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Abstract 

In this thesis investigation, experimental and numerical studies were carried out to 

determine the axial impact splitting loads and the splitting process of naturally bedded 

layered slate rocks. This effort was undertaken to examine an alternate slate mining 

procedure so that the wastage in slate can be reduced from the present-day 95%. This was 

the first effort made in the use of this procedure for slate excavation. 

Experimental impact forces were determined by carrying out splitting tests on different 

sizes of slate blocks from small to intermediate scales, using a hydraulic actuator with a 

wedge-shaped indenter in the laboratory. Generally the slate blocks split parallel to their 

natural bedding planes, exhibiting clean and even split faces. Thus the use of this 

procedure for slate mining will minimize the damage produced by the use of optimum 

explosives; this reduction in wastage has been approximately estimated to be nearly 20% 

to 25% less than the present-day 95%. It has been observed in some cases that breaking 

loads were not consistent with the sizes of blocks (probably due to the presence of pre

existing flaws within the block). Some of the larger blocks needed lesser loads to break 

than those found for relatively smaller blocks. 

Numerical analyses were carried out to predict the impact splitting loads required to split 

a finite sized layered slate rock based on the observed mechanism of plane crack 

propagation in plane strain and three-dimensional slate blocks, obtained from impact 

splitting of slate blocks in the laboratory. In order to characterize the material for 

numerical analysis, properties of the slate material, such as elastic moduli, Poisson's 

ratio, compressive and tensile strengths, coefficient of friction (between slate and steel), 
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plane strain fracture toughness, hardness, crack propagation velocity etc., were 

determined after carrying out extensive experimental investigations. The experimental 

values obtained in this study were generally within the ranges specified for slates of other 

origins. It must also be mentioned here that the results presented in this thesis on the 

physical and mechanical properties of slate are the first study carried out on slates of 

Newfoundland origin. 

ABAQUS finite element software was used to simulate the entire wedge impact splitting 

process during numerical analysis. Mode I (plane strain opening mode) dynamic crack 

propagation was simulated numerically by the sequential releasing of the restraining node 

on the symmetric plane of the analyzed specimen. Mode I stress intensity factors (K1) 

were determined for different crack lengths and two types of crack propagation velocities. 

It was found that the crack propagation velocities had little (less than 10%) or almost no 

effect on the variation of the mode I stress intensity factors (SIPs). The possibility of 

crack propagation was determined by comparing K1 with the plane strain fracture 

toughness (Krc). For a chosen slate block, the mode I stress intensity factor was obtained 

to be almost the same as its fracture toughness, when the experimental impact splitting 

load was applied on it. Also in a three-dimensional splitting scenario, a parabolic crack 

front was required to model an equal fracture toughness (or stress intensity factor) value 

all along the crack front. 

Numerical results on the effect of size of the specimen (width and depth) on the mode I 

stress intensity factor were also examined and a correlation equation was established 

between the mode I stress intensity factor, splitting force and plane strain geometry of the 

v 



slate block. Breaking loads calculated using the correlation equation for plane strain 

fracture toughness were compared with those obtained from experimental work. The 

differences between the numerical and experimental impact forces were found to vary 

between+ 0.78 to- 32.34%. A field problem, considering the separation of a large sized 

slate slab from its intact state, was also analyzed numerically. The breaking load obtained 

from this study was compared with those obtained from the developed correlation 

equation. A good agreement (difference was less than 15%) was obtained between them. 

A discussion is also given concerning the possible reduction of wastage by the use of this 

process as a slate mining procedure. 
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Chapter 1 

Introduction 

1.1 General 

The experimental and numerical studies of destructive phenomena of impact events such 

as tools drop, flying debris/bird impact on the envelope of aircraft, car crashes, mortar 

bullets/missiles propelled onto the structural envelope, etc., have been carried out by a 

number of researchers. However, the beneficial use of this impact event (force) in 

engineering applications has not been given much consideration yet. There are many 

areas in which the impact event is used to generate beneficial effects. When it is 

necessary to quarry a sedimentary/metamorphic rock (sandstone, mudstone, slate, schist, 

etc.), and to break them into smaller sizes for the purpose of building construction (load 

bearing wall, slate roof, paving, etc.) or to construct an underground tunnel in rocky 

region by cutting or breaking rocks, the use of impact force becomes very important. 

Some laboratory tests that determine mode I dynamic fracture toughness of layered 

composite materials in laboratory, also use axial impact forces. Very few investigations 
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have been carried out in this field. Sun and Han (2001) determined mode I dynamic 

fracture toughness of composites using a Kolsky bar. They applied wedge insertion 

fracture (WIF) method to carry out the dynamic test using a Kolsky bar apparatus. A 

laboratory study on pellet impact and water jet erosion technique to break rock for 

making a tunnel through hard rock was discussed by Singh (1970). 

Two distinct types of engineering problems have been observed while dealing with rocks 

in nature. One deals with the prevention of failure of rock mass to protect structures made 

in the rocky regions such as caverns, underground tunnels, etc. The other type of problem 

tries to take advantage of fracturing using hydraulic fracturing and rock fragmentation by 

cutting or splitting or blasting. The latter deals with mining, drilling and excavating of 

rocks. To quarry layered rocks such as slate, schist, sandstone, coal, etc., from a mine, 

blasting procedures using detonating materials have been generally used for a long time. 

In addition to blasting which destroys a major portion of the virgin rock, other 

mechanical procedures are also recently being used to get an efficient and economic form 

of excavation. Mechanical procedures in rock extraction are advantageous over blasting 

enhancing the continuity of operations, clean-cut excavation profile, safety and minimum 

wastage. Some studies based on experimental and theoretical observations have been 

carried out in the last few decades on the rock breaking using mechanical procedures. 

Whittaker and Szwilski (1973) examined the principle of rock cutting by impact action. 

They discussed theoretical aspects of cutting with particular reference to the tensile 

splitting theory. They have given the use of an experimental rig of the pendulum type 

designed to break different types of rocks. They have also focussed their attention on 

impact ripping to cut rock. They mentioned that the relationship between explosive 
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energy and rock strength is important to design impact ripping machines together with 

their cutting tools. They reported that their impact cutting experiments gave close 

agreement with the tensile breakage theory of Evans (1962). Nishimatsu (1972) 

developed a theory on the mechanics of rock cutting based on the observation of the 

process of rock cutting and some simplifying assumptions. He has proposed a formula for 

determining the breaking force of rocks, based on Mohr's failure criterion, the depth of 

cut and the geometry of cutting tool. He used an inclined cutting tool (width of the cutting 

edge was much greater than the depth of cut) for rock breaking at a cutting speed of about 

0.4 m/min. 

During the excavation of rock from the ground or extraction of rock from a quarry 

applying mechanical procedures, it is seen that special machinery is needed to cut it. 

Throughout the past various quarrying techniques and equipments have been developed 

continuously and improved allowing quarriers to increase their net profits by increasing 

the amount of stone that can be quarried without much wastage. Some industries have 

developed new technologies that have revolutionized these industries. They use diamond 

wire machines, Chain saw (CH60), Diesel workhorse TDD 100, single multiple wire 

machine, polywire machine, GU50 Chainsaw machine and so on. All of these machines 

are simple mechanically and have relatively lower cost, high reliability, easy 

maintenance, high cutting speeds and sophisticated controls systems. Some of these 

machines such as Diesel workhorse TDD 100 can cut anything of any size, and derrick 

cranes, used to cut 50-ton rough blocks in some countries, are built with booms up to 70 

meters long. A single multiple wire machine can be set not only in processing areas, but 

also in the quarry, even outdoors. This machine can cut to a smaller slab any type of stone 
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block. Polywire can cut rock to any desired block shape without much production loss. 

Some of these machines have a full set of safety, surveillance and messaging systems, to 

ensure easy operation and diagnostics. The Model GU50 Chainsaw Machine is designed 

to save time in shifting of the machine as it moves on tracks. The cutting ann is capable 

of making both horizontal and vertical cuts in different planes, as well as "back cut" 

cuttings. This machine is adaptable to the narrow rooms of underground quarries and can 

be custom-built to fit these dimensions. It can make dry cuts in many types of stone, 

except granite (www.stoneworld.com, 2003). 

Reduction of slate rock to smaller-sized tiles in quarries is basically a process of rock 

fragmentation. Initially large sized slate blocks are obtained in quarries through the 

dynamiting of rock masses. Thereafter, it is broken into smaller sizes using either saw cut 

or other breaking .methods. A recent (United Kingdom Production of Minerals, 2004) 

publication puts the ratio of usable to unusable slate during the use of presently available 

quarrying methods as 1:20 (approximately 95% ). 

As a result of these improvements made in quarrying technology and the contributions of 

many quarrying equipment manufacturers, the stone industry has advanced significantly 

within the last few years. Consequently, the slate manufacturing industries are also trying 

to supply low cost building materials by minimizing the quarrying and processing costs. 

Although a lot of sophisticated quarrying and processing technologies have been 

developed and used to advantage in slate manufacturing industries, new methods are 

constantly being made available to help quarries streamline their businesses and increase 

their profits. In this regard, dynamic impact load based quarrying and processing method 
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is still not being used. This method could also be applied to quarry and break naturally 

bedded layered materials. In this method dynamic (impact) load is used in a systematic 

manner to quarry and process building rock materials such as slate. The present study has 

been focused on the development of a breaking method of layered slate rock based on 

experimental and numerical studies of impact splitting of slate material to produce slate 

tiles/products more efficiently without much wastage. The events associated with rock 

failure under impact splitting are the crushing of material at the beginning of impacting 

procedure and the propagation of plane crack through the rock, parallel to the layer. Since 

impact is a fast dynamic event, there should be sufficient time to propagate the crack to 

the required depth though the time required to initiate crack is short. Crack propagation is 

the dominant event for impact splitting of slate rock. Therefore, much attention needs to 

be given for the experimental analysis and the numerical simulation of dynamic crack 

propagation in the slate block. 

1.2 Objectives of the Present Study 

The objectives of the present study were to determine the breaking loads of different sizes 

of slate blocks experimentally and numerically from the mechanism of impact splitting of 

slate rocks with the intention of developing a useful mathematical model for computing 

the breaking loads for plane strain condition. Such a model could be used to explain the 

effects of size on the splitting forces of laboratory specimens and be helpful in 

interpreting large scale field problems utilizing impact rock breaking. The study carried 

out for this research consisted of two parts. In the first part, experimental investigations 

of different physical and mechanical properties of slate rock, crack propagation velocities 

and impact splitting forces of different sizes of slate blocks were carried out. The material 
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used in these tests was the natural slate obtained from Carew Services, Portugal Cove, St. 

John's and Hurleys Slateworks Company (free samples supplied), Manuels, St. John's, 

NL, Canada. 

The second part of the study consisted of analyzing impact splitting of slate blocks 

numerically using ABAQUS finite element software. Stress intensity factors for each 

time dependent crack extension and geometry of slate block were determined 

corresponding to splitting force determined experimentally and compared with the 

experimentally determined plane strain material fracture toughness. This was carried out 

for both small-scale and large-scale cleaving of naturally bedded slates. Based on the 

results obtained from numerical analysis for plane strain problems a correlation between 

impact force required to split any finite sized slate block, mode I stress intensity factor 

and the geometry of the block has been developed. 

1.3 Organization of the Thesis 

The following outline provides a brief description of the contents of the thesis: 

Chapter 2 covers the literature survey based on general studies on impact event, 

introduction to slate rock and its existing quarrying and processing techniques, and failure 

theories for brittle materials. Fracture mechanics based crack analysis including crack 

initiation and propagation phenomena is also presented in this chapter; in addition, it also 

covers the literature survey on the static and dynamics stress intensity factors, and their 

experimental measurement techniques. 
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Chapter 3 deals with the finite element theory concerning the use of eight-noded 

isoparametric plane strain elements and eight-noded isoparametric brick elements, used to 

model the slate blocks. It also covers the theory relating to effective elastic moduli and 

the sequential node release technique used in the numerical analysis. 

Chapter 4 deals with the experimental procedures used to measure different physical and 

mechanical properties and the breaking loads used to split different sizes of slate blocks. 

Microscopic observations of slate material using Scanning Electron Microscope are also 

provided in addition to other detailed experimental procedures. It also discusses crack 

propagation velocity and the experimental procedure used to determine it. 

The numerical investigation of impact splitting process of different sized plane strain 

slate blocks using finite element method is given in Chapter 5. 

The finite element analysis of 3D slate blocks, whose sizes are greater than the plane 

strain slate blocks, is given in Chapter 6. 

Chapter 7 presents the correlation study between the mode I stress intensity factor, the 

geometry of the slate block and the impact splitting load. 

Analytical treatment of impact splitting of a slate rock in the field is detailed in Chapter 8. 

Conclusions drawn from this thesis investigation, contributions made in the thesis, as 

well as areas for further research, are discussed in Chapter 9. 
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Chapter 2 

Literature Review on the Impact Splitting of Layered 

Slate Rock 

2.1 General Studies on Impact Events 

Impact is a short duration phenomenon. It occurs so quickly that it is often difficult to 

follow what is happening and the evidence it leaves behind. It could destroy any structure 

within a very short time and create a significant damage to human life. Over the last fifty 

years, significant developments in sensitive instrumentation and computational 

capabilities have made it possible to examine the impact phenomenon in greater detail; 

hence considerable amount of attention is being paid recently to the impact response of 

structures. 

Generally studies on impact events are carried out based on their destructive and 

beneficial effects on structures. The essential characteristics and the various areas of 

research explored by the past researchers on these effects are discussed briefly in this 

section. 
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Impact events are classified as low velocity and high velocity impact events. In case of 

low velocity impact, a large object barges onto the structure with a low velocity. Usually 

the tool-drop problems are considered to belong to this category. Low velocity impact 

causes small deformation in the body and occurs solely over a small region adjacent to 

the contact area. When this impact acts on a layered composite structure, damage is 

initiated by matrix cracks which create delaminations at the interfaces between plies. Due 

to high contact stresses matrix cracks start on the impact face of the specimen in a stiff 

structure. Damage propagates downward as a pine tree pattern, as shown in Figure 2.1(a), 

by a succession of inter-ply cracks and interface delaminations. However,· matrix 

cracking in the lowest ply of the thin specimen that is caused by bending stresses in a 

flexible structure, progresses from the nonimpact face up towards the impact area by 

giving a reverse pine tree appearance [see Figure 2.1(b)]. Since a large number of matrix 

cracks and delaminations are developed in the impact zone and redistribution of stresses 

occurs due to the introduction of each new crack, it is not rational to attempt to model 

every detail of damage development during the dynamic analysis of the impact event. 
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Figure 2.1: Low velocity impact generating: (a) Pine tree pattern due to high contact 
stresses on a very stiff structure; and (b) Reverse pine tree damage pattern due to large 
bending stresses (Abrate, 1998) in a flexible structure. 
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The impacts that result in complete perforation of the target are referred to as high 

velocity impacts. In this case complete perforation is achieved when the deformations of 

the target are localized in a small region near the point of impact. Therefore, high velocity 

impacts are stated to occur when the ratio between impact velocity and the velocity of 

compressive waves propagating through the thickness is larger than the maximum strain 

to failure in that direction (Abrate, 1998). This means that the overall damage is 

introduced during the travel time of the first few compressive waves through the 

thickness when overall target motion is not yet well-known. The local deformations that 

occur due to impact depend on the incident relative velocity at the point of initial contact 

as well as on the hardness of the colliding bodies. In case of high velocity impact, large 

local deformations are developed near the contact area, which result from plastic flow. If 

the target is made of nonyielding material then the impacting object could be crushed or 

liquefied laterally along the face of target or remain coherent depending on the impact 

velocities. Therefore, there is a critical impact velocity below which the impacting object 

such as a rigid-plastic missile would remain coherent and intact; above this velocity it is 

crushed into very small pieces or powder. 

The most important step in impact analysis is the evaluation of the contact force 

generated during impact. If the impact velocity is too high and mass of the impactor is 

small then there is a possibility to develop local nonlinearities. In this case a local 

nonlinear contact law must be enunciated while carrying out the analysis of the impact 

problem. However, this problem is not easy to solve using simple mathematical 

procedures of differential/integral equations. Numerical methods are often required. Sun 

and Jih (1995) investigated the quasi-static characteristics of impact response and impact-
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induced delamination crack propagation in graphite/epoxy laminates subjected to low

velocity heavy mass impact. They used a single degree of freedom spring mass model to 

predict the contact force history. Thereafter, they applied the peak contact force in 

conjunction with a linear beam model to calculate the strain-energy release rate. They 

obtained the delamination size when the strain-energy release rate reached interlaminar 

fracture toughness value. They obtained very good agreement between theoretically 

predicted delamination size and those from experimental results. In the spring-mass 

model they represented the impactor and the beam by two rigid masses and the associated 

deformation characteristic by a spring. They considered spring stiffness to be equal to the 

static stiffness of the given layered beam under a load applied at the mid-span. 

Generation of waves is an important phenomenon that is very closely associated with the 

applied impact forces. Waves are dynamic disturbances that propagate in a medium 

which may be air, water or solid. Waves in solids are invisible to human eyes and 

inaudible to human ear. However, waves in solids are real, physical, and very important 

to engineering applications. To analyze and simulate the phenomena of waves in solids, 

mathematical and numerical concepts are required. In contrast to vibration, which is a 

motion of waves with very long wavelengths, the wave generation and propagation 

phenomena is primarily due to localized disturbance of the structure. Waves are produced 

due to the generation and propagation of a localized mechanical disturbance whereas 

vibration is the global motion of the entire structure. However, the mathematical 

derivations of both vibration and wave motion are governed by the same dynamic 

equations of motion. Waves in an anisotropic material exhibit anisotropic characteristics. 

This means that their properties (such as velocity) are direction-dependent (Liu and Xi, 

11 



2002). Boundary conditions and interface characteristics of solids (such as laminates) are 

important factors that affect the wave propagation in a structure. Their presence causes 

waves to reflect and/or refract; they may also diffract depending on the nature of 

homogeneity within the medium. Velocities of generated waves depend on the 

frequencies of local excitation and the shapes of the propagated wave changes continually 

during the propagation process. The complexity of the structural geometric domain and 

the material inhomogeneity within the domain influence the wave propagation 

phenomenon. 

When a structural component is subjected to impact or shock loading, transient stress 

waves are generated at the impact location, and the propagation of these waves can 

generate very high stresses especially in the local regions surrounding mechanical defects 

or cracks. Nemat-Nasser (1972) developed general variational methods for wave 

generation and propagation in elastic composites. Moon (1973) has given an analytical 

computational technique for the generation and propagation of one-dimensional transient 

waves in anisotropic plates. He calculated the stresses and displacements that were 

induced in anisotropic plates by short-duration line impact forces. Kassir and 

Bandyopadhyay (1983) discussed the impact response of a cracked orthotropic medium. 

They determined the elastodynamic responses of an orthotropic solid containing a crack 

under the action of impact loading. Their aim was to determine the distribution of stresses 

and displacements throughout the solid by focusing particular attention on the influence 

of material orthotropy on the amplification of the dynamic stress-intensity factor and the 

elapsed time required to attain the peak value. They found that the dynamic overshoot in 

stresses for orthotropic materials was smaller for the shearing mode and occurred at a 
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shorter time than the case for the normal loading. Sansalone, et. al. (1987) carried out 

finite element studies of transient wave propagation. They showed the versatility and 

usefulness of the finite element method for solving stress wave propagation problems. 

Beneficial effects of impact force are seen in excavating/quarrying rocks (sandstone, 

marble, slate, etc.), driving pile into the ground, breaking stones and bricks for aggregates 

or constructing underground tunnel in rocky region, mode I fracture toughness test of any 

material in the laboratory, etc. Some studies on these fields are detailed in the 

investigations of Whittaker and Frith (1990) for rock fragmentation, experimental 

determination of mode I stress intensity factor of layered composite materials by Sun and 

Han (2001), and rock breaking using pellet impact by Singh (1970). 

2.2 Mathematical Definition of Impulse 

Impulse is a nonperiodic exciting force having a variation of magnitude (in general) with 

respect to time. It acts on the structure for a specific period of time and then ceases. 

Mathematically, it can be defined as a force that has a large magnitude F and acts for a 

very short time L1t. It is expressed using the momentum principle and found to be equal to 

the change in momentum of the system when the impacting mass is constant. Therefore, 

impulse can be written as, 

Impulse= Fl:l.t = mv2 - mv1 (2.1) 

where v1 and v2 are the velocities of the mass m before and after the application of the 

impulse, respectively. 

In general, the impulse ( F ) is written as, 

- rr+ill 
F = Jz Fdt (2.2) 
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2.3 Applied Structural Mechanics for Engineering Structures 

During the last few decades sophisticated theoretical and experimental studies have been 

carried out to establish the fracture mechanics foundations; this was required to 

understand the brittle failure of structures made of high strength metal alloys and other 

artificial man made materials. Since these fracture mechanics principles were developed 

to characterize behaviour of generalized mate1ials, they are equally applicable to explain 

the phenomenon of rock fracture. Slate is a naturally formed layered material. Procedures 

that have been applied for man made layered composite materials utilized in aircrafts, 

missiles, rockets, ships, automobiles, building structures and instrumentation panels are 

equally applicable to the analysis slate material. Therefore, the literature explored in the 

succeeding part of this section includes some studies based on earlier research carried out 

on impact response of laminated plates and beams. 

To analyze the dynamic behavior of layered composites, the composite is modeled as a 

layered body with the constituent layers composed of homogeneous, linearly elastic 

material. The layers may be assumed to be isotropic or have some specified anisotropy. 

Then initial/boundary value problems are generated for such a body within the 

framework of the classical theory of elasticity; however it is very difficult to obtain exact 

solutions for the non-homogeneous material. Sometimes effective modulus theory is used 

to analyze the behavior (static/dynamic) of a layered material. This method is suitable 

when the wavelengths of interest are considerably greater than the characteristic layer 

thickness. This theory will be invalid when the wavelengths are equal or less than the 

layer thicknesses. Successive reflection and refraction of these short waves from the layer 

interfaces tend to break down the structure of progressive waves. This leads to a marked 
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dispersive effect and the effective modulus theory cannot predict this effect. A number of 

approximate theories have appeared in the literature to take into account this dispersive 

effect. All these theories are collectively called as microstructural theories. 

Delph and Herrmann (1983) developed an effective dispersion theory for layered 

composites. It is a new micostructural theory for wave propagation in periodically layered 

solids. There are some restrictions to this theory. This theory is valid for one-dimensional 

wave propagation normal to the layering and for two-dimensional wave propagation 

under the condition of anti-plane strain. Hegemier and Nayfeh (1973) developed another 

theory that mitigated some disadvantages of effective modulus concept. They developed 

a continuum theory for wave propagation in laminated composites. They discussed wave 

propagation of laminated composites with elastic, periodic microstructures in case of 

wave propagation normal to the laminates. This theory was based upon an asymptotic 

scheme that assumes dominant signal wavelengths to be quite large compared to the 

typical composite microdimensions. They obtained displacements and stress distributions 

within each layer. Hegernier and Bache (1973) extended the same theory for wave 

propagation parallel to the laminates. Christensen (1975) discussed wave propagation in 

layered elastic media. His primary interest was the characterization and methodology for 

studying wave propagation in heterogeneous materials. 

Beams of different materials, with each layer bonded or just contacting without an 

adhesive can be used to construct multilayered structures. The design of these types of 

structures against impact loading would require a detailed study of the motion of stress 

waves in structures with bonded or adhesives layers, considering the effect of materials, 
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the possible failure mode and the overall structural response, such as the transient shear 

and bending deformations. Xia (1988) analyzed the behavior of a two-layered beam 

under impact loading. He proposed a dynamic model for multilayered beams under 

impact loading in his paper. His model was based on Timoshenko beam theory; however 

he accommodated interlayer slip. He investigated different impact loads as well as 

different interfacial situations and determined the transient behavior of a two-layered 

beam using the method of characteristics to solve the governing dynamic equations. 

However, delamination resistance was not considered in his study. He considered the 

same material to be used for the two layers in his investigation. He found that shear 

failure occurred in the adhesive region and that the adhesive material had a large effect on 

the interlayer stresses. Xia and Ruiz (1989) examined the response of layered plates to the 

impact of a blunt projectile. They found from their study that the elastic dynamic stiffness 

is the important parameter in determining the initial rise of the contact force and mode of 

failure. They also found out that mode of failure and energy absorption capacity are 

influenced by the material properties, thickness of layers and stacking sequence. They 

observed when the impact of a projectile occurred on multilayers with different materials 

like aluminium alloy and stainless steel, the first layer always failed through localised 

shear. They also observed failure to occur through tearing rather than through adiabatic 

shear, when the projectile punched through the target. In this case the maximum contact 

force reached during the impact was not only a function of the kinetic energy of the 

projectile and the material hardness but also of the structural stiffness of the target. 

Tedesco, et. al. (1987) presented the results of a preliminary numerical study to evaluate 

the effectiveness of a layered structure to resist blast effects of non-nuclear weaponry. 
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Their primary concern was the capability of layered structures to substantially reduce or 

eliminate the incidence of splitting on the interior of the concrete shelter walls by 

diminishing the intensity of the blast-induced, compression stress wave that propagated 

through the wall. They found that layered structures reduced or eliminated the incidence 

of spalling on the interior of the concrete shelter walls by diminishing the intensity of the 

blast-induced, compression stress waves which propagated through the wall. 

The numerical simulation of the splitting phenomenon is not an easy task. During the past 

three decades two-dimensional finite element analyses of mode I fast crack propagation 

in linear elastic isotropic bodies have been examined and a number of papers and reports 

have been published. Most of the researchers have taken advantage of elastodynamic 

symmetry about the crack tip trajectory to simulate the rapid crack propagation 

phenomenon by sequential release of nodes along one side of the finite-element model 

(Malluck and King 1980, Mall et. al. 1980, Sun and Hun 2001). They used small sized 

regular elements because of constant stiffness and inertia properties at the crack tip 

location; the crack tip stress singularity is not properly represented in the finite element 

model. This technique has also been used by Jih and Sun (1990) to simulate the crack 

advancement in running crack problems. Numerical modeling of dynamic crack 

propagation in finite bodies, using moving singular elements, was carried out earlier by 

Nishioka and Atluri (1980). Mall and Luz (1980) simulated fast fracture problems using 

eight-noded elements, based on the concept of the sequential release of nodes along the 

crack path. They analyzed a uniformly expanding crack in a square region subjected to 

uniform tension on the edges parallel to the crack path. They used very stiff massless 

truss elements to constrain the vertical nodal displacement along the crack path. They 
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computed energy release rate for each increment of crack extension from the global 

energy balance involving strain energy, kinetic energy and potential of remote loads. In 

order to avoid displacement incompatibility, both comer and rnidside nodes were released 

simultaneously. They concluded that eight-noded elements can be safely employed for 

crack propagation problems only when both the comer and midside nodes are released 

simultaneously. The sequential node releasing technique, along the crack front, has been 

applied in the present study to simulate crack propagation. 

2.4 Naturally Bedded Layered Media: Slates 

The material examined in this study is a naturally bedded layered slate rock. A brief 

description of its composition, geology, formation history, characteristics, quarrying 

technique and processing procedure in the industries are presented in the succeeding 

sections to develop a characteristic understanding of its splitting process. 

2.4.1 Introduction 

As roofing materials and techniques have advanced, centuries-old traditional roofing 

methods have been conserved and this knowledge carries answers to many problems 

found even today in modem day construction. In spite of the fact that these are centuries 

old, these methods are still widely used and practiced today in Europe and America due 

to their established technology and efficiency. These old methods have been saved for 

many reasons, including respect for regional traditions of architecture, and the 

conservation of historical monuments. 

Slate is a fine grained, crystalline rock resulting from sediments of clay and fine silt that 

are deposited on the seabed, that can be easily split into almost parallel uniform layers. 
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Slate was formed in the Paleozoic Era, as early as 570 million years ago. The sedimentary 

clay and silt particles were gradually consolidated into bedded deposits of shale by 

superimposed materials. The bedded deposits of shale were subsequently folded, 

crumpled, and compressed by the mountain building forces. At the same time the 

original clays were changed into new minerals such as mica, chlorite, and quartz by 

intense heat and pressure. By such mechanical and chemical processes, bedded clays 

were transformed, or metamorphosed, into slate. The process of forming slate consumes 

whole geological ages. The metamorphic geological changes necessary to produce slate 

are dependent upon movements in the earth's crust and the heat and pressure generated 

thereby. This is why slate is available only in certain mountainous regions. The 

composition, structure and durability of slate are not uniform because the degree to which 

their determinant minerals are altered is neither uniform nor consistent. Its quality from 

dense to soft also varies depending on the quarry it comes out, its thickness and density. 

The physical properties of the rocks, composed of slates, are defined by the minerals 

contained, the building blocks of rocks, and their characteristic crystalline structures. 

Slate consists of minerals that are stable and resistant to weathering and are therefore 

generally of high strength, low porosity and low absorption. The low absorption and low 

porosity of slate mitigates the deleterious action of frost and makes it well adapted for 

different purposes such as roofing and paving. Quartz, chlorite and sericite are the main 

components of slate. The durability characteristics of different slates are given in Table 2.1. 

Slates of a variety of colors are available. Grey, blue grey, black, various shades of green, 

deep purple, brick and red are the most common. Black color in slate is present due to the 

presence of carbonaceous matter, derived from the decay of marine organisms from 
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Table 2.1: Durability of different slates 

Name of slate according to place Life span 

Vermont and New York slates 125 years 

Buckingham Virginia slates 175 years 

Pennsylvania Soft Vein slates Excess of 60 years 

Pennsylvania Hard Vein slates Roughly 100 years 

Peach Bottom slates At least 200 years 

ancient sea floors. Compounds of iron generate the red, purple, and green colored slates. 

Deep blueblack color slate is found in Maine, Virginia and the Peach Bottom district of 

York Country, Pennsylvania, U. S. A. Due to the high mica content, slate in Virginia has 

a distinctive lustrous appearance. The slate producing regions of New York, U.S.A, 

which centers on Granville and Middle Granville, are particularly important because they 

contain one of the few commercial deposits of red slate in the world. According to the 

stability of color, slates are classified as fading or unfading. Fading slates change to new 

shades or may streak within a short time, after exposure to atmosphere, due to the 

presence of fine grained disseminated pyrite. Varieties of slates depending on the density, 

coefficient of water absorption, mechanical flexural strength, resistance to frost, color, 

etc. are obtained in nature. However, their principal characteristic, viz., the planar 

structure that allows splitting slate into thin parallel layer is the same. Cleavage and grain 

are usually considered as the two most important structural properties of slate. A well

developed cleavage, defined by mineral grains in preferred orientations, characterizes slates. 
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2.4.2 Geology and Microstructure of Slate 

From a geological point of view, a fine-grained hardened rock that splits readily into thin 

plates or any hard argillaceous rock with a tendency to split along the bedding plane is 

usually called slate. The most perfect splitting, however, occurs in those rocks which 

have been further hardened by lateral pressure and have at the same time had imposed on 

them a cleavage plane at right angles to the pressure direction; the splitting is then along 

this cleavage plane. The breaking of slate rock into thin lamina (or plates) occurs 

frequently in a different direction from that of the original strata in which the 

sedimentation process occurred. 

There are two types of cleavages developed in rock in nature. These are slaty cleavage 

and fracture cleavage. The slaty cleavage is usually developed in fine-grained rocks as a 

result of great lateral pressure, the planes of splitting lying nearly parallel to the axial 

planes of folds and independent of the original bedding planes (Challinor, 1967). This 

type of cleavage develops due to: (i) minute flaky minerals re-orientating themselves, 

with, probably, some shearing, (ii) the growth of new flaky minerals similarly orientated 

(an incipient schistosity), and (iii) the flattening of mineral particles by pressure. 

Sometimes it may be possible to trace the original bedding in the cleavage surfaces and 

edges in slate type rock. The most natural position of the lamina or cleavage of the slate 

appears to be vertical; but it is to be found in various degrees of inclination, both with 

respect to the horizontal, and with respect to the planes of stratification. Fracture cleavage 

develops mainly in fine-grained plastically deformed rocks, splitting along closely spaced, 

but individually distinct, parallel planes. In this cleavage the splitting does not depend on 

the mineral arrangement. Cleavage planes are usually shear planes, along which slight 
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movement has occurred; or they may be planes of weakness corresponding to attenuated 

limbs or axial planes of very small folds. Though tending to lie parallel to the axial planes 

of folds, the orientation is not nearly so constant as that of true cleavage. The factors that 

determine this orientation are more complicated. This cleavage is also called false 

cleavage. It includes strain slip cleavage and may also be a form of jointing: where 

closely spaced tight joints give the rock a capacity to part along parallel surfaces, the 

structure may be designated as fracture cleavage. 

Bakewell (1815) mentioned that "slate is composed of straight parallel thin plates or 

lamina." It divides into layers or plates. It is the result of crystallization, or of the internal 

arrangement of the particles. The division of the laminae of slate is frequently in a 

different direction from that of the strata. Slate-rocks vary in their quality, and pass by 

transition into flinty slate, which appears to differ from common slate by containing a 

greater proportion of siliceous earth. He showed that crystallization is the origin of slaty 

cleavage. Sedgwick (1835) showed that slaty cleavage is quite distinct from bedding, and 

develops due to some post-depositional changes, which he attributed to "crystalline and 

polar (glacial or hostile) forces acting on the whole mass simultaneously, in given 

directions, and with adequate power". 

Darwin (1846) recognized a genetic relationship between slaty cleavage and foliation. He 

mentioned that both of these are parts of the same process, i.e., in cleavage there being 

only incipient separation of the constituent minerals, and in foliation there being much 

more complete separation and crystallisation. In most extensive metamorphic areas, the 

foliation is the extreme result of that process of which cleavage is the first effect. 
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Sharpe (1849) noted that the cleavage was always parallel to the plane of flattening. He 

considered that the minute constituent particles of slate, like the fragments in the tuffs 

(any soft porous stone or consolidated fine volcanic ash), were deformed so that their 

short dimensions were more or less perpendicular to the cleavage planes, which are 

oriented parallel to the flattest faces of these particles. 

Slaty cleavage associated with bulk flattening of rocks was found by Sorby (1853, 

1856a). He was able to make microscopic examination of Cambrian slates of North 

Wales. He found that it is composed of largely minute mica flakes, approximately 

2.54x10-5 m in maximum length and 2.54x10-6 m thick, with a very pronounced and 

preferred orientation, so that on an average their short dimensions were perpendicular to 

the cleavage planes. He concluded that the flat particles tended to align themselves 

perpendicular to the compression direction, and that longer fragments tended to align 

themselves along the expansion direction, giving the rocks a definite grain orientation 

along the cleavage plane during the process of deformation. He also mentioned that 

many slates appear to be recrystallised. Transmission Electron Microscopy (TEM), 

Analytical Electron Microscopy (AEM), Scanning Transmission Electron Microscope 

(STEM) are usually used in the microstructural study of slates. Power X-ray diffraction 

and optical studies and electron microprobe analysis are also used in measuring the 

average properties of many grains. Recent TEM studies have enhanced the understanding 

of the formation of slaty cleavage in rocks. White and Johnston (1981) found from slate 

studies, using TEM technique, that two processes contribute to the development of 

cleavage. These are crystallisation and mechanical rotation. They found crystalization 
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occurring in the hinge areas of folds and mechanical rotation occurring in the limbs of 

fold; they found the siting of the Phyllosilicate-rich domain (P-domains), along which 

the cleavage occurred, and their initial spacing was controlled by microcrenulations (or 

micro-notches) that occur along these cleavage planes. 

White and Johnston (1981) also performed detailed optical studies on ultra thin sections 

(:::: 5 ~-tm thick) and undertook detailed microstrucural studies on AE1 EM7 high voltage 

TEM, operating at 1000 kV and used a Jeol 120CX STEM fitted with a Link Energy

dispersive X-ray system for micro-analytical studies. This technique enabled them to 

carry out quantitative analyses of very small grains ( < 0.1 ~-tm). They concluded that the 

cleavage developed from the pre-existing microcrenulations mainly by crystallization 

processes, which were generated by pressure solution and mechanical rotation of grains. 

Using transmission electron microscopy techniques it is possible to take direct image of 

the layers that can be used to characterize the specific nature of individual layers or 

packets of layers. Still, this does not generally permit identification of trioctahedral and 

lor dioctahedral planes of shear orientation occurring along the shear cleavage planes. 

However, with high-resolution analytical electron microscopy performed with a scanning 

transmission electron microscope, which is operated in TEM mode, it is possible to 

achieve analytical resolution approaching 300 A0 (approximately 30 layers of 10 A0
-

10-10 m - structure). Lee, et. al. (1984) applied TEM/STEM and AEM techniques to 

examine the mudstone to slate transition in the Martinsburg formation at Lehigh Gap, 

Pennsylvania. They mentioned that chlorite and white mica occur in a variety of 

intergrowths at all scales, from both regular and random intergrowths at the individual 
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layer scale to interstratified packets of chlorite and muscovite in a grain size greater than 

l!lm. In samples which have well developed slaty cleavage the majority of the 

phyllosilicate grains, whether oriented parallel to bedding or to cleavage are also in sizes 

below the level of resolution by electron microprobe. However, they retain the large 

grains parallel to bedding, and also contain grains of equivalent size parallel or 

subparallel to the plane of cleavage. At a TEM level ( <0.1 !liD) these cleavage planes 

consist of white mica, chlorite, and interlayer chlorite-white mica. It can appear as well 

defined and differentiated subunits of white mica and chlorite. Only white micas and 

chlorites appear to be homogenous at the optical level of resolution. The powder X-ray 

diffraction patterns also verify that the only detectable phyllosilicates occurring in all 

samples are chlorite and white mica. 

White and Knipe (1978) reported a microstructural study on cleavage development in 

selected slates. They used high voltage transmission electron microscopy to detail the 

microstructural study carried on three types of slates. All these slates contained a low 

percentage of quartz and carbonate and had domains of orientated phyllosilicates 

(cleavage lamellae). The materials in between these lamellae are lenticular domains that 

contain deformed phyllosilicates and that are enriched in secondary minerals. After 

examination by electron micrographs, they found that the initiation of cleavage lamellae 

occurred along zones of intense deformation, viz., along kinks and microfolds that form 

from initial crenulations. They also observed strain induced crystallization and the growth 

of metamorphically stable phyllosilicates together with mechanical rotation of the 

phyllosilicates during cleavage development. Once cleavage was initiated it extended 

laterally into the lenticular domains as deformation proceeded. They examined 
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interference between adjacent phyllosilicates during deformation and stated that resultant 

extension sites were often enriched in secondary minerals. They laid emphasis on the 

importance of mechanical rotation for cleavage development. They classified slates into 

two types depending on the microstructural study of cleavage. These were: (i) cleavage 

developed in slates due to well defined planar discontinuities such as cleavage lamellae, 

which enclosed lenticular domains of quartz, calcite, feldspar and phyllosilicates with 

their planes at a high angle to cleavage; and (ii) cleavage due to the preferred orientation 

of nearly all platy minerals together with a preferred dimensional orientation of quartz 

and carbonates parallel to the platy minerals. Syntectonic crystallization and the preferred 

growth of new platy minerals approximately parallel to the flattening could be a possible 

mechanism for cleavage formation. They stated that this slaty cleavage was divided into 

two groups such as (i) cleavage without syntectonic phyllosilicate recrystallization 

generally called crenulation cleavage; and (ii) cleavage with syntectonic phyllosilicate 

recrystallization. Solution of grains along cleavage planes and precipitation of material 

within the cleavage lamellae with increasing syntectonic metamorphism modified the 

crenulation fabric. If metamorphism increased further then the crenulation fabric was 

gradually demolished. Slaty cleavage fabrics were usually developed by mechanical and 

chemical processes. 

The above discussions describe the various features that contribute to crack development 

in slate material. However, the laboratory splitting process (crack propagation into the 

material) could also be happening as a result of the processes described above. From the 

study mentioned above it is seen that easy splitting of slate into two parts happens due to 

the following reasons: 
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(i) presence of minute flaky minerals that had re-orientated themselves along defined 

planes, with, probably, some shearing action; 

(ii) growth of new flaky minerals similarly orientated (an incipient schistosity); and 

(iii) flattening of mineral particles and grain orientation perpendicular to compression 

direction due to intense pressure and consequent deformation. 

