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ABSTRACT 

This study addresses the potential for interaction between escapee farmed and wild cod 

following escape from aquaculture sea cages. The first chapter introduces the topic offish 

escapes from a behavioural perspective. The second chapter investigates the role of 

suboptimal conditions and individual temperament on net biting behaviour. The data 

suggest that appropriate feeding levels combined with cage enrichment, as well as good 

net maintenance, may lead to reduced net interactions and thus fewer holes, reducing the 

potential for fish to escape. In the third chapter, I used acoustic telemetry to determine the 

spatiotemporal distribution of local wild cod and escapee farmed cod following a 

simulated escape. Farmed cod dispersed from the cage site rapidly and mixed with local 

wild cod, suggesting a high potential for interactions and highlighting the importance of 

reducing escapes before they occur. These results can be applied to reduce the number of 

escapes, streamlining the development of the industry before mitigation becomes too 

difficult and costly to implement. 
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l. Introduction and overview 

Aquaculture has beco me a majo r supplier of fish in worldw ide markets, 

representing 46% of the g loba l food fish supply fo r human consumptio n, and it is 

growing more rapidly than any other food-produc ing sector (FAO 20 I 0). The vo lume of 

farmed fi sh and she llfish nearly tripled between 1995 and 2007, driven by the dec line of 

natural fisher ies and increased co nsumer demand (She lto n and Rothbard 2006; Nay lo r et 

a l. 2009). Environmenta l and economic problems have fo rced the aquaculture industry to 

improve the qua lity a nd rate of production. However, fi sh escapes remain a pers istent 

pro blem fo r a lmost a ll cultured spec ies (Jensen et a l. 20 I 0). Escapes are economica lly 

detrimenta l to the farmer and ra ise co ncerns abo ut aquaculture's env iro nme nta l 

sustaina bility (Hansen et a l. 2009) . The pro blem offi sh escapes is st ill unreso lved despite 

improvements by the industry to reduce the inc ide nce and severity of such events. 

Do mest icat io n is inherent in the process of plant and anima l culture, due to huma n 

intervention dur ing the culture of a spec ies in an unnatura l env ironment. Traditiona l 

agriculture is land-based, a nd cultures a lien-invas ive (nonnative) spec ies, or spec ies that 

a re no lo nger s imilar to wild conspec ifics due to the ir histo ry of domest icat ion, such as 

corn, wheat, poultry, and cattle (Vigouroux et a l. 20 II ) . T herefore, the risk of interaction 

w ith w ild conspec ifics is neg lig ible; however there is a risk of establishing an invas ive 

a lien population, such as from escapes fro m zoological parks (I UCN 2002; Pimente l et a l. 

2005; DAISIE 2008; Huntingford et al. 201 2). Unlike trad itiona l agricultu re, aquacu lture 

often grows cultured species in the ha bitat of the ir nat ive conspec ifics (e.g. Naylo r et a l. 

2005). 
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Interactions between escapees and wild po pulations can have detrimental effects 

both genetica lly and ecologically. Differences in morpho logy, physiology, and behav iour 

arise from differences in rearing environments and se lective breeding, favo ring desirable 

traits such as fast growth and delayed maturation, but such differences can a lso arise 

through the variable survival of individuals in culture systems (Einum and Fleming 200 l ; 

Huntingford 2004; Bekkevo ld et al. 2006; Diana 2009). These differences, including the 

lack of local adaptat ion and lower genetic variation due to sma ll founder populations 

(Huntingford et al. 20 12), can be ma ladaptive a nd result in a reduced ability fo r farmed 

fish to survive in the wild (Wilson 1992). When farmed fi sh interbreed w ith wi ld fish, the 

fitness ofthe wild population can therefore be lowered through hybridization events and 

outbreed ing depress io n (Fleming et al. 2000; McGinnity et al. 2003; in cod see Ug lem et 

a l. 2008). Offspring o f such c rosses often have intermediate or poorer performance than 

the parental populations (Einum and Fleming 1997; reviewed in: Utter 1998; Bekkevo ld 

et a l. 2006; Hindar et a l. 2006). In addition to the genet ic impacts of escapes, there can be 

negat ive eco log ica l effects. Domestic strains are often more vulnerable to diseases tha n 

wild strains, and can potentially transfer novel pathogens or parasites into the local 

env iro nment (Wilson 1992; reviewed in Naylor et a l. 2005). Escapees can a lso compete 

for food, habitat resources, and mates o nce in the wild, o r impact populations through 

direct predation such as on sa lmon smo lts (Brooking et a l. 2006; Naylor et a l. 2005). 

Fish escapes occur in large, relative ly rare episodic events, such as extreme 

weather, as we ll as occurring at a low, constant leve l of leakage (Jensen et a l. 20 I 0). Fish 

can escape through ho les in the net that are caused by mechanical abrasion, external 

predators, and by the fish themselves biting the net (Dempster et a l. 2007). Some fish, 
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such as sea bream (Dicentrarchus labrax) and Atlantic cod (Gadus morhua), are 

particularly prone to escape because oftheir behavioural tendencies to explore and bite 

the net walls of sea cages, rather than schooling like salmon (Dempster et al. 2007; Moe 

et at. 2007; Hansen et al. 2009; Rillahan et al. 20 II). As a further impact to the 

environment, cod are able to spawn inside cages and release genetic material into the 

environment (Jorstad et al. 2008). Norway is currently the world ' s leader in farmed cod, 

and they report an escape rate of I% per year, much higher than the rate of 0.2% for 

farmed salmo n (Jensen et al. 20 I 0). It has been suggested that suboptimal conditions such 

as feeding, biofouling, net damage, and over-crowding may further encourage net 

interactions (Hansen et al. 2009; Moe et al. 2007). 

In the northern Atlantic the aquaculture industry is dominated by salmonids 

(Naylor et al. 2005), but the industry is diversifying to include other marine species such 

as Atlantic cod (Gadus morhua), Atlantic halibut (Hippoglossus hippoglossus), and 

haddock (Melanogrammus aegle.finus) (Rosenlund and Halldorsson 2007; Paisley et a t. 

20 10). At lantic cod helped to fuel the economy and culture ofthe northern At lantic for 

hundreds of years (Kurlansky I 997) . In addition, cod is one of the top predators of the 

marine food web (COSEWIC 20 I 0). Following the decline of cod stocks in the northeast 

At lantic and their co llapse in the northwest Atlantic in the late 20th century, the s low 

recovery of wild stocks has led to an increased incentive to farm cod (Myers et a l. 1997; 

Brown et a t. 2003, DFO 20 12). Although interest in farming cod has waned recently due 

to numerous factors includ ing economics and a resurgence of wi ld cod stocks, upon 

increased demand for cod there is potential to further deve lop cod aquaculture (Bo lton­

Warberg and Fitzgera ld 20 12). However, the low abundance of coastal cod populations in 



addition to the localized genetic structure of these populations increases the risks of 

adverse impacts of escapes from cod aquaculture (Ruzzante et al. 200 I; Hutchings and 

Baum 2005; Bekkevold et al. 2006; COSEWIC 20 I 0). Wild coastal cod populations are 

therefore vulnerable to escapees from even low industry leve ls, and thus there may be 

considerable local impacts. 

4 

My thesis addresses the potential for interaction between escaped farmed and w ild 

cod and aims to reduce the negative eco log ical and economic impacts of escape. The 

second chapter focuses on cod behaviour prior to escape, by investigating factors that 

motivate net bit ing based on four parameters: individual temperament, nutrition, cage 

enrichment, and net damage. The third chapter focuses on cod behaviour post-escape, by 

using acoustic telemetry to investigate dispersal behaviour of both escapee farmed and 

local wi ld cod following a simulated escape from a sea cage. 
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II 

2. Reducing the incidence of net cage biting and the expression of 

escape-related behaviours in Atlantic cod (Gadus morhua) with 

feeding and cage enrichment 

2.1 Abstract 

The escape of fis h fro m aquaculture is a persistent economic problem for farmers as well as an 

environmenta l problem that threatens wi ld fi sh populations as a consequence of potential negative 

ecological and genetic interactions. Farmed Atlantic cod (Gadus morhua) cause signi ficant 

damage by biting the net and creat ing holes through which they escape. We determined the role of 

food, cage enrichment, net damage, and individual temperament on net bit ing behav iour. During 

four separate tria ls, net interactions by fis h were observed in relation to combinations of the above 

treatments . Fish with no access to food and in pla in (not enriched) cages interacted the most with 

the net wall, with 7.5 and 12.6 more interactions per hour, respectively, than fis h w ith food that 

were in enriched cages (food P = 0.0 I ; enrichment P < 0.0 I) . Of the st imulating objects used to 

enrich cages, 97% of interactions were with the tubes that provided refuge (P < 0.0 I). Cod were 

attracted to damaged areas of net, interacting 0 .1 2 more ti mes per hour than at undamaged areas 

(P < 0.0 I). Ind ividuals showed consistent behav iour over time, but there was no relationsh ip 

between temperament, measured as the will ingness of cod to leave shelter, and net interactions (P 

= 0. 17). T he results indicate that appropriate feedi ng levels and cage enrichment may lead to 

reduced net interactions and thus fewer holes, reduc ing the potent ial for fis h to escape. 

Key words: Aquacu lture; Fish farm escapes; Fish biti ng; Temperament; Boldness; Sea cage 

damage. 
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2.2 Introduction 

Aquaculture is the fastest growing food producing sector in the world (Food and 

Agriculture Organization, F AO, 20 I 0). Fish escaping from net pens is a persistent problem in the 

aquaculture industry, with escapes reported for almost all cultured species worldwide (Jensen et 

a l. , 20 I 0). Despite numerous improvements by industry to reduce the incidence and severity of 

fi s h escapes, the problem of escapes is still unresolved. Fish can escape du ring large episodic 

events, such as extreme weather events, in addition to low-level leakage through holes in the net 

caused by mechanical abrasion, external predators, and by biting the net themselves (Dempster et 

a l. , 2007; Jensen et a l. , 2010). 

Unlike traditional agriculture, aquaculture often grows cultured species in the habitat of 

their native conspecifics (e.g. Naylor et a l. , 2005). Differences in morphology, physiology, and 

behaviour arise from variations in rearing environments and selective breeding in captivity 

(Diana, 2009; Huntingford, 2004). These differences can have negative consequences if farmed 

individuals escape and interact with wild populations (Bekkevold et a l. , 2006; Einum and 

Fleming, 200 I ; Huntingford, 2004). Adult escapees can potentially interact with wild fish on 

spawning grounds, lowering the fitness of wild fish (Fleming et a l. , 2000; McGinnity et a l. , 2003; 

in cod see Uglem et a l. , 2008). Domesticated individuals often have less genetic variation than 

wi ld individua ls, since stocks often come from small, non-native founder populations that lack 

local adaptations (Huntingford et a l. , 20 12). Outbreeding depression, in which the offspring are 

often inferior and ma ladapted compared to the parents, and population hybridization events could 

therefore occur as a result of interbreeding (reviewed in: Bekkevold et a l. , 2006; Hindar et a l. , 

2006; Utter, 1998). Other potential negative interactions with wi ld conspecifics include pathogen 

transfer a nd resource competition (F leming et a l. , 2000; McGinnity et a l. , 2003; reviewed in 

Naylor et al., 2005). Other species can a lso be impacted through competition or direct predation 

(Brook ing et a l. , 2006; Naylor et a l. , 2005). 
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Though aquaculture in the North Atlantic is dominated by salmonids (Naylor et al., 

2005), other marine species such as Atlantic cod (Gadus morhua), Arctic char (Salvelinus 

a/pinus), Atlantic ha libut (Hippoglossus hippoglossus), turbot (Scophthalmus maximus), and 

haddock (Melanogrammus aeglefinus) are now being commercially farmed (Paisley et al., 20 I 0; 

Rosenlund and Halldorsson, 2007). These species can differ markedly from salmonids in their 

behaviour and ecology. For example, cod are able to spawn ins ide cages and release genetic 

material into the envi ronment (Jorstad et al., 2008). In addition, cod are I 0-20 times more prone 

to escape than salmon due to their tendency to bite holes in nets and the ir willingness to escape 

(Esmark et al. , 2005; Jensen et al. , 20 I 0; Moe et al. , 2007). In Norway, the world's leader in 

cultured cod production, 1.05 million cod escaped from net cages between 2004 and 2009 (or 

175,000 yr.1
), representing 1.02% of cod held in sea cages (compared with 0.19% escaped 

salmon) (Jensen et a l. , 20 I 0). Escapes of up to 160,000 cod from a single farm have been 

recorded (Moe et al. , 2007). 

