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Abstract 

The pasl 25 years have been a significant period with advances in the development of interior 

permanent magnet machines. Over this period, line-start interior permanent magnet synchronous motors 

have expanded their presence in the industrial and domestic marketplace from few specialized niche 

markets in high efficiency machine 100ls, household appliances, small utility motors and servo drives \0 

mass-produced automotive applications. A closer examination reveals that several different knowledge­

based technological advancements and market forces as well as consumer demand for high efficiency 

requirements have combined, sometimes in fortuitous ways, to accelerate the development of the 

improved new small energy efficient motors 

Compared with squirrel-cage induction machines. line-stan pcnnancnt magnet machines have high 

efficiency and high power factor because they exhibit two torque components namely the pcmlancnt 

magnet torque and the reluctance torque. Though the stator of a pennanent magnet motor is Tbe same as 

that of an induction motor. numerous configur'dtions are possible in teml of the ways the pemlanent 

magllet is placed in tbe rotor. In order to find the optimized structure. line-start pennanent magnet 

synchronous machines with different rotor structures will bc comparatively studied in temlS of dynamics 

and steady statc perfonnance and transient process wi th finite element method. 

The advances in computillg power have seen numcrical methods like Finite Element Analysis (FEA) 

being cmployed in various design problems of interior pennanelll magnet (IPM) motors. This thesis 

presents the design. analysis and simulation of line-start IPM synchronous motors. Analytical derivations 

arc provided. Taking into account inherent advantages of numerical methods like FEA for optimum 

design. shape and orientation of IPM motors, simulation codes for Laboratory IPM motors arc presented. 

Three sets of rotors for the WMSM are analyzed using timc-stcpping FEA. This works provide cost 



effective simulations. The simulated results are compared with those published in the literature for 

verifications. 
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Chapter 1 

1.1 Introduction 

Electric Power systems form the backbone of modem society. Electricity and its accessibility are Ihe 

greatest engineering achievements in the past century. In the 21" century. global warming has become an 

important issue. Modem life needs electric energy technologies for climate controlled horne and work 

place environment. In order 10 maintain and develop these energy-consuming technologies, availability of 

sustainable energy sources and thei rctTcctive utilization through efficiency irnprovcrncnlsarc of 

significant illlportance. Over 60% orthe generated energy is consumed by electric motors [29]. AC 

mOlors are widely used in all aspects of industrial , commercial, domestic, utility and special-purpose 

commercial markets. Thus improvements in efficiency of small electric motors are one of the most 

efTective measures to reduce primary energy consumption, which cause global wamling. Interior 

pennanent magnet (!I'M) synchronous motors are the latest choice of researchers due to their high 

efficiency, high power density, quiet operntion, comp3ct size, high reliability and low maintenance 

rcqlJlrcmcnts. 

Interior permanent magnet synchronous motor drives have been increasingly developed and widely used 

to meet the high efficiency and perfomlance requirements. This motor type exhibits asymmetrical and 

nonlinear charncteristics. resulting in an additional reluctance torque. which has to be exploited in order to 

tap the full power and torque capabilities of the IPM motor [1-10). Performance analyses of three phase 

II'M motors are extensively reported in the li terature [11-12.13.14.15]. However. thesingle+phase II'M 

motors have received lillie attention from the researchers to date. This is al1ributcd to the starting problem 



associated with these single phase motors [2, 8]. Both polypllase and single phase IPM motor drives are 

suitable for many applications. However. the choice of the motor including the rotor, its configuration. 

pemlanent magnet (PM) materials, magnet locations and orientations, control scheme and topology 

depends on the specifications, cost, complexity, accuracy and reliability of the lPM motor drive system 

From utiliz3lion point of view, more than 50% of consumed energy in electrical networks is utilized by 

electrical machine~ and mostly by induction motors which ofTer high reliabili ty and improved operating 

efficiencies. Therefore, the efTective energy saving solution of the greatest consumption devices in 

electrical networks is to improve the efficiency of electrical induction motors among al l electrical 

machines. In the past allempts to increase the efficiency of induction motors were focused on design 

optimiz3lioll of these induction machines. 

Design optimization to increase efficiency is to minimize the internal losses, such as the st3l0r copper 

losses and rotor slip losses. This can be done by increasing the slot area so that morc copper can be used. 

The result is a larger cross-sectional area of windings and a reduction in the stator resistance. Rotor 

copper losses in squirrel cage induction motors can be reduced by modifying the shape and size of the 

rotor bars. Core losses can be reduced by decreasing the magnetic nux density in the iron of the machine 

This can be done by increasing the volume or quality of iron used in the machine. Also, for a given flux 

density, eddy currcntlosses can be reduccd by using thinner iron larnin3lions. A downside of these 

efficiency improvernent!echniques is that they cannot be easily done without over-sizing the original 

motor. Therefore, resizing the machine is no! a viable solution to improve the efficiency and has limited 

degrees of success. An alternative solution is using other type of machines that achieves higher power 

efficiencies without overly increasing physical size. One such machine is the permanent magnet 

synchronous machine (PMSM) which contains pcrmanent magnets embedded in the rotor. It combines 

pem13nent magnet and induction torques for a better motor efficiency during synchronous operation 

within a standard ac mOlor stator frame and a rotor having pcnllanent magnets below the conducting 

squirrel cages to permit the motor s1arting by difect coupling to an ac powef source. In fact, it presents an 



alternative to the induction machine. This solution may lead to important technical advantages in 

industrial applications such as reduced manufacturing costs and/or better performances as well as reduced 

running costs [1-4]. 

1.2 Litcraturc Review 

1.2.1 Historv and }:"olution of I' e rmancnt M Il!'net !'I'l a tcrials 

The history of application ofpemJanentmagnets (PM) in the rotating machines is linked to the 

development of high-energy permanent magnet materials [1,121 in industrial scale. Magnetic materials 

with a possibility ofsynthctic magnetism saw the most changes in laboratory and demonstrating 

prototypes during the early period of the twentieth century. This history can be reviewed by coursing 

through the technical and scientific publications ofthi5 period and pertinent patents filed worldwide. 

The liteT"dture review takes us back to 1920 when methodic contributions on I'M principles and 

application by S. Evershed [17J formed the stepping stone for modem research on I'M machines. The next 

decade and a half saw some sporadic improvements on harnessing the knowledge in this technology and 

justifying the economic aspect as the cost of materials was not being recouped by the perfonllanee 

improvements. In 1941. G. J. Wey from Westinghouse Company reported the problem of shielding PMs 

against externaltTllnsient magnetic fields [16]. He proposed to solve this problem by using the copper­

plating process invented by the E. I. du Pont of Nemours Company in the USA. During the late 50's 

Alnico (Aluminum, Nickel and Cobalt alloy) hogged the interest of the researchers as it provided, until 

then the highest energy product upto 5.5 MG·Oe .. 

A vital contribution on pUlling this Alnico material in PM alternators was first made by R.M. Saunders 

from University of California. Berkeley and R. H. Weakley from U.s. Electric Motors, Los Angeles in 

1951 [18]. Their narration included both the design of stator and rotor and operational aspects of Alnieos 

based electric machines. A null)' of papers followed afterward on the same topic 

~~- - - -- - - - --



In 1952 Maurice W.Brainard proposed a precise description on synchronous machines with rotating 

permanent magnet fields [19]. His work which was published in two parts a lso made comparison between 

PM machines and wire-wound field machines using charts and design fornlUlae. Later he patented I'M 

excitation for synchronous generators [20]. A flurry of papers followed afterward on the same lopic in 

the technical literature. 

The development of PM cxcited machines had its 1:1ir share of criticism too. R. C. Byloff ~everely 

criticized the design parameter calculation for pemmnent magnet generators by D. Ginsberg and L.J 

Misenheimer [21] which was reportedly based on manual spreadsheet and experimental verification. 

Byloffstated that PM machines exhibit a much larger tolerance in the rated values to be adopted which he 

partly explained by the large variability in PM materials, non repeatability of the magnetizing process 

and effects of operating conditions and so on [22) 

In the same year, D. Hershberger of General Electric Company of USA [23] extended the Alnico 

excitation to dc machines. In 1954, F. W. Merrill broadly described the development of the pem13nent 

magnet synchronous motor which he named as "Permasyn Motor"l I]. He listed eight ideal charucteristics 

of PM synchronous motors and explained the effect of PM in achieving those. This paper was technically 

appreciated by P. L. Algers from the General Electric Company orUSA 

In 1957, D. J. Hanrahan and D. S. Toffolo proposed a theory which can lead to optimum design of a 

pemmnent magnet generator where they used a dcmagnetization effect for air stabilization, short-circui t 

stabilization, or full load stabilization [24]. The paper which acknowledged the contribution of Italian 

engineer, P. Gozzolli also commented by Gordon R. Siemon from the University of Toronto. Gozzol;'s 

work analyzes the magnetic field around rolor poles both with and without stator windings [25J. 

Although ferrite magnets first made inroads in the early 1950's, the first substantive papers on ferrite 

ceramic magnets and describing their application on electric machinery appeared in the early years ofthc 



1960's. The ferrite magnets had a low (S.H) energy product, especially low remanence. These barium 

ferrite magncts are hard and brillie in their anisotropic form and very hard to machine. However. these 

ferrite permanent magnets are widely adopted for rotating electric machine applications because of their 

relatively high coercivity in spite of low remanence and most important ly low market price [26] 

In 1970'5 Rare Earth based materials were first introduced. The samarium cobalt materials (such as 

SmC05) had both high remanence and high coercivity. The per unit cost of5mC05 was high. But they did 

not have the market share of ferrite magnets havillg low cost. Furthermore. price swings of materials like 

Cobalt and very ellpensive Samarium (5m) stunted the economic prospect of this maguet for wide scale 

applications in electric machines. MorC{)ver, like ferrite magnets the SmC05 was very hard and brittle. 

thus these are not amenable to machining and so difficul t to work with 

The popularity of IPM synchronous motors is largely due to the availability of modem pemlanent 

magnets with high (8H).,., energy product and cost effective newer rare earth PM materials like 

Neodymium Boron Iron (NdBFe) which also enhance the performance ofac motor drives and reduce its 

size and losses in PM motors. In their anisotropic and fully dense form. these (NdBFe) magnets arc 

ductile and easily machineable. They also exhibit an ellergy product up to 60MGOe with high remanence 

(> 1 Tesla) and extm-ordinarily large coercivity exceeding IOkA/m. The minor loop excursion is almost 

linear in the second quadrant of the B-H characteristic curve. Sustained aud extensive research, 

development. analysis, control and application oflPM motors with these high energy magnets arc 

progressing in leaps and bounds for the past 25 years [27], perhaps even exceeding Merrill's dream [1 ) 

and Veinott's [28J expectation. The rapid development of the I'M technology is best illustrated in Fig 1. 

In the 20th century, squirrel cage induct ion motors have been the most popular electric motors, due to 

their simple and rugged cOllstruetion. An induetioll motor is a singly-fed motor [29]. Advancements in 

electronics and control technology have added more features to both the polyphase and single phase 



indl.lction motor drivcs to makc thcm more prcvalent in industrial. commercial and domestic motors 

markets. It is well known that induction motors suffcr from relatively poor power factor, slip losses and 
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low efficiency as compared to convcntional dc-wirc wound synchronous motors, which are doubly-fed 

machines. Typical synchronous and dc commutator motors have limitations such as extra dc power source 

noise, EM I, wear and tear, etc. due to the I.Ise ofcommutalor and brushgear assemblies, The above 

mentioned problcms have led to the development of pennanent magnet brushless dc as well as I PM 

synchronous motors which have PM excitation in the rotor. The inherent disadvantages of induction 

motors and conventional synchronous motors are overcome by singly-fed IPM synchronous motors. 

],2,2 PEKMANt:NT MM;Nt:T SYNCIII{O;.;oUS 1\10"1"01{ (PMSI\I) 

Thc structure ofa pcmlanem magnet synchronous motor (PMSM) is similar to the induction motor 

structure but with pemmnent magnets inserted in the rotor PO-32J. The most basic construction of a 



l'MSM consists of poly-phase wound stator windings which in some cases may he identical to an 

induction motor stator, with a rotor consisting of penn anent magncts within a laminated iron core 

mounted on a shaft. Fig. 1.2 shows a schematic cross section of a 4-pole PMSM 

Fig 1.2. Schematic cross section of a 4-pole PMSM 

Fig. 1.3 displays a variety of pennanent magnets and their orientations and configurations within the rotor 

structure. All the magnet arrangements are broadly called interior pennancnt magnet ([I'M) types. The 

original IPM machines evolved over the years by many innovators ofll'M technology 

The rotor structure of Fig. 1.3 (a) was proposed by Kurihara and Rahman [33 J, while the rotor structure of 

Fig. 1.3(b) was proposed by Smith in 2006 [34J. The rotor structure of Fig. 1.3 (c) was proposed by Binns 

in 1992 [35], while the rotor structure of Fig. 1.3(d) was proposed by Rahman in 1993 [36]. The rotor 

structure of Fig. 1.3 (e) was proposed by Libert in 2006 [37). while the rotor structures of Fig. 1.3(f), The 

rotor structure of Fig. 1.3 (h) was proposed by Binns in 1994 (38J, while the rotor structure of Fig. 1.3(i) 

was proposed by Rahman and Kurihara in 2004[39). 
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Fig. 1.3: Different configuration oflrM rotors: a) full V-shape PM,b) surface 

mounted PM c) Modified hybrid PM , d) straight PM 3nd extended rotor bars, e) 

U-sh3ped PM f) partial V-shape PM 3nd poles producing 3ir g3p length, g) 

mixed PM h) straight - mixed PM for high flux i) partial siraighl V-shape PM 

There have been mllny types o f eonfigurat iolls since the inserted I'M s may h3ve different shapes, 

materials, sizes lind positions which deeply influence the perfomlalleeS of the m3chine. II can thus be 

classified according to the rotor structure. Some different types 0 fIPMrotorsareshowninFig. I.3.The 



most common structures of the line-start interior permanent magnet synchronous motors (IPMSM) 3rc of 

figures 1.3 (d. g. i) whcre the PMs arc embedded below the rotor squirrel-cages. 

The interior PMSM h3s a more complex design; however the physicaln3turc of the fotor provides 

protection to the magnets at higher operdting speeds. They arc designed thus to produce re luctance torque 

and clectricaltorque [4]. Most [PMSMs need an inverter for starting which is not economical for single 

constant speed applications. Cage-equipped PM motors are an alternat ive, to overcome this issue. These 

sorts of machines 3fe called line st3rt imerior pelll13nent magnet motors. The line start property is 

obtained due to the design of the rotor with starting aluminum cage. The inverter-fed I PM motor can be 

st3rted with position sensor or sensor1ess me3ns, in which the st3rting conduction cage winding bars can 

be dispensed with [15, 22]. This is not covered in this thesis. because the topic of this thesis is on line-

starting from the main power supply source without going through a feedback system using sensor(s) or 

otherwise indirectly. In the indirect sensorless process, a high frequency signal is imposed on the stator 

coils at stationary condition to dc\emline the position of the rotor axis for starting of the IPM motor 

through signal processing. 

1.2.3 1.I N.: START PERMANfNT MAG,"":-!' SYNCIl RO;'WUS 1\10TORS 

A line-start interior pemJanentmagnet synchronous machine (LS IPMSM) is characterized by squirrel 

cage bars or damper windings in the rotor for asynchronous starting, as shown in Fig. 1.2 and Fig. 1.3. It 

is an induction machine with added pcnnanent magnets in the rolor, but it has a higher efficiency than an 

induction machine. The fact Ihatthe magnetizing field generated by pennanent magnets means the 

magnetizing currell! is not necessary. leads to a much higher power factor in fuliload operation. In 

addition the absence of field ohmic losses and the much lower rotor losses once synchronized make the 

machine highly efficient 



The starting performance ofa LS1PMSM from the moment of switch-on to the onset of stable 

synchronous running fomls an important part of the assessment of this machine especially for practical 

applications. The motor can be self-starting when connected to supply mains directly (30). However, a 

few aspects during the self-starting process have to be considered, including starting current, starting 

torque, the demagnetization of permanent magnet. run-up time, etc. The maximum current occurs at run­

up as in a nomlal induction machine. The heavy inrush current at staning may cause demagnetization of 

the magnets unless suitable precautions are taken in the design ofIPMSM. Although the squirrel cage 

bars can protect the magnets from demagnetization during the transients assoc iated with the stan-up, the 

magnet thickness must be designed such that it can withstand the maximum possible demagnetization 

current. In prnctice, this high starting current should be prevented from happening often so as to protect 

the permanent magnet. Therefore frequent self-starting of the machine should be avoided or the machine 

should be started at low voltage and light loads. [n this paper direct online starting of the motor has been 

considered. 

Staning torque is another imponant issue during the starting of a LSIPMSM. Three different torques 

appear in the process of starting [41]: 

• Braking torque due to the magnet; 

• Pulsating torque due to rotor saliency acting as a braking torql.le; 

• Accelerating torque due to the rotor squirrel cage bars 

The squirrel cage bars in the rotor can provide the accelerating torque that drives the machine [0 near 

synchronous speed. The magnet torque is a braking torque that opposes the cage torque during run-up 

The stronger the magnet field. the greater the braking torque. The accelerating torque must overcome, not 

only the applied load torque, but also the generated magHet braking torques due [0 the presence of the 

permanent magnct flux and the rotor saliency. As the motor approaches synchronous speed. the level of 

accelerating cage torque is lowered and the magnet torque reverses its role and becomes the sole source of 

acceler.LtiHg torque. This synchronizing torque from the permanent magnet must be big enough so as to 
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pull the machine into synchronism. For large capacity machines, a stronger magnet field is needed for the 

successful synchronism. However, this high magnetic field will result in a big braking torquc at low run­

up speed and prevent the machine from staning 

Pulsating torque is another issue ofa LSI I'MSM. That is caused by the machine saliency during the rull-

up. It will bring oscillation to the speed and hence mechanical variation to the shaft. Such oscillation may 

be severe and cause damage to the shaft during Ihe staning process. The pulsation torque pcrsists right up 

to the moment of pull-in. 

Finally, the generated heat in the cage of the line stan machines during stan-up is more ofa problem in 

pennanent magnet machines because of the proximity of the cages to the magnets. Both the residual flux 

density and cocrcivity of some pemmnent magnets reduce as a function of temperature. Indeed if the 

temperature excursion is beyond a cenain value. permanent demagnetization can happen. Therefore for 

permanent magnet synchronous machines with very high rotor bar current during the self-staning process, 

the heat efTects brought along by the current may cause the demagnetization of the permanent magnet. 

For such machines frequent self-staning should not be applied. 