2.4.3 Quarrying Slate 

In the past, slate was obtained from the earth's surface downward through open wells. 

However, this process is achieved today through underground mining, reached by a series 

of shafts and tunnels (www.traditionaltimberframe.com, 2005). The layers of the slate are 

generally near vertical (some geological formation photographs are shown in Figures Al

A3 in Appendix A), and are quarried with the aid of dynamite from the base in an upward 

direction. Open quarry and underground tunnel techniques (shown in Figures A4 and AS) 

are also using to extract slate. Large blocks weighing several tons are cut and brought 

through the shafts to the earth's surface. Large block of slate can also be obtained by 

sawing (diamond saw) of slate from the earth's surface downward in incremental of 

"steps" which could be in the range of 30m intervals. 

2.4.4 Geology of Slate in Newfoundland 

Bonavista formation and Britannia Cove deposit are the main geological sources for slate in 

Newfoundland [Figure 2 (a)]. Bonavista Formation consists of red, green and purple slate, 

shale, thin limestone beds and local quartz-pebble conglomerate at the base [see Figure 2.2 

(b)]. The Bonavista Formation also has links to several other potential slate deposits at Keels 

and Random Island. Blackwood (1993) has given the location of the Britannia Cove deposit. 

27 



;' / 

Red Indian. Lake 

Island ofNewfoundland 

Figure 2.2 (a): Map of Newfoundland, Canada (http://gocanada.about.com/od/maps 
newfoundland/, 2005) 
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Figure 2.2 (b): Dimension stone sites in Newfoundland, Canada [1 - Winter Quarry, 2 -
Allison Quarry, 3 - Grieve Quarry, 4 - Black Duck Cove, 5 - Great Cove, 6 - Britannia 
Cove/Nut Cove, 7- Keels, 8- Random Island, 9- Long Harbour, 10- Paradise Sound, 
11 - Summerside/Curling (number indicates the quarry locations on the map shown 
above)]. (http://www .nr.gov .nl.calrnines&en/ geosurvey/dimension/dimension.stm, 2000) 
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He mentioned that Britannia Cove deposit sits in the hinge of a 1.5 to 2.0 km long, tight, 

north-northeast trending, 5° to 30° south-southeast plunging syncline and has 

approximately 65 years of reserves. The deposit consists of approximately 60 to 65 

percent purple slate and 30 to 35 percent green slate. He also mentioned that red-purple 

and blue-green slate and minor grey slate are also available there. 

2.4.5 Introduction to Newfoundland Slate Quarries and the Manufacturing 

Companies 

Newfoundland and Labrador is the only province in Canada that has slate quarries. Quarrying 

of slate was first started in Newfoundland in 1847 at Great Cove, near Brigus, owned by 

Charles Fox Bennett (Martin, 1983) for local consumption. Purple, green and red slates were 

available in the Random Sound area of Trinity Bay. A high quality slate for roofing material 

was discovered on the north side of Smith Sound. It has been reported by Martin (1983) that 

the first slate quarry in Trinity Bay was opened in the 1850s on the north shore of Smith 

Sound. Slate obtained from these quarries was supplied both to local and export market until 

1900. In 1860, another quarry was opened by John Currie, a Welsh slater adjacent to the 

Britannia Cove quarry. John Currie operated this quarry until 1899. Thereafter, A. J. Harvey 

purchased this quarry. Harvey subsequently formed the Newfoundland Slate Company 

Limited. This company acquired the Carberry quarry in 1900 and renovated the operation and 

continued the exporting of slate until1906 when it was closed due to misfortune, fire and poor 

market. Many building roofs in St. John's, specially in the older portions, were built using 

Britannia Cove slate. Another three smaller slate quarries also operated occasionally on 

Random Island with the last quarry closing in 1910. Murray and Howley (1909) reported that 

an amount of 153,702 squares of finished roofing slate were produced between 1865 and 
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1909, and most of them were shipped to England. In the west coast of Newfoundland, 

Sumrnerside, north of Corner Brook, and Birchy Bay also had some slate quarries. 

[http://www.gov.nf.ca/rnines&enlgeosurvey/dimensionldimension.stm] 

In mid 1980s, the inactive slate quarry was activated. In 1991, Newfoundland Slate Inc. 

formed a joint venture with Miller-McAsphalt Group, Ontario, and started to distribute 

slate to the European markets with the aid of interested French producers. It was 

continued until 1994. In 1995 Newfoundland Slate Inc. developed their own market and 

produced slate tiles of around 4700 tonnes. They produced purple and green roofing 

slates (trade name was Trinity Slate), flooring tiles and flagstones. However, this 

operation was closed again in 1998. 

In 2000, Hurley Slateworks Company (Britannia Cove quarry) reactivated the quarry by 

building a new roofing slate production facility adjacent to the quarry. They are 

producing varieties of gift products such as paper weight, clock, pen cup, etc., in addition 

to roofing/flooring tiles and supplying their finished products in 12 countries. 

In addition to slates many other sedimentary rocks also consist of very thin layers. Among 

them sandstone, mudstone, gabbro, etc., are also available in Newfoundland. All of them are 

fine grained rocks and have a variety of colors. Impact splitting could also be employed on 

these types of rocks (http://www.msnucleus.org/membership /html/jh/earth/sedimentary/ 

lesson4/sedimentary4b.htrnl, 2005). 
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2.4.6 Manufacturing Process of Slate 

Slate is a natural stone that has the characteristic of a well-developed defoliation plane, 

allowing for easy splitting into layers parallel to that plane. The principal characteristic of 

this type of stone is the planar structure that allows its splitting into thin plates that are 

directly used as roofing or paving tiles. The existence of a slate quarry is recorded in the 

Doomesday Book, made by order of William the Conqueror in the year of 1086 

(http://www.traditionaltimberframe.com). The adaptation of slate for usable purposes is 

so closely linked that it is impossible to separate it from its beginning. The formation 

processes of nature have gifted slate with certain commercially agreeable properties 

which have had a deep influence on the methods by which slate was quarried and 

manufactured, as well as its suitability for use in different purposes. The manufacturing 

process of commercial slate using traditional method is in four steps: cutting, sculpting, 

splitting and trimming (Figure 2.3). In the cutting process, large irregular blocks of slate 

are brought to the earth's surface and unloaded. Then these blocks are first cut with a saw 

across the grain in sections slightly longer than the length of the structural elements. 

Thereafter, these blocks are sculpted or split along the grain of the slate, to widths slightly 

larger than the widths of finished slates. A mallet and a broad-faced chisel are usually 

used in sculpting. In the splitting area, the slightly oversized blocks are split along their 

cleavage planes to the desired thickness. The splitter's tools consisting of a wooden 

mallet and two splitting chisels are used for prying the block into halves and repeating 

this process until the desired thinness is reached. The final step provides the finished 

dimension (length and width) of slates, making them a standard square or rectangular in 
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form. Bevels are also created on the edges of the slates during this process, duplicating 

the esthetics of traditionally hand cut slates. 

Since the manufacturing process of this product using explosives is mostly manual, being 

noisy, powdery and unsafe for the workers, an alternative method of manufacturing slate 

is very important to improve working conditions and processing procedure. Boutinguiza, 

et. al. (2002) explored the capabilities of the C02 laser to cut slate tiles for improving the 

working conditions of the quarry and as well the quality of the products made of slate. 

They used a 1.5 kW C02 laser to carry out different operations. They studied the 

influence of some processing parameters such as average power, and assist gas pressure 

on the geometry and the quality of the cut. They showed that the C02 laser is a feasible 

tool for successful cutting of slate. They have satisfactorily cut slate tiles to thicknesses 

ranging from 3 to 13 mm by using a 1.5 kW C02 laser. In this method the quality of the 

cut is in direct relation to the cutting speed and the average laser power used. The 

maximum cutting speed decreases if the material thickness is increased. Some slate 

manufacturing companies such as Delabole Slate company were recently using a 

diamond wire saw and Tiger wire to create a cleaner and safer working environment 

(Daniel, 1993). They found a cleaner environment at the quarry by providing much less 

wastage of nonrenewable natural resources and a safer environment without the use of 

explosives. However, there was also another economic benefit to this operation. They 

could extract different qualities of slate present in the quarry selectively and with great 

precision and this process yielded a higher recovery rate of high integrity material 

(Daniel, 1993). This company has used diamond wire sawing with an electric powered 

machine from 1987. More recently they have been using a more powerful Pellegrini TDU 
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1. 

3. 

4. 

Figure 2.3: Slate manufacturing steps: l.Cutting; 2. (a) 151 Sawing; 2. (b) 2nd Sawing; 3. 
Splitting; and 4. Finishing. (http://www.traditionaltimbelframe.com, 2005) 

100 diesel machine and hydraulic splitter. In the hydraulic splitter method, rocks are split 

by inserting steel plugs (known as plug-and-feather assembly) into holes drilled into the 

rock body and applying hydraulic pressure thereafter. These insertions crack open the 

rock between the holes and sequently separate the rock from the parent rock. Lateral 

forces are also applied transversely inside the holes, drilled into the rock, by the hydraulic 

splitters (www.concretenetwork.com, 2004) and www.ur.com, 2004). Many industries 

also use instrumented hydraulic splitters (which apply shear type load on the rock 

specimens) to split stone (www.ceejaytool.com, 2005). Some photographs of rock and 

concrete breaking by using hydraulic splitters are shown in Appendix A (Figures A 7-I 

and A 7 -II). In this case wastage is minimized and fairly smooth breaking sulfaces are 

obtained. Using these instruments they have produced cost reduction and time saving 

while trying to clear up the overburden; thereafter they use selective cutting into the 
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quarry face, so that they can extract blocks in a planned sequence. Tiger wire saw is the 

improved quality of the diamond wire saw in terms of life and cutting rate. 

2.4.7 Processing of Slate in Hurley's Slateworks Company 

Hurley's Slateworks Company, Burgoyne's Cove, NF, is producing tiles for roofing and 

paving from naturally occurring slate material. They obtain large, irregular blocks of slate 

from quarry by using explosives. Thereafter, they cut it using the machinery shown in 

Figure A6-I. That machinery can cut reasonably large blocks of slate to a smaller size 

applying force across the grain. Then they cut it with a saw across the grain into sections 

slightly longer than the length of the finished roofing slate as shown in Figure A6-II. 

Next the blocks are split manually along the grain of the slate, progressively to widths 

slightly larger than the widths of finished slates, as shown in Figures A6-lll to A6-V. In 

this stage skilled artisans split the slate block using a broad faced chisel and a mallet. In 

the splitting area, the slightly oversized blocks are split along their cleavage planes to the 

desired shingle thickness. The splitters pry open the block into halves and repeat this 

process until the desired thinness is reached. Since the slate layer is very thin they can 

split to any desire size (in thickness direction) by striking along the layer direction. The 

last step involves trimming the slate tile to the desired size. The complete process of 

preparing the slate tiles is shown in Figures A6 (I-VII) in Appendix A. 

2.5 Failure Theory for Brittle Materials 

2.5.1 Brittle and Ductile Material 

When a material deforms permanently or it fractures into two or more parts, it is 

considered to have failed. A combination of stresses contributes to cause failure of the 
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material. Natural materials may be grouped as brittle or ductile. In general, when the 

resistance against shearing is greater than the resistance to separation (tension), it is 

considered as brittle. The opposite phenomenon is considered as ductile. Tensile stress is 

generally considered as the governing stress associated with the failure of brittle 

materials, whereas failure of ductile materials is caused by shear stresses. 

2.5.2 Failure Mechanisms of Brittle Materials 

Material is said to be brittle when a little or almost zero plastic deformation is observed in 

its failure process. Two principle modes of failure are observed in brittle materials. These 

are shear fracture and extension fracture. Beside these, grinding and frictional sliding 

could also be considered as failure mechanisms of the material. However, these modes of 

failures are basically the combination of the above two fundamental failure modes. Shear 

fracture is the result of the relative displacement parallel to the plane of failure. It is the 

governing failure mechanism of ductile materials such as mild steel. The failure plane is 

generally inclined at an angle of less than 45° to the maximum compressive principle 

stress. It is the dominant mode of macroscopic brittle failure in traxial compression tests 

at the lowest confining pressures. The micro level definition of extension 

fracture/cleavage could be stated as the separation of the atoms or molecules to such a 

distance that no interatomic forces act to bring back together the atoms. This is the 

dominant mode of failure of many rock materials, specially layered rocks such as, 

sandstone, slate, etc. The physical characteristic of the extension fracture is the separation 

of material normal to the failure surface, which is generally oriented normal to the least 

principal stress. Axial splitting or axial cleavage that normally originates from the local 

transverse stresses at flaws or heterogeneities (aggregate nature) is also an extension 
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fracture. Extension fracture can be developed both under tensile and/or compression 

loading (Paterson, 1978). The general failure modes of brittle material under tensile and 

compressive loading are shown in Figure 2.4. 

Extension fracture under compressive loading develops mainly due to the extension of 

local transverse tensile stresses in addition to axial compressive stresses at a favourable 

orientation (axially) of any flaws (circular or elliptical holes, material/plane discontinuity, 

cracks, etc.). If no resistance (such as confining pressure) is applied against such tensile 

stress, crack will start to propagate from the flaws parallel to the axis of specimen. 
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Figure 2.4: (a) Shear fracture in extension test, (b) Extension fracture in extension test, (c) 
Shear fracture in compression test and (d) Extension or axial splitting fracture in compression 
test (Paterson, 1978). 

In case of inclined flaws the maximum tensile stress component no longer occurs at the 

end of the major diameter (of the inclined elliptical flaw) but it starts from a point where 

the normal to the flaw surface is more nearly parallel to the specimen axis. However, the 

flaw will not tend to propagate in its own plane but swing into an orientation that is more 

nearly parallel to the axis of loading (Hoek and Bieniawski, 1965). 
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2.5.3 General Discussion of Brittle Failure Theories 

Brittle failure theories are mainly divided into two groups based on their empirical and 

theoretical contributions. Most of the empirical expressions of crack failure are included 

in the first group. Mohr's and Coulomb failure criteria and critical maximum tensile 

stress/strain criterion (applicable to extension failure) are the examples of this group. 

Although these theories discuss some physical terms, such as limits on stresses in certain 

planes or limits on strain energy, they discuss very little about the physical failure 

mechanism. Their main objective is to provide a support for calculating failure conditions 

under practical situations. Therefore, they are applicable only for strength failure 

condition cases. In Coulomb failure criterion (maximum shear stress criterion) failure is 

assumed to occur when maximum shear stress reaches the material shear strength. Failure 

plane is the plane bisecting the angle between maximum and minimum principal stresses 

(Vutukuri, et. al. 1974). This criterion is good for isotropic materials. But many rocks that 

exist in nature (for example, slate, schist, etc.) are not isotropic, and have preferred 

orientation of planes of weakness or other pronounced fabric. In these cases, 

consideration of anisotropy in brittle behavior is important. 

The second group of failure theories has developed theoretical models of the brittle 

fracture process to represent actual physical mechanism of fracture. These models 

contribute to the physical understanding of fracture by providing a firm basis for 

establishing failure criteria applicable to the general states of stresses. Griffith theory for 

brittle fracture is the appropriate example for this group. 
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2.5.4 Failure Theories 

The theories used to predict the strength of rock are generally classified as the maximum 

tensile stress theory, Griffith's theory and statistical theories. A plausible explanation of 

the variations of the apparent tensile strength with the consideration of size effect 

(varying volume of rock) and shape effect (various test methods) is offered by the 

statistical theories. Weibull (1939) theory is used as statistical theory mostly applied to 

rock failure. Statistical theory will not be discussed here since it is not used in the present 

study. A brief discussion of maximum tensile stress theory and Griffith's theory is given 

below; 

2.5.4.1 Maximum Tensile Stress Theory 

Crack will propagate in a solid when maximum tensile principal stress in a small region 

around the crack tip reaches the ultimate tensile strength of the material. In that region 

stresses are assumed to be constant and equal to the ultimate tensile stress. This small 

local region is named as micro crack processing zone for brittle materials (Peterson, 

1978). The mathematical expression for this criterion is written as, 

(at fracture) (2.3) 

where the notation Max indicates that the largest value of the three principal stresses 

separated by commas is considered. au represents the ultimate tensile strength of the 

material and a1, a2 and a3 are the principal stresses perpendicular to one another. 
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2.5.4.2 Griffith Theory 

Before discussing Griffith's theory it is necessary to describe the nature of Griffith cracks 

considered by him for explaining the theory. Griffith mentioned that typical brittle 

materials inherently contain submicroscopic cracks and/or other heterogeneous 

discontinuities. They exist in the volume of material with a random orientation and at 

locations of local stress concentration. Fracture initiation basically starts from those 

flaws. These types of flaws are called Griffth cracks. In order to prove his theory Griffith 

carried out a series of tests on varying thickness specimens. He observed greater strength 

in thin specimens than those obtained from thick specimens. He explained that the reason 

could be the presence of microscopic flaws, which are less in thin specimens and more in 

thick specimens. In order to predict theoretical fracture strength of brittle solids, Griffith 

considered a narrow elliptical hole in a thin plate to simulate the inherent micro crack. 

Thereafter, he established a relationship between fracture strength and the crack size 

based on the stress analysis developed by Inglis (1913). 

2.5.4.3 Theoretical Development of Griffith Theory 

The statement "materials contain flaws (micro-cracks) and tensile failure happens due to 

the extension of the flaws" was postulated first by Griffith in 1921 (Gdoutos, 1990). He 

obtained this idea during the experiments he conducted on the deformation of the 

theoretical strength of glass, an apparently homogeneous and isotropic material. When 

the material was stressed either by tensile or compressive load, large tensile stress 

concentrations occurred around the tips of favourably oriented cracks (shown in Figure 

2.5). When the tip tensile stress reached the ultimate strength of the material, the crack 

started to extend, and ultimately failure occurred (Vutukuri, et. al. 1974). 
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Inglis (1913) mentioned that the maximum tensile stress CJm developed at or around the 

tips of the elliptical hole in a flat plate of unit thickness subjected to an average tensile 

t t t t 
radius r 

Figure 2.5: Stress distribution at the end of the elliptical hole (Vutukuri, et. al. 1974) 

stress cr in a direction perpendicular to the major axis to be equal to, 

( 
y/2 

CJ rn = 2cr ; ) (2.4) 

where, r is the radius of curvature at the ends of the major axis, and c is the half length of 

crack along the major axis; the stress was proportional to r112
• 

Griffith also stated that when crack extended, new surfaces were created and energy was 

absorbed by these surfaces. He compared this energy to the surface energy of the fluid. 

Griffith established the energy balance analysis for materials subjected to stable crack 

extension phenomenon by equating energy supplied by the change of strain energy within 

the solid and the change in potential energy of the applied forces for an infinitesimally 
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small change in crack length to the energy absorbed by the creation of the new crack 

surfaces. He mentioned that if the released elastic strain energy (the energy pumped into 

the fracture zone from the elastic bulk of the solid) of the body was more than the 

absorbed energy by the creation of the new crack surfaces, a crack would extend. The 

elastic strain energy released by the extension of a crack in a thin plate of unit thickness 

was given by 

(2.5) 

and the surface energy absorbed by the creation of the new crack was given by (Griffith, 

1921) 

Ws = 4cys (2.6) 

where, Ys is the surface tension and E is the Young's modulus of elasticity. Therefore, the 

total energy decrease due to the extension of crack could be written as, 

(2.7) 

By minimizing the total energy, Griffith found the tensile stress a to cause crack growth 

to be, 

( 2 E)1

'

2 

a = ~ >a - t nc 
(2.8) 

where, a1 is the ultimate tensile strength of the material. 

Griffith also provided the condition for stable crack growth as, 

( 2 E)112 

a>~ 
nc 

(2.9) 
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In case of unstable crack growth, fracture condition will not follow any particular relation 

between c and a. In addition, crack propagation velocity will also play another role. In 

this case crack propagation cannot be controlled by controlling the applied load. When 

significant amount of energy was available and propagation velocity exceeded the 

maximum speed, the crack would start to branch out and follow several paths (Vutukuri, 

et. al. 1974). Griffith theory is particularly suitable to the case of rock failure resulting 

from compressive stresses. 

The energy based Griffith formula concerns stationary crack. However, in dynamic crack 

propagation, this formula needs to be updated by including the terms for kinetic energy 

absorption. This energy is absorbed when material on one side of crack gets a motion 

relative to that on the other side. The stress field is also modified around the crack tip at 

high crack velocities. 

2.6 Fracture Mechanics 

The failure process in which new surfaces are created in the form of cracks in a material 

or existing crack surfaces are extended is defined as fracture. Fracture mechanics offers a 

mechanistic and a rational understanding of the mechanism of fracture over the other 

strength predicting methods of the materials. It is a logical extension of Griffith energy 

balance analysis of crack growth. It covers the shortcomings of Griffith's analysis. 

Griffith didn't consider absorbed energy due to localized crack non-linearity, in his 

energy balance criterion. However, this is taken into consideration in this approach. 

Griffith's method is essentially valid for a perfectly elastic-brittle material and cannot be 

used for situations where high local plastic deformations occur at the crack tip. Orowan 
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(1947) and Irwin (1948) proposed that Griffith method could be used in the case of 

limited plastic deformation (non-linearities are confined to a small region surrounding the 

crack tips) at the crack tip if plastic surface work is included in energy balance method. 

Materials that belong to a limited zone of plastic deformation can be characterized by 

their fracture process using the critical strain energy release rate. If the critical strain 

energy release rate, the size and the location of the longest expected flaw in the body are 

known, it is possible to predict the maximum stress that a body can resist. Therefore, 

critical strain energy release rate could be considered as an important factor in dealing 

with fracture mechanics problems. Critical strain energy release rate (Gc) is not constant 

with test geometry. Brown and Srawley (1965) mentioned that in materials having a large 

plastic zone at the crack tip in comparison to the crack dimension and the thickness of the 

specimen, Gc is not invariant. 

The aim of fracture mechanics is to establish a quantitative measure for a crack of given 

size to initiate and propagate in an adverse manner under service loading and therefore to 

determine the degree of safety against the failure by fracture that the structure possesses 

(Whittaker, et. al. 1992). Linear elastic fracture mechanics (LEFM), non-linear elastic 

fracture mechanics (NEFM), dynamic fracture mechanics, etc., are the branches of 

fracture mechanics. The proposed failure criteria in LEFM and NEFM are critical strain 

energy release rate, critical stress intensity factor, the J-integral, the crack opening 

displacement and the strain energy density criteria. All criteria except strain energy 

release rate are restricted to symmetry between the applied load and crack plane and self 

similar crack growth. Therefore, crack growth direction and shape of the crack growth 

have to be known prior to use of criteria. Since slate rock material is brittle and fracture 
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process zone is small and crack growth seems to be almost in a plane (from experimental 

observation), the concept of LEFM is used to analyze the crack propagation in slate. 

Linear elastic fracture mechanics is based on an assumption of small scale yielding, 

i.e.,when non-linear plastic zone near the crack tip is sufficiently small in comparison to the 

geometry of crack and any other characteristic dimensions, such as specimen thickness. In 

LEFM, it is assumed that the process leading to the onset of crack growth and final instability 

leading to catastrophic fracture are similar (Gdoutos, 1990). Therefore, a single parameter is 

sufficient to describe the fracture process. Gdoutos mentioned that the critical value of this 

parameter represents the fracture toughness and corresponds to the onset of unstable fracture 

process. Stress intensity factor is used to characterize uniquely the crack tip 

stresses/displacements fields and fracture behaviour of the material in LEFM. Therefore, it is 

necessary to place particular attention to the stress intensity factors to describe linear elastic 

fracture mechanics well. 

2.6.1 Stress Intensity Factor (SIF) 

According to the Griffith's finding, tensile stress across the plane becomes infinite for a 

narrow crack having zero crack tip radius (due to r-112 singularity). However, the 

existence of infinite stress in the material is impossible because no material can resist 

infinite stress. Its prediction is only a consequence of the mathematical analysis which is 

based on the assumptions of linearity in the constitutive equations and of infinitesimal 

strains, both of which are not accepted at the crack tip region. Stress intensity factor (K) 

is a single parameter characterization of crack tip elastic stresses, strains and 

displacements in LEFM. It is essentially a measure of elastic stress fields close to the 
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crack tip. It is dependent only on the remote stress field and the crack size for infinite 

specimens and in addition body geometry for finite specimens. For a finite body, 

theoretical determination of stress intensity factors is difficult due to the presence of 

boundary conditions (Gdoutos, 1990). Critical value of the stress intensity factor, which 

is a measure of crack growth of solid is called fracture toughness (a material property for 

plane strain condition) and is represented by K1c. It can be determined experimentally 

using different methods (three point bending test, four point bending test, compact 

tension test, chevron notched short rod method, wedge loaded compaction test, etc.) 

established by ASTM (American Society for Testing and Materials) and ISRM 

(International Society for Rock Mechanics). 

In a three-dimensional body with an arbitrary loading system, to define the stress state 

around the crack, three stress intensity factors are required. These stress intensity factors 

correspond to three basic deformation modes such as opening, shearing and tearing 

modes of the crack plane as shown in Fig. 2.6. 

Opening mode i.e., mode I corresponding stress intensity factor is represented as K1• 

Similarly mode II (shearing) and mode III (tearing) corresponding stress intensity factors 

are Ku and Km. 

Among all the three modes, mode I stress intensity factor is the most significant one and 

is used extensively. In particular, the studies concerning rock fracture mechanics 

primarily use the mode I stress intensity factor. The onset of unstable fracture 

propagation criteria of brittle material is also based on its critical value (fracture 

toughness) (Bieniawski, 1966). 
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Figure 2.6: The three basic modes of crack extension; (a) Opening mode, I, (b) Sliding mode, 
II, and (c) Tearing mode, III, (Gdoutos, 1993) 

2.6.2 Stress Intensity Factor based Fracture Criterion 

Stress intensity based fracture criteria is equivalent to the energy based fracture criteria. 

Irwin (1957) established relationships between the mode I stress intensity factor and 

energy release rate based on the assumption that crack extension will be in the plane of 

crack. For a homogeneous isotropic material, these relationships are, 

K 1 = J EG 
2 

for plane strain 
1-v 

K1 = JEG for plane stress (2.10) 

where, G is the strain energy release rate. Crack growth direction cannot be determined 

using stress intensity method. It can be predicted using a stress criterion that can be 

expressed in terms of stress intensity factors. Fracture starts to propagate when stress 

intensity factor reaches its critical value, K1c, or strain energy release rate reaches its 

critical value, G1c, due to applied forces. K1c is referred as plane strain fracture toughness 

of the material. 
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2.6.3 J integral - A Fracture Criteria 

In linear elastic fracture mechanics it is assumed that crack tip plasticity is very small. 

However, this is not the true for all materials, specially in ductile materials. In this case 

crack tip plastic zone cannot be neglected and hence, its influence on the energy release 

rate needs to be considered. To include plasticity effect into the energy release rate, it is 

necessary to develop an exact elastic plastic solution of the crack-tip stress field. Such a 

solution could be provided using a method, which is based on the path independent 

integrals. It can determine crack tip quantities such as, energy release rate or stress 

intensity factor not only for an elastic field but also for an elastic-plastic field. It is an 

analyzing tool for fracture that can provide intense insight into the nature of crack tip 

fields in nonlinear elastic or plastic solids. It can be evaluated experimentally and its 

critical value may be used as an attractive elastic-plastic fracture criterion (Begley and 

Figure 2.7: Definition of J integral (Broek, 1974) 

Landes, 1972). It could be said that this method is an extension of linear elastic fracture 

mechanics to account for large-scale inelastic effects (Broek, 1974). 

J integral is defined as, 
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(2.11) 

where, 1 is a closed contour followed counterclockwise in an area surrounding a stress 

solid. T is the tension vector perpendicular to the normal at a point on surface 1 in an 

outside direction; it can be written as, 

(2.12) 

u is the displacement in x direction and ds is an element of 1, W is the strain energy per 

unit volume and represented as, 

W = W(x, y) = W(E) = J: aijdEij (2.13) 

For a closed contour, J can be shown equal to zero. 

Figure 2.8: Contour around crack tip 

Consider a closed contour ABCDEFA around the crack tip as shown in Figure 2.8. Since 

in elastic case J integral is apparently equivalent to energy release rate, the total energy 

release rate will be equal to the sum of contribution of all parts along the path to the 

integral. The parts CD and AF are traction free, T = 0, and dy = 0, therefore, contribution 

to the }-integral is zero. Since J integral is zero for a closed contour, therefore, the 
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contribution of ABC must be equal to the contribution of DEF. Therefore, it is 

independent of whatever path is chosen. In Figure 2.8 (b) it is seen that the paths ABC 

and DEF are not exactly closed curves; they end at the crack edges, also satisfying the 

path independent criteria. 

In linear elastic material, J-integral is related to the stress intensity factors. For 

homogeneous isotropic materials the relationships between J-integral and stress intensity 

factors are defined as (ABAQUS, 2002), 

1 2 2 1 2 
1 = - ( K 1 + K II ) +-K m for plane stress case; and 

E 2TJ 

1-v2 
2 2 1 2 . . 

1 = -- (K 1 + K II)+- K m for plane stram, axzsymmetry and three 
E 2TJ 

dimensional cases (2.14) 

For crack at the interface of two dissimilar isotropic materials the above relationship is 

written as (ABAQUS, 2002), 

where 

-=- -+-1 1(1 1] 
11* 2 T/1 T/2 ' 

{3 = T/1(K2 -1)-TJ2(KI -1), 

TJ1(K2 +1)+TJ2 (K1 +1) 
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(2.16) 



- E 
and K i = 3 - 4v i , Ei = --' -

2 
for plane strain, axisymmetry and three dimensional cases, 

1-v 
l 

Ei = Ei for plane stress, and 1]; is shear modulus of elasticity with 

i = 1, 2. (2.17) 

2.6.4 Contour Integral 

When an integral is determined by performing integration around a given contour in the 

complex plane it is called contour integral. Integral is computed by summing the values 

of the complex residues inside the contour. Details of mathematical explanation of 

contour integral is available in any calculus and analysis books or in web site 

(mathworld.wolfram.com/Contourlntegration.html, 2005). Contour integrals are valid for 

two and three dimensional analyses. Contour integral can be expanded to area integral 

(for two dimensions) as well as to volume integral (for three dimensions) over a finite 

domain surrounding the crack front using divergence theorem. ABAQUS finite element 

software follows this domain integral method to calculate contour integrals. Contour 

integral option in ABAQUS is used to evaluate the J-integral, the stress intensity factors, 

the Cr integral and the T stress in fracture mechanics with some limitations mentioned in 

ABAQUS keynote manual or user manual on using elements (ABAQUS, 2002). It can 

also be used to calculate crack propagation direction at initiation during the evaluation of 

stress intensity factors. It is possible to evaluate several contour integrals at each location 

along the crack front. Such an evaluation is thought of as the virtual motion of a block of 

material surrounding the crack tip or crack front in finite element evaluation. Each block 

of material is defined by contours and each contour represents a ring of elements around 
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the crack tip or crack front from one face to the opposite face of crack. Each new ring of 

elements is defined to surround of previous contour. An evaluation of contour integral is 

provided by each contour. Therefore, the number of contour integral evaluations is equal 

to the number of such rings of elements considered. For a crack under mixed mode 

loading, ABAQUS directly calculates the stress intensity factors by interaction integral 

method (available in ABAQUS theory manual, version 6.4) and is applicable for both 

linear isotropic and anisotropic materials. 

2.6.5 Fracture Initiation and Fracture Propagation 

As mentioned earlier, for practical purpose the tensile strength criteria is used as crack 

initiation criteria because of absence of crack closure phenomenon and simultaneous 

occurrence of strength failure and rupture. However, fracture initiation, strength failure 

and rupture take place at different stress levels under compressive stress conditions (Hoek 

and Bieniawski, 1965). Therefore, it is necessary to investigate crack propagation 

phenomena by considering all of the events separately in rock fracture processes where 

applied stress is compressive. The entire process of brittle fracture propagation in rock 

under compressive stress can be divided into four stages such as, onset of fracture 

propagation i.e., fracture initiation, critical energy release, strength failure and rupture. 

Fracture initiation: Griffith (1921) mentioned that for open cracks without friction and a 

a 
specific limit, i. e., =:::; - 3 

::::; 0.33, fracture initiation occurs when the minor principal 
aJ 

stress is equal to the uniaxial tensile strength, a 3 = a 
1 

• 
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Critical Energy Release: It is obtained from experimental evident that the propagation of 

brittle fracture consists of two processes: a slow process called stable fracture 

propagation and a fast process called unstable fracture propagation (Bieniawski, 1967). 

According to Irwin's hypothesis, during fracturing, critical energy release Gc a 

characteristic property of the material, and could be a condition for determining the 

transition from stable to unstable fracture propagation. Bieniawski (1967) has given the 

following criteria for unstable crack propagation for tension (equation 2.18a) and 

compression (equation 2.18b). 

(2.18a) 

(2.18b) 

where au is the uniaxial applied stress at the onset of unstable fracture propagation, Cu is 

the corresponding crack half-length, Gc is the critical energy release rate and vr is the 

angle between the crack plane and direction of compression. Many researchers have 

verified experimentally the concept of critical energy release rate established by Irwin's 

approach and used it to design different structures such as pressure vessels, steam turbine 

generator rotors, ships, aircraft, etc. Bieniawski applied this concept to rock. He also 

proved experimentally that the stress level at critical energy release represents the long 

term strength of rock material. He obtained from his study on unstable fracture 

propagation process that fracture propagation velocity increases fast and reaches its 

maximum value when stress level approaches its failure strength. However, when stress 

level reaches its failure strength, fracture propagation velocity becomes a constant 

(Schardin 1959, Bieniawski 1966). He mentioned that crack starts to propagate at low 

velocity at the starting of the stable fracture propagation. He also pointed out that the 
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constant velocity obtained at failure strength is related to the velocities of the three elastic 

waves, i.e., longitudinal, shear, and Rayleigh. 

Beniawski considered influence of specimen size on the fracture propagation process of 

rock. He found that the fracture initiation stress in a rock decreased with increase of the 

size of the specimen; but the increase was much less when he carried out tests on 

different sizes of soft coal rock. He reported that the discontinuities of small specimens 

are more active and fracture will propagate from this discontinuity at a low stress level. 

For large specimens, material surrounding the discontinuity offers some resistance during 

fracture initiation; therefore, the effect of a discontinuity will be less pronounced. 

2. 7 Fracture Dynamics 

Rock broken by explosives or by applying instrumented impact force, hydraulic 

fracturing, earthquake effect, etc., are dynamic events associated with the field of 

structural geology. In case of impact loading such as explosive propulsion or projectile 

impact, if time to reach the load from its zero magnitude to peak value is less than half of 

the fundamental natural period of the body, dynamic effect becomes significant (Gdoutos, 

1990, page 241). It is indicated in the elastodynamic analysis of crack problem that the 

stresses and displacements developed in dynamic loading may be different than those 

obtained during its static loading. Dynamic values are higher than static values at critical 

locations of the body. The intersection of elastic wave at the crack surfaces and other 

body boundaries may be the reasons for the higher values (Shi, et. al. 1972, Shi 1977, 

Gdoutos 1990). Among other reasons, properties of the material such as yield strength 

and ultimate strength of metal are very sensitive to the rate of loading. They increase if 
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the rate of loading increases. At high rates of loading their values increase near the crack 

in such a way that there will not be enough time to develop yielding and therefore, energy 

is released within a very short time leading to rapid crack propagation. Fracture dynamics 

deals with fracture events associated with a propagating crack due to applied dynamic 

forces by considering kinetic energy (inertia effect) developed due to movement of newly 

created fracture surfaces. It includes fracture process under static stress conditions 

(gradually increasing load) as well as dynamic stress conditions (shock or impact loads) 

(Bieniawski, 1968b). Bieniawski reviewed many research studies related to this area. He 

reported that the dynamic stress distribution around the propagating crack under static 

loading conditions differs negligibly from that under dynamic loading conditions. To 

study fracture dynamics of rock it is necessary and important to discuss the three 

following events: 

i) the stability of fracture propagation 

ii) the terminal fracture velocity 

iii) the dynamic stress state created by a propagation crack 

2.7 .1 Stability of Fracture Propagation in Rock 

It has been shown from earlier studies that fracture initiation occurs based on the 

Griffith's energy balance criteria given by, 

(2.19) 

where 

a= applied uniaxial tensile stress 

ain = value of cr when crack propagation initiates 
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y = surface energy per unit length of the crack 

E = Young's modulus of elasticity 

c0 =half-length of the pre-existing (Griffith) crack 

and fracture propagation takes place when, 

a> [a,n = ~2yE lnc0 ] (2.20) 

The latter criterion IS known as a criterion for stable crack propagation. Fracture 

propagation remains stable as long as a definite relationship between applied stress (a) 

and half-crack length (c) is maintained and satisfy the condition a > a in • Irwin's 

hypothesis (1948) has given the following relationship between a and c for brittle metals, 

a=.JGE/nc (2.21) 

where G is the released energy per unit surface area of crack. Bieniawski (1967) applied 

this relation to rock material. The concept behind this relation is, a certain amount of 

energy (G) is released from the stored energy of a structure and used to form additional 

crack surface area. The rate at which energy is released will be same as the rate at which 

energy is absorbed by the process of crack extension. Here, G is not constant, and its 

value depends upon the values a and c at any instant. 

Bieniawski mentioned that the differences between Irwin's and Griffith's a- c relations 

are that while Griffith formula is a criterion for crack initiation, Irwin's formula gives a 

functional relationship between a and c, describing a law for stable fracture propagation. 

Bieniawski found that Irwin's formula would no longer be valid when fracture 

propagation is unstable due to influence of other factors such as crack propagation 

velocity. Irwin mentioned that the relationship shown in Eqn. (2.21) could be used as a 
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criterion for the transition of stable to unstable fracture propagation. He mentioned that 

when energy release per unit crack surface (G) reaches critical value (Gc) unstable 

fracture propagation starts. He also mentioned that Gc is a characteristic material 

property. He proposed a criterion for the onset of unstable fracture propagation by plane 

stress or strain equation 2.18 mentioned earlier. Using the equation 2.18, the critical 

energy release for stress condition is written as, 

(2.22) 

For plane strain condition, it can be written as, 

0 
= (1 - v 

2 )ncr~ c u 

c E (2.23) 

where v is Poisson's ratio. It is possible to determine Gc for a particular material 

experimentally by knowing the au and Cu at the onset of the unstable crack propagation. 

Many researchers have measured apparent fracture toughness of rock experimentally 

using different methods. Klepaczko, et. al. (1984) determined fracture toughness of 

Canadian coal under quasi-static and impact loading. They used a wedge loaded compact 

tension specimen for all tests. A servohydraulic testing machine was used to carry out 

quasi-static test and split Hopkinson Bar was used for the dynamic test. They reported 

that dynamic apparent fracture toughness could be higher than its quasi-static value by 

one order of magnitude. Experimental analysis of crack growth in granite was presented 

by Labuz, et. al. (1985). They used the conventional linear elastic fracture mechanics 

techniques to calculate the apparent fracture toughness of granite at various crack lengths. 

They mentioned that fracture process zone was large for large grain-size rock after 

performing extensive closed-loop, strain-controlled fracture tests. They considered 
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inelastic part to calculate an apparent fracture toughness of smaller specimens for 

obtaining a more realistic estimate of fracture parameter. 

2.7.2 Fracture Velocity 

The theoretical quantitative measure of the speed of rapid crack growth was proposed by 

Mott in 1948. The kinetic energy disregarded in Griffith energy balance equation was 

included into the total energy of the system to calculate the speed of the moving crack. 

Mott analyzed an infinite plate with a central crack subjected to a uniform time

independent uniaxial stress perpendicular to the crack plane based on the following 

assumptions: 

(i) The stress and displacement fields for the dynamic problem were the same as 

those for the static problem, with the same crack length. 

