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ABSTRACT 

This thesis presents a comprehensive analysis of a 

multi-rotor bearing system, that includes realistic end 

support conditions. It provides a design engineer with t he 

present day technology available in carrying out a balancing 

analysis. The design is based on minimizing the flexural 

response, due to mass unbalance. 

The model is developed based on the finite element 

app r oach which provides a convenient and accurate means of 

balancing a rotor-bearing system. The model incorporates the 

effects of translational, and rotational inertia, and 

gyroscopic moments, using the consistent matrix approach in 

conjunction with dynamic matrix reduction technique, modal 

a nalysis, and least-square balancing technique. The use of 

matrix reduction technique for determining a equivalent 

r educed system, provides subsequent saving of both 

c omputational time and space on the digital computer~ Th is 

al lows modelling of complex rotor system conveniently, while 

r etaining only those degree of freedom essential to the 

s olution of the problem. The modal analysis used is an 

e ffective means of determining the unbalance force response, 

f or systems with unsyrnrnetric stiffness and damping matrices. 

The least-square method for balancing, is used to include 

b alancing cases where the number of measuring planes exceeds 

the number of balancing planes. This represents most actual 
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balancing situations, and allows an increase in the input 

data, whereby the consequence of a single error in data tends 

to decrease. The balancing at one speed is usually 

sufficient to bring the rotor amplitude down over its entire 

speed range. Further, flexibility in rotor balancing is 

provided by including the effect of varying the location , and 

number o f b a lancing planes. 
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CHAPTER 1 

I NTRODUCTION AND LITERATURE SURVEY 

1 The Unbalance Forces in Rotating Machinery 1 . 

There has always been a demand for greater power 

output per unit weight in the design of turbo-machinery. 

This requires higher operating speeds. One key factor in 

achieving this objective is the control of vibrations o f the 

rotor as it goes through its critical speeds; others include 

aeroelastic problems, aerodynamic problems, etc. The need 

for higher speeds, yet reliable operation, requires that the 

rotor shaft be considered as a flexible element. Because of 

t his, an accurate dynamic analysis of rotor-bearing systems 

h as to be carried out. 

The turbo-machinery can be modelled as several 

disks mounted on hydrodynamic bearings as shown in Fig. 1.1. 

The stiffness and damping coefficients of such bearings are 

s peed depe n dent, hence the analysis is much more involved as 

c ompared t o systems which are supported on ball bearings, 

where these coefficients can be considered as isotropic. The 

response orbitals in case of a ball bearing, are circula r ; 

whereas f or h ydr odynamic bea r ings , they are e l liptical. 

Natu ra l ly all effort is made to reduce t h e 

unbalance response and make the rotor perfectly symmetrica l 

with re s p ect to s ti ffness and i n ertia of the sys t e m. 

Unfortunately, there are unbalance forces present in these 



Bearing 

Shaft 

Bearing 

Fig. 1.1 Rotor Supported on Fluid-Film Bearings 
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unfortunately, there are unbalance forces present in the s e 

systems due to the manufacturing tolerances in various 

components. The normal machining tolerance for a turbo-

machinery is of the order 0.049 pm. 

reduced using dynamic balancing. 

These forces are then 

Balancing of rotors and rotating systems is an 

important industrial application of vibration theory. Since 

any rotating part is a potential source of vibratory force, 

it is usually necessary to balance rotors designed to run at 

speeds above 60 rpm. The necessity of balancing every rotor 

can easily produce a bottleneck in a production line, and 

therefore production balancing must be done efficiently, if 

it is to be tolerated from a cost point of view. 

In production balancing, the rotor i.s run in hard 

bearings, and the unbalance response is reduced by the 
I 

addition or removal of smal-l correction weights, till a 

desi red response level is reached. The type of balancing 

technique used, is dependent on the type of rotor. The 

rotors are generally classified into two categories: (a) a 

rigid rotor, and (b) a flexible rotor. 

1.2 Rigid and Flexible Rotors 

Slow speed rotors, operating well below their first 

cri tical speed, are categorized as rigid rotors and require 

only stati c balancing; for example, crankshaft-drives, 



.. t Lea 1 speeds, are categorized as flexible rotors which 
CJ. _l 

i nl..: L wJe ld rge compressors and turbine rotors. In such 

rotors, the existence of forced steady-state response due to 

the unbalance, can cause deflections of the shaft in the 

vicinity of the critical speeds (when rotor natural 

frequencies are equal to the operating speed), which can not 

be controlled without dynamic balancing. Therefore, in order 

to balance rotors efficiently, analytical rotor dynamic 

techniques are necessary. 

1.3 various Considerations in Rotor Dynamics 

Since a rotor system is a assembly of several 

components, a good design of rotor-bearing system requires 

that all its components be designed with utmost care and 

precision, and assembled to operate efficiently. The present 

investigation~ which involves dynamic balancing of rotors 

supported on fluid-film bearings, is a step in this 

direction. 

Any rotor dynamics analysis should involve the 

following steps: 

1. A mathematical modelling of various components of the 

system, and formulation of dynamic equations of motion. 

2. Dynamic response calculations. 

3. Control of the vibratory response of the system. 

In the following section, a literature survey, on the above 
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mentioned topics is presented. 

4 The Literature Survey 1. 

There are several methods reported in literature 

for modelling the rotor-bearing systems. The two commonly 

used methods are: the transfer matrix method [1-3] and the 

finite element method [4-6]. Both these methods have been 

successfully used by Ruhl. [5]. He utilized a finite element 

model of a turbo-rotor system to study the stability and 

unbalance response. He compared his results with those of 

Prohl [7] and concluded that the finite element methods are 

far superior to the transfer matrix method. Ruhl' s finite 

element model included only the elastic bending energy and 

translational kinetic energy, while the effects of rotary 

inertia, gyroscopic moments, were not considered. These 

effects can be quite significant for some configurations as 

indicated in [8]. Nelson [9] generalized the Ruhl's model by 

including the effects of rotary inertia, gyroscopic moments 

and axial loads. The results are given in [9]. They 

indicate that the model is reliably accurate. 

The accuracy of the results, in the case of finite 

element analysis, is increased by taking s!7laller sized 

elements. This approach requires more computer time and 

storage but yields significantly greater accuracy for a given 

rotor discretization scheme. Recently, Rouch and Kao [10] 
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d a static condensation technique in rotor dynamics propose 

· which significant improvement in computer time and area , ~n 

core size can be attained while maintaining the basic 

accuracy and flexibility of the system. This technique 

yields reasonably accurate results. A dynamic matrix 

reduction tech n ique, used in structural dynamics area [11] 

but not yet applied to rotor dynamics area, enables automatic 

selection of the retained degree of freedom in the 

condensation scheme. This gives sufficiently accurate 

results because it ensures that the lower vibrational modes 

are retained. In this scheme, the diagonal coefficients of 

mas s and stiffness matrices, which can be denoted by [K] and 

[M] respectively, are scanned, and the degree of freedom i 

for which K .. /M .. is the smallest, is retained for the 
1 1 1~ 

condense~ system. 

1. 4.1 Fluid Film Bearing 

The influence of the bearing properties [12] has a 

significant effect on the response of the rotor, and 

therefore requires careful attention while modelling a rotor-

bearing s ystem. This is because of the thin film which 

separates the moving surface and supports the rotor load. It 

ac ts as a spring and provides large damping due to the 

squeezed film effects. The stiffness and the damping 

coefficients greatly alter the critical speed and out of 

balance response of a rotor. The isotropic bearing model 
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used by many researchers for response calculations, is a vast 

overs implification. In fact, an accurate modelling of 

hydrodynamic bearings should involve both the direct and 

cross-coupled effects of stiffness and damping respectively. 

For such cases even for simple rotors supported on 

fluid-film bearings, the determination of the critical speeds 

and the unbalance response, are much more involved . This is 

because of the asymmetry in the cross-coupled fluid-film 

stiffness and damping coefficients, which in turn, are 

dependent on rotor speeds (see Appendix D for the details). 

1. 4.2 Rotor Response Calculations 

There are various techniques reported in literature 

for determining the unbalance response of rotor-bearing 

systems. For example Rao [12], Rao, Bhat, and Sankar [13], 

used a Jeffcott rotor model with identical bearings at the 

two ends to obtain expressions for the unbalance response of 

rotors, and the effects of bearing stiffness and damping 

parameters on the response were studied. Adrayfio and 

Frohrib [14] analyzed asymmetrically mounted rotor on 

dissimilar bearings using energy techniques. Rao [15] used 

transfer matrices to study the rotor response while Nelson 

and McVaugh [9] used finite element techniques. Lund [16] 

used Prohl-Myklestad method to calculate the response of 

rotors. But their investigations did not include the cross-

coupled stiffness and damping effects present in fluid film 
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bearings. subbiah, Bhat, and Sankar [17] developed equations 

· for a simple rotor supported on dissimilar fluid­of mot~on 

film bearings, and solved these equations directly to study 

the effect of bearing dissimilarity on the rotor response. 

A method [17] for calculating the response of a 
• 

general flexible rotor supported on fluid film bearings is 

available, which can be said to be the modified modal method. 

Because of the non-symmetric nature of the problem, the 

conventional normal mode analysis is not possible. It is 

therefore necessary to use the biorthogonality relation 

between the modal vectors of the original system and that of 

the transpos ed system, to uncouple the equation of motion. 

The system response obtained is due to the sum of the 

response of the individual modes. 

Modal analysis has been used in several 

investigations to study the response of rotors, supported on 

hydrodynami c bearings. Gunter, Choy and Allaine [18] used 

the planar. modes of undamped rotor systems by ignoring the 

gyroscopic efects and effects of cross-coupled bearing 

sti ffness es, to study the critical speeds and the unbalance 

response of turbo-rotors. Berthier, Ferraris and Lalanne 

[19 ] employed the modes of the rotor at rest, for studying 

the behavior of complex rotors. Lund [3] employed a 

biorthogional modal analysis to study the behavior of a 

flexible rotor and Saito and Azuma [20] used this method for 
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an undamped rotor system. Bhat [21] employ ed the above modal 

analysis to study the behavior of a simple rotor without 

damping. Bhat, Subbiah and Sankar [22] studied a single disk 

roto r with a shaft of uniform circular cross-section suported 

on dissimilar h ydrodynamic bearings using a lumped mass 

ana lysis but did not consider the gyroscopic effects. 

1.4.3 Flexible Rotor Balancing 

Flexible rotor balancing, is significantly more 

complex than r igid-rotor balancing. In the latter case, the 

rotor never changes shape, whereas a flexible rotor 

continually changes its configuration, as more critical 

speeds are encountered. Also, because a flexible rotor 

changes its mode shape with speed, it is apparent that a 

condition of b est balance at one specific speed may not 

represent the best balance condition over a range of speeds. 

The rotors, i f balanced, for the first three critical speeds, 

are also balanced for higher speeds for all practical 

purposes . . 

In balancing flexible rotors, it is a common 

practice to balance by the component method [1], whereby 

every component is individually balanced on mandrels, and 

assembly balance d with the addition of each componen t o n t o 

t he shaft. Before balancing the rotor for critical speed , 

t he rotor i s r u n at half its lowest critical speed, until the 

temper·ature i n all its components is stabilized and the 
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unbalance results are repeatable. This is because, as the 

d of rotation approaches the lowest natural frequency of 
spee 

transvers e vibration for the system, the bending effect, due 

to the unbalanced rotating inertial forces, increases 

dramatically. Afte r the stabilization stage, the rotor is 

then run in a suitable hard bearing balancing machine to a 

safe speed approachi ng the first critical and the unbalance 

response is recorded at particular points along the length of 

the rotor, for a series of desired speeds. The results 

constitute the data for the uncorrected rotor, and it is 

these vibrational amplitudes which should be reduced to a 

minimum, by inserting small masses or removing masses in the 

balancing planes, depending on the balancing process being 

utilized. 

, The balancing process for flexible rotors involves 

determining the balance mass magnitudes, the angular location 

in the planes of rotation, and the axial locations of the 

plane of rotation, in which the balance masses are applied. 

The various techniques which have been developd can 

be broadly grouped into essentially two different but not 

contradictory schools of thought. These methods are: the 

modal method [1], and the influence coefficient method [23]. 

1.3. 4.1 The Modal Balancing Method 

The balancing problem has been approached in two 

d'f ~ ferent ways, by those who consider the rotor as a series 
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of point masses, and those who treat the rotor as a 

continious elastic body. The treatment of the rotor as a 

continuum has led to the modal concept pioneered by Bishop 

and Parkinson [24] . In this method, the rotor response is 

express ed as a power series function of the system undamped 

eigenvalues. Bishop shows that the general unbalance 

distribution may be expressed in terms of modal unbalance 

eccentricities. The rotor amplitude near a critical speed is 

thus primarily affected by the particular modal unbalance 

distribution while the higher order modes have little 

influence on the lower critical speed response. They then 

postulate that it should be balanced mode by mode by placing 

proper weights at the antinodes. 

In its simple form, modal- balancing relies on the 

critical speeds being well separated from each other, and the 

response lightly damped, so that at any critical speed, one 

modal component of reponse is dominant. Since the effect of 

support asymmetry usually causes fairly small separations of 

critical speeds, two being formed where only one existed for 

the axi-symmetric system. However, due to the complexities 

involved in obtaining the normal modes, this method has not 

been found to be too practical [1]. 

1.3.4.2 The Influence Coefficient Method 

In the influence coefficient method [1], the 

unba lance response in the measuring planes are corrected by 
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placing suitable weights in the balancing planes. At f i r st, 

the unbalance reponse in the measuring planes, is found by 

running the rotor at a given speed without any correction 

weights in the balancing planes. A correction weight is 

applied in one of the balancing planes and its net vectorial 

response in all the measuring planes, is evaluated. This 

process is repeated by applying this correction weight in 

other balancing planes. In this way, the influence 

coefficients matrix is established. The required correction 

wei ght vector is obtained by multiplying the inverse of the 

influence coefficient matrix with the unbalance response 

vector. 

If the number of balancing planes available are 

les s than the number of measuring planes then one should use 

the least-square balancing method [25]. In this method, the 

response in the measuring planes, are minimized by suitable 

evaluation of the weights in the balancing planes. An 

excellent discussion about both of these methods are given in 

[26-28]. 

1.5 The Objectives of the Investigation 

Based on the literature survey, the following are 

the obj ectives of the present investigation: 

1. The finite element modelling of the multi-rotor system 

supported by fluid-film bearings which have direct and 
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cross-coupled stiffness and damping respectively. 

2 • Dynamic response calculation of the rotor due to the 

unbalance forces, using a dynamic reduction technique, 

and modal analysis. 

3. The balancing of the multi-rotor system using least­

square method. 

4. The study of the balancing process by varying the 

location and the number of the balancing planes. 

In this thesis, the finite element formulation of 

the system dynamics is carried out first. The mathematical 

model includes effects of translational as well as rotational 

inertia, and gyroscopic moments, using the consistent matrix 

approach. The formulation of the problem is presented in a 

fixed frame of reference. The bearings utilized in the 

model, are non-isotropic involving coupled linear stiffness 

and damping coefficients. A dynamic reduction procedure is 

utilized whereby the size of the system matrices are reduced. 

The response is then determined using the biorthogonal modal 

method for unsymmetrical damping and stiffness matrices. The 

balancing is carried out using the least-square method. The 

system is balanced exactly at the critical speed whereas in 

actual practice, the balance runs are carried out at several 

speeds around the critical. 

In Chapter 2, the dynamic equations of motion of 

the system have been formulated using the finite element 
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analysis. Then, a dynamic reduction technique has been used 

to reduce the system matrices The response is determined 

using biorthogonal modal analysis. The mathematical 

express ion for the influence coefficient matrix is derived, 

and the least- square method is discussed. 

In Chapter 3, the computer programme for the 

dynami c analys is is tested by calculating the natural 

frequencies of a hinged-hinged beam and comparing these with 

the exact solution. The number of retained coordinates in 

the matrix reduction process is established by comparing the 

natura l frequencies and the response of the original system 

with those of the reduced system. The advantage of balancing 

at the criticals over balancing at various speeds around the 

criticals, is discussed. The effect of the variation of the 

number and the location of the balancing planes is analyzed. 

Finally, the conclusions and recommendations for 

futu re work are given in Chapter 4. 



CHAPTER 2 

THE ROTOR BEARING SYSTEM AND 
ITS MATHEMATICAL MODEL 

1 Introduction 2. 

Design and balancing of rotor system depends on its 

dynamic characteristics. The smooth operation of a rotor is 

di rectly related to the dynamic flexural response, influenced 

by the mass unbalance. The objective of the present work is 

to calculate the response of the system due to the mass 

unbalance, and to correct its flexural response. 

A step in achieving this objective is to formulate 

an accurate mathematical model, of rotors supported on fluid-

film bearings. 

2.2 System Configuration and Coordinates 

In modelling a rotor bearing system, important 

consideration must be given to the set of reference axes 

utilized to describe its motion. A typical rotor-bearing 

system is illustrated in Fig. 2.1. This motion studied can 

be in a r otating or a fixed frame of reference. The rotating 

frame is particularly useful, when analyzing systems with 

isotropi c bearings. In this case the motion in two normal 

p lanes c an be treated separately. The fixed frame provides 

t he generality of handling problems with non-symmetric 

bearing stiffness, and damping effects. The only 
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dis advantage of the fixed frame finite e lement formulati o n is 

that the order of the system matrices is large. This 

disadvantage can be overcome by using the dynamic matrix 

reduction technique. 

A typical cross section of a rotor in its defor med 

state as defined in the fixed frame of reference system 

(XYZ:m), is shown in Fig. 2.1. The triad is fixed with the x 

axis coinciding with X. The cross-section of the element, 

located at a distance (s) from the left end point, translates 

and rotates during the general motion of the element. The 

translations V(s,t) and W(s,t) in the Y and Z directions 

respectively locate the elastic centerline, and small angle 

rotations B(s,t) and r(s,t) respectively, represents the 

orientat ion of the cross-sectional plane. The cross-section 

also spins at a constant speed w about the X axis defined by 

(x, y,z: T) triad. 

2.3 Mathematical Formulation 

This section is divided into four subsections. In 

the first subsection, the component equations of a rotor­

bearing system are formulated using the finite element · 

method, which includes the effects of translational, and 

rotational inertia, and gyroscopic moments using the 

consistent matrix approach. The second subsection deals with 

a dynami c matrix reduction technique. The third subsection 
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presents a modified modal analysis method to determine the 

sys tem. Finally, in the fourth subsection, the mass 

unbalance response is reduced, using the least-square 

balancing technique. 

2.3.1 Component Equations of a Rotor Bearing System 

The rotor bearing system is comprised of a set of 

interconnecting components, consisting of uniform rotor 

segments with rigid disks, and fluid film bearings. 

The shaft portion of the rotor is modelled as beam 

elements, by specifying spatial shape functions, and then 

treating the rotor element as a integration of a infinite set 

of differential disks. A typical rotor element is shown in 

Fig . 2.2 . The cross-sectional displacements within the 

element are defined relative to a fixed frame of reference 

by translations V(s,t) and W(s,t) and rotation B(s,t) and 

r(s,t). The finite rotor element coordinates are indicated 

e e e by eight degree of freedom (q1 , q 2 , .... , q 8 ), four at each 

end, with two for translation, and two for rotation. 

The rigid disks representing the impellers, 

coupling, flywheels, are convieniently described by a singl e 

plane, with only four degrees of freedom, two for translation 

and two for rotation. 

The equation of motion for the elements are 

derived, by writing the expressions for kinetic and potential 

energy, of the components. The kinetic energy consists 
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o f b oth translational and rotational modes . The rotation 

t erms also include gyroscopic effects associated with the 

s pinning of the shaft. The potential energy ·consists of the 

e lastic bending effects of the shaft. The formulation is 

b ased on Timoshenko beam theory [30]. The details of the 

derivation of the component equation of motion are provided 

in Appendices A, B and C. The expressions for the matrix 

e quation of motion using Lagrange•s formulation for the 

rotors as well as the disks are [9]: 

Finite Rotor Element Equations 

(2.2) 

Rigid Disk Equation 

([M d] + [M d]) {qd} - w [Gd] {q.d} = {Qd} (2.3) 
T R 

where [M], [G], [K] represent the mass gyroscopic, and 

stiffness matrices respectively. The vector {Q} and {q} are 

the unbalance force and the displacement vector respectively. 

The subscripts d, e, refer to disk and element and the 

subscripts B, T, R refer to bending, translational, and 

rotational modes respectively. The details of the element 

matrix formulation is presented in Appendix A and elemental 

matrices in Appendix B. 
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Since an accurate representation o f a bearing, 

which supports the rotor is just as critical to the system 

model as the rotor itself, the bearing properties are 

modelled using experimental results carried out by Lund [29]. 

Bearing Equation 

The dynamic equation of motion of the bearings, in 

the fixed frame coordinates as shown in Fig ~ 2 ~ 3, can be 

written as [9] 

i n fi xed frame coordinates, where 

= 1~}· 
K b 

vv = 

~b 

l<vwb 

b 
K\VW 

cvwb]· 
c b 

ww 

' 

(2.4) 

(2.4a) 

(2.4b) 

(2 . 4c) 

In Eqn. (2.4), 
b . 