There are difTerent ways to study the staning up process of LSIPMSM. The traditional way is to divide it 

into two difTcrcnt rcgions: I) thc stan up rcsponse up to an operating point, 2) the transit ion process from 

that operating point to synchronism [39-42). During synchronism, the cogging torque is another drawback 

of LSII'MSM which is considered to be eliminated or reduced in many research papers [43-47] 

1.3 Hrief Rcvlcw of NuUlcrical Techniulies 

The IPM synchronous motors have becn extensivcly analyzed by various analytical and numerical 

methods over thc past 30 years. There exist exhaustive analytical methods to detcrmine the bulk 

parameters of lPMSM and the steady state terminal performances of the line-stan [PM SM. In order to 

obtainthc steady statc. dynamic and transient pcrformances of modem [PMSM motordrivcs, finitc 

elemcnt analysis (FEA) has emerged as the standard numcrieal tool in recent yeaTS 



Analytical proccdurcs solve the unknown ficld by experimental mcasurcmcnts on analogous field rcgions 

i.e. fields having the same equations or the same boundary and interface conditions. For this it has betn 

virtually impossible to model the inhomogeneities, nonlinearitiesand soon by means of solving 

tcchniques already in vogue in the real problem. Numerical methods came to eliminate these flaws in 

analytical mcthods 

Since about 1940. finite difference schemes started to be used in practice. These mcthods replace a 

continuous domain with a grid of discrete poims or nodes for which unknown values are computed. But 

in fields with higher field gradients like magnetic fields, these grids increase computation time. Moreover 

they are not suitable for boundaries with curves and intcrf.1ees. To overcome these shortcomings, civil 

engineers started using alternative variational method. Finite Element. The tcrm ""Finite Element 

Analysis" was first used by Clough in 1960 [48]. Silvester and Chari then brought it to altcrnators or 

motors [49j. In fiercely competitive world markets with pressure of increased cost of electricity and 

rclativcly high price of penn anent magnets, building a prototype is costlier than ever. To avoid 

miscalcul:ltion that can prove costly once the 1I10tor is manufactu red,it is necessary to accurately predict 

thc synchronous and dynamic performances of the proposed design ofa PM machinc. The topic of both 

synchronous and steady-state analyses has been treated extcnsive Iy in this litcTaturc. 

Howcvcr linear coupled circuit analysis and lumped paramcter modcl cannot easily calculatc IPM 

machinc charactcristics without taking into account magnctic saturation, complex configuration, eddy 

currcnts and cxtcrnal system parameters. Finite Element among othcr numcrical methods can be a suitablc 

candidate becauscthe elements uscd ean be easily adapted to theshapc of boundaries and intcrfaccs. 

[n their paper [49) Chari ct al. showed how the finite element can be used in non linear saturable nmgnetic 

material analysis. In thcir book and anothcr paper [50, 51] Chari ct al. cmployed thc triangular finitc 

elements for detennining thc eddy currcnt distribution in current carrying conductors. In 1981 Dr 

Dcmerdash et a1. brought the finite elemcnt analysis to pemlanentmagnet synchronous machine analysis 
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where they modeled the permanent magnet as a simple magnetic circuit consisting of penn anent magnet 

in series with an iron core and airgap. Then they replaced the magnet by a coil in series with the same iron 

core and airgap. This coil had the same dimension and magnetization profile as the permanent magnct 

They created the flux density profiles for various parts like stator core, stator tooth, stator slot lip, slot 

stem etc. These ideas are indeed very innovative and went a long way in shaping the finite elements for 

line-start permanent synchronous motors. 

r. Silvester from McGill University proposed that the process employed for finite element analysis (FEA) 

can be divided in two phases. a preprocessor phase and a solver phase. The prcprocessor phase should 

include the operations carried out once. For example discretization of regions, assigning boundary 

conditions, modeling of magnetic characteristics is dealt with in the preprocessor phase (52]. The post 

processing technique based on finite element analysis (FEA) proposed by both Chari [49) and Silvester 

was helpful in predicting model performance and design optimization 

Since FEA is a time consuming process, a technique combining the equivalent field or electrical circuit 

analysis to accurately predict the machine performance has been the source of considerable efforts [52. 

53]. Demerdash tricd to bring the power conditioner network under the span of analysis [54]. This power 

conditioner network can be nonsinusoidal voltage or current source inverter-converter. FEA can be easy 

to implement for interior permanent magnet motors fcd by CUITCIlI source inverter [55] but it is difficult 

for voltage source inverters. Voltage source inverters see voltage as a cause aud current is an effect which 

is contrdry to Maxwell's theory, based on which the Finite Element theory is developed 

The measurements of saturable parameters like back-EMF, d-axis reactance. q-axis reactance were 

reported by Chalmers et al. [56]. where on a sample commercial motor. the variation of parameters was 

studied over 360· ofload angle. 
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Ping Zhou and M. A. Rahman from Memorial University used a different method to extract saturable 

parametersdirtx:t-axis induetance, quadrature-axis inductancep emmnent magnet induced flux linkage at 

arbitrary load conditions [57]. Their procedure started with extraction of these parameters from the a-b-c 

reference frame using tmnsienttime stepping FEA solution in time domain and not using 131-1 curve 

associatcd with the frequency domain. They applied a total of 16 transient solutions to a three phase line­

start IPM motor within the range of torque angle O' to 150' with an interval of torque angle 10' . Then they 

converted the parameters to the d-q ax is reference frame using Park's Transformation theory. This 

method shows a better accuracy as extracted d-q axis parameters have taken into account the effects of the 

slot leakage and phasc-spread hamlOnic fields and eliminated the uncert aintydueto the arbitrary choice 

ofa small angle displacemenl. 

But Demerdash ct al. reported in their paper [58]. with a rapid increase of power conditioning circuit like 

an inverter or converter. the current and magnetomotive force (MM F) are no longer sinusoidal in many 

cases and amlature MMF no longer rotates uniformly. As the relative angular position of stator MMF 

with respect to the rotor d-axis is cyclically rotating between upper and lower bounds, the concept ofa 

unifomllyrotatingd-q-oframeof reference,anditsassociatcddirectandquadrature axis inductances is 

not so well suited. They proposed a new approach to accurately calculate of the apparent and incremental 

self and mutual inductances of rotating machinery. This approach is based on thc perturbation of the 

magnetic field distribution inside the machine. The magnetic field distributions and the energy 

perturbations due to small current increments are detemlined by means of the fini te element method 

Using these inductances for a series of current sets spanning one complete ac cycle of operation, they 

calculated the variation of these inductances during both normal and abnormal modes of operation. 

However, both of these methods arc refuted by Bianchi et a1. by saying that these methods take actual 

values of the currents thereby neglecting the cross-coupling inductances and these methods arc time 

consuming [59J. They proposed a method to allow the I'M flux-linkage and the d- and q-axis inductances 
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(0 be determined at different load conditions, taking in to accoullt the iron saturat ion , They also modeled 

Ihe interaction Dctwecn the d- and q-axis fields. The new procedure involves only one Finite element 

solution for each operating time and thus takes less time. After solution illransfoml.'> the non-linear 

problem in to a linear but non-homogeneous one, to separate current contributions of the magnetic nux. 

DClcnnination of machine inductances requires another two Finite Element solutions 

The common mct!lOds of torque calculation in Finite Element Analysis arc the Lorentz force method, 

vinual work principle method and the Maxwell stress tensor method, Lorentz force is the most 

straightforward way to establish magnitude and direction of force on a coil. Force intensity is obtained by 

mUltiplying Ii found from Finite Element and current density nonnal. For interior permanent magnet 

motors where torque producing conductors are only in the stator, this method is not so etTC(:tive [60, 61] 

In 1983 Fitzgerald et al. [70J showed that the total force in a system can be calculated from ratc of change 

of co-energy, but this technique heavily relies on two almost similarquamities, which can nullify cach 

other. Maxwell stress tensor, where force is calculated accurate ly by integration of force intensity around 

the surface, depends on the discretization of the surt:1ce area which has arcs, angles ete. So the elements 

or componcnt size in Finite Element Analysis is important in the boundary of the surface. More elements 

can result in longer processing time. However Maxwell stress tensor gives the best result in post 

processing calculation [62, 63, 64] 

Andy Knight et al. made a comparison between line-s tart pemlanent magnet motor and induction motor 

[65]. Using time-stepped finite element eddy current fomlUlation they carried out dctailed simulation of 

the perfomlance of both the induction motor and line-start pemmncnt magnet machincs. In steady-state 

solution they set the rotor speed at 1500 rpm for a 4-pole 50 Hz system and the initial angle of the rotor 

mcsh was comparcd to that ofthc stator mesh. They prcdicted an efficiency much better than the 

efficiency predicted by the analytical method at 81 % for the line-start permanent magnet synchronous 

motor. This efficiency which they predicted to improve further with the increase of power factor shows a 
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peak of 89% under certain output power condition. For dynamic behavior simulation, they showed with 

the in troduction ofa pemlanent magnet in the rotor. the peak speed in a line-start permanent magnet 

motor increases to 2110 rpm. in comparison with 1680 rpm for a4-po1c6Q Hz IPM motor. 

Kurihara and Dr. M. A. Rahman in their paper [39] proposed a new rotor structure for line-start interior 

pem13nent magnet synchronous motors which show high efficiency in synchronous speed and when 

connected to a line frequency can go to synchronism with a large load attached. Using a time stepping 

FEA they could successfully predict the dynamic and transient behavior which shows a good agreelllent 

wi th the experimental results. 

From the discussions above, it wi ll only be fair to say, although much of the past rcscarch has used finite 

element analysis to successfully predict the dynamic and transient behavior of line-start pennanent 

magnet synchronous motors for various rotor structures. more inves tigations arenecded 10 consider 

various rotor configurations and PM orientations as well as stator shape. winding arrangements and 

overall sizc and rating of the IPM motor. 

1.4 Thesis Ohjectives 

The objectives of the thesis are: 

(a) Design analysis for various types of rotor magnets of line-start [PM motors. 

(b) Develop Finite Element Models for major types of [PM motors. 

(c) Write the design codes to successfully model the steady state. dynamic and transient perfomlances 

(d) Documcnt a ll the necessary steps to successfully run the special fin ite element software packages 

(e) Provide comparative performance results including loss.es. 
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(l) Provide evidence of the validity ofcompulcr.aidcdsimulation resuliswilhthecxpcrimcnlalresuilsof 

aline_starlintcriorpcrmanentmagnetsynchronousmolor 

1.5 Oullincs of C hanters 

Chapter one contains the introduction and the objcclive of this Ih csis 

Analytical fomlUlations are provided in Chapler two. A per-phase equivalent circuit model is developed 

for a generalized lumped parameter model. Based on two axis theory, torque expression is also buill. 

Chapter three conlains Ihc fini\cclcmcnt equations forsimulat ingthcl1uxprofilesofdifTcrcnttypesof 

[PM rotors. 

Chapter four introduces a new computer aided technique for employment of fini te element method in 

motor analysis 

Chapler five shows the simulation results ofa line-start interior pennancnt magnet synchronous motor 

with straight - ~hapc. V-shape and partial V-~hapc permanent magnct motor 

Chaplcr ~ix has the conclusion and suggcstions for future work 
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Chapter 2 

Mathematical Modeling ofInterior Permanent 

Magnet Motor 

In this chapler a generalized lumped parameter model is obtained. A per-phase equivalent circuit is 

proposed \0 account for Ihe saliency ora PM motor and the influence of core losses. Finally a torque 

equation is developed 

2.1. S\'stem Equations for Perma nent MagnCl motors 

We used II 3-phase motor for analytical modeling liS this type of motors is widely used for industrial drive 

applications.ThestandardtwoaxisthoorywilhfixedrotorrefcrcnceframeisbestsuitcdforanalYlical 

modeling. A number of transformation methods are available \0 lransfoml from three- phase model to two 

phase model but for my case I used the Park' s transformation [66) for the vol tage and currents to 

accommodate a beneT represenl~tion of electrical power in the machine. As a result, thc devcloped torque 

is invariaJ\l over transformation. A two polc. three phase, wye connected salicnt pole machine is chosen 

for analysis as shown in Fig2.l [67] 

The MMF (magneto motive forc e) created in the motor bore by stator winding is mostly sinusoidal as we 

assume that thc stator winding is sine-distributed without any short-pitching and skewing. This winding 

produces an air gap MM F which is displaced by angle q.. from a fixed axis. The rotor with an angular 

speed ofw,. is displaced by angle 0,. For a given angular displacement relative to the given axis q.., q.,and 

O,areconnectcdby, 
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• • =., +9, (2.1) 

The ampere conductor distribution of a sine..<fistributed winding is expressed by 

(2.2) 

(2.3) 

where Np is the maximum no. of conductor in tum! pha~e. The number ofconduclOrs per pole is [68] 

~x~x~=!!.J... 
2 If P P 

where r is the number of poles. So the total number of conductors per phase is 

!!..t... x2P = 2N 
P , 

(2.4) 

(2.5) 

IfN, is the number of conductors per phase, the total number oftums per phase is half the number of 

conductors per phase 

N =~ 
• 2 

(2.6) 

The analysis may be simplified by considering only one of the stator windings at a time and assuming that 

the winding may be approximated as a sinusoidal ly distributed winding. The MMF wavefoml of the 

equivalent phase A winding is 

MMF .. = ~i .. cos<P. (2.7) 
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where "a" stands for phase A and "5" stands for stator. Similarly for other two phases "bs" and "cs" it can 

bc written as 

(2.8) 

N. ( 'IT) MMF"=~ I ,, COS <P'+3 (2.9) 

By adding the MMFs in (2.7) \0 (2.9) we get the MMF produced by stator currents in thc air gap 

N [. . ( 'IT). ( " )1 MMF.=~ I .. COS<P. +1 bo COS </1'-3 + I"" cos <P' +3 (2.10) 

Fig 2.1: Two-pole, wye-conncctcd. salient pole synchronous machine 
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For a magnetically linear system. the flux linkages with armature phases a, b, c and field winding f arc 

expressed in terms of inductance and currents as follows, 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Here L with lWO like subscripts denote a self-inductance and M with two different subscripts denote 

mulual inductances. Self-inductance ofa winding is computed usi ng the ratio of the flux linked by a 

winding to the current flowing in the winding with all other winding currents zero. Mutual inductance is 

the ratio of flux linked by one winding due to current flowing in a second winding with all other winding 

currents leTO including the winding for which the flux linkages arc calculated [69]. Though the air gap 

length g is uniform for a synchronous machine, for a panicular rotor position it is approximated as. 

and 

wherc the minimum air gap length is approximated as 

and the maximum length is 

I 

Y = (al +a~ ) 

I x =-­
(a,-a,) 

when: (II and a ~ are two constants used forexplainillg the air gap length. 
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(2.15) 

(2.16) 

(2.1 7) 

(2.18) 



The airgap magnetomotive force (MMF) is given as 

MMF = H x g =~g 
)I ,f/o 

(2.19) 

where H is the magnetic field intensity, B, is the magnetic flux density and)lo is the pemleabiJity offrce 

space (4;r xl0') Him) and}l, is the re lative pemleability. Since MMF is a function of,,, for a small stator 

flux in comparison with a fixed fmme the eqn. (2.19) is givcn as, 

B e _ , , MMF(,;,) 
,(,;" ,) - I,!, g(,;,-O,) 

(2.20) 

(2.21) 

Substituting (2.7) and (2.16) into (2.21) we can gel the airgap flux density due to current in phase A of 

stator winding with all other currents are sello zero. 

Br(¢. ,Br ) = J',PofiOf COSt/J,[ a, - a1cos2(t/J, - O,)J (2.22) 

Similarly for a 3-phase system where the currents aTC displaced by 21(/3 radian apart, thc flux density duc 

to current in phase B winding with all other currents zero, 

And flux density due to phase C with all the other currents zero, 
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Assuming thai the field winding is sinusoidally distributed with Nfcquivalcnt turns, for the field current 

'I. air gap MM F is expressed as 

(2.25) 

Using the similar calculation in (2.19) and (2.20). the airgap nux due to if with all other currents zero may 

be expressed as, 

(2.26) 

As inductance is expressed in terms of flux linkage and current, detemlination of self and mutual 

inductance is imperative on computation of flux linking due to its own current (for self-inductance) and 

due \0 current in another winding (for mutual inductance). The flux linkages ofa single tum of the stator 

winding located at tP. angle and whose span is IT radian. is given by, 

<I> (¢"B,)= '') B,«,B,)dd< (2.27) 

;, 

where <1) is Ihe fl ux linkage for a single tum, I is the stack lenglh, r is the mean mdius of the airgap and ~ 

is a dummy variable for integmtion. For the flux linkage ofa full winding, the flux linked by eaeh tum 

have to be summed up which is the integration over all coil sides. The \olal flux linkage for the current 

flowing only in phase A of stator winding becomes, 

(2.28) 

, ,, 
A_= L,.'.+ j N.(¢, l 1 B,«,o,)dd,d¢, (2.29) 
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where L" is the stator leakage inductance due 10 leakage fl ux at ending ring. N .. is the number of stator 

winding for phase A located at;' angle. As we know from eqns. (2.6) and (2.3), Np=NJ2 and substituting 

8 ,({, 0) from eqn (2.23) inlo eqn. (2.29) we get 

As stated earlier, inductance can be expressed in tcnns of the ratio of flux linkage and winding current 

For self-inducta nce in phase A il should be only the current fl owing in Ihe winding of phase A. whi le 

keeping all olher winding currents zero 

(2.32) 

So, (2.33) 

The self-inductance for olher IWO phaseS can be similarly found, 

and (2.35) 

The flux density in phase A of stator winding due to currelll iN in phase B of Slat or winding is given as 
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,~: !N.C",j' j' 8,«.8,)" d< d", (2,36) , 

Substillltingeqns. (2.3),(2.6)and(2.23)inloeqn. (2.36) we gett he mutual inductance in phaseAof 

st310r winding duc to currcnt of phase B ofstalorwinding as 

(2.37) 

(2.38) 

Therefore the mutual inductance between phase A and phase B will be 

(2.39) 

Thcsclf-inductance for lield current ij may be obtained as 

Then, (2.41) 

where Lif isthc Icakage inductance for field current and self-inductance follows as 

(2.42) 

Similarly Olhcr mutual induclancescan bc found as 

25 



For mutual flux linkagc between stator winding of phase A, illS and ficld winding is dctcnnincd by 

substituting 8,.{0,) from eqn. (2.26) illto cqn. (2.36) for a rotor position ¢. from thc fixed framc. 

A :=- N,Nf !rf.1 JI d(a + ~lsinOj 
fo> 4 0 T 1 2 ' / 

Dividing by fieldcurrcnti/ wcgctthclllutual inductanccbetwccnro tor field and stator phase A. 

Similarly for phasc B and phase C it will be 

M ft> := - N'4Nr l%JlTrl[( u1 +~ ) sin(o, -¥-)] 

Mp:=- N:f !rJlOJI,rt[( u1 +-f )Sin(OT +¥-)] 

lfwe replacc thcsc equ31ions with the followillgcxprcssions, 
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(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 



(2.52) 

then the machine inductances can be written in shortened fonnas 

(2.53) 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

(2.61) 

. [ 'IT) M jCJ= L" sm 0'+3 (2.62) 

Thus the flux linkages with amlature phases A, B, C and field winding fin tenns of inductances and 

currents C3n bc exprcssed in matrix fonn, 

(2.63) 

[~~ ]=[~:::w ~;: ::1[:.,] 
A..,. M c", M ,!.t Le« M p I .. 

AI M fiu M ft» M fc, LI If 

(2.64) 
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2.2 Modeling of Interior Permanent Magnet Svnchronolls Motor 

The novelty of permanent magnet synchronous machines rest with the addition of a pennancnt magnct in 

rotor stnlCIUTC. Hence we can dispense with field winding from thc standard wire-wound synchronous 

motor. This pernlanell\ magnct provides the cxcitation instead of field winding. A mathematic31 model of 

the [PMSM can bc derived from the standard model of synchronous motors by removing the components 

rclatcd to field currcnt and adding an cxtra ternl for the flux linkages provided by the permanent magnets. 

