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ABSTRACT 

In the generation of power from fossil fuels and biomass, fl y ash (FA) is produced and 

represents both an environmental and economic cost with respect to disposaL However, it 

a lso represents a re-use opportunity. Increasing solid waste disposal costs and a focus on 

sustainable processing necessitates research in a lternative uses for fly ash. In this thesis, 

two ash samples, hog-boiler precipitate ash sample (HBP) and mixed ash pond sample 

(MAP) from the AV-cell pulp and paper plant were examined fo r their chemical, 

physical, thennal, and mineralogical properties. Other physio-chemical properties like 

density, pH and buffering power were a lso determined. 

C haracterization results were used to detennine and test a lternative uses for FA. Result 

shows that the amples are rich source of aluminosilicate, S i02, CaO, and AhOJ which 

are feedstock fo r adsorption and zeolite synthesis. T he concentration o f Si02 to J\.b03 is 

greater than 1.5 therefore indicating good potential for zeolite synthesis. T he FAs pH was 

between 10 .0 and 13.0 with buffering power ranges from 0 .5 to 4.9 mmol/pH, as such, 

were tested for ac id mine drainage (AMD) neutra lization. Treated effluent water fina l pH 

was between 9 .0 and 12.2 with contaminant removal effic iency of 85%. Neutra lization 

residue was treated hydrothermally and resulted in an increased adsorption properties 

zeolite, tested for AMD treatment and yielded above 90% contaminant removal 

efficiency. The total chemical species (Si02 + Al20 3 + CaC03 + CaO + Na20 + K20 + 

MgO Fe20 3) is greater than 90 wt.% hence, the FAs were tested for permeable reactive 

barriers (PRB) application and its contaminant removal e ffi c iency was a lso greater than 

90% with final treated e ffluent water pH ranges between 8.4 and 12.2. 

Overall, AMD treatment with FA provides a low cost, environmentally safe and 

beneficial use of what would be considered a waste. 
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CHAPTER ONE 

Introduction 

1.1 Background 

Fly ash (F ) is the by-product generated from combu tion of fossi l fue ls, forest residues, 

sawmill res idues, wood and biomas . Fly and bo iler ash is a more genera l name given to 

many types o f ash produced by the burning o f various carbon materials. T he common and 

more genera l types are; wood ash, coa l ash, tire ash and incinera tor ash, with each type 

having its specific chemical and phy ica l characte1ist ics. 

In Canada, power generation through thennal combustion of coal a lone was estimated to 

be a round 19% with coal power generating plants using roughly 93% of to ta l coal 

resources produced in Canada. This result in 5 million tonnes fl y ash every year fro m 

coal and les than 32% was recycled while the rema inder was land-fil led (Muluken et a l. , 

2009). Other industries produce FA such as power, steam plants, pulp and paper etc ... , 

take for instance, 16. 1 mill ion tonnes o f bo iler ash were genera ted in 1996 in Europe by 

the utili ty indu try. 

T he dispo a l practice is commonly land fill ing however, the resulting leachate is pos ibly 

toxic and may infiltrate into surrounding ground water or surface water. Furthermore, 

ava ilable land mass for landfills is decreasing. As such, identi fying and developing 

applications for FA is c ritical. The increasing world population results in an increasing 

and higher demand for e lectric ity ( Feuerborn, 2005). Meanwhile, electricity and power 



genera tion plants has discovered most interest in coal combustion and biomass. which 

also suggested a likely continui ty in an increasing FA generation. Throughout the world. 

ll y ash and bo iler ash are mostly disposed o r in landfill s. 

Boiler Sttlnl to Turbine Genmtor Transfotmer 
Turbine 

' I 

Elecllicity 

0 r -.: ... -· - . 
' ,, 
: ' 

•V· 
V'• ' 

Coal Pilu Stack rGD ESP SCR Burner Pulverizer Coal Pump Condenser Coolrng water 
Gypsum Fly Ash Bottom Ash Hopper from lake 

Sctwma11c d1agram cowws,- of 011tario Power Generiltioll Inc . ~·. vw oro com 

Figure I. I: tility Plant (Onta rio Power G eneration Inc. ) genera ting Boiler and Fly Ash. 
(Modified from Association of Ca nadian Industries Recycling Coal Ash C IRCA, 201 0) 

The management o r ac id mtne drainage (AMD) is one possible usc fo r FA. AM D is 

acidic waste water fo nnecl from ox idation o r sulphide compounds tn mi ne waste water 

and drainage. The effect is the generntion or sulphuric ncid with resulting low pH . The 

low pH is tox ic to wnter borne orga nisms and also results in the bioavai lability o r heavy 

metals (Kumar et al.. 2008. Somerset ct a l.. 2005, Misra et nl. , 1996. ). 

2 



In recent years, resea rchers have proposed van ous ways of AM D abatement and 

mitiga tion. eutra lization ustng chemical precipitation (using lime/limestone) and 

agglomeration is the most common method (Bably and Roberts, 2010). T he average cost 

of limestone use at a mine site per annum is approximately $225,000 (Hewitt, 2006), and 

that o f hydrated lime is approximately $37 1,888 (Hewitt, 2006), therefore using these 

chemica ls to manage AMD can be costly. 

Application o f FA to replace lime and other chemicals in the management o f AM D and 

reactive mine ta ilings has been suggested by Kumar et a l. , (2008), Somerset et a l. , (2005) 

and Misra et a t. , ( 1996). The potentia l of FA to neutra lize AM D is based on the presence 

of alkaline minerals/chemicals in signi ti cant quantity such as CaO, MgO, K:!O, CaC03, 

Ca(OH}!, etc ... (Somerset et a l. , 2005). Precipita tion of metal hydroxides occurs at ce11a in 

pH ranges therefore controlling AMD pH enhances metal removal (Aube, 2004). 

1.2 Research Objective and Scope 

Coal and wood fired utili ty generation companies/stations reqwre FA management to 

control costs. FAs contain large amount of heavy metals that may leach into the ground 

water in amounts exceeding provincial and/or federal regulatory levels for safety, thereby 

posing an environmental risk. Recycling FA and bo iler ash through its usage for various 

application purposes would signi ficantly reduce its environmental impact and cost of 

d isposal. 
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T he objectives of this research are to investigate and detem1ine the feasibility and options 

for fl y and boile r ash, inc luding: 

• Charac terization of FA samples collected from AV-Cell Pulp and Paper Industry 

(Atho lvi lle, ew Brunswick) in tenns of chemical composition, mineralogical 

composition, e lementa l composition, amorphous and crysta llin ity, therma l propertie , 

surface area and textural prope1ties, morphology, physc io-chemical and other 

phy ical prope1ties. 

• Application of FA as low cost lime replacement in AM D treatment. 

• Application of FA as penneable reactive barrier membrane (PRB) in AMD treatment. 

• Investiga te the conversion of 'spent'' FA during AMD neutra lization to zeolite for 

adsorption applications. 

1.3 Thesis Organization 

The the is organized into severa l chapters. This chapter, one, includes brief 

background description, which introduces the basic content and subject matter of the 

research work, the scope and objectives of the research. C hapte r two reviews the 

literature. Chapter three desc1ibe the experimental work includ ing characterization of raw 

fly ash (chemical, them1a l, minera logical, morphology, surface area, crystallin ity, 

physcio-chemical, and other physical characterization), FA: A MD neutra lization, Zeolite 

Synthesis, AMD generation through weathering test and Permeable Reactive Membrane 
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experiments (PRB) experiments. T he results and ana lyses are presented in chapter fo ur. 

Chapter five comprises brie f of the summary of conclusions and recommendation. 

5 



CH APTER T W O 

Literature Review 

2. 1 Fly A h Review 

Increasing demands in energy requ ire beuer energ management in thermal power plants. 

utility and steam plants. Low cost fuel sources such as coa l and lignite. heavy o ils. 

lo re try residue (lossil fuels. tree barks. saw dust. wood chips). and other plant biomass 

arc burned in furnaces to produce heat to dri ve steam turbines. Combustion by-products 

includes solid residues. ' hich become entrained in the exhaust gases: removed in the 

post-combu tion. arc re ferred to as lly ash (F ). The heavy li·action that arc not cntrn inecl 

arc collected in a hopper containing water locClled at the bouom o r the furnace and is 

mostly referred to as the Boiler ash. The boiler ash is di sposed in n pond using high-

pressure water jet. The World Energy Council predicts an incn;asing ra te in energy 

demand o r 1.6% from 2004 to 2030 (Gonza lez el al.. 2009) . 

Ill 

'l 
I 

Figure 2.1 : Typica l com bustion pr·occss plant for l'Oa l a nd bituminous mater ia ls fo r powct·s. 
(Modified from Sta ntcc 20 10) 
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Figure 2.2: Typica l flow process for Dry-Bottom Utility Boiler a nd Production of Coal Ash. 
(Modified fro m Sincla ir Rob, 2006). 

The largest dem(l nd growth is in fossil fuels and it · (l ilies (coa l. biomass. ligni te. wood 

etc . .. ). from about 2772 Mt in 2004 to a projected 444 1 t in 2030 (Gonzalez et a l. . 

2009). Therefore. lly and boiler ash will be a major challenge ' ith respect to d isposal. 

2. 1.1 Types and Sources of fl y Ash 

Generall y. Boiler/Fly Ash is the generic name given to many types or ashes produced b 

combustion (burning) o r variou carbonaceous materi (l l. ny carbon based fue l or waste 

materi(l l produces ash and the ·ource determines the quantit and qualit or the ash 

produced. The fo ll owing arc the most common ash types reported depend ing on the 

materi al used fo r combustion. 

1. Wood sh - Generated from wood and wooclehips. barks. sawdust and other 

fo rest residues are used as hcming source lor steam turbine. Due to its avai labil it 
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low cost and convenience, wood chips and waste pulp liquors, which are 

produced in chemical pulping processes, are often mixed with fuels and 

historically pre ferred for the power boilers (McCubbin, 1983). In add ition, wood 

re fuse (wood waste and bark) or hog fuel are common fuels for boilers 

(McCubbin, 1983). 

2. Coal Ash - Coal powered e lectrical generating plants utilize pulverised coal and 

produce coal fl y ash as a waste product. Coal fly ash includes organic and 

inorganic matter released during coal combustion process which sol idifies while 

suspended in exhaust gases and collected through e lectrostatic precipitators 

(Wang et al., 2006). 

3. Tire Ash - An alternate disposal method for used tires is to grind and burn for 

fuel. Combustion or pyro lys is o f waste tires results in tire ash residue the 

chemical nature of tires gives ri se to toxic and metal ric h ash residue generated 

from tires. 

4. Incinerator Ash - This is produced from burning garbage and municipal solid 

wastes (MSW). It is an a lternate to solid waste disposa l method. 

2.2 Characteristics of FA 

2.2.1 Morphology 

The common nature of FA partic les produced from utility and power plants consists 

amorphous particles ranging from 0.0 I - I 00 1-1m diameter (glass-like and/or c rysta ll ine). 

Spherical-shaped particles are the major constituent of FA and may be either hollow 
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spheres ca lled ccnosphercs, or broad spherical pa11ic les filled with smaller particles and 

crysl<lls ca lled the plcrosphcrcs (Zhou and Haynes. 20 I 0. and Gonzalez. 2009). 

Figure 2.3: (a) Ccnospheres (b) J>lerosphcres (Modified from Claudia ct al., 2009) 

2.2 .2 C hemistry and chemical composition of Flay Ash 

Generally, the physicochemica l and minera logical chara cteristics o r fl y ash var and 

depend on source and type or feedstock (coal, lignite. woo I etc .. . ), conditions or 

combustion, particle size. weathering extent and age or fl y ash {Rctm and Masto. 20 I 0. 

Zhou and Ha ynes. 20 I 0). Most fl y ctsh consists or major. minor. trace and micro-clement 

as its constituents. Chemically, 90- 99% or the FAs consists or Si. I. Fe. Ca. Mg. " 

and K. The major elements present arc i. AI. Fe ct nd Ca while the minor clements ctrc 

Mg. Ti. and K. (Ram and Masto, 20 I 0). Although typical chemical conten t or F 1s 
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usually expressed as oxides e.g Si02, Ab03, Fe20 3, CaO, NazO, Ti02, MgO, K20 etc . . . 

major and micronutrients o f FA inc lude P, B, Cu, Zn and Mn and some trace elements 

and radio isotopes. atura lly occuring radionuclides in the FAs are reported to be from U, 

and Th series, as well as .JOK (Ram and Masto, 20 I 0). 

Table 2.1: Typical Ranges in chemical copositition of various coal 
generated FA (Modified from Behera, 201 0) 

Component Bituminous Sub-bituminous Lignite 

SiO, (%) 20-60 40-60 15-45 

Alz0 3 (%) 5-35 20-30 20-25 

Fe20 3 (%) 10-40 4- 10 4-15 

CaO (%) 1-1 2 5-30 15-40 

LOI (%) 0- 15 0-3 0-5 

Table 2.2: Typical Chemical composition ofF A (Modified from Kumar et at., 2 008) 
Concentration 

Major Ox ides Concentration(%w/w) Trace e lement (mg/kg) 

Si02 51.5 As 12 

Ti02 1.4 Cu 43 

Ah03 26.3 Mo 5 

Fe20 3 5 Ni 89 

MnO 0. 1 Pb 47 

MgO 2.5 Sr 1385 

CaO 7.8 Ba 863 

Na20 0.8 Cr 178 

K20 0.7 Zn 6 1 

PzOs 0.4 Co 28 

H20 0. 1 

LOI 2.5 

Total 99. 1 
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2.2.3 Other Physical Characteristics 

Generally tly ash is characterized by its light weight, smal l spherical particles and are 

greyish to dark grey in colour. FA particle a re very fi ne with den ity range of 1.97-

2.89 g/cm3, speci tic surface area of 4000 - I 0,000 cm2/g, particle diameter of I - 150 ~Lm 

refractory a nd pozzo lanic characteristics (Behera, 20 I 0). Carette and Malhotra ( 1986) 

c haracterized Canadian FA for their relative performances in concrete application and 

reported that the physical characteri tics o f FAs widely va ried . Specific gravity for 

instance ranged from 1.90 for subbi tuminous ash to 2.96 for iron- rich ash (Carette and 

Malhotra, 1986). Furthermore, reported FA ranging in surface area from 1300 cm2/g for 

bituminous ash to greater than 58 10 cm2/g for lignite ash (Carette and Malhotra, 1986). 

Al though these properties also depend on the combustion conditions and na ture of the 

combustion mate1ia ls (Behera, 20 1 0), FAs were also characterized by die lectric property 

wi th constant of I 0~, therefore can a lso be applied in electronic areas of application 

(Behera, 20 I 0). 

2.2.4 Classification 

ASTM C6 18 c lassifies FAs into c lass C a nd class F based on the amount of lime present. 

Class C FA are tho e with CaO content greater than 10% while class F FAs are those 

wi th content of CaO less than I 0% (ASTM C618, Behera, 20 I 0, Ram and Masto, 20 I 0, 

Roberts et a l. , 20 I 0, and Muluken et a l. , 2009). The minimum overall content of Si02, 

A120 3 and Fe20 3 is 50% for c lass C and typically contains a higher lime content greater 

than 20% (CaO > 20%) while the minimum overall content of Si02, Ab03 and Fe203 is 
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70% for c lass F with content o f lime (CaO) less than 10% (CaO < 10%) (Zhou and 

Haynes, 20 I 0). 

Table 2.3: Typical Classess of Fly Ash with Compositional ranges 
(Modified from Behera, 20 I 0) 

Class F Class C 

Compound Low-Fe High-Fe Low-Ca High-Ca 

Si02 46-57 42-54 46-59 25-42 

Ab OJ 18-29 16.5-24 14-22 15-2 1 

Fe:! OJ 6.0- 16 16-24 5.0- 13 5.0- 10 

CaO 1.8-5.5 1.3-3.8 8.0- 16 17-32 

MgO 0.7-2. 1 0.3-1 .2 3.2-4.9 4.0- 12.5 

K:!O 1.9-2.8 2.1 -2.7 0.6- 1.1 0.3- 1.6 

Na20 0.2-1.1 0 .2-0.9 1.3-4 .2 0.8-6.0 

S0 3 0.4-2.9 0.5-1 .8 0.4-2.5 0.4-5.0 

Ti02 1.0-2.0 1.0-1.5 < I < I 

LO I 0.6-4.8 1.2-5.0 0.1-2.3 0 . 1- 1.0 

2.2.5 Mineralogical Composition of FA 

T he phase and mineral composition of FA comprises of organic, inorganic and Ouicl 

constituent with crysta lline, liquid, gas and gas - liquid inclusions. Among the minera l 

phases of FA are the fe rro-alluminosilicate glassy materials with variable amount of 

unburned/free carbon content incorporated with quartz, mullite, magnetite, and hematite 

as the major mineral phases (Ram and Masto, 20 I 0). FA ma inly conta ins amorphous 

fe rro-alluminosilicate glass (66 - 95%) derived from silicate transformation during 

combustion and other mineral phases include quartz (SiO:!), mull ite (3AI20 3-2 Si02), 
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(Fe30 4), and ca lcite (CaC03) , depending on the mineralogical nature of the feed materials 

(Zhou and Haynes, 20 I 0). Wig ley and Williamson, (2005) analysed the minera ls 

tran formed on fl y a h during combustion and categorized a ; ( I) C lay minera ls; 

kaolinite (AI2Si20 5(0H)4) , lllinite (KAI 3Si0 10(0H)2), a nd montmorillonite ( like lllinitc 

but with replaceable Ca and Na mo re abundant than K). (2) Majo r minera l phase; quartz 

(Si02) , pyrite (FeS1), carbonates; calcite (CaC03), do lomite (CaMg(C03h ), ankerite 

(Ca( Mg, Fe, Mn)(C0 3h), and siderite (Fe 0 3) and (3) Minor mineral phases; apa tite 

(Ca5(P04)(0H)), c randallite (Cai\13(P04 )(S04)(0H)6), feldspar (composition between 

aAISi30 8 and CaAbS i~O ) garnet ((Mg Fe) AbSi 0 11) and rutile CfiO::- ). 