Although the majority of escapes are caused by structura l, external or operational factors 

(e.g. storms, abrasion, predators; Jensen et al. , 20 I 0), significant net damage can occur due to net 

biting (e.g. one bite per cod per day, creating one hole per net cage per month) (Hansen et at., 

2009; Moe et a t. , 2009). Unlike schooling salmon, cod spend a lot of time explori ng the net wall, 

increasing the chances of fi nding a hole and escaping (Hansen et al., 2009; Rillahan et at., 20 II ). 

Cod have a lso been observed to bite at loose threads associated with small holes or repairs, 

thereby potentially enlarging existing holes in addition to creating new ones (Moe et al., 2007, 

2009). Suboptimal conditions, such as the level of feeding, biofouling, or crowding, may further 

encourage net interactions (Hansen et al. , 2009; Moe et a l., 2007). 

In addition, individua l temperament may contribute to the tendency to bite the net wall. 

Temperament can be defined as the tendency of individua l behavioural difference to repeat over 

t ime and, in behavioura l syndromes, across situations (Reale et al. , 2007; Sih et al. , 2004b). 
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Behaviours such as net interactions may therefore be strongly influenced by variation amongst 

individuals, such as along the bold-shy continuum, where bold individuals are more prone to take 

risks and explore their environments (Fraser et a l. 200 I), such as the net wall of a cage (Hansen et 

al. , 2009). Temperament may be particularly relevant as aquaculture may inadvertently select for 

bold, more easily captured fish (Bekkevold et al. , 2006; Sundstrom et al. , 2004). Shy individuals 

copying the behaviours (i.e., net biting, escape) of bold fish through social learning could increase 

the number of escapes (Hansen et al. , 2009). 

The collapse and slow recovery of wild cod populations in the northwest At lantic 

(Committee on the Status of Endangered Wildlife in Canada, COSEWIC, 20 10; Myers et al., 

1997; Rose et al. , 2000) has increased the economic incentive to farm cod. However, the industry 

has faced many challenges (Brown et al. , 2003; 0 iestad, 2005), and the problem of escapes has 

yet to be addressed. To reduce the negative ecological and economic impacts of escapes, we 

examined factors that may mitigate the motivation of cod to bite net cage walls. We tested the 

hypothesis that interactions with the net increase with suboptimal condit ions, specifically that: ( I) 

net interactions increase with food deprivation and net damage; (2) stimulating cage envi ronments 

reduce net interactions; and (3) cod exhibiting ' bold' temperaments interact more with the net 

than those with ' shy ' temperaments. T he results a im to provide direction for reducing potential 

ecological effects and industry costs of escapes from aquaculture. 

2.3 Materials and methods 

2.3. 1. Experimentalfish 

Farmed cod (F 2; ~ 1.5 years of age; mean ± sd, 320 ± 70 g; 3 1 ± 2 em) were obtained from 

a semi-commercia l scale hatchery at the Joe Brown Aquaculture Research Building of Memoria l 

Univers ity ' s Ocean Sciences Centre (OSC; St. John's, Canada), where they had been fed I% of 

the ir body weight daily. After transfer to an experimental fac ility at the OSC in winter 20 I I, the 



cod were kept in a holding ta nk in ambient seawater ( 1.0 ± 0.6 °C; 105 ± 5% 0 2; ~31 practical 

salinity units, psu) for 2-21 days prior to experimentation (variable a mong trials). 

2.3.2. Experimental design 
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The experiment was conducted in a large indoor flume tank ( 11 m x 2.5 m) that housed 

20 circular net compartments ( 1 m diameter, 0.5 m deep) made from white knotless nylon netting 

(3 .8 em stretch mesh size). T his mesh is commonly used in the commercial Newfoundland cod 

industry. Throughout the experiment, the flume tank was supplied with heated (3. 7 ± 2.1 °C) and 

oxygenated ( 129 ± 1 0% 0 2) seawater and was on an ambient day-night cycle (day I ight, 39 ± 13 

lux, measured at three locations along the flume tank). Cod were transferred from the holding 

tank to the experimenta l tank, w here they were held for 1 (trials 2-4) to 4 (trial 1) days prior to 

filming. Experiments were run from March through May of20 11 (Table 1). 

Four temporal tria ls were conducted, with four treatments distributed randomly among 

the 20 cages within each trial (Table I). The four treatments (Fig. I) were replicated twice in the 

first trial (in itia lly limited by the number of video cameras) and five times in each of the 

subsequent tria ls ( 17 replicates tota l) and were: ( 1) plain, un-enriched cage deprived of food, (2) 

plain cage supplied with food, (3) enriched cage deprived of food, and (4) enriched cage supplied 

with food. Cod in the " food" cages were offered ~ 1% of their body weight in chopped frozen 

herring daily after filming ended at 13:00 h. Net cages were enriched with pipes (one 30.5 em x 

10.2 em white PVC pipe near the center of each cage lying horizontally on the bottom, 

approximately twice the height of the cod) for cod to swim through and as a potential refuge, and 

with stimulating objects (one green, red, or blue tennis ball on a knotted rope because cod are 

attracted to fraying rope, and one orange or green knobby rubber ball toy (Pet Store, China, model 

17- 1700 168 H4P OA I) suspended near the cage bottom by fi shing line). Within all net cages, a 

randomly chosen qua rter of the net wall had frayed strings (extending 6 em into the cage, same 



colour as mesh) tied to it to simulate net "damage"/repair and to determine whether this would 

attract more biting activity than "undamaged" netting. 

16 

Each net cage contained five cod (- one-quarter of the typical commercial stocking 

density of IS kg cod m-3
). Within each trial , cod were size matched with no initial difference in 

weight between trials (generalized linear mixed model, GLMM, with trial as fixed and random 

factor, see equation I for more detail: F3.318 = 1.88, P = 0. 13) or treatments (GLMM: F3.31s = 0.92, 

P = 0.43). Cod were tagged externally with t-bar tags for individual identification within each 

cage. During the first trial , cod were distributed sequentially through the cages (i.e. , the first five 

cod from the holding tank were placed in the first net cage). For all following trials, cod were 

distributed randomly among the cages as they came from the holding tank. 

2. 3. 3. Behavioural observations 

All cages were filmed daily between I 0:00 and 13:00 h for 9 days per trial using overhead 

cameras in real time at 2S frames s-1 at a resolution of 640 by 480 pixels (Axis 221 Day and Night 

Network Cameras, model no. 0221-01-04, Axis Communications, Lund, Sweden) placed 2.2 m 

above the water surface. We analyzed the behaviour of individual fish for a minimum of 30 min 

each day (two randomly selected IS min segments) for 9 days (4.S h total). Recordings were 

analyzed at 4x native speed and were scored for frequency of interactions with the net wall 

(touching the net with the snout and biting at the net; Hansen et a l. , 2009). 

In addition to examining the effects of cage enrichment, food deprivation, and net 

"damage" on net biting behaviour, we a lso explored the role of individual temperament, measured 

as the willingness of cod to leave shelter; i.e. bold versus shy (exploration vs. avoidance 

accord ing to Reale et a l. , 2007). To do this, each cod was placed in a closed box (S0.8 em x 

63 .Scm x 33 em) for a 2 min settling period following the net cage trial. A mesh door (40.6 em x 

44.S em) was opened, and we measured the time for the cod to emerge fully from the box (see 

Brown et a l. , 200S; Brydges et a l. , 2008). Cod that had not emerged within S min were assigned a 
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maximum time of300 s. Cod were tested individually to decrease the possib ility of social status 

or learning influenc ing behaviour (Fenderson et a l. , 1968). Quickly emerging cod were assumed 

to be bolder (see Toms et al., 20 I 0). Temperament traits may correlate across contexts, suggesting 

that this test of temperament may correlate with exploration of the netting (Huntingford , 1976; 

Mas-Mui'ioz et al., 20 II ; Rea le et al. , 2007). 

2.3.4. Ethical note 

T his study was approved by the Memorial University Anima l Care Committee (protocol 

I 0-15-IF), in accordance with the regulations of the Canadian Council on Animal Care for the 

treatment and welfare of animals. 

2.3.5. Data analysis 

All data were ana lyzed using R 2. 12.2 (R Development Core Team, 20 II) and the R 

package lme4 (Bates and Maechler, 2009). Null hypotheses were rejected when P < 0.05. 

Residuals of a ll models were checked for norma lity and homogeneity. Test statistics and p-values 

are only approximations because regular distributions do not apply to the random effects structure 

of linear mixed effects models (Bates, 2006; Winter, 20 11 ). Fish that died during the experiment 

( 14 of 340, spread across a ll treatments) were removed from all analyses. 

Food, enrichment, fish size, and temperament: To determine if food level and cage 

enrichment affected net interactions, a genera lized linear mixed model (GLMM) with Poisson 

error distribution was run with the response variable of total net interactions per fish per day (9 

observational days per individual cod). 

Net interactions ~ food*enrich + t ime*food + time*enrich + we ight* food + 

weight*enrich + we ig ht + day + ( lltria l/cage) + (I + dayltag) 

where * represents both an add itive and multiplicative relation between the two terms (i .e., 

food*enrich = food + enrich + food*enrich) and I represents random effects. Fixed effects 

included food level, enrichment and time to emerge, with initial weight and day included as 

(1) 
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covariates. Random effects included trial (n = 4), cage nested within trial (n = 68), and individual 

fi sh (n = 326) a llowing for a random variation in s lope by day. Three-way and higher order 

interactions were considered biologically overly complex and not included in the initial model. 

Specific enrichment: To further examine the influence of stimulating objects on net 

interactions, a subset of data including only enriched cages was used. T he relationship between 

net interactions and interactions with stimulating objects was determined with a GLMM with 

Poisson error distribution and the response variable of total net interactions per fish summed over 

a ll days: 

Net interactions ~ o bject interactions + food + ( l ltrial/cage) (2) 

T he fixed effects were total interactions with stimulating objects and food level. The random 

effects were trial and cage nested within trial (n = 34). Furthermore, to determine if interactions 

with stimulating objects varied with obj ect type, a subset of data with an average number of 

interactions per cage for each object type (i.e. maximum of three observations per cage) was used 

with a GLMM with Poisson error distribution: 

Object interactions~ object type + food+ (l ltrial/cage) (3) 

The response variable was total object interactions per cage, with fixed effects of object type and 

food level, and random effects of tria l and cage nested within trial (n = 33). 