{Q } represents the external force 

vector applied on the bearings. The elements of the 

stiffness and damping coefficient matrix are considered to be 

nonl inear . These matrices contain cross-coupling terms 

representing a non-isotropic bearing with the principle 

coupled axes oriented at (45°, -45°) to the normal z-axis. 

The bearing coefficient curves for a plain 

cylindrical bearing as analytically obtained by Lund [29] 
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Fig. 2.3 Journal Bearing Stiffness and Damping Coefficients 
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a re g iven in Appendix D. The curves represent the norma l and 

c ross-coupled bearing coefficients for different speed 

d ependent Sommerfeld numbers. 

The stiffness and the dampi~g coefficients are 

obtained from Figs. D-1, to D-2. To do this, the Sommerfeld 

number is calculated and then the correspondng stiffness and 

damp ing coefficients are obtained by interpolation. 

The Equation of Motion of the Complete System 

The equation of motion for the assembled damped 

system consisting of components equations (2.2), (2.3) and 

(2. 4), is of the form 

[M] {q} - w[G] {q} + [C] {q} + [K] {q} = {Q} 

(2.5) 

The number of degrees of freedom in Eqn. (2.5) can be quite 

large, therefore before carrying out the modal analysis, the 

system matrices are reduced. 

2.3.2 nynamic Matrix Reduction Technique 

The reduction process is most simply described as a 

transformation, relating condensed degree of freedom in terms 

of retained ones. The computation of the transformation 

matrix, can proceed by a number of approaches. The most 

s traight forward approach is to minimize the potential energy 

o f the deformed structure, ignoring inertial effects and 

f orces on the condensed degree of freedom, thereby, retaining 

t he lower modes for controlling the vibrations through the 
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critical speeds. This is done by defining a transformation 

matrix [T], and writing the relation [11] 

(2.6) 

where, 

[T] = 
[r] 

[K ]-1 [K ]T 
ss ms 

(2.6a) 

The submatrices [K ] and [K ] are obtained by ss ms 

partitioning the stiffness matrix [K] in Eqn. (2.5) which can 

be written as 

[K]nxn = 

I 
[K ] 

1
1 [K ] 

rnrn ms ______ ,._-- --
r 

[ K JT I [K J 
ms I ss 

(2.7) 

In Eqn. (2.6) 'm' refers to the number of master degrees of 

freedom, and 's' to the slaves. The master degree of freedom 

are retained, whereas the slaves are removed. Using this 

transformation matrix, the condensed matrix equation can be 

written as 

{Q (t)} · 1 
m mx 

( 2. 8) 

where the condensed matrices are also symmetrical and given 

by 

= [T]T [M] [T], 
nxn (2.8a) 
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[Km]mxm = [T]T[K] [T] I (2.8b) nxn 

[Gm]mxm = [T]T[G] [T], (2.8c) nxn 

[Cm]mxm = [T]T[C] [T], (2.8d) nxn 

{Qm(t) }rnxl 
T (2.8e) and = [T] {Q}nxl· 

The disadvantage of using the condensed set of matrices is 

that the eigenvalues of the condensed system as represented 

by Eqn. (2.8) are higher than that of the original system 

because of the imposed constraints. The selection of master 

and slave degree of freedom is automated so as to ensure that 

the lower modes are retained, as the masters. The diagonal 

coefficients of [K] and [M] are scanned, and the degree of 

freedom i for which K .. / M .. is the smallest, is selected as 
~~ ~~ 

the first order, and the rows and columns of the system 

matrices are rearranged accordingly. This is repeated, till 

the system matrices are arranged in a ascending manner, based 

on the K .. /M .. ratio of the diagonal elementso 
~~ ~~ 

2.3.3 Modal Response Analysis 

The modal analysis [22] of the condensed system can 

then be carried out, after rearranging Eqn. (2.8), into a 

system of first order differential equation of the form 

[M] {x(t)} + [K] {x(t)} = {F}, (2.9) 

where, 
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[0] [M J 
[M] m 

= (2.9a) 
[M m] (- n [G J + [C ]) m m 

-[M J [0] 
[K] m = ( 2. 9b) 

[0] [K J m 

{F} =i{O} } 
{Qm} 

(2.9c} 

{X ( t)} 
{qm ( t)} 

and {X(t)} 
{qm ( t)} 

= I = (2.9d) 

{qm(t)} {qm ( t)} 

The damped natural frequencies of the system are then 

obtained, by finding the eigenvalues of the dynamical matrix 

[D] which is given by 

[D] = [M]-l [K] ( 2. 9e) 

The solution of Eqn. (2.9) is assumed in the form, 

{X(t)} = [<f>] {n(t)} (2.10) 

where [4>] contains the eigenvectors of the reduced system 

represented by Eqn. (2.9). Introducing Eqn. (2.10) into Eqn. 

(2.9) and premultiplying the result by [<P*]T, which is th e 

transpose of the eigenvectors of the transposed system leads 

to the following: 

[<P*]T[~][<P]{~(t)} + [<P*]T[K][<P]{n(t)}= [<P*]T{F} 

(2.11) 
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l'"~P'~t:.!::;ent: Lr19 Lhe dyna mics of the system in the normal 

coordi naLes . Because of non- symmetric nature of the 

sti ffness and damping matrices, a conventional normal mode 

ana lysis is not possible, where [~]T is used instead of [~ * ]: 

Eq n . (2 .11 ) can be rewritten as 

[ll*] {n(t)} + [K*] {n(t)} = {cr} ( 2 • 12 ) 

* * where [ll ] and [K ] are diagonal matrices respectively. Th e 

steady state solution for Eqn. (2.12) can be written as [22] 

n. (t) = N. exp(jwt) + N. exp(-jwt) 
1 1 1 

(2.13) 

and 

a; (t) =E. exp(jwt) +E. exp(-jwt) 
~ 1 1 

i=l 1 2 1 • • o • 1 2m 

( 2. 14 ) 

Substitution of Eqn. ( 2. 13) and ( 2. 14) into Eqn. ( 2. 12) leads 

to 

(K. + jwlJ.) N. exp(jwt) + (K.-jwlJ.) N. exp(-jwt) 
1 1 1 1 1 1 

= E. exp( jwt) + E. exp(-jwt) (2 .15) 
1 1 

Equating coefficients of forward and backward whirl, one can 

write, 

E. 
N . = ( ~ ) and 

1 K . + JWlJ . 
1 1 

E. 
1 N -i- ( K • - iw ll . ) 

1 1 

(2.16) 

where Ei and Ei represent the forces due to mass unbalance in 
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the normal coordinates. 

Eqn. (2.12) can be solved on a mode by mode basis 

and Eqn. (2.10) can be used to obtain {X}. The nodal 

displacements, which represent the elements of the vector 

{q }, are obtained using Eqn. (2.9d) by taking the real part 
m 

of the lower submatrix of the vector {X}. The displacement 

vector {q} is obtained using Eqn. (2.6). 

2.3.4 The elliptical Response Orbital 

The dynamic response of the system is studied by 

calculating the major diameter of the elliptical orbit [1]. 

combining Eqns. (2.10) and (2.13), one can write, 

Eqn. (2.17) can be written as 

where, 

X. ( t) 
~ 

* N. 
~ 

* = N. 
~ 

exp(jw. t) + N. 
Jl ~ 

* and N. 
~ 

* 

i = 1,2, •.. ,2n 
j 1= 1,2 .... ,2n 

exp(-jw. t) 
Jl 

(2.17) 

(2.18) 

(2.18a) 

In the displacement vector {X}, the arrangement of the nodal 

degree of freedom are such that the two translational motions 

are followed by two rotational motions. For example if i 

represents the motion along the first translational 
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di rection, then i+l _would represent the motion in the next 

translational direction. The combined motion in the ith and 

i +lth direction, would be planar motion. Expressing Eqn. 

( 2.18 ) for the i+lth direction, the corresponding equation 

c an b e written as 

(2.19) 

Eqn. ( 2.18a) and (2.19) can be written in simplified form as 

* X. = (N. 
~ ~ 

* + N. 
~ 

* ) cos w . t + j ( N . 
Jl ~ 

* N. 
~ 

)sin w.t 
Jl 

* * * * 

(2.20a) 

- (Ni+l +Ni+l)cos w. t + j(Ni+l- N.+ 1 )sin w . t 
Jl ~ Jl 

(2.20b) 

t aking the real part of the coefficients of Eqn. (2.20), one 

c an write 

wl = vl cos w.t + v2 sin w.t I and 
Jl Jl 

w2 = wl cos w.t + w2 sin w.t (2.21) 
Jl Jl 

where the coefficients v 1 , v 2 , w 1 and w 2 are defined by the 

real and imaginary functions 

* * vl = Real (N. 
~ 

+ N. 
~ 

) 
(2.2la) 

* * v2 = I mag (-N. + N. ) (2.2lb) 
~ ~ 

* * wl = Real (N. 1 + N. 1) (2.2lc) 
~+ ~+ 
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(2.2ld) 

The radius vector of the elliptical orbit can be expressed 

as 

r = + w 2 
2 

The radius vector r is maximum or minimum, when 

d 
d(w. t) 

Jl 
(r) = 0 

(2.22) 

(2.23) 

Combining Eqns. (2.21), (2.22), and (2.23), an expression 

for the major or minor diameter of the ellipitical orbit 

shown in Fig. 2.4, can be writen as 

(2.24) 

The (+) sign is used for the major diameter R1 , and (-) sign 

for the minor diameter R2 • The angle made by the major axis 

with respect to the real axis is given by [32, 33] 

0 = w. t + Cl 
+ 

Jl 

where 

2(v1 v2 + wl \¥2) 
tan 2w. t = 

Jl 2 2 + 2 2 
vl - v2 vl - v2 
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Fig. 2.4 Elliptical response orbital relationship. 
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and 

(2.25) 

2 .3.5 Least Square Balancing 

The magnitude of the elements of the vector thu s 

obtained, is reduced using the least square method [27, 33, 

34 ]. As the first step, the first critical speed is 

e xperimentally determined by running the rotor through this 

speed. Next, a known trial weight is placed in each of the 

balancing planes, and the resulting vibration calculated at 

each of the measuring planes. By subtracting from these 

r esults, the corresponding results for the uncorrected rotor, 

and dividing the difference by the value of the trial weight, 

a series of influence coefficients are obtained one for each 

measuri ng plane. This is mathematically writen as 

R.. R. 
a . . = 
1] 

1] 10 

T. 
J 

( 2. 26) 

where a is the complex influence coefficient; T the trial 

weight; R .. 
1] 

and R. the elements of the response vector 
10 

{R} and i, j represent the measuring and balancing plane 

numbers r esp ectively. Once all the influence coefficients 

are e v a luated, the correction weights required to minimize 

the unba lan ce vibrational of the rotor, can be computed by 

usiog the r elation [25] 
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{R }qxl = [A]qxp {U} 1 (2.27) px 

where [A] is the influence matrix coefficient whose elements 

are a .. , {U} is a complex vector defining the correction 
~J 

weights angle and the subscripts q and p represent the 

available number of measuring and balancing planes 

respective ly. 

In exact point method [28], the number of balancing 

planes are equal to the number of measuring planes i.e. 

p=q . The least-square method although based on the same 

principles, permits the condition where the number of 

measuring planes can exceed the number of balancing planes. 

This allows an increase in the input data (more measuring 

planes than balancing planes), whereby the consequence of a 

single error in the data tend to decrease. The analytical 

procedure for the least-square method is given in [23, 33, 

34 ]. 

ln general case, where the number of measuring 

planes exceed the number of balancing planes, the unbalance 

is reduced by minimizing the square of the residual 

amplitudes. Expressing the sums of the squares of the 

residual amplitudes as S one can write, 

q 
S = 1: 

i=l 

q 
I R. 1

2 = L R. I 
~ . 1 -~ 

~= 

R .• 
-~ 

where Ei is the complex conjugate of g1 

i=l, 2 1 • • • 1 n (2.28) 
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as 

au. 
-] 

= 0 

- 34 -

{j = 1, .... p) (2.29) 

where u. is a complex conjugate of the elements of the vector 
-] 

{U } a nd the differentiation is partial. 

Substitution of Eqn. (2.28) into Eqn. (2.29) and 

making use of the relation 

{R} = {R } + [A]{U} 
0 

(2.30) 

where {R} represents the residual response after the 

correction weight has been applied and {R } the initial 
0 

unbalance response. 

as 

au. 
-J 

n 
= I: 
i=l 

R. 
~ 

(}R. 
~ 

au. 
-] 

= 
n 
I: 

i=l 
·R. 
~ 

or by inserting Eqn. (2.30) 

n 
· I: a .. (R. + 
i=l ~J 10 

which can be written in matrix form as 

- -
[A]T [A] {U} = -[A]T {R } 

0 

a .. 
~J 

= 0 (i=l, ••• p) 

(2.31) 

(j=i, ••• p) 

(2.32) 

(2.33) 

where [A]T is a conjugate transpose of [A]. This equation 

c an be solved directly to give [33] 
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{R } 
0 

(2.34) 

The final equation yields that particular 

combination of correction weights which minimizes the 

res idual vibration of the rotor in the least-square sense. 

2. 3.5.1 Formulation of the trial weight rotor addition 

The trial weight is identified in a balancing plane 

. bY its magnitude m, eccentricity p and phase angle e relative 

to the uniformly rotating reference axis y, z as shown in 

Fig . 2.5. The addition of the trial weight to the forcing 

function is as follows: 

2 sin(wt e), (2.35) F = ( mpw ) + and y 

2 cos(wt e) • (2.36) F = (mpw ) + z 

Expanding Eqns. (2.35) and {2.36), one obtains 

Fy = (mpw2 sin e) cos wt + {-mpw2 cos e) sin wt 

•••• ( 2. 37) 

F 
z 

2 2 = (mpw cos e) cos wt + {mpw sin e) 

Rewrit ing these equations in vector from 

cos wt + {Q s} sin wt 
s 

sin wt 

•••• { 2. 38) 

(2.39) 

Eqn. ( 2.39) is same as the unbalance forcing function 

represented by Eqn. (A.l4) (given in Appendix A). Eqn. 

(2 .39) can be transformed into modal form as 



z 
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y, z rotating reference 
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y 

Fig. 2.5 Trial weight addition. 
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{F} * T s * T s = [ 4> ] {Q } cos wt + [ 4> ] {Q } sin wt c s 

Eqn . (2 .40) can be written in the form 

where 

* * {F} = {Q } cos wt + {Q } sin wt 
c s 

{Qc*} = [<b*]T {Qcs}, 

{Qs*} = [4>*]T {Qss}. 

(2.40) 

(2.41) 

Expressing sine and cosine in exponential form, one can 

rewrite Eqn. (2.41) as 

{F} 
iwt 

e + 
-Q s 

( 2i 

* * Qc 
+ -2-) 

-iwt e 

(2.42) 

This c an be written in terms of the forward and backward 

whirl as 

{F} 
iwt -iwt = E e + E e 

where, 

* * 0 s 0 c E = ( 2 i + --2-) , and 
* Qs 

E = (- 2i 

Q s 
+ ___£__) 

2 

(2.43) 

(2.44 ) 

2.3.5.2 Balance Planes with Variable Location 

To provide further flexibility in rotor balancing, 

the e ffect of varying the location of the balancing planes 

withi n an element, is incorporated in the system. For a 
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typical uniform element shown in Fig. 2.6 the variable 

balance plane is located a distance (a) along the axis of the 

element, the end planes of the element are shown as b 1 and 

bz respectively. The displacement shape functions 

are given by 

ljJl = 1 - 3 (~) 2 + 2(~)3, (2.45a) 
.!?. 

'~~2 = s[l - 2 (~) + (~)2], (2.45b) 
.!?. 

'~~3 = 3 (~) 2 - 2(~)3, (2.45c) 
.!?. 

s 2 (~)3], (2.45d) '~~4 = .!?.[-(-) + .!?. 

The addition of the trial weight in a plane is given by Eqn. 

( 2. 3 7) and ( 2. 38) . 

2 2 F = (mpw sin e)cos wt + (-mpw cos e) sin wt 
' y 

(2.46a) 

2 2 
F = (mpw cos e) cos wt + (rnpw sin e) sin wt 

z 

(2.46b) 

Referring to Fig. 2.6 the forces at a joint of a given 

element, due to a trial weight located at a distance (a) can 

be obtained by combining Eqns. ( 2. 3 7) , ( 2. 2 8) and ( 2. 4 2) • 

The expressions for these forces can be written as 

F. = I 
~ 

0 

.!?. 
2 (rnpw sin e) o(s-a) '~~· cos wt 

~ 

+ (rnpw2 cos e) o(s-a) ljJ. sin wt ds 
~ 

i=l,2,3,4 

(2.47) 
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Fig. 2. 6 Varia bl le be I once plane . 
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After integrating Eqn. (2.44) for i=l,2, ..• 4, one can write 

2 
(sin e Fl = mpw lJ!l cos wt + cos e sin wt) 

(2.48a) 

F2 = 
2 mpw 1JI2 (cos e cos wt - sin e sin wt) 

(2.48b) 

F3 
2 

1JI3 (sin e wt + e sin wt) = mpw cos cos 

(2.48c) 

F4 = 
2 

mpw 1JI4 (cos e cos wt - sin e sin wt) 

(2.48d) 

These forces at the joints of the elements are assembled into 

the global force vector for the dynamic response 

calculations. 

2. 4 Conclusions 

In this chapter, a mathematical model based on the 

fi nite element analysis, of a rotor-bearing system has been 

fo rmulated. In order to reduce the size of the system 

matrices, a dynamic matrix reduction technique has been used. 

For controlling the vibration levels, two methods are 

discussed which are, the exact point speed method, and the 

least square method. The expressions for the joint forces, 

due to the variable location of the trial weight in an 
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element, are obtained. 

In the next chapter, the balancing of the rotors, 

is il lustrated by numerical examples. 



CHAPTER 3 

ANALYSIS OF A ROTOR BEARING SYSTEM 

3. 1 Introduction 

In Chapter 2, the rotor-bearing system was 

mathematically modelled. The equation of motion was 

fo rmulated as a matrix differential equation, using the 

fi nite element method. A steady state solution for modal 

analysis was presented to calculate the sys t em u nbalance 

response. The equations for calculation of the 

correction weights using least-square analysis were then 

derived. 

In this chapter, the analytical concepts developed 

earlier, are illustrated by numerical examplese The system 

was modeled on a VAX 11/780 digital _ computer with a package 

developed by the author in FORTRAN language which is given in 

Appendix E. 

3. 2 Analysis of the Rotor as a Hinged-Hinged Beam 

In order to verify the formulation and assembly of 

the system matrices, the rotor was analyzed as beam with 

hinged-hinged end conditions. The beam was first discret~zed 

u sing 6 elements of equal length to determine its natural 

f requencies as illustrated in Fig . 3.lo The system 

f requencies were compared with those using the flexural beam 

t heory [4]. The agreement in the calculated natural 

f requencies was very good. These calculations were repeated 
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0.76m 

Fig. 3.1 Rotor Shaft Analyzed for Hinged-Hinged 
End Condition 
(6 uniform diameter sections SO x 127mm) 
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by increasing the number of elements. It was found that, as 

the element number was increased, the natural frequencies 

decreased slightly and that 6 elements gave sufficiently 

accurate results. Therefore, only 6 elements were used for 

the further dynamic analysis of the rotor-bearing system. 

The validity of the theoretical model is checked in Appendix 

F. 

s tudied. 

The effect of disk additions on the system was also 

It resulted in a decrease in the natural 

f requencies, as a result of the increase in the total mass of 

t he system. In the next section, a numerical example of a 

r otor-bearing system is discussed. 

3 .3 Numerical Example of the Rotor Bearing System 

To demonstrate the application of the finite 

e lement model, a typical rotor-bearing system with six 

e lements, as illustrated in Fig. 3.2 was considered. The 

d etails of the rotor are provided in Table 3.lo It consists 

o f a shaft, with a uniform diameter of 0.050 m, and an 

overall length of 0.76 m. The rotor is symmetrical and most 

o f the mass concentrated in the two disks. A density of 7806 

k g/m3, and elastic modulus of 2.078xloll N/m2 was used to 

model the rotor shaft. The two disks, with a mass of 20.45 

k g each, polar moment of inertia of 0.0020 kg-m2 and 

d iametrial inertia of 0.0010 kg-m2, were located 0.254 m from 

t he ends. The rotors were supported on plain cylindrical 
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Table 3.1 Rotor Detail 

Shaft Diameter 

Total Length of Shaft 

Modulus of Elasticity of Shaft 

Shaft Density 

Disk Weight 

Type of Bearing 

Bearing L/D Ratio 

Viscosity of Oi 1 

Disk Eccentricity 

0.05 m 

0.76 m 

2.07xl0 1 l Pa. 

7.68xl0 4 kg/m 3 

20.45 kg. 

Plain Cylindrical 

1 

69xl0- 4 N secfm2 

6.35xl0- 4 m (In-plane 45°) 
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flu id- film bearings witha L/D ratio of 1 and a bearing 

clearance of 0.000635 m. The unbalance condition was 

repres ented by the two disks with a in-line, in-phase mass 

centre eccentricity of 0.000635 m. This configuration was 

similar to impellers keyed to the shaft with the same key. 