The permanent magnet provides a constant flux ) .... The flux linkage in the stator winding for phase A, [3, 

C due to penn3nent magnet rotor is given as 

(2.65) 

So we can rewrite the equations from (2.11) to (2.13) 

(2.66) 

(2.67) 

(2.68) 

or in matrix fonn (2.69) 
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Here L with two like subscripts denote a self-inductancc and /If with two diffcrcnt subscripts denote 

mutual inductances. 

The phase temlinal voltage is the sum of amtature resistance voltage drop r ",iao and the voltage induced by 

the field winding flux. The voltage e",induced by the field winding flux can De found by sctting armature 

current i. cqualto zcro. With dc excitation in ij in the field winding, this is given as (70]. 

(2.70) 

ro, is the angular electrical frequncy of the motor and is defined 3S w,={poles 12}w. where ro, is the angular 

synchronous frequency of the ro tor, 0..0 is the electrical angle of the rotor at time 1=0. So the tcmlinal 

voltage can De cxpressed as 

(2.71) 

From eqn. (2.70), the generated voltage e",is a function of frequency w, which in tum depends on the 

rotor frequency. As for IPMSM, without any damper winding and field current dynamics the voltage 

equations for phase A, Band C simplify to 

(2.72) 

(2.73) 

(2.74) 
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orin matrix foml 

['oj ['_ 0 0 ]['_] [Awl vb. = 0 ra, 0 ~bo +p ~ 

v'" 0 0 ~. '", ..t", 

(2.75) 

wherep is the differential operator!!.... Under synchronous operation all machine quantities (current and 
dl 

nux linkage) will also vary sinusoidally in time at frequency ill, . Thus the inductances in eqn. (2.69) are 

functions of the rotor position 0, and thcrefore functions of the rotor speed w,. Hence from the eqn. (2.71) 

the co-efficient of the voltage equations arc time varying. These mllke the solution of the voltage 

equations all the more difficult unless the rcfcrence frame is changed to a synchronously rotating onc 

The usefu lness of this concept stems from the fact that although each of the stator phases sees a time-

varying inductance due to the virtual saliency of the rotor, the transfornled quantities rotate with the rotor 

and hence see constant magnetic paths. Additional slIliency effects are prescnt under transient conditions. 

due to the different conducting paths in the rotor, rendering the concept of this tr.lI1sfommtion all the more 

useful. 

Similarly, this transformation is useful from the point of view of analyzing the in teraction of the rotor and 

stator nux and MMF-w3ves, independent of whether or not saliency effects arc present. By transforming 

the stator quantities into equivalent quantities which rotate in synchronism with the rotor, undcr steady-

state conditions these interactions become those of constant MMF- and nux-waves separated by a 

constant spatial angle. This is the point of view which corresponds to that of an observer in the rotor 

reference frame (70j 

R. H. Park in the I 920s, proposed a new theory of electric machine analysis to solve this problem. He 

formulated a chllnge of variables which. in effect replaced the variables phases (voltages, currents, nux 

linkages) associated with the stator windings ofa synchronous machine with variables associated with 

30 



fictitious windings rotating wilh Ihe rotor at syochrooous speed. Essentially, he ITllllsfonned or referred, 

thc stator variablcs loa synchronously rotating reference frame fixed in the rotor. This is commonly 

referred to as Park's transfomlation 

2.3 I'ark ' sTransformation 

Park's transfonllation is obtained in two stages. First the a-b-c reference frame is transfOmled 10 the d-q-O 

frame. If the ioitial angle is set to zero, so that the q-axis is aligoed with the as-axis, we can elimioate the 

zero sequence component. Secondly the variables in the stationary d-q frame can be converted 10 the 

synchronously rotating rotor d'.q' frame. The superscript r denotes Ihe rotor reference frame. 

We make the following assumptions: 

1- No squirrel cage winding in the rotor. 

2· No field currcnl in the absence offield winding 

3- Eddy currents and hysteresis efTccts are decmed negligible 

4- Induced voltage is sinusoidal shy of any high order hannonics 

5- Saturation efTecton rolormatcrials is neglccled. 

Assumingd-q axes are oriented atO angle the 3-phase variables in any reference frame can be 

IranSfOmled to the orthogonal components by the following relationship. 

[< .. ]= [o,][<. J (2.76) 

where X may represent any variable such as voltage, current or flux linkage. CI is the coefficient matrix of 

transformation and is given as 
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cosO cos t 0-3f) cost o+3f) 
[c,l=% sinO Sin(o-¥) Sin(o+3f) 

1 1 1 

"2 2 2 

the inverse of which isgiven~s 

cosO sinO 

[c,], = oo,(e-'f) ",[O-'f) 1 

cos(o+¥) Sin(o+3f) I 

(2. 77) 

(2.78) 

From eqn. (2.76), the vo1t~ge equations in the machine can be transformed to the onhogonal components 

ofa rotllting reference as 

From cqn . (2.75)lhis can be ClCpllnded liS. 

[ V .. l= [c , ]{[,~ ][i~J + r [A .. J) 

Thiseqn. (2.80) can be simplified funher for a filCed rotor frame as. 

Subslilulinglhiseqn. (2.82) by value of [r. D.J (as given in pages 140-1430f[67]) 
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(2.79) 

(2.80) 



(2.83) 

Ifr,=rb=r,=r. then thc formerequalion can be rcwrittcn as 

(2.84) 

or in voltagcequalion form 

"~ '" r. i~ + Pw)..~ + P"-~ (2.85) 

v~ '" r. i~ - Pw,"-~ + p,,-: (2.86) 

v~ '" r,i~ + p),~ (2.87) 

Fordctcrmining flux linkagcs in lhcscequalions (2.85-2.87),w ewritcthcmas 

(2.88) 

(2.89) 

(2.90) 

By putting thcvalue of[c l]. [cd", [LJ from eqn . (2.64) and [) .. r] from cqn. (2.65) and shortening tbem 

usingeqns. (2.46) and (2.51) we get [67] 
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L1. +%(L ... - LB ) 

Lis +%( L ... + LH ) 

o 

Forgcncral casc, from eqn. (2.91) wc can dcfined-q axis magnctizing inductances as 

ru tting Lq" LI'+ L..,q and L.FL,,+L .... we can rewrite the eqn. (2.91) as 

L, 

o 

(2.91) 

(2.92) 

(2.93) 

(2.94) 

where LI• is the leakage inductance, LIM and Lmq are thc d-q allis magnctizing inductance respectively. 

It is nomJally assumed that Lmq- LIllO 

(2.95) 

(2.96) 

In the rotor zero sequence reference frame A~ == L" i ~ 

Ignoring the zero sequcncc components eqn. (2.85) and (2.86) become, 
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v; = (r, +pLq )i~ + PO), Ld i ~ + Poo,A,. (2.97) 

(2.98) 

where the mutual nux k". for the d-axis is zero. Eqn. (2.97) and (2.98) can be explained in matrix form 

[ '~l = [ " + pL, pw, L'l[;~ l+[ PW'A 'l 
v~ - Poo, Lq r, + pLJ i ~ 0 

Frorn eqn. (2.99) we can get Ihed andq axisTOloreurrents as 

pi ~ (v~- r,i~+ pO), L~ i ; ) 
L, 

(2.99) 

(2.100) 

(2.101) 

Fig.2.2 shows thed'andq'dynamicmodelcquivalcnleireuitslhaI satisfylhe equalions (2.100) and 

(2.lDl) 

(0) 
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r ~' -c(l 
r · I 

(h) 

Fig 2.2: Park's model ofPMSM (3) d-axis, (b) q-axis 

2.4 Relationship hetwcen a-b-c ax is and d-u axis Qllantities in stati onary and s\' lIchronoys rcfcrcnce 

Fora stationary reference frame 3-phaseaxis transfonnation in cqn. (2.76) can 00 rcwrittcn as 

(2.102) 

If the q-axis is coincident with the a-phase. we can set 9=0, where cqn. (2.102) can be rewriUen as 
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[J-~ _Ji [,:] 
2 " 
-fi 

(2.103) 

2 2 

v. = v~ (2.104) 

(2. 105) 

(2. 106) 

For the st31 ionaryTcfcrcnceframe eqn.(2.76) can be rewril1cnas 

v' cose cos( o-¥) COs( o+¥) 

l ,~j= % ,'"a ,,"(e-¥l ,,"(o+¥) [::] 
Vo 1 li e 

(2.107) 

"2 2 "2 

Which can be simplified at 0=0 as 
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1 1 

[:: l =~ ~ -~ li [:.] J 3 2 2 b 

Y~ 1 1 I Y, 

(2.108) 

2 2 2 

From there Y ~ and v~ can bc written as 

(2.109) 

(2.110) 

For a balanced system Y.+ Vb+v," OOrY," -Yb-V" therefore 

(2.111) 

(2. 112) 

Fora stationary rolaling frame ofeqn. (2.104) can be converted to synchronollsly rotatingd-q frame using 

the Fig.2.3 as 

(2.113) 

orinan inverted fonn, 
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(2.114) 

q'-axis 

q-axis 

d-axis 

Fig2.3: Stationaryd-q axis to synchronously rotatingd'-q' axi stansfomlation 

2.5 Torq ue expressioo of PMSM 

In an electromechanical system torque is measured as proportional to two electric signals. [n one example 

it is determined Ihrough the ralio of developed power. as the product of voltage and current, and speed. 

The tOlal input power in a ele<:tric machine is given by, 
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P;" "'v,i, (2.115a) 

or fora three phase system, 

(2.115b) 

This power transferred across the air gap and with the losses incorporated becomes the developed power. 

When the stator phase a-b-c quantities are transformed to the rotor d_q_Orcfercnceframethatrdtedat 

cons tantspeed()),"' ~,substit utingthevoltagesfrom(2.108)to(2.IIO)and(2.111 ) aswellascurrents 
dt 

in eqn. (2. 1 18) wegct [67), 

(2.116) 

Usingeqns. (2.97) and (2.98),eqn. (2.116)can bewrillen as [67] 

(2.117) 

Discarding the tenns for copper, windage and frictional losses rate or change in speed thererore the 

change in magnetic energy, the above equation of the electromechanical developed power I'd becomes 

(2.118) 

p 
For a P-po1e pair, the rotor speed OJ,. is given as 00, "'200m where ro." being the rotor mechanical speed ill 

radialiS per second. Thuseqn.(2.121)becomes 
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By dividing the developed power by the mechanical speed of the rotor, we get the expression for 

elcrtromcrhanicaltorqlle, 

By slIbstitlltingequations (2.95-2.96) in eqn. (2.120)weget 
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(2.120) 
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Chapter 3 

3. 1 Finile Elemenl Approll.ch 

The magnetic equivalent circuit approach shown in Ihe previous chapler can approximately calculate 

magnetic fields in motors with simple geometry. For mOTC accurate and cmcicm calculation we use any 

numerical method like Finite Element Method. Nowadays the finite element is widely used in the field of 

Ocean and Mechanical Engineering for stress and force calculation. 

III the equivalent magnetic cireuit method we need a presumption ofmagnclic flux lines and the paths of 

them for any cross-sectional area. This presumption is inaccurate given that we consider them to be 

straight lines which in someextenlsareerroncous. Forealeulationofthe efTectsofflux fringing, 

saturation and 1cakageflux wc use practical faclOrs rather than derived equations. These practical factors 

are well known as the motors are in vogue for many years or newer designs are only a subtle change from 

the closest ones. But for new motor concepts there is a great need to accurately detemline the efTects of 

geometric changes and saturation on the motor emciency and other parameters related to the magnetic 

field. 

For simulation purposes we used Maxwell® 2D which employs a finite element method to solve two­

dimensional electrostatic. magnetostatic. eddy current. and transient problems. This software requires no 

assumption of flux palhs or related empirical factors and can be used to calculate: 

$Inliceleclric fields, forces,torqucs,and capacilancesc3usedby vohagedislribulionsand 

charges 

Static magnetic fields, forces, torques, and inductances caused by DC currents, static external 

magnetic fields, and pennanent magnets. 
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Time-varying magnetic fields. forces. torques. and impedances caused by AC currents and 

oscillating external magnetic fields 

Transient magnetic fields caused by electrical sources and pernlanent magllets. 

3.1.1. Eg uat ions for map llet ic fi eld wlndinos 

The magnetic field in an electrical machine is governed by Maxwell"s equations: 

where. 

U is the magnetic field strength 

J isthecurrcntdensity 

Eistheehxtrie field strength 

I) is the magnetic flux density 

- oB 
V'x E =--

0' 

(3.1) 

(3.2) 

The law of conservation of energy can be derived from MaxweWs equations where input active power is 

[73] 

p. = IcrE'dV = f E. Jd V = ! 1(J ·dS)E.dl (3.3) 

The EMF from Faraday's law 

e = IE.dl = - '£' I B.dS 
I at , 

(3.4) 
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FromAmpcre'scncloscdcircllitallawi~ 

(3.5) 

where I"" is the current enclosed in a loop. From above thrcc equations wc gCI the net inpllt e lectrical 

power 

[ a 1 ' 0 P, =cf Hodl -- iBod' =- i" """v 
I at , v at (3.6) 

P, = iEoJdV = -~ l luodo}v 
v !lQ (3.7) 

The right-most term is the stored mugnetic energy Wm 

(3.8) 

The inplll power can also be expressed in tenns ofmagnctic vector potential A rather than E by llsing 

definition of A: 

From Faraday's law· 

Hcnce 

- aD 
Vx E = - ­a, 
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When there is no power loss E = -~ A 

- a -
VxE =--(Vx A) a, 

Substituting tile c)tpression forE in (3.3)givcs 

So,frorn(3.12) 

(3.11) 

(3.12) 

(3.13) 

which dernonstrates that magnetic energy storcd in a lossless devic eiscqualtoinputelcctricalcnergy 

Variational techniques like finite element or finite difference arc used to obtain a solution by minimizing 

the differencc betwccn the stored energy and input energy. The energy functional F can be fonnubted as 

F= ljH<dB-i<J.dA}V !lo 0 (3.14) 

Pis minimized for: 

(3.15) 

Thus 

(3.16) 
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However. the energy functional Fin (3.14) changes when we consider losses from induced current, then 

Fbecomcs. 

{ B' . 1 } F = _ _ J.A +j(iJ _ a A 2 IV 
> 2J.1 2 (3.17) 

where J is the applied current density of angular frequency 0), ~ is magnetic penncability, cr is electric 

conductivity. 

3.2 Finite Element Formulation 

A proper application or1he Finite Element Method must irlVolvc the following major sleps [71)" 

DisCTCtiZ3tion of the 2-Ddornain. 

Fonnulution ofgoveming diITcrcntial equation. 

Choosing an interpolation function or shape function or basis function 

Derivation of the element matrices and vectors. 

Assembly oflhe global matrix system. 

imposition of boundary conditions 

Solution of the global matrix system. 
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3.2.] l>iseretization of the 2-[)domain 

The cross-section of a pemlanent magnet machine is irregular with curves on edges. The first step is to 

accurately represent the physical domain of the pemmnent magnet motor by a set of basic shapes called 

the finite clements. These finite elements can he triangular or quadrilateral. For a triangular mesh, the 

shape of triangles must be close to equilateral whereas the shape of quadrilaterals must he close to square. 

Whichever element is chosen it must accurately represent the gc<>metrical shape, minimizing the 

discretization error. The elements mustn't have a large variation in size therefore keeping a unifoml 

aspect ratio among thcm. The clement boundaries cannot overlap and adjacent clements must have a 

common edge 

) .2.2 Choosing an Interpolation FunNion 

An approximate solution obtained over the discretized domain is represented inside an clement by a set of 

functions called interpolation functions. These differential functions are second or third or<lcrcomplete 

polynomial and guarantee continuity of unknown value across the whole domain. For a linear triangular 

e1cment the interpolation function is given by 

(1.18) 

where x and yare two nodes for a triangulare1cmenl. Ifu is a primary unknown quantity inside an 

element. itean be expressed as 

1I = II;N/+ II;N]+ /l;NJ ......... = i:.ujNj ,-, (3.19) 

II ; .11; and II; are nodal values for primary unknown quantity 
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3.2.3 Dr rivatiooofthe element matrices aod \'e~ ton 

3.2.3.1 Weighted Residual Method 

A generic solution for 2-D problem is given by 2nd order difTerential equalio11" 

(3.20) 

u,. uy• P. g are conSlants. Residual is given by 

. a ( au] a ( au] r =- a - +- a - +/Ju-g 
ax 'ax ay 'ay I (3.21) 

Our main goal is to minimize this elcment residual. To achieve this we must multiply r with a 

weight function Wd, then integrate the result over the area of the elcment and finally set the 

integml to zero 

J J ID, [;(a.~l+~(a ~]+ Pu -g,}IXdY= O 
n' ox ax ay , ay (3.22) 

where n' is the domain area for an element. From the Green's theorem [7 1) this could be solved 

(3.23) 

where n,. ny are two scalars. r, is the contour bounding the area under the triangle. According to 

the Galerkin approach [51) Wd must belong to the same set of shape functions that are IJsed to 

interpolatc primary IJnknown value II. Setting w,FN! for ;"' 1.2.3 .. n and IJsing u from (3.19). 
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II " (au au} N,gdr:dY - "jNj o.~-a 11, +0., :;:-:-11, I 
Q" r X uy 

(3.24) 

which can bccxpressed in Matrix fomlas 

(3.25) 

(3.26) 

where K; = M; + r; and b~ = J/ + p; 

3.2.4 A.~semh ly ofGlahal i\lo.l r h: 

For each clement in the domain there exist a coefficient malrix K', from (3.26) and a right hand side 

vector b' that must be mapped added to global coefficient mat rix K and the global right hand side vector b 

according \0 the connectivi ty information. This process of mapping and adding is called "Assembly 

Process". The dimension of the element co-emcient malrix K' is the same with the number of lIodes in 

each element and the global matri" is the number of nodes in all elements in a domain. 

The assembly process begins by forming element connectivity array which bears the connectivity 

information. The array is of the form n(e.1) = nJ or i z /.2.3.4 .... 11 where e denotes the element number 

and " ; denotes the global node number that corresponds to the ith local node number. After fomling the 

array. global coefficient matrix K is formcd using the following algorithm' 

for e'" J: no. of eiemcIIIs in til e domain 
49 



Jor i= f: I/O. oJlocal nodes Jor elemenl e 

Jor j'" J: 110. oj local nodes Jor elemel1l e 

K(n(e,ij.n(eJ)) = K(n(e,i).n(eJ)) + ke(iJ): %ke is rhe element coeJJiciel1l matrix. 

Similarly global matrix for right hand side vector b is also fomled 

3.2.S ImnosilionoflJollndarvCondilion 

Boundary conditions arc imposed 10 simplify the finite clement model and approximate a solution for 

unknown at node points. Two widely used boundary conditions are Dirichlet Boundary Condition and 

Mixed boundary condition. 

