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ABSTRACT 

Salmonid aquaculture as a supplement to the world's protein resources increased 

substantially in the 1980s resulting an increase in the market for astaxanthin, the principal 

carotenoid of salmon. Consumer acceptance of farmed salmonids depends on the color 

of the flesh. Since fish are unable to synthesize these pigments, they must be supplied 

to the diet. Currently, synthetic astaxanthin and canthaxanthin are used as pigmenters but 

there is considerable interest in using biological sources of astaxanthin in the aquaculture 

industry. 

The yeast Phaffia rhodozyma has the potential as an industrial pigment source but 

its use is limited by the low quantities of astaxanthin in the yeast and also the high cost 

of growth media. Peat is one of the most abundant and inexpensive resources of the 

world. The liquid extract from peat contains fermentable carbohydrates which have been 

used in the production of various microorganisms. 

A comprehensive study on the efficiency and yield of the production of yeast 

biomass and astaxanthin in peat hydrolysate has been carried out by a biotechnological 

process using Phaffia rhodozyma. The peat hydrolysates used in the present study were 

prepared by acid and non-acid hydrolyses process at various temperatures ranging from 
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185 - 225°C. The sugars present in the peat hydrolysate were determined. The total 

reducing sugars constitute about 20.66% of the total carbohydrate concentration (TCH). 

The substrate concentration that supported the best growth of P. rhodozyma was 

30 g·L-1 for the non-acid hydrolysate and 15 g·L-1 for the acid hydrolysate. The non­

acid hydrolysate produced a dry biomass concentration of 4.04 ± 0.11 g·L·t, a yield 

coefficient of 34.82 ± 0.98% and an efficiency of 13.48 ± 0.1% whilst the acid 

hydrolysate produced a biomass concentration of 4.30 ± 0.04 g·L-1
, a yield coefficient 

of 36.74 ± 1.13% and an efficiency of 14.33 ± 0.1 %. These results were obtained at a 

pH of7.0, an incubation temperature of l8°C, and a fermentation time of 120 hours. The 

best inoculum ratio was 5% (v-v-1
) and agitation speed was 200 r.p.m. 

Of the six peat hydrolysates provided, the acid hydrolysate prepared at a 

temperature of 185°C (PH4-02-185) was found to support the best growth. The 

astaxanthin content of the yeast grown in the best acid and non-acid hydrolysates were 

determined. The acid hydrolysate produced an astaxanthin content of 1567 pg·g·1 yeast 

whereas the non-acid hydrolysate produced 1280 pg·g·• yeast. These values compare 

favorably with those reported by other researchers. 

The nutritional requirements of P. rhodozyma grown in the best peat hydrolysate 

were studied in an effort to enhance the growth and astaxanthin production by this yeast. 

Organic sources of nitrogen were found to promote the growth of and astaxanthin 

production by the yeast better than ammonium salts of inorganic acids. The addition of 

increasing concentrations of yeast extract resulted in increase in biomass concentration, 
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yield coefficient, efficiency and astaxanthin content. On the other hand, addition of 

potassium phosphate to the medium increased the dry biomass concentration but 

decreased the astaxanthin concentration of the yeast. 

Experiments were conducted in 2 L fermenters to study the growth kinetics and 

astaxanthin production by the yeast in peat hydrolysate. The best growth produced a 

biomass concentration of 4.86 ± 0.12 g·L-1 and an astaxanthin content of 1079 ± 17 

pg·g· 1 yeast after 1 '20 hours of fermentation. The optimum agitation speed was 250 

r.p.m. The optimal aeration required for the production of astaxanthin was found to be 

0.5 vvm. Higher agitation speeds reduced biomass production but had no effect on 

astaxanthin production. Similarly, aeration rates did not have any significant impact on 

astaxanthin production. The maximum specific growth rate, J.lmax of the yeast grown in 

peat hydrolysate was found to be 0.038 h-1
• 

The chemical composition of the P. rhodozyma cell biomass was analyzed. The 

crude protein content was found to be 47%, with 5% ash, 19% total lipids, and reasonable 

amounts of tryptophan, arginine, leucine phenylalanine, threonine, glycine and other 

amino acids. The yeast was found to contain high quantities of unsaturated fatty acids. 
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CHAPTER 1 

INTRODUCTION 

As a result of the dwindling of the fish resources in our oceans, the need for 

aquaculture as a supplement to the world's protein resources is well established. North 

America, Norway, Japan, and Chile have taken the lead in fish farming to cope with 

shortfalls in animal protein production. For aquaculture to be efficient, feed must be 

supplied to the fish. The feed must provide all the essential elements of the natural diet 

if the product is to compete with that harvested from the wild. Consumer acceptance of 

farmed salmonids is dependent upon the color of the fish (Meyers, 1977; Ostrander et al., 

1976). Since fish and other animals are thought incapable of a de novo synthesis of 

carotenoids, these compounds must be supplied in the diet whenever necessary. 

The principal carotenoid found in wild salmonids is astaxanthin from ingested 

crustacea. Two main carotenoids, astaxanthin and canthaxanthin, are usually added to fish 

feed to obtain the desired coloration (Torrissen et al., 1989). Synthetic astaxanthin and 

canthaxanthin are available but their inclusion is either not permitted or restricted by 

certain regulatory agencies in some countries, particularly the United States (Johnson et 

al., 1980). Flesh of cultured salmonids can be pigmented by incorporating whole 
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crustacea or crustacean processing waste into their diets (Peterson et al., 1966; Saito and 

Regier, 1971; Spinelli et al., 1974). However, to achieve the required level of coloration, 

large amounts of these materials should be incorporated into the diets. This results in a 

moist diet which is nutritionally imbalanced, and feeding such diets to fish may induce 

mineral imbalances in them (Spinelli and Mahnken, 1978). Attempts to concentrate the 

crustacean-derived portion of the diet to reduce its bulk density results in the loss of 

significant amounts of carotenoids during drying (Spinelli et al., 1974). 

The economic importance of colored flesh in salmonids makes it imperative to 

find new sources of pigment suitable for incorporation into the feed of cultured salmonids 

(Torrissen et a/.,1989). Phaffia rhodozyma is a Basidiomycetous yeast that is unusual 

in that it ferments carbohydrates and synthesizes the carotenoid, astaxanthin (Andrewes 

et at., 1976). This yeast has been employed to impart red coloration to the flesh of 

salmonids, crustacea (Johnson et at., 1977) and poultry (Johnson et al., 1980). The 

production of P. rhodozyma on a large scale is therefore desirable, as it can provide 

natural astaxanthin and, as well, yeast can serve as a valuable protein source for the 

salmonid farming industry (Beck et at., 1979). Also, the absorption and deposition of 

pigment in salmonid flesh seems to be more efficient with astaxanthin than with 

canthaxanthin (Torrissen et al., 1986; Foss et al., 1984; Tidemann et at., 1984). Since 

P. rhodozyma was first identified, three basic issues have received attention in on-going 

research: the optimization of the astaxanthin yield; the search for more inexpensive 

growth media; and the extraction of the astaxanthin from the cells. Peat is one of the 
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most abundant and inexpensive resources of the world, and there is a growing interest in 

peat in Canada, where it is found throughout the wetlands. Hydrolysis of peat results in 

the extraction from the peat of sugars, which have been used as substrate for a variety of 

microorganisms and other fermentation processes (Martin, 1991; LeDuy, 1979, 1981a; 

Quierzy et at., 1979; Boa and LeDuy, 1982; Martin and White, 1985, 1986) and the peat­

bitumen fraction contains potential astaxanthin precursors such as carotenes. A novel, 

continuous thennomechanical method has been designed to fractionate peat, producing a 

hydrolysate rich in nutrients and growth stimulators (Overend and Chomet, 1987). 

The objectives of the present study are: 

1. To optimize the growth conditions of P. rhodozyma in peat 

hydrolysates prepared under different hydrolysis conditions. 

2. To determine which of the various peat hydrolysates supports the 

best biomass production by P. rhodozyma. 

3. To optimize the astaxanthin production by P. rhodozyma in the 

peat hydrolysate that supports the best growth. 

4. To determine the nutritional requirements of P. rhodozyma in peat 

hydrolysate with the aim of increasing biomass concentration and 

astaxanthin content. 

5. To study the growth kinetics of P. rhodozyma in peat hydrolysates. 

6. To determine the proximate composition of the P. rhodozyma 

biomass produced in the peat hydrolysate. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Carotenoids 

Carotenoids are an important, chemically-related group of pigments that occur 

widely and abundantly in nature. They are primarily associated with cell membranes and 

organelles functioning in photosynthesis (accessory organs), photoprotection (free radical 

and singlet oxygen quenching), membrane stabilization, phototropism and phototaxis, 

vitamin Nretinoid metabolism, reproduction and photosynthetic electron transport 

(Gordon, 1972) 

2.1.1 Distribution of carotenoids 

Carotenoids are ubiquitous in nature. They are found in almost every plant and 

animal family, imparting the yellow, orange, and red colors to leaves, fruits, vegetables, 

flowers, dairy products, shrimp, lobster, and the plumage of exotic birds. It is estimated 

that 100 million tons of these pigments are produced annually in nature (Gordon, 1972). 

When carotenoids are complexed with proteins, blue and green colorations are achieved. 
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2.1.2 Chemical structure and classification of carotenoids 

The structures of carotenoids are based on 5-carbon isoprene units 

(CH2=C(CH3)CH=CH:J. There are usually eight of such units which are linked so that 

the two methyl groups nearest the centre of the molecule are in positions 1:6 and all other 

lateral methyl groups are in positions 1:5. A series of conjugated C-C double bonds 

constitute the chromophoric system of carotenoids (Karrer and Jucker, 1950). 

Classification of carotenoids can take several forms. Chemically, they may be 

divided into carotenes which are hydrocarbons, and xanthophylls (oxycarotenoids) which 

are oxygenated derivatives of carotenes. The oxygen contained in xanthophylls may 

occur as carboxyl, furanoxyl, hydroxyl, methoxyl, keto, or epoxy groups and esters. 

Carotenoids can also be subdivided under a different classification system into acyclic, 

monocyclic and bicyclic derivatives. They can further be divided according to their 

functions into provitamin A or vitamin A precursors, vitamin precursors which also 

perform a dual function as animal tissue pigmentors and compounds which do neither 

(Weedon, 1965; Zechmeister, 1962). As a classical example of the carotenoids, J3-

carotene is comprised of eight C5-isoprene units to form a single C40 structure. ~0 and 

C50 have also been elucidated. Those having less than 40 carbons are called 

apocarotenoids. An extensive literature exists on the chemistry, properties and the 

identification of carotenoids (Glover and Redfearn, 1954; Isler, 1971; Isler et al, 1965; 

Karrer and Jucker, 1950; Schwieter and Isler, 1967). 
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2.1.3 Commercial importance of carotenoids. 

Carotenoids have a wide range of commercial applications. They are used as 

colorants for food and animal feeds. They impart distinctive orange-red coloration to the 

flesh of animals, thereby increasing their acceptance by the consumer (Torrissen et al., 

1989). Carotenoids have also been implicated in important metabolic functions in human 

beings and animals. They are said to play a role in enhancing the immune response, and 

in protection against such diseases as cancer by quenching oxygen radicals (Goodwin, 

1986; Bendich and Olson, 1989). However, humans and animals are incapable of de novo 

synthesis of carotenoids, and therefore the pigments must be provided in the diet as a 

source of vitamin A. 

2.1.4 Use of carotenoids for pigmentation of salmonid flesh 

The flesh of anadromous salmonids (Salmo spp., Oncorhynchus spp.) is pink to 

red in color. This is a distinguishing feature that contributes to the elite image of these 

fishes. Because consumer acceptance of these fishes depend on this coloration, it is 

important that these animals, whether they originate in the wild or are farmed, are 

pigmented. These animals are incapable of synthesizing these pigments and therefore have 

to absorb them from their feed and deposit them in their flesh. Xanthophylls provide the 

necessary coloration. 

Salmonid aquaculture is becoming increasingly important worldwide (Bj~rndahl, 

1990). Farm rearing of salmonids has grown dramatically, and in 1989 alone, over 
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200,000 tons of salmon were produced worldwide, with a large percentage coming from 

Norway (BjJZ~rndahl, 1990). It is expected that farmed salmon will dominate the salmonid 

market by the year 2000, that the output of farmed salmon will by then exceed 460,000 

tons yearly, and that, Norway, Canada, Chile and Japan emerge as the leading producers 

(BjJZ~rndahl, 1990). In addition to this, several hundred thousand tons of trout are farmed 

worldwide each year (Rackham, 1988). These developments have resulted in a now 

dramatic increase in the amount of carotenoids used in the fish farming industry. 

Over 6000 kg of carotenoids were used in the diets of farmed salmonids in 1986 

alone, and every kg of synthesized carotenoid was worth over US $1000. This increased 

the cost of salmonid feed by approximately 10 to 15%. By 1990, it was expected that 

nearly 15,000 kg of carotenoids would be used in salmonid feeds to meet the predicted 

needs of the industry (Torrissen et al., 1989). 

2.2. Astaxanthin 

Astaxanthin (3,3'-dihydroxy-4,4'-diketo-~-carotene, Fig. 2.1) is the principal 

carotenoid found in the flesh of salmon (Karrer and Jucker, 1950; Andrewes et al., 1974; 

Kanemitsu and Aoe, 1958a, b; Simpson et al., 1981). It is also the most costly 

component of salmonid feed (Torrissen et al., 1989). The current market price for 

astaxanthin exceeds US $2000 per kg (marketed as "Carophyll Pink", Hoffmann-LaRoche, 

Inc., Basel, Switzerland) with a minimum astaxanthin content of 8% per kilogram 

(Johnson and An, 1991). 
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Fig. 2.1: Chemical structures of commercially important carotenoids (Taken from 

Johnson and An, 1991) 
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2.2.1 Chemical properties of astaxanthin 

Astaxanthin is a xanthophyll (oxycarotenoid) with the molecular formula C40H520 4 

and a molecular weight of 596.86 (Foppen, 1971; Straub, 1976). Astaxanthin has two 

asymmetric carbon atoms at the 3 and 3'positions and can exist in four configurations 

including identical enantiomers (3R, 3'S, 3'R, and 3S, Fig. 2.2). Andrewes and Starr 

(1976) reported that astaxanthin isolated from the yeast Phaffia rhodozyma has the 3R,3'R 

-configuration; opposite to that of astaxanthin isolated from other sources previously 

investigated. 

In Haematococcus pluvialis the 3S, 3'S configurational isomer is thought to be 

predominant (Andrewes et al., 1974; Renstrom eta/., 1981). (3S, 3'S) Astaxanthin, (3, 

3'R meso) and (3R, 3'R) astaxanthin have been isolated from wild salmon (Schiedt eta/., 

1981; Matsuno et a/., 1984), lobster eggs (Homarus gammarus), shrimp (Panda/us 

borealis) and zooplankton (Renstrom eta/., 1980, 1981; Scheidt et al., 1981; Foss et al., 

1987). 

An extensive literature has been developed for the extraction, purification, 

identification and structural determination of carotenoids including astaxanthin (Isler, 

1971; Davis, 1974; Davies, 1976; Liaaen-Jensen, 1978; Goodwin, 1984; Britton, 1985). 

Acetone is the most commonly-used solvent for the extraction of astaxanthin. Like any 

other carotenoid, astaxanthin is susceptible to light, acids, heat and oxygen. It is insoluble 

in aqueous solvents and in most polar organic solvents. However, it can readily dissolve 

in chloroform, dichloromethane, dimethylsulfoxide (DMSO), acetone and other non-polar 
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organic solvents at room temperature. It has a variable absorption spectrum, for example 

in chloroform it has a Amax of 498 nm, and 480nm in acetone (Davies, 1976; Britton, 

1967). 

2.2.2 Analysis of astaxanthin 

Generally, astaxanthin is extracted with water-miscible polar organic solvents. 

However, because of the possible presence of traces of HCl in chloroform/methanol, it 

is not recommended for this extraction (Johnson and An, 1991). For biological samples, 

mechanical disintegration is usually required to achieve quantitative extraction. Sedmak 

et al., (1990) used hot DMSO to achieve quantitative extraction of astaxanthin from P. 

rhodozyma whereas Gentles and Haard (1989), Okagbue and Lewis (1985), and Johnson 

et al. (1980) have used enzymatic methods. 

Thin layer chromatography (TLC) and high performance liquid chromatography 

(HPLC) have been conveniently used for the separation of carotenoids after extraction 

(Britton, 1967). For quantitative analysis of astaxanthin, spectrophotometric methods have 

been used (An et al., 1989; Johnson and Lewis, 1979). A wide range of extinction 

coefficients have been employed in quantifying astaxanthin in acetone: 

E1cm1%=1600 (Johnson et al., 1977), 

E1cml% =2100 (Chen and Meyers, 1984), 

Elcml% =2200 (Saito, 1969). 

Due to the lack of standards, these extinction coefficients are often calculated from other 
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more easily obtainable carotenoids (I)-carotene) (Lamberstsen and Braekkan, 1971) and 

extrapolations are made to fit the solvents or expected ratios of stereoisomers (forrissen 

et a!., 1989). 

2.2.3 Pigmentation of salmonid flesh with astaxanthin 

Salmonids are unable to oxygenate carotenoids, and instead deposit ingested 

carotenoids without modification (Steven, 1948; Hata and Hata, 1973). In the early 

1900s, astacene, (3,3'-dihydroxy-2,3,2',3'-tetradehydro-j),j)-carotene-4,4'-dione) was 

thought to be the principal carotenoid in salmonids. However, this was later found to be 

a degradation product of naturally occurring astaxanthin. Pigmentation of farmed 

salmonids is influenced by several factors. These include nutrition, species of fish, sex, 

maturity, genetic variation and health of the fish (Torrissen eta!., 1989). 

Environmental parameters can also affect pigmentation. For example, Vincent 

(1989), and No and Storebakken (1991) demonstrated that the total and specific 

carotenoids were affected by variations in water temperature. It has also been reported 

that the rate of carotenoid deposition in salmonids is affected by the growth rate and that 

there is a linear relationship between fish weight and flesh pigmentation (Spinelli and 

Mahnken, 1978; Torrissen, 1986). 
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Fig. 2.2 Structures of configurational isomers of astaxanthin (Taken from Johnson and 

An, 1991) 
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2.2.4 Astaxanthin content of salmonid flesh 

In adult Atlantic salmon (Salmo sa/ar), the astaxanthin content is reported to be 

between 3 and 8 ppm, whilst the sockeye salmon may contain levels as high as 37 ppm. 

In the wild, the salmonids obtain astaxanthin and its esters from ingested zooplankton 

(Torrissen et al., 1989). Ninety percent of the astaxanthin in salmonid flesh occurs in free 

(unesterified) form and esterified form in the skin and ovaries in the mature fish 

(Torrissen et al., 1989). 

Based on visual color impressions, astaxanthin levels of 4 mg per kg or above are 

reported to be the carotenoid concentration acceptable to the consumer. However, 

carotenoids may fade in salmonid flesh during handling and this must be compensated for 

by increasing levels a little above 4 mg per kg in the product to be marketed (Torrissen 

et al., 1989). 

2.2.5 Absorption of astaxanthin by salmon 

Different types of animals seem to differ in their ability to absorb the various 

types of carotenoids. Fish and birds are known to preferentially absorb oxycarotenoids, 

whereas mammals absorb 13-carotene better (Torrissen et al., 1989). Astaxanthin and 

canthaxanthin are absorbed 10 to 20 times more efficiently by salmonids than are lutein 

and zeaxanthin, while chickens absorb zeaxanthin three times better than astaxanthin 

(Schiedt et al., 1985). Goldfish and fancy red carp have also been reported to absorb 

carotenoids in a manner similar to that of chicken, astaxanthin being absorbed better than 
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either zeaxanthin or lutein (Hata and Hata, 1972, 1976). 

2.2.6 Absorption of astaxanthin isomers 

Since astaxanthin has two identical chiral centers, it exists in three configurational 

isomers in nature: (3S, 3'S), (3S, 3'R), and (3R, 3'R) (Fig. 2.2). All three of these optical 

isomers are found in marine fishes (Matsuno et al., 1984) and all isomers are utilized to 

different extents by salmonids (Foss et a/., 1984). When fed a racemic mixture of 

astaxanthin, salmon and trout contained the same proportion of isomers as appeared ·in the 

feed (forrissen et a/., 1989; Storebakk:en eta/., 1984; Foss et al., 1984; Mori et a/., 

1989). Experiments with rainbow trout and Atlantic salmon fed a mixture of all three 

optical isomers of astaxanthin dipalmitate have shown that the (3R,3'R) astaxanthin is 

deposited in the flesh to a greater extent than the (3S, 3'S) isomer. This is because the 

esterase responsible for the hydrolysis of astaxanthin dipalmitate has been reported to be 

more efficient in using the (3R, 3'R)-astaxanthin esters than the (3S, 3'S) esters as a 

substrate (Foss et a/., 1987). Similarly Katsuyama et al. (1987) reported that the (3R, 

3'R) astaxanthin diester was deposited in the flesh of rainbow trout twice as efficiently 

as the (3R, 3'S) and four times more efficiently than the (3S, 3'S) diesters. 