3.4 Results and Discussions 

3 .4.1 The Dynamic Matrix Reduction Technique 

In the dynamic reduction technique, the original 

sys tem matrices were reduced to smaller sizes by using a 

transformation matrix defined by using Eqn. (2.6a). In this 

reduction process, care was taken that the properties of the 

or iginal system, such as the natural frequencies, did · not 

alter significantly. The greater is the degree of reduction, 

the more will be the deviation of such properties. 

For the present system, the number of degree of 

freedom were 28. This had to be reduced as much as possible. 

Trial runs on the computer for the calculation of the natural 

frequencies, using Eqn. (2.9e), were made by varying the 

degrees of freedom between 12 to 25. Some of the results 

obtained, are shown in Table 3.2. In this table, the first 

fi ve natural frequencies were computed by varying the number 

of master degree of freedom . As the number of master degrees 

were increased, the natural frequencies decreased. However, 

this r ate of decrease in the frequency value with respect to 



Table 3.2 Comparison of the Damped Natural,Frequencies .of Original and the Reduced Systems 

Orlg i na1 
System 

CPM 

Percent 
12 Devi a tion 
CPM \ 

Percent 
13 Deviation 
CPM \ 

Reta i ned Degree o f Freedom 
---,----- ·---- -----

Percent Percent Percent 
14 Deviation 15 Deviation 16 Deviation 25 
CPH \ CPM \ CPM ' CPH 

------- --------- ------- --·--·-·-- ------- ·------ -------- -----1 ---1--·-·--- ------ -----·- ----·----
1 1260.417 1288.009 2 . 5 1202.845 0 . 4 1282.845 1.2 1260.417 2.1 1256 . 153 0.03 1256.114 

--------- ----·--- ------- ------ ---- -- -·-·- ----
2 3532.476 3935 . 456 21.6 3934.310 3934.310 21 . 5 3532.476 10.2 3236 .3 52 o.o 3236.32 3 

------- ------- ·-------- - ---- ----- -----1------ ----- ----- -·----- ----·-·---
3 4976.434 5142.606 3.6 5000 . 300 2. 6 5008.300 0.3 4576,434 3.2 4965 . 775 o.o 4965.902 

-----·--- -------- ·-· ----·-- -----·- ----+-----
4 94002.36 94901.76 0.3 94900.05 o.o 94900.05 0.3 94802.36 0 .1 94780.93 0.2 94 564 . 60 

---- ·--- -·------ ·----·~----1---·---- ----- --------- ------- -----·----
5 122354.28 135613.95 11.4 135592.75 0.1 3 . 9 122354.28 9 . 6 122342 . 5 0 . 5 121019.65 

--·----- ---------- - ·'--------- ------ ------- ------- ----------

Pen:enl 
De viation 

\ 

o.o 

o.o 

0.0 

o.o 
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the increase in the degree of freedom, becomes very small 

when t he degrees of freedom were 16. Therefore, the reduced 

sys tem , for further analysis, was chosen to have 16 degrees 

of fr eedom, which represents 42 percent reduction in the each 

of the system matrix sizes. 

3. 4.2 The Variations of the Natural Frequencies of the 
System with the Operating Speed 

The first three damped natural frequencies of the 

· sys tem are given in Fig. 3.3. The critical speeds are 

frequencies when the system natural frequencies are equal to 

the operating speed. The abrupt changes in the frequency 

map a re because of the speed dependent fluid-film bearing 

coefficients. The rotor, light in weight, has a Sommerfeld 

numbe r ranging between 1.0 to 10.0, . within the operating 

The response at the first three critical speeds 

for t he original and reduced system are compared in Table 

3.3 . The location of the measuring planes are shown in Fig. 

3.4 . A maximum deviation of 1.05 percent indicates the 

efectiveness of the matrix reduction technique. 

3 .4.3 The Effect of Gyroscopic Moment on the Rotor 
Response 

The unbalance damped response values, for the three 

critical speeds were calculated to study the effect of 

gyros copic moments on the rotor-bearing response. The 

response values obtained are shown in Table 3.3a. As can be 

seen from this table, the gyroscopic moments have very little 

ef fect on the overall response of the system. This can be 
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Table 3. 3 

- Rotor 
s peed 

RPM 

The 
First 
Critical 
(1 253. 63) 

The 
Second 
Critical 
(4882. 36) 

The 
Third 
Critical 
(8357. 83) 

- 51 -

Comparison of the Maximum Respon se Amplitudes 
betweem the Full and Reduced Sys t e ms 

Measuring Maximum Rotor Response 
Plane 
No. Full System 16 Degrees System Percent . m m Deviat i on 

% 

1 7.178 X lo-s 7.170 X lo-s 0.48 

2 2.979 X lo- 4 2.964 X lo- 4 0.56 

3 6.184 X 10- 4 6.774 X lo- 4 0.63 

4 7.769 X 10- 4 7.724 X lo- 4 0.63 

5 6.814 X lo- 4 6.774 X lo- 4 0.63 

6 2.979 X lo- 4 2.964 X 10- 4 0.56 

7 7.178 X lo-s 7.170 X lo-s 0.48 

1 2.380 X lo- 6 2.370 X lo- 6 0.40 

2 3.655 X lo-s 3.644 X lo-s 0.29 

3 6.172 X lo-s 6.169 X lo-s 0.05 

4 7.137 X lo-s 7.089 X lo-s 0.71 

5 6.172 X lo-s 6.169 X lo-s 0.05 

6 3.655 X lo-s 3.644 X lo-3 0.29 

7 2.380 X lo- 6 2.370 X lo-6 0.40 

1 1.554 X lo- 6 1.586 X lo- 6 0.52 

2 3.490 X lo-s 3.469 X lo-s 0.61 

3 5.928 X lo-s 5.877 X lo-s 0.87 

4 6.847 X lo-s 6.776 X lo-s 1.05 

5 5.928 X lo-s 5.877 X lo-s 0.87 

6 3.490 X lo-s 3.469 X lo-s 0.61 

7 1.594 X lo- 6 1.586 X lo- 6 0.52 



m = Measuiing plane 

Disk Disk Brg. 
m, m m 

mf 
m Ill 
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Fig. 3.4 Rotor Measuring Plane locations 
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Table 3.3a Comparison of Unbalance Response for Cases with 
and without Gyroscopic effects 

Rotor Measuring Maximum Response Amplitude Percent 
s peed Plane Deviation 
RPM. No. With Without % 

Gyroscopic Gyroscopic 
Effect Effect 

m rn 

1 7.170 X lo-s 7.176 X lo-s 0.09 
The 
First 2 2.964 X 10- 4 2.966 X 10- 4 0.06 
Critical 
( 1253 .63) 3 6.774 X 10- 4 6.783 X 10- 4 0.13 

4 7.724 X 10-4 7.730 X 10- 4 0.08 

5 6.774 X 10- 4 6.783 X 10- 4 0.13 

6 2.964 X 10-4 2.966 X 10- 4 0.06 

7 7.170 X lo-!> 7.176 X lo-!> 0.09 

1 2.370 X lo-b · 2.374 X lo-b 0.17 

The 2 3.644 X 10-5 3.619 X lo- 5 -0.68 
Second 
Critical 3 6.169 X 10-5 6.138 X 10-5 -0.50 
(4882.36) 

4 7.089 X 10-5 7.063 X lo-!> -0.37 

5 6.169 X lo-s 6.138 X lo-s -0.50 

6 3.644 X lo-s 3.619 X lo-s -0.68 

7 2.370 X lo-b 2.374 X lo-b -0.17 

1 1.586 X lO-b 1.590 X lo-b 0.25 

The 2 3.469 X 10- s 3.454 X lo-s -0.43 
Third 
Critical 3 5.877 X lo-s 5.872 X lo-s -0.08 
(835 7.83) 

4 6.776 X 10- s 6.774 X 10-s -0.03 

5 5.887 X lo-s 5.872 X lo-s -0.08 

6 3.469 X lo-s 3.454 X lo-s -0.43 

7 1.586 X 10-6 1.590 X 10-6 0.25 
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Use of t he damping present in the system, which tends to 
bee a 

h gyr oscopic effects of the shaft and the two disks. mask t e 

Although the gyroscopic effects were small for this system, 

theY were included in the overall system analysis. 

3.4. 4 The Dynamic Response as a Function of Rotor Speed 

The unbalance response at the middle of the rotor, 

for various operating speeds, is shown in Fig. 3~5. The 

three criticals speeds are clearly indicated by peaks in this 

curve. The r esponse is very high at the first critical 

whereas it i s almost equal at the second and third critical 

speeds. 

It is obvious from this study that the vibration 

levels a t the criticals must be controlled. The maximum 

whirl amplitude, at the measuring planes, at various 

cri tical s ·, are shown in Table 3. 3. It can be clearly seen 

that 16 master degrees of freedom are sufficient for the 

dynamic response study because the deviations are very small. 

In addit iop, the deflections are symmetrical along the rotor 

as shown in F ig. 3. 6. This is because the measuring planes 

(refer t o Fig . 3.4) have been located in a symmetrical 

manner, and t he deflection of the corresponding points on 

either e nds, are equal. for example, the measuring plane 

number 2 , and 6 are equidistant from the ends and their 

respective r esponse values are equal. 

The response orbitals of the disk and the bearing 



r'\ 

(.!) 
0 
_J 
v 

' w 
0 
:::> 
t-
H 
_J 
a. 
~ 
<( 

w 
(f) 
z 
0 
a.. 
(f) 
w 
c:r; 

L 
::::> 
L 
H 
X 
<( 
L 

CS> 
CD 

N 
I 

CD 
&n 

N 
J 

CD 
CD . 
~ 
I 

CS> 
, U) 

~ 
I 

CS> 
CS> . 
11) 
1 

m . 
1D 
I 

CD 
CS> . 
0 
l e.ee 

- 55 -

First 
Critical 

. 
~ 
P-4 
r::r:: 
C"""\ 
\.0 . 
C"""\ 
1.1"'1 
N -

2.00 

ROTOR 

Second 
Critical 

I 

il 
~I 
-.ol 
~I 
~I 
~I 

I 

-4.90 6.00 

SPEED RPM.*10 

Third 
Critical 

.I 
~, 

~I 
C"""\l 

ex:, 
~I 
~I 

I 
I 
I 
I 
I 
I 
I 
I 

s.ee 10.80 

3 

Fig. 3.5 Unbalance Rotor Response at the Middle of the Rotor 



(./') 
~ 
w 
t­
w 
k 

r'\ 

(!) 
0 
_J 
~ 

"\ 

w 
0 
::::> 
t-
H 
_J 
a.. 
~ 
< 
w 
(./') 
z 
0 a.. 
(./') 
w 
a:: 
k 
~ 
2: 
H 
X 
< 
:4 

. 
N 
1 

(S) 
1t) . 
(\1 
1 

~ 
(S) . 
~ 
I 

(S) . 
, lt) . 
~ 
I 

(S) 
1t) 

11) 
1 

CS) 
(S) 

co 

<> 
+ 
0 

- 56 -

FIRST CRITICAL. 1 253 . 83 RPM. 

SECOND CRIT.ICAL 4882. 36 RPM. 

THIRD CRITICAL 8357.83 RPM. 

l 
0.00 0. tS 0.30 0.46 0.61 0.76 

DISTANCE ALONG ROTOR - METERS. 

Fig. 3.6 Unbalance Response at the First Three Cr-itical Speeds 
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locations were calculated using Eqn. (2.24), and were 

elliptical in nature. The major and the minor diameter of 

the orbits are shown in Table 3.4. The ratio of the major to 

the minor diameter at the bearing locations, was 

approximately equal to one, in the computer printout. They 

appear to be equal to one in this table because of the 

rounding off, of their respective values. 

In actual practice, these peak response values are 

reduced using dynamic balancing, which is discussed in the 

next section. 

3 .4.5 The Dynamic Balancing of the Rotor-Bearing System 

The dynamic balancing can be carried out by 

selecting equal number of measuring and balancing planes. 

For r otors, which are symmetrically loaded, it often leads to 

large correction weights at the centre [28]. On the other 

hand, one can use the least-square method, where the rotor 

ampli tude response, can be minimized without adding excessive 

we ights, and where the number of measuring planes can be 

greater than the number of balancing planes. Another 

a dvantage of this method is that there can be several 

measuring planes and even if there is some error in the 

measurement in one or more than one planes, still the 

c omputed values yield very good results. In other words, by 

i ncreasing the number of the measuring planes, the influence 

o f a measurement error in any one of these planes, . is 
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Table 3.4 Elliptical Response Oribitals at the Bearing and 
Disk Locations 

Rotor Bearing Disk 
Speed 
RPM Major Minor Angle Major Minor Angle 

Diameter Diameter Deg. Diameter Diameter Deg. 
}.lm }.lm llm }.lm 

1200.0 56.642 56.642 -11.4 480.031 333.274 -63.0 

1253.6 71.628 71.628 12.0 763.042 358.445 51.2 

3300.0 4.648 4.648 -43.7 67.106 66.573 80.1 

4800.0 2.369 2.369 43.4 63.322 61.239 76.8 

8100.0 1.585 1.585 2.7 58.826 58.724 63 . 3 

8355.6 1.662 1.662 38.9 61.239 59.512 68.1 
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diminished. The greater the number of balancing planes, 

better will be the balancing of the system. Unfortunately, 

due to the limitations of the accessibility and other 

constraints, the balancing planes can not be increased beyond 

certain number, for a given system. However, in these 

situations, the best one can do is to increase the number of 

measuring planes and carry out the balancing using the least­

square analysis. 

The rotor was then balanced at the first critical 

speed u sing three fixed balancing planes as shown in Fig. 

3.7 . In order to present a meaningful comparison of the 

balance improvement as a result of balancing at the critical 

speeds, two balancing methods were considered. 

Method 1 involves a commercially used balancing 

technique ' [28]. In it, the rotor is first balanced at little 

above half its first critical speed, to stabilize the higher 

modes, and then balanced at 1190 rpm., a speed close to the 

first crit~cal without actually balancing the rotor at its 

critical speed. 

Method 2 involves balancing the rotor at its 

critical speed only. The results for the two methods, are 

presented in Table 3.5. In method 1 the unbalance response 

at various measuring planes was calculated using Eqn. (2.9 ) 

and is shown in column 3. The response at various speeds 

after balancing at 760 rpm, is shown in column 4. Similarly, 
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Table 3.5 Balance Improvements when Balancing below and at Critical Speeds 

Rotor 
Speed 
R.P.M. 

(l) 

760.00 

1190.00 

,1253.60 

----- --------- -------t------·------- ------- -------
Haaaurlng 
Plana 
No. 

(2) 

l 

4 

5 

6 

7 

Before 
Balancing 

After ht 
Balance Run 
(160 RPM,) 

t Attn :lnd 
Reduction Balance Run 
Due to ht ( 1190 RPM.) 

• • 
(3) (4) 

Balance 
Run 

(5) 
.. 

(6) 

-----------~-------~-----
6.014 x 1o-• 6.89 x ao-• 90.8 

1.947 x to-~ 8.965 x to-• 99.5 

J.o75 x to-$ 1.102 x 1o-' 99.6 

J.479 x 1o-s 1.9o4 x to-r 99.4 

J.075 x to-' 1.102 x 10-7 99.6 

1.947 x 10-~ 8.965 x 1o-• 99.5 

6.014 x 1o-• 6.891 x to-• 98.8 

6.80) x to-• 

o.2s1 x to-• 

1.092 ll 10_, 

1.8ll x 10-7 

1,092 X 10-1 

----- --------1------11-------

8.257 x to-• 

6.083 x ao-• 

1.010 X 10- 7 

3.190 x ao-1 

4.208 x ao-, 

8.026 x to- 7 

4.2oo x to-' 

1 

2 

3 

4 

5 

6 

1 

2 

l 

4 

5 

6 

7 

5.671 x to-~ 1.851 x to-' 99.6 

2.918 x to-~ 1.147 x ao-• 99.5 

4.801 • ao-~ 1.851 x to- 6 99.1 

5.463 x to-~ 1.620 x 1o-' 99.7 

4.801 • to-~ 1.053 x to-• 99.3 

2.938 1 to-~ 1.147 x to-• 99.5 1.190 x ao- 7 

s.67l x ao-~ 1.851 x to-7 99.6 1.010 x to- 7 

--------- ----- -·---- --------
7.170 x to-s 1.672 ·x to-7 99.4 1.774 x to-7 

2.964 1 to-~ 1.682 x to-6 99,4 

6.774 x to-~ 2.039 x to-6 99.5 

7.724 x ao-~ 1.111 x to-• 99.5 

6.774 x to-~ 2.039 x to-• 99.5 

2.964 X 10-~ 1,682 X 10-i 99.4 

7 .1 70 X lo-S ),672 X 10-1 99.4 

1.006 x 10-6 

1.753 x to-• 

l. )]0 X 10-6 

1.751 x ao-• 

1.006 x to-• 

1.174 x to-7 

t Critical Speed t 
Reduction Balance Reduction 
Due to 2nd (1253.60 RPM.) 
Oalance Run 

(7) 

0.4 

5.7 

0.8 

),8 

0.8 

5.7 

0.4 

45.4 

72.2 

17.2 

50.4 

77.2 

12.2 

45.4 

51.7 

40.1 

38.2 

60.5 

38.2 

40.1 

51.7 

Ill 

(8) (9) 

1.708 x to-' 99.7 

1.750 X }0-6 

1,328 X 10-li 

l, 750 X 10-i 

1.001 x 1o-6 

1.708 X 10_, 

99.6 

99.7 

99.0 

99.7 

99.6 

99.7 
----~-- - - -- --- ---- - ·---------- -----·-·-- ----------- ---------- ------·----·-- - ------

. I 

()'\ 

~ 
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the r esponse at various speeds after balancing at 1190 rpm , 

is shown in column 6. The percentage improvements, due to 

the f irst and the second balancing are shown in columns 5 and 

7 respectively. Referring to this table it can be easily 

seen that the major reduction in the response is carried out 

by the first balancing at 760 rpm. The second balancing is 

more effective at higher speeds such as 1190 or 1253 rpm 

(percentage reduction in response is higher). 

In method 2, the balancing is done only at the 

critical speed and the results after this balancing, are 

shown in column 8. The percentage reduction due to this 

balancing is the percent difference of the results given in 

columns 3 and 8 respectively. 

The results, obtained either by method 1 or 2 are 

quite good, but method 2 yields better results. The balance 

results, along the length of the rotor, are shown in Fig. 

3. 8. As stated earlier, the deflections are symmetrical. 

The c urve obtained using method 2, shows a slight dip at the 

middle of the rotor. This is due to the presence of the 

balancing plane at this location. 

After balancing the rotor for the first critical 

s peed , method 2 was selected for further b alancing. The 

rotor response at the second and third critical speeds were 

obtained and the corresponding correction weights were 

calcu lated. The system unbalance and balance response values 
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at the three criticals are given in Table 3.6a. The 

magnitude of the correction weights and their phase angles at 

these criticals, are given in Table 3.6b. 

The maximum reduction in the unbalance response i s 

attained under the first balance run. The effect of the 

second critical balance results in an increase in the overall 

balance condition. The increase is probably because the 

ba lance plane locations are ineffective in reducing the 

response. Similar results are reported by Tessarzik [28]. 

Next, the rotor response at the third critical 

speed with the first set of correction weights, was 

calculated and the corresponding correction weights at this 

critical speed, were determined. The response values, with 

the fi rst and the third set of correction weights, are shown 

in column 8. The results in column 9, indicate that the 

response, after the first and the third critical balancing, 

decreases at most of the location except at and near the 

bearings. This is possibly due to the balancing planes 

locations which are away from the bearings. The dynamic 

response along the length of the rotor due to these balanc 'ng 

are shown in Fig. 3.9 to 3.11. Referring to Fig. 3.9, there 

is qui te significant reduction in the unbalance response due 

to the correction weights. The deflection curve along the 

rotor, is symmetrical even after the balancing, in all of 

these three figures. This is because the balancing planes 



Table 3.6a Balance Improvements when Balancing at Critical Speeds 

lto t o r­
Spoed 
RPM. 

en 

Flut 
Crltlcal 
(1251.63) 

Second 
Cdt leal 
(4002.36) 

'fhird 
Cdt leal 
(8357.83) 

Measuring 
Plane 
No . 

(2) 

2 

l 

4 

5 

6 

7 

2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

6 

7 

--------~--------~----------- ------
Defore 
Ralanclng 

Aft er lat 
Balance 
Run 

' Aftu 2nd ' After- 3r-d ' Reduction Balance Run 
Due• to lat 

Reduction Balance 
Due lat r. 