3.2.S. II)irichletlJoundaryCollditioos 

In Dirichlet Boundary Condition, the unknown quantity 11 is made cons tant at a particular point 

like II.' = 11/ where m is a specified value corresponding to node 1 of element I. [fthis 11/""0 then 

the corresponding row will be zero limiting the progression of differential equation for the 

element. 

3.2.S.2 Mixcd Roundan' Conditions 

In mixed Mixed Boundary Conditions we need an unknown quantity and its derivative which can 

be shown of the following fornt, 

(3.27) 

where a and P are constants and c is the permittivity of the medium [71]. 
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3.2.6 Solut ion of tile globa l m a t r l ~ system 

In professional commercial finite element softwares. the resulting linear system of equ3tions is solved 

using itemtive techniques. This type of techniques can take Ihe advantage of sparsity of the matrix, where 

the matrix grows along the diagonal elements thus minimizes memory usage. This technique includes 

conjugate gmdient (CG) and biconjugate gradient (BiCG) methods in combination with a variety of 

preconditioners and accelerators. Other popular iterative methods arc generalized minimal residual 

(GM RES) method and the quasi minimal residual (QMR) method [73-76]. 

3.3 Finite t:iemelll Formulation of Electromagnet ic Field 

Using the same approach discussed in the previous section, the magnetic energy functional for F in (3.17) 

over a set of elements can be minimized to a matrix equation that can be solved to detennine magnetic 

vector potential A. 

Fig 3.1 shows the coordinate system for a set of triangular clement or mesh. The entire planar mesh may 

represent the stator, rotor, airgap between them and lamination for stator windings etc. Fig 3.2 shows a 

mesh generatcd for 2-D analysis of a pennanent magnet synchronous motor. As for triangular clements, 

for each node a shape function or interpolation function of any order can be declared. For the sake of 

simplicity and finite element analysis assuming a linear shape func tion for the magnetic vector potential 

A within an element, the scalar A inside each element can be stated as [77] 

(3.28) 
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where x and yare the Cartesian co-ordinate positions of the node, for which the magnetic vector potential 

is calculated. 

Y • 

x 

Fig 3.1: Typical triangular element connected 10 other elements 
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Fig 3.2: Mesh generated by Maxwell® for one-quarter of cross-section ofa motor 

For each nodc in Fig3.! the values are 

The solution is 

A/",c/ + c2X/ + CJY/ 

A., "' c / +C2X'" + c)Y .. 

A. "'c1 + C1X. + c)Y. 

[
A, ]=[IX' y, ] [ , , ] 
A., I x., Y .. c2 

A, lx, Y. c) 

A ", -d6 l.t .. raj +b1x+cl y]Aj 

(3.29) 

(3.30) 

(3.31) 

where a .. b/... Cl arc scalars, x and y are the co-ordinates thereby scalars and.6. is Ihe surf:1ce area of the 

triangular clemen\. From Maxwell"s fourth equation div8=O, the magnetic field in a triangle is: 
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(3.32) 

(3.33) 

i;:,l~ and;;; arc unit vectors inx,y, l co-ordinates, substituting (3.32) int o(3.33)gives 

(3.34) 

Thus it can be shown magnetic field is constant within a particular finite clement. The grid point potential 

A,can be found by minimizing energy functional F from (3.17) 

where dS=dxdy. (3.35) can further be written in matrix fom1 

[R][AJ+j[M][A]=[C] (3.36) 

where (3.37) 

['I I] [M]=-Ti" 1 2 I II ' (3.38) 
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L_ 

(3.39) 

Equations (3.36) through (3.39) provide the solution fOT the magnetic potential A for a region of only one 

triangle. for N nodes the above process is repeatcd iteratively fOTcach element. 

3.4 Boundarv Conditions 

For a 2-D problem there is no boundary condition for the elements inside a domain but for edges, 

clemcnt~ are constrained according to the boundary conditions at the exterior of the domain analyzed. For 

analysis of pemlanent magnet machine, flux lines for constant magnetic vector potential are assumed 10 

be confined within the rotoTouter boundary. Enforcing this boundary condition, A =O, flux lines are 

constrained to follow the boundary 

The nux lines inside any domain can be shown to be perpendicular to elements within the mesh as there is 

no constlll.int for them in the interior of the domain. For any electrical machine with the identical pole 

shape, has periodic boundary condition fOT each pole. This boundary conditions for a rotating machine 

can be expressed as [77]: 

A(e. Bo+q) " -A(r.BrJ (3.40) 

where Bo is the angle of mdial boundary and q is the pole pitch angle. 

3.5 For ces a nd Torgue Ca lcula tion in a n Elect romagnetic Field 

One of the prime objectives of FEM in an Electromagnetic Field is to compute force and torque. The most 

appropriate mclhod is problem dependent, although five basic methods are well in vogue. 
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3.5.1 Maxwell Stress Tellsor 

The Maxwell stress tellsor is the simplest of all methods cOllsidering the computational 

complexity involvcd sillce it requires oll ly local flux dellsity distriblltioll along a specific lillc or 

contour. Usillg the Maxwell stress tensor, for a plallarproblcm total foree call be calculated as 

I [ B'n} F = Jf- 8 (8 .n)- - S 
" . 2 (3.41) 

From where torque can be calculated using thc following relationship [78], 

(3.42) 

where r, is the radius of the CirCllmfercllce, L, is the length for the surface S. 

3.5.2 Arkkio 's l\lethod 

This is a variant of Maxwell stress tensor and derived from integrdtion of the torque given by 

(3.42) in the whole volume of the airgap comprised between the layers of radii f,and f •. This 

method has been presented by Arkkio [79] 

(3.43) 
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3.5.3 Method ofl\1agnelicCoenergv Dcrh'alioll 

Torque can be calculated by deriving the magnetic cocnergy W by maintaining thc currcnt 

dlV d 1 " ) T o L,-o- IIB.d"d, 
da da. o (3.44) 

Using the finite difference approximation, the lorquc derivation 0 f(3.44) is approximaled taking 

thedifferencebelween two successivc ca1culations [80.81]. 

(3.45) 

whereL,isthe length and 0" represents the displacement. 

3.S.4Co nlornb 's Virtual\Vork 

Using the principle of virtual works [82]. we derive the following expression for the torque 

(3.46) 

where the integration is carried out over the elementssitualed bet wccnthe dG fixed and 

" moving parts. Here L; is the length, G denotes thc jacobian matrix, is the clement defonnalion 

duringlhedispl3cementd<P 
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J.5.5 Magneti7.ing C urrent Melhod 

This method is based on the calculation of the magnctizing current and the flux density over the 

element edges for the boundary between the boundary between the iron or permanent magnet and 

theair[S3], 

r , denotcs all the interfaces between the iron or permanent magnet and airgap and dr, is the 

length of the element edge located at the boundary, r is the vector to connect origin to midpoint 

ofdr,. 8", 8 01 is the tangent and nom1al flux density in respect to dr,. the subscript nand t refers 

to the normal and tangential components, respectively of the flux density. 

3,6 Ind uctance and Rl'aetanee C alcu lation in a Electromagnetic Field 

The calculation of steady-state or linear inductance is straight-forward for permanent magnet machines, 

dividing the flux linkages of the coil by the currem in the coi l or dividing the energy ston.-d in Ihecoil by 

half of the current squared. BUI these methods are not valid for calculation of dynamic inductance as the 

inductance changes with the change of rotor position. Various methods arc used to make an accurate 

approximation of inductance for a time varying magnetic field 

J.6. I I)vnamic lnductanceCalcuJation 

Energy or winding currem perturbations are the basis of a method for calculating saturated and 

apparent inductances of permanent magnet machine. This mcthod is geueral because it can be 

used for high-powered machiuCli aud it uses numerical fie ld calculation technique like Finite 

Elemeut for obtaining stored energy in the magnetic circuit of such machines [58] 

The terminal voltage v) for an II winding rotating machine can be modeled as 
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v = R i , +~ 
J J J dt 

(3.48) 

where iJ is the currenl,I..Jislhe flux linkagc forj-Ih winding. Due to the magnelic saturalion, Ihe 

10lal flux linkage ofthej-Ih coil becomes a nonlinear funclion oflhe n-winding currenl al a given 

rolor angle 6. So for j-th coil. (3.48) can be wrinen as 

OI.. } di . if}..J dO 
..... +--+ - -

Oi. dl 80 dl 
(3.49) 

dO . "-
For a fixed rolor position the last teml in (3.49) is zero as - = O. Also m (3.49) ~ is defined 

til I , 

as I.l; . So the installlaneous temlinal power PJ is given as, 

(3.50) 

The firstteml in (3.50) represen t the instantaneous power loss for j-th coil. whereas the rest of the 

lemlS combined are the magnetic stored energy. So tOlal stored magnetic cnergy can be given as, 

(3.51) 

III large machi ne the inductance is given in a matrix fonn 

~{kl 
"" 

(3.52) 
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where Lil is the self inductance and Ljl is the mutual inductance. For I windings these induttances 

are expressed as the partial denvativeofglobal stored energy wit h respc<:t to small perturbation in 

windingturrent l'!. ijand l'!.h. whkh is further expanded around a "quies eem"' magnetic field [58, 

84]. For a mathine where Lj\= Li<j, the inductances are. 

L , = ~""[ w(i J -l'!.i j ) - 2w+w(i j +6i) ] 

~ 8(6i/ (l'!. i/ 
(3.53) 

w(iJ +6ij ,i k +L\ik) - w(ij - L\i J,il. + L\i k ) 

8 2 w - w(i j +6i j,ik - L\ik) + w(i j - 6i j ,i k - L\i k ) (3.54) 

Ljk = 8(l'!.i j)8(l'!.ik) "" 46i j6il. 

3 .6.2 Stead \·-~ tll t e lnduct a nce Calcu la t io n 

As stated earlier for steady-state inductance calculation wed ivide nux linkages I. by current, 

L = ~ 
I 

J.6.3S\'nchronous ReactanceCalculalion 

(3.55) 

For an interior permanent magnet synthronous machine saliency is created inside the rotor by 

magnets arrangement though it has a smooth airgap. So IPMSM is basically a salient pole 

synchronous machine [57]. For a salient pole synchronous motor the d·axis and q-axis 

synchronous reactances are given by 

(3.56) 

(3.57) 
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Xd and ~ are the d and q axis synchronous reactances. X",.. and Xmq are the d and q axis 

magnetizing reactances. reSIXXtivelyand X1 is Ihe leakage react ance. 

~ROTATION 
q-aXls 

Fig3.3: Phasor Diagram ofa PM Motor 

From the pha.'>O r diagram of Fig 3.3 for a pennanenl magnet d-q axis currents ld and lq ean be 

oblained as [85]. 

l d = V(X,COS~ -'ISino) - EoX, 

'1 + X" X, 

1, V('iCOso+Xdsino) -Eo' l 

Ij2+X"X, 

61 

(3.58) 

(3.59) 



where V is the ternlinal voltage. Eo is the excitation voltage due to permanent magnet flux alone. 

' I is the stator resistance, 0 is the torque angle shown in the phasor diagram of Fig 3.3. From the 

smnephasordiagramofFig3.3.thcvoltageequationcanbcexpressedas 

(3.60) 

where 0, is the interior torque angle of the rotor position at time i. For the two-dimensional planar 

case. the lines of constant vC\:tor potential represent flux lines. £; is the back-EMF at any time i. 

Hcnce, both d-axis and q-ax is fundamcntal components of flux in the airgap can be derived by 

performing a Fourier analysis on the vector potentials A around the inner surface of the stator. 

The cosine term a, represents the quantity of half the q-axis flux per pole (per unit depth) with 

respc>:t to the analytical model of pm motor. The sine ternl coefficient b, represents thc quanti ty 

of half the d-axis flux per polc (per unit depth). So the value of the resultantllux per pole is given 

by [86) 

,,' 0, = arctan(!i) 
a, 

(3.61) 

(3.62) 

where I; is thc length of the airgap. This flux induces a voltage Ei in each stator phase winding as 

(3.63) 

where N, is the number of series turns per phasc and K .. is the product of stator winding 

distribution and pitch factors. Further equating voltage components in d-axis and q-axis we have 
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E sino = I X or X = E1sinol 
I I q -.q -.q l q 

(3.65) 

3.6.4 Leakage Reactance Ca leulation 

The ammture leakage reactance is calculated from numerical evaluation oflhe energy slored in 

Ihe slOlsand Ihe ending rings or end conncction [87). Thismclhod includeslhelllagnetic 

s.1luration clTe<:t and end conne<:lion leakage reactance. The schcme is perfonncd for each slot 

and each loolh aSlhey are defined as volume in which Ihe local conlribulion 10 the leakage energy 

can becalculaled. Theea1culationofendeonne<:lion leakage rcactance calculalion isdiflicult in 

2-D FEM progr'dlll where 3-D FEM is a bener fil [88]. 

3.7 Time-Stepping Fini te Elerncnt Ana ln is 

To take into accountlhe time variation of nux density and induced currents during a time cycle. a time· 

stepping melhod is introduced. In Ihis method a new mesh is crc.1led in each lime step and pertinent 

values arc ca1culaled using methods described in Ihischapler. 

Assuming ~ = 0 al t=O as though there is no induced voltage and no induced current we make a first a, 

estimate of stator winding current 

Using the estimation of ~or A,. we derive the next A, oJ' using the following fonnulation [72). 

(3.66) 

where A is the magnetic vector potential, 6t is the lime-step. This process continues until changes in 

elemenl penneability and node potentials arc below a specific level. 
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Chapter 4 

Design Case Studies 

As an integral part of research, efforts have been made (0 make some extensive simulation on various 

rotor structures with different magnet shape. [n this chapter, a Computer Aided Design 100[ is imroduccd 

to belief address vanous design intricacies of line-start pemmnent magnet synchronous mOlors 

Meticulous infonnation isgivcn on each stcpofvariousdcsignaSJ>e(:ts 

4.1 Analytical vs. Fin ite Elcmelll Analys is 

As a result ofa tremendous increase in the complexities and widespread applications of solid-state 

controlled pcmlancnt magnet motor drives, computer models and simulations have become extremely 

useful tools in the design as well as pcrfonnance prediction and analysis of such systems and their 

associated electronic circuits. This includes their interaction with the variou~ ele(:tric machines with 

which they are interfaced. Accordingly. the resulting synergistic effects between the time hannonics. 

produced by thccyc1ic and sequential switching in the eiectronic circuits. and the intrinsic space 

harmonics. resu lt ing from the specific magnet circuit configurations and winding layouts. can be 

rigorously investigated and quantified 

Meanwhile, previous efforts toward modeling machine-drive systems using variation of linear 

transfomlations of the dqO framc ofrefcrcnce type are gradually falling out of favor in recent modeling 

effons. This is because these models are inhcrently formulated in terms of transfomled "synthetic" direct 

and quadrature axes currents and voltages. which are based on theassu mptions of flux distributions 

around Ihe air gaps and armalUre circumferences of such machines thaI are purely sinusoidal innalure 

This precludes a sum ciently rigorous account of the effects of space hamlonics resulting from winding 
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layouts and rotor excitation dTe<:ts as wdl as stator and rotor magnetic circuit saturation and geometries. 

This is unlike the typical abc frame of reference approach which is fomlulated in temlS of the natural 

"physical'· a, b, and c annature CUlTCnts and their COlTCsponding winding inductances as well as nux 

linkages. [89) 

4.2Conmutl' rAidedDl's lgn 

The design of machines is the important stage before developing them. Over the years engineers have 

accumulated much experience in the design process. Much deliberation and research time went on \0 

pursue an efficient design process. With the advelll of new computers and their application in engineering 

design, the manual labor in machine design has been cut short decisively. Computer Aided Design (CAD) 

packages have been widely used and will playa more important role in ncar future. 

The application of numerical methods in electromagnetic fields began the re\·olutionary stage of CAD. 

The approximate machinc model with magnetic circuits was replaced by mueh mOTC accurate finite 

difTerence and finitc dement analysis. These numerical methods in association with Galerkin approach 

and Newton- Raphson (N-R) method helped the machine designers greatly. He/she can cven take a 

particular section of machine and predict the perfonnance discreetly with the results obtained by 

numerical method. 

Design is an art. an empirical and scientific work. The rules, fonnulae and infommtion used in the design 

process are not in general, as precise as in nUlllerical computation. A given design problem may have 

more than one solution. The specifications ofelectrie machines usually cover such items as output power, 

speed. voltage. torque. efficicncyetc. The final results of the design p rocess must satisfy thesc 

requirements without exceeding certain limit of cost, heating. error in calculation, converging threshold 

(for numerical calculation) ctc. For these desigJlers. there are many factors to account and also the 

65 



extensive pool ofknowledge involved in the des ign process {901. Nomlally the specific criterion 

facilitated by the designers for a successful des ign ofpemlanent magnet motor can be compiled as· 

./' Power rating: the output mechanical power for motors 

./' Voltage rating 

./' Number of phases of the power supply and the connection of phases . 

./' Speed rating or synchronous speed 

./' Power factor . 

./' Selection and calculation of the electromagnetic parameters in the m aehine . 

./' Armature winding design which includes the selection of the type of winding connection and the 

wire gauge, detemlinalion oflums (both serial and parallel), layers and calculation of resistance 

of these windings . 

./' Ending ring and stacking factor design. Though the ending ring is considered as an extension of 

rotor bars, il is computed with lower conductivity from the materials used in rotor and winding. 

Rotor length includes the stacking length and stacking factor dictates the interleaving among the 

sheets used for rotor structure which is computed according to sturdiness of motor and lamination 

of conductors [91,92j. 

./' Design of mechanical componellls of the machine. We must decide the dimensions of stator, 

rotor, poles, interpoles,slots, teeth. shall etc . 

./' Calculation of various losses, temperature changes and if possible tweaking the motor to beller 

accommodate the cooling system . 

./' Define the insulators and lamination of conductors (thickness, coating etc.) used in the machine . 

./' Usage of materials and possible cost of these materials. 
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4.3 I\ luwcU1> Soflware Package fOI" Analysis of Eleclric 1'10101" 

The two-dimensional and three·dimensional simulation software for el~tromagnetic analysis. Maxwell· 

from Ansoft Corp. can carry oUi simulation in both frequency and time domain el~tromagnctic fields in 

complex 2D and 3D structures. In this thesis it is employed to simulate and evaluate the perfonnance of 

the 3.phase line·start pemmnent magnet synchronous motor 

4.3.1 Maxwrll 21) 

Maxwell 20 is a software package for two-dimensional simulation ofe1~tromagnetic fields. 

Using Maxwdl20 one can easily predict the transient and magnetostatic perfonnance of 

electromagnetic and el~trom~hanical component designs in virtual environment thereby giving 

a cheap and ready design prototype. The software provides the abi lity to simulate el~tromagnetic 

fields bolh in Ihe time and freq uency domains, as well as parametric modeling and optimization. 

Maxwell 20 is part of Ansoft's complete electrom~hanical design solution. The following are 

the typc of solutions providcd by Maxwcll 30 ". 