Net damage: Total interactions at undamaged net were divided by three to standardize the 

net area with the damaged area (one-quarter of the net cage). To determine if mean interactions 

depended on net damage, a GLMM was run with mean interactions per cage as the response 

variable: 

Mean net interactions ~ treatment*net status + ( l lt ria l) (4) 

Treatment (combination of food level and enrichment) and net status (damaged or not) were fixed 

effects, and trial as a random effect. 
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Individual temperament: Using only data from cod in enriched cages, a GLMM was run 

to determine if time to emerge (i.e., temperament test) varied between fish that interacted with the 

tube and those that did not interact with the tube: 

Time to emerge~ tube+ ( l ltrial/cage) (5) 

Random effects included trial and cage nested within trial. A subset of data rrom cod that swam 

into the tubes was used for a second GLMM to see if time to emerge varied significantly with the 

number of interactions with the tube: 

Time to emerge ~ tube interactions + ( l ltrial/cage) (6) 

Random effects included trial and cage nested within trial. 

2.4 Results 

Two-way interaction terms associated with the GLMM model to examine effects of food, 

enrichment, fish size and temperament on net interactions were not significant (P > 0.22), and 

thus were removed from the final model. Both food level and enrichment had a significant effect 

on the rate at which cod interacted with the net wa ll in the final model (food z = -2.46, P = 0.0 I; 

enrichment z = 6.4 7, P < 0.0 I; Fig. 2). However, there was no significant relationship between 

time to emerge and net interactions (z = -0.65, P = 0.17, Fig. 3). For all treatments, the mean 

number of interactions increased over each 9 day trial by an average of 3.4 ± 4.1 interactions per 

fis h per h (z = 3. 11 , P < 0.0 1). 

2.4. 1. Food deprivation and enrichment 

Unfed (hungry) cod had on average 7.5 more interactions with the net wall per fi sh per h 

than fed cod (Fig. 2). Assuming similar interaction numbers per fi sh throughout a 12 h day (cod 

are more active during daytime; Rillahan et al. 20 11 ), this equates to 90 more interactions with the 

net wall per day per fish than fed cod. In comparison, cod in plain cages had on average 12.6 

more interactions with the net wall per fis h per h than cod in enriched cages (Fig. 2). Us ing the 
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same assumptions, this equates to 151 more interactions with the net wall per day per fish than 

cod in enriched cages. 

Cod interacted with stimulating objects in enriched cages as well as with the net wall. 

There was a s ignifica nt negative correlation between interactions with the net and the objects: cod 

that interacted more with stimulating objects had fewer interactions with the net (z = -25. 18, P < 

0.0 I). Interactions did depend on object type (z = 18.60, P < 0.0 I): 97% of a ll interactions with 

stimulating objects were with the tube (Fig. 4). 

2. 4. 2. Damage 

Cod interacted at damaged areas 0.12 more times per fish per h than at undamaged 

areas (F 1. 122 = 69. 94, P < 0.0 I). Extrapolated to a 12 h day, this equates to 1.4 more interactions at 

damaged areas per day per fish than at undamaged areas. However, there was no s ignificant 

interaction between net status (damaged /undamaged) and treatment (four unique combinations of 

food level a nd enrichment; F 3. 122 = 0.16, P = 0.93). 

2. 4. 3. Individual temperament 

T ime to emerge into a novel environment ranged fro m 0.85 to 300 s (the maximum time) 

(F ig. 3). Furthermore, there was no significant d ifference in time to emerge between cod that 

interacted with the tube and those that did not interact with the tube (t = 0.29, P = 0.82). There 

was also no signi ficant relations hip between time to emerge and number of interactions with the 

tube (t = 1.59, P = 0.36). Net biting behaviour was consistent within individuals: the most active 

cod (i.e. having the most net interactions on average for each trial) within each cage interacted the 

most with the net on 60 ± 2 1% of the days over the 9 day tria l. 

2.5 Discussion 

Fish that escape from aquaculture operations not only represent a direct economic loss for 

the farmer but are also of s ignificant environmental concern. Although the potential impacts of 

these losses are w idely documented for salmonids, Atlantic cod may escape at much higher rates . 
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Escapes could become a serious problem and to avoid this occurrence, further mitigation 

measures are required. Here we found that Atlantic cod escape-related behaviours can be reduced 

with cage enrichment, food availability, and net maintenance. 

Cage enrichment resulted in the greatest reduction in net interactions. Cod housed in net 

cages enriched with stimulating objects interacted less with the net wall than cod housed in plain 

cages. This is an exciting result because cage enrichment would presumably be relatively easy 

and inexpensive to achieve on commercial farms. Numerous studies have investigated the use of 

housing enrichment on rodents and other species for medical research (e.g. Olsson and Dahl born, 

2002) and when rearing animals to be released for stock enhancement programs (in cod see 

Moberg et al., 20 II ; Salvanes and Braithwaite, 2006). Apart from studies on maintaining animals 

in zoos (Shyne, 2006) and organic animal husbandry (Spoolder, 2007), few studies have 

investigated the use of enrichment in a purely captive situation, such as for aquaculture, where the 

a im is not for better survival in the wild but easier management of captive fish (but see Brydges 

and Braithwaite, 2009). 

Our results suggest that the stimulating objects (especia lly the tubes) distracted cod from 

investigating and interacting with the net wall. T he enrichment may a lso provide a complex 

habitat such as those preferred by cod in the wild (Cote et al. , 2002). The use of enrichment in 

aquaculture cages may therefore help reduce the amount of damage caused by net biting incidents 

and may a lso reduce the inc idence of escapes through ho les created by storm damage by reducing 

the net inspection behaviour of cod. We tested a limited variety of stimulating objects in th is 

study; by us ing other enrichment objects a bigger impact may a lso be observed. There was a clear 

preference for the tubes over the other enrichment objects, suggesting that the tubes may act as a 

preferred refuge for the cod. In our study, up to three t1sh could fit inside a tube at one time, 

however some individuals never approached the tube. To scale up to a commercial sized cage, an 

a rray of multiple tubes could be added to the cage, either adding large tubes to accommodate full 
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grown fish, or changing the s izes of the tubes as the fish grow. A stationary tube array would 

possibly be more conducive as a shelter or refuge, however resting on the bottom of a cage may 

lead to net fraying and damage. Further studies need to be implemented to determine the efficacy 

of tubes as a stimulating object and refuge for farmed cod in a sea cage. 

Food availability also led to a reduction in the number of interactions with the net, with 

hungry cod interacting more with the net wall than cod with access to food. Hansen et al. (2009) 

found that cod starved for 9 days were more prone to escape, but they observed no correlation in 

net exploration and net biting. However, behavioura l d ifferences between stocks have been 

observed, especially between migratory and res ident populations (Brown et al. , 2003; Hansen et 

a l. , 2009). We conclude that well fed cod have less motivation to escape, resulting in fewer 

interactions with the cage wall. Furthermore, we suggest that hungry cod may investigate the net 

in search of additional food, as suggested by Moe et a l. (2007). We observed 11.2 ± 14 

interactions on average with the net per h, which is similar to the interaction rate of 13.8 

interactions per h observed by Hansen et a l. (2009). Our study used fish that were 219 g lighter 

and stocked at a density of3 .92 kg m·3 greater than that of Hansen et a l. (2009). Moreover, the 

entire wall area of our cages cons isted of mesh compared to only 34% in Hansen et a l. (2009). 

Hungry cod interacted with the net 90 times more in a 12 h day than fed cod; when extrapolated 

to a commercia l scale of 200,000-400,000 fish per cage (Jensen et a l. , 20 I 0) this equates to 18-36 

million more interactions per cage per day, representing a significant potential source of da mage. 

T his indicates that maintaining an appropriate feed ing level in aquaculture cages is a key factor in 

reducing the number of escapes through holes cause by net biting. In addition, the effects of 

enrichment and food appear to be addi ti ve, resulting in the least amount of net interactions of a ll 

the treatments. This suggests that combining enrichment with appropriate feedi ng levels may 

further reduce net interactions. 
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Interactions with both the net and the stimulating objects increased across days during 

each experimental trial. This rate of increase did not vary significantly between treatments, 

indicating that the increase was not due to food availability or cage enrichment. As time elapsed, 

the novelty of the net cages and stimulating objects would have decreased, potentially 

encouraging the cod to try to escape from the cages. This may suggest an increase in exploratory 

behaviour with habituation to the cage environment. Compared to the length of time cod would be 

housed in commercial net cages, the duration of our experiment (each trial= 9 days) was very 

short. Within the constraints of the current experiment, we could not test the potential response of 

cod to objects over longer time scales that are more applicable to commercial operations, 

suggesting a direction for future studies. 

Cod were more likely to interact with damaged net areas than undamaged areas. These 

results correspond with previous studies, which have observed increased attraction to damaged 

areas (Moe et at. , 2007, 2009). However, these other studies used a pre-damaged net panel that 

was suspended in the aquaculture cages. Cod may have been attracted to these net panels as novel 

objects (similar to the stimulating objects used in this experiment), rather than due to the actual 

net damage. Furthermore, cod have been observed to be attracted to repairs made with string of 

contrasting colour to the mesh (Moe et a l. , 2007). In our study, we used string of the same colour 

as the mesh, potentially resulting in lower visibility of the strings and thus fewer interactions. 

These results suggest the importance of regular net maintenance to avoid frayed or damaged 

strings that may attract the attention of cod, resulting in investigatory biting which could develop 

into larger holes. 

Individual behaviour varied widely, as seen in other studies (i. e. see Sverdrup et at., 

20 I I). There was no effect of fish size on behaviour within the narrow size range we examined. 

We observed inter-individual variation but intra-individual consistency over time (within the 

tested context of net biting, there were cons is tent net-i nteractors over the course of the trials), 
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suggesting that cod showed stable behavioura l types (Conrad et al., 20 II). Many studies have 

suggested that temperament traits correlate across contexts (i.e. domain-general), indicating the 

presence of behavioural syndromes (Sih et al., 2004b). For example, different genotypes may 

exhibit varying behaviour along the "shyness-boldness" continuum, with bold fi sh more wi lling to 

take risks, explore the net cage environment, and escape for possible resource gains (Fraser et a l. , 

200 I; Hansen et a l. , 2009). T his suggests that behaviour in net cages may be strongly influenced 

by individual variation. 

Our results, however, indicate that performance in our temperament test (emergence into 

a novel environment) is not a good predictor of interactions with the net. In contrast to domain­

genera l temperament traits, other studies have found that behaviours are context specific (for 

review see Conrad et al., 20 II). Depending on the circumstances (i .e. predator absence/presence), 

behavioural fl exibility is important and it is optima l to have context-specific behaviour (Conrad et 

a l. , 2011 ; Komers, 1997; Sih et al. , 2004a; Toms et a!. , 20 1 0; Wilson, 1998). Therefore, it is not 

necessarily surpris ing that inter-individual variation was not explained by cod size, or exploration 

behaviour (as in Hansen et a l. , 2009). In addition, our experiment did not contro l for the role of 

social interactions experienced prior to the temperament test. Despotic interactions in the net 

cages may have caused subordinate fish to remain less mobile when tested for temperament 

(0verli et a l. , 1998). It is generally accepted that animals have consistent behav ioural types, as 

observed in our study, however the mechanisms controlling these types are not well understood 

and merit further study (see Conrad et a l. , 20 11 ). In add ition, we assessed temperament with only 

one test, the propensity to leave shelter. Due to logistical limitations, we were unable to conduct 

furt her temperament tests on the same individuals. Caution must therefore be used in drawing 

conclus ions from the temperament portion ofthis study . 