Reduction 
let an(l 

Balance 2nd Balance 
Ill m Run • Run • 

lrd .Balance 
Run 

(l) (4) (S) (6) (7) (O) (9) 

7,t70 X 10-~ 1.700 X t0-1 99,7 

2.964 x to-~ t.oo7 x to-• 99.6 

6.774 x to-~ 1.790 x to-• 99.7 

7.724 x to-~ 1.328 x to-• 99.8 

6.774 x to-~ 1.790 x to-• 99.7 

1.110 x 1o-s 1.780 x to-7 

2.110 x to-• 1.381 x to-• 

99.7 

41.7 

96.9 

6.169 x 10-s 1.601 x 10- 1 99.7 

7.089 x to-s 1.289 x to-s 81.9 

6.169 x lo-s 1.603 x to- 1 99.7 

1.644 x 1o-s 1.121 x to-• 96.9 

2.110 x to-• 1.381 x to-• 41.7 

1.so6 x to-• 2.758 x to-• 111.8 

).469 X lo-S 4.231 X 10-5 

5.077 x to-s 7.061 x to-• 

6.776 x lo-s 3.764 x to-s 

5.007 x 1o-s 7.061 x to-• 

07.8 

99.9 

44.4 

99.9 

3.469 X 10-S 4,211 X 10- 6 87.8 

1. 506 x to-• 2.758 x to-• 173.8 

1-------t-------1--- - - - - -·- --- - -· 
1,216 X 10-l Jl,] 1.497 X l0- 1 -23.t 

t.ou x to-• 

1.112 • to-• 

1.656 • to-5 

1.112 • to-• 

1.021 x to-• 

-1.5 

- 0.1 

-24.4 

-0.1 

-1.5 

6.905 x to- 1 

1. 451 11 to-• 

6,985 X to- '/ 

4.137 X 10-l 

59.5 

60.6 

12.2 

60.6 

59.5 

1.216 x to- 7 11.1 1.497 11 to- 7 -21.1 
J..-.------1---·---- - - -------1----
1.520 X 10_, -10.0 1.382 X 10-6 0 . 0 

2.128 x to-• 

1.247 x to-• 

1.152 11 to-• 

1.247 x to-• 

2.120 11 to-• 

1. 520 x to-• 

-89.3 

-67.7 

91.0 

-67.7 

-89.3 

-10.0 

1.121 • ao-' 
1.602 • 10_., 

1. 200 x lo-s 

1.602 X 10- '/ 

l.l2] X 10-6 

1.102 x to-• 

0.0 

0 . 1 

0.1 

0.1 

o.o 

o.o 
-t-------1- - -----·----1----

1.214 11 to-• 

3,24] X 10-S 

5.664 x to-s 

44.7 

-666.5 

6.1ll x to-s -70.0 

5.644 x to-s 

1.243 x to-s -666.5 

'. 214 x to-• 44.7 ---·-____ ....__ __ -----

4 .oH • to-• 

1.594 X 10-S 

2.664 X 10-(, 

3.1)]5 II 10-(, 

2.664 X 10-(, 

1. 594 x 10-s 

4.074 x to- ' 

-47 . 6 

-27l.O 

62.2 

0 . 9 

6l.2 

- 27l.O 

-47 . 6 



- 66 -

Table 3.6b Corresponding Balance Weights Magnitude 
and Angles when Balancing Rotor at the 
first three Critical Speeds 

Balance Calculated Correction Heights 
Plane 
No. 1253.63 RPM 4882.36 RPM 8357.83 RPM 

\ieight Angle Weight Angle Weight Angle 
g Deg. g Deg. g Deg. 

1 7.13 -36.5 30.2 -39.6 6.1 -37.5 

2 51.5 -46.2 46.3 -48.9 2.3 -43.1 

3 7.13 -36.5 30.2 -39.6 6.1 -37.5 
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have b een symmetrically located along the l e n gth of the 

rotor. However, the percentage decrease in t he rotor 

response, after the balancing, at the second and the third 

critical, is much less than that at the first critical. For 

example, at a distance of 0.15 m along the rotor, the 

di fference in the unbalance and balance response in Fig. 3,9 , 

is much more than a similar difference in Fig , 3.10 and 3 .11 . 

Referring to Table 3.6b, the angular location of 

the correction weights is approximately opposite to the disk 

mass centre eccentricity, which is 45°. 

It must be added here that the overall saving of 

CPU time and memory storage for a balancing run using the 

condensation technique were 38 and 42 percent respectively. 

3.4.6 The effect of the Location of the Balancing 
Planes on the Rotor Response 

In the previous section, three balancing planes 

were usedi one located at the middle and two others 

s ymmetrically located away from the first one. Since the 

r otor disks are symmetrically located on the rotor shaft, it 

appears logical to place these two balancing planes also 

s ymmetrically. Therefore, in order to study the effect of 

t he l ocation of these planes on the response of the system, 

t he l ocation of the two outer planes, and the locations of 

the t h i rd plane , have been ch osen as variables for the 

parametric study. 

The effect of balancing plane loction, for reducing 
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UNBALANCE RESPONSE 1253. S3 RPM. 

BALANCE AT 1 ai.. CRITICAL. 
BALANCE AT lsi.. & 3rd. CRITICAL. 

I 8.80 a. 15 8.30 0.46 0.61 

DISTANCE ALONG ROTOR METERS. 
Fig. 3.9 Damped Rotor Response 

at First Critical Speed 

8.76 
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UNBALANCE RESPONSE 4882.36 RPM. 
BALANCE AT lai. CRITICAL. 
BALANCE AT tal. & 3rd. CRITICAL . 

I 0.00 0. IS 0.30 0.46 0.61 

DISTANCE ALONG ROTOR 

Fig. 3.10 Damped Rotor Response 
at Second Critical Speed 

METERS. 

0.76 
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¢ UNBALANCE RESPONSE 8'357. 83 RPM. 

+ BALANCE AT 1 at CRITICAL . 

D BALANCE AT 1at. & 3rd. CRITICAL. 
·"> 

0.00 0. 15 0.30 0.46 0.61 

DISTANCE ALONG ROTOR - METERS. 
Fig. 3.11 Damped Rotor Response 

at Third Critical Speed 

0.76 
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tne system response# is studied using three balancing planes, 

as shown in Fig. 3-~2, here a 1 and a 2 represent the location 

o f the two outer anq inner planes, respectively. 

At first, a 1 was varied with a 2 fixed correspondi ng 

to the middle of th~ rotor. The resulting response values 

are shown in Table ~.7a, and correction weights in Table 

3. 7b. It is eviden~ from Table 3.7a that as the balancing 

planes are moved to~ards the disks, the residual response 

value decrease. Th~s is because of the flexibility in the 

rotor shaft, the gr~ater the spacing between the unbalance 

force s at the disk ~nd the correcting forces in the balancing 

planes, less will b~ the effectiveness of the correcting 

force s in reducing ~he response. Table 3.7b shows that as 

these measuring pla~es are moved in towards the disk, the 

magnitude of the co~rection weights in these planes also 

i ncreases. When th~se two planes are located close to the 

disks, most of the ~orrection weights are needed in these 

variable balancing ~lanes; the weight in the fixed balancing 

p lane is negligibly small. 

Table 3.8~ and 3.8b show the effect of varying the 

c enter balancing plqne while keeping the other two fixed. It 

can be seen in thes~ tables, that as the center balancing 

plane is moved, bot~ the response as well as the magnitude of 

the correction weig~ts, increase. In addition the maximum 

deflection curve, atong the length of the rotor, i~ no longer 



1 

m • measuring plane 

b • balancing plane 

Disk 
m m 

2 3 

a
2 

= 0.381.m 

Fig. 3.12 -, Schematic of a Rotor Bearing System Relative 
Balance Plane Locations 



Table 3.7a Effect of Varying the two Outer Balancing Planes on the Balanced Response for the first 
Critical Speed 

Heasuclng Distance Haximwn Response Amplitude - m 
Plane Alony 
No. Rotor Unha1anced al - 0.025 al - 0.061 a a - 0.127 a a .. 0.190 a "' o. 228 al = o. 292 I 

m Response • * 

1 o.o 7.170 X 10-5 1.194 X 
10_, 1.157 X 10-6 1.174 x to- 7 1.736 x to-~ 1.637 X to- 9 l. 752 X to-~ 

-
2 0.127 2.964 )( to- .. 9.131 X 1o-6 9.184 X 1o-6 1.006 X to- 6 9.039 X 10-9 9.512 X 10-') 9.008 X 1o-tJ 

l 0.254 6. 774 X 10-lt 1. 561 X 10_, l. 547 X 10-5 1.753 X 10- 6 1.614 X 10-8 1.564 X to-8 1.625 X to- 11 

4 0.381 7.124 X to- .. l. 089 X 10-5 1.700 X to- 5 1. llOlx 1o-6 1.843 X to-8 },705 X to-8 1. 049 X ao-a 

5 0.508 6.174 x to-" 1. 561 X to-5 1. 541 X 1o- 5 L 751 x to-' 1.614 X 10-8 1.564 X to-• 1 .• 625 X 10-8 

6 0.635 2. 964 X to-~e 9.131 X 10-6 9.184 x 1o-6 1.006 X 10-6 9.039 x 10-~ 9.512 X 10-~ 9.008 X 10-9 
. -

1 0.762 7, 170 X 10-5 1.394 X 10_, 1.157 X 
10_, 1.174 X to-7 1.736 x to-9 1.637 X 10-~ 1. 752 X 1o-9 

----

-....] 
w 



Table 3.7b Corresponding Balance Weight magnitudes and angles due to the effect of 
varying the location of the two Outer Balancing Planes 

Calculated Correction Weights 
Balancing 
Plane al = 0.025 al = 0.063 al = 0.127 al = 0.190 al = 0.228 al = 0.292 
No. 

Weight Angle Weight Angle Weight Angle Weight Angle Weight Angle Weight Angle 
g Deg. g Deg. g Deg. g Deg. g Deg. g Deg. 

_._______ 

1 0.54 48.4 13.0 36.2 13.23 37.5 19.35 -44 38.0 -45.0 38.75 44.9 

2 66.74 44.3 45.8 50.6 53.8 46.8 0.04 -86 0.001 -37.0 .001 -37.0 

3 0. 54 48.4 13.0 36.2 13.23 37.5 19.35 -44 38.0 -45.0 38.75 44.9 



- 75 -

Table 3.8a Effect of Varying the Middle Balancing Plane on the 
Balanced Response for the First Critical Speed 

Measuring Distance Maximum Response 
Plane Along Amplitude - m 
No. Rotor 

m Unbalanced al -0.127 al - 0.127 al -0.127 
Response a2 -0.381 a2 -0.444 a2 - 0.469 

l o.o 7.170 X 10-5 1.708 X 10- 7 5.735 X 1o-to 8.023 X lO-b 

2 0.127 2.964 X 1o-~t 1.003 X lo- 6 7.665 X 10- 6 1.043 X lO-b 

3 0.254 6.774 X lo-~t l. 750 X lo- 6 1.506 X 10- 6 2.228 X lo-b 

4 0.381 7.724 X to-~t l. 328 X lo- 6 8.486 X 10""'6 1.101 X lo-b 

5 0.508 6.774 X lo-~t 1.750 X to- 6 7.848 X 1o- 6 l. 0127 X 1o-to 

6 0.635 2.964 X 10- '+ 1.003 X lo- 6 6.538 X 10-6 8.600 X 10-b 

7 0.762 7.170 X lo-s 1.708 X 
10_ ., 5.59 X lo-b 7.658 X lo-b 
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Table 3.8b Corresponding Balance Weight Magnitudes 
and angles due to the effect of varying 
the location of the Middle Balancing Plane 

Calculated Correction Weight 

Balance al - 0.127 al = 0.127 al = 0.127 
Plane 
No. a2 - 0.381 a2 = 0.444 a2 = 0.469 

Weight Angle Weight Angle Weight Angle 
Deg. Deg. Deg. 

1 13.23 -37.5 21.23 -31.86 24.99 -30.76 

2 53.8 -46.8 80.11 -46.3 62.0 -46.41 

3 13.23 -37.5 21.23 -34.84 24.99 -17.31 
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s ymmetrical. The best balance condition, using the locatio ns 

of the measuring planes (a 1 , a 2 ) as the variable parameters, 

is achieved when a 1 = 0.228 m and a 2 = 0.381 m. Fig. 3.13 

shows the unbalance response along the rotor; the balance 

response with a 1 = 0.127 m, a 2 = 0.381 m; and the best 

ba lance response after the parametric variation, with a 1 = 

0. 22 8 m, and a 2 = 0.381 m. It clearly shows that significant 

benefits can be realized by this parametric variation study. 

3 .4.7 The Effect of the Number of Balancing Planes on 
the Rotor Response 

In carrying out balancing using the least-square 

method, an important consideration is the ratio of the number 

of measuring planes to the balancing plane. In the previous 

section this ratio used was 7 to 3. The effect of the 

variation of this ratio on the response, has been studied in 

t his section. The number of the balancing planes have been 

varied between 3 and 7 while keeping the number of the 

measuring planes equal to 7. The various plane 

configurations are shown in Fig. 3.14. The rotor response, 

as a result of these variations, are shown in Table 3.9a and 

t he corresponding correction weights in Table 3.9b. 

Fig. 3.14 shows that when the total number of 

balancing planes are 5, or 7, there is a balancing plane on 

t he either side of a disk at equal distance, besides a plane 

a t the middle; but there are balancing planes on both sides 

o f the disk at equal distance. The results in Tab~e 3.9a 
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UNBALANCE RESPONSE 1253 • 63 • RPM. 
INITIAL BALANCE RESPONSE. 

BEST BALANCE RESPONSE. 

0.30 0.46 0.61 

DISTANCE ALONG ROTOR - METERS . 

Fig. 3.13 Balance Improvements when Balancing at First 
Critical by varying the two Outer Planes 

0.76 
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l>isk Disk m • measuring pl ane 

b • balancing plane 

. 0.127m 0.127m 0.127m 0.127m 0.127m 0.127m 

1 2 3 4 5 6 

~ m2 m3 m4 ms m6 m, 

I I I I I I 13-plane balance 

bl b2 b3 

m1 m2 m3 m4 ms m6 ~ 

J I l 

I 
I 

I 
J 

I 
I 

I 14-plane balance I I ! I 
I J I l 
I I I I 

bl b2 b3 b4 

·m ::-.1 ' m2 m3 m4 ms m6 m7 

I I 
I 

I I 
I 

I 
I 

I 15-plane I I J I 
balance I I I ' I b' ' bl 

~1 2 b3 b4 5 

1 l i3 l I mf T :r6-plane balance I 
I I I 1 I 
I I 1 I I 

bl b2 b3 b4 b5 b6 

ml m2 m3 m4 ms m6 m7 

I I 
I 

I 
I 

I 
I I I 17-plane I I I balance 

I I I I l I I 
I I I I I I 

bl b2 b3 b4 bs b6 b7 

Fig. 3.14 Schematic of the Balancing and Measuring 
Plane Rotor locations 



Table 3.9a Balanced Response Amplitude with Different Number of Balancing Planes 

Measuring Distance Maximum Response Amplitude - m 
Plane Along 
No. Rotor Unbalanced 

Response 3 4 5 6 

1 0.0 7.170 x lo- 5 1.736 x lo- 9 1.639 x lo- 8 1.637 x lo- 9 2.103 x lo- 8 

2 0.127 2.964 x 10- 4 9.839 x lo- 9 9.484 x lo- 8 5 .'4 76 x lo- 9 1.282 x 10- 1 

3 0.254 6.774 x 10- 4 1.614 x 10- 8 1.557 X 10- '/ 1.556 x lo-8 2.118 X 10-'/ 
---

4 0.381 7.724 x lo- 4 1.843 x lo- 8 1.786 x 10- 7 1.785 x lo- 8 2.395 x 10- 7 

5 0.508 6.774 x 10- 4 1.614 x lo- 8 1.557 x 10- 7 1.556 x lo- 8 2.112 x lo- 7 

6 0.635 2.564 x lo- 2 9.837 x lo- 9 9.484 x lo- 8 9.476 x lo- 9 1.282 x lo- 7 

7 0.762 7.170 x lo-s 1.736 x 10- 9 1.637 x lo- 8 1.637 x lo- 9 2.103 x 10- 8 

--'-· 

2.102 

1.389 

2.111 

2.395 

2.111 

1.389 

2.102 

7 

X 10- 9 

X 10-8 

X 10- 8 

x lo- 8 

x 10-8 

X 10- 8 

x lo- 9 

OJ 
0 
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Table 3.9.b Corresponding Balance Weight magnitudes and angles 
due to the number of Balancing Planes 

CalculAted Correction Weights 

Balancing Number of Balancing Planes 
Plane 
No. 3 4 5 6 7 

Weight Angle Weight Angle Weight Angle Weight Angle Weight 
g t>eg. g Deg. 9 Deg. g Deg. g 

l 19.35 -44.0 19.35 -46.2 19.35 -37.2 0.002 -75.3 o .oo·2 

2 00.4 -86.0 19.35 -43.4 19.35 -38.4 19.35 -39.6 19.35 

3 19.35 -44.0 19.35 -43.4 0.009 -43·0 19.35 -45.0 19.35 

4 - - 19.35 -46.2 19.35 -38.4 19.35 -45.0 0.006 

5 -- -- -- -- 19.35 -37.2 19.35 -39.6 19.35 

6 -- -- -- -- -- -- 0.02 -75.3 19.35 

7 -- -- -- -- -- -- -- -- 0.002 

Angle 
Deg. 

-73.6 

-38.4 

-43.2 

-16.0 

-43.2 

-38 . 4 

-73.6 
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show that the odd number of balancing planes yield better 

results than the even number of these planes. Among the odd 

numbe r of planes, the best results are obtained when the 

ba lancing planes are equal to 5. The results shown in Table 

3 .9b indicate that for odd number of balancing planes, the 

correction weight in the middle balancing plane, is very 

s mall . This indicates that the forces generated due to the 

correction weights located near the disks, are mainly 

responsible for the balance condition. It was also reported 

by Tessarzik [28] that increasing the number of balancing 

planes does not necessarily lead to better balance results. 

3.5 Conclusions 

The finite element approach provides a convenient 

and accurate means of balancing a multi-rotor system, 

supported on fluid-film bearings. The use of matrix 

reduction technique in calculation of the reduced set of 

system matrices, enabled subsequent saving in computational 

memory storage of 42 percent, and that of computational time 

for a balancing run of almost 38 percent. Besides, in the 

reduction process, the retained degrees were the 

translational degree of freedom, therefore one could work 

with the reduced system only. There was no necessity of 

recovering all the degree of freedom where the rotational 

degrees were also included. The modal analysis gives an 
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effective means of determining the unbalance force response, 

and the relevant mode information. The use of least-square 

method , for the case investigated, provided good results, 

whereby balancing at the first critical speed was sufficient 

to bring the rotor amplitude down over the other critical 

speeds also. Further, by varying the number and location of 

ba lancing planes, better balance conditions were achieved. 

The results revealed that when using least-square method, the 

odd number of balancing planes yield better results than even 

number of balancing planes. 



CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

4. 1 A Brief Discussion of Modelling and Results 

The objective of this investigation has been to 

calculate the dynamic response of the rotor-bearing systems, 

a nd then to reduce these response values using balancing 

techniques. 

A mathematical model using finite element analysis, 

~here the translational and rotational inertia and the 

gyroscopic moment effects have been considered, has been 

f ormulated. The rotor shaft has been supported by fluid-film 

b earings having asymmetrical stiffness and damping 

p roperties. In order to reduce the size of the system 

~atrices, a dynamic matrix reduction technique has been used. 

The dynamic response values have been obtained using a 

modified modal analysis method where the orthogonality 

r elationship of the modes of the original, and that of the 

a djoint system have been used. The balancing has been 

c arried out by the least-square method which is generally 

~ sed in situations where the number of measuring planes a re 

g reater than the balancing planes. The analytically derived 

r elationships are illustrated by suitable numerical 

e xamples. 

Based on this investigation the following 

c onclusions can be drawn: 
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(1) A comprehensive mathematical model of the 

rotor system is developed which utilizes finite element 

method in conjunction with modal analysis, and the least­

square balancing technique. 

(2) The dynamic matrix reduction technique is 

e ffective in reducing the original system accurately to 

provide computational savings in both time and space on the 

digital computer. 

(3) The analytical model enables balancing at 

critical speed which is more efficient than balancing below 

critical speeds normally done when balancing rotors on test 

stands. 

(4) The parametric variation study, where the 

number of measuring planes and their locations are used as 

design variables, leads to significant improvements in the 

balance condition. 

(5) The odd number of balancing planes yield 

better results then even number of balancing planeso 

(6) The increase in number of balancing planes for 

a given number of measuring planes, does not necessarily lead 

t o i mproved results. 

(7) The effect of gyroscopic moments, on the 

dynamic response of rotors supported on fluid-film bearings, 

i s i nsignificant. 
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4 .2 Industrial Applications of this Investigation 

The technique adopted in this investigation is 

fair ly general. The technique can be used for rotors of 

pumps, c ompressor, turbines, fans, etc., without any change 

in t he methodology. The rotor system to be analyzed can 

include: 

( i) 

(ii) 

(iii) 

(iv) 

multi-rotor systems 

multi-bearing supports 

variable shaft diameters 

distributed mass centre eccentricity of 

elements, and out of plane disk unbalance. 

4. 3 Limi tat.ions of the Investigation 

The approach used in the present investigation in 

optimally balancing a rotor bearing system, has the following 

lirni t at i ons: 

(1) The rotor system has been assumed to exhibit a 

linear b ehaviour. 