4.3.2 Two [)imensional (21ll AC l\1agnetic 

Maxwell 3D's AC Magnetic solver analyzes systems Ihal have signi fi cant eddy currents, 

displacement currents. and skin and proximity eff~ts. The software can simulate the full range of 

eddy.currentbehaviorin busbars.transfonllcrs,eoils,sensors.llautomaticallycalculates 

quantities, including but not limited to power and core loss, impedance at a given frequency, 

force. torque, inductance, and Slored energy. The power and core loss may be directly exported to 

ePhysics"'" for coupled themlal and stress analysis. Additionally, plots offtux lines. Band H 

fields. and energy densities over the entire phase cycle arc available. Using the material and 

airgap boundary condi tion with this solver. designers can simulate fields radiating from a device 

or within a electromagnetic device. 
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4.3.3 T wo Dimensional (2 0 ) DC Magnetic 

The electric conduction ficld simulator computes steady·state 2D or 3D electric fields in 

conductors due to current e;ttcitation or applied electric potential. As a source ofelectrie field. one 

consider following 

The voltage dilTercnce between surfaces and objects. 

The current excitation, total current flowing through a surface or a 2D object. 

The sink excitation, a collection of surfaces or 2D objects are called sink. One can apply 

sink excitations when only current e;ttcitations are dcfined in a conduction path and therc 

is no voltage e;ttcitation 

The quantity for which the electric conduction field simulator solves is the electric potential, $; 

the electric field (E'field) and the current density (J.field) are aut omaticallyca!cuiatcdfromthe 

potential using Maxwell's law. The resistance mat rix, a derived quantity. may be calculated from 

these basic field quantities. As an additional option, pcrfect ins ulators. that is,non·conduction 

regions, surrounding the conductors can also be added to the simulation domain allowing 

calculation of the electric ficldeverywhere includingtheinsulat ors 

4,3.4 EIl'"tlroslalkfield cakulalioo 

Maxwell 20 electrostatic field solver has a particular usefulness for the design of high voltage 

insulator, bushings and electrostatic discharge devices. This solver enumerates static electric 

fields due to stationary charge distributions and applied potentials. Thus the simulator 

automatically ca!culatesthe electric tield strength andelcctric fl u;tttieldsiineswhichinelTectcan 

bc useful to derive force. torquc. eoergy and capacitance from thes ebasic field quantities. 
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4.3.5 Magnctostatic Hcld Solution 

The magnctostatic ficld simulator computes static magnetic fields both in 20 and 3D analysis. 

This sourcc of magnctic field can be either DC current in conductors or static external magnetic 

ficlds reprcsentcd by boundary conditions or for our case permanent magnets. These applications 

are included in thesinmlation of motors, aCluators, scnsors, and [)Crn lancntmagncts.Thisfcature. 

which directly computes current distribution and the corresponding magnctic ficld ( H ), dcrives 

the magnetic flux density (B) from the H field and the nonlinear BH characteristics. For a 

specific magnetic material, we can also define 10 points in its BH curve based on empirical 

values ultimately which can lead to a successful establishment ofa new material. Magnetization 

can also be specified in Cartesian, cylindrical, or spherical material coordinate systems. It 

automatically calculates forces, torques, inductanccs, and saturat ion in dcvices eontaining linear. 

nonlinear, and anisotropic 1l1aterials. Evcn ifnot in standard 1l1achinc para1l1etcrs, a calculator 

exprcssion can bc used to conveniClltly calculate frequently use dquantities. An advanced 

nonlinear option allows fora second-pass analysis by the useofd istributed "frozen" permeability 

or magnetization. Thus, the analysis of devices containing non linear permanent magnets benefits 

from the increased accuracy of the simulation. The post-processor provides plots of flux lines for 

magnetostatic analysis, Band H fields, energy densities, saturation, and more 

4.3.6 Edd,' Current Anal\'sis 

The eddy current (AC magnetics) field simulator or harmonic solver computcs electromagnetic 

ficlds in thc frequency domain both in 20 or 30 simulation. It is based on the assumption that all 

elcctromagnetic fields pulsate with the same frequency and havem agnitudes and in itial phase 

angles calculated by Maxwell equation. There are no moving objects. As all materials are 
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assumed to be linear, pem13nentmagnets cannot be part of the model. Simulation also includes 

electromagnetic radiation. Maguetic field tangent is the boundary condition applied in regular 

cddYClllTCnt problems unless differently spe1:ified. The eddy eurrem field simulator solves the 

magnetic field, H , from which magnctic nu:.; density, B, is automatically calculated. Optionally. 

the eddy cUlTCnt solver can incorporate displaeement currents into the solution even in non-

conducting domains, thereby allowing the solution of the full system of Maxwell's equations and 

the recovery of the electric field E everywhere including the non-conducting regions. Quantities 

such as forces. torques, energy, losses, and impedances may be calculated from these basic field 

quantities for solution in frequency domain. 

4.3.7 Transient Anah'sis 

The transient field simulator calculates magnetic fields in time-domain both in 20 or 3D analysis. 

This magnetic field can come from 

Moving or non-moving time varying currents and voltages 

Moving or non.moving pem13ncnt magnets and/or coils. 

Moving or non-moving e:.;temal circuit coupling. 

This application can resolve the machine quantities for both translational and cylindrical rotation. 

Two of the basic quantities solved by the transient field simulator are the magnetic field. H . and 

the current distribution, j and the magnetic nu:.; density. B. is automatically calculated from the 

H -field. Eddy current effects (such as skin and proximity efTects) arc ignored for voltage driven 

str.lIIded conductors whereas they are included for voltage driven solid state conductors. Ma:.;well 

20"' uses thc fi:.;cd coordinate system for the Ma.xwell's equations in the moving and the 

stationary part of the model. Each component in a model has to be dedared according to a 
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specific coordinate system or a different coordinate system in case a different rotational dirC(;tion. 

The automatic output includes current. induced voltage. and flux linkage at every time step. 

Available outputs also indude the dynamic force or torque response. loss, and core loss, 

including eddy, excess, and hysteresis loss, induding minor loops. Maxwell 3D allows users to 

set up a variable, user-specified time.step profile. Thus, the time step can follow any arbitrary 

function of time, position. or speed, providing increased flexibility of the time-stepping solution 

process and leading 10 significant reduction in computational resources. Users can easily 

detemline core loss with Maxwell~. Core-loss coemcie11ls can be au tomatically extraclcd from a 

user specified core-loss characteristic. 

4.4llcsign Components in l\ luvrell- package 

For designing a model Maxwell- uses dilTerent software modules for dilTerent design challenges 

Drawing a simple induction generator can first invoke the RMxpert'" which cares for the cylindrical 

designofslatorsand rotors. An induction of an external circuit can becalTied out bya circui teditor; 

PExprt™ and PMxprtT!>' arc used for power electronic component (convcrtcr, lransfomlers elc.) design. 

Finally for simulation purposes we have Maxwell 20 and Maxwell 3D. The pertinent software modules 

which are lleeessary for successful design of permanent magnet synchronous motor are described. 

Rotational Machine Expert (RMxprt™) is an interactive software package used for designing and 

analyzing rotating elC(;trical machines. It has some commonly used electric-machine templates. 

RMxprtl'M can simulate and analyze the following types of machines' 

Three-phase and single-phase induclion motors. 

Three-phasesynchronousmachincs. 

Brushless permanent-magnet DC motors 
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Adjust-speed synchronous motors and generators 

Permanent-magnet DC motors. 

Switched reluctance motors. 

Linc-start permancnt-magnct synchronous motors. 

Universal motors. 

General DC machines. 

Claw-pole altcrnators. 

Threc-Pha~c Non-Salient Synchronous Machinc. 

Gcneric Rotating Machine 

Each machinc-specific template includes basic rotor and stator configurations, mIming strategies, 

and drive circuits. The tcmplates have auto-design compensating features that automatica lly 

detemrine minimum slot geometry to obtain the optimum flux dcnsity value. select the correct 

wire diameter for the slot, calculatc starting capacitance, and select winding arrangements. Any 

design anomaly is correctly indicated before any lengthy simulation takes place. RMxprtT" can 

automatically arrange almost all commonly used single- or double-layer poly-phase ac windings 

provided all coils ha\'e the same number oftums. Users do not need to define coils onc by one. [t 

also provide~ a very flcxible tool, thc Winding Editor, to allow user.; to design a varicty ofspccial 

winding types according to their own needs, such as compound single- and double-layer winding, 

big- and small-phase-spread variable-pole multiple-speed distributed winding, sinusoidal three­

phase winding, concemratic winding and so forth 

Spedalized templates like those for PM. BLOC, SRM allows the introduction of specific motor 

geometry which is nomrally not uscd in generic motor design and the use of aceurdte magnetic 

circuit algorithms to make sizing decisions and perfonnance estimates during the initial stage of 

the design process. These templates are handy because offeady availability or some established 
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design features which are not usually tweaked for funher pcrfOmlanCe improvement. The 

template-based interface is a convenient tool for calculation of critical design parameters, such as 

torque versus speed, power loss, flux in the air gap, and emcicncy. 

Fig4.1: Winding Type forRMxprtT " 

73 



..JgJ~ 

""'" T"~ In 5101 Out 5101 

C<>i' A 30 1T 6S 

~A 30 2T 7B 

~A 30 3T 8B 

Coi4 B 30 4T " ~B 30 5T ,"' 
~8 30 6T '18 

f;; PerlxkM~ 14 :::J 

Fig4.2:WindingEditorforRMxprt™ 

RMxprt™ can be used as a stand-alone design tool or as part ofa complete design solution. It is 

nonn311y trdiled by Maxwell J 2D or Maxwell l>3D for detailed electromagnetic field modeling. 

4.4.2 E:xternalCircuit E:ditor 

Tmnsicnt solver includes an external circuit coupling feature, complete with schematic to support 

arbitrary topology ofpowcr-clectronic drive circui ts and winding connections. Maxwell ci rcuit 

editorgraphicallyreprcscnts andcapturestheelectrical stn.Jcturcandchamcteristicsofacircui l. 

Such a circuit is designed by the schematic editor by placing components, such as linear and 

nonlinear resistances, capacitances. inductances, diodcs, controlled switches, independent 

sources, and voltage and current probes and wires into a default empty s chematic. 
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Fig 4.3: Few components used in Maxwell Circuit Editor Schematic 

PExprtTM is a software unit that specializes in design, analysis and optimization oftransfomlcrs 

and inductors found in power electronic applications. Using analytical expression, PExprtT" 

allows designers to instantly calculate all possible combinations of core size, core material, wire 

gauge, tums, and gap length thaI satisfy uscr-supplicdelectrical specifications. Traditionally, 

these cycles of design-build-test methodologies are trusted upon engineers with years of 

experience from trial and error. In conjunction with Fini te Element Analysis package like 

Maxwel!~ these designS 3re further streamlined and optimized to predict quantities such as 

magnet izing and leakage inductance, interwinding capacitance. peak nux density, AC winding 
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resistance,eddycurrcnt efTe<:ts, core loss and temperature rise. Equivalent circuit generation is 

another feature that takes inloaccount magnetic and themJaI prope rties. The basic features of 

£>Exprt™can be given as: 

Design inductors, multi-winding transfomlers, coupled inductors, and flyback type 

components. 

l30th sinusoidal and square input wave can be used. 

Design of boost, buck, buck-boost, forward, push-pull, half-bridge. full-bridge and 

flybackconverters. 

Construction paranteters like core shapes, size, material. gap, wire Iyp eandgauge.and 

winding strategies are also considered to optimize the magnetic de sign. 

Analysis takes into accounl comp1cx efTecIs, such as skin and proxi mityefTe<:ts, fringing 

flux near the air-gap for energy calculations, and incremental pemlCability as a function 

of the field strength as well as winding position and stacking, including interleaving. 

intra-winding capacitance, temperalure, losses, gapelTect and end elTect,paraliel 

conncctionetc 

These can be modelled seamlessly by importing Simplorer- , which is a powerful multi-

domain system analysis software program. 
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Fig 4.4: Design windowof PExprl™ 

PEmag™ is a magnctic design software expert in detailed analysis of geometry, frequency and 

material effects not considered by PExprl™. PEmag™, predominantly used in magnetic 

component design, has a special intcrface for Ansoft- 's electromagnetic finite clement analysis 

Users are allowed to select from a varied trove of commercial cores, wires, materials etc. to create 

goometry and virtually build and simulate transfomlers, which are otherwise subjected to frequent 

4.5 Design application and worknow of Maxwell 2D 

Designing a model in Maxwell· essentially starts with selling up a new project in RMxprt™. In this 

module we draw a ncw model based on cxisting templates with necessary modification. We definc the 

materials and boundary! sources, then add the solution type in Magnetic and Electric analysis. After 
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which the model is imported on u Muxwe1l20 or 3D pancl to perfoml further magnetic analysis. The 

wholc procedure can be cxplained in a simple now-"Chart: 

Fig 4.5 Flow chart for Maxwel11> 20 

4.5.1 Creating a project for l\1axwe1l2D 

When the project window is opened in Maxwel1 1> a default blank projcct is opened 
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Fig 4.6: Project window ofMa:o;well1> 2D 

Maxwell® analyzes the 2D gcometry as a cross-scction of the 3D model, and then generates a 

solution for that cross-scction of the model. This a:o;i-symmetric model takcs advantage of 3D 

geometry that exhibit ro tational symmetry about an axis. To kick-start a project we can insert a 

RM:o;prtdesign. 

We can selcct any of the six options from the number of solution type for the type simulation 

from the same model. These six options include Magnetostatic, Eddy Current and Transient in 

1l1agllctic simulation and Electrostatic, AC conductioll and DC conduction ill electric simulations. 

All these options areexplaincd brieny in the earlier part of this chapter. 
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4.5.2 Drawing Ihe Proieci 

As I Slaled in paragraphs before, we can select from a palene of built- in designs as a base for Ollr 

new model. Although building a model should literally mean a variegated posse of new 

parameters but these arc not radically changed from the machines already in vogue. Like for line­

start permanent magnet synchronous motors, the stator structure is almost same as induction 

motor but the rotor has extra space for permanent magnets. OUT design changes mostly revolve 

around the shape, size and allocation of magnetic nlaterials 

For the twelve optiOllS given as a basis for new motor design, we select the line-start pernmnen\ 

magnet synchronous motor as having the closest resemblance to our model. This gives us three 

separate part stator. rotor and shaft design to fi ddle with the parameters . 

4.5.2.1 Stator Slot Ilesign 

There arc six User Defined Primitives (UDP's) 

(,) (b) 
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Fig 4.7 (a,b,c. d. e. I): Si)(scparale structure (or stator slol 

For our model we selected 4.7(c). Every single length (BsQ, £lsI, Bs2, HsO, Hsl, Hs2) is 

clls\omiz.able through user inpul 

Now Maxwell supports three ty~ winding half-coiled, full coiled and user-defined. One can also 

select number of layers, number of parallel branches and number of serial branches, number of 

conductors per slot, number of strands. wire size and wire wrap. 
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Fig 4.8 (a): Whole-coiled concentric Fig4.8 (b) half-coiled concentric stator 

stator winding arrangement winding arrangement 

4.5.2.2 RolorSlot Design 

For rotor bars, similarly dimensions can be selected from a pool of four designs. Pennancn! 

magnet machines do not have an external connection 10 the rolor, SO bar conductor types, ending 

length,endingring widlh,endingring height and ending ringma !erial can besclcctcdunderrotor 

designs 

4.5.2.3 Rotor l'olcGeometries 

Depending on the arrangement ofmagncls numerous rotor geometries aTC possible. Maxwell 

provides some basic templates in their design pool. 
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Fig 4,9 (a,b,c.d): Various rotor pole structure. 

After successfully designing slalor, rotor and shaft we can either convert this RMxprt design to 

Maxwell 20 design or we can import a completely new Maxwcll2D template. Maxwel1~ gives us 

a wide range tools like line. polyline, spline, rectangle. sphere, box. core etc. to draw a new 

obj!Xt 
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Maxwell 2D modeler gives us the flexibility of using standard tools like cutting, sweeping, 

moving and rotating etc, where axi-symmetric object can be replicated around a definitive axis or 

anexternalshapccan bc brought to make necessary changes to the original shape 

For bellerdesign flexibility, an external CAD software Autocad~ is used. This software has a 

broad acceptance among engilleers for concise and conspicuously placed tool icons. The 2D 

models are exported to an external Autocad- window through the file extension .dxf. After 

necessary modifications the model is brought back to Maxwell- window for simulation purposes 

Figure 4.10 shows the dmwing window of Autocad l> 

L 
Fig 4.1 0: Drawing window of Autocadil> 

84 



4.5.3 Sctti ngullt hc prohlcm 

Analyzing a pemmnent magnet synchronous machine involves three steps. 

4.5.J.1Assig nmarerialslo oblects 

We can assign to each object in the model a separate material. Maxwell in herself has a libnlry of 

predefined allributes for commonly used materials in Maxwe112D. These definitions are locked, 

so that they cannot be changed or altered. 

Fora material not in the li st. users can define anew material and add it to the library. For such. 

they have to define 10 points in the BH curve (pemlitlivi ty-pemleability) or conductivity. 

Maxwel1" lets users set Ihe polariwtion of each magnet ic object. in our case the polarization was 

circumferential for eaeh magnetic object. Moreover Maxwel1" lets users validate if the range of 

values specified for each material propcr1yisreasonuble 

4.5.3.2 Setting uphounda n · condilion 

Maxwel1 3D automutical1y assigns boundaries to the objects in the model based on the material 

propcrtiesassigned to it . Boundaries specify theaetion of an electric or magnetic field within the 

edges of objects. Boundary conditions can also be used to simulated magnetically isolated. 

eleclricallyinsulatedstructure. It is especial1y helpful in simulati ngafieldpanernthatis 

replicated throughout the whole region but drawn only a part of it or the patterns produced by tiny 

layers (like eddy current). There are six types of boundary conditions de['Cnding on the solver 

VectorPOlential 

Symmetry 
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Balloon 

Impedance 

Resistance 

Master/Slave 

For our models in Ma)[wel1~ 2D, we used Master/slave condition. The mathematical boundary 

conditions used in Maxwell ll is both the Neumann and natura l boundary condition. A brief 

description of these boundary condi tions is given in chapter 3. 

4.5.3.3 Assigning voltage and r ur r ent sourre excita tion 

Depending on the solver we have to define three basic types of sources, voltage, current or 

elcetric or magnetic field. At least one object or edge is either a source or value boundary 

Voltage sources are avai lab le for the Elcctrostatic, DC Conduction, AC Conduction and Transient 

solver types. Voltage sources spedfy the tota l DC voltage (elcetric potential), or the magnitude 

and phase of the AC voltage on a conductor. 

Current sources arc available in the Magnetostatic, Eddy Current, and Transielll solver types. The 

current value cannot be assigned dircetly in a coil. Normally a terminal is used as a cutaway of 

the coil. Dircetion of current source is also defined when a current sourcc is added. 

We can alw add eddy effects or core losses in this phase. 

4.5.4 ()efinill g fo n' es to rques and re la ted \'a lues 

We can assign force or torque parameters fo r a ll Magnetostat ic, Elcctrostatic, Eddy Current and 

transient solver. Assigning a force or torque for an objcet must be followed by dcelaring a 

reference frame for the objec\. 
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For any magnctostatic problem. capacitance. inductance, or imp edancearedeclaredinmatrix 

foml. A matrix calculation, where the elements arc defined based on excitations. may include coil 

tenninals, OUlerterminals etc. In case of inductance matrix, th e source is a current excitation 

4.5.5 Setting upthea na ln is 

In finite element analysis, mesh operation is run when subdividing the motor cross-section into 

smaller elcments. In MaxwelL mesh operations are optional. Mesh refincment setlings provide 

Maxwell with mesh construction guidance. We can use both tctrahedral and triangular elements 

for meshing operation. The length of these tetrahedral clements can be refined within a surface or 

volllmeunti1theyarcbelowacertainthresholdorthcyarewithinaspecifiedvalue.lnol.lTcase 

we used triangular elements for our simulation. Fig 4.11 shows a mesh plot for a concentrated 

stator winding pennanent magnet machine. 