Free astaxanthin is also absorbed by salmonids to a greater extent than dietary 

astaxanthin esters (Torrissen eta/., 1989; Storebakken et al., 1987). In a comparative 

study on rainbow trout, sea trout, and Atlantic salmon, it was reported that free 

astaxanthin was deposited to a much greater extent than astaxanthin palmitate (Foss eta/., 



15 

1987; Storebakken et al., 1987). Furthermore, the flesh and plasma of salmonids have 

been found to contain only free astaxanthin. This is an indication that hydrolysis of esters 

of astaxanthin occur in the digestive tract, and that astaxanthin is absorbed in the free 

form (Steven, 1948; Khare et al., 1973; Hata and Hata, 1975; Schiedt et al., 1986) 

2.3 Sources of astaxanthin for farmed salmon 

Astaxanthin can be obtained from various sources among which are: chemical 

synthesis (which is also a source of canthaxanthin), crustacea and crustacean processing 

waste, plants and algae and such microorganisms as fungi and yeast. 

2.3.1 Synthetic astaxar:tthin and canthaxanthin 

In 1964, Hoffman-LaRoche (Basel, Switzerland) began the commercial production 

of synthetic canthaxanthin, marketed under the name "Roxanthin" or "Carophyll Red" for 

use as a pigmenter for foods and feeds (Isler, 1971). 

Recently, free astaxanthin ("Carophyll Pink") has also been synthesized by 

Hoffman-LaRoche. This pigment is presently the principal source used in feeds, and it 

is apparently absorbed and deposited better than canthaxanthin by salmonids (Foss et al., 

1984, 1987; Storebakken et al., 1987; Torrissen, 1986; Tidemann et al., 1984). The level 

of astaxanthin in salmonids ranges from 3 to 37 mg per kg (Torrissen et al., 1989). In 

some countries, synthetic astaxanthin and canthaxanthin are added to fish feed in levels 

ranging from 35 to 75 mg per kg dry feed (Torrissen et al., 1989), but these compounds 
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are expensive and in the United States, they have not been approved by the Food and 

Drug Administration (FDA) for incorporation into salmonid feeds (Sinnot, 1988). 

Furthermore, chemical synthesis of astaxanthin is difficult owing to the four oxygen 

functions and the two chiral centres in the molecule (An eta!., 1991). Also, synthetic 

astaxanthin and canthaxanthin may contain unnatural configurational cis- and trans­

isomers and carotenoid-like compounds (Storebakken et al., 1984; Mayne and Parker, 

1988). The cis-astaxanthin content should not exceed 2% (Johnson and An, 1991); 

however, Storebakken et al. (1984) reported about 15% cis-isomers in beadlets of 

synthetic astaxanthin. As well, Mayne and Parker (1988) reported an approximate all­

trans to all-cis-canthaxanthin ratio of 3:1 in beadlets. 

As a result of the increasing wariness by the farmer and consumer of the 

incorporation of synthetic chemicals in fish diets, there is a trend toward the use of 

natural sources of feed nutrients. All these factors have contributed to the search for 

natural sources of carotenoids. 

2.3.2 Crustacean and crustacean processing wastes 

The major carotenoid in many crustaceans is astaxanthin and several researchers 

have evaluated different crustacean products as pigment sources for farmed fish as 

reviewed by Torrissen eta!. (1989). In Norway, shrimp (Panda/us borealis) wastes have 

been utilized as the traditional natural pigment source for farmed trout and salmon 

(Torrissen et al., 1989). However, the level of carotenoid in most crustaceans is quite 
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low (Torrissen eta/., 1989; Lambersten and Braekkan, 1971). To achieve the desired 

level of coloration, about 10 to 25% by weight of the chitinous extract should be 

incorporated into the bulk diet. Crustacean wastes have low protein levels and high levels 

of ash, chitin, and moisture (Torrissen et at., 1989). Therefore, incorporating large 

quantities of these materials into fish feeds would result in a moist diet that is 

nutritionally imbalanced, and may induce mineral imbalances in the fish (Spinelli and 

Mahnken, 1978). Attempts to concentrate the crustacean-derived portion of the diet to 

reduce its bulk density results in the loss of significant amounts of carotenoids during 

drying (Spenelli eta/., 1974). Torrissen et al. (1989) therefore concluded that crustacean 

waste has limited potential as an astaxanthin source for salmonids. 

2.3.3 Plants and algae 

The class Chlorophyceae includes some green algae that possess the ability to 

synthesize astaxanthin as their primary carotenoid (Nakayama, 1962; Wettern and Weber, 

1979). Chlamydomonas nivalis has been named as the most likely and best-known 

astaxanthin-producing algae (Torrissen et al., 1989). Haematococcus pluvialis is also 

known to produce high levels of astaxanthin depending on the culture conditions and 

method of cultivation (Droop, 1955; Goodwin and Jamikron, 1954). However, about 87% 

of its astaxanthin is esterified, which may affect its deposition and metabolism in some 

animals (Johnson and An, 1991). Kvalheim and Knutsen (1985) reported low deposition 

of astaxanthin in salmon fed an algae-based diet, giving the explanation that there was 
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low absorption of astaxanthin from the astaxanthin esters. Highly-pigmented algae occur 

in an encysted form surrounded by a thick cell wall, and this, according to Johnson and 

An (1991), could also impede the absorption of pigments. Chourbert (1979) reported no 

pigmentation in rainbow trout fed diets containing the filamentous blue-green algae, 

Spirulina spp. (division Cyanophyta), which is reported to contain high levels of 

carotenoids. 

Several researchers have reported the use of various plants as possible pigment 

sources for fish and lobsters. For example, Isler (1971) and Peterson et a/. (1966) 

reported the pigmentation of salmonid flesh with paprika which contains capsanthin as 

the major pigment (Torrissen et al., 1989). D' Abrano et al. (1983) found paprika to be 

a possible source of pigment for lobster. Lee et a/. (1978) observed increased amounts 

of canthaxanthin and lutein in the flesh of rainbow trout after they were fed diets 

containing extracts of marigold flowers (Tagetes erecta) and squash flowers (Cucurbita 

maxima marcia). Torrissen et at. (1989) concluded, however, that products from higher 

plants have little chance of being used as a source of pigment in practical diets. 

2.3.4 The yeast Phaffia rhodozyma 

The yeast, Phaffia rhodozyma, was isolated in the 1970s from exudates of 

deciduous trees in Japan, Alaska, and the former Soviet Union (Phaff et at., 1972; Miller 

et at., 1976). This yeast is strikingly different from other pigmented yeasts in that it 

produces the carotenoid astaxanthin (3'3'-dihydroxy-(3,(3-carotene-4,4'-dione) (Andrewes 
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et al., 1976a). Though astaxanthin is rarely found in fungi, it has occasionally been 

isolated from the Basidiomycetes Peniophora and Perquercina of the Aphyllophorales 

(Goodwin, 1972). P. rhodozyma produces the 3R-3R' isomer of astaxanthin (Andrewes 

et al., 1976b) at a concentration of 1% or more of its dry weight (Haard, 1988; An et al., 

1989). 

When the mechanically-disrupted P. rhodozyma cells were added to the diets of 

pen-reared salmonids, astaxanthin was readily deposited in their flesh (Johnson et al., 

1980). Currently, there is economic interest in P. rhodozyma as a biological source of 

astaxanthin because of its high astaxanthin content (approximately 800 - 900 pg per gram 

of yeast depending on the strain and culture conditions (Johnson and Lewis, 1979). When 

compared with Haematococcus, another possible candidate as a biological source of 

astaxanthin, P. rhodozyma has desirable qualities for use as an industrial pigment source 

including its heterotrophic metabolism, relatively rapid growth rate, ability to achieve high 

cell densities in industrial fermenters, nutritional quality and safety as food additive (An 

et al., 1991). Potential industrial use is, however, limited by the relatively low quantities 

of astaxanthin in certain strains of the yeast. The yeast also contains high levels of 

unsaturated fat, protein and vitamin that may contribute to the growth of the animal. 

These factors enhance the potential utility of the yeast as a source of astaxanthin in 

animal diets (Okagbue and Lewis, 1985). 
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2.3.4.1 Characteristics of Phaffia rhodozyma 

P. rhodozyma was originally designated as Rhodozyma montane because all of the 

ten strains were isolated from broad-leaved trees in mountainous regions, either of Japan 

(nine strains) or of Alaska (one strain) (Phaff et al., 1972). However, a Latin description 

was not given as required by the International Code of Botanical Nomenclature, hence the 

genus name was changed to Phaffia in honor of Hermann Jan Phaff for his contribution 

to yeast biology research (Miller et al., 1976). 

P. rhodozyma is unique among the pigmented yeasts because it synthesizes 

astaxanthin as its principal carotenoid (Andrewes et al., 1976), and because, unlike other 

carotenoid producing yeasts which are strictly aerobic, all ten strains ferment glucose, 

maltose, sucrose and ra;fflnose. Other sugars fermented by this yeast are D-L-lactate 

(latent), succinate, glycerol, a-methyl glucoside, D-mannitol (weak), 2-ketogluconate, 

ethanol (latent or negative), soluble starch (latent or negative), cellobiose and trehalose. 

It does not grow on lactose, galactose, glucosamine, D-ribose or D-arabinose and does not 

utilize nitrate, but does hydrolyse urea. It grows at temperatures from 0 to 27°C (Miller 

et al., 1976). 

2.3.4.2 Phylogeny of Phaffia rhodozyma 

The genus Phaffia contains only one species (Miller et al., 1976). The yeast is 

basidiomycetous in origin, but no sexual cycle has been determined. The most conclusive 

evidence of its basidiomycetous origin is its multi-layered cell wall, its enteroblastic 
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budding (Kreger-van Rij and Veenhuis, 1971), and the carbohydrate composition of its 

cell wall (Weijman et at., 1988). The genus also produces cell surface-associated amyloid 

compounds, and a co-enzyme Q 10 system. 

Pha.ffia is phylogenetically related to other carotenoid-forming imperfect yeast 

including Rhodotoruta, Cryptococcus and other hetero-basidiomycetous yeasts (Weijman 

et al., 1988; Yamada and Kawasaki, 1989; Gueho et al., 1989). The genus Pha.ffia is 

distinguished from the genus Rhodotoruta by its ability to produce amyloid compounds 

and to ferment sugars, and from the genus Cryptococcus by its ability to ferment sugars. 

Recently, it has been found that both the genus Pha.ffia and the genus Cryptococcus 

contain xylose in their cells (Sugiyama et at., 1985). 

Recently, Weijman et al. (1988) studied the carbohydrate patterns of Candida, 

Cryptococcus, Pha.ffia and Rhodotoruta species in detail. They distinguished Phaffia 

from Cryptococcus solely on the basis of the gaseous fermentation. It was observed (Van 

Dyken et at., 1986) that non-fermentative species produce ethanol slowly with no visible 

gas production. In view of this, the genus Phaffia was regarded as a synonym of the 

genus Cryptococcus (W eijman et al., 1988). However, Yamada and Kawasaki (1989) 

examined the partial sequence of the 18S rRNA of Phaffia and Cryptococcus with the aid 

of reverse transcriptase. By comparing the 18S rRNA sequences, they were able to 

clarify the phylogenetic relatedness of Pha.ffia and Cryptococcus. Having detected 

significant differences in the fingerprint region of the rRNA nucleotide sequences 

between P. rhodozyma and C. laurentii and C. lusteolus, Yamada and Kawasaki (1989) 



22 

concluded that the genus Phaffia is not closely related phylogenetically to the genus 

Cryptococcus. Hence the name Phaffia should be retained for the classification of these 

yeasts. 

The composition of carotenoids is an important property that distinguishes Phaffia 

from other genera of related yeasts. Astaxanthin is the principal carotenoid in P. 

rhodozyma (Andrewes et al., 1976a), and the predominant isomer has been determined 

to be 3R,3'R as opposed to 3S,3'S in lobster (Andrewes et al., 1974). This makes the 

genus Phaffia unique. Also, a new type of carotenoid, 3-hydroxy-3,4'-didehydro-P-'P­

caroten-4-one (HDCO), has been isolated from this yeast. 

2.3.4.3 Culture conditions of Phaffia rhodozyma. 

P. rhodozyma has been successfully cultivated in a wide range of carbohydrate 

sources (Miller et al., 1976; Johnson and Lewis, 1979). Johnson and Lewis (1979) 

optimized such parameters as pH, aeration rate, nutrient requirements and the nature and 

concentration of the carbon source for biomass and astaxanthin production in this species. 

They reported that P. rhodozyma growth and pigment synthesis are both optimal at 20-

220C and pH 5.0, and with an oxygen concentration in excess of 50 mM per litre per 

hour. Astaxanthin concentration ranged from 379 pg.g-1
, when the yeast was grown in 

1% L-arabinose, to 552 pg.t1 with D-cellobiose as the carbon source. Concentrations of 

glucose exceeding 1.5% decreased the astaxanthin content of the cells (Johnson and 

Lewis, 1979). A typical figure for biomass yield obtained with 6% glucose was 16 g.L1 
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(Johnson and Lewis, 1979). Haard (1988) studied the use of molasses as a carbon source 

for biomass and pigment production in P. rhodozyma and found that the replacement of 

glucose with 10% molasses resulted in a cell density of 14 g.L-I, with a corresponding 

astaxanthin yield of over 1000 pg.g-1 yeast. Johnson and Lewis (1979) observed that the 

addition of tomato waste, which supposedly supplies astaxanthin precursors, to the 

fermentation medium resulted in a substantial increase in pigment levels. Okagbue and 

Lewis (1984a) cultivated P. rhodozyma on alfalfa residual juice and reported that this 

medium effectively supported yeast growth but suppressed astaxanthin production. This 

inhibition effect was attributed to the presence of saponins in the juice (Okagbue and 

Lewis, 1984b). 

Several factors hinder the commercialization of P. rhodozyma. Among these are 

the insufficient astaxanthin and biomass yields and the high cost of culture media 

(particularly yeast nitrogen base and sugars). Attempts to optimize the production of 

astaxanthin have so far proved unsatisfactory (An et al., 1989) and attention is now 

focused on obtaining astaxanthin over-producing mutants (An et a/., 1989). Strains of 

yeast containing up to 2.5 mg of astaxanthin per gram of yeast were isolated when P. 

rhodozyma was grown in the presence of nitrosoguanidine and antimycin A, which are 

powerful inhibitors of the respiratory chain (An et a/., 1989). However, the mutants 

tended to grow more slowly and also to yield lower cell densities. 
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2.3.4.4 Pigment formation in Phaffia rhodozyma. 

Unlike the yeast Rhodotorula rubra, in which carotenoid biosynthesis occurs 

mainly after growth has stopped (Goodwin, 1972; Goodwin, 1959), P. rhodozyma forms 

astaxanthin during its growth (Johnson and Lewis, 1979; Aneta/., 1989) and continues 

to synthesize it after growth has stopped (Johnson and An, 1991). The availability of a 

carbon source during this non-growth phase is important for astaxanthin synthesis. Cells 

suspe11ded in a medium or buffer without carbon do not increase in astaxanthin content, 

but do in media containing carbon or spent fermentation medium (Johnson and An, 1991). 

Light is important for the regulation of carotenoid biosynthesis in a wide variety of 

microorganisms. In P. rhodozyma, however, growth and pigment production was 

inhibited by high light intensities (Johnson and An, 1991). 

2.3.4.5 Biosynthesis of astaxanthin in Phaffia rhodozyma. 

Astaxanthin is produced from the mevalonate pathway (Fig. 2.3). Mevalonic acid 

(MV A) is the first important compound formed in this pathway from three molecules of 

acetyl-CoA. Two acetyl-CoA molecules condense to form acetoacetyl-CoA which in tum 

condenses with another molecule of acetyl-CoA to form 13-hydroxy-13-methylglutayrl-CoA 

(HMG-CoA). HMG-CoA is then reduced by hydroxymethylglutaric acid (HMG)-CoA 

synthase and reductase (HMOS and HMGR) to form mevalonic acid (MV A). In the 

presence of adenosine triphosphate (A TP), MV A is converted to mevalonic pyrophosphate 

(MV APP), which, also in the presence of ATP, is converted to a 5-carbon isoprene unit, 
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isopentyl pyrophosphate (IPP), through decarboxylation and dehydration reactions. The 

isopentyl pyrophosphate in turn undergoes a series of isomerisation and condensation 

reactions to give 5-carbon polymers. Products resulting from these reactions include 

polyrubbers (C0 ), sterols (C30), monoterpenes (ClO), sequiterpenes (C15), gibberellins (C20), 

and carotenoids (C40). Compounds such as flavonoids, porphyrins, canabinoids, 

plastoquinones, ubiquinones and alkaloids are also produced from mixed biosynthesis 

(Goldstein and Brown, 1990). 

Astaxanthin is derived from geranylgeranyl pyrophosphate, GGPP, (Fig. 2.3) which 

is in turn formed from the isomerisation of IPP to dimethylalyl pyrophosphate (DMP) that 

condenses with DMP to form geranyl pyrophosphate, a 10-carbon unit. By continued 

condensation with IPP, this 10-carbon unit yields farnesyl pyrophosphate and by further 

condensation forms geranylgeranyl pyrophosphate, a 20-carbon unit. By dimerisation, this 

20-carbon unit forms phytoene, the basic 40-carbon acyclic carotenoid structure. The 

remainder of the pathway for astaxanthin production in P. rhodozyma has not been clearly 

elucidated. Chemical identification of various carotenoids in astaxanthin-producing 

microorganisms has been used to determine the biosynthetic pathway from phytoene to 

astaxanthin (Johnson and An, 1991). P. rhodozyma is said to synthesize astaxanthin from 

f3-carotene using various intermediates (Andrewes eta/., 1976a). Recently, Johnson and 

An (1991) proposed two biosynthetic pathways for astaxanthin formation: one pathway, 

they claim, has a monocyclic precursor, and the other has a bicyclic precursor (Fig. 2.4). 

They reported that yeast cultures incubated with 2-methylimidazole (MI) or triethylamine 
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hydrochloride (fEA) accumulated the carotenoid 3-hydroxy-3,4'-didehydro-~-'P-caroten-4-

one (HDCO). This, they concluded, indicates that astaxanthin may also be produced from 

HDCO (Fig. 2.4). Earlier, Andrewes et al. (1976a) had detected HDCO in P. rhodozyma, 

but could not explain its biosynthesis in their proposed pathway. Based on pigments 

isolated from P. rhodozyma they proposed a pathway with a bicyclic precursor. They 

postulated that neurosporene is converted to ~-carotene, which in tum is converted 

directly to echinenone and this is then hydroxylated to 3-hydroxyechinenone (3-hydroxy­

~.~-caroten-4-one). This then undergoes oxidation to form phoenicoxanthin (3-hydroxy­

~.~-caroten-4,4' -dione ). This compound is then converted to astaxanthin through 

hydroxylation at the C-3'. The presence of canthaxanthin and other possible intermediates 

such as 3,4'-dihydroxy-~.~-carotene-4-one in P. rhodozyma were not reported by these 

researchers. Johnson and Lewis (1979), on the other hand proposed a biosynthetic 

pathway for astaxanthin from neurosporene to ~-carotene through y-carotene. 

Many environmental factors such as light, temperature, oxygen, carbon dioxide and 

nitrogen sources, and minerals have been reported to affect biosynthesis of carotenoids 

(Bramley, 1985). Furthermore, light has been reported to have a regulatory effect on 

carotenogenesis in fungi (Rau, 1983; Schrott, 1984). Other controlling factors that have 

been reported include regulation of oxidative metabolism, kinetic control of individual 

biosynthetic enzymes, compartmentation of enzymes and substrates, repression of 

regulatory genes by light and developmental processes (fada, 1989; Tada et al., 1990). 
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Fig. 2.3 The mevalonate pathway to farnesylpyrophosphate (Taken from Johnson and An, 

1991) 
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2.4 Peat 

Peat is organic soil consisting of partially decomposed plant and vegetable material 

together with inorganic minerals. It accumulates as a result of partial decomposition of 

plant material by micro-organisms in water-logged environments where oxygen is limited 

or excluded (Chang, 1985). Peat contains a complex mixture of organic materials in 

which the more chemically stable residues of plant tissues predominate (Fuchsman, 1980). 

Peat can assume a wide range of colors. The highly decomposed peats are amorphous 

and black whilst the less decomposed are fibrous and brown. Peat has a high water­

retention capacity, the most important feature of commercial Sphagnum peat moss ranging 

from 18 to 27 times the dry weight of the peat (Swinnerton, 1958). 

2.4.1 Accumulation of peat 

Climate has been cited as the most important single factor influencing the 

development of peats and peatlands. A positive water balance is required for the 

accumulation of peat. Plants growing under favorable conditions multiply rapidly and 

there is accumulation of large quantities of dead organic matter. This accumulated plant 

litter and the wetness limit air access to the underlying layers of decaying vegetation. 