(2) The shear deformation, torsional effects, and 

material damping have been assumed to be neglible. 

(3) The analysis makes the assumption that the 

bearing p edestal and housing are infinitely stiff in 

comparisio n with the oil film. 

4.5 Recommendations for Future Work 

The basic purpose of this investigation was to 

balance t he flexural response of a rotor bearing system due 
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to mass unbalance. This work can be extended into several 

areas which are listed below: 

(1) Tne rotor can be further generalized to 

include the effects of shear deformation, torsional effects, 

axial loads, material damping and shaft hysteresis. 

(2) The system can be made to include stiffness of 

the foundat ion. 

(3) The rotor can be analyzed to include thermal 

effects on 'the bearing housing and pedestal deformations. 

(4) Schemes of optimization using multi-plane 

balancing can be included. 

(5) The influence of casing stiffness in 

turbomachinery vibration can be studied. 

(6) The response of the system due to seismic 

excitation can be analyzed. 

(7) T he dynamic response of the system under the 

random excitation can be studied. 

(8) T he influence of bearing stiffness and damping 

coefficient s on the unbalance response and balancing of rotor 

disks. 
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APPENDIX-A 

COMPONENT EQUATIONS OF A ROTOR BEARING SYSTEM 

A·l Finite Rotor Element Model 

In order to obtain the expressions for the 

e lemental mass, gyroscopic, damping, and stiffness matrices, 

Lagrange's equation of motion is used. 

A typical finite rotor element is shown in Fig. A.l 

I t should be noted that the time dependent cross-section 

d isplacements. (V, W, B, r} are also functions of position (s} 

a long the axis of the elemento The rotations (B , r) are 

r elated to the translations (V, W) by the equations 

B = 
aw 
as' 

r = av 
as • 

The coordinates 

(A.l) 

e 
q 8 ) are the time 

d ependent end point displacements (translations and 

r otations) of the finite rotor element. Thus a joint can 

undergo both translational and rotational displacementso 

Correspondingly, there are not only inertial forces to 

consider but also bending moments. The translation of a 

typical point internal to the elment is chosen to obey the 

relation [9] 

1V(s, t )}= [ 1jJ(s) ] {qe(t)} 
W(s, t ) 

(A. 2) 
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where [~(s)] represents the spatial constraint matrix, s is 

the local position coordinate, and {qe(t)} is the joint 

displacement vector. The spatial constraint matrix is given 

by 

0 0 

-1jJ 
2 

1jJ3 

0 0 

0 0 

~3 ~4 

(A.2a) 

where the shape functions comprising the matrix are given by 

stat ic displacement modes associated with a unit displacement 

o f one of the end point coordinate with all other constraints 

to be zeroo These functions are 

where t is the length of an element. Similarly the rotation 

can be expressed as 

whe re 

0 

= 

-1jJ 
1 

0 0 

0 0 -1jJ 
3 

0 

(A. 4) 

0 

0 

(A.4a) 
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Th e matrix [~] represents a matrix of rotation shape 

funct ion. 

For a differential disk located at (s) the elastic 

bending and kinetic energy expressions are respectively 

d P e 
B = ~1:: :r ~I E:J1:: l 

d Te = ~~ T [u ~ ds 
+ 1 .2 

I ds 
2 • 0 2 4> p 

1tl 

. 
T ~D :J 1 

B B 
+ ds - ~ r B I ds 2 p 

r r 
(A. 5) 

where 

E = modulas of elasticity 

ID = diametrial moment of inertia 

I = element diametrial inertia p 

~ = spin speed 

m = element mass per . unit length 

Rewriting Eqn. (A.S) using spatial shape functions, one 

obtains 
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P e = !_ EI {qe}T 
I I 

JT 
I I 

{qe} d [~ [~ J ds B 2 

-
{~e}T {~e} d Te 1 [~]T [~] ds = 2 ~ 

+ !. • 2 
Ip ds + !. ID {~e} [~]T[Cb] {~e} ds 2 <I> 2 

• • • • (A. 6) 

The energy of the complete system is obtained by integrating 

Eqn. (A.6) over the length of the element to obtain 

• • • • (A. 7) 

where, 

( i) 
0 

1 -
[MRe] = f ID [<j>]T [<j>] ds, (ii) 

0 

1 -
[~ JT [Ne] = J I [~BJ ds, (iii) p r 

0 

1 I I 

JT 
I I 

[K e] = J EI ['¥ ['¥ J ds (iv) 
B 

0 
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The Lagrangian equation of motion for finite rotor 

el ement using Eqn. (A.7) and constant spin speed restriction 

. 
4> = n, is 

(A. 9) 

with 

[Me] [Ge], where , [Ke] t th represen e mass, gyroscopic, and 

stiffness matrices. The vector {Q} and {q} represent the 

unba lance forces and the displacement vector respectively. 

The subscripts d, e refer to disk and element, and the 

s ubscripts B, T, R refer to bending, translational and 

r otational loads respectively. The forcing vector {Qe} 

r epresenting mass eccentricity is equivalently represented by 

a force using the consistent matrix approach introduced by 

Archer [6], is given by 

R. 
2 in(s)r e I {Q } Bxl = ll n [ lJJ J l. cos nt 

0 r;(s) 

i-ds)~ + n ( s) sin nt ds 

= {Q e} cos nt + {Q e} sin nt 
c s (A.lO) 

For the case of a linear distribution over the 

element, the shape function expressions are given as 
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s s 
~(s) = ~L (l - t) + ~R (t) (A.ll ) 

wi th (nL' ~L) and (nR' ~R) denoting the mass centre 

eccentricity at s=O and s=t respectively. The elemental 

matrices thus formulated are presented in Appendix B. 

A. 2 Rigid Disk Formulation 

The kinetic energy of a typical rigid disk with 

mass centre coincident with the elastic rotor centerline is 

given by the expression [9] 

1 v ~d :J Td = 2 
w 

v 

w 

+ ~1~ T ~D :J 2 • 0 
r 

B 

r 
- <I> r B I p 

..•. (A.l2) 

The Lagrangian equation of motion of the rigid disk using 

Eqn. (A.l2) with constant speed n relative to T is 

(A.l3) 
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d d where [M ] and [G ] represent the mass and the gyroscopic 

matrices and {q} represents the time dependent translations 

and r otations. 

The forcing vector {Qd} represents mass unbalance. 

For a disk centre located at (nd, ~d) relative to T, the 

unba l ance force in m is 

nd -~ d 

{Qd} 2 ~d 2 nd 
sin nt = mdn cos nt+mdn 

0 0 
(A o 14) 

0 0 

= {a d} cos nt + {Q d} sin nt 
c s 

The elemental matrices thus formulated are 

presented in Appendix B. 



APPENDIX-B 

MATRICES OF A ROTOR BEARING SYSTEM 

B.l Finite Shaft Element Matrices 

156 

0 156 

0 -221 412 

221 0 0 41 2 Syrn 

e lJ1 
[MT ]=420 54 0 0 131 156 

0 54 -131 0 0 156 

0 131 -312 0 0 221 41 2 

-131 0 0 -31 2 
-221 0 0 41 2 

36 

0 36 

0 -31 41
2 

Syrn 
2 

31 0 0 41 2 
[M e) lJr 

R 1201 
-36 0 0 -3 1 36 

0 -36 31 0 0 36 

0 -31 -12 0 0 31 41 2 

31 0 0 -12 -3t 0 0 41 2 

0 

36 0 
-3 t 0 0 

Syrn 
4t2 

2lJr 2 0 -3t 0 
[Ge] 

l20t 0 36 -3t 0 0 

-36 0 0 -3t 36 0 

-3 t 0 0 t2 3t 0 0 

0 -3t -t2 0 0 3t 4t 2 
0 
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Fini te Shaft Element Matrices 

12 

0 12 

0 -6 R. 4R.2 
Syrn. 

4R.2 
[K e]_EI 

6R. 0 0 

B 1 3 -12 0 0 -6R. 12 

0 -12 6R. 0 0 12 

0 -6R. 2 R. 2 0 0 6R. 4R.2 

6R. 0 0 -6R. -6R. 0 0 4R.2 
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a. 2 Finite Element Unbalance Force Vector 

7 3 
20 nLR. + 20 nRR. 

7 
z;LR. + 

3 
z;RR. 20 20 

1 2 1 2 
-20 z;LR. - 30 z;RR. 

1 2 1 2 
20 nLR. + 30 nRR. 

{Q e}=\.I02 3 
nLR. 

7 
nRR. c 20 + 20 

3 
z;LR. + 

7 
l;RR. 20 20 

1 2 1 2 
30 z;LR. + 20 z;RR. 

1 2 1 2 
-30 n R. - 20 nRR. L 

7 
z;L R. 

3 
l;RR. -20 - 20 

7 3 
20 nL R. + 20 nRR. 

1 2 1 2 
-20 nL R. - nRR. 30 

{Q e}=\.I02 1 2 1 2 
-20 l;LR. - 30 l;RR. s 

3 7 
-20 z;L R. - z;R R. 20 

3 7 
20 nLR. + 20 nR R. 

1 2 1 2 
30 nLR. + 20 nRR. 

1 2 1 2 
30 z;LR. + 20 l;RR. 
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B· 3 Rigid Disk Matrices 

rnd 0 0 0 

[M d] 0 rnd 0 0 = T 
0 0 0 0 

0 0 0 0 

0 0 0 0 

[M d] 0 0 0 0 = R 0 0 ID 0 

0 0 0 ID 

0 0 0 0 

[Gd] 0 0 0 0 = 
0 0 0 Ip 
0 0 Ip 0 

* Ip = 2ID 

B.4 Rigid Disk Unbalance Force Vector 

nd -I; d 

{Q d} 
l;d 

and Qs 
d nd 

= c 0 0 

0 0 



APPENDIX-C 

GYROSCOPIC EFFECT FORMULATION 

Rotating shafts of turbines, compressors, pumps, 

e tc. carry one or more disk, which with angular momentum can 

u nde r certain conditions introduce a gyroscopic couple. In a 

part icular mode shape if the disk is located at the nodal 

point, there will be precession and obvious gyroscopic 

c ouple. And in antinodal point, there will be pure 

t ranslation of disk. This effect is illustrated in Fig. C.l 

f or a simply supported two disks. 

Anti.node 

/ 

Fig . C.l Disk at Nodal Points 

In the mode shape shown, the disc 'A' will go 

through a pure translation and disk 'B' would have angular 

momentum or gyroscopic couple. But for cases where the disk 

is located in between the nodal points it will be subjected 

to both translation and angular momentum as rotation . This 

has considerable influence on the dynamic behav~our of the 

system. 
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From practical point of view gyroscopic couple has 

effec t on both critical speed and mode shape of a system. 

Results of a study [31] showed that the gyroscopic effects 

tend to alternately raise and lower the effective compliance 

of the rotor. 

In defining the gyroscopic inertia effects the 

rotation of the cross-section relative to the rotating set of 

a xes, abc:T attached to the cross-section, must be 

t ransformed to the fixed set of reference axes XYZ:m. This 

i s done using the Euler angle formulation [34] that defines a 

transformation matrix [9] for the angular rate components of 

e relative to the coordinates 

-sin B 1 0 
r w a 

wb = Cos B sin <P 0 <P .• (C.l) 

w cos B cos <P 0 
B c 

The kinetic energy of the disk for the 

t ranslational, and rotationa l displacements including the 

gyroscopic effects is given by [9]. 

- 1 v 
Td=2 

w 

+ 
1 
2 

w a 

wb 

w 
c 

0 

ID 0 

0 I D 

0 0 

w a 

w 
b 

w c 
•• • (C.2) 



The u se of Eqn 

T = d 

(C.l) . in 

1 v 
2 

vl 

- cp 

rnd 

0 

r BI 
p 

Eq. 
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(C. 2) reduces the equation to 

0 0 
v + 1 B B 

2 . 
w r r 

••• (c. 3 ) 

similarly for a finite element the kinetic energy equation is 

given by 

which can be rewritten as 

r B I ds 
p 

••• (C.4) 



APPENDIX-D 

BEARING STIFFNESS AND DAMPING COEFFICIENT CURVES 

o .l Plain Cylindrical Bearing Coefficients are given in 

F igs. D.l to D.2 [29]. The coefficients are shown as 

f unctions of the "Sommerfeld number" (s 1 ) • The Sommerfeld 

number given by 

N l s = _ll ___ _ 
1 p I p = 

wh ere: 

l..l = coefficient of viscosity of oil 

N = speed of rotation of the rotor, in revolutions 

per second ( rps) 

r = radius of journal 

c = radial clearance of journal bearing 

P = load per unit of projected area 

W = bearing load 

L = length of bearing 

At a given operating speed, the Sommerfeld number is 

calculated first; then using Figs. D.l to D.2, various 

bearing parameters are obtained. Fig. D.2 shows a range of 

sommerfeld numbers where d<VW/W is negative. This can lead 

to i nstability in rotors. However instability analysis is 

not the subject of the present investigation. 
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L/D = 1.0 
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Fig. D.1 Direct Stiffness and Damping Coefficients 
of a Plain Cylindrical Bearing 
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Fig. D.2 Cross Stiffness and Damping Coefficients 
of a Plain Cylindrical Bearing 
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APPENDIX-E 

COMPUTER MODEL 

The computer model for the multi-rotor system 

c onsists of four separate programs. All four programs for a 

b alance run must be run sequentially, but for information 

r egarding critical speed, or balance weights they can be run 

s eparately. The output from each program is stored in output 

f iles which in turn is used as input into the next program. 

The advantage being interim availability of computer 

i nformation, and added flexibility · in running the program . 

The program FINITE ELEMENT is the first program 

b ased on the rotor element and disk parameters information. 

I t forms the elemental matrices and assembles them into 

global system matrices. The program DYNAMIC MATRIX REDUCTION 

i s the second program, it calculates the bearing coefficients 

based on the Sommerfeld number for the particular operating 

s peed condition and adds them to the system matrices. 

S imilarly the effect of disk eccentricity and trial weights 

a re added into the forcing function. The system matrices are 

t hen reduced to the desired degree of freedom, required for 

modal response calculation. The program MODAL ANALYSIS 

d iagionalizes the system matrices and calculates the modal 

r esponse. The unbalance response information and the 

r esponse for the trial weight is input into the fourth 

p rogram BALANCE WEIGHT. This program then determines the 
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b alance weight magnitudes and their associated angles 

r equired to reduce the response. The programs DYNAMIC MATRI X 

REDUCTION and MODAL ANALYSIS are run again with the balance 

weight information to calculate the residual response. In 

t he same manner, by changing the rotor speed and using these 

p rograms, the rotor can be balanced for higher critical 

s peeds. 

The computer programs are developed in FORTRAN 

l anguage using the VAX 11/780 system, and include the 

s tandard IMSL subroutine available with it. 
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FINITE ELEMENT ROTOR COMPONENT ASSEMBLY 

C THIS PROGRAM FORMS THE GLOBAL MATRICES 
C FOR THE (GM] (GK] GC] 
c (QU1] (QU2] 
C THE MATRICES ARE PRINTED ON DATA.. OAT FILE 
C TO BE READ BY RED. PR 
C THE BEARING ARE SET AT NODES ~ AND 7 
C THE DI~ ARE SET ON Et.EMENT NODES. 
C****************************** 

DIMENSION ETM( 20,8,8 ),EBK( 20, 8,8.),EL( 20 ),EH( 20 ),ERMC( 20) 
DIMENSION EBKC(20),ETMC(20)*GM(80,80),GK(80,80),R(20) 
DIMENSION QC(20,8),QS{20,8),R0(20),RI(20),QU(76),QU2(72) 
DDMENSION QU1(72),XL(20),XR{20),SL(20),SR(20) 
COMPLEX Z(24,24),ALFA{24),XE{24) 
DDKENSION BETA(24),WK{9000) 
DIMENSION GMK{80,80),ERM{20,8,8),XER(80),EG{20,8,8) 
DDMENSION EGC(20),GG(80,80) 
DDMENSION GKK(24,24),GMM(24,24) 

C****************************** 
OPEN(ONrT-1,FILE-'T.DAT',TYPE-'OLD') 
OPEN{UNrT-2,FILE-'D.DAT',TYPE='NEW') 
OPEN(UNrr.-3,PILE='R.DAT',TYPE=•NEW•) 
OPEN(ONrT-18,FILE-'W.DAT',TYPE~'NEW') 

C****************************** 
READ ( ~~ *) EM,E 

C INPUT NUMBER OF ELEMENTS 
C INITIALIZE THE ELEMENTAL MATRICES 

READ(~,*) IE 
DO 5 I=~,IE 

00 5 J-~,8 
DO 5 K-~,8 
ETM(I,J,K)-D.O 
EG( I , J I K )=0. 0 
ERM(I,J,K)=O.O 

5 EBK(I,J,K)-o . o 
00 ~0 1-~,IE 

10 READ ( ~, *) EL{ I ),R( I) 
C INPUT MASS PER UNIT LENGTH , MODULAS OF 
C ELASTICITY ~ E' 

00 30 I-=1, IE 
0=(3 . 1415*(R{I)**2)*EM)/386.0 

C CALCULATE THE REQ' D CONSTANTS OF MULTIPLICATION 
ETMC(I)=U*EL(I)/420.0 
ERMC(I)=U*(R(I)**2)/(120.*EL{I)) 
EGC{ I )=2. 0*{ ERMC( I) ) 
EBKC{I)-(E*(R{I)**4)*3.~4)/(4.*EL(I)**3) 

P~=ETMC(I) 

C****************************** 
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c FORMATION OF THE ELEMENTAL MATRIX 
C*********************~******** 

ETM(I,~,~)-~56.0*P1 

ETM(I,2,2)-ETM(I,~,~) 

ETM(I,3,3)=(4.0*EL(I)**2)*P1 
ETM( I , 7, 7 )-ETM( I , 3, 3 ) 
ETM(I,8,8)-ETM(I,3,3) 
ETM(I,4,4)=(4.0*EL(I)**2)*P~ 

ETM(I,S;S)=ETM(I,~,~) 

ETM( I, 6 , 6· )=ETM( I , 5 , 5 ) 
ETM(I,3,2)=-(22.0*EL(I))*P~ 

ETM{ I, 7 _, 6 }--( ETM( I , 3 , 2 ) ) 
ETM(I,4,1)=ETM(I,7,6) 
ETM{I,8,S}=ETM(I,3,2) 
ETM(I,S,1)-S4 . 0*P1 
ETM(I,7,2)=~3.0*EL(I)*P1 

ETM(I,6,3)--(ETM(I,7,2)) 
ETM(I,8,~)--ETM(I,7,2) 

ETM(I,8,4)=-3.0*(EL(I)**2)*P1 
ETM(I,S,4)-ETM(I,7,2) 
ETM(I,6,2)=ETM(I,S,~) 

ETM(I,7,3}-ETM(I,8,4) 
C THE (ETM] MATRIX IS CREATED 
C****************************** 
C CREATE THE [EBK] MATRIX 

P4==EBKC( I ) 
EBK(I,~,~)-~2.0*P4 

EBK(I,2,2)-EBK(I,~,1) 

EBK(I,3,3)=4.0*(Eir(I)**2)*P4 
EBK(I,4,4)-EBK(I,3,3) 
EBK(I,S,S)-EBK(I,~,1) 

EBK(I,6,6)-EBK(I,~,~) 

EBK(I,7,7)-EBK(I,3,3) 
EBK(I,8,8)-EBK(I,3,3) 
EBK(I,3,2)=-6.*EL(I)*P4 
EBK(I,4,1)=-(EBK(I,3,2)) 
EBK(I,5,4}-EBK(I,3,2) 
EBK(I,6,3-)=EBK(I,4,1) 
EBK(I,7,2)-EBK(I,3,2) 
EBK(I,7,6)-EBK(I,4,1) 
EBK( I, 8 , 1 )=EBK( I , 4, 1 ) 
EBK(I,8,5)=EBK(I,3,2) 
EBK(I,S,1)=- (EBK(I,1,1)) 
EBK{I,6,2)-EBK(I,5,1) 
EBK(I,7,3)=EBK(I,3,3)/2 . 0 
EBK(I,8,4)=EBK(I,7,3) 

C THE (EBK] MATRIX IS CREATED 
C****************************** 

P2-ERMC(I) 
ERM(I,~,~)=36 . *P2 

ERM(I,2,2)=ERM(I,~,~) 

ERM(I,3,3)=4.*(EL(I)**2)*P2 
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ERM(I,4,4)=ERM(I,3,3) 
ERM(I,6,6)=36.*P2 
ERM(I,5,5)-ERM(I,6,6) 
ERM(I,7,7)=ERM(I,3,3) 
ERM(I,8,8)=ERM(I,7,7) 
ERM( I , 3 , 2 )-=-( 3 . *EL( I ) *P2 ) 
ERM(I,4,1)--(ERM(I,3,2)) 
ERM(I,5,4)=ERM(I,3,2) 
ERM(I,6,3)-ERM(I,4,1) 
ERM(I,7,2)=ERM(I,3,2) 
ERM(I,8,1)-ERM(I,4,1) 
ERM( I, 7, 6 )-ERM( I , 4, 1 ) 
ERM(I,8,5}=ERM(I,3,2) 
ERM(I,5,1)--(ERM(I,1,1)) 
ERM(I,6,2)=ERM(I,5,1) 
ERM(I,8,4)--(EL(I)**2)*P2 
ERM(I,7,3)-ERM(I,8,4) 