2.2.6 Pozzolanicity of Fly Ash 

The ability o r ny ash to exhibit its own self-cementing behaviour is re ferred to as its 

pozzolanicity. P01tland cement production requires a large amount of energy and raw 

materia ls therefore has taken energy efficiency a lte rnatives inc luding util iz ing fl y ash as 

a lternative raw materia l source (Gonzalez et al. , 2009). C lass F fl y ash is rcfeJTed to as 

pozzolanic and c lass C fly ash known as cementitous materials. In addition, FJ\ has been 

studied as a binder or cement replacement in concrete (Gonzalez et a l. , 2009). The high 

lime content of c lass C FA allows application as both pozzolanic and cementitous agent 

whereas class F FA lower lime content restricts it to pozzolanic applications (Tanm, 

1993). 
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2.3 Fly Ash generation and management in Canada 

Power from coal accounts for 17% o f Canada's tota l e lectric ity demand resulting in a 

total coal ash generated in 2004 estimated to be 6 .24Mt (S incla ir, 2006). In addition, ash 

residues a re produced yearly in e lectric power plants, steam bo iler plants, and the pulp 

and paper industry. Its management has been a major problem in Canada and worldwide 

due to the ir characteristics and the large amounts genera ted every yea r. It was estimated 

tha t 553,000 tons of ash residues were generated in Canadian pulp and paper in 1995 

(Re id, 1998), 775,000 tons in 2002 (Elliott and Mahmood, 2005) and cuJTently, total of 

over 5 millio n tonnes fl y ash was rep011edl y generated every year in Canada (Mu luken et 

a l. , 2009) . 

T he management prac tice for 84% o f Canadian pulp and paper mills in the past was 

disposa l to landfills. However, the costs associated with tipping fees, the extensive 

measures required coupled with longer hauling distances have inc reased substantia lly in 

the last decade. In addition there are concerns as ociated with leaching meta ls and 

organic compound and the ir migration into ground water or nearby surface water. Current 

recycling ra tes of fly ashes as estimated by Association of Canadian Industries Recycling 

Coal Ash (CIRC A, 20 10) was va lued at 6% bottom ash as at 2007 and therefore, 

predicted ample room for improvement in fu ture time mostly in concrete and construction 

a reas of application. 
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Table 2.4: Coal Asb Generation and Usage in Canada 

(Modified from CIRCA, 2010) 

Canada Produc tion and use of Coal Combustion Products 
(CC Ps) 2005 - 2007 Average 

Bottom Ash 

Production (000 tonnes) 

Produced 1624 

Disposed/Stored 142 1 

Removed from disposal 5 

Use (Domestic) 

Cement 52 

Concrete/Grout 0 

Mining Applications 

Road-base/Sub-base 48 

Wallboard 0 

Others (4) 2 

Tota l Use 102 

Use Percentage 6 

Table 2.5: Fly ash production and utilization in different countries of the World 
(Modified from Bebera, 20 I 0) 

Annual FA 
Production 

SLNO Country (Mt)( I 06tonnes) FJ\ Utilizat ion(%) 

I India 11 2 38 

2 C hina 100 45 

3 USA 75 65 

4 Germany 40 85 

5 UK 15 50 

6 Australia 10 85 

7 Canada 6 75 

8 France 3 85 

9 Denmark 2 100 

10 Italy 2 100 

II Netherlands 2 100 
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I Canada , 

Miooral fil~r Cement 39.9o/o 
llowable fill6.7o/o 

Road-base or 
sub-base 0.8% 

Cement8.4% 

Concrete ( ' 
or grou1 

50.3o/o 

~ 
Flowab~ fill O.S% Structural fill16.7% 

Road-base/sub-base 1.7% 

Soil modn~tion stab~~at~n 1.8% 

Mining 
~~t~ns 

13.8o/o 

Coocrete 
or grout 
38.8o/o 

Other 7.3o/o 

Mineral filler in asphan 0.3% 

Mining awl~t~ns 4.0% 

Aggregate o.o% Waste stabilization'soiKln~t~n 8.7% 
AgricuHure 0.2o/o 

Figure 2.4 Typical FA recycling Options in Canada a nd USA (Modified from Rob, 2006) 

2.3.1 Power Genera ting Plants 

Most power plant boi ler u e coal. forestry re idue. and other fossil fuels there fo re. F !\ is 

their major by-product. Coal generated FA was estimated to be 349Mt fl y ash worldv ide 

in the year 2000 (Wang and Hu. 2006). In Canada. power generation through thermal 

combustion of coal was estimated to be 19% and resulting in an estimated 5 million 

tonnes FA per year (Muluken et al.. 2009). 

2.3.2 Pulp and Paper Industry 

The Pulp and paper industry in Canada generate electric power concurrently with steam 

production for proces heat or co-generation. Power boilers utilize lorest residue and/or 

fossil fue l as a heat source. The wood refuse. commonly referred to a hog fuel. con i ts 
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of wood wastes such as; saw dust, sticks, wood chips, cuto fTs, overs, bark as wel l as 

wood harvest residues (McCubbin, 1983). Combustion of these materia ls generates fl y 

and bottom ash as the major by-products. 

2.3.3 Environmental Impacts of Disposal 

FA contains fine partic les that if not managed properly, become air pollutant (Envi -

ewsletter, 2006). In addition, poor management of FA leads to environmenta l problems 

which includes loss o f usable land, soils and plant contamination, as well as air pollution 

(Kumar et a t. , 2008). Landfil l prac tices a re generally considered the most economic \.vays 

of waste disposal, up to 95% of solid wastes generated worlwide are di ·posed through 

this practice (Scott et at. , 2005). Landfi ll i the most common di ' posal option for F/\ and 

pose risks to ground surface water. Disposal of FA will be a cha llenge in the future as 

volumes of FA increases and disposa l options become more restrictive. 

2.3.5 Ash Pond 

In the United States, about 52% of the ash is conveyed into the disposa l pond (RE EL, 

1994). To meet the Resources Conservation and Recovery Act (RC RA) Subtitle D 

requirement there are two ponds (usua lly the primary pond and a discharge pond) 

(RE EL, 1994), and up to 90 percent of the pond water is usually recycled. Pond are 

lined with liners and groundwater is monitored to determine and mitigate any leaching 

(RENEL, 1994). 
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2.3.6 Government and Provincial Regulations on Fly Ash 

Fly ash is ca tegorized as a bioso lids therefore a ll regula tions bo th federa l and provinc ia l, 

that go e rns bioso lids applie to FA (Storm and wastewater, 2003). 

Table 2.6: Comparison of different biosolids quality categories 
Modified from Storm and Wastewater, 2003) 

Parameter Category I Category 2 Category 3 
Exceptiona l Quality 

US EPA (EQ ) C lass A Class B 

Alberta (No C lassification) 
British 

Columbia C lass A Compost C lass A Class B 

Ontario (No C lassifica tion) 

Quebec C l , PI C2, P2 C3, P3 
Less than I 000 M PN 

Less than 1000 MPN feca l coliforms per 

feca l coli forms per gram gram of to ta l sol ids, 
Less than 2 

of tota l solids, dry dry weight or Density Mill ion M P 
weight o r Density of o f Salmone lla le fecal 
Salmonella less than 3 than 3 MPN per grams coli forn1s per 

Pathogen MPN per grams of to ta l o f total solids, dry l:,rram of to ta l 
Reduction solids, dry weight weight solids, d ry 
Requirements weight 
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2.3.7 USEPA Disposal Standards and Regulations 

Table 2.7: Typical USEPA Regulatory Standards for Classes of Biosolids 
(Modified from Storm and Wastewater, 2003) 

Example o f Po llutant Limits (mglkg to ta l so lids dry weight) 

BC C ia sA Fertili zer Act B C lass B 
Compost US EPA o f Canada US EPA Biosolids US EPA 

As 13 4 1 75 75 75 75 

Cd 3 39 20 85 :w 85 

Cr 100 1,200 - 3,000 1,060 3,000 

Cu 400 1,500 - 4,300 2,200 4 ,300 

Pb 150 300 500 840 500 840 

Hg 2 17 5 57 15 57 
Mo 5 (under review) 20 75 (under review) 75 

Ni 62 420 180 420 180 420 

Se 2 36 14 100 14 100 

Zn 500 2,800 1,850 7,500 1,850 7,500 

2.4 Mine Tailings and Acid Mine Drainage (AMD) 

2.4.1 AMD 

Acid mine dra inage (AMD) is the acidic water formed from the oxidation o f sulphide 

mineral (Skousen et a l. , L 997). T he environmenta l impacts and cost o f managing /\M D 

in the mineral processing and mining industries is significant. The oxidation of sulphur 

compounds fonns sulphuric acid which would negative ly impact eco ystems if re leased 

untreated (Bably and Roberts 20 I 0; Kumar et al. , 2008, and Somerset et a l. , 2005). 
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Figut·e 2.5: Typical Mine Tailing d eposits (Black II ills) 
(Modified f.-om Google.com by LeinaDoli) 

One or the most well-accepted and most widely used AM D management methods is 

neutralization with lime (CaO) or limestone (CaCO:d (Bably and Roberts. 20 I 0; Kumar 

ct al. . 2008. and omcrset et al.. 2005). The limiting rac tors or neutral ising AMD usi ng 

lime and limestone arc the cost involved and diminishing lime reserves; thcrcrorc. other 

treatment options arc being ex plored. 

Figure 2.6: Typical Acid Mine Drainage Water Pool 
(l\1odificd from Googlc.com by LeinaDoli) 
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Outside the application o f lime and limestone, chemica ls like Na2C0 1, Ca(OHh and 

aOH has a lso been used for AMD neutra lizatio n (Somerset et a l. , 2005). Application o f 

FA to replace lime and o ther chemicals in the management of /\MD and reactive m ine 

ta il ings is an option due to the chemical make-up o f FA. FA is composed of strong 

a lka line minera ls and chemica ls with pH (> 10.0) capable of bringing the pH of AM D to 

a lmost neutra l. The potential o f FA to neutra lize AMD is based o n the presence o f 

a lka line minera ls/chemicals in s ignificant quantity such as CaO, MgO, K20 , CaC03, 

Ca(O Hh, etc .. . (Somerset et al. , 2005). FA or materia ls derived from Hy ash for /\M D 

treatment could reduce (AMD) management cost due to reduced chem ica l costs and 

trea tment e ffi c iency. FA and/or FA based zeolite has been a lso used for /\M D treatment 

(Bably and Roberts, 20 I 0; Kumar et a l. , 2008; Gita ri et a l. , 2005· Somer et et a l. , 2005, 

and Hellier, 1998). 

2.4.2 Generation and Chemistry of Acid Mine Drainage from mine wastes 

Chemical wea thering o f sulphide minera ls no t only reduces pH but also re leases 

contaminants from ore and mine wastes into the water bodies where they become mobile 

and thus bioavailable (Younger et al. , 2002). The fa te of AMD depend on the type of 

mine minera ls and the nature of geological surroundings (Pa ine, 1987). During mining, 

sulphide minerals such as pyrite ( FeS2) come in contact with oxygen and water thereby 

resulting in sulphuric ac id gene ration characterized by high acid ity (pH 2-4), high 

sulphate concentration ( 1-20 giL) and generally w ith high concentrations of Fe, M n, AI, 

C u, Zn, Pb and Cd (Kumar et a l _008). Pyrite is the majo r contributor to /\M D 
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fom1ation as it is the most common outlined ulphate minerals (Rios c t al., 2007 and 

Skou en et al. , 1997). To demonstrate the formation o f AM D, the ox idation o f Pyrite is 

outlined below ( Rios et a l. , 2007): 

Fe2
' + 0 2 + 4 H' 

4 Fe3
' + 12 H20 

Fe2
' +1SO.t 2 H ' 

-7 4 Fe3
' + l H20 

-7 4 Fe(OH)J(s) + 4H ' 

15 Fe2
' + 1SO.t + 16 H' 

(2. 1) 

(2.2) 

(2.3) 

(2.4) 

Iron is the dominant meta l species in A MD from most Canadian mine s ites, with 

concentration ranges from 0.5 - 774 mg/ L ( Rio, 1997), copper and zmc were a lso 

present in s ignificant concentration at most sites and sulphate concentrations reportedly 

ranged from 950 - 451 6 mg/L (Rio, 1997). 

2.5 Fly Ash Utilization Options 

2.5.1 Zcolitization/Zeolite Synthesis 

Zeolites are hydra ted a luminosilica te minerals w ith a three dimensional o pe n struc ture 

useful fo r immobilizing toxic e lements (C laudia et a l. , 2009). FA as a zeolite has been 

investigated in contaminated wate r treatment and acid mine drainage (Bably and Roberts, 

20 10). 

Zeolite synthesis from raw FA is accomplished by a lkali fusion and hydrothermal 

treatment o f raw FA. Zeolite produced from fly ash i c rysta lline in nature and due to its 

high ca tion exchange capacity; it is very e ffective in heavy meta l removal ( Bably and 

Roberts, 20 I 0). Bably et a l. , (20 I 0) investigated FA zeolite and found to be e ffective at 
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removing contaminant of concern from AM D. Other studies showed similar results 

inc luding Querol et a t. , (2002), Gitari et at., (2005), and Solanki et a t. , (20 I 0). 

2.5.2 Neutralization 

In typical /\MD neutralization lime and/or quicklime is commonly used. These 

compounds are naturally occuring constituent o f FA. Kumar et al., (2008) reported a high 

percentage of major, minor, trace clement and sulphate ( o.t ) removal by contact ing 

AM D with different closes of raw FJ\ . The contaminants were reportedly removed to 

minimum bearable (to levels that is less harmful) and the solid residues is suitable as a 

binder. Rios et a t, (2007) investigated remova l of heavy metals from /\MD using coal FA 

and synthesized FA zeolites as low-cost sorbents fo r AMD abatement. Gitari et al. , 

(20 I 0) extended these studies to cletennine the impact of reaction time and species 

removal. The effluent water was predicted u ing geochemical code PHREEQC w ith 

W ATEQ4 databa e . The results established that removal of inorganic pecies depended 

on the pH regime, and also the so/- removal depends on precipitation of gypsum, 

barite, celestite and iron-oxyhydrox ides at pH greater than 5.5. PHREEQC also predicted 

iron, aluminum, and manganese-bearing phases precipitation at pH ranges of 5.53- 9. 12. 

As pmt of research contribution to the ex isting innovations, the current research 

investigation will be extended to studying the generated solid residues fro m 

neutralization process (FA:AMD neutralization) for zeo lite synthesis and its subsequent 

application in waste water management. 
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2.5.3 Permeable Reactive Barrier (PRB) Application 

Permeable reac tive barrie rs (PRB) are used to trea t metals and increa e the pH o f ac idic 

waste water by promoting sulpha te reduction and meta l sulphide precipita tion. Benner ct 

a l, ( 1999) inve ligated the geochemistry o f PRB fo r AMD treatment in a fi e ld of ickcl 

pond. A dramatic improvement in the water qua li ty was reported w ith subsequent 

decrease in contaminants concentratio ns (Snt was reduced from 3000 to 2000mg/L, Fe 

decreased from 1300 to 270mg/ L, and a lka linity inc reased from 800 to 2700mg/ L). The 

geochemica l modelling indicated supersaturation of the barrier itself with precipita tion of 

Fe, amorphous iron - su lphide, or both. In a study by Komnitsas et al. , (2004), li ~:,'llite FA 

was used as a PRB for meta l ions removal (Fe, Mn, Zn, i, Cd, Co, AI and C u) AMD. It 

was reported that a lmost a ll inorganic contaminants were removed almost completely 

a fte r severa l day . 

T he contaminant removal mechani m propo eel was hydroxide-ox idation , precipi tat ion, 

and co-precipitations with subsequent adsorptio n onto the barrier surface. Muluken et al , 

(20 I 0) stud ied the feasibi lity o f using coa l FA and FA - bentonite mixtures as a barrier 

materia ls for mine waste. The overall results showed that heavy meta ls were removed 

from the AMD e ffluent well be low the leachate crite ria set by the Ontario Government. 
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2.5.4 Tailing waste Agglomeration and Backfilling Application 

Fig ure 2.7: T ypical Tailing Agglo meratio n (Modified fro m Golde r P<Jste Tech nology LTD) 
( J> AST EC) 

Tradi tionally. coarse fractions or mi ne taili ngs an; used for backfill excluding the fine 

rractions by a c lassific<~tion process. Agglomeration has been one o r the most ef'll:ct ive 

methods o r dealing with reactive fine rractions o r mine taili ngs with the usc or binders. 

Fly <ISh is now' idely used in this appli c<1 tion area (fi g.2 .7. agglomeration and paste). as 

binder in replacement or Port land cement to immobili ze the reacti ve components o r mine 

tailings. The usc or th is techno logy pro ides an allractivc recyc ling option f(w minimizing 

engineering and environmental constraints commonly a. sociated with fine mineral wastes 

disposal. isra et al. ( 1996) investigated the usc or FA to agglomerate mine wili ngs 

rrom two anadian fields ( oranda. Quebec. Can<1da and Cyprus Thompson Creek. 

Cl<1yton. Idaho). It was reported that FA significantly reduced cement requirement 

without decrease 1n strength and immobilization erfcct. Misra et al.. ( 1996) also uscd 

toxici ty characteristics leachi ng proccdurc (TCLP) tests on thc oranda mine tailings. 
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using a FA - cement mixture as a binder. Extractable contaminant concent ration were 

lowered in the resulting leachate and below the regu lated level than pastes prepared rrom 

using fl y ash or cement alone. 

Amaratunga. and Yaschyshyn. ( 1997) studied the e rfect or various binder dosages, curing 

periods and combination of pellets to tailing ratios on line gold mill tailings. Compressive 

strengths or the paste were enhanced ' hile the modulus or elasticity was trippled with 

pozzolanic binders. The results suggested that agglomerated ta ilings paste lill (ATP ) 

minimizes fine tailings surlace di sposal and max imizes utilizing line tailing pastes lor 

backli ll applications . .fang and Kim. (2000) reported that highest strength was obtained 

with optimum mixi ng ratio o r 85% cement. 5% tailing waste and I 0% lly ash. 

Figure 2.8: Typical Tailing Agglomeration (Modified from Golder Paste Technology LTD) 
(PASTEC) 
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2.5.5 Light concrete and Cement Application 

Siliceous by-products with good pozzol<1 nic ch<1 r<1cteristics lw vc the potenti<l l o r m<1k ing 

any structure more durable (Piyush and Raj. 2002). Thi · is clue to dense microstructure 

lo rmed during pozzolanic reaction. : the sign ilicant reduction in attacks rrom environment 

is through interconnected mierospores (Pi yush and Raj . 2002 ). Pi yush and Raj . ( 2002} 

used mi xed pond ash ll·om an integrated steel plant to manulitcture bricks which w<1s 

reportedl y cost effecti ve with superior strcgth and structural quali ty. Pi yush and Raj. 

(2002) established that the mi xed pond <1sh used was \ ithi n the mnge o r 45 - 50° o and 

gives the optimum ratio. 

Figure 2.9: Light concrete Plant (Modified from Sinclair Rob, 2006) 

In 2006. <1 survey by the American Coal Ash Assoc iation (AC A ) inclic11ted that annwtl 

generation o r fl y ash in the S was estimated to be 72 .4 million tons and 45°o o r the tot11 l 

was re-used. Furthermore. 59°o o r the utili zed ash was used in cement and conc rete 
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(Karthik, 2009). As such, currently concrete i the largest market fo r FA, greater than 

30% of to ta l cementing materials require ash content in conc rete applicatio n, (Karth ik, 

2009). In block manufacturing, addition of fl y ash enhanced; strength, plastic ity, 

improved fini shing and textures, better mould li fe, reduced hrinkage and increased 

d urabili ty ( Headwaters Resources, 2005). 