Below the level of air penetration, only anaerobic decomposition occurs and the micro­

organisms there depend on chemically stored oxygen in plant tissues. Peat develops as 

individual mires (also called bogs or swamps) in basins, hollows or valleys. In the 

absence of tree-cover and climatic inducement, peat may also form a thin blanket over 
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the land surface (Taylor and Smith, 1980). 

It has been estimated that it takes 3000 to 4000 years to accumulate a meter of 

peat, and that peat continues to accumulate as long as bog plants continue to live and die 

at the surface of the deposit (Fuchsman, 1980) 

2.4.2 Classification of peat 

Peat can be classified according to its botanical, geological, and physiochemical 

characteristics. Botanical classification depends on the identification of plants that are 

predominant in the bog since they are most likely to be the same as the plants whose 

decomposed remnants make up the peat immediately underneath the surface (Fuchsman, 

1980). 

Geological classification is dependent on the relationship of the water in the peat 

deposit to the main groundwater system of the adjacent mineral soils, and can be divided 

into low-moor, transitional and high-moor peats. The bog is said to be low-moor or 

transitional if there is a continuation of the bog water system with the mineral and the 

groundwater system, with low-moor bogs being somewhat wetter and more frequently 

covered with water than the transitional-moors. In the case of high-moor bogs, their 

water system is significantly above the mineral soil groundwater system (Fuchsman, 

1980). High-moor peat consists mainly of mosses since they are unable to thrive well in 

water that is poor in minerals. Low-moor peat consists mainly of woody plants that 

require nutrient-rich water. 
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Physiochemical classification is based on the degree of decomposition of the peat. 

Low-moor peat is about 25-45% decomposed and is usually more decomposed than high­

moor peat, which has the structures of the original plant well preserved (Fuchsman, 1980). 

The degree to which the plants have undergone decomposition is expressed by the 

"humification" or H value. This value is expressed by a number on 1 to 10 scale. H-1 

represents totally undecomposed plant material and H-10 represents completely 

decomposed peat (Tibetts, 1981). 

2.4.3 Composition of peat 

Chemically, peat is complex organic matter and its composition varies widely. It 

depends on the type of the constituent plants in the bog, and on the environmental 

conditions under which the peat was formed (LeDuy, 1979). Table 2.1 gives some of 

the chemical constituents of peat The various types of compounds found in peat can be 

classified according to the ways they may be processed in a chemical plant (Fuchsman, 

1980). "Bitumens" are substances that can be dissolved by suitable organic solvents; they 

include waxes and resinous materials. Those materials characterized by their solubility 

in aqueous alkaline media are named humic acids; their origin is not clear, but they have 

been reported to have a phenolic structure similar to lignin (Fuchsman, 1980). A third 

group includes carbohydrates related to cellulose and some protein-like substances; all of 

these can be dissolved in acid. Another group consists of the lignins; these serve as 

cement between cellulose fibres to give structural integrity to the leaves, stems and roots. 
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These substances are soluble in strong bases and are phenolic-like in their reactions. 

Other substances present are inorganic compounds (Table 2.2) and water. The inorganic 

fraction includes calcium, iron, magnesium, sulphur, as well as many micro-elements 

(Walsh and Barry, 1958). 



Table 2.1: Chemical composition of high Sphagnum and low-moor sedge Peats (% 

dry weight of peat). 

Components Sphagnum Sedge 

Moisture 80.00 - 90.00 80.00 - 90.00 

Bitumen 3.10- 9.10 3.20 - 3.90 

Hemicellulose 9.00- 21.00 6.00- 10.00 

Cellulose 10.30 - 23.70 7.80- 8.10 

Lignin and humic substances 26.30 - 64.30 56.10 - 62.20 

Protein (%N x 6.25) 5.60- 6.90 10.00 - 13.80 

Total reducing sugars 20.00 - 41.90 16.30 - 2.00 

Total ash 1.50 - 3.00 7.70- 14.50 

From Fuchsman (1980). 
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Table 2.2: Elemental composition of peat (% dry organic material) 

Organic Element Slightly Highly Highly 

Decomposed Decomposed Decomposed 

Sphagnum peat Sphagnum peat Low-moor peat 

Carbon 48.00 - 53.00 56.00 - 58.00 5.90- 63.00 

Hydrogen 5.00- 6.10 5.50- 6.10 5.10 - 6.10 

Oxygen 40.00 - 46.60 34.00 - 39.00 31.00- 34.00 

Nitrogen 0.50- 1.00 0.80- 1.10 0.90 - 1.90 

Sulfur 0.10- 0.20 0.10- 0.30 0.20- 0.50 

From: Fuchsman (1980). 
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2.4.4 World peat resources 

It is estimated that peat covers about 1% to 2% of the earth's total surface 

(Tibbetts, 1981) or about 230 million hectares (LeDuy, 1979). About 95% of this occurs 

in Europe, Asia, and North America. The former Soviet Union has about 31% of the 

reserves whereas Canada has about 56% (Moore and Bellamy, 1974). Table 2.3 presents 

the overall picture of the peat resources of the world. The magnitude of the world's peat 

resources is known with very little accuracy since authors give different estimates 

(Fuchsman, 1980). Data published often describe either the reserves (exploitable quantity) 

or resources (total amount of peat present in an area of study). The methods used to 

classify organic soils as peat are also not well defined. Furthermore, many data on peat 

resources are published on the basis of undisclosed modes of computation (Fuchsman, 

1980). For these and other reasons the estimates given in Table 2.3 may be misleading. 

For example, the Canadian figure is based on an assumption that peat is to be found 

throughout Canada's very extensive wetlands, but some studies indicate that Canadian 

peat reserves may be much less than had been previously suggested (Fuchsman, 1980). 

The figure for the former Soviet Union, however, is a relatively precise one based on a 

survey of exploitable deposits (Moore and Bellamy, 1974). The two figures are therefore 

not strictly comparable. However, many authors agree that the greatest areas of peatland 

in the world are found in Canada and the former Soviet Union, and these countries 

contain well over 80% of the world's peat resources (Moore and Bellamy, 1974; 

Fuchsman, 1980). 
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Table 2.3: World peat resources. 

Country Area Covered by Peat (Ha) 

Canada 129 500 000 

Former Soviet Union 71 500 000 

Finland 10 000 000 

U.S.A. 7 500 000 

Norway 3 000 000 

Germany 1 618 000 

United Kingdom 1 582 000 

Sweden 1 500 000 

Poland 1 500 000 

Iceland 1 000 000 

Indonesia 700 000 

Cuba 200 000 

Japan 200 000 

Ireland 172 000 

Others 1 012 000 

Modified from Moore and Bellamy (1974). 
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2.4.5 Uses of peat 

Most of the peat produced in the world is used for fuel (LeDuy, 1979). The 

partially decomposed or humified type of peat is most suitable for this purpose because 

of its calorific value and its low ash content (LeDuy, 1979). In the former Soviet Union, 

about 70% of the peats harvested is used in the generation of electricity in 70 power 

plants, some of which have a capacity in excess of 300 megawatts. Other countries such 

as Ireland, Scotland, Finland and Germany also have generating stations that are powered 

by peat (LeDuy, 1979). The low ash content and sulfur levels, and the rapid burning 

characteristics of dehydrated peat, make it a potential substitute for oil in many utilities 

and industrial boilers (Rohrer, 1981). The slightly decomposed Sphagnum peat is 

generally used for horticultural purposes. It is used as soil conditioner in horticulture. 

The highly decomposed peat (sapric peat) is not suitable for use as fuel either due to its 

high ash content, but it has wide application in crop production (LeDuy, 1979). In 

Europe, some peatlands have been reclaimed for forestry, whereas others are used for 

cattle grazing and agricultural market gardening projects (Tibbetts, 1981). In parts of 

Canada, particularly Newfoundland, Quebec, Ontario and British Columbia, reclaimed 

peatlands are being used for the cultivation of blueberries and cranberries and for 

ornamental tree nurseries (Tibbetts, 1981). 

Besides these uses, products of interest to the pharmaceutical and other 

biologically-oriented industries have been developed from peat. The principal medicinal 

product developed from peat is torfort, developed in the former Soviet Union. Torfort 
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is used for the treatment of ophthalmic diseases, myopia, myopic chorioretinis, 

opacification of the vitreous humor and early retinal degeneration. It has also been used 

for the treatment of anaemia, hepatitis, and various skin, gynaecological and neurological 

diseases (Fuchsman, 1980). Other products obtained are peat tars that have strong 

antiseptic and antibactericidal, germicidal and overall biocidal properties, and are used in 

wood preservation and agriculture (Fuchsman, 1980). Organic materials such as phenols, 

nitrogen-based and aromatic compounds useful for the production of plastics, and 

pharmaceutical products have also been obtained from peat. The liquid extract from peat, 

termed peat extract or peat hydrolysate, has been used for the submerged production of 

microbial cell biomass, also called single cell protein (SCP) (LeDuy, 1979). 

2.4.6 Utilization of peat as a substrate for the production of single cell proteins 

Poorly decomposed Sphagnum peat is rich in carbohydrates that are easily 

hydrolysed to yield monosaccharides accounting for 45 - 55% of the dry weight of the 

peats (Moore and Bellamy, 1974). The low molecular weight sugars produced provide 

a useful growth medium for various fermentation processes (LeDuy, 1979). Several 

workers have studied the utilization of the soluble and extractable components of peat as 

the main source of substrate for microbial biomass production (LeDuy, 1979; Martin, 

1983; Martin and Bailey, 1983; Martin and White, 1985, 1986; Fuchsman, 1980; Quierzy 

et al., 1979; Boa and LeDuy, 1983; Forsberg et al., 1986). Table 2.4 gives a summary 

of the various fermentation processes that have utilized peat hydrolysate as a substrate. 
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The yeast, Candida utilis, is a well-known, high protein yeast that has received a 

great deal of attention. It is used for food and feed purposes and gives a high yield of 

biomass in fermentation processes (Quierzy et al., 1979). This high yield is due to its 

ability to utilize both hexoses and pentoses, mostly glucose, xylose, arabinose and 

galactose, and various carbonaceous compounds that occur in peat hydrolysates (LeDuy, 

1979). The yeasts Sporobolomyces pararoseous T and Rhodotorula glutinis T-2 have 

been reported to produce high levels of carotenes when grown on peat hydrolysates 

(Raitsina and Evdokimova, 1977). Candida humico/a, Candida tropicalis and Lipomyces 

/ipoferus have also received attention as lipid yeasts for SCP because of their high 

concentrations of lipids, most of which are made up of unsaturated fatty acids (Raitsina 

and Evdokimova, 1977). 

Martin (1986) reviewed the submerged production of mushroom mycelium in peat 

hydrolysate. A comprehensive review article on the utilization of peat hydrolysate for the 

production of single cell protein has been published by LeDuy (1979). 
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Table 2.4: Production of single-cell protein (SCP) from peat hydrolysates. 

Microorganism Production Scale Reference 

Bacillus polymyxa 5 L batch fermenter Griffin and Forgarty, 

1974. 

Clostridium acetobutylicum Shaker flask F orgarty and Ward, 

1970 

Scytalidium acidophilum Shaker flask Martin et al., 1980 

Agaricus campestris Shaker flask Martin and Bailey, 

1985 

P leurotus ostreatus Shaker flask Manu-Tawiah and 

Martin, 1988 

Candida uti/is 7 L batch fermenter McLoughlin and 

Kiister, 1972b 

Candida tropicalis Shaker flask Zalashko et a/.,1977 
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2.4.7 Methods for preparing peat hydrolysate. 

Peat hydrolysates are produced by various means including soxhlet extraction with 

organic solvents, cold and hot water extraction and dilute acid and dilute alkaline 

hydrolysis (McLoughlin and Kiister, 1972a; Fuchsrnan, 1980). Acid hydrolysis, which 

results in the production of simple carbohydrates, especially hexoses and pentoses from 

cellulose, is the most commonly-used method for the production of peat hydrolysates 

(Fuchsman, 1980). In addition, the hydrolysis technique results in the extraction of 

several organic substances some of which may be utilised as nutrients by microorganisms 

(Fuchsman, 1980). The rate of hydrolysis increases with temperature. There is thus an 

optimal reaction time for a given set of cellulose hydrolysis conditions. There is a 

decrease in yield due to excessive degradation of the glucose liberated by cellulose 

hydrolysis if the optimal reaction time is exceeded (Fuchsman, 1980). The amount of 

utilizable organic fraction obtained is also dependent on the hydrolysis process conditions 

which include temperature of hydrolysis, residence time, concentration and type of acid, 

peat:water ratio (LeDuy, 1981a, Quierzy eta!., 1979; Boa and LeDuy, 1982) and peat 

molecule size (Morita and Levesque, 1980). 

Recently, steam explosion has been used to extract sugars from peat (Forsberg et 

a!., 1986). Cellulose can also be hydrolysed enzymatically using the cellulase produced 

by the fungus Trichoderma viride. However, there is no documentation of the application 

of the cellulase system to peat (Fuchsman, 1980). Quierzy et a!. (1979) reported that 

water extracted during the drying of fuel-grade peat resembles peat hydrolysate and can 
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be used for culturing microorganisms. 

2.4.8 Composition of peat hydrolysates. 

Peat hydrolysates contain reducing substances, mostly glucose, up to 7.5% on a 

weight to volume basis (LeDuy, 1979). The carbohydrate portion of peat hydrolysate 

consists mainly of hydrolysed hemicelluloses, particularly glucose, xylose, galactose and 

arabinose (Kuster et al., 1968), as well as non-volatile organic acids (LeDuy, 1981a). The 

latter consists of uronic acids (glucuronic and galacturonic), hydrocarboxylic acids (lactic, 

malic, tartaric, citric, and glycolic) and C2-C5 dicarboxylic acids (LeDuy, 1981a). 

The levels of nitrogen and phosphorus in peat hydrolysate are very low (Boa and 

LeDuy, 1982; LeDuy, 1979; Mulligan and Cooper, 1985). Nitrogen constitutes 1-3% of 

the dry weight of the peat but only a part of it, which is in the form of amino acids 

appears in the peat hydrolysate. Much of the nitrogen in peat is present in the form of 

polypeptides which are loosely bound to humic acids. The polypeptides, under 

appropriate hydrolysis conditions, yield amino acids. Other nitrogen-containing 

compounds, such as glucosamine, are also found in peat hydrolysate (Fuchsman, 1980). 

Peats are, however, rich in inorganic substances such as calcium, iron, magnesium and 

sodium which are present in higher quantities than cobalt, copper, potassium, manganese, 

nickel and zinc. Peat hydrolysates therefore, constitute a good fermentation medium in 

terms of oligo-elements (LeDuy, 198la). They also contain other inorganic substances 

such as humic acids and bitumen (Chang, 1985; Fuchsman, 1983). Vitamin B1 and B2 
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are also present in small quantities in peat, but they are destroyed during hydrolysis 

(Fuchsman, 1980) 

The concentrations of the various components of peat hydrolysates depend on the 

extraction procedure. Fuchsman (1980) stated that water and alcohol extracts of peat have 

low compositions of monosaccharide. The acid-catalyzed peat hydrolysates have higher 

total carbohydrate content (TCH) and concentrations of other organic nutrients than those 

obtained by other extraction methods (McLoughlin and Kuster, 1972a; Quierzy et al., 

1979). Furthermore, it has been reported that acid hydrolysates produce more microbial 

biomass than non-acid hydrolysates (LeDuy, 1981a; McLoughlin and Kuster, 1972a). 

LeDuy (1981 a) reported that hexose represents more than 50% of the total sugars that 

occur in pea~ hydrolysates. In sulfuric acid extracts, 43 g.L-1 monosaccharides could be 

be obtained with glucose as the major sugar (about 33.50 - 39.80% of total 

monosaccharides) while in hydrochloric acid extracts, 13.20% of organic matter could be 

obtained as monosaccharides with xylose as the major sugar (LeDuy, 1981). 
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The materials used in this work include peat hydrolysate prepared from peat moss, 

Phaffia rhodozyma culture, and different chemicals obtained from various sources. These 

materials and their sources have been itemized below. 

3.1.2 Peat moss 

The peat moss used in the preparation of the peat hydrolysate was obtained from 

Riviere-du-Loup, Quebec, and it was graded H4 on the von Post scale (Tibbetts, 1981). 

3.1.3 Organism used and its maintenance 

P ha.ffia rhodozyma, American Type Culture Collection # 24202, was used for the 

fermentation studies. It was maintained on YM (Difco) agar plates at 4°C and transferred 

every month. 



45 

3.1.4 Chemicals 

The chemicals used in this work and their sources were as follows: 

Calf thymus DNA, RNA, sodium chloride, sodium hydroxide, hydroquinone, orcinol 

reagent, boric acid, and anthrone reagent were purchased from Sigma Chemical Company, 

St. Louis, MO. U.S.A. 

Sulfuric acid, hydrochloric acid, arrunonium sulfate, potassium nitrate, potassium 

hydroxide, petroleum ether, chloroform, ethanol, methanol, ammonium phosphate dibasic, 

potassium phosphate monobasic, urea, ammonium nitrate, acetone, hexane, manganese 

sulfate monohydrate, magnesium sulfate heptahydrate, acetic acid (glacial), D-glucose 

anhydrous, magnesium chloride, acetaldehyde, n-butanol, diphenylamine, potassium 

phosphate buffer, and hyperchloric acid were purchased from Fisher Scientific Company 

Ltd., Fairlawn, N. J. U.S.A. 

The enzyme "Funcelase" was purchased from Yakult Honsha Company Ltd., 

Tokyo, Japan. 

YM agar, YM broth, yeast extract, bactopeptone and yeast nitrogen base. 

were purchased from Difco Laboratories Ltd., Detroit, Michigan, U.S.A. 
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3.2 Methods 

3.2.1 Preparation of peat hydrolysates 

The peat hydrolysates used in this work were prepared at the University of 

Sherbrooke, Quebec, by the following procedure. About 6 kg of low-humified peat from 

Riviere-du-Loup, Quebec, graded H4 on the von Post Scale, was mixed with 40 kg of 

water and macerated with a blade mixer. For producing acid hydrolysates, concentrated 

sulfuric acid was added until the mixture reached pH 2. The mixture was further 

macerated for 15 minutes to obtain a peat slurry that consisted of 7 to 8% solids. The 

slurry was then subjected to a pressure of 3000 psi and a temperature of either 185, 205, 

or 225°C for 2 minutes. The resulting solutions were centrifuged to remove suspended 

solids and the hydrolysate filtered through Whatman # 1 filter paper. The filtrates were 

then frozen and shipped to the Memorial University of Newfoundland for the fermentation 

studies. 

Before being used in preparing the fermentation media, the peat hydrolysates were 

diluted with equal volumes of water, centrifuged at 10,000 x g for 30 minutes, and then 

filtered through a cellulose nitrate filter paper with a pore size of 0.45 pm (Sartorius 

GmBH, Germany) in a Megaflow Membrane Filtration Apparatus (Model TM-100, New 

Brunswick Scientific Co. Inc., Edison, New Jersey). The filtration apparatus was operated 

with a Watson-Marlow Peristaltic Pump (Model 502S, Watson-Marlow Ltd., England). 
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3.2.2 Inoculum preparation 

A loopful of yeast was aseptically inoculated into 20 mL sterilized YM (Difco) 

broth and incubated in a Gyrotory water bath shaker (Model G76D, New Brunswick 

Scientific Co. Inc., Edison, New Jersey) at 22°C for 24 hours. About 1 mL of this culture 

was used to inoculate the experimental fermentation media. 

3.2.3 Fermentation media preparation 

Six different peat hydrolysates hydrolysed with or without added acid, and at 

various temperatures, were used. These hydrolysates are identified in this work as PH4-

01-185, PH4-01-205, PH4-01-225, PH4-02-185, PH4-02-205, and PH4-02-225. In this 

system of identification, 01 designates hydrolysates made without added acid (auto­

hydrolysates) and 02 designates hydrolysates made with added acid. The last three digits 

in the codes, 185, 205, and 225, are the temperatures CCC) at which the hydrolysates were 

prepared. 

For each experimental fermentation, 50 mL of peat hydrolysate, diluted to the 

required concentration and adjusted to pH 5.00 ± 0.10 with 10 M sodium hydroxide in 

a 125 mL Erlenmeyer flask, was supplemented with 0.68% (w-v-1
) yeast nitrogen base 

(Difco) and 0.60% (w-v-1
) bactopeptone (Difco). The medium was then sterilized at 

121 oc for 20 minutes and cooled. All incubations were done in a Gyrotory water bath 

shaker. 
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3.2.4 Optimization of growth conditions 

Various growth conditions (substrate concentration, initial pH of growth medium, 

initial incubation temperature, fermentation time, inoculum ratio and agitation speed) were 

tested to determine the optimum parameters for the growth of the yeast. 