C CREATE THE [EG) MATRIX 
C****************************** 

P3-EGC(I) 
EG(I,2,1)=36.0*P3 
EG( I , 5, 2 )::::EG( I , 2, 1 ) 
EG(I,6,1}=-(EG(I,2,1)) 
EG{I,6,5)=EG(I,2,1) 
EG(I,3,1)--3.0*P3*EL(I) 
EG(I,4,2)=EG(I,3,1) 
EG(I,5,3)-EG(I,4,2) 
EG(I,6,4)=EG(I,4,2) 
EG(I , 7,1)-EG(I,4,2) 
EG{ I , 7, 5 }=-( EG( I , 4, 2 ) ) 
EG( I , 8 , 2 }=EG{ I, 3 , 1 ) 
EG(I,8,6}=EG(I,7,5) 
EG( I, 4, 3 )=4. O*(EL( I )**2 )*P3 
EG(I,7,4}-(EL(I)**2)*P3 
EG( I , 8 , 3 )::::-( EG( I , 7, 4) ) 
EG( I , 8, 7 )-EG( I , 4, 3 ) 

C THE [EG] MATRIX IS CREATED 
C****************************** 

IX) 75 J=1,8 
DO 75 K=1,J 
ERM(I,K,J)-ERM(I,J,K) 
ETM(I,K,J}=ETM(I,J,K) 
EG(I,X,J)=EG(I,J,K) 

75 EBK( I ,K,J }-EBK( I ,J ,K) 
30 CONTINUE 
C****************************** 
C FORM THE FORCE ELEMENTAL VECTORS 
C INPUT MASS ECCENTIUCTY FOR EACH ELEMENT 

OPEN(UNIT=ll,FILE="FORCE.DAT' ,TYPE='OLD') 
C****************************** 

DO 610 I-1,IE 
READ ( 11, *) XL( I ) , XR( I ) , SL( I ) , SR{ I ) 
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QE-{EM*((R(I)**2))*3.1415)/386.0 
QC(I,1)=((7./20.)~(I)*EL(I)+(3.0/20.)*XR(I)*EL(I))*QE 
QC( I, 2 )=( ( 7./20. )*SL( I )*EL( I)+( 3./20. )*SR( I )*EL( I) )*QE 
QC(I,3)=({-1./20.)*SL(I)*(EL(I)**2)-(1./30.)*SR(I)*EL(I)**2)*QE 
QC(I,4)=((1./20 . )*XL(I)*(EL(I)**2)+(1./30.)~(I)*EL(I)**2)*QE 

QC( I, 5 )=( ( 3./20. )*XL( I )*EL( I)+( 7./20. )*XR( I )*EL( I) )*QE 
QC(I,6)=((3./20.)*SL(I)*EL(I)+(7./20. )*SR(I)*EL(I))*QE 
QC(I,7)=((1./30.)*SL(I)*EL(I)**2+(1./20.)*SR(I)*EL(I)**2)*QE 
QC(I,8)=(((-1./30.)*XL(I)*EL(I)**2)+(-1./20.)*XR(I)*EL(I)**2)*QE 
QS( I , 1 )=-QC( I , 2 ) 
QS( I , 2 )=QC( I , 1 ) 
QS(I,3)=-QC(I,4) 
QS( I, 4 )=QC( I , 3 ) 
QS{ I , 5 )=-QC( I , 6 ) 
QS( I , 6 )=QC( I, 5 ) 
QS( I , 7 )=-QC( I , 8 ) 
QS(I,8)=QC(I,7) 

610 CONTINUE 
C THE Er.EHENTAL FORCE VECTOR ARE THUS POlU(ED 

C FORM THE GLOBAL FORCE VECTORS 
C****************************** 
C GLOBAL .FORCE MATRIX 

DO 642 I-1,I3 
QU1(I)-o.o 

6 42 Q02(I)-o.o 
WRrrE (15,*) (Q02(I1),I1-1,I3) 
I3=( IE*4 )+4 

C INI:TIALIZE THE GLOBAL MATRICES 
DO 20 I-1,I3 
DO 20 J-1,I3 
GM(I,J)-o.O 
GG{ I,J)-o.o 

20 GK(I,J)-D.O 
C GLOBAL MAT SIZE 

I3-(IE*4)+4. 
J1-c> 
K1-c> 
DO 11.5 I==1, IE 
00 1.11 J=1,8 
Jl==J1+1 
DO 110 K-=1,8 
K1=K1+l. 
GM( J1, K1 )-GM( Jl, K1 )+ETM( I, J, K )+ERM( I, J, K) 
GG( J1, K1 )-GG( J1, K1 )+EG( I , J, K ) 
~J1,Kl)-GK(Jl,K1)+EBK(I,J,K) 

110 CONTINUE 
K1=K1-8 

1 11. CONTINUE 
Kl.=K1+4 
J1==Jl-4 

1.15 COBI'rNUE 



C FORCE GLOBAL ASSEMBLY 
x-o 
DO 626 I-l.,IE 
DO 625 J-1.,8 
K-K+l. 
QUl.(K)-QC(I,J)+QUl.(K) 
QU2(K)-QS(I,J)+QU2(K) 

6 25 CONTINUE 
K-K-4 

6 26 CONTINUE 
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C INPCJT DISK NODES AND BRG NODES. 
C****************************** 

READ ( 1., *) KD1,KD2 
READ ( 1., *) GMl.,GM2,GM3,GM4,GG1,GG2 
READ. ( l., *) GMS,GM6,GM7 ,GM8,GG3,GG4 

C****************************** 
Kl.-(KD1*4)-3 
K2-(KD2*4)-3 

C INPUT DISK ECCENTRICITY 
C****************************** 

READ ( 11, * ) POX, PDY,. PDXl., PDY1, PDX2, POY2, PDX3, PDY3 
QUl.(Kl.)-PDX+QU1(Kl.) 
QUl.(K1+l.)-PDY+QU1(Kl.+1) 
QU2(Kl.)-PDXl.+QU2(Kl.) 
QU2(Kl.+l.)-PDYl.+QU2(Kl.+l.) 
Q01(K2)-PDX2+QU1(K2) 
QUl.(K2+l.)-PDY2+QUl.(K2+1.) 
QU2(K2)-PDX3+QU2(K2) 
QU2(K2+l.}-PDY3+QU2(K2+l.) 

C DISK COEFICrENTS ADDrTIONS 

C DISK #l. 
GM( n, Kl. )-GMl. +GM( n, Kl. > 
GM( 1<1+1, Kl.+l. )-G'M2+GM( K1+1,K1+1) 
GM( K1+2, Kl.+2 )-GM3+GM( Kl.+2, Kl.+2) 
GM( Kl.+3, K1+3 )-GM4+GM( K1+3, K1+3) 
GG(K1+2,Kl.+3 )-GG1+GG( K1+2,.Kl+3) 
GG(Kl.+3,Kl.+2)-GG2+GG(Kl.+3,K1+2) 

C DISK NUMBER #2 
GM( K2, K2 )=GMS+GM( K2, K2 ) 
GM( K2+ l., K2+ 1 )-GM6+GM( K2+ 1 T K2+ 1) 
GM( K2+2, K2+2 )==GM?+GM( K2+2, K2+2) 
GM( K2+3, K2+3 )-GMB+GM( K2+3, K2+3 ) 
GG( K2+2 r K2+3 )-GG3+GG( K2+2 T K2+3 ) 
GG( K2+3,.K2+2 )-GG4+GG( K2+3,K2+2) 

C BEARrNGS AT THE ENDS 
OPEN(UNrT-39,PILE-•DATA.DAT•,TYPE-•NEW•) 
WRITE (39,*) I3 
WRITE ( 39, "') ( ( GM( I,J),J•l, I3), I-=1, I3) 
WRITE (39,*) ((GK(I,J),J-1,I3),I-1,I3) 
WRITE (39,*) ((GG(I,J),J-1,I3),I-1,I3) 
WRITE ( 39, *) ( QU1( K), K-1, I3) 
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~TE (39,*) (QU2(K),X=1,I3) 
PRINT ~,'QU1',(QU1(I),I-1,I3) 
PRINT *,'QU2',(QU2(I),I=1,I3) 
STOP 
END 
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DYNM«C MATRIC REDUCTION 

c~***~~**~~~~~~~*******~~****~* 

C THIS PROGRAM READ THE VALUES PROM P1.POR PROG DATA PILE CO.OAT 
C AND CAJ:.CUIATES THE SOMMERFELD NUMBER, READS BEARINGS COEFFICIENTS 
C E'ROM THE GRAPHS PERFORMS A REDUCTION GWBAL MATRICES THE REDUCED 
C .MATRICES ARE PRDITED ON KK.DAT PILE AND THE BRG COEPPICENTS FOR 

DDMENSION P~(12,12),P2(12,12),P3(16,16),P4(16,12),RKT(6) 
DDMENSION ~28,28),GC(28,28),GK{28,28),GMS(16,12) 
DIMENSION GSS( 16,16 ),GSSN( 16,16 ),G( 16,12 ),GMl.( 12,28) 
DIMENSION GK1( 12, 28 ) , GC1{ 12, 28 ) , WKAREA( 9000), 8( 2 ) , EL( 20 ) 
DDMENSION WA(SOOOO),P5(12,12),GMK(12,12),GKN(28,28),WE(20) 
nrrEGER LD( 2 8 ) , NM( 20 ) 
DrMENSION A2(28,28),A5{28,28),QU1(28),QU2(28),QUR1(l2),QUR2(12) 
DIMENSION GMM(28,28),GKK(28,28),GCC(28,28),GMN(28,28),R(28) 
DDMENSION GCN(28,28),TT(12,28),T(28,12),~12,12),P8(12,28) 
REAL ATOP 
DIMENSION GMRS( 12,12 ),GCR.( 12,12 ),P( 28 ),PR( 12 ),P6( 16,16 ),P7( 12,28) 
DEMEMSION GMM1(28,28),GCC1(28,28),GMKC(24,24) 
DIMENSION GMKCI(24,24),QU(24),SS1(2),SS2(2),SS3(2) 
DDKENSION SS4(2),D01(2),DD2(2),DD3(2),DD4(2),W(20) 
DIMENSION R1(24),BYEAR5(14) 
DIMENSION X( 16), SYY( 16), syz( 16), SZY"( 16), SZZ( 16) 
D~SION DYY(16),Dyz{16),DZY(16) 
DDMERSION DZZ(16),BYPAR1(16),BYPAR2(16),BYPAR3(16),BYPAR4(l6) 
DIMENSION BYPAR6(16),BYPAR7(16),BYEAR8(16) 
DDKENSION C1(15,3),C2(15,3),C3(15,3) 
DDMENSION C4(15,3),CS(l5,3),C6(l5,3),C7(15,3),C8(l5,3) 
DEMENSION S(2),S1(2),S2(2),S3(2),S4(2) 
DDMENSION 01(2),02(2),03(2),04(2),QU11(28),QU22(28) 
COMPLEX WWS( 3) . 

OrMENSION TTQ(56,24),R20(56),R30{56),NLH(20),TW6{20),ANG(20) 
C**~****~*~***~**~*****~**~**** 

OPEN(UNrT-25,PrLE-'DATA.DAT',TYPE-'OLD') 
OPEN(UNrr-S,PILE-rRES.DAT',TYPE-'NEW') 
OPEN(UNrr-21,PILE-'KK.DAT',TYPE-'NEW') 
OPEN(ONrT-3,PILE-'PKl.DATt,TYPE-'NEW') 
OPEN(URrT-l7,PILE='CO.DAT',TYPE-'OLO') 
OPEN(UNrr=65,FILE='BRG.DAT',TYPE='NEW') 

C OPEN(UNrT=l,PILE='DISK.DAT',TYPE-'OLD') 
C**~~*~~*~~*~~~**~*****~~-~-•~* 

C READ IN THE SLAVE AND MASTER DEGREE OF FREEDOM IN SEQUENCE 
C NS=l6 
C IE=6 
C NSD-12 
C N1=28 
C N21=7 
c~****~~~~*~~~~~~~~~~~~~~~~~~~~ 

OPEN(UNrr-74,FLLE='MASTER.DAT',TYPE-'OLD') 
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C SLAVE AND MASTERS 
READ (74,*) N5~IE,NSD,N1,N21 
IN-IE+1 
READ (25,*) I3 
KLM-=I3 
READ ( 25, *) ( ( GMMl.( I,J),J-1, I3 ), I-1, I3) 
READ (25,*) ((GKK(I,J),J-1,I3),I-1,I3) 
READ ( 25, *) ( ( GCCl.( I ,J),J-1, I3), I-1, I3) 
READ ( 25, *) ( Qt111( K) ,K=1, 1:3) 
READ (25,"") (QtJ22(K),K-1,I3.) 
PRINT *,"QU11',(QU11(K),K-1,I3) 
PRINT *,"QU22',(QU22(K),K-1,I3) 

C""**""*""*************""*~*""*""""**"" 

OPEN( ONIT=10,PI:LE-"Tl..DAT' ,TYPE .-'OLD') 
OPEN(ONrT-20,PrLE=•SOM.DAT",TYPE-'NEW') 

C""*""***""""""""*""""""**""""""""""~""""""""""*"""" 
C CALC'tfl:ATE TH£ SOMMERFELD NUMBER FOR THE ROTOR 
c ....................................................................................... ... 
C READ IN THF; ELEMENTAL WEIGHT 

READ ( 10, "") EM, E 
C READ IN THE NUMBER OP ELEMENT 

.READ (10,"") IE 
DO 470 I-1,IE 
'READ ( 10, "" ) EL( I ) , R( I ) 
PRINT "", 'R""""""""~· ,R( I) 
RKT( I )=R( I ) 

470 CONTINUE 
C CALCUIATE ELEMENT WEI:GRT 

DO 480 I-1,IE 
u-c 3 .14""( R( I )""~2 >)*.EM 

480 WE( I )-EL( I ) ""0 
C EI.EMENT WT ARE CALCULATED 
C CALCUIATE ROTOR WEIGHT/TOTAL LENGTH 

READ (10,"") NBL1,NB22 
READ ( 10, "") KDL1,KD22,WD1,WD2 
TWR-o.o 
ELl.-D.O 
DO 490 I=l., IE 
TWR-wE( I )+TWR 
EL1-EL(I)+EL1 
~+( WD1 )+( ND2) 
I?RINT "", .. WEIGHT OP TH ROTOR' , RW 
PRINT "", • LENGTH' , ELl. 

C INPUT 1:\EARING NODES 
C READ ( 10, "") NBL1,NB22 

IF (NB11.EQ.1) GOTO 30 
NB1-NB11-1 
NB2-NB22-l. 

GOTO 50 
30 NB1-NB11 

NB2-NB22-1 
C DETERMDIE LOADI:NG AT THE ENDS 



C FOR LHS 
s o EMB-o.o 

Il.-o 
DO 495 I-l.,IE 
EL2-o.o 
DO 496 J-l.,I 

4 96 EL2-EL{J)+EL2 
IF { I • NE. l. ) GOTO 498 
EL2-EL2/2. 0 
GOTO 499 

4 98 EL2-=EL2-( EL( I )/2. 0 ) 
4 99 EMB-(WE{I)*EL2)+EMB 
4 95 CONTINUE 

KDl.-KDl.1-l. 
KD2-KD22-1 
EL3-o.o 
DO 475 I-l.,KDl. 

475 EL3-EL{I)+EL3 
EMB3-EL31t"W'Dl. 
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PRINT *, • K:>MENT DUE TO DISK. LMS" , EMB3 
EIA-0.0 
DO 476 I-1, KD2 

476 EL4-EL{I)+EL4 
EMB4-EL4*'WD2 

C ADD DISK K>MENT TO TOTAL KlMENT 
EMB-EMB+EMB3+EMB4 

C PRINT *, 'K>MEN'l' TOTAL LEIS' ,EMB 
C WEIGHT AT THE RHS 

P2-EMB/EL1 
Pl.-RW-P2 
P2-RW/2.0 
Pl.-P2 
ELS-o.o 
DO 477 I=l.,NBl. . 

477 EL5-EL{I)+EL5 
EL6-o.o 
DO 47S I-1,NB2 

478 EL6=EL{ I )+EL6 
B{2)-ABS{(Pl.*ELS)-{P2*ELl.))/EL6 
B( l. )-RW-B( 2 ) 

B(2)-P2 
B(1)=Pl. 
WRrTE (20,*) "BRGl.',B(1) , "BRG2 ' ,B(2) 

C BEARING CLEARANCE .0025 

RNBl.-R{ NBl. )+. 0025 
RNB2-R( NB2 )+. 0025 
SN1-({l..OE-6*2.0*(RNBl.)*2.0*R(NB1))/B(l.))*((RNB~.0025)**2) 

SN2-((l.OE-6*2.0*RNB2*2.0*R(NB2))/B(2))*({RNB2/.0025)**2) 
C DETERMINE BEARING COEFFICIENTS FROM THE GRAPH 
C****************************** 
C READ I:N 'l"HE" NUMBER OF POINTS FOR CURVE 
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MB-2 
C READ IN CRITicAL DAMPING SPEEDS 

OPEN(UNrT-29,PILE-~SPEED.DAT ' ,TYPE-~OLD') 

C READ NUMBER POR CRITICALS 
READ (29,*) res 
PRINT *, • res • , res 
READ (29,*) (W(I),I-1,ICS) 

C****************************** 
OPEN(ONrT-16,PILE-'DAMP.DAT' , TYPE=•OLO') 

C****************************** 
C READ IN THE ~ER OF POINTS FOR CURVE 

READ (16,*) IB 
READ ( 16, *) (X( I), I=l, IB) 
READ (16,*) (SYY(I),I=l,IB) 
READ (16,*) (Syz(I),I-l,IB) 
READ (16,*) (Szy(I),I-1,IB) 
READ (16,*) (SZZ(I),I-1,IB) 
READ ( 16, *) ( DYY( I ),I=1, IB) 
READ (16,*) (Oyz(I),I=1,IB) 
READ ( 16, *) ( DZY( I ) , I-1, IB ) 

-READ ( 16, *) ( DZZ( I), I-1, IB) 
READ (17,*) IC 
READ ( 17, *) ( ( C1( I,J),J-1., 3) , I-1, IC) 
READ (17,*) ((C2(I,J),J-1,3) , I-l.,IC) 
READ (17,*) ((C3(I,J),J-1,3) , I-1,IC) 
ltEAO . (l.7,*) ((C4(I,J),J-1,3) , I-1,IC) 
READ (17,*) ((CS(I,J),J-1,3) , I-l.,IC) 
READ < 17, * > ( < C6( r,J),J=l., 3) , r-1, rc > 
READ (17,*) ((C7(I,J),J=l.,3) , I=1,IC) 
READ {17,*) ((C8(I,J),J-1,3) , I-1,IC) 

C VARIABLE SPEED LOOP (CPS. ) 
WRITE (65,*) res 

C****************************** 
C TRIAL WEIGHT ADDrTION 
C********************~********* 

OPEN( UNIT==61., PILE=' TW .. OAT' , TYPE- • OLD' ) 
C INPUT ANGLE, TRIAL WEIGHT IBS . ,AVAIL. PIIANES 

READ (61., *) WT2,NKl.O,.AL,TBETA1 
Fl.C-D.O 
Fl.S=O.O 
P2c-o.o 
F2S=O.O 
FSC=O.O 
PSS-D.O 
P6C-D.O 
F6S-D.O 

207 PRINT *, ~ IP BALANCE RUN INPtJT 1' 
READ *,rMS 
IF ( LM5 .NE .1) GOTO 1000 
OPEN(UNrT-7l.,FILE-~TW3 . DAT',TYPE-•OLO') 

L4=1 
GOTO 1.001 
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1000 DO 999 1.4-1, ICS 
IF (L4.EQ.1) GbTo 629 

c TRIAL WEIGB'l' ADDITIONS '1'0 THE FORCING FUNCTION 

C INPUT ELEMENT NUMBER OF TRIAL WEIGHT 
C DISTANCE FROM THE IJIS. 
C WEIGHT OF THE TRIAL WEIGHT 

READ ( 61, *) ITW 
PRINT *, 'ITW***' , I'lW 
TBET.A-(2.0*3.1415~)/360.0 

WIW=WT2/386.0 
C DE'I'ERMrNE NODES EFFECTED BY THE TRIAL WEIGHT 

Kl.O=-( ITW*4 )-3 

1.231. 