Fig 4.11: Mesh plot for concentrated winding pennanent magnctmachinc 
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Once the model is set-up, a solution setup must be added for analysis in any solver. The options 

for solution setup ineludcs 

Range and increments of any data input to the solver 

I'rccisionofresult 

Number of times solution will be repeated. 

Simulation run time 

Time step also defined as the function of time, speed. and position. 

4.5.6 Solving Ihc problem 

·'Time should be set to zero" after every aborted simulation. If we want to run simulation more 

than one simulation at a time, we should go with ··Analyze option". We can use other PC on the 

network for running the operation from a remote place. ·Distributed Analysis" can be used to 

share the resources from other Pc. 

4.5.7 I'oslprocessor 

After the simulation is run, we can either display the data or analyze them. View data give us the 

option of viewing the information like convergence infomlation, computing resources used, 

output variables and parameters available and matri)[ data. Or we can analyze these data by 

creating reports of RLC matriccs and basic and derived field quanti ties. Derived field qualltities 

are lIser defined ealclilator expression. These reports can be plotledon a eross section plane, in 

three dimension planeorata specific point. 

The Ma)[well" gives us usability to perform the complex finite element analysis wi thout writing the 

complicated codes but through a Graphic User Interface (GU I) and complicated tools. Infommtion shared 

in this chapter is based on Ansoft websi te [40], user manual and design experiences. All steps to perfonn 
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the operation in this chapter are funher explained in Appendix A. In the next chapter, [ will explain some 

models for experimental studies and difficulties faced during the construction of those models 
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Chapter 5 

Simulation and Results 

As part OrOUT study, we built 3 models based on basic rotor structures using Maxwell !> lind AutoCad" . 

Simulations are run on these models to make a compari~on among the already established results and the 

result~ found from Maxwell" , In this chapter, the models are presented along with simulation results 

presented to provide a full comparison among these models. 

5. 1 Wor king Model 

The motor models built in this chapter are established and used for higher efficiency line-stan interior 

pCOllancnt magnet synchronous machines (lPMSM). The specifications of pertinent design data orlhesc 

PM motors aTC given in tables. The standard aluminum rolorcage is used \0 provide the capability orline 

frequency starting and synchronization. The pennanent magnet materials used in the rotor are NdFeB 

(Neodymium Boron Iron) or NEOREC· 38SH. The NEOREC magnet is a new product. surpassing the 

Rare Earth Cobalt (REC) magnet. The main raw materials are neodymium, a rare-earth clement. common 

iron and boron. Its magnetic characterist ics at the mass production level reach 49MGOe in maximum 

energy product(BH), achieving 50 to 80% high perfomlance with 10% reduction in specific gravity 

compared with samarium-cobalt magnets [93j 

Since finite elemcnt analysis is limited to 20, the cnd effects due to the end shorting ring resistance are 

treated bya modification of the rotor bar conductivity and the stat or end winding leakage nux has been 

accounted. 
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5.2 Stnlight shalle line-sta rtIPM SM 

The first model to be designed is the interior permanent magnet synchronous motor (lPMSM) with 

straight shape motor arrangement. Here permanent magnets arc buried below the rotor surface and below 

the stator slolled surface and the smooth rotor surface. Fig. 5.1 shows the cross section of II'MSM with 

5tmight magnet arrangement. Necessary flux barrier of PM exist at end of the magnets to direct Ihe 

magnet flux north-south across the airgap. This is one oflhe first configuration arrangements in IPMSM 

design. 

Fig 5.1 shows only one-fourth cross-section ofa 4-pole line-start interior permanent magnet synchronous 

motor with straight-shape magnet arrangement. The specification for this motor is given in Table 5.1. 

Magnetic 
nO' 

barrier 

p;rt;:~~:tn'l---!-- -
Magnet 

Stainless 
steel rotor 

shaft 
~ 

alrgap 

Stator 
Copper­

Conductor 

Stator 
Slot 

Stator 
Back 
I"," 

Rotor 
~---4--- Conduction 

Cage 

Fig 5.1: Cross-section of line-start IPMSM with straight-shape magnet arrangement 
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Table 5.1: Specification of straight.shape permanent magnet synchronous motor 

Power Rating 687kW 

Line Voltage 195V(P.P) 

Rated Current 3A 

Base speed 1500 rpm 

No. of Phases 

No. of Poles 

No. stator slots 24 

No. of cage slots 24 

Conductors '6 
Connection 

Winding Layout Single layer 

Stator Outer Diameter 128mm 

Stator Inner Diameter 77mm 

Rotor Outer Diameter 76.2mm 

Rotor Inner Diameter 16mm 

Rotor Length 70mm 

End Connection Resistance 2.86601 e-006 ohm 

End Connection Inductance 1.62855e-0Q9H 

As stated before the stator of a permanent magnet synchronous motor is essentially identical with that of 

AC induction motor of comparable rating. A three phase distribu ted winding is used to produce a near 

sinusoidal spatial distribution of rotating magnctomotive force in the airgap. Stator has a single layer, 

whole coiled winding with only one pamlle1 bmnch. Only two strands of wires with a diameter of 
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0.5llmm in stator slots are connected as AACCBB. We used a special laminated core material 

"50www470" whose B-H curve is given as 

06 "'.y2011 

g:~!d,=~'--~-==---7'.00~,,,,.oo=,--~==---d 
H (A...J)eI_m« .. ) 

Fig 5.2: BH curve for the material "50www470" 

The magnets used here are radially magnctized,thestator side of the magnet has North Pole and rotor 

side of the magnet has South Pole. So magnet field lines starts from the North and lravels all the way 

through the stalor and comes backs to South. Rotor cage bars are used 10 dircctthe tlux lines Ihrough the 

air gap. Fig 5.3 shows the tlux lines foroo]y one pole and Fig 5.4 shows the flux density in difYerent parts 

of motor. 
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Fig 5.3(a): Flux lines for line-start rPMSM with straight magnet arrangement 

Fig 5.3(b): Flux density of line-start IPMSM with straight shape magnet arrangement 
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5.2.1 Performa nce ln"estiga tion of Straight Sha pe line-start IPM SM 

The Backward Euler time integration method has been used for simulation. Initia lly the simulation was 

ron for 4 seconds with a time step of 0.02 ms. The simulation results are not satisfactory and simulation 

hits a snag mid-way through the simulation period of 4 sec. The speed-time response does not reach to the 

synchronous value (at 1500 rpm for 4- pole 50 Hz motor) if we choose a time-stepping of 0.02 ms. We 

increased the time step from 0.02 ms to 0.1 ms within a time span of 50 ms for the expected perfomlanee 

results. Even at 0.1 msthe simulations fai led to achieve synchronous speed. We investigated and found 

thatlhe losses at asynchronous speed are responsible for these unsatisfactory results not reaching 

synchronism. The [PMSM rotor is highly non-linear. The Ansoft FEA simulation package (Maxwe1l2D. 

version 12.0) has problem with the 11'MSMduclosatUflIlionandchangcsofreiat ivepermcab il ity 

_.oo Cj...,~~_~,-~~~...,=-~~~,..,=,.~~_-.--,_C"~~---::I ...... 
Ii!!!I..1!!!l1 

Fig 5.4: Torque - time response for line-start IPMSM 
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Fig SA shows the simulated torque versus time response. It is to be noted from the torque time response 

of Fig SA that the rotor torque shows significant hunting, and fai led toanain successful synchronization. 

When the bigger time-step of 0.1 ms is used, the torque response shows noonal operation considering the 

iron losses due to high-frequency harnlonics. Fig. 5.5 shows simulated induced voltage versus time 

wavefonn of the straight shape IPM motor. When the time-step ofO.02ms is used the induced w3vefornl 

shows significant harmonics. However when a step of 0.1 ms used including the core losses, the induced 

voltage wavefoml is nomlal. following the ex~tcd pattern. [t is found that unsatisfactory torque and 

induced voltage response arc subjected to higher <:ore and solid losses. The core loss and solid loss 

phenomena of this [PM motor has been 

Fig 5.5: Induced voltage - time response for straight shape line-start IPM$M 

investigated. Fig 5.6 shows the wre loss versus time eurve during t he ron-up and nearsyn<:hronous for 

straight shape lI'M motor. The core loss variation of SW to 8.SW occurs during the asynchronous period. 
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J[ stabilizes at 8.5W; Fig 5.7 shows the solid loss versus time eurve for straight shape IPM motor. The 

abnonnality of torque response at asynchronous speed is due to core loss and solid losses in the !PM 

motor. The details of core loss and solid loss arc briefly provided in sub-seetionof 5.4.1 ofthisehapter. 

3.00 · 

Fig 5.6: Core loss-tirne response forslraightshape line-start IPMS M 
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Fig 5.7: Solid Loss-time rcs[)Onse for straight shape line-start lPMSM 

5.3V-Shapc line-sta rtIPM SM 

The design of a V-shape permanent magnet rotor pole has many geometric degrees of freedom [94]. With 

single-layer design of the pole magnet it is possible \0 have a high percentage of reluctance torque to the 

IOlal developed torque [95]. Changes to the electromagnetic design like introduction of V-shaped magnet 

arrangement provide the nceded mechanical robustness of the rolor geometry at maximum speed plus the 

requiredsafcty factor but the mechanical robustness of the rotor often contrastst hcuccdsofthe 

electromagnetic design in tenus of leakage flux clc. A mechanically optimized dc~ign could result in a 

low utilization or the PM flux and therefore leads 10 higher costs for the IPM motor [96]. 

Fig 5.8 shows a cross section of V-shaped line-start IPMSM where the permanent magnets are placed 

vertically with the shaft of the rotor instead of horizontally in the ro tor. In this arrangement, necessary 

flux barrier was created in the rotor at the top and bo1101l1 of permanent magnet location to guide the flux 

lines through the rotor to the air gap of the IPM motor. Conducting materials like aluminum were used in 
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the rotor cage bar to make the flux as perpendicular as possible through the airgap. The magnetic material 

used here is the NdFeB magnets and has circumferential magnetization. So magnetic flux lines starting 

from North side of the magnet goes through the airgap, stator tooth, stator back iron and returns back on 

thc South sidc ofmagnct. Fig 5.9 shows thc flux lines and figure 5.10 shows the flux density for V­

shaped line-start JPMSM. The majorproblcm in the simulation of this magnet arrangement is the 

magnctic flux saturation in the rotor iron material. This saturation is highlighted by red shade in Fig 5.10 

which shows thut high flux dcnsi ty around the top of the NdFeB magnetic material. This problcm is 

overcome by introducing a conducting material bar at the top of the magnet. which is explained in the 

next model. 

The specifications for the motor are given at Table 5.2. The stator windings arrangement is the same as in 

the previous model, but in place of"50ww\\,470" we used laminated steel in stator core. The stator has a 

single layer. whole coiled distributed windings with only two parallel branches. There are only \1','0 

strands of wires with a diameter of 0.511 mm, and they arc inserted in the stator slo\s in AACCBB 

arrangement to produce a ncar sinusoidal spatial distribution of the magnctomoth'e force (MM F) in the 

airgap 

Table 5.2: Specification ofV.shaped pennanent magnet synchronous motor 

Power Rating 687kW 

Line Voltage 114.31V(P-P) 

RatedCurrcn\ 3A 

Base speed 1500 rpm 

No. of Phases 

No.ofPo1es 

No. stator slots 24 
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No. of cage slots 24 

Conductors 56 

Connection Y 

Winding Layout Single layer 

Stator Outer Diameter 128mm 

Stator Inner Diameter 77mm 

Rotor Outer Diameter 76.2rnm 

Rotor Inner Diameter 16mm 

Rotor Length 70mm 

End Connection Resistance 3.43715e-OOOOhm 

End Connection Inductance 1.95246e-009H 

Momcntofincrtia O.0273kgm· 

Load Torque 7 Nm 

Fig 5.8: Cross-section of line-startlPMSM with V-shaped magnet arrangement 
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Fig 5.9: Flux lines for line-stan IPMSM with V-shaped magnet arrangement 

Fig 5.10: Flux density distribution for line-stan IPMSM with V-shaped magnet arrangement 
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Fig 5,11: Speed - time response for V-shaped line-stan IPM SM 

5.J.1 Perform llnce !n\'('stigation 

The results shown here ure not from physical experiments of a motor but from simulations of I PM 

synchronous motors where a commercial software package is used. The software is heavily dependent on 

the user inputs like changing relative pemleability and magnets arrangement and may show an absurd 

result ifeverything does not fall in the right groove. 

The novelty of the !PM synchronous motor is its usage of pemlanent magnets to replace the dc excitation 

which also create an extra MMF thereby magnetic nux to eonncctthe st3tor winding. The perfonnance of 

the !PM synchronous motor depends heavily on the magnet choice, their energy product, relative 

permeability anddircction of the nux lines tTavelling in theairgap. 

Fig 5.11 shows the simulated speed versus lime response for a v _ shaped II'M synchronous mOlor with 

NdBFe magnets. It is to be noted that Fig 5,11 shows a nat line instead of the typical run-up response 

curve for an Il'M motor having V_ shape magnets arrangement. So we proposed to change the magnetic 
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material from NdBFe to NEOREC-SH as well 3S Ihe orientation of the material location as shown in Fig 

5.13. The second quadrant orthe B·H curve with H of950kAlm and B," 1.2ST of NEOREC-SH is shown 

in Fig 5.12. [tsrclativc permeability (",.) is close to 1.1. The new simulation is run for 4 secondswitha 

time-step 0(0.02 milliseconds. Fig 5.14 shows the run-up speed response illustrating the typical speed 

curve of an II'M synchronous motor. The run-up lime is quite fast with Iypical overshoots and settles in 

smooth synchronization at 1500 rpm (for 4-polc 50 Hz IPM motor) 

When Ihe motor is connected 10 a balanced 3-phase 50 Hz system, it runs-up toward synchronous speed, 

using ils rotor cage winding. This run-up torque is comprised ora steady time averaged accelerating 

torque and a pulsating torque. The resu ltant al;l;e]l;rating torque is responsible for propelling the rotor 

forward while the pulsating torque produl;es noise and lIibration during starting period. The resultant 

motor torque is comprised of two components one is l;al1ed the induced cage torque and the other one is 

magnet torque. The cage torque depends highly on stator winding rcactance and rotor resistance, and the 

magnet torque depends on air gap excitation reactance and back-electromotillC: force (EMF) [32]. Fig 5.15 

shows the torque lIersus time response of V-shape line-start lPM synchronous motor. The torque response 

is quile nomlal for the line-start lPM synchronous motor with minor dip for a lIeT)' short period. 

Fig 5.16 shows the induced lIoltage-time response of V-shape line-start lPM synchronous motor. Fig 5.17 

shows the current-time response of the V-shape lPM synchronous motor with the same loading 

conditions. 
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Fig 5.12: Dcmagllctizatioll curve ofNEOREC Magllet 

Fig 5.13: Flux density for V-shaped (ille-start ll'MSM with an illilial angle of ·45" 
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Fig 5.14: S[)Ccd-timc respon~c of V-shaped line-start If'MSM 

Fig 5.15: Torque-time response ofV-shapcd linc-slartlrMSM 
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Fig 5.16: Induced voltage- time response of Y - shaped line-start ll'MSM 

Fig 5.17: Induced current-time response ofY-shapcd line-start IPMSM 
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5.4 Parl ia l V_shape line-slart IPMSl\1 

Fig 5.18 shows thc cross-section of one quarter of a partial V-shape JPM synchronous motor. For this 

motor the four-pole magnets arrangement in the rotor is oriented in partial V-shape for a high-field-type 

II'M synchronous motor. The model rotor has Ihc following distinctive design features. 

I) The fluxes from both sides of the magnet aTC concentrated effectively in the middle of the 

magncticpolcs of the rotor. 

2) The reluctance of the d-axis is larger than thaI oflhe q-axis, ~ausc Ihc d-axis flux passes 

across Ihe magnet with high reluctance. Large reluctance torque can be obtail1cd [100]. 

3) The large pull-in torque can be obtained due 10 deep conduction cage bars in the rotor. 

4) The conducting material between Ihe magnet and the rotor core is made from aluminum and 

has both functions of the flUll barrier and conduction cage bar. 

In particular. the conducting material on the magnet neartheairg ap decreases the magnet leakage flux in 

the rotor iron core and causes large reluctance torque. These features are different eompared to the 

configurations of the V-shaped line·start I' M synchronous motors in the previous model. 