3.2.4.1. Determination of the best substrate concentration for the growth of 

Phaffia rhodozyma 

Preliminary studies were conducted to determine the best substrate concentration 

for the growth of the yeast. Two of the peat hydrolysates, PH4-01-185 and PH4-02-185 

(non-acid and acid hydrolysates) were used for this purpose. In this work, the term 

"substrate concentration" refers to the total carbohydrate concentration (TCH) as 

determined by the Dreywood's Anthrone Method (Morris, 1948). The growth conditions 

employed were a pH of 5, a temperature of 22°C, an agitation speed of 300 r.p.m. and 

a fermentation time of 5 days (Johnson and Lewis, 1979). The initial substrate 

concentrations used were 15, 20, 25, and 30 g·L-1 for PH4-01-185 and 15, 30, and 45 

g·L1 for PH4-02-185. 

3.2.4.2 Studies on growth conditions 

Using peat hydrolysates PH4-0 1-185 and PH4-02-185 at substrate concentrations 

of 30 and 15 g·L-1
, respectively (as previously optimized), the effects of various pH 

levels (4, 5, 6, 7 and 8), temperatures (16, 18, 20, 22, and 24°C), fermentation times (2, 
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3, 4, 5, 6 and 7 days), and agitation speeds (150, 200, 250, 300, and 350 r.p.m.) on the 

growth of P. rhodozyma were studied in shaker flask experiments. 

3.2.4.3 Determination of the best peat hydrolysate for the growth of Phaffia 

rhodozyma 

Having optimized the growth conditions for this yeast, it was grown separately in 

the six peat hydrolysates to determine which would support the growth best. An initial 

substrate concentration of 30 g·L-1
, an initial pH of 7, an incubation temperature of l8°C, 

a fermentation time of 5 days and an agitation speed of 200 r.p.m. were the growth 

conditions employed. 

3.2.5 Nutrient supplementation of peat hydrolysate 

Peat hydrolysate PH4-02-185 obtained as supporting the best yeast growth was 

tested without addition of nutrients (non-supplemented), and with the addition of various 

sources of nitrogen, phosphorus, potassium, magnesium, and manganese alone and in 

combination. The growth conditions employed were a substrate concentration of 15 g·L-I, 

an initial pH of 7, an incubation temperature of l8°C, a fermentation time of 5 days, an 

inoculum ratio of 5% and an agitation speed of 200 r.p.m. 
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3.2.5.1 Supplementation of peat hydrolysate with various sources of nitrogen 

A study was conducted to determine the effects of supplementing the peat 

hydrolysate with sources of nitrogen other than yeast nitrogen base and bactopeptone on 

the growth of and astaxanthin production by P. rhodozyma. The nitrogen sources tested 

were ammonium sulfate, ammonium nitrate, potassium nitrate and urea. The 

concentrations of these nitrogen sources were calculated so that they provided 

approximately 0.5 g·L·1 nitrogen to the peat hydrolysate. 

In another study, the peat hydrolysate was supplemented with yeast extract to 

determine its effects on the growth of and pigment production by the yeast. 

3.2.5.2 Supplementation of peat hydrolysate with potassium phosphate 

Phosphorus and potassium have been reported to enhance yeast growth (Rose, 

1987). Phosphorus and potassium were added in the form of potassium phosphate to 

study their effects on the growth of and pigment production by P. rhodozyma. Four 

concentrations (0.5, 1.0, 1.5, and 2.5 g·L-1
) were tested. 



3.2.5.3 Supplementation of peat with combinations of yeast extract and 

potassium phosphate 
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Yeast extract at various concentrations (0, 1.0, 2.0, and 3.0 g·L-1) was combined 

with potassium phosphate also at various concentrations (0, 0.5, 1.0, 1.5, 2.0 g·L-1
) to 

supplement the peat hydrolysate. This was done to study the effects of these compounds 

in combination on the growth of and pigment production by the yeast (both of which 

separately enhanced the growth of the yeast). 

3.2.5.4 Supplementation of the peat hydrolysate with magnesium and manganese 

Magnesium sulfate and manganese sulfate were used to supplement the peat 

hydrolysate. The concentrations used for both compounds were 0, 1.0, 1.5, and 2.0 g·L-1
• 

3.2.6 Batch fermentation 

Experiments were carried out in a 2 L fermenter to optimize agitation speed, 

aeration rate, and also to study the growth kinetics and astaxanthin production by P. 

rhodozyma in peat hydrolysate. Batch cultures were grown in a 2 L BioFlo fermenter 

(Model C30, New Brunswick Scientific Co., Edison, New Jersey) using 1 L and 1.5 L 

working volumes for the study of growth kinetics and astaxanthin production, 

respectively. Aeration rate, pH and agitation speeds were controlled. Agitation was 

provided by a turbine-type impeller (with four blades for mixing and mass transfer), and 

air was delivered to the culture by an external air source through a sterilized air filter and 
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a hollow agitator shaft. The pH was controlled by an automatic pH controller (Model 

pH-40, New Brunswick Scientific Co., Edison, New Jersey) fitted with a pump module 

(New Brunswick Scientific Co., Edison, New Jersey), which adjusted the pH by adding 

10 M sodium hydroxide or 5 M sulfuric acid solution. 

The growth conditions employed under sterile conditions were an initial pH of 7, 

an incubation temperature of l8°C, a fermentation time of five days and an inoculum ratio 

of 5% (unless otherwise stated). 

3.2.6.1 Inoculum preparation 

The inocula for the batch culture consisted of 24-hour culture grown in 250 mL 

Erlenmeyer flasks with 50 mL and 75 mL of growth medium for 1 and 1.5 L working 

volumes respectively. The growth medium consisted of peat hydrolysate with a TCH of 

15 g·L-1
, yeast extract (2 g·L.1

), and potassium phosphate (1.5 g·L- 1
). The growth 

conditions were an initial pH of7, an incubation temperature of 18°C, a fermentation time 

of 1 day and an agitation speed of 200 r.p.m. The culture flasks containing the 

microorganisms were incubated in a Gyratory water bath shaker. 

3.2.6.2 Growth media 

For the batch fermentations, the growth media consisted of peat hydrolysate with 

a TCH of 15 g·L\ yeast extract (2 g·L-1
), and potassium phosphate (1.5 g·L-1

). This 

was the combination of nutrients that provided a balance between yeast dry biomass and 
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pigment production in the shaker flask experiments. The various components of the media 

were sterilized separately at 121 ± 1 oc and 15 psi for 20 minutes and aseptically 

combined when needed. 

3.2.6.3 Optimization of agitation speed and aeration rate 

Three levels of agitation speed (150, 200, and 250 r.p.m.) and five levels of 

aeration rates (0, 0.5, 1.0, 2.0, and 3.0 vvm, i.e. volume of air per volume of medium per 

minute) were tested to determine their effects on the growth of and pigment production 

by P. rhodozyma in a ferrnenter. All the experiments were carried out separately and 

under the same growth conditions: an initial pH of 7, an incubation temperature of l8°C, 

a fermentation time of 5 days and an inoculum ratio of 5% (v-v-1
). 

3.2.6.4 Determination of growth kinetic parameters 

The kinetics of growth, pigment production and TCH utilization by P. rhodozyma 

in peat hydrolysate were studied in 2 L ferrnenters with a 1.5 L working volume for 200 

hours of fermentation. Dry biomass concentration, TCH concentration, and astaxanthin 

content were determined every 10 hours for each fermentation. 
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3.2. 7 Analytical methods 

Various analyses were conducted to determine the dry biomass concentration, the 

TCH of both the yeast cells and the peat hydrolysates, and the moisture contents of yeast 

and the peat, as well as the astaxanthin content, total lipid and fatty acid contents, nucleic 

acid content and amino acid profile of the yeast. Detailed descriptions of each analytical 

method are given below. 

3.2. 7 .l Determination of dry ceO biomass 

The biomass was harvested by centrifugation at 10,000 x g for 30 minutes, after 

which the cells were washed twice with a deionized water I 0.5 M sodium chloride 

solution and centrifuged again. The harvested cells were dried in pre-dried and weighed 

aluminum pans in an oven at 100°C for 18 hours. The dry biomass concentration, yield 

coefficient and efficiency were calculated as follows: 

Dry Biomass cone. = X - X0 

Yield Coefficient (%) 



Efficiency (%) 

where: X is final yeast biomass (g·C1
) 

= 100 ( X-Xo) 
So 

X0 is initial dry biomass of inoculum (g ·L-1
) 

S is final substrate concentration 

S0 is initial substrate concentration 

3.2.7.2 Determination of the total carbohydrate concentration (TCH) 
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The total carbohydrate concentration of the peat hydrolysates and the yeast cell 

biomass was determined by two different methods as described below. 

3.2. 7 .2.1 Determination of TCH of peat hydrolysate 

The TCH of the growth medium before and after fermentation was determined by 

the Dreywood Anthrone Method (Morris, 1948). This method involved dissolving 2 g 

anthrone in 1 L 95% sulfuric acid. The reagent was stored at 4°C in a dark bottle. Five 

mL of the sample solution to be determined (diluted to appropriate range ca. 20-200 

mg·L-1 carbohydrates) was measured into test tubes and 8 mL of the anthrone reagent 

was added with mixing. The absorbance at 540 nm was measured in a Novaspec II 

Spectrophotometer (LKB Biochrom Ltd., England) against a blank containing only water 

and the reagent A series of glucose standards was used as the basis of comparison for 

determining the TCH. The results were expressed as equivalent glucose concentrations. 
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3.2. 7 .2.2 Determination of TCH of yeast cells 

The TCH of the dry yeast cells was determined the method of Herbert et al. 

(1971). About 200 mg of anthrone was added to 5 mL absolute ethanol in a 100 mL 

volumetric flask and 75% sulfuric acid was added to give 100 mL of solution. About 0.5 

- 1.0 mg quantities of dried yeast cells were mixed with 2.0 mL water in a thin-walled 

boiling tube. The tube was then cooled in a rack standing in a pan of ice-water in which 

the anthrone reagent was also cooled. After cooling, the tube was left standing in the ice­

water and 5.0 mL of the anthrone reagent was added to the tube while the tube was 

swirled. The tube was then allowed to stand in the ice-water until its contents cooled to 

0°C. The tube was then transferred to a vigorously boiling water-bath. After 10 minutes, 

the tube was returned to the ice-water and allowed to cool. The absorbance at 625 nm 

was measured in a spectrophotometer against a reagent blank and glucose standards. 

3.2.7.3 Analysis of moisture content 

The A.O.A.C. method (Anon. 1980) was used to determine the moisture content 

of the fresh yeast cells. For this, about 1 g of the sample was dried to a constant weight 

at 100°C under vacuum and the moisture content determined by weight difference. 
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3.2.7 .4 Analysis of astaxanthin content 

Freeze-dried cells were used for astaxanthin extraction, instead of oven-dried cells. 

A modified method of Gentles and Haard (1989) was used. It involved suspension of 300 

mg of dried cells in 50 mL of water that had been previously adjusted to pH 5 with acetic 

acid and to which 3 pg of the enzyme "Funcelase" (Yakult Honsha Co., Ltd., 1-1-19 

Higashi-Shinbashi, Minato-ku, Tokyo 105, Japan) had been added. The mixture was 

stirred at room temperature for 4 hours and then left sitting overnight. The digested cells 

were centrifuged at 10,000 x g for 30 minutes, and the resulting pelleted cells were 

washed with deionized water and then extracted twice with 50 mL quantities of acetone. 

The pooled acetone extracts, about 100 mL, were placed in a separatory funnel and 50 

mL of petroleum ether added. The petroleum ether phase, containing the astaxanthin, was 

collected and saved. The acetone phase was further extracted with petroleum ether until 

colorless, and the collected ether phase was filtered through glass wool packed in a 

pasteur pipette to remove any suspended cell particles, and dried in sodium sulfate. The 

astaxanthin content in the petroleum ether was estimated by measuring the absorbance of 

samples at 474 nm in a Novaspec II Spectrophotometer. The total carotenoid content was 

calculated using the 1% extinction coefficient of 2100 and the formula developed by An 

et al. (1989). The formula is given as: 

Total carotenoid cont. = v X A474 X 100 
21 X W 

where: V is the volume (mL) of petroleum ether collected 
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A474 is the absorbance at 47 4 nm 

21 is the 1% extinction coefficient 

W is the dry weight of yeast used in grams. 

3.2.7.5 Analysis of total nitrogen and crude protein contents of the yeast cells 

The micro-Kjeldahl method (Anon., 1980) was used to determine the total nitrogen 

and the crude protein contents of the dried yeast cells. About 100-300 mg of sample was 

weighed on nitrogen-free paper. Each sample was transferred to a digestion tube and 2 

Kjeltabs M pellets (mercuric oxide type) and 20 mL concentrated sulfuric acid were 

added to each tube. The mixture was then digested in a Blichi 426 Digestion Unit 

(Btichi Labo.ratoriums - Technik AG, Flawil, Switzerland) for a total period of 60 

minutes. The digested solution was then allowed to cool and was then inserted in a Btichi 

315 Distillation Unit (Btichi Laboratoriums - Technik AG, Flawil, Switzerland). 

Deionized water (100 mL) and 25% sodium hydroxide (150 mL) were then added to the 

digested solution and the mixture was subsequently distilled into 50 mL 4% boric acid 

until about 150 mL condensate was collected. The condensate was titrated with 0.1 M 

sulfuric acid using methyl red as an indicator, and the % N and crude protein content 

calculated as follows : 

% N = ( V1 - V2 ) X M X 14 . 0 0 6 7 X 10 0 
w 

where: V1 is the volume of titrant for the sample 
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water-soluble material from the lipid extract was completed by mixing the interface three 

times with 2 mL of a mixture of chloroform-methanol - 0.58% sodium chloride in water 

(3 : 48 : 47 by volume). A small amount of methanol was added to disperse the 

remaining rinse fluid into the lower phase. Chloroform-methanol (2 : 1 by volume) was 

added to the extract until the total volume was 30 mL and then it was allowed to separate 

in a separatory funnel. The chloroform layer was removed into a graduated cylinder and 

10 mL aliquots of this were pi petted into pre-dried and weighed aluminum pans. These 

were evaporated to dryness in a vacuum at 50°C and the pans weighed to determine total 

lipids. 

3.2. 7. 7 Analysis of fatty acids 

The total lipids were extracted and purified by the modified method of Stewart 

(1975) as previously described. The extracts were stored at -60°C in chloroform to which 

0.5% hydroquinone had been added. Aliquots of about 1 mL of the lipid extract were 

placed in 6 mL conical teflon-lined, screw-capped vials and evaporated to dryness under 

a stream of nitrogen. The residue was transmethylated by the addition of 2 mL of 6% 

sulfuric acid in 99.9 mol. % methanol to which 15 mg hydroquinone had been added as 

antioxidant. The mixture was incubated at 60°C overnight. Deionized water (1 mL) was 

then added to the mixture in each vial, thoroughly mixed, and then extracted three times 

with 1.5 mL of pesticide-grade hexane. A few more crystals of hydroquinone were added 

to each mixture at the first extraction with hexane. The hexane layers were removed, 
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combined in a clean tube and washed twice with 1.5 mL deionized water by vortexing. 

The hexane extracts were evaporated to dryness under nitrogen. The dried sample was 

dissolved in about 10-20 pL of ACS grade carbon disulfide and about 4 pL of the 

resulting solution was injected into a gas chromatography apparatus for analysis. 

3.2.7.8 Analysis of nucleic acids 

The nucleic acid content of the freeze-dried yeast cells was determined by the 

method of Herbert et al. (1971). The freshly harvested cell-suspension was cooled to 

0°C, centrifuged, washed twice with 1 mM ice-cold magnesium chloride and finally 

resuspended in 1 mM magnesium chloride and freeze dried. 

The freeze-dried cells were then suspended in 4 mL of hyperchloric acid, vortexed, 

allowed to stand in a water-bath at 70°C for 15 minutes with occasional shaking, and then 

centrifuged. The extraction was repeated twice with 3 mL of 0.5 M hyperchloric acid, 

each for 15 minutes and to the combined extracts was added 0.5 M hyperchloric acid to 

give a total volume of 10 mL. For RNA analysis, the sample was extracted with 0.5 M 

hyperchloric acid at 37°C for 90 minutes, centrifuged, and washed once with 0.5 M 

hyperchloric acid. 

Determination of DNA was by the diphenylamine method of Burton (1968). This 

method involved measuring 1-2 mL of the extract and mixing with 2 mL of freshly 

prepared diphenylamine reagent containing acetaldehyde. Standards containing known 

amounts of DNA in 0.5 M hyperchloric acid, and a reagent blank containing 0.5 M 
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hyperchloric acid but no DNA, were also prepared. The tubes were incubated overnight 

at 30°C and the absorbance at 600 nm measured against the blank in a spectrophotometer. 

The orcinol method was used for RNA analysis. About 1.0 mL extract was 

measured into graduated glass-stoppered test tubes. Freshly prepared orcinol reagent (3.0 

mL) was added. A reagent blank and standard RNA solutions were prepared 

simultaneously. All the mixtures were heated in a boiling water-bath for 20 minutes, 

cooled in cold tap water, and made up to 15 mL with n-butanol. The absorbance at 672 

nm was read in a spectrophotometer. 

3.2.7 .9 Determination of ash content 

The A.O.A.C method (Anon., 1980) was used to determine the ash contents of the 

raw peat, peat hydrolysate, and the yeast cells. About 300-500 mg of the dried samples 

were weighed into previously ignited, cooled and weighed porcelain crucibles. The 

samples were ashed in a Lab-Heat Muffle Furnace (Blue M Electric Co., Blue Island, IL., 

USA) at 550°C for 16 hours (until only grey ash remained). The crucibles and their 

contents were allowed to cool in a desiccator. The ashes were moistened with deionized 

water to dissolve the soluble salts, dried slowly on a hot plate, and ignited again at 550°C 

to constant weight. 
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3.2.7.10 Amino acid analysis 

The samples were hydrolysed with 6 M hydrochloric acid under vacuum for 24 

hours at 110°C (Blackburn, 1978). They were then reconstituted with 0.6M lithium 

citrate buffer and analyzed with a Beckman 121 MB amino acid analyzer using a single 

column method (Mondino et al., 1972; Ohara and Ariyoshi, 1979). Tryptophan was not 

determined because of its destruction by acid hydrolysis. 

3.2.7.11 Statistical analysis 

All data presented for shaker flask experiments, batch fermentations and proximate 

analyses of biomass represent mean values of at least three determinations ± standard 

deviations. A Statistical Analysis System (SAS Inc. 1990, North Carolina~ USA) was 

used to perform Analysis of Variance and Tukey's Studentized range test (Snedecor and 

Cochran, 1980) to evaluate the significance of difference between means. 



CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Shaker flask experiments 

4.1.1 Preliminary studies 
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Preliminary studies were conducted to determine the best substrate concentration 

for the growth of P. rhodozyma in peat hydrolysates PH4-0l-185 and PH4-02-185. 

Thereafter the effects of initial pH, initial incubation temperature, fermentation time, 

agitation speed and inoculum ratio on the growth of the yeast were studied using the 

optimal substrate concentrations determined. 

4.1.1.1 Effects of substrate concentration on the growth of Phaffia rhodozyma. 

Fig. 4.1a and 4.1b represent the results obtained when the yeast was grown in 

various concentrations of peat hydrolysates PH4-0l-185 and PH4-02-185, respectively. 

The numerical values are also shown in Appendices A.l and A.2, respectively. The 

results show that increasing the substrate concentration increased the biomass, but not 

proportionately. The highest biomass concentration was obtained at a substrate 

concentration of 30 g·C1 for PH4-0l-185 and 45 g·L-1 for PH4-02-185. However, in 

the case of PH4-02-185, the final yield per gram of substrate utilized at 45 g·L-1 



65 

concentration was lower than at the others. The best yield coefficient and efficiency were 

obtained at a substrate concentration of 30 g·L·1 for PH4-0l-185 and 15 g·L·1 for PH4-

02-185. The differences between the biomass concentrations, the yield coefficient and 

the efficiencies at each substrate concentration level were statistically significant (P ::; 

0.05). The lower yield and efficiency values obtained at higher substrate concentrations 

in the case of PH4-02-185 could be due to inhibitory substances preventing the efficient 

utilization of substrate. It has been reported that in a complex industrial medium, 

nutrients are prevented from being freely available for microbial utilization by the 

chelating, sequestering and adsorbing action of various materials such as humic acids 

(Jones and Greenfield, 1984). Since peat hydrolysates are known to contain considerable 

amounts of humic acids (Fuchsman, 1980), it is possible that, at higher substrate 

concentrations, the microorganisms were prevented from utilizing the substrate efficiently 

as a result of the presence of higher concentrations of humic acids. Furthermore, it is 

possible that a non-carbohydrate nutrient such as nitrogen became growth-limiting at some 

point. Better growth and improved efficiency may be obtained with diluted peat 

hydrolysates because of reduced inhibition effects through dilution (Martin and Bailey, 

1983). 