In summary, appropriate feeding levels, cage enrichment, and net maintena nce may lead 

to reduced net interactions by farmed cod. Hansen et a l. (2009) found that cod could rapidly 
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discover new openings from several meters away, emphasizing the need to avo id net damage and 

maintain constant screening. In addition, we found consistent inter-individual variation in 

behaviour, suggesting the presence of stable behavioural types (within but not across contexts). 

More studies are needed to further understand the mechanisms driving this variation and the 

linkages between behaviours. In comparison with commercial aquaculture, this study was of short 

duration (9 days) with a low stocking density (-one-quarter of typical stocking density), which 

may have affected the rate of net interactions observed. Further studies should be conducted to 

better relate these experimental findings to conditions typically encountered in commercial 

aquaculture environments. The results of this study can be used by aquaculture managers to avoid 

conditions which result in increased interactions between Atlantic cod and the net walls, 

decreasing damage to the net and reducing the number of escapes. These results may also be 

applied to other farmed pelagic marine fishes that bite at the net, such as sea bream (Dempster et 

al. , 2007). Cage enrichment and appropriate feeding may also enhance the welfare of the captive 

fish, for example by reducing stereotypies such as repeated circular swimming, and even net 

biting, and encouraging natural behaviours in a complex habitat (Ashley, 2007; Cote et al., 2002). 

2.6 Conclusion 

This study indicates that cage enrichment and appropriate feeding, coupled with net 

maintenance may lead to reduced interactions with the net by cod. Proactively addressing the 

conditions that encourage net biting may prove to be a cost efficient and complementary means, 

a long with that of improving net materials, to reduce escapes. 
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Table 2.1. Initial mean weight (g) of experimental fish by temporal trial. 

There were no s ignificant differences in fish weight between trials or treatments. 

Temporal trial Plain Enriched 

Fed Deprived Fed Deprived 

Trial I" n/a 290 ±50 n/a 290 ± 80 

7- 15 March 

Trial 2 320 ± 60 300 ± 60 320 ± 70 320 ± 70 

18 -26 March 

Trial 3 340 ± 80 350 ± 70 320 ± 70 3 10 ± 80 

31 March- 8 April 

Trial 4 350 ± 70 350±100 320 ± 60 340 ± 60 

27 April - 8 Mal 

a. Fish did not eat during the first trial, so only one food level (no food) was tested. 

b. Data were not recorded 30 April- 2 May due to condensation problems with the cameras. 

Thus, trial 4 ran for 12 days to provide 9 days of video data. 
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Figure 2.1. Schematic representation of experimental setup. 

Four circular net compartments (I m diameter x 0.5 m deep), depicting the four unique 

treatment combinat ions: food (F), no food (N), enrichment (E), plain (P). One rando mly 

se lected quarter of each net cage was tied with frayed string. Treatments were randomly 

distributed within the 20 cages per trial. Five cod were distributed randomly into each 

cage. 
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Figure 2.2. Mean net interactions per fish per hour by treatment. 

Treatme nts inc lude food (F), no food (N), enriched (E), and pla in (P). Each box 

represents the 50% quarti le, the dark line the med ian, and the whiskers 1.5 t imes the inner 

quart ile range. 
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Figure 2.3. Relationship between time to emerge and mean net interactions. 

Each point represents data from an indiv idua l fi sh, comparing the mean net interactions 

per hour with the time to emerge from the she lter for each fish. 
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Figure 2.4. Total number of interactions per fish per hour with stimulating objects. 

Stimulat ing objects in the cages inc luded a le ngth of PVC pipe, a tenn is ba ll on a rope, 

and a knobby rubber ball. Each box represents the 50% quarti le, the dark line the median, 

and the whiskers 1.5 t imes the inner quart ile range. 
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3. Dispersal of wild and escapee farmed Atlantic cod (Gadus 

morhua) in Newfoundland 

3.1 Abstract 

Differences in morphology, physiology, and behavior that arise through se lective 

domestication cou ld be maladaptive in nature and lead to negative eco logical 

consequences when non-native individuals escape, such as from aquaculture sea cages, 

and interact with wild populations. To determine the potential for interactions between 

farmed escapees and wild populations, we used acoustic telemetry to map the 

spatiotemporal distribution of local wi ld (n = 29) and "escapee" farmed cod (n =52) 

through experimental releases off eastern Newfoundland. Dispersal from the cage (>600 

m) was rapid (50% dispersal: 12 h for farmed; 5 h for wi ld) and non-random. Most cod 

(85% farmed, 55% wild) moved northward, remaining close to shore. Although 

recaptures of escapees during small-scale recreational and commercial fisheries was high 

(II% farmed ; I 0% wi ld), our results suggest that directed efforts to recapture escapees 

would be logistically challeng ing. Cod migrated a considerable distance (max. of256 km 

for wi ld ; 157 km for farmed) , and some returned to the bay the following year. The 

similarity of the distribution of "escapee" farmed and wild cod suggest the strong 

potential for interactions between farmed and wi ld fish, highlighting the importance of 

mm1m1zmg escapes. 
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3.2 Introduction 

Local adaptation plays a key role in maintaining ecosystem productivity and the 

genetic diversity of wild populations (Kawecki and Ebert 2004). Selective domesticat ion 

combined with captive rearing e nvironments lead to differences in morpho logy, 

physiology, and behaviour betwee n farmed and w ild conspecifics (E inum and Fleming 

200 I; Huntingford 2004 ). These potentia lly non-adaptive differences could lead to 

negat ive ecological consequences if escapees interact and ultimately breed w ith wi ld 

populations (Fle ming et al. 2000; Huntingford et a l. 2004; Bekkevold et a l. 2006). 

Interbreed ing with wild fish could potentia lly reduce the fitness of native populations 

through outbreed ing depression (McGinnity et a l. 2003; Hindar et a l. 2006). Non-native 

farmed fish may lack loca l adaptations and have reduced genetic variat ion due to sma ll 

founder populations (Ferguson et al. 2007) and crosses w ith wild fis h could result in 

hybrid offspring with intermediate or poorer performance than the parental populations 

(E inum a nd Flem ing 1997; McGinnity et a l. 2003; Fraser et a l. 20 I 0). Knowledge is 

based on the deve loped salmo n industry, as little work has been done on the potential 

genetic impacts of farmed cod o n local wild cod (Bekkevo ld et a l. 2006). 

Fish escap ing from net pens is a persistent problem (Jensen et al. 20 I 0) that 

occurs a lmost everywhere net pen aquacultu re is practiced (Naylor et a l. 2005). In 

add ition to interbreeding, other potentially negative impacts of escapes include disease 

transmission and resource competition (rev iewed in Naylor et a l. 2005; Diana 2009). 

Most knowledge of the effects of escapees comes from studies on salmon, however some 

recent work has been done on escapee cod (Gadus morhua; Moe et a l. 2007; Ugle m et a l. 
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2008, 2010; Meager et al. 2009). In the north Atlantic, the slow recovery ofwild cod 

stocks following their decline (northeast Atlantic) and collapse (northwest Atlantic) in the 

late 20th century has led to increased farming incentive (Myers et a l. 1997; Brown et a l. 

2003, DFO 20 I 2). However, due to net biting, cod are particularly prone to escape from 

sea cages, with escape rates of 1.02%, much higher than the rates of0. 19% fo r salmon 

(Moe et al. 2007; Hansen et al. 2009; Jensen et al. 20 I 0; Damsgard et al. 20 I 2; 

Zimmermann et al. 20 12). Interbreeding is likely as escapees have been found at w ild 

spawning areas in Norway (Uglem et a l. 2008; Meager et al. 2009). Wild cod in the 

Northwest Atlantic may be particularly susceptible to hybridizat ion w ith escapees due to 

the low abundance and localized genetic structure of coastal populations (Ruzzante et a l. 

200 I ; Bekkevold et al. 2006; COSEWIC 20 I 0), espec ially when escapees originate ffo m 

non-native populations (Diana 2009). 

The susceptibility of wild cod to interact io ns with escapees depends on the 

migratory patterns ofthe two groups; however, little is known abo ut the migrat io n 

patterns of wi ld cod in the northwest Atlantic. The stock structure ofNewfoundland cod 

is co mplex with so me discrete groups (Ruzzante et al. 1996) spawning in specific habitats 

(offshore, Lear 1984; inshore off headlands, Templeman 1966; or in bays Hutchings et 

a l.l993; Smedbo l and Wroblewski 1997; Brattey e t a l. 2008), as well as some mixing of 

individua ls between groups (Taggart 1997). In eastern Newfoundland, cod stocks may be 

a mix of summer feeding groups from the northeast and south coasts (Lawson and Rose 

2000; Robichaud and Rose 2004). 

T he degree of interact ions between escapee and w ild cod may depend on the 

movement patterns ofthe escapees relative to w ild individua ls. Previous studies have 
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observed escapee farmed cod remaining in the local area in Norwegian fjords ; however, 

population differences in dispersal and migration may occur between the east and west 

North Atlantic, as well as between bay systems (Uglem et al. 2008, 20 I 0). For example, 

wild juvenile cod reared in a farm setting in Newfoundland for three years prior to release 

traveled up to 170 km from the release site (Wroblewski and Hiscock, 2002), overlapping 

in the movements of local wild cod. The movements of escapee hatchery-reared cod in 

the Nor1hwest Atlantic have to our knowledge not been studied previously. 

The risk of negative impacts due to escaping fish has been demonstrated in 

salmon, however few studies have focused on escaping cod (see Moe et al. 2007; Uglem 

et al. 2008; Meager et al. 2009). To determine the potential for interaction between 

escapee farmed cod and local wild cod, we quantified the spatiotemporal distribution of 

both farmed and wild cod following simulated escape events. We tested the hypotheses 

that: (I) escapee farmed cod remain near the cage for some time fo !lowing escape, 

facilitating recapture (based on Bridger et al. 2001; Wroblewski and Hiscock 2002; and 

Arechavala-Lopez et al. 20 II , 20 12); (2) the local-scale dispersal pattern of escapee 

farmed cod overlaps with that of local wild cod, facilitating interactions near the release 

site; (3) farmed cod dispersal outside the release s ite bay is localized relative to wild cod; 

and (4) based on dispersal patterns, wild cod in Bay Bulls are a mix of migrants from 

southern (i.e. NAFO SubDiv. 3Ps) and northern (NAFO Divs. 2J3KL) cod stocks. 