Furthermore. the number and configuration of rotor slots have been successfully designed so that the 

waveform of the induced electromotive force (EMF) due to the PMs is close to the sine waveform and the 

cogging torque is low [97]. The magnetic material used here is NEOREC-SH which is circumferentially 

magnetized, so that it shows almost the same magnetic flux lines (contours). Fig 5.19 shows the finite 

element grids of one quarter of the partial V.shape II'M synchronous motor. Fig 5.20 shows magnet flux 

lines (contours) of partial V-shape lPM synchronous motor. Fig 5.21 shows the magnet flux densi ty 

characteristics of the partial V-shapelPM synchronous motor. 
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Tablc 5,}: Specification of partial V-shaped permanent magnet synchronous motor 

Power Rating 687kW 

LineVoitagc 140.}IV(P-P) 

RatedCurrcnt 3A 

Base speed 1500 rpm 

NO.ofPhascs 

No. of Poles 

No. stator slots 24 

No. of cage slots 24 

Conductors 56 

Connection 

Winding Layout Single layer 

Stator Outer Diametcr 128mm 

Stator Inner Diamctcr 77mm 

Rotor Outer Diameter 76.2mm 

RotorlnncrDiameter 16mm 

Rotor Lcngth 70mm 

End Connection Resistance 3.43715c-0060hm 

End Conncction Inductancc 1.95246e-009H 

Moment of inertia 0.0278kgm· 

Load Torque 3.82Nm 

The pcrtinent design infommtion is in included in Tablc 5.3. The calculated value ofinductanec for stator 

winding is 0.OO28509H and resistance is 5.09 O. The voltage in stator winding was set at 130 volt first for 
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the experimental motor, because the power t:1ctor at no load is low at this voltage from V-curve as the 

experimental result shows. But the simulated motor could not stan or synchronize with the large load 

inenia at 130Y. Therefore we chose the rated voltage at 140V L-L considering the requirement of 

sufficient line-stan capability and the efficiency-powcr-factor product. Fig 5.22 shows the simulated 

speed-time responses with 3.82Nm load when the motor is supplied with balanced three phase \'oltages at 

a rated frequency of60 Hz and rated voltage of 140V. The inenia of the rotor;s 0.0278kgnf2. The results 

showed in Fig 5.22 are during the run-up and synchronizing period when time-steps are set at 0.02 

milliseconds and initial angle was set to -45' . Fig 5.23 shows the torque-time response for this model 

Fig 5.24 shows the input current (phase A) vs. time response for this model. As the motor is COllnected to 

a balanced three phase system of voltages so the input current for other two phases should be the same 

and mutually displaced by 1200 The induced current has a number of han no nics until the motor reaches 

the synchronization speed of 1800 rpm. This time is almost 2.5 seconds for higher stator inductance and a 

large load. Fig 5.25 showsthe;nduced vol tagevs. time curve. Fig5 .26 shows the magnetic ll ux lines 

changes against a nomlalized distance of rotor. 
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Fig 5.18: Cross-section of line-start JPMSM with partially V-shaped magnet arrangement 

.-

Fig 5. 19: Finite Elements (grid) for partial V-shaped lPMSM for magnetic flux distribution in the motor 
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= 
Fig 5.20: Magnetic flux lines (contours) for partially V-shaped line-start IPMSM 

FigS.21: Flux density for partially V-shaped line-slat1 IPMSM 
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Fig 5.22: Speed-time response of line-stan panial V-shaped IrMSM 

Fig 5.23: Torque-time response ofpanial V-shaped !ine-stan lPMSM 
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Fig 5.24: Motor current-lime response p3r1i31 V-slmpcd linc-~13r1IrMSM (Ph3se A) 

Fig 5.25: Simulaled voltage versus lime waveforms oflinc-star1IPMSM 
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Fig 5.26: Flux lines vs. Normalized distance for partial V.shaped IPMSM 

5.4. 1 Loss Calculation 

Iron losses are eaused by eddy currents and hysleresis losses in the iro npath.lron losses oceur in the 

stator back structure (yoke) and stator iron teeth and stator iron br idgesand losses due 10 saturation. These 

losses are defined as stator iron loss. Also iron losses occur in thc ro tor iron core of an IPM synchronous 

motor. This is called rotor iron loss. These two stator iron losses and rotor iron losses are defined as core 

loss in the tr'dnsient finite element analysis used in this thesis [99]. Fig 3.27 shows Core loss \'ersus time 

curve ofparlial V shape [PM synchronous motor 

Copper loss consis ts of stator / R loss in stator iron and rotor conduction cage. These two copper losses 

are defined as solid loss in transient FEM analysis in the cOlllextofthis thesis 

Stray load loss consists of mechanical losses like friction and windage loss, stator tooth los5es, losses 

arisingductosaturation in statoralld rotor iron lamination and stranded steady.state and transicnI losses 
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This is usually called slandard (const:mt) loss. Fig3.28 shows St andardlossversustimccurveofthe 

partial V- shape IPM synchronous motor. Fig 3.29 shows all the losses vs. time curve ofthc partial V­

shape [PM synchronous motor. It is to be notcd that tmnsient losscs are high but the steady-statc losscs 

only 5-8% of the partial V-shape [PM synchronous motor. 

Fig 5.27: Core Loss- timc response for partial V-shaped line-start IPM SM 
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Fig 5.28: Standard Loss- time response of partial V-shaped linc-start lPMSM 

Fig 5.29: Loss-time report on part ial V-Sh3ped line-start IPMSM 
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5.4.2 Airgap flu x Distribution ea leulalion 

The length of the air gap innuences the shape in the air gap nux density distribution. The leakage flux 

around the end of the magnet is mainly behind this shape change. The nux crossing the airgap funncls 

illtostatorleethwhichisalmosthalfthespaceinstatorperipheryat a radius halfway down Iheslo1.So 

the ai rgap length increases with each stator ~101. Given the magnet type. the increase of air gap length will 

result in the distortion of the maximum nux density. Fig 5.JO plots Ihe airgap nux density against 

nOnJlalizedrotordistance 

For this analysis we had to carry magnetostatic field simulation on this model. The procedure is carried 

Olll for maximum 10 passes with a limit of 10% error on each pass. Pennanent magnet is the sole source 

of excitation in this case and the maximum length of each clement in FEA is set 10 Jmm . 

• ~ 0.00 

·~ :\ •. oo=---~~=---~~::C-~~;:;ro.=-oo ~~;:;~.Coo~~=:--~=:--~:c:! 
OISla...,. [mm) 

FigS .30: Flux distribut ion \"s. nonnalizeddistancceuf\lc. 
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5,4.3 BlIck-Ei\lI<ClI lcullltion 

Maxwelli1: commercial package does not offer the options of directly calculating back-EMF for 2D 

analysis of an II'M motor model. So we used the concept of"blocked rotor test"' where the rotor is 

blocked so that it cannot rotate. Hence slip is equal to unity and balanced three phase voltages are applied 

to stator terminal. The blocked rotor test should be pcrfomled under certain voltage and frequency for 

which the performance is already known. This test dcmands a prior knowledge of leakage impedance. So 

we set the stator winding 1cakage resistance and induclance to Ihe lowest value. 

We artificially set the output torque \0 zero, the motor was running at rated speed 1500 rpm. and set the 

winding current to OA. The simulation was run for 50 ms with a time step of 0.1 ms and from the induced 

voltage in the air gap. the back-EMF is computed. Fig 5.31 shows the back-EMF wavefomlS. 11 is 10 be 

noted that the back-EMF waveforms of partial V-shape JPM synchronous motor contain significant 

hamlOnics. The harmonic contents are expressed by the 10lal hamlonic distortion factor (THD). The 

orientation and shape of rotor permanent magnets influence the THD of this se<:tion. The minimization of 

the THD factor for IPMSM is auempted in this thesis. 

Fig 5.31: Back EMF- waveforms for partial V-shaped [PMSM 
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5.4.4 Coggi ng Torque Calt' ulation 

Cogging torque is the result of the interaction between Ihe permanent magnets and stator slot opening in 

the air gap. CogginS torque adds a ripple component to the desired constant output torque from the 

machine. This can produce vibration and noise which ill effect. reduces the performance oflPM motor. 

The cogging torque characteristics are susceptible to millor loop excursion caused by magnet shape and 

size. magnet nux barrier angle or even stalorslot depth [98] 

In Finite Element Analysis, Ihe cogging torque is computed from magnetic energy variation. For an open 

circuit analysis, no electrical energy exchange is permitted through the motor terminals; we set the input 

current to 0 Amp. A rigorous constant speed of 1800 rpm (synchronous speed) was imposed to avoid any 

other inenial torque contribution. Cogging torque was calculated from output torque. Simulation was run 

for 60 ms with a time step of 0.12 ms. Fig 5.32 shows the cogging torque versus time curve for partial V-

shaped line-stan IPM synchronous motor. 

Fig 5.32: Cogging torque vs. time curve for panial V-shaped line-stan IPMSM 
119 



5.5 Parlhll V·shane wilhcnnccnlralcd winding 

Sialor concentrated winding is becoming popular to be used in place of the distributed winding in cases of 

many electric appliances. However, their usage is mainly limited to low speed operation where motor size 

is not an issue. The issues of concentrated windings arc not dealt wi th vividly in this thesis 

However few models are established to show some promising results. Fig 5.33 shows the cross section of 

partial V-shaped line-start lPMSM wi th concentrated winding in two dimcnsional views. Fig 5.34 shows 

the flux line contour for the same motor and Fig 5.35 shows the flux density distribution ofa typical line-

start lPM synchronous motor with concentrated stator windings. 

Fig 5.33: Partial V-shaped line-start lPMSM with concentrated winding 
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Fig 5.34: Flux lines in partial V-shaped line-start IPM SM with concentrated winding 

1.8112.·_ 

1.5'ze._ 

Fig 5.3S: Flux density distribution in part ial V-shaped line-start IPM SM with concentrated winding 
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Simulation results shown in this chapter show a good agreemellt with already published result or Dr. 

Kazumi Kurihara and Dr. M. A. Rahman during their work on high-efficiency line-stan interior 

permanent magnet synchronous motors [39]. The established results rrom their experiments are attached 

in AppendixB. 
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Chapter 6 

Conclusion and Future Work 

The design of line-start interior permanent magnet synchronous motors depends on accurate calculation 

of starting and synchronous pcrfonnal1ccs. Traditional equivalent circuits and lumped parameter model 

fail to take into account saturation. complex shapes and arrangements of permanent magnet, flux barriers 

induced eddy currents etc. Finite Element Analysis is of great help as it formulates a variational 

expression called energy functional. For electromagnetic field problems, this energy functional is the 

energy stored in the field. Using this method the field region is subdivided into smaller units and from 

energy functional fomlulalions.unknownquantiticsarecalculalcdforcachc1cmcIll. For pre<:iseclcclric 

rnachineperfommllce evaluations, a combination offiniteelemen t analysis and eoupled eireuit analys is is 

required for a minimum wmputational effort. On this line, the first siage is the analytical procedure to 

develop a unified lumped parameter circuit model. The mond stage should follow the e.~lraction of 

lumped parameters using finite elcmcnt analysis. 

The first chapter of th is thesis is an overview of early history on the development of pennancnt magnets 

and their application in modem motor technology. The chapter summarizes the inclusion of finite clement 

methods for the analysis ofpemmnent magnet machines and recent advances made in recent years in the 

field of finite element analysis of pem13nent magnet synchronous motors. 

The second chapter gives a generalized lumped parameter model for line-start interior pennanent magnet 

synchronous motors. A per-phase equivalent circuit is proposed taking into account the s.alicncy ofa PM 

motor and the influence of core losses. Park's transfonnation is used to transfoml the motor quantities 
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from traditional abc coordinates to dqO coordinates. Finally based on these a torque expression is 

developed based on coupled circuit method. 

In the third chapter, a Finite Element approach is explained for analysis of interior pemlanent magnet 

synchronous motors. This chapter explains the major steps in solving a finite element problem. Based on 

Maxwell' s lheory first energy functional is developed. From these energy functional fomlUlations, 

pertinent motor paramcters likc inductances and pcrformances like torque can be calculated. These are 

explained in lhe later part of the chapter. Maxwell'" 2D as a software package to employ the finite clemen! 

method is also introduced in this chapter. 

The adven t of modem computing power, computer aided design technique makes possible the 

cmployment ofnumeriealmethodslike Newton- Raphson (N- R) method, Jacobi's method for solving 

traditional motor problcms. In the fourth chapter, how computer aided design tools can better address 

various design complicacies of line-start permanent magnet synchronous motors is explained. A step-by­

step proccdure is given to make a model in Maxwe[[~ 2D and to solve various design parameters ofa 

line-start lrM synchronous motor 

In chapter 5, simulation models and results for various line-start i111erior permanent magnet synchronous 

motors are presented. As part of this study, we built 3 models based on basic rotor structures using 

Maxwell" and AutoCudll. Simulations were run on these models to make a comparison among the already 

established results and the results found using Maxwell" . Although lhe straight shape magnet model of 

line-start IrMSM shows some starting perfom13llce lapse for higher core loss and standard loss, lhe V_ 

shal)C and partial V-shape rotor pem13nent magnets show good starting and synchronous performances. It 

is to be noted th3t, perfom13nce of partial V-shape II'MSM is in good agreement with already published 

results. 
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The main objective for this thesis was to develop a unified approach for design and modeling of line-start 

synchronous motors. This objective has been achieved. [n that process three basic models were analyzed 

and a comparison was made among the models with perfornlance graphs and results found from 

simulation results 

The work presented in this thesis is the first phase of design and development of an Interior Pernlanent 

Magnet Wind Generator under the NSERC strategic gran!. Although in motoring application usage of 

permanent magnets is very wide, in power gcneration they have not gained that strong a foothold. As in 

the later part of this research, a "Double-Layered Interior Pem13nent Magnet Generator" with straight and 

pi shape rotor structure is already developed. The optimization of the PMs is established based on the 

induced electromotive force (EMF), hannonic contents of the stator current and torque ripplcs at low 

speeds. The optimiwtion shows that the n-shape double-layered permanent magnets geometry is capable 

of inducing an EMF with the high magnitude and low harmonic contents, along with producing stator 

currents with the low hamlOnic contents and minimum torquc ripples [101]. The finding from this 

research is accepted and awaiting publication at International Electric Machines and Drives Conference 

2011 (lEMOC2011) 

[n future, the research will be extended to work on IPM wind generator based on various rotor structures. 

The main objective will be proposing rotor layouts to increase the air gap flu;t.: to ensure high induced 

terminal voltage at low operating speeds of typical [PM wind generators. 
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Appendix A 

Setting Up a Maxwell Design for IPM motors 

The stcp~ given in this Appendix arc obtained from Anson Manual [40]. After inserting a design, one 

does 110\ nced 10 perfonn the basic steps sequentially, but they all must be completed before a solution can 

be generated 

To set up a Maxwell design, follow this general procedure: 

Insert a Maxwell design illlo a projcrt. After you insert the design, you can then SCI the model's 

units of measurement and the background material. 

2) Draw the model geometry. 

3) Specify the solver Iype. 

4) Assign material characteristics to objects 

5) Assign boundaries and excitations. 

6) (For Transient Solutions Only) Set up motion 

7) Add parameters for which you want to solve 

8) Spet:ify mesh settings 

9) Specify how Maxwell will compute the solution. 

10) (Optional) SCI up any oplimelries you want to run , 

11) Run the si mulation. 

12) View solution results, post-process results, view reports, and create field overlays 

13) (Optional) Export the I;irl;uit 10 generate 3 I;ircuil equivalent of the model. 

For simplicity the steps are tuekl;d down to bare nominal as explained below. 
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11 Inserting 3 Maxwell Design 

The first step in setting up a Maxwell Projcrt is to add a design to the active project 

To insert adesigl\" 

I, Click Project and select one of the following' 

Insert Maxwell 3D Design 

Insert Maxwell 2D Design 

Insert RMxprt Design 

2. The new design is listed in the project trce. 11 is named Maxwe1l3DDesignl!, Maxwell2DDesignfl, 

or RMxprt Designfl by default, where II is a number signifying the order in which the design was 

added to the projcct. 

,..IIiIITcdswndow!-lelp : ::::::::: J fl {nsertRMxprtDeSIQII 

lnse<t~I.I1leI"tabonFiIe 

II Project::i""~s 
I2.at:Mets 

Fig A.I: Menu for inserting a project 

The Modeler window appears to the right of the Projcrt Manager. You can now create the model 

gwrnetry 

Note: 

138 



Click the plus sign to the lell ofthc design icoll ill thcproject tree tocxpand the projccttree and view 

specific data about the model 

2) Drawing a Mode1 

Aller you insert a design into the current project. you can draw a model of the electromagnetic structure 

The geneml strategy is to build the model as a collection of 3D objects. You can assign any single 

material to each 3D object 

ICI McdeIef Maxwei2D Ta. 

1·' 1.ile 
'\, SPR ,,, 
~~ EQI.OOon Based Cll'Ve 

D B ...... 0_ 
o ~de 

o &eooJarPdr9Jll ...., 
I,lsefDef'nedPrinitive 

b ".. 
o fort 

Fig A.2: Drawing Menu for Maxwell 20 

You can create 3D objects by using the modeler's Draw commands or you can draw 10 and 2D objects, 

and then manipulate them to create 3D objccts. Objects are drawn in the 3D Modeler window. You call 

also impon objects from other systems, 

To open a new 3D Modeler window, do one of the following: 

Insert a Ilew design into thecurrcnt project. 
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• Double-c1iek a design in the project tree. 

The model you draw is savcd with the current projcct whcn you click File>Save. 

Note 

If you access your machine via Remote Desktop, ifMaX\\!ell is running and one or more modeler 

windows arc opcn. those modeler windows automatically close. The message manager window displays a 

message indicating that Maxwell closed the modcler windows. 

Note 

If the menu command is unavailablc, thcn the selected design is already in the modeler window. 

3)Specif\' ino the Soh'er Type 

Before you begin to draw the models in your projcct, choose which field solver to usc for it. Each solver 

requires a diffcrcnt type of problem setup. If you later change the solvcr. all problem setups bccome 

invalid, and all solutions are deleted. Because Oflhis, it is a good idea 10 decide on a solver before 

startll1g. 
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To specify a solver' 

m=:Ei Toois Wi1dow ~ 

XUionIYP" 

[j L.ist .. 

~ ~~O:;nCheck 

(III &W"rz~AI 

:&! EcittiOtes ... 

Qes9lSettnQs .. 

TraosiateMet""ialDatabase ... 

t:1eshOperations 

Analysis:~<..P 

Qptinettics~sis: 

E-...... 
~reat~30~siI;jn ... 

ExportEQlivIllertCirclit 

The<.....alri:. for f:/6YS Mechlri::ai ... 

DesQ'1erope<ties .•• 

DesQ'1Q.at~s ... 

FigA.3: Menu for specifying a solver 

I. C lick Maxwell2D>Solution Type or Maxwell 3D>Solution Type. 

The Solution Type window appears with the solvers generally split between Magnetic and Electric solvcr 

types. 

I For Maxwel12D designs, select onc of the following solver types: 

MagnCiostatic 

Eddy Current 



Transient 

Electrostatic 

AC Conduction 

DC Conduction 

4) AssigniugMalerials 

You can add, remove, and edit materials in two main ways: 

• Using the Tools> Edil Co nfigured Libraries>l\1atcria ls menu command . 

• RighHlicking Materials in the project tree and sclecting Edit All Libraries. 

I ~ I o~:: .~ I """'"" -- "'" -- ''''''''' , .... ~ 
, .... ~ , ... ~ 
5!"ll>r1ll' ·1193 

S!"ll>rlll' " " , ..... ~ ~ - -

Fig A.4: Menu window ror editing a material 



Editing definitions from the project window does not modify the configured libraries for any particular 

design. To consider the current design, use the Tools>Edit Configured Libraries option. Doing so 

ensures that ncw libraries are added to the configured lis t for the CUTTent design. [fyou edit materials 

from this command for the current and then export them, they will also be avai lab le \0 assign \0 objects 

in other designs 

To assign a material to an object. follow the general procedure: 

I. Select the object to which you want to assign a material 

2. Click Modl'lcr>Assigll J\13\crial ~ 
The Select Definition dialog box appears. When the Show all libraries checkbox is sele<:tcd, 

thc window lists all of the materials in Ansoft's global material library as well as the project's 

local material library. 

You can al~o open the Select Definition window in one of the following ways: 

In the l' rOlle rties dialog box for the object. click the material name under the Auributes 

tab. A drop.down menu shows an Edit ... button tha t opens the Select Definition window. 

The menu also lists materials included in the current project. Selecting one of these mate­

rials provides another way to assign materials to an object. 

Right-cliek Model in the project tree, and then click Assign Material on the shortcut menu. 

Right-click the object in the history tree. and then click Assign Material on the shortcut 

3. Select a material from the list. 

Note: 
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You can search the listed materi31s by name or property value. 

If the material you want to assign is not listed. add a new material to the global or local material 

library. and then select it. 

4. Click OK 

The material you chose is assigned to the objec\. 

Note: 

In the history tree. by default. Maxwell groups objects by material. To change the default. selcct the 

object icon and right-click to display the Group Objects by Material checkbox. 

5) Assigning Bnundaries and Excitations for]O Designs 

For cvcry project. you nccd to assign boundarics and cxcitations. For]D designs. you can use the 

Maxwcll3D menu or the projcct tree to do the fo llowing: 

Define boundary conditions that control how the clectric or magnetic field behaves at object 

faces. planes of symmetry and periodicity, and edges of the problcm region. 