2.5.6 C02 capture and sequestration 

The capture and control of CO~ is estimated to be approx imately $60 to 500 per tonne of 

CO:! captured (Phe lps et a l. , 2004) . Phe lps e t a l. , (2004) investigated the uti lization of 

metal-rich fl y ash to sequester CO~ and metals. The process in olved m icrobial 

convers ton o f CO:! (biogeochemical carbonatio n) into sparingly soluble carbonaceous 

materia l (e.g CaCO, and FeC03) us ing meta l-reduci ng bacterial o n metal-rich fl y ash and 

lime. The precipitation of the resulting mixture showed carbonate f01m ation indicating 

C02 capture. Muduli et a l.(2009) used gypsum (calc ium bearing material) and silica

aluminum rich FA mixture for C02 capture. This combination cau ed mineral 

carbonation and was proposed for long term C0 2 storage unde r ambient a tmospheric 

condition. Arenillas et a l. , (2005) utilized FA materia l as a sorbent fo r C02 capture. T he 

absorption capacity o f the sorbent was enhanced by the addition of organic bases 

(polyethylenimine with polyethylene). 

2.5. 7 Effluent gas stream adsorption 

Steam hydration (hydrothem1al activa tion) of pozzolanic fly ash produces a calcium

aluminwn silicate-hydrate (Ca2(Si<JAI3)0:!4 .8H20) and calc ium carbonate (CaC03) whic h 
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can be used in so~ removal (Teong et al., 2003). Previous research has established that 

calcium-aluminum ilicate-hydrate converts so2 to a luminum silicate-hydrate and 

ca lc ium carbona te to calc ium sulphate (CaSO~) (Teong et a l. , 2003). Da ini , ( 1996) 

investigated utilizing FA- Ca(OH)2 to synthes ize a S02 sorbent and established that the 

produced sorbent was pozzolanic in nature with a better reactivity towards so2 than use 

of Ca(OHh alone. This behaviour was attributed to improved surface area of the sorbent 

synthesized. 

2.5.8 Contaminated site remediation 

Sorbcnt capability o f pozzolanic fly ashes with respect to major/heavy metals such as 

lead, copper, zinc iron, cadmium etc ... and that of cementitious fly ash with respect to 

minor and traced metals such as manganese, magnes ium, etc ... Antonio and Ayuso, 

(2008) studied the sorbent ability as applicatcd to soil remedia tion. Tests were perfom1ed 

wi th 4% of FA sorbents in laboratory column tests. More than 50% reduction in a ll metal 

contaminants was reported . Matsi and Keramidas, ( 1999) inve ligated a lka line fly ash 

applica tion for contaminated soil (acid so ils) amendment by growi ng Ryegrass (Lolium 

perenne L.) on pots conta ining fl y ash - sand mixtures for 300days in order to analyse 

effecti vity of fl y a h to remediate acid so ils. A significant increa e in dry biomass ye ild 

of ryegrass was reported with fl y ash application and c umulative uptake of boron and 

phosphoms increased with fly ash application. 
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CHAPTER THREE: EXPERIMENTAL METHODS 

3.1 Sample Collection 

The a hes analyzed in thi s characterization study were collected from AYCell Pul p and 

Paper plant located at 175 Mill Road. Campbellton. New-Brunswick. Canada. The ash 

ori ginated from two di fferent sources; (i) the I log-Boiler Prec ipitate ash sample (HBP) 

(fi g.3. 1 a) collected from the hog-prec ipitator is the lighter and finer frac tion ca lled the lly 

a h (FA) and (ii ) the Mixed A h Pond sample (MAP) (fi g.J . l a) or the bottom/boiler ash 

co llected at the bottom of the boiler is the hca ier fraction of the combu tion rc iduc. 

Standard proximate anal sis of the fly ash sample were carried out according to 

procedures of the American Society for Testing and Materials (ASTM) tandards. 

Figure3.1: FAs ascollected. (a) HBP (b) MAP 

30 



3.2 Characterization of Fly Ash 

3.2.1 Chemistry and Elemental analysis of Fly ash 

T he concentra tions of various elements in the ash samples were analysed usmg 

Inducti e ly oupled Plasma Mass Spectromete r ( IC P-MS, fi g.3.2) and Inductive ly 

Coupled Plasma-Optical Emission Spectroscopy (IC P-OES). T he samples were first 

digested by mixing approx imate ly 1.0 g of each sample w ith 2 mL nitric ac id (8 HN03) 

and 1.0 mL of hydro fluoric ac id ( HF) in a Te flon bottle . The mi xture was covered and 

heated to 70"C for 48 hours. The heated sa mple was rinsed with ni tric acid (8 - H 0 ) 

after 48 hours and dried at I 00 "C. Aqua Regia (3: I cone. HCI: H 0 3) was added and the 

sample were heated to 70"C for another 48 hours then a llowed to evaporate to dryness 

a fte r addition of 2mL 8 - HN03. The samples were then rinsed with nano pure water 

and filte red using 0 .45)-lm micropore membranes. The fil tra te (a c lear liquid) was di luted 

with 2% HN03 and ana lysed using ELA -DRC-ll (fig.3 .2, IC P-MS) with power of 

12kW, pulse stage vo lt of I kV and 1.05U min nebulizer gas flow ra tes. A Perkin El mer 

Optima 5300DV dual view (lCP-O ES) wa used to compare and confirm the IC P-MS 

results. 
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Figure 3.2 ELAN-DRC-11 (ICP- MS) 

3.2.2 Chemical Composition of Fly ash: Mineral liberation ablation (MLA) 

Screening and Rejluxing: 

Dry a h amples wer screened into different particle sizes using ROTAP-W.S. Tyler 

8570(2005) shaker with U.S.A standard testing ie es (ASTM E-ll spec ification). 1eves 

sizes were arranged from the bottom in a cending order; <45)..lm, >75)..lm, 1 25 ~tm. 

> 180)..lm, >225)..lm, >300)..lm and 500)..lm. Samples were fetched into the 500)..lm sieve and 

coupled into the Tyler set up wi th other sieves. The machine was turned on fo r 15 

minute thereby eparating ash pa11icles into different sizes. The creened samples were 

classified into three groups according to particle size range. The first group (MAP-I) was 



represented by size rrac tions f'rom 75 pm up to > 125 pm. second group {MAP-2) was 

represented by size f'ractions !'rom 180p m up to 300~tm and the third group (MAP-J) 

\\ as rcpn.:sented by size rrac tions >500 pm lo r re ll ux ing. Quanta-chrome Rotar -Micro-

Rirller ( li g.3.3a) was used lor s<nn plc . izi ng each size group wa eli idecl into eight equal 

amounts. Approx imately I.Og or each sample was then mounted onto Epolix-Resin 

polymer (proxy) which evenl y distributed the sample panicles onto its surf'ace !'or 

gri nding and polishing. The poli heel samples were then taken to an FE I Quanta 400 

scanning electron micro analyzer ( EM-EDX. lig. J.Jd). operated with the t)1)ical 

accelerating voltage or 12kV equ ipped with energy lispersivc x-ray (E DX) spectrometer. 

The EM is coupled with M LA so li ware which provides quantitative csti m<llcs or 

minera l weight percenta~es with respect to area and size or grains. The samples chem ical 

composi tion' ere iclent iliecl by matching optica lly taken spectrums with datn base. 

Figure 3.3a: Quanta-chrome Rotat·~·-Micro-Rifflet· 
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Figure 3.3b: Sample mounted on Epofix polymer Figu rc3.3c:Stt·ucrs Polishc•· 

Figu•·c 3.3d: Quanta 400 scanning electron micro analyzer (SEM-EDX) 
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3.2.3 Morphology: Scanning electron microscope (SEM) 

The morphology and micro-struc ture of the samples were taken using FE! Quanta 400 

scanning e lectron micro ana lyzer (SEM-EDX, fig .3.3d) operated wi th the typ ical 

accelerating voltage of 12kV. The same instrument used for MLA processing was 

required for this analysis which inc ludes the mineral identifica tio n of the samples based 

on the optical quantitative and estimates based on proportions, s izes and shapes of the 

f:,>Ta ins in the proxy mounts taken in an automated fashion by the instrument (SEM). 

3.2.4 Crystallinity and Mineralogical composition: X-ray d~ffraction (XRD) 

Minera l phases and crystalline minerals present in the ash residues were identified using 

XRD in a Rigaku Ultima-lV (fig.3.4). A sma ll amount of sample (about 0 .20g) was 

mounted o n the a luminum plate trough and irradiated with a Cu-Ka radiation energy 

source. The instrument uses an accelerating voltage of 40kV and current of 44mA w ith 

0 .03° step. The best peak de finition and the lowest background was produced at a rate of 

2-theta/min. Data were digitally recorded and peak matching with JC PDS database (as a 

source of re ference data) was done using Jade so ftware. 
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Figure 3.4: Rigaku Ultima-IV 

3.2.5 Thermal pt·opcrtics and Loss on Ignition 

3.2.6 Thermal Analysis 

Thermal-properties or the samples were obtained using Thenno-Gra imctric Analysis 

inst rument, TG Q5000 series ( li g.3.6). Tota l loss on ign ition (LO I) and the total orga nic 

carbon (TOC) or the samples \ ere determined using a modilicd step-wise isothermal 

technique with theTA instrument customizt.:d and set to Hi-Resolution or 4.2. sensitivity 

or 1.2. and ramping rate or 20 °C'/min under inert ( I~ ) and reactive (0~ ) atmospheres at 

75mL/min gas llow. series o r step-wise TG under reactive and/or int.:rt atmospht.:rcs 

was carried out. Appro imatcly 0.35mg or sample was weighed into platinum pan and 
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loaded into tared equipment under programmed steps a desc1ibed above. T his 

experiment was repeated at different re olutions sensitivities and ramping rates in order 

to obtain the best reproducibity. The TG/\ steps are briefly described as follow: 

Heating the sample from 35 uc to I OO"C a t 20"C /min in 2 atmosphere at 75mUmin gas 

flow and holding isothermally for 15minutes at I OO"C. The process was heated 

afterwards to IOOO"C at the same condition of heating rate and gas flow in N2 (inert) 

atmosphere. It was then cooled from 1000°C to IOO"C with 20"C /min cooling rate under 

2 a t 75m L/min gas flow and gas was swi tched from inert to reactive ( 2 to air) then 

heating from I 00-1 OOO"C with heating rate of 20"C /min in air at 75m U min gas flow. 

The inorganic carbon from the ash sampl es was remo ed by acid treatment where the 

samples' carbonates were converted to C02 . The same TG/\ procedure as described 

above was followed except that heating to IOOO"C under N2 atmosphere was e liminated 

(not required because carbonates/ inorganic carbons were removed by acid trea tment prior 

to TGA). Any decomposition measured with the TGA could then be attributed strictly to 

los of mo isture content, dehydration o f hydrated limes under N2 atmosphere and organic 

carbon oxidatio n under reactive (0 2) atmosphere. Oxidation that occun·ed between 

regions of 550"C to 900"C approximates TOC since the inorganic carbon contents in form 

of carbonates have been removed prior to TGA process. 
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transferred the sample to oxidation reactor (at I 050°C). the product gas mixture then 

passed through oxidati on catalyst, ( rO.~ ) which ensured complete combustion or the 

sample. Coba ltic ox ide removed halides and SO~ rollowed by reduction or the sample 

stream in a reactor (a t 650°C) "here excess 0 2 was absorbed with reduction or 0 2 to 

2. The resulting 2 and C02 peak \ ere used to determ ine the percentage weight or 

carbon. 

Fioure 3.6a: components of Erba NA 1500 Elemental Analyzer 
• I II 

Figure 3.6b: Et·ba NA 1500 Elemental Analyzer (EA) 
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Total Organic Carbon (TOC) Content 

The inorganic carbon of the ash samples were remo ed prior to the above described 

process by ac id treatment which removes carbonates (C03) from the calcium carbonate 

present in the samples. Hence, the carbon content detected by the TCD represents the 

TOC content of the sample. The ino rganic carbon content of the samples was detem1 ined 

by care fully weighed approximately I .Og of each ash sample into different Teflon bottle 

and mixed with 20% nitric ac id (20% H 0 3 by volume) and stirred for 5 to 10 minutes 

until a ll bubbling (CO:! liberation) stopped. It was then rinsed with deionisecl water (nano 

pure) and heated to dryness at I 05 "C for 48 hours on a hot plate. The same procedure as 

described for total carbon content then followed. 

3.2.8 Surface area and pore volume determination (Specific surface area 

determination (BET) method) 

The samples were ent to materials surface characterization laboratory, at the Chemical 

Engineering Department, University of New Brunswick for specific surface area 

determination. itrogen isotherms were measured at -196 "C (77K) u ing BEL-sorp 

MAX (BEL Japan Inc.). Prior to each measurement, the samples were de-gassed to I o·4 

Torr at 120 oc (393K) with sample mass ranges from 0.339 to 1.60g. The spec ific surface 

area of each sample was calculated using BET correlation and itrogen adsorption

desorption data. 
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3.2.9 Buffering power 

The sample buffer capacity was determined by titrating the sample wi th I M hydrochloric 

ac id in a 250ml capacity conical fla k agai nst 0 .33 gcm-3 mass concentration ash sa mple. 

T he volume of acid used for each unit pH change was recorded and used to compute the 

buffering power of each ash sample in millimo le per unit pH (mmollpH). 

3.2.1 0 Porosity and Density 

Porosity 

For the porosity measurement a 200ml capacity measuring cylinder was used . Dist illed 

water a t room temperature was poured into the cylinder up to the 200ml mark and then 

transferred to a conical flask. The glass cylinder was dri ed and tly ash sample was filled 

into the measuring cylinder (with constant shaking fo r good compaction) up to the 200ml 

mark. Ini tia lly measured water from conical nask was then gently poured into the sample 

in the measuring cylinder until it saturated the ash sample up to 200ml mark. The volume 

o f wa ter used that saturated the sample up to the 200ml mark represents the pore volume 

of the ash (represented by V 1). It was determined by taking the volume of water remai ned 

in the fl ask (represented by V2) from total volume ( represented by V r =200ml = bulk 

volume). Hence poro ity of each sample was determined fro m the relation hip as given 

below; 

Porosity (0) = pore Vo lume 

Bulk Volume 
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Density (True Density) 

The densities of the samples were measured in a s imilar way to porosity mea urement. A 

500ml measuring glass cylinder was filled with water up to 200ml mark (represented by 

V 1). Dry a h ample was carefully weighed using micrometer digita l balance and 

recorded (Ms). This known mass of ash sample was then fi lled into the 200m I of water in 

the measuring cylinder thereby displac ing some volume of wate r. T he final vol ume o f 

water was noted (represented by V2) and the true volume of the sample (represented by 

Vs) was determined taking the ini tia l volume v I from the fi na l volume v2 (i.e. Vs = v2-

V1) and eac h samples' density was dete rmined us ing the s im ple correlation; 

Density (p) = Ma s of sample Ms / Vs (3.2) 

Volume o f sample 

3 .2.1 1 FA pH measurement 

A bench pH/ion meter (Oakton pH 2 100 series) was used to determine the pH va lues o f 

the ample . Nano pure water was used to d ilute approximate ly 4 .0g o f each sample in a 

conical fl ask. The mixture was thoroughly mixed and shaken fo r 30 to 40 minutes in a 

V WR OS - 500 series shaker and pH meters ' electrode was dipped into the mixture at the 

end o f mixing. T he digita l numeration displayed on the meter was allowed to stable and 

the reading was taken for the samples. 
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3.3 Mine tailings C haracterization 

Mine ta ilings samples used in this research studies were collected from Vale Sadbllly 

mining site in Ontario, Canada. 

3.3.1 Chemical and Mineralogical composition: Mineral Liberation Ablation (MLA) 

Approx imately I .Og dry mine tailing was mounted into Epo fi x-Resin polymer (proxy) 

which he ld and evenly distributed the sample particles on to its surface (Ref. fig.3.3b). 

The poli hed samples were then taken to an FEI Quanta 400 scanni ng electron micro 

analyzer (SEM-E DX, fig. 3.3d), operated wi th the typical accelerating voltage of 12kV 

equ ipped wi th energy dispersive x-ray (EDX) spectrometer coupled with MLA software. 

The MLA provides quantitative esti mates of mineral abundances with re pect to area and 

s ize of grain ra the r than point counting of the gra ins. The samples chemical composition 

was identified by matching optica lly taken spectrums with data base. 

3.3.2 Crystallinity via X-Ray Diffraction 

Mineral phases and c•ysta lline minerals of the ta iling residue were identified using XRD 

in a Rigaku Ult ima-IV(fig.3.5). A sma ll amount of dry powdery tailing (about 0.20g) was 

mounted on the a luminum pla te trough and irradiated with a Cu-Ka radiation energy 

source. The instrument uses an accelerating voltage of 40kV and current of 44mA w ith 

0.03° step. The best peak de finition and the lowest background was produced at a rate of 
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2-theta/min. Data were digitally recorded and peak matching with .IC PDS database (as a 

source of reference data) was acquired u ing Jade oft ware. 

3.3.3 Mine Tailings Chemistry via Digestion and ICP-MS 

The digestion process required here is different from that o f the tly ash. A 0.22g (or 

s lightly above) of dry tailing sample was weighed into an empty c lean jar and 2ml of 

pure/di tilled water and IOml 16Molar concentrated nitric (H 0 3) acid were added. A 

I ml o f bromine was pi petted into the mixture and heated to I OO<'C fo r 30 - 35 minutes. 

T hen 5ml o f deionized water was added to the heated sample after 40 minutes followed 

by the addition of 12Molar concentrated hydrochloric acid (HC I). The sample was then 

heated to 120 °C for another 30 minutes after which it was a llowed to cool at room 

temperature and 50ml of deionized water was added . The amples were fi ltered usi ng 

0.45Jlm micropore membranes and the fi ltrate was mixed with 2% HNO and analysed . 

The ana lysis was performed with an ELA -DRC-11 (IC P-MS, fig.3.2a) with ICP RF

power of 12kW, pulse stage volt o f I kV and 1.05Limin nebul izer gas tlow rates. A 

Perkin Elmer Optima 5300DV dual view (IC P-OES, ftg.3.2b) was used to compare and 

confirm IC P-MS re ults. 