(ii) The crack was travelling at a constant speed 

(iii) The crack speed was small compared to the shear wave speed in the body 

He determined the kinetic energy for plane stress problems to be, 

Wk = kpc 2v 2a 2 I 2£ 2 

where, wk = kinetic energy 

k =a proportional constant 

p = mass density of the material 

c = half length of crack 

v = crack velocity 

a= applied stress 

E = modulus of elasticity 
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After adding the above equation to the Griffith original energy balance approach and 

applying some mathematical operations, the expression for crack speed was obtained as, 

(2.25) 

where c0 is the initial half crack length 

In the above equation it is seen that when c>>c0 i.e., crack velocity approaches its 

asymptotic value (almost constant). He named this velocity as the terminal fracture 

velocity and expressed it as, 

v = {2n ~= {2nv 
T ~kfp ~k L 

(2.26) 

where vL = velocity of longitudinal wave propagation in rod made of the same material. 

Detailed derivation regarding this problem is available in Gdoutos (1993) and Broek 

(1974). 

2.7 .3 Experimental Techniques to measure Crack Propagation Velocity 

Measurement of crack propagation velocity under dynamic loading situation is a very 

difficult task. Initially it was measured by placing a series of conducting wires at certain 

intervals along the crack path and perpendicular to the crack plane. These wires formed 

one part of a bridge, which was connected to an oscilloscope. Once crack started to 

propagate wires also started to break one by one. Time between two successively broken 

wires was obtained from the time mark indicated in the oscilloscope. However, 

nowadays, availability of crack gauges or strain gauges or semi conductor strain gauges 

with a sophisticated data acquisition system has made this measurement a little easier. 

Their operating principles are almost the same as those of the wire conductors. The other 
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method that is widely used to determine crack velocity is the high speed photography. In 

this technique crack velocity is measured by taking photograph from a high speed camera 

capable of 106 frame per sec (approximately). Although it is suitable for transparent 

materials, it can also be used for nontransparent materials after polishing the surface of 

the specimens. 

2.7.4 Dynamic Stress Field around a Rapidly Propagating Crack 

To determine the ultimate stability of mining excavations and civil engineering rock 

structures it becomes essential to know the stress distribution around a propagating crack. 

It is an integral part of fracture dynamics of a rock mass. The theoretical development of 

dynamic stresses has been carried out mainly to study the brittle fracture of metal. 

However, these analyses are also applicable to rock. Constant velocity crack problem was 

carried out by many researchers (Shi and Chen 1972, Nillson 1972). When crack velocity 

varies with time, the solution of the crack problem becomes difficult to solve with the 

realistic solution procedures. Tsai (1973) and Kostrov (1975) studied finite length crack 

propagating problem with acceleration under plane extensional loading. A formulation of 

the problem of a rapidly propagating crack is given by Gdoutos (1990). He also presented 

the near crack-tip stress and displacement fields. The mathematical expression of singular 

stresses and displacements fields for a homogeneous, isotropic material are, 
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CJ
12 

= 2K(t)B{31 [ ~sin~- ~sin~] 
-.{in; ~-;; 2 ~;; 2 

B = 1 + f3i 
4{31{32- (1 + {3; y 

2 

/3 2=1-~ 2 2 
c2 

(2.27) 

where, K(t) = time dependent stress intensity factor, v is the crack speed, c1 and c2 are 

dilatation and shear wave speeds, r1, r2 and (h, 82 are related by the following expression, 

.
13 

1e z =x+z y=r,e 1 

1 1 1 
(2.28) 

where, z1 and z2 are the complex variable functions. 

The velocity fields of the particles near the crack tip are, 

(2.29) 

2.7.5 Relationship between Dynamic Stress Intensity Factor and Strain 

Energy Release Rate 

For a homogeneous isotropic material (Sih 1970, Gdoutos 1990), 

(2.30) 

where, f.1 = shear modulus, G = strain energy release rate and K(t) = dynamic stress 

intensity factor, {31 and fh are mentioned in equation (2.27). In order to obtain the fracture 

criteria, it is assumed that when strain energy release rate reaches its critical value that is 
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equivalent to the critical stress intensity factor, dynamic crack propagation starts. For 

fracture criteria, it is written as, 

K(t) = Km(v,t) (2.31) 

where, Kw (v,t) represents material resistance to propagate dynamic crack and is assumed 

as a material property. Dynamic stress intensity factor K(t) which is a function of loading, 

crack length and geometrical configuration of the cracked body is determined based on 

the solution of the elastodynamic problem. But Kw is determined experimentally and is 

dependent on the crack speed and environmental conditions. Dally (1979) reported that 

Kw depended on the crack speed. Its value was speed independent at low speed ( <300 

rn/s for metals and polymers) but increased as the crack speed increased. 

For a moving crack in a homogeneous orthotropic material total energy release rate, 

stress intensity factors and crack speed are related by the following expression (Yang, et. 

al. 1991), 

(2.32) 

where Hn H22 and H33 are elements of a 3 x 3 Hermitian matrix H expressed in terms of 

material parameters and crack speed v. For mode I case, 

where, 

and 

H 22 = - 2
-1'hz ~2(1 + s) I~ in which R is the Rayleigh wave function 

c66R 
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11af3 = Caf3 I C66 , a, f3 = 1, 2. (2.35) 

where C12, Cn, C22 and C66 are elements of the elastic constants of the orthotropic 

material. Substituting all the te1ms into equation (2.33). 

(2.36) 

2.8 Summary 

In this chapter a study of impact responses of man made layered materials (layered composite 

materials) and naturally formed layered materials have been presented based on studies carried 

out during the last few decades. Geological formations of slate and their characteristic 

properties, quarry techniques and the industry process of making slate tiles have been 

discussed. Geographic locations of Newfoundland slate quarries and the types of slate existing 

in each quarry have been discussed with a brief introduction of quarry management. The 

failure criteria which are appropriate for rock fracture process such as maximum normal stress 

criteria, Griffith criteria and fracture mechanics based criteria have been presented 

highlighting Griffith theory of brittle fracture. Introduction to LEFM with a detailed 

description of stress intensity factor, its application to analysis of crack growth, and its 

advantages over critical strain energy release rate have been discussed. Fracture dynamics of 

brittle materials, criteria for dynamic crack growth and associated factors, dynamic rock 

cutting process, and experimental methods to determine dynamic stress intensity factors have 
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been reviewed. While reviewing linear elastic fracture mechanics it is seen that fracture 

propagation of rock can be predicted using LEFM principles. However, crack initiation cannot 

be predicted by LEFM due to the development of fracture process zone at the crack tip prior to 

the propagation of crack into the body. 
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Chapter 3 

Theoretical Background 

3.1 General 

In this study finite element method is used as the numerical analysis tool to investigate 

splitting process of slate rock. Many researchers have used this method in studies of 

cracked bodies to determine crack tip energy release rate, stress intensity factors and 

other field variables such as stresses, strains, displacements, etc., (Browning, et. al. 2001, 

Craig, et. al. 1998, Jih and Sun 1990, Shih, et. al. 1986). For stable or unstable running 

crack problems this method has been used with desired accuracy (Malluck and King 

1980, Mall, et. al. 1980, Sun and Hun 2001). Finite element method together with other 

theoretical developments relevant to the present research are discussed in the following 

sections to clarify the essential issues involved in the modelling and analysis of the 

problem. Material classifications, effective modulus theory, behaviour of the cracked 

body under external loads, finite element formulation of eight-noded isoparametric plane 

strain element and eight-noded isoparametric solid element and node releasing technique 

are discussed in this chapter. 
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3.2 Material classifications in the theory of elasticity 

Materials are generally classified as isotropic and anisotropic. In isotropic material 

elastic constants (Young's modulus of elasticity, Poisson's ratio, shear modulus of 

elasticity) are independent of the co-ordinate system. In reality no material is perfectly 

isotropic at microscopic level. However, for engineering analysis, most of the materials 

are considered at macroscopic levels; even laboratory tests are carried out at the same 

level. In anisotropic materials, elastic constants are dependent on the co-ordinate system, 

i.e., they change with the changes of the coordinate system. 21 independent elastic 

constants are required to describe their elastic characteristics properly. These independent 

constants (instead of 36 elastic constants) are limited by the symmetry of the stress and 

strain tensors. There are some special forms of anisotropic materials, either man made or 

naturally formed, which are called transversely isotropic and orthotropic. In transversely 

isotropic material, elastic properties in one plane are isotropic and elastic properties 

perpendicular to this plane are different. In orthotropic material, three mutually 

perpendicular planes of material symmetry exist. The independent elastic constants 

needed to describe transversely isotropic material are 5 and for an orthotropic material 

they are 9. From experimental measurement slate has been observed to conform to a 

transversely isotropic material characterization. 

3.3 Constitutive Equations 

Stress and strain relationship within elastic limit (primarily) is obtained through 

constitutive equations. The general form of this equation is given in tensor notations as, 

aij = cijklckl (3.1) 
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where, CJij are the stresses and Skz are the strains. Cijkl are the elastic constants, it is also 

called elastic moduli or stiffnesses. It generally requires 36 constants; however, for 

symmetry conditions, the total independent constant coefficients would get reduced to 21 

for a fully anisotropic material, and to 5 for a transversely isotropic material. The elastic 

constitutive matrix for isotropic, transversely isotropic and orthotropic materials is given 

in Appendix B. 

3.4 Modulus-Anisotropy (Effective Modulus Theory) 

Rocks usually consist of a large number of different minerals. Therefore, their elastic 

moduli (Young's modulus of elasticity, Poisson's ratio and shear modulus of elasticity) 

vary from point to point. Even if it consisted of a layered material, it could have different 

mineral compositions in each layer and therefore, different elastic moduli would be 

required to characterize it properly. The analysis of rock considering different point to 

point elastic moduli of individual mineral/layer is almost impossible. Effective modulus 

is sometimes considered as a characteristic modulus of the rock mass and used in 

mechanical analysis in place of point to point elastic moduli of individual mineral or 

layer. This effective moduli values, therefore, are dependent upon the contribution of the 

individual mineral, their relative proportion, shape and orientation and if it is layered 

rock, the composition of each layer and their orientation. Theoretical analysis of treating 

rock as a composite material has been limited only to a two-phase system where it is 

assumed that it consists of elastic granular inclusions surrounded by a matrix having 

different elastic properties. Many researchers have proposed a number of equations for 

this (Paul 1960, Lama 1969). However, in most of the cases their application to real 

problems has not been carried out satisfactorily; but the concept has helped to 
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demonstrate the existence of modulus anisotropy m rocks, which have preferred 

orientation of grains of varying shapes. In this sense the layered rock could be 

considered, as a multi-phase system. The experimental determination of elastic moduli in 

each layer of the layered rock is very difficult due to thinness of its thickness. Therefore, 

it is important to use effective modulus for further analysis. The elastic moduli 

determined experimentally could be considered as effective elastic moduli. Because the 

moduli are determined for a block of rock that consists of many layers, the entire block 

deformations perpendicular to the layer direction under an applied load will be the sum of 

the deformations of the individual layers. From experiments it is only possible to measure 

total deformation in the direction of applied load and not that of individual layer. 

Therefore, modulus of a rock specimen determined in an experiment could be considered 

as an effective modulus. The total applied load will be the sum of the load carried by the 

individual layers (Lama and Vutukuri, 1978). In the following sections effective Young's 

modulus of elasticity and shear modulus of elasticity are illustrated for two cases. 

Case I - When load is applied perpendicular to the bedding plane 

If a layered rock consists of n number of layers having thickness S1, S2, S3 ..... . Sn and 

Young's modulus of elasticity £ 1, £ 2, £ 3 ....... En and subjected to a stress a in the 

direction perpendicular to the layering, the deformation of each layer can be written as, 
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(j .Sn 
~s =-

n E 
n 

(3.2) 

Since the total deformation of the body along the direction of the applied stress will be 

the sum of the deformation of each plane, therefore, total deformation can be written as, 

Total deformatiOn = LJ ~S; = -- + --+ --+--------. ~ (aS1 aS2 aS3 aSnJ 
i=l El E2 E3 En 

n 

I~si 
Since strain 1s defined as E = ..:..i=..:..

1
--

' n 
therefore, 

Isi 
i=l 

could be written as an effective Young's modulus of elasticity. Therefore, 

:. (J = E eff X E (3.4) 

In case of equal layer thickness, it can be written as, 

n 

sl =S2=S3 ........... =Sand Isi =nS (3.5) 
i=l 

Therefore, 
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E = n 

elf (-1 +-1 +-1 +-----1 l 
EI Ez E3 En) 

(3.6) 

Similarly it can also be stated that effective shear modulus of elasticity ( G~ff) is given by, 

(3.7a) 

where, G1, G2, G3 ... and Gn are the shear modulus of elasticity of the individual layer. 

For the case of equal layer thicknesses, 

n 
Geff = -1--1--1 ----1- (3.7b) 

-+-+-+ ......... +-
Gl Gz G3 Gn 

Case II - When load is applied parallel to the bedding plane 

In this case, stress distribution within the specimen will vary, but each layer will 

experience uniform strain. Therefore, total applied force per unit width of the specimen 

will be the sum of load carried by individual layer. Therefore, it can be written as, 

(3.8) 

If the thickness of the individual layer is considered as S1, S2, S3, •••...... Sn and 

displacement of each layer is considered as ~1, then equation (3.8) can be written for case 

II as, 

n 

~ZEeff L,si 
F = i=l 
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(3.9) 

In case of equal layer thickness, say, 51 =52 =53 = ............. = 5 

Therefore, the above equation (3.9) can be written as, 

E = El + E2 + £3 + .......... + En 
eff 

n 
(3.10) 

Similarly, it can be shown that, 

(3.11) 

For equal layer thickness, 

G 
- Gl +G2 +G3 + .......... +Gn 

eff -
n 

(3.12) 

3.5 Analysis of Physical System Containing Flaws - An Analytical Approach 

The determination of energy supplied by the external forces for deformation of elastic 

bodies of arbitrary shape is discussed in this section. All bodies are assumed as 

homogeneous, isotropic and linearly elastic and analysis is done only for two-

dimensional problems, either plane stress or plane strain. Assume a body containing a 

crack of length 2c acted upon by a single force, F. Due to this force a displacement 8 will 

be produced at the point of application of force. If k is the stiffness of the body in linear 

elastic limit, it can be defined as k = F I 8 . In general this is a decreasing function of 

crack length. The variation of stiffness with respect to crack length is shown in Figure 3.1 

(Hardy, 1973). The force displacement curve is also shown in the same figure. 
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Crack length (2c) 
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Crack length (c) 0 Displacement (8) 

(a) (b) (c) 

Figure 3.1: Typical crack growth experiment (Hardy, 1973) 

The force-displacement curve consists of two parts, initial elastic loading curve and the 

loci of points for which crack extension occurs. The initial elastic loading path continues 

until it meets the loci of points of crack extension. The complete force-displacement 

curve is shown in Figure 3.1 (c). The line OA represents the initial elastic loading and its 

slope is the initial stiffness of the cracked body of crack length equal to 2c. At point A 

crack growth starts, therefore, ABCD represents the locus of points of crack growth. This 

curve can be obtained by balancing the energy at fracture (equating the change in strain 

energy of the body and potential energy of the force with the energy absorbed by the 

body for all increments of crack growth). 

The energy absorbed by the body for a change of crack area can be written as, y~c where 

y is the specific work of fracture and .1c is the extended crack length. The change in strain 

energy due to the extension of crack of a length .1c is equal to the area of the shaded part 

of Figure 3.1 (c). Therefore, at fracture initiation, the energy balance is written as, 

area OBC (incremental work done during crack growth ~c) ~ y~c (3.13) 

72 



A unstable crack will be started or stopped when the following criteria is fulfilled 

dw1 d8 dU 
-=F---2y 

de de de 
(3.14) 

where wr is the energy available to cause fracture, F d
8 

is the change in potential energy 
· de 

of the force F with respect to change in crack length, dU is the change in strain energy 
de 

(U) of the body as crack grows (strain energy release rate for the fixed grip conditions) 

and y is the specific work of fracture. If external force is applied through fixed grips then 

deflection 8 is constant, however force F will decrease due to the growth of crack. 

Therefore, for fixed grips external loading condition it can be written for elastic body as, 

d8 F8 F 2 
. 

- = 0 and U =-=-.Hence the equatiOn (3.14) can be expressed as, 
de 2 2k 

dU 
= 

de 

Since 8 = F = constant, therefore, 
k 

= 
d(F 2 12k) 

de 

I_ dF = -F !_(I_ l 
k de de k) 

(3.15) 

(3.16) 

After substituting equation (3.16) into the equation (3.15) and applying some 

mathematical rules, equation (3.15) can be written as, 

dw J _ dU _ F
2 

d ( 1 J ---------
de de 2 de k 

(3.17) 

Some researchers have also shown the same result for constant load conditions. 
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Figure 3.2: Illustration of the effect of stiffness of the force in the fracture criterion. 

(Hardy, 1973) 

The above discussion on fracture criteria is based on the application of the single load 

condition. However, this criterion will not change when a body is subjected to n forces. 

When n forces are acting on a body, equation (3.14) is written as, 
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dw1 d8. dU 
--=F-'--

de ' de de 
(3.18) 

where Fi are the forces applied at points i, 8i are the displacements in the direction of Fiat 

the points i and i = 1, 2, ..... .. n. 8i are related to Fi by the following relation, 

(3.19) 

where Aij is the influence coefficients called compliances. Its values depend on the 

geometry of the body and the crack length. The strain energy for n applied forces is 

written as, 

1 1 
U =-F8 =-A.FF 2 l l 2 '1 l 1 

(3.20) 

After substituting displacement and strain energy expressions from equation (3.19) and 

(3.20) to (3.18), it can be written as, 

dwf = F d8; _ _!_~(F8) 
de ' de 2 de ' ' 

= F ~(X F)-_!_~(A.FF) 
' de '1 1 2 de '1 

' 
1 

(3.21) 

dF; dFj 
+A.F-+A.F-

'1 1 de '1 ' de 

By applying the Maxwell's reciprocal rule A;j = .ltji and canceling all terms involving dFi 

the equation (3.21) can be written as, 

dw1 1 d\ 
-=-FF-

de 2 ' 1 de 
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It is seen from equation (3.22) that the available fracture energy is independent of the 

type of the application of the force. For a single force system equation (3.22) can be 

written as, 

(3.23) 

This is identical to equation (3 .17). When applied forces are kept constant the equation 

(3.22) can be written as, 

dw1 =!_FF dAij =!!:_ (FiFjJ.ij) = dU 
de 2 ' 1 de de 2 de 

(3.24) 

This shows that the energy available to cause fracture is identical to the strain energy 

release rate. It can be concluded that the application of the energy balance criterion to the 

bodies, acted upon by a system of forces, could be applied without considering the 

potential energy changes associated with the applied loads. 

3.6 Finite Element Analysis 

3.6.1 General 

In finite element analysis, the structure under external loads and/or internal body forces is 

divided into a finite number of elements connected to one another through nodes. 

According to the philosophy of finite element method nodal displacements of the 

elements are determined first by inverting of the global stiffness matrix (K), and then 

multiplying (K)-1 by the load vector. Global stiffness matrix is formed from the known 

element stiffness matrix by the principle of superposition. All loads and boundary 

conditions are assumed to act through the nodal points. Once displacements and stiffness 
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matrix are known, the strain energy of the body would be determined directly from the 

following relationship as, 

(3.25) 

where U is the total strain energy of the body, { 8} is the displacement vectors and [K] is 

the stiffness matrix. By increasing the number of elements within the body, it is possible 

to improve the accuracy of any field variable. In case of crack problems, reasonable 

accuracy of field variables (displacements, stresses, strains, etc.) near the crack tip could 

be achieved either by increasing the density of the elements or using crack tip singular 

elements in static crack problems. In running crack problems, the application of crack tip 

singular elements seem to be quite difficult as one needs to keep on changing the nodal 

coordinates of all the crack tip elements (one side of all elements joining at the crack tip 

is cracked and the midside nodes on this side need to be moved to the one quarter point 

nearest the crack tip); therefore, conventional elements with high element density near 

the crack propagation region are preferred (instead of singular elements) to analyze the 

problem. Many researchers have used FEM to determine stress intensity factor/energy 

release rate at the crack tip using conventional elements (Chan, et. al. 1970, Weber 1971, 

Sun and Hun 2001). Mall and Luz (1980) simulated fast fracture problems using eight-

noded 2D elements, based on the concept of the sequential release of nodes along the 

crack path. They analyzed a uniformly expanding crack in a square region subjected to 

uniform tension on the edges parallel to the crack path. They used very stiff massless 

truss elements to constrain the vertical nodal displacements along the crack path. They 

computed energy release rate for each increment of crack extension from the global 

energy balance involving strain energy, kinetic energy and potential energy of remote 
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loads. In order to avoid displacement incompatibility, both comer and midside nodes 

were released simultaneously. They concluded that eight-noded elements can be safely 

employed for crack propagation problems with relaxation technique only when both 

comer and rnidside nodes are released simultaneously. The sequential node release 

technique along the crack front, using conventional 8 noded isoparametric rectangular 

and 6 noded triangular plane strian elements (in two dimensions) and 8 noded 

isoparametric brick and 6 noded wedge elements (in three dimensions), has been applied 

in the present study to simulate crack propagation in plane strain/non plane strain 

analysis. The finite element formulation for these elements is given below. 

3.6.2 Isoparametric Formulation of Two-Dimensional Plane Strain Element 

In plane strain problem strains ( Ez, Yxz and Yyz) perpendicular to the plane are assumed to 

be zero or constant. Examples of plane strain problems are dam, pipe, retaining wall, etc. 

In this problem the body's cross section has to be constant along the length direction (z) 

and load acts only either in x or y or x andy directions of plane xy and has to be constant 

along the length direction. The advantage of plane strain problem is that one needs to 

discretize the cross section only due to its identical section along the transverse z

direction; thickness of the cross section is considered as unity. Six noded linear strain 

triangular and eight noded quadrilateral isoparametric elements (Figure 3.3) are used to 

analyze plane strain problems in the present study. The formulation of six noded linear 

strain triangle is available in any text book (Logan, 2002). Therefore, it is not described 

in the present study. In this section isoparametric formulation of eight noded quadrilateral 

element is presented. The shape functions used to describe element geometry are also 

used to define the displacements within the element for this case. It can be used to create 
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nonrectangular side as well as curved sides by using higher order elements which brings 

convergence at a faster rate using fewer elements. 

+ .v 

I 

Edge ( = 

Edge 17 = t I 

/ 1 
.. (L I J 

+I 

Figure 3.3: Quadratic isoparametric element (Logan, 2002) 

The shape functions for the comer nodes, using compact index notation, are assumed as, 

(3.26) 

where i is the number of shape functions used (i = 1, 2, 3, 4), 

Sf= -1, 1, 1, -1 (i = 1, 2, 3, 4) 

r]i = -1, -1, 1, 1 (i = 1, 2, 3, 4) 

For mid side nodes 

'17i = -1,1 (i = 5, 7) 

Sf= 1,-1 (i = 6, 8) (3.27) 

where sand 17 are natural coordinates. Variation of shape functions should be Ni = 1 at 

node i, and Ni = 0 at all the other nodes. 
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The element geometry is defined in global coordinate system as, 

tH:· 0 N2 0 N3 0 N4 0 Ns 0 N6 0 

N! 0 N2 0 N3 0 N4 0 Ns 0 N6 

X! 

YI 

x2 

X Y2 

Y8 

The displacement functions are written as, 

{:}~[:· 
0 Nz 0 N3 0 N4 0 Ns 0 N6 0 

N! 0 Nz 0 N3 0 N4 0 Ns 0 N6 

ui 

VI 

u2 

X Vz 

I. e., 

u = N1u1 + N2u2 + N3u3 + N4u4 + N5u5 + N6u6 + N 7 u7 + N8u8 

v=N1v1 +N2v2 +N3v3 +N4v4 +N5v5 +N6v6 +N7v7 +N8v8 

Therefore, 
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(3.28) 

:.] 

(3.29) 

(3.30) 



and, 

The strain displacement relationship is, 

()NI 
0 

t:J= 
dX 

0 
dN1 

()y 
dN1 ()NI 
ay ax 

dU 

{c}= {::xyL !~ I dU dV 

()N2 
0 

dx 

0 
"dN2 

dy 
"dN2 aN2 

ay ax 

-+
()y dx 

"dN8 

dX 

0 

aN8 

dy 

ui 

0 
VI 

Uz 

dN8 Vz 

dy 
dN8 

dx Us 

Vs 

Using equation (3.33), the strain-displacement equation can be written as, 

where { d} as the nodal displacements vector. 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

From equation (3.33) it is seen that shape functions need to be derived with respect to 

global coordinates. The derivative of shape functions with respect to global coordinate 

can be obtained if its derivative with respect to natural coordinates is known. Since, shape 
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functions are written in terms of natural coordinates, therefore its derivative is known. 

However, by applying chain rule the derivative with respect to global coordinates can be 

obtained. 

dN1 dN1 dx dN1 dy 
--=----+----
()( dx d( dy d( 

(3.35) 
dN1 dN1 dx dN1 dy 
--=----+----
dry dx drJ dy drJ 

or 

dN1 

~[~~ ~Jr'l d( d( dx 
dN1 dx .Ez_ dN1 

drJ drJ drJ dy 

(3.36) 

dN1 
dN1 

dx = [1 J-1 d( 
0 0 

dN1 dN1 

(3.37) 

dy drJ 

where 1 is called Jacobian Matrix. Therefore, the constitutive relationship can be written 

as, 

a=Dc (3.38) 

where Dis called the stress/strain matrix or constitutive matrix. The constitutive matrices 

for isotropic and transversely isotropic plane stress or plane strain idealization are given 

in Appendix B. 

The element stiffness matrix is then calculated as, 

I 1 

Ke = f BT DBdV = t f f BT DBiJid(dry (3.39) 
v, -1-1 
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where t is the thickness of the body; numerical integration using Gaussian-quadrature 

method is utilized in evaluating the individual terms of the stiffness matrix. 

3.6.3 Isoparametric Formulation of Three Dimensional Brick Element 

The term 3D solid means a three-dimensional solid. Due to the three-dimensional 

coordinate representation they are unrestricted as to shape, loading, material properties, 

and boundary conditions. A consequence of this generality is that all six possible stresses 

(three normal and three shear stresses) and the displacement fields involving all three 

possible components, u, v, and w are taken into account. Tetrahedral and hexahedral 

elements, with three translational degrees of freedom (d.o.j) per node, are usually 

considered as typical finite elements for 3D solids. The general three-dimensional bodies 

that require more precise analysis (stress-strain, displacement) which is not possible 

through two-dimensional and/or axisymmetric analyses would be analyzed using these 

elements. The isoparametric formulation of the stiffness matrix for 8 noded brick 

elements is given below; twenty-noded elements were not considered in the study since it 

would be impossible to solve the problems considered in this study due to computer space 

limitations. The natural coordinates represented by?;, 17 and z', are shown in Figure 3.4. 

TJ 
(1,1,-1) 

.------+---..7 

(a) (b) 

Figure 3.4: Node numbering, global-coordinate system (a) and the isoparametric co
ordinate (b) representation of linear hexahedral element (Logan, 2002). 
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The element geometry is defined in global coordinates by the following relation, 

(3.40) 

where Ni (i=1,2,3 .... 8). The shape functions are written as, 

N = (1 + ((;){1 + nnJ(1 + z'z;) 
l 8 (3.41) 

The displacement functions are defined as, 

(3.42) 

where Ni are the same functions that are defined in equation (3.41) 

The strain displacement relationship is given by, 

au 
-
ax 
av 
-ex ay 

t:y aw 
{c: }= 

t:z ax 
= 

Yxy au av 
-+-

(3.43) 

y YZ 
ay ax 

Yzx 
av aw 
-+-az ay 
aw au 
-+-ax az 

Using equation (3.42), equation (3.43) can be written as, 

{t:}= [B ]{d} (3.44) 

where 
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Therefore, !1_1 can be written as, 

Nu; 0 0 

0 N1,1J 0 

0 0 Nl-' 
B= ·'- (3.45) 
-I 

Nu; NI,1J 0 

0 Nl-' NI,1J •'-

Nl, ,z 0 Nu; 

where the comma after the subscript indicates differentiation with respect to the variable 

that follows. Therefore, in index form the coefficient of [B] matrix can be shown to be, 

Nt; l, 
0 0 

0 Ni,1) 0 

0 0 N, 
B= 

l,Z (3.46) 
-I 

Nt; Ni,1J 0 
!, 

0 N, 
l,Z 

N !,1) 
N, 

l,Z 
0 Nt; l, 

The element stresses are related to the element strains by, 

{a}= [D Xc} (3.47) 

where [D] is the constitutive matrix. The constitutive matrix for three-dimensional elastic 

isotropic material and transversely isotropic material are given in Appendix B. 

The element stiffness matrix is written as, 

I I I 

[k] =I I f[s r [D ][B ]l\dsd1Jdz' (3.48) 
-1-1-1 

where Jacobian matrix [1] in local coordinate ( (, 1], z) system is given by, 
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ax ay az 
-

as as as 

[1]= ax ay az 
(3.49) - -

a17 a17 a17 
ax ay az 

-
az' az' az' 

JIJ is the determinant of the Jacobian matrix, [B] the element matrix in isoparametric 

natural coordinate system and [D] the constitutive matrix. 

The order of element stiffness matrix in equation (3.48) is 24x24. In order to obtain this 

matrix, one needs to perform integration of equation (3.48); however, this process is very 

tedious and difficult to perform. Therefore, numerical integration is used to obtain the 

terms of the element stiffness matrix [~.]. This matrix for a 8-noded linear solid 

isoparametric element can be evaluated by the following Gaussian quadrature rule: 

n 

k = ""B 7 (r.,n.,z')DB(r,n ,z''~l(r.,n.,z''~WW.Wk - L.,;- '='r 'lz 1 -- ~~ 'lz 1,..., '='l 'lr z.JI l J (3.50) 
i=l 

where n is the number of integration points and W;, Wj, Wk are the associated 

weights. The number of integration points considered in the ABAQUS finite element 

package software for 8-noded element and reduced integration element are 2x2x2, and 

lxlxl, respectively. In case of 8 Gaussian points integration, the weights Wi = ~ = Wk 

= 1. Once the element stiffness matrix is computed, global stiffness matrix is obtained by 

applying superposition principle and nodal displacements are calculated from the known 

value of stiffness matrix and load (including traction and body forces). The crack tip 

stress at the intensity factors are calculated based on stress, strain and displacement 
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fields developed crack tip by using the contour integral described earlier in section 

2.6.12. 

3.7 The Near Crack Tip Nodal Force in Node Release Technique 

Node release technique is used to simulate plane crack propagation in a body. A finite 

element model near the crack tip for a problem having elastodynamic symmetry about the 

crack plane is shown in Figure 3.5. Here crack-tip trajectory is made to coincide with the 

symmetric axis of the model. In node release technique, crack tip moves after a time 

interval by passing the location of node A and proceeding to the location of the 

neighborhood node B in the finite element model. In this case, the restraint force of node 

A, F, decays from the magnitude F0 , which is computed at the instant prior to the release 

of node A, to zero. The variation of the restraining force (from Fo to zero) is taken 

differently by different researchers. 

J P1<0PAGATlON 
DlRECTION 

A l 

Figure 3.5: Crack tip neighborhood of finite-element model 

Two types of algorithms were discussed by Malluck and King (1980). One was proposed 

by Malluck and King and named MK and other by Rydholm, Fredriksson, and Nilsson 
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and named RFN. MK used the following relationship between restraining force F, which 

decayed gradually and the reaction force F0 based on some assumptions. They assumed a 

constant stress-intensity factor when crack tip moves from one node to the other and a 

linearly varying displacement between the nodes. 

(3.51) 

where b is the distance from node A to the crack tip and L\ the distance between the 

nodes. F is the virtual-work-consistent nodal force appropriate to a singular external 

traction field travelling in advance of the crack tip. 

In RFN' s formulation F is allowed to decay in such a way that energy-release rate is kept 

constant in the finite element model when the quasi-static crack tip travel between nodes 

A and B, while prescribed remote loads or displacements are held constant. According to 

RFN algorithm the variation ofF is written as, 

_!_ = [1- ~]1/2 
Fa ~ 

(3.52) 

Figure 3.6 shows the variations of nodal force with crack-tip location for MK and RFN 

algorithm. It is seen that in MK's formulation the force decays more rapidly at the 

beginning of the interval of extension and the other decays more rapidly at the end of the 

interval. In the present study, ABAQUS finite element software is used to determine 

integration point stresses in local directions and mode I stress intensity factor as crack 

propagated dynamically in the slate block during impact splitting. It appears from 

ABAQUS analysis results that variation of released force with respect to time (at the 

relaxed node just before the crack tip node) follows a straight line as crack tip moves. 
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Figure 3.6: Variation of nodal force with crack-tip location 

3.8 Summary 

At the beginning of this chapter, relevant material characterization (required for slate 

material) and constitutive equations are reviewed. Effective modulus theory and the 

fundamentals of the analysis of the physical system having interior cracks have been 

discussed. Basic finite element method with the formulation of eight-noded isoparametric 

plane strain elements and eight-noded 3D isoparametric brick elements have been 

reviewed for isotropic materials as well as for transversely isotropic materials. Node 

release technique that is used to simulate dynamic crack propagation in a plane or three-

dimensional transversely isotropic material has also been discussed to illustrate the load 

transferring mechanism from released node to crack tip node. 
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Chapter 4 

Experimental Determination of Properties and Splitting 

Forces of Slate Rock 

4.1 General 

The experimental investigations described in this chapter were carried out to determine 

different material properties and splitting forces of naturally bedded layered slate rock, 

required to validate the results of subsequent numerical analyses. A full-fledged 

experimental program would require an extensive test program, using variable sizes and 

shapes of specimens from a very small scale to a large scale. In this study, an optimum 

number of small scale test specimens were tested, as suggested by ASTM (American 

Society for Testing and Materials) D 3148- 80, D 2930 -78, C 120- 52, C 170- 50, C 

406 - 58, C 1327 - 99, C 1421 - 99, E 384 - 99 and E 140 - 97, 2000 and ISRM 

[International Society for Rock Mechanics - Fracture toughness suggested methods 

(1988)]. Most of the tests were conducted following the specifications established by 

ASTM and ISRM. 

4.2 Outline of the Experiments 

The entire test program was divided into five separate groups based on their similarity in 

test procedures. Determination of modulus of elasticity, Poisson's ratio, compressive and 
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tensile strengths, hardness and coefficient of friction were taken as group # 1. Fracture 

toughness test was considered as group # 2. Group # 3 considered the measurement of 

crack propagation velocities in plane strain and non-plane strain specimens during impact 

splitting. Microscopic investigations to determine grain sizes, intergranular characteristics 

(microcrack at the grain boundaries), discontinuities in the material/layer, layer thickness 

and homogeneity of layer were taken as group # 4. Splitting tests, which were the main 

focus of this research, were considered to be part of group# 5. Specimen preparation, test 

set up, testing procedures, plotting and interpretation of results are given in sections 4.5 

and 4.6. 

Determination of fracture toughness of slate material was one of the most important tests 

carried out in this investigation. Fracture propagation criterion was established based on 

the results obtained from this test. Special care had to be taken at every stage of this test, 

from the preparation of specimen to the completion of the test program, including 

instrumentation set up, loading rate, calibration of instruments, data acquisition, plotting 

and interpretation of test results. Beam bending (three/four point bending) experiments 

were carried out to determine the fracture toughness of slate material and details of 

specimen preparation and testing procedures are given in section 4.7. 

Crack propagation velocities were measured using strain gauge sensors attached to the 

test specimens at very close intervals along the direction of the crack propagation and 

perpendicular to the crack. Details of this test program are given in section 4.8. 

The physical properties, which could not be determined from macroscopic investigations 

of the material, such as mineral contents, grain size, texture and micro crack were 
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determined through a micro-photographic study of the material. Thin sections were 

carefully prepared to carry out these studies. Scanning Electron Microscope (SEM) was 

used for this purpose. Test procedure, analysis of microscopic sections and results 

obtained from this study are reported in section 4.9. 

Impact splitting of regular sized slate blocks for plane strain and non plane strain (typical 

three dimensional slate blocks) tests were carried out to determine the breaking loads of 

slate blocks. These results were used for validating the results of numerical studies 

carried out on finite sized slate blocks for the subsequent parametric study. 

Instrumentation, test set up, data acquisition, analysis systems and discussion of test 

results are given in section 4.10. 

4.3 Experimental Equipment 

To carry out all of the laboratory tests mentioned above, except the microscopic 

investigation, one needs to apply forces on the test specimen and measure the resultant 

displacements and/or strains at requisite locations. A servo-controlled (electro-hydraulic) 

testing machine (either a universal testing machine or a hydraulic actuator with servo 

control system) was used to apply force to the specimens. Strain gauges and LPDTs 

(Linear Potentiometer Displacement Transducer) were used to measure strains and 

displacements. In the servo-controlled testing machine, experimental outputs were given 

as functions of time. A strain gauge based load cell transducer placed in series with the 

test specimen was used to record the force obtained during the test program. Before obtaining 

the results the load cell had to be calibrated using a standard calibration method provided 

by the manufacturing company. A wedge shape indentor (shown later in Figure 4.19 (a)) 
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was used to carry out impact splitting tests on different sizes of slate blocks. Lab View 

data acquisition and analysis software (1999) was used to acquire results from the 

experiment in a usable format after applying relevant conversion factors to the voltage 

signals obtained from electrical sensors or transducers. Thereafter, results were stored in 

a computer for further analyses and plotting. 

4.4 Instrument Calibration 

Before using any instrument one should make sure whether it works accurately or not, 

and hence one needs to calibrate all the equipment used in the study prior to performing 

the tests. LPDT, strain gauges and load cell (strain gauge based) transducers were used to 

gather results from the tests through Lab View data acquisition software. The calibration 

procedure used in the present study for these instruments are given in the subsequent 

sections. 

4.4.1 Strain Gauges 

Strain gauges were used to measure velocities of dynamic crack propagation during the 

splitting tests on slate blocks. It was also used to determine the elastic moduli, Poisson 

ratio, and fracture toughness of the test material. Four different types of axial strain 

gauges were used in the present test program. They were referenced as the number C6-

1161-B, CEA-06-SOOUW-120, EA-15-SOOBH-120 and EA-06-240LZ-120. The first 

three gauges were used to determine the velocity of the crack while the last type was used 

to determine the mechanical properties of slate. All types of gauges were made by Micro

Measurement Division of Measurements Group, Inc., USA. The data related to the 

properties of gauges are given in Table 4.1, in which gauge factor is defined as, 
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F M./ R h R ... 1 . AD h . . L . . 11 h = , w ere = Imtia resistance, Lll\ = c ange m resistance, = ongma engt , 
MIL 

M = change in length. 

Table 4.1: Properties of strain gauges used at 24 °C 

Gauge Type Gauge length Resistance Gauge Factor Transverse 

Sensitivity 

C6-1161-B Not available 120±0.2% 2.060±0.5% Not available 

CEA-06-500UW-120 6mm 120±0.3% 2.045±0.5% -0.4% 

EA-15-500BH-120 15mm 120±0.15% 2.115±0.5% 0.0% 

EA-06-240LZ-120 6mm 120±0.3% 2.060±0.5% ( +0.2±0.2)% 

4.4.2 LPDT, Strain Gauge and Load Cell Calibration 

LPDTs (as a substitute for LVDT), strain gauges and the load cell were calibrated 

according to standard calibration procedures supplied by the manufacturing company. 

Since all of these sensors and transducers were electronic devices, the data obtained from 

those instruments consisted of readings in voltages units; this voltage value had to be 

converted to the physically measured values by appropriate conversion factors. The 

acquired voltage unit was converted to some relevant engineering unit such as, mm or 

inch (displacement), micro strain (strain) and lbs or N (load) by multiplying it with the 

conversion factor, obtained through calibration procedures. To obtain the conversion 

factor for LPDT (linear potentiometer displacement transducer) in the data acquisition 

system, the LPDT was connected to the data acquisition board and its core was moved 
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through a defined displacement and the distance travelled was measured by a slide caliper 

having micrometer reading device. The voltage change developed by the LPDT due to 

the movement of core was then correlated to the measured displacement. Linear 

relationship was observed to exist within a displacement range of- 0.025 (0.635 mm) to 

0.025 inch (0.635 mm). A curve was plotted using the data obtained from slide calipers 

reading and the corresponding voltage change; the slope and intercept of the curve were 

determined and used as conversion factors. A 2.5 mm movement of LPDT core caused a 

change in voltage signal 1 volt. Therefore, a factor 2.5 was considered as a conversion 

factor for LPDT reading. 

