, F. Applied Phys. A 2006, 82, 567-573. 

(8) Kalinathan, K.; DesRoches, D.; Liu, X.; Pickup, X. J Power Sources 2008, 181 , 
182. 

(9) Zheng, J.; Jow, T. J Electrochem. Soc. 1995,142, L6. 

(10) Zheng, J.; Cygan, P.; Jow, T. J Electrochem. Soc. 1995, 142,2699 . 

(11) Jang, J.; Kato, A.; Machida, K.; Naoi, K. J Electrochem. Soc. 2006 153, A321. 

(12) Foelske, A. ; Barbieri, 0.; Hahn, M.; Kotz, R. Electrochem. Solid State Lett. 2006, 9, 
A268. 

(13) Sugimoto, W.; Iwata, H.; Yokoshima, K.; Murakami, Y.; Takasu, Y. J Phys. Chern. 
B. 2005 109, 7330. 

(14) Kim, I. ; Kim, K. J Electrochem. Soc. 2006, 153, A383. 

(15) Sugimoto, W. ; Yokoshima, K.; Murakami, Y. ; Takasu, Y. Electrochim. Acta 2006 
52, 1742. 

(16) Liu, X.; Pickup, P. J Power Sources 2008, 176, 410. 

(17) Liu, X.; Pickup, P. Energy Environ. Sci. 2008, 1, 494. 

77 



Chapter 4 

An asymmetric supercapacitor with 
anthraquinone and dihydroxybenzene 

modified carbon fabric electrodes 
This work has been published in the Electrochem. Commun. 2011, 13, 147-149. 

This paper was written in part by Dr. Peter Pickup. The work reported was conducted by 

Zaher Algharaibeh. 

Abstract 

An asymmetric electrochemical capacitor with an enhanced energy density has 

been constructed by using carbon fabric electrodes modified with complementary 

functionality: anthraquinone for the negative electrode and 1 ,2-dihydroxybenzene for the 

positive electrode. Cyclic voltammetry and constant current discharging were used to 

evaluate the performance of a supercapacitor with 1 M H2S04 electrolyte and a Nafion 

separator. Energy densities were found to be double the values obtained for a symmetric 

device with two unmodified carbon fabric electrodes. 

4.1. Introduction 

Electrochemical capacitors, also known as supercapacitors, are energy storage 

devices with the ability to provide higher power densities than batteries. 1
-
6 Improving the 

78 



energy density of such devices without a significant loss in their power density will 

expand their uses and is essential for some applications such as electric vehicles. 5 

It is now widely recognized that asymmetric supercapacitors, configured from two 

different electrode materials, provide the best prospects for increasing both energy and 

power densities. 7-
9 In such devices, each electrode can be designed for operation over the 

optimum potential range to maximize the cell voltage. For example, an asymmetric 

supercapacitor configured using anthraquinone (AQ) modified high surface area carbon 

fabric 10 as a negative electrode (anode during discharge) and Ru oxide as a positive 

electrode provides better energy and power densities than a symmetric Ru oxide device. 11 

Although, Ru oxide is considered as an excellent positive electrode material, it is too 

expensive for commercial applications and suffers from slow kinetics at low 

potentials. 12
'
13 We therefore report here on the use of a 1,2-dihydroxybenzene (DHB) 

modified carbon fabric electrode to replace the Ru oxide positive electrode. 

There have been a number of previous reports of the immobilization of 1,2-

dihydroxybenzene (DHB; also referred to as a-benzoquinone and catechol) functionality 

on carbon electrodes.14
-
18 The modified electrodes show two reversible two-electron 

redox processes at standard potentials (pH = 0) of ca. 0.4 V and 0.6 V vs. SCE that are 

well positioned for use in the positive electrode of an asymmetric supercapacitor with an 

anthraquinone-modified carbon negative electrode. The diazonium coupling of 1,2-

dihydroxybenzene to carbon should be more effective than the methods reported in 

refs. 14
-
18 and is reported for the first time here. 
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4.2. Experimental 

4.2.1. Materials 

Spectracarb 2225 carbon fabric (Engineered Fibers Technologies) and 4-

aminocatechol (Tyger Scientific Inc.) were used as received. AQ modified carbon fabric 

(C-AQ) was prepared as previously described. 11 

4.2.2. DHB-modified carbon fabric electrodes (C-DHB) 

To modify Spectracarb 2225 carbon fabric with 1,2-dihydroxybenzene 

functionality, two 1 cm2 discs were immersed in 2 ml of 0.25 M HCl and then ca. 0.01 g 

of 4-aminocatechol and water (8 mL) was added. Following cooling in an ice bath, 

0.0243 M NaN02 (2 mL) was slowly added. After a further 30 min in the ice bath, the 

modified discs were collected, washed well with deionized water, and dried in air 

overnight. The loading of DHB, determined from the increase in dry mass of the carbon 

disc, was 3.6 mass%. 

4.2.3. Supercapacitors 

An asymmetric supercapacitor was configured with an AQ-modified spectrocarb 

electrode (1 cm2
; ~ 15.5 mg) and a DHB-modified Spectracarb electrode (1 cm2

; ~ 15.5 

mg) by placing a Nafion™ 112 electrolyte separator between them. Each electrode was 

separated by a carbon fiber disc (Toray™ TGP-H-090) from a Ti plate current collector in 

a polycarbonate block in order to minimize the contact resistance.13 The assembled cell 

was immersed in 1 M H2S04 (aq) in order to saturate the electrode with the electrolyte. 
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Air was not excluded since it was found not to have a discernible influence on the 

voltammetric behaviour of the electrodes. 

Cyclic voltammograms for the asymmetric C-AQ/C-DHB supercapacitor were 

obtained using an EG&G 273A potentiostat in a two electrode mode in which the C-AQ 

electrode was connected to the reference and counter leads of the potentiostat while the 

C-DHB electrode was connected to the working electrode lead. The same instrument was 

used with the same connections in constant current discharging experiments. The 

supercapacitor was charged for 5 min at 1.2 V before discharging. Cyclic voltammograms 

of the individual electrodes were obtained in the same cell, with an Ag/ AgCl reference 

electrode immersed in the H2S04 (aq) electrolyte, and the other C-X electrode acting as 

the counter electrode. Specific capacitances, energy densities, and power densities were 

calculated by using just the electrode masses, which were summed for both electrodes for 

measurements in a two-electrode mode. 

4.3. Results and discussions 

4.3.1. Cyclic voltammetry of the electrode materials 

Figure 4.1 shows cyclic voltammograms (CV) of unmodified, AQ-modified, and 

DHB-modified carbon fabric electrodes. The current axis has been normalised with 

respect to scan rate and electrode mass to provide the specific capacitance. The DHB­

modified carbon cloth electrode shows an average specific capacitance of 201 F g- 1 

between 0.2 and 0.8 V while an average of 141 F g- 1 was found for the unmodified 

carbon cloth electrode over the same potential range. The approximately 43% increase in 
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specific capacitance over the relatively wide positive potential range is due to the 

reversible DHB redox processes, which produce pseudocapacitance waves at 0.41 V and 

0.65 V. The presence of two peaks for DHB is a result of using 4-aminocatechol as a 

precursor which has two different ways of bonding with carbon fabric, either through a 

C-C linkage (Structure 1, Scheme 4.1) or a C-N linkage (Structure 2, Scheme 4.1 ). 14
-
16 
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Figure 4.1: Cyclic voltammetry (20 mV/s) ofC-AQ (solid line; 15.7 mg), C-DHB (dotted 
line; 15.6 mg) and unmodified-C (dashed line; 15.3 mg) in (aq) 1 M H2S04. 

Currents have been normalised with respect to scan rate and electrode mass. 
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AQ also produces an appreciable enhancement in capacitance over a ca. 0.35 V 

range encompassing the formal potential of the AQ functionality (ca. -0.05 V). Over this 

range the average specific capacitance of the C-AQ electrode was 367 F g - I. Significant 

peak separations are seen in Figure 4.1 due to the uncompensated resistance of the cell 

and the large currents involved. 

H NH 

Structure 1 Structure 2 

Scheme 4.1 : Possible grafting of 4-aminocatechol to carbon. 

OH 

OH 

The voltammetric responses ofthe DHB and AQ moieties seen in Figure 4.1 were 

persistent over many cycles, indicative of covalent immobilization on the carbon surface. 

In the case of C-AQ, this has been previously documented. 1° For C-DHB, 36 cycles 

between - 0.1 and +0.8 Vat 20 mV s- 1 resulted in only minor changes in the voltarnmetric 

behaviour, with no significant change in the average specific capacitance. 
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4.3.2. Cyclic voltammetry of the asymmetric supercapacitor 

Figure 4.2 shows cyclic voltammograms for the asymmetric supercapacitor before 

and after several charging and discharging cycles. The two broad overlapping peaks 

between 0.2 and 1.0 V are due to the reversible faradaic processes for both AQ and DHB. 

Using DHB as the working electrode, AQ is reduced and DHB is oxidized during 

charging while the AQ is re-oxidized and DHB is re-reduced upon discharging the device. 

The presence of the reversible redox processes of both AQ and DHB enhance the energy 

and power densities of the device, which can be regarded as a combination of an 

electrochemical double layer capacitor and a high power battery. 
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Figure 4.2: Cyclic voltammetry (two-electrode mode) in 1M H2S04 (aq) of a C-AQ (15.5 
mg)/Nafion112/C-DHB(15.6 mg) supercapacitor before (solid) and after (dashed) 
several charging and discharging cycles, normalised with respect to scan rate (20 
mV/s) and the combined mass ofthe two electrodes. 
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The differences between the two curves shown in Figure 4.2 are due to drift of the 

potentials of the electrodes. Since the reference electrode was not used in this experiment, 

there is no stable reference potential. During repeated charging and discharging, the 

potential that both electrode return to at full discharge can vary with time. The similarity 

of the two curves shows that this is a relatively minor effect. 

4.3.3. Constant current discharging 

Figure 4.3 shows the discharge behaviour of an asymmetric C-AQ/C-DHB 

supercapacitor and a symmetric unmodified C/C supercapacitor at 0.2 A em -2
. Both 

capacitors gave similar discharge slopes at high voltages revealing that the asymmetric 

capacitor has no redox contributions to the charge released at potentials above ca. 0.7 V. 

This is consistent with the cyclic voltammograms shown in Figure 4.2 if the effect of the 

effective series resistance (ESR) is considered. The redox behaviour of AQ and DHB 

becomes obvious, however, at cell voltages between 0.7 V and 0.2 V where the slope is 

much lower for the C-AQ/C-DHB device. In this region, the average specific capacitance 

was 63 F g- 1 for the C-AQ/C-DHB capacitor compared to 30 F g- 1 for the unmodified 

carbon capacitor. This increase in capacitance leads to enhanced power and energy 

densities (Table 4.1). 
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Figure 4.3: Constant current discharging curves at 0.2 A for asymmetric C-AQ(15.5 mg)/ 
Nafion112/C-DHB (15.6 mg) (thick line) and symmetric C(15 .3 mg)/C(15.3 mg) 
supercapacitors in 1 M H2S04 (aq). 

Table 4.1 shows energy and power densities for the two capacitors obtained from 

constant current discharging in a two-electrode mode. The C-AQ/C-DHB device provided 

approximately double the energy density of the unmodified carbon device over the 

current range tested. Power densities (averaged over full discharge) were better for the C-

AQI C-DHB device at low currents, reflecting its higher average voltage during discharge 

(Figure 4.3). However, the unmodified carbon device exhibited a lower ESR and 

therefore better power densities at high currents. The difference in ESR is thought to have 

been caused by differences in the compression of the two devices rather than the 

modification of the electrodes. With optimization, the C-AQ/C-DHB supercapacitors 

should provide higher power densities than C/C supercapacitors at all discharge rates. 
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Table 4.1: Energy (Es) and average power (Ps) densities for symmetric CIC and 
asymmetric C-AQ/C-DHB supercapacitors, for constant current discharging from 
1.2 V. The combined electrode masses were 30.6 mg and 31.1 mg, respectively. 

Current/ C/C C-AQ/C-DHB 
A 

Es/Wh kg- 1 PsfkW l<g- 1 Es/Wh kg- 1 Ps/kW kg- 1 

0.01 5.2 0.16 10.0 0.18 
0.1 4.2 1.5 8.3 1.7 
0.2 3.5 2.9 7.0 3.0 
0.3 2.9 4.1 5.9 4.0 
0.4 2.5 52 4.9 4.8 
0.5 2.1 6.2 3.9 5.4 
0.6 1.8 7.0 3.2 5.8 
0.7 1.5 7.6 2.5 6.2 
0.8 1.2 82 2.0 6.3 
0.9 0.99 8.5 1.5 6.4 
1.0 0.80 8.8 1.1 6.3 

4.4. Conclusions 

The energy density of an aqueous carbon fabric supercapacitor has been doubled 

by immobilizing different redox species on each electrode to create an asymmetric 

device. Anthraquinone was used to provide redox pseudocapacitance at negative 

potentials, while dihydroxybenzene provided redox pseudocapacitance at positive 

potentials. This results in a combination of battery-like and capacitive behaviour. 
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Chapter 5 

Electrochemical preparation of poly(l­
aminoanthraquinone) and its 

characterization 
Part of this work has been published in Electrochem. Acta 2013, 93, 87-92. This 

paper was written in part by Dr. Peter Pickup. The work reported was conducted by Zaher 

Algharaibeh. 

5.1. Introduction 

Surface modification of carbon materials with redox species has been directed to 

achieve several goals during the last few decades. 1
-
1° Chemical11

-
15 and electrochemical 

techniques 1
•
3
•
16

•
17 have been used to covalently attach many diverse redox species with 

the desired properties.1•
3
•
6
•
9
•
14

•
16

•
18

•
19 Accordingly, a wide range of applications have been 

explored such as electroanalysis,6•
8

•
20 electrocatalysis,5

•
20

•
21 fuel cells20

-
23 and 

. 24-33 supercapacttors. 

Anthraquinones (AQ) are typical examples of qumones for which their 

electrochemical behaviour has been extensively reported in the literature.34
-
38 Their 

electrochemical activity is highly dependent on the electrolyte composition. A systematic 

study by Smith and coworkers revealed that there are three different categories. 34 The first 

category includes AQ in an aqueous solution that is buffered, or has a higher hydrogen 

ion concentration than the AQ concentration. In this case, the reduction of AQ involves 
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two electrons and two protons in one step to form the corresponding hydroquinone.3440 

The second category includes AQ in aprotic solutions. In such a case, the AQ consumes 

one electron in each of two consecutive steps to form the corresponding dianion.34
•
37 The 

last category includes AQ in unbuffered aqueous solution where the hydrogen ion 

concentration is lower than that of the AQ. Here, AQ is reduced in the same way as in an 

aprotic solution. However, due to the strong H-bonding between water and the AQ 

dianion, a mixture of products is produced. This mixture includes the fully basic dianion 

(Q2
-), the intermediate protonated anion (HQ-) and the hydroquinone (H2Q).34 

Anthraquinones (AQ) play a principal role in some biological processes35 and 

show potential activity as antitumor drugs,41 in addition to their potential role in 

industry.42 Moreover, a wide range of electrochemical applications involve AQ modified 

electrodes such as sensors,43
•
44 electrocatalysts,43

•
45 cation exchange in lithium ion 

batteries46 and supercapacitors.47
-
51 

The anthraquinone (AQ) moiety has been covalently bonded to carbon electrodes 

via diazonium coupling and has shown promising characteristics that improve specific 

energy and specific power as a negative electrode for supercapacitors.47
•
48 Unfortunately, 

covalent bonding of AQ to carbon via diazonium coupling was limited to less than a 

monolayer. 52 Therefore, a straightforward idea is to modify carbon with an AQ­

containing conducting polymer to achieve higher loading and a considerable electronic 

conductivity.53
•
54 Electro-oxidative polymerization of aminoanthaquinones (AAQ) 

monomers on carbon electrode is expected to be suitable for this purpose. 
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Recently, a novel hybrid composite of anthraquinone monosulfonate 

(AQS)/polyaniline on graphite was reported by Zhang and Yang to have electrocatalytic 

activity towards the oxygen reduction reaction (ORR).55 Moreover, some polyaniline 

derivatives56 show electrocatalytic activity. Therefore, poly(l-AAQ) is expected to have 

that characteristic as well. 

Badawy et al. reported that the electropolymerization of 1-AAQ, shown in Figure 

5.1 in aqueous 6 M H2S0 4 on a platinum electrode resulted in the formation of a film that 

was electroactive in both acidic and neutral solutions between 0.3 and 0.9 V vs. 

(Ag/AgCl, 3 M KC1).57 Film degradation occurred below 0.3 V or above 0.9 V. 

Moreover, the film was also electroinactive in organic media. 57 

In this work, the electrochemical polymerizations of 1-aminoanthraquinone (1 -

AAQ) monomer in 6 M H2S04 on carbon electrodes were investigated in aqueous and 

mixed solvents (i.e. aqueous/non-aqueous) under various experimental conditions. The 

monomer structure is expected to be maintained within the polymer chains because the 

radical cation formed on the primary amine activates the ortho and para positions on the 

. . 58 aromatic nng. 

:0: 

Figure 5.1: 1-aminoanthraquinone (1-AAQ). 
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5.2. Experimental 

5.2.1. Chemicals 

1-Aminoanthraquinone (1-AAQ, 97%; Aldrich) was dissolved in hot 6 M H2S04 

(aq) with stirring before use. Deionized water was used in all experiments. Sulfuric acid 

(ACP chemicals Inc.) was diluted before use as required. HPLC grade acetonitrile 

(Aldrich) was used as received. 