Peat hydrolysates made from acid hydrolysis are better fermentation substrates and 

provide higher TCH levels than non-acid hydrolysates, according to McLoughlin and 

KUster (1972a) and LeDuy (1981a). In this work, the acid hydrolysate had higher TCH 

than the non-acid hydrolysates made at corresponding temperatures (i.e., 84 g·L·1 as 
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compared to 120 g·L-1 for the non-acid and acid hydrolysates, respectively). It can 

therefore be expected that more fermentable carbohydrates will be present in an acid 

hydrolysate of a particular concentration than a non-acid hydrolysate of the same 

concentration. This is evident in the TCH of the residual substrate. The amount of TCH 

consumed by the yeast in the non-acid hydrolysate was about twice that consumed by the 

yeast in the acid hydrolysate. However, the biomasses produced in both cases were about 

equal. Hence, a higher TCH of a non-acid hydrolysate may be needed to give a biomass 

concentration comparable to that of an acid hydrolysate with a lower TCH. This may 

explain why the efficiency and yield were highest at higher TCH in the case of the non­

acid hydrolysate. 

The formation of less precipitates in PH4-02-185 at 15 g·L-1 TCH than at 30 and 

45 g·L-1 TCH, and the comparative ease of removal of precipitates in the substrate at 15 

g·L-1 were some of the practical considerations behind the decision to use 15 g·L-1 for 

subsequent studies. 



-H 3.0 ............ -
bD -
~ 
0 2.5 ·- 1-

....., 
aj 
M ....., 
s:::l 2.0 Cl) 

1-

(.) 

~ 
0 
0 1.5 1-

rn 
rn 
aj 

s 1.0 0 
,.... 

·-..0 

~ 
M 0.5 
0 

-

~ 

r-

[ti f 

~ 

ffi 

f 
~ f3= ~ 

YXE YX E y X E y X E 

I _l I I 

15 20 25 30 
Initial substrate concentration (g/L) 

-

-

-

-

-

25 -~ -
~ 

20 ~ 
Cl) ·-0 ..... ..... ..... 

15 Cl) 

"'tj 

~ 
aj 

10 ~ 
Cl) ..... 
~ 

5 

67 

Fig. 4.1 a. The effects of substrate concentration on the growth of P. rhodozyma in peat 

hydrolysate PH4-0l-185. X =Dry biomass cone., Y =% Yield and E =:= % Efficiency. 
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Fig. 4.1 b. The effects of substrate concentration on the growth of P. rhodozyma peat 

hydrolysate PH4-02-185. X= Dry biomass cone., Y = % Yield and E = % Efficiency. 
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4.1.1.2 Effect of pH on the growth of Phaffia rhodozyma 

Fig. 4.2a depicts the dry biomass concentration, yield coefficient and efficiency 

obtained when the yeast was grown in peat hydrolysate PH4-01-185 at various initial pH 

levels, and Fig.4.2b depicts the respective values for yeast growth in hydrolysate PH4-02-

185. The numerical values for the dry biomass concentration, yield coefficient and 

efficiency for the yeast grown in PH4-0 1-185 and PH4-02-185 are shown in Appendices 

A.3 and A.4, respectively. The highest growth was obtained at a pH of 7 in both cases. 

However, there were no statistical differences in values obtained at pH 5, 6, and 7 (P > 

0.05). Yeasts are known to grow best near pH 5, but will grow over a pH range of 2.5 

to 8.5. The optimal pH reported for P. rhodozyma is around 5.0 (Johnson and Lewis, 

1979). However, in a mixed culture of P. rhodozyma and Bacillus circu/ans WL-12, 

Okagbue and Lewis (1985) reported optimum growth at a pH around 6.5. Chang (1985) 

reported that the biomass yield of Candida uti/is in high-pH peat hydrolysates was always 

higher than in low-pH peat hydrolysates, especially in sulfuric acid hydrolysates. This 

inhibitory effect at low pH was attributed to the presence of high concentrations of humic 

substances in low - pH peat hydrolysates. Numerous authors have shown that humic 

acids affect cellular metabolism in processes such as growth, respiration, photosynthesis 

and nitrogen fixation (Prakash and MacGregor, 1983; Flaig, 1968; Petrovic et a/., 1982; 

Khristeva, 1968; Nechutova and Tichy, 1970). However, there is much confusion 

surrounding the effects of humic substances on the growth and metabolism of 

microorganisms and plants. McLoughlin and Kuster (1972c) reported no apparent effects 
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of humic acids on the metabolism of Candida uti/is, whereas Dragunov and Popova 

(1968) reported that humic substances stimulate growth of sugar beet plants. Evdokimova 

et al. (1974) on the other hand, reported that humic substances have inhibitory effects on 

yeasts in peat hydrolysates, although they contended that when added to synthetic 

medium, humic substances have a stimulatory effect. Chintalapati (1987) also reported 

that humic acids concentrations of up to 0.20% were stimulatory to the growth of the 

fungus Scytalidium acidophilum, whereas concentrations above 0.20% were inhibitory. 

McLoughlin and KUster (1972c) reported that humic acids could have nutritive effects, 

and that the effects of the humic acids depended largely on the physiological state, 

nutritive requirements, and other parameters of growth relative to the study of the 

microorganism. Two effects, they suggested, may be working antagonistically to produce 

an appearance of no effects. They therefore attributed the contrary descriptions of 

different investigators of the effects of humic acids on plants and microbes to this. 

Since humic acids are known to be soluble in alkalis and insoluble in acids 

(Fuchsman, 1983), it is possible that in this study, at high pH, the dissolution and 

degradation of humic acids might have reduced their concentration to levels that were 

stimulatory to the growth of the yeast. It was also observed in this study that there was 

precipitate formation at low pH. This might have been the precipitation of humic acids. 

McLoughlin and KUster (1972c) reported that very reactive oxidation-reduction agents 

affecting the cytochrome system result from precipitation of humic substances. It is 

possible therefore, that the precipitates might have interfered directly with the growth of 
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the yeast. Finally, the precipitates could have also removed valuable nutrients and ions 

from the growth media since humic acids have been reported to form chelating 

compounds with ions making them either available or non-available to the organism being 

cultivated, depending on the circumstances (McLoughlin and Kuster, 1972c). 
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Fig. 4.2b. Effects of pH on the growth of P. rhodozyma in peat hydrolysate PH4-02-185. 



4.1.1.3 The growth of Phaffia rhodozyma under various incubation 

temperatures 
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For P. rhodozyma, it has been reported that growth and pigment synthesis are both 

optimal at 20-22°C (Johnson and Lewis, 1979). Five temperatures (16, 18, 20, 22, and 

24 °C) were tested to determine their effects on the growth of p. rhodozyma, in peat 

hydrolysates PH4-01-185 and PH4-02-185 in separate experiments. Fig. 4.3a and 4.3b 

represent the results obtained for PH4-01-185 and PH4-02-185, respectively. The 

numerical values are also depicted in Appendices A.5 and A.6, respectively. The results 

demonstrate that growth in terms of dry biomass concentration, yield coefficient, and 

efficiency were highest at 18°C in both cases. However, there were no significant 

differences in biomass concentration obtained at temperatures 16-22°C, or in yield 

coefficient and efficiency at 16-20°C (P > 0.05). It was further observed that there was 

an increase in growth with increase in temperature from 16 to 20°C. A further increase 

in temperature to 22°C resulted in a decrease in growth, although this was not significant 

(P > 0.05). Johnson and Lewis (1979) observed that the final biomass yield of P. 

rhodozyma was relatively constant at temperatures of 22°C and below, but decreased 

significantly at temperatures above 22°C. They reported that the highest temperature at 

which growth could be observed was 27.5° C. At this temperature, the yeast increased its 

mass two fold after inoculation and then stopped growing (Johnson and Lewis, 1979). 

Okagbue and Lewis (1985) reported that optimum growth of P. rhodozyma in a mixed 

culture with Bacillus circulans WL-4 occured around 20°C. They also reported that the 
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yeast grew well at a temperature of l5°C. The incubation temperature range 15 - 27 .5°C 

has been used by many other researchers for culturing P. rhodozyma (Johnson et al., 

1980; Okagbue and Lewis, 1984a,b; Andrewes et al., 1976; Miller et al., 1976; An et al. , 

1989; Johnson et al., 1978; Haard, 1988) and the optimal in all cases has been reported 

to be in the range 20-22°C. Therefore the optimal temperature obtained in this study 

could be said to be in agreement with the values reported in the literature. 
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4.1.1.4 Effect of fermentation time on the growth of Phaf.fia rhodozyma 

The dry biomass concentration, yield coefficient, efficiency and residual substrate 

concentration obtained from a study of the effects of various fermentation times on the 

growth of P. rhodozyma in peat hydrolysates PH4-01-185 and PH4-02-185 are given in 

Fig. 4.4a and 4.4b, respectively. Appendices A.7 and A.8 represent the numerical values 

for the various growth parameters. There was no appreciable growth before 48 hours 

(and so results prior to this do not appear in the figures), but after this there was a gradual 

increase in biomass, which finally peaked at 120 hours. The yield coefficient and 

efficiency followed a similar pattern. Values reported at all levels of measurement 

differed significantly (P ~ 0.05). The accelerated growth phase occurred between 96 and 

120 hours, after which there was a decrease in growth rate. The substrate was utilized 

rapidly in the first 72 hours, and then the rate of utilization decreased. 

The monosaccharides detected in the peat hydrolysate and their relative abundance 

were arabinose 0.78%, xylose 4.47%, ribose 0.76%, rhamnose 2.84%, fucose 0.23%, 

mannose 1.88%, fructose 0.73%, and galactose 3.58%. The relative abundance of the 

various monosaccharides of the peat hydrolysate used in this study differs from the 

monosaccharide composition of the sulfuric acid extracts of various kinds of peat reported 

by Morita and Montgomery (1980) and Morita and Levesque (1980). These researchers 

reported glucose to be the predominant sugar followed by galactose, mannose, and xylose 

or arabinose. In this study glucose was found to be the predominant sugar but the others 

did not follow a pattern similar to that reported by the other authors. Only about 56% 
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of the TCH was utilized, indicating the possible presence of some carbohydrates that 

could not be utilized by the yeast. This assumption is in line with the views of Martin 

and Bailey(1983) and Quierzy et a/. (1979), that not all of the carbohydrates present in 

peat can be assimilated. This percentage is low in terms of industrial fermentation where 

nearly complete utilisation is desirable. However, Forsberg et at. (1986) reported that 

because of the complex mixture of monosaccharides, disaccharides and longer 

oligosaccharides in peat hydrolysates several problems may be encountered by the 

microorganisms in the course of their growth. These include catabolite repression by 

glucose, of the utilization of such other sugars as arabinose and galactose. This may 

explain why only a fraction of the TCH was utilized by the yeast in this study. Also, the 

presence of a mixture of sugars, along with oligosaccharides, may have inhibited 

extensive hydrolysis of the oligosaccharides in the peat hydrolysate (Forsberg, 1986). 
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4.1.1.5 The effects of inoculum ratio on the growth of Phaffia rhodozyma 

The results obtained from experiments on the effects of various inoculum ratios 

on the growth of P. rhodozyma are shown in Fig. 4.5a and 4.5b for peat hydrolysates 

PH4-01-185 and PH4-02-185, respectively. The numerical values for the dry biomass 

concentration, yield coefficient and efficiency for the yeast grown in PH4-01-185 and 

PH4-02-185 are shown in Appendices A.9 and A.10, respectively. It was observed that 

the quantity of the inoculum had a profound effect on the growth of the yeast. The 

highest dry biomass concentration, yield coefficient and efficiency were obtained at an 

inoculum ratio of 5% (v-v- 1
) for both peat hydrolysates. At higher and lower inoculum 

ratios, there were decreases in these growth parameters. However, values obtained for 

all measurements at 3%, 5%, and 7% were not statistically different from each other 

(P > 0.05). A similar observation was made by Kosaric and Miyata (1981) who found 

that an optimum biomass production was achieved with an inoculum ratio of 5-7.5% (v -v· 

1
) when they cultivated morel mushroom in cheese whey. Similarly, Martin and White 

(1985) observed that 5% inoculum ratio produced better results than 10% (v-v-1
) in a 

study with the acid-tolerant fungus Scytalidium acidophilum. Martin and White (1985) 

concluded that the adverse effects of the higher inoculum ratio were not due to the 

presence of inhibitory substances but rather due to production and accumulation of growth 

retarding metabolites that were transferred from the inoculum to the growth medium. It 

was observed in this study that not all the TCH were utilized by the yeast. This, coupled 

with the fact that there were higher TCH values at higher inoculum ratios, indicated that 
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the inhibition of microbial growth at higher inoculum ratios was not due to the 

exhaustion of nutrients. It is therefore reasonable to conclude that at higher inoculum 

ratios, higher concentrations of growth retarding metabolites were transferred to the 

culture medium from the inoculum. The lower growth at lower inoculum ratios, on the 

other hand, could be attributed to a greater lag in the microbial population. In P. 

rhodozyma, there has not been any previous systematic determination of the best inoculum 

ratio for the optimal growth of the yeast. However, most investigators have used an 

inoculum ratio of 2% (Johnson and Lewis, 1979; Haard, 1988). 
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hydrolysate PH4-01-184-5. X= Dry biomass cone., Y =%Yield and E =%Efficiency. 



"' 4 ....::1 
........... 

taO -
~ 
0 

1-
~ 

att ~ ~~ 
•.-4 
~ 

" 
3 1-

J.t 
~ 

~ 
Q) 
Cl 
~ 
0 2 Cl 

en 
en 

ffi --
~ ffi r-e 

" a 
0 

•.-4 
1 .c 1-

~ 
J.t 

Q y X E y X E rr-x E y X E 

1 3 5 7 
% Inoculum ratio (v /v) 

-

rrf 
-

-

1-

-

-
y X E 

g 

50 -~ -
~ 

40 ~ 
Q) 

•.-4 
Cl 

•.-4 
....... ..... 

30 cu 
"'C 
~ 

" 
20~ 

Q) ..... 
~ 

10 

Fig. 4.5b. Effects of inoculum ratio on the growth of P. rhodozyma in peat 

85 

hydrolysate PH4-02-185. X = Dry biomass cone., y · = % Yield, and E = % Efficiency. 
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4.1.1.6 Effects of agitation speed on the growth of Phaffia rhodozyma 

Previous works with P. rhodozyma have involved agitation speeds ranging from 

150 to 600 r.p.m. (Johnson et at., 1978; Okagbue and Lewis, 1984a; Haard, 1988; An et 

al., 1989; Okagbue et al., 1985), but it has not been clearly stated which agitation speed 

is most suitable for the growth of the yeast. Five agitation speeds were tested to 

determine their effects on the growth of P. rhodozyma in peat hydrolysates PH4-0 1-185 

and PH4-02-185. Fig. 4.6a and 4.6b, respectively, present the results obtained. The 

highest biomass, yield coefficient and efficiency were obtained at 200 r.p.m. The 

numerical values for these parameters are depicted in Appendices A.11 and A.12 for 

PH4-0 1-185 and PH4-02-185, respectively. There were no significant differences between 

these values and those obtained at 250 r.p.m., but the growth at these two agitation speeds 

differed significantly from the growth at the other speeds (P :::;; 0.05). For fermentation 

broths in general, an increase in agitation speed will result in better mixing and better 

mass transfer. Therefore, one would expect higher values of biomass, yield coefficient 

and efficiency at higher agitation speeds. According to Boa and LeDuy (1986), this 

seems to be the case in fermentations utilizing simple substrates such as glucose and 

sucrose as the carbon source. However, in a complex medium such as peat hydrolysate, 

the opposite had been reported to happen. A possible explanation is that, in a complex 

peat hydrolysate medium, there are adverse effects from either increased shear or from 

increased levels of oxygen in the presence of certain chemical compounds, or both factors 

may have adverse effects (Boa and LeDuy, 1986). 
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4.1.2 Peat hydrolysate evaluation for the growth of Phaffia rhodo:zyma 

Having optimized the growth parameters in the non-acid and acid hydrolysates 

(PH4-01-185 and PH4-02-185, respectively), the yeast was grown in all the six peat 

hydrolysates to determine which one supported the growth best. Table 4.1 presents the 

results obtained. It is clear from the table that PH4-02-185 produced the best dry biomass 

concentration, yield coefficient and efficiency. The differences between these values and 

those for PH4-0l-185 were not statistically significant However, the results for PH4-0l-

185 and PH4-02-185 differed significantly from those obtained for the remaining four 

hydrolysates (P ~ 0.05). 

Each acid hydrolysate produced more biomass than its non-acid counterpart made 

at the same temperature. This is in agreement with the findings of LeDuy (198la) who 

stated that, in general, acid hydrolysates are better media than non-acid hydrolysates. 

McLoughlin and Kuster (1972a) also reported that peat hydrolysates from acid hydrolysis 

gave a much higher Candida utilis biomass concentration than non-acid hydrolysates. 

This beneficial effect of acid hydrolysates on biomass production was attributed to the 

higher decomposition of peat hemicelluloses resulting in higher TCH concentration in the 

acid hydrolysates. Alkaline extracts, they concluded, were not suitable for biomass 

production, probably due to higher ionic content. However, PH4-0l-185, a non-acid 

hydrolysate, produced better growth than the two other acid hydrolysates (PH4-02-205 

and PH4-02-225) and, for both the acid and non-acid hydrolysates, as temperature of 

production increased, biomass production and yield decreased. This suggests that higher 
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temperatures of production could have destroyed some nutrients in the media vital for 

microbial growth, thereby decreasing their value as fermentation substrates. This is in 

agreement with Quierzy et at. (1979) who reported that temperature is very critical to the 

release of carbohydrates from peat. In peat hydrolysate preparation, for each selected 

value of holding time, there exists a critical temperature at which TCH yield is 

maximized. Below this critical temperature the TCH yield is low because of incomplete 

hydrolysis. Likewise, the TCH yield decreases as the temperature of production increases 

above the critical temperature, suggesting that the carbohydrates in the peat hydrolysate 

are destroyed at higher temperatures (Quierzy et at., 1979). It was also observed in this 

study that increasing amounts of precipitates were formed in hydrolysates produced at 

higher temperatures when they were neutralized with sodium hydroxide. Chang (1983) 

reported that formation of colloid matter in peat hydrolysate during neutralization 

adversely affects the biomass and growth rate of Candida utilis. It is possible that 

precipitate formation removes nutrients from the medium. According to McLoughlin and 

Kuster (1972b) and Fuchsman (1980) precipitates are themselves harmful to yeast growth, 

and their removal results in an increase in biomass. The precipitates formed in 

hydrolysates produced at higher temperatures could have resulted from a reaction between 

carbohydrate degradation products produced at higher temperatures and sodium hydroxide, 

and these might have had adverse effects on the growth of the yeast. 
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Table 4.1: Determination of the most suitable peat hydrolysate for the growth of P 

rhodozyma in shaker flask culture1
• 

Peat Hydrolysate Dry Biomass Cone. %Yield % Efficiency 

(g.L-t) 

PH4-01-185 4.04 ± 0.113 34.82 ± 0. 983 13.48 ± 0.01 3 

PH4-0l-205 1.61 ± 0.06b 11.45 ± 1.05b,c 5.36 ± 0.22b 

PH4-0l-225 1.21 ± 0.02d 8.97 ± 0.27d 4.03 ± 0.05d 

PH4-02-185 4.30 ± 0.043 36.74 ± 1.133 14.33 ± 0.143 

PH4-02-205 1.78 ± 0.09b 12.28 ± 0.67b 5.93 ± 0.3lb 

PH4-02-225 1.28 ± 0.02c 8.98 ± 0.27c 4.29 ± 0.07c 

1Mean values of three determinations ± standard deviation. Values in the same 
column with the same superscripts are not statistically different (P > 0.05) 
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4.1.3 The concentration of astaxanthin in Phaffia rhodozyma 

The dry biomass of the yeast grown in the most suitable acid and non-acid 

hydrolysates (PH4-02-185 and PH4-0l-185) was analyzed for their astaxanthin content 

by an enzymatic method (Gentles and Haard, 1989). Table 4.2 compares data for the 

optimal production of astaxanthin in this work and those reported by other authors 

utilizing different substrates. The astaxanthin contents were 1567 ± 11 pg·g·1 yeast and 

1280 ± 0.00 pg·g·1 yeast for P. rhodozyma produced in PH4-02-185 and PH4-01-185, 

respectively. These values compare favourably with those reported by other investigators 

(Table 4.2). 

Cellobiose has been reported to produce more astaxanthin than other carbon 

sources (Johnson and Lewis, 1979). Forsberg et at. (1986) reported cellobiose in peat 

extract produced by steam explosion. Therefore the high content of astaxanthin obtained 

in this work might have been due to the combined effects of cellobiose and such 

astaxanthin precursors as carotenes that are known to be present in peat hydrolysates 

(Fuchsman, 1980). High levels of carotenoids have been obtained in the yeasts 

Sporobolomyces pararoseous T and Rhodotorula glutinis T-2 grown in peat hydrolysates 

(Raitsina and Evdokimova, 1977). The high yield of carotenoids with peat hydrolysate 

suggests that these carotenoid precursors may have entered the cell and enhanced 

carotenoid production (Johnson and Lewis, 1979). 
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Table 4.2 Comparison of astaxanthin contents of P. rhodozyma grown in 

various media. 