3.3 Materials and Methods 
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3.3. 1. Study site and cod farm characteristics 

This study was focused in Bay Bulls (47° 18'N, 52° 48'W) in eastern 

Newfoundland (NL), Canada (Fig. 1). Bay Bulls is 4.5 km long with an average w idth o f 

1.1 km, an area of 5.5 km2 and a maximum depth of90 m. The cod farm in the harbour of 

Bay Bulls, run by Sapphire Sea Farms, had 8 pens (average water depth 15 m), three of 

which each contained 5,000 Atlantic cod (Gadus morhua) 39-54 em long. T hese adult 

fish (3+ years of age) came from 26 families that orig inated from the Cod Genome 

Project (CGP; Trippel et a l. 20 II ) . The CGP was designed to develop a breeding program 

and genomics tools to supply the developing Atlantic cod aquaculture industry in Canada 

with improved broodstock. Under the auspices of CGP, wi ld broodstock from Smith 

Sound, NL (NAFO Division 3L) were brought to Memorial University ' s Ocean Sciences 

Centre (OSC; St. John's, NL) in July 2007. T he offspring used in the present study were 

spawned in Sept.-Oct. 2008, hatched Oct.-Nov. 2008 and were placed in the cages in July 

2009. 

For comparison with the farmed cod, adult w ild cod were caught in baited cod 

pots (po ly netting on a metal frame, 1.83 x 1.83 x 1.04 m) w ithin Bay Bulls a maximum 

of24 h prior to tagging and by hand line at the southern headland of Bay Bulls 

( 4 7° 17' 14"N, 52°45'49"W), approximate ly 4 km from the farm, 6 h prior to tagging, with 

care taken to minimize damage to the fish during retrieval of the gear. These wi ld cod, 

believed to be a mix of migrants from northern (NAFO divisions 2J3 KL) and southern 

(NAFO subdivis io n 3Ps) cod stocks, come to the Bay Bulls area in the summer to feed, 

before migrat ing e lsewhere to spawn in late w inter and spring. The farmed cod are from a 

wild Newfoundland source, so it is like ly they would spawn at the same time as the w ild 



cod. Time of spawning was therefore not expected to affect the dispersal patterns of the 

two groups of cod. 

3. 3. 2. Acoustic tagging 
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To determine possible influences of season, two releases o f acoustically tagged 

farmed and wild cod were performed at the same site in Bay Bulls in 20 m ofwater. The 

first occurred o n 9 August 20 II when 21 farmed and 14 w ild cod were tagged and 

released simultaneously (Table I). The second occurred on I 0 October 20 II when 17 

farmed cod were tagged and released, followed an hour later by a re lease of 14 farmed 

and 15 wild tagged cod (Table I). The delayed release was undertaken to determine 

whether farmed cod followed the wild cod post-release. Wild and farmed cod were size­

matched by length as closely as possible, however w ild cod were on average 13% lo nger 

than farmed cod in the fi rst release (GLM: F1 ,33 = 5.47, p = 0.02), but not in the second 

(GLM: F 1,27 = 0.61 , p = 0.44). 

Length ~ release*cod type (7) 

where * represents both an additive a nd multiplicative re lation between the two terms. 

There were no s ignificant differences in length between releases (GLM: F2,76 = 0.09, p = 

0.92), no r an interactio n between release and cod type (GLM: F1,76 = 1.0 1, p = 0.31). 

Farmed cod had greater girth than wild cod as we ll as other key morphometric diffe rences 

such as neck curvature, as has been previously observed (see Ug le m et a l. 20 I I). 

To tag the cod, indiv iduals were placed on a V -shaped surg ica l tab le, ventra l s ide 

up to induce tonic immobi lity . T he eyes were covered w ith a wet dark c loth, and seawater 

was continuo us ly poured over the gills. Each fi sh was surg ically implanted w ith an 
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individually coded transmitter (VEMCO, Halifax, Nova Scotia, Canada) and externally 

tagged with aT -bar tag (Fioy Tag manufacturing, Seattle, W A, USA) fo !lowing the 

methods of Uglem et al. (2008). Cod less than 60 em were tagged with model V 13-1 H 

transmitters (13x45mm, weight in water 6 g, frequency 69kHz, 120 ±60s ping rate), 

while cod longer than 60cm were tagged with model V 16-SH transmitters ( 16x93mm, 

weight in water 16 g, frequency 69 kHz, 120 ±60s ping rate). Tagged fish were allowed 

to recover for up to 60 min post-surgery (resumption of normal, upright swimming 

behavior at the bottom of the tank) prior to release. Transmitter function was checked 

with a mobile receiver (VEMCO VRI 00) prior to release. Cod were then released by 

lowering them into the water with dip nets adjacent to the cage site. Cod were tracked for 

the battery life of the tags (up to one year) . All handling and tagging were conducted 

according to the Canadian Council on Animal Care regulations for the treatment and 

welfare of animals and was approved by the Memorial University An imal Care 

Committee (protoco Is 11-17-IF and 12- I 7 -I F). 

3.3.3. Acoustic array 

The movements and distribution ofthe tagged cod were recorded using nine 

individua l receivers (VEMCO mode l VR2W) deployed on anchored ropes throughout 

Bay Bulls (Fig. I; for mooring apparatus details see Brattey et a l. 2008). All receivers 

recorded the transmitter identification code, date, and time of detection when a tagged 

cod was within the rece iver range. Receivers were retrieved as in Brattey et al. (2008). 

The detection range of the transmitters was determined by carrying out a series ofrange 

tests in which a transmitter was towed slowly away from the receiver (as in Ug lem et al. 

2008). The average detection range of the receivers was a radius of 500-600 m. 
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In addition, detection rate of stationary reference transmitters moored near the 

farm (VEMCO model V 16 4-H, 16x68mm, weight in air 24 g, frequency 68 kHz, 700 ± 

60s ping rate) was compared w ith weather conditions (air temperature, water temperature 

at I Om, wind direction, and wind speed). During June and July, data were binned in fo ur 

hour blocks. Average weather conditions when the detection rate was poor(< 50%) were 

air temperature of 8.5 ± 2.3°C (mean± sd), water temperature of 5.5 ± 1. 1 °C, w ind 

direction of 155 ± 79° (SSE), and wind speed of 16.2 ± 11.7 kph. In comparison, when 

the detection rate was good (> 50%), the air temperature was significantly higher ( 12.5 ± 

4.8°C; F 1,33 1 = 7.57, p < 0.0 I), however water temperature (5.6 ± 2.1 °C; F1,33 1 = 0.0 I, p = 

0.97), wind direction (193 ± 83° SSW; F1,33 1 = 2.26, p = 0 .13) and w ind speed ( 19.1 ± 9.2 

kph; F1,331 = 1.00, p = 0.32) were s imilar to periods of poo r detection. It is unclear how air 

temperature would impact detection rates, however we concluded that weather was not 

hindering the detectio n rates ofthe transmitte rs and therefore any differences in weather 

conditions between the releases oftagged fish would not impact o ur results. There is 

therefore like ly no receiver fa ilure dependent o n ai r temperature. 

Within the bay, a portable VR I 00 hydrophone was used to listen for five minutes 

at a grid of statio ns located 500 m apart to determine the general locat io n and transmitter 

seria l number of tagged cod o n 22 Aug., 2 Sept., 13 Sept., and 16 Nov., 20 II. Data 

acquired with the VRIOO were pooled w ith detections from the VR2W arrays. An 

extens ive inshore network of receivers deployed by Fisheries a nd Oceans Canada, 

comprising 30 arrays oftwo to ten receivers (VEMCO VR2W receivers) across 250km of 

the northeast coast ofNewfoundland, including known cod spawning areas, was used to 

detect the cod after leav ing Bay Bulls (Brattey et a l. 2008). In addit ion, temperature was 
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recorded by data loggers (Onset Hobo U22 Water Temp Pro v2, Bourne, MA, USA) co­

moored with each hydrophone and by CTD (Seabird Electronics SeaCAT Profi ler 19, 

Bellevue, W A, USA) casts in the middle of Bay Bulls. 

In case of recapture by local fisherman, a monetary reward was offered upon 

receipt of the tags of $10 forT -bar tags and $25 for acoustic tags, to encourage report ing 

of capture location, gear type, and fi sh s ize. 

3. 3. 4. Data analysis 

Fish that did not survive post-release ( i.e., lack of movement post-release over a 

period of severa l months) were excluded from the analyses (n = I farmed, I wild cod; 

97.5% survival rate, as in Brattey et al. 2008). Data were pooled into three receiver arrays 

(C, H I-H2 and H3-H5) within Bay Bulls (Fig. 1). Detection of a fish on at least one of the 

receivers w ithin the array was defined as presence w ithin that array ' s detection area. 

Acoustic noise and signa l co llis ions caused so me false sig na ls, so sing le ping detections 

separated by more than I h were considered to be erroneous, unless validated by detection 

at o ne of the nearby rece ivers. Fish were defined as departed from the cage when there 

were no detections for 3 h. Proportion oftime w ithin Bay Bulls spent within the various 

receiver arrays was determined by the number of hours during which individua l cod were 

detected at the array relative to the total number of hours each individua l was detected 

within the bay. 

All data were analyzed using R 2. 15.1 (R Core Team 20 12). Null hypotheses were 

rejected when p < 0.05 . Residuals of a ll mode ls were checked for normality and 

homogene ity. Data were analyzed with a generalized linear model (GLM) w ith Po isson 

error distribution and log link, unless stated otherwise. To determine the ro le of release 
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date and fish type on departure time from the release site as well as arrival time at 

receiver array detection zones, we used a GLM with a response variable of departure time 

and fixed effects of release dates (n = 3), type offish (n = 2), and the interaction between 

the two: 

Departure/ Arrival time - re lease*fish type (8) 

where * represents both an additive and multiplicative re lation between the two terms. 

Subsets of data including only farmed cod were used to determine differences in 

departure time of farmed cod between releases. To determine the proportion of time spent 

at the receiver arrays within Bay Bulls, we used a GLM with a response variable of 

percent time detected at each array (out ofthe total detections within the bay for each 

individual) and fixed effects offish type (n = 2), receiver array (n = 3), and release (n = 3) 

and all interactions: 

Time- fish type*receiver array*release 

To determine the role of detection location on swimming speed of cod (calculated from 

the minimum straight line distance and assuming that fish are at the receiver location 

when the signal was received), we used a GLM with response variable of swi mming 

speed and a fixed effect of receiver array location: 

(9) 

Swimming speed - receiver array (10) 

3.4 Results 

3.4.1. Distribution and dispersal within the bay 

Farmed cod remained near the cage longer (F ig. 2; F1,74 = 114.2, p < 0.01), and 

reached the inner fence later than wild cod (F 1,76 = 51.89, p < 0.0 I). Fish from the second 



release dispersed away fro m the cage quicker than those from the first release (Fig. 2; 

F2,74 = 78.38 p < 0.0 I) and reached the inner fence sooner (F2,76 = 75.33 , p < 0.0 I). 
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Within 3-8 h (among the three releases) post release, 50% of the w ild cod had dispersed > 

600 m from the cage; for farmed cod this took 5-21 h. Time to 90% dispersal from the 

cage was 7-15 h for wild cod, and 20-42 h for farmed cod. There was no sign ificant 

interaction between release a nd fish type at the cage (F 1,74 = 0.17, p = 0.68) o r the inner 

fence (F 1,76 = 0.85, p = 0.36). Farmed cod released independently (Release 2. 1) dispersed 

more s lowly from the cage (F1 .28 = 15.89, p < 0.0 I) and arr ived at the inner fence more 

s lowly (F 1,29 = 4 7. 71 , p < 0.0 I) than those re leased s imultaneous ly with wi ld cod (Release 

2.2). All the tagged cod were detected at the inner fence, and the southern receiver (HI ) 

detected more pings than the northern receiver (H2; Tab le 2). 