5.2.2. Instrumentation 

A standard three-electrode electrochemical cell was used throughout the 

experiments. A glassy carbon electrode with a surface area of 0.071 cm2 was used as the 

working electrode. Before each experiment the electrode was polished with aluminum 

oxide (0.05 11m) slurry on a polishing cloth to obtain a flat shiny surface. A platinum wire 

was used as the counter electrode while a saturated calomel electrode (SCE) was used as 

a reference electrode. All electrochemical experiments were conducted under a nitrogen 

environment after purging the solution with nitrogen gas (99.99%) for 20 min to ensure 

the absence of oxygen. 

Cyclic voltammograms were recorded using an analog RDE4 potentiostat (Pine 

Instruments) while impedance measurements were conducted using a Solartron model 

1286 potentiostat connected to a model 1250 frequency response analyzer. The 

impedance of poly(l -AAQ), was initially run at 0.0 V versus the open circuit potential 

(OCP) followed by impedance at the specified potentials by scanning the frequency from 
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10000 Hz down to 0.1 Hz. The resulting impedance data were recorded and analyzed by 

ZView software (Scribner Associates Inc.). The infrared spectra of the solid 1-AAQ 

monomer and a solid poly( 1-AAQ) film were directly measured using an attenuated total 

reflectance Fourier transform infrared spectrometer (ATR FTIR) from Bruker (model 

Alfa) while OPUS software was used to analyze the spectra. Scanning electron 

microscope (SEM) images were taken using a Quanta 400 FEG model from FEI 

Company. 

5.3. Results and discussion 

53.1. Electrochemical polymerization 

There are many factors that affect film formation when a particular 

electrochemical polymerization technique is used. These include: potential limits, type 

and amount of solvent(s) and electrolyte(s), concentration of monomer, pH, temperature, 

and impurities. 56 In addition, polymer properties differ according to the technique with 

which electropolymerization is carried out. 53 There are three general electrochemical 

procedures to prepare conducting polymers. These are potentiodynamic (i.e. cyclic 

voltammetry), potentiostatic (i.e. constant potential), and galvanostatic (i.e. constant 

current). 53,59,60 

5.3.2. Solubility of the 1-aminoanthraquinone monomer 

A proper solvent is required to dissolve both the monomer and the electrolyte 

before carrying out electropolymerization. The 1-aminoanthraquinone (1-AAQ) monomer 
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is insoluble in pure water and has limited solubility in dilute aqueous acids even after 

stirring or when sonication is used. Solubility was enhanced by stirring the mixture and 

heating it in a water bath. The effect of temperature on solubility was examined through 

comparison of the anodic peak current of the monomer and the shape of the cyclic 

voltammogram obtained from electropolymerization using the same working electrode 

and identical experimental conditions except changing the temperature used during 

preparation of the 1-AAQ solution. The increase in the anodic peak current of 1-AAQ 

upon increasing the solubilisation temperature indicates increased solubility of the 

monomer. Almost complete solubility of 22.3 mg of 1-AAQ was obtained in 20 mL of 6 

M H2S04 when it was heated up to 90 °C, see Figure 5.2. However, heating the solution 

may produce unfavourable side reactions that affect the electropolymerization process. 

Therefore, two 1-AAQ samples were solubilized in 6 M H2S04 at 75 °C and 90 °C before 

potentiodynamic polymerization at room temperature, as seen in Figure 5.3. This figure 

shows that there is no significant change in the polymerization process upon heating the 

1-AAQ monomer solution up to 75 oc or 90 °C. 
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Figure 5.2: Cyclic voltammograms of 1-AAQ solubilized in 6 M H2S04 at three different 
temperatures, at a scan rate of 50 mV/s, using the same glassy carbon working 
electrode. A constant amount of 0.0223 g 1-AAQ to 20 mL 6 M H2S04 was used 
for each test. 
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Figure 5.3: Comparison of electropolymerization of the same amount of 1-AAQ 
monomer (0.0223 g) solubilized at two different temperatures 75 oc (dotted line) 
and 90 oc (solid line) in 6 M H2S04. 
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The actual amount of 1-AAQ monomer soluble in aqueous 6 M H2S04 at room 

temperature is shown in Figure 5.4. The mass of soluble 1-AAQ increased linearly with 

respect to the added mass of 1-AAQ. These values were calculated after an appropriate 

suction filtration of that solution through a glass frit at room temperature followed by 

washing of the residue with deionized water and drying in an oven at 70 oc for 10 min, 

before weighing. In order to accomplish this study, three amounts of 1-AAQ in 6 M 

H2S04, were stirred and solubilized by gentle heating in a water bath and were removed 

from it when its temperature just reached 90 °C. It can be concluded that the insoluble 

fraction collected at each temperature must have been an impurity in the purchased 1-

AAQ. 

0.06 

0 

0 0.01 0.02 0.03 0.04 0.05 

mass added I g 
Figure 5.4: Mass of 1-AAQ dissolved versus mass added at room temperature. 
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1-AAQ is also soluble in a number of organic solvents and in mixtures of 

aqueous/organic media. Tetraalkylammonium salts are appropriate electrolytes whenever 

acetonitrile is used alone. 62 In the case of mixtures of 6 M H2S04 ( aq) and acetonitrile the 

monomer 1-AAQ was dissolved in 6 M H2S04 (aq) first followed by the addition of a 

clear aliquot of that solution to acetonitrile. It is notable that the order of addition is 

crucial for the electropolymerization process. This might be explained by considering 

some organic impurities that are soluble in acetonitrile but not in aqueous acid interfere 

with the initiation step. 

5.3.3. Potentiodynamic polymerization of 1-AAQ 

5.3.3.1. Effect of potential window on potentiodynamic polymerization of 1-AAQ 

For this study, electro-oxidative polymerization of 1-AAQ on glassy carbon (GC) 

was examined under two different potential windows (0.2 to 1.2) V and (-0.45 to 1.0) V 

vs. SCE keeping other experimental conditions the same. These conditions involve 

preparing the polymerization solution from 0.0223 g of 1-AAQ in 20 mL 6 M H2S04 (aq) 

under stirring and heating the solution up to 90 °C. 

5.3.3.1.1. Potentiodynamic polymerization of 1-AAQ at 0.2 to 1.2 V 

Figure 5.5 represents cyclic voltammograms for 1-AAQ polymerization over a 

potential range of 0.2 V to 1.2 V vs. SCE. The current remained close to zero during the 

first cycle up to ca. 0.95 V where it sharply increased indicating the oxidation of 1-AAQ 

monomers forming radical cations followed by dications as shown in Scheme 5.1.57
'
61

,
62 
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These species are highly reactive and can initially form dimers in a fast chemical step. 

This is indicated by the absence of reduction peaks corresponding to the monomer 

oxidation peaks. According to the resonance structures of the monomer radical cation, 

some examples of which are shown in Scheme 5.2 various types of coupling can be 

inferred such as N-N', N-C4', C4-C4', C4-C2 and C2-C2'. 57 These couplings may form 

soluble dimers that diffuse away from the electrode or can be adsorbed on its surface. In 

the latter case, dimers can continue coupling to form a poly(1-AAQ) film. The presence 

of two new redox couples at ca. 0.6 V and 0.8 V indicates that the film is electroactive 

and is more easily oxidized than the monomer itself. The polymer film is conductive 

clearly because the anodic oxidation current of 1-AAQ increases with cycling after the 

first few cycles. These results are similar to those reported by Badawy et al. on platinum 

or gold electrodes. 57 
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Figure 5.5: Electro-oxidative polymerization of ca. 5 mM 1-AAQ in 6 M HzS04 on 
glassy carbon electrode scanned from 0.2 to 1.2V vs. SCE at a rate of 50 m V /s. 
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Scheme 5.1: Oxidation step of 1-AAQ to form a radical cation. 
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Scheme 5.2: Some resonance structures of 1-AAQ monomer radical cation. 
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5.3.3.1.2. Potentiodynamic polymerization of 1-AAQ at -0.45 V to 1.0 V 

The polymerization of 1-AAQ from 0.2 to 1.2 V described in section 5.3.3.1.1 did 

not show the behaviour at negative potentials where the quinone functionality of the 

1-AAQ monomer is electroactive. Moreover, the upper oxidation limit was not optimized. 

Therefore, 1-AAQ was electropolymerized by scanning the potential between -0.45 and 

1.0 V vs. SCE as shown in Figure 5.6. The potential was first scanned around the formal 

potential of the 1-AAQ monomer at about -0.08 V vs. SCE (dotted line) and then the 

anodic oxidation potential was increased to the minimum oxidative polymerization 

potential at 1.0 V (solid line). At this potential a small increase in the current indicates the 

oxidation of the monomer to form the radical cation as expected. Interestingly, sweeping 

the potential repeatedly between -0.45 V to 1.0 V shows unexpected cyclic 

voltammograms. However, polymer formation is clearly revealed by the presence of two 

redox peaks, at ca. 0.8 V and 0.6 V, which increased upon cycling similar to those seen in 

Figure 5.5. When the potential was extended down to -0.45 V the cathodic peak current 

increased gradually upon cycling with a slight shift in the reduction peak potential of the 

anthraquinone (AQ) moiety to more negative potentials. On the other hand the oxidation 

of the reduced form of AQ did not appear at the same oxidation potential as for the 

monomer. Instead, large shifts from 0.01 V to 0.35 V were observed for the first four 

cycles similar to the way that polymerization of some phenazines proceeds. 76 Such a shift 

in anodic peak potential (Epa) can be explained based on the increase in the film resistance 

as the film thickness increases. After that, the oxidative current for AQ developed into a 

peak similar to the reduction peak but at a much higher potential, as seen in Figure 5.6(b). 
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Figure 5.6: Electro-oxidative polymerization of 1-AAQ (0.0223 g in 20 mL of 6 M 
H2S04) on a glassy carbon electrode scanned from -0.45 to 1.0 V vs. SCE at a rate 
of 100 mV/s. The experiment was done under a nitrogen atmosphere, (a) first four 
cycles, and (b) ten cycles. 
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5.3.3.1.3. Scanning electron microscopy (SEM) of a poly(l-AAQ) film 

Figure 5.7 shows a scanning electron micrograph (SEM) of a dry poly(1 -AAQ) 

film on a glassy carbon electrode after potentiodynamic electropolymerization from -0.45 

V to 1.00 V in 6 M H2S0 4. This figure reveals an incomplete coverage of the electrode 

surface with a rough film and a non-uniform deposition. A thin film of less than 1 J...lm, 

based on polymerization deposition of poly(l-AAQ) for ten cycles, can be seen from the 

image. Moreover, the SEM images support the local deposition of the oligomers followed 

by nucleation and film growth formation in which the rate determining step is supposed to 

be the diffusion of the 1-AAQ towards the oxidized oligomer64
•
65 to form an island-like 

structure. 65 

51J,m 

Figure 5.7: Scanning electron microscopy (SEM) ofGC/poly(l-AAQ). 
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5.3.3.2. Cyclic voltammetry of poly(l-AAQ) in 6 M H2S04 (aq) 

Poly(1 -AAQ) formed potentiodynamically was then examined in a monomer-free 

6 M H2S04 solution, as shown in Figure 5.8. The potential was scanned between -0.45 V 

and 0.8 V instead of 1.0 V to avoid over-oxidation66
'
67 or degradation of the polymer 

film.66
,
68 The main cathodic peak at ca.-0.2 V can be attributed to the reduction of the 

quinone moieties in the polymer, while the much smaller and broader cathodic wave 

between +0.8 and +0.3 V can be attributed to reduction of the polyaniline-like backbone. 

Curiously, there is no reoxidation wave for the quinone close to its reduction wave. 

Moreover, scaning the potential between -0.45 V and 0.3 V revealed the absence of the 

large AQ reduction peak. That is to say that the electrochemistry ofthe poly( 1-AAQ) film 

was unusal. 
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Figure 5.8: Steady state cyclic voltamrnogram (after three cycles) of GC/poly(1-AAQ) in 
monomer-free 6 M H2S04 solution at 5 mV/s. Poly(1-AAQ) was prepared by 
cycling from -0.45V to 1.0 V vs. SCE. 
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Figure 5.9(a) shows cyclic voltammograms of a poly-AAQ coated electrode in 6 

M H2S04 (aq) at various scan rates, in the absence of AAQ in solution. These 

voltammograms show a broad region of electrochemistry at potentials above +0.3 V, with 

major anodic peaks at ca. +0.4 V and +0.5 V, and a major cathodic peak at ca. -0.2 V. 

Peaks currents increased linearly with the square root of scan rate indicating that they 

were due to diffusion (or migration)-limited as shown in Figure 5.9(b). The first anodic 

peak at ca. +0.4 V (ranging from +0.36 V at 5 mV s-' and +0.44 V at 400 mV s-1
) is 

presumably due to its reoxidation, since the cathodic peak at - 0.2 V did not diminish with 

cycling, and quinone re-oxidation should occur before oxidation of the polymer 

backbone. This assignment was confirmed by variation of the potential limits (section 

5.3.3.4). 

The behavior of the quinone electrochemistry in Figure 5.9 is very unusual, and 

the very large peak separation cannot be accounted for by slow electron transfer kinetics, 

or an uncompensated resistance. Both of these would lead to a much stronger dependence 

of the peak separation on scan rate. However, the observed characteristics are similar to 

those for charge trapping in bilayer electrodes (electrodes modified with two discrete 

electroactive polymer films). 69
•
70 Moreover, such charge trapping phenomena can also 

occur in homopolymer films where changes in conductivity can cause sites in the film to 

be trapped in either reduced or oxidized states.71 
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Figure 5.9: (a) Cyclic voltammograms ofGC/poly(l-AAQ) in 6 M H2S04 at various scan 
rates from 5 mV/s to 400 mV/s, (b) Plot of anodic peak current at ca. + 0.4 V vs. 
square root of scan rate. 
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In the case of poly-AAQ, there is not expected to be a bilayer structure but there 

are two distinguishable redox moieties in the homopolymer film. The first one results 

from the polymerization of the aromatic amine and is analogous to the electrochemistry 

of polyaniline, which occurs over a wide potential range. The second one is the 

anthraquinone redox centres which have a formal potential close to -0.1 V. The 

observation of a charge trapping phenomenon in Figure 5.9 therefore suggests that the 

electrochemistry of the quinone is mediated by the conductivity due to the polyaniline 

like backbone, and that it becomes trapped in the reduced state (H2AQ in Eq. 1.5) because 

the backbone becomes non-conductive at sufficiently low potentials. 

Eq. 5.1 

Impedance spectroscopy was therefore applied in order to explore this possibility 

and measure the magnitudes of any conductivity changes that may occur. 

5.3.3.3. Impedance and charge trapping: Bilayer-like electrode behavior 

Impedance is a powerful technique to investigate charge transport in electroactive 

polymers. 74
-
76 Accurate measurement of parameters related to charge transfer and charge 

transport in a film coated electrode from its equilibrium state can be achieved by using a 

wide range of frequency. Two forms of impedance presentation are used in this section to 

facilitate the study of charge trapping in poly(1-AAQ). These are complex impedance 

(Nyquist) plots and series capacitance versus real impedance plots. Each can be used to 

resolve some of the important parameters. 
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A typical Nyquist plot for a conducting polymer modified electrode is shown in 

Figure 5.10. and a corresponding equivalent circuit is shown in Figure 5.11. Three main 

regions, according to their frequency range, can be distinguished. The first region is the 

high frequency region where charge transfer processes dominate. The semi-circle at high 

frequencies can be used to determine the double layer capacitance (Cdi) and the charge 

transfer resistance (Ret) of the polymer film. The highest frequency intercept with the real 

impedance axis can be taken as the solution resistance (R5), also known as 

uncompensated resistance (Run). The second region is observed at medium frequencies 

where diffusion and/or migration processes of ions in the polymer film dominate and 

appears as a straight line with 45° slope also known as the Warburg impedance (modeled 

as an open Warburg element, W0).
75

'
76 The final region is the low frequency region where 

the actual film thickness limits the diffusion process within the film and leads to a vertical 

line. 
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Figure 5.10: Typical Nyquist plot, imaginary impedance (Z") versus real impedance (Z' ), 
of a conducting polymer. 
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Figure 5.11: Equivalent circuit for a typical conducting polymer. 77 

solution 

The resistance of the Warburg element consists of a combination of the film's 

electronic resistance (Re) and ionic resistance (Ri) although these cannot be distinguished 

from a single Nyquist plot. To estimate Re and Ri, impedance measurements at various 

potentials are essential.72
•
75

•
78 Albery et al. derived some useful theoretical equations that 

are related to experimental values RHigh and RLow from a Nyquist plot, typically as shown 

in Figure 5.12(a).78 These are summarized as follows: 

If R et is negligible, (as in Figure 5.12.). 

RHigh = Rs +Roo Eq. 5.2 

Where Roo, is the resistance at infinite frequency. 

with Eq. 5.3 
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Therefore, (RooY1 is dominated by the lowest value ofReor Ri. 