3.3.4 AMD Generation via Weathering- humidity Test Cell 

Mine tailings as collected are used to generate AMD usi ng a humidity test cell. T he 

humidity te t cell used was constmcted of cylindrical Plex iglas with inside diameter of 
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12cm and 35cm long. It a lso consists of chambers that provided for a ir input and output 

openings. Approximate ly 1.5kg of mine tailings was fill ed into the cell at 50% degree of 

water saturation and was allowed to be seated on a perforated plate s itting at the base of 

the Plexiglas-column which was covered with geotextile filter with a grade 4 whatman 

filter paper for retention of so lid residues while a llowing the leachate to drain. Usi ng the 

pressure and vacuum pump, dry air fluxes were passed into the column through the top o r 

the cell for three days fo llowed by switching into wet air (using humidifier) also for three 

days, a ll at room temperature. On the seventh day, 750ml deionised water with pH or 7.5 

was used to soak the oxidi zed sample in the humid ity cell for 3 - 4 hours before it was 

drained and collected in a 500ml capacity conica l flask through the outlet chamber at the 

base of the column. The leachate was filtered through 0.45~tm micropore membranes and 

was then taken fo r IC P-MS and LCP-OES to test for trace, minor and major. T he 

weathering test on the ta ilings continues every week with 3 days of dry air cycle, 3 clays 

of humid a ir cyc le and e ffluent drainage at the i" day. Leachate collected from hum id ity 

test cell represented the required acid mine drainage (AMD) with pH ranges from 1.8-

3.46 was each time taken to ICP-MS and IC P-OES for analysis. 
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Figur·e 3.7a: Humidity Test Cell Figure 3.7b: Raw Acid Mine Draingc (AM D) 

3.3.5 AM D Characterization (ICP-MS and ICP-OES) 

The composition of va rious elements in the collected AM D water was analyzed usmg 

inducti ve ly coupled plasma atomic spectroscopy (ICP-M . fi g.3 .2a) and Inducti ve ly 

Coupled Plasma-Optical Emission pectroscopy (ICP-OE • fi g.3.2b). These instruments 

analyzed the traced. minor. major and sulphate contents o f the AMD. The filtered 

I achate from the weathering test was diluted with 2%11 0 3 and analyzed using ELi\ -

DRC-11 (ICP-MS) with I P RF- power of 12kW. pulse tage vo lt of lkY and 1.05Limin 

nebulizer gas now rates and Perkin Elmer Optima 5300DY dual view (ICP-OE ). 
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3.3.6 AMD: FA Neutralization: (Neutralization reaction between FA: AM D) 

eutra liza tion inc ludes a laboratory scaled batch-wise experiment at room temperature 

using an open pyrex glass beaker. A 50mL of /\M D was treated with d ifferent doses o f 

each ash samples (ranges from I Og/ L to 500g/ L) followed by vigorous mixing using 

VW R-OS- 500 eries shaker for 4 hours. A pH meter, OAKTO 2 100 eries was used 

to measure the pH and electrical conduc tivity (EC) o f the mixture at a regular ti me 

interval of 30 minutes. After 4 hours of reaction, the mixture was allowed to settle and 

then filtered usi ng 0.45~tm micropore membranes and the c lear filt rate analysed using 

EL -DRC-11 ( IC P-MS, fig.3.2a) and Perkin Elmer Optima 5300DV dual view (IC P

OES). 

3.4 Zeolitization 

Solid residue recovered from neutralization was dried in oven at 70°C (tig.3.8a) and 

milled/crushed to a fine powder of even partic le to approximate ly 5~tm gra in size in 

readiness for the zeo lite application. The particles were mixed w ith NaOH in the ratio of 

I : 1.2 (SR: NaOH) and homogenized by grinding with an agate mortar and pestle then 

fused in an oven at 550°C - 600°C for I - 2 hrs. T he fused product wa then cooled at 

room temperature, grounded into a powder and then mixed thoroughly wi th disti lled 

water. The slurry was aged for 9 - 12 hrs at room temperature with constant stirring. T he 

aged slurry was allowed to nucleate and crystallize at a temperature range of 30 - 60°C 

for 72 hours (fig.3.8b). The crystals were filtered and washed with de-ionized water until 

pH of I 0 - II was obta ined after which it was dried in an economy oven series model 
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its cry tallinit and mineralogy, M LJ\ to determine its chemical compo it ion. EM 

technique fo r its morpho logical characteristics and its surface area determination using 

BET technique. some samples were ent to materials surface characteri zation laboratory. 

at the Chemical Engineering department. University of New Brunswick. Fredericton, 

Canada. 

Zeolite synthesis steps: 

i) Co-disposal solid residue dried in o en at 70 °C (degree Celsius). 

NB: (HBP dose of IOOg/1, and MAP dose of250g/l) was used as the optimum amount 

of ash for zeolite synthesis. 

Figur·e 3.8H: Co-disposal solid residue dried in oven a t 70 °C 

ii ) Fusion of dried co-disposed olid residue with od ium hydroxide pellets in an 

oven at 550- 600 oc for I -2hrs. (HBP: aOH rat io or I: I .2 and MAP : aO I I 

ratio of 1 : I .5 % wt/wt). 

iii ) Milling to fine powder 

i ) Mixing with de-ionized water at room temperature and aging for f _ hours. 

v) Crystallizati on at 60 - 90 oc for 72 hrs. 
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Figure 3.8h: Cr~· stallization at 30 - 60 °C for 72 hrs 

\'i) Fil trMion and wash ing at room temp ·raturc. then drying at 70 - 80 °C l'or I 0 

hrs 

' 
Figure .3.8c: Dried at 70-80 °C H BP sample MAP sa mple 

These arc the linal products (synthesized zeolite) lor each sample \\' hich later grounded 

into po\\'der rorm . 

Zeolite C han1cterizHtion 

.3.4. 1 C hemical composition 

The chemica I composition o r the synthesii'.Cd zeol i le materia ls was determi ned using the 

same instrument and procedure as described in section J.2 .2. 
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3.4.2 Crystallinity and Mineral composition Using X-Ray Diffraction 

Mineral phases and crystalline minerals of the synthesized zeolite samples were 

identified using XRD in a Rigak:u Ultima-IV. The same procedure was also used as the 

one described in section 3.2.4. 

3.4.3 Morphology: Scanning electron microscope (SEM) 

The morphology and micro-structure of the zeolite samples were analyzed with FEI 

Quanta 400 scanning electron micro analyzer (SEM-EDX, fig.3.3d) operated with the 

typical accelerating voltage of 12kV. The sample preparation is the same as described in 

section 3.2.2 and the mounted samples analyzed using the same instrumental set up as 

stated above. 

3.4.4 Surface area and Adsorption Isotherms 

The Zeolite powder samples were sent to the same laboratory described earlier in section 

3.2.8 for the specific surface area determination. The same procedures and instrumentals 

were also required as those described in the section stated. 

3.4.5 Zeolite -AMD neutralization/Adsorptions 

Neutralization/adsorption of AMD contaminants includes laboratory scaled batch-wise 

experiment conducted at room temperature using an open Pyrex glass beaker. 50mL of 
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AMD was reacted with Sg (equivalent to lOOg/L) of HBP-Zeolite in one beaker and lOg 

(equivalent to 200g/L) of MAP-Zeolite in a separate beaker, followed by vigorous 

stirring for 4hours on VWR-OS-500 series shaker. The rest procedure is the same as 

described in section 3.3.6. 

3.5 Permeate Reactive Barrier (PRB) Application 

The setup consists of a laboratory scaled reactive column under continuous flow of the 

acid mine drainage water (AMD) through reactive barrier consisted ofF A and silica sand 

(1 :1 FA: Silica sand proportion, Ref. Fig. 3.9a). 

Two column used were made up of 6.50cm inner diameter and 28cm long Plexiglas 

connected to each other. Each column has two openings (top and bottom) that allowed for 

inlet and outlet of liquid. Both ashes are strong alkaline in nature with pH greater than 11 

and total percentage by weight of Si02 + Ah03 + CaO greater than 60%. MLA and XRD 

techniques confirms the presence of cementing agent/material such as hydrated lime, 

quicklime, gypsum and clay in both samples therefore they are pozzolanic and possess 

cementitous properties. The samples were homogenized with silica sand in ratio 50% 

w/w to prevent clogging at some point in the experiment. The silica sand of size ranges of 

20-30 mesh (0.60-0.84mm) and density of 1.40g/ml was used and the FA-silica sand 

mixture was placed in the middle section of each column in between 3cm pure silica sand 

layer at the top and Scm silica sand layer at the bottom (fig.3.9a). Significance of this 

arrangement is to minimize or eliminate potential clogging and cementation problem 

during the later stages of the process. 
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Figure 3.9a: Reactive Barrier Column before the start of experiment 
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Figure 3.9b: Reactive Barrier Column at the start of experiment 
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CHAPTER FOUR: PRESENTATION AND DISCUSSION OF 

RESULTS 

4.1 Characteristics of Fly Ash 

4.1.1 Trace, Minor and Major element 

The metals analyzed are outlined in table 4. I . The most abundant meta ls present in both 

samples are si licon (Si), phosphorus (P), potassium (K), sodium ( a), ca lcium (Ca), iron 

(Fe), manganese (Mn) magnesium (Mg), a luminum (AI) and z inc (Zn). 1\.dditionally, 

metals such as copper (Cu), titanium (Ti), nickel ( i), vanadium (V) and chromium (Cr) 

were present. Metals at trace levels inc lude coba lt (Co), a rsenic(/\. ), mo lybdenum (Mo), 

selenium (Se), cadmium (Cd) as well as s il ver (Ag). mercury (Hg) was not detectable in 

the HBP sample and MAP-3 but trace quantities were measured in M/\.P-1 and MAP-2. 

Metals uch as T i, As, Mo, Se, Pb, Hg, Cd, and Ag not detectable by IC P-OES, therefore 

were analyzed using lC P-MS. Also metals like Si, P, a and K were analyzed using 

SEM-EDX, this is due to the fact that the ca libration reference used (.JCFA-1) fo r othe r 

metals was not suitab le for ca libration of these (Si, P, a and K) meta ls. There is little 

d ifference in concentrations among the grouped size frac tion of the MAP samples 

ana lyzed except in the case o f two metals ( a and K) with higher concentration in the 

two largest size fractions, MAP-2 and MAP-3 . 
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T able 4 I El .. f emental composition o the ash samples 

Element HBP MAP-I MAP-2 MAP-3 

mg/kg mg/kg mglkg mg/kg 

Ca 153,767 139,244 127,822 145,550 

v 28 1.99 82.92 84.72 66.86 

Cr 51.47 69.48 82.61 68.52 

Fe 17,767 30,297 36,355 26, 194 

Mn 6,952 8,449 6,93 1 8,556 

Co 10.83 8.80 10.83 9.54 

Ni 2 12.26 57.66 57.29 52.42 

Cu 203.40 94.40 90.30 83.00 

Zn 7, 129 342. 13 149.03 55.03 

AI 12,526 28,130 4 1,958 I 03,905 

Mg 6 1,689 42,450 4 1,408 10, 152 

Ti 777 2,047 2,685 1,748 

As 3 1.76 4.04 2.18 1.6 1 

Mo 27.45 6.07 4.49 5.21 

Se 9.22 <RL 0.45 2.24 

Pb 293.08 16.61 5.69 1.60 

Hg <RL 0.06 0 .1 7 <RL 

Cd 72.37 2.67 0.78 <RL 

Ag 3.50 0.53 0.47 0.47 

Si 13 1,000 47,400 127,000 90,700 
p 56,000 12,600 - 19,100 

Na 18,000 600 12,500 7,500 

K 36,000 6,500 145,000 13,300 
Abbreviations; 
IC P-MS: Inductively Coupled Plasma-Mass Spectrometry 

IC P-OES: Inductively Coupled Plasma-Optical Emission Spectroscopy 

EDX: energy dispersive x-ray; MAP: mixed Ash Pond ash samples; 

HBP-Hog boiler precipitate ash sample; 

MAP-I : particle size range of <75)..lm to > 125)..lm partic le size; 

MAP-2: partic le size range of > 180)..lm to>300)..lm partic le size; 

MAP-3 : partic le size range of >500)..lm and above particle size; 

<RL: less than reportable limit 
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4.1.2 Chemical Composition of Fly ash 

Table 4.2 summarizes the major chemical components of the two ashes a quantified by 

the MLA. Both amples conta in typical components o f tly ash such as lime (CaO), qum1z 

(Si20 ), sodium oxide (Na20), potassium oxide ( K20 ), magnesium oxide (MgO), alumina 

(A l20 3) , iron ox ide ( Fe20 3), manganese oxide (MnO), phosphorus oxide ( P20 5) , and 

titanium oxide (Ti20). Quartz (Si20 ) is the predominant constituent o f both samples w ith 

over 35% of to ta l chemical composition. CaO and K20 were a lso present in a 

considerable percentage ( 18-23%) which could account fo r the samples· strong alka lin ity 

in solution. The a20 and MgO would a lso account for the amples a lka linity but are 

present in smalle r percentage compared to CaO and K 20 . Smaller quantities of P20 5, 

Ab03, and Fe20 3 were a lso detected with traces o f T i20 and MnO in both samples. 

Hence, both samples can be c lass ified as c lass C ash grade in accordance w ith ASTM 

C6 18 as CaO is in the range of ( 17- 32wt%) and Si20 is in the range o f (25- 42wt%). 

C lass C FA is self-cementing and does not require alka line activator in cement 

application making it an option for concrete and cement applications. It is a l o important 

to note that these samples provide a rich source o f Si02, CaO, and AhOJ which are 

important feedstock for zeolite synthesis. T he ratio of Si02 to A120 3 is higher than 1.5 in 

both ashes which is ideal for zeolite. 
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Table 4.2. MaJOr chem1cal component of the Ash sample 
Major 

component 

CaO 

MgO 

MnO 

HBP MAP- I 

37.05 36.36 
18.57 20.0 1 

22.13 22.44 
4.97 4.7 1 
6.22 5.84 

8.30 7.7 1 

1.54 1.87 

1.04 0.84 
0.0 1 0.04 

0. 17 0.20 

4.56 12.47 
LOt : Loss on 1gnition 

MAP-2 

36.45 
19. 19 

22.87 
5.82 
6.37 

6.64 

1.64 

0.92 
0.02 

0.09 

3.32 

4.1.3 Sionificance of the Chemical Content of Ash 

MAP-3 

36.97 
17.84 

23.53 
6.27 
6.62 

6.0 1 

1.76 

0.88 
0.02 

0.09 

2.0 1 

T he adsorption and/or neutra lization capability of fl y ash is mainly attributed to presence 

of chemical spec ies such as Si02, Al20 3, Na2C0 3, CaC0 3 and CaO (Somerset et a l., 

2004). eutra lization o f AMD using FA occurs through dissolution o f CaO, Na20 , K20 

and MgO in the FA to the AMD thereby increasing the pH o f the solu tion. In addition, 

contaminants such as meta ls are adsorbed on to the FA. T hese chemical spec ies (CaO, 

Na20, K20 , Si02, Al20 3 and MgO) were equally present in the analyzed FAs in quantities 

applicable for AM D treatment and PBR application. 

Si02 and Al20 3 are key constituents when fom1ing zeolite via the hydrothem1a l process. 

T he sodium ions (Keka et a l. , 2004) form sodium aluminum silicate hydrate 

(Na2AbSi06 . H20 ) during the hydrothermal process. T he ratio Si02/ Ab0 3 of the sample 
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is c rucial to zeolite synthesis and its performance as an adsorbent (Rios et al., 2008 and 

Keka et at., 2004), generally a low Si02/Ab03 ratio results in a hydrophilic zeo lite , wh ile 

zeolite with high Si02/ Ah03 ratio (high si lica zeolite; Si02/ AI20 3 > 2) will tend to be 

hydrophobic and organophillic (Rios et at., 2008). The analyzed FA samples contain Si0 2 

and Ab03 in a suitable ratio for zeolite synthesis (Si02/ Ah03 = 6.0 to 7.7). s ince the 

minimum ratio that would favo rs the lonnation of fa ujasite zeolite is Si02/ AI 20 3 ratio of 

1.5 (Gitari et a t. , 2005). 

The total concentration of Si02, Al::-0 3 and Fe20 3 and the a lka line content ( a2C03, 

CaC03, CaO, Na20 , K20 and MgO) are a lso important parameters for use as a PRB. 

Hydrated a luminum-si licate minerals from soluble salts of s ilicate and a luminates 

immobilize the contaminants from AMD or contaminated water (Claudia ct a l, 2009). 

Heavy metals are reta ined by oxides and oxy-hydroxides of AI, Fe, Mn, lime, and c lay 

minerals (Antonio and Ayuso, 2008), prio r to the ir subsequent oxidation, neutralizatio n 

and/or biodegradation. The FA in this study has the total of Si02, AbOJ and Fe20 3 and 

the a lka line content (Na2C03, CaC03, CaO, Na20 , K20 and MgO) in the range of 90% 

and above therefore confim1s its sui tabili ty for PRB. 

4.1.4 Morphology 

SEM micrographs examination (fig.4. 1 a - f) show both samples are similar to published 

data (Sarkar et at., 2010; Zhou and Haynes, 20 10; and Min et at. , 2004) The FAs a re 

composed mostly of irregular-shaped amo rphous particles with few spherical (micro-
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spheres/cenosphercs) cry tals interspersed between the amorphou pha c . There arc also 

amorphous aluminum- ilicate glasses with large irregular-shaped and porous carbon 

particles. Figure 4. 1 a, b and c shows that the HBP ash sample contain macro-porous 

carbon materi al. amorphous glass, and cenospheres. However, the MAP samples are 

most! amorphou phases with elongated or and-like porous carbon material ha ing 

den e siliceous particles a shown in fi gure 4.1 (d - f). This type morphology has been 

reported to impact it leaching behaviour. For instance, fo r samples with non-porous 

continuous outer surface and heavy (dense) particle, the leaching of h a y metals ma be 

prevented due to non-permeabilit particulate nature (Min et al. , 2004). 

4.1d 4.1e 4. 1 f 
Figure 4. 1 (a-f): Morphological structure ofF A particles with SEM. 
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The presence of porous and carbon materials in the samples indicate that the FAs w ill be 

good candidates for adsorption and PRB (with good porosity and permeability). 

4.1.5 Amorphous, Crystalline and Mineralogical composition of Fly ash 

The X-ray pattern of the ash is shown in figure 4.2. The quantity of different compounds 

identified by XRD was estimated through the he ight of the correspond ing difTractograms 

peaks. The peak intensities (count values) suggest the presence of some crystalline 

mineral phases which are possibly product of combustion . However, the high background 

intensity in the diffractograms (humps in the region 28 = I 0 - 50°) a lso indicates a 

significant fraction of amorphous (glass-like) phases, carbon, and other non glass 

amorphous minerals. The X-ray diffractograms of the HBP sample shows strong peak 

intensity for quartz, lime, potassium phosphate, magnesium - copper oxide minerals, and 

gehlenite while haematite and gypsum are also present in much smaller amounts. In 

addition to quartz, lime and gypsum the MAP sample also shows strong peaks for calcite 

but lower peak intensities for haematite, am otthite, and gehlenite. T races of other 

minerals were a lso recorded with smaller peak intensities as shown in figure 4.2 such as 

pyrite, rutile, illite, feldspar, ettringite, albite, anhydrite and clay. 