Change of voltage signal to the corresponding microstrain (for the specific strain gauge) 

was accomplished by using a conversion factor in the Labview data acquisition software. 

The factor used in this case was 5milli-volt = 1000 micro-strain (user manual, LabView 

5.4). In order to prove this a digital strain gauge calibrator was used. After connecting the 

two output ends of the strain gauge with the Labview data acquisition board, the positive 

and negative ends of the strain gauge calibrator were connected to the strain gauge 

terminal. The calibrator showed 1000 micro strains in the data acquisition system for a 5 

milli-volt potential difference. 

All strain gauge load cells were calibrated using a Universal Testing Machine (UTM) that 

was calibrated by the National Bureau of Calibration, Canada. This machine (UTM) is 

usually calibrated once a year. Before testing, a calibration chart was made by making 

comparison of values obtained from the load cell and UTM. It was observed that load -

voltage curve showed a linear relationship up to certain portion of the applied load. On 
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the basis of this linearity a conversion factor was obtained and used in Lab View data 

acquisition software to compute the equivalent load of voltage signal. 

A conversion factor of 1000 lbf (4448.2 N) = 1 volt for the 10 kips load cell [and 2200 lbf 

(9786 N) = 1 volt for 22 kips (97.86 kN) load cell] was applied to the data acquisition 

system to obtain the applied load (in lbs) from the tests. In order to make sure that the 

measured load was correct, the load cell was connected to an MTS 407 controller and 

load was applied on the load cell through the controller. It was observed that the loads 

acquired through the load cell using data acquisition system showed exactly the same 

load as applied by the controller. 

4.5 Experimental Investigations on Various Mechanical Properties 

of Slate 

The experimental procedures outlined in this section were used to determine the 

characteristic mechanical properties of slate rock, mentioned as group # 1 in section 4.2. 

Specimen preparation, experimental setup, testing procedures, data acquisition, analysis 

methodology and interpretation of test results are given below. Most of these tests were 

carried out in the Strength Laboratory, Faculty of Engineering and Applied Science, 

Memorial University of Newfoundland. 

4.5.1 Preparation of the Test Specimen 

Test specimens to measure the various mechanical properties of the slate material were 

made from large-sized irregular blocks of slate bought from Carew Services, Portugal 

Cove, St. John's, and regular-sized blocks supplied by Hurleys Slateworks Company 

(free samples supplied), Manuels, St. John's, NL, Canada. The initially trimmed samples 
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were stored at the laboratory in a container, filled with water to ensure that the slate 

remained moist till the time of testing. Specimens were then cut using water-cooled 

diamond bladed circular saw to various sizes and again stored in water until they were 

tested. The following sub-sections give the procedures used in the preparation of 

specimens for individual test programs. 

4.5.2 Tests for Elastic Constants 

The mechanical properties such as elastic moduli and Poisson's ratio of slate rock were 

determined by using rectangular prismatic specimens (compression tests); they were cut 

from a large block of slate approximately 12" x 12" x 4.5" (0.305 m x 0.305 m x 0.305 

m) in size. The prismatic specimens were sawed perpendicular and parallel to the three 

planes of symmetry. Prismatic cross sectional specimens, with a length to width ratio 2.0 

to 2.5 and a width of not less than 2 inches were prepared for these tests. Six specimens 

of size 2" x 2" x 4.5" (0.051 m x 0.051 m x 0.114 m) were tested to determine elastic 

moduli parallel to the layer. However, elastic moduli perpendicular to the layer was 

determined using cylindrical core specimens of size 1.375 inch (0.035 m) in diameter and 

2.8 inch (0.071 m) in length (length to diameter ratio of 2.0 to2.5 as suggested by ASTM 

D 3148 - 80). All surfaces of the experimental specimens were properly finished using 

water-cooled grinders. Finishing of the specimen ends is very important, since ridges and 

hollows at the specimen ends would form points of stress concentration that could cause 

failure of specimens at relatively low loads. Finishing of edges is also important for 

proper attaching of strain gauges. Therefore, special care was taken during grinding of 

edges and the ends of the specimens. Stiff rubber pads (almost of the same size as the 

specimen) were used at the top and the bottom ends of the specimen during the test to 
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properly distribute the load over the area (Vutukuri, et. al. 1974, Vol. 1, page-22). Totally 

eighteen specimens were prepared, twelve specimens were tested for determining in

plane elastic constants and six were tested for measuring elastic properties perpendicular 

to the bedding plane. 

The test method recommended by ASTM standard D 3148-80 (1984), for the elastic 

moduli of intact rock core specimens under uniaxial compression, was followed to 

determine the elastic constants of slate. Tests were carried out in three mutually 

perpendicular directions to see whether slate was a transversely isotropic or orthotropic 

material. Due to some fabrication difficulties (cylindrical core could not be made by 

drilling rock in a direction parallel to the layer), rectangular prisms were used instead of 

cylindrical cores. Four strain gauges were glued at the mid height of the front and back 

faces of each specimen (to avoid stress concentration, i.e., high stress gradients near the 

specimen ends in uniaxial compression tests), parallel and perpendicular to the axis of 

loading. Of the four, two strain gauges were glued in the direction parallel to the axis of 

loading and the other two were glued in the direction perpendicular to the axis of loading. 

At first a Lepage-12, 5 minute epoxy syringe glue was spread as a thin film on the 

surfaces of the slate to position the gauges. Thereafter, it was allowed to dry for 24 hours. 

After glue had dried, a smooth surface was generated by polishing the glued surface with 

fine grit sandpaper. M-Prep Conditioner A and M-Prep Neutralizer 5 (by M-Line) were 

then applied successively to the polished surface. The strain gauge was then taped and 

placed in position where it had to be fixed on the polished surface. Thereafter, the tape 

was lifted up and M-Bond 200 adhesive was applied to the surface of the slate and 200 

Catalyst was applied to the back surface of the strain gauge; after 30 seconds the back 
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surface of strain gauge got air dried completely. The gauge was then re-taped to the 

surface of the specimen and external pressure was applied using the thumb (finger) for 

approximately 1 minute to allow the adhesive to set. After a few minutes the tape was 

taken away and wires were soldered to the gauge. A multimeter was used to check the 

resistance of the strain gauge to see whether it is the same as the listed resistance of the 

strain gauge; in addition it also verifies the continuity of wires in gauge. For proper 

bonding strain gauge resistance before and after making the connections should show the 

same values. The gauge wires were then connected to the data acquisition board that was 

already connected to the computer. 

The strain gauged slate specimen was then fixed in between the two compression platens 

of the compression testing machine (shown in Figure 4.1) and care was taken to see that 

the sample was aligned centrally in the machine. As mentioned early, thin and stiff rubber 

strips were placed on the top and bottom loading surfaces (to eliminate stress 

concentration locations), before load was applied through the machine. The magnitude of 

the load was obtained from the computer by connecting the calibrated load cell/UTM to 

the data acquisition board and the computer. Load was applied at a constant rate of 100 

lbs/sec. Young's modulus of elasticity (E) and Poisson's ratio (v) were determined from 

the stress-strain curve obtained from this test. Axial stress was determined by dividing the 

load by the cross sectional area of the prism and strain was obtained from the reading of 

the longitudinal and transverse strain gauge sensors. Young's modulus of elasticity in the 

direction of the applied load was determined from the slope of the axial stress vs axial 

strain curve. This slope was determined by linear regression analysis. Since the variation 

of stress and strain didn't appear to be perfectly linear up to the maximum load value 
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(a) 

(b) (c) 

Figure 4.1: (a) Experimental setup for elastic moduli, Poisson's ratio and compressive 
strength test; (b) slate blocks ready for elastic moduli test; and (c) a block after breaking 
by compressive load. 
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(shown in Figures C-1 to C-4), the average slope of the linear portion of the curve (as 

suggested by ASTM D 3148-80) was taken into consideration to determine the Young's 

modulus. Young's modulus for a specific test sample was determined by averaging the 

results obtained from the two axial strain gauges of two sides of test specimen. 

Poisson's ratio (v) was determined by following the guidelines mentioned in ASTM 

standard D 3148-80. Since it is affected greatly by the nonlinearities present in the 

specimen at low stress levels, Poisson's ratio was calculated by using the following 

formula suggested by ASTM standard: 

v = - slope of axial curve I slope of lateral curve 

= - E I slope of lateral curve (4.1) 

where, the slope of the lateral curve was obtained along with the Young's modulus of 

elasticity. 

4.5.3 Tensile Strength 

Rocks are known to be brittle materials and very weak in tension than compression. Even 

rock failure under compression occurs due to the developed tensile stresses within the 

body. The tensile strength of rock is usually determined through direct pull tests on 

cylindrical specimen. However, indirect tests have also been suggested to determine 

tensile strength of rock when difficulties arise in gripping the specimens during direct 

pull tests. The commonly used indirect tests are modulus-of-rupture tests on beam 

specimens (flexure test) and splitting tests on cylindrical discs (Brazilian test) or 

rectangular blocks. Direct pull tests, splitting tests on rectangular blocks for indirect tensile 

strength and flexure tests were carried out in the present study to obtain the tensile strength 
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Test specimen 

Steel platform 

Figure 4.2: Test setup for direct tensile strength of slate rock (Mazur, 1985) 
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of slate rock. Specimen preparation and testing procedures for these tests are given below. 

4.5.4 Direct Tensile Strength Test 

This test was carried out based on ASTM standard test D 2936-78. A right circular 

cylindrical specimen having a height to diameter (hid) ratio of 2.0 to 2.5 was made using 

high speed cylindrical drill bits (of outside diameter 1.4 inch) on a large slate block. 

Specimen diameter was obtained as 1.375 inch and height was determined by keeping the 

hid ratio 2.0. The minimum diameter (2 inches) specified by ASTM code couldn't be 

maintained due to the nonavailability of longer diameter drill bits. However, the standard 

hid ratio was maintained. Special care was taken while using the drill for cutting out the 

cylindrical specimen so that no incidental crack occurred. This test measured the force 

required to fail the specimens in tension. Load was applied slowly at an approximately 

constant rate by making sure that test specimens did not fail in less than 5 minutes or 

greater than 15 minutes. Specimen was cemented by M-bond 200 adhesive and 200 

Catalyst to two steel rectangular blocks (at top and bottom of the specimen) whose size 

was a little greater than the specimen size; the steel blocks were gripped by the tension 

grips of the loading rig. To prevent the occurrence of bending moments (that could arise 

while applying tensile load to the specimen) the tensile loading rig was designed to allow 

lateral motion. Load was applied slowly and gradually until the failure of the specimen 

under a tensile load occurred. Experimental setup for this test has been shown in Figure 4.2. 

4.5.5 Indirect Tensile Strength 

This test was carried out on rectangular slate specimens based on the test procedures 

reported by Davies and Stagg (1970) using test setup shown in Figure 4.1. Specimen 
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preparation and testing procedures were clearly outlined in their report. Prismatic 

specimens having a side of 6 inch square and 4 inch deep were made to carry out this test. 

Machine grinding of four faces was done before testing the specimen. Test specimen was 

placed centrally on a steel rod having Yz inch square cross section and length equal to the 

thickness of the specimen. Another similar steel rod was also placed on the top of the 

specimen along the same vertical line. Thereafter, loading plates of UTM were brought to 

bear very slowly on the top of the steel rod. Load was applied through UTM until the 

block broke into two parts. Breaking load was recorded and tensile strength was 

calculated using the same procedure suggested by Davies and Stagg (1970). Four 

specimens were tested. 

4.5.6 Flexure Testing of Slate 

When a bending load is applied to the beam either through a 3-point bending or 4-point 

bending arrangement (as shown in Figure 4.3), compressive, tensile and shear stresses are 

developed in the beam. When a portion of the beam is in under pure bending moments 

only, tensile stresses are developed on the convex side of the beam and compressive 

stresses on the concave side. The extreme fiber tensile stress at failure is considered as 

the tensile strength (also called modulus of rupture) and is written based on pure bending 

beam assumptions as, 

Me 
(j =

t I 
(4.2) 

where, a1 =tensile strength, M =Maximum bending moment, c =extreme fiber distance 

from the neutral axis of the beam cross section and I = moment of inertia of the beam 

cross section. 
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Since rock doesn't have the same stress-strain behaviour both in compression and 

tension, therefore the neutral axis does not lie at the middle of the beam section. To 

overcome this problem Duckworth (1951) has given a formula to calculate the tensile 

strength of rock for a rectangular beam having different Young's modulus of elasticity in 

tension and compression in the following form: 

() = 
t 

3M(E1 +EJ 

bd 2
E I 

(4.3) 

where, E1 and E2 are the strains at the top and bottom most outer fibers of the beam, b & d 

are the width and thickness of the beam cross section. 

In order to carry out this test in the laboratory, slate block was split to a thickness of 

approximately 1 114 inch and then sawn into strips 12 inch in length by 1-5/8 inch in width 

(according to the test requirement of ASTM standard test method C 120 - 52 (1981)). 

Twelve specimens were prepared out of which half the specimens were cut with the 

length parallel to the grain and other half with the length perpendicular to the grain. 

Specimens were planed or ground down the 12 by 1 Vz inch faces to a thickness of 

approximately 12 by 1 inch. Grinding was applied to make surfaces as nearly parallel as 

possible. Load was applied at a rate of 15 lbf/sec through a three-point bending loading 

until the specimen failed completely. The breaking load was recorded and the modulus of 

rupture was calculated using the formula given in ASTM standard code C 120 - 52 

(1981). 

(4.4) 
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Figure 4.3: Experimental setup for flexure test of slate rock 
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where, R =modulus of rupture (or tensile strength) in psi (or MPa), W =breaking load in 

lbf or (N), l = span length between supports (in ft or m), and b & d = the width and the 

depth of the specimen (in ft or m), respectively. 

4.5. 7 Compressive Strength Test 

Compressive strength test was carried out mainly to determine the strength of intact rock 

and to assist in the characterization of rock masses. It measures the uniaxial compressive 

strength of rock sample in the form of specimens of regular geometry. Test has been 

conducted based on ASTM standard C170 - 50 (1981) specifications and testing 

procedures. Square prisms were cut from the slate sample by a circular disk diamond 

saw. The lateral dimension was maintained not less than 2 inches and the ratio of height 

to lateral dimension was kept not less than 1:1. Twelve specimens were prepared for 

compressive strength tests in directions perpendicular and parallel to the layer, under 

surface dry conditions. Load bearing surfaces were finished by grinding as nearly true 

parallel planes as possible, in order to distribute the load uniformly over the bearing 

surfaces. Grinding was continued until they were perpendicular to the vertical sides as 

gauged by a try square. Grinding was completed by rubbing the ends on a smooth 

machine-planed surface of a cast iron plate with No. 80 emery and water. A machine 

which is suitable and sufficient to apply the load described in the test specification ASTM 

standard C170- 50 (1981) to the slate specimens was used. Load was applied slowly at a 

rate not more than 100 psi/s. Two stiff and thin rubber pads, one at the bottom and the 

other at the top of the specimen, were used to distribute the load uniformly on the bearing 

surfaces. Compressive strength of the test specimens was calculated by using the 

following relationship: 
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w 
A 

(4.5) 

where, O"c =compressive strength in psi (or MPa), W= total load in lbf(or N) applied on the 

specimen at failure, and A =calculated area of the bearing surface in in2 (or mm2
). 

Experimental setup for this test has been shown in Figure 4.1. 

4.5.8 Hardness 

Hardness is the resistance of the material to penetration by a hard indenting spherical ball 

or other prismatic profiles. It shows a characteristic behaviour of material that depends on 

the type, quantity and quality of the various mineral constituents of the material and the 

bond strength that exists between them. Hardness index of rock is important since it 

would influence greatly the consequent & interactive wear and subsequent damage of 

rock excavating machines & cutting tools (Whittaker, et. al. 1992) - in the present case 

the impact indenter. It may also be used to measure the fracture behavior of rock through 

its relationship to fracture toughness. This factor alone may influence the rate of tool and 

cutter wear together with the energy required to cause continuous rock disintegration. 

Micro-hardness testers are used to measure hardness of the individual rock minerals or 

layers, which subsequently could be used as measure to compute the ultimate tensile 

strength of the layers of the rock. The layer strengths could then be used in the analysis of 

the splitting behavior of natural layered rocks such as slate. And it can also show whether 

individual layer material is isotropic or anisotropic by measuring the two diagonals of 

Vickers micro indenter that should show equal in size for isotropic materials. The present 

study of hardness was carried out on layered slate rock using Vickers micro-hardness 

tester to determine the Vickers/Shore hardness number of the material and to examine 
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whether individual layer is isotropic or anisotropic. This test was performed following the 

procedure described by ASTM standard test method (ASTM E 384- 99 and ASTM C 

1327 - 99) for microindentation hardness of materials and the Instruction Manual of 

MICROMET microhardness tester shown in Fig. 4.4 (Vickers type). 

4.5.8.1 Preparation of the Test Specimen for Hardness Test 

Test specimens were prepared according to ASTM specification E 384 - 99 and ASTM C 

1327 - 99 (2000). Four small pieces of rock, approximately 1" x 1" x 0.5'' (25.4 x 25.4 x 

12.7 mm) in size were cut using a circular disk type diamond saw. Thereafter, grinding 

was carried out in the presence of a water coolant to make the surface smooth. In order to 

make surface perfectly smooth and shiny, polishing the surfaces of the specimen was 

carried out using different grades of sand papers fixed on a rotating machine, rotating 

with a reasonable speed. When the hardness test of one layer was completed, a new layer 

was exposed again after removing the tested layer from the specimen and then the layer 

was smoothed and polished. The procedure was repeated several times to obtain the 

hardness values of several layers. 

4.5.8.2 Testing Procedure 

The test specimen was fixed tightly on the platform of the micro-hardness tester and 

leveled using the clamping screw. Micro-hardness tester was located in a zone which was 

free from any kinds of shock or vibration. Thereafter, weight was placed on the weight 

pan. A weight of 100 gm was chosen to get a clear impression of the indentor on the 

test surface. The specimen was placed under the lens and viewed by turning the stage 

elevating handle. Test area was located using the micrometer screws and the light 
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Figure 4.4: MICROMET micro hardness tester 
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intensity was adjusted to a comfortable level by turning the light intensity knob. 

Thereafter the specimen was placed under the diamond indentor and the load was applied 

on the specimen by pressing the automatic load application switch. After completing the 

indenting load cycle the diamond indentor was restored back to its initial position. The 

specimen was then shifted to the viewing lens position and the indented impression was 

viewed using the stage elevating handle. The length of the two diagonals were measured 

by using the graduations marked on the eyepiece. A 3D view of MICROMET micro-

hardness tester is given in Figure 4.4. 

4.5.9 Coefficient of Friction Test 

The objective of this test was to determine the coefficient of friction between naturally 

bedded layered slate rock and steel plate. The need for this test was observed during the 

splitting of slate blocks using a wedge shaped steel indenter. Since the wedge moves 

inside the slate block during splitting by transferring force through friction and bearing on 

the contact surfaces between them, it was essential to determine this force 

experimentally. The mathematical representation for the coefficient of friction IS, 

J.1 = £.., where W = the normal weight of one body acting on another body and F = the 
w 

force required to slide one body over the other body. 

4.5.9.1 Specimen Preparation, Experimental Setup and Testing Procedure 

Before carrying out the test, contact and loading sides of rectangular slate block were 

made uniform and parallel by grinding them to make full contact with the steel plate. The 

surface of the steel plate (AISI 4340 steel) was also made uniform and parallel by 
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polishing the steel surface using different graded sandpapers. Thereafter, steel plate was 

fixed to a wooden table and leveled; the slate block was then placed at the middle over 

the steel plate. The test was carried out by sliding the slate block over the steel plate. 

Various weights ranging from 500 to 2500 grams were placed subsequently on the slate 

block to carry out a number of repetitive tests for various normal forces applied to the 

steel surface by the slate. A string was glued to the top surface of the slate block and 

extended over a small pulley (by making sure that the top of the specimen and the top of 

the pulley were in the same level) and attaching to a cup-shaped loading pan to which 

sand particles were added slowly to apply a transverse load on the string. The entire test 

setup is shown in Figure 4.5. At the beginning of the test, empty cup-shaped loading pan 

and test specimen were weighed and the normal weight applied to the specimen was 

recorded. To carry out the test, sand particles were added slowly to the pan until the slate 

block started to move. Thereafter, the pan with sand particles was weighed. The weight of 

the sand and pan applied to the string, was taken as the tangential force, and the added 

weight on the sample and its own self weight taken as the normal force. The coefficient 

of friction was determined by dividing tangential force by the normal force. The 

summarized results are given in Table 4.2. The coefficient of friction obtained from this 

measurement, using Figure 4.6, varied from 0.55 to 0.57. 

4.6 Test Results 

The results obtained during experimental investigation of different mechanical properties 

of slate material such as, elastic moduli, Poisson's ratio, compressive and tensile 

strengths, fracture toughness, hardness, and friction coefficient are discussed in 

subsequent sections. 
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Figure 4.5: Instrument setup for coefficient of friction test 

2000 

1800 

1600 

1400 

1200 

1000 

800 

600 

400 

200 

0 

0 

y = 0.5591x + 2.1257 

R2 = 0.9991 

500 1 000 1500 2000 2500 3000 3500 

Total weight including specimen weight (kg) 

Figure 4.6: Coefficient of Friction between Slate and Steel 
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Table 4.2: Coefficient of Friction between Slate and Steel 

Test Coefficient of Friction 
Number (J1) 

1 0.55406 

2 0.57115 

3 0.55772 

4 0.55524 

5 0.56205 

Mean 0.56004 

Standard ± 0.003703 Deviation 

4.6.1 Young's Modulus of Elasticity and Poisson's Ratio (Group #1) 

Perkins and Krech (1968) reported that the elastic moduli of rock are in general not 

independent of the stress level at which it is determined, particularly at low compressive 

stresses and tensile stresses. The variation of elastic modulus of rock is seen due to the 

presence of internal cracks and voids, which could close under high compressive stresses, 

yet remain open at low compressive and tensile stresses. For competent (low porosity, 

low density of micro-cracks) rocks the difference between the compressive and tensile 

moduli could be lesser than the porous rocks and highly micro-cracked rocks. Modulus 

properties of rocks are influenced more by their bedding planes and joints. Higher 

modulus values are experienced when rock is loaded parallel to the bedding planes or 

joints than when stressed at right angles to them (Lama and Vutukuri, 1978). 

The elastic properties (Modulus of elasticity and Poisson's ratio) of slate in three 

perpendicular directions (shown m Figure 4.7) are given m Table 4.3 and 4.5. 
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Compressive loads in three perpendicular directions (two in-plane directions i.e. 11 and 

22 and one perpendicular to the in-plane direction, 33), were applied through the 

universal testing machine. Specimen preparation, testing and analysis procedures were 

described in detail earlier in section 4.5.2. Table 4.3 shows the results of the modulus of 

elasticity in three different directions obtained for a number of specimens. Twelve 

specimens were tested by applying load parallel to the layering and four specimens were 

tested applying load perpendicular to the layering. These test results were also compared 

with those obtained from Vutukuri et. al. (1974), as shown in Table 4.4. As seen from 

Tables 4.3 & 4.5, the values are highly variable, depending on the slate type and fabric 

characteristics. 

Probable reason for the existence of different properties in different slate mines could be 

the geological process of the formation of slate rock; the nature and distribution of grains 

and mineral along with its microstructure contribute to these variations. The existence of 

different colors of slates indicates the existence of different percentages of mineral 

contents. In the present study all tests were conducted on slate samples obtained from 

Hurleys Slate Works Company and Carew Service, Portugal Cove, St. John's, 

Newfoundland, Canada. 

It is seen from Table 4.3 that the modulus of elasticity varies significantly along and 

perpendicular to the layer (see Fig. 4.7 for orientation of axes). Modulus of elasticity 

along the layer direction was greater than that obtained perpendicular to the layer; this 

indicates the existence of planar isotropy along the bedding planes. Comparing with the 

results shown in Table 4.3 the Newfoundland slate seems to be closer to the mean values 
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Table 4.3: Young's modulus of elasticity for slate 

(In the three material directions) 

Test E11 (Direction 1) E22 (Direction 2) E33 (Direction 3) 
Number 

psi GPa psi GPa psi GPa 

1 9.5 X 106 65.5 9.0 X 106 62.05 6 X 106 41.37 

2 10 X 106 68.95 15 X 106 88.42 5 X 106 34.474 

3 10 X 106 68.95 9.5 X 106 65.5 5.5 X 106 37.92 

4 9 X 106 62.05 10 X 106 68.95 6.5 X 106 44.816 

5 10 X 106 68.95 10 X 106 68.95 - -

6 15 X 106 88.42 15x 106 88.42 - -

Mean 
10.58x106 70.47 11.42x106 73.715 5.75 39.645 

value 
Standard 

± 2.2238 ± 9.217 ± 2.5563 ± 11.674 ± 0.559 ± 3.854 
Deviation 
Vutukuri, 5.05 X 106 34.8 6.39 X 106 44.1 1.13 X 106 7.8 

et. al. to to to to to to 
(1976) 16.53 X 106 114.0 16.53 X 106 114.0 11.91 X 106 82.1 
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Table 4.4: Slate properties determined earlier by other researchers (Vutukuri, et. al. 1976) 

~ ·-· ·······-· ...-------··· 
Tcsts.ample 

GPa 
Material Fabric descl'"iption Symmetry Thst method ~ 

VIJ vl3 \I.B Reference si:ie(mm) 
E, E, EJ Gn Gn Gp 

(v,.) (v,.) (v,) 

·-· 
Slate Laminations parallel to plane 12 "n" fold axis Longitudin~tl and 114.0 Jl4.0 53.0 rq.s l'I.H 53.5 0.067 0.328 0.328 Au,xANDROV et al. 

pamJJel to axis 3 shear wave (1969) 
velocities on cube 
samples 

Slate Axis 3 is normal to the plane of foliation Orthorhombic Uniaxial compression 71.5 63.0 H2.J 26.9 27.9 24.9 0.218 0.380 0.284 NtSHIMATIU (1970) 
and tension tests 
together wHh 
torsion test.::. 
Strain gauges at-
tached to s.;mples 

Hurd .Blue Slaty cleavage associated with preferred Orthorhombic Ultrasonic 5, 10, IS 46.3 44.1 30.1 10.6 15.4 16.0 0.426 0.426 0.439 ATIE\\'ELL (1970) 
Pehrbyn Slate orientation or micaceous and Stiffest direction of longitudinal and X 

chloritic components in the rock. along cleavage dip shear waves 64x90 
"Planes of ela.\tic and velocity symmetry axis 1 aud max.. 
are coincident with the planes of fabrit fabric 
and fedonic symmetry. •• extension 

Green Pehrhyn least nonnal to 40.5 2J.9 8.1 8.1 13.9 0.469 0.462 
Slate stiff pi anon 

along features and 
all:is 3 direction of 

max. fabric 
shortenjng 

Chloritlc Slate Direction of bedding coincides with "n" fold axis Laboratory tests - 50 dia. x 130.0 81.0 35.0 49.0 0.33 0.28 STORIKOVA (1965) 
maximum wave vc1odty, minimum perpendicular to longitudinal and J201ong (0.17) 
velocity perpendicula(' to bedding bedding? shear wave 
(i.e.axis3) velocities 

Very Altered Axis 3 is normal to the plane of foliation Orthorhombic? Laboratory tests - 50 X 50 X 34.8 55.4 7.8 RoDRI<lUES (1970) 
Slate oriented samples !50 Prisms 

loaded to 9.8 Ml'a. 
Strains re-eordc(J 

Little Altered by txmded strain 63.8 54.l 11.3 
Slate gauge.s. Results 

quoted are secant 

Sound Slate moduli 85.2 90.7 30.4 
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Table 4.5: Poisson's ratio for slate 

(In the three material directions) 

Test Poisson's Poisson's Poisson's Poisson's 
Number ratio ratio ratio ratio 

V12 Vn V23 V31or V32 

1 0.25 0.1462 0.200 0.2000 

2 0.20 0.1820 0.167 0.2000 

3 0.20 0.1820 0.192 0.1833 

4 0.20 0.1636 0.200 0.1857 

5 - - 0.146 -

6 0.33 0.1818 0.084 -

Mean value 0.236 0.171 0.165 0.19225 

Standard deviation ± 0.085 ± 0.01434 ± 0.041 ± 0.0078 

Vutukuri, 0.067-0.469 0.280-0.426 0.328-0.462 -
et. al. (1976) 
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given by Vutukuri, et. al. (1976). From Table 4.4 it could be seen that these mean values 

are very close to the properties of a sound slate. Younathan (1970) also obtained similar 

results after an extensive investigation of the physical properties of slate rock having a 

planar anisotropy. He concluded that in general the physical properties vary less along the 

plane of layer than perpendicular to the layer. 

The stress versus strain curves of some tested specimens were plotted to show the 

deformation behavior of slate rock. Some of these curves are shown in Figures C-1 to C-4 

of Appendix C. A non-linear stress-strain relationships was observed at low and high 

stress levels. Average slope of the more-or-less straight-line portions of the stress-strain 

curve was used to determine modulus of elasticity. The existence of nonlinearity at low 

stress level may perhaps be due to the closing of the numerous micro-cracks within the 

body. The reason for non-linearity close to the maximum load was due to the extension of 

the micro-cracks leading to failure of slate block. 

Table 4.5 shows the Poisson's ratios of slate calculated based on the procedure described 

at section 4.5.2. It is seen that the in-plane Poisson's ratios (1-2 direction) are greater than 

the Poisson's ratios obtained for directions (1-3 and 2-3) perpendicular to the plane. 

4.6.2 Dynamic Elastic Moduli 

Dynamic elastic moduli were not determined in the present study. It has been observed 

from earlier studies (Table 4.6) that the magnitude of dynamic elastic moduli was around 

1.03 to 1.07 times greater than the static elastic moduli for sedimentary or layered 

materials such as Sandstone, Gabbro and Dunite. 
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4.6.3 Compressive and Tensile Strengths (Group #1) 

The results obtained from these tests are given in Tables 4.7 to 4.10. It is seen that the 

compressive strength varies significantly depending on the direction of the applied load. 

When load was applied parallel to the direction of the bedding plane (1-2 plane in Figure 

4.7), the compressive strength was found to be 50% to 60% less than those obtained 

when load was applied perpendicular to the direction of the layering. Variation of 

compressive strengths seem to agree with the results given by earlier researchers in Table 

4.11. Low tensile strength of the slate block, perpendicular to the layer direction, reported 

in Tables 4.8 and 4.9, could be attributed to this difference. Tensile strengths of slate, in a 

direction perpendicular to the layer, were determined by direct tension tests and indirect 

tension tests. A large variation in strengths for both test procedures was observed from 

the earlier published results, as shown in Table 4.11. 

The results obtained from flexural tests are given in Table 4.10. It is seen that the test 

results are higher than the minimum value specified by ASTM specification C 406-58 

(1981). The minimum modulus of rupture across the grain provided by the ASTM 

specification for slate is 9000 psi (62.08 MPa). 

4.6.4 Hardness (Group #1) 

The indentation length of diagonal in f.1m (Vickers micro indenter, having a square-based 

pyramidal-shaped diamond indenter with face angles 136°) obtained from micro-hardness 

tester was used to determine the Vickers hardness number (HV) using conversion tables 

available in ASTM E 384-99. Shore Scleroscope hardness number was obtained from HV 

values using conversion table of ASTM standard E 140-97. Both results are given in 
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Table 4.6: Static and dynamic elastic properties of some rocks 
(after Rzhevsky and Novik, 1971) 

Static Dynamic Ratio Bulk 
modulus of modulus of Edyn modulus 

Rock elasticity elasticity -- K,GPa 
Est 

E.n. GPa Edvn, GPa 
Sandstone with 73.0 77.8 1.07 23.0 
chalcedonic cement 

Equigranular dolomite 50.5 53.1 1.05 52.1 

Limestone 18.8 24.2 1.29 43.5 

Calcareous dolomite 34.9 47.2 1.35 37.0 

Fine-grained detrital 
limestone 47.7 57.1 1.20 46.0 

Granite 66.0 71.0 1.08 47.3 

Gabbro * 71.0 75.0 1.06 57.0 

Dunite * 149.0 164.0 1.03 107.3 

Syenite 74.0 81.0 1.10 54.0 

Rigidity 
or shear 
modulus 
G,GPa 

32.0 

18.8 

6.6 

13.0 

18.0 

26.0 

36.0 

59.0 

29.0 

* Structure very close to slate having either a sedimentary or layered characteristic 
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Table 4.7: Compressive Strength of Slate 

Test Compressive strength (a11 ) Compressive strength (a33) 

Number 
ksi MPa ksi MPa 

1 15.182 104.674 25.451 175.485 

2 14.665 101.113 21.580 148.789 

3 14.586 100.568 25.514 175.915 

4 15.686 108.154 27.771 191.478 

5 15.802 108.955 - -

6 18.526 127.735 - -

7 15.436 106.432 - -

Mean 15.697 108.233 25.079 172.917 

Standard 
± 1.2333 ± 8.5033 ± 2.2258 ± 15.346 

deviation 
Solenhofen 

14.50- 29.00 100-200 14.50- 29.00 100-200 
(2003) 
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Table 4.8: Direct Tensile Strength of Slate 

Test Direct tensile strength ( cr33) 

Number 
ps1 KPa 

1 119.000 820.505 

2 152.203 1049.436 

3 112.009 772.297 

4 94.826 653.827 

5 138.235 953.130 
--

6 124.650 859.462 

7 106.800 736.386 

8 104.800 722.596 

Mean 119.065 820.955 

Standard 
± 17.635 ± 121.5948 Deviation 

Solenhofen (2003) 580.15-3625.92 7000-20000 
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Table 4.9: Indirect Tensile Strength of Slate 

Specimen Size Breaking load Tensile Strength 
(lbf) 

ps1 k:Pa 

4.00" X 4.750" X 6.0" 5360 139.28 960.33 

4.20" X 4.000" X 6.0" 2675 69.51 479.27 

4.10" X 4.200" X 5 .0" 5100 155.15 1069.75 

4.00" X 4.500" X 5.8" 12550 337.36 2326.06 

4.75" X 4.125" X 6.0" 5650 142.37 981.6l 

Mean 6267 168.73 1163.40 

Standard 
± 3314.93 ± 89.47 ± 616.91 Deviation 

Solenhofen (2003) 580.15 - 3625.92 7000-20000 
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i 

Table 4.10: Flexural Strength of Slate 

Test Modulus of Rupture (across the grain) 
Number 

ksi MPa 

1 14.981 103.29 

2 14.000 96.53 

3 13.674 94.28 

4 11.858 81.76 

5 16.584 114.34 

Mean 14.219 98.04 

Standard ± 1.555 ± 10.72 
deviation 

ASTM C 406 - 58 
9.000 62.08 

value (1981) 
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Table 4.11: Strength properties of different layered rocks (Solenhofen, 2003) 

Rock types Compressive strength Tensile strength Shear strength 
(MPa) (MPa) (MPa) 

Slate 100-200 7-20 15-30 

Sandstone 20-170 8-40 
4-25 

Limestone 30-250 5-25 10-50 
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Table 4.12. During conversion of hardness numbers, a correlation equation was made 

using available conversion numbers of Vickers and Shore scleroscope to obtain Shore 

scleroscope hardness number corresponding to the small values of Vickers hardness 

numbers. From the experimental results given in Table 4.12, it is seen that the average 

value of Shore scleroscope hardness number is approximately 41. The Shore hardness 

numbers given by Bureau of Mines, United States Department of the Interior (Windes, 

1949) for Michigan slate and Pennsylvania slate were 46 and 56, respectively. In 

comparison to the results supplied by the above reference, the test result obtained in the 

present study seems to be reasonable for slates obtained from Hurley's Mines, 

Newfoundland, Canada. 

4.7 Fracture Toughness Test (Group# 2) 

Three types of specimens (arrester, divider and short transverse) suggested by Schmidt 

(1976), based on the specimens' layer orientations, were used to determine the fracture 

toughness of slate material. The geometry of each type is given in Figure 4.8. 

BEDDING PLANE 

'---[ _.0..._ _, flff) 
ARRESTER !A) DIVIDER !01 SHORT TRANSVERSE (STl 

Figure 4.8: Geometry of arrester, divider and short transverse specimen of slate rock for 
fracture toughness test (Schmidt, 1976). 

Before cutting the specimens from the initially trimmed slate block (lumped slate block), 

geological planes were examined by visual observation. A size little higher than the size 
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Table 4.12: Vicker's Micro Hardness Test Results 

Prism (square) diagonal Vickers hardness Shore hardness 
distance (micro meter) number number 

27.50 245.00 34.166 

30.20 203.00 29.166 

32.00 181.00 26.750 

35.10 151.00 22.000 

30.00 206.00 29.800 

20.00 464.00 62.060 

28.00 237.00 33.429 

33.00 170.00 25.000 

20.50 441.00 59.133 

30.60 198.00 28.000 

35.70 146.00 21.000 

20.20 454.00 60.870 

14.00 946.00 -

21.00 420.00 57.330 

25.00 297.00 41.556 

22.00 383.00 52.000 

18.00 572.00 70.844 

23.00 351.00 48.100 

27.00 254.00 36.125 

20.10 459.00 61.470 

29.90 207.00 30.000 

17.00 642.00 77.162 

28.40 230.00 33.000 

33.70 163.00 24.000 

15.25 797.50 87.880 

10.00 1854.00 -

24.00 322.00 45.333 

Mean 407.17 40.636 

Windes (1949) - 46-56 
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required for the test was cut from the larger block using circular saw with a water-cooled 

diamond tip blade for specimens having rectangular cross section. Due to the existence of 

layers in slate rock it was very difficult to prepare rectangular specimen having a plane 

face perpendicular to the centroidal plane of the beam specimen; consequently cylindrical 

core specimens were chosen to determine the fracture toughness of slate instead of 

rectangular ones. This specimen was prepared by inserting a hollow drill bit, having a 

diameter of 1.4" (35.84 mm) and a length of 6" (152.40 mm), fixed to a drilling machine 

and drilling into the slate block at a constant speed. 

This shape of test specimens was found to be more advantageous over rectangular shape 

for not requiring grinding to make specimen smooth. However, it was easier to cut 

rectangular specimens in a direction parallel to the layer. Specimens were then marked 

with chalk/marker according to their orientation and block numbers. Both shapes of 

specimens were prepared according to ISRM: Fracture toughness suggested method 

(1988). During the preparation of the test samples water (as a cooling agent) was used 

constantly. The nominal size of the rectangular specimens was 6.5"xl.O"x1.5" (165.4 x 

25.4 x 38.1 mm) with a variable initial crack. Cylindrical specimens were 5.5" (139.70 

mm) long and 1.375" (34.93 mm) in diameter, with a variable initial crack. The initial 

crack was introduced using manual hex saw having a blade thickness of approximately 

0.5 mm. The use of this saw was important because of the difficulty of introducing an 

initial fatigue crack in the slate specimens. For fracture toughness tests, different depths 

of straight through cracks of size 0.36, 0.375, 0.44, 0.5 and 0.6 times the thickness or 

diameter of the specimens were cut using the above saw; the crack width was kept less 

than 1 mm. Seven rectangular prism specimens were tested under four-point bending 
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loads and seven cylindrical core specimens were tested under three-point bending loads. 

The test was carried out under displacement controlled mode at a constant rate 0.1 

mm/min. Strain gauge sensors capable of measuring micro strains were used to measure 

strains for four point bending test. An LPDT was used to measure crack mouth opening 

displacements in the case of three-point bending tests. 

Test specimens were prepared and tested by following procedures described by both 

ASTM C 1421 - 99 (1999) and ISRM standard (1988). Two types of loading systems 

shown in Figures 4.9 and 4.10 (three-point-bending [3PB] and four-point-bending [4PB]) 

were used to apply the load externally to the test specimens. The fracture toughness 

obtained in this test was considered as apparent fracture toughness . 