Moreover, 
Eq. 5.4 

and Eq. 5.5 

Changing the potential of poly(l-AAQ), as expected for all conducting polymers, 

results in a significant change in electronic resistance while a smaller change in the ionic 

resistance is expected. Consequently, Re and Ri can be resolved. Moreover, for a 

conducting polymer (or redox polymer), the length of Warburg, or Warburg-like, region 

(Rw) corresponds to one third of the film resistance (RL = 3Rw).79 On the other hand, the 

film capacitance (CL) can be obtained by plotting the imaginary impedance (Z" ) versus 

the reciprocal of frequency (2nf)-1 at low frequencies as shown in Figure 5.12(b). 
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Figure 5.12: (a) Typical Nyquist plot of GC/poly(1-AAQ) at +0.60 V vs. SCE in 6 M 
H2S04 ; (b) determining the film capacitance (CL) from Nyquist plot. 
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The second useful plot is the series capacitance versus real impedance plot. In this 

case, the Warburg region is seen as an approximately linear increase in capacitance from 

close to zero.8° Compared to Figure 5.12, it is most convenient and objective to measure 

the length of this region, along the real impedance axis, from a capacitance plot as shown 

in Figure 5.13 for data at 0.2 V.80 The capacitance value at the intercept shown in Figure 

5.13 provides a good estimate of the film capacitance (CL). It is a useful tool to monitor 

changes in the film capacitance and film resistance as a function of potential. 80 
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Figure 5.13: Selected plot of series capacitance versus real impedance of poly(1 -AAQ) at 
0.2 V vs. SCE. CL is the polymer film capacitance; Rw and RL are the Warburg 
and the film resistances, respectively. 

Figure 5.14(a) shows impedance (Nyquist) plots at selected potentials for a 

poly(l-AAQ) coated GC electrode in 6 M H2S0 4 (aq). These experiments were run in 

order of decreasing potential over a range that encompasses the quinone formal potential. 

It was inferred from the cyclic voltammetry in Figure 5.9 that the conductivity of the film 
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irreversibly decreased over this range, since the quinone groups could be reduced at the 

formal potential on the cathodic scan, but could not be reoxidized at this potential on the 

anodic scan. However, the Nyquist plots in Figure 5.14(a) do not appear to show any 

evidence for this. The problem here appears to be due to dominance of the Nyquist plots 

by the effects of background currents, the origin of which is unclear but could due the 

reduction of trace oxygen or other impurities. 

Figure 5.14(b) shows that Warburg-type (i.e. 45° straight line) impedance at high 

frequencies was clear at a potential of -0.1 V which indicates that the reduction of AQ 

and polyaniline-like backbone was limited by migration and/or diffusion processes. 

In addition, the Nyquist plot for the bare GC electrode in 6 M H2S04 (aq) revealed 

large semicircles at -0.1 V to -0.4 V as shown in Figure 5.15 which support the 

dominance of the background current. Because the impedance measurements of the bare 

GC were performed over a frequency range (1000Hz to 0.01 Hz) different from those of 

GC/poly(l-AAQ), a comparison of their Nyquist plots is not informative. 
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The dominance by the background current can be minimized by plotting the data 

as series capacitance vs. real,80 and such capacitance plots are shown in Figure 5.16. Here 

it can be seen that at -0.1 V the poly(l-AAQ) coated GC electrode exhibited a much 

larger capacitance than the bare GC electrode, and that its capacitance decreased to a 

value close to that of bare GC as the potential was decreased. The large capacitance of the 

poly-AAQ at -0.1 V (and -0.2 V) indicates that the polyaniline-like backbone was still 

partially oxidized, and explains why the quinone group could be reduced at its 

thermodynamic (formal) potential. The loss of capacitance (electroactivity) may explain 

why it could not be reoxidized at this potential. 
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Figure 5.16: Series capacitance versus real impedance plots for poly(1-AAQ) at -0.1 V to 
-0.4 V and at potentials of -0.4 V for bare GC. 

Having established that the reduction of the quonine groups in the polymer can be 

mediated by the electrochemisty (redox or electronic conductivity) of the polymer 

backbone, the next step was to understand why the reoxidation is not also mediated at the 

quinone formal potential. To this end, impedance measurements were made from 0.1 V to 

0.7 V in the order of increasing potential, following reduction of the film at - 0.4 V. The 

results are shown in Nyquist (Figure 5.17) and capacitance plots (Figure 5.18). 

At +0.1 V, the impedance of the electrode was similar to that at -0.4 V (see Figure 

5.16 and Figure 5.18), with low capacitance and high resistance. The low doping level 

and consequent high resistance of the polymer backbone can thus explain why the 

quinone groups were not reoxidized at this potential during cyclic voltammetry. Since 

thermodynamically they should be oxidized, they can be said to be trapped in the reduced 
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state because they are electronically insulated from the GC electrode. This is essentially a 

meta-stable state resulting from hysteresis in the electrochemistry of the backbone. 

As the potential was increased from +0.1 V, the data in Figure 5.18 show only 

mmor changes until +0.4 V. At this potential, there was a significant increase in 

capacitance and the resistance clearly began to decrease. Significantly, this potential 

approximately matches that of the first anodic peak in cyclic voltammetry (Figure 5.8). 

The position of this peak, which is due predominantly to the reoxidation of the quinone 

groups, can thus be explained by the observed tum-on of the backbone conductivity 

between +0.3 and +0.4 V. At higher potentials, the capacitance of the film continued to 

increase, and its resistance decreased, as expected for electrochemical doping of a 

conjugated (conducting) polymer. 

The Nyquist plots in Figure 5.17 all show medium frequency regions at ca. 45· 

corresponding to a Warburg, or Warburg-like, impedance where the length of this region 

(Rw) corresponds to one third of the film resistance (RL = 3Rw) for a conducting polymer 

(or redox polymer).79 It is notable that the capacitive line at low frequencies is not ideally 

vertical as expected for a pure capacitor. This behavior can be explained by considering 

the following factors: non smooth film morphology81 (as is shown in the SEM in Figure 

5.7), various charge transfer rates at the microscopic level,81 and/or different adsorption 

processes. 81 
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It is qualitatively clear from Figure 5.18 that the film resistance decreases and the 

film capacitance increases as the potential increases. No flat plateau for series capacitance 

at low frequencies were observed because of the inhomogeneous morphology of the film, 

and/or the background current. 
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The film capacitances and film resistances at potentials from -0.4 V to 0.7 V 

obtained from Figure 5.16 and Figure 5.18 are presented in Table 5.1. Compared with the 

typical exponential dependence on potential of the conductivity of other conducting 

polymers82
•
83 the results in Table 5.1 . are unusual in that no significant changes in 

resistance were observed between -0.4 V and +0.3 V. This points to some other form of 

conduction through the film, which could be due to the electrolyte in pores. It cannot be 

due to redox conduction due to the AQ/H2AQ couple, which would peak at the formal 

potential (ca. -0.1 V) and be much smaller at higher and lower potentials. 
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The fact that the reducedformof anthraquinone (H2AQ) did not undergo oxidation 

at the proper potential (i.e. close to -0.1 V) on the subsequent forward scan may be 

attributed to the high resistivity of the polymer film. That is to say, the charge was 

trapped in the reduced form and cannot be released unless the film becomes sufficiently 

conducting at E > +0.3 V where the untrapping reaction (i.e. oxidation of both the 

polyaniline-type backbone and H2AQ) occurs. The shift in the anodic peak potential (Epa) 

can be roughly predicted based on the following equation. 

0 0.029 
Epa = E 1 + --+ iR 

n 
Eq. 5.6 

Applying Eq. 5.6 to the un-trapping peaks in Figure 5.9 yields resistances ranging from 

13 kQ at 5 m V s-1 to 0.9 kQ at 400 m V s-1
• The decrease in the apparent film resistance 

with increasing scan rate can be attributed to the lower amount of time spent at low 

potentials during trapping of the H2AQ sites. The resistances in Table 5.1 at potentials 

below 0.6 V fall within this range, but do not appear to be high enough to fully account 

for the voltammetric results, especially those at the lowest scan rates. This may be due to 

the differences in the time scales of the impedance and voltammetry experiments and the 

effects of hysteresis in the conductivity changes, as illustrated in section 5.3.3.4. 
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Table 5.1: Resistances and capacitances of poly(1-AAQ) film in 6 M H2S04 (aq) from 
series capacitance data in Figure 5.16 and Figure 5.18. 

Potential Film resistance Film capacitance 
(V) (kil) (mF) 

-0.4 6.2 0.023 

-0.3 5 .3 0.042 

-0.2 4.9 0.099 

-0.1 4.9 0.232 

0.1 7 .0 0.070 

0.2 6.8 0.090 

0.3 6 .9 0.097 

0.4 5.0 0.172 

0.5 1.6 0 .1 86 

0.6 0.66 0 .175 

0 .7 0.36 0 .148 

Figure 5.19 shows that measuring impedance at various potentials is useful to 

discriminate between electronic resistance (Re) and ionic resistance (Ri). From this figure, 

RHigh is relatively independent of potential and remains at values less than 10 Q. 

Therefore, Roo values remain small and are dominated by the smallest value of Re or Ri. 

On the other hand, RLow values increase significantly from 50 Q to 1600 Q with 

decreasing potential due to significant increase in Re as expected for any conducting 

polymer. Consequently, Ri is considered as the smallest resistance in order to explain the 

small Roo. This is reasonable because ofthe high electrolyte concentration (i.e. 6 M H2S04 

(aq)) used. 
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Based on Eq. 5.2 to Eq. 5.5, values of electronic resistance (Re) of poly(1-AAQ) 

range from 0.014 kn to 4.8 kn for potentials from 0.7 V down to 0.1 V as shown in 

Table 5.2. 

Table 5.2: Estimated resistances of poly(l-AAQ) from Nyquist impedance plots at 
positive potentials(+ 0.1 V to + 0.7 V) in 6 M H2S04(aq), assuming that Ret and 
Ri are negligible, and RHigh =Rs. 

Potential Rs RLow Re 
(V) (.Q) (k.Q) (k.Q) 

0.1 7.9 1.6 4.8 

0.2 6.7 1.6 4.7 

0.3 6.6 1.2 3.6 

0.4 6.7 0.80 2.4 

0.5 5.6 0.40 1.2 

0.6 4.6 0.090 0.26 

0.7 4.4 0.050 0.14 
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5.3.3.4. Dependance on switching limits and preconditioning potentials 

Potential-hold and reverse cyclic voltammograms over various potential windows 

were recorded at 50 mV/s in 6 M H2S04 solution in order to understand the behaviour of 

the charge trapping in GC/poly(l-AAQ). In Figure 5.20(a) the potential was scanned 

initially over the full potential window (i.e. -0.45 V to 0.8 V) to ensure the existence of 

the charge trapping phenomenon. Then it was scanned between 0.2 V and 0.8 V to release 

any trapped charges. This is obvious from the absence of an untrapping peak between 0.3 

V and 0.6 V. After that the potential was scanned between 0.0 V and 0.8 V and revealed 

again that there was no release of the charge. The same was observed when the potential 

was scanned between -0.05 V and 0.8 V. However, when the potential was scanned 

between -0.1 V and 0.8 V or between -0.15 V and 0.8 V a small pre-peak was observed at 

ca. 0.3 V on the forward scan which indicates a small release of the trapped charge. At 

these potentials (i.e. -0.1 V or -0.15 V) the AQ group is electroactive and the film 

becomes redox conducting because oxidized and reduced forms coexist (mixed valence). 

Holding the potential at -0.15 V for 2 min resulted in more charge trapping and 

consequently more charge recovery at ca. 0.3 V. The above results indicate that the redox 

site that is responsible for the trapping reaction (i.e. AQ) has a formal potential that lies in 

a conducting region not in the insulating one. In other words, the charge trapping due to 

AQ reduction has a kinetic-trapping origin. 

Figure 5.20(b) shows voltammograms of a poly-AAQ electrode with vanous 

upper potential limits and preconditioning potentials. The potential was initially scanned 
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between -0.45 V and +0.3 V to produce the steady state voltarnrnogram displayed as the 

solid line in the figure. This almost featureless (see below) response shows that the film 

had been fully reduced and that the upper limit of +0.3 V was insufficient to oxidize 

either the hydroquinone groups or the polymer backbone. Subsequent holding of the 

potential at +0.5 V for 1 min produced a small reduction wave at ca. -0.25 Von the next 

scan (dotted line), and a significant anodic peak at ca. +0.4 V. Thus the hydroquinone 

groups can be slowly oxidized at +0.5 V, but reduction of the quinone is still inhibited. 

This slow electrochemistry of the hydroquinone groups is consistent with the high 

resistance of the film measured at +0.5 V by impedance (1200 n in Table 5.1), which 

would have presumably become much higher during the scan from +0.5 V to the quinone 

formal potential. When the potential was held at +0.7 V for 1 min, the subsequent 

voltarnrnetric scan Figure 5.20(b) showed a full size quinone reduction peak at -0.2 V and 

a large reoxidation peak at ca. +0.4 V, consistent with the lower film resistance generated 

at +0.7 V (360 n in Table 5.1). 

These results reveal a complexity in the conductivity changes of the polymer 

beyond those documented by the impedance experiments. Based on other studies of 

conductivity changes in conducting polymers53
·
84 and the results in Figure 5.20, it can be 

surmised that there is considerable hysterisis in the potential dependence of the 

conductivity of poly( l-AAQ) due to conformational or other84 changes during its 

reduction and oxidation. Thus, a potential of +0.7 V is required to fully reset the polymer 

to its original conformation, electroactivity, and conductivity. 
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Comparing the voltammograms in Figure 5.20 with those in Figure 5.6 and Figure 

5.9, it can be seen that the splitting of the anodic wave into two peaks as seen in Figure 

5.9 depends on the conditions ofthe experiment. For freshly prepared films, the 2nd peak 

was small (Figure 5.6) or not resolved (Figure 5.20). However, the 2nd peak became 

more pronounced/resolved with use, and with increasing scan rate Figure 5.9. These 

changes were most likely due to conformational and or morphological changes within the 

film during its repeated reduction and oxidation. 
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Figure 5.20: Hold and reverse study of cyclic voltammetry of poly(1-AAQ) deposited on 
a glassy carbon electrode in 6 M H2S04 and scanned at a rate of 50 mV s-1

. (a) 
Potential was scanned initially between -0.45 and 0.8 V then it was scanned in the 
following order: between 0.2 and 0.8 V, between 0.0 V and 0.8 V, between -0.05 
V and 0.8 V, between -0.1 V and 0.8 V, between -0.15 V and 0.8 V, and finally 
hold for 2 min at -0.15 before scan to 0.8 V. (b) Potential was scanned initially 
between 0.3 and -0.45 V and stopped at -0.45 V then it was scanned in the 
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5.3.3.5. Capacitive properties of poly(l-AAQ) 

Figure 5.22 shows capacitance values of poly(l-AAQ) determined from 

impedance (i.e. from Series capacitance vs. Z') compared to capacitance for poly(l-AAQ) 

and bare glassy carbon electrode calculated from their cyclic voltammograms by dividing 

the current by the scan rate which was 5 m V /s. Impedance measurements were recorded 

with a small sine wave amplitude (ca. 10 mV) over a frequency range of 10000 Hz to 0.1 

Hz. Film capacitance was obtained from series capacitance versus real impedance plots 

recorded in the following potential order (-0.1 V to -0.4 V) followed by (+0.1 V to +0.7 

V) with 0.1 V potential step increments. Combining data from impedance and cyclic 

voltammetry is useful to understand the electrochemical behavior of conducting 

polymers. 

Figure 5.21 shows that, at any given potential, the capacitance value calculated 

from impedance was much lower than the corresponding one calculated from cyclic 

voltammetry, as expected for any conducting polymer.86
-
88 The reason for that could be 

the difference in potential perturbation amplitudes in the two techniques.86
-
89 Such 

expectation was further confirmed for another conducting polymer by running the cyclic 

voltammetry experiment over a narrow potential window (i.e. 10 m V) which resulted in a 

30% decrease in capacitance compared to the capacitance obtained when the full 

potential window is used. 86
•
88 Moreover, the capacitance in Figure 5.21 , calculated from 

the cyclic voltammogram, was not accurate because the film was not prepolarized before 

running the potential sweep in order to obtain a redox equilibrium as proposed by 
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Rossberg89 and Genies.90 In addition, conformational changes in the polymer chains are 

more significant in the case of cyclic voltammetry.88 The large apparent peak 

capacitances at -0.1 V and +0.4 V were attributed earlier to trapping (reduction) and 

untrapping (oxidation) of AQ groups present in the polymer film. However, the charge 

trapped in the reduction reaction is not fully recovered in the oxidation reaction. This is 

clear from the difference in the sizes of the peaks. This difference can be attributed to 

charge trapping leakage. 69 

In other words, some of the AQ groups present within the polymer chains can be 

oxidized slowly before the untrapping peak is reached. The polymer film reveals high 

capacitance with diffusion control within the low conductivity region (i.e. between 0.0 V 

and 0.3 V) which is not fully understood. However, it can probably be explained by 

considering the film as an AQ redox polymer instead of as a conducting polymer. In such 

a case, electron transport within the film occurs via electron hopping (electron exchange) 

between adjacent AQ centres which is governed by Fick' s diffusion law.91 This process is 

facilitated by slight movement of AQ centres and diffusion of a sufficient amount of 

counter ions to ensure electroneutrality. Therefore, the overall diffusion process is 

controlled by the slowest step of the following processes: electron hopping, redox centre 

movement and counter ion diffusion.91 
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Figure 5.21: Limiting capacitance (from impedance) of GC/poly(1-AAQ) versus 
electrode potential compared with the capacitance of bare GC and GC/poly(l ­
AAQ) (from cyclic voltammogram at 5.0 mV/s) in 6 M H2S04 (aq). Absolute 
values are presented for the negative scan cyclic voltammogram. 

The ability of poly(l-AAQ) to hold the charges when a potential is applied across 

it is shown in Figure 5.22 by plotting the charge versus the potential between -0.2 V to 

0.8 V . When charging the polymer over the 1 V potential window (i.e. from -0.2 V to 0.8 

V) the charge increases linearly with potential except at the untrapping potential where 

the charge sharply increased with potential. Moreover, at the end of charging the 

accumulated charge provide the average capacitance as in Eq. 5.7. 