Wild cod arrived at the outer fence o n average 16 h before farmed cod (F 1,73 = 

77. 14, p < 0.0 I). In add itio n, cod from the October re leases took an average 22 h longer 

to reach the o uter fence than cod re leased in August (F2,73 = 11 7.96, p < 0.01). There was 

a s ignificant interaction between release and fish type (F I,73 = 79.53, p < 0.01), w ith 

farmed cod re leased independently in Release 2. 1 taking the lo ngest (57 h) to arr ive at the 

o uter fence. However, there was no significant difference in arrival time between farmed 

cod from Release 2. 1 and 2.2 (F1,27 = 3.35, p = 0.07). A ll but three ofthe tagged cod (all 

from Re lease 2) were detected w ithin the outer fence array; however, the northernmost 

receiver (H5) had not been retrieved since Sept. 20 II (i .e. before Release 2). The three 

cod that left the bay undetected by the rest of the o uter fence array may have been 

detected by H5 . Each receiver in the o uter fence array detected between 80-88.6% 

(Release I) and 78.3-94% (Release 2) of the cod. The southernmost receiver (H3) 
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detected the most total pings, but more cod (particularly of farmed o rigin) were detected 

by the middle receiver (H4) (Table 2). 

The proportion of time spent by cod within Bay Bulls in range o f various receiver 

arrays differed (h.23l = 55.55, p < 0.0 I), with cod spending 38.8 ± 32.1 % of their time at 

the o uter fence, compared with 31.7 ± 26.3% near the cage and 29.6 ± 22.7% at the inner 

fence. T here was a s ignificant inte raction between cod type and rece iver array (Fig. 3, 

F1 ,23 1 = 528.04, p < 0.01) and re lease and receiver array (FJ ,231 = 104.79, p < 0.01 ): cod 

fro m Re leases I and 2.2 spent the most time at the o uter fence (45.8 ± 3 1.3% and 42.4 ± 

35 .2% respectively), wh ile farmed fish from Re lease 2.1 (released independently) spent 

the most time at the cage (54.3 ± 19.8%). Overall , the med ian time spent in the bay was 

relative ly sho rt, with farmed cod spending 14 days (range of9 h to 29 days) and w ild cod 

20 days (range of 5 h to 40 days) within the bay. T he receiver array at the feeding 

grounds off of the mo uth of Bay Bulls (M I and M2) was deployed just prior to Release 2, 

so no compar ison can be made between Re lease I and 2 at this location. Cod spent a 

s ignificant proportion of time at this array, with cod from Release 2 spending ~ o ne­

quarter of their time w it hin and near Bay Bulls (27.0 ± 37.0%) at the feeding grounds. 

Wild cod spent significantly mo re time at the feeding grounds than farmed cod (F1A4 = 

5.76, p = 0.02), spending o n average 30% oftheir time in Bay Bulls at the feeding 

gro unds, compared with only 26% for the fa rmed cod. 

3.4.2. Dispersal outside the bay 

Once the cod left Bay Bulls, we could o nly detect them a lo ng the coast, where 

receiver arrays were located. Ofthe cod detected o utside Bay Bulls (n = 67, 82.7%), most 

were detected on arrays to the not1h, including Petty Harbour (73.2%), approximately 
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21.3 km along the coast north of Bay Bulls. Cod from Release I (August) took the lo ngest 

to arrive at Petty Harbour (40.1 ± 29.3 d; F2,57 = 59.5, p < 0.0 I ; Fig. 4). Overall, farmed 

cod arrived more quickly (28. 1 ±22. 7 d) than w ild cod ( 41.9 ± 27.6 d; F 1,57 = 3 7 .6, p < 

0.0 I), and specifica lly farmed cod from Release 2 .1 arrived more quickly (21.4 ± 7.3 d) 

than those from Re lease 2.2 (28.9 ± 24.1 d; Fl ,J4 = 19.99, p < 0.01 ). However there was 

no significant interactio n between the release and cod type (F J,57 = 0.42, p = 0.52). A 

greater percentage of the farmed than w ild cod were detected at Petty Harbour (F isher' s 

Exact Test p < 0.0 1). As of the end of January 2012 (when detections ceased for the 

winter), 44 of the 52 tagged farmed cod (84.6%) had been detected at Petty Harbour, 

compared with only 16 of29 tagged wild cod (55.2%). Arrival in Petty Harbour was 

highly var iable, and took from 4 d (0.13 body lengths, BL s-1) to 117 d (0.005 BL s-1) 

with cod trave ling on average 1.1 ± 0.9 km d-1 (0.03 ± 0.02 BL s-1). Seventy-one percent 

(34 farmed, I 0 wild) of the tagged cod spent one day or less in Petty Harbo ur. Based on 

the average travel speed, these fish si mply passed by the array, while 27% ( 12 farmed, 6 

wild) remained in the area for 2-23 d (mean: 2.8 ± 4 .3 d). The four cod that passed Cape 

Broyle, 27.8 km a long the coast south of Bay Bulls, traveled the same speed as those that 

went north, traveling on average 1.5 ± 2 .1 km d-1 (0.04 ± 0.06 BL s-1; F 1,64 = 0.03, p = 

0.86). 

Further a fie ld, 16 cod ( 12 farmed, 4 w ild) were detected in Conception Bay 

through December 20 II , approximate ly 80 km along the coast north from the release site 

(Fig. 5). Total detections decreased after December, with no detections from January to 

Apri l, w hen water temperatures were significantly co lder (-0.28 ± 0.95°C) than when fish 

were present ( 1.82 ± 2.40°C; F 1,7s4s = 2034, p < 0.0 I) . Cod were not detected again until 
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April20 12 (see following section). None of the cod released herein were detected on the 

DFO arrays beyond Bellevue in southern Trinity Bay (256 km along the coast from Bay 

Bulls) north to Twillingate (see Brattey et a l. 2008 for array locations) or on an addit ional 

array located at Triton, Notre Dame Bay. 

3. 4. 3. Post-January acoustic detections 

As of mid-September 2012, ten cod had been detected since January 2012. From 

Release I, two farmed cod were detected at the mouth of Bay Bulls (one in September, 

and o ne in April which was also in Petty Harbo ur in July), o ne farmed cod was detected 

in Bauline (76 km no rth and west along the coast from Bay Bulls), and one wild cod was 

detected at Grates Cove between Conception a nd Trinity Bays ( 160 km away). Another 

wild cod was detected heading north past Cape Broyle in May, then past the mouth of 

Bay Bulls and Petty Harbour, into Conception Bay and Trinity Bay as far as Bellevue by 

June 27, hav ing covered a minimum distance of2 56 km in 36 days, traveling 0.2 body 

lengths per second (BL s- 1
) , before returning to Concept ion Bay in July. One farmed cod 

from Re lease 2.1 was detected in Conception Bay in May. From Re lease 2.2, o ne farmed 

cod was detected in Petty Harbour and the mouth of Bay Bulls in May, as well as one 

wild cod in Petty Harbour in June, one wild cod in Conception Bay in July, and one wild 

cod in Conception Bay in August. Based o n detect io ns and recaptures, at least 80.2% ( 48 

farmed and 17 wild) of the cod went north for the winter. Of these, o nly 22.2% ( 13 

farmed and 5 wild) were detected beyond Petty Harbour. In addition, 12.3% (4 farmed, 6 

wild) oscillated no rth and south between Petty Harbour, Bay Bulls, and Cape Broyle. In 

contrast, 2.5% were detected only south of Bay Bulls (2 wi ld, one detected o n an array, 

one recaptured). 
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3.-1.4. Recaptures oftaggedfish 

Within one year of release, a total of nine (six farmed, three w ild) ofthe 81 tagged 

cod were recaptured by fi shermen. Most of these were caught by local fishermen (one 

farmed cod in Bay Bulls, o ne w ild and four farmed cod in Petty Harbour) w ith hand lines 

(recreat ional) o r g illnet (small commercial fi shery). Five ofthese from Re lease I (four 

farmed, one wild cod) were recaptured between 31 Aug. and I 0 Sept. 20 II , and one 

farmed cod from Release 2.2 was recaptured 3 Dec. 20 11. Recaptures in 20 12 invo lved 

one wild cod from Re lease I recaptured on 7 June 2012 in Placentia Bay (-260 km south 

a long the coast from the release site) in an adjacent stock management area (NAFO 

Subdiv. 3Ps, Fig. 5), as we ll as one wild cod from Re lease 2.2 and one farmed cod from 

Re lease I captured during August 2012 in Conceptio n Bay near Brigus and Gull Island, 

respectively. T he recapture rate for escaped farmed cod was 11.5% and for w ild cod was 

I 0.3%, but this was not significantly different between groups (X2 = 0.05, df= I, p = 

0 .83). 

3.5 Discussion 

Escapes of farmed fish can be both economica lly and eco log ically detrimental, 

espec ia lly if farmed fish are from a non-native population. This study showed that 

escaped farmed cod dispersed away from the farm s ite quickly and broadly, and 

overlapped with the range of local w ild cod, indicating the cons idera ble potent ia l for 

interactions. In the worst case scenario, such interactions cou ld adversely affect the 

recovering wild populations of cod (through interbreeding, competition, and pathogen 

transfer). 



52 

Intentionally released farmed cod dispersed away from the farm more s low ly than 

wild cod, as has been seen in previous studies in Newfoundland us ing juvenile wild cod 

reared in capt ivity for three years prior to release (Wroblewski and Hiscock 2002), as 

well as in other species that show a high degree of s ite fidelity to sea cages, including sea 

bream (Dicentrarchus labrax; Arechavala-Lopez et al. 20 II), sea bass (Sparus aurata; 

Arechavala- Lopez et al. 20 12), and steel head trout (Bridger et a l. 200 I). We o bserved 

post-release dispersal rates (i .e. moving> 600 m from the farm) for farmed cod of 12 h 

for 50% dispersal and 38 h for 90% dispersal, which are similar to the dispersal rates (i.e . 

moving > 1.3 km from the release site) of 10 h (50%) and 41 h ( 100%) observed by 

Wroblewski and Hiscock (2002). For wild cod, we observed dispersal rates of 5 h for 

50% dispersal and 12 h for 90% dispersal, which are lo nger than the dispersal rate of3 h 

for I 00% observed by Wroblewski and Hiscock (2002), even though the ir measure of 

distance to dispersal (1 .3 km) was more than tw ice that in our study (600 m). Farmed cod 

may have remained near the cage s ite due to familiarity of the environment, as a known 

food source, while w ild cod may have returned straight to the locat io n of capture, at their 

feeding grounds. 

We also observed a seasona l difference, w ith cod from later releases (October) 

departing from the cage more quickly than those released earlier (August). Wroblewski 

and Hiscock (2002) released the ir cod (wild juveniles that had been reared in capt iv ity for 

three years prior to release) in late April and early May. This may suggest a seasona l 

difference in dispersal rates of wi ld cod, poss ibly due to seasonal activities such as 

mig ration and feeding. We observed no clear differences in the geographic dispersal of 

cod between releases; however, env ironmental cond itio ns ( i.e. water temperature) were 
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similar between the releases due to the short separation in time (2 months). We detected 

few fi sh from December until April when the water was colder, suggest ing that the cod 

were avoiding the cold shallow coastal waters where our receivers were located. Adult 

cod are known to be present in Conception Bay from May until September, after which 

the sha llow thermocline disappears, supporting our observations (Aggett et a l. 1987; 

Lawson and Rose 2000). 