. To the data 
acquisition 

Three-point bend board 
specimen of sla~ f 

~------~~~~--~~~·~ 
acquisition 
board 

Figure 4.9: Schematic of three-point-bend specimen and experimental setup (Schmidt, 1976) 
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Strain gauge Test specimen 

Initial notch 

Fig. 4.10: Schematic of four-point-bend specimen and experimental setup (C 1421 - 99, 
ASTM, 1999) 

4.7.1 Testing Procedure 

Before the start of the test, specimens were removed from the container and kept in a dry 

place for 24 hours to evaporate the moisture from their external surfaces. Thereafter, a 

LPDT and a short piece of aluminum plate of thickness approximately 0.5 inch (12.7 

mm) were glued at the bottom face of the specimens across the mouth of the notch for 

three-point-bending test. For four-point-bending test, strain gauge was glued at the back 

face opposite to the notch of the specimen following the procedure mentioned earlier in 

section 4.5.2. The LPDT and strain gauge were connected to the data acquisition board 

and initial readings were checked from the Lab view data acquisition software and made 

to be zero. After that the test specimen was placed in the test rig and the loading ram was 

brought in contact with the specimen by using the MTS 407 controller; the controller was 

connected to the data acquisition board. The initial reading obtained from the computer 

was also verified with those obtained from the controller. Before applying the load it was 

ensured that all the readings shown by the controller and computer were zero and that it 
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should also show the same load (both controller and computer) at all stages of loading. 

Once specimens were placed under the loading devices properly, the computer and MTS 

407 controller were brought on line and the data acquisition begun. Displacement was 

controlled by MTS 410 digital function generator connected externally to the MTS 407 

controller. A displacement rate O.lmm/min was applied to the test specimen until failure 

of the specimen. Each test sample was examined to check whether the crack has 

propagated along the notch or not. Load displacement curve was plotted for each test 

specimen and maximum breaking load was determined. This load was used to calculate 

the apparent fracture toughness of slate. Similar procedures were applied in case of four 

point bending loading. Peak load was obtained from load vs. strain plots of test results. 

4.7.2 Empirical Determination of Fracture Toughness 

Two different geometric test specimens described in the previous section have been used 

to determine the fracture toughness of slate. The geometry described for three-point 

bending has been generalized for rock by ISRM (1988). The ISRM suggested dimensions 

are shown in Table 4.13 below. 

Table 4.13: Specimen dimensions suggested by ISRM (1988) 

Geometry parameter 

Specimen diameter 

Specimen length, L 

Loading span, l 

Notch width, t 

Value 

D 

4D 

3.33D 

Tolerance 

>(1 O)(grain size) 

>3.5D 

±O.JD 

~the greatest of 0.03D and 1 mm 

a= aiD, the dimensionless crack length (0 ~a ~0.6) where 'a' is the crack depth 
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The expression for the stress intensity factor K1 provided by Bush (1976) and 

Ouchterlony (1980c) for three-point bending was, 

(4.6) 

where, 

(4.7) 

Ouchterlony (1980) has given the following value of Y/ as, 

ys = _l_x 12.75Fa-J1 + 19.646a
4

·
5 

k 4D (1- a)o.2s 
(4.8) 

The other geometry used for four-point loading was the rectangular prism of depth W, 

width B and span 11. Four-point loading system was chosen to eliminate the effect of 

shear stress on the cross section of the specimen which leads to pure bending. The stress 

intensity factor has been given by Srawley and Gross (1976) for four-point loading. 

According to their findings stress intensity factor can be written as: 

(4.9) 

for 0 ~ a!W ~ 0.6 and l!W = 4, where 11 & l2 are the center to center support length of the 

test specimen and the loading member, respectively, shown in Figures 4.10; a is the crack 

depth. 
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4.7.3 Test Results 

The results obtained from this test are given in Tables 4.14 and 4.15 for different crack 

lengths and specimen geometries. Table 4.14 gives the test results for three-point bending 

and Table 4.15 gives the test results for four-point bending. The variation of load with 

crack mouth opening displacement (three-point bending) and back face strain (four-point 

bending) obtained during fracture toughness test are shown in Figures C-5 to C-10 in 

Appendix C. From these figures it is seen that the magnitude of the maximum load varies 

with the depth of crack and the direction of layering. When load was applied 

perpendicular to the layer, the maximum load was obtained to be nearly ten times greater 

than those obtained for the load applied parallel to the layering. From these results it 

could be stated that the interlayer resistant force (so called cohesive force) is much less 

than the resistant force along the layer. 

From these plots, it is also seen that material behaves non linearly at the beginning of the 

applied load and then it behaves linearly up to the maximum load and then decreases 

suddenly. The reason could be the development and coalescence of micro-cracks (so

called fracture process zone) at the tip of the crack before extending along the plane. 

Another reason could be the bluntness of crack tip that was created during making of the 

initial crack by manual hex saw. The post failure curve was nonlinear with a certain 

amount of plastic strain for three-point-bending. This nonlinearity was due to the 

presence of shear forces in addition to the bending moment along the crack plane during 

the application of load. Although nonlinearity exists very close to the maximum values of 

the load, the fracture toughness is calculated by using maximum load. It is seen that when 

the load reaches its maximum value, test specimen begins to lose its resistance very fast. 
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Table 4.14: Fracture Toughness of Slate 

Load Parallel to the Bedding Plane (Three Point Bending Loading) 

Cylindrical Specimen having Diameter =1.375" (0.035 m) and Length= 5.5" (0.14 m) 

[Using equations (4.6) to (4.8)] 

Pre-crack 

K1c K1c from 

Maximum [as per Bush (1976) and FE analysis 
Crack depth 

load Ouchterlony (1980)] of present 
(inch) 

(lbs) . tests 

psi .in 112 MPa.m112 MPa.m112 

0.4375 73.8711 318.651 0.350 0.2414 

0.5000 80.6289 393.856 0.433 0.2974 

0.5625 72.6833 405.977 0.446 0.2871 

0.5000 94.3555 460.907 0.506 0.3481 

0.5625 84.0566 469.503 0.516 0.3319 

0.5625 60.8000 339.602 0.373 0.2401 

0.6400 61.6904 414.349 0.455 0.2979 

Mean 75.4408 400.730 0.440 0.2920 

Standard ±11.1638 ± 52.277 ± 0.0574 ± 0.03795 
Deviation (± 14.80%) (± 12.62%) (± 12.62%) (± 13.00%) 

As per Bear 98.28 0.108 
and Bar - -
(1977) ± 27.30 ±0.03 
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Table 4.15: Fracture Toughness of Slate 

Load Perpendicular to the Bedding Plane (Four Point Bending Loading) 

Rectangular Specimen having Sizes, Depth =1.5" (0.38 m), Width = 1.0" (25.4 mm) and 

Test Crack depth 
No. (inch) 

1 0.6720 

2 0.6563 

3 0.71875 

4 0.6875 

5 0.71875 

6 0.672 

Mean 

Standard 
Deviation 

As per Bear 
and Barr 
(1977) 

Length= 6.5" (0.165 m) 

Maximum 
load (lbs) 

659.74 

710.34 

559.05 

986.99 

876.99 

702.95 

749.34 

± 141.82 

•• . . . . . . 
\ ·. 

\ . 

K1c 
[as per Srawley and 

Gross (1976)] 

. . 1/2 psun MPa.m112 

2382.03 2.6175 

2491.04 2.7073 

2208.68 2.4270 

3670.49 4.0333 

3464.78 3.8073 

2538.05 2.7889 

2794.64 3.0685 

± 561.38 ± 0.6164 
(± 18.93%) (± 18.89%) (± 20.00%) 

204.76 ± 0.225 ± -
16.38 0.018 

Pre-crack 

K1c from 
FE analysis 
of present 

tests 

MPa.m112 

0.31 
(0.29*) 
0.35 

(0.32*) 
0.22 

(0.20*) 
0.44 

(0.41 *) 
0.35 

(0.32*) 
0.33 

(0.37*) 
0.33 

(0.31 *) 
± 0.064 

(± 19.40%) 

-

*-Values obtained from plane-strain finite element analysis of slate like material having 
isotropic properties 
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Therefore, the failure behaviour of slate could be considered as brittle and crack 

extension as stable crack extension. The crack extension profiles, obtained for some test 

specimens after carrying out fracture toughness test, are shown in Figures 4.11 (a)- (c). 

The test results given in Tables 4.14 and 4.15 show that fracture toughness values of slate 

rock in mode I loading varies from 0.35 11Pa.m112 to 0.52 "M.Pa.m112 (mean value 0.44 ± 

0.057 MPa.m112
) when load was applied parallel to the bedding plane and from 2.43 

"M.Pa.m112 to 4.03 "M.Pa.m112 (mean value 3.07 ± 0.62 MPa.m112
) when load was applied 

perpendicular to the bedding plane. These values were computed by using the empirical 

formulae given by Bush (1976) and Ouchterlony (1980) for three-point bending load and 

by Srawley and Gross (1976) for single edge straight-through cracked rectangular beam 

under four-point bending loads. Test results were compared with those given by Bear and 

Barr (1977). Bear and Barr used CNRBEL test (circumferentially notched round bar 

specimen subjected to an eccentric longitudinal load) to determine the fracture toughness 

of slate. The values obtained by Bear and Barr were Krc = 0.225 ± 0.018 MPa.m112 for 

specimens drilled parallel to the bedding plane and Krc = 0.108 ± 0.03 "M.Pa.ml/2 for 

specimens drilled perpendicularly to the bedding plane. Present test results [obtained 

using the empirical equations of Srawley and Gross (1976) and Bush (1976) and 

Ouchterlony (1980)] seem to give values quite different from those given by Bear and 

Barr (1977). 

In order to overcome these inconsistencies, detailed plane strain and 3D finite element 

analyses (for a transversely isotropic material) were also carried out usmg the 

experimental values of slate properties and applied loads for three-point and four-point 
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bending fracture toughness tests; in addition finite element analysis (FEA) was also 

carried out for a simulated isotropic slate like material considering experimentally 

obtained in-plane properties (£ = 76.0 GPa and v = 0.20) as the system properties of 

isotropic material. The results of the plane strain FEA were found to be higher by less 

than 1% from those obtained from the three-dimensional finite element analysis using 20-

noded isoparametric brick elements with reduced integration. Therefore, only plane strain 

FE analysis results are provided here for four-point bending tests. Moreover, 3D finite 

element analysis using 8-noded brick elements was also carried out for three-point 

bending tests of cylindrical specimens. Fracture toughness values obtained from the finite 

element analyses were compared with those obtained from the experimental studies. It 

was observed that the experimentally computed fracture toughness values [using the 

empirical equations of Bush (1976), Ouchterlony (1980) and Srawley and Gross (1976)] 

were much higher than numerically computed values (for the actual transversely isotropic 

slate); even for an artificially simulated isotropic slate, the fracture toughness values were 

only slightly different from those for the transversely isotropic slate. Hence the finite 

element analysis given values are taken to be the correct fracture toughness of slate. Thus 

the equations given by Bush (1976) and Ouchterlony (1980) for three-point bending load 

and Srawley and Gross (1976) for four-point-bending load seem to overestimate the 

actual fracture toughness of slate. 

4.8 Dynamic Crack Propagation Velocities (Group #3) 

Crack propagation velocity is an important parameter that has a great influence on the 

dynamic fracture toughness and needs to be considered properly to simulate the splitting 

phenomenon using a dynamic load. Bilek (1980) mentioned that dynamic fracture 
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(a) 

(b) 

(c) 

Figure 4.11: Post failure crack patterns: (a) and (b) cylindrical specimens; and (c) 
rectangular specimens 
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toughness for a running crack in SAE 4340 steel under quenched-and-tempered condition 

increased slowly up to a crack velocity of 100 m/s, and thereafter increased sharply up to 

and beyond a velocity of 1000 m/s. He mentioned that the crack velocity starts at a 

constant rate and varies continuously throughout the test, and it decreases as the crack 

length increases. He used rapidly wedged DCB (double cantilever beam) specimens to 

produce a stable crack propagation with a crack velocity < 150 m/s. Chow and Barns 

(1980) pointed out that slow crack velocities are typical of the rapidly wedged DCB tests. 

They carried out their investigation on low carbon steels at various temperatures ranging 

from -196° C to 0° C, to obtain relationship between dynamic critical stress intensity 

factor (Kid) and crack velocity. They mentioned that Kid decreases as crack velocity 

increases up to 50 m/s and reaches a minimum value in the range of 50 to 80 m/s; 

thereafter it increases slowly for velocities higher than 80 m/s, at a temperature -196° C 

(brittle behaviour of steel). 

The commonly used experimental methods to determine the velocity of the dynamic 

crack propagation have been discussed earlier in Chapter 2. In this study, crack 

propagation velocities were measured using strain gauge sensors attached perpendicular 

to the plane of splitting of slate blocks. Strain gauges were fixed along the depth of the 

specimen to obtain strain signals during crack propagation. Gauges were glued on the 

surfaces of the specimens by following the same procedures as used in the pasting of 

strain gauges on the specimen surface for the tests for elastic moduli. The travel time of 

crack from one strain gauge to the other was obtained by analyzing the strain signal vs. 

time curve. When crack went beyond the strain gauge location, the strain increased to its 

maximum capacity (shown in Figures C-11 to C-20 in Appendix C). The time difference 
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between two successive JUmps obtained from two strain gauges was calculated. 

Thereafter, the velocity of the crack propagation was obtained by dividing the distance by 

the time. The variations of strain signals with time are shown in Figure C-11 to C-20. 

4.8.1 Results 

The velocity computed from experimental measurement was an average velocity over the 

distance between the two strain gauges. The velocity was considered as the velocity at the 

middle position between the two gauge positions and plotted as a function of crack length 

to check whether their variations were linear (increase/decrease), constant or nonlinear 

(increase/decrease) or random. In order to obtain better representation of the variation of 

velocities one would require instantaneous measurement of velocity by fixing strain 

gauges very close to each other or by using crack gauges. 

The crack propagation velocities and their variations with crack length obtained from 

different splitting tests (plane strain and non plane strain specimen) are shown in Figures 

4.12 and C-21 to C-25 of Appendix C. It is seen that the velocities of crack propagation 

varied irregularly when crack started to propagate from the impact point to the bottom of 

the specimen (complete failure of specimen). Irregularities in crack propagation velocity 

are seen more in plane strain impact splitting blocks (Figure 4.12, C-22 & C-24 of 

Appendix C) than those obtained in non plane strain impact splitting blocks (C-21, C23 

& C-25) of Appendix C). However in some cases the variation of velocities in plane 

strain and non plane strain blocks were obtained to be a nonlinearly decreasing one 

(Figures 4.12 and C-25). 

142 



Figure 4.12: Crack propagation velocity during impact splitting of slate blocks 

Wedge 

Typical slate block 

Specimen dimensions, L = 4.33 inch (110.0 mm), W = 4.0 inch (101.6 mm) and H = 5.12 
inch (130.05 mm), wedge length, L1 = 4 inch (101.6 mm), clear height between wedge 
and specimen= 1.5 inch (38.1 mm), wedge penetration depth= 0.394 inch (10.0 mm). 
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Table 4.16: Crack propagation velocity during impact splitting of slate blocks 

Crack length (m) Crack velocity (m/s) Average velocity (m/s) 

0.014 40 

0.029 32 

0.038 17.78 

0.046 17.78 24.03 

0.054 22.86 

0.061 17.78 

0.069 20 
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The crack propagation velocities obtained from this study varied from 2 m/s to 120 m/s 

approximately; if the lower velocities were neglected then it varies 30 to 120 m/s. This 

large variation of velocities probably occurred due to pre-existing flaws in the cracked 

plane or other flaws such as, material discontinuity, flattening of grain particles along the 

layer boundaries, etc., in the specimen. This was also observed during the impact splitting 

of slate as seen from split surfaces shown in Figures 4.20 (a) - (d). It is seen that some 

parts of the split surfaces were not joined together or bonded (Figures 4.20 (b) & (d)) 

under intact conditions 

4.9 Microscopic Test (Group# 4) 

4.9.1 Specimen Preparation and Testing Procedures 

Four small pieces of rectangular slate rock blocks, of size approximately 1" x 1" x 0.5'' 

(25.4 x 25.4 x 12.7 mm), were cut from the available slate material. Two blocks were cut 

parallel to the bedding plane and two were cut perpendicular to the bedding plane. All 

four blocks were machined first by using the grinder with water; thereafter, a very 

smooth polishing was done to obtain a shining surface. A very thin layer of gold coating 

was applied on the surface to be scanned. Gold coating was applied according to the 

requirement of Scanning Electron Microscope (SEM) [Gabriel (SEM user manual), 1985]. 

At first the specimen was fixed properly on a circular plate and kept under the 

rmcroscope in the chamber of SEM. After choosing the proper resolution and 

magnification of the microscope a microphotograph of a location was taken for observing 

the composition of the material. At least 2 scanning pictures at different resolutions and 

magnifications were taken for the same location. Ten different locations on the same 
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surface were also chosen to obtain information related to the gram s1zes and the 

distribution of the particles. The same procedure was repeated for new layers after 

removal of the old layers. In case of specimens where layer direction was parallel to the 

microscopic axis, microscope was focused at different locations parallel to the layering to 

obtain individual layer thickness. The SEM microphotographs were stored in a computer 

for further analyses such as measuring grain sizes, grain distribution and layer thickness. 

4.9 .2 Results and Discussions 

The SEM microphotographs obtained from this test are shown in Figures 4.13 to 4.16. 

Figures 4.13 (a) - (d) show the in-plane (layer) material micro characteristics. 

Microphotographs were also taken in a direction perpendicular to the layering. Figures 

4.14 (a) and (b) show discontinuity of the layer on the layer surface. Figures 4.15 and 

4.16 show the layer thickness and the irregular characteristics of interlayer boundaries. 

All the SEM observations were varied from a scale of 200 J.lm to 10 J.lm. After a detailed 

study of the scanning electronic microscopic pictures, it was found that the sizes of grains 

in a layer varied approximately from 1 to 30 micrometers and grains seemed to be 

flattened and smooth. The existence of discontinuities at the boundary of the grains was 

observed when magnification was increased from 100 J.lm to 10 J.lm. From this 

observation it could be concluded that large discontinuities exist along the grain 

boundaries and its size is so small that it is almost invisible in a micro level observation. 

It is also seen that their distributions are random in nature. The cracks considered in this 

study are macro level cracks, which ignored the grain boundary discontinuities or cracks 

by assuming that grains are bound together by intermolecular forces within a layer and 

discontinuities are developed only at the layer's boundary. Layers seem to be not well 
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(a) (b) 

(c) (d) 

Figure 4.13: In plane microphotograph showing grain size and grain boundary at different 
micro scales: (a) 100 J.1m; (b) 50 J1m; (c) 20 J1m; and (d) 10 J1m. 
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(a) (b) 

Figure 4.14: Microphotographs showing the layer discontinuity at scales of: (a) 200 J.lm; 
and (b) 100 J.lm 
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(a) (b) 

(c) (d) 

Figure 4.15: Microphotographs of layer thickness and orientation at a scale of: (a) 50 Jlm; 

(b) 20 Jlm; (c) 20 Jlm; and (d) 50 Jlm 
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(a) (b) 

Figure 4.16: Microphotographs of layer boundaries at scales of: (a) 10 J.lm; and (b) 10 J.lm 

defined. Discontinuity of layers is the common phenomena (Figure 4.14 (a) and (b)). 

After examining the interlayer boundaries at 10J.lm scale level it was observed that a gap 

of approximate width 500 nanometer occurred between two layers (Figure 4.16 (b)). 

However, at macro level it could be assumed that each layer is connected to each other by 

weak cohesive forces at the layer boundaries. A picture showing the crack ~t the layer 

boundary is shown in Figure 4.16 (b). In this study micro layer thickness was obtained to 

be approximately between 20 to 50 J.lm. 
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4.10. Splitting Test of Slate Blocks (Group# 5) 

4.10.1 Specimen Preparation and Experimental Setup 

Specimens were cut from large sized slate blocks to determine the splitting forces of 

various sizes of slate blocks in the same manner as those for elastic properties test. 

Specimens were taken out from the water tank two days before the tests were to be 

carried out to make them air dry and for fixing the strain gauges. Strain gauges were 

fixed on the sides of the specimen using the same procedure described earlier in section 

4.5.2. 

In order to fabricate the setup for the impact breaking of slate blocks, a load frame was 

assembled to carry the hydraulic actuator, load cell and the wedge-shaped impact indenter; 

the swivel end hydraulic actuator was hung vertically on the load frame to apply in-plane 

loads on slate specimens. A load cell rated for 22 kips (97.86 kN) [10 kips (44.48 kN) for 

small blocks] was fixed to the lower part of the actuator. A fabricated wedge shaped impact 

indenter (shown in Figure 4.18) was attached to the bottom of the load cell. This device 

applied the impact force directly to the slate specimen using a MTS load test frame through 

the hydraulic actuator. The movement of the ram of the hydraulic actuator was controlled 

by a MTS 407 controller. This controller had the capability to control both load and 

displacement, independently. A displacement controlled square pulse impact force was 

applied to the sample through a 410 digital function generator connected externally to the 

MTS 407 controller. The actuator used in this test is designed to allow a total movement of 

the ram up to 6 inches (152.4 mm); this means that the actuator ram can move only 3.0 

inches (76.2 mm) in a certain direction either up or down from its central position. Test 

specimens were placed on a heavy steel platform that was fixed to a 3.0 feet (0.914 m) 
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thick concrete floor slab. In order to keep the specimen stationary on the platform, lateral 

supports were provided. Two L-shaped lateral supports, made of wooden planks, were 

fixed slightly away [approximately 0.5 inch (12.7 mm) on both sides] from the sample 

using heavy steel clamps. A cable was connected between MTS 407 controller and data 

acquisition system to transfer load signals from the controller to the computer via the data 

acquisition board. This signal was converted to load using proper conversion factor. The 

voltage signals obtained from strain gauges were passed through the data acquisition board 

to the computer. Commercially available Lab View data acquisition software was used to 

acquire data from load cell and strain gauges and stored for further analysis. Basically, 

hydraulic actuator, strain gauges, load cell transducers and data acquisition system were 

required to set the system up. Flow chart and laboratory instrumental setups for the 

experimental study of splitting of slate block are given in Figures 4.17 and 4.18 

4.10.2 Hydraulic Actuator and Controller 

The hydraulic actuator used in this test provided the driving force required for applying 

impact force on the test specimen. A hydraulic pump was connected to the actuator. 

Before applying load to the system hydraulic pump was started by using the MTS 407-

controller system. This controller is a single channel, digitally-supervised, proportional, 

integral, derivative, feed-forward servo controller that provided a complete control of one 

servohydraulic channel/station in a MTS testing system. The controller included AC and 

DC transducer conditioning, basic function generation (with the capability to accept 

externally generated command signals), servo-valve drive signal generation, and 

hydraulic pressure control. Actuator was connected to the MTS 407.05 pump interface 

and pump interface was connected to the controller. Input displacement/load signal is 
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Displacement ....., Board 
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Load Cell 
Output 

Strain Gauge 
Output 

Figure 4.17: Flow chart for experimental setup of splitting test on slate block 

Figure 4.18: Instrument set up for impact splitting test on slate block. 
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passed to the actuator through the hydraulic pump from the function generator of the 

MTS controller. Hydraulic actuator [Model number: 244.22, Serial number: 637, 

Assembly number: 367715-11, Force: 22 kips (lOOkN), Area: 7.57 in2 (48.9 cm2
)] made 

by MTS System Corporation, Minneapolis, Minnesota 55424, USA, was used during the 

entire test program for applying the impulsive force. It is s double-acting, double-ended, 

heavy-duty actuator that operated under precision servovalve control in the MTS closed

loop servohydraulic system. The maximum force it can apply on the test specimen is 22 

kips (100 kN) and its stroke for the dynamic loading is ± 3.0 inch (± 76.2 mm) and static 

loading is± 3.4 inch(± 86.36 mm). 

4.10.3 Impact Splitting Test Results 

Different sizes of surface dried slate blocks (from 0.1 m x 0.048 m x 0.1 m to 0.3429 m x 

0.15 m x 0.3175 m) shown in Figures 4.19 (a) and (b) were split using the hydraulic 

actuator in the laboratory. Force and strain gauge responses were recorded during the 

progress of tests. The variation of impact force and strain gauge readings with respect to 

time for slate blocks having different sizes are shown in Figures C-11 to C-20 in 

Appendix C. 

The entire breaking process may be characterized into two separate physical phenomena: 

crushing and splitting. Therefore, the measured impact force could be considered to be 

made up of into two force components; crushing force and splitting force. Crushing force 

may be defined as the force required to crush the slate material at the beginning of impact 

at the impact interface on slate (or entrance point of wedge into the specimen) and is 

calculated based on shear failure criteria. In this part of the analysis, it is assumed that 
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failure occurs in slate due to shear stress developed in the test specimen just below the 

initial contact area of wedge, when the applied load is equal to the material shear strength 

of the crushed volume. It is essential to mention here that crushing of brittle material 

would be the result of the coalescence of micro cracks (tensile failure) or shearing of a 

plane of material over the other. Existing cracks in a favourable direction are propagated 

fast under a fast compressive force and they coalesce and grow within a local region and 

pulverize the rock. Pulverizing phenomenon usually happens in case of hard rocks and 

high velocity impact problems. However, for relatively soft rocks (such as slate, schist, 

and sandstone) and low velocity impacts, shear failure is the commonly observable event. 

This load was taken as the initial crushing load. 

Olofsson, et. al. (1991) studied ice failure mechanism close to the contact area in a series 

of small scale crushing tests at relatively high indentation velocities. They used an 

iterative numerical model based on successive shear failure to predict the crushing 

behaviour. They mentioned that the ratio of shear strength to contact pressure controls the 

fractal behaviour of ice crushing. They pointed out that shear strength and contact 

pressure are related to the velocity of the indentor. Their ratio (shear strength and contact 

pressure) decreases as the indentation rate increases and finer fragmentation of crushed 

ice is produced. 

In a similar manner, after the initial crushing penetration of the specimen, the indenter 

starts to apply force normal to the penetrating face of the indenter on the slate specimen. 

This force acts on the penetrated specimen face as a normal-to-the-face compressive 

force. Force applied in addition to the initial crushing force attempts to split the slate 
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block. Splitting force is calculated based on either the normal stress failure criteria or 

mode I fracture toughness of the material by assuming that mode I stress intensity factor, 

for a particular length of crack and applied loading, is equal to the material fracture 

toughness. Normal stress failure criterion is applied at the starting of splitting process by 

assuming that the maximum principal stress developed due to applied load is equal to the 

tensile strength of the material over the split area. Since splitting is an indirect effect of 

applied load on the specimen, it is assumed to start when the applied force reaches its 

peak value in plane strain splitting tests. For this reason, the peak value of load-time 

curve represents the critical impact load required for plane strain splitting tests [specimen 

length (0.1 m) was the same as the length of wedge (0.1 m)]. 

Wedge was assumed to enter 10 mm inside the specimen during splitting; it was 37 mm 

above the specimen before impacting the specimen surface. Therefore, the full length of 

crack propagated from top to bottom during the splitting process. The post peak part 

(separating and falling) of breaking force vs. time curve represents resistance of slate 

block at different stages of crack propagation. When crack starts to propagate, opening of 

the split surfaces increases and the area of the uncracked ligament (i.e. resisting area) 

decreases gradually. Consequently, resistance of the block also decreases. This 

phenomenon has been shown by plotting the load cell and strain gauge responses together 

after making a time shift. The shifting of time was needed to synchronize the force and 

strain gauge reading to describe the splitting process of slate block. It was done by 

considering starting time of crushing failure as the zero time for strain gauge readings. 

Another time shifting of strain gauge readings was required to include the time delay of 

load cell response as its output depends on the resistance of the material and the length of 

155 



the interposed steel cylinder placed between load cell and test specimen. Since strain 

gauges were on the test specimen and an indenter and a 8 inch long, 2 inch outer diameter 

hollow threaded steel rod were placed between the specimen and the load cell (for 

varying the distance between actuator ram and the slate specimen for testing different 

sizes of slate blocks from a fixed bottom platform), the strain gauges' responses reached 

the data acquisition system a little earlier than the load cell response. The load cell 

reading was shifted by a time equal to that needed for a propagating longitudinal wave 

pulse to reach the load cell. The time taken to propagate the longitudinal load pulse to the 

load cell depended on the slate properties and intensity of striking force (indentation 

rate). The velocity of longitudinal wave propagation pulse for isotropic steel material was 

calculated using the formula v, ~ J¥,. The travel time needed for the longitudinal wave 

from wedge tip to reach the load cell was increased to twice its value due to the low 

velocity impact force and damping of the medium (since the wave propagation velocity 

decreases by half for a damping of 5%-7%). When the impact load reached its peak 

value, crack started to propagate at speeds of 30 - 120 m/s (approximately, neglecting 

lower values of propagation velocities) as detected by the strain gages used. 

In Figure C-11 (in Appendix C), the first strain gauge was fixed 3.4 mm away (along the 

depth of the specimen) from the impacting point of wedge, the 2nd strain gauge was fixed 

22 mm away from the first gauge and other gauges were fixed along the depth of the 

specimen at equal intervals of 8 mm. In Figures C-12 and C-13 (Appendix C) first strain 

gauge was fixed very close to the impacting point (4 mm and 2 mm, respectively). InC-

12 the 2nd strain gauge was 35 mm below the impacting point and other gauges were 
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fixed at equal intervals of 7 rnm. In Figure C-13, the distance between 1st -2nd was 35 

mm, 2nd- 3rd was 15 mm, 3rd- 4th was 12 rnm and the rest of the gauges were 10 mm 

apart. 

In Figure C-14, it is seen that crack starts in the specimen before reaching the peak load. 

This load-strain interaction curve was obtained during the splitting of a non-plane strain 

specimen having length of block greater than the length of indentor. Wedge was kept 58 

mm above the specimen before impacting the specimen and it was observed to enter 12.5 

mm inside the specimen before the slab split apart. First strain gauge was fixed 7 mm 

away from the impacting edge, 2nd strain gauge was fixed 45 mm away from the first 

strain gauge and the subsequent strain gauges were fixed at intervals of 38 rnm, 36 mm, 

36 mm, 34.5 mm and 19.5 mm, respectively. Strain gauge positions for Figure C-15 were 

not the same as Figure C-14. First strain gauge was 4 rnm below the top surface of the 

specimen and the others were fixed sequentially at 20 mm, 13.55 mm, 14.33 rnm, 20 mm, 

14.2 mm, 15 rnm and 13.63 mm, beyond the preceding one, respectively. In both cases 

crack starts first under the wedge tip and grows horizontally and vertically downward; 

more energy is required to propagate the crack transversely, to the edge of the specimen. 

The peak value of applied load develops after the crack advances to a certain distance 

(horizontally) from the initial wedge impact locations. If the load vs. strain interaction 

diagram is plotted after shifting time it is seen that load reaches the peak value when 

crack reaches the strain gauge fixed at a distance 140 rnm away from the center line of 

the block. Thereafter, it starts to decrease. 

The load vs. strain interaction diagram shown in Figure C-16 shows the results for a 
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block where strain gauges were fixed on both parallel edges of slate specimens at the 

same height along the depth. The first strain gauge was fixed at a depth equal to 71 mm 

below the top surface and others were fixed 89 mm apart. Strain gauge readings were not 

coincident with one other due to the fact that the crack did not propagate symmetrically 

on either side of the specimen. A small time delay was observed. Crack reached the face 

1 faster than the face 2 in an inclined manner. Unsymmetric application of impacting load 

and the unsymmetric distribution of the pre-existing cracks inside the specimen could 

have contributed to this nonsymmetric nature of crack growth. Similar cracking scenarios 

were observed in Figures C-17 to C-20. In all these cases strain gauges were fixed at the 

same height on parallel edges by fixing the first gauge at 51 mm below the top surface 

and the subsequent gauges at 64 mm below the other. The maximum loads obtained 

during splitting of different sizes of slate blocks are given in Tables 4.17 to 4.19. 

Some of the blocks, split in the laboratory, are shown in Figures 4.20- 4.22. In all cases, 

slate blocks were impacted by the indenting wedge at the center of the top surface. A 

crushing zone that developed during splitting has also been shown (marked by 

rectangular box) on the splitting surfaces [see Figures 4.20(a), 4.20(c), 4.20(d) and 4.21]. 

In Figures 4.20 (a), (b) and (d) it is seen that a part of slate block along the splitting plane 

seems to be separate initially itself and does not seem to offer any resisting forces. 

Therefore, breaking load obtained was much less than those obtained from the same size 

block where entire breaking plane was active in resisting the splitting force [Figures 4.20 

(c) and 4.21]. Split surface texture of load resisting parts of splitting surface is different 

from those of unresisting parts [as could be seen in Figures 4.20 (a) and (b)]. Resisting 

parts of splitting surfaces seem to be smooth whereas the unresisting parts seem to be 

158 



Table 4.17: Impact breaking load of different sizes of slate block using wedge having a 
63.5 rnrn transverse length (Three-dimensional impact splitting). 

Specimen size Breaking force 
(Lx WxD)in 'm' 

lbf kN 

0.095 X 0.042 X 0.171 1348.00 5.996 

0.108 X 0.042 X 0.124 1670.00 7.428 

0.108 X 0.048 X 0.102 1100.00 4.893 

0.108 X 0.051 X 0.102 1060.00 4.715 

0.110 X 0.057 X 0.113 1245.00 5.538 

0.111 X 0.059 X 0.109 1865.00 8.296 

0.113 X 0.065 X 0.113 1611.00 7.166 

0.111 X 0.067 X 0.121 1763.00 7.842 

0.108 X 0.067 X 0.111 1733.00 7.709 

0.116 X 0.071 X 0.113 1425.00 6.339 

0.113 X 0.074 X 0.122 1387.00 6.170 

0.140 X 0.051 X 0.143 1665.00 7.406 

0.163 X 0.061 X 0.160 2266.00 10.079 

0.160 X 0.075 X 0.168 3140.00 13.967 

0.168 X 0.071 X 0.162 2246.00 9.990 

0.152 X 0.078 X 0.162 3020.00 13.433 

0.162 X 0.083 X 0.159 2770.00 12.321 

0.160 X 0.083 X 0.170 2200.00 9.786 

0.159 X 0.092 X 0.165 2832.50 12.599 

0.163 X 0.092 X 0.171 2400.00 10.675 

L = Length, W = Width and D = Depth 
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Table 4.18: Impact breaking force of plane strain slate block using wedge having a 
0.1016 m (4 inch) transverse length (plane strain impact splitting). 

Specimen size Breaking force 
(L x WxD) in 'm' 

lbf kN 

0.102 X 0.051 X 0.102 977.00 4.345' 

0.102 X 0.076 X 0.102 1100.00 4.893 "' 

X 

0.102 X 0.102 X 0.102 1236.46 5.500 

X 

0.102 X 0.127 X 0.102 1618.63 7.200 
·------·---·-

0.102 X 0.102 X 0.127 1300.53 

0.102 X 0.102 X 0.152 1503.53 

0.102 X 0.102 X 0.178 1627.85 

0.102 X 0.102 X 0.203 1813.77 

* - Indicates average value of two blocks 
L = Length, W =Width and D =Depth 
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Table 4.19: Impact breaking force of 3D typical slate block using wedge having a 0.1016 m 
( 4 inch) transverse length. 

Specimen size Breaking force 
(L x Wx D) in 'm' 

lbf kN 

0.127 X 0.152 X 0.157 3533.00 15.716 

0.232 X 0.062 X 0.156 3500.00 15.568 

0.239 X 0.095 X 0.172 3706.00 16.485 

0.248 X 0.080 X 0.192 4004.00 17.810 

0.232 X 0.124 X 0.156 4300.00 19.130 

0.235 X 0.076 X 0.156 6300.00 28.024 

0.243 X 0.081 X 0.163 4700.00 20.906 

0.250 X 0.104 X 0.220 4941.00 21.980 

0.232 X 0.124 X 0.160 6500.00 28.910 

0.25 X 0.122 X 0.200 7202.00 32.040 

0.254 X 0.127 X 0.203 4725.51 21.020 

0.305 X 0.086 X 0.184 4956.00 22.045 

0.305 X 0.080 X 0.175 4526.00 20.130 

0.305 X 0.152 X 0.254 4985.16 22.175 

0.340 X 0.100 X 0.320 7305.00 32.500 

0.337 X 0.149 X 0.254 2835.75 12.614 

0.368 X 0.098 X 0.305 5933.00 26.391 

L = Length, W = Width and D = Depth 
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splitting across different layers. In Figures 4.20 (a) and (b) it is seen that part of the 

unresisting slate layer under the initial crushing zone got detached from the original plane 

of splitting and pushed into the specimen during the splitting process. This is a sign of 

shear failure under short term high intensity impact loads. This force was generated more 

at the beginning of low velocity impact force, causing a crack to start under the tip of the 

indenting wedge; the crack then propagated gradually towards the end of the specimen 

along the same plane in a non-plane strain cracking. 

Some meandering of crack front (away from a straight vertical plane) was observed in 

some specimens. Non uniform layering in slate could be a reason for this. However, 

regular splitting and uniformity of layering was a common feature for most of the slate 

blocks. In order to examine whether the crack propagated symmetrically along the crack 

plane or not, strain gauges were fixed at the same distance on both sides of the test 

specimen from the center of the wedge. The variation of strain gauge responses obtained 

from tests of a typical slate block was given earlier in Figures C-16 to C-20 (Appendix C) 

where the load was applied in a three-dimensional manner at the center of the transverse 

width of slate block. It is seen from those figures that crack propagation wasn't exactly 

symmetrical. The crack propagation plane for plane strain splitting test is shown in 

Figures 4.22 (b) and (c). It is seen that the block was broken exactly into two pieces and 

crack plane was almost vertical, and crack front almost horizontal. 

In order to obtain the generalized shape of experimental impact splitting force for plane 

strain and non-plane strain slate blocks normalized splitting force was plotted with 

respect to normalized time. Normalized splitting force was obtained by dividing the time 
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(a) 

(b) 

Figure 4.19 (a) and (b): Different sizes of slate block ready for splitting 
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(b) 
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(c) 

(d) 

Figure 4.20 (a)- (d): Impact splitting post failure surfaces 
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Crushing zone 

Figure 4.21: Impact splitting failure surfaces indicating crushing zone 
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(a) 

..... 
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(c) 

(d) 

Figure 4.22: Post splitting failure crack patterns: (a) and (d) Non plane strain splitting; (b) 
and (c) Plane strain splitting. 
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Figure 4.23: Variation of normalized impact splitting force with respect to normalized 
time for plane strain (indenting transverse wedge length equal to the transverse length of 
the block) slate blocks having different widths and depths. 
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Figure 4.24: Variation of normalized impact splitting force with respect to normalized 
time for non-plane strain (transverse length of the block greater than the transverse length 
of the indenting wedge) slate blocks having different sizes. 
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dependent force by the peak value of the splitting force and normalized time was 

obtained by dividing the instant time by the total splitting time of the slate block. The 

variation of normalized splitting force with respect to normalized time for both cases 

(plane strain and non-plane strain test) of impact splitting are given in Figures 4.23 and 

4.24. It is seen that the variation of normalized splitting force with respect to normalized 

time is almost similar for all plane strain and non plane strain slate blocks. Hakalehto 

(1970) tested and observed the type of fracture of shale specimen under various pulse 

amplitudes. He reported that lower amplitude pulse causes a better splitting type of 

fracture along the bedding planes than the higher amplitude pulse, i.e., if a splitting type 

of fracture is desired, it is better to increase the duration of the pulse rather than the 

amplitude. This similarity of normalized impact load vs. time feature was utilized in 

carrying out numerical analysis for impact splitting of slate blocks. 

4.11 Summary 

The experimental study reported in this chapter has been divided into five groups for properly 

understanding the various types of tests carried out in this study. Naturally bedded slate rock 

was considered in this test program as the test material. Calibration of instruments, 

instrumentation setup, specimen preparation, testing procedures and interpretation of results 

for each group of tests have been described separately. It is observed from test results obtained 

from different properties tests that the present test results, except the tensile strength of slate 

are almost closer to those found earlier in other published results. In order to confirm the 

tensile strength test results subsequent studies need to be carried out taking special care for 

removing bending moment effects that arise during the carrying out of tests. Shear modulus of 
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rigidity and shear strength tests were not carried out in the present study due to their lesser 

importance in the analysis of mode I dynamic crack propagation. Fracture toughness tests 

were carried out for two different types of layering scenarios (arrester and short transverse as 

per Figures 4.8 and 4.11) where initial cut was parallel and perpendicular to the layering plane. 