The XRD mineral analysis table (table 4.3) corroborates this result showing quartz, lime, 

calcite and a lumino-silicate glass as the major mineral phases. It is important to note that 

the mineral compounds detem1ined by the XRD ana lysis are a lso in good agreement w ith 
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MLA analy is as both techniques indicated quartz, lime. and potassium compound as the 

major mineral phases of the samples. Furthermore. sub tantial amounts of gla sy 

materials were recorded for each ample and a! o each ash conta ins t\· o or more of the 

four major crystalline phases. 
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Figure 4.2: XRD Micrographs for the samples showing different mineral phases for 

all the samples. 

Q-Quartz; L-Lime; C- alcite; P-Pyrite; R-Rutile; 1-lllite; H-Haematite; G-Gehlen ite; 
G p-Gypsum; AI-Aibite; Ah-Anhydrite; E-Ettringite; MgCuO- Magnesium Copper
Oxide; K-P - Potassium phosphate; B-Beidellite; A-Arnorthit ; A-K-S - Ammonium
potassium-Sulphate: M-Montmoril lonite 
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T bl 43 XRD M " a e mer a I . f h anatysts o as samples 
Minera l HBP MAP-I MAP-2 MAP-3 

Alumino-Silicate glass + + + + 
Quartz (S i02) + + + + 
Lime (CaO) + + + + 
Calcite (CaC03) + + + + 
Haematite (Fe03) - - - -

Feldspar - - - -
Rutile (Ti01) - - - -

Pyrite (FcS2) - - - -

Gypsum (CaS04.2H20) - - - -

Anhydrite(Ca07Sr03S04) - - - -

Ettringite (Ca6AI"(S04)3- - - - -

(OH) 12.26 H20) - - - -

Gehlenite (Ca2AbSi07) - - - -

Clay - - - -

+ Major phase, - Minor phase 

4.1.6 Important of Minerals in FA 

Most of the minerals identified by the XRD are e ither source materia ls for zeolite 

synthesis, adsorption applications, and/or PRB. For instance the amorphous a lumina-

silicate and ettringite a re the complex fom1 of calc ium-aluminum-silicate compounds and 

these compounds are the reactive portion of FA important for zeolite/adsorption 

applications (Claudia et al. , 2009). Calcium-aluminum silicate-hydra te 

(Ca2(S i9AI3)014.8H20) is the maJor zeolitic material in most adsorption applications 

especially S02 removal from gas streams (Papandedreou et a l. , 2007 and Moutsatsou et 

a l. , 2006). In addition, the pre ence of transition meta ls (such as Co, Ni, Cu, Cr, Ag, and 

V) in conjunction with aluminum, calcium, magnesium, silicon and iron enhance the 
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adsorpti ve properties (Papandedreou et a l., 2007 and Moutsatsou et a l. , 2006). In 

comparison with previous research, the minera l composition present in the sample s was 

in ranges for zeoli te, adsorption, and neutra lization applications (Papandedreou ct a l. , 

2007 and Moutsatsou et al. , 2006). Table 4.4 be low compares the FA m ineral 

compositio n with investigated FAs in the literature. 

Table 4.4: Mineral composition Comparison between Characterized FA and 
Literature 

Zhou and 
Minera l Hynes (20 I 0) HBP MAP-I MA P-2 MAP-3 

Alum ino-S ilicate glass + + + + 
Quartz (S i0 2) + + + + + 
Lime (CaO) + + + + + 
Calcite (CaC03) + + + + + 
Haematite (Fe03) + - - - -

Feldspar - - - - -
Rutile (Ti0 2) N/A - - - -

Pyrite (FeS2) N/A - - - -

Gypsum (CaS04.2 H20) - - - - -

J\.nhydrite(Ca07Sr03SO~) - - - - -

Ettringite (Ca1,A(,(SO~h- N/A - - - -
(OH) 12.26H20) 

Gehleni te (Ca2AI2Si0 7) - - - - -
Mullite - N/A N/A N/A N/ A 

Arorthite - N/ A N/A N/A N/A 
+ Major phase, - Minor phase N/ A- not applicable 

4.1.7 Surface area and pore volume 

Nitrogen adsorption-desorption isothenns fo r the ash samples are shown in figure 4.3(a-

d). T he HBP ash showed type II isothem1 in the Brunauer c lassifica tion (Pien e et a l. , 

2004) which represents the normal fom1 o f nonporous o r macro-porous adsorbent 
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i o therm. It is a form that obtained from unrestricted monolayer-multilayer adsorption 

and suggests par1icula te material with its pores and void communicating with its surface 

(Pierre et a l. , 2004). However, the MAP samples I , 2, and 3 do not show the same 

structure, instead a well defined adsorption-desorption hysteresis ( fig.4.3 b, c & d) was 

present. The hysteresis represents the points where, at a given relative pressure, the 

vo lume of gas absorbed is no t equal to the volume desorbed llll-ing the adsorption

desorption (Pierre et al., 2004) and its implication is accumulation or build up in the 

pores with time . This behaviour is attributed to capillary condensation taking place in the 

e longated mesopores (narrow walls) and it occurs when the nitrogen multilayer begins to 

behave like normal liquid and fill the voids (pores) of the material (Paya et al. , 2002). 

Another charac teristic of the samples that may be responsible for the hyste resis is 

complex pore networks and intereonnecti vity of tiny and larger pores. T he textu ral 

properties of the samples were computed (as shown in table 4.4). The calculated area for 

the samples is between 1.06 x 104 -4.65 x I 05 cm2/g which fa lls with in published ranges 

for ny ash, meanwhile the specific area of the samples can be increased reasonably by 

steam or hydro the rmal treatment. 
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T bl 4 5 T a e : f extura properties o as 1 samp1 es. 
Sample Snn 

(cm2/g) Total pore volume, V1 from 
P/Po=0.99 (cm3/g) 

HBP 7.4 1 X 1 0~ 0.029 

MAP-I 4.65x l05 0.085 

MAP-2 1.36 X I 05 0.027 

MAP-3 1.06 X 1 0~ 0.005 

The MAP-3 sample is predominantly large and dense non porous particle therefore has an 
overa ll lower pore vo lume. 

4.1.8 Thermal prope•·ties of Fly ash 

A series o f step-wise thermogravimetric analysis under reactive/inert atmospheres was 

used to determine the samples· therma l properties as described in section 3.2.6. T he tota l 

loss on ignition (LOI) observed with HBP sample was approximately 5% and MAP 

sample with LOI value ranges from 2 - 12% as shown in table 4.5 and its effect on 

adsorption capacity is expla ined in section 4.1.9. 

Loss of mo isture ocCUlTed between 35-1 OO"C under an inert atmosphere as shown in 

figure 4.4a and represented by PI on the temperature-weight loss profile . Dehydration of 

hydrated lime started afte rwards up to around 400-450"C. The major decomposition of 

the sample was observed at temperature range of 350 "C to 800 °C. This decompositio n 

represents dehydration, carbonate decomposition and carbon reactivity (carbon oxidat io n 

due to reduction of iron under inert condition and carbon ox idation in reactive 

atmosphere) (Paya et at. , 2002 and 1998). Holding the system temperature isothermally a t 
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I 00 ''C for 15 minutes removes a ll moisture content and reactive oxygen from the 

sample as described in section 3.2.6. Heating from I OO"C to I OOO"C in inert a tmosphere 

( 2) at 75m L/min a nd 20"C/min results in the following proposed reactions (Paya et a l. , 

1998): 

XCa(O H)2 --+(heat)---+ CaO +XH20 (400-450"C) 

XMg(OH)2 --+(heat)---+ MgO + Xll20 (400-450"C) 

(4. 1) 

(4.2) 

XC a( Si,A I3)0""'.8 H20 7--+(heat)--+ XC a( Sil)AI3)02-1 + 8XH20 7 ( 400-500"C), ( 4.3) 

Equations 4.1 to 4 .3 above represent dehydration of hydrated lime. 

CaC03 --+(hea t)---+ CaO + C02 (700-800"C) 

MgC03 --+(heat) ---+ MgO + 0 2 (700-800"C) 

Equations 4.4 a nd 4.5 represents Carbonate decomposition 

FexOy + C --+(heat) ---+ FexO y-1 +CO (700- 1 OOO"C) 

1,0 + C --+(heat)---+ AlxOy-1 +CO ( 700- IOOO"C). 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

Equatio n 4.8 represents typical carbon oxidation due to reduc tion o f iron under inert 

condition 

To detem1 ine the remaining organic carbon, samples were coo led from IOOO"C to IOO"C 

with 20"C /min coo ling rate under N2 at 75m min flow rate. The samples were then 

heated from I 00-1 OOO"C at a heating rate of 20"C /min in a ir at 75m U min flow rate. T he 

remaining inorganic carbon is oxidized (a reaction which is exothennic) in the ash w ith 

genera l chemical reactio n shown below: 
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It is important to note that deh dration and decomposition of other complex h dratcd 

minerals and some other slag formed during fuel combustion also accompanied the 

proce but are insignificant and occurs simultaneously with other major dccompo ition 

in the temperature range of 380-850°C. 
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Figure 4.-ta: TGA Thermogravimetric curve showing decompo ition CYowt. change) 

of the ash sample with temperature and temperature derivative curve. 

Abbreviations: PI: Lo s of Moisture content at 30-1 oooc (under 2 atmosphere) 

P2: Dehydration of hydrated lime at 400°C (under 2 atmosphere) 

P3: Carbonate decomposition and reduct ion of iron by carbon ox idation at 700-800°C (under 

atmosphere) 

P4: Oxidation of meta ls ( ins igni ficant amount) into metallic ox ides at 350-450 (under pure 0 2 atmo phcre) 

P5: Ox idation of organ ic carbon into C02 at 450-700 (under pure 0 2 atmosphere) 
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To verify the inorganic carbon an alternative process was used b acid treatment (as 

described in section 3.2.6) prior to TGA analysis. In this procedure decomposition 

approx imate lo of moi ture content. dehydration of hydrated limes under inert ( 2) 

atmospher and organic carbon oxidation under reactive (02) atmosphere. The e timated 

TOC va lues ith thi technique were in good agreement with the EDT technique (table 

4.5). Figure 4.4c shows the temperature-weight loss profile for the analysi and table 4.5 

compared alues ofTOC for both TGA and EDT technique. 
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Table 4.6: Total Carbon and Total Organic Carbon (TOC) Determination using 
EDT and TGA 

Total Carbon and Tota l Organic Carbon Determination 
Mean % % inorganic % Free organic 
Total 'arbon carbon by % Free organic carbon by 

Sample ID by EDT EDT carbon by EDT TGA 

HBP 3.08 1.43 1.65 1.86 

MAP-I 9.54 5.7 1 3.83 3.04 

MAP-2 2.56 1.46 1.1 9 1.28 

MAP-3 0.1 1 0.05 0.06 0. 11 

4.1.9 Surface Area, Free Carbon Content and Adsorptive Propert)' of the Samples 

Genera lly. the larger the urface area of an ad orbent material. the larger the adsorption 

capacity of the material. The urface area of an ad orbent depends on the textural 

properties and surface area to volume ratio of a materia l. Therefore the TOC content 
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determines in part the adsorptive capacity of a materia l. The free organic carbon materia ls 

of the FAs a re the porous fraction. T he total organ ic carbon content (TOC) in the MAP-I 

FA is approximately 3.83%. MAP-I FA has the highest percentage of free organic ca rbon 

among a ll the analyzed FJ\.s and therefore has the largest pore volume (0.085cm 3/g) and 

largest surface area (4.65 x 105 cm2/g) as shown in table 4.4. The percent free organic 

carbon contents recorded by HPB and MAP-2 FAs are almost equal (table 4.4) therefore 

the va lues of surface area and pore volume recorded by both F As arc a lso very close 

(table 4.5). MAP-3 has the lowest percent of free organic carbon and the lowest pore 

vo lumes and surface area. The difference between the EDT estimated MJ\.P-3 free 

organic carbon and the TGA estimated value could be that the EDT technique is les 

accurate for smaller va lue of free organic carbon. The surface area o f the ana lyzed FAs 

are within the published va lues in a study by Davini ( 1996). In Davini 's study for S02 

adsorption surface a reas showing good absorption were in the range o f I x 104
- 3 x I 05 

cm2/g while s imila r work by Teong et a l. , (2003) va ried from 1.89 x 105
- 8.64 x 105 

cm2/g. 

4.1.1 0 Other physcio-chemical characteristics 

Table 4.6 outlines the pH and bu ffering capacity of the FAs. The pH values range from 

I 0.54 to I 3.08 or strongly basic. The total lime (CaO) and potassium oxide (K20) content 

is approxi mate ly 45wt% as shown in the table 4 .2 and contributes to the FAs high pH. 

Sma ll percentage of MgO and Na 20 might a lso contribute to the samples a lkali nity 

making an approx imate 50wt% total (CaO, K20 , MgO and Na20) content. 
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The HBP sample has a higher buffering capacity at 4.9 mmol/unit-pH than the MA P 

sample at 0.5-0.6 mmollunit-pH. The buffering capacity is deft ned as the amount of ac id 

or base required to change the pH o f one molar solution by one unit, the higher the 

buffering capacity, the better the material is able to absorb very low or very hig h pH 

solutions without an appreciable change in the pH of the materia l. Hence, HBP F 1\ has a 

better neutraliza tion capacity than the MAP FA. The differences in how the HBP and 

MAP a re handled at the pulp and paper plant may explain the large difference in 

buffering capacity. The HBP is precipitated from the effluent gas stream whi le the MA P 

ash sample is flushed with high pressure water stream through the s luiceway; therefore 

some o f the soluble a lkaline content o f MAP F/\ may have been lost into the water 

stream prio r to its collection. This could also expla in the small gap between the pH va lues 

between the two types. evertheless, the pH values of both samples makes them good 

a lkaline materials for neutralization of an acid, and for pH control o f contaminants in 

solution. 

T bl 4 7 H dB n . f a e . :pi an u enng power o as 1 sam pies 

Buffering Power 
Sample pH (mmol/pH units) 

HBP 13.08 4.90 

MAP-I 10.54 0.50 

MAP-2 11.38 0.60 

MAP-3 11.51 0.50 
Table 4.8 below outlmes the density and porosity of the samples. The HPB densities are 

low on both a dry and wet basis which portrays its true nature (light weight ash/fl y ash). 

Hollow particles such as cenospheres or plerospheres including carbon particulate matters 
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might be present in HBP resulting in the low density. The MAP- I sample was slightly 

higher in density. Again, this could be a result of the high carbon as both samples (H BP 

and MA P- I) had higher carbon percentage (table 4 .5). MAP-2 and MA P-3 samples a re 

denser than the fo rmer two samples. There is less porous and carbo naceous matter (table 

4.5) in these two samples. 

T bl 48 f a e . : I lltys1ca proper 1es o fth A I e s t samp1 es 
Density (g/Cm3

) 

T rue 
Density Dry Density Wet Density 

Sample porosity % basis (g/cm3
) basis (g/cm3

) (g/cm3
) 

HBP 75 1.1 3 0.27 1.41 

MAP- I 67 1.28 0.97 2.00 

MAP-2 67 1.76 1.59 2.04 

MAP-3 30 2.33 2. 10 2.43 

4.2 Mine tailings Characterization Results 

4.2.1 Chemistry and elemental composition 

Table 4.9 summarizes the analysis o f the mine ta ilings collected from a VALE mine site. 

Major, trace, and minor metals a re present. Iron (Fe) and sulphate (S04) arc the dominant 

species which is no t unexpected as the mines process iron sulphide ores. 
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Table 4 9· Mine Tailino Elemental Composition . . 'h 

Mine Tailing 
Element (mg/kg) 

Fe 5 14, 156 
so-1 273, 160 
Ca 8,584 
Ni 3,2 11 
AI 2,3 11 
T i 1,834 
Mn 7 11 
Cu 682.20 
Br 202.80 
Zn 167.92 
Co 92.06 
Se 82.29 
v 69.30 
Cr 69.19 
Pb 12.7 1 
Mo 3.48 
As 2. 12 
1\g 1.56 
Cd 0.86 

Below detection 
Hg limits 

4.2.2 Crystalline, amorphous and Mineralogical properties 

The mine tailing is characterized by strong crystalline minera l peaks and very weak 

amorphous background peaks. Minerals detected at high leve ls included (Appendix /\) 

pyJThotite (Fe 1.xS), py1ite (FeS:!), magneti te (Fe30-1), chromium manganese sulphide 

((Cr0 77 Mno.<J9)S), titanium sodium hydrogen phosphate hydrate (TiH a(P0-1h-2H:!O), 

tetrascandium hexachloride nitride (Sc-1CI11N) and boron iron terbium silicon 

(B5 Fe70Si2Tbx)o.o:!4 with small quantity of silicon aluminum compound 

(Sr-1Cs 11 (AI1:!Si ·60 96) ). The high levels of metals and sulphur resul t in a tailings effluent 

with a low pH (AMD) which in turn will result in prec ipitation of metals. 

74 



4.3 AM D Generation a nd T t·eatment w ith FA 

4.3. 1 Chemistr~· of Genet·ated AM D Wa ter 

As outlined in cha pt~r 3. tht: ta ilings were placed 1n humidity cells and th~ leac hate 

(AM D) co ll ~c t ed lo r analysis and trea tment. Table 4.9 outlines the ch~mistry or th~ 

AM D. Figure 4.6 outlines the pH or the A D collected o\·er eight weeks whic h va ried 

from 1.8 to 3.5. The pH trend showed in the ligure 4.6 bdow indicates that the AM D 

increases in acidi ty in the lirst three weeks and strongl ac id ic MD solution was 

generated in the lo urth week. There was increCise in the pH in the lirth ' eek and stables 

at pH or Cl pprox imately 2.5 arterwards. The metal ions and acidic nature or AMD 

represent important environmental hazards to freshwater resources and aqua tic 

ecosystem. Sulphate ions is the major anion in the analyl'.ecl MD ranged from X.729 

mg/L to 38.202 mg/ L while Fe~ · is the dominant ca tion with conc~ntra ti ons rangi ng from 

3.300 mg/L to I 1.00 mg/L. 
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Figure 4.6: Efflu ent (AM D) pH profil es 
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T bl 4 10 Ch a e : em1stry an d H f AMD p 0 oenerate d f I fi 4 weeks or t 1e 1rst 
Meta ls AMD 1st AM D 2nd AMD AMD 4th 
(mg/L) week week 3rd week week 

SO/ (mg/ L) 8,729 10,922 31 ,77 1 38,202 

Fe(mg/ L) 3,683 4,853 3,294 18,058 

Ca (mg/ L) 995 95 1 798 76 1 

Ni(mg/ L) 5 13.66 492 465 1,6 18 

Mg (mg/L) 277 199 697 544 

Mn(mg/L) 4 1.1 2 40.98 36.86 104.50 

Co(mg/L) 8.53 8.36 7.62 350 

C u(mg/L) 0.40 0.92 0 .93 0 .09 

Cd(mg/L) 0.24 0. 15 0 .07 <RL 

J\s(mg/ L) 0.03 < RL 0.08 <RL 

Zn(mg/ L) <RL 1.46 0 . 11 2.80 

Mo(mg/L) <R L 0.09 <RL 0. 11 

Hg(mg/ L) <RL 0. 15 0 .04 0 .22 

Pb(mg/L) <RL 0.05 0.0 1 0.10 

Final pH 3.46 3.46 2.65 1.80 

NB: T his research is limited to characterizing and using o f the generated AM D to 

simulate the adsorption propetties/pro files o f specific mate tia ls (FJ\) and not for long 

period kinetic/static test for weathering simulation on mine ta iling which usua lly takes 

minimum period o f 25-40 weeks. 