Kl.l.-K10+1 
Kl.2-K10+4 
K13-K10+5 
PRINT *,'IC10',Kl.O,'Kl.l.',K1l.,'Kl.2',1C12,'K13',K13 
U" ( ITW. NE. 7 ) GOTO 1.231 
ITW-ITW-1 
STW«~*RKT(ITW)*SIN(THETA) 

CTW-WTW*RKT( ITW) *COS( THETA) 
SLH-( l.. o-( 3. 0*( AL**2 )/( EL( ITW)**2) )+( 2. 0*( AL**3 )/{ EL( ITW)**3))) 
SRH-{ { 3. 0*( AL**2 )/( EL{ ITW)**2) )-( 2 .0*( AL**3 )/{ EL( I'IW)**3))) 
PRINT *, • EL • , EL( ITW >, • AL • , AL, • wrw• , wrw, • R • , RKT( ITW >, ·THETA· , THETA 
Pl.c-STW*SLH 
Pl.s-cTW*SLH 
P2c-cTW*SLH 
F25--S'IW*SLH 
FSO=STW*SRH 
PSS-ciW*SRH 
F6C-ciW*SRH 
P65---STW*SRH 
PRINT *, 'Pl.C' ,Pl.C, 'Pl.S' ,Pl.S, 'P2C' ,P2C, 'F2S' ,P25 
PRINT *,'P5C',P5C,'F5S',P5S,'P6C',P6C,'F6S' , P6S 
QULl.(Kl.O~l.(K10)+Pl.C 

QU22(Kl.O)=QU22{Kl.O)+Fl.S 
QUl.l.(Kl.l.~l.l.{K1l.)+F2C 

QU22(Kl.l.)-QU22{Kl.l.)+F25 
QU1l.(K12)-QU1l.(Kl.2)+F5C 
QU22(Kl.2)-QU22{K12)+P5S 
QU1l.(Kl.3)-QU11(K13)+F6C 
QU22(K13)=QU22(K13)+P65 
PRINT *,rQU11**',{QU11{K),K=l.,I3) 
PRINT *,'QU22**',(QU22{K),K=l.,I3) 

C THE TRIAL WEIGHTS HAVE BEEN ADDED TO THE FORCING FUNCTION 

c 
c 
1.001 
c 

GOTO 629 
BALANCE RUN 
NUMBER OF PLANES 
READ ( 71, *) NP1 
ELEMENT NUMBER OF BALANCE WEIGHT PLANES 
PRINT *, ' INPtn' THREE BALANCE WEIGHT ELEMENTS STARriNG PROM LEPT' 



~004 

c 

c 

DO ~004 I-=1, NP1 
READ *, NLB( I ) . 

BALANCE WEIGHTS 
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~ (71,*) (WWS(I),I=~,NP1) 
DO ~002 I-1, NP1 
A.I.i-0. 0 
Wl"Wl.-AIMAG( WWS( I) )/386. 0 
~-REAL(WWS(I))/386.0 

ITW-NLH( I ) 
DE:'TERMI:NE NODES EFPECI'ED BY THE TRIAL WEIGHT 
K1:o-( ITW*4 )-3 
KL1-K10+1 
p~ *,"K10',K10,"K11',K1~ 

S'l'W-WIW1 *RI<T{ rrw > 
crw-wtW2 *R.KT{ ITW) 

PRINT *, 'EL• ,EL( ITW), 'AL' ,AL, 'W'IW' ,WTW, 'R', RKT( I'IW), "THETA • ,THETA 
P~C-S'IW*SLH 

p l....S-c'l'W*SLH 
P2C-cTW~SLH 

pz_s-STW*SLH 
PRINT *, "P1C" ,P'1C, 'P'1S' ,P1S, 'P'2C' ,P2C, "P2S" ,P'2S 
Qtn.l..( K10 )-QU11( K10 )+P'1C 
QU"22( .fCl.O )-QU22( Kl.O )+P1S 
QCT1l..( K11 ~1( K11 )+P'2C 
QU"22(K11)-QU22(~1)+P'2S 

PRINT *,.QU11",Q011(K10),•QU22",QU22{K10) 
PRINT *, rQ(J11 • , QU11( K11), • QU22' , QU22_( K11) 
PR.Drl' *, 'QU11 *** • , ( QU11( K), K==1, I3 ) 
PRINT *,rQ022***",(QU22(K),K==1,I3) 

1002 co.N't'rNUE 
PR:.I:NT *, rIP' NOT FIRST BALANCE RtJN INPOT 1 • 
RE:AD *,PP6 
IP (PP6.EQ.1.0) GOTO 207 

C THE TRIAL WEIGHTS HAVE BEEN ADDED TO THE PORCING FUNCTION 
629 S( 1 )-SN1 *W{ L4) 

S( 2 )-SN2 *W( L4) 
C PRINT *,rSOMMERPELD NUMBER",•S1",S(1),"S2',S(2) 
C B~NG COEPP'ICENTS 

wc;-rs 
Ic-:CB-1 
M~2 

CkLt. ICSEVU (X,SYY,NX,C1, IC,S,SS1,M8, IER) 
CALI. ICSEVU ( X, SY'Z, NX, C2, IC, S, SS2, M8, IER) 
CALI. ICSEVU ( X, szy, NX, C3 , IC, S, SS3 , M8 , IER) 
CALL ICSEVU ( X,SZZ,NX,C4, IC,S,SS4,M8, IER) 
CALt. ICSEVU (X, DYY, NX, C5, IC, S, D01, M8, IER) 
CALL ICSEVU ( X, DY'Z, NX, C6, IC, S, 002, M8 , IER) 
CALL ICSEVU (X, DZY, NX, C7, IC, S, 003, M8, IER) 
CALL ICSEVU ( X, DZZ, NX, C8, IC, S, 004, M8, IER) 
pr:.-3 .14:15*2. O*W( L4) 
C-=.0025 
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00 405 I-==1, 2 
51( I)-(. ( SS1( I )*B( I) )/C) 
52(I)=({SS2(I)*B{I))/C) 
53{ I)={ { SS3( I )*B{ I) )/C) 
54{ I)=( ( SS4{ I )*B( I) )/C) 
D1(I)={(DD1{I)*B(I))/(PI*C)) 
D2(I)-((DD2(I)*B(I))/(PI*C)) 
D3(I)-{{DD3{I)*B(I))/(PI*C)) 
D4( I)--=( (DD4( I )*B( I) )/{PI*C)) 

405 CONTINUE 
C****************************** 

~TE (65,*) {S1{I),I=1,2) 
~TE (65,*) (S2(I),I=1,2) 
~TE (65,*) {S3(I),I=1,2) 
~TE (65,*) (S4(I),I=1,2) 
~TE {65,*) (D1(I),I=1,2) 
~TE (65,*) (D2(I),I=1,2) 
~TE (65,*) (D3(I),I=1,2) 
~TE (65,*) {D4(I),I=1,2) 
I3-KI.M 

C MULTIPLY MATRICES WITH FREQUENCY VALUES 

DO 420 r-1,I3 
DO 420 J-1,I3 
GMM( I, J )-GMMl.( r, J > 

420 GCC(I,J)--W(L4)*GCC1(I,J) 
C INP[11' THE BEARING NODES 
C READ(78,*) NB11,NB22 

NB1-(NB11*4)-3 
NB2-{NB22*4)-3 
GKK(NB1,NB1)-GKK(NB1,NB1)+S1(1) 
GCC( NB1,NB1 )-GCC( NB1, NB1 )+( 01( 1)) 
GKK(NB1,NB1+1~{NB1,NB1+1)+S2{1) 

GCC(R81,NB1+1)=GCC(NB1,NB1+1)+02(1) 
GKK{NB1+1,NB1)-GKK{NB1+1,NB1)+S3(1) 
GCC( NB.1+1,NB1 )-GCC( NB1+1,NB1 )+( 03( 1)) 
GKK( NB1+1,NB1+1 )-GI<K( NB1+1,NB1+1 )+54( 1) 
GCC(NB1+1,NB1+1)-GOC(NB1+1,NB~+1)+(D4(1)) 

GKK(NB2,NB2)-GKK(NB2,NB2)+S1(2) 
GCC( NB2 I NB2 )-GCC( NB2, NB2 )+( 01( 2)) 
GKK(NB2,NB2+1)-GKK(NB2,NB2+1)+S2(2) 
GOC(NB2,NB2+1)-GCC(NB2,NB2+1)+(02(2)) 
GKK(NB2+1,NB2)=GKK(NB2+1,NB2)+S3(2) 
GCC(NB2+1,NB2)-GOC(NB2+1,NB2)+(03(2)) 
GKK( NB2+1,NB2+1 )-GKK( NB2+1, NB2+1 )+54( 2) 
GOC(NB2+1,NB2+1~(NB2+1,NB2+1)+(D4(2)) 

IF ( L4.NE.1) GOTO 1033 
C****************************** 

WRITE (3,*) I3 
WRITE ( 3, *) ( (GMM( I,J),J=1, I3 ), I-1, I3) 
WRITE (3,*) ((GKK(I,J),J=1,I3),I=1,I3) 
WRrTE (3,*) ((GCC(I,J),J-1,I3),I-1,I3) 



~033 I3-KLM. 
DO ~00 I-~,I3 

~00 LD( I )-I 
DO ~~0 I-~,I3 

~10 R(I)=GMM(I,I)/GKK(I,I) 
PRINT 1C, ( R( I ) , I=~, I 3 ) 
DO ~16 I-1,I3 
I1-I+~ 

DO 115 J=I1,I3 
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IF ( R( I ) • GE. R( J ) ) GOTO ~15 
LO=:LD(I) 
LN=LD{J) 
LD(I )-LN 
LD(J)-LO 
RN-R(I) 
R( I )=R( J) 
R(J)-RN 

~15 CONTINUE 
~16 CONTINUE 

PRINT ~,'LD(I)~~~~~·,(LD(I),I=~,I3) 
I3-KLM 
DO 205 I-1,I3 
Il.-LD( I) 
DO 206 J-1, I3 
GM( I,J)-GMM( I~,J) 
GIC( I,J)-GKK( I1,J) 
GC(I,J)-GCC(I1,J) 

206 CONTINUE 
205 CONTDlUE 

DO 2.1.4 I-1,I3 
Il.=LD( I) 
QU~( I )-QU~~( I~) 
QU2( I }-QU22( I~) 

2.14 CONTINUE 
DO 2~0 J-~,I3 
Jl.=LD(J) 
DO 2~ I-1,I3 
GMN( I,J)-GM( I,Jl.) 
GKN(I,J)-GK(I,J~) 

215 GCN(I,J)-GC(I,J1) 
21.0 CONTINUE 
C FORM (GMS) (GSS) 

!1-o 
Jl.=O 
DO 220 I=(N5+~),I3 
Il.-Il.+~ 

DO 225 J=1,N5 
Jl-JJ.+~ 

225 GMS(I~,J~)-GKN(I,J) 

Jl.=O 
220 CONTINUE 



I 3.:::::KLM 
I~-o 

J~-o 

DO 230 I-(N5+l),I3 
Il=Il+l. 
DO 235 J=(N5+l),I3 
J1=J1+1 
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235 GSS(Il,Jl)-GKN(I,J) 
Jl=O 

230 CONTINUE 

c PORMATI9N OF THE TRANSP'ORMATIOli ~TRIX 
C***************~************** 

DO 240 I=l, I3 
DO 240 J=l.,N5 

240 T(I,J)-o.o 
C MULTIPLICATION OF -(KSS) (KMS] 

CALL LINV2F(GSS,NSD,NSD,GSSN,4,WKAREA,IER) 
DO 245 I-l.,NSD 
DO 245 J-l,NSD 

245 GSSN(I,J)--l.O*(GSSN(I,J)) 
CALL VMULFF(GSSN,GMS,NSD,NSD,NS,NSD,NSD,G,NSD~IER) 

C .FORMATION OF THE TRANSFORMATION MATRIX (T] 
DO 250 J-l,N5 

250 T(J,J)-1.0 
Il-o 
Jl.-=0 
DO 255 I-(N5+l.),I3 
I:l=Il+l 
DO 257 J=l.,N5 
J1=J1+1 

257 T(I,J)=G(Il,Jl) 
Jl.-Q 

255 CONTINUE 
C THE TRANSFORMATION MATRIX IS 'THUS FORMED 

C 'J'RANSPOSE ( TT] 
DO 260 I=l.,I3 
DO 260 J=l., N5 

260 TT(J,I)-T(I,J) 
C MULTLIPLICATION OF THE SYSTEM MATRICES 

I3=KLM 
CALL VMULFF(TT,GMN,N5,I3,I3,N5,I3,GMl,N5,IER) 
CALL VMULf'P(GM1,T,N5,I3,N5,N5,I3,GMR5,N5,IER) 
CALL VMULFF(TT,GKN,N5,I3,I3,N5,I3,GKl,N5,IER) 
CALL VMULFF(GK1,T,N5,I3,N5,N5,I3,GKR,NS,IER) 
CALL 'VMIJLFF'( TT, GCN, N5, I3, I3, N5, I3, GCl, NS., IER) 
CALL VMULFP(GC1,T,N5,I3,NS,N5,I3,GCR,NS,IER) 
I3cf<LM 
CALL VMULf'P{TT,QUl.,N5,I3,l.,NS,I3,QURl,N5,IER) 
CALL VMULFF(TT,QU2,N5,I3,l.,N5,I3,QUR2,NS,IER) 

C****************************** 
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NS WRITE ( 21 , * ) 
WRITE (21. 1 *) 
WRITE (21. 1 *) 
WRr1'E (2.1.,*) 
WRITE (21. 1 *) 
WRITE .( 21., *) 
WRITE (2.1.~*) 

WRITE (2.1.~*) 

WRITE (21. 1 *) 

( ( GMR5( I 1 J) 1 J-l.,NS), I=l., N5) 
( (GKR( I 1 J),J-l.,NS ), I=1 1 N5) 

( ( GCR( I 1 J) 1 J-1 1 N5 ) 1 I-1 1 N5) 
( QORl.( I), I-=1,N5) 
( QUR2( I ) I I-1 I N5 ) 
I3 
( LD( I ) , I-1 I I3 ) 
( (T( I,J),J-1 1 N5 ),I-1, I3) 

C MA'm.IX ADDI:TIONS 
DO 450 I-1., N5 
DO 450 J=l.,N5 

450 GMK( .I, J )-GMRS( I, J )+GKR( I, J ) 
N6.:aN5*2 
I3-KLM 
N71-I3*2 
DO 455 I-l.,N5 
Il.=I+N5 
DO 456 J=l.,N5 
Jl.-J+N5 
GMKC( I,J)-GMK( I 1 J) 
GMKC(Il.,J1)-GMK(I,J) 
GMKC(Il.,J)--l..O*(GCR(I,J)) 
GMKC( I, J1 )-GCR( I, J) 

456 CORTINUE 
455 CONTINUE 
C TAKE THE INVERSE OP THE GMKC MATRIX 

CALL LI:NVl.P ( GMKC, N6, N6, GMKCI, 4, WKAREA, IER) 
C ASSEMBLE THE FORCING FUNCTION 

DO 460 I-l.,N5 
I1-I+N5 
QU( I )-QU1( I ) 

460 QU(Il.)-QU2(I) 
C MULTIPLY ( GMKCI] WITH ( QU) FOR RESPONSE 

CALL VMULPP ( GMKCI, Q0, N6, N6, 1, N6, N6, Rl., N6, IER) 
DO 500 I-1,!3 
I1=I+I3 
DO 510 J==l.,N5 
J1-=J+N5 
-r'TQ( I,J)-=0 .0 
-rTQ(Il,J)-o.o 
-rTQ( I,Jl )-o.o 
TTQ(Il,Jl.)-o.o 
T1'Q( I,J)=T( I,J) 

510 TTQ(Il.,Jl.)-T(I,J) 
500 CONTINUE 

CALL VMULPP(TTQ, R1,N7l.,N6, l.,N7l.,N6,R20,N71., IER) . 
DO 520 I•l.,I3 
I1=LD( I) 
I2==I+I3 
DO 530 J=l.,I3 
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IF (I .EQ.LD( J)) GOTO 540 
5 30 CONTINUE 
540 R30( I )=R20( LD( J) ) 

R30(I2)-R20{LD{J)+I3) 
520 CONTINUE 

WRITE ( 5, *) "RESPONSE •, ( R30( I), I-1, N71) 
PRINT *,"******I3**",I3,"N5",N5 
QU11(K10)-Q011(K10)-P1C 
QU22(K10)-Q022(Kl.O)-P1S 
QU11(K11)-QU11(K11)-P2C 
QU22( K11 )-Q(J22( K11 )-P2S 
QU11(Kl.2)-QU11(Kl.2)-P5C 
QU22(Kl.2)-QU22(Kl.2)-P5S 
QU1l(K13~11(Kl.3)-P6C 

QU22(K13)-QU22(~3)-P6S 

C THE TRl:AL WE!GHTS HAVE BEEN SUBTRACTED PROM PORCING PUNCTION 
PRINT *, "N'Bl." ,NB1, "NB2" ,NB2 
GKK( NB1,NBl. )-GI<K( NB1,NB1 )-51( l.) 
GCC(NB1,NBl.)-GOC(NB1,N81)-(01(1)) 
GKK(NBl.,NB1+1~(NB1,NB1+1)-S2(1) 

GOC(NBl.,NBl.+l.)-GCC(NB1,NBl.+l.)-02(1) 
GKK(NB1+l.,NBl~(NB1+1,NB1)-S3(1) 

GOC( NB1+1,NB1 )-GCC{NB1+1,NB1 )-( 03( 1)) 
GKK( NB1 + l., NB1 + 1 )-GKK( NBl. + 1, NBl. + 1 )-54{ 1 ) 
GCC( NB1.+1,NB1+1 )-GCC( NB1+1,NB1+1 )-( 04( l.)) 
GKK(NB2,NB2~(NB2,NB2)-S1(2) 

GCC( NB2 ,NB2 )-GCC( NB2, NB2 )-( 01( 2) ) 
GKK(NB2,NB2+1)-GKK(NB2,NB2+l.)-S2(2) 
GCC( NB2, NB2+ 1 )-GCC( NB2, NB2+ 1 )-( 02 ( 2 ) ) 
~(NB2+l.,NB2)-GKK(NB2+1,NB2)-S3(2) 

GCC( NB2+ 1, NB2 )-GCC( NB2+ 1, NB2 )-( 03 ( 2 ) ) 
GKK(NB2+1,NB2+1)-GKK(NB2+1,NB2+1)-S4(2) 
GCC(NB2+1,NB2+1~(NB2+1,NB2+1)-(04{2)) 

999 CONTINUE . 

STOP 
END 
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M:>DAL ANALYSIS 

C****************************** 
C THIS PROGRAM DOES THE M:>DAL RESPONSE ANALYSIS 
C DIAGIONAL:rzATION OF MATRICES 
C****************************** 

IMPLICrT REAL*B(A-H,Q-Z) 
DIMENSION GM( 16, 16), GK( 16, 16), GHI'( 16, 1.6), GKT( 16, 16), GCT( 1.6, 16) 
DIMENSION GKKT(32,32),GMM(32,32),GKK(32,32) 
DDKENSION GKKI(32,32),GMMT(32,32) 
DIMENSION EV(32),EV3(32),TK(32),GKN(32,32),~32)~LP{32),TI( 32) 

DIMENSION WK(30000),GKKTI(32,32),GC(16,16) 
DIMENSION WK1(30000),WK2(30000) 
DDMENSION GMP(32,32),BETA(32),T8(32,32),TC(32,32),WK3(30000) 
COMPLEX*16 ALFA(32),T(32,32),Tl.(32,32),TT(32,32) 
COMPLEX*16 GME(32,32),GTM(32,32) 
COMPLEX*16 EV1.(32),EV2(32),T9(32,32),TCT(32,32) 
COMPLEX*16 GMMC(32,32),GKKC(32,32) 
COMPLEX*l.6 El.9(28),E20(28) 
COMELEX*l.6 GTMC(32,32),PPK(32,32),C1,C2(32) 
COMPLEX*16 GKE(32,32),GTK(32,32) 
DIMENSION W(32),TN(28,16),QURl(16),QOR2(1.6),ATAP(20) 
COMPLEX*l.6 Q11.(32),Q22(32),QSS(32),QCS(32) 
COMPLEX*16 GMK1(32),GMK2(32),E3(32) 
COMPLEX*16 E4(32),E5(32),E6(32),TQ,TQ2 
COMPLEX*16 E1(32),E2(32),GMNl.(32),W2 
DIMENSION .VR( 1.6), VI( 16 ),WR( 1.6), WI( 16), YMA( 6), YMI( 6), LD( 28) 
COMPLEX*16 TAN(6),EN10(28),EN9(28),TN1(28,1.6),E9(28),El.0(28) 
COMPLEX*16 T2(32,32),C3(32),Z,ZI(32,32),W3 

C****************************** 
OPEN(ONrT-9,FILE-"ELL.DAT~,TYPE-"NEW') 

OPEN(UNrT=5,FILE="M.DAT",TYPE-"NEW') 
OPEN(UNrT-2,FILE-"KK.DAT",TYPE-"OLD') 
OPEN(UNrT-29,PILE='SPEED.DAT",TYPE-"OLD") 
OPEN(UNrT-60,PILE-"TW1.DAT",TYPE-•NEW') 

C****************************** 
READ ( 29, *) res 
READ (29,*) (W(I),I-l.,ICS) 
PRINT *, • IF BALANCE RUN INPUT 1 • 

C****************************** 

1.000 

READ *,.LT5 
IF ( I:aTS • NE • 1 ) GOTO 1.000 
ICS=l. 
DO 999 L4=1,ICS 

C****************************** 
READ(2,*) I3 
READ (2,*") ((GM(I,J),J-l,I3),I5 l,I3) 
READ ( 2, *) ( ( GK( I,J),J-1., I3), I=1, I3) 
READ (2,*) ((GC(I,J),J=l.,I3),I=l.,I3) 
READ ( 2, *) ( QUR1( I), I-1, I3) 
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READ (2,*) (QUR2(I),I=1,I3) 
READ (2,*) IT 
READ (2,*) (LD(I),I=1,IT) 
READ (2,*) ((TN(I,J),J=1,I3),I-1,IT) 

C******************************* 
:I4=2*I3 
DO 8 I-1,I3 
DO 8 J--1,I3 
GMT( J, :I )-GM( I ,J) 
GKT(J,I)=GK(I,J) 

8 GCT(J,I)=GC(I,J) 
DO 10 I-1,I4 
DO 10 J=l.,I4 
GKKT(I,J)=O.OD+1 
GMMT(I,J)=O.OD+1 
GMM( I, J )=:() • OD+ 1 

~0 GKK(I,J)=O.OD+1 
DO 15 I-1,I3 
:Il.-I+I3 
DO 16 J-1,I3 
Jl.-J+I3 
GMM(I,Jl.)-GM(I,J) 
GMM(I1,J)-GM(I,J) 
GMM(I1,J1)-GC(I,J) 
GKK(I,J}--GM(I,J) 
GKK(Il.,Jl.)-GK(I,J) 
GKKT{I,J)=-GMT(I,J) 
GMMT(I,J1)-GMT(I,J) 
GMMT(I1,J)=GMT(I,J) 
GMMT(I1,J1)-GCT{I,J) 
GKKT(I1,J1)-GKT(I,J) 

~6 CONTINUE 
~5 CONTINUE 

DO 886 I=1,I4 
DO 886 J=1,I4 

886 GKN(I,J}=GKK(I,J) 
CALL LINV1F(GKK,I4,I4,GKK:I,4,WK,IER) 
CALL VMULFF(GKKI,GMM,I4,I4,I4,:I4,I4,TC,I4,IER) 
DO 60 :I=l., I4 
DO 60 J=1,I4 

60 TCT(I,J)=DCMPLX(TC(I,J),O.OD+1) 
IJOB=2 
CALL EIGCC(TCT,I4,I4,IJOB,EVl.,T,I4,WKl.,IER) 
DO 995 I=l., I4 
Cl.-DCMPLX(l..OD+O,O.OD+l.) 
IF ( EV1( I ) . EQ. 0 • 00+ 1 ) GOTO 995 

C2(I).:oC1/EV1(I) 
995 CONTINUE 

CALL LINV1F{GKKT,I4,I4,GKKTI,4,WK2,IER) 
CALL VMULFF(GKKTI,GMMT,I4,I4,I4,I4,I4,T8,I4,IER) 
DO 65 I=l.,I4 
DO 65 J-l., I4 
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65 T9(I,J)=DCMPLX(T8(I,J),O.OD+~) 

IJOB-2 . 
CALL EIGCC(T9,I4,I4,IJOB,EV2,T~,I4,WK3,IER) 
DO 94~ I-~, I4. 