Fermentation Media Astaxanthin Content (pg·g·1 yeast) Reference 

PH4-01-185 1280 This work 

PH4-02-185 1567 This work 

Cellobiose 1260 An et at. (1989) 

Ethanol 540 An et at. (1989) 

Glucose 421 Johnson and Lewis (1979) 

Molasses 1086 Haard (1988) 

Sucrose 508 Johnson and Lewis (1979) 

YM Broth 2040 An et al. (1990) 
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4.1.4 Crude protein content of Phaffia rhodozyma 

The crude protein contents (N x 6.25) of the yeast cultured in peat hydrolysates 

PH4-02-185 and PH4-0 1-185 are presented in Table 4.3 and compared with the protein 

contents of microbial biomass produced by other investigators. The crude protein 

contents were 47.10 ± 0.94% and 38.89 ± 2.58% for yeast grown in PH4-02-185 and 

PH4-01-185, respectively. Even though PH4-0l-185 resulted in a significantly (P ~ 0.05) 

lower protein content than did PH4-02-185, both protein contents compare favourably 

with that produced by Fleischmann's commercial active dry yeast (LeDuy, 1981a) and the 

value Johnson et al. (1980) reported for P. rhodozyma (30.1 %). 
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Table 4.3 Comparison of biomass protein contents from various microbial sources. 

Biomass Source % Protein (N x 6.25) Reference 

Phaffia rhodozyma from medium 38.89 ± 2.58 This work 

PH4-01-185 

P haffia rhodozyma from medium 47.10 ± 0.94 This work 

PH4-02-185 

Phaffia rhodozyma 30.10 Johnson et al. (1980) 

Fleischmann's commercial active 41.40 LeDuy (1981a) 

dry yeast 



4.1.5 Nutritional requirements of Phaffia rhodozyma 

4.1.5.1 Effects of different sources of nitrogen on the growth of and pigment 

production by Phaffia rhodozyma in peat hydrolysate. 
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When P. rhodozyma was grown in the unsupplemented peat hydrolysate, the dry 

biomass concentration and pigment production was low. The medium was therefore 

supplemented with yeast nitrogen base and bactopeptone to improve the biomass yield 

and pigment production. However, because of the relatively high cost of these 

ingredients, less-expensive chemicals were sought as replacements, and the effects of such 

substitution on the growth of and astaxanthin production by the yeast were determined. 

Ammonium nitrate, ammonium phosphate, ammonium sulfate, potassium nitrate 

and urea were tested to determine their effects on the growth and pigment production by 

P. rhodozyma. Table 4.4 presents the results obtained. It is clear from the Table 4.4 that 

the growth and pigment production depended on the nitrogen source. The addition of 

ammonium sulfate, ammonium nitrate, potassium nitrate and urea had no significant effect 

on the final yeast biomass in comparison to the non-supplemented peat hydrolysate. 

Visual inspection of the cells revealed a very pale color, indicating a comparative lack 

of astaxanthin. Ammonium phosphate addition improved the biomass concentration from 

1.81 ± 0.1 to 2.1 ± 0.72 g·L 1
, but there was no statistical difference between these two 

biomass concentrations (P > 0.05). Similarly, the quantity of astaxanthin produced by the 

yeast grown in the ammonium phosphate supplemented peat hydrolysate, 579 ± 5 pg·g-1 
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yeast was not significantly different from that of the yeast grown in the non-supplemented 

peat hydrolysate, 575 ± 21 pg·g-1 yeast (P > 0.05). 

Addition of increasing concentrations of yeast extract to the medium resulted in 

significant increases in the biomass concentration and astaxanthin content (Table 4.5). 

The biomass increased from 1.81 ± 0.1 to 4.21 ± 0.26 g·L-1 when the yeast extract 

concentration was increased from 0 to 3 g·L-1
• This finding is in agreement with the 

observation of other investigators (Bukhalo and Solomoko, 1978; Litchfield, 1967) who 

stated that, generally, organic nitrogen sources are better than inorganic nitrogenous salts 

for microbial growth especially in an unbuffered medium. Johnson and Lewis (1979) 

reported that various concentrations of ammonium sulfate had little effect on the growth 

rate, final yeast biomass and carotenoid production by P. rhodozyma cultured in yeast 

nitrogen base medium supplemented with 1% D-glucose. These workers found further 

that neither ammonium phosphate nor peptone at various concentrations affected the dry 

biomass and pigment concentrations. In this work, it was observed that when ammonium 

salts were used as an inorganic source of nitrogen for the growth of the yeast, the pH of 

the medium dropped to a minimum of about 4.2 (Table 4.6). This might account for the 

poor growth of the yeast in this medium. Several researchers have reported a decrease 

in the pH of the medium when some fungal species are grown in a medium with an 

ammonium salt of an inorganic acid as the nitrogen source (Carels and Shepherd, 1977; 

Srivastava and Bano, 1970; Hashimato and Takahashi, 1974). The apparent decrease in 

the pH was attributed to the rapid utilization of the ammonium ions which rendered the 



98 

medium more acidic thus becoming poisonous to the microorganism. Nicholas (1965), 

on the other hand, argued that ammonium ions in the nutrient medium often reduces the 

activity of nitrate reductase, thus reducing the assimilation of nitrate. In addition, the 

activity of nitrate reductase and glutamase reductase, which are probably involved in the 

regulation of nitrogen uptake and metabolism, can also be inhibited by the lack of 

utilizable carbon in the medium (Hynes, 1973, 1974). 

The enhanced growth obtained with the addition of ammonium phosphate to the 

medium could be due to the strong buffering capacity of the phosphate ions; which 

thereby maintain the pH at levels suitable for the growth of the yeast (Litchfield, 1967). 

Potassium nitrate was unable to support any good growth. Miller et al. (1976) reported 

that P. rhodazyma is unable to assimilate potassium nitrate and this may explain why a 

poor growth was observed in the medium supplemented with it. Yeast extract has been 

found to be a good source of nitrogen for the production of microbial cell biomass 

(Bukhalo and Solomoko, 1978; Sugimori et al., 1971). Johnson and Lewis (1979) 

obtained enhanced biomass production in P. rhodozyma when yeast extract was used. 

The concentration of pigments produced by P. rhodozyma was also affected in 

various ways by the addition of different nitrogen sources. Yeast extract at a 

concentration of 3 g·L·1 gave the highest astaxanthin concentration of 1572 ± 4 pg·g-1
• 

The color and quantity of pigment produced by the yeast varied with the concentration 

of the yeast extract. In a similar nutritional study, Johnson and Lewis (1979) found that 

the addition of increasing concentrations of yeast extract to a vitamin free yeast nitrogen 
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base medium (YNB) resulted in an increase in the astaxanthin concentration from 156 to 

524 pg·g·1 yeast. They also found that addition of ammonium sulfate, ammonium 

phosphate and bactopeptone had no effect on pigment production. Carels and Shepherd 

( 1977) observed that addition of yeast extract to a medium increased pigment production 

and intensity of the red color of Monascus spp. in submerged shaken culture. It can 

therefore be concluded that yeast extract is the most suitable source of nitrogen for yeast 

growth. 
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Table 4.4 Influence of various sources nitrogen on the production of biomass 

astaxanthin by P haffia rhodozyma in peat hydrolysate1
• 

Nitrogen Source2 Dry Biomass %Yield Astaxanthin Cont. 

(0.5 gL- 1
) Cone. (g·L- 1

) (pg.g-1 yeast) 

None 1.81 ± 0.053 23.70 ± 0.703 575 ± 2P 

Ammonium Nitrate 1.45 ± 0.133 19.96 ± 3.333 nd 

Ammonium Phosphate 2.10 ± 0.723 28.65 ± 11.05b 579 ±sa 

Ammonium Sulfate 1.66 ± 0.233 22.25 ± 3.6Y nd 

Potassium Nitrate 1.54 ± 0.223 20.63 ± 3.ooa nd 

Urea 1.48 ± 0.163 19.63 ± 1.993 nd 

1Mean values of three determinations ± standard deviation. Values in the same 
column with the same superscripts are not statistically different (P > 0.05) 

~he concentrations of these nitrogen sources were calculated so that they provided 
approximately 0.5 gL-1 nitrogen to the medium. 

nd Not determined: Cells were not pigmented enough to warrant analysis for 
astaxanthin. 
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Table 4.5 Influence of different concentrations of yeast extract on biomass and 

astaxanthin production by P. rhodozyma in peat hydrolysate1
• 

Yeast Extract Dry Biomass Cone. %Yield Astaxanthin Content 

Cone. (g·L-1
) (g·L-t) (pg ·g·1 yeast) 

0 1.81 ± o.osc 23.70 ± 0.70d 575 ± 21d 

1 3.20 ± 0.18b 38.04 ± 1.88c 761 ± 12c 

2 3.63 ± 0.5~·b 50.67 ± 3.78b 1320 ± 11b 

3 4.21 ± 0.263 60.06 ± 1.633 1572 ± 4a 

1 Mean values of three determinations ± standard deviations. Values in the same 
column with same superscripts are not statistically different (P > 0.05) 
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Table 4.6 Changes in the pH of Phaffia rhodozyma growth medium associated with 

various nitrogen sources1
• 

Nitrogen Source2 Dry Biomass Cone. Final pH of 

(0.5 gL.1) (g·L·t) Medium 

None 1.81 ± 0.053 7.53 ± 0.3P 

Ammonium Nitrate 1.45 ± 0.133 4.21 ± 0.52c 

Ammonium Phosphate 2.10 ± 0.72a 6.50 ± 0.61a 

Ammonium Sulfate 1.66 ± 0.23a 4.40 ± 1.20b 

Potassium Nitrate 1.54 ± 0.22a 6.93 ± 0.233 

Urea 1.48 ± 0.163 7.13 ± 0.503 

1Mean values of three detenninations ± standard deviation. Values in the same 
column with the same superscripts are not statistically different (P > 0.05) 
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to have affected the extractability of the astaxanthin, since several acetone extractions 

could not remove all the pigments in the cells grown in medium supplemented with 0.5 

g ·L-1 potassium phosphate. In a study of P. rhodozyma culture conditions in alfalfa 

residual juice, Okagbue and Lewis (1984a) found that potassium phosphate alone or in 

combination with other nutrients enhanced cell biomass production, but the pellets were 

dark green in color, indicating that astaxanthin production was inhibited. These authors 

made a similar observation when they used phosphate buffer as diluent of the alfalfa 

residual juice. 

Inorganic phosphate has long been reported to promote the growth of 

microorganisms but to inhibit the biosynthesis of secondary metabolites in these 

organisms (Demain, 1972; Weinberg, 1974, 1978). Dholakia and Modi (1984), on the 

other hand, found that, unlike the general phenomenon of phosphate suppression of 

secondary metabolite formation, J3-carotene production in Blakeslea trispora was 

stimulated by higher phosphate concentrations in the growth medium. They conceded, 

however, that at concentrations higher than 1% (w.w-1
), phosphate inhibited 

carotenogenesis by inhibiting cellular metabolism. In Ermothecium ashbyii, a higher 

inorganic phosphate concentration was reponed to enhance flavin mononucleotide 

formation, but decrease riboflavin synthesis (Mehta and Modi, 1982). In a bleached strain 

of Euglena, Blum and Begin-Heick (1967) found a three-fold stimulation of 

carotenogenesis by low concentrations of phosphate in the growth medium. In 

Neurospora crassa, it has been found that phosphate supplementation leads to the 
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accumulation of high concentrations of pyrophosphate (Pifia et al., 1972) which is a 

strong inhibitor in vitro of phytoene biosynthesis (Dogbo et a/., 1988). Inorganic 

pyrophosphate has also been found to be a strong inhibitor of terpenoids synthesis (Porter 

and Spurgeon, 1979; Ogura et a/., 1969). Thus, in view of the fact that one of the 

pathways proposed for synthesis of astaxanthin in P. rhodozyma is via phytoene 

(Andrewes et a/., 1976a), and also since it has been reported that some controls of 

carotenoid biosynthesis affect only the early steps in the pathway common to all 

isoprenoids, whereas others affect only later steps in the synthesis of specific carotenoids 

and related terpenoids (Johnson and An, 1991), there are reasons to believe that higher 

concentrations of inorganic phosphate might have increased the level of pyrophosphate 

in this study and as a re~ult astaxanthin synthesis was adversely affected. 

It is well known that phosphate readily forms precipitates with calcium, 

magnesium, iron, and other metals (Martin, 1977) that are known to occur in peat 

hydrolysates (Fuchsman, 1980). Therefore, the formation of the dark deposits on the 

surfaces of the yeast cells when the medium was supplemented with potassium phosphate 

could be due to the reaction between excess phosphate and other ions in the peat 

hydrolysate since no such observation was made when the cells were grown in a medium 

that was not supplemented with phosphate. 
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Table 4.7: Effects of different concentrations of potassium phosphate on the growth 

of P. rhodozyma1
• 

KH2P04 Cone. Dry Biomass %Yield Astaxanthin Content 

(g·L-1) Cone. (g·L-1
) (pg·g-1 yeast) 

0 1.81 ± 0.05b 23.70 ± 0.70c 575 ± 21a 

0.5 2.11 ± 0.10a 25.00 ± 0.97c 214 ± 27b 

1.0 2.26 ± 0.23a 30.45 ± 1.69b nd 

1.5 2.41 ± 0.22a 32.56 ± 1.07b nd 

2.0 2.52 ± 0.23a 36.24 ± 1.69a nd 

1Mean values of three determinations ± standard deviation. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). nd Not 
determined: Cell pellets were not sufficiently pigmented to warrant analysis for 
astaxanthin. 
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4.1.5.3 Effects of the combination of different concentrations of yeast extract and 

potassium phosphate on Phaffia rhodozyma growth and pigment production 

From the nutrient supplementation studies, it is clear that potassium phosphate and 

yeast extract can enhance biomass production but pigment production was inhibited 

potassium phosphate. It therefore appeared worthwhile to investigate the effects of 

combining different concentrations of yeast extract and potassium phosphate on the 

growth of P. rhodozyma in peat hydrolysate, and also to determine whether the yeast 

extract can counteract the inhibitory effects of phosphate on pigment production. Table 

4.8 depicts the results obtained. It is clear from the table that a combination of different 

concentrations of the two nutrients increase the dry biomass concentration significantly 

(P > 0.05). However, the yeast extract could not counteract the inhibitory effects of the 

potassium phosphate on pigment production. 
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Table 4.8: Effects of the combination of different concentrations of yeast extract and 

potassium phosphate on the growth of P. rhodozyma1 

Yeast Extract KH2P04 Cone. Dry Biomass Cone. Astaxanthin Content 
Cone. (g·L-1) (g·L-1) (g·L-t) (pg ·g-1 yeast) 

0 0 1.84±0.10h 575±21h 
0.5 2.11±0.108·h 214±27i 
1.0 2.26±0.238·h nd 
1.5 2.41±0.22f,g,h nd 
2.0 2. 5 2±0 .23 e,f,g,h nd 

1.0 0 3. 20±0 .18 d,e,f,g,h 762±12e 
0.5 3.35±0.13a,b,c,d,e 717±9e,f 

1.0 3.65±0.18b,c,d,e,f 668±1lf,g 
1.5 3.90±0.56a,b,c,d 608±9&·h 
2.0 4.10±0.64a,b,c,d 578±11h 

2.0 0 3.63±0.59b,c,d,e,f 1322±5b 
0.5 3.85±0.13a,b,c,d,e 1280±28b 
1.0 4.20±0.51 a,b,c,d 1150±42° 
1.5 4.90±0.40a,b 1101±7°'d 
2.0 4.95±0.58a,b 1083±5c,d 

3.0 0 4.21±0.26a,b,c,d 1572±4a 
0.5 4.50±0.65a,b,c,d 1320±16b 
1.0 4. 71±0.84a,b,c 1100±21 c,d 
1.5 4.97±0.60a,b 1095±7c,d 

2.0 5.10±0.54a 1045±1ld 

1Mean values of three determinations, ± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 

nd Not determined: Cell pellets were not sufficiently pigmented to warrant analysis 
for astaxanthin 



4.1.5.4 Effects of magnesium and manganese on the growth and pigment 

production by Phaffia rhodozyma 
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The effects of magnesium and manganese on yeast growth and metabolism have 

been reviewed (Jones and Greenfield, 1984). Magnesium is essential for the activation 

of glycolytic enzymes, the stimulation of essential fatty acid synthesis, the regulation of 

cellular ionic levels, the activation of membrane A TPase and together with K+, is involved 

with phosphate uptake. It also has a structural role and is bound to ribosomes, cell 

membranes and nucleic acids (Jones and Greenfield, 1984). The addition of manganese 

to the medium on the other hand results in a higher cell nitrogen content, increased 

protein synthesis, and an increase in cell yield. 

The effect of different concentrations of magnesium on the growth of and 

astaxanthin production by P. rhodozyma is shown in Table 4.9. It may be observed that 

the addition of magnesium sulfate concentrations of 0.8 - 1.4 g·L-1 to the medium was 

inhibitory to the yeast growth but that it has no apparent effects on pigment production. 

However, above 1.2 g·L-1 magnesium sulfate, the pigment production was reduced. 

There was no significant difference between the values for the biomass concentration 

obtained with the medium supplemented with the magnesium sulfate and the non­

supplemented medium (P>0.05). The concentration of M!f+ ions required for the optimal 

growth of yeast has been reported to be between 2 and 4 mM with a minimum 

requirement of 1.7 mM. Total inhibition of growth has been reported to occur at 

approximately 1 M (Jones and Greenfield, 1984). The 0.8 g·L-1 magnesium sulfate 
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provided approximately 3 mM Mg2
+ to the medium. This concentration was well within 

the concentration range reported for optimal yeast growth. Peat hydrolysate has been 

found to contain moderate amounts of ions including Mi+ (LeDuy, 1981). It is therefore 

possible that Mt+ ion supplied to the medium might have increased the concentration of 

those already available in the medium to levels that were inhibitory to the growth of the 

yeast. Addition of manganese sulphate in the concentration range 0.05 to 0.2 g.L" 1 

produced a non-significant difference in the dry biomass concentration and pigment 

synthesis (P> 0.05) (Table 4.10). Jones and Greenfield (1984) reported that between 2 

to 4 pM of manganese is needed for the growth and metabolism of yeast, increased 

nitrogen content of the cells and increased protein synthesis. Growth was progressively 

inhibited at concentrations of 10 mM and above. 

The enzymes catalyzing the synthesis of phytoene from isopentenyldiphosphate, 

the frrst c40 carotenoid formed during astaxanthin biosynthesis, have been found to have 

a bifunctional enzyme activity and to be strictly dependent on Mn2
+ and no other divalent 

cation (Dogbo eta/., 1988). These investigators reported that in Capsicum chromoplasts, 

prephytoene and phytoene were formed by a manomeric protein ( 47,500 Da) which has 

a preference for Mn2+ over Mg2
+ and that this preference may contribute to the 

preferential conversion of geranylgeranylpyrophosphate (GGPP) to carotenoids than other 

terpenoids. Thus Mn2
+ ions are vital for biosynthesis of carotenoids and higher 

concentrations up to 4 mM are not inhibitory. However, the fact that in this study higher 

concentrations resulted in reduction of pigment synthesis implies that the optimal 
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concentration might have been exceeded. 
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Table 4. 9: Effects of magnesium sulfate on the growth of and astaxanthin production 

by P. rhodozyma1 

MgS04 Cone. Dry Biomass %Yield Astaxanthin Content 

(g·L t) Cone. (g·L- 1
) (pg·g-1 yeast) 

None 4.90 ± 0.40a 71.32 ± 3.54a 1101 ± 7a 

0.8 3.97 ± 0.42a 61.92 ± 0.42b 1098 ± 19a 

1.0 3.85 ± 0.25a 59.97 ± 1.26b 1100 ± lla 

1.2 3.68 ± 0.29a 54.40 ± 1.11c 1103±8a 

1.4 3.65 ± 0.5Y 53.08 ± 1.90C 998 ± 26b 

1Mean values of three determinations ± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05) 
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Table 4.10: Effects of manganese sulfate on the growth and astaxanthin production by 

P. rhodozyma in peat hydrolysate. 

MnS04 Cone. Dry Biomass %Yield Astaxanthin Content 

(g.L-1) (g.L-1) (pg.g-1 yeast) 

None 4.90 ± 0.40a 71.32 ± 3.54a 1101 ± 7a 

0.05 4.96 ± 0.41a 72.55 ± 3.58a 1110 ± 12a 

0.10 5.05 ± 0.33a 74.25 ± 0.74a 1111 ± lOa 

0.15 4.85 ± 0.52a 64.62 ± 0.64b 1011 ± 15b 

0.20 4.70 ± 0.52a 62.62 ± 2.67b 1001 ± 17b 

1Mean values of three determinations± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05) 
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4.2 Batch fermentation 

4.2.1 Optimization of agitation speed and aeration rates in batch fermenters 

To study the effects of agitation speed on the growth and pigment synthesis in 

batch fermenters, three agitation speeds- 200, 250, and 300 r.p.m. -were tested while the 

supply of oxygen to the medium was kept constant at 1 vvm (volume of air per volume 

of medium per minute). The results obtained are presented in Fig. 4.7 and the numerical 

values are shown in Appendix B.l. Of the three agitation speeds tested, 250 r.p.rri. was 

found to be the best for the growth of the yeast. This finding contrasted with the earlier 

finding in the shaker flask where the optimum growth was obtained at 200 r.p.m. The 

difference between the two could be due to the volume of medium used in each case 

since vigorous agitation may be required to effect the necessary mixing and mass transfer 

in larger volumes than smaller ones. The yeast biomass concentration obtained at the 

optimal agitation speed, 250 r.p.m. and 200 r.p.m in the batch fermenter were 4.85 ± 0.44 

and 4.65 ± 0.56 g·L-1
, respectively. However, there was no significant differences 

between these values (P > 0.05). The astaxanthin content obtained at 200 and 250 r.p.m. 

were 1072 ± 26 and 1079 ± 26 ~g·g- 1 , respectively. Likewise there was no statistical 

difference between these two values. 