4.3.2 AMD: FA Neutralization Result 

T he elemental ana lysis of neutra lized (treated) and raw (untreated) AMD is presented in 

table 4. 11 . The amount of majo r contaminants removed increases with increasing FA 

concentration. The final change in pH as a function of time of the mixtures is outlined in 

figure 4.7. The immobilization of contaminants from the AMD is a complex process 

which could comprises o f adsorption, ion exchange, precipi tation and co-precipitation of 

metal hydroxide complexes on active sites of the sorbent (FA/Zeolite). 
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T bl 4 II Cl a e : tenustry o fFA AMON r eutra azahon out et process w ater 
M M M 

MAP ASH AMDB4 M NIO M N30 M NSO NIOO N250 NSOO 
Ash 

doses(2\l) 0 10 30 so 100 250 500 

Mg 199 516 7 10. 924 1, 154 870 675 

so-l 10,922 7, 128 5,277 6,426 12,192 7,736 5843 

Ca 43 95 1 1,081 1,587 1,39 1 1,365 1,262 1,073 

Fe 54 4,853 1,487 1.59 0.20 23.94 1.78 8.90 

Mn 40.98 11 0.80 126.60 7 1.20 18.99 4.49 6.6? 

Co 8.36 7.63 1.40 0.0 1 0.11 0.05 0.09 

Ni 492 377 126 11.82 1.77 0.77 3.78 

Cu 0.92 0.45 0.024 0.12 1.1 0 1.1 8 1.07 
Zn 1.46 17.09 0.30 0.28 1.75 0.45 0.28 

Mo 0.09 0.09 0.09 0.09 0.10 0.18 0. 19 

H2 0. 15 0.09 0.08 0.08 0. 12 0.08 0.08 

Pb 0.05 0.05 0.04 0.04 0.05 0.05 0.05 

H H H 
HBP ASH AMDB4 H NIO H N30 H NSO NIOO N250 NSOO 

Ash 
doses(2\l) 0 10 30 so 100 250 500 

M2 199 523 610 195 2.00 1.00 30.00 

so4 10,922 9,463 6,584 6,428 8,820 8,854 10,536 

Ca43 95 1 737 638 667 692 678 780 
Fe 54 4853 1,244 3.12 4.36 1.25 0.40 3.42 

Mn 40.98 66.84 0.38 0.08 0.08 0.15 2.30 

Co 8.36 10. 14 0.06 0.04 0.02 0.03 0.00 

Ni 492 293 0.15 0. 13 0.02 0.47 0.33 
Cu 0.92 1.23 1.15 1.18 1.0 I 0.94 0.99 

Zn 1.46 32.85 0.20 0.56 1.2 1 4.87 3.45 

Mo 0.09 0.08 0.47 0.66 1.18 2.2 1 1.91 

Hg 0.15 0.08 0.08 0.08 0.08 0.08 0. 13 
Pb 0.05 0.12 0.05 0.04 0.04 0.14 0.06 

NB: AMD 84 represents Raw Acid Mine Drainage before treatment w ith FA 
M represents MAP FA sample; H represents HBP FA samples while N(x) stands for 
sample dosage in giL e.g. HN20 stands for 20g of HBP FNLiter of AMD 
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pH Profiles 

The pH trends observed wi th both FAs during neutra liza tion nrc si milar to those observed 

and reported b Gi tnri ct aL (20 I 0). and Kumar et al. . (2008) rrom similar experiments 

( lig.4.7c). The typ 'S nnd volumes or ash \ ere di iTercnt but trends were the same as 

outlined in fi gure 4.7 a and b. 
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Figure 4.7a: C hange in pH of Al\10 solution with time for doses of (HBP) Sample 

NB: H represents HBP F samples while (x) stands ror sample dosage in g/ L e.g. 

H 20 stands ror lOg or H BP FA/Liter o r AM D 

78 



10 

9 

8 
:r:: 7 Q. 

.. .. Jl( ... .. _. - M 10 

CJ 6 ..... M }() 
c;: 
> , 5 -.- M 50 ..... 
c 

4 a; 
::l 

M 100 

E .., 
!.:.J 

_) -M 250 

2 ~M 500 

0 
0 50 100 150 200 250 }()() 

Neutt·alization time (minutes) 

Figure 4.7b: Change in pH of AMD solution with time for doses of (MAP) Sample 
NB: M represents MA P FA samp k; whik (x) stands lor sa mple dosage in g/ L e.g. 
MN20 stands l'o r 20g or M BP FA/ Li te r or AM D 

14 

12 ---
10 

c. 

~ R 
eo:: 

:::: 1 - 11 
~ 
= 1:: 4 '-

2 • 
0 

0 50 

• 

... 
0 

100 150 200 

C ontal·t time (min) 

250 

-+- I 00:0 I :00 

--- 20:0 1 

10:01 

~4:01 

---- 3:01 

2:01 

-- 1:01 

300 

Figure 4.7c: pH as a function of time fot· various Al\10: FA neutralization ratios 
(modifed from Kumar et al., 2008) 

B: 100:0 1; 20 :0 1: 10:0 1 etc .. . rcpre cnts various AMD : F/\ ratios during ne utra lizat ion. 

79 



4.3.4 Basics of AMD treatment with Fly Ash (FA) 

T he neutraliza tion of AMD is a function of the insolubili ty o f contaminants under basic 

conditions. So luble lime (CaO) and other soluble meta l ox ide such as MgO, a 20 and 

K20 are present in considerable amounts in the FA (Gi tari et a l, 20 I 0, Muluken et a l. , 

20 I 0, Kumar et a l. , 2008, G itari et al. , :W05 and Komnitsas et a l, 2004). T he d issolution 

o f these compounds is the first step in the neutra lizatio n process when FA comes in 

contact with AMD (aqueous solution) to fo rm hydra ted lime in solu tion. Dissociation o f 

a lka line compound in solution yields more hydroxide (OHr groups that triggers the 

solution pH (Aube, 2004), according to the reactions below: 

CaO + H~O -7 Ca(OH h (4. 10) 

Ca(OHh -7 Ca2
' + 2(0HY (4. 11) 

MnO + H~O 0 - -7 Mg(OHh (4. 12) 

Mg(OHh -7 Mg2
' + 2(0H)" (4. 13) 

Dissoc iation o f more (OHr groups into the solution leads to the hydrox ide Ions 

interac ting and combining with dissolved ca tions 111 solution to produce precipita tes 

(Aube, 2004), according to equations below: 

Co2 ' + 2(0HY 

Al3 ' + 3(0H)" 

Fe(OHh 

Co(OHh 

AI(OH)J 

(4.14) 

(4 .15) 

(4. 16) 

By increasing the AMD solution pH to certa in set-point, precipita tion o f some meta ls (in 

form o f metal hydroxides) occurs, Fe, Zn, and C u precipitated at typical pH o f 9.5 while 

o ther meta ls such as Ni , Pb, Mn and Cd requires higher pH va lue (I 0 .5 - II ) precipi tate 

and settle out (Aube, 2004 and Younger et a l. , 2002). 
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The acidity o f AMD so lution is a result of mine ral acidity suc h as metal sulphide and 

hydrogen ions depending on geological fonnation o f the mine site, (Skousen, 1997). /\t 

lower solution pH, the more soluble ions of Fe2
' and Mn:! ' a re ox idized to thei r less 

soluble form Fe3
' and Mn3 

.. . Fe3
' and Mn3

' then combine w ith hydroxyl groups to fo rm 

insoluble precipita tes (Younger et a l. , 2002). /\s more sulphate ions and hydrogen ions 

are removed from the so lution, the solution pH increases. Other dissolved metals a lso 

precipitate out of solution by fo rming insoluble metal hydroxide with the OH groups 

while sulphate ions combine with ca tion such as Ca2
' , Fe2

' , Mg2
' , to fo rm insolub le 

metal sulphate a nd/o r w ith a ' to form soluble a2S04 as illu trated below: 

(4.17) 

w he re M represents metals e.g. (Cu, Zn, Fe) (Chalkley et al. , 1989). 

aOH is o ften used preferably over Ca(OH):! in AMD treatment due to the lower volume 

of s ludge (less precipitation) generated. Hydrated sodium sulphate ( a2S04. 1 OX H20) 

formed from aOH is highly soluble there fore sulphate precipitates are not genera lly 

fo nned (Chalkley et al. , 1989). In general, suphate ions might still be present in aOH 

treated /\MD due to soluble Na2S04.10XH20 and Na2S04. The Na20 in the FA could 

produce aOH in the AMD and ubsequently fonn Na2S04.1 OXH20 and a2SO.J . T his 

would explain part o f anomalous behaviour of suphate ion adso rption as discus ed in the 

section 4.3.5. 
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4.3 .5 Adsoqltion and Leaching Characteristics of AM D: FA Neutralization 

Fe Removal 

More than 70% or Fe was removed with a concentration I Og/ L or both FAs and all 

detectable amounts were removed ' ith 30. 50. I 00. 250 and 500g/L or HBP. t 30g/ L 

AP F a ll dctcctnble Fe was removed. HBP FA concentmtions except IOg/L nil Fe2
' 

and Fc·
1
+ were completely removed rrom the solution (linn! pH or 7.0 - 12.5). This is 

allributcd to a rapid oxidation or Fe2
' to Fe·

1
' and subsequent hydrol ysis or Fc·

1
' to 

insoluble hydroxides (Kumar et al. . 2008). The insoluble amorphous hydroxides and/or 

oxy-hyclroxides arc retained on the solid FA residue. 
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Figure 4 .8 : Iron removal profile from AM D solution 
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The sharp decrease in total iron in the MD is likely clue to ox idation or Fe2
' to Fc·

1
' at 

lower pH or 4 - 4.5 and subsequent precipitation or insoluble ox hydroxide o r iron out or 
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the AMD. Studies by Gitari et al. (2010). Kumar ct al. (2008). Gitari ct al.(2005) and 

Komni tsas ct a I. ( 2004 ). showed simi lar behaviour. (fi gure 4. 9 below compares data rrom 

Kumar ct al.. 2008) 
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Figure ~.9: Fe removal profile from A 10 using FA (modified from Kumar ct al., 2008) 

Ca. Zn. a/Ill Mn Remn11al 

The treated MD wi th the M P showed increases in theCa concentration indicating that 

Ca \\'as leachtxl rrom the MAP F . This result f{lll owcd the trend observed by Kumar ct 

al.. (2008). In Kumar investigation. alkaline reagents leach such c lements like Ca. Ia. 

and K into so lution. In contrast. Ca docs not leach into the process water as HBP FA 

dosage increases for AMD treatment. This behaviour could be as a result or interaction or 

ca lcium and sulphate ions in solution to precipitate gypsum (CaS0~.2 H c0) (Kumar ct al.. 

2008). 
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Zn and Mn also lc(lchccl into solution !'rom both FAs (It the lowest concentration or FA 

(I Og/L) but reverse this trend at higher concentrations (lig.4. 1 ()(I and 4. 1 Ob). The 

neutral iz(ltion pH profiles (fig.4.7a and b) shm that the solution pH lor both sample with 

I Og/L was below 7.0 well below the pH region where Zn (1 1)(1 Mn prec ipitates. but as the 

FA closes increases the solution pH also incn;(lses to (lbove 7.0 resulting in precipitation 

or these metals (Zn and Mn) onto the solid residue hence. their concentration in solution 

cleerc(lses. 
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Figure 4. 10a : Calcium pt·otllc from tt·eated AM D solu tion 
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Leaching of Ca a nd Mg into the so lution was also repo rted by Kumar ct al., (2008) fro m 

FA- AMD neutra lization. According to Kumar et al., (2008), the treatment of /\MD with 

a lka line reagents leaves Ca and Mg in the fina l e ffluent water due to fo rmation o f soluble 

salts of these me tals. 

Sulphur Removal 

The sulphur removed from the /\MD is shown in figure 4 . 11 . /\s the concentra tion ofF/\ 

creased from I 0 to 50 giL there was approx imate ly 50% drop in sulpha te in ·o lut ion . 

Various mechani ms could have responsible for so}· remova l suc h as disso lution of 

CaO from FA and in the presence o f acidic AM D Ca2
' ions re leased into the solut ion 

precipitated gypsum (CaSO.J.2H20) on interaction w ith so}· causing the in itial sharp 

decrease (as shown in figure II below). Barium (Ba) and Strontium (Sr) salts present in 

the FA could a lso dissolve interacting with so/· resulting a lso in subsequent 

precipitation of barite (BaS0-1) and celestite (SrS0-1) or bo th (Kumar ct al, 2008). At pH < 

7, oxy-hydrox icles of AI suc h as a lunite, basa lum inite a nd jurbanite could have interacted 

wi th SO/ forming Al-oxy-hydroxysulphates of these compounds resulting also in sharp 

decrease o f so/ ·. Furthermore, at p H > 7 iron-oxy-hydroxides precipitates rcmo e so/· 

in large quantities (Gitari e t al, 20 I 0) therefore could have a lso contributed to SO/-

removal. 

Further increase tn FA dosage from 100 - 200g/ L shows an increase in SO/

concentratio n in the effluent water. Formation of soluble Na2S0 4 . 1 OX H20 and Na2S0-1 in 

solution could be responsible for the increase in solution as discussed earlier in section 
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4.2.4 . Furthermore, si nce the volume or AM D is constant lor all the ash closes. it may be 

that cations released into the so lution (e.g Ca2' . Ba2"' . and 1.2 •) with 30 - 50g/L FA 

doses. There lore the increase in the SO/ ion concentration in solution , hilc using the 

HBP FA ma indicate it contains more soluble sulphate salt than lAP F . 
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Figu•·c 4. 11 : S ulphu1· •·cmovH I profil e from AM D solutio n 

According to Kumar et al.. (2008) several mechanisms could be responsible I{H· sulphate 

removal including gypsum ( aSO-L2H20) . barite (Ba O.J). and/or celestite (SrS0-1) 

!ormation. s the solution pH incr ·ascs to 3. ox idation or Fc2
"' to Fe·' ' with subsequent 

precipitation or amorphous le rric hydroxide may also absorb S0-1. At a pH or 5-7 this 

absorpti on reaches a max imum (Kumar et al. , 2008 and Gi tari ct al. , 2005). Gitari ct a l 

(20 I 0) l()und that when the FA closes were cloublccl. the S0-1 concentrati on was not 

doubled in trc;J tcd so lution therefore suggesting that solubi lity contro l l{)r 0 -1 docs 
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ex ists. Remova l pro fi les oberved for the suphate ions during neutralization is s imilar and 

took the same trend as that reported by Gitari et al. , (2005) . 

Co and Ni Removal 

A sharp decrease in concentration was observed wi th coba lt and nickel as shown in figure 

4.12a and 4.12b below. The concentration o f Co was high in so lution ini tially at lower pH 

(pH < 7) in the lOg/ L of HBA FA and was la ter on removed accordingly as the FA dose 

increases. MAP FA does no t recorded any leaching of Co into the soluti on as there was 

no any initia l inc rement in Co concentration with all dose of MAP FA .This removal 

could be attributed to precipitation of both meta ls at pH greater than 9.0. 1\t pH of 9.5 or 

greater, Ni ' 1 precipitated as Ni(OH)2 and adsorbed onto precipitated amorphous /\1 o r Fe 

oxy-hydrox ide while Co precipitate as Co(OH)2 and adsorbed onto the F/\ surf~tce 

(Kumar et a l. , 2008). 
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Almost comple te remova l o f i, Co and Mn occured a reported in investigations by 

Gitari et al. (20 I 0 and 2005) and Muluken et al. (20 I 0). ea r complete remova l of these 

metal wa · observed at pH o f 7 - 9. The metals are removed through precipiation as 

insoluble metal hydroxyde at certa in pH ranges (4.5 to 9.5 and above) (Aube, 2004; 

Younger et al. , 2002; and C ha lkley, 1989). 

eutralization of /\MD w ith raw fly ash on a larger scale should be investigated as 

e ffi c ienc ies achieved in the lab may not ful ly translate to la rger scale. However, the lab 

scale re ults indicate the FA is an e ffec tive treatment system for AMD with removal or 

metals such as Fe, i, Co, Mg and Zn at 70%+. The concentration of SO/~ in the AM D 

is re latively unchanged a t high FA concentrations fo r the HBP FA, due to the reasons 

outlined above. As long as the pH stays above - 6 (Skousen et al., 1997) the sa lts w ill no t 

disassociate hov ever be low this pH the sulphate could be released into solutio n result ing 

in a drop in pH. This needs to be further investigated to ensure this reaction does not 

reverse the reby releasing sulphate into the environment. 

4.3.6 FA- Neutralization Efficiency 

eutraliza tion effic iency esti mates the rela tive effectiveness of the FA in neutral iz ing 

AMD acidity and subsequent contaminant removal from the e ffluent water stream. T he 

contaminant removal efficiency by the F 1\ is thus eva luated as; 

(4. 18) 
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where J represent removal efficiency. 1 represents the initia l contaminant concentrat ion 

before neutralization and c~ represents final contaminant concentration ancr 

neutralization. Hence, the overall treatment e fficiency using raw FA: /\MD neutralization 

was estimated to be 85% . 

4.3. 7 Process Water Final pH 

T he final process water pH for a ll analyzed FA-AMD neutralization was grea ter than 6.0 

except l Ou L MAP FA which is 5.8 (fig.4.7 a-b). The observed pH fluctuat io ns in the 

first 90 minutes of contac t time could be attributed to chemica l interactions but become 

stable a fter 150 minutes. Process water of a ll FA doses hit the maximum pH in 240 

minutes and these va lues remained s table fo r several weeks. The FA: AMD ratio 

considered as the optimum dosage for this research was I OOg/ L HBP FA and 250g/ L 

MAP FA. The difference in the optimum FA doses between the two samples was 

attributed to higher buffering power and pH o f HBP FA. 