Q = cv Eq. 5.7 
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Q is the total charge that the polymer film can hold when a certain potential V is 

applied across the electrode and C is the proportionality constant which is equal to the 

film capacitance. 
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Figure 5.22: Comparison of capacitance and charge versus potentials for 
GC/poly(l-AAQ) in 6 M H2S04 (aq). 

5.3.3.6. Charging/discharging properties of poly(l-AAQ) 

A current-potential plot obtained from cyclic voltammetry of poly(l-AAQ) at 5 

mV s-1 was utilized to study its charging/discharging properties as shown in Figure 5.23. 

The total amount of charge that the polymer film can hold depends on potential. In 

· general, the charge accumulation, during the positive scan, was linearly dependent on the 

potential except at potentials where the AQ is electroactive. The charge reached a 

129 



maximum value of 0.002 C at the end of charging step. Only 25% of the total charge was 

stored in the film over potentials where the film is highly resistive (i.e. from -0.45 V to 

0.2 V). On the other hand, during the negative potential scan, the polymer film undergoes 

discharging in which the charge that has already been stored decreases linearly with 

potential. About 80% of the total charge stored during the charging process was 

maintained over a potential window between 0.8 V down to -0.1 V followed by a sharp 

decrease in the film charge over the potential window where the AQ reduction reaction 

occurs (i.e. between -0.1 V and -0.4 V). This hysteresis in charge/discharge profile would 

be a problem for practical electrochemical capacitaor application. 
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Figure 5.23: Charging/discharging plot of GC/poly(l-AAQ) in 6 M H2S04 (aq) over a 
potential range between -0.45 V to 0.8 V. 
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5.3.3.7. The nature of poly(l-AAQ) film capacitance at -0.1 V 

The poly(1-AAQ) film was further investigated by impedance spectroscopy at 

-0.1 V compared to the impedance of a bare GC electrode as shown in Figure 5 .24. High 

capacitance and low resistance was observed only when measuring impedance without an 

equilibrium time. However, repeating the experiment with a 5 min equilibration time at 

-0.1 V or -0.2 V before measuring the impedance at -0.1 V resulted in a huge decrease in 

capacitance. These results reveal slow loss of polyaniline type capacitance. 
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Figure 5.24: Series capacitance versus real impedance ofGC/poly(l-AAQ) in 6 M H2S04 

(aq) compared to bare GC. All measurements were at -0.1 V vs. SCE. Various 
equilibrium time and potential were used as indicated. 

5.3.3.8. Impedance data fitting for poly(l-AAQ) 

Experimental and simulated Nyquist plots ofGC/poly(1-AAQ) at- 0.3 V, + 0.1 V 

and + 0.6 V are shown in Figure 5.25(a) and (b). These two different potentials were 

chosen to explore the behavior of the film at different oxidation states and consequently at 
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different conductivity and resistance. Parameters from experimental data were obtained 

from the dimensions of the plot at the appropriate frequency range. Using circuit fitting 

for a selected narrow high frequency range gives the charge transfer resistance (Rc1). The 

film resistance (RL) designated from the Warburg impedance was calculated from Rz: 

based on Eq. 5.5. Finally, the film capacitance (CL) was calculated from the slope of Z" 

vs. l /(2nf) at low frequency since CL = 1/slope. 
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Figure 5.25: Experimental and fitting of Nyquist plots for poly(l -AAQ) in 6M H2S04 

(aq) over the frequency range 10000 Hz to 0.01 Hz. (a) at 0.1 V (b) and at -0.3 V. 
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The fitting parameters along with the experimental ones for poly(l-AAQ) at + 0.1 

V and - 0.3 V are summarized in Table 5.3. Relatively good agreements between the 

experimental and fitted impedance data were obtained. The observed significant 

discrepancies indicate that both the experimental and fitted data should be considered as 

semiquantitative descriptions of the film. The non-ideal behavior of the film probably 

resulted from the uneven film thickness and changes in morphology across the film. 77 

The trend for the charge transfer resistance (Ret) (i.e. the electronic charge transfer 

resistance) is to decrease with increasing potential where the electron transfer at the 

GC/polymer interface becomes more facilitated and the polymer becomes more 

conducting. Even though, the Ret values are considered significantly high. The film 

resistance (RL) also was found to decrease with increasing potential. This is expected 

because as the potential increases the polymer film becomes partially oxidized and thus 

more electronically conducting. However, the CL increases with increasing potential 

where the film becomes partially oxidized. 

Table 5.3 : Experimental and fitting parameters for the impedance of poly(l-AAQ) in 6 M 
H2S04 • (-) in this table denotes that the value cannot be measured from the plot. 

E IV semicircle fit fit -l/(21tf Z") fit 

+ 0.1 3384 4184 4776 4681 6.30xl 0·5 1.28xl 04 

-0.3 11597 14232 33178 7.79xi0·5 
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5.3.3.9. FTIR spectra of poly(l-AAQ) 

Figure 5.26 shows Fourier transform infra-red (FTIR) spectra for the solid 

monomer 1-AAQ while Figure 5.27 shows the corresponding poly(l-AAQ) which was 

deposited as a thin film on a GC electrode by potentiodynamic polymerization from 6 M 

H2S04 solution. FTIR experiments may, but not necessarily, provide additional support 

for the polymer formation and the possible ways of coupling. The evidence for polymer 

formation is mainly the presence of imine (i.e. (C=N) at 1558 cm-1
) , amine (i.e. (N-H) 

deformation of secondary amine at 1504 cm-1
) and HS04- (i.e. S-0 at 1028 cm-1) 

moieties, respectively.51
•
57 This suggest coupling at the 1,4 positions in the 1-AAQ. In 

addition, the absorption band of the a,~-unsaturated carbonyl group in 1-AAQ at 1663 

cm-1 was shifted to lower energy at 1644 cm-1 due to polymer formation. These findings 

indicate that the polymer has the essential functional groups that are responsible for its 

electroactivity. It is also notable from these figures that some bands were very small (e.g. 

1557 cm-1
) and sometimes cannot be distinguished from the noise. 
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Figure 5.26: ATR-FTIR spectrum of solid 1-AAQ monomer. 
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Figure 5.27: ATR-FTIR spectrum of poly(l-AAQ) deposited on GC electrode by 
potentiodynamic polymerization from 6 M H2S04 (aq). 
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The main FTIR transmission bands proposed for both 1-AAQ and poly(1-AAQ) 

with comparisons from the literature are given in Table 5.4. 

Table 5.4: Proposed FTIR assignments for poly(1-AAQ) compared with the literature. 

Possible assignments 1-AAQ Poly(l-AAQ) 
(Literature) (literature) 

C= O (quinone) 1602(1596)57 1644 (163 I ) 57 

C=N str. imine - 1558 (1580) 51 

N-H defom1ation 1540 (1550)5 1 l 0 amine 1504 (1500)51 2° amine 

C-N str. 12 18(1290)51 1258 ( 1250) 51 

N -H str. 

Y asym. (NH2) 341 7 (341 0)51 strong -
Ysym. (NH2) 3302 (3310) )51 strong 3167 (3170)51 weak 

N-H str. 2 amine - 3425 (3430 ) 5I 

C-H out of plane bend. 
vibration 

of2H 829 (850)51 828 (830) 51 

of 31-I 706-801 (7 1 0-81 0) 51 697-828 (71 0-820) 51 

HSO,.- - 1028 (I 050)92 

5.3.3.10. Proposed structure for poly(l-AAQ) 

From SEM images, it can be seen that a porous solid film was deposited on glassy 

carbon electrodes by potentiodynamic polymerization. This film, based on cyclic 

voltammetry and impedance measurements, shows various electroactive sites with 

conducting properties depending on the potential. Furthermore, FTIR spectra of the 

monomer and the polymer reveal that the polymer has been electrodeposited in a manner 

similar to polyaniline derivatives without losing the AQ structure. The probability of 

coupling between monomer units depends on the presence of the highest stable radical. 

136 



Stability of the various radical cations that are formed electrochemically which may be 

located at NH2, C1, or C4 positions in 1-AAQ, respectively, as reported by Naoi et a/.92 

However, it has been found that for 1 ,5-diaminoanthraquinone the radical at the a 

position has the highest spin density.90 By analogy, it is expected that a radical at the a 

position will be the most stable one for 1-AAQ. Therefore, the most probable coupling of 

two monomer units will be at 1,4 and 5,8 positions.51
•
57

•
90

•
93 Accordingly, the proposed 

polymer structure for poly(1-AAQ) in the fully reduced and fully oxidized forms are 

drawn in Figure 5.28. Naoi et al. reported that potentiodynamicaly prepared crystalline 

structural oligomers of 1 ,5-diaminoanthraquinone have a n-n interaction which reduces 

chain movement to the minimum which enable them to attain high electrochemical 

cyclability.92 This characteristic may be found m poly(l-AAQ) prepared 

potentiodynamically but needs further investigation by X-ray diffraction (XRD). 
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(a) 

Totally reduced poly(l-AAQ) 

(b) 

Totally oxidised poly(l-AAQ) 
11 

Figure 5.28: Proposed structures of poly(l-AAQ) (a) in the totally reduced form and (b) 
totally oxidized form. 
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5.3.3.11. Electropolymerization in mixed solvents 

In this section potentiodynamic polymerization of 1-AAQ in a mixture of solvents 

(i.e. aqueous/organic) is reported. It is notable that dissolving 1-AAQ in acetonitrile 

before adding H2S04 did not produce a polymer film during potential cycling. This might 

be attributed to some unwanted impurities that inhibit the polymerization process or form 

soluble products. The following is a suitable way to deposit poly(l-AAQ) films from 

mixed solvents. Initially 0.0223 g 1-AAQ was dissolved in 20 mL of 6 M H2S04 (aq) 

through stirring and heating to 80 °C. Then 10 mL of this solution was diluted with 10 

mL of acetonitrile. Therefore, the concentration of 1-AAQ was 2.5 mM and the 

concentration of H2S04 was 3 M with an overall aqueous to organic volume ratio of 1:1. 

This solution was used to deposit poly(l-AAQ) films on glassy carbon electrodes by 

cycling at 50 mV s-1 between -0.6 V and 1.4 V vs. SCE, as shown in Figure 5.29. Again 

the AQ reoxidation peak was shifted to more positive potential which reveals the trapping 

phenomenon. 

The first few cycles (not all of them are shown for clarity) were scanned over a 

potential regime where the redox peaks of the 1-AAQ monomer appears (i.e. E 1;2 = 

-0.090 V vs. SCE). The peak separation for the 1-AAQ monomer was 180 mV which 

indicates a quasireversible redox peak on glassy carbon.94 The potential was then 

extended to initiate polymerization through the formation of radical cations upon anodic 

oxidation of 1-AAQ which is indicated by a sharp increase in the anodic current at ca. 1.0 

V vs. SCE. Actually, the onset potential for 1-AAQ oxidation (i.e. 0.925 V vs. SCE) was 
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estimated from extrapolating this sharply increasing current to the potential axis. When 

the potential was switched back to the negative direction, a small cathodic peak appeared 

at ca. 0.8 V which can be attributed to reduction of the dimer.46
•
57 On subsequent cycles, 

the current for the AQ reduction increased with small shifts in the peak potential to more 

negative values. Again the AQ reoxidation peak was shifted to more positive potential 

which reveals the trapping phenomenon or can be explained based on the formation of a 

porous polymer film which is more resistive than the bare glassy carbon electrode.74
•
95 As 

the film thickness increased with cycling, the film resistance also increased.46 

Accordingly, the monomer oxidation peak is expected to shift to more positive potentials. 
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Figure 5.29: Potentiodynamic polymerization at 50 mV s-1 of 1-AAQ on a glassy carbon 
electrode in mixed solvents, where 0.0223 g of 1-AAQ was preheated initially in 6 
M H2S04 (aq) then 10 mL it was diluted with 10 mL of acetonitrile (1 : 1 ). 
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Poly(l-AAQ) prepared in the mixed solvent was then immersed in acetonitrile and 

deionized water multiple times, before testing the polymer in a monomer-free solution, to 

·remove any soluble monomers and or oligomers. Figure 5.30 shows cyclic 

voltammograms of poly(l-AAQ) in 6 M HzS04 (aq) over a narrow potential window 

from -0.4 V to 0.4 V, to avoid polymer overoxidation, and at scan rates ranging from 5 

m V s-1 to 40 m V s-1
• Two small redox couples due to AQ activity are clearly identified at 

formal potentials of 0.20 V and -0.09 V. This finding reveals that these redox peaks are 

related to AQ sites close to the GC surface. The former redox peak (i.e. at 0.20 V) may be 

related to the formation of a complex between AQ and an aniline-type structure through 

hydrogen bonding, as shown in Figure 5 .31. 85
•
92

•
96 
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Figure 5.30: Scan rate effect on poly(1-AAQ) in 6 M H2S04 (aq) following CV in Figure 
5.29. 
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The peak potential difference (Eanodic - Ecathodic) for the couple at -0.09 V was 

greater than zero which indicates a significant change in chain conformation.97 Moreover, 

the peak width at half height (PWHH) of the -0.09 V couple, scanned at 40 m V s-1 was 

136 m V (i.e. > 90/n). This can be explained by repulsive interaction between the AQ 

redox centres in the film. 98 

·+ 

----- NH 0 m 

Figure 5.31: Schematic representation of the complex proposed between AQ and a 
bridging nitrogen. 

The potentiodynamic polymerization of 1-AAQ from the mixed solvent system 

did not solve the charge trapping issue which is not useful for supercapacitor applications. 

There are some differences in electrochemistry of poly(l-AAQ) prepared from mixed 
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solvents which can be attributed to different conducting properties, inner film structure 

and porosity.53
•
71

•
74

•
76 Naoi eta!. reported highly conducting characteristics of poly 1,5-

diaminoanthraquinone over a 2.3 V potential window.51 They explained that high film 

conductivity in the reduced state is based on the presence of the two oxygen atoms in the 

AQ centres which improve the conductivity within the film through a "tunneling 

bridge". 51 ,92,96 

Previously reported voltarnmograms for the polymerization of 1-AAQ from a 1:1 

mixture of acetonitrile and 6 M H2S04 (aq) show charge trapping that is similar to that 

shown Figure 5.6 but without the progressive shifting of the quinone reoxidation peak.47 

However, the charge trapping phenomenon was not discussed in that work. Small 

reversible quinone waves were reported at ca. +0.05 V, and we have been able to 

reproduce these (see Figure 5.32) by depositing poly-AAQ from a mixture of acetonitrile 

and 6 M H2S04 (aq). Similar small waves are also seen in the -0.45 V to +0.3 V 

voltammograms in Figure 5.20, which is expanded in Figure 5.32. It is clear from Figure 

5.20 that these small reversible or quasi-reversible waves at the quinone formal potential 

involve only a small fraction of the quinone sites in the film and so do not represent the 

bulk behavior. They are presumably due to quinone sites close to the interface with the 

glassy carbon electrode. 
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Figure 5.32: Cyclic voltammetry of poly(l-AAQ) coated GC electrodes in 6 M H2S04 
(aq) at 50 mV s·1

. The poly(1-AAQ) was deposited from 6 M H2S04 ( • • • • ) 

or a 1:1 mixture of acetonitrile and 6 M H2S04 (-). 

Charge trapping can also be seen in a literature voltammograms of poly(5-amino-

1 ,4-naphthoquinone ).99 In that case, quasi-reversible electrochemistry of the quinone was 

observed at 0.07/0.15 V, and it was thought that the polymer backbone was oxidized at 

0.69 V and reduced at about 0.03 V. In a more recent report on poly(2-methyl-5-amino-

1,4-naphthoquinone),85 similar partial charge trapping peaks were attributed to 

interactions between the quinone and amine groups whereby NH+· generated on the 

anodic scan oxidized trapped hydroquinone sites and hydroquinone sites generated during 

the cathodic scan reduced trapped NH+· sites. 

5.3.3.12. Potentiodynamic polymerization of 1-AAQ on porous carbon materials 

In the preceding sections, electropolymerization of 1-AAQ was reported for a flat 

carbon surface (i.e. the glassy carbon electrode). However, electrodeposition of this 
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polymer on porous high surface area carbon is important for practical applications. IOO-IOS 

Here, the same experimental conditions described in sections 5.3.3 .1.1 and 5.3.3 .1.2 were 

used to electropolymerize 1-AAQ on carbon fiber paper (CFP; Toray TGP-H-090), 

(CFP). Nearly the same voltammetric characteristics during polymerization were found; 

compare Figure 5.33 and Figure 5.34 with Figure 5.5 and Figure 5.6. However, 

preliminary potentiodynamic polymerization results on high surface area carbon black 

(Vulcan X72 and Black Pearls 2000) were not successful. This can be attributed to the 

weak binding between the carbon black powder and the substrate (i.e. glassy carbon) as 

some flakes were seen to fall away from the electrode into the electrolyte solution. 

Therefore, more work needs to be done to optimize loading and adhesion of carbon black 

on glassy carbon. 
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Figure 5.33 : Electro-oxidative polymerization of ca. 5 mM 1-AAQ dissolved in 6 M 
H2S04 (aq) on carbon fiber paper (CFP) electrode scanned from 0.2 to 1.2 V vs. 
SCE at a rate of 100 mV/s. 
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Figure 5.34: Electro-oxidative polymerization of ca. 5 mM 1-AAQ dissolved in 6 M 
H2S04 (aq) on carbon fiber paper (CFP) electrode scanned from -0.45 to 1.0 V vs. 
SCE at a rate of 50 m V /s. for ten cycles. 