Dispersal rates observed in this study diffe r from previous studies conducted in 

Norway that have shown that farmed cod initia lly disperse more quickly than wild cod 

(Svasand et a l. 2000; Uglem et a l. 2008). These conflicting results may be due to o rigina l 

capture location of wi ld cod: wild cod used in the present study were captured around 2 

km away from the cage site at the local feeding grounds, whereas wild cod used by 

Uglem et al. (2008) were caught < 200m from the cage site. It is known that fi sh farms 

can attract wild fi sh aggregat ions (Dempster et al. 2010), which may s low the d ispersa l 

away from the farm area. Differing results may a lso be due to heritable difference in 

migrato ry behav iour. The farmed cod used by Uglem et a l (2008) came from a non-local 

stock that was more migratory and pelagic in behav iour than the local w ild cod stocks. In 

the northwest At lantic, groups of cod inhabit a more variable enviro nment and tend to 

disperse a long the coast, in contrast with groups of cod in the more stable environment of 

the northeast Atlantic that tend to be accurate homers and sedentary (Robichaud and Rose 

2004). In add ition, some bays and fjords are home to a resident population of cod 

(Wroblewski et al. I 996; Wroblewski and Hiscock 2002). Our results suggest that the 

farmed cod had migratory tendencies similar to that of the loca l wild cod. 
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Dispersal within the release bay varied between farmed and wild cod, keeping in 

mind that time spent within the bay was of relatively short duration (around two weeks, 

with 50% offarmed cod and 24% ofwild cod gone within 48 h). Many of the wild cod 

quickly returned to the area at the mouth of the bay where they had been captured before 

tagging, staying close to the so uth shore of the bay, and some remained in the area for 

severa l months. In contrast, more farmed cod were detected along the northern shore of 

the bay. The wild cod had previous experience ofthe local environment and locatio n of 

feeding areas at the mo uth; however, the farmed cod may have been exp loring the bay 

due to the ir lack of knowledge of the environment, and possibly their inabi lity to evaluate 

ha bitat qua lities (Uglem et a l. 2008; De mpster et al. 20 I 0). In addition, farmed cod 

released together w ith w ild cod dispersed mo re rapidly(- 5 h) than farmed cod re leased 

independently of w ild cod, suggesting that farmed cod may have been using cues from 

the w ild cod to disperse quickly to the feeding grounds. The high variability in arriva l 

time at Petty Harbour indicates that, a lthough many w ild and farmed cod moved in the 

same direction ( i.e. northward), indiv idua l fish were not in close proximity. This suggests 

that farmed cod may have been attracted to aggregat ions of w ild cod through some 

unknown sensory mechanism beyond v ision. Farming cod near areas of local wi ld cod 

aggregatio ns may increase the likelihood of inte ractions between escaped farmed and 

wi ld fish , as the farmed fish may be attracted to local aggregat ions of wi ld fish. In 

add ition, the attract ion of escapee farmed fish to local w ild cod makes targeted fisheries 

for recovery more difficult because they may result in high inc idental catches ofwild fish. 

We observed a w ide geographic dispersal of both w ild and farmed cod from Bay 

Bulls north to Trinity Bay and south to Placentia Bay. Fo llowing dispersal from Bay 
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Bulls, the majority of farmed cod (85%) were detected at Petty Harbour, arriving faster 

than wild cod (ofwhich only 55% were detected there). In addition, most cod did not 

linger in Petty Harbour for more than a day, suggesting they were passing through on 

their way north. Previous studies have shown that wild cod are able to migrate along the 

same route, returning to the same site several years in succession, creating different 

'stocks ' of cod (Rose 1993; Robichaud and Rose 200 I) . For example, data from return 

migrations have suggested the existence of a Placentia Bay coastal cod stock (Lawson 

and Rose 2000). 

The average travel speed of0.03 BL s· 1 reported here matched that observed by 

Comeau et al (2002) for summer migrants. Rose et al. ( 1995) reported a mean swimming 

speed of0.23 BL s-1 during the spring migration. Our study was conducted primarily 

during the summer, when cod come inshore to feed, possibly resulting in slower 

migratio ns along the coast, as seen by Comeau et al. (2002). Furthermore, basa l 

swimming speed in fishes is a function of body length, with larger individua ls tending to 

show greater swimming speeds (Santos 20 II). Comparisons are therefo re influenced by 

many factors, including the size composition of the cod being studied. 

Few studies have tracked the d ispersa I of escapee farmed cod, and these studies 

have frequently been limited to tracking within fjord systems up to 15 km, however 

Uglem et a l. (2008) recaptured farmed cod 40 km away from the release s ite. Courtesy of 

the DFO acoust ic receiver arrays dispersed around the island ofNewfoundland, we 

detected farmed cod up to 114 km away from the re lease site. S imilar results were 

observed in an ear lier study, with wild juvenile cod (raised in a farm s ituat ion for three 

years prior to release) detected up to 170 km away from a re lease site in Trinity Bay, 
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Newfoundland (Wroblewski and Hiscock 2002) . Our results indicate that farmed cod are 

able to disperse great distances, and overlap w ith the range of wild cod. 

Migratio ns observed in this study fro m Bay Bulls no rth to Trinity Bay and south 

to Placentia Bay are consistent with historica l descriptions of the 'Ava lon stock co mplex' 

(Templeman 1962, 1979). Lear ( 1984) found that cod that overwinter on the eastern and 

southeastern slopes o f Funk Island Bank as well as the Northern Grand Bank migrate to 

eastern Newfoundland fro m Trinity to St. Mary's Bay fo r the summer, fu rther support ing 

the w ide dispersal observed in this study and illustrating the wide overlap of cod fro m 

different management div is io ns. Furthermore, the s ize and age of cod tagged in th is study 

are co ns istent w ith the o ntogenetic thresho ld of cod migratio n, w ith lo ng migrations 

occurring by age 4 or 5 (Rose 1993; Lawson and Rose 2000). Our results agree w ith 

previous studies indicating that the eastern Avalo n is a summer feeding area fo r cod that 

may be a mix of migrants fro m the south and northeast coasts o f Newfoundland (Lawson 

and Rose 2000; Robichaud and Rose 2004). 

Mo vement of tagged cod south from Petty Harbour was cons istent w ith results of 

a tagging study by Brattey et at. (2008). Previous studies fo und that I 0-30% of the tagged 

Placent ia Bay cod migrated east and no rth along the Avalon Peninsula, trave ling as far as 

Trinity Bay ( Lawson and Rose, 2000; Robichaud and Rose 200 1 ). Of a ll the tagged w ild 

cod re leased in this study, only 55% (80% of a ll w ild cod detected beyond Bay Bulls) 

were detected at Petty Harbo ur ( i.e . north of Bay Bulls), suggesting that some w ild cod 

may have o rig inated fro m e ither Placent ia Bay or the offshore banks. T he sing le w ild cod 

recaptured in Placentia Bay in June 20 12 further suggests that cod groups a long the 

eastern Avalo n Peninsu la may conta in migrants from Placent ia Bay that move along the 
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south and eastern Avalon during the summer (Brattey 2000; Brattey et al., 2008). 

However, due to the small sample size we cannot draw further conclusions on the origins 

of the wild cod. In addition, four tagged cod were detected near Bay Bulls in the spring of 

2012 as well as one in September, indicating a return migration to the s ite of tagging, as 

well as over-winter survival (six others were also detected or recaptured elsewhere after 

winter). 

A ll tagged cod were detected within Bay Bulls; however, 14.8% were never 

detected along the coast beyo nd Bay Bulls. It is not possible to distinguish between 

natura l mortality, unreported fishing mortality, emigration, or transmitter fa ilure. 

Transmitters are re liable and were tested prior to re lease. Some undetected cod may have 

been caught in lost fi shing gear (e.g. "ghost-fishing") , or the fi sher did not claim the 

reward (maximum of$35 per fi sh); however, tagging is well advertised and it is believed 

that most recaptures are reported (Brattey et a l. 2008). It is therefore more like ly that 

undetected cod moved to an area beyond the range of the rece iver arrays, offshore to 

deeper water. If feasible, future studies should extend the coverage of the rece ivers to 

include more deep water habitat, in additio n to expanding the receiver array a long the 

southern coast ofthe Avalon Peninsula. 

A lthough escapee farmed cod left the farm area more slow ly than w ild cod, most 

of the escapees had dispersed within 24 hours, much quicker than found in previous 

studies (Ug le m et a l. 2008, 20 I 0), indicat ing that any attempt at a recapture fishery would 

need to be undertaken immed iate ly after an escape inc ident. Few studies have quantified 

the recapture rate of escaped farmed cod, however results from an acoust ic telemetry 

study in Norway as we ll as from stock enhancement studies suggest t hat the incidenta l 
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recapture rates may be high (30-44%) with even a modest fishing effort (Svasand et al. 

2000; Uglem et al. 2008). In comparison, recapture rates from targeted recapture fisheries 

for escaped salmon have been found to be much lower, at around 1-7% (Skilbrei et al. 

2006; Skilbrei and J0rgensen 20 I 0), though incidental catches over several weeks can be 

considerably higher, at 40% or more (Skilbrei and J0rgensen 20 I 0). Although there was 

no dedicated recapture fishery, I I% of the farmed cod were recaptured over I 0-12 

months. This recapture rate was higher than the 7% observed by Wroblewski and Hiscock 

(2002). Several factors, such as differences in fish size at release and local fishing effort, 

however make direct comparisons difficult. Wild cod in our study had a recapture rate of 

I 0%, similar to that seen by Brattey et al. (2008). Overall, we saw no significant 

difference in the recapture rates of escapee farmed and wild cod, in contrast to previous 

studies (Wroblewski and Hiscock, 2002; Uglem et al. 2008). 

The timing and recapture locations in this study reflect the pattern of seasonal, 

summer small-scale fisheries (recreational, sentinel and commercial) at the mouth of Bay 

Bulls and off Petty Harbour. In add ition, detections and recaptures at Petty Harbour 

indicate cod remained in a narrow corridor close to shore as they migrated northward . 

This suggests that a higher proportion of escapees could be recaptured within and near 

Bay Bulls than if they dispersed randomly. Differences among stock origins and the 

geography near cod farms preclude the abi lity to make predictions o n the success of 

recapture attempts in other areas. However, quantitative measures of recapture rates of 

escaped farmed cod require information on the fishery effort, s ize of the w ild stock, and 

the number of escapees (Ug lem et a l. 2008). Knowledge of the dispersal patterns of 

escapees will increase the efficiency of a recapture fishery, for example target ing areas 
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where loca l wild cod aggregate as shown by the recaptured tags in this study as we ll as 

previous studies (Uglem et al. 2008). However, g iven the broad spatial overlap offarmed 

escapees with wild cod and the similarity in percentages of each group recaptured (I I% 

farmed versus 10% w ild), it is like ly that any targeted fishery for escapee recapture is 

likely to result in significa nt incidental catch of w ild cod. 