4.3.8 Adsorption Mechanism 

The pH is a very important parameter for this process due to the solubility and mobil ity 

of metals such as Fe, Zn, Co, Pb, AI, and Mn. At high pH levels these metals fo rm 

complex amorphous solids (Kuyucak, 2006) that retained on the surface of adsorbent . 

As the solution pH increases, an inc rease in the meta l ions in solution occurs resulting in 

the precipitation and/or co-precipitation meta l hydroxides, oxides, carbonates, sulph ides, 

ulphates and phosphates (Zhou and Haynes, 20 I 0). Specific ad orption includes metals 
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ions and/or anions exchange on va rious charged surface . The amo rphous and c rystalline 

Fe, AI , Mn oxides and the aluminosilicates carries va rying charged surfaces on which 

adsorptio ns occurs (Zhou and Haynes, 20 I 0). The mineralogica l and chemica l analysis 

has shown that the FA particles are composed primarily of amorphous fe rro 

a luminosilicate, calcium-aluminosilicates, iron oxides, and a luminum oxides. Also, the 

high pH o f FA favours specific adsorption and/or surface precipitation o f metal catio ns 

and anions to its surface (Zhou and Haynes, 20 I 0). 

4.3.9 Optimization and Scale up design 

The optimum contaminant remova l was achieved with lOOg/L HBP FA and 250g/ L MAP 

FA during the labo rato ry scaled experiment. After4 hours lOOg/ L HBP FA recorded fi nal 

pH o f 12.2 w hile 250g/ L MAP FA showed final pH of 9.2 and at these pH (pH> 9.0 to 

12.0) the solubility limit of common meta ls such as Cu, Zn, Cd, Mn, Pb and Fe2
'
13

' is 

exceeded there fore are less soluble and hence precipitated. This expe1iment was carried 

out at ambient condition of temperature and pressure. Most AMD treatment plant 

requires fina l e ffluent pH of c ircum-neutral (6.8) to 9.0 therefore recycling of lime in the 

fina l process water may be required. Since a stable e ffluent pH was achieved at 150 

minutes o f stirring, the reaction/res idence time could a lso be reduced to less than 3 hours 

(2hours 30minutes). Mixing/stilTing speed has no e ffect on the final effluent pH and 

removal efficiency therefore a minimum speed of 40rpm is reasonable for this process. 
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Figure 4.13: Optimum FA treated effluent water pH profile 

4.3.1 0 Scale Up 

The scale-up or this process requires additional research. howevcr calculations to relkct 

reas ibility arc shown below: 

Assuming a mining d iluent (AMD) pond 3.8 16 x I Or.L/da ( l.OOX x I OhG PD) cnluent 

dischargc. An equi\'a lent amount or FA that would be n.:quired ror the F /AMD 

neutra lization process is 38 1.6 tonnes/day or HBP FA and 954 tonnes/day o r MAP F . 

This is stricti based on the AMD that has the same level or contam ination as those 

analyzed. On average these va lucs rcprcsent approxi mately 0.05<}o or FA that is generated 

annua l! in Canada. Furthermore, i r the cnlucnt pH is more than 9.5. excess lime can he 

nxyc lecl back to the F mi xing tank there lorc the amount o r Iced 1- can be rcdun:d 
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accordingly by balancing the final e ffluent pH and quantity of FA introduced from the 

feed. Hence, the solid res idue generate from FA: AMD neutraliza tion would be recyc led 

for zeolite application as described in section 3.4. 

4.3.11 Tailing weathering and natural degradation 

Mineral weathering is usually associated with some naturally occurnng degradation 

(Younger et al., 2002). Many carbonate and s ilicate minerals are weathered by AMD and 

in the process the AMD pH is reduce pH and it acts as a buffe r. This is a process that 

occurs naturally with subsequent precipitation of amorphous and inso luble minerals prior 

to or during any trea tment. Disso lution of minerals such as calcite, anorthite, albi te, 

a luminosilicate and felsdspar are classic examples o f wea thering that neutralizes or 

reduces acidity (Younger et a l. , 2002). Ca lcite and feldspar dissociate rapid ly and 

sufficiently control the pH o f process water (Younger et al. , 2002). Th is phenomenon was 

observed in our experiments in untreated AMD a lthough it is very slow process. G reyish 

prec ipitates formed at the base of AMD containers and were ana lyzed using XRD 

techniques. The XRD analysis identified the precipitate as predominantly gypsum 

(CaSn1.2H10). Example of such dissociation that occurs during mineral weathering is 

outlined below: 

(4. 19) 

(4.20) 
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4.4 Permeable Reactive Barrier 

4.4.1 AMD pH profile 

T he cha nge in pH with A MD pore volumes fl owing th rough the reactive columns fo r 

both FA samples are represented in the figure 4 . 14. The pH o f the AM D was below 2.0 a t 

the sta rt of experiment. T he e ffl eunt pH gradua lly increased fi·om 1.8 to 12.5 j ust after the 

first po re volume (approximate ly 400cm3 AM D) passed through the HBP reactive barrier 

column. The process water had a pH o f 12.4-1 2.6 and beca me constant. Dissolution o f 

some meta l oxides such as MgO , CaO, a20 and K20 like ly contributed to this rapid pH 

inc rease. T he inc rease in the pH may a lso be due to the ox idation o f Fe2
' to Fe·1' , 

hydro lysis o f AMD-FA constituents suc h as Fe3
' , Al3 ' , a nd subsequent hydrolysis to iron 

and/or a luminum hydroxides as described by Kumar ct a l. , (2008). T he HBP FA had a 

higher buffering capacity than M AP FA. T he process water pH of the MAP reactive 

co lumn showed similar profile as that of HBP reactive co lumn, however the overall pH 

and buffering capacity was lower. Buffering plateaus occurred at pH o f 6.0 to 8.4 as 

shown in the fi gure 4.8 and became stable a fter the s ixth pore vo lumes of AMD. T his 

indicated that HBP sample has higher neutraliza tion capaci ty (as discussed in section 

4 . 1. 10) tha n the MAP FA whic h is in agreement with the cha racteristics o f the FA w ith 

respect to pH a nd buffering power o f the FAs. 
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4.4.2 Effect of Chemical Interactions on Flow 1·ate and residence time 

The permeable reactive column function is to immobili ze metal s and increase the pH 

promoting sulphate reduct ion and metal sulphate preci pitation. As the AM D passes 

through the reacti e barrier. several physica l and chemica l interac tion occur such as 

dissolution o r soluble sa lts. hydrolysis. oxidation. precipitation and co-precipitation that 

may alter the llow through the column . This is likely the cause or the unstable region 

between the 2'"1 and 7'11 pore volumes in the pH prolile o f the diluent. 

The volumetric llow rate o f' the column system was initia ll y 1.860cnY'Iday fo r M P F 

column and 1.440cm3/day f(Jr HBP F column with average residence time o r 7. 1 hours 
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and 7.5 hours respectively. After some time during the process, the tlow rate and 

residence time decreased significantly due to precipitation visualized through the column 

wa ll in the first 0 - 8cm mark of the column. This precipitation occoured in both FA, 

MLA ana lysis of the precipitate FA mixture indicated an increase in Fe and Ca of the 

FAs. The XRD analysis confirmed large amounts of gypsum (CaS04 .2 H20), Fe20 3 and 

FeS04 . After four pore volumes, the tlow rate was reduced from I ,860cm3 to 

, 3 3 
1 200cm~/day for the MAP FA column and from I ,440cm to 960cm /day for HBP FA 

co lumn. This is because the pore spaces of the reactive barrier were partially blocked by 

(CaS0-1.2 H20), Fe20 3 and FeS04 in both cases thereby reducing the volumetric tlow 

rates. The chemical reactions desribed below are likely examples of such possible 

reactions w hich are: 

Ca lcite dissolution has little or no overall effects on barrier but results in the removal of 

lime and calcite from the barrier matrix (Chalkley et al. , 1989) : 

CaC0 3 +H' -7 (4.2 1) 

Siderite (FeC0 3) fonnation results in replacement of chemical species in barrier materia l; 

(4.22) 

(4.23) 

Gypsum precipitation has the potential for precipitation and blockage of pore spaces in 

banier; 

(4.24) 

Finally iron precipitation drops the pH of the solution due to production of more protons 

into the solution by hydrolysis; 
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4Fe2' + 0 1 + IOH20 

(Cha lkley et al. , 1989) 

4Fe(OH)J + 8 H' (4 .25) 

T he tota l iron r moval from solution results in iron precipitation that cau ing pore space 

blockage in the barrier which was la rgely responsible for the change in the flow rates and 

residence times. 

A maj or pH increase was observed between I th and 2'1(1 po re volumes in both cases and 

chemical interaction might be responsible fo r the pH f1unctuation between the 2"d and 6'h 

pore volumes ( fig.4.14). 

4 . .4.3 Chemistry of PRB Process Water Before and After Treatment 

Table 4.1 2 summarizes e ffluent contaminant removal through the pe rmeable reactive 

barrier application u ing the two FA samples. An appreciable amount of contam inats 

were removed as more AM D pore volumes passed through the reactive barrie r. The pH 

trend of the fina l e ffluent water is similar to those investiga ted by and Muluken et a l. , 

(20 10) and Komnitsas et a l, (2004). 
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Table 4 12 Percentaoe of effluent contaminant removal t .,.,. t 

Percentage contaminant Removal (%) from each Pore volumes 
Raw AMD 

Element (mg/kg) MAP FA-Treated 

l 2 3 4 5 6 7 
Mg 544 L L L L L L L 

AI 2.06 63. 11 L 69.90 69.42 58.25 0 14.56 

S04 3 1776 63. 17 61 .24 87.56 80.63 73.20 74.55 85.38 

Ca 43 76 1 L L L L L L L 
Fe 54 18058 100 100 100 100 100 100 100 

Mn 104.5 99. 14 98.9 1 99.8 1 99.92 99.90 99.92 99.88 
Co 35 100 98.66 99.80 99.97 99.94 99.9 1 100 

Ni 16 18 99.59 99.40 99.98 100 99.98 100 99.98 

Cu 0.09 L L L L L L L 

Zn 2.8 46.79 L 53.93 59.64 49.64 7 1.43 40.36 
Mo 0. 11 L L L L 0 L 18.18 
Hg 0.22 27.27 54.55 31.82 63.64 9.09 L 63.64 
Pb 0.1 L L 30 L L L L 

Element HBP FA-Treated 
Mg 544 99.97 99.82 99.79 99.88 99.87 99.86 99.76 

AI 2.06 92.23 61.65 58.25 25.73 L 37.86 60.68 

S04 3 1776 63.3 1 53.46 92.20 77.32 98.46 89.89 69.34 

Ca 43 76 1 L L L L L L 22.47 
Fe 54 18058 99.81 99.81 99.80 99.80 99.79 99.81 99.82 
Mn 104.5 99.21 99.93 99.89 99.78 99.89 99.66 99.83 
Co 35 100 99.94 99.23 99.97 99.94 99.94 99.97 

Ni 1618 99.99 99.96 99.98 100 100 99.93 99.99 

Cu 0.09 L L L L L L L 

Zn 2.80 L L L L 15.00 L L 
Mo 0.11 L L L L L L L 

Hg 0.22 68. 18 68.1 8 63.64 68. 18 63.6364 68.1 8 68. 18 
Pb 0.1 L L L L L L L 

L : Represents leaching of metals from FA into AMD solution (its % cannot be 

estimated) 
Efficiency was eva luated using the correlation f = {(C 1-C2)/C i} * I 00 as described in 

section 4.3.6. 
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Fe, Ni, Co, and Mn Removal 

Thera\ AMD sample was characterized by high Fe2
' /Fe3

' level ( 18.058mg/L) as shown 

in table 4.12. Iron was removed almost completely from the ertluent stream alter the lirst 

pore volume. The behaviour is cry similar in both ash samples as it can be seen from 

adsorption prolile (fig. 4.15a). The MAP ash sample remo\ed the iron completely a lter 

lirst pore volume vvhile HBP ash sample removed iron to value k ss than J5mg/ L. This 

happened at circum-neutral pH (pH almost 7.0) lo r the MAP but at pH or around 12 .8 lo r 

the HBP sample. As previously mentioned a dark-grey prec ipitate was noticed in the lirst 

column in the lirst 0 - 8cm or the reacti ve co lumn. 

Mn. i and Co showed similar trends as Fe lor both ash sample. The diluent Mn 

concentration niter lirst pore volume decreased ignificantly to below 1.0 mg/ L l(x both 

FA samples. This wa the same lo r i. and Co lor both FAs as shown in ligure 4. 15(h 

d) except that i in theM P sample was completely removed alter the J ~"" pore volu me. 

Komnitsas ct a l. (2004). reported similar remo al prolile lor Fe. Co. i. and Mn with 

PRB applica tion. 
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Figure 4.15a: Iron removal ft·om effluent water stream by PRB 
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Figure 4.15b: Manganese removal from effluent water stream b~, PRB 
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Figm·e 4.15d : Cobalt removal from effluent water stream by PRB 

S0-1 Removal: 

The sulphate ion represents the dominant anion or the D and the in let concentration 

was approx imately 3 1,776 mg/L as shown in table 4. 12. ncr the passage or the I st pore 

vol ume. the sulph<llc concent ration lo r both FA co lumn dropped signi nicantl y to 

approx imately 11 .000 mg/ L. The nex t noticenblc reduction in o }- concentration wns 

alter the 3"1 pore o lumes when the concentration dropped to less than 3.000mg/L and 

4,000mg/L lo r H BP and MAP FA respecti vely. This occured at the high pH n.:gion ( - 6.0 

and above) lo r both ash as shown in ligurc 4.16. lier the 3'" pore volume the so .. begins 

to increase. The linal cl'lluent still had SO .. o r less than 500mg/L lor HBP while ro r MAP 

sample. it showed a va lue slightly above 7.000mg/ L. This incli ·ated that HBP sample is 
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more clkctive in sulphate remova l than the MAP sample. The increase in sulphate 

concentration suggested that there arc soluble salts or sulphate in the lly ashes wh ich 

di ssolved/leached into the ernucnt stream. Formation of gypsum (Ca 0-1.2H20) is most 

likely major precipitate o r this interraction as suggested by Mulukcn et al (2010). s 

discussed in section 4.2.2 the anoma lous behaviour or sulphate ions in solution could also 

responsible l(x the unstable nature or so-l adsorption pro lilc as shown. imilar removal 

pro file were also reported by Muluken ct al.. (20 I 0), but explanations/reasons as to 

increasing behaviour or so-l ions in solut ion was not pro ided. 
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Figure 4.16: Sulphur t·emoval from effluent water stream by PRB 
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Ca. Mg. Cu. Mo am/ Zn Removal: 

A Large amount orCa \ as released ll·om both FAs into the MD solut ion as shown b 

the trend in the ligure 4.17a. The leaching characteristics follows the trend descrilx:d by 

Kumar et al. (2008). as di cussed earlier (sect ion 4.2.5.2) . Mg also shm eel simi lar 

leaching trend wi th MAP FA but no leach ing or Mg was detected wi th HSP FA. this 

could be that there are no soluble salts or Mg in the l-I SP FA. Mo initi ally leached into 

the AM D solution over the lirst three pore olumes and was adsorbed alierwards \\'hen 

the so lution pH increased to the solubility limit (6.0 and above). Leaching ofZ n was also 

observed in both FAs as hown in fi gure 4.17d. Cu also leached into the d iluent with 

MAP FA but very lillie from the l-ISP FA. 

3000 

2 2500 
Oil 
E 

§ 2000 
·.: 

e..: ..... ..... 
= 1500 Q,l 
<.J 

= -+-- M P-Cn 
0 
<.J 

E 1000 - 1113P-Ca 

::I 
<.J 

e..: 
500 u 

0 
0 2 4 6 10 

Effluent pm·e volumes 

Figure 4.17a : Calcium profile in the effluent water stream through PRB column 
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Figure 4.17b : Magnesium removal/profile in effluent water stream by PRB 
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Figure 4.17c : Mol~·bdenum rcmoval/pt·oflle in effluent watet· stream b~· PRB 
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Figure 4.17d : Zinc profile in effluent wate•· stream b~' PRB 
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Figure 4.17e : Copper p•·ofile in effluent wate•· stream by PRB 
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4.4.4 PRB Treatment Efficiency 

The removal mechanism o f PRB techniques is s imilar to that o f neutra lization and 

approximate ly 97% effic iency was recorded . Similar expressio n was a lso used to evalua te 

the PRB e ffi c iency (i.e. f = { (C 1-C2)/C 1} * I 00). Almost complete remova l of Fe
21 

/Fe
3 1

, 

N i, Co, and Mn was achieved and meta ls that leached into the solution include Ca, Mg, 

Mo and C u. T herefore going by the eva luated effic iencies, PRB is more e ffi c ient than the 

neutralization method in terms o f contaminant removal. In terms of pH increase and 

stability , the FA: AM D neutra lization shows better pH control than the PRB. This could 

be a tttibuted to constant mixing during neutra lization, neverthe less, PRB also achieve 

fi na l process water pH of above 8.0 (by MAP FA) and above 12.0 (by HBP FA) which is 

reasonable. 

4.4.5 PRB Optimization 

PRB optimization can be de fined in terms o f finding the balance between contaminant 

capture/removal, residence time and the stability of PRB tha t produces a minimum cost. 

[n this investigation the amount of FA used for the PRB column was fi xed unlike the 

neutralization study and the volumetric flow ra te was kept constant under gravitatio nal 

free flow. There was a significant reduction in the volumetric flow rate over time due to 

blocking o f pore spaces in the first 30% of the first column with amorphous precipitates. 

As more contaminant was removed from the AMD, more reactive barrier spaces were 

blocked and less volume o f AMD flow through the barrier and therefore mo re residence 

time were required for the process. Hence at the end o f the 8111 pore volumes, the 
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unblocked part of FA (85%) o f to ta l vo lume still has the qua lity a lmost equa l to that o f 

fresh FA. Optimum design requires a mechanism that would maintain constant flow rate 

throughout the life cyc le of the FA and hydraulic perforation or subsequent removal of 

the spent FA at the upper section o f the column. 

4.5 Zeolite Characterization Result 

4.5.1 Mineral Content, Amorphous and Crystallinity 

T he X RD analysis o f the FA produced zeoli tes showed a sharp peak o f sodi um a luminum 

silicate hydrates (zeolite) and potassium a luminum silicate hydrate ( Appendix A). T he 

main zeoli tes fo rmed are the sodium a luminum si lica te hydrate (Na6AI6Si lo0 32 12 H20), 

po tassium a luminum silicate hydrate (K2_ 52A I 1 06~S in360n).( H20b.s) and the lawsonite

zeolite that is ca lc ium aluminum silicate zeolite (CaAI2(Si20 7)(0H}!( H20 ). Gypsum, 

a luminum silicate, quartz and muscovite are a lso present in significant amounts. T here is 

an indication that the aluminum silica te salts crystallize to various zeolitic materials 

during hydrothem1a l process (Keka et a l, 2004). 