The aeration rate was also varied between 0 and 2.5 vvm whilst the agitation 

speed was kept constant at 250 r.p.m. This was done to produce a range of oxygen 

dissolution rates and also to determine the effects of aeration on the growth and 
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pigmentation of P. rhodozyma. The results obtained are depicted in Fig. 4.8 and 

Appendix B.2. At zero aeration rate (0 vvm), the biomass concentration was only 

0.87 ± 0.20 g·L-1 and the yeast cells were grey with no indication of the presence of 

astaxanthin. However, when the aeration rate was increased to 0.5 vvm, the dry biomass 

concentration increased to 4.86 ± 0.49 g·L- 1 and the astaxanthin content was 1078 ± 14 

pg ·g-1 yeast Above 0.5 vvm, the biomass concentration and astaxanthin content were 

independent of aeration rate. Johnson and Lewis (1979) made a similar observation when 

they cultured P. rhodozyma in glucose medium. They reported that cell mass and 

astaxanthin concentration were independent of oxygen dissolution except at the lowest 

oxygen dissolution rates i.e. less than 30 mM oxygen L- 1 h-1
• When P. rhodozyma was 

cultured in a glucose m~dium with minimal oxygen supply, there was a drastic reduction 

in the astaxanthin content and the accumulation of 13-carotene as well as the monoketone 

echinenone. Johnson and Lewis (1979) therefore proposed that the hydroxyl functions 

in astaxanthin are formed only in the presence of molecular oxygen and that carotenes 

and echinenones are formed under conditions of low aeration. When anaerobically grown 

stationary phase yeast cells were aerated, there was no detectable change in their 

astaxanthin content. The precise pathway for the introduction of oxygen into carotenes 

to yield xanthophylls has not been clearly elucidated. Britton (1976) hypothesized that 

the hydroxyl functions at C-3 and C-3' of the carotenoid skeleton arise from the 

incorporation of molecular oxygen into carotene hydrocarbons. One of the pathways 

postulated for astaxanthin synthesis in P. rhodozyma appears to begin from 13-carotene 
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with different intermediates. Andrewes eta/. (1976a) postulated that there is a conversion 

of (3-carotene to echinenone which is then hydroxylated to 3-hydroxyechinenone (3-

hydroxy-[3,(3-caroten-4-one). The echinenone is then oxidized to phoenicoxanthin (3-

hydroxy-(3,[3-caroten-4,4'-dione) which is further hydroxylated at the C-3' to give 

astaxanthin. Hydroxylation has been reported to occur late in carotenogenesis and 

involves mixed function oxidase (MFO) reactions (Britton, 1982). Sandmann and 

Bramley (1985) reported that in vitro biosynthesis of (3-cryptoxanthin from (3-carotene in 

Aphanocapsa membranes may involve a monooxygenase reaction. They found that 

hydroxylation was dependent on oxygen and sensitive to potassium cyanide (KCN) and 

monooxygenase inhibitors. Johnson and An (1991) reported that astaxanthin formation 

in P. rhodozyma was inhibited by metyrapone and piperonyl butoxide, compounds that 

are known to inhibit mixed function oxidase reactions involving cytochrome P450s. 

Johnson and An (1991) further suggested that factors that affect oxygen radical formation 

and desaturation would affect carotenogenesis. Beyer et a!. (1989) also reported that 

molecular oxygen is essential for carotene desaturation and cyclization in daffodil 

chloroplasts. They proposed that oxygen acts as an electron acceptor to keep the 

photoreceptor in the proper oxidation state and that an oxidoreductase served as a redox 

mediator between phytoene desaturase and oxygen. 

The results of these studies enumerated above indicate that astaxanthin formation 

depends on the presence of molecular oxygen and that the fmdings in this study agree 

very well with those reported by the investigators mentioned above. However, the fact 
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that aeration rates above 0.5 vvm could not improve the biomass concentration and the 

astaxanthin content any further means that only a minimum concentration of oxygen is 

required for astaxanthin synthesis. Excess oxygen does not have any extra stimulatory 

or inhibitory effects. 

Some evidence has come to light explaining, at least in part, that excessive oxygen 

has no harmful effects on the growth of and pigment synthesis by microorganisms and 

the general consensus is that carotenoid containing microorganisms are able to prevent 

oxidative damage because of the ability of carotenoids to scavenge singlet oxygen. For 

example, Kellogg and Fridovich (1975) and Kunert and Tappe! (1983) in a series of 

experimental systems, both in vitro and in vivo, reported that carotenoids are able to 

protect plant tissues against oxidative damage caused by reactive oxygen species. Moore 

et at. (1989) reported that in a hyperoxic environment (80% oxygen) or in a culture 

medium with 100 pM of duraquinone, a redox-cycling quinone known to generate 

intracellular oxygen molecule, Rhodotorula mucilaginosa was not affected by these 

oxidative challenges unless carotenogenesis was blocked by the addition of 50 pM 

diphenylamine. They concluded that carotenoids were able to protect this organism 

against oxidative injury. Other investigators have also reported that carotenoids may also 

protect non-photosynthetic microorganisms against oxidative damage caused by reactive 

oxygen species other than singlet oxygen (Mikell et at., 1986; Gillepsie eta/., 1986). It 

can therefore be concluded that in an environment with high concentrations of dissolved 

oxygen, carotenoids can serve as effective antioxidants, hence the apparent non-inhibitory 
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effects of high aeration rates observed in this study. Thus, it could be said that once 

carotenogenesis has begun, the yeast was protected by the initial quantities of carotenoid 

produced in the cell system. 
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4.2.2 Kinetics of the growth of P haffia rhodozyma in peat hydrolysate in batch 

fermenters 
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The optimal growth conditions of pH, temperature, agitation speed, aeration rate 

and inoculum ratio obtained were employed to study the growth characteristics of the 

yeast in peat hydrolysate. The fermentation was followed over a period of 200 hours and 

the results are depicted in both Fig. 4.9 and Appendix B.3. It was observed that the 

growth of the yeast has a number of distinct phases which are described below. 

4.2.2.1 The lag phase 

It was found out that the growth of P. rhodozyma in batch fermenter began after 

a 10 hour lag period. The lag period is an indication that probably the cells were 

adjusting to their new environment and synthesizing enzymes required for the new 

environment. The length of the lag period observed when a medium is inoculated 

depends on both the changes in nutrient composition experienced by the cells and the age 

and size of the inoculum. In synthetic glucose medium, P. rhodozyma is reported to have 

a lag period of 10 hours (Johnson and Lewis, 1979). There is not much information 

available on the growth kinetics of P. rhodozyma. However, the fact that only a short lag 

period was recorded in this work implies that there was proper cultivation and transfer 

of inoculum which are necessary prerequisites for a successful production of both primary 

and secondary metabolites by microorganisms. 
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4.2.2.2 The log (accelerated growth) phase 

By the end of the lag phase, the cells have adapted to the new conditions of 

growth. It was observed that the growth was faster during the log phase which began 

after 30 hours of inoculation. The highest biomass obtained in the batch culture, 4.86 ± 

0.12 g·L-1 was reached at the 120th hour. In the shaker flask, the highest biomass was 

4.90 ± 0.40 g·C1 and this was also obtained after 120 hours of fermentation. There were 

however no significant differences between these two values (P > 0.05). The nutrients 

were utilized rapidly during this time. In spite of the fact that there were uptake of 

nutrients and excretion of metabolic products into the medium, the specific growth rate, 

p (i.e. the amount of cells produced by a unit amount of cells in a unit time), remained 

constant during the log phase. The growth rate also remains independent of the substrate 

concentration as long as excess substrate is present (Crueger and Crueger, 1989). With 

an excess of all growth-dependent substrates (and in the absence of inhibitors), there was 

a rapid increase in the biomass concentration. The rate of increase in biomass during the 

log phase can therefore be correlated with the specific growth rate, p, and the biomass 

concentration X (g·L-1
) by the equation: 

dX = 
dt 

j.LX • •••• (a) 

Upon integration, equation [a] becomes 
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In X = j.Lt ••••• (b) 

where X is the biomass concentration (g.L. 1
) 

Jl is the specific growth rate (h. 1
) 

t any time after the lag phase (h) 

Jl can be more commonly expressed in terms of: 

1-L = 2. 303 logxt - logXo = o. 693 
t td 

where X, is the cell biomass concentration at time t 

X0 is the cell biomass concentration at time 0 

td is the doubling time 

A plot of the log biomass concentration against time yields a straight line for the log 

phase with the slope as the specific growth rate, p, (i.e. 0.693/tJ. A plot of log biomass 

concentration against time yields a straight line with the slope as the maximum specific 

growth rate, J.lmax· Such a plot is shown in Fig. 4.10a. The relationship between p, td, dry 

biomass concentration and time is shown in Fig. 4.10b. 

From the Fig. 4.10a, it can be inferred that the log phase occurred between 40 and 

50 hours after inoculation. A maximum specific growth rate, J.lmax and generation time 

(doubling time) of 0.038h'1 and 18.24 hours respectively were obtained. Compared to the 

J.lmax of P. rhodozyma grown in glucose media (i.e. 0.21 h-1
, Johnson and Lewis, 1979), 
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our culture seems inferior. But when the biomass concentration and the astaxanthin 

content obtained in this study are compared with those obtained with other substrates (An 

et al., 1989; Johnson and Lewis, 1979; Haard, 1988; Okagbue and Lewis, 1983a) our 

culture performed very well. Furthermore, the J.lmax is dependent on the organism and the 

conditions of the fermentation. Since an organism needs extra energy to split long chain 

substrates, the J.lmax for simple substrates always supercedes that of long chain complex 

molecules (Crueger and Crueger, 1989). Therefore, it is not surprising that the J.lmax of P. 

rhodozyma grown in comparatively simpler media is greater than that obtained in this 

study. 
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4.2.2.3 Decline in the growth rate 

The decline in growth rate began after the accelerated growth rate had stopped at 

the 50th hour. This phase in the growth of the yeast was associated with a constant value 

in the residual total carbohydrate content. Since not all the carbohydrate was utilizable, 

it is possible that the organisms were deprived of valuable nutrients at this stage. In any 

chemical reaction, growth rate depends on the concentration of chemical nutrients 

(concentration of limiting substrates), S, the maximum specific growth rate, J.lmax• and a 

substrate-specific constant, ~ (Monod, 1949). In a fresh medium containing glucose as 

the sole carbon and energy source, and with all other nutrients in excess, the specific 

growth rate remains constant throughout the log phase; and during the deceleration phase 

where the substrate concentration becomes non-saturating, tends to be zero (Monod~ 

1949). The relationship between the specific growth rate, p, and the substrate 

concentration, S, is a hyperbolic, saturation curve similar to that describing Michaelis-

Menten-type equation (Monod, 1949). The growth rate therefore becomes a function of 

the substrate concentration (Monod, 1949) and is represented by the equation: 

s 
1-Lmax K + S 

s 

where: Jl is the specific growth rate (h-1
) 

S is the substrate concentration (g.L-1
) 

Ks is the substrate concentration at which half the maximum specific growth rate 



was obtained (p = 0.5 Pmax) 

By taking reciprocals, the Monod equation can yield the linear expression: 

1 

IJ. 
= 1 = 1 

IJ.max 
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A plot of 1/p against 1/S yields a straight line with a slope KJJ.lmax• intercept on the 

abscissa of -11Ks and on the ordinate J.lmax- Ks values are generally reported to be very 

low, and consequently difficult to determine using normal batch culture fermentation 

during the log phase. Because of the large biomass which is present by the end of the 

log phase , the substrate is exhausted quickly so that the period of time during which the 

substrate concentration is near that of the "K is very short and the stationary phase is 

reached abruptly (Crueger and Crueger, 1989). Unfortunately no systematic work has 

been done on the determination of ~ values for P. rhodozyma in different carbon sources 

so there are no data available for comparison. 

4.2.2.4 The stationary phase 

A constant dry biomass was reached after 110 hours of fermentation and this 

continued till the 150th hour. This period is considered as the stationary phase. Johnson 

and Lewis (1979) found that in glucose medium, a constant dry weight of P. rhodozyma 

was achieved after 80 hours of fermentation. The stationary phase was characterized by 

no net growth and growth might have been occurring but was balanced by the rate of cell 
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death or lysis. The cause of the stationary phase can be attributed to several factors and 

these include the depletion of an essential nutrient or build up toxic materials. From Fig. 

4.9, it can be inferred that the stationary phase began when the residual substrate 

concentration became constant Even though not all of the substrate was utilized, it is 

possible that those remaining were not utilizable. It can therefore be concluded that the 

depletion of the utilizable nutrients was a probable cause of the stationary phase in this 

study. 



131 

4.3 Synthesis of carotenoids by Phaffia rhodozyma in fermenter batch culture 

In the fennenter batch culture, the determination of the astaxanthin content of P. 

rhodozyma was started only at the 40th hour of fermentation because there were not 

enough samples for analysis during the early hours of growth. However, visual inspection 

of the cells shows the distinctive red coloration of P. rhodozyma indicating that synthesis 

of astaxanthin in P. rhodozyma began early during the growth period. The concentration 

of astaxanthin in the yeast increased from 220 ± 13 pg·g-1 yeast in the early stages of 

growth to about 952 ± 28 pg·g-1 yeast during the acceleration growth phase (40th to 50th 

hour). The astaxanthin content then increased gradually to 1086 ± 15 pg·g-1 during the 

next 50 hours (Fig. 4.11 and Appendix B.5), and then remained steady till the 200th hour. 

It can be inferred from these results that astaxanthin synthesis in this study was 

growth associated. This viewpoint was echoed by Johnson and Lewis (1979) who 

asserted that astaxanthin production in P. rhodozyma is growth associated but its 

formation does not exactly coincide with increase in biomass. It also continues to be 

synthesised after growth has stopped (Johnson and An, 1991) and, on the exhaustion of 

glucose, the concentration of xanthophylls in P. rhodozyma continued to increase (Johnson 

and Lewis, 1979). It is therefore likely that P. rhodozyma excretes a carbon intermediate 

during growth, which is later reassimilated and stimulates carotenogenesis (Johnson and 

An, 1991 ). In contrast, carotenoid production in Sporobolomyces rose us (Bobkova, 1965) 

and Rhodotorula glutinis (Vecher and Kulikova, 1968), has been reported to occur only 

after the yeast had stopped growing. Similarly, Goodwin (1972, 1959) found that 
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carotenoid biosynthesis in Rhodotorula rubra occurred mainly after growth had stopped; 

suggesting that nutrient depletion or physiological changes triggered carotenogenesis in 

the yeast (Johnson and An, 1991). It had been found in Rhodotorula rubra that 

carotenogenesis occurs in three main phases: a period of active synthesis leading to 

maximal concentration, a period of persistence during which the concentration stays 

relatively constant, and a period during which the pigments gradually disappear from the 

yeast (Goodwin, 1959). A similar observation was made in leaves of trees, where the 

onset of carotenogenesis becomes rapid with the appearance of first leaves, a climax, and 

then gradual senescence in the autumn (Goodwin, 1959). In fungi grown in surface 

cultures, carotenogenesis does not occur until growth has stopped, and carotenoid 

formation is stimulated by excess carbohydrate and limiting nitrogen (Goodwin, 1959). 

From the results of this study and the results reported by other investigators, it appears 

that P. rhodozyma is different from other carotenogenic fungi in that massive carotenoid 

formation occurs during the entire growth period and after growth has stopped whereas 

the others start production only after growth has stopped. 
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as a result of leaching of cellular materials during washing. 

The total carbohydrate content (TCH) was also low (28. 90% ± 4.25) when 

compared with that reported for P. rhodozyma by Johnson et al. (1980) (40.30%) and 

Fleichsmann's commercial dry yeast (36.50%). The crude protein content, 47.10 ± 

0.94%, was greater than that found for P. rhodozyma grown in glucose and Fleichsmann 

commercial yeast (Table 4.11). The high protein content was however within the 

maximum range of 45.50-58.00% protein generally reported for various fodder yeast 

cultivated in different peat hydrolysates (LeDuy, 1981b). Thus it can be concluded that 

peat hydrolysate has a beneficial effect on protein synthesis in yeasts. 

The RNA content of the yeast was found to be 5.20 ± 0.69%. In comparison with 

the RNA content reported for P. rhodozyma by Johnson et al. (1980), 8.20%, 

Saccharomyces cerevisiae, 9.20%, (Johnson eta/., 1980), and bacteria, 8-16% (Kihlberg, 

1972), the nucleic acid content of the yeast in this study was low. This is very important 

because of the adverse effects of high concentrations of nucleic acid on the health of 

animals, especially mammals. Nucleic acids in the diet are depolymerized by nucleases 

in the pancreatic juice and then converted to nucleosides by intestinal enzymes before 

absorption. The purine bases guanine and adenine are metabolized to uric acid which 

should be oxidized to allan to in before it can be removed from the body. Most mammals 

however, do not possess the enzyme uricase that oxidizes uric acid. Increased 

consumption of nucleic acids therefore can lead to formation of stones in the kidney and 

the bladder and can also cause precipitation of ureate in the tissues and joints. In contrast 
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to mammals, fishes and other animals appear to be free from this problem since they have 

this enzyme and thus could metabolise the uric acid to allantoin which is excretable. 

The total lipid content of the yeast in this study was 18.00 ± 5.09%. This value was 

higher than that reported for Brewer's yeast, 4.03% (Johnson et al., 1980), but comparable 

to that of P. rhodozyma grown in other medium (Johnson et al., 1980). 



137 

Table 4.11: The proximate composition of P. rhodozyma biomass in comparison with 

that of other microorganisms (% of total dry weight). 

Component Phaffia rhodozyma 1 

Ash 4.41 ± 0.14 

Total lipid 18.00 ± 5.09 

Total carbohydrate 28.90 ± 4.25 

Protein (N x 6.25) 47.10 ± 0.94 

RNA 5.20 ± 0.69 

1This work 
2Johnson et al. (1980) 
3LeDuy (1981a) 

Phaffia rhodozyma2 

5.60 

17.00 

40.30 

30.10 

8.20 

Fleischmann's dry3 

active yeast 

4.90 

0.40 

36.50 

41.40 

-
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4.4.2 Fatty acid composition of Phaffia rhodozyma cell biomass 

The composition of the fatty acids of P. rhodozyma produced in this study and that 

of other yeasts are depicted in Table 4.12. P. rhodozyma has been reported to have a 

much higher lipid content than most other yeasts (Hunter and Rose, 1971). The content 

of the unsaturated fatty acid of the yeast in this study was found to be about 77.05%. 

This value compares very well with that reported by Johnson et al. (1980), but higher 

than that of Candida uti/is and Fleichsmann commercial yeast (fable 4.12). The yeast 

biomass contained three saturated fatty acids (myristic, 3.9%; palmitic, 15.4%; and stearic, 

acid 4.01% ). The pattern of the fatty acid composition of the yeast found in this study 

was similar to that of P. rhodozyma reported by Johnson et al. (1980), Fleichsmann's 

commercial yeast and Candida uti/is (LeDuy, 198la). The most important unsaturated 

fatty acids of the P. rhodozyma cells analyzed in this study were oleic (42.10%), linoleic 

(31.30%) and linolenic (2.65%) which were similar to that reported for P. rhodozyma by 

Johnson et al. (1980). In the case of the Fleichsmann's commercial yeast, however, the 

major unsaturated fatty acids were oleic (45.60%) and palmitoleic (31.0%). 

Fish almost lack the ability of de novo synthesis of linoleic and linolenic acids and 

may require exogenous acids as essential fatty acids (Kanazawa et al., 1977). Yu and 

Sinnhuber (1972) also reported that linolenic acid is important in fish nutrition. P. 

rhodozyma grown in peat hydrolysate can therefore not only provide astaxanthin for the 

salmonid industry, but can also be a valuable source of linoleic acid. The low content 

of the linolenic acid however means that the yeast will be a poor source of this fatty acid, 
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but since the amount of fat in the yeast is so great, the content of the linolenic acid may 

be of nutritional significance (Johnson et al. 1980). 