94~ C3(I)-c~/EV2(I) 

oo 52~ I-~,I4 
LP(I)-I 
DO 522 J=~,I4 
A1-DREAL{C2( I)) 
A2=DIMAG( C2( I) ) 
S~-DSQRT((A1~~2)+(A2~~2)) 

B~-DREAL( C3( J)) 
B2-DIMAG( C3( J)) 
52=0SQRT((B~~~2)+(B2~~2)) 

DEL~-DABS(((A1-B~)/A1)~~00.0D+O) 

IP (A2.EQ.O.OD+O) GOTO 721 
OEL2=DABS(((A2-B2)/A2)~~00.0D+O) 

72~ · DEL3-DABS(((S~-S2)/S~)~~OO.OD+O) 

IP ((DABS(A2)).LT.(~.OD-8)) GOTO 523 
GOTO 527 

523 IP ((DABS(B2)).LT.(~.OD-8)) GOTO 528 
IP ( A2 . EQ. 0. OD+ ~ ) GOTO 5 28 

527 IP { DEL2 .Gl'.O.SD+O) GOTO 522 
528 IP ( DEL3 • G1'. 0. 50+0 ) GOTO 522 

IP (DEL~ .GT. 0. 50+0) GOTO ·522 
LP~-LP(I) 

LP( I )ao:J 
522 CONTINUE 
52~ CONTINUE 

K-~ 

559 DO 558 I-l.,I4 
T2(I,K)-T~(I,LP(K)) 

558 CONTINUE 
K-K+~ 

rP (K.LE.I4) GOTO 559 
DO 40~ I=~, ~4 

40~ PRINT ~, rEIGEN VALUES', I,' ',C3( LP( I)) 

DO 30 I-~,I4 
DO 30 J--=~,!4 

30 TT(I,J)-T2(J,I) 
DO SO I=~,I4 
DO 50 J=~,I4 
GMte( I, J )=DCMPLX( GMM( I, J), 0. OD+ ~) 
GKKC(I,J)=DCMPLX{GKN(I,J),O.OD+l) 
GTK(I,J)=DCMPLX(O.OD+l,O.OD+~) 

GTM( I,J)-DCMPLX( 0.00+~,0 .OD+~) 
GKE( I,J)-DCMPLX( 0.00+~,0 .OD+~) 

so GME( I I J )-DCMI?LX( 0. OD+ l, 0 • OD+ l ) 
DO 38 I-~,!4 
DO 4~ J=~,I4 
DO 40 K-~,I4 
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GTK(I,J):TT(I,~)*GKKC(X,J)+GTK(I,J) 

40 GTM(I,J)=TT(I,X)*GMMC(X,J)+GTM(I,J) 
41 CONTINUE 
38 CONTINUE 

DO 45 I-1,I4 
DO 47 J=1,I4 
DO 48 X=1,I4 
GKE(I,J~(I,K)~(K,J)+GKE(I,J) 

48 GME(I,J~(I,K)~(K,J)+GME(I,J) 

47 CONTINUE 
45 CONTINUE 

OPEN(UNrT-20,FILE-'M1.DAT',TYPE-'NEW') 

WRrTE (5,*) 'GKE',(GKE(I,I),I-1,I4) 
C FORMATION OF' THE FORCI:NG VECTOR 

W2-DCMPLX( W( L4), 0. OD+ 1 ) 
DO 965 I-1, I3 
Q11(I)-DCMP~O.OD+1,0.0D+1) 

Q22(I)-DCMPLX(O.OD+1,0.00+1) 
Ql.1( I:3+I: )-DCMPLX( QUIU( I) ,0. 00+1 )*( W211:*2) 
Q22(I:3+I:)-DCMPLX(QUR2(I),O.OD+1)*(W211:*2) 

965 CONTINUE 
DO 66 I:-1,I4 
QSS( I )-DCMPLX( 0 • OD+ 1, 0 • 00+ l. ) 
QCS( I )-DCMPLX( 0. OD+ 1, 0 • OD+ 1 ) 
DO 66 J-1,I4 
QSS(I:)-TT(I:,J)*Q22(J)+QSS(I) 

66 QCS(I)-TT(I,J)11:Q11(J)+QCS(I) 
DO 83 I:-1,I4 
CI-(-1.0D+O)*DI:MAG(GME(I,I)) 
CR-(-1.0D+O)*DREAL(GME(I,I:)) 
~1(I)-DCMPLX(CI,DREAL(GME(I,I)))"li:W2 

W3-cMPLX( -1. 00+0, 0. 00+ 1 ) 
83 GMK2( I: )=OCMPLX( DI:MAG( GME( I, I) ),CR)*( W2) 

TQ=DCMPLX(2.0D+O,O.OD+1) 
TQ2-DCMPLX(O.OD+l.,2.0D+O} 
DO 81 I=1,I4 
E1(I)-QSS(I)/{TQ2)+QCS(I)/(TQ) 

8~ E2( I: ).-.w3*( QSS( I))/( TQ2 )+QCS( I:)/( TQ) 
DO 84 I-=1,I4 
E3(I)=E1(I)/(GMKl(I)+GKE(I,I)) 

84 E4{I)=E2(I)/(GMK2(I)+GKE(I,I)) 
DO 79 I=1,IT 
DO 79 J=1,I3 

79 TN1( I, J )-DCMPLX( TN{ I, J), 0. 00+0 ) 
DO 88 I=1,I4 
E5( I )-DCMPLX{ 0 • OD+ 1, 0. 00+ 1 ) 
E6( I )=DCMPLX( 0. OD+ 1, 0 • OD+ 1 ) 
DO 88 J=1, I4 
E5(I)=T(I,J)*E3(J)+E5(I) 

88 E6(I)-T(I,J)*E4(J)+E6(I) 
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C RECOVERY OF THE SLAVES 
DO 89 I==1,IT 
EN9(I)=DCMPLX(O.OD+1,0.0D+1) 
EN10(I}=DCMPLX(O.OD+1,0.0D+1) 
DO 89 J=1,I3 
EN9(I)-TN1(I,J)~E5(J+I3)+EN9(I) 

89 EN10(IJ-TN1(I,J)~E6(J+I3)+EN10(I) 

DO 97 I-1,IT 
I1-=LD( I) 
E19(I1)-=EN9(I) 
E20( I 1 )-.DUO( I ) 

97 CONTINCJ:e 
PRINT ~,'E19X',(E19{I),I=1,IT,4) 
PRINT ~,'E19Y',(E19{I),I=2,IT,4) 
PRINT ~,'E20X',(E20{I),I-1,IT,4) 
PRINT ~,'E20Y',{E20(I),I-2,IT,4) 

C REARRANGE (E19), (E20) 
141-IT/4 
I==O 
DO 894 I1-1,I41 
I-I+1 
VR( I 1 )-( OREAL( E19( I ) ) )+( OReAL( E20( I ) ) ) 
VI( I1 )-( ( -1. OD+O )~OIMAG( E19( I)) )+OIMAG( E20( J:)) 
WR( I1 )-OREAL( E19( I+1) )+OREAL{ E20( I+1)) 
WI(I1)-((-1.0D+O)~OIMAG{E19{I+1)))+0IMAG(E20(I+1)) 

PRINT ~,'I',I~'I+1',I 
PRINT ~, I1, 'VR', VR( I1), 'VI', VI( I1 ), 'WR' ,WR( J:1 ), 'WI' ,WI( I1) 
I-I+3 

894 CONTINUE 
I41-IT/4 
DO 796 I-1,I41 
PRINT ~, VR{ I), VI( I), WR( I), WI( I) 
Y-(VR( I )~~2 )+(VI( I )~~2 )+(WR( I )~~2 )+(WI( I )~~2) 
Y1-(WR(I)~~2-1:0D+O~{VI{I)~~2)-1.0D+O*(VR{I)~~2)+WI(I)~~2)~*2 

Y2=(4.0D+O)~((VR(I)~R{I)+WI{I)~(I))~~2) 

Y3-0SQRT(Y1+Y2) 
PRINT *, I , • y I , y, • Y1 • , Y1, • Y2 • , Y2 , "Y3 I , Y3 
YMA( I )-OSQRT( { 0. 50+0) ~( Y+Y3 ) ) 
YMI(I)-OSQRT((0.5D+O)~ABS{Y3-Y)) 

Y9-( VR( I )~*2 )-1.00+0*( VI{ I )*~2 )+{ WR( I )*~2 )-1.00+0*{ WI( I )*~2 ) 

PRINT ~, 'Y9', Y9 
T25={ 2 . OD+O~{ VR( I )*VI( I )+WR( I )~WI{ I)) )/Y9 
TAN{I)=OATAN(T25) 
DELTA=DATAN( ( VR{ I )-WI( I))/( WR( I )+VI{ I))) 
ATAP{I)={TAN{I)/2.0D+O)+OELTA 
ATAP1=ATAP{I)/W(L4) 
IF(T25.LT.O.OD+1) GOTO 659 
IF( Y9 .. LT.O .00+1) GOTO 796 
ATAP(I)-ATAP(I)+3~~~l50+0 

GOTO 796 
659 IF{ Y9. Gl'. 0. 00+ 1) GOTO 796 

~{l)-ATAP(I)+3.1415D+O 
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796 CONTINUE 
WRITE ( 9, *) 'SPEED RAD./SEC. ',W( L4) 
DO 1.03 I-1.,141. 

C****************************** 
1.03 ~ (9,*) 'MAJOR AX15',1,' ',YMA(I),'MINOR AXIS',1,' ',YMI(1) 

WRITE (60,*) 141. 
WRITE (60,*) ~TAP(1),I-l.,I4l.) 
WRITE (60,*) (~1),I-l.,I41.) 

C****************************** 
999 CONTINUE 

OPEN(UNrT-59,FrLE-'BAL.DA~,TYPE-'NEW') 

WRITE (59,*) 14 
WRrTE (59,*) (E5(1),I-1.,14) 
WRITE (59,*) (E6(1),1-1.,14) 
WRITE (59,*) ((T(I,J),J-l.,I4),I-l.,I4) 

C****************************** 
S'l'OP 
END 
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BALANCE WEIGElT C~TION 

THIS PROGR.Ml CALCULATES THE BALANCE WEIGHTS 
NECESSARY '1'0 BALANCE THE ROTOR. 

C****************************** 
rMPLICrT REAL*8(A-H1D-Z) 
DIMENSION WA( 20000) I TW4( 10) I ANG( 10), TKK( l.O) 
DIMENSION TIM( 7 ) 1 TIM2( 7) 
DIMENSION VR( 7) I VI( 7) I WR( 7) I WI( 7) I TDG( 10) I 'YMA( 7) 
COMPLEX*16 X10(28) 1X11(28) 1XI(7) 1 X5(28),X6(28) 1 XC(7 1 3) 
COMPLEX*16 CXC(7 1 3) 1 C~(3 1 7) 1 CL(3 1 3) 1 TI(3 1 3) 1 ZC(3 1 7) 1 WC(3) 
COMPLEX* 1.6 X1( 7 ) I TW3 I PK( 3 I 3 ) , cr:.L( 3 I 3 ) 

C****************************** 
OPEN(ONrT-10 1FILE-'TW.OAT' 1TYPE-'OLD') 
OPEN(ONrT-2 1FILE-'W6.0AT' 1TYPE-'NEW') 
OPEN(UNrT-l.11FILE-•TW1.DAT' 1TYPE-'OLD') 

C****************************** 
READ ( 101 *} TW11NP1DT1 10Nl. 
READ (111*) I4l. 
READ (111*) (TIM2(I),I-11I41) 
READ (111 ~) (YMA(I),I-1,I41) 

C****************************** 
TW2JJ.Wl. 
TW3-DCMPLX( TW2 1 0. OD+ 1 ) 
oo 70 r-1~I4l. 
A1o-YMA( I ) *DCOS( TIM2( I ) ) 
A11-niA( I )*OSIN( TIM2( I:)) 

70 XI( r )-DCMPLX(A10,.Al.1) 
PRINT *,'XI',(XI(I),I-1.17) 
00 10 I4-1 1 NP 
READ (10,*) L6 
READ (111*) I4l. 
READ (111*) (TIM(I),I-11!41) 
READ ( 111 *) {YMA( I), r-1~ I:41) 

C****************************** 
c CALCtTIATE THE INFiiUENCE COEFFICIENTS 
C****************************** 

00 60 I-l.,I41 
AS=YMA(I)*OCOS(TIM(I)) 
A6-YMA(I)*DSIN(TIM(I)) 

60 Xl.(I}-DCMPLX(A5,A6) 
NT..,.I41 
00 11 J=1 1 I41 
T1o-TW1*DOOS((3.1415D+0/4.0D+O)) 
T11-TW1*DSIN((3.1415D+0/4.0D+O}) 
XC( J, I4 )-( Xl( J.)-XI( J) )/DCMPLX(TlO,Tll) 

11 CONTINUE 
10 CONTINUE 
C THE INFWENCE COEFFICENTS ARE THUS CALCUIATED 
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c CONJUGATE INF MAT. 
C****************************** 

DO 15 I-=1,NT 
DO 15 J=1,NP 
C1-DREAL( XC( I, J) ) 
C2=-1.0D+O*DIMAG(XC(I,J)) 

15 CXC(I,J)=DCMPLX(C1,C2) 
C ~TE INF MAT. ARE THUS FORMED 

DO 20 I-1,NT 
DO 20 J~1,NP 

20 CT(J,I)=CXC(I,J) 
C TRANSPOSE OF THE CONJUGATE MAT. 

DO 25 I-1,NP 
DO 25 J-1,NP 
CL( I, J )-DCMPLX( 0. 00+ 1., 0. 00+ 1. ) 
DO 25 K-l.,NT 

25 CL(I,J)-cT(I,K)*XC(K,J)~I,J) 

C ~ THE COMPLEX .MATRICES 

DO 30 I-l.,NP 
DO 30 J-l.,NP 
Tl.o-DCMPLX(-1..00+0,0.00+1.) 
TI( I,J)-DCMPLX( 0. 00+1., 0. 00+0) 

30 TI(I,I)-DCMPLX(l..OD+O,O.OD+l.) 
N-NP 
IA-NP 
M-NP 
IB=NP 
IJOB-0 
DO 1.20 I-1, NP 
00 1.20 J=l.,NP 

1.20 CLL( I,J)-cL( I,J) 
CALL LEQTl.C(CL,N,IA,TI,M,IB,IJOB,WA,IER) 
00 1.00 I-l.,NP 
00 1.00 J-l.,NP 
00 1.00 K-l.,NP 

1.00 PK(I,J)-TI(I,K)*CLL(K,J)+PK(I,J) 
00 35 I-l.,NP 
00 35 J=l.,NP 

35 TI(I,J)=TI(I,J)~l.O 

00 36 I-l.,NP 
00 36 J-l.,NT 

36 ZC( I,J)-DCMPLX( 0.00+1.,0.00+1.) 
00 40 I-l.,NP 
00 40 J-l.,NT 

00 40 K-l,NP 
40 ZC(I,J)-TI(I,K)*CT(K,J)+ZC(I,J) 

00 45 I-l.,NP 
45 WC( I )-ocMPLX( 0. 00+ 1, 0 • 00+ 1 ) 



DO 46 :r-1,NP 
DO 46 J-1,NT 
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46 WC(I)-ZC(I,J)*XI(J)~(I) 

DO 622 :r-1,NP 
622 PRINT *, 'WC' , WC( I ) 
C****************************** 

OPEN(UNIT-52,FILE-'WEIGBT',TYPE='NEW') 
WRITE (52,*) 'WEIGHT', (WC( I), I-1 ,NP) 
OPEN( UNIT=11, FILE-. '1W3 • DAT. , TYPE=. NEW I ) 

C****************************** 
DO 130 :r-1,NP 
D1-(D~WC( I)) )**2 
D2-(DIMAG(WC(I)))**2 
D12=DREAL(WC(I)) 
D22-DIMAG(WC{I)) 
TW4{I)-DSQRT{D1+D2) 

130 ANG(I)-DATAN{D22/D12) 
C****************************** 
c COMPLEX BALANCE WEIGHT 
C****************************** 

WRITE ( 11, *) NP 
WRITE (11,*) {WC{I),I=1,NP) 

C****************************** 
PlUNT *, 'BALANCE WEIGHT' , ( '1W4{ I ) , I-1, NP ) 
DO 135 :r-1,NP 
~(I)*360.0/(2.0*3.1415) 

~35 PRINT *,'ANGLE' ,ALL 
S'I'OP 
END 



APPENDIX-F 

UNBALANCE RESPONSE CALCULATIONS 

OF THE SINGLE ROTOR DISK 

In the present investigation, two rotor disks we re 

mounted on a rotor shaft which was supported by the 

fluid-film bearing. Bhat et al. [22] used a single rotor 

mounted at the middle of a rotor shaft with fluid-film 

bearings one at each end of the shaft as shown in Fig. F.l. 

The details of this system are given in Table F.l. 

The maximum unbalance response of this system 

obtained by the package developed in the present 

investigation and those obtained in [22] are shown in Fig. 

F.l. As can be seen in this figure the agreement between 

both the results is very good. It should be noted that the 

dynamic equation of motion developed in [22] were using the 

lumped-parameter method whereas, in the present 

investigation, they have been developed using the finite 

element method. 
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DYNAMICALLY CONDENSED RESPONSE 

BHAT R.B. C22J 

c2 

3.00 5 . .0.0 

ROTOR SPEED RPM. * 10 3 

Fig. F. 1 The Unbalance Response of the Single Rotor Di sk 
Mounted on Fluid-Film Bearings 

6.98 
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Table F.l Parameter Values of the Single Rotor Disk Bearing 
System 

Disk Weight 
Type of Bearings 
Bearing Diameter 
Bearing L/D Ratio 
Viscosity of Oil at 25.5°C 
Total Length of Rotor 
Modulus of Elasticity of Shaft 
Shaft Diameter 
Disk Diameter 
Disk Eccentricity 
Bearing Clearances 

116N 
Plain Cylindrical 
0.0254 m 

1 
0.0241 N.sec/m2 
0.5105 m 
2.145xloll N/m2 
0.022 m 
0.2032 m 
1.084xl0- 4Kg.m 
c 1=0.0000533m 
c 2=0.000188m 