T he conventiona l hydrotherma l treatment with a lka li (NaOH) uses the NaOH as an 

activator during fusion process at high temperature (500 - 650 "C) combining w ith 

a luminum silicate sub-building units to fonn soluble groups (Keka et al, 2004). 

4.5.2 Surface area and textural properties 

Table 4 .13 shows the surface area and pore volumes of modified FAs after hydro therma l 

trea tment The pore volume of the modified fly ash increased 2 .5 times for the MA P FA 
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and 15 times for HBP FA. The specific surface area incrca cd approximately twice and 

six times for MAP and HBA FA rc pcctivcly 

Table 4.13 Textural properties of ash samples. 
Sample SI3ET (em-/g) Tota l pore volume, Yt 

from P/P0 =0.99 (cm3/g) 

MAP 3.93 X 105 0.20 

MAP-zeolite 7.94 X 105 0.50 

IIBP 1.0 I X I 05 0.02 

HBP-zcolitc 5.85 X 105 0.30 

4.5.3 Zeolite-AMD Neuh·alization and Adsorption of Contaminants 

The adsorption capacity of the zeolite ynthcsizcd from FA was compared with that of 

commercial activated carbon. The pH profile of the procc s water after treatment with 

FA-zeolite in figure 4. 19 showed similar characteristics as those for FA: AMD 

neutralization and PRB. The solution pH is stable on the same time scale as the PRB 

without fluctuations as observed with PRB. The maximum pH achieved using 

synthesized zeolite was 8.8 by HBP-Zcolitc and 8.4 by MAP-zeolite at the end of 240 

minutes of reaction. It is important to note that process water pH remained stable after 

treatment for a number of weeks. During the hydrothcm1al treatment ofF A with aOH, 

mo t of the leachable metals have been dissolved into solution during the proccs and as 

uch, there is no significant amount of metal leached into the proccs water treated by the 

synthesized zcol itcs. 
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Figure 4.19: Effluent pH trend with time on neutJ·alization with synthesized zeolites 
B: MAPZ represents MAP FA Zeolite treated AMD: Actv.C represents commcrc inl 

acti vated ca rbon treated AM D and HBPZ represents HBP FA treated AMD 

Table 4.14 and 4.15 respecti vely shows the ef'nuent contaminant concentration and 

eniciency bel'ore and alier treatment. A 200g/L MAP-zeolite dose nnd I OOg/L or each or 

HBP - zeolite and commercial acti ated carbon were used r)r MD treCltment under the 

same condit ion or mixing. In compe1 ri son wi th equiva lent doses or rm F treated AMD. 

the modilied ash samples (Zeolites) showed higher elliciency lor contClminClnt removal 

(adsorption) than raw lly ash. Contaminant concentration in the raw AM D trea ted by raw 

and modi li ed samples is quite dif'rerent. there lo re it is better to compare their removal 

cniciency rather thnn concentrmion o r contnminants removed. The major ·ontamina nts. 

Fe and so~. an; al mo. t lour times more concentrated in the raw MD treated by the 
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zeolite compared to those treated by raw FA. MAP and HBP zeolite show a 99.79% Fe 

removal and more than 85% for S04 removal. Overall , the modified samples shows 

almost 80% efficiency with only copper leached into the solution while the raw FA 

ample shows average performance of 58-60% efficiency with leaching in such metals a 

a, Mg, Mo and Cu. 

Table 4:14 Concentration of Contaminant in FA-Zeolite Treated Effluent Water 
Modified FA (Zeolite) Treatment Raw FA Treatment 

Raw AC Raw M 

AMD HBPZ( I OOg/ L) MAPZ(200g/L) Treated AMD 250 

Mg 544 492.47 85.32 177.15 199 870 

04 38,202 5,047 3,179 < RL 10,922 7,736 

Ca 761 728 320 238 951 1,262 

Fe 18,058 37.80 37.54 869.74 4,853 < RL 

Mn 104.50 0.86 0.25 13.63 40.98 4.49 

Co 35.00 0.0 1 0.03 2.24 8.36 0.05 

Ni 1,618 0.47 0.65 103 .74 492 0.77 

Mo 0. 11 0.03 0.03 0.04 0.09 0. 18 

Zn 2.796 0.70 1.90 3.64 1.46 0.45 

Cu 0.09 0.26 0.46 0.25 0.92 1.18 

Hg 0.22 0.37 0.08 0.08 0. 15 0.08 

Pb 0. 10 0.03 0.05 0. 15 0.05 0.05 

NB: HBPZ represents HBP FA Zeol!te treated AMD; MA PZ represent MAP FA Zeol!te 

treated AMD; AC represents commercial activated carbon treated AMD; M represents 

MAP FA sample; H represents HBP FA samples whi le (x) stands for ample dosage in 

g/ L e.g. HN20 stands for 20g of HBP FA/ Liter of AMD. 

Ill 
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T bl 4 15 P a e . t I f t ercen age rcmova o con amman t "th W I syn th . d FA Z rt CSIZC - eo 1 c 
Synthesized Zeolite Treated AMD Raw A h Treated AMD 

%contaminant removal % contaminant removal 

MAPZ(200g/L) HBPZ( I OOg/ L) Actv.C( I OOg/L) MAP(250g/ L) HBP(IOOg/ L) 

Fe 99.79 99.79 95.18 100 100 

Mn 99.76 99. 18 86.96 89.00 99.80 

Co 99.91 99.97 93.59 99.00 99.81 

Ni 99.96 99.97 93 .59 100 100 

Mg 84.31 9.47 67.43 L 99.03 

so4 9 1.68 86.79 100. 19 29.00 19.25 

Ca 57.89 4.32 68.67 L 27. 17 

Mo 72.74 72.74 68.40 L L 

Hg 63 .88 66.42 63.88 45.00 45.22 

Pb 52.55 64.79 58.40 0.00 20.00 

Zn 31.96 74.96 30.07 70.00 17.22 

Cu L L L L L 
NB: L signifies metal leaching into the process water; HBPZ represents HBP FA Zeolite 

treated AMD; MAPZ represents MAP FA Zeolite treated AMD; AC rcprc cnts 

commercial activated carbon treated AM D; M represents MAP FA sample· H rcprc cnts 

HBP FA samples while N(x) stands for ample dosage in g/L e.g. H 20 tands for 20g of 

HBP FNLitcr of AMD. 

The I OOg/L dose of commercial activated carbon was used for AMD treatment. A result 

similar to the modified FAs was recorded but 100% S04 removal and its final effl uent pH 

was low (below 4.0). This is an indication that commercial activated carbons arc lor S04 

adsorption but unsuitable for AMD pH control (neutralization). In comparison with 

modified FA, it shows an overall removal e fficiency of 75% which is below 80% 

recorded by modified FA (zeolite). Its efficiency in all contaminants other than S04 is 

less than modi ficd FA efficiency. 
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4.5.4 Zeolite Efficiency 

The overall efficiency of both mod ified FA in contaminant removal (using f = {(C1-

C2)/C1} * I 00 as described in section 4.3.6.) was approxi mately 97% with almost 

complete removal of Fe, i, Co, Mn and S04 and leaching recorded only wi th Cu. 

The final process water pH was 8.4 and 8.8 respectively for modified HBP and MAP 

FAs. The major difference between using the modified FAs and the raw FAs for AMD 

treatment was that there is no sign ificant amount of meta l leaching with modified FA 

treatment. The modified FAs removed a lager percent of S04. Furthermore the final 

process water pH of raw FA treated is higher than those treated by the modified F As. 

These differences could be attributed to dissolution of the soluble alkaline compound 

from the modified F As during hydrothermal process. 

4.5.5 Optimization 

This investigation was not extended to the effects of the hydrothermal reaction 

parameters such as hydrothermal process temperature, FA aOH ratio, caustic reagent 

molarity, fussion temperature, nucleation time and temperature, reaction time e.t.c ... The 

doe of modified FAs used for AMD treatment was 100 giL and 200 g/L of HBP and 

MAP respectively. 
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CHAPTER FIVE: CONCLUSSION AND RECOMMENDATION 

5.1 Characterization 

The physical, mineralogica l, chemical and phy icochcmica l characteristics of AV Cell fly 

and boiler ash was characterized for suitabili ty in applications to adsorption, PRB, and 

neutra lization. Potential applica tions in the areas of AM D treatment (neutra lization and 

permeable reactive barrier) and zeolite application of neutra lization residue were 

explored experimenta lly. 

The F As arc of ASTM C6 18 c ia C wi th good pozzolanic propcrtic and M LA analysis 

show that these samples provide a rich ourcc of Si02, CaO, and Al20 3 wh ich arc 

feedstock for zeolite synthesis . The analyzed FAs ha c high ratios of Si02/Al20 3 (ranges 

from 6.0 to 7.7) which arc conducive to high performance zeolite. 

The minera logical and chemical analys is indicate FA particles arc composed primari ly of 

amorphous fe rro-aluminosilicatc, calcium-aluminosil icates, iron oxides, s il icon oxides 

and a luminum ox ides. These compounds arc key species fo r adsorption applications. 

The high pH of FA enhances adsorption and/or surface precipitation of metal cations and 

anions to its surface. The FA pH were in the ranges of I 0.54 - 13.08 with buffering 

capacity of 0.5 - 4.9mmollpH hence, suitable for AMD mitigation through neutra lization 

and/or permeable reactive membrane (PRB). 

The m itigation o f C0 2 emissions through adsorption onto FA or fl y ash modi ficd material 

a low cost and susta inable approach to C0 2 capture and control. The chemical make-up 
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and resulting adsorpti ve capacity of the fl y a h studied make it a possible treatment 

option. The presence of cementing agent such as hydrated lime, quicklime, gyp um and 

clay indicated the ash could also be used in cement and concrete application. 

In conclusion, there arc a number of areas of alternative usc fo r the tly-ash. The mo t 

promising and perhaps the most appl icable in the natural resource context is usc 111 

mining effluent treatment/mitigation, cement/concrete application and carbon capture. 

5.1.2 Treatment Application 

In the second phase of this research we conducted laboratory scale experiments in the usc 

of the F As to mitigate ac id mine drainage (AM D) from mine waste. The optimum FA 

dose for neutralization of AMD is lOOg/L HBP FA and 250g/L MAP FA and the fi nal pH 

of the treated AMD rose from approximately 2.0 to 12.4 and 9.2 rc pcctivcly. Both 

samples showed high contaminant removal efficiency (> 90%) fo r Fe, Co, Mn and 1. 

The impact on sulphate concentration in the AMD was di fficul t to evaluate due to the 

reactivity and solubili ty of the sulphate and fom1ed olublc sulphate alts. However, the 

variation in sulphate concentration did not impact the final process water acidity. The 

ynthc ized zeolite effectively decontaminated AM D water with high overall 

contaminant removal e fficiency (approximately 97%) and fi nal pH of above 8.0 that 

remained stable over II weeks 
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The AMD wa effectively treated when the FA was used as a PRB. A laboratory scaled 

reactive barrier column was constructed and AMD introduced at the top. Flow ra tes and 

rc idcnce times of the AMD in the column were 1860 cm3/day and 7.5 hrs for MAP FA 

and 1440cm3/day and 7.5 hour fo r HBP FA. Under these cond itions, al l contaminants of 

concern were completely removed from the AMD, and the final proces water pH varied 

between 8.2 - 12.2 with leaching from Ca, Mg, Mo and Cu. 

The mcchani m of contaminate removal is proposed as; (i) solution pH increase due to 

alka line species dis olving from FA to AMD, (ii) ox idation of Fe2 and A I ~ to Fe3
+ and 

Al3+ at low pH to circum-neutral pH and ub equcnt hydrolysis and precipitation as a 

separate phase (iii ) adsorption of hydrox ide of i, Cu Mn and Co onto the surface of FA 

at high pH (iv) co-precipitation of Cu, Zn and Co. Hence the major inorganic pccics Fe, 

S04 , Mn, Ni, Co and Zn were removed probably through precipitation of amorphous 

oxides, oxy-hydroxidcs and hydroxyl-sulphatcs. 

There arc still challenges with respect to larger sca le applicati on of FA as a PRB and/or 

AM D neutra lization agent. aturation of pore paces of the reactive barrier material with 

amorphous precipitates at high pH occurs and therefore the PRB design wi ll need to be 

optimized to either eliminate or mitigate this is ue. In terms of contaminant removal, the 

PRB and zeolite production arc more efficient the usc of the FA as a neutralization agent. 

Reuse of neutralization residue has proved successful in zeolite application therefore 

suggesting total continuous recycling ofF A with neutralization process. 
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AMD treatment with FA provides a low cost, environmentally safe and beneficia l usc of 

what would be considered a waste. 

5.1.3 Research Contribution 

I. Mineralogica lly and chemical ly, most researchers have characteri zed and quant ified 

various amplcs of FA u ing common techniques such as XRF, SEM,XRD, A D ICP

MS and/or ICP-OES. Using Mineral Liberation Analysis (MLA) technique has not been 

found from literature for F characterization. MLA is a robust technique with inbuilt 

automated features for high degree of precision in studying physical, chemical and 

mineralogical charactcri tics of mineral grains exploration, procc sing and refining. The 

accurate and ful l characterization of FA is a critical step in development of al tcrna tivc 

uses. 

2. In addition, mo t FA neutralization application studies have not addressed the issue o f 

the neutralization residue generated. Kumar ct al., (2008) invc tigatcd using the solid 

residue generated from neutralizati on for backfill and construction materials. In this 

investigation new u cs of solid residue generated from FA was been investigated fo r 

recycling in zeolite synthesis and proved succcs ful as the modified FAs howcd an 

improved adsorption properties. 

3. Most published work on laboratory scaled PRB employed the usc of synthetic 

(simulated) AMD for PRB purposes. For instance Komnitsas ct al. , (2004) investigated 
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the acidic leachate clean up with FA barrier by using simulated AMD. Another instance 

was using FA-bentonite mixtures a a reactive barrier (Mulukcn et al. , 20 I 0). This 

investi gation considered the real site situations by using raw AMD for the study and 

possibility of less energy input to the PRB ystcm. The vertical f1ow of MD (under 

gravity) through barrier column could be cost effective due to lc s energy input (doc not 

requires the crvicc of pumps and vacuum). Operating parameters on larger scale must be 

invc tigatcd to addrc s feas ibili ty of the procc s. 

4. A 50-50% by volume of FA: silica and was tudicd in this research and time taken for 

partial and total blockage of the barrier pore paces was reduced. 

5.2 Recommendation for Future Studies 

I. Future research could explore other suitable areas of FA appl ications such a binding, 

agglomeration and paste technology, C0 2 sequestration and capture, S0 2 and other toxic 

gas adsorption from effluent gases, cement and concrete applications. The analyzed F As 

arc of A TM C6 18 class C with good pozzolanic propcrtic therefore taki ng advantage of 

its cemcntitous characteristics to control the formation of acid mine dra inage (AMD) 

from mine waste through binding and/or co-placement would be worthy of investigation 

and its final strength and compaction should be tested for backfill application . Also 

cement and concrete application would require large volume ofF A hence hould al o be 

investigated. 
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2. Long-term evaluation of PRB should also be studied with proper and adequate design 

to tudy the reactive barrier materials longevity to volumetric tlow rate, re idenee time on 

contaminant removal, and final effluent pH. This research investigated a vertica l flow 

gravity PRB design and therefore a horizontal system should also be studied which would 

require pumps, gates and other flow devices. 

3. Scale-up fo r all proposed systems (PRB and neutralization) need to be further 

explored as key issues may not present themselves on a small calc. 

4. In the hydrothermal process for zeoli te synthesis, the effect of ra tio of caustic reagent, 

caustic molari ty, fusion temperature, nucleation time, fusion temperature, reaction time 

etc ... were not investigated and hould be included fo r investigation in the fu ture 

research. In add ition the modified FA (zeoli te) and the raw FA show high efficiency in 

heavy metals removal but lcs so fo r S04 ions while commercial activated carbon shows 

I 00% efficiency in S0 4 removal but low effi ciency in heavy metals removal. Possibly a 

small portion of activated carbon could be combined wi th the modified FA or raw FA to 

achieve better contaminant removal. 
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APPENDIX 

APPENDIX A : X-ray Diffraction ofF As, FA-Zeolites and the Permeable Re~1ctive Barrier 
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Figure A-2: XRD Micrographs showing different mineral phases for the AMD Precipitate 
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Figure A-4: XRD Micrographs showing different mineral phases for the MAP- Zeolite 
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APPENDIX B: Volume of gas (at STP) sorbed during N adsorption and desorption at 
77K vs. Relative pressure P/Po for HBP FA, HBP-Zeolite, MAP FAand MAP-Zeolite 
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Figure B - 1: Volume of gas (at STP) sorbed during N adsorption and desorption at 77K 

vs. Relative pressure P/Po for HBP FA and HBP-Zeolite. 
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Figure B- 1: Volume of gas (at STP) sorbed during N adsorption and desorption at 77K 

vs. Relative pressure P/ Po for MAP FA a nd MAP-Zeolite. 

Table B-1. Textural properties showing improved surface 
area an d I pore vo umes. 

Sample Sm:T (em-/g) Total pore volume, V1 

from P/P0 =0.99 
(cm3/g) 

Map 3.934 x 1 o"' 0.199 

Map-zeolite 7.938 x 1 o~ 0.503 

HBP 1.0 1 X 10-1 0.0 19 

1-IBP-zeol i te 5.853 X 105 0.295 

134 



APPENDIX C: Morphological structure ofF A and Zeolite particles with SEM 

Figure C-1: HBP FA Morphology (SO~lm) 

Figure C-2: HBP -Zeolite Morphology (SO~m) 
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Figure C-3: MAP FA Morphology (SOf..lm) 

Figure C-4: MAP -Zeolite Morphology (SO~tm) 
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Figure C-5: HBP FA Morphology (20~tm) 

Figure C-6: HBP Zeolite Morphology (20~tm) 
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Figure C-7: MAP FA Morphology (20J!m) 

Figure C-8: MAP Zeolite Morphology (20J!m) 
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APPENDIX D: TGA Thermogravimetric curve showing decomposition (%wt. change) of 

the ash sample with temperature and temperature derivative curve. 
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Figure D-1: Conventional TCA Method for H BP FA 
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Figure D-2: Conventional TGA Method for MAP FA 
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Figure D-3: Hi-Resolution TGA Method for HBP FA 
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Figure D-4: Hi- Resolution TGA Method for MAP FA 
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Figure D-5: Hi-Resolution TGA Method for Treated HBP FA 
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Figure 0-6: Hi-Resolution TGA Method for Treated MAP FA 
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