Due to difficulties that arose while making test specimens, two distinct shapes of specimen 

(cylindrical and rectangular) were considered in this test program. There were no special test 

procedures available in codes to measure crack propagation velocity in slate block. It was 

measured during breaking of slate blocks by wedge impact force, using strain gauge sensors. It 

has been observed that crack propagates comparatively slowly, along an almost single plane 

and crack propagation velocities vary in an irregular manner. In Scanning Electron 

Microscopic study of slate material, it is seen: (i) that micro cracks exist at grain boundaries; 

(ii) discontinuities of layering are common features; and (iii) layer interfaces seem to be well 

defined incipient crack surfaces. After examination of the load-time plots obtained from the 

impact splitting tests it could be concluded that peak load occurred at the onset of unstable 

crack propagation in plane strain specimens. However, crack started before the load reached 

its peak value for non-plane strain slate blocks. Splitting loads were not consistent (in some 

cases) with the sizes of blocks. Some of large blocks took lesser load to break than those found 

in relatively small blocks; the probable reason for this inconsistency could be the existence of 

a larger number of pre-existing flaws per unit volume in the slate material. A study on the 

variation of normalized splitting forces for different types of slate blocks (plane strain and 

non-plane strain) was carried out to establish the general shape of impact splitting forces. The 

shapes obtained for normalized splitting forces with respect to normalized times were almost 

similar for all slate blocks considered for the splitting series of tests. 
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The properties used in the subsequent numerical investigations are given below. 

Slate was characterized as a transversely isotropic material having the following 

elastic properties: 

E11 = E22 = 75.85 (GPa) 

E33 = 39.65 GPa 

V12 = 0.236 

v13 = V23 = 0.170 

Direct tensile strength = 2.33 MPa (highest value obtained) 

Hardness of slate rock (Shore hardness number) = 40.64 (used in the choice of 

material used for indenter) 

Fracture toughness of slate rock= 0.292 (MPa.m112
) 

Crack propagation velocity variation = 38 to 55 rn/s 

Coefficient of friction = 0.56 (used in the interface sliding of wedge indenter into 

slate) 
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Chapter 5 

Numerical Analysis of Impact Splitting of Slate Rock 

5.1 Introduction 

Theoretical estimation of the required in-plane impact loads, before actually splitting a 

layered rock, is required to obtain an idea of the maximum load needed to break a 

specific size of block and the subsequent design of necessary machinery/equipment to 

apply that load. Once it is possible to estimate the breaking load for a specific size of 

block, it is also possible to setup a machinery to apply that load on the body. In order to 

determine the approximate breaking load of any regular sized layered rock block one 

needs to carry out extensive experimental investigations, using small- and large- scale 

specimens. However, the experimental investigations on large-scale specimens are almost 

impossible to be carried out in a medium-sized research laboratory. The other way to do 

the same is to verify and establish a numerical methodology first from the results of 

small-scale experimental investigations and thereafter to apply the same numerical 

procedure to estimate the approximate breaking loads for large rock blocks. From the 

computed breaking load the field equipment can be designed and fabricated. The present 
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chapter outlines a finite element based numerical analysis that was carried out based on 

small-scale experimental test results obtained during the breaking of finite sized 

square/rectangular slate blocks. Mode I dynamic stress intensity factors were determined 

for a finite sized slate block using plane strain and 3D finite element analyses; 

incremental crack growth analysis was carried out and the stress intensity factors 

obtained through analysis were compared with the plane strain material fracture 

toughness values obtained from experiments. 

5.2 Finite Element Analysis - A numerical approach for simulating dynamic 

crack growth 

5.2.1 General 

The use of finite element method as a numerical technique has advanced considerably to 

analyze very large structural elements as well as highly sophisticated structures. 

Advances have also been made in materials used earlier for fabricating these structures 

such as steel and timber, which are now-a-days frequently replaced with composites and 

ceramic materials. Theoretical basis required for the application of finite element 

methodology for these cases has been discussed briefly in Chapter 3. Two-dimensional 

finite element analyses of mode I fast crack propagation in linear elastic isotropic bodies 

have been carried out during the past three decades and a number of papers and reports 

have been published (Malluck and King 1980, Mall, et al. 1980, Sun and Hun 2001). 

Most of the researchers have taken advantage of elastodynamic symmetry about the crack 

tip trajectory to simulate the rapid crack propagation phenomenon by sequential release 

of nodes along one side of the finite-element model. This technique has also been used by 

Jih and Sun (1990) to simulate the crack advancement in running crack problems. 
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Numerical modeling of dynamic crack propagation in finite bodies was carried out earlier 

by Nishioka and Atluri (1980) using moving singular elements in finite element 

approach. In the present study splitting tests were carried out on two separate groups of 

slate blocks viz., plane strain blocks (transverse length of the test block equal to the 

transverse length of the wedge) and real three-dimensional (3D) blocks (transverse length 

of the test block greater than the transverse length of the wedge). Consequent! y the results 

of finite element analyses have been presented separately for each group to clarify the 

relevant issues observed during the analyses. In this chapter, results of the finite element 

analyses of slate blocks having a transverse length equal to the transverse length of the 

indenting wedge are presented and discussed (plane strain analysis). Assumptions, 

simplifications, finite element model discretization, special procedures used, numerical 

results and discussions are presented herein to highlight dynamic plane strain impact 

crack propagation from the impact point to the bottom of the specimen, splitting the slate 

rock specimens exactly into two pieces. 

5.2.2 Assumptions and Simplifications 

During the experimental splitting tests of slate blocks salient dimensions of test 

specimens such as thickness, width and length could not be kept constant, due to them 

being cut out from large irregular sized slate blocks. Crushing depth of slate at the initial 

impact interface was not measured exactly due to the sequential occurrence of two events 

(crushing and splitting) during the splitting process. Layer discontinuities and very small 

irregular layer thicknesses were obtained in microscopic studies reported earlier in 

section 4.9.2. However, in the numerical analysis this irregular layer thickness could not 

be implemented due to difficulties experienced in the determination of individual layer 
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properties having very small layer thicknesses. Experimental crack propagation line was 

not exactly collinear with the plane of loading. Therefore, it was not possible to simulate 

the real slate behaviour exactly by the theoretical model. Hence, some assumptions and 

simplifications became essential to carry out numerical analysis. The following 

assumptions and simplifications were made for finite element analysis of the impact 

splitting process of plane strain slate blocks. 

+ Material was taken to be homogeneous and transversely isotropic (observed from 

experimental results, reported earlier) 

+ Thickness of the specimen was assumed to be uniform over the specimen height 

+ Breaking of block was assumed to be symmetric (exactly into two equal pieces) 

+ Crack propagation event was also considered symmetric 

+ Crack was assumed to be a plane crack and propagated along the vertical impact 

plane by maintaining same depth of penetration in the transverse direction, for each 

time 

+ Dynamic impact load was assumed to be distributed uniformly on the indenter, at a 

height 10 mrn above the tip of the indenting wedge 

+ The initial fracture process zone was assumed to be very small in comparison to 

other geometric dimensions including crack length/area. Moreover slate was observed 

to be a brittle material. Therefore, linear elastic fracture mechanics (LEFM) was 

applied to analyze crack propagation phenomena though it is not valid during the 

crack initiation process; it is applicable for crack propagation process 

+ It is assumed that when the wedge penetrates 5 mrn deep into the specimen, the crack 

is assumed to have grown to 23.5% of the specimen depth in both plane strain and 
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3D-block "equivalent to plane strain" block analyses. Rest of the specimen crack 

(uncracked part) will grow as wedge moves further inwards 

+ Damping was considered to be zero for the entire system during the splitting process; 

this is justified on the basis that the damping plays an insignificant role during the fast 

crack growth process. 

+ Some of the components used to apply the sudden impact load, such as, hydraulic 

actuator and their accessories were not taken into consideration in finite element 

analysis. The impact load was considered to be applied directly through the wedge 

indenter (see Fig. 5.1). 

5.2.3 Finite Element Model- Description of Elements Used 

Finite element model of the entire test procedure for plane strain splitting test was 

generated using CPE8R, CPE6 and CINPE5R elements shown in Figure 5.2. CPE8R is 

an eight-noded biquadratic rectangular plane strain solid element with reduced 

integration, and CPE6 is a six-noded quadratic triangular plane strain solid element, 

CINPE5R is a five-noded quadratic semi-infinite element used to simulate non-reflecting 

wave propagation aspect required at the support interface. All nodes of elements have 

two degrees of freedom denoted by ux and uy. The integration points for element CPE8R 

and CINPE5R (reduced integration) are 4, and 3 for CPE6 (full integration). Except a 

small part of wedge and concrete floor, the entire system is modelled using CPE8R 

elements. Both CPE8R and CPE6 elements are used to model wedge indentor. The test 

specimen was kept on a steel platform (wide flange I-beam) that was fixed to a 3 feet 

thick reinforced concrete floor. Therefore, the concrete floor was considered as an infinite 

media of homogeneous isotropic material and modelled using infinite elements (CINPE5R). 
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Stiff steel platform 

Rigid concrete floor 
(36" thick) 

Figure 5.1: Partial experimental setup used for finite element discretization. 
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Wide flange I-beam was modelled using CPE8R elements. Reduced integration was applied 

to obtain more accurate results and less computational time (ABAQUS 2002). Finite 

element model of a regular cubic slate block (0.1 m x 0.1 m x 0.1 m) i.e., 3D model of 

plane strain splitting analysis was generated using C3D8, C3D6 and CIN3D8 elements. 

C3D8 is an eight-noded linear brick element and C3D6 is a 6-node linear triangular 

prism. CIN3D8 is an eight-noded linear 3D infinite element having 8 integration points 

for determining element stiffness matrix through numerical integration and used to model 

the concrete floor. Integration points for elements C3D8 and C3D6 are 8 and 2, 

respectively. All the nodes of elements have 3 displacement degrees of freedom denoted 

by ux, uy and Uz. Test specimen, indenter wedge and wide flange I-beam were modelled 

using C3D8 and C3D6 elements. Elements and their integration points are shown in 

Figures 5 .2. 

5.2.4 Mesh Generation 

It is known that finite element model with very fine mesh provides more accurate results 

than that with a coarse mesh for a specific element type in stress/displacement analysis of 

a finite body. However, finite element analysis of a body with very fine mesh requires 

many elements and also more computational time. Therefore, computational time and 

mesh size are two important factors in finite element analysis and they are inter

dependent on one another. There is a thumb rule in finite element analysis that the 

computational time increases approximately as the square of the number of degrees of 

freedom. Therefore increasing the number of elements means increasing the degrees of 

freedom, and consequently, would require more time to complete the analysis. The 

effective capacity of computer is also another factor. The use of small sized elements 
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Figure 5.2: Different types of elements used in discretizing the finite element model of 
splitting process of slate block 
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(large number of elements) may sometime exceed the capacity of the computer. Specially 

in dynamic analysis where a large number of time steps and iterations are required to attain 

good accuracy of result, one needs a larger memory space to store the data. Hence, one 

should select mesh size in such a way so that it would give results with sufficient 

accuracy and be able to analyze within the capability of the computer available for the 

study, i.e., it requires a reasonable mesh size by careful selection of element sizes and 

their distribution. 

In the present study the discretization of the test specimen has been carried out by 

dividing it into three zones such as splitting zone, contact zone and less stressed zone. 

Splitting and contact zones are defined as critical zones. Therefore, they have been 

discretized using very small elements which are almost square in shape. Coarser meshes 

have been provided in the less stressed zone. In other words, non-uniform mesh sizes 

were used by employing very fine meshes (element size 0.75 mm by 0.75 mm) along the 

crack front and contact planes, and coarse mesh was used away from these critical zones, 

specially for locations (within a region of interest, slate block) where there were no stress 

concentrations or sharp variations. The overall slate block size and the representative 

impact load-time curve used in this part of the numerical study are shown in Figures 5.3 

and 5.4. A detailed plane strain finite element mesh of the entire body is shown in Figures 

5.5 (a-d). Non-uniform mesh (fine mesh with element size 3 mrn by 1.5 mm by 2.5 mm 

along the crack front and contact planes, and coarse mesh away from these critical zones) 

was also used in 3D analysis. The finite element mesh for the three-dimensional block is 

shown in Figures 5.6 (a-d). 
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Figure 5.3: Geometry of plane strain slate block used for finite element analysis 
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Figure 5.4: Variation of splitting load and strain gauge readings with respect to time 
obtained from experimental studies of the slate block shown in Figure 5.3. 
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Figure 5.5: Finite element discretization for plane strain analysis: (a) Test specimen on 
the platform under impacting indenter; (b) Combined mesh used for the slate specimen 
and the wide flange I-beam; (c) Mesh used for slate specimen only; and (d) Enlarged 
mesh at the junction of indenting wedge and slate specimen. 
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Figure 5.6: Finite element discretization for 3D analysis: (a) Test specimen on the 
platform under the impact indenter; (b) Combined mesh used for the slate specimen and 
the wide flange I-beam; (c) Mesh used for slate specimen only; and (d) Enlarged mesh at 
the junction of indenting wedge and slate specimen 
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5.2.5 Boundary Condition 

Due to the symmetry of the entire test system i.e., geometry (platform, specimen) and 

loading (see in Figure 5.1 and 5.3) only half of the entire system was modeled in plane 

strain finite element analysis. Displacement degrees of freedom in direction x or 1 (ux) of 

wedge, platform, concrete floor and uncracked part of slate specimen, along the 

symmetry line, were restrained to obtain elastodynamic symmetry for simulating dynamic 

crack propagation by sequential node release technique (shown in Figure 5.5 (b)). For 3D 

analysis, while using symmetry conditions, one-quarter of the entire system was modelled 

by restraining all the nodal displacement degrees of freedom in direction z or 3 (uz) of 

nodes in plane x-y (1-2) and in direction x or 1 (ux) of nodes in plane y-z (2-3) (except 

cracked part). Load was considered to act as distributed loads at a distance above the tip 

of the wedge equal to twice the wedge penetration depth ( = 0.005 m). The magnitude of 

the distributed load was calculated by dividing the load obtained from the impact event 

by the area of the wedge at a height of 0.01m from the tip of the wedge. Surface-based 

contact was introduced between: (i) wedge and specimen (near the indenting edge); and 

(ii) specimen and steel platform. A frictional coefficient 0.56 obtained from experimental 

studies was provided between all the contact surfaces of slate and steel. 

5.2.6 Convergence Test 

Finite element analysis of a cracked body is quite complex and time consuming due to the 

density of the finite element mesh required at or very close to the crack tip. In a running 

(or progressing) crack problem, mesh density along the predefined crack line would also 

influence the analysis results. In order to verify the proper sizing of the elements of the 

model, a convergence test was carried out on plane strain analysis by determining the 
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displacements at the top upper exterior comer indicated by a solid circular symbol in 

Figure 5.1. A crack length equal to 23.5% of the total height of the specimen was 

introduced at the beginning of the analysis. At first 560 eight-noded plane strain elements 

were used to discretize the specimen by providing 40 elements along the vertical 

direction. Element dimension along the symmetry line was 0.003 m x 0.003 m for first 

four columns and beyond that lateral dimension of element was increased. Thereafter 

840, 1148, 1414, 1736, 2016 and 2240 elements were used to model the specimen only 

and element numbers along the vertical direction changed progressively to 60, 80, 100, 

120, 140 and 160, respectively. This also changed the subsequent element dimensions. 

Element dimensions were 0.002 m x 0.002 m, 0.0015 m x 0.0015 m, 0.0012 m x 0.0012 

m, 0.001 m x 0.001 m, 0.0009 m x 0.0009 m and 0.00075 m x 0.00075 m, respectively. 

In all the above cases element type, crack length, boundary conditions and loading 

remained the same. Displacement at point A (shown in Figure 5.1) is plotted against the 

number of elements used (only to discretize slate block) and shown in Figure 5.7. It is 

seen that displacements seem to be constant beyond 2240 elements. Therefore, 2240 

elements with an element size 0.00075 m x 0.00075 m along and near to the symmetry 

line were used to model the test specimen in the present plane strain analysis. 

5.2.7 Probable Methods for Finite Element Analysis 

There are two different ways by which finite element analysis could be carried out to 

analyze the impact splitting process. First, ultimate load carrying capacity of the finite 

size slate block could be obtained by introducing a failure criteria (maximum normal 

stress criterion, i.e., ultimate tensile stress) in the finite element model. In this case, 
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Figure 5.7: Variation of deflection with number of elements 

loading is applied incrementally with an iterative non-linear solution technique. Modified 

Riks method or Newton-Raphson algorithm is generally used in ABAQUS finite element 

software to determine maximum load. This procedure is good for static analysis to predict 

unstable, geometrically nonlinear collapse of a structure or postbuckling analysis. This 

procedure is not followed in the present study because it is not suitable for dynamic 

analysis of the impact event. 

Second method, called fracture mechanics approach, i.e., used the breaking load obtained 

from an earlier experimental study (considered as the applied load on the body) to 

compute stress intensity factor for each subsequent crack extension. The cracking load is 

computed based on the plane strain material fracture toughness value being exceeded by 

the stress intensity factor for further crack propagation. For complete failure of the body 

SIF should be constant and equal to or greater than the plane strain fracture toughness 
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value for various crack lengths. This approach is used in the present study to analyze the 

impact splitting process numerically. 

5.2.8 Process of Results - Plane Strain Analysis 

Numerical analysis of this problem was carried out using the commercially available 

general purpose finite element software ABAQUS 6.3. Procedure for linear elastic 

fracture mechanics available in ABAQUS was used to analyze the dynamic crack 

propagation. A post processing procedure was used to generate results directly from 

ABAQUS. This program automatically determined mode I stress intensity factor (SIF) 

close to the crack tip through the contour integral evaluation. Since the contribution of 

inertia to SIF would be almost negligible when the contour integral contours (which 

were used to calculate SIF) shrink to the crack tip (ABAQUS 1991) and for running crack 

problems (for constant crack velocity) the inertia forces would remain the same as crack 

propagates through the body, the effect of inertia on SIF calculation in dynamic analysis 

was neglected. Basically ABAQUS calculates SIF using contour integral considering 

various contours around the crack tip. The FE discretization of the real impact test 

scenario using plane strain elements has been given earlier in Figure 5.5 (a)-( d). 

ABAQUS uses implicit time integration to calculate the transient dynamic response in 

general linear or nonlinear dynamic analysis. It uses Hilber-Hughes-Taylor operator 

which is an extension of the trapezoidal rule to perform general direct-integration 

method. This operator is unconditionally stable for linear systems. Therefore, there is no 

mathematical limit on the size of the time increment (ABAQUS 5.7, Vol. 1). A direct 

fixed time increment was used by providing 20 increments in each step. Though there 
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was an initial velocity in the indentation wedge before it impacted the test specimen, no 

initial conditions was considered in numerical analysis since their magnitude at the 

hitting point was not determined during the carrying out of test in the laboratory; this 

velocity effect has been indirectly considered by making the impact load vs. time curve to 

be the same as the applied force impulse. 

For dynamic simulation of impact loading, the load history (Figure 5.4) obtained from the 

load cell reading was applied to the wedge as distributed load. Mode I stress intensity 

factor around the crack tip and stresses in local 1- and 2-directions at integration points of 

crack tip element were calculated for each new crack length and applied load, as both 

load and crack length changed simultaneously. Since both ABAQUS standard and 

ABAQUS explicit do not support dynamic crack propagation analysis, a method that 

applied Mall and Luz (1980) and Sun and Han (2001) procedure to model delamination 

crack propagation was used to simulate the dynamic crack propagation process. In this 

procedure crack propagation was simulated by sequentially releasing the constrained 

degree of freedom on the boundary nodes along the crack propagation path, step by step, 

according to the calculated time. 

Since crack starts (at top of specimen) when load reaches its peak value and the first 

crack tip was considered at 0.0235 m below the top of the specimen, the applied load on 

the first crack tip should have been less than the maximum load obtained during the 

experimental cracking (80% of the maximum load) and this load was taken as the starting 

load for crack propagation. When crack advanced, the magnitude of the applied load 

decreased and the time also changed. Since both the loading and the crack propagation 
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were time-dependent, careful time shifting was taken into consideration in order to 

synchronize these two variables. Since contour integral is path independent (discussed 

earlier in section 2.6.4) and ABAQUS calculates stress intensity factor (SIF) from the 

evaluation of contour integral, the first contour was not included in the computation of 

SIF [it was located at 0.0001 (approximately) m from the crack tip and was very close to 

the tip and SIF varied greatly around the first integral]. The variation of SIF with various 

number of contours are shown in Figure 5.8 for different crack lengths. It is seen that SIF 

obtained from first and second contours differed by around 2% to 5%. However, the 

difference in SIF corresponding to 2nd and 3rd contours was less than 1%. Therefore, 

average SIF corresponding to 2nd and 3rd contours was taken as the correct SIF. 

Due to varying values of crack propagation velocities measured during the experimental 

program, two different cases were investigated to simulate the splitting phenomenon. In 

case I, SIF was determined along crack growth path by assuming a constant velocity for 

..__ 
0 
0 
.£!1 
>. 

."!::! (.0 

(/) 0 c .,.... 
<ll • ..... ~ 
-~ ~ 
(/) E 
(/) 

cri ~ 
en e:.. 
<ll 
'0 
0 

:2: 

0.35 

0.3 

0.25 
rt; ... 

0.2 

0.15 

0.1 

0.05 

0 

0 2 

-~-Crack length= 0.0235 m 

o Crack length= 0.0295 m 

~Crack length= 0.0355 m 

---Crack length= 0.0415 m 

----Crack length = 0.0475 m 

3 4 5 

Contour Number 

6 

Figure 5.8: Variation of stress intensity factor with the various contours for different 
crack lengths. 

192 



the propagating crack. In case II, crack propagation velocities were assumed to decrease 

linearly with respect to crack extension. Variation of assumed crack propagation velocity 

with crack length is shown in Figure 5.9. Since a range of 2 - 120 m/s crack propagation 

velocity was obtained in the experimental study, a gross variation (55-38 m/s for linearly 

decreasing crack velocity and the average of these two end velocities, viz., 46.5 m/s for 

constant crack velocity) that approximately satisfied most of the test results was 

considered for analysis. In case II, even though the propagation velocity was assumed to 

be constant over the element length, the crack extension time was varied from element to 

element owing to the same size of elements. Time of crack extension from one element 

tip to other was calculated by dividing crack length (or length of the cracking elemental 

face) by the crack propagation velocity. 
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Figure 5.9: Variation of crack propagation velocity with respect to crack length 
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5.2.9 Results and Discussion 

Contour plots of stresses in the local 1-direction for different time-dependent crack 

lengths are shown in Figures 5.10 (a)-(h). It is seen that stress concentration is developed 

at the crack tip. As crack tip moves due to propagation of crack along the plane with 

respect to time, stress concentration points also change their positions with respect to 

time as seen in Figures 5.10 (a)-(h). Stresses in local 1- and 2- directions along the depth 

of the specimen were also determined and are shown in Figures 5.11-5.14 for different 

crack lengths and for two cases of crack velocity variations. It is observed that the 

variation of stresses in local 1 direction seems to be almost constant for crack lengths 

between 0.0295-0.0535 m (see Figure 5.11). Also the stresses are very high around the 

crack tip leading to a progressive crack growth along the crack front. 

Due to friction present between contact surfaces of steel and slate material, stress was 

obtained compressive at the indentation location on the specimen. Compressive stresses 

in directions 1 and 2 at the bottom of the specimen were developed due to Poisson's 

effect. At first, a compressive stress develops in direction-2 at the bottom contact surface 

due to the vertical component of applied load. Then due to Poisson's effect, applied load 

components in direction 2 will introduce compressive stresses in direction 1. This 

compressive stress effect in local 1 direction disappears at a distance of approximately 

10% of the specimen depth from the bottom of the specimen (see Figures 5.11 and 5.13). 

Thereafter, stresses increase gradually becoming a maximum at the crack tip and 

suddenly decreasing thereafter. 
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(a) 

S, Sll (Pa) 
(Ave. eric.: 75% 

+1.08e+07 
+8. 50e+06 
+6.23e+06 
+3.96e+06 
+1.69e+06 
-5.85e+05 
-2. 86e+06 
-5. 13e+06 
-7. 40e+06 
-9. 67e+06 
-1. 19e+07 
-1.42e+07 
-1.65e+07 

t = 0.00645 sec 

(b) 

S, S11 (Pa) 
(Ave. Cri c. : 7 5% 

+1.01e+07 
+7.90e+06 
+5.73e+06 
+3. 56e+06 
+1. 39e+06 
-7. 73e+05 
-2. 94e+06 
-5. lle+06 
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(c) 

S, S11(Pa) 
Uwe. Crit.: 75% 

+9. 53e+06 
+7. 42e+06 
+5.30e+06 
+3. 19e+06 
+1.08e+06 
-1.03e+06 
-3. 14e+06 
-5.25e+06 
-7. 36e+06 
-9.47e+06 
-1.16e+07 
-1. 37e+07 
-1.58e+07 

t = 0.006561 sec 

(d) 

S, S11 (Pa) 
(Ave. Crit.: 75% 

+9. 14e+06 
+7. 11e+06 
+5.08e+06 
+3.05e+06 
+1.01e+06 
-1. 02e+06 
-3.05e+06 
-5.08e+06 
-7. 11e+06 
-9. 14e+06 
-1. 12e+07 
-1. 32e+07 
-1. 52e+07 

t = 0.006619 sec 
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(e) 

S, Sll (Pa) 
(Ave. Cri t. : 7 5% 

+9. 83e+06 
+7. 84e+06 
+5.84e+06 
+3.85e+06 
+1.85e+06 
-1. 43e+05 
-2. 14e+06 
-4. Be+06 
-6. Be+06 
-8. 12e+06 
-1. Ole+07 
-1.2le+07 
-1. 4le+07 

t = 0.006678 sec 

(f) 

S, Sll (Pa) 
(Ave. Crit.: 75% 

+9. 74e+06 
+7.81e+06 
+5. 89e+06 
+3.97e+06 
+2.05e+06 
+1.24e+05 
-1.80e+06 
-3.72e+06 
-5.64e+06 
-7. 57e+06 
-9. 49e+06 
-1. 14e+07 
-1.33e+07 

t = 0.006738 sec 
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(g) 

S, Sll (Pa) 
(~ve. Crit.: 75% 

+9. 53e+06 
+7. 71e+06 
+5. 89e+06 
+4. 07e+06 
+2.25e+06 
+4. 31e+05 
-1. 39e+06 
-3.21e+06 
-5.03e+06 
-6.85e+06 
-8. 67e+06 
-1.05e+07 
-1.23e+07 

t = 0.00680 sec 

(h) 

S, Sll (Pa) 
(~ve. Crit.: 75% 

+9.95e+06 
+8. 19e+06 
+6. 42e+06 
+4.65e+06 
+2.89e+06 
+1.12e+06 
-6. 45e+05 
-2. 41e+06 
-4. 18e+06 
-5.94e+06 
-7. 71e+06 
-9. 48e+06 
-1. 12e+07 

t = 0.006864 sec 

Figure 5.10 (a)-(h): Contour plot of stress in local direction 1 of test specimen for 
different time dependent crack lengths 
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Figure 5.11: Variation of stress in local !-direction along the depth of the specimen for 
different crack lengths and linearly decreasing crack propagation velocities. 
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Figure 5.12: Variation of stress in local 2-direction along the depth of the specimen for 
different crack lengths and linearly decreasing crack propagation velocities 
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Figure 5.13: Variation of stress in local !-direction along the depth of the specimen for 
different crack lengths and constant crack propagation velocities. 
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Figure 5.14: Variation of stress in local 2-direction along the depth of the specimen for 
different crack lengths and constant crack propagation velocities. 
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Sharp variation of stresses is observed again at the starting of the contact surface between 

wedge and specimen. Along the contact surface this variation seems to be constant except 

at the two boundary edges where stress discontinuity is developed. Maximum magnitude 

of stress components (S 11 and S22) decreases when crack continues to extend beyond the 

crack length of 0.0535m. 

The variation of mode I dynamic stress intensity factors (at crack tip) along the line of 

symmetry of the slate block for different crack lengths and for the two modes of crack 

propagation velocities is shown in Figures 5.15. If plane strain fracture toughness is the 

material property to be used during crack propagation then crack will propagate only 

when SIF (obtained from the impact splitting load) is equal to the fracture toughness 

value obtained earlier from experiments. Therefore, SIF should be constant all along the 

crack front as the crack grows with a low crack propagation velocity (because dynamic 

fracture toughness is velocity dependent for high crack propagation velocity problems). 

From the finite element analysis it can be seen that when the crack propagation velocity is 

constant, the SIF decreases gradually from the beginning of crack propagation (23.5%) to 

33.5% depth of the body (see Figure 5.15). Almost an identical variation in SIF was also 

observed for case II, considering linearly decreasing crack propagation velocity. The 

initial decreasing trend in SIF plots would happen if the impact load (applied from 

experimental measurements on the theoretical model) was higher than the actual required 

theoretical value. Thereafter, an oscillatory behavior in the variation of SIFs is observed 

from a crack length 0.35 to 0.5 specimen depth for constant crack velocities and 0.35 to 

0.55 depth for linearly decreasing crack propagation velocities; the differences between 
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the two curves were less than 5%. SIFs reduced when crack extension crossed 0.50 times 

the depth of the specimen for constant crack velocities. However, for case II, this 

occurred when crack extension went beyond 0.55 times the depth of specimen. Regular 

crack velocities and compressive stresses at the bottom of the specimen may be the 

reasons for this regular decrease observed in SIF values. When the SIF variation was 

compared with the static fracture toughness of the slate material for both the cases, the 

variation of SIF corresponding to the breaking load was very close to the experimental 

results (0.2242 ± 0.0481 MPa.m112
) obtained from static fracture toughness tests. 
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Figure 5.15: Variation of mode I dynamic stress intensity factor with crack length as 
plane crack propagates in the O.lm cube slate block during impact splitting for constant 
and linearly decreasing crack propagation velocities. 
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5.3 Three-Dimensional (3D) Finite Element Analysis of Impact Splitting 

of Slate Block 

3D finite element analysis of a regular cubic slate block (0.1 m x 0.1 m x 0.1 m) was 

carried out to compare results obtained from the equivalent plane strain analysis. The 

assumptions and simplifications mentioned in section 5.2.2 regarding the material, initial 

crack length, damping and wedge penetration were also used for 3D analysis. The 

specimen length was kept the same as the length of the wedge during experiment and the 

test specimen broke along a single vertical plane. Therefore, in numerical simulations, the 

crack was allowed to propagate in the same plane and crack front nodes were considered 

at the same horizontal level for each increment of crack length. 

Sequential node release technique was also applied to simulate dynamic crack 

propagation in 3D analysis. All nodes along the crack front were released together at the 

same time for the next advancement of the crack. Contour plots of stresses in local 1-

direction with the increased time and crack length are shown in Figures 5.16 (a)-(h). It is 

seen that crack front stresses are tensile and their magnitudes are higher than the stresses 

of other points. Contour plots of contact pressures on the surface of slate block at the 

contact surface of indenting wedge and slate is also shown in Figure 5.17. It is seen that 

contact pressures are compressive and their magnitudes are higher at the edges of the 

contact surfaces. Stresses (at the element integration point) in local 1-, 2- and 3-directions 

and mode I dynamic stress intensity factor for each node along the crack front were 

determined for each increment of crack along the vertical plane. The variation of 

integration point stresses (1- and 2- directions) along the vertical 2-direction through the 

middle of the symmetry plane 2-3 for different crack lengths (0.0235m, 0.0295m, 

203 



0.0355m, 0.0415m, 0.0475m, 0.0535m, 0.0595m and 0.0655m) are shown in Figures 

5.18 & 5.19 and 5.22 & 5.23 for both linearly decreasing and constant crack propagation 

velocities. It is seen that the variation of stresses are similar to those obtained in the plane 

strain analysis (Figures 5.11 to 5.14). However, magnitude of stresses in local 1- and 2-

directions are much less (almost 2.5-3.0 times) than those obtained from plane strain 

analysis. The reason could be the choice of two different types of elements for the two 

analyses (plane strain and 3D). Second order elements were used in plane strain analysis 

and linear elements were used in 3D analysis. Sizes of elements would also be another 

reason as stress analysis gives good results for very fine meshes. Element size close to the 

crack plane was 0.00075m square in plane strain analysis and 0.003m x 0.0025m x 

0.0015m in 3D analysis (4 times larger than plane strain case). 

Stresses along the crack front for different crack lengths are shown in Figures 5.20 and 

5.21 for linearly decreasing crack propagation velocities and in Figures 5.24 and 5.25 for 

constant crack propagation velocities. It is seen that stresses are almost constant up to a 

crack width equal to the 0.5 times the half length of block (0.025 m from the symmetry 

plane 1-2); thereafter, it decreases gradually toward the boundary by 15-25% in direction 

1 and 30-60% in direction 2. Existence of traction free boundary in directions 2 and 3 

could be the reason for this. Since all degrees of freedom in local !-direction of the 

uncracked part of the specimen were restrained and local 2 and 3 degrees of freedom 

were made free near the outer edges of the specimen. Therefore, decrease of stress in 

direction 2 would be more than that in direction 1 since it should become zero at the free 

boundary. Moreover, since stresses obtained from this analysis are integration point 

stresses, the stress values do not become zero at free boundaries. 
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As seen from Figures 5.11 and 5.18 stresses decrease more with the increase of crack 

length in vertical direction. It has been observed from Figure 5.19 that stresses in local 2-

direction at crack tip node is less than the stress obtained for the node just behind the 

crack tip for 3D analysis. A comparison of results obtained from integration point stresses 

in local 1- and 2-directions and contact pressure (at the middle line of the contact plane) 

of plane strain and 3D analysis are shown in Figures 5.26 to 5.28. A large variation of 

stresses at the crack tip and the boundaries of the contact surfaces are observed between 

the two analysis procedures. However, variation of the contact pressure at the middle 

95% of the contact surface was less than 10% though it was more than 300% at the free 

boundaries. 
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figure 5.17: Contour plot of contact pressures on the surface of slate block along the 

contact surfaces of wedge indenter and slate. 

210 



6 [xlO ] 

2.00 

-2.00 

-4.00 
Bottom of 
specimen 0.00 

Crack ( 0. 02 35m) 
Crack(0.029m) 
Crack(0.0355m) 
Crack ( 0. 04 7 5m) 
Crack(0.0535m) 
Crack(0.0595m) 
Crack (0 .0595m) 
Crack(0.0640m) 

0.02 0.04 0.06 0.08 
Specimen depth {m) 

0.10 
Indenting edge 
of specimen 

Figure 5.18: Variation of stress in local !-direction along the depth of the specimen for 
different crack lengths and linearly decreasing crack propagation velocity 
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Figure 5.19: Variation of stress in local 2-direction along the depth of the specimen for 
different crack lengths and linearly decreasing crack propagation velocities. 
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Figure 5.20: Variation of stress in locall-direction along the crack front of slate block for 
different crack lengths for linearly varying crack propagation velocities. 
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Figure 5.21: Variation of stress in local2-direction along the crack front of slate block for 
different crack lengths for linearly varying crack propagation velocities. 
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Figure 5.22: Variation of stress in local 1-direction along the depth of the specimen for 
different crack lengths and constant crack propagation velocities. 
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Figure 5.23: Variation of stress in local 2-direction along the depth of the specimen for 
different crack lengths and constant crack propagation velocities. 
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Figure 5.24: Variation of stress in locall-direction along the crack front of slate block for 
different crack lengths for constant crack propagation velocities. 

N 
N 
til 

I 

rn 
m 
w 
l--1 
+J 
til 

[xlO 6
] 

2. 0 0 F___.,._ _ _.___ __ -k-----~----~--~-
1. 6 0 ,, % ·4····················•-· 

1.20 [~--·--~~-·- --~---•>--··-··---z- .... 

0.80 

0.40 

.--. Crack (0 .0235m) 
r-~': C:rack(0.0290m) 

Crack (0 .0355m) 
--... Crack (0 .0415m) 
~ Crack (0 .0475m) 
G---8 Crack ( 0. 0 53 5m) 
{7---(} C:rack(0.0595m) 

C:rack(0.0640m) 

Center of 0 • 0 0 
specimen 0 • 0 0 0.01 0.02 0.03 0.04 

Distance along crack front (m) 

Free edge of 
0 • 0 5 specimen 

Figure 5.25: Variation of stress in local2-direction along the crack front of slate block for 
different crack lengths for constant crack propagation velocities. 
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Figure 5.26: Variation of stress in local !-direction for plane strain analysis and 3D 
analysis 
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Figure 5.27: Variation of stress in local 2-direction for plane strain analysis and 3D 
analysis 
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Figure 5.28: Variation of contact pressure along the contact line of wedge and slate block 
for plane strain analysis and 3D analysis. 

The variation of mode I dynamic stress intensity factors (SIF) along the vertical 2-

direction at a distance 0.01 m away from the free boundary edge is shown in Figure 5.29 

for different crack lengths and constant and linearly decreasing crack propagation 

velocities. It is seen that variation of SIFs between two cases (constant and linearly 

decreasing crack propagation velocities) up to a crack length 0.05m from its initial value 

of 0.0235m is less than 10%. An oscillatory variation is observed for both constant and 

linearly decreasing crack propagation velocities. This is probably due to the fact that the 

cracking develops in stages; once a crack front is released, it takes time to build up to the 

next maximum SIF value since loads are applied in an incremental manner (time-wise). 

However, SIFs values were slightly higher for linearly decreasing crack propagation 

velocities than the constant crack velocities, for most of the crack extension period. From 

these results it could be said that dynamic stress intensity factor is not significantly 
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influenced by low velocity crack propagation. It is also influenced less by the type of 

velocity variation whether it is constant or varying linearly. SIF values decrease slowly 

beyond a crack length equal to 0.05 m. In this region, SIF values are probably influenced 

by the compressive stresses developed at the bottom of the specimen 

A comparison of results (SIFs) between plane strain and 3D analyses are shown in 

Figures 5.30 and 5.31. It is seen that variation of SIFs is almost similar in both plane 

strain and 3D analyses. However, SIFs in plane strain analysis were higher by 10% for 

the crack lengths between 0.0235-0.03 m and greater than 0.05m. For a crack of length in 

the range of 0.03 m to 0.05 m, SIFs fluctuate. Though stress variation in local 1 direction 

was observed to be more than 300%, the SIF variation was less than 10%. This seems to 

be reasonable since SIFs evaluation through contour integral is less affected by the size of 

elements. The main reason for this difference may be attributed to the coarseness in mesh 

size used for 3D analyses and the use of linear eight-noded elements used in analysis. As 

mentioned earlier, the use of dynamic elastic constants (which are higher by 3% to 7%) 

would also improve the correlation between experiments and analyses. 