5.4. Conclusions 

The electrochemical activity of the quinone couple in poly-AAQ is dependent 

upon the conductivity due to the polyaniline-like backbone. During cyclic voltammetry 

the polymer retains sufficient conductivity on the cathodic scan for the quinone groups to 

be reduced at potentials close to the formal potential of ca. -0.1 V vs. SCE. However, the 

conductivity of the reduced film becomes insufficient to allow re-oxidation at the 

thermodynamic potential, except for sites close to the interface between the polymer film 

and the electrode. Sufficient conductivity is only recovered at potentials above ca. +0.3 

V, leading to trapping of the quinone sites in their reduced state over the - 0.1 V to +0.36 

V region of the anodic scan. The peak current for reoxidation of the quinone groups is 

shifted to +0.36 Vat 5 mV s- 1 and +0.44 Vat 400 mV s- 1
• 
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Although this charge trapping effect may have some value in electronic devices, 106 

for example, it will limit performance in most applications. It is therefore important that it 

is fu lly understood so that kinetic limitations on the quinone electrochemistry in 

electrochemically deposited polyanthraquinones and related materials can be minimized. 
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Chapter 6 

Electrochemical copolymerization of 
aniline with 1-aminoanthraquinone and 
its electrocatalytic activity towards Oz 

reduction 
6.1. Introduction 

Since their discovery in the 1970s, intrinsically conducting polymers, also known 

as synthetic metals, have been extensively investigated.1-
6 Due to their unique chemical, 

optical, mechanical and electrochemical characteristics a wide range of applications have 

been developed such as electroanalysis/·8 batteries,9-
11 electrochromic devices 7•

12 and 

supercapacitors.4•
5
•
13

-
15 Many conducting polymers are derived from simple monomers 

like aniline, pyrrole, and thiophene and their derivatives16
•
17 

Conducting polymers are promising for supercapacitor applications since they 

have higher specific capacitances than carbon electrodes and a relatively lower cost 

compared to some metal oxides.4
•
5 Moreover, thin or thick polymer films can be readily 

oxidized or reduced. 18 Interestingly, they can be altered and modified to obtain many 

diverse physical, chemical and electrochemical characteristics.7 

There are four different methodologies that can be used to modify a particular 

conducting polymer to achieve the desired properties. 19 These include using a substituted 
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monomer, 19 adjusting the polymerization conditions,20 modifying the polymer by post 

treatment19
•
2 1 or by copolymerizing two or more monomers.22 

By utilizing the last methodology (i.e. copolymerization), a number of benefits 

can be obtained. For example, polyaniline is not electrochemically active in solutions of 

pH >4. 19
•
23 Therefore it is normally copolymerized with another pH dependent functional 

group in order for polyaniline to be useful over a wider pH range.23 For example, 

polymerization of 1-aminoanthraquinone (1-AAQ) with aniline produces aniline-co-1-

AAQ copolymer which is electroactive up to pH 7? 4 In addition, copolymerization of 

aniline with an alkylaniline leads to tunable conductivity. 19
•
22 Better stability and 

solubility was reported by copolymerizing aniline with butylaniline.25 

Copolymerization of two monomers which have a large difference in their 

oxidation potentials is difficult. 16 Therefore, it is recommended to select monomers of 

similar oxidation potentials for copolymerization such as the copolymerization of aniline 

with a substituted aniline. 19
•
24 Fortunately, aniline and 1-AAQ have relatively similar 

oxidation potentials and are readily copolymerized on GC.24 The AQ functionality has 

been utilized for supercapacitors either through covalent bonding to carbon26
•
27 or in a 

polymer deposited onto a carbon electrode.28
•
29 It has also been used for catalytic 

reactivity towards the oxygen reduction reaction (ORR).30
-
33 Moreover, conducting 

polymers are also potential candidates for ORR.34
-
36 The ORR is a very important 

reaction. Until now, platinum (Pt) is the best catalyst that is widely used in fuel cells, 

even though it is very expensive ($1830 per ounce).34 Therefore, it is highly desirable to 
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replace Pt with a less expensive and available material as a catalyst for fuel cell 

applications especially at the cathode where the ORR is slow and needs a larger amount 

ofPt than that is needed for hydrogen oxidation at the anode.34 

For electrochemical devices, materials which have a synergistic effect when 

combined are highly desirable to maximize the benefit of the desired characteristics such 

as the specific capacitance and the electrocatalytic activity.37 A synergistic effect implies 

that the overall response resulting from the combination of two different materials will be 

greater than the sum of the responses of the two materials individually. Recently, Xu et 

al. reported a synergistic effect in terms of specific capacitance from combining a 

hierarchical nanowire polyaniline with graphene oxide which resulted in improving the 

energy storage ability in supercapacitors.37 Moreover, a synergistic effect between a 

polyaniline film and quinone/hydroquinone in solution towards the ORR was observed.39 

Therefore, the copolymers prepared from these monomers are expected to have favorable 

characteristics for supercapacitors applications and for electrocatalysis of the oxygen 

d . . 35 36 40 re uctwn reactiOn. ' ' 

There are some additional benefits resulting from the copolymerization of aniline 

and 1-AAQ on high surface area carbons. For supercapacitor applications under some 

conditions the polymer film thickness, and consequently the pseudocapacitance, can be 

increased without increasing the film resistance.41 On the other hand, the electrocatalytic 

ORR using confined AQ in a film is more favorable than using AQ in solution.31 
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The electrochemistry of polyaniline has been extensively studied and reported in 

the literature. The deposition of polyaniline from highly acidic aqueous media is well 

known to produce two reversible peaks at ca. 0.1 and 0.7 V vs. SCE.17 A total charge of 

0.6 to 0.7 e-/aniline was observed. 17 Conductivity was observed over the potential range 

of 0.1 V to 0.7 V. 17 It was found that the rate determining step of electropolymerization 

depends on the anion concentration and not on the proton concentration.42 The type of 

anion determines whether a porous or compact morphology will be deposited.42 

1-Aminoanthraquinone (1-AAQ) was homopolymerized in aqueous acid,43 

nonaqueous33 conditions and in mixed aqueous/nonaqueous media.44 Polymerization of 1-

AAQ in aqueous acid leads to charge trapping phenomena which are not useful for 

supercapacitor applications as discussed in chapter 5. 

Recently, 1-AAQ was co-polymerized with aniline in 4 M H2S04 solutions by 

Palaniapan and Manisankar.24 However, the cyclic voltammograms of the modified 

electrode showed no electroactivity of 1-AAQ in a monomer free solution.Z4 Therefore, 

the objective of this work was to prepare the copolymer under slightly different 

conditions and to examine the electroactivity of the copolymer for supercapacitor 

applications and for electrocatalytic activity of ORR. 

6.2. Experimental 

1-Amino-9,10-anthraquinone (AAQ, 97%; Aldrich) was dissolved in hot 6 M 

H2S04 with stirring and the solution cooled to ambient temperature before use. Aniline 

(99.99 %; Aldrich) was purified twice by passing it through an aluminum oxide (neutral 
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507 C) column before use. Sulfuric acid (98%; ACP chemicals Inc.) was used as 

received. An acetate buffer solution which contains 0.5 M Na2S04 has been prepared 

from 0.05:0.02 M (CH3COOH/CH3COONa) and adjusted to pH= 3.03. Methanol (ACS) 

grade and Nafion™ solution (DuPont; 5.14%) were used to disperse carbon black 

samples. Deionized water was used in all experiments and acetone (ACS) grade was used 

for the washing step. A Nafion membrane (DuPont; Nafion TM 112) was used as separator 

between the two electrodes in an asymmetric supercapacitor. 

Glassy carbon electrodes (0.071 cm2
) were polished to a mirror-like shiny surface 

with 0.3 micron alumina paste (micro metallurgical LTD) and washed with deionized 

water before use. 

A carbon black electrode was prepared according to the following procedure. 

About 0.09 g of Vulcan XC72 (Cabot Corporation) was mixed with 0.01 g of Nafion 

solution (DuPont; Nafion™ 5.14%) and 5 mL of methanol solution and dispersed via 

sonication for 20 min. After that few drops of that slurry were loaded onto the end of 

carbon fiber paper (CFP; Toray™ TGP-H-090) strip and allowed to dry before use. 

A conventional three-electrode cell was used to deposit polyaniline, poly(l-AAQ) 

or poly(ani-co-1-AAQ) onto the working electrode (i.e. either a GC or CFPNulcan 

XC72) or to examine the modified electrode. A platinum wire was used as the counter 

electrode while a saturated calomel electrode (SCE) was used as a reference electrode. 

The electrochemical experiments were conducted generally under a gaseous nitrogen 
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environment; a gaseous oxygen environment was used for experiments where the 

electrocatalytic effect towards the oxygen reduction reaction was investigated. 

A typical two-electrode cell was constructed as a prototype for a supercapacitor 

device. The negative electrode (i.e. CFPNulcan-poly(ani-co-1-AAQ)) was separated 

from the positive electrode (i.e. CFPNulcan-polyaniline) by a typical electrolyte 

separator (e.g. Nafion™ 112) sheet. Two titanium plates fixed in polycarbonate blocks 

were used to make the electrical contacts between the modified electrodes and the 

potentiostat. Each modified electrode was separated from the titanium plate with a disc of 

CFP to minimize the contact resistance.45 The whole cell was immersed in the appropriate 

electrolyte solution (e.g. 1 M HzS04). 

6.2.1. Instrumentation 

Cyclic voltammograms were recorded usmg an analog RDE4 potentiostat 

instrument (Pine Instruments) using CV3 (Colin Cameron) software. 

6.3. Results and discussion 

6.3.1. Potentiodynamic polymerization of aniline and aniline with 1-AAQ 

It was reported that electropolymerization of ca. 5 mM equimolar of 1-AAQ and 

aniline in 4 M H2S04 showed a stable copolymer with a relatively high conductivity of 

10.21x10-3 S cm- 1 compared to a conductivity ca. 3x10-2 S cm- 1 for polyaniline.24 

However, electropolymerization of 1-AAQ in 4 M H2S04 was unsuccessful , which might 

be due to the limited solubility of the monomer even after heating the solution up to 90 
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°C. The best solubility of 1-AAQ was obtained after heating a mixture of ca. 5 mM 

1-AAQ in 6 M H2S04 up to 90 °C. Therefore, all homo/copolymerizations in this work 

were conducted in 6 M H2S04 using potentiodynamic polymerization to follow the 

polymerization process, as seen in Figure 6.1 and Figure 6.2. 

The effect of using a higher concentration of acid on the electropolymerization of 

aniline was investigated by cyclic voltammetry (CV). Fig 6.1 (a) and (b) show the 

polymerization of aniline in 4 M H2S04 and 6 M H2S04, respectively. Figure 6.1 (a) 

shows potentiodynamic polymerization of 5 mM aniline in 4 M H2S04 on a glassy carbon 

electrode at a scan rate 100 mV/s over a potential range of -0.1 to 1.2 V vs. SCE, starting 

from zero potential. The inset shows the first cycle of aniline monomer oxidation where 

the current sharply increased at an onset potential of 0.91 V. The shape of this cyclic 

voltammogram indicates several stages of polyaniline formation which is in good 

agreement with what was reported previously by Palaniappan and Manisankar.24 

Although aniline was completely soluble in 4 M H2S04, the 1-AAQ was poorly soluble in 

4 M H2S04. Therefore, the stock aniline solution was also prepared in 6 M H2S04. Using 

such a high acid concentration resulted in a notable color change of the solution from 

light orange to yellow. In addition, the electropolymerization of aniline in 6 M H2S04 

showed a less featured and suppressed CV as seen in Figure 6.1 (b). Using such a high 

acid concentration might affect the solubility of the nucleation centres, the degradation 

processes and the rate of electropolymerization.46 Zotti et al. concluded that the most 

important factor that determines the rate of electropolymerization is the anion 

concentration and not the proton concentration.42 Morales et al. reported that the rate of 
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aniline polymerization in aqueous 4 M hydrochloric (HCl) acid was more than in 6 M 

HCl solution.47 In addition, the amount of benzoquinone by-product increases with 

increasing the concentration of the acid.48 
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Figure 6.1 : Potentiodynamic polymerization at 100 m V /s from -0.1 V to 1.2 V vs. SCE of 
aniline (a) in 4 M H2S04 and (b) in 6 M H2S04. 
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The upper oxidation potential limit may affect the electropolymerization process 

as overoxidation and/or degradation processes become more likely. For comparison, 

aniline has been potentiodynamically electropolymerized between -0.1 V and 1.2 V vs. 

SCE instead of -0.1 and 1.3 V vs. SCE as reported by Palaniappan and Manisankar.24 

Both potential ranges gave almost the same CV characteristics. However, it is notable that 

using a lower anodic potential for the electropolymerization of aniline (i.e. 1.2 V instead 

of 1.3 V) resulted in a shift of all redox pair potentials during polymerization to less 

positive potentials, as summarized in Table 6.1. 

Table 6.1: Peak potentials for anodic and cathodic peaks from electropolymerization of 5 
mM aniline in 4 M H2S04 at 100 m V /s using a potential window of -0.1 to 1.2 V 
vs. SCE on GC. Numbers between brackets were acquired over potentials of -0.1 
to 1.3 V vs. SCE, see reference.24 

(-0.1 to 1.2)V f.. E (Shift) (-0.1 to 1.2) V f.. E (shift) 

E p, a IV / V E p,c I V / V 

0.25 (0.35) 0.10 0.15 (0.24) 0.09 

0.51 (0.60) 0.09 0.49 (0.56) 0.07 

0.60 (0.70) 0.10 0.55 (0.61) 0.06 

0.70 (0.81) 0.10 0.68 (0.75) 0.07 

Figure 6.2(a) shows potentiodynamic polymerization of 1-AAQ in 6 M H2S04 on 

glassy carbon electrode at a scan rate of 100 m V /s over a potential range of -0.1 to 1.2 V 

vs. SCE, starting from zero potential. The first cycle (inset) shows a sharp increase in the 

anodic current at 0.94 V. The current increased upon cycling indicating the formation of 
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conducting poly(l -AAQ). Two anodic peaks at 0.64 V and 0.82 V and two cathodic 

peaks at 0.60 V and 0.79 V were observed. A significant reduction current was observed 

below zero which was not observed in the case of the polymerization of aniline. This is 

most probably due to reduction of the anthraquinone. Figure 6.2(b) shows 

potentiodynamic copolymerization of a 0.2:0.8 mole ratio mixture of aniline:1-AAQ in 

which the solution had a final concentration of 1 mM aniline and 4 mM 1-AAQ. The first 

cycle (inset) shows a gradual increase of the anodic current before the sharp increase in 

anodic current at 0.97 V which is different from the oxidation potentials of pure aniline or 

pure 1-AAQ of 0.91 V and 0.94 V, respectively. Moreover, the shape of the cyclic 

voltamrnogram has characteristics close but not identical to that of polymerization of 1-

AAQ especially the reduction current below zero. Figure 6.2( c) shows potentiodynamic 

copolymerization of a 0.4:0.6 mole ratio of aniline: 1-AAQ in which the solution had a 

final concentration of 2 mM aniline and 3 mM 1-AAQ. The first cycle (inset) shows an 

oxidation potential at 0.91 V which is close to the oxidation potential of pure aniline. 

However, the presence of cathodic current below zero shows that 1-AAQ was involved in 

the polymerization process. Figure 6.2( d) shows potentiodynamic copolymerization of 

0.6:0.4 mole ratio of aniline: 1-AAQ in which the solution has a concentration of 3 mM 

aniline and 2 mM 1-AAQ. The first cycle (inset) shows a gradual increase in the anodic 

current preceding the sharp increase in the anodic current at 0.98 V. A reduction current 

below zero also observed in the first cycle as well as the following cycles. Finally, Figure 

6.2(e) shows potentiodynamic copolymerization of 0.8:0.2 mole ratio of aniline:1-AAQ 

in which the solution has a concentration of 4 mM aniline and 1 mM 1-AAQ. 
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Figure 6.2: Potentiodynamic polymerization at 100 mV/s on GC in 6 M H2S04 of the 
following feed ratios of aniline:1-AAQ (a) 0.0: 1.0, (b) 0.2:0.8, (c) 0.4:0.6, (d) 
0.6:0.4, (e) 0.8:0.2. 

6.3.2. Study of scan rate effect 

6.3.2.1. Scan rate effect on polyaniline 

Figure 6.3(a) and (b) show cyclic voltammograms of polyaniline film deposited 

on a GC electrode at various scan rates in 4 M H2S04• At such high acid concentration the 

polyaniline film is remarkably electroactive over the potential window of 0.0 V to 0.8 V 

vs. SCE. A symmetric reversible redox couple at ca. 0.5 V with a negligible potential 

peak separation between the anodic and cathodic peaks (i.e. Epa-Epc), which is 

independent of scan rate, was observed. The anodic peak current at 0.5 V was linear with 

scan rates from 10 mV s-1 to 600 mV s-1 as shown in Figure 6.3(c). This behavior along 

with the negligible peak separation indicates that the redox sites of polyaniline were 

adhering to the GC and in equilibrium with the applied potential, exhibiting thin layer 

behavior. 16
•
49 A peak shifts with increasing scan rate was only observed for the first 
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oxidation peak at ca. 0.3 V vs. SCE which might be due to structural rearrangement 

below this potential. 50 
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6.3.3. The voltammetry of the ani-co-1-AAQ copolymer 

In principle, the characteristics of the copolymer deposited on the electrode should 

be essentially dependent on the feed ratio of the two monomers used if all other 

conditions are kept the same. Figure 6.4 shows CVs at 75 mV/s for two poly(ani-co-1-

AAQ) films compared to bare GC in 1 M H2S04(aq). Both of the copolymers showed 

distinguishable CV s from the bare GC. However, a slight change in the feed ratio (i.e. 