In conc lusion, escapee farmed cod dispersed from the release site mo re slowly 

than wild cod. However, dispersal of bo th groups was rapid (within 24 h), making 

recapture o f escapees logist ica lly challenging. Following the initial dispersal period, most 

cod moved no rthward, staying close to the shore. This non-random dispersal and narrow 

migratio n corridor may fac ilitate an efficient recapture fishery, but a lso a high incidental 

catch of wild cod. Furthermo re, the spat iotempo ral distributions of escapee farmed cod 

and wi ld cod were very similar, suggesting the potential for negative interact ions between 

the domesticated and often no n-loca l farmed cod and the local w ild cod. Further stud ies 

are therefore needed to minimize the number of escapes from farms, to invest igate the 

potential for an effect ive recapture strategy a nd to consider means of preventing 

interactions, such as interbreeding, with w ild fish. These steps w ill he lp with the 

development of environme nta lly sound aquaculture not only for cod, but other marine 

finfish ra ised in net pens. 
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Table 3.1. Mean length and number of acoustically tagged farmed and wild cod. 

Released in three simulated escape events in 2011 in Bay Bulls, Newfoundland (N47 

18.663 W52 48.259). 

Release 

2.1 

2.2 

Fish type 

Farmed 

Wild 

Farmed 

Farmed 

Wild 

Release Date 

9-Aug-11 

I 0-0ct-11 

I 0-0ct-11 

No. of 

fish 

21 

14 

17 

14 

15 

Mean length 

(em± sd) 

46.3 ± 2.4 

51.9 ± I 0.5 

48.8 ± 2.8 

46.9 ± 3.3 

48.9 ± 3.2 
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Table 3 .2. Details of acoustic receiver deployments along the Avalon Peninsula. 

Indicates location, dep loyment date, depth deployed, and amount of time deployed during the study (9 Aug. 20 II to 19 Sept. 

20 12). Total number of pings and the number of individual tanned and wild cod detected at each array are summarized. See 

Figures I and 5 tor locations. 

Receiver Location of Distance to Deployment 

array ID array next array (km) Date 

c Cage 0 6-.Jun- 11 

H I In ner fence 1.5 I 0-.Jun-11 

1-12 Inner fence I 0-.J un- 11 

Last Retrieval Rece ivers Depth 

Date (#) (m) 

12-Sept-1 2 20 

19-Sept-12 40 

19-Sept- 12 40 

Deployment 

time(%) 

84 

100 

100 

No. of pings 

(# tarm, #wild) 

43 643 

(5 1 f; 28w) 

24 635 

(5 1 t; 29w) 

22 750 

(52f, 29w) 



Receiver Location of 

array ID array 

1-13 Outer tence 

1-14 Outer tence 

1-15 Outer tence 

M l Mouth 

M2 Mouth 

CB Cape Broyle 

Distance to Deployment 

next array (km) Date 

1.9 I 0-Jun-1 1 

10-Jun-1 1 

I 0-Jun-1 1 

2. 1 4-0ct-1 1 

4-0ct- 11 

25.7 9-Jun-11 

70 

Last Retrieval Receivers Depth Deployment No. of pings 

Date (#) ( m) time(%) (# larm, #wild) 

19-Sept-1 2 50 100 32 330 

(38f, 27w) 

19-Sept- 12 70 100 14 402 

( 47t; 27w) 

1-Sept- 11. 70 1oot 4 692 

( 18f, lOw) 

19-Sept-1 2 40 86 22 092 

( 15t; 16w) 

12-Aug-12 40 76 50 0 15 

( 1St; 13w) 

12-.l un-1 2 3 100- 100 552 

163 ( I t; 3w) 
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Receiver Location of Distance to Deployment Last Retrieval Receivers Depth Deployment No. of pings 

array ID array next array (km) Date Date (#) (m) time(%) (#farm, #wild) 

PH Petty Harbour 20.i 29-.lun-11 18-Jun-12 2 91- 100 34 325 

115 (46f, 18w) 

CSF Cape St. 45.7 29-.lun-11 18-Jun-12 4 SO- 100 7 309 

Francis 2 10 ( 12f,2w) 

BL Bau line 10,2 12-.lu l-11 19-Sept-1 2 3 30 100 1923 

(6t; 3w) 

Bl Bell Island 10.7 27-Jun-11 18-Jun-12 4 136- 100 633 

163 (6f, lw) 

sc Salmon Cove 22.4 29-Jun- 11 18-J un-12 3 43-92 100 69 

(3f, lw) 
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Receiver Location of Distance to Deployment Last Retrieval Receivers Depth Deployment No. of pings 

array ID array next array (k m) Date Date (#) (m) time(%) (#tarm. #wild) 

BC Baccalieu 43 .7 30-Jun- 11 27-Aug-1 2 3 105- 100 227 

120 ( 4 f. 3w) 

GC Grates Cove 11 .2 30-.Jun- 11 28-J un- 12 2 65- 100 17 

324 (O f, 2w) 

HI-I I-I ants 35.9 1-.Ju l-11 28-.J un-12 2 66- 100 

Harbour 286 (Of; I w) 

13V Bellevue 39.3 1-Jul-11 28-Jun-1 2 4 74- 100 39 

146 (Ot; lw) 

Note: Minimum distances to next array were calcu lated using stra ight line approx imations. See Figures I and 2 for locations of 

receivers. Deployment time was calculated from 9 Aug. 20 II to 19 Sept. 2012. 

"Receiver has not been retrieved since the second release of cod. 

tData was only recovered trom 9 Aug. 20 II to I Sept. 20 II (5% of the study duration). 

'Distance measured from mouth of Bay Bulls 
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Figure 3.1. Location of the study area in eastern Canada, with Bay Bulls in detail. 

Light grey areas represent the detection range of the rece ivers (500-600 m). C, H 1-HS, 

and M 1-M2 refer to the receivers (see Table 2 for detai ls). 
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s imultaneous ly, as well as the farmed cod re leased independently (an hour earlier) during 

the second re lease (o ) are shown. 
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Figure 3.3. Proportion of time within Bay Bulls spent by tagged cod within range of 
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In total, 81 cod were released w ith acoustic transmitters from Bay Bulls. Bold letters refer 

to receiver arrays (for details see Table 2). Black stars represent wi ld cod recaptured by 

fishermen, while grey stars represent a mix of wi ld and farmed cod recaptured. Overa ll 

size (diameter) of pie charts are scaled to the total number of cod detected at each array, 

noted by bold number (i.e. , maximum detections at Petty Harbour (PH), 64; minimum 

detections at Bellevue Beach (BY), I). 
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4. Summary and conclusions 

This thesis examined the potential for interaction between escaped farmed and 

wild cod. Fish escapes represent both a direct economic loss fo r the farmer as we ll as an 

environmental concern with regard to local wild populations. The impact of escapee 

salmo nids on local ecosystems has been we ll studied (reviewed by Naylor et al. 2005; 

Bekkevo ld et al. 2006), however with the divers ificatio n of marine aquaculture to include 

other species such as Atlantic cod (Gadus morhua) comes the need to understand the 

environmental impacts of escapes. Fish that bite at nets such as sea bream a nd cod are 

particularly prone to escape (Dempster et al. 2007; Jensen et a l. 20 I 0). This study found 

tha t escape-related behav iours can be reduced with cage enrichment, food ava ilabi lity, 

and net maintenance, and that it is important to reduce escapes as the potentia l to 

recapture escapees is low. 

To reduce interactions w ith the net wall, I tested the hypothesis that suboptimal 

conditions encourage net biting. The data supported this hypothesis, and indicated that 

add ing stimulating objects to the cage resulted in the la rgest reduction in interact ions. 

T here was a clear preference for stationary benthic tubes which may have provided refuge 

for the cod. Cage enrichment could be a re lative ly easy and inexpens ive method to reduce 

net biting. Future studies should be conducted to determine the feas ib ility of adding 

structures to increase the complexity ofthe cage habitat at commercia l farms, as well as 

to determine the optimal structure or object type to achieve reduced net biting. 

Appropriate feeding leve ls, while important for production a nd welfare, are a lso an 

important method for reducing net bit ing, especia lly when combined with cage 
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enrichment. In addition, regular net maintenance to avoid frayed or damaged strings can 

also help reduce net interactions. Combining these three factors may be part o f an 

effective strategy to reduce the number o f cod escapes from aquaculture sea cages. Future 

studies at commercial farms will gain further insight into the efficiency of this strategy 

when applied at relevant temporal and spatial scales. 

To gain a better understanding of the behavio urs underly ing the tendency to bite 

nets, I tested the hypothes is that indiv idual temperament affects net interactions. The 

hypothes is was not supported; however indiv idua l behav iour toward the net was 

consistent for the duration of the experiment. Combined w ith the wide range of 

behaviours between individuals, this suggests the presence of behavioura l syndro mes, 

such as a lo ng the ''shy-bold" continuum (Fraser et a l. 2001; S ih et a l. 2004) . Individual 

behaviour may exp la in so me of the variation in activity amo ng farmed cod and merits 

further study to understand the mechanisms driving behavioural variation among 

individuals and the linkages between behav io urs. 

A ltho ugh escapes can be reduced, it is unlike ly that escapes w ill be el iminated 

completely. It is therefore essential to understand the spatiotemporal distribution of 

escapees in order to assess the potential for inte ract ions with wild populatio ns. Following 

a simulated escape event, escapee farmed cod remained near the cage longer than local 

wild cod, however most dispersed within a day. Recapturing escapees w ith a dedicated 

fishery would be challenging, as the fishery would have to be implemented as soon as 

possible following an escape incident. T he feasibility of a successfu l recapture fishery 

would be high ly dependent on the local enviro nme nt near the cage, as well as the local 



fi shery effort, size of the wild stock, and number of escapees (Svasand et a l. 2000; 

Skilbrei et al. 2006; Uglem et al. 2008). 
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Efficiency of recaptures could be increased with knowledge ofthe dispersal 

patterns of escapees. A !though dispersa l out of the bay varied between escapee farmed 

and wild cod, the geographic dispersal was s imilar between the two groups. Rather than 

dispersing rando mly, most cod migrated northward and remained close to shore. T his 

may facilitate higher proport ions of recaptures of escapees. The s imilar ity in dispersal 

between wild and farmed cod suggest that the escapees were attracted to aggregations of 

wild cod at favorable sites (i .e. , feeding, spawning, or overwintering areas) by some 

unknown sensory mechanism, o r both were drawn to the same cue. 

T his study also gave insight to the dispersa l of local w ild Newfoundland cod, 

which dispersed both no rth and south a long the coast. T he dispersal pattern matches 

historical data that suggest the cod of the eastern Avalo n are a mix of migrants from 

northern and southern stocks (Templeman 1962, 1979; Lear 1984; Brattey et a l. 2008). 

Future studies are needed to determine the quantity of exchange between these stocks. In 

add ition, 19% of the cod were never detected again once leaving the study bay. It is 

possible that these fish moved to deeper offshore waters, however future studies are 

needed to confirm this theory. 

In conc lusion, this thesis has g iven further ins ight into the stock structure and 

movements ofNewfoundland cod. This knowledge may lead to more efficie nt 

ma nagement of wild stocks. In add ition, this thesis demonstrates there is a high potential 

for negat ive interactions between escapee farmed and local w ild cod. Recapture of 

escapees will be logistica lly cha lleng ing, so it is therefore crucia l to reduce the number of 
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escapees. Proactively addressing the conditions that encourage net biting may prove to be 

a cost efficient and complementary means, along with that of improving net materials, to 

reduce escapes. In addition to an effective recapture fishery, these steps wi ll help to 

develop environmentally sound aquaculture of marine species such as cod. 
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