4.4.3 Amino acid composition of the Phaffia rhodozyma 

The amino acid composition of protein primarily determines its value as a source 

of nitrogen for growth and maintenance. Valuable information about the potential 

nutritional value is therefore obtained from an analysis of the amino acid content of a 

protein. The amino acid spectrum of the P. rhodozyma is compared with those of other 

sources in Table 4.13 and 4.14. It is clear from the table that P. rhodozyma in this study 

has a well-balanced essential amino acid content. The amino acid spectrum is similar to 

that of P. rhodozyma reported by Johnson eta!. (1980) (Table 4.13), eggs and the Food 

and Agricultural Organization (FAO) standard (Table 4.14). The amino acid content of 

most microorganisms is reported to compare very well with the Food and Agricultural 

Organisation reference protein (FAO, 1973) except that the content of sulfur amino acids 

is low (Johnson et al., 1980). The P. rhodozyma in this study appears to be an exception 

to this rule in that it has a reasonable amount of the sulfur amino acid methionine. 

Among the essential amino acids, leucine (41.08 mg.g·1
), valine (32.32 mg.g-1

), lysine 

(58.18 mg.g· 1
), phenylalanine (23.79 mg.g-1

), threonine (25.71 mg.g·1
), and isoleucine 

(26.55 mg.g-1
) all have favorable concentrations when compared with other sources 

reported in Tables 4.13 and 4.14. The well-balanced amino acid pattern in the yeast is 

an indication that it will be a good source of protein for aquaculture. 
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Table 4.12: The fatty acid spectrum of Phaffia rhodozyma cultured in peat hydrolysate 

(% of total methyl esters). 

Name Phaffia1 

rhodozyma 

Myristic (14:0) 3.90 

Palmitic (16:0) 15.40 

Palmitoleic (16: 1) 1.00 

-
Stearic (18:0) 4.10 

Oleic (18:1) 42.10 

Linoleic (18:2) 31.10 

Linolenic (18:3) 2.65 

1This work 
2Johnson et al. (1980) 
3LeDuy (1981a) 

Phaffia2 Fleischmann' s3 Candida 

rhodozyma active dry yeast utilis3 

0.24 0.80 0.60 

16.05 3.70 16.30 

0.45 31.00 4.60 

6.11 6.50 8.30 

41.30 45.60 22.20 

32.80 1.10 42.20 

3.00 0.30 3.60 
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Table 4.13 The pattern of amino acid in P. rhodozyma grown in peat hydrolysate 

compared with that of P. rhodozyma grown in glucose medium (mg·g·' protein) 

Amino acid Peat Hydrolysate' Glucose Medium2 

Alanine 38.26±1.70 18.30 

Arginine 36.67±1.22 13.90 

Aspartic 51.30±1.41 23.00 

Glycine 31.18±1.14 12.90 

Glutamic 62.81±1.89 26.50 

Histidine 14.14±0.42 6.50 

Isoleucine 26.55±0.88 9.40 

Leucine 41.08±1.23 23.80 

Lysine 58.18±1.42 21.40 

Methionine 10.02±0.43 3.90 

Phenylalanine 23.79±0.74 11.00 

Proline 21.71±0.61 9.90 

Serine 22.00±0.37 13.60 

Threonine 25.71±0.57 11.60 

Tyrosine 16.33±0.78 7.90 

Valine 32.32±1.16 12.40 

1This work 
2Johnson et al. (1980) 
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Table 4.14: The pattern of amino acid in P. rhodozyma grown in peat hydrolysate 

compared with that of eggs and FAO standard (g·g-1 protein) 

Amino acid P hajfia rhodozyma 1 FAO Standard2 

Alanine 3.83 -

Arginine 3.70 -

Aspartic 5.10 -

Glycine 3.10 -

Glutamic 6.30 -

Histidine 1.40 -

Isoleucine 2.70 4.20 

Leucine 4.10 4.80 

Lysine 5.80 4.20 

Methionine 1.00 2.20 

Ph en y I alanine 2.40 2.80 

Proline 2.20 -

Serine 2.20 -

Threonine 2.60 2.80 

Tyrosine 1.60 -

Valine 3.20 4.20 

1This work 
2Food and Agricultural Organisation (FAO, 1973) 
3Khanna and Garicha (1986) 

Whole eg~ 

-

6.10 

-

-

-

2.40 

6.30 

8.90 

7.00 

3.40 

5.70 

-
-

5.10 

-

7.30 
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CONCLUSION 

It can be concluded that peat hydrolysate has the potential for use as an 

inexpensive substrate for the submerged production of P. rhodozyma. Higher dry biomass 

and astaxanthin concentrations can be expected from P. rhodozyma grown in the acid and 

non-acid liquid extracts of peat supplemented with only nitrogen, phosphorous and 

potassium. 

Of the six peat hydrolysates employed in this study, the acid hydrolysate PH4-02-

185 supported the best biomass and pigment production by the yeast. The concentrations 

of biomass and astaxanthin obtained in this work are comparable with those reported by 

other researchers. 

The optimal growth parameters obtained in this work are : pH 7, incubation 

temperature of 18°C, agitation speed of 250 r.p.m. (200 r.p.m. for shaker flask), an 

aeration rate of 0.5 vvm, inoculum ratio of 5% (v-v-1
), and a fermentation time of 120 

hours. The maximum specific growth rate and the generation time of the yeast in peat 

hydrolysate were 0.038 h- 1 and 18.24 h, respectively. The biosynthesis of carotenoids by 

P. rhodozyma was found to occur during the entire growth period and after growth has 

stopped. 

Peat hydrolysate with a TCH of 15 g·L- 1 was found to support the best growth. 
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The addition of yeast extract to the peat hydrolysate resulted in significant increases in 

the biomass and astaxanthin concentrations. Supplementation of the medium with 

potassium phosphate alone and in combination with yeast extract also resulted in the 

production of high microbial biomass concentration but astaxanthin production was 

significantly reduced. 

The P. rhodozyma cell biomass had a high protein content, a rich amino acid 

composition, and high lipid content with a larger percentage being unsaturated fatty acids. 

Thus in addition to being used as a source of carotenoids, P. rhodozyma grown in peat 

hydrolysates can also be a potential source of protein for salmonid aquaculture. 
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A.1: Effects of substrate concentration on the growth of P. rhodozyma in peat 

hydrolysate PH4-01-185.1 

Initial Substrate Dry Biomass Cone. %Yield % Efficiency 

Cone. (g·L- 1
) (g·L-t) 

15 1.34 ± 0.09b,c 17.57 ± 2.36c 7.57 ± 1.60a,b 

20 1.80 ± 0.07c 22.59 ± 3.oga.b.c 9.00 ± 0.36b 

25 2.35 ± 0.05b 24.40 ± l.Olb 9.40 ± 0.10a 

30 2.90 ± 0.093 27.52 ± o.2e 9.66 ± 0.30a,b 

1Mean values of three determinations ± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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A.2: Effects of substrate concentration on the growth of P. rhodozyma in peat 

hydrolysate PH4-02-1851 

Initial Substrate Dry Biomass Cone. %Yield % Efficiency 

Cone. (g·L-1
) (g·L-1) 

15 2.67 ± 0.10c 33.41 ± 0.45a 17.80 ± 0.40a 

30 4.19 ± 0.10b,c 31.52 ± 0.50b 13.97 ± 0.27b 

45 5.06 ± 0.18a,b 21.96 ± 1.34c 11.24 ± 0.40c 

1Mean values of three determinations ±standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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A.3: Effects of initial pH on the growth of P. rhodozyma in peat hydrolysate 

PH4-0l-185 I 

Initial pH Dry Biomass Cone. (g·L-1
) %Yield % Efficiency 

4 nd nd nd 

5 2.91 ± 0.15a,b 27.59 ± 2.23a 9.69 ± o.sr·b 

6 2.93 ± 0.19a,b 28.05 ± 3.70• 9.76 ± 0.62a,b 

7 3.13 ± 0.07a 30.48 ± o.58. 10.43 ± 0.24a 

8 2.74 ± 0.09b 26.03 ± 2.31 a 9.13 ± 0.3lb 

'Mean values of three determinations± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P>0.05). 

nd Not determined: There was no growth at this pH. 
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A.4: Effect of initial pH on the growth of P. rhodozyma in peat hydrolysate PH4-02-

Initial pH Dry Biomass Cone. (g·L-1
) %Yield % Efficiency 

4 2.05±0.04c 24.02 ± 2.84a 13.64 ± 0.20c 

5 2.65±0.28a 34.29 ± 7 .43a 17.68 ± 1. 87a,b,c 

6 2.65±0.ooa 34.63 ± 1.463 17.64 ± 0.033 

7 2.72±0.09a 36.29 ± 5.18a 18.14 ± 0.62a 

8 2.35±0.06b 29.35 ± 1.62a 15.55 ± 0.46b 

1Mean values of three determinations± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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A.5: Effect of incubation temperature on the growth of P. rhodozyma in peat 

hydrolysate PH4-01-185 1
• 

Incubation Temp. (°C) Dry Biomass Cone. (g·L- 1
) %Yield % Efficiency 

16 2.64 ± 0.08b 24.43 ± 0.48b 8.80 ± 0.28b 

18 3.46 ± 0.16a 31.90 ± 1.82a 11.31 ± 0.69a 

20 3.10 ± o.oga·b 29.17 ± 0.32a 10.44 ± 0.32a 

22 2.89 ± 0.01b 28.42 ± 0.16a 9.62 ± 0.03b 

24 2.15 ± 0.48b 22.30 ± 3.93b 7.50 ± 0.16b 

1Mean values of three determinations ±standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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A.6: Effect of incubation temperature on the growth of P. rhodozyma in peat 

hydrolysate PH4-02-1851
• 

Incubation Temp. (°C) Dry Biomass Cone. (g·L-1) %Yield % Efficiency 

16 2.75 ± 0.2la 44.80 ± 3.083 18.33 ± 1.41a 

18 3.06 ± 0.10a 50.28 ± 3.143 20.40 ± 0.683 

20 2.99 ± 0.143 45.10±6.973 19.91 ± 0.96a 

22 2.72 ± o.o9a 36.29 ± 5.18b 18.14 ± 0.62b 

24 2.63 ± 0.09b 31.60 ± 2.33b 17.57 ± 0.59b 

1Mean values of three determinations ±standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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A.7 Effect of fermentation time on the growth of P. rhodozyma in peat hydrolysate 

PH4-01-1851
• 

Fermentation Final Substrate Dry Biomass %Yield % Efficiency 

Time (Days) Cone. (g·L-1
) Cone. (g ·L-1

) 

2 23.31 ± 0.893 1.52 ± 0.223 22.63 ± 0.453 5.07 ± 0.743 

3 21.81 ± 0.963 2.03 ± 0.3Y•c 24.60 ± 1.363 6.74 ± 1.16a,b 

4 18.37 ± 0.38b 2.36 ± 0.12b,c 27.20 ± 2.66a,b 7.87 ± 0.40b 

5 18.37 ± 0.48b 3.59 ± 0.24d 30.85 ± 1.21b 11.97 ± 0.79c 

6 17.91 ± 0.07b 2.68 ± 0.16b,c 22.18 ± 1.433 8.94 ± 0.53b 

7 17.47 ± 0.37b 2.64 ± 0.13b,c 21.06 ± 0.753 8.78 ± 0.45b 

1Mean values of three determinations± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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A.8: Effect of fermentation time on the growth of P. rhodozyma in peat hydrolysate 

Fermentation Final Substrate Dry Biomass %Yield % Efficiency 

Time (Days) Cone. (g·L-1
) Cone. (g·L-1

) 

2 9.87 ± 0.18b 1.57 ± 0.03d 30.57 ± 1.65b 10.44 ± 0.23d 

3 8.75 ± 0.67b 2.06 ± 0.10c 33.31 ± 3.49b,c 13.73 ± 0.65c 

4 7.97 ± o.4r·b 2.48 ± 0.13b 35.78 ± 1.05c 16.51 ± 0.86b 

5 7.88 ± 0.08a 3.37 ± 0.07a 47.39 ± 0.3~ 22.49 ± 0.44a 

6 6.97 ± 0.39a 2.61 ± 0.16b 32.48 ± 0.63d 17.40 ± 1.04b 

7 6.60 ± 0.53a 2.43 ± 0.05b 29.12 ± 2.45d 16.22 ± 0.32b 

1Mean values of three determinations± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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A. 9 Effect of inoculum ratio on the growth of P. rhodozyma in peat hydrolysate 

Inoculum ratio Dry Biomass Cone. %Yield % Efficiency 

(%) (g·L-t) 

1 2.66 ± 0.25a 19.69 ± 2.53c 8.96 ± 0.96b 

3 3.56 ± 0.45a 30.20 ± 1.85a 11.86 ± 1.50a,b 

5 3.79 ± 0.60a 32.08 ± 0.39a 12.63 ± 2.01 a 

7 3.47 ± 0.45a 24.81 ± 0.33b 11.56 ± 1.51 a,b 

9 2.93 ± 0.35a 23.42 ± 0.19b,c 9.57 ± 1.19a,b 

1Mean values of three detenninations ± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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A.lO Effect of inoculum ratio on the growth of P. rhodozyma in peat hydrolysate 

PH4-02-185 1
• 

Inoculum ratio (%) Dry Biomass Cone. %Yield % Efficiency 

(g·L-•) 

1 3.36 ± 0.10 46.66 ± 0.77 22.38 ± 0.34 

3 3.61 ± 0.20 49.40 ± 2.63 23.90 ± 1.33 

5 3.97 ± 0.40 52.58 ± 3.12 26.48 ± 2.65 

7 3.57 ± 0.30 47.95 ± 2.52 23.78 ± 2.01 

9 3.48 ± 0.10 47.10 ± 0.38 23.18 ± 0.27 

1Mean values of three determinations ± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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A.11: Effect of agitation speed on the growth of P. rhodozyma in peat hydrolysate 

PH4-01-185 in shaker flask 1
• 

Agitation speed Dry Biomass Cone. %Yield % Efficiency 

(r.p.m.) (g·L-t) 

150 2.73 ± 0.38 28.18 ± 1.01 9.11 ± 1.26 

200 4.04 ± 0.14 34.82 ± 1.20 13.48 ± 0.47 

250 3.61 ± 0.10 32.37 ± 0.69 12.02 ± 0.30 

300 3.58 ± 0.49 31.93 ± 2.96 11.92 ± 1.63 

350 2.81 ± 0.21 25.29 ± 1.72 9.38 ± 0.69 

1Mean values of three detenninations ± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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A.12 Effect of agitation speed on the growth of P. rhodozyma in peat hydrolysate 

PH4-02-185 in shaker flask1
• 

Agitation speed Dry Biomass %Yield % Efficiency 

(r.p.m.) Cone. (g ·L-1
) 

150 2.93 ± 0.09b 44.48 ± 1.71 b 19.56 ± 0.63b 

200 4.63 ± 0.13a 56.76 ± 0.89a 30.89 ± 0.83a 

250 4.16 ± 0.13a 55.73 ± 0.63a 26.89 ± 1.37a 

300 3.57 ± 0.05b 49.26 ± 0.53b 23.78 ± 0.32a 

350 3.31 ± 0.08b 45.76 ± 2.25b 22.53 ± 1.07b 

1Mean values of three determinations ± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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APPENDIX B: BATCH FERMENTATIONS 
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B.1: Influence of agitation speed on P. rhodozyma growth and astaxanthin 

production in peat hydrolysate in batch fermentation1
• 

Agitation Speed Dry Biomass Cone. Astax:anthin Content 

(r.p.m.) (g·L-t) (pg·g-1 yeast) 

200 4.65 ± 0.56a 1072 ± 26a 

250 4.85 ± 0.49a 1079 ± 27a 

300 4.45 ± o.2sa 1065 ± 4Y 

1Mean values of three determinations ± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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B.2 Influence of aeration rate on P. rhodozyma growth and astaxanthin production in peat 

hydrolysate in batch fermenters1
• 

Aeration Rate (vvm) Dry Biomass Cone. Astaxanthin Content 

(g·L-t) (pg·g·1 yeast) 

0 0.87 ± o.zoa nd 

0.5 4.86 ± 0.49a 1078 ± 14a 

1.0 4.91 ± 0.34a 1080 ± 18a 

1.5 4.90 ± O.lla 1076 ± 1Y 

2.0 4.85 ± 0.44a 1079 ± 14a 

3.0 4.86 ± 0.23a 1081 ± 13a 

1Mean values of three determinations ± standard deviations. Values in the same 
column with the same superscripts are not statistically different (P > 0.05). 
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B.3 The growth pattern of P. rhodozyma in batch fermentation. 

Fermentation Time (h) Final Substrate Cone. Dry Biomass Cone. 
(g·C•) (g·L-•) 

0 15.00 ± 0.00 0.59 ± 0.10 

10 14.15 ± 0.15 0.59 ± 0.30 

20 13.44 ± 0.78 1.09 ± 0.20 

30 9.90 ± 0.85 1.26 ± 0.20 

40 9.10 ± 0.95 1.71 ± 0.32 

50 8.32 ± 0.64 3.86 ± 0.27 

60 7.72 ± 0.64 4.18 ± 0.35 

70 7.43 ± 0.59 4.45 ± 0.10 

80 7.13 ± 0.43 4.30 ± 0.14 

90 6.94 ± 0.32 4.59 ± 0.28 

100 6.84 ± 0.10 4.83 ± 0.25 

110 6.80 ± 0.36 4.80 ± 0.10 

120 6.81 ± 0.26 4.86 ± 0.12 

130 6.70 ± 0.70 4.82 ± 0.22 

140 6.76 ± 0.44 4.80 ± 0.11 

150 6.79 ± 0.18 4.81 ± 0.20 

160 6.81 ± 0.46 4.64 ± 0.39 

170 6.81 ± 0.43 4.50 ± 0.90 

180 6.79 ± 0.39 4.51 ± 1.08 

190 6.79 ± 0.32 4.20 ± 0.53 

200 6.82 ± 0.25 3.90 ± 1.05 

1 Mean values of three determinations ± standard deviations. 
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B.4 Changes in the growth parameters of P. rhodozyma as a function of time. 

Fermentation Time Dry Biomass Specific Growth Doubling Time 
(h) Cone. (g·L- 1

) Rate (p) (h) 

0 0.59 ± 0.10 - -

10 0.59 ± 0.30 - -

20 1.09 ± 0.20 0.031 ± 0.01 22.36 ± 5.71 

30 1.26 ± 0.20 0.025 ± 0.01 27.73 ± 3.39 

40 1.71 ± 0.32 0.027 ± 0.01 25.67 ± 3.05 

50 3.86 ± 0.27 0.038 ± 0.00 18.24 ± 2.55 

60 4.18 ± 0.35 0.033 ± 0.00 21.00 ± 1.32 

70 4.45 ± 0.10 0.029 ± 0.01 23.90 ± 0.82 

80 4.30 ± 0.14 0.025 ± 0.00 27.73 ± 1.11 

90 4.59 ± 0.28 0.023 ± 0.00 30.14 ± 1.52 

100 4.83 ± 0.25 0.021 ± 0.02 33.00 ± 1.58 

110 4.80 ± 0.10 0.019 ± 0.00 36.48 ± 1.05 

120 4.86 ± 0.12 0.018 ± 0.00 38.51 ± 1.31 

130 4.82 ± 0.22 0.016 ± 0.02 43.32 ± 5.05 

140 4.80 ± 0.11 0.015 ± 0.00 46.21 ± 0.85 

150 4.81 ± 0.20 0.014 ± 0.01 49.51 ± 1.90 

160 4.64 ± 0.39 0.013 ± 0.00 53.32 ± 0.90 

170 4.50 ± 0.90 0.012 ± 0.02 57.76 ± 6.55 

180 4.51 ± 1.08 0.011 ± 0.01 63.01 ± 3.14 

190 4.20 ± 0.53 0.010 ± 0.00 69.32 ± 3.65 

200 3.90 ± 1.05 0.009 ± 0.01 77.02 ± 3.64 

1Mean values of three determinations± standard deviations. 
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B.5: Pattern of carotenoid production by P. rhodozyma in batch fermentation. 

Fermentation Time (h) Dry Biomass Cone. Astaxanthin Content 
(g·L-t) (pg ·g·1 yeast) 

0 0.59 ± 0.10 nd 

10 0.59 ± 0.30 nd 

20 1.09 ± 0.20 nd 

30 1.26 ± 0.20 nd 

40 1.71 ± 0.32 220 ± 13 

50 3.86 ± 0.27 615 ± 15 

60 4.18 ± 0.35 729 ± 22 

70 4.45 ± 0.10 952 ± 28 

80 4.30 ± 0.14 971 ± 30 

90 4.59 ± 0.28 985 ± 18 

100 4.83 ± 0.25 1020 ± 10 

110 4.80 ± 0.10 1040 ± 37 

120 4.86 ± 0.12 1079 ± 17 

130 4.82 ± 0.22 1080 ± 22 

140 4.80 ± 0.11 1080 ± 38 

150 4.81 ± 0.20 1082 ± 14 

160 4.64 ± 0.39 1083 ± 23 

170 4.50 ± 0.90 1082 ± 12 

180 4.51 ± 1.08 1084 ± 17 

190 4.20 ± 0.53 1085 ± 15 

200 3.90 ± 1.05 1086 ± 15 

1 Mean values of three determinations ± standard deviations. 
nd Not determined : There was not enough cells for astaxanthin analysis. 
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