0.8:0.2 compared to 0.6:0.4) resulted in a significant change in the CV. The higher the 

aniline content in the feed ratio, the closer the CV is to the pure polyaniline CV. 
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Figure 6.4: Cyclic voltammograms at 75 mV/s of ani-co-1-AAQ copolymers in 1 M 
H2S04(aq) prepared from two different feed ratio of 0.8:0.2 and 0.6:0.4 aniline: 1-
AAQ compared to bare GC. 
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6.3.3.1. Study scan rate effect of0.6:0.4 aniline:l-AAQ copolymer 

Figure 6.5( a) clearly shows that the copolymer deposited from 6:4 aniline: 1-AAQ 

feed ratio is electroactive between -0.4 V and 0.8 V vs. SCE where AQ electroactivity 

appears at a negative potential between 0.0 down to -0.4 V vs. SCE. A quasireversible 

behavior of AQ was observed with peak separation of 75 m V measured at 10 m V s-1 (i.e. 

> 59/n, n= 2 for AQ). Redox couple corresponding to polyaniline segments is still present 

with less symmetric anodic and cathodic peaks at 0.5 V, compared to pure polyaniline. 

Figure 6.5(b) shows that the peak current of the copolymer at 0.5 V vs. SCE 

increased linearly with the scan rate with a potential independent of scan rates. 
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6.3.4. Comparison of ani-co-1-AAQ polymer versus polyaniline 

Figure 6.6 shows the electrochemical response of polyaniline compared to a 6:4 

aniline:l-AAQ copolymer in monomer-free 4 M H2S04 (aq). It is clear from the figure 

that the polyaniline film showed electroactivity between ca. 0.0 and 0.8 V vs. SCE while 

the copolymer showed electroactivity over wider potential window between ca. -0.4 V 

and 0.8 V vs. SCE indicating the presence of the AQ functionality in the copolymer film. 

This is interesting because it means that the copolymer film will be much more suitable as 

a negative electrode for asymmetric supercapacitors. 
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Figure 6.6: Cyclic voltammograms of GC/polyaniline (dotted line) and a 6:4 aniline:l­
AAQ feed ratio GC/copolymer (solid line) in 4 M H2S04 at 75 m V s-1

. 
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6.3.5. The electrocatalytic reduction of 0 2 by the ani-co-1-AAQ copolymer 

The electrocatalytic effect of a GC electrode modified with ani-co-1-AAQ 

copolymer has been investigated primarily by cyclic voltammetry. 

6.3.5.1. Cyclic voltammetry 

The oxygen reduction reaction on GC or any modified carbon can be easily 

observed in cyclic voltammetry although its mechanism is complicated and still not fully 

understood.51 Two working electrodes have been examined in a solution of 0.5 M 

H2S0 4(aq) saturated with 0 2 to illustrate the electrocatalytic effect of ani-co-1-AAQ 

copolymer as shown in Figure 6.7. A cathodic peak was observed at -0.6 V vs. SCE when 

using bare GC, whereas the same peak was observed at higher potential (i.e. at -0.5 V vs. 

SCE) when using a GC/ani-co-1-AAQ copolymer as the working electrode indicating a 

lowering in the 0 2 reduction overpotential. The reduction peak current was not 

significantly higher from that of the bare GC. This might be due to the small coverage of 

the AQ functionality in the copolymer film. 

171 



5 

0 

..... 
e 
u -5 
<( 
::1. 

........ -c 
~ -10 .... 
::::1 u 

-15 

.·· 

·· ···· · bare GC, 0.5 
M H2S04, 02 

--0.6:0.4 ani-co-
1-AAQ. 0.5 M 
H2S04, 02 

-20 +-----~------r------r----~r-----,------. 
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 

Potential I V 

Figure 6. 7: The cyclic voltammograms of the reduction of 0 2 by 0.6:0.4 aniline-co-1-
AAQ copolymer modified GC in aqueous 0.5 M H2S04 (solid line) compared to 
bare GC in aqueous 0.5 M H2S0 4 (dotted line). All solutions were saturated with 
0 2. 

6.4. Conclusions 

Electrochemical copolymerization of aniline: 1-AAQ at various feed ratios was 

successfully employed to deposit copolymer films on glassy carbon and vulcan XC72 

carbon black from 6 M H2S04 (aq). The characteristics of the copolymer films were 

sensitive to the monomer ratio. The films are electroactive over a potential window of 

-0.4 V to 0.8 V vs. SCE with no charge trapping. This finding demonstrates that the 

copolymers are potential candidates to be used as negative electrodes for supercapacitors. 
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A poly(ani-co-1-AAQ) film also showed electrocatalytic activity towards oxygen 

reduction in 0.5 M H2S04 (aq) solution as indicated by a preliminary studies via cyclic 

voltarnmetry. 

Further work is required to optimize, characterize and evaluate poly(ani-co-1-

AAQ) copolymers on porous carbon materials for applications in supercapacitors and 

other applications that depend on electrocatalytic activity for oxygen reduction reaction. 
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Chapter 7 

Electropolymerization and hydrolysis of 
dimethoxyaniline on carbon electrodes 

7.1 Introduction 

Porous carbon materials have been widely utilized in energy conversion and 

energy storage devices such as batteries, 1 fuel cells2 and supercapacitors. 3-
9 Their natural 

availability and the possibility of synthesizing new carbons with diverse physical, 

chemical and electrochemical properties with high purity at a relatively low cost make 

them potential candidates for modem electrochemical devices.4
•
6

•
9 Typical examples of 

such materials are graphite, activated carbon, carbon black, carbon nanotubes, graphene 

and fullerene? ·4-
7 

For supercapacitor applications with high power capability, highly reversible 

electrostatic adsorption/desorption of the electrolyte ions is required. To achieve this goal, 

high surface area carbons with adjustable pore sizes that facilitate the access of the ions 

are typically used.3
•
5
•
7
•
9 Recently, activated carbon with a surface area> 2000 m2 g-1 was 

applied. 9 However, carbon black (CB) materials of moderate surface area (i.e. 10 to 1500 

m2 g-1
) are promising.6

•
9
•
10 Because CB exsists in powder form it needs a binder to fix it 

onto the substrate surface. Polyvinylidene difluoride (PVDF) may be used as a binder.9 
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Devices configured from pure carbon materials normally have high power density but 

suffer from low energy density.3
•
6
•
7 

In order to enhance the energy density of CB electrodes, modification of the 

electrode with a reversible redox species that provides additional pseudocapacitance can 

be used.9
•
11

-
18 The appropriate redox moiety can be covalently attached to the carbon 

surface via diazonium coupling14,t9
-
22 or can be noncovalently bonded to carbon such as 

h d"fi . . h d . l 23-27 t e mo 1 1cat10n w1t con uctmg po ymers. 

We reported in previous work a novel covalent modification of carbon cloth via 

chemical diazonium coupling starting from 3,4-dihydroxyaniline (i.e. 4-aminocatechol) 

precursor.t 8 Such modification enabled us to use the immobilized dihydroxybenzene 

(DHB) as a novel positive electrode to compliment an anthraquinone (AQ) modified 

carbon which works well as a negative electrode.t 7,ts,2s lt is of great importance that DHB 

can be used in energy storage devices since it has a lower mass to charge ratio (ca. 55 g 

mort of electrons) compared to AQ (ca. 104 g mort of electrons). 

Direct electropolymerization of dihydroxyaniline has not been reported in the 

literature. However, indirect methods have been used to obtain polydihydroxyaniline 

modified electrodes. For example, Morita et al. reported the electrochemical 

polymerization of 2,5-dimethoxyaniline on a Pt electrode in mixed aqueous/organic 

media followed by a hydrolysis step in a monomer free aqueous acid to convert the 

methoxy groups into hydroxyl groups which were utilized for their electrocatalytic 

activity towards the oxidation of Fe(II) and Co(II)29
•
30 and towards the oxidation of 
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hydroquinone as well.31 Recently, Liu et al., usmg the same method, managed to 

electropolymerize 2,5-dimethoxyaniline on activated carbon and examined the modified 

electrode in aqueous media for use in supercapacitor applications.32 On the other hand, 

Sun et al. examined the electrochemistry of poly(2,5-dihydroxyaniline) modified 

activated carbon electrode in a nonaqueous media.33 The polymer was electroactive over 

a potential range of -0.1 V to 0.6 V vs. Ag/AgCl. The polymer formed (i.e. poly(2,5-

dihydroxyaniline )) showed nanoscale dimensions with high specific capacitance of 959 F 

g-1
, calculated at 3 mA/cm2 in aqueous media.32 Interestingly, Jain et al. reported a novel 

green pathway to prepare a nanoscale poly(2,5-dimethoxyaniline) in a highly ionic 

strength condition using a mild oxidizing agent (i.e. NaCl/HCl/H20 2) without any 

catalyst.34 This polymer has a specific capacitance of205 F g-1
.
34 

In this work the electrochemical polymerization of both 3,4-dihydroxyaniline and 

3,4-dimethoxyaniline (shown in Figure 7.1) was examined. Direct and indirect routes to 

poly(3,4-dihydroxyaniline) were explored on carbon black electrodes. Successful 

polymerizations were further examined by cyclic voltammetry, impedance and 

galvanostatic charging/discharging to investigate the suitability of the modified electrodes 

for supercapacitors. 
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NH2 NH2 

3,4-dihydroxyaniline 3,4-dimethoxyaniline 

Figure 7.1: Structures of 3,4-dihydroxyaniline and 3,4-dimethoxyaniline. 

7.2 Experimental 

7.2.1 Preparation of GCNulcan-PVDF and GC/BP-PVDF electrodes 

N-pyrrolidine (2 mL) was added to 0.05 g of Vulcan XC72 powder and sonicated 

for 15 min. Polyvinylidene difluoride (PVDF; 0.05 g) was then added and the mixture 

was heated in an oil bath to dissolve the PVDF (m.p. 177 °C). Once a uniform slurry was 

obtained a drop of it was loaded onto a bare GC electrode and dried under vacuum 

overnight. 

7.2.2 Electrochemical polymerization of 3,4-dimethoxyaniline 

Electropolymerization of 0.2 M of 3,4-dimethoxyaniline was carried out in 0.5 M 

H2S04 at a scan rate of 5 m V s-1 in a three compartment cell under nitrogen gas. The 

working electrode was GCNulcan-PVDF while the reference was a saturated calomel 

electrode (SCE) and the counter electrode was a platinum wire. After completion of the 

electropolymerization process the working electrode was immersed in 0.5 M H2S04 

fo llowed by deionized water and finally in acetone before being allowed to dry. 
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7.2.3 Hydrolysis of methoxy groups in the film 

The polymer modified electrode (i.e. GCNulcan-PVDF/polydimethoxyaniline or 

GC/BP-PVDF/polydimethoxyaniline) was then subjected to another cyclic voltammetric 

experiment under the same experimental conditions as the electropolymerization step but 

in monomer free 0.5 M H2S04 to hydrolyse the dimethoxy groups into the corresponding 

hydroxyl groups. The hydrolysis step was stopped when a stable cyclic voltammogram 

was observed. 

7.2.4 Instrumentation 

All electrochemical measurements were conducted in a three-electrode cell 

configuration. Cyclic voltammograms were recorded using an analog RDE4 potentiostat 

(Pine Instruments) using CV3 (Colin Cameron) software or by using an EG&G 273A 

potentiostat controlled by CorrWare software. Impedance measurements were conducted 

using a Solartron model 1286 potentiostat connected to a model 1250 frequency response 

analyzer. All impedance measurements are performed at 10 m V amplitude and a 

frequency change from 1000 Hz to 0.05 Hz. The resulting impedance data were recorded 

and analyzed by ZView software (Scribner Associates Inc.). 

7.3 Results and discussion 

7.3.1 Electropolymerization of dimethoxyaniline on GC/CB-PVDF 

Direct electrochemical polymerization of 5 mM of 3,4-dihydroxyaniline in 1 M 

H2S04 on glassy carbon (GC) was studied at different potential windows as in Figure 
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7.2(a) and (b). The peak currents due to the hydroxyl groups decreased as the potential 

was swept between 0.0 V and 0.9 V vs. SCE, see Figure 7.2(a). This is may be due to the 

instability of the monomer itself since different CV s were obtained at 20 min and 60 min 

after preparation of the solution as shown in Figure 7.2(a) and (b) or it may be due to the 

formation of a non-conduction polyphenol film? 5
-
37 
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Figure 7.2: Cyclic voltammograms at 50 mV s-1 of 5 mM 3,4-dihydroxyaniline in 1 M 
H2S04 (aq) on GC at (a) 20 min and (b) 60 min after preparation of the solution. 
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Based on the above results the modification of the carbon electrode was 

performed, using an indirect procedure, by initial electrochemical polymerization of 3,4-

dimethoxyaniline in aqueous acid followed by hydrolysis of the dimethoxy groups to the 

corresponding hydroxyl groups, based on a procedure from the literature with little 

modification. 32 

Figure 7.3(a) shows the first two cycles of potentiodynamic polymerization of ca. 

0.2 M dimethoxyaniline on a GCNulcan-PVDF electrode in 1 M H2S04 . The potential 

was swept between -0.15 V and + 0.85 V vs. SCE at 5 m V s-1
• As expected, no anodic 

current was observed at potentials below the onset potential (i.e. at 0.6 V) of the 

monomer. At 0.6 V there was a sharp increase in the anodic current indicating the 

oxidation of the monomer followed by a small anodic peak. When the potential was 

switched back at 0.85 V, a crossover point was observed at ca. 0.65 V in the first cycle 

indicating an autocatalytic nucleation step. This behaviour is normally observed in the 

potentiodynamic deposition of conducting polymers.38 Two new redox couples were 

observed at 0.27 V and 0.37 V and their peak currents increased upon cycling due to the 

film formation process. 

Figure 7.3(b) shows selected cycles ofthe potentiodynamic polymerization of3,4-

dimethoxyaniline in 0.5 M H2S04 for a maximum of 10 cycles. It is notable that no more 

crossover points were observed. In addition, the peak current of the oxidation of the 

monomer did not change significantly. That is, for these ten cycles the deposited film has 

little effect on the oxidation of the monomer. 
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Figure 7.3: (a) Cyclic voltammetry of electropolymerization of 0.2 M dimethoxyaniline 
on GCNulcan-PVDF in 0.5 M H2S04 (aq) at 2 m V s-1

, first two cycles. (b) Same 
as (a) for 10 cycles. 
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Following the polymerization step, the dimethoxy groups in the polymer film 

were hydrolysed into the dihydroxy groups by sweeping the potential at 5 m V s-1 between 

0.0 V and 0.9 V vs. SCE for several cycles as shown in Figure 7.4. It is clear that a steady 

state was rapidly reached after few potential sweeps. This is probably because hydrolysis 

step concomitantly occurred with the polymerization step.29 
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Figure 7.4: The hydrolysis of GC/ Vulcan-PVDF/ polydimethoxyaniline film by potential 
sweep at 5 mV s-1 in 0.5 M H2S04 (aq). 

Figure 7.5(a) shows cyclic voltammograms following hydrolysis of GCNulcan-

PVDF/polydihydroxyaniline in 0.5 M H2S04 (aq) at 5 mV s·1 and of an unmodified 

GCNulcan-PVDF electrode under the same conditions. The current for the unmodified 

electrode is plotted on a second y-axis because it is not for the same working electrode 
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before modification. The CV of the polymer modified electrode does not show the 

rectangular behaviour of Vulcan XC72. Instead, it shows three reversible couples at ca. 

0.10 V, 0.32 V and 0.6 V which significantly enhance the capacitance ofthe electrode. In 

other words, the electrochemical behaviour of the modified electrode is dominated by the 

electroactivity of the conducting polymer. The presence of more than one peak might 

indicate the presence of mixed polymers where coupling through oxygen is not excluded. 

The specific capacitance for these experiments was not calculated because the mass of the 

electrodes was not measured before and after modification. Figure 7.5(b) shows that the 

peak current increased with increasing the scan rate with a slight shift of the anodic peak 

potential to more positive potentials and the cathodic peak to more negative potentials 

even at low scan rates. 
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• 
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Modification of Black Pearls 2000 (BP) with 3,4-dimethoxyaniline generally 

resembled the modification of Vulcan XC72 as shown in Figure 7.6(a) and (b). 
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Figure 7.6: (a) Cyclic voltarnmetry of electropolymerization of 0.2 M dimethoxyaniline 
on GC/BP-PVDF in 0.5 M H2S04 (aq) at 2 m V s-1

• (b) The hydrolysis of GC/ BP­
PVDF/ polydimethoxyaniline film by potential sweep at 5 mV s-1 in 0.5 M H2S04 

(aq). 
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Scan rate effect of the modified Black Pearls 2000 (BP) with 3,4-

dimethoxyaniline in 0.5 M H2S04 (aq) was shown in Figure 7.7. 
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Figure 7.7: Cyclic voltammogram of GC/BP-PVDF/polydihydroxyaniline m 0.5 M 
H2S04 (aq) at scan rate from 5 mV s-1 to 100 mV s-1

• 

7.3.2 Impedance of GC/BP-PVDF/polydihydroxyaniline 

Based on the cyclic voltammogram shown in Figure 7.6, where significant 

differences in peak currents were observed over the potential range from -0.15 V and 

+0.85 V, the impedance of the modified electrode was measured at 0.0 V and 0.35 V, 

respectively. However, at these potentials, the Nyquist plots recorded at frequency ranges 

from 1000 Hz to 0.05 Hz revealed a non-ideal vertical line as seen in Figure 7.8(a) and 

(b). The polymer film showed no charge transfer resistance at either potential as revealed 

from the absence of a semicircle plot at high frequencies (i.e. 1000 Hz). Moreover, the 

modified electrode showed no mass transfer resistance since no Warburg line was 

observed at medium frequencies. However, converting the Nyquist plot into the series 
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capacitance versus the real impedance plot seen in Figure 7.8(c) revealed that the film has 

a capacitance of ca. 17.5 mF cm-2 (i.e. considering 0.071 cm2 GC electrode) at+ 0.35 V 

which is comparable to 12.0 mF cm-2 at 0.3 V (anodic peak potential) reported by Liu et 

a!. for poly(2,5-dihydroxyaniline) via cyclic voltammetry at 1 m V s-1
•
32 Moreover, the 

film resistance (Rfi1m) was determined to be 8.1 n cm2 at 0.35 V and 4.3 n cm2 at 0.0 V. 
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Figure 7.8: Nyquist plots for of GC/BP-PVDF/polydihydroxyaniline in aqueous 1 M 
H2S04 (a) at 0.0 V (solid line) vs. SCE and +0.35V (dotted line). (b) Enlarged 
scale of (a). (c) Series capacitance versus real impedance. 
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7.3.3 Galvanostatic charging/discharging stability 

Figure 7.9(a) shows the charging/discharging cycles of the GCNulcan­

PVDF/polydihydroxyaniline electrode in 1 M H2S04 (aq) at l.Ox104 A. The charging or 

the discharging plot was not linear over the whole potential range as excpected for the 

double layer behaviour of carbon materials (i.e. Black Pearls 2000). The lower the slope 

the higer the capacitance that can be obtained. This can be related to the additional 

pseudocapacitance participation of the conducting polymer (i.e. polydihydroxyaniline ). 

Figure 7.9(b) shows the capacitance of the GCNulcan-

PVDF/polydihydroxyaniline calculated based on the discharge plots from 0.8 V to 0.0 V 

at a discharging current of l.Ox104 A. After less than a hundered of cycles the 

capacitance remain relatively constant at about ca. 15.5 mF cm-2 for 400 cycles which is 

in good agreement with the calculated capacitance from impedance experiments ca. 17.5 

mF cm-2
, see Figure 7.8. No significant loss of the polymer electroactivity after 500 

cycles indicating the stability of the charging/discharging process of the modified 

electrode. 
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7.4 Conclusion 

Modification of two types of carbon black electrodes with polydihydroxyaniline 

was obtained by electropolymerization of the dimethoxyaniline precursor (i.e. 3,4-

dimethoxyaniline) in aqueous acid followed by a hydrolysis step to convert the dimethoxy 

substituent into the corresponding hydroxyl groups. The electrochemical activity of this 

modified electrode over a positive potential range 0.0 V to 0.7 V along with its stability in 

aqueous media for at least 500 cycles reveals the possibility of utilizing this electrode as a 

positive electrode in supercapacitor applications, especially in the asymmetric cell 

configuration. For example, real examination of this modified electrode as a positive 

electrode along with anthraquinone modified carbon black as a negative electrode will be 

promising. In addition, it may have useful redox activity in neutral and nonaqueous media 

which needs further investigations. 

Additional information is still required to fully understand the electrochemical 

behavior of this polymer. The presence of multiple reversible peaks suggests the presence 

of mixed polymers in the film where additional spectroscopic studies are needed to 

investigate a proposed structure of this polymer. Elemental analysis (i.e. CH analysis) is 

required to prove the occurrence of the hydrolysis step. Further investigation of poly(3,4-

dihydroxyaniline) modified carbon black by SEM is also needed to show the nano 

dimensions of such polymers. 
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Chapter 8 

Miscellaneous methods for modification 
of carbon electrodes with catechol and 

benzoquinone moieties 

8.1. Introduction 

Modified carbon materials have been extensively utilized in a wide range of 

. 1 1" . Th . 1 d . 1 I 2 1 1 . 1 3-6 . potentia app 1catwns. ese me u e envuonmenta , · e ectroana yt1ca , corrosiOn 

protection5 and for electrochemical devices such as batteries,7 fuel cells8 and 

supercapacitors.9
-
15 In general, high surface area carbons have been utilized in these 

applications. 

The vast majority of commercially available high surface area carbon black (e.g. 

Vulcan XC72) can be considered relatively pure materials (ca. > 95 % C) with some 

unavoidable functionality on the surface depending on the raw materials and the 

experimental conditions used in their synthesis.16 Accordingly, limited applications of 

carbon black in electrochemical devices have been found. Fortunately, carbons can be 

readily functionalized with many diverse organic modifiers that can alter the chemical, 

physical and electrochemical properties as desired. Such organic modifiers have been 

. I d . h 1. 2-s 1s 17-24 M . . I I extensive y reporte m t e 1terature. · · oreover, transition meta comp exes can 

be attached to the carbon surface once its organic ligand can be attached. 5•
25

•
26 
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The formation of strong covalent bonds between the substrate and the organic 

modifier is highly desired in many applications. Aryl diazonium coupling is one of the 

b h d 1 · <': h d 1 b · · l · · 4 5 1s 26-30 I est met o o og1es 10r t at an consequent y ecomes mcreasmg y mterestmg. ' ' ' t 

is applicable for modification of a wide range of surfaces including metals, 19
'
31 

carbon,4
'
5

'
26

'
30 semiconductors and even non-conductors. 19

'
26 Moreover, in most cases it is 

an easy, rapid reaction and can be carried out in aqueous, nonaqueous or ionic liquid 

media, 26
'
32

'
33 to modify bulk, 22

-
24

'
31 or nanosurfaces as well. 6'

34
'
35 

There have been various approaches developed to utilize diazonium coupling to 

modify carbon surfaces. 5'
6

'
26

'
36 The simplest way is to start with the diazonium salt 

precursor directly which is spontaneously coupled to the carbon. 18
'
22

-
24

'
37

'
38 However, in 

most cases the diazonium salt of the desired redox modifier is not readily available and/or 

suffers from instability.5 Therefore, one can instead start from another aryl precursor, that 

contains an amine36
'
39

-4
2 or nitro40

'
43 group as a substituent, which produces a diazonium 

cation in situ as an intermediate step.24
'
40 This is very useful since there is no need to 

synthesize and purify the diazonium salt precursor.5
'
40 Gooding and coworkers showed 

that the modified surfaces based on the in situ approach resemble those prepared from 

isolated diazonium salt which reveals the effectiveness of the in situ approach.44 

Additional advantages from the in situ formation of diazonium cation can be 

achieved by using nitro precursors. The electrochemical reduction of the nitro group can 

be performed separately from the diazotization step to enhance the preparative aspect of 

the coupling and in some cases it is necessary to separate the diazotization step to 
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preserve the precursor from any side reaction with the reducing agent.40
•
43 Alternatively, 

the diazotizing reagent (i.e. NaN02) can coexist with the nitro precursor in the 

electrochemical cell during the nitro group electroreduction process.40
'
43 Because the 

diazotization reaction is fast, local diazonium coupling can be achieved.40
•
43 

In chapter four, we reported a novel modification of the carbon cloth with 1,2-

dihydroxybenzene (DHB) functionality starting from 3,4-dihydroxyaniline (DHA) also 

known as 4-aminocatechol and shown as structure (I) in Figure 8.1. 24 Two reversible 

peaks were observed at 0.4 V and 0.6 V vs. SCE in aqueous 1 M H2S04. The resultant 

modified electrode was promising as a positive electrode especially when it was 

configured with anthraquinone modified carbon as a negative electrode in an asymmetric 

supercapacitor.23
•
24 Practically, the device showed a two fold increase in the energy 

density compared to a symmetric device with unmodified carbon electrodes? 4 

The diazonium salt of 1 ,2-dihydroxybenzene was not commercially available. 

Several trials to synthesis dihydroxybenzene diazonium salt or its amine (i.e. 

aminocatechol) from 4-nitrocatechol precursor failed. This pathway is promising because 

4-nitrocatechol is much less expensive (10 $/g) compared to 500 $/g for 4-aminocatechol. 

However, recently Belanger and coworkers successfully prepared 4-aminocatechol from 

3 ,4-dimethoxyaniline. 45 

The objective of this work was devoted to explore the covalent attachment of 

dihydroxybenzene (DHB) and dimethoxybenzene (DMB) moieties to carbon black 

substrates starting from 3,4-dihydroxyaniline and from other less expensive and readily 
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available precursors such as 3,4-dimethoxyaniline or 1,2-dihydroxy-4-nitrobenzene as 

shown in Figure 8.1 structure (I), (II) and (III), respectively. The DMB functionality can 

either be used in a positive electrode in nonaqueous media 46 or can be converted into the 

corresponding DHB following a demethylation step with a demethylating agent such as 

boron tribromide.47 Moreover, the DMB moiety can be used to protect lithium ion 

b . f h . 46 48 attenes rom overc argmg. · 

OH OH 

OH OH 

I II Ill 

Figure 8.1: Structures of (I) 3,4-dihydroxyaniline (4-aminocatechol), 
(II) 3,4-dimethoxyaniline (4-aminoveratrole) and (III) 1,2-dihydroxy-4-
nitrobenzene ( 4-nitrocatechol). 

In principle, aryl amines and aryl-aliphatic amines can form a covalent bonding by 

routes other than diazonium coupling, such as Michael addition.49
-
51 This idea encourages 

the use of aryl-diarnine precursors. The modification of carbon with an aryl-diarnine or 

aryl-aliphatic amine is important when the attachment of more than one redox modifier is 

required.50
•
52 One amine terminal might be covalently bonded to the substrate via 

diazonium coupling while the other terminal becomes free for further modifications.51
• 

53 

Moreover, the redox centres (e.g. quinone) can be built layer-by-layer with different 

linkers and spacers. 18
•
51 The redox behaviour of free quinone in aqueous media was 
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systematically studied by Quan et al. and found to be dependent on the electrolyte 

composition.54 Recently, a set of fundamental studies of the proton/electron transfer 

processes for aminobenzoquinone self-assembled monolayer modified gold electrode was 

reported by Zhang and Burgess. 55
-
57 

8.2. Experimental 

Vulcan XC72 carbon black (Cabot Corporation), 3,4-dimethoxyaniline (Sigma 

Aldrich, 98 %), Boron tribromide (Sigma Aldrich), 4-aminocatechol (Tyger Inc.), sodium 

nitrite (Aldrich, 99.5%), benzoquinone (Aldrich, 98 %), 4-aminobenzylaniline (Aldrich, 

98 %), acetone (ACS grade), acetonitrile HPLC grade (Aldrich), sulfuric acid (ACP 

chemicals Inc., 98%) and hydrochloric acid (Anachemia, 37%) were used as received. 

All electrochemical cells were constructed in a three-electrode cell with the 

modified electrode as a working electrode, platinum (Pt) wire as a counter electrode and 

Agl AgCI or saturated calomel electrode (SCE) as a reference electrode. 

8.2.1. Modification of carbon black with 3,4-dihydroxyaniline 

Diazonium coupling was used to modify carbon black (e.g. Vulcan CX-72) with 

1,2-dihydroxybenzene moiety according to the following procedure. About 0.1 g of 

Vulcan and 0.01 g of 3,4-dihydroxyoxyaniline were mixed in 10 mL of 0.01 M HCl and 

kept cold in an ice bath (0.0 °C). About 10.0 mL of 0.1 M sodium nitrite (NaN02) was 

then added slowly and the mixture was allowed to react for further 30 min with frequent 
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stirring. Finally, the product was filtered and washed with deionized water and allowed to 

dry under air. 

The modification was then investigated by cyclic voltammetry. The modified 

Vulcan was sonicated with methanol for 30 min. A small amount of the slurry was loaded 

on carbon fiber paper (CFP) and allowed to dry before using it as a working electrode in a 

three-electrode cell. 

8.2.2. Modification of carbon black with 3,4-dimethoxyaniline followed by 

demethylation 

Another way to use diazonium coupling to modify carbon black (e.g. Vulcan 

XC72) with 1 ,2-dihydroxybenzene moiety is described in the following procedure. About 

0.1 g of Vulcan and 0.03 g of 3,4-dimethoxyaniline were mixed in 10 mL of 0.25 M HCI 

and kept cold in an ice bath (0.0 °C). About 10.0 mL of 0.2 M sodium nitrite (NaN02) 

was then added slowly and the mixture was allowed to react for a further 30 min. Finally, 

the product was filtered and washed with deionized water and was allowed to dry under 

air. 

For demethylation, about 15 mL of dry dichloromethane (CH2C}z) was added to 

0.1 g of Vulcan (which was modified with 3,4-dimethoxyaniline in the previous step) in a 

round bottom flask which was sealed with a septum and kept under an inert environment 

through a permanent contact with a balloon of argon. The mixture was kept under stirring 

in a dry ice/acetone bath ( -78 °C). About 0.4 mL of boron tribromide (BBr3) solution (1 

M in CH2Clz) was then added with a syringe and the reaction was kept under stirring 
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overnight during which the temperature gradually reached room temperature. Finally, the 

product was filtered and washed with a mixture of deionized water/methanol and was 

allowed to dry under air. 

The modified carbon was then dispersed in methanol by sonication for 30 min. A 

small portion of the modified carbon was loaded (i.e. 0.00026 g after drying) onto the end 

of a 3 em piece of carbon fiber paper (CFP). This electrode was then examined by cyclic 

voltammetry in 1 M H2S04 (aq). 

8.2.3. Exploring nitrocatechol as a precursor for the modification of carbon with 1,2-

dihydroxyaniline 

To explore the usefulness of using nitrocatechol as a precursor for modifying 

carbon black the following cyclic voltammetry experiments were carried out. A three 

electrode cell was configured using carbon fiber paper (CFP) loaded with 0.00105 g of 

Vulcan XC72 as working electrode. The electrolyte solution was 0.001 M of 4-

nitrocatechol dissolved in 1 M H2S04 (aq). The potential was scanned for two cycles then 

the working electrode was transferred from the nitrocatechol solution into a 1 M H2S04 

(aq) reactant-free solution where another cyclic voltammetric study was performed. 

8.2.4. The electroreduction of 4-nitrocatechol followed by in situ diazonium coupling 

To modify a glassy carbon electrode by an in situ diazonium coupling from a 4-

nitrocatechol the following procedure was followed. An electrolyte solution was prepared 

by dissolving 0.1 M of tetrabutylammonium hexafluorophosphate (BU4NPF 6) in a (18+ 2) 

mL mixture of acetonitrile and 1 M HCI. To this solution 1.03x104 mole of 
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4-nitrocatechol and 2.00x1 04 mole of sodium nitrite (NaN02) were added. Therefore, the 

final mixture has a mole ratio of (1.03:20.00:2.00) of 4-nitrocatechol: HCl:NaN02. The 

electrochemical reduction of the nitro group to an amine group was carried out under 

nitrogen using cyclic voltammetry in a three-electrode cell by sweeping the potential 

between 0.0 V and -1.2 V vs. SCE at 50 m V s-1
• A glassy carbon working electrode was 

used. 

The modified electrode was then immersed in acetonitrile, dried and tested using 

cyclic voltammetry in 1 M H2S04 in a three-electrode cell. 

8.2.5. Chemical modification of diamine followed by benzoquinone 

To modify Vulcan with 4-aminobenzylaniline (ABA) the following procedure was 

used. 58 About 0.05 g of Vulcan was dispersed in 5 mL of deionized water by sonication 

for 10 min. To this mixture 1.14 mL (0.01 moles) of ABA and 0.69 g (0.01 moles) of 

NaN02 was added and allowed to dissolve overnight under stirring. After that 0.5 mL of 

concentrated HCl was added and the mixture kept under reflux overnight. Finally, the 

mixture was filtered with a 0.2 11m Nylon membrane (Millipore) and washed with 

deionized water, dimethylformamide (DMF), methanol and acetone and allowed to dry 

under vacuum overnight to obtain the Vulc-ABA. 

To modify the Vulc-ABA with benzoquinone (BQ) the following procedure was 

used.55 20 mL of95% ethanol/water solution was heated to 50 °C in a water bath. 0.0138 

g BQ was added to obtain a solution of 6.3 mM. This solution was kept for three min then 
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filtered with a 0.2 J.lm Nylon membrane (Millipore) and washed with 95% ethanol/water, 

deionized water and allowed to dry under vacuum to obtain the Vulc-ABA-BQ. 

8.3. Results and discussion 

8.3.1. Modification of carbon black with 3,4-dihydroxyaniline 

The cyclic voltammogram of the Vulcan after its reaction with 4-aminocatechol 

via diazonium coupling is shown in Figure 8.2. There are two main reversible peaks at 

0.41 V and 0.65 V, respectively. The latter is expected to be observed as a result of 

carbon-carbon coupling as shown in structure 1 in Figure 8.3.59
'
60 However, the former 

peak may be due to the coupling of the dihydroxybenzene through the NH2 group as 

shown in .structure 2 in Figure 8.360
'
6 1 or may be due to some polymerization.59 The 

reversibility of these peaks was maintained over 100 cycles. In addition, they show 

significantly higher specific capacitance compared to the unmodified Vulcan (i.e. < 20 F 

g-1
). On the other hand, Pognon et al. recently used a slightly different procedure than 

ours to modify Black Pearls 2000 carbon black with 4-aminocatechol which resulted in 

the formation of three reversible peaks at 0.2 V, 0.4 V and a small one at 0.6 V.45 
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8.3.2. Modification of carbon black with 3,4-dimethoxyaniline followed by 

demethylation 

Figure 8.4 shows cyclic voltammogram at 20 mV/s of Vulcan that had been 

reacted initially with dimethoxyaniline followed by demethylation with boron tribromide. 

Again two small reversible peaks at ca. 0.34 V and 0.67 V vs. Ag/AgCl were observed. 

Based on the finding of diazonium coupling of 3,4-dihydroxyanilne to Vulcan XC72 

presented in section 8.3 .1 the former peak (i.e. 0.34 V) can be attributed to structure 2 

while the latter peak (i.e. 0.67 V) can be attributed to structure 1 as shown in Figure 8.3. 
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Figure 8.4: Cyclic voltammograms of Vulcan XC72 modified with 3,4-dimethoxyaniline 
followed by demethylation into 3,4-dihydroxyaniline at a scan rate of 20 mV s-1 in 
1M H2S04 (aq), 0.26 mg of modified Vulcan XC72 was loaded. 
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- -·-------------------------------------------- -

8.3.2.1. Elemental analysis 

Table 8.1 shows elemental analysis results for unmodified Vulcan XC72 and the 

corresponding Vulcan-DHB. The unmodified Vulcan XC72 contains insignificant 

amounts of oxygen and nitrogen atoms. However, after diazonium coupling of 4-

aminocatechol to Vulcan the modified Vulcan-DHB had a mole ratio of 411 for 0/N. 

These results were in good agreement with the cyclic voltammograms shown in Figure 

8.2 where the two reversible peaks have approximately the same area under the curve. In 

other words, half of the modification was performed through coupling according to 

structure 1 and the other half was done according to structure 2, resulting in approx. 4 0 

atoms per N atom. 

For Vulcan XC72 modified with dimethoxyaniline followed by demethylation the 

H % and N % (as seen in Table 8.1) were both below 0.3 % which resembles the 

unmodified Vulcan XC72. This finding is expected since the amount of DHB on the 

carbon was small as indicated by the cyclic voltammogram shown in Figure 8.4. 

However, the 0 % in the modified Vulcan XC72 along with cyclic voltammetry revealed 

the grafting with 1,2-dimethoxybenzene functionality. It seems that the diazonium 

coupling was efficient but the hydrolysis was not. 
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Table 8.1: Elemental analysis of unmodified Vulcan XC72 compared to samples modified 
with DHB and indirectly with DMB followed by demethylation to form DHB. 

Elemental Unmodified Vulcan-DHB Vulcan-DUB 
Analysis 0/o Vulcan XC72 viaDMB 

c 96.48 96.19 95.83 

H <0.3 < 0 .3 < 0.3 

N <0.3 0.37 < 0.3 

0 < 0 .3 1.83 1.87 

8.3.3. Exploring nitrocatechol as a precursor for the modification of carbon with 1,2-

dihydroxyaniline 

The possibility of utilizing nitrocatechol as a precursor for the modification of 

porous carbons was investigated by cyclic voltammetry as shown in Figure 8.5 and Figure 

8.6. In Figure 8.5 the electrochemical behaviour of 4-nitrocatechol in 1 M H2S04 is 

shown at a carbon fiber paper loaded with Vulcan XC72 as the working electrode. The 

potential was initially scanned at a rate of 50 m V s-1 from + 0.6 V down to -0.4 V vs. 

Ag! AgCl which shows no electrochemical activity at positive potentials since the catechol 

was already present in the reduced form. However, an irreversible wave at -0.26 V was 

observed probably due to the reduction of nitro group into the corresponding amine 

group, analogous to the reduction of nitrobenzene in which 6 e- and 6 H+ are consumed as 

shown in Scheme 8.1.62
•
63 As the potential was scanned in the reverse direction (i.e. 

anodic scan) followed by a second cycle a 2e- reversible couple was observed at ca. +0.4 

V due to the formation of 4-aminocatechol at the vicinity of the electrode. 
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Figure 8.5 : Cyclic voltammogram of 4-nitrocatechol on GC in 1 M H2S04 (aq) at 50 
mV/s. 
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Scheme 8.1: Proposed reduction pathway of 4-nitrocatechol in aqueous acid. 

The Vulcan XC72 electrode was then removed from the previous electrochemical 

cell and placed in a new cell containing fresh 1 M H2S04 (aq) with no 4-nitrocatechoL 

Two cycles were carried out at 50 m V s·1 between +0.6 V and - 0.4 V as seen in Figure 
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8.6. A small reduction peak at ca. +0.4 V was observed initially indicating that some 

4-aminoaminocatechol was adsorbed on the electrode surface. However, a large reduction 

peak at - 0.31 V revealed that a large amount of nitrocatechol was entrapped within the 

Vulcan pores. This reduction peak is more cathodic than the initial one observed in Figure 

8.5 which may be due to the interaction of some redox functional group on the carbon 

with the amine group generated from the reduction of the nitro group.43 Some new 

reversible peaks can also be seen which may result from hydroxylation62 or 

dimerization. 62 
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Figure 8.6: Cyclic voltarnmetry of a Vulcan carbon electrode in 1 M H2S04 at 50 m V s-1 

following the cyclic voltammetry in a 4-nitrocatechol solution shown in Figure 
8.5 . 
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8.3.4. Electro reduction of 4-nitrocatechol in presence of nitrite 

Figure 8.7 shows cyclic voltammograms of the electroreduction of 4-nitrocatechol 

in the presence of sodium nitrite and 0.1 M tetrabutylammonium hexafluorophosphate 

dissolved in (9:1) acetonitrile:! M HCl, between 0.0 V and -1.2 V at 50 mV/s. A 

reduction peak was observed initially at -0.75 V due to the reduction of nitro group. As 

sweeping was continued this peak current diminished as a result of nitro group 

consumption. Moreover, a cathodic peak shift was observed which could have resulted 

from an interaction between the amine group and the oxygenated groups on the bare 

carbon electrode.43 It was reported that three equivalents of nitrite is needed to complete 

the reaction.43 A reduction tail was recognized at negative potentials (i.e. -1.0 V) after 

seven cycles which may be due to the use of only two equivalents of nitrite.43 
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-0 .0002 
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-0.0003 

Figure 8.7: Cyclic voltammogram at 50 mV s-1 of electrochemical reduction of 1.03x104 

mole of 4-nitrocatechol on GC electrode in a solution contains 2.00x 104 mole of 
NaN02, ((18 + 2) mL; acetonitrile + 1M HCl) and 0.1 M B04NPF6. 
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Figure 8.8(a) and (b) show cyclic voltammograms of DHB-Vulcan electrode in 1 

M H2S04 (aq) at different scan rates. The potential was scanned between 0.0 V and 0.8 V 

and reveals the presence of two reversible peaks at 0.4 V and 0.6 V as in the case of 

modification with 4-aminocatechol, (see section 8.3.1). However, these peaks behave 

differently with respect to scan rate. The former peak showed an increase in the peak 

separation with increasing scan rate while the latter did not. The peak at 0.6 V is 

consistent with the attachment of DHB to the carbon via C-C bond while the less 

reversible peak at 0.4 V might be due adsorbed or entrapped 4-aminocatechol since its 

potential matches that of 4-aminocatechol in Figure 8.5 to the adsorbed or entrapped 

DHB.45 
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Figure 8.9 shows that the cathodic peak current of the modified Vulcan XC72 

carbon measured at 0.56 V vs. SCE was linearly dependent on scan rate which indicates 

that DHB was attached to the Vulcan XC72 surface. 
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Figure 8.9: Linear plot of cathodic peak current at ca. 0.56 V versus scan rates for Vulcan 
XC72 following grafting with nitrocatechol, measured in 1 M H2S04 (aq). 

8.3.5. Modification of carbon black with aryl diamine followed by Michael addition 

of benzoquinone 

Figure 8.10 shows the cyclic voltamrnogram at 50 m V /s of Vulcan XC72 

modified initially with 4-aminobenzylaniline (ABA) via diazonium coupling followed by 
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a covalent attachment of benzoquinone (BQ) to the amme terminals via a Michael 

addition reaction. The figure reveals three main closely spaced redox couples at ca. 0.16 

V, 0.28 V and 0.43 V vs. SCE as an indication of multiple binding modes of the BQ to 

the surface.51 The BQ can be singly bound to the amine through position 2 (i.e. 0.28 V) 

and/or doubly bound through positions 2 and 5 with a cathodic shift of the BQ formal 

potential for the additional binding (i.e. 0.16 V).51
'
55 The peak at 0.43 V might be 

assigned to some sort ofnoncovalent bonding between ABA and BQ.51
,
55 
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Figure 8.10: Cyclic voltammogram at 50 mV/s of GCNulcan-ABA-BQ in 1 M H2S04 
(aq). 

Figure 8.11 shows the effect of scan rate on the electroactivity of GCNulcan-

ABA-BQ in 1 M H2S04 (aq). The peak potential was independent of scan rate for the 

range chosen and the peak current increased with increasing scan rate. The 
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electrochemical behaviour of the BQ was not ideal smce the BQ sites were not 

sufficiently separated from each other. Therefore, to systematically study the modification 

of Vulcan XC72 carbon black with ABA-BQ an electroinactive spacer should be used.55 

20 

15 

10 

1 
5 

........ 0 
+J 
c 
Q) 
"- -5 "-::s 
u 

-10 

-15 

-20 

-0.6 

/' . 
\ 

. . 
/ / ' ' / .· ." .- ,-, ·, . ·· --~ 

. ·"' _, ' ' · -·'J . " ; ' ;,·,-" ............ ',_,I 
• • ••• • 0 ' , .. ·, ./ " .......... ··· ···· ............ ··' 

'" " .. · .·· " .. ··· 
/. "" .·· . : ..,;~.- · ·· 

/.~ .. ~··· · · "" ... 
. .;;·.~ 

.·'/}' ... ·/, : ..... ... . 
.... ..······· ".'/ ...................... , "t: 

, ·; __ , ·" 
1/ ~ ·· ·, __ .... · '/' 

f' . ........ . , 
~~,. ·., '·- .-·- · / 
. ·.-.. / .. 

-0.4 -0.2 0 0.2 0.4 

potential IV 

--20mv/s 
......... 40 mV/s 

---60mV/s 

-·- SOmV/s 
- · · lOOmV/s 

0.6 0.8 1 

Figure 8.11: Cyclic voltammogram of GCNulcan-ABA-BQ in 1 M H2S04 (aq) at scan 
rate from 20 mV/s to 100 mV/s. 

8.4. Conclusions 

A number of different in situ diazonium coupling methods to graft the 

1 ,2-dihydroxybenzene moiety onto Vulcan XC72 carbon black have been demonstrated. 

In all cases the modified carbons resulted in the formation of two redox peaks instead of 
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three as reported by Belanger and coworkers.45 The reasons for this discrepancy are not 

fully understood and emphasize the sensitivity of the coupling of quinones to slight 

differences in the preparation conditions. These modified carbons are promising as 

positive electrode materials for supercapacitors in aqueous media.24
•
45 The modification 

of Vulcan with 1 ,2-dimethoxybenzene was also successful but needs further examination 

as a positive electrode material for supercapacitors in nonaqueous media. 

An interesting new approach for the in situ diazonium coupling was to start from 

the nitrocatechol precursor as a potential alternative to the diazoniurn salt or the amine 

precursors for 1 ,2-DHB. It is available at low cost and has higher stability. Moreover, 

local diazonium coupling becomes possible when the electroreduction of the nitro 

precursor is performed in the presence of nitrite in the cell. 

The modification of Vulcan carbon black with 4-aminobenzylaniline (ABA) 

followed by a Michael addition reaction with benzoquinone (BQ) is also reported. Further 

work is required for all these systems in order to fully understand the bonding modes, 

stability and electrochemistry. Their characteristics should also be further assessed for 

applications in supercapacitors and other possible applications such as electrocatalysis. 
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Chapter 9 

Summary and future work 

9.1. Summary 

Although high surface area carbon materials having an excellent power density 

are well known as electrode materials for supercapacitors, they have limited energy 

density. The theme of this work was to study the modification of carbon electrode 

materials with anthraquinone (AQ) and dihydroxybenzene (DHB) functionality to 

improve their energy density without sacrificing their excellent power density. 

These quinone redox groups were chosen for two fundamental reasons. First, their 

electrochemical activities were utilized to add an extra pseudocapacitance charging to the 

inherently double layer capacitance charging found in the unmodified carbons. Second, 

their redox potentials were chosen to increase the useful cell potential limits in an 

asymmetric capacitor to maximize the performance. 

Two methodologies were examined in this work for modification of carbon. The 

first one utilized diazonium chemistry to form covalently bound quinone to the carbon 

electrode. The second one explored the anodic polymerization of quinone amine 

derivatives onto carbon electrodes. 
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The following techniques were used to characterize the modified carbons: cyclic 

voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanic cycle, 

scanning electron microscopy (SEM), attenuated total reflectance Fourier transform 

infrared (ATR FTIR) spectroscopy and elemental analysis (EA). 

The performances of the supercapacitors constructed in this work were evaluated 

by cyclic voltammetry and constant current discharging chronopotentiometry. The energy 

density and the power density of the supercapacitors were determined based on the 

constant current discharging experiments and evaluated based on their Ragone plots. 

Searching for new materials with excellent performance and reasonable cost has 

been challenging for the supercapacitor industry. Ruthenium oxide is considered as one of 

the best known materials for supercapacitors but suffers from limited availability and high 

cost. AQ and DHB modified carbon electrodes are reported in this work as potential 

candidates to minimize the dependence on the usage of Ru oxide or even to replace it in 

the future with relatively low cost materials. 

Compared to a symmetric Ru oxide supercapacitor, the asymmetric device 

constructed from AQ carbon cloth as a negative electrode and Ru oxide as a positive 

electrode required 64% less Ru and provided better energy and power densities. These 

findings were related to the high specific capacitance of the AQ modified carbon (i.e. 482 

Fig compared to 199 Fig for the unmodified carbon) over a potential region close to and 

more negative than the Ru oxide negative potential limit. 

224 



Following this result, a novel method for grafting the DHB moiety was reported 

and shown to provide a promising alternative positive electrode to replace the Ru oxide 

electrode. The argument here is that the DHB has a low mass to charge ratio (i.e. 55 

g/mol of electrons) which is even better than that of AQ (i.e. 104 g/moles of electrons). A 

double in energy density compared to the symmetric unmodified carbon cloth device was 

achieved by constructing an asymmetric device with DHB modified carbon cloth as a 

positive electrode and AQ modified carbon cloth as a negative electrode. This results in a 

combination ofbattery-like and capacitive behaviour. 

When trying to increase the loading of the AQ onto the carbon electrode via the 

electrochemical oxidative polymerization of the 1-aminoanthraquinone (1-AAQ), an 

unexpected result was obtained. The polymer film was deposited but the redox activity of 

AQ was distorted. The AQ reduction peak was observed at the usual thermodynamic 

potential (i.e. -0.1 V vs. SCE) while the reoxidation peak was shifted to more positive 

potential (e.g. +0.36 V vs. SCE) at 50 m V /s. This unusual behavior was extensively 

investigated by cyclic voltammetry and impedance spectroscopy. The redox activity of 

AQ was found to be complicated by the conductivity of the polyaniline-like backbone. As 

the potential was scanned cathodically the conductivity of the film gradually decreased 

but remained sufficient to allow the AQ reduction reaction to occur at its formal potential. 

However, scanning the potential anodically after reaching -0.45 V resulted in a re­

oxidation of the H2AQ at a potential of +0.36 V instead of ca. -0.1 V. In other words, the 

AQ sites in the film are trapped in the reduced state until the film becomes sufficiently 

conducting at +0.3 V. These results may open new prospective research avenues to 
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overcome or to m1mm1ze this kinetic limitation of the AQ redox activity m the 

electrochemically deposited poly(l -AAQ) films. 

Following these results the 1-AAQ was successfully copolymerized with aniline 

and found to form a film which is electroactive over the potential range (i.e. -0.45 to 0.8 

V vs. SCE) compared to the electroactivity of polyaniline (i.e. 0.0 to 0.8 V) in 4 M H2S04 

(aq). A small redox peak of AQ was observed at its thermodynamic potential with the 

absence of charge trapping. 

The electrochemical polymerization of 3,4-dihydroxyaniline was met with limited 

success for unknown reasons. Therefore, the electrochemical polymerization of DHB 

functionality was performed from a 3,4-dimethoxyaniline precursor followed by a 

hydrolysis step after the film formation. Three reversible redox couples extended between 

0.0 V and 0.7 V vs. SCE. 

The diazonium coupling was revisited and variOus recent approaches were 

examined. The in situ diazonium coupling was found to be more suitable for diazonium 

coupling than the ex situ approach since a number of diverse redox functionalities could 

be attached to carbon electrodes without the need for preparing and purifying the 

diazonium salt or worrying about its stability. 3,4-dihydroxyamine, 3,4-dimethoxyamine 

and 4-nitro-1 ,2-dihydroxyamine were attached to carbon electrodes and their 

electrochemical activities were studied. 
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Finally, the modification of Vulcan carbon black with 4-aminobenzylaniline 

(ABA) followed by a Michael addition reaction with benzoquinone (BQ) is reported. 

Studying the electrochemistry of BQ modified Vulcan-ABA was incomplete and should 

be studied in more systematic way to obtain the interaction-free BQ centres. 

9.2. Future work 

Based on the work that was done in this thesis the following future work is 

proposed. 

1- Studying the dimethoxybenzene (DMB) modified carbon m nonaqueous 

media and ionic liquids for supercapacitors. 

2- Monitoring and controlling the location of electrochemical deposition of 

poly(l-AAQ) on high surface area carbons and extending their application in 

fuel cell reactions. 

3- Re-examine the electropolymerization of other mono and diamino­

anthraquinones on carbon black. 

4- Extend the use of diazonium coupling and electrochemical polymerization of 

quinones methodologies to modify other nanostructured carbon materials such 

as carbon nanotubes, graphene sheets and onion-like carbon for 

supercapacitors. 

5- Studying the copolymerization of 4-aminocatechol with aniline and its 

usefulness for supercapacitors and electrocatalytic effect. 
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