Define excitations of \'oltage. charge. coil, and current 

Identify conductors in which eddy currents are induced 

For magnetic transient projects, set up a winding and an external circuit connection 



Took wndow ~ 

SWim Iype ... 

Ill "" .. · ar y'aIldotionCheck. .. 

III~zeAl 

El Editf:jotes .. 

QesiglSettn;.s ... 

T,~eMd;er~Dotobase ... 

~shOperatm5 

"'"""''''''' tptrnetrlcsAnaiysis 

'''"' ..... 
!:r~"'3DDes91 ... 

Export Eq,Jivaleot Orco..it 

TherrMILH<.forb!f5Y$M&cIwical ... 

Des91!Joperties ... 

Desql~asets .. 

8.SsiQrl y.ectorPotent~ ... 

B&aSsiQrl .. · ~ymmetry ... 

QeleteAl eaIoon··· 
y'isualzation... ~ster ... 

~DefdBaseNMle,= __ .:. .. :.".:. .. __ 

:~ l 
Fig A.S: Mcnu for assigning boundary conditions 

Each field solvcr requires you to specify cxcitations of electric or magn etic lields and rcfcrcnces for 

computing these lields. 

Magnetostatic Boundaries and Excitations 

Elcrtrostatic Boundarics and Excitations 

DC Conduction Boundarics and Excitations 

Eddy Current Boundarics and Excitations 

Transient Boundaries and Excitations 
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• Electric Transient Boundaries and Excitations 

One must specify at least one of the boundary conditions or excitations listcd in these sections, so that 

the simulator can compute accurate values for fields and parameters 

6) SeHing Up Molion ror Transient Projects 

For transient projects (where you sc!ccted transient as the solution ty pe).you n<;ed to define how the 

model components move in relation to one another. This is accomplished by assigning a MOlion Setup 

toa Band object. 

For Maxwell2D designs. two bands may be assigned with independent motion characteristics. Multiple 

motion bands are primarily for certain types of motors where multiple rotors may rotate about a common 

central axis; howevcr. other applications are possible. For example. the project shown below is 

comprised of two rectangular magnets. each surrounded by a band object with a Motion-Setup assigned 

to it. When one magnet moves. the other magnet realigns itself. Also note that the solution context 

display shows the position and speed for both motion setups, 

146 



II [ Wll/n ] 

2.07Sge·OO~ 

t 5592e-003 

Fig A.6: Motion band Maxwell '" design 

7) Adding Solution Parameters 

When you assign a solution paramctcr, the solver calculates the p aramcter value as part of the solution 

process. The table shows the solution parameters tha t may be calculated based upon the solver type. 
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SolutIon Type DDMG Yl40 

M~ic 

r M~OI:tatic 

r EddyCureni 

r. Tr~ient 

Eled!ic· 

(" Eled!ostatic 

(" ACCono:Lction 

(" DCCono:Lctioo 

FigA.7: Menuforspccifyingasol ution 

Table A.I: Solution parameters for Maxwell Design 

Parameter 3D Solvers 2DSolvers 

For~errorque Magnetostatic Magnetostatic 

Electrostatic Eleetrostati~ 

EddyCurrem Eddy Current 

Transient Transient 

Matrix Magnetostatie Magnetostatie 

Electrostatic 
Electrostatic 

Eddy Currenl 
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8)Sp('df,' mesh seltings. 

iii!ii Tools wnoow Help 

SoIo.tionI,.poe 

~ List 
~ :tali.1.Y:ionCheck" . 

ml ~eAl 
:@) Editt:lOtes ... 

~5oet~ .. 

TfMSiateMateriaiDMaruse ... 

..,.,. 
~ies 

txchtions 

~~~ 

Qptrnel:ricsAr"lalysis -B"'" 
~reMe3DDesq1 ... 

Exr.q-tEqU\iaert.ucuit 

ThenT.al Linkfat!NSiSMecharOc~ ... 

Desq1~opeftie5 , .. 

Desq,IlM"setS ... 

Assq, , ... ,,'" 

r 
FigA.8: Menu forspccifying mesh operation 

9) Spedfyin g Solution Settings 

Specify how Maxwell computes a solution by adding a solution setup to the design. You can define 

more than olle solut ion setup pcrdesign. Eachsoilltion setup includes: 

• General data about the solution's generation 
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Adaptive mesh refinemenl parameters if you wanllhc mesh 10 be refined iteratively in areas 

of highest error, 

olve Setup [8J 
General ! Save Fields I Advanced ] Solver I Olip.iVariabies l Delds l 

TransienlSetl4l 

r Ao»ptive Tine Step 

Stop tine 

Tineslep: 

Iilm! 

10,01 ~ 

"IO =OO2~---~ 

Fig A.9: Window for adding a solution setup 

To add a solution setup to a design: 

I. Sele<::ladesigninlheprojecltree. 

2. Click Maxwell3D>Analysis Setup>Add Solution Setup or Maxwe1l2D>Analysis Setup>Add 

Solution Setup 
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Alternatively, tight click Analysis in the project tree, and then click Add Solution Setup on 

the shortcut menu. 

The Solve Setup dialog box appears containing several tabs 

For Non-Tmnsienl Solutions 

The foliowing tabs are present for non-transicnt solutions: 

General 

Convcrgencc 

Expression Cache 

Solvcr 

FrequeneySweep 

Dcfaulls 

111eludesgeneral solution settings 

Illcludesscttingsforconvergcncc. 

Contains an optionalli~t of expressions that you 

can spc<:ify for convergence critcria 

lncludcssellings for nonlinear residual and mattix 

solver type. 

Includes sett ing for varying Ihe frcquencyofan 

Eddy Current or AC Conduction solution. 

NOTE: This tab is present only for Eddy Current 

and AC COllduetioll solutions. 
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For Transient Solutions 

The following tabs are present for transient solutions: 

General 

Save Fields 

Advanced 

Solver 

Expression Cache 

Defaults 

For Electric Transient Solutions 

Includes general solution settings. 

Enables you to create a time point list for saving 

field sol utions. 

Supports user control program, magnetization and 

impor1 options. and computing various data for 

links. 

Includes settings for nonlinear residual solver 

type 

Contains an optional list of expressions that you 

can spedfy for evaluating solutions. 

Enables you to save thc current settings as the 

defaults for future solution setups or to revert the 

current settings to Maxwell's standard settings. 

The following tabs are present for electric transient solutions: 

I General I lneludesgcncral solution setting.'). 
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Solver 

Expression Cache 

Defaults 

). Spedfy the desired settings on the tabs. 

Includes settings for initial condition, temporal 

tolerance, computing power loss data, importing a 

mesh. and enabling thennal feedback from 

ANSYS Mechanical 

Contains an optional list of expressions that you 

can specify for evaluating solutions. 

Enables you to save the current sellings as the 

defaults for future solution setups or to revert the 

eurrentsellings to Maxwell's standard settings. 

4 If you want to disable an individual analysis, unehe<:k the Enabled checkbox. Refer to Disabling 

and Enabling an Analysis Setup for additional infonnation 

5. If you want to use the default values, click Use Default. 

6. Click OK. 

10) Q JlIillIClrics (Q])tional) 

Optimctries enables you to detennine the best design variation among a model's possible variations. You 

create the original model. the nominal design. and then define the dcsigll parameters that vary, which 

can be nearly any design parameter assigned a numeric value in MaxwelL For example, you can 

parameterize the model geometry or material properties 

153 



WiiEi Teds Wi"o:X;.w ~ 
SoU:iootype ... 

01 ", ... 
~ ~SlationChed<. ... 

cmJ ~zeAl 
Jg) Editl!lotes ... 

3O~Edtor 

Qes915etti1Qs ... 

TraoslateMd;er~Dd:~ 

'--,,:;-;:-. ="=""'--= ·'-----7. ;:; ==~:: .. 
B.eds • "* Add seos;tivly 

!jeete30 Desql... II Addst~istic~. "J 
Export Eqo..;valeni: (relit • ')1 llS'le 

TheffMI Lu for (>J6YS Mechanical. .. 

Oes91eroperties .. I" 
_""""'....: . ...: .. _-_,_··· ____ --'1 

Fig A.IO: Menu for adding a Optimctrics solution 

You can then perform the following types of analyses on your nominal Maxwell design-

Parametric In a parametric analysis, you define one or more 

variable sweep definitions. each spcdfying a 

series of variable values within a range. For 

example. you can parameterize component values. 

(See Variables in Maxwell for more infonnution.) 

Oplimclrics solves the design at each variation. 
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Optimization 

Sensitivity 

Tuning 

Statistical 

You can then compare the results todetemline 

how each design vanation affcctsthe performance 

of the design. Parametric analyses are often used 

as precursors to optimization solutions because 

they help to determine a reasonable range of 

variable values for the optimization analysis. 

Foran optimization analysis, you identify the cost 

function and the oplimization goal. Optimetrics 

changes thcdesign paramclervalucs to lllcctthat 

goa\. The cost function can be based on any 

solution quantity that Maxwell cancolllpute. 

In a sensitivity analysis, yon useOptillletrics to 

c)tplore the vicinity ofthcdesign point to 

determine the sensitivity of the design to Slllall 

changes in variables. 

Tuning allows you to changc variable values 

interactively whilc lllonitoring the performance 01 

thcdcsign. lfyouwanttoensurethattuningdoes 

not resolve variations already solved by 

paralllclric setup. you rnustcheck Save Fields 

Mesh in the Options tab of the optimetrics setup. 

In a statistical analysis. you useOptirnetrics to 

detcnninethedistributionofadcsign'S 
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perfonnance. which is caused by a statistical 

distribution of variable values. 

I[)RunningSimuJations 

After you spcdfy how Maxwell is to compute the solution, you need to begin the solution process. In 

general, the Analyze command applies to the selected setup and associated sweeps, if any, or to a select 

sweep. To use this command, right-click on a setup or sweep in the Project tree, and click the command 

on the context menu. The Analyze All command applies to all enabled setups at Of below the level 

invoked in the Project tree. To use this command, either click Maxwell 2D Of Maxwell )D>Analyze All 

or right-click on the Analysis icon in the Project tree and select Analyze All from the popup menu 

III!d Toois _ _ 
_ :tn>o " 

il l,iIt .. 
" ~_O>od. .. ...... 

--------,... 

""" ..... lrl< for lfPS'fSMocI>oriuiI, •• 

Oe>91er_ .. , _ ....... 

FigA.JJ:Menllforrunningsimulation 
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What do you want to do? 

Solve a single setup with or without sweeps 

Solve a specific sweep 

Enable a queue so that multiple simulations can run sequentially as res ourcesbecome 

available 

Run moTC than one simulation, whether mul liple setups, or multiple swe epsunderasingle 

setup,orselUps with dependencies 

Monitor queued simulations 

Configure and run remote analysis 

Configure and run distributed analysis 

Monitor the solution process 

Change a solution priority for system resources 

Abon an analysis 

Re-solve after modifying a design 

Re-Solving after ANSYS Thermal Link Feedback 

12. 1 Vlewin!! Solulion llata 

While Maxwell is generating a solution, or when it is complete, you can view the following infOnl13tion 

about the solution: 

Convergenceinfom13tion. 

Computing resources. or profile information, that were used during the solution process. 

Output Variables computed during each adaptive, non-adaptive, Of sweep solution. 

Output Parameters and Matrix Data computed during each adaptive, non-adaptive, Of sweep 

solution 
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• Mesh data 

Note 

Since adaptive mesh refinement is not perfomled for transient solutions, convergence data is not 

available for Transient analysis. 

• The state of solved solut ions. 

To access the Solutions dialog box, in which the infonnation above can be accessed, do one of the 

following· 

Click Maxwe113D, Maxwe1l2D, or RMxprt and then sele<:t Resultp Solution Data 

Right~click Results in the project tree, and then click Solution Data on the shortcut menu 
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Fig A. 12: Menu for showing a resu lt 

12.2 I'ost Processing Ilnd Generating Reports 

When Maxwell ha~ completed a solution, you can display and analyze the results in the followin g ways: 
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Vicw solution data including the following: convergence infommtion. computing rcsources 

that were used during the solution process, mesh statistics, and matrices computed during 

each adaptivc, non-adaptive, or sweep solution. 

View analysis results for Optimetrics solutions. 

Plot ficldoverlays representations of basic or derived field quantities on surfaces or 

objects. 

Create 2D or 3D repons ofRLC matrices and basic and derived field quantities 

Plot the finite element mesh on surfaces or within 3D objects. 

Crcatc animations offield quantities, the finiTe clement mesh. and defined projecT variables. 

Usc the Ficlds Calculator to perfomlcomputations using basic field quantities 

11.JCreaTing Repnrls 

After Maxwell has generated a solution, all of the results for that solution are available for analysis. One 

of the ways you can analyze your solution data is to create a 2D or 3D repon, or graphical 

representation, that displays the relationship between a design's values and the corresponding analysis 

results. You creatc repons using either the Create Quick Rcpon command. or the Crcate <type> Rcpon 

commands. The Quick Repon feature lets you select from a list of predefined categories (such as S-

parameters)fromwhichtocreatearectangularplol. 

For each solution type (Electrostatic, Magnetostatic, AC Conduction(2D only), DC Conduction. Eddy 

Current. Transient, or Electric Transient(3D only). the Results menus present a list of Create <type> 

Repon commands based on the solution data of direct interest for the design. Forexamplc, for the 

Magnetostatie solution type. the Results menu contains templates for Magnetostatic Parameters and for 

Fields.These appear on the menus as Create Magnetostatic Report and Create Fields Repon. Each of 

these Create <type> Repon menu items includes a funher cascading menu thatlis\s the Display Types 

available for that repon. 
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If you have created custom report templates (for example, including your company namc or other fomlat 

changes). you can also create a report based on that template by selecting Maxwell 20, Maxwell 30, or 

RMxprt>Results>Report Templates>PersonaILib><templateName>. 

12,41'Iotting Field O\'e rla\'S 

Field overlays are representations of basic or derived fie ld quantities on surfaces or objects for the 

current design variation. You can set the design variation via the Set Design Variation dialog. This 

dialog box is acccssible from the Solution Data window via by clicking the ellipsis button on the right of 

the Design Variation field, and via the Results>Apply Solved Variation command. 

To plot a basic field quantity: 

I. Selcrt a point, linc, surfacc, or object to create the plot on or within. You may also select a plane 

or object list in the History Tree. 

Note 

For 2D Designs, a plane selcrtion must be consistent with the dr,i\ving plane or an error will result. 

Ifit docs not exist, create it. 

2. Click Maxwell3D or Maxwell2D and then select Fields>Fields. 

Asubmcnuappears. 

3. On the Fields submenu, click the field quantity you want to plol. 

If you select a scalar field quantity, a scalar surface or volume plot iscr catcd.lfyousclectavcctor 

ficldquantity,avectorsurfaceorvolumcplotiscrcated.lfthcquantityyou want to plot is not 

liMed,useCa1culatinga Derived FicldQuanlity. 

The Create Field Plot dialog box appears 
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The Specify Name field shows a name based on the field quantity you selected, and the Quantity list 

shows the field quantity selected. 

4. To specify a name for the plot other than the default, select Specify Name, and then type a new 

name in the Name box. 

5. To specify a folder other than the default in which to store the plot, select Specify Folder, and 

then click a folder in the plill-down list. 1'101 folders are lisled under Field Overlays in the 

project Iree. 

Note 

All plots (field overlays) in the same folder have the same scale settings. To plol the same field wilh a 

differenl scale, you can create or move the new plot to a separale folder. By default, current density plots 

are stored in a folder called 1, but you can specify a different or new folder. I'lois in different folders 

have a different plot keys. 

6 Select the solution to plot from the Solution pull-down list. 

7 Select the field type to plot in the Field Type pull-down list 

8 Under Intrinsic Variables, select the time at which the field quantity is evaluated. 

9 Select the field quantity to plot from the Quantity list 

10. Select thc volume or surfacc (rcgion) in which to plot the field from the In Volume list 

This selection enables you to limit plots to a volume or the intersection of a volumc alld the selected 

object. You may select multiple volumes in the list by holdillg down the CtTI kcy while clicking. 

Note: 
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The In Volume list should be used when plotting on a surface which has a discontinuous ficld solutiol1 

across the boundary to select the object on one side of the surface 

II. Optionally, you may scle<:t the Plot on surface only checkbox to obtain a plot around the 

out-side edge of selected objects. 

12. Click Done. 

The field quantity is plotted on the surfaces or within the objects you selected. The plot IIses the 

attributes spe<:ified in the Plot Attributes dialog box. 

The new plot appears in the view window. It is listed in the specified plot folder in the proje<:t tree 

If you have created a field plot on a simulation in progress, the field plot is updated after the last 

adaptive ~olution. 

If you want to update the field overlay before then, to view progress in the solution, select the Field 

icon in the Project tree that contains the field plot of interest, right-click to display the shon cut 

menll, and select Update Plots. 

To tum ofTthc display ofthc plot. right click on the plot and select Plot Visibility from the shon-cut 

menu. Unche<:king Plot Visibility turns ofT the plot display. 

13) Exportin g Equlva lcnt Circuit Data 

You can export lumped R, L, C data from a Maxwell solution to Ansoft SIMPLQRER or Saber fom13t. 

Importing the new data file to SIMPLQRER or Saber enables you to include wave effects in the circuit 

simulations. 
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An cquivalcl1l circuit can be exported from a parametric solution or from an imported table 

Notc: 

You can only export an equivalent circuit from a parametric solution when the following two criteria are 

The solution type is Maglletostatic or Electric. 

A parametric setup exists. 

IiEIEI TooIs'NiodowHe!p 

SoUionlype··· 
01 ", .. 
II ~~ct-.eck. .. 
t~I ~~AI 

~ EditUOtes ... 
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Fig A,I): Menu for Exporting solution data 
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Appendix B 

Results from Published Literature 

In the ir papcr"High-Efficicncy Line-Stan Interior Pcnnanent-Magnct Synchronous Motors" [39]. Dr. 

Kazumi Kurihara and Dr. M. A. Rahman ran a series of simulations on a partial V-shape interior 

permanent magnet synchronous motor. The photograph of the experimental motor is given in Fig 8.1 

FigB.I: Expcrimcntalrotor 

The specification and results from simulat ions of the experimental motor are given below' 
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Fig B.2: Cross-section of experimental motor 

Stlltor: Oute r diamete r 12S.0mm 

Inne r diame te r 77.0uun 

Stack le ngth 70.0ulIn 

Number o f slots 2. 

Conductors p e l· .slo t 56 

Roto r: Ou t e r d iameter 76.2mm 

Co r e length 70.0mlll 

luertia O.OO15kgm 2 

Load: Inertia O.0263kgm 2 

Fig B.3: Design data of experimental motor 

1 ~r\J' · ' 00 

·200 

Fig 13.4: EMF gcncr,lIed by ]'Ms. 

166 



Fig 8.5: Computed speed- time response at various time-steps 

r..,.,(.) ,., 
FigB.6 Inpu(Currcntvs.timeresponscincompuledandmeasurcdresults 
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Fig B.7: Computed speed- time response at various ini tial angles 
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Fig B.8: Comparison between measured and computed speed-time response 
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Fig B.9: Computed and measured results of input current versus output power 
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Fig 13.10: Measured results of run-up responses under Vl f control 

(a) Speed response. (b) Current response. 
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