The variation of SIFs along the transverse crack front of 3D model, for different crack 

lengths and different propagation velocities, is shown in Figures 5.32 and 5.33. It is seen 

that SIFs are constant up to a distance equal to 0.9 times the half length along local 3-

direction; thereafter it starts to decrease and at the free edge it is 90 percent of the SIFs 

obtained for the constant variation region. This variation in SIF is due to the free 

boundary effect. 
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Figure 5.29: Variation of SJFs along the depth of the specimen for different time 
dependent crack lengths and constant and linearly decreasing crack velocities. 
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5.4 Effect of Specimen Size on the Mode I Stress Intensity 

Factor of Slate Rock 

Before extrapolating the laboratory experimental results for larger sized slate samples, the 

effect of test specimen size on the observed mode I stress intensity factor of rock needs to 

be established. In order to examine whether mode I stress intensity factor varies with the 

specimen width and depth or not, various widths and depths of slate block were analyzed 

numerically using ABAQUS. Analysis has been carried out in this study by keeping 

transverse length of the block constant (which is equal to the transverse length of the 

wedge) and varying width and depth subsequently. The geometry of slate block is shown 

in Figure 5.1. A range of widths, viz., w1 = 0.0508 m, w2 = 0.076 m, w3 = 0.1 m, w4 = 

0.127 m and w5 = 0.1524 m and depths, viz., d1 = 0.1 m, d2 = 0.127 m d3 = 0.1524 m, d4 = 

0.1778 m and d5 = 0.2 m were considered in this study. The block sizes analyzed in this 

study are given in Table 5.1 

Table 5.1: Size of the slate blocks considered for numerical analysis 

Block No. Block Size (L x W x D) 

#1 0.102 m x 0.051 m x 0.102 m 

#2 0.102 m x 0.076 m x 0.102 m 

#3 0.102 m x 0.102 m x 0.102 m 

#4 0.102 m x 0.127 m x 0.102 m 

#5 0.102 m x 0.152 m x 0.102 m 

#6 0.102 m x 0.102 m x 0.127 m 

#7 0.102 m x 0.102 m x 0.152 m 

#8 0.102 m x 0.102 m x 0.178 m 

#9 0.102 m x 0.102 m x 0.203 m 
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Initial crack length and element sizes were kept constant for all blocks. In all cases 

analyses (dynamic) were carried out by considering plane strain conditions since 

differences of results (mode I stress intensity factors) between plane strain and 3D 

analyses were within the acceptable ranges (<10%). Since depth of the specimen was 

assumed to be constant for variable width cases, it was found necessary to keep element 

dimensions constant for elements located near the crack path - 4 columns of elements in 

the vertical direction for each specimen. However, element numbers and dimensions were 

varied along the width of the specimen. The mode I stress intensity factor was determined 

for each increment of a crack length (0.00075 m) with a starting crack length 0.0235 m. 

Crack was extended up to a specimen depth 0.0655 m for each independent width of 

specimen. The splitting load obtained for a slate block of size 0.1 m x 0.1 m x 0.1 m was 

taken as the applied load for all observations. 

The SIFs obtained from dynamic analysis for different crack lengths and vanous 

specimen widths, are shown in Figures 5.34 and 5.35 for a coefficient of friction equal to 

0.56 and also for two different modes of crack propagation velocities (constant and linear 

decrease). It is seen that the variation of SIFs is not linear. It decreases nonlinearly as 

width increases. For a width smaller than 0.1 m, the SIF was larger than that for a width 

greater than 0.1 m. Since SIF is related to the splitting force linearly and also is a function 

of crack length and specimen geometry, it could be concluded from these observations 

that smaller splitting forces are required to split small width specimens; on the other hand 

larger splitting forces are required when widths of the specimen are increased. Also it is 

observed that when the width of specimen increases beyond 0.127 m, the SIF value tends 

to show very small increases; this indicates that to produce larger widths of slate 
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specimens, the required impact splitting load becomes almost a constant. During the 

experimental study a similar phenomena was observed in that the splitting forces 

increased, as width of the specimens increased, and wider samples took greater breaking 

loads (see Table 4.18). 

The mode I dynamic stress intensity factors were also computed for various depths of 

specimens having same width (0.1 m) and length (0.1 m). The specimen size equal to 0.1 

m x 0.1 m x 0.1 m and its breaking load were considered as a reference for the 

comparison of results with other sized specimens having various depths and same length 

and width. To maintain same element length (0.00075 m along the crack path) for all 

specimens, the number of elements was increased in proportion to the depth of the 

specimen. A crack length equal to 0.0235 m was assumed as the initial crack length for 

all specimens to keep similarity between the results. The variation of mode I stress 

intensity factors (SIF) for dynamic analyses with respect to different crack lengths, for 

different specimen depths, are shown in Figures 5.36 and 5.37 (coefficient of friction 

equal to 0.56) for two different modes of crack propagation velocities. It is seen that the 

trend of variation is similar for all cases and SIFs decrease is marginal as depth of the 

specimen increases. This indicates that the breaking load will not be greatly influenced by 

the depths of the rock specimens. 

Some slate blocks having larger widths and depths than the reference block, were 

analyzed in a similar manner as plane strain analysis to determine the mode I dynamic 

stress intensity factor for the breaking load of O.lOm cubic block (reference block). The 

block sizes considered for this study were 0.10 m x 0.127 m x 0.1778 m, 0.10 m x 0.1524 m 
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x 0.1778 m, 0.10 m x 0.127 m x 0.2032 m and 0.10 m x 0.1524 m x 0.2032 m. Width 

and depth were changed together from the standard 0.10 m cubic slate block (see Figure 

5.3). Plane strain analysis was carried out by taking into consideration all assumptions 

stated earlier in this chapter. Element aspect ratio was kept constant along and near the 

crack propagation line (symmetry line) by increasing number of elements along the width 

and depth directions. Mode I stress intensity factors were determined for each block up to 

a crack length 0.0655 m and shown in Figures 5.38 and 5.39 for two different types of 

crack propagation velocities (linearly decreasing and constant). It is seen that SIFs 

obtained from greater blocks are less than those obtained from reference block (0.10 m x 

0.10 m x 0.10 m) due to the lower impact load applied. Variation of SIFs was also not 

linear. As size of the slate blocks increased (> 0.1 m cube block) variation of SIF between 

them decreased. From this observation it could be said that SIFs vary only within a 

certain limit of depth and width, beyond which SIFs do not vary even though a larger and 

wider specimen is analyzed. 

From Figures 5.38 to 5.43 it is seen that oscillation of SIFs occurred as crack extended 

from a crack length 0.03m to 0.054m for both constant and linearly varying crack 

propagation velocities. This is observed to be more in slate blocks having comparatively 

smaller widths (Figures 5.38 and 5.39). As widths increase this oscillation disappears 

gradually. It has also been observed that lesser oscillations are present in constant crack 

propagation cases (Figures 5.40 and 5.41) than decreasing velocity cases. Instability of 

the solution generally results in larger oscillations in the output variable; this was 

observed when the ratio of width and depth of slate blocks was less than or equal to 1. 
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5.5 Summary 

In this chapter numerical analyses results based on plane strain and 3D finite element 

methods, were presented for a slate block having a size of 0.10 m x 0.10 m x 0.10 m and 

broken under a plane strain loading condition. A comparison of obtained results (stresses 

and mode I dynamic stress intensity factors) between plane strain analysis and 3D 

analysis was made. It is observed that the stresses in local 1- and 2-directions of 3D finite 

element analysis were much lower than those in plane strain finite element analysis; 

however, the SIFs were in very good agreement (<10% difference). The mode I stress 

intensity factors of 0.10 m cubic slate block, in the range of propagated crack lengths of 

0.0325-0.0550 m seemed to agree very well with the experimentally measured static 

fracture toughness (0.2242 ± 0.0481 MPa.m112
) for both the modes of crack propagation 

velocities. Investigation of size effect on the mode I dynamic stress intensity factor was 

also carried out by analyzing different sizes of plane strain slate blocks. Results obtained 

for various sized slate blocks were compared with those obtained from the reference slate 

block (0.10 m x 0.10 m x 0.10 m). 

It was observed that higher SIFs were obtained for specimens having a width less than the 

width of the reference slate block and lower SIFs were obtained for specimens having 

width greater than the width of the reference block. SIFs obtained were double 

(approximately) when the width of the test block decreased to half the size of reference 

block. SIFs also varied with the depth of the specimens but the variation was much less 

than the width. Variation of SIFs was less than 7.8% when depth of the block was 

increased to twice that of the reference block by keeping other dimensions constant. SIF 
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values were higher by 10% for linearly decreasing crack propagation velocities than those 

for constant crack propagation velocities for both plane strain and 3D analyses. 
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Chapter 6 

Numerical Analysis of 3D Slate Block having a Transverse 

Length greater than the Transverse Length of the 

Indenting Wedge 

6.1 General 

Plane strain and 3D finite element analyses of slate blocks, broken experimentally under 

plane strain conditions (transverse length of the block was equal to the transverse length 

of the wedge), were analyzed in the previous Chapter 5. However, the prevalence of 

plane strain conditions for rock breaking process is rather a rare event. In reality, different 

sizes of slate blocks would be generated during the impact splitting procedure and in 

most of the cases, sizes of slate blocks would be greater than the transverse length of the 

impacting wedge. Also the loading area or extend of line load would be much smaller 

than the length of slate rock over which the impact load is applied. This leads to a three

dimension loading condition. Therefore, it is necessary to analyze large slate blocks 

numerically as well. In the present chapter, numerical analysis of slate rocks that have 

larger transverse lengths than the indenting wedge was carried out for simulating the 

experimental splitting process. 
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6.2 Modelling and Prediction of Crack Growth in 3D Structures 

When a plane crack propagates along the vertical impact plane by maintaining same 

depth of penetration in the transverse direction for each time, it is comparatively easier to 

model the crack propagation in finite element analysis. However, when crack propagates 

both in horizontal and vertical directions in the same plane from the starting point, it is 

difficult to model the crack growth in a simple manner, since it is hard to trace the 

locations of crack trajectory inside the body with respect to time and find the shape of 

crack growth. Many researchers have modelled crack propagation in 3D structures using 

different techniques. Popelar (1980) developed a simple one-dimensional mathematical 

model for rapid fracture and crack arrest in a double-torsion fracture specimen. Mikkola, 

et. al. (1990) proposed an easy implementation procedure and the consequent results by 

developing a fracture assessment program including automatic fracture analysis for 

structures using three dimensional (3D) finite element models. Krueger (1999) developed 

a shell/3D modelling technique to simulate delaminations in composite laminates, by 

using 3D solid finite element in the local region in the vicinity of the delamination front 

(extending to a minimum of about three specimen thickness in front of and behind the 

delamination front) and shell or plate finite elements for the global structural model. He 

used multi-point constraints to provide a kinematically compatible interface between the 

local 3D model and the global structure modelled by shell/plate elements. He computed 

mixed mode energy release rate across the width using nonlinear finite element analyses 

using virtual crack closure technique for a simple double cantilever beam; the fixed end 

was notched. He used both shell/3D elements in his modelling procedure and compared 
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his results with a full 3D analysis to examine the accuracy of the developed procedure. 

He obtained very good agreement with full 3D analysis results. 

The prediction of crack growth for 3D models under various modes of loading has been 

made in many studies for a number of years (Martha, et. al. 1990, Cook, et. al. 1990, 

Remzi, et. al. 1990, Shephard, et. al. 1985). In most of the above cases the prediction 

techniques were limited to crack growth within a small region of a model. Very few 

researchers have analyzed large scale crack growth in a real body. Browning, et. al. 

(2001) predicted large scale crack growth in 3D finite element models. They presented a 

new method for automatically predicting large scale crack growth in a 3D finite element 

model by allowing the crack front to move through the model. They analyzed the 

spinning test of a cracked compressor disc of a turbine engine with a single edge notch 

crack, which was quarter circular shaped at the corner. During the spin test analysis they 

also included the presence of a high level of plasticity and the effect of crack closure. 

They used Timbrell, et. al. (1994) concept to insert a crack into a 3D model for fatigue 

crack growth analysis using ABAQUS finite element software; the crack was modelled to 

grow in a quarter-circular manner. Timbrell et. al. carried out their job using the joint 

application of ABAQUS and ZENCRACK commercial software. They used 

ZENCRACK as an interface to ABAQUS. At first they generated the finite element mesh 

in ABAQUS format for the uncracked component. 

The mesh plot and properties for their analysis were generated properly, containing the 

necessary loading data, boundary conditions and material specification. This was done 

using conventional methods. They stated that the mesh could consist of any element type, 
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but must also contain 20 noded brick elements in the region(s) which holds the crack(s). 

To generate the crack front(s), they replaced one or more of these brick elements by 

'crack-blocks'. They reported that these crack-blocks were meshes of brick elements 

which were mapped onto the original element space and properly joined with the 

surrounding mesh. Their technique had several advantages. One of the advantages was 

that the user can directly control the initial crack orientation and size. Timbrell et. al. 

transferred boundary conditions and loads to the crack-block elements and a modified I

INTEGRAL option was generated (presently contour integral option is used to obtain 

desired outputs such as J-integral, stress intensity factor, etc.). They mentioned that, if 

required, this updating procedure can be used to apply pressure loading in the crack 

region, including the crack face. After completing the mesh, the analysis was done by 

ABAQUS. However, they processed results of the modified I-INTEGRAL evaluations by 

ZENCRACK and a new crack front position was calculated based on user defined crack 

growth criteria. The mesh was automatically modified to contain this new crack position 

and a further ABAQUS analysis was carried out. They continued this procedure until user 

specified limits on crack growth was reached. The entire procedure is shown in Figure 

6.1. This technique was not used in the present study due to unavailability of 

ZENCRACK software in the available workstation. The method (node release technique) 

used to model dynamic crack propagation in the earlier plane strain and the associated 3D 

analyses was also used to simulate dynamic crack propagation in the present case. 

The distribution of maximum energy release rate and SIF along the crack fronts having 

various shapes such as circular, semi-elliptical and elliptical have been determined in 

many earlier studies. Timbrell (1994) showed that the maximum energy release rate along 
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Figure 6.3: Fatigue crack growth development of an elliptical crack (Cook, et. al. 1990) 
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Figure 6.4: Plastic crack growth ring starting from a quarter circular comer crack in spin 
test (Browning, et. al. 2001). 

the crack front will be a maximum at 0° and 90° and will be minimum at 45° (angles were 

measured around the crack front) for a quarter circle crack front. He also gave the planar 

crack growth pattern for an initial semi-elliptical defect in a bar under uni-axial tension 

(Fig. 6.2). Cook, et. al. (1990) used the semi-elliptical fatigue crack growth pattern (Fig. 

6.3). Browning, et. al. (2001) used a quarter-circular plastic crack growth ring starting 

from the quarter circular comer crack in a spin test (Fig. 6.4). 

In the present study, neither quarter circular nor elliptical shaped starting crack showed 

equal mode I stress intensity factor along the crack front under wedge loading. Therefore 

a starting crack having parabolic shape was considered to model dynamic crack growth 

under wedge impact loads. 
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6.3 Finite Element Modelling and Processing of Results 

Finite element analysis was carried out to investigate the splitting process of a typical 

slate block having the size of 0.330 m x 0.254 m x 0.147 mas shown in Figures 6.5 (a) & 

(b). This block was first split in the laboratory applying impact force through the wedge 

shape indenter [whose transverse length (0.1 m) was less than the transverse length of the 

specimen]. The responses (force and crack propagation velocities) obtained from the 

laboratory test were used to calculate the numerical responses (such as, stresses and stress 

intensity factors) using the finite element procedure. The assumptions concerning the 

material, damping and wedge penetration used for plane strain and 3D analyses of slate 

blocks in Chapter 5 (section 5.2.2) were taken to be the same for this case also. Due to 

symmetry in structural geometry and loading conditions with respect to the planes 1-2 

and 2-3 (shown in Figs. 6.5 (a) & (b)), only one quarter of the entire system was modeled. 

Even though crack propagation was not always obtained exactly symmetrical with respect 

to the wedge impacting position in plane 2-3 (see Figures C-16 to C-20 in Appendix C) 

for most of the experimental splitting cases of slate blocks, it was assumed in analyses 

that the crack propagated along a parabolic (approximately) crack front in a symmetric 

manner under the wedge edge PQ [see Figure 6.5 (a)]. 

The entire body was discretized using eight-noded linear brick elements and six-noded 

wedge elements. Although these elements are only linear and not singular (second order 

20-noded elements would be better for crack tip singularity), it would be shown to 

provide acceptable results because of the small sizes of elements used and due to the use 

of path independent contour integrals for SIF computation. A non-uniform mesh was 

introduced by employing relatively fine mesh along the crack front and contact planes, 
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and a coarse mesh away from these critical zones. Wedge penetration was assumed to be 

0.005 m in the beginning of the analysis. 

Initially, a 2D parabolic plane crack of length equal to 0.080 m along the local 3-direction 

and 0.0514 m along the local 2-direction was considered to be present in the body (the 

shape of the crack surface was the sector of a parabola in 2-3 plane). To obtain the desire 

shaped of crack front of propagating crack, three different shapes of crack front such as 

quarter circular, semi-elliptical and parabolic were taken into consideration for obtaining 

the variation of mode I stress intensity factor along the crack front. Parabolic shaped 

crack front with aspect ratios (between minor and major axes) of 0.64 to 0.76 showed 

almost equal variation of SIPs along the crack front. The assumed crack propagation path 

and the number of elements used are shown in Figures 6.6 and 6.7. 

Since all the experimental test specimens broke almost in a vertical plane, the crack was 

set to propagate along the same vertical plane during the numerical simulation. Finite 

element discretization was done by following the crack propagation path in a sequential 

manner. The finite element mesh of one-quarter of the slate block along with wedge 

indenter is shown in Figures 6.8 (a) & (b) and 6.9 (a) & (b). Load was considered to be 

acting as distribute loads at a height equal to double the wedge penetration depth above 

the tip of the wedge. The intensity of the distributed load was determined by dividing the 

load obtained from the earlier experiment (shown in Figure 6.10) by the area of the 

wedge present at a height 0.010 m from the tip of the wedge. 
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During the experimental studies crushing of material was observed at the beginning of wedge 

penetration, due to very high contact pressure developed at the contact surface (between the 

wedge tip and slate block) within a very short time (of impact), a crushing width equal to 2.50 

mm (1.250 mm on either side of the symmetry plane) was introduced at the wedge location. 

That width was reduced gradually to a point within a distance 6.0 mm from the vertical edge of 

the wedge (shown by AB on Figure 6.9 (b)). Crack front was considered to vary a parabolic 

manner and all crack front nodes were defined along that path. For each step of the extension of 

the crack along the splitting plane a new line of crack front was obtained and similar parabolic 

variation of crack front was considered. However, the variation of parabola was gradually 

changed to a straight line at the bottom of the specimen (shown in Figure 6.8 (b)). 

When wedge impacted on the specimen, the material directly under the wedge started to 

crush first and then split the entire block gradually through the crack growth. The load 

measured through data acquisition system was the total load required for the complete 

~--Crushing zone 

,.--- Splitting surface 

.r----------,.--r-----7''-----;~=::;;- Crack path 

Figure 6.6: Assumed crack propagation pattern (during 3D finite element analysis) in the 
typical slate block during impact splitting of slate block. 
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Figure 6.8: (a) One-quarter of the slate block; (b) Finite element discretization of the 
same block shown in Figure (a), using eight-noded brick elements and six-noded wedge 
elements. 
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Figure 6.9: Finite element mesh: (a) closer to the interface of slate block and wedge; and 
(b) at the contact surface of wedge and slate block. 
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Figure 6.10: Variation of breaking load and microstrain with respect to time dming 
impact splitting of a slate block having the dimensions, L = 0.338 m, H = 0.254 m and W 
= 0.147 m considered for finite element analysis. 

breakdown of the specimen. It included the load that was needed to crush the impact 

interface of the specimen as well as the load required to propagate the crack through the 

specimen. The magnitudes of the splitting load required to reach the crack location at 

various strain gauge points attached to the specimen were obtained from the measured 

load-strain gauge readings shown in Figure 6.10. First crack tip (on the impacting 

surface) was considered at a distance equal to 22 mm ahead of the second strain gauge 

point (2nd strain gauge was fixed at 52 mm away from the vertical edge of the wedge) 

since the first strain gauge was located very close to the impacting location which could 

be a point of stress concentration. The magnitude of the load at the location of the 2nd 

gauge was obtained as 95% of the maximum load, ahead of the peak value (see Fig. 

6.11 ). Initial crack tip load was determined after extrapolating the load from the load 

obtained at the 2nd gauge location. A load equal to 0.90 times the peak value was 

considered as the initial crack tip load. From the load vs. strain gauge readings variation 
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diagram (Figure 6.10) it is observed that peak value of the load was attained after the 

propagating crack reached the third strain gauge which was fixed at 29 mm ahead of the 

right upper comer of the splitting block. 

For crack propagation velocity it was assumed that the peak value of the load occurred at 

the junction of the horizontal and vertical exterior surface planes. A relatively slow crack 

propagation velocity having a piecewise constant variation over the strain gauge intervals 

was assumed before and after the peak load as shown in Fig.6.12. Velocity variation with 

respect to crack length on the horizontal surface and on the vertical edge (up to the region 

of analysis shown by the dotted line in Figure 6.7) is shown in Figure 6.12. It is seen that 

when crack tip travels along the outer surface on the vertical plane, to a vertical depth 

equal to 0.1155 m, it also travels 0.15925 m along the symmetry line in the vertical 2-

direction (see Figure 6.7). At this crack front, crack has already propagated to more than 

half the available crack plane area of the slate rock. The load acting on this crack front 

(30th crack front) obtained from the measured load vs. strain gauge results, shown in Fig. 

6.11, is 64% of the peak load. 

Though it was easy to determine crack propagation velocities on the outer surface of the 

specimen, the initial crack length, profile and crack propagation velocity in the interior of 

the body were assumed based on the almost constant variation of stresses and mode I 

stress intensity factors along the crack front. Trial method was used for this purpose. Trial 

was continued by considering different ratios of horizontal to vertical lengths of parabolic 

crack front (with an applied static load) until a uniform variation of SIF was obtained 

along the crack front. A limiting aspect ratio between 0.64 to 0.76 for different positions 
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of crack front showed the variation of SIFs along the crack front to be less than 20%. 

Therefore, crack front parabolas were introduced in the model with an aspect ratio 

varying between 0.64 -0.76. 
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Figure 6.11: Variation of impact splitting load with respect to time 
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Due to the restriction of internal processing memory of ABAQUS software and the large 

number of degrees of freedom used to discretize the slate block, test platform and base of 

the platform (concrete floor) were not taken into consideration in the three-dimensional 

finite element model. The extent of the model was reduced by restraining all vertical 2-

axis direction degrees of freedom, and allowing all the horizontal displacements at all 

nodes on the bottom surface of the specimen. 

Proper constraints were applied to represent the symmetry conditions assumed. In order 

to do this all the local degrees of freedom in direction-3 or z [perpendicular to the plane 

1-2 (x-y) in Figures 6.5 (a) and (b)] for all nodes on plane 1-2 were restrained. In 

addition, all the local degrees of freedom in direction- I of all nodes that exist in the plane 

of symmetry 2-3 (or y-z) (except those above the crack front) were also restrained. 

Sequential node release technique was applied to simulate in-plane dynamic crack 

propagation. All nodes along the crack front were released together at the same time for the 

next advancement of the crack. 

Contour plots of stresses in local !-direction (along with the used boundary conditions) at 

every five intervals of crack extension are shown in Figures 6.13- 6.16. It is seen that the 

maximum tensile stress in local !-direction develops along the crack front as the 2D 

plane crack propagates with respect to time on the crack plane 2-3. The crack (with a 

parabolic variation) propagates from the center of the block to the outer periphery of the 

block and tries to maintain equal SIF values along the crack front as it travels through the 

depth of the block. It was assumed to have the same SIF value for all nodes along the 

crack front even after propagating through the entire distance along both the horizontal 
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and vertical directions. Therefore, outer surface crack tip is assumed to have propagated 

faster than the interior radial one (see Figure 6.12). Velocity also varied along the crack 

front by giving higher velocities at the outer surface and lower velocities at the interior 

points. This velocity variation was obtained due to different sizes of elements along the 

crack front. The initial crack velocity at a location very close to the wedge (30.0 mm 

away from the vertical edge of the indenting wedge) on the outside top surface of the 

block was computed as 52.5 m/s. However, velocity at the first crack tip element at the 

interior point of the block was 51.0 m/s. The velocity variation of crack propagation 

along the interior vertical 2-direction and outer periphery were shown earlier in Figure 

6.12. This variation was maintained at the exterior and interior of the regions of interest. 

In the present analysis the region of interest (shown in Figure 6.7) was more than 50% of 

the total vertical splitting plane area from the beginning of the split. The total region of 

interest was divided into 3 parts. Each part consisted of 10 rows of elements having equal 

row width. Each row also consisted of 21 elements. Therefore, over a part of the region of 

interest, element width (inside as well as the outside of the block) was kept constant. At 

the outer face of the block, element widths were varied from 0.0042 to 0.0115m and at 

the interior of the block it varied from 0.003 to 0.0043m. 

From the earlier analysis of the slate block under in plane strain and 3D conditions, it was 

observed that stress intensity factors were influenced very less by the choice of linearly 

decreasing or constant velocity condition. For this reason, in the present problem, 

splitting analysis was carried out only for piecewise constant velocities (assumed) for 

crack propagation in the slate block (see Fig. 6.12). 
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Mode I stress intensity factors were computed using ABAQUS finite element software and 

ABAQUS calculates it through CONTOUR INTEGRAL option along the crack front nodes. In 

order to verify the tension force at the crack tip node, mode II stress intensity factors and sign of 

mode I stress intensity factor were examined. Mode II stress intensity factors were obtained as 

zero and mode I stress intensity factor were obtained as + ve for each step of crack growth. 

Local stresses in 1- and 2- directions of all nodes along the crack front were also determined 

(shown in Figures 6.17 and 6.18) and magnitudes were also compared. Since the applied load 

had two components, viz., in directions 1 and 2, its effect in direction-1 was tension (due to 

bending) and in direction 2 was due to the combined effect of bending and compression. 

Therefore, it was expected to develop similar stresses along the crack tip nodes in local 

direction 1 (tension) and tension & compression in direction 2. This variation is seen in the 

stress plot in local1- and 2- directions along the crack front for different crack locations (see in 

Figures 6.17 & 6.18). 

It is observed that along the horizontal plane on the top of the specimen, stresses (local 1-

direction) increased gradually along successive crack fronts (but was less than the interior 

point) up to the comer where vertical and horizontal planes intersected. Stresses in local 1-

direction on the outer surface of the vertical plane increased up to a certain depth and then 

decreased again. Applied load and crack length increased gradually from the beginning of crack 

propagation till the right upper comer of the block was reached; thereafter the load decreased 

and crack length growth increased. Once crack started to propagate along the vertical plane the 

crack propagation direction was not normal to the crack front (along which the maximum 

velocity occurred). For this reason the rate of crack growth started to decrease again. At the 
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interior of the crack plane (along the symmetric line) the variation of stresses in local 1-

direction was less than 20%. 

Crack front nodal stresses in directions 2 and 3 were the resultant effect of loading 

components and Poisson's effect. It could be either tension or compression or a 

combination of these along the crack front. The variation of stresses in local 2-direction is 

shown in Figure 6.18. It is seen that the stress increased gradually in the interior of the 

specimen as crack propagated. However, stresses in direction-2 were obtained to be 

almost zero for a crack extension up to the upper right comer due to the absence of 

traction force in local 2-direction along the horizontal boundary. Thereafter, compressive 

stresses dominated at the outer vertical edge of the specimen. 

Stresses in local 1- and 2- directions along the symmetry line and the outer periphery for 

different crack extensions are shown in Figures 6.19 to 6.22. A consistent variation of 

crack tip stresses is seen in Figures 6.19 & 6.20. However, inconsistent variation of 

stresses is seen in Figures 6.21 & 6.22. This is due to boundary and sudden change of 

outer crack tip position after 21st increment of crack. 
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Figure 6.13: Distribution of stresses (in Pa) in locall-direction at: (a) 1st crack front; and 
(b) 5th crack front. 
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Figure 6.14: Distribution of stresses (in Pa) in locall-direction: (a) lOth crack front; and 
(b) 15th crack front. 
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Figure 6.15: Distribution of stresses (in Pa) in local1-direction at: (a) 20th crack front; 
and (b) 21st crack front. 
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Figure 6.16: Distribution of stresses (in Pa) in locall-direction at: (a) 25th crack front; 
and (b) 30th crack front. 
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6.4 Crack Growth Prediction 

Contour integral option available in ABAQUS finite element software was used to 

determine the stress intensity factors along a crack front for the propagation of the 

postulated crack front (see ABAQUS keynote user manual 6.3). In order to verify the 

tension force at the crack tip node, mode II stress intensity factors and sign of mode I 

stress intensity factor were examined. Mode II stress intensity factors were obtained as 

zero and mode I stress intensity factors were obtained as +ve for each step of crack 

growth. Since the model is quarter symmetric, only one side of the crack was modelled. 

During the analysis ABAQUS assumed the direction of the crack growth at each node on 

the crack front to be in the crack plane and normal to the crack front. The complete linear 

elastic growth prediction consisted of 30 crack positions as crack advanced. 

The variation of load with respect to time, up to the region of interest (30th crack front 

position) is shown in Figure 6.23. Variation of mode I stress intensity factors (SIF) with 

respect to time at first, middle, 20th and last nodes of each crack front (including 30 crack 

positions on the crack plane 2-3 as crack front changed with respect to time) are shown in 

Figures 6.24 to 6.27. It is seen that SIFs vary irregularly at each crack front node as crack 

progresses with respect to time. However, the SIF of each crack front node increases up 

to 23rct increment of crack length for first and middle crack front nodes and up to 26th 

increment of crack length for the last crack front node; thereafter it starts to decrease 

slowly. The decrease of SIF at the 30th crack position from its maximum value was less 

than 19%. On the other hand load decrease was obtained as 36.4%. From this observation 

it could be mentioned that SIFs are not only dependent on the external loading but also on 

other factors such as crack length and crack propagation velocity. 
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From the initial crack front to position of the 21st crack front (where the load reached its 

maximum value and surface crack points turned their directions from the horizontal to 

vertical edge) maximum SIFs increased in an irregular manner in the first crack front 

node (Figure 6.24). Thereafter the SIF decreased up to lOth crack front and then increased 

and decrease in the middle crack front node (Figure 6.25). It increased almost linearly in 

the outer surface nodes (Figures 6.26 & 6.27). However, variation of SIFs was similar for 

the crack front positions between 22nd to 30th' as shown in Figs. 6.24 and 6.25. The 

irregular variation of SIFs at the beginning of the crack propagation occurs due to the 

node release procedure adopted in the solution. 

The variation of reaction force with respect to time at the outer periphery node of each 

crack front itself and at different positions crack front was shown in Figure 6.28. It is 

seen that reaction force increases linearly as the previous node is released in the node 

release technique applied in finite element software to simulate dynamic crack. It could 

also be said that ABAQUS software allows force to be released in a linear manner from 

the released node. The cross symbol line indicates the turning point of crack from the 

horizontal surface to the vertical edge. 

Mode I stress intensity factors (SIF) for each node along the crack front was determined 

at every 5 increments of crack length along the propagation direction (crack front is given 

in Figure 6.7). This variation of SIFs is shown in Figure 6.29. From Figure 6.29, it was 

observed that the variation of SIFs along the crack front at each five increments of crack 

depth were similar except the outer surface nodes. The magnitude of SIFs varied within 

15% of their average values. SIFs were also plotted at the first node, middle (11th node) 
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and outer surface point (21st node) of each crack front along the vertical plane and shown 

in Figures 6.30 to 6.32. It is seen that the variation of stress intensity factors is not exactly 

similar to those obtained earlier for plane strain equivalent 3D analysis. A difference of 

around 15% was observed up to a crack extension of 0.4 times the depth of specimen 

along the symmetry line (Figures 5.29 and 6.30). However, variation of SIFs was much 

more when the crack extended beyond this. In this case propagation of crack was 

different from those occurring in the plane strain equivalent 3D problem as crack path 

needed to travel in both horizontal and vertical directions. The differences in SIF values 

between maximum and minimum in Figures 6.30 and 6.31 were leS'S than 20% and 25%, 

respectively. The probable reason for these gradual variations of SIFs may be attributed 

to variation of crack path (from a parabolic curve to another form of a curve) with respect 

to time and the change in crack velocity. From Figure 6.32 it is seen that SIF decreased 

by more than 50% of the average value at the position of crack front where horizontal 

surface and vertical edge met. 
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Chapter 7 

Interrelationships between Mode I Stress Intensity 

Factor, Splitting Load and Geometry of 

Slate Block 

7.1 Introduction 

Rocks in most of the cases are considered as brittle material and contain intrinsic cracks. 

Therefore, their fracturing process is basically caused by gradual initiation (coalescence 

of micro-crack) and propagation of the cracks. For this reason the failure of the cracked 

rock is governed by its fracture parameters rather than its elastic and plastic mechanical 

parameters (Whittaker, et. al. 1992, page 349). It is easier to make correlation between 

block size and their breaking load after carrying out extensive experimental studies on 

small scale and large scale tests. In this case accuracy of correlation equation depends on 

the test results. Good correlation could be obtained when scattering of data is less. In rock 

materials, the probability of less scattered data from the test program is rather dim. The 

disadvantage of obtaining correlation equation in this manner is that it requires a large 

number of test results both for small scale and large scale specimens (in the laboratory) as 

well as in the field. Further more, different testing procedures for determining breaking 
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load may yield substantially different results. Most of the laboratories are well equipped 

to carry out tests for material properties but not necessarily to break large sizes of rock blocks. 

The alternative to this is to develop a correlation equation based on material property 

based failure criteria and breaking load, using the geometric characteristics of the body 

by analyzing different sizes of specimens numerically. Fracture behavior of a rock can be 

determined by determining the fracture toughness of the rock material in the laboratory. 

Therefore it should be possible to study breaking force of rock of different sizes based on 

measured fracture toughness and small- and medium- scale laboratory tests. Material 

properties do not vary with the size and shape of the specimen to be tested for a specified 

environment (for a fixed temperature, humidity, etc.) in case of homogeneous materials. 

However, in case of rock this situation could be different, as most of the rock materials 

are not homogeneous due to the presence of inherent flaws (microcrack, planar 

discontinuity, material discontinuity, etc.). Material properties, specially the strength of 

rock material, would be affected more in this regard. However in mode I plane strain 

fracture toughness test cases, size effect might not affect the results very much as the test 

is carried out by introducing an initial crack in the test specimen and having very small 

micro crack process zone (due to brittle behaviour of rock material. This micro cracking 

phenomena in the micro crack process zone would remain unchanged even if the 

specimen sizes vary a lot. 

Therefore, this property (mode I plane strain fracture toughness) could be considered as a 

unique material property of rock while analyzing the rock breaking problems. But 

breaking load varies with the geometry of body and the breaking conditions (plane strain 

or real 3D slate block) as seen in Chapter 4. Therefore, it could give the reliable 
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correlation equation for any sizes of specimen if it is possible to make correlation 

between fracture parameters, breaking load and the geometry of the body. Once the 

correlation equation is developed it will facilitate a more considered selection of rock 

cutting and excavation process in the field. In the present study such a type of correlation 

analysis was undertaken to develop appropriate relationships between stress intensity 

factor, breaking load and the geometry of the body by analyzing different sizes of slate 

blocks numerically using finite element method. 

7.2 Factors Influence Rock Fracture Process 

Heterogeneity, discontinuity, anisotropy, types of external loads with respect to direction 

of the state of stresses (uniaxial, biaxial, triaxial, polyaxial) and the state of stresses 

(tensile, compressive, and shear), distribution of the external loads (uniformly or 

nonuniformly distributed, tensile or compressive or bending or torsion), rate of the 

external loading (constant, gradually increasing, alternating or impact) and the 

environmental conditions (temperature, humidity and chemical environment) generally 

influence the fracture process in rock. The stability and the continuity of crack growth 

will be affected by the heterogeneity of rock due to the variations in crystal structure and 

local strength close to the extending crack. The work done at fracture, critical strain 

energy release rate or fracture toughness, as a function of fracture propagation orientation 

can vary with the anisotropy of the rock. The environmental conditions such as confining 

pressures, temperature, pore pressure, etc., can also substantially affect the fracture 

behaviour of rock (Whittaker, et. al. 1992). 
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7.3 Correlation Study between Geometry of Slate Blocks, K 1d 

and Splitting Forces 

Correlation between mode I dynamic stress intensity factor, impact forces and geometry 

of plane strain slate block was obtained by using the multiple linear regression analysis 

using the results similar to that shown in Figures 5.36 and 5.39 in chapter 5. The stress 

intensity factors obtained from numerical analysis for the applied load, different crack 

lengths and specimen dimensions were correlated. The plane strain fracture toughness 

value (K1c = 0.292 ± 0.0379 MPa.m112
) obtained from earlier experiments was considered 

as a criteria for in-plane crack propagation within the specimen. Therefore, the time 

dependent splitting load corresponding to plane strain fracture toughness for a finite sized 

plane strain slate block was determined using the developed correlation formula. The 

formula obtained for this problem from multiple linear regression analysis available in 

Microsoft Excel 97 (1997) of numerical results is given as: 

where 

P(t) 
K,d(t)=-uY 

w 12l 

Y = [3.6374 -11.21 a(t) + 10.8968 a(t)- 2.1295~+ 8.5793 a
2

~) 
d w w d 

-3.8241 a
2 

~) + 0.2613 d:] 
w w 

with the coefficient of determination being equal to 0.9678 and valid for, 

0.12 ~ a(tYa ~ 0.66, 0.167 ~ a(tYw ~ 0.5, ; ~ 1 

and, 

P(t) = P0 (0.373835 + 0.458736coswt + 0.145906cos2wt + 0.0426553cos3wt) 
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fort ~T/2 

w = 2n and T = 2 x total time (in Figure 7.1) 
T 

(7.2b) 

P(t) (in MN) is the time dependent impact splitting force per unit length which decreases 

as crack length a(t) increases. w and d are the width and depth of the specimen, 

respectively. Po is the maximum impact load required to split the rock specimen apart. A 

constant transverse length (l) equal to 0.1 m is considered in this formulation. However, 

for generalized length considerations it is necessary to consider a unit length of the 

specimen. That can be provided by analyzing a plane strain problem of layered slate rock 

having a length of unity to determine mode I stress intensity factor. These stress intensity 

factors could then be used to develop correlation equation. For linear variation between 

load and transverse length, the above equations can be written as, 

where 

P(t) 
Kid (t) = ----u y 

wlz 

Y = [3.6374 -11.21 a(t) + 10.8968 a(t)- 2.1295~ + 8.5793 a
2 

~) 
d w w d 

-3.8241 a ~) +0.2613 d: 2 7 ] 

w w 

for a unit length (1 meter) consideration and the limits specified above. 

(7.3) 

When the experimental Po is equal to 5500 N for the 0.10 m cubic block, use of equation 

7.2 (b) gives an error+ 2.10% for the maximum impact splitting load; it can be improved 

by taking additional Fourier coefficients. 
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The variation of empirical theoretical splitting force P(t) for a plane strain fracture 

toughness value and experimental splitting force for different crack lengths are shown in 

Figure 7.1 for a slate specimen having the dimensions 0.1 m x 0.1 m x 0.1 m. It is seen 

that the theoretical splitting force is larger than the experimental one by 58.15% at the 

peak value for the mean fracture toughness of 0.440 MPa.m112 (obtained from the 

empirical equation of Bush (1976) and Ouchterlony (1980)). Instead of the empirical 

equation value, if the mean finite element value was used in the analysis, the maximum 

theoretical splitting load is+ 4.96% larger than the experimental value. The finite element 

analysis obtained fracture toughness value seems to be closer to the correct value that 

should be obtained in the experiment. In this study maximum experimental breaking 

force was obtained as 5500 N for 0.1 m x 0.1 m x 0.1 m slate specimen. As mentioned 

earlier a part of this applied force is lost due to heat generated, sound produced and 

vibration damping etc. As could be seen from Figure 7.2 there is a very good correlation 

using only the four Fourier coefficients. The error is around+ 2.1% when t = 0; this could 

be improved by taking additional Fourier harmonics. Table 7.1 gives a comparison 

between theoretical and experimental values based on mean fracture toughness values for 

various slate blocks broken experimentally under plane strain conditions. The errors 

obtained for smaller specimens are much larger, probably due to the steep variation of 

SIF for small crack depths and equation 7.2 being not good enough for small-sized 

specimens. 

Using equation 7.3 and the finite element analysis computed fracture toughness value, the 

impact load for breaking a 2.0 m length, 1.0 m deep and 0.98 m thick slate rock with a 

0.12 m initial crack, works out to 402.69 kN, while it works out to 1290.98 kN for a 4.0 
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m length, 4.0 m deep and 2.0 m thick slate rock with a initial crack of 0.48 m. The load 

seems to be a reasonable load that could be handled by a hydraulic device. This load 

could be reduced considerably if the load applied on the line of hydraulic actuators (used 

for applying the impact loads) is cascaded across the actuators (starting from the centrally 

placed actuators) with a small time delay. It must be mentioned that this load is only for a 

plane strain cracking. When the boundaries are constrained to provide a partial three

dimensional action, the required load may be a little higher. 

The correlation between experimental 3D breaking loads and 3D numerical results could 

not be made since the 3D numerical analysis consumed so much of computational time. 

In order to give some numbers, it was found that the time taken, to prepare, analyze and 

process nearly 30 time steps in the numerical results given in section 6.3 of Chapter 6, 

was nearly 2 days. Hence in order to get some meaningful results for 3D analysis 100 to 

120 separate runs had to be made and this would have consumed an enormous amount of 

computational hours. Hence no effort was made on this regard. 
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Table 7.1: Comparison between theoretical impact splitting loads obtained from empirical equation mean value (0.440 MPa.m 112
) and 

finite element analysis mean value (0.292 MPa.m112
) and experimental breaking loads. 

Theoretical breaking Theoretical breaking 

Experimental 
load (for mean K1c) load (for mean K,c) 

Specimen size with empirical ElTOf with finite element Error 

(Lx WxD) 
breaking load 

equation value of analysis value of 

in 'm' 0.440 MPa.m 112 0.292 MPa.m 112 

lbf kN lbf kN % lbf kN % 

0.100 X 0.050 X 0.100 977.00 * 4.345 * 1047.66 4.659 7.23 695.264 3.092 -32.34 

0.100 X 0.076 X 0.100 1100.00 * 4.893 * 1544.94 6.871 40.43 1025.28 4.560 -6.80 

0.100 X 0.100 X 0.100 1236.46 * 5.500 * 1955.92 8.698 58.15 1298.02 5.773 +4.96 

0.100 X 0.100 X 0.127 1300.53 5.785 1975.55 8.786 51.86 1311.02 5.830 +0.78 

0.100 X 0.100 X 0.152 1503.53 * 6.688 * 2066.07 9.188 37.38 1371.13 6.098 -8.82 

0.100 X 0.100 X 0.178 1627.85 7.241 2203.74 9.800 35.34 1465.48 6.504 -10.18 

0.100 X 0.100 X 0.203 1813.77 * 8.068 * 2376.60 10.569 30.99 1577.20 7.014 -13.06 

* -Average value of the two specimens 
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Chapter 8 

Numerical Investigation on Impact Splitting of a Slate 

Rock in the Field and Reduction of Wastage in Slate 

Manufacture 

8.1 Introduction 

The objective of this study is to break large sized slate blocks in the field so that they 

could be cut into smaller ones in the processing plant for producing different sizes of slate 

products, without much wastage. Geometry of slate rock for this problem is shown in 

Figure 8.1. Specimen used for numerical analysis is an idealized form of field situation 

after applying some assumptions on the geometry of the field problem as well as their 

material condition. Idealization for finite element anlysis and geometry of the domain of 

interest considered for finite element analysis are shown in Figures 8.2 and 8.3. 

Assumptions and modifications related to the geometry and material of this problem are 

as follows: 

1. One side of the slate quarry is assumed to be opened or made open by using other 

methods such as saw cut, diamond wire cut, etc., and considered in finite element 

model as a traction free edge. 

2. Numerous holes are made along the line in the three sides (bottom and two ends) 

shown in Figure 8.1 using the power drill and these are replaced by three layers (one 
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layer at the bottom and two layers on the two sides) of soft material having Young's 

modulus of elasticity three times less than the original material's Young's modulus of 

elasticity in finite element analysis. The existing continuous media of these three 

sides beyond the drilled holes are modelled using infinite elements. 

3. The side opposite to the open side is treated as unbound domain. In finite element 

analysis it is modelled using infinite elements available in ABAQUS finite element 

software (ABAQUS 6.3, 2002). 

4. A series of impacting wedges that is used to split or separate a part of slate rock from 

their original state (shown in Fig. 8.1) is idealized as a continuous indenting wedge 

similar to the problem discussed earlier in plane strain/3D analysis. 

5. Material is taken to be homogeneous and transversely isotropic (observed from 

experimental results reported earlier). 

6. Crack was assumed to be a plane crack and propagating along the vertical impact 

plane by maintaining the same depth of penetration in the transverse direction 

(direction-2), for each time step. 

7. Load was assumed to be distributed uniformly at a height 20 mm above the tip of the 

indenting wedge. 

8. It is assumed that when the wedge penetrates 10 mm deep into the slate rock, the 

crack is assumed to have grown to 25% of the field specimen depth. 

In addition to the above, the chapter also briefly discusses the possible reduction of 

wastage of slate material that could be achieved, in the processing industries, by the use 

of impact splitting for the sizing of slate products. 
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8.2 Finite Element Modelling and Processing of Results 

A static finite element analysis was carried out to investigate the separation of a part of 

slate rock from the slate quarry. The node release technique used earlier for SIF 

computation could not be applied due to the presence of unsymmetric boundary 

conditions during the splitting of rock. Therefore, each crack depth was modelled 

separately and individually. However, half symmetry of the rock mass was taken into 

consideration due to the existence of symmetry in geometry, load, material and boundary 

conditions about the plane 1-3; this procedure helped to reduce the size of the problem. 

Since a series of impacting wedges [shown in Figs. 8.1 to 8.3] was to be used to separate 

a long slab of slate rock, a "line load" loading condition was assumed as an idealized 

form of load applied under real field situation. 

Therefore, the distributed load on the wedge obtained at a height 0.01 m above the tip of 

wedge to break a 0.10 m cube slate block experimentally was used as applied load for this 

problem after making some modifications on load time diagram (shown in Figures 8.4 

and 8.5) for their greater depth of cut. A necessary modification was made for the 

decaying part of load time diagram shown in Figure 8.4 based on the assumed crack 

propagation velocity (46.5 m/s). Since the depth of the field problem considered in this 

analysis was 10 times greater than 0.10 m cube slate block, breaking time should be higher for 

the crack to reach the crack to the bottom of the slab. The increasing part of the load-time 

diagram was not modified since the stiffness of the rock media and the indenting wedge were 

assumed to be the same as before. This increased portion of the time axis was incorporated 

into Fig. 8.5 without changing the load magnitude. The updated load vs. time diagram 

used to analyze the present problem is shown in Figure 8.5. 
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Figure 8.5: Updated breaking load variation with respect to time used to analyze the 
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A load equal to the 0.75 times of the peak load was considered as the load for the first 

crack since crack started when load reached its peak value. Subsequent cracking load was 

determined based on the assumed velocity of crack propagation. When crack depth was 

increased, the magnitude of the applied load decreased. A constant velocity of crack 

propagation (46.5 m/s) was taken into consideration since variation of crack propagation 

velocity having low magnitude (constant or linearly variable) has a marginal effect on the 

value of stress intensity factor; this was discussed earlier in plane strain and 3D analysis 

of slate blocks (section 5.2 & 5.3 of Chapter 5). Five separate crack depths (in an 

increasing manner) were modelled and treated as five separate individual problems. 

3D analyses were required to be carried out since plane strain analysis was not possible to 

be used in this situation. The entire body was discretized using eight-noded linear brick 

elements, six-noded wedge elements and infinite elements. A non-uniform mesh was 

introduced by employing relatively fine mesh (element size 3 mm by 1.5 mm by 5 mm) 

along the crack front and contact planes, and coarse mesh away from these critical zones. 

Wedge penetration was assumed to be 0.01 min the beginning of the analysis. 

Since contour integral option m ABAQUS finite element software does not support 

triangular/wedge elements in the contour regions considered to determine SIF or strain 

energy release rate, wedge elements were used a little away (after two rows) from the 

crack plane (as shown in Fig. 8.6). This became necessary to reduce the size of the 

overall finite element problem. A graded fine to coarse mesh size was used in the region 

away from the splitting surfaces. This transition was made after providing two rows of 

small sized brick elements near the crack plane. For this reason SIFs were obtained only 

from the first two contours. Contour integral does not also support material discontinuity 
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(e) (f) 

Figure 8.6: (a)-(d) Finite element discretization of a body of slate rock available in field 
situation from different views; (e) and (f) Enlarged mesh at the junction of indenting 
wedge and slate specimen. 

288 



/dissimilar materials at the crack tip node point (special treatment is required to 

incorporate material discontinuity/dissimilar materials at the crack tip node point). 

Therefore, SIFs were determined along the crack front up to a distance 0.90 m from the 

half symmetry plane. Soft layer was modelled using eight-noded linear brick elements 

and six-noded wedge elements. The finite element discretization for this problem has 

been given in Figures 8.6 (a)-(f). 

Since at the beginning of wedge penetration, crushing of the material occurs due to very 

high contact pressures developed at the contact surface between wedge tip and slate rock 

within a very short (impact) time, a crushing width equal to 0.005m (0.0025 m on either 

side of the crack plane) was introduced at wedge location. 

This problem was set up for time dependent load in static analysis (nature and magnitude 

of the impact load were kept same as needed for dynamic analysis) that was assumed to 

be an equivalent of dynamic impact load. Static analysis was carried out instead of 

dynamic analysis because of boundary modelling requirements that are to be introduced 

for using infinite elements to model unbounded (infinite) domains. Infinite elements 

provided stiffness in static solid continuum analyses and quiet boundaries for the finite 

element model in dynamic analyses (ABAQUS 6.3, 2002). In dynamic analysis wave 

reflection/refraction will occur while using infinite elements; therefore the dynamic 

analysis was terminated automatically by ABAQUS. Stresses and mode I stress intensity 

factors along the crack front were determined for different crack lengths and applied 

loading conditions. 
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Contour plots of stresses in local 1-direction for five different crack depths are shown in 

Figures 8.7 (a) to (e). It is seen that stress concentration point (at the crack tip) is not 

highlighted properly. This is due to coarse nature of finite element meshing used in this 

study. However, it can be seen clearly, by indicating the stress concentration points, 

developed at the crack tip when stresses (in local 1- and 3- directions) were plotted 

(shown in Figure 8.8 and 8.9) along the vertical line passing through the cracked and 

uncracked part of the body. The absence of highlighting (in contour plots) is due to the 

lesser number of colors available in ABAQUS post processor facility to show the contour 

plots. Use of very fine meshes at the crack tip region or use of singular elements at the 

crack tip would show the stress concentration locations clearly. 

Stresses in local 1- and 3- directions of all nodes along the crack front were also 

determined (shown in Figures 8.10 and 8.11) for different crack depths and load values 

and magnitudes were also compared. These were also determined for a constant load 

application (0.75 times the peak value for all crack depths) and shown in Figures 8.12 and 

8.13. It is observed from Figures 8.10 and 8.11 that as the crack depth increases, stresses 

in local 1- and 3- directions (along the crack front) decrease for decreasing magnitudes of 

applied load. However, for a constant load (see Figures 8.12 and 8.13) stresses decrease 

first and then increase as crack depth increases. This is expected to happen because the 

uncracked ligament (resistance comes from the lesser area of the body) decreases if crack 

depths are increased. It also shows that there is an effect of crack depth on stresses if 

crack depths are increased. In case of variable loads, stress in local 1- direction decreases 

more than the stress in local 3- direction. Due to the use of soft layer and infinite 
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elements at the end of wedge, a jump in stresses was observed. Use of lower Young's 

modulus of elasticity for the soft layer than the original slate rock produces this jump. 

Variation of stresses in local1- and 3- directions along the lines AB, CD and EF (shown 

in Figure 8.3) are shown in Figures 8.14 and 8.15. It is seen that stresses at the crack tip 

and the uncracked part of slate rock 0.12 m below the crack tip point are tensile and at the 

location of indenting wedge tip it is compressive. This happens due to the direct contact of 

wedge on line EF and indirect effect of wedge load at the crack tip. 
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Figure 8.7: Contour plot of stress in local 1-direction for different crack depths: (a) 0.25 
m crack depth; (b) 0.31 m crack depth; (c) 0.37 m crack depth; (d) 0.43 m crack depth 
and (e) 0.49 m crack depth. 
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Figure 8.11: Variation of stress in local3-direction along the crack front for various 
depths of crack as plane crack propagates (variable breaking load). 
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Figure 8.13: Variation of stress in local 3-direction along the crack front for various 
depths of crack as plane crack propagates (constant breaking load). 
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Figure 8.14: Variation of stresses in local1-direction along the lines AB, CD and EF 
shown in Figure 7.3 for a crack depth 0.25 m. 
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shown in Figure 7.3 for a crack depth 0.25 m. 

299 



Variation of stresses in local 1- and 3- directions along the line of the crack front and the 

lines 0.08 m left and 0.08 m right of the crack front were shown in Figures 8.16 and 8.17. 

It is seen that stresses along the line of the crack front always greater than the other two. 

Stresses in local !-direction along the line 0.08 m left of the crack front line (on the 

cracking side of rock) was obtained to be greater than those obtained from the location, 

0.08 m right (on the uncracking side of rock). The stress in local 3- direction along the 

line 0.08 m to the right of the crack front was obtained to be compressive. The existence 

of continuous slate rock at the right side of the crack front generates this variation of 

stresses. 

Variation of mode I stress intensity factors (SIF) with respect to crack depth for assumed 

variable loads and constant load in static analysis, along the crack front, and at the crack 

tip point are shown in Figures 8.18 to 8.20. It is seen that SIFs decrease as crack depth 

increases for assumed variable loads. However, this change in SIF was not regular. When 

crack depth changed from 0.25 m to 0.31 m, SIF decreased by 6.054%; when it changed 

from 0.31 m to 0.37 m, SIF decreased by 4.784%; and subsequently, when crack depth 

changed from 0.37 m to 0. 43 m and 0.43 m to 0.49 m, SIF decreased by 4.03% and 

3.34%, respectively. Improper consideration of crack propagation velocity that was used to 

determine the breaking load for the uncracked part of the slate rock could be a reason for this 

variation of SIFs. For the constant load case, mode I stress intensity factors decreased first 

and then started to increase as crack depth increased gradually (see figure 8.20). It is well 

known that mode I SIFs vary linearly with respect to the far field stress, the square root 

variation of crack depth and a factor related to the geometry of the body. Therefore, for 

constant load cases SIFs should increase as crack depth increases if other parameters 
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Figure 8.16: Variation of stresses in local1-direction along the lines parallel to the crack 
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Figure 8.18: Variation of mode I stress intensity factor (SIF) along the crack front for 
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Figure 8.19: Variation of mode I stress intensity factor (SIF) along the crack front for 
various depths of crack as plane crack propagated along the splitting plane (constant 
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Figure 8.20: Variation of mode I stress intensity factor (SIF) with respect to crack depth 
at the crack tip point. 

remain constant; whereas it remains a constant in this situation. Probably the factor 

related to the geometry of the body may be changing. 

The load considered in this analysis was an assumed load obtained from the 

experimental breaking of the 0.10 m cubic plane strain slate block. This is not the actual 

breaking load for the present problem in which long and deeper slate slab needs to be 

separated from its original state. Breaking load for this case could be determined from 

the plane strain fracture toughness value of slate rock (0.292 ± 0.0379 MPa.m112
) by 

assuming that the stress intensity factors vary linearly with respect to the applied load. 

The load corresponding to mean plane strain fracture toughness obtained for the in-situ 

field problem having a size of 2.0 m (length) by 1.0 m (depth) by 0.98 m (width) slate 

slab (without taking into account unbounded domain) was 327.76 kN as the SIF value 

303 



was obtained as 0.098 MPa.m112 for this block with 0.25 m initial crack length. This load 

(peak value of load time curve) was calculated by multiplying the distributed load 

obtained from the value of plane strain fracture toughness by the longitudinal area of the 

wedge at a height 0.02 m above the wedge tip. The load was obtained as 402.69 kN 

when the correlation equation (7.3) was applied for the same initial crack length. This is 

22.56% more than the finite element analysis results. This shows that equation (7 .3) is a 

reasonably good equation to estimate the breaking load of in-situ slate rock. 

8.3 Reduction of Wastage in Slate Manufacture 

As outlined in the first chapter, one of the possible outcomes of this study would be the 

great amount of reduction of wastage that could be achieved by the use of this method in 

the manufacture of slate products. It was observed from a careful examination of the 

impact breaking loads given in Tables 4.17, 4.18 and 4.19, 35 to 40% of the slate blocks 

gave loads lower or much lower than the expected impact load for the various individual 

blocks. It is surmised in this study that this reduction in the impact strength of slate 

blocks was most probably due to the presence of inherent flaws within the slate blocks. 

Therefore as a conservative estimate it is assumed that nearly 33% of slate material will 

be wasted due to the presence of cracks, damaged zones and presence of nonslaty 

material in the split slate blocks. 

Since the blocks split in the field will have irregular boundaries due to splitting across 

the drilled holes, they have to be sized in the field into regular blocks by using the 

Hunter saw (given in Figure A8 in Appendix A). This would reduce the usable amount 

of slate to 80% to 85% during the initial stage of mining. Since the blocks are also to be 
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subsequently impact split by the use of hydraulic actuator and manual procedures (chisel 

and mallet - Appendix A6-IV and A6-V) another 33% of slate is also assumed to 

become unusable. Finally this will leave an usable amount of 25 to 30% of the initial 

amount of slate mined. This is nearly 5 to 6 times more than the present 5.0% of usable 

slate products mined (see section 1.1). 
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Chapter 9 

Conclusions and Recommendations 

9.1 Conclusions 

An effort has been made to reasonably characterize the splitting process of naturally 

bedded layered slate rock. The main objectives of this study were: (i) To determine the 

physical and mechanical properties of slate (as a material) that were required for 

subsequent numerical analyses; (ii) To investigate the impact splitting of slate rock 

experimentally (from small scale to reasonably intermediate scales); and (iii) To carry out 

numerical analysis of the impact splitting of slate blocks having finite sizes (plane strain 

blocks, 3D blocks and field problems) using impact forces determined from experimental 

study in the laboratory. In addition an attempt has also been made to develop a 

correlation equation for the determination of the approximate impact splitting force for 

plane strain slate blocks, using the results obtained from numerical analysis of variously 

sized plane strain slate blocks. 

From the literature review of the formation of slate rock, minerals content, and their 

characteristic properties it is seen that slate is a fine grained, crystalline rock that resulted 
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from sediments of clay and fine silt that were deposited on seabed, which can be easily 

split into almost parallel uniform layers. It was also observed that easy splitting of slate was 

possible due to the following reasons: 

(i) presence of minute flaky minerals that had re-orientated themselves along defined 

planes, with, probably, some shearing action; 

(ii) growth of new flaky minerals similarly orientated (an incipient schistosity); and 

(iii) flattening of mineral particles and grain orientation perpendicular to compression 

direction due to intense pressure and consequent deformation. 

An extensive and detailed laboratory testing was carried out to determine relevant 

physical and mechanical properties of slate that were required for the subsequent 

numerical investigation of impact splitting loads. From this study it is concluded that 

mechanical properties (elastic moduli, Poisson's ratio, compressive and tensile strengths, 

hardness, fracture toughness) determined experimentally were not constant for all test 

specimens; the mean and standard deviation of the determined properties were estimated. 

The mean Young's modulus of elasticity and Poisson's ratio with their standard deviation 

obtained from this study were E11 = 72.95 ± 15.33 GPa, E22 = 78.74 ± 17.62 GPa and E33 

= 39.645 ± 3.85 GPa, and v12 = 0.236 ± 0.085, v13 = 0.171 ± 0.01434 and v23 = 0.165 ± 

0.041, and v31 = 0.192 ± 0.078. Co-efficient of friction was obtained as 0.56 ± 0.0037. 

Material properties in a planar direction varied less than those obtained in the direction 

perpendicular to the plane although there were no well defined planes in the slate (from 

microscopic studies). Therefore, it was assumed that slate material is a transversely 

isotropic material. It must be mentioned here that the present results seem to have the 
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smallest variation in physical and mechanical properties when they are compared with the 

published results available in open literature. 

Two types of fracture toughness values i.e, displacement based and stress based, were 

obtained. Displacement based fracture toughness values were obtained to be slightly 

larger (0.33 MPa.m112
) than the stress based fracture toughness values (0.292 MPa.m112

). 

Stress based fracture toughness was obtained when the load was applied parallel to the 

plane in three point bending test of cylindrical specimens. Displacement based fracture 

toughness was obtained when load was applied perpendicular to the plane in four point 

bending. The fracture toughness value selected for impact splitting parallel to the bedding 

planes was taken as the lowest of the two values measured namely (0.292 MPa.m112
). 

From the scanning electron microscope study of slate, it was revealed that micro cracks 

existed at grain boundaries, discontinuities of layering were common features, and layer 

interfaces seemed to be well defined crack surfaces. 

Experiments were also carried out to examine the impact splitting of slate blocks. The 

magnitude of the impact forces needed to split a number of finite sized slate blocks, both 

under in-plane strain and under non-plane strain test conditions. Crack propagation 

directions and the splitting surfaces were also examined visually. From the results 

obtained in these studies it was concluded that plane strain blocks started to break apart 

when the load reached the peak value; for non-plane strain blocks they started to split 

before the load reached its peak value. Breaking load was not consistent with the sizes of 

blocks in some cases. Some of the larger blocks took lesser loads to break than those 

found for relatively smaller blocks; this difference in behaviour was observed to be due to 
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the presence of pre-existing flaws. Split surface texture of load resisting parts of splitting 

surface was observed to be different from those of unresisting parts. Load resisting parts 

of splitting surfaces seemed to be fairly regular whereas the non-resisting parts (due to 

previous flaw) seemed to be irregular. Split of the plane strain block started by the 

extension of crack front horizontally over the cracked surface; the crack plane was almost 

vertical and the block broke exactly into two pieces. However, in case of non plane strain 

splitting, crack started first under the wedge tip and spread horizontally and vertically 

downward. Propagation of crack was observed to be unsymmetric. 

Velocity of crack propagation was determined using strain gauge sensors fixed at some 

regular intervals on the surface of the slate block, perpendicular to the cracking plane. In 

most of the cases, irregular variation of crack propagation velocities was obtained. 

However, for a few cases almost linearly decreasing crack propagation velocities were 

obtained. The velocities were observed to vary between 2.0 m/s to 120 m/s. The crack 

velocity considered for numerical analysis was taken to vary between 55 to 38 m/s. 

Impact splitting of slate rock for plane strain and non-plane strain specimens were 

analyzed numerically using the plane strain fracture toughness as a crack propagation 

criteria. In the numerical analysis, finite element method was used to determine the mode 

I stress intensity factors as a function of geometry of the body, crack depth and applied 

load. Though the stresses in local 1- and 2- directions of 3D finite element analysis were 

much lower than those obtained during plane strain finite element analysis, the SIPs (in 

both cases) showed very good agreement (<10%). Path independent contour integral was 

used to calculate SIPs as it was not influenced much by the size of the mesh used. 
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Linearly decreasing and constant crack propagation velocities were taken into 

consideration for this analysis (linearly varying between 55 to 38 m/s and constant at 46.5 

m/s ). The mode I stress intensity factors of a 0.10 m cubic slate block, in the range of 

propagating crack lengths of 0.0325-0.0550 m, agreed very well with the experimentally 

measured static fracture toughness values (0.292 MPa.m112
) for both the cases of crack 

velocity propagation. It was also observed that the crack propagation velocities had little 

or almost no effect on the variation of the SIFs. Size effect of the plane strain slate blocks 

on mode I stress intensity factor was also considered in this analysis. In this case 0.10 m 

cubic slate block was taken as the reference slate block. It was seen that SIFs varied in an 

inverse manner with respect to the width. Higher SIFs were obtained for specimens 

having a width less than the width of the reference slate block. SIFs also varied with the 

depth of the specimens but the vmiation was much less than that obtained for width. 

Variation of SIFs was less than 7.8% when depth of the block was increased to twice the 

depth of reference block by keeping other dimensions constant. SIF values were obtained 

higher by 10% for linearly decreasing crack propagation velocities than for constant 

crack propagation velocities, for both plane strain and 3D analyses. 

From a review of literature available for plane crack propagation in real 3D bodies, it was 

observed that plane strain crack propagates in the body either in a cylindrical or elliptic 

manner. In this study it was observed that a cylindrical or elliptical crack front did not 

produce an almost constant stress intensity factor (SIF) along the crack front; hence a 

parabolic crack front was considered in this study. For the finite element analysis of 3D 

slate blocks a parabolic crack was assumed to propagate in a symmetric manner within 

the body under the edge of impacting wedge, since it produced an almost constant SIF (or 
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fracture toughness) along the crack front. Crack propagated both in horizontal and 

vertical directions. The variation of stress intensity factors in this case was not exactly 

similar to those obtained earlier for plane strain equivalent 3D analysis. A difference of 

around 15% was observed up to a crack extension of 0.4 times the depth of specimen 

along the symmetry line. However, variation of SIFs was much more when the crack 

extended beyond this. The magnitude of SIFs varied within 15% of their average values 

along the crack front at each five increments of crack except at the outer surface nodes. 

At the position of crack front where horizontal surface and vertical edge met together 

SIFs decreased by more than 50% of the average value. 

Correlation between mode I stress intensity factors, splitting loads and geometry of plane 

strain slate blocks was established to find out the approximate breaking load for a limited 

size of plane strain slate blocks. Plane strain fracture toughness played a significant role 

in this regard. Experimentally determined fracture toughness values corresponding to 

breaking loads of different sized plane strain slate blocks were compared with those 

obtained from the numerical investigations, and the theoretical impact splitting load 

computed. A difference of around + 0.78 to - 32.34% was observed between the 

measured and numerically computed values. 

Numerical investigations of an exact field problem (separation of long slate slab from the 

original rock state) were carried out using static finite element analysis. The breaking 

load obtained from this study was compared with that obtained from the correlation 

equation. A good agreement (difference was less than 15%) was obtained between them. 

311 



The study carried out in this thesis on the impact splitting of naturally bedded slate rocks 

could be used to design instrumentation (indenting wedge with hydraulic actuator) for 

breaking slate rocks in industries as well as under field situations that would produce 

regular sized slate blocks without much wastage. 

9.2 Contributions Obtained from the Study 

* The physical and mechanical characterization of Newfoundland slate (from Britannia 

Cove formation) was achieved for the first time. 

* The impact load, obtained from the splitting test on a chosen slate block, produced a 

mode I SIF value (numerically computed) which was almost equal to the fracture 

toughness value obtained from earlier experimental measurements (see Figures 5.15, 

5.29, 5.30 and 5.31). This was used for bench marking the subsequent computations. 

* It was observed that in a three-dimensional crack propagation problem the crack front 

had to be parabolic to obtain an almost equal SIF (or fracture toughness) value along 

the crack front. 

* A correlation equation was established between the experimental impact load and 

geometrical dimensions of slate block for blocks loaded under plane strain conditions. 

* A field problem was also numerically examined to see whether the laboratory study 

can be used in the field context. It was found that the error between the established 

correlation equation, and numerical results were around 15%. 

* It was also observed that a much higher reduction of wastage (approximately 30% to 

35%) of slate material can be achieved through the use of this impact splitting 

procedure. 
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9.3 Recommendations for Future Study 

The following additional investigations are required to complete the studies reported in 

this thesis: 

1. More laboratory tests for small scale as well as large scale specimens need to be 

conducted to determine plane strain fracture toughness values of slate rocks used in 

this study. Probably a new test needs to be developed to examine whether the static 

fracture toughness values were the same as the critical SIF values obtained during 

impact splitting of rocks. 

2. Determination of dynamic mechanical properties should be made to obtain the proper 

values that are to be used for numerical analysis. 

3. Velocity of crack propagation needs to be determined usmg high sensitivity 

semiconductor strain gauges as well as photographic examinations using a high speed 

camera. 

4. Size of the plane strain slate blocks other than 0.1m transverse length slate blocks 

need to be broken in the laboratory to determine generalized breaking loads. 

5. The effectiveness of impact indenter splitting of slate rocks against the hydraulic 

splitter approach (with drilled holes) should be examined. 

6. Plane strain splitting test needs to be carried out for specimens having an initial cut. 

7. Analyses need to be carried out considering variable initial crack lengths starting 

from very small values (approximately 1% of the specimen depth). Higher order 

elements should be used in 3D analysis, to get better correlation between analysis and 

results. 
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8. Field problem needs to be analyzed considering drill holes instead of soft material 

layer. Dynamic analysis needs to be carried out by taldng special care for the infinite 

elements. 

9. Discontinuous indenting wedges, instead of the continuous wedge used in separating 

the long slab of slate rock from the slate quarry, need to be considered for the finite 

element analysis. 

10. To develop proper correlation equations for 2-D (plane strain) and 3-D situations, 

considerably more results need to be obtained from numerical analysis of various 

sizes of slate blocks. Some numerical investigations carried out in this thesis, support 

the relationship developed in this study; but restriction on some of important factors 

such as depth and width of the specimen as well as boundary conditions (continuous 

media in field situation) and initial crack depth need to be relaxed for developing a 

generalized relationship. 
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Appendix- A 

Slate rock could form vertically or at some inclination (with respect to the horizontal) in 

nature. Some of geological features of this rock are shown in Figures Al - A3. Slate 

extraction procedures from the quarry are also shown in Figures A4 - AS in addition to 

different slate tiles manufacturing procedures (Figures A6-I to A6-VII) currently used in 

Hurleys Slatework Company. Field application of hydraulic fracturing procedures used 

for breaking a large rock block and concrete wall are also shown in Figures A 7-I and A 7-

II. Hunter saw used for cutting of slate slab is given in Figure A8. 
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Figure Al: Geology of slate 

Figure A2: Geology of slate 
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Figure A3: Geology of slate 

Figure A4: Open quarry technique 
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Figure AS: Under ground tunnel to extract slate block 

Figure A6-I: Breaking process of the large block of slate 
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Figure A6-II: Processing for a reducible size of slate block 

Figure A6-III: Splitting of slate (manually) 
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Figure A6-IV: Splitting of slate from thicker piece to a sizable piece along the layer 
(manually) 

Figure A6-V: Splitting of slate according to the requirement of size of tiles (manually) 
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Figure A6-VI: Trimming of slate tiles 

Figure A6-VII: Finished roofing slate tiles 
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Figure A 7-1: Rock mass is split using hydraulic splitter http://www .ur.com/files/corp/ 
catalog/ 104 _rock_powertools. pdf). 

Figure A7-II: Concrete wall is split using hydraulic splitter (http://www.dingo.ws/html 
/att/cruncher_splitter.htm) 
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Figure AS: Hunter saw used for slate rock cutting 
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Appendix B 

Constitutive relationships of isotropic, transversely isotropic and orthotropic materials are 

given in sections I, II and III for plane stress, plane strain and 3D dimensional cases. 

I. Isotropic material 

i. Plane stress formulation 

ii. Plane strain formulation 

iii. Three dimensional formulation 

1-v 
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II. Transversely Isotropic material 

i. Plane stress formulation 

Ex v xyEy 
0 

1-v v xy yx 1-v xyv yx 

[D]= V yxEx EY 

1-v v 1-v xyv yx .:t}J yx 

0 (B-4) 

0 0 

ii. Plane strain formulation 

Ex (v yx + V zY yz ) 

(1-v zxv xJ 0 

0 (B-5) 

0 

where, 

iii. Three dimensional formulation 

1-v o:Y zo: v 0: + v zo: v o:z v zo: - v 0: v zo: 
0 0 0 

Eo:E/il Eo:Ez V Eo:Ez V 
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where, 

(1 - v )(1 - v - 2v v ) 
V' = o: o: o:z zo: and for symmetric matrix requirement, 

E2 E 
0: z 

V o: + V zo: V o;z V o: + V o;z V zo: 
--'--------'---'C.. = -----"'---=----"'"--

EZEO:V' 

_ V o:z (1 +V J 
E2Y' 

0: 

V zo: + V o: V zo: _ V o:z + V o: V o:z 

Eo:Ez Y' - E~Y' 

where, Ea and Va are the symmetry plane (x, y) Young's modulus and Poisson's ratio and 

Eaz and Vza are the Young's modulus and Poisson's ratio in the z direction, Gw is the 

shear modulus in the z-direction. 

III. Orthotropic material 

Three dimensional formulation 

1-v yzv zy V yx +V yzV zx V zx +V yxV zy 
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where, 
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V = (1 - V xy V yx - V yz V zy - V xz V u - 2v yx V zy V xz ) 

ExEyEz 

V yx +V uV yz V xy +VxzV u 
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Vzy +VuVxy V zy +V xzV yz 

EZEX\7 ExEy\7 

V u +VyxV yz V xz + V xyv yz 

EyEz\7 ExEy\7 
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Appendix - C 

Variation of stress vs. strain obtained during the carrying out of laboratory tests for 

modulus of elasticity and Poisson's are shown in Figures C1 - C4. Load variations with 

respect to crack mouth opening displacement and back face strain are shown in Figures 

C5- C10. Variation of impact splitting force with respect to time, during the splitting of 

different sizes of plane strain and non-plane slate blocks using indenting wedge, are 

shown in Figures from C-11 to C-20. Crack propagation velocities determined for 

different sized slate blocks is shown in Figures C12-C25 and Tables C-1 to C-5. 
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Figure C-1: Variation of stress vs. longitudinal strain up to ultimate failure under 
compressive load applied parallel to the layering on a test specimen (used in 
determination of Young's modulus of elasticity and Poisson's ratio). 
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Figure C-2: Variation of stress vs. transverse strain up to ultimate failure under 
compressive load applied parallel to the layering on a test specimen (used in 
determination of Young's modulus of elasticity and Poisson's ratio). 
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Figure C-3: Variation of stress vs. longitudinal strain up to ultimate failure under 
compressive load applied perpendicular to the layering on a test specimen (used in 
determination of Young's modulus of elasticity and Poisson's ratio). 
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Figure C-4: Variation of stress vs. transverse strain up to ultimate failure under 
compressive load applied perpendicular to the layering on a test specimen (used in 
determination of Young's modulus of elasticity and Poisson's ratio). 
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Figure C-5: Variation of load with CMOD (crack mouth opening displacement) up to 
ultimate failure under 3PB (three-point-bending) fracture toughness test of cylindrical 
specimen. Load is applied parallel to the layering. (d = 1.375", a= 0.500", aid= 0.364) 
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Figure C-6: Variation of load with CMOD (crack mouth opening displacement) up to 
ultimate failure under 3PB (three-point-bending) fracture toughness test of cylindrical 
specimen. Load is applied parallel to the layering. (d = 1.375", a= 0.563", aid= 0.410) 
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Figure C-7: Variation of load with CMOD (crack mouth opening displacement) up to 
ultimate failure under 3PB (three-point-bending) fracture toughness test of cylindrical 
specimen. Load is applied parallel to the layering. (d = 1.375", a= 0.516", aid= 0.375) 
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Figure C-8: Variation of load with CMOD (crack mouth opening displacement) up to 
ultimate failure under 3PB (three-point-bending) fracture toughness test of cylindrical 
specimen. Load is applied parallel to the layering. (d = 1.375", a= 0.641", aid= 0.466) 
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Figure C-9: Variation of load with back face strain up to ultimate failure under 4PB 
(four-point-bending) fracture toughness test of rectangular specimen. Load is applied 
perpendicular to the layering. (t = 1.47", a= 0.672", aft= 0.457) 
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Figure C-10: Variation of load with back face strain up to ultimate failure under 4PB 
(four-point-bending) fracture toughness test of rectangular specimen. Load is applied 
perpendicular to the layering. (t = 1.47", a= 0.656", aft= 0.447) 
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Figure C-11: Variation of breaking load or micros train with respect to time during impact 
splitting of slate block having dimensions, L = 4.33 inch, W = 4.0 inch and H = 5.12 inch. 
(Wedge length, L1 = 4 inch, clear height between wedge and specimen before hit= 1.5 
inch, wedge penetration depth = 0.394 inch). 
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Figure C-12: Variation of breaking load or micros train with respect to time during impact 
splitting of slate block having dimensions, L = 5 inch, H = 6 inch and W = 6.18 inch. 
(Wedge length, L1 = 4 inch, clear height between wedge and specimen before hit= 1.5 
inch, wedge penetration depth = 0.394 inch) 
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Figure C-13: Variation of breaking load or microstrain with respect to time during impact 
splitting of slate block having dimensions, L = 4.25 inch, H = 6.45 inch and W = 5.9 inch. 
(Wedge length, L1 = 4 inch, clear height between wedge and specimen before hit= 1.5 
inch, wedge penetration depth = 0.394 inch) 
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Figure C-14: Variation of breaking load or microstrain with respect to time during impact 
splitting of slate block having dimensions, L = 13.125 inch, H = 10.0 inch and W = 
5.8125 inch. (Wedge length, L1 = 4 inch, clear height between wedge and specimen 
before hit = 2.36 inch, wedge penetration depth = 0.5 inch). 
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Figure C-15: Variation of breaking load or microstrain with respect to time during impact 
splitting of slate block having dimensions, L = 10.0 inch, H = 8.0 inch and W = 5.0 inch. 
(Wedge length, L1 = 4 inch, clear height between wedge and specimen before hit= 1.97 
inch, wedge penetration depth= 0.5 inch). 
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Figure C-16: Variation of breaking load or micros train with respect to time during impact 
splitting of slate block having dimensions, L = 13.3125 inch, H = 12.5 inch and W = 3.1 
inch. (Wedge length, L1 = 4 inch, clear height between wedge and specimen before hit= 
2.5 inch, wedge penetration depth = 0.5 inch). 
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Figure C-17: Variation of breaking load or microstrain with respect to time during impact 
splitting of slate block having dimensions, L = 9.375 inch, H = 6.75 inch and W = 3.375 
inch. (Wedge length, L1 = 4 inch, clear height between wedge and specimen before hit= 
2.5 inch, wedge penetration depth = 0.5 inch). 
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Figure C-18: Variation of breaking load or microstrain with respect to time during impact 
splitting of slate block having dimensions, L = 8.8125 inch, H = 9.625 inch and W = 
2.375 inch. (Wedge length, L1 = 4 inch, clear height between wedge and specimen before 
hit= 2.5 inch, wedge penetration depth= 0.5 inch). 
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Figure C-22 

Figure C-22: Crack propagation velocity during impact splitting of slate blocks 

Wedge 

L 
Typical slate block 

Specimen dimensions, L = 4.25 inch, W = 5.9 inch and H = 6.45 inch, Wedge length, L1 = 
4 inch, clear height between wedge and specimen = 1.5 inch, wedge penetration depth = 
0.394 inch. 
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Table C-2: Crack propagation velocity during impact splitting of slate blocks 

Crack length (m) Crack velocity (m/s) Average velocity (m/s) 

0.0445 100 

0.058 120 

0.069 66.67 90.67 

0.079 100 

0.089 66.67 
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Figure C-23: Crack propagation velocity during impact splitting of slate blocks 
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Specimen dimensions, L = 12.0 inch, W = 6.0 inch and H = 10.0 inch, Wedge length, L1 = 
4 inch, clear height between wedge and specimen = 2.0 inch, wedge entered into the 
specimen= 0.75 inch. 
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Table C-3: Crack propagation velocity during impact splitting of slate blocks 

Crack length (m) Crack velocity (m/s) Average velocity (m/s) 
0.0525 14.49 
0.1350 22.22 
0.1685 8.24 
0.1755 5.60 9.306 
0.1825 3.41 
0.1895 1.18 
0.1965 10.00 
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Figure C-24: Crack propagation velocity during impact splitting of slate blocks 
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Typical slate block 

Specimen dimensions, L = 4.4 inch, W = 6.0 inch and H = 6.0 inch, wedge length, L1 = 4 
inch, clear height between wedge and specimen = 1.5 inch, wedge penetration depth = 
0.394 inch. 
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Table C-4: Crack propagation velocity during impact splitting of slate blocks 

Crack length (m) Crack velocity (m/s) Average velocity (m/s) 

0.014 55 

0.026 53 

0.034 40 56.20 

0.05 80 

0.058 53 
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Figure C-25: Crack propagation velocity during impact splitting of slate blocks 
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Specimen dimensions, L = 13.125 inch, W = 5.75 inch and H = 10.0 inch, wedge length, 
L1 = 4 inch, clear height between wedge and specimen= 1.5 inch, wedge penetration 
depth = 0.394 inch. 
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Table C-5: Crack propagation velocity during impact splitting of slate blocks 

Crack length (m) Crack velocity (m/s) Average velocity (m/s) 

0.0295 75 

0.071 69.1 

0.108 65.45 61.104 

0.144 55.38 

0.18 40